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 ABSTRACT 
 

ASSESSING THE VISUAL QUALITY OF THE MAXTON PLAINS ALVARS 
 

By 
 

Emily Prieskorn 
 
This study assesses and documents the visual quality of the Maxton Plains alvar/alvar 

grassland plant communities found on Drummond Island, Michigan, USA.  These small, 

rare landscape types are not addressed by large-scale visual quality mapping efforts 

and may differ from predicted scores.  Visual quality was assessed using two evolutions 

of the existing visual quality assessment model to accomplish the study’s secondary 

purpose, which was to compare their performance. Equation (1) produced a score set 

ranging from 52.70-57.17, with an average of 54.32, a variance of 0.72, and a standard 

deviation of 0.85.  Equation (2) produced a set of scores (hereafter referred to as Set 2) 

ranging from 47.12-52.67, with an average of 50.55, a variance of 0.84, and a standard 

deviation of 0.90. The results of the visual quality assessment reveal that the Maxton 

Plains alvars and alvar grasslands have consistently high-to-moderate visual quality and 

are visually equivalent.  The results also indicated that there are slight differences 

between evolutions of the model that could play a role in future studies.  
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INTRODUCTION 

 

What is Visual Quality?  

How do people perceive landscape?  What does good landscape look like?  

What makes it good or bad, and who decides which is which?  These questions, and 

the concepts they represent, are at the heart of professions that seek to change the 

land for the better.   

The assessment of visual quality has traditionally been handled with subjective 

approaches, but great strides have been made over the last several decades toward 

quantitative alternatives.  A validated model has been developed that can predict the 

preference level (used interchangeably with ‘visual quality’) that the general public 

would be expected to express toward a given landscape (Burley, 1997; Burley & Yilmaz, 

2014; Kaplan, 1985; Liu & Burley, 2013; Mo, Le Cleach, Sales, Deyoung, & Burley, 

2011; Schafer, Hamilton, & Schmidt, 1969; Schafer & Tooby, 1973).   This model has 

many applications that are currently being explored, one of which is the construction of 

validated visual quality maps (Burley, Deyoung, Partin & Rokos, 2011; Jin, Burley, 

Machemer, & Crawford, 2016; Lu, Burley, Crawford, Schutzki, & Loures, 2012; Shafer & 

Brush, 1977; Yilmaz, Liu, & Burley, 2016).  The opportunity exists to improve current 

maps by documenting the visual quality of uncommon landscape types that large-scale 

mapping efforts do not capture (Yilmaz, Liu, & Burley, 2016).  
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Visual Quality Assessment 

Visual quality assessment is a quantitative approach to a seemingly qualitative 

problem.  Prior to the development of a quantitative model, many relied on the expert 

approach to determine visual quality (Daniel, 2001; Ulrich, 1986; Zube, Sell, & Taylor, 

1982).  This approach, while useful, lacks the empirical data and statistic validation that 

the visual quality assessment model offers quality (Daniel, 2001; Ulrich, 1986; Zube, 

Sell, & Taylor, 1982). The model uses an equation to generate a visual quality score 

based on the physical attributes of a landscape (Schafer, Hamilton, & Schmidt, 1969).  

This score represents the level of preference that the average member of the general 

public would be expected to express in response to the landscape. 

 This model, and the equation that comprises it, have evolved considerably over 

the last several decades, and several versions with varying levels of accuracy exist. The 

possible applications of the model as a professional tool are numerous.  One such 

application is the validated mapping of visual quality data, which has recently made 

great strides in the state of Michigan (Burley, Deyoung, Partin & Rokos, 2011; Jin, 

Burley, Machemer, & Crawford, 2016; Lu, Burley, Crawford, Schutzki, & Loures, 2012; 

Yilmaz, Liu, & Burley, 2016).   

 

Visual Quality Mapping: An Opportunity 

While there has been significant progress in visual quality mapping (Burley, 

Deyoung, Partin & Rokos, 2011; Jin, Burley, Machemer, & Crawford, 2016; Lu, Burley, 

Crawford, Schutzki, & Loures, 2012; Shafer & Brush, 1977; Yilmaz, Liu, & Burley, 
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2016), the nature of large-scale mapping efforts creates an opportunity for further 

research.  The broad landscape type categories and large cell size necessary to large-

scale efforts do not capture small or specialized landscape types.  There is very little 

data about the visual quality of these landscape types (Yilmaz, Liu, & Burley, 2016).  

This data would not only contribute to the existing body of work regarding visual quality 

mapping, but to conservation and awareness efforts. 

 There is also very little data comparing the results of different versions of the 

model when applied to the same images.  The equation used by the validated mapping 

efforts draws on the same set of variables as more recent, more predictive iterations. A 

comparison of the results produced by different equations could yield useful information 

about the equations themselves, which could guide the selection of equation for future 

studies and assess the feasibility of generating more accurate future maps. 

 

Purpose of Study 

 The purpose of this study is to assess and document the visual quality of 

Drummond Island’s Maxton Plains alvars.  Due to its small size and rarity (Albert, 2006; 

Albert, Cohen, Kost, & Slaughter, 2008), the alvar plant community does not conform to 

broad landscape type categories and has not yet been assessed. A secondary purpose 

of this study is to compare the performance of two equation evolutions in order to gain 

insight that might guide future studies.  This study will use two different versions of the 

visual quality assessment model: the older version used by visual quality mapping 

efforts, and a more current version with higher predictive ability.   
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It is important to note that this study’s focus is descriptive in nature.  Past work in 

visual quality has focused on validation and prediction, but the purpose of this study is 

to describe an area in terms of average visual quality and record the results.   
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LITERATURE REVIEW 

 

Introduction 

The field of landscape visual quality assessment. Over the past 50 years, 

people have been interested in discovering what makes one landscape visually 

preferable to another.  There are vast amounts of literature available on the topic of 

visual quality; several excellent endeavors have been made to summarize the body of 

work available (Daniel, 2001; Zube, Sell, & Taylor, 1982).   

 

Dominant Paradigms 

The expert approach.  Two major approaches dominate recent work in the field 

of visual quality: the expert approach and the perception assessment approach.  The 

expert approach is perhaps the more familiar of the two, and relies on the opinion of 

someone considered an expert to pass judgement based on that expertise.  This 

approach has a number of applications and is especially useful in the design and 

planning professions, which predicate on the notion that the designer or planner is more 

qualified than the average person.  In historic visual quality assessment, however, the 

definition of an ‘expert’ is used loosely and may be largely determined by the person 

seeking expertise.  The expert’s field of knowledge may range from the fine arts to the 

physical sciences, and depending on the method used to collect and evaluate 

landscape, the information they provide may contain some amount of subjective 

coloring.  The viewpoints that are represented by expert opinion are limited by the 
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number of experts, which may vary significantly from one situation to the next. Expert 

opinion is difficult to verify, reproduce, or generalize. For the field of landscape visual 

quality assessment, the expert approach lacks the levels of validity, precision, and 

reliability necessary for scientific research (Daniel, 2001; Ulrich, 1986; Zube, Sell, & 

Taylor, 1982).   

The perception assessment approach.  As the topic of environmental and 

resource management became more relevant, the perception assessment approach 

gained ground.  This approach focuses on the perceptions of ordinary people, collected 

and analyzed in objective ways that can be reliably reproduced and verified (Daniel, 

2001; (Daniel, 2001; Zube, Sell, & Taylor, 1982).    The perception assessment 

approach offers empirical alternatives to the expert approach, relying on math rather 

than opinion.  One tool that has evolved out of this approach is the visual quality 

assessment model, which contains an equation that predicts public opinion about visual 

quality based on the physical attributes of a landscape.   

 

The History of the Model 

Origins: Elwood Schafer.  The visual quality assessment model is a predictive 

approach to evaluating a landscape’s level of visual appeal from the perspective of the 

general public. The model involves both a methodology and an equation that generate a 

visual quality score.  The first version of this model was produced by Schafer, Hamilton, 

and Schmidt (1969).The initial equation had only six variables and explained about 66% 

of the variance in responses, although others claim that the actual figure is about half 
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that (Burley & Yilmaz, 2014). Their methodology, however, provided groundbreaking 

insight into how a qualitative assessment method could be developed and effectively 

applied.  A grid system was overlaid onto black and white photographs of landscape 

(later verified as acceptable substitution for actual landscape). The visual elements 

present in each landscape were then broken down into 46 variables that could be 

identified and recorded using the grid system.  Once the variables were recorded, 

preference data was collected for each image using the Q-sort method and two user 

groups (campers and laypeople). Lastly, statistical methods were applied to determine 

which, if any, variables were significant predicators of preference.  This information was 

then used to develop a predictive equation, which can be found below (Schafer, 

Hamilton, & Schmidt, 1969). 

Y= 184.8 - 0.5436 X1 – 0.09298 X2 + 0.002069 (X1 * X3) + 0.0005538 (X1 * X4) 
– 0.002596 (X3 * X5) + 0.001634 (X2 * X6) – 0.008441 (X4 * X6) – 0.0004131 (X4 * X5) 
+ 0.0006666 (X1)2 + 0.0001327 (X5)2                                                                            (1) 

 

X1= perimeter of immediate vegetation 
X2= perimeter of intermediate non-vegetation 
X3= perimeter of distant vegetation 
X4= area of intermediate vegetation 
X5= area of any kind of water 
X6= area of distant non-vegetation 
 
Schafer went on to apply this equation in a number of subsequent studies (Shafer & 

Brush, 1977; Schafer & Tooby, 1973). This methodology can still be found in recent 

work.  

Schafer’s legacy and subsequent work. Unfortunately, Schafer’s work was 

largely disregarded in his own time due to a lack of theoretical framework and the 

prevalence and ease of expert opinion (Burley, 1997; Palmer, 2004).  However, there 



 

8 
 

was still considerable interest in the field, and others continued to work on different 

aspects of visual quality assessment, generating new possible variables and versions of 

Schafer’s equation in order to explain more of the variation in responses (Kaplan, 1985).  

Aesthetics: a paradigm shift.  The successful development of a significantly 

more predictive equation required a paradigm shift regarding the nature of preference.  

Schafer’s original work dealt primarily in aesthetics- physical attributes of the landscape, 

such as water or vegetation, which could be observed and recorded.  But the original 

equation’s low predictive ability suggested that there was more involved in the way 

people view landscape, and why they prefer one to another.  Burley (1997) credits an 

environmental checklist included in Carol Smyser’s Nature's Design: A Practical Guide 

to Natural Landscaping as the inspiration for a shift away from aesthetics.  The book 

offers practical advice for creating a beautiful, functional home landscape and is geared 

toward the average homeowner.  Its value in terms of visual quality assessment lies in 

the holistic approach to landscape value that it takes.  The book urges the homeowner 

to consider more than the aesthetic value of the landscape, and offers a fourteen-point 

environmental checklist as a tool for assessing the landscape’s functions (Smyser, 

1982; Burley, 1997).  This checklist’s inherent paradigms became the base for the 

Smyser index, a scoring system that incorporates environmental, cultural, biological, 

and economic concerns into one variable of the visual quality assessment equation.  

The Smyser index first appears in Burley (1997) as one of 27 total variables.  This 

equation nearly doubles Schafer’s explained variance value (r2=66.6%) and relies on 

the methodological precedents set forth by Schafer, Hamilton, and Schmidt (1969).  The 
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Smyser Index has since been dissected and re-evaluated (Liu & Burley, 2013), but the 

contributions that it made to the understanding of the model remain invaluable.  

The present day.  The model has been refined repeatedly through subsequent 

studies.  The most current version explains 98.45% of the variance in viewer preference 

(Burley & Yilmaz, 2014). The equation’s full potential is currently limited to countries 

with cultural values that are similar to those of the North American respondents it was 

primarily developed with, which is likely a result of cultural differences the equation does 

not account for (Mo, Le Cleach, Sales, Deyoung, & Burley, 2011).   

 

Applications  

The validation of the visual quality assessment model’s predictive ability is only 

the first step toward the development of a truly useful assessment tool; the next step is 

to explore how the equation performs in a variety of settings, situations, and purposes.  

This process is already in motion; variations of the model have appeared in a number of 

studies with diverse characteristics.  A community in Massachusetts has used the core 

concepts of visual quality assessment to track visual landscape change and resident 

perceptions over 20 years.  The resulting information was used to make vital 

management decisions (Palmer, 2004). A similar study applied the basic principles of 

visual quality assessment to rural landscapes to understand how their community 

viewed not only the land, but some of the visually significant agricultural techniques in 

use (Arriaza, Canas-Ortega, Canas-Madueno, & Ruiz-Aviles, 2004). The validity and 
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possible uses of remotely sensed data, such as ArcGIS data, has been verified 

(Crawford, 1994), providing even more tools to expand the field of visual quality.   

Visual quality mapping.  The application that is most relevant to this study is 

the mapping of visual quality. The concept of visual quality mapping is nearly as old as 

the visual quality assessment model (Schafer & Brush, 1977), and involves the 

generation of visual quality scores based on general land use types.  The scores are 

represented graphically and validated statistically through sampling.  The resulting 

visual quality maps have myriad potential uses.  Changes can be tracked in space as 

well as time, as demonstrated by Jin, Burley, Machemer and Crawford (2016) in their 

comparison of Detroit, Michigan’s current and 1800’s visual quality.  Burley, Deyoung, 

Partin and Rokos (2011) demonstrated the planning applications of visual quality maps 

in a comparison of future and former Detroit to Frank Lloyd Wright’s unbuilt Broadacre 

City.  

Large-scale mapping efforts.  Recently, great strides have been made toward 

large-scale mapping.  Validated visual quality maps have been generated for areas of 

various sizes, such as watersheds (Lu, Burley, Crawford, Schutzki, & Loures, 2012) and 

cities (Burley, Deyoung, Partin, & Rokos, 2011; Jin, Burley, Machemer, & Crawford, 

2016).  A validated visual quality map of the entire state of Michigan has been 

produced, confirming the feasibility of mapping efforts on a very large scale as well as 

the suitability of land uses as markers of visual quality (Yilmaz, Liu, & Burley, 2016).  
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Opportunities 

Visual quality mapping.  Despite the extensive body of existing work, there are 

abundant opportunities for further contribution.  The application of the visual quality 

model to an entire state is certainly impressive and useful.   However, there are inherent 

limitations to large-scale studies.  Studies that rely on existing cover type maps are 

limited by their level of detail, range of classification, and original purpose, but the 

production of new cover type maps is often beyond the feasible limits of a study.  Large 

cell sizes and broad, general landscape type classifications are not suited to capturing 

small, unusual landscapes, and may exclude them entirely out of necessity.  Yilmaz, 

Liu, and Burley (2016) note these limitations in their study alongside a call for detailed 

assessment of these landscape types in order to create a truly comprehensive visual 

quality prediction map. 

Alvars and alvar grasslands.  There are many different landscape types not 

covered by large-scale efforts.  This study focuses on the alvar plant community and its 

sub-community, the alvar grassland. A plant community is a type of ecosystem 

characterized by its dominant plants (Cohen, Kost, Slaughter, & Albert, 2014).   Alvars 

occur on a thin (<10 inches) layer of soil perched over flat, calcareous bedrock, such as 

limestone or dolomite.  Glacial action during the Ice Ages removed significant portions 

of existing topsoil from this soft bedrock, depositing foreign rocks and occasionally 

scoring deeper gouges (called grykes) directly into the bedrock.  This resulted in bare 

patches of exposed rock and a very thin soil profile, which is characteristic of the 

community.  Alvars typically occur near water sources and experience significant 

seasonal disturbances, such as flooding, drought, scouring winds, and occasionally fire.  
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Due to the high soil pH, punishing disturbance regimes and thin soil, very few woody 

plants are able to survive.  These harsh conditions create a unique plant community 

found in only three regions worldwide:  Northwest Ireland, the Baltic region, and the 

Great Lakes region.   

An alvar grassland is a subcategory of alvar characterized by slightly larger soil 

margins and predominately gramanoid (grasses and sedges) cover as opposed to bare 

patches of ground or exposed substrate (Albert, 2006; Albert, Cohen, Kost, & Slaughter, 

2008).  For the purposes of this study, it is assumed that the term ‘alvar’ is inclusive of 

alvar grasslands unless otherwise specified. 

Comparisons and insights.  Another opportunity for contribution can be found 

in the numerous iterations of the visual quality assessment model’s equation.  These 

variations were produced as part of the model’s evolution, but the development of the 

most predictive model has not rendered its predecessors obsolete.  Many current 

studies choose to use an older version, which may be due in part to the cumbersome 

nature of the 99-term final equation.  Some studies simply don’t require the level of 

accuracy that the final equation offers, while others may find the length and difficulty 

prohibitive.  However, several older versions exist, and there is little to no research 

available comparing older models to one another.   

 

Conclusions 

The field of visual quality assessment has developed substantially in recent 

decades.  The evolution of a highly predictive model has produced several less 



 

13 
 

predictive but still useful versions of the central equation, many of which are still in use 

today.  The applications of this model are vast and growing as new uses are realized 

and explored.  One of these applications, visual quality mapping, is making 

considerable progress in increasingly large-scale endeavors at the expense of 

examining small, rare landscape types. This study will explore the visual quality of an 

alvar plant community, a landscape cover type found in very small, specific areas of 

Michigan.  The visual quality of the alvar will be assessed using two different versions of 

the equation, which will then be compared to one another as well as to the validated 

visual quality map of Michigan. This comparison could yield valuable information about 

the equations themselves that could influence their future use. 
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METHODS 

 

Area of Study 

Drummond Island, Michigan, is located just off the coast of the state’s Upper 

Peninsula, near the Canadian-American border.  The island is accessible by ferry or 

boat.   

 
Figure 1: Map of the United States of America, showing Drummond Island, Michigan.  
Made using Google Maps (2016). 



 

15 
 

 
Figure 2: Map of Michigan, showing Drummond Island.  Made using Google Maps (2016). 
 

The northern part of the island is home to Maxton Plains, part of The Nature 

Conservancy. Maxton Plains contains up to 8 square miles of scattered alvar and alvar 

grassland, and is accessible by car or bicycle (Bailey, 2009).   
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Figure 3: Map of Drummond Island, showing Maxton Plains. Made using Google Maps 
(2016). 
 
 

Procedures: Equations and Variables 

A set of 60 images, gathered from 31 points, were collected for analysis.  All 

images were gathered on July 31, 2015.  Images can be found in Appendix B.  These 

points are spread out over five locations as depicted in Map B.  For the purposes of this 

study, a location consists of a single, contiguous alvar or alvar grassland. 
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Figure 4: Locations of Points Within Maxton Plains. Made using Google Maps (2016). 

 
 

The images were then analyzed according to the methodology set forth by other 

studies.  For a complete and exhaustive review of the process, refer to Schafer and 

Brush (1977) or Burley (1997).  The base set of variables that both equations use can 

be found below.   
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Table 1: Variables 

Variable Name Description 
HEALTH/CVQ Smyser Index Number derived from the application of the Smyser 

Index (Table 2) 
X1/V1 Perimeter of Immediate Vegetation Number of boundary edges in which individual 

leaves, needles, bark, or stems of trees/shrubs are 
easily distinguishable  

X2/V2 Perimeter of Intermediate Non-Vegetation Number of boundary edges in which individual rocks, 
snow, or patches of bare ground are distinguishable 
but lack fine detail  

X3/V3 Perimeter of Distant Vegetation Number of boundary edges in which vegetation is 
present but individual trees/shrubs are 
indistinguishable  

X4/V4 Area of Intermediate Vegetation Number of squares in which the outlines of individual 
trees/shrubs are recognizable, but lack fine detail  

X5/V5 Area of Any Kind of Water Number of squares containing any kind of water  
X6/V6 Area of Distant Non-Vegetation Number of squares in which rocks, bare soil, and 

snow occur but lack recognizable individual detail  
X7/V7 Area of Pavement Number of squares containing man-made pavement 
X8/V8 Area of Buildings Number of squares containing man-made structures 
X9/V9 Area of Vehicles Number of squares containing any kind of man-made 

vehicle 
X10/V10 Area of Humans Number of squares containing humans 
X11/V11 Area of Smoke Number of squares containing smoke 
X12/V12 Area of Fire Number of squares containing fire 
X13/V13 Area of Herbaceous Foreground Material Number of squares containing non-woody plant 

material in the foreground 
X14/V14 Area of Wildflowers in Foreground Number of squares containing wildflowers in bloom in 

the foreground 
X15/V15 Area of Utilities Number of squares containing utility poles, wires, 

pipes, etc 
X16/V16 Area of Boats Number of squares containing boats 
X17/V17 Area of Dead Foreground Vegetation Number of squares containing dead woody 

vegetation in the foreground 
X18/V18 Area of Exposed Foreground Substrate Number of squares containing patches of bare 

ground in the foreground 
X19/V19 Area of Wildlife Number of squares containing animals, excluding 

humans 
X20/V20 Smoothness (Scale 1-5) Uniformity and height of ground texture  
X30/V30 Open Landscapes (X2 + X4 + 2(X3 + X6))  
X31/V31 Closed Landscapes (X2 + X4 + 2(X1 + X17))  
X32/V32 Openness (X30 – X31) Amount of space perceivable to viewer  
X34/V34 Mystery (X30 * X31 * X7 / 1140) Promise of new but related information  
X44/V44 Complexity (Variables X1-X19 squared, them summed) Richness or intricacy; number of different elements  
X46/V46 Sum of Variables X1-X19  
X51/V51 Wetness (X5/X46)  
X52/V52 Noosphericness (X7 + X8 + X9 + X15 + X16) Man-made or otherwise non-natural elements 
X53/V53 Greenness  
X63/V63 Schafer Index (3, 4, 5, 6)  
X80/V80 X63 * X52  

(Burley, 1997; Burley, Deyoung, Partin, & Rokos, 2011; Kaplan, Kaplan, & Brown, 1989; 
Schafer, Hamilton, & Schmidt, 1969) 
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Table 2: Smyser Index 
A Purifies Air 1 0 -1 

B Purifies Water 1 0 -1 
C Builds Soil Resources 1 0 -1 
D Promotes Human Cultural Diversity 1 0 -1 
E Preserves Natural Resources 1 0 -1 
F Limits Use of Fossil Fuels 1 0 -1 
G Minimizes Radioactive Contamination 1 0 -1 
H Promotes Biological Diversity 1 0 -1 
I Provides Food 1 0 -1 
J Ameliorates Wind 1 0 -1 
K Prevents Soil Erosion 1 0 -1 
L Provides Shade 1 0 -1 
M Presents Pleasant Smells 1 0 -1 
N Presents Pleasant Sounds 1 0 -1 
O Does not Contribute to Global Warming 1 0 -1 
P Contributes to the World Economy 1 0 -1 
Q Accommodates Recycling 1 0 -1 
R Accommodates Multiple Use 1 0 -1 
S Accommodates Low Maintenance 1 0 -1 
T Visually Pleasing 1 0 -1 

(Burley, 1997). 
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Equations  

Equation (1).  The first equation (hereafter referred to as Equation (1)) is found 

in Burley (1997).  This equation explains about 67% of the variance in responses, and 

contains 18 terms.  This equation has been utilized in a number of existing visual quality 

studies, making it a useful baseline for comparisons across studies.   

Y= 68.30 – 1.878 HEALTH + 0.131 X1 – 0.064 X6 + 0.020 X9 + 0.036 X10 + 

0.129 X15 – 0.129 X19 - .006 X32 + 0.00003 X34 + 0.032 X52 + 0.008 

X1X1 + 0.00006 X6X6 – 0.0003 X15X15 + 0.0002 X19X19 – 0.0009 

X2X14 – 0.00003 X52X52 – 0.0000001 X52X34                                     (2) 

 

 
Equation (2).  The second equation (hereafter referred to as Equation (2)) is 

found in Burley, Deyoung, Partin, & Rokos (2011), and is an updated version based on 

Equation (1). It has 19 terms and explains about 75% of the variance in responses.   

 

Y= 58.98827 + 0.07725 V2 + 0.03775 V10 – 1.18505 CVQ – 0.01074 V32 + 

0.01161 V52 – 0.00181 V1V2 – 0.00026 V1V5 + 0.00134 V1V10 – 

0.00071 V2V14 + 0.00018 V5V9 – 0.00092 V7V18 + 0.00025 V8V14 + 

0.00425 V8V15 + 0.00023 V15V18 – 0.00012 V2V32 + 0.000000613388 

V6V34 – 0.000000783802 V8V34 + 0.00117 V11V52                             (3) 
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RESULTS 

 

Equation (1) produced a set of scores (hereafter referred to as Set 1) ranging 

from 52.70-57.17, with an average of 54.32, a variance of 0.72, and a standard 

deviation of 0.85.  Equation (2) produced a set of scores (hereafter referred to as Set 2) 

ranging from 47.12-52.67, with an average of 50.55, a variance of 0.84, and a standard 

deviation of 0.90.  
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DISCUSSION 

 

Understanding Visual Quality Scores 

 

Overview.  The Maxton Plains alvars produced two sets of consistently 

moderate to low scores that reflect the anticipated levels of visual quality and uniformity.  

While the score sets are numerically close, there are differences between them that 

allow for meaningful comparison and offer insight into each equation. 

Expectations and reasoning.  The expectations of this study are based on the 

application of key concepts found in previous visual quality studies.  These concepts are 

particularly important to the interpretation and comprehension of visual quality data.  

The first and most important is that visual quality scores are inversely related to the 

level of preference they represent.  High visual quality scores indicate low levels of 

preference, while low scores indicate high levels of preference.  Scores of 30 or lower 

are highly preferred, 50-60 moderately preferred, 70 less preferred, and scores of 100+ 

are not preferred (Burley, 2006).  It is also helpful to consider the normative theories 

developed by Burley (1997), which offer insights into why certain landscapes produce 

the scores that they do.  The first is the biospheric preference theory, which states that 

people tend to prefer natural, nonhuman landscapes that include elements such as 

vegetation, water, and sky.  These landscapes produce mid-to-low scores.  Conversely, 

human or built (noospheric) elements, such as roads, cars, boats, or other humans, 

tend to lower visual quality and produce higher scores.  Finally, temporary natural 

elements, such as wildflowers or wildlife, raise visual quality and produce lower scores 
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(Burley, 1997).   Alvars are plant communities; by definition, they contain almost no 

noospheric elements to lower their visual quality, and may even contain quality boosters 

in the form of wildflowers or wildlife. Therefore, an alvar would be expected to produce 

neutral to low scores and high visual quality, which is in line with both sets of average 

results.   

 Consistency within the plant community.  Both score sets also have low 

standard deviations, which indicate the high levels of visual consistency that are 

expected in a visually unified plant community.  This corroborates the findings of Lu, 

Burley, Carwford, Schutzki, and Loures (2012), who concluded that landscape type is 

predictor of visual quality, and therefore an appropriate way to generate visual quality 

maps.  This consistency is also present within each location- even the least consistent 

location (Location 3) still has a very low standard deviation.    Location 3 also contains 

the highest score for both data sets and the lowest score of Set 2, resulting in the 

highest ranges of any location and its slightly elevated standard deviation.  Interestingly, 

there is not a most consistent location.  All five locations produced very close averages, 

indicating that the locations are visually similar to one another.  This indicates that, at 

least to the general public, an alvar grassland is visually interchangeable with a true 

alvar. Initially, this conclusion may sound contradictory to Lu, Burley, Carwford, 

Schutzki, and Loures (2012)’s findings regarding land use categories.  However, it is 

important to remember that there are major differences in scale and purpose between a 

plant community and a land use category.  A plant community is delineated according to 

the plants it contains and how they relate to one another.  The distinctions that 

necessitate the creation of different plant communities may have little impact on their 
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overall visual character.  Land use categories are determined by much broader criteria 

for a variety of purposes.  The distinction between an alvar and an alvar grassland may 

be of great use and interest to professionals in the natural sciences, but it is too minute 

to be visually significant. 

 

Comparing Equations 

Score sets.  A comparison of the score sets to one another yields some 

interesting observations about each equation. Set 1’s scores are higher than Set 2’s, 

and were produced by an older equation that is less predictive. Set 2’s scores are lower 

and were produced by a newer, more predictive version of Equation (1).  The 

differences in score sets per image are relatively consistent (Table 5).  Each image 

does not necessarily occupy the same relative position within both sets: Image 103 

generates the maximum value for both sets, but Image 280 produces Set 1’s lowest 

score, while Image 197 produces Set 2’s lowest.   
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Figure 5: Image 5 
 
 

 
Figure 6: Image 280                                           Figure 7: Image 197  
 

Interpretation.  These results suggest that Equation (1) and Equation (2) are 

relatively equivalent in terms of performance.  Equation (2) generated slightly lower 

scores than Equation (1).  Further comparison of the equations to one another reveals 

some interesting differences.   Both equations draw from the same list of measured 

variables, but not all of the variables make it into both equations.  For instance, 
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Equation (2) relies heavily on the variable X2 (perimeter of intermediate non-

vegetation,) which appears once by itself and three times as part of a larger term.  

However, this variable only appears once in Equation (1), and is multiplied by X14 (area 

of wildflowers in foreground,) a variable that is frequently 0.  In fact, out of 60 images, 

only one image has nonzero integers for both variables.  Altering this value would have 

significant effects on Equation (2), but almost no effect on Equation (1).  Some variables 

only appear in one equation, such as X11 (area of smoke) and X16 (area of boats.) 

These variables were not present in this study’s images, but could play more significant 

roles in other landscape types.   

 

Contributions  

Visual quality mapping.  Our findings contribute to the knowledge base of 

visual quality mapping efforts by assessing the visual quality of a previously 

undocumented landscape type that falls outside the purview of previous studies. While 

the land use classifications mapping studies utilize are far less specific than the plant 

communities this study focused on, their results provide some context.  Yilmaz, Liu, and 

Burley (2016) found that the average scores of highly noospheric land uses were higher 

(92 Industrial, 74 Downtown, 68 Commercial, 62 Residential and Farmland) than 

average scores for more biospheric land uses (55 Forested/Woodland, 57 Water, 58 

Savanna, 62 Grassland Dunes.)  The Maxton Plains alvars produced an average score 

that is slightly lower than any of these biospheric land use categories, but the difference 

is very small. This indicates that the visual quality of the study area is slightly higher 
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than other biospheric categories.  The difference in scores is not surprising when the 

grain and scale of the studies are considered, but it does support Yilmaz, Liu and Burley 

(2016)’s conclusion that there is value in the continued assessment of smaller, rarer 

landscape types.  

Conservation.  These findings may also be of interest to the conservation efforts 

that protect Michigan’s alvars.  The high visual quality of the Maxton Plains alvars is due 

in part to its lack of noospheric elements when viewed from the central road.  The 

preservation of those views is essential to the maintenance of the alvar’s high visual 

quality, and an understanding of this may help conservation efforts plan to retain them.  

This insight may have value to conservation efforts taking place in other plant 

communities as well. 

  



 

28 
 

CONCLUSION 

 

Summary 

Purpose of study.  The purpose of this study was to assess and document the 

visual quality of the Maxton Plains alvar plant community, found on Drummond Island, 

Michigan.  The alvar plant community is a small, rare landscape type that large-scale 

visual quality mapping efforts have not been able to examine. This study offers 

information that contributes toward the creation of a more detailed, comprehensive 

visual quality map of the state of Michigan.  The visual quality of the Maxton Plains 

alvars was assessed using two versions of the visual quality assessment model for 

comparison purposes, offering new insights about the equations that may prove useful 

to future visual quality studies. 

Procedures and results. The visual quality data of the Maxton Plains alvars was 

generated from a set of 60 photographs taken from five locations, and includes alvars 

and alvar grasslands.  The images were then scored according to the methods found in 

Burley (1997) and both equations applied.  The first equation, which was also used by 

the large-scale visual quality mapping efforts of Yilmaz, Liu and Burley (2016), produced 

an average score of 54.32. The second equation, which is more recent and predictive, 

produced an average of 50.55.  A comparison of equation 1’s average score to the 

average scores of other landscape types reveals that alvars have high to moderate 

visual quality.  
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Limitations of Study 

While this study came about as a response to the limitations of large-scale 

mapping endeavors, it invariably has limitations of its own.   Some of these limitations 

result from the design of this specific study, while others are inherent to the nature of 

the model. 

Generalization and applicability. The average visual quality scores generated 

herein can only be confidently applied to the Drummond Island alvars, and have not yet 

been replicated and corroborated.  Since this study was only interested in the visual 

quality of the plant community, special care was taken to avoid noospheric elements 

and other plant communities.  It would therefore be inappropriate to apply these findings 

to all of Maxton Plains or Drummond Island.  The process of image collection requires 

larger alvars that allow for a full image; smaller alvars were excluded out of necessity.  

Very little data is available regarding the impact of season or time of day on visual 

quality; for the purposes of this study, it is assumed to be negligible in order to allow 

comparison between this and other studies.  

 

Further Studies 

  Visual quality.  The field of visual quality is growing and developing rapidly as 

new applications are explored.  This study’s success creates many opportunities for 

future work.  Michigan is home to many different rare landscape types that could be 

examined to contribute toward the creation of a truly comprehensive map. While this 

study documents one example of one such landscape, future studies are needed to 
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increase sample size and corroborate our findings in other alvars.  The impacts of 

season, weather, and time of day have not yet been studied, but could be relevant in 

areas with significantly different seasonal views.      

 This study’s secondary purpose was to compare older models of the visual 

quality assessment models.  While this study was able to make some general 

conclusions, a more extensive study could yield further information.  There are 

numerous evolutions of the model that have not yet been examined.      
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APPENDICES  
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APPENDIX A: DATA AND RESULTS 

Table 3: Results by Location 

Location Points Images Results Equation 1  Equation 2 
1 5 9 Highest Score 54.54 51.08 

Lowest Score 53.10 48.70 
Range 1.44 2.38 
Average 54.13 50.56 
Variance 0.28 0.67 
Standard 
Deviation 0.53 0.82 

2 6 12 Highest Score 54.44 51.06 
Lowest Score 53.16 49.40 
Range 1.28 1.66 
Average 54.10 50.58 
Variance 0.26 0.40 
Standard 
Deviation 0.51 0.64 

3 8 16 Highest Score 57.17 52.67 
Lowest Score 53.18 47.14 
Range 3.99 5.53 

Average 54.74 50.59 
Variance 1.31 1.46 
Standard 
Deviation 1.14 1.21 

4 5 10 Highest Score 55.22 51.29 
Lowest Score 53.19 49.03 
Range 2.03 2.27 
Average 54.08 50.32 
Variance 0.47 0.78 

Standard 
Deviation 0.68 0.89 

5 6 12 Highest Score 55.84 51.79 
Lowest Score 52.70 48.58 
Range 3.13 3.20 
Average 54.30 50.65 
Variance 0.74 0.71 
Standard 
Deviation 0.86 0.84 
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Table 4: Data 

  Location 1 Location 2 

Variables Point 2 Point 3 Po
int 
4 

Point 7 Point 8 Point 
11 

Point 
12 

Point 
13 

Point 
14 

Point 
15  

Point 
17 

Name Description 5 8 10 12 15 29 33 35 36 50 51 55 58 60 61 66 67 73 74 86 88 

HEAL
TH 

Environme
ntal Quality 
Index 

7 7 8 7 7 7 8 7 7 8 8 7 7 7 7 7 7 7 7 7 8 

X1 Perimeter 
of 
Immediate 
Vegetation 

10
0 

10
0 

96 96 96 96 96 96 96 96 96 96 96 96 96 98 96 96 96 96 96 

X2 Perimeter 
of 
Intermediat
e Non-
Vegetation 

0 0 0 0 0 0 6 0 0 0 0 0 0 6 0 0 0 0 0 0 0 

X3 Perimeter 
of Distant 
Vegetation 

82 94 88 88 82 86 10
6 

82 80 96 82 82 83 82 79 84 82 85 86 82 10
1 

X4 Area of 
Intermediat
e 
Vegetation 

34
5 

19
0 

12
9 

19
7 

23
8 

22
8 

11
2 

12
6 

11
4 

19
0 

17
6 

17
7 

14
2 

18
8 

17
3 

11
4 

10
7 

14
4 

13
1 

15
2 

10
0 

X6 Area of 
Distant 
Non-
Vegetation 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X7 Area of 
Pavement 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X8 Area of 
Buildings 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X9 Area of 
Vehicles 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X10 Area of 
Humans 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X11 Area of 
Smoke 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X14 Area of 
Wildflowers 
in 
Foreground 

0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 2 0 0 0 

X15 Area of 
Utilities 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X16 Area of 
Boats 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X17 Area of 
Dead 
Foreground 
Vegetation 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X18 Area of 
Exposed 
Foreground 
Substrate 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X19 Area of 
Wildlife 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X30 X2 + X4 + 
2(X3+X6) 

11
63 

13
30 

13
71 

13
93 

12
98 

13
40 

13
54 

14
20 

14
74 

12
10 

13
74 

13
93 

14
48 

13
98 

13
99 

14
56 

14
63 

14
14 

13
85 

14
24 

11
38 

X31 X2 + X4 + 
2(X1 + 
X17) 

54

5 

39

0 

32

1 

38

9 

43

0 

42

0 

31

0 

31

8 

30

6 

38

2 

36

8 

36

9 

33

4 

38

6 

36

5 

31

0 

29

9 

33

6 

32

3 

34

4 

29

2 

X32 X30-X31 61
8 

94
0 

10
50 

10
04 

86
8 

92
0 

10
44 

11
02 

11
68 

82
8 

10
06 

10
24 

11
14 

10
12 

10
34 

11
46 

11
64 

10
78 

10
62 

10
80 

84
6 

X34 (X30 * 
X1*X7)/114
0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

X52 X7+X8+X9
+X15+X16 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 4 (cont’d) 

Location 3 

Point 20 Point 21 Point 25 Point 26 Point 27 Point 29 Point 30 Point 35 

100 103 109 110 129 131 135 136 145 146 155 156 163 164 197 199 

8 7 7 7 7 7 7 7 8 7 7 7 7 7 8 7 

96 132 96 112 113 112 136 116 100 96 96 110 96 96 96 96 

0 0 0 0 8 7 0 12 0 0 0 0 0 0 24 0 

99 82 92 84 80 82 86 84 90 84 102 86 74 86 98 84 

131 106 114 152 152 111 228 142 163 184 190 121 125 168 177 92 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 42 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

0 42 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1253 1450 1408 1360 1454 1346 1376 1420 1333 1332 1398 1393 1501 1398 1147 1398 

323 454 306 380 386 342 500 386 363 376 382 341 317 360 393 284 

930 996 1102 980 1068 1004 876 1034 970 956 1016 1052 1184 1038 754 1114 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 4 (cont’d) 

Location 4 

Point 40 Point 43 Point 44 Point 46 Point 48 

221 222 234 238 242 243 257 259 266 270 

7 7 7 8 8 8 7 7 8 7 

114 107 96 96 96 107 96 96 96 96 

0 0 0 0 6 0 0 0 6 0 

86 92 91 98 89 96 84 86 91 84 

182 211 201 190 197 237 228 228 235 114 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

3 2 5 0 0 0 3 2 4 10 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

1302 1313 1337 1188 1203 1179 1332 1294 1153 1382 

410 425 393 382 395 451 420 420 433 306 

892 888 944 806 808 728 912 874 720 1076 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
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Table 4 (cont’d) 

Location 5 

Point 49 Point 50 Point 51 Point 52 Point 54 Point 55 

272 276 278 280 284 286 290 291 299 303 306 310 

7 8 8 8 7 8 6 7 7 7 7 7 

121 100 96 96 104 96 106 96 96 96 96 96 

0 4 0 0 0 0 6 0 0 0 0 0 

88 52 86 139 92 30 80 86 106 84 80 88 

114 254 298 169 227 248 203 190 190 266 266 91 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 5 1 2 4 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

1396 1284 1300 1191 1269 1092 1357 1306 1426 1304 1324 1185 

356 458 490 361 435 440 421 382 382 458 458 283 

1040 826 810 830 834 652 936 924 1044 846 866 902 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 
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Table 5: Visual Quality Score Sets 

Location Point Picture 
number  

Visual 
Quality 
Score Set 
1 

Visual 
Quality 
Score Set 
2 

GPS 
Coordinate 
(Point) 

Difference in 
Scores 

1 2 5 54.54 51.08 46 04 .217 
3.46 

8 54.39 50.82 83 35 .451 
3.57 

3 10 53.31 49.68 46 04 .231 
3.64 

12 54.31 50.86 083 35 .495 
3.45 

4 15 54.39 50.99 46 04 .235 
3.39 

   83 35 .539 

 7 29 54.34 50.91 46 04 .168 
3.43 

33 53.10 48.70 83 35 .599 
4.40 

8 35 54.39 50.99 46 04 .238 
3.39 

36 54.41 51.04 83 35 .583 
3.37 

2 11 50 53.22 49.51 46 04 .341 
3.71 

51 53.39 49.81 83 36 .729 
3.58 

12 55 54.39 50.99 46 04 .344 
3.39 

58 54.37 50.97 83 36 .823 
3.40 

13 60 54.39 50.43 46 04 .382 
3.95 

61 54.42 51.06 83 36 .806 
3.36 

14 66 54.44 50.99 46 04 .403 
3.44 

67 54.39 50.99 83 36 .862 
3.39 

15 73 54.35 50.93 46 04 .403 
3.42 

74 54.34 50.91 83 36 .903 
3.43 

17 86 54.39 50.99 46 04 .347 
3.39 

88 53.16 49.40 83 37 .026 
3.76 

3 20 100 53.18 49.44 46 04 .459 
3.74 

103 57.17 52.67 83 39 .260 
4.50 

21 109 54.27 50.78 46 04 .467 
3.49 

110 55.15 51.34 83 39 .352 
3.81 

25 129 55.23 50.45 46 04 .517 
4.78 

131 55.15 50.51 83 39 .492 
4.64 

26 135 57.00 51.77 46 04 .471 
5.24 

136 55.37 49.88 83 39 .506 
5.49 

27 145 53.44 49.72 46 04 .475 
3.72 

146 54.36 50.95 83 39 .552 
3.41 

29 155 54.15 50.56 46 04 .528 
3.58 

156 54.98 51.21 83 39 .717 
3.77 

30 163 54.48 51.17 46 04 .567 
3.32 

164 54.34 50.91 83 39 .775 
3.43 

35 197 53.19 47.14 46 04 .520 
6.06 

199 54.36 50.95 83 39 .813 
3.41 
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Table 5 (cont’d) 
4 41 221 55.22 51.29 46 05 .220 

3.93 
222 54.74 51.02 83 42 .143 

3.73 
43 234 54.28 50.80 46 05 .181 

3.48 
238 53.19 49.46 83 42 .103 

3.73 
44 242 53.30 49.09 46 05 .201 

4.21 
243 53.70 49.74 83 41 .978 

3.95 
46 257 54.36 50.95 46 05 .161 

3.41 
259 54.34 50.91 83 41 .782 

3.43 
48 266 53.26 49.03 46 05 .145 

4.23 
270 54.36 50.95 83 41 .593 

3.41 
5 49 272 55.68 51.40 46 05 .074 

4.28 
276 53.90 50.17 83 41 .593 

3.73 
50 278 53.34 49.72 46 05 .072 

3.62 
280 52.70 48.58 83 41 .175 

4.12 
51 284 54.59 50.95 46 05 .114 

3.64 
286 54.01 50.93 83 41 .182 

3.09 
52 290 55.84 51.79 46 05 .064 

4.05 
291 54.34 50.91 83 41 .103 

3.43 
54 299 54.10 50.48 46 05 .062 

3.62 
303 54.36 50.95 83 40 .964 

3.41 
55 306 54.41 51.04 46 05 .094 

3.37 
310 54.31 50.86 83 40 .936 

3.45 
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Table 6: Descriptive Statistics by Location 
 

Location 1 2 3 4 5 
Number of pictures 9 12 16 10 12 

Maximum Set 1 
54.54 54.44 57.17 55.22 55.84 

Maximum Set 2 
51.08 51.06 52.67 51.29 51.79 

Minimum Set 1 
53.10 48.70 53.18 53.19 52.70 

Minimum Set 2 
48.70 53.16 47.14 49.03 48.58 

Range Set 1 
1.44 1.28 3.99 2.03 3.13 

Range Set 2 
2.38 1.66 5.53 2.27 3.20 

Average Set 1 
54.13 50.56 54.74 54.08 54.30 

Average Set 2 
50.56 54.10 50.59 50.32 50.65 

Variance Set 1 
0.28 0.67 1.31 0.47 0.74 

Variance Set 2 
0.67 0.26 1.46 0.78 0.71 

Standard Deviation Set 1 
0.53 0.82 1.14 0.68 0.86 

Standard Deviation Set 2 
0.82 0.51 1.21 0.89 0.84 
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APPENDIX B: IMAGES 

 
Figure 8: Image 5 

 
Figure 9: Image 8 
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Figure 10: Image 10 

 
Figure 11: Image 12 
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Figure 12: Image 15 

 
Figure 13: Image 29 
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Figure 14: Image 33 

 
Figure 15: Image 35 
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Figure 16: Image 36 

 
Figure 17: Image 50 
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Figure 18: Image 51 

 
Figure 19: Image 55 
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Figure 20: Image 58 

 
Figure 21: Image 60 
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Figure 22: Image 61 

 
Figure 23: Image 66 
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Figure 24: Image 67 

 
Figure 25: Image 73 
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Figure 26: Image 74 

 
Figure 27: Image 86 
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Figure 28: Image 88 

 
Figure 29: Image 100 
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Figure 30: Image 103 

 
Figure 31: Image 109 
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Figure 32: Image 110 

 
Figure 33: Image 129 
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Figure 34: Image 131 

 
Figure 35: Image 135 
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Figure 36: Image 136 

 
Figure 37: Image 145 



55 
 

 
Figure 38: Image 146 

 
Figure 39: Image 155 
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Figure 40: Image 156 

 
Figure 41: Image 163 
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Figure 42: Image 164 

 
Figure 43: Image 197 
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Figure 44: Image 199 

 
Figure 45: Image 221 
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Figure 46: Image 222 

 
Figure 47: Image 234 
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Figure 48: Image 238 

 
Figure 49: Image 242 
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Figure 50: Image 243 

 
Figure 51: Image 257 



62 
 

 
Figure 52: Image 259 

 
Figure 53: Image 266 
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Figure 54: Image 270 

 
Figure 55: Image 272 
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Figure 56: Image 276 

 
Figure 57: Image 278 
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Figure 58: Image 280 

 
Figure 59: Image 284 
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Figure 60: Image 286 

 
Figure 61: Image 290 
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Figure 62: Image 291 

 
Figure 63: Image 299 
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Figure 64: Image 303 

 
Figure 65: Image 306 
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Figure 66: Image 310 
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