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ABSTRACT 

ENHANCING ITEM POOL UTILIZATION WHEN DESIGNING MULTISTAGE 

COMPUTERIZED ADAPTIVE TESTS  

By 

Lihong Yang 

In recent years, the multistage adaptive test (MST) has gained increasing popularity in the 

field of educational measurement and operational testing. MST refers to a test in which pre-

constructed sets of items are administered adaptively and are scored as a unit (Hendrickson, 

2007). As a special case of Computerized Adaptive Testing (CAT), a MST program needs the 

following components: an item response theory (IRT) model or non-IRT-based alternatives; an 

item pool design; module assembly; ability estimation; routing algorithm; and scoring (Yan et 

al., 2014). A significant amount of research has been conducted on components like module 

assembly, ability estimation, routing and scoring, but few studies have addressed the component 

of item pool design. An item pool is defined as consisting of a maximal number of combinations 

of items that meet all content specifications for a test and provide sufficient item information for 

estimation at a series of ability levels (van der Linden et al., 2006). An item pool design is very 

important because any successful MST assembly is inseparable from an optimal item pool that 

provides sufficient and high-quality items (Luecht & Nungester, 1998).  

Reckase (2003, 2010) developed the p-optimality method to design optimal item pools 

using the unidimensional Rasch model in CAT, and it has been proved to be efficient for 

different item types and IRT models. The present study extended this method to MST context in 

supporting and developing different MST panel designs under different test configurations. The 

study compared the performance of the MST assembled under the most popularly studied panel 

designs in the literature, such as 1-2, 1-3, 1-2-2, and 1-2-3. A combination of short, medium and 



 
 

 
 

long tests with different routing test proportions were used to build up different tests. Using one 

of the most popularly investigated IRT models, the Rasch model, simulated optimal item pools 

were generated with and without practical constraints of exposure control. A total number of 72 

optimal items pools were generated and the measurement accuracy was evaluated by an overall 

sample and conditional sample using various statistical measures. The p-optimality method was 

also applied in an operational MST licensure test to see if it is feasible in supporting test 

assembly and achieving sufficient measurement accuracy in practice.  

Results showed that the different MST panel designs achieved sufficient measurement 

accuracy by using the items from the optimal item pools built with the p-optimality method. The 

same was true with the operational item pool. Measurement accuracy was related to test length, 

but not so much to the routing test proportions. Exposure control affected the item pool size, but 

the distributions of the item parameters and item pool characteristics for all the MST panel 

designs were similar under the two conditions. The item pool sizes under the exposure control 

conditions were several times larger than those under no exposure control, depending on the 

types of MST panel designs and routing test proportions. The results from this study provide 

information for how to enhance item pool utilization when designing multistage computerized 

adaptive tests, facilitating the MST assembly process, and improving the scoring accuracy.  
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CHAPTER 1: Introduction 

In recent years, the multistage adaptive testing (MST) has gained increasing popularity in 

the field of educational measurement and operational testing. MST refers to a test in which pre-

constructed sets of items are administered adaptively and are scored as a unit (Hendrickson, 

2007). More specifically, an MST instrument generally begins with a first-stage module or 

routing test with medium item difficulty. Examinees are adaptively routed to advanced-stage 

modules based on their performance on the routing test. A complete route an examinee takes in 

the MST is termed a “pathway” and the assembled MST is a “panel”. A panel usually has several 

different pathways with two or three stages and two or three modules at each of the advanced 

stages. (Luecht & Nungester, 1998).  

A sample MST panel design by Luecht et al. (1998) is shown in the following figure: 

 

Figure 1.1 A conceptual description of a 1-3-3 MST panel design (Luecht & Nungester, 1998) 

Note: E means Easy, M means Moderate and H means Hard in terms of the average item 

difficulty range for the module 
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This MST panel has one routing test at Stage 1, three modules at Stage 2 and three 

modules at Stage 3. During the test delivery, one module from each stage is administered to each 

examinee. The procedure of this MST administration is: 1) an examinee is administered Module 

1M, 2) based on the estimated ability, the examinee is routed to one of the modules at Stage 2, 3) 

the estimated ability from Stage 2 is used to route the examinee to one of the modules at Stage 3. 

An examinee with low proficiency might take pathway Module 1MModule 2EModule 3E 

or Module 1MModule 2EModule 3M, and an examinee with high proficiency might see 

Module 1MModule 2HModule 3H or Module 1MModule 2HModule 3M. Each 

examinee is only assigned to take one pathway and the modules are administered sequentially 

and adaptively within panel across stages.  

One exceptional feature of the MST is that test forms are pre-constructed before 

administration so that the equivalence of psychometric properties and content coverage for the 

test can be ensured. With MST, adaptation occurs at the module level instead of the item level as 

in Computerized Adaptive Testing (CAT). This results in fewer adaptation points, more efficient 

test assembly, and well-controlled content-balancing (Berger, 1994; Luecht, 2000). In CAT, due 

to the fact that item selection favors the most informative item for the provisional ability 

estimate, the probability for examinees with similar abilities to receive the same set of items is 

high. Consequently, the test scores obtained are faced with validity threat caused by possible 

item pre-knowledge (Patsula & Hambleton, 1999). Comparatively speaking, with MST, since the 

test is pre-constructed, the item and test exposure risk could be addressed prior to test 

administrations (Hendrickson, 2007).  MST is also a compromise between CAT and Paper & 

Pencil (P&P) testing. Like CAT, MST is characterized by easier data collection, faster score 

reporting, easier control of test standardization and test security, shorter administration time, and 
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the possibility of applying innovative item types (Chalhoub-Deville & Deville, 1999, Rotou et 

al., 2003). Similar to P&P testing, examinees in MST are allowed to review their answers within 

item sets. This reduces the likelihood of chance errors that are caused by negligence or time 

restrictions in their initial attempt with the test items.  

Due to the obvious benefits, many testing programs have successfully shifted to MST 

over the past decade. For example, in 2004, the Certified Public Accountants (AICPA) 

examination was switched from P&P to MST (Luecht, Brumfield, & Breithaupt, 2006). In 

August, 2011, the Graduate Record Examination (GRE) also used MST to replace P&P and CAT 

(Zheng et al., 2012). Examples of MSTs are also found in many large-scale international 

educational assessment tests (e.g., The Program for the International Assessment of Adult 

Competencies, Chen, Yamamoto & von Davier, 2014) and K-12 testing programs (e.g., the 

Educational Records Bureau Comprehensive Testing Program, Wentzel, Mills, & Meara, 2014). 

As summarized in Yan, Lewis, & von Davier (2014), as a special case of CAT, an MST 

program needs the following components: 1) an item response theory (IRT) model or non-IRT-

based alternatives (e.g., tree-based methodology for MST); 2) an item pool design; 3) module 

assembly; 4) ability estimation; 5) routing algorithm; and 6) scoring. Among the six MST 

components, an item pool design is very important because any successful MST assembly is 

inseparable from an optimal item pool that provides sufficient and high-quality items (Luecht & 

Nungester, 1998). An item pool is defined as consisting of a maximal number of combinations of 

items that meet all content specifications for a test and provide sufficient item information for 

estimation at a series of ability levels (van der Linden, Ariel, and Veldkamp, 2006). An item pool 

design is different from item pool assembly (e.g., an item pool is assembled from a master pool 

based on the desired test specifications). The item pool design focuses on developing an item 
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pool blueprint in which the distribution of numbers of items with all relevant statistical and non-

statistical attributes of the items are described. The technical aspects deal with such issues as 

item selection algorithm, exposure control, stopping rules, and item overlap restriction, and the 

non-technical aspects deal with issues as target examinee population and test purpose (He & 

Reckase, 2014).  

Two approaches have emerged for CAT item pool design: the integer programming 

approach developed by Veldkamp & van der Linden (2000), and the heuristic approach, as 

represented by the p-optimality method or r-optimality method in Reckase (2003; 2010). A 

comprehensive description of integer programming approach is provided in van der Linden 

(2005). Basically by this approach, severe constraints are imposed in the test content blueprint 

and other qualitative features of the items (e.g., item numbers, word count). However, these 

severe constraints may lead to statistically less optimal tests and pose security risks (Luecht, 

2003). In addition, when the number of constraints is large, the test procedures are cumbersome, 

time-consuming or even infeasible (Zheng et al., 2012). Comparatively speaking, the  

p-optimality approach is easier to implement with success. By this method, items are sorted into 

a set of “bins” which are defined on the examinees’ proficiency scale. The width of bins is 

determined by a series of factors, such as the desired information for the target test and the model 

used for item parameter calibration. The bins are designed to tally the number of administered 

items needed for the corresponding range in the proficiency scale. Currently many CAT 

programs, such as the National Council Licensure Examination and Armed Services Vocational 

Aptitude Battery are using the p-optimality method to design their item pools (He & Diao, 2014). 

The integer programming approach in CAT was extended to an item pool design 

discussion for a three-stage MST design in Veldkamp (2014). However, although the  
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p-optimality method has been studied extensively in CAT (Reckase, 2003, 2010; Gu, 2007; 

Zhou, 2012; He & Reckase, 2014, Mao, 2014) for different item types using different IRT 

models, and in  MST for a 1-2 panel design (Reckase, 2006) with a short test (e.g., 20- item test), 

it has never been investigated and applied to support various MST panel designs (e.g., 1-3, 1-2-2, 

1-2-3) with different test specifications (e.g., different test lengths and routing test proportions). 

As van der Linden noted (2005), an item pool may serve an adaptive testing program best if the 

distribution of the maximum information across items in the pool follow the distribution of 

examinees’ latent traits. An optimal item pool designed with the p-optimality method captures 

this essence. Thus one purpose of the study was to design optimal item pools to support different 

MST panel designs by extending the p-optimality method. Another purpose was to compare the 

different MST panel designs in terms of measurement accuracy for examinees’ ability estimates. 

To develop an MST, test developers need to decide on many factors, such as total test length, 

routing test length, number of stages, number of modules within each stage, routing rules, 

module selection, ability estimation, and scoring. Based on the purposes mentioned above and 

the additional design decisions that must be made, this study compared the performance of MST 

assembled under the most popularly studied panel designs in the literature, including 1-2, 1-3,  

1-2-2, and 1-2-3. It also used one of the most popularly investigated IRT models, the Rasch 

model, to generate simulated optimal item pools with and without practical constraint of 

exposure control. This study compared the performance of simulated and operational item pools 

in terms of measurement accuracy for the examinees’ ability estimates.  

The results from this research will provide information for efficiently designing optimal 

item pools for multistage computerized adaptive testing, facilitating the MST assembly process 
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and improving scoring accuracy. The study results will also inform operational item pools to 

design practical MST tests.   
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CHAPTER 2: Literature Review 

This chapter first presents an overview of the theoretical background for test design in 

MST. It then provides background information for MST framework and components. The last 

section contains a general review of the literature for MST test designs, practical constraints in 

item selection, routing rules, test assembly, ability estimation and item pool design.  

2.1 IRT models 

 Item response theory (IRT) is a model-based measurement approach developed for 

estimating examinees’ abilities based on their responses to test items and on the properties of the 

items that are administered (IRT, Lord, 1980; de Ayala, 2009). IRT is classified into 

unidimensional and multidimensional models depending on the number of latent traits that are 

assumed. For convenience, this study was limited to unidimensional IRT models. Underlying 

unidimensional IRT is the assumption that there exists a location on an unobservable latent 

continuum for each examinee (usually denoted θ) which determines their probability of correctly 

responding to a given test item (Lord, 1980). Examinees’ responses to one item in a test are 

assumed to be independent of their responses to other items after conditioning on this 

unobservable latent proficiency.  

 Commonly used IRT models include the one-parameter logistic model or Rasch model 

(1PL; Rasch, 1960); two-parameter logistic model (2PL; Birnbaum, 1968; Lord, 1980; de Ayala, 

2009) and three-parameter logistic model (3PL; Birnbaum, 1968; Lord, 1980; de Ayala, 2009) 

based on the number of item parameters that are estimated for each item to model the 

relationship between examinees’ probability of correctly responding to an item and their latent 

ability. Since Rasch models have several desirable measurement and psychometric properties, 

such as “observable sufficient statistics for the model parameters and a relatively small sample 
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size requirement for parameter estimation” (Wang & Wilson, 2005, p. 128), it was chosen to be 

used in the present study for item generation and calibration.  

The Rasch model, as proposed by Georg Rasch (1960), is the simplest and one of the 

most commonly used IRT models for dichotomously scored items. It has one parameter to 

describe the examinees’ ability and one parameter to describe the item difficulty. The equation 

for the model is: 

                   
 
           

   
           

                 (1) 

where    is the item score of examinee i on item j,    is the latent trait of person j and    is the 

item difficulty for item i. In the model, 1.7 is a scaling constant which places the parameters of 

the logit model onto the probit model scale (de Ayala, 2009). The equation denotes the 

probability of any examinee j responding correctly to any item i.  

2.2 Item and test information 

 In IRT, item information is used to determine the measurement precision for different 

examinees’ ability levels on the latent continuum. Birnbaum (1968) introduced Fisher’s 

information (FI) to explain the information function for dichotomous items with the Rasch 

model:   

     =                                      (2) 

where       is the amount of information that item i provides for examinee j.        is the 

probability of person j correctly responding to item i, and        is the probability of incorrect 

response.       has a maximum value of 1.7
2
 * 0.25 with the Rasch Model.  

Since the test items are independent of each other, the information for the whole test is 

the summation of the individual item information.  The information function for the whole test 

is:  
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                     =          
 
                           (3) 

where L is the test length and         is the total test information at the estimated ability level of 

examinee j.  An important feature from the definition of test information is that the more items 

included in the test, the greater the amount of test information. Thus, in general, tests with longer 

lengths will measure an examinee’s ability with greater precision than will shorter tests. Another 

important feature of the test information is that the higher the test information is at a particular 

ability level, the more precise the test is in measuring the examinees at that ability level. This 

feature of test information can assist test developers to choose items that maximize information 

at particular cutoff points in the test for various test design purposes.  

In the context of MST, the module selection from the item pool is decided on the 

maximum information it provides at the current ability estimate. As discussed in Weissman et al. 

(2007), the FI method for a dichotomous random variable x: 

      = -         
  

            ln        ,        (4) 

where         is the probability of response x for item j conditional on  .         is evaluated  

prior to administering item j, and    is the provisional latent trait estimate. With the assumption of 

conditional independence of item responses given  , the estimated FI for the module is the sum 

of the FI for all individual items in this module evaluated at the estimate    . The equation is:  

             =            ,                                   (5) 

where b refers to the b
th

 module. At the examinees’ estimated    (obtained after stage r has been 

completed), the routing occurs to direct examinees to the stage r+1 with the largest value of     

for the b
th

 module. Test information for any given examinee is the sum of in all modules the 

examinee experienced module information along his or her complete pathways. 



 
 

10 
 

Test information functions can also be used to evaluate the measurement precision at 

specific ability levels through calculating the conditional standard error of the measurement 

(SEM). The SEM for a given ability level (θ) is equal to the reciprocal of the test information 

function at the specific ability estimate, which is defined as: 

SEM (   ) = 
 

         
,                      (6) 

where SEM (     refers to the standard error of measurement for the ability estimate of   , and 

         is the test information function at the estimated ability level of θ for examinee j. The 

overall SEM for the whole test is calculated through taking the average of all conditional SEMs 

across all θ points. The overall test information is calculated based on the overall SEM for the 

whole test.  

For computer adaptive tests, the test information is calculated after the examinee’s 

response to each item, so it can serve as a criterion for stopping the test once the desired 

conditional precision of measurement is achieved  (Thissen, 2000). Because items vary across 

students in CAT, marginal reliability (Thissen & Wainer, 2001) was recommended to be 

reported instead of the internal consistency for the linear test. Marginal reliability is defined as: 

                      r= (  -     
    

   ) /  ,            (7) 

where r refers to the marginal reliability,    is the variance of ability estimates, N is the number 

of examinees. Marginal reliability is a measure of the overall reliability of the test based on the 

average conditional standard errors of the ability estimates for all the examinees.   

2.3 MST components 

The MST framework includes several basic components: modules, panels, stages, and 

pathways (Luecht & Nungester, 1998). An MST instrument generally begins with a first-stage 

module or routing test with a range of item difficulties covering the middle portion of the 
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distribution of examinee achievement. Examinees are adaptively routed to next stage(s) based on 

their performance in the previous stage. 

2.3.1 Modules 

 Modules refer to sets of items which are administered and scored as a unit (Yan et al., 

2014). Based on a test blueprint, modules usually follow specific content specifications and 

certain reliability and difficulty requirements. For example, the item difficulty for the same 

module is homogeneous and the range of difficulty for different modules is different. Variation 

of the item difficulty is allowed within modules, but the items for each module usually cover a 

portion of the entire range of examinee achievement. It is possible that the range of item 

difficulty across different modules at the same stage has an overlap since it will avoid problems 

of measurement accuracy with examinees whose ability levels are near the border between two 

modules. The size of modules may range from small to large, depending on the test 

specifications and requirements. But modules discussed here are not similar to “testlets” in 

Wainer and Kiely (1987) in which items are related to a single topic such as a reading passage. 

They are more generally referred as “bundles of items” given that the items in modules are 

assembled and administered together as a set (Ariel, Veldkamp, & Breithaupt, 2006).   

2.3.2 Pathways 

Based on the routing rules and examinees’ performance, they are administered different 

modules at different stages. Pathways are the sequence of modules that individual examinees 

follow in the MST process. Each examinee only follows one pathway in the whole testing 

procedure. 
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2.3.3 Panels 

Panels are the assembled modules that meet the test specifications in MST.  A panel 

usually has several different pathways and multiple panels are needed to control for item and 

module exposure rate (Luecht & Nungester, 1998). To ensure comparability and reliability, the 

panels are intended to be parallel.  That is, the structure of the panel (e.g., the number of stages, 

length of each stage, number of modules at each stage, and pathways from stage to stage) is 

identical across all parallel panels.    

2.3.4 Stages 

 Stages are the administrative unit of the MST to allow for adaptation of the test to an 

examinee (Luecht & Nungester, 1998).  The first stage often contains one module and later 

stages may contain two, three or more modules. Most MST designs have two, three or four 

stages (Yan et al., 2014).  More stages allow for greater adaptation and better measurement 

results. However, efficiency of the test should also be considered since adding stages to the test 

will generally increase the complexity of the test assembly without necessarily adding much to 

the measurement precision (Luecht, Nungester, and Hadadi, 1996).   

2.4 MST Research 

2.4.1 MST test designs 

Designing an MST involves as many components as creating a P&P test or an item-level 

CAT. Questions regarding test length, number of stages, number of modules within each stage, 

length of each module, number of paths between modules, routing rules, module selection, 

scoring, and the reliability and validity all need to be considered. 

Using the three-parameter logistic (3PL) IRT model, Reckase (2006) explored a 1-2 MST 

design for a 20-item achievement test with exhaustive length combinations of the first-stage test 
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and the second-stage test. For example, the first-stage tests were simulated for lengths from 2 to 

18 items, and the second-stage tests had complementary ranges of 18 to 2 items. The p-

optimality method was applied to build up the optimal item pool to support the assembly of the 

20-item test. Results showed that when the length of the second stage test was three times longer 

than the first stage one, the test worked the best. Since for the 20-item test, it was assumed that 

the item parameters were known without error and the 3PL model accurately reflects the 

interaction between the examinees and the items, to compensate for this strong assumption, the 

study was extended to a slightly longer test with 24 items. Combinations of test length were from 

2 to 22 and the complementary range is from 22 to 2. The best combination was still achieved 

when the second-stage test was three times longer than the first-stage test.   

Patsula & Hambleton (1999) studied a two-stage MST design (e.g., 1-3 and 1-5) and a 

three-stage MST design (e.g., 1-3-3 and 1-5-5) using the 3PL IRT model. The accuracy of ability 

estimates generated from MST were compared with that from P&P and CAT. Their study results 

showed that the number of modules at later stages did impact the measurement accuracy, and the 

designs with more modules at later stages had higher measurement accuracy than those with 

fewer modules.  

Armstrong & Edmonds (2004) studied a variety of MST designs using the 3PL IRT 

model with both three-stage designs (e.g., 1-2-3) and four-stage designs (e.g., 1-2-3-4). Both 

types of the designs considered have 100% of the examinees taking the first stage modules and 

an even proportion of examinees taking the modules at later stages. For example, in the 1-2-3 

design, 100% of the population took the module at Stage 1, and 50% of the population took the 

easy module and 50% of the population took the hard module at Stage 2, and 33% of the 

population took each of the three modules at Stage 3. The results showed that the three-stage 
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design had the most desirable measurement accuracy, and the four-stage design with four levels 

at the final stage surprisingly was less favorable than the three-stage design. The cost of using 

four-stage designs is the complexity in the routing algorithm and the item pool usage in terms of 

test assembly.   

Zheng et al. (2012) compared the performances of two different MST designs (e.g.,  

1-2-3-4 and 1-2-4 designs) using automated top-down assembly strategy for a fixed-length large-

scale classification test with a real item bank of 600 items. Both longer earlier stages (e.g., 

routing test) and longer later stages (e.g., the final stage in the MST) were included in the 

experimental conditions. Longer routing test length was designed to provide more precise 

routing of examinees to later stages, and longer later stages were intended to provide more items 

for accurate estimation when the test becomes more aligned with the examinee’s ability level 

(Patsula, 1999; Zheng et al., 2012). However, similar to the previous research, the study results 

did not show the advantages of longer earlier stages over longer later stages or vice versa. 

Regarding the comparison between the two different MST designs, the results showed that the 

four-stage MSTs provided slightly higher correct classification rates than the three-stage tests. 

But no significant advantages for the four-stage tests were discovered.  

Other MST designs that are were reported in the literature include a 1-2-2 design which 

discussed the impact of statistical constraints on classification accuracy in a licensure test (Park, 

2013) and one which discussed examinee proficiency classifications in a language proficiency 

assessment test (Luecht, 2003), the 1-3-3 design (Hambleton & Xing, 2006; Jodoin et al, 2006; 

Davis & Dodd, 2003; Luecht, Brumfield, & Breithaupt, 2002, 2006; Zenisky, 2004), and the 

comparison of 1-3, 1-3-3, and 1-3-5 designs in the credentialing medical exam context (Luecht et 

al., 1998).   
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2.4.2 Practical constraints in item selection 

In CAT, practical constraints, such as content balancing and item exposure control, need 

to be addressed in the item selection process for meeting test specifications and test security 

purposes. In the case of MST, however, test developers can preassemble modules to have better 

control over both statistical (e.g., item difficulty distribution) and nonstatistical attributes of 

items (e.g., content balancing) (Yan et al., 2014). Test developers may check on detail that 

“formal content specifications are met as well as that the informal nonexplicit content 

characteristics of items are appropriately represented and distributed” (Hendrickson, 2007, p47). 

This greatly reduces problems that may arise in complex item selection algorithms. For example, 

in the Uniform CPA exam, multiple panels are simultaneously constructed prior to test 

administration so that the equivalence in psychometric properties is ensured and overexposure of 

highly discriminating items is reduced across panels (Melican, Breithaupt, & Zhang, 2010). 

Content balancing is achieved by assigning particular portions of a total test blueprint to specific 

modules so that the contents required in a test blueprint are representative when the examinees 

complete the final stage of the test (Zhang et al., 2006).  

  Exposure control in MST, as discussed in Yan et al. (2014), may incorporate the features 

of linear tests or CAT. For example, as in linear tests, it is possible that the MST panels retire 

after being administered over a certain period of time, and then be returned to the item pool and 

reassembled for future usage. The CAT approach may require constructing multiple item pools 

for parallel modules at different stages of MST, and at each stage, the modules may be randomly 

drawn from the module pool. Compared with CAT, the exposure control for MST is much 

simpler because only random selection of modules is required to achieve both conditional and 

unconditional exposure control at preset levels (Yan et al., 2014). 
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In Zheng et al.’s study on MST (2012), to make the exposure rates for different modules 

more uniform and more efficiently use the item bank, the number of forms to be assembled for 

each module was made inversely proportional to the number of modules of the stage that it 

belonged to. The assumption is that there is a roughly equal proportion of examinees being 

routed to different modules. Edwards et al. (2012) introduced a uniform exposure control for 

multistage computerized adaptive test. By this method, the number of routing blocks is made 

parallel with the levels in the subsequent stages, and examinees are randomly assigned to those 

routing blocks. The uniform item exposure can then be accomplished by appropriate selection of 

cutoff scores and routing of examinees to subsequent stages.  

Luecht (2003) proposed a different method with the bundled multistage adaptive testing 

(BMAT) framework which permits varying levels of exposure control at different stages and 

random assignment of module for each examinee. In the BMAT framework, item exposure 

mechanisms are built into the module pre-construction process. By this method, there are 

“primary” and “auxiliary” routes through the blocks used by the majority and minority of 

examinees.  

Under IRT, one statistical constraint is target test information (TIF).  The TIF determines 

the amount of information at either module level or pathway level along the examinees’ 

proficiency scale. Higher TIF corresponds to higher level of measurement precision since it is 

inversely related to the standard error of measurement (Emberston & Reise, 2000). Researchers 

who studied the relationship between TIFs and classification accuracy showed that accuracy 

increased with increase in TIFs, especially for the module at the first stage (Zenisky, 2004; Kim 

et al. 2012; Park, 2013).  Target TIFs are difficult to assess before the test construction. 
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However, the pathway information could be predicted depending on the average item 

information in the pool and the number of panels under construction (Park, 2013).  

2.4.3 Routing rules 

Three routing methods were documented in Weissman, Belov & Armstrong (2007): 

number correct (NC), maximum Fisher information (FI) and maximum mutual information (MI). 

For the NC method, a lookup table containing threshold scores is predetermined before an MST 

is administered. The module an examinee is routed to is dependent on whether the provisional 

estimate is smaller or larger than the threshold score (Weissman, 2014). For the FI method, 

module information is calculated at the provisional estimate of the examinee’s proficiency, and 

the module with maximum information at the provisional proficiency score is assigned to the 

examinee. Using the maximum mutual information method (MI), the maximum information is 

calculated after the examinees complete stage r using their posterior ability distribution with a 

uniform prior, probability of response, and the marginal response distribution (detailed equations 

see Weissman et al., p. 10). The MI method provides “a measure of the expected reduction in 

uncertainty in predicting a person’s proficiency level” (Weissman et al., p. 8).  

Research results indicated that NC routing utilized the MST modules and pathways most 

uniformly with the observed routing percentages for modules matching closely to those expected 

(Weissman et al., 2007). However, FI and MI routing methods led to higher correct classification 

rates of larger percentage of test takers (88.8% for FI and 89.1% for MI) overall than NC routing 

(85.3%). Although the MI routing method is similar to the FI method in classification of test 

takers, it only unutilized one out of the four paths for all test takers in Weissman et al.’s study 

(2007). The paths utilized by the FI method and NC method were not significantly different from 

each other except for path one.  
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As discussed in Weissman (2014), if the focus is on the individual examinee, routing 

rules based on information function should be utilized. If the focus is on the group, the routing 

rules should take into account the distribution of proficiencies in the population and information 

function.  

2.4.4 Test assembly 

Multiple panels are required to be developed in the process of test assembly in order to 

ensure test security. Generally speaking, assembling MSTs can be conducted either through self-

directed programming (Davis & Dodd, 2003; Keng, 2008; Kim et al., 2008) or by using 

computer software such as an MST automated test assembly (ATA) program (CASTISEL, 

Luecht, 1998; Zenisky, 2004). ATA computer software applies optimization algorithms with 

either linear programming or heuristics to simultaneously construct multiple panels. Linear 

programming is based on a mathematical modeling of assembly which requires strict test 

assembly constraints (e.g., item exposure, target TIFs, and content coverage) (Adema, 1990; 

Armstrong et al., 2004; Luecht et al., 2006; Armstrong & Roussos, 2005; Luecht & Nungester, 

1998). Comparatively speaking, the heuristic approach does not guarantee that all constraints are 

satisfied, but it is less computationally intense and also widely used in research studies (Luecht, 

1998; Patsula, 1999; Hambleton & Xing, 2006; Jodoin et al., 2006; Zheng et al., 2012; Kim et 

al., 2012).  

According to Luecht and Nungester (2000), MST panels can be assembled in three ways: 

bottom-up assembly, top-down assembly, and mixture assembly. In the bottom-up assembly, 

parallel test forms for modules at certain stages are first assembled. The module-level 

specifications, such as the statistical characteristics, test information, and content constraints, are 

all addressed so that modules can be mixed and matched in each stage to form panels and used 
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interchangeably across panels. In the top-down strategy, one optimization procedure is needed to 

ensure test-level specifications, such as the target TIFs specified for each of the pathways. In this 

method, the assembled test forms for modules at each stage are not parallel, so they must be 

combined in prescribed pathways to fulfill the target test specifications. Modules assembled 

using the top-down strategy at certain stages cannot be used interchangeably across panels. The 

mixture assembly specifies both the module-level and test-level constraints. For example, it 

satisfies some of the test specifications at the module level and others at the test level.  

2.4.5 Ability estimation  

The ability estimation procedures used in CAT are also applicable in MST. Typically two 

methods can be used to estimate the person parameters: Maximum likelihood estimation (MLE) 

(Lord, 1980; Birnbaum, 1968) and a Bayesian method (Owen, 1975).  In MLE, the examinee’s 

most likely position on the latent trait is located through maximum likelihood estimation. In 

other words, MLE is a procedure of finding the value of desired parameters that make the 

observed data distribution the most probable (de Ayala, 2009). This method is presented below:  

L (       ) =   
         

        
   ,              (8) 

where     is short for                ,     is person j’s response to item i. b is a vector 

containing item location parameters, L is the number of items on the test.  Since with the increase 

of the number of items, the product of the probabilities becomes too small, the natural 

logarithmic transformation of the probability is typically used. The utilization of logs results in a 

likelihood that is called log likelihood function, ln(  ), where 

lnL(       )=                             
 
          (9) 

When both person and item parameters are unknown, joint maximum likelihood estimation 

method are used to simultaneously determine these parameters that maximize the joint likelihood 



 
 

20 
 

of the observed data (de Ayala, 2009). The marginal maximum likelihood estimation method is 

another special case of maximum likelihood estimation (Bock & Lieberman, 1970; Bock & 

Aitkin, 1981), in which one parameter is estimated by maximizing the marginal likelihood 

function through integrating out another parameter.  

 With Bayesian methods, a prior distribution of the examinees, for example, a normal 

distribution, is usually assumed for the ability parameters. A posterior distribution of the ability 

parameters is obtained with the help of the likelihood of the observed data given the specified 

IRT model. When the mode of the posterior distribution is used as the final ability estimate, it is 

named maximum a posterior (MAP); when the mean of the posterior distribution is used as the 

final ability estimate, it is called an expected a posteriori (EAP) estimate (de Ayala, 2009; 

Embretson & Reise, 2000).  

2.4.6 Item pool design  

 An item pool is defined as consisting of “a maximal number of combinations of items 

that (a) meet all content specifications for the test and (b) are most informative at a series of 

ability levels reflecting the shape of the distribution of the ability estimates for a population of 

examinees (van der Linden, Ariel, and Veldkamp, 2006, p82). A successful MST assembly is 

inseparable from an optimal item pool that provides sufficient items (Luecht & Nungester, 

1998).  

 Xing & Hambleton (2004) studied the impact of item pool quality on the accuracy of 

ability estimation and concluded that the better (e.g., higher item discrimination) and bigger the 

item pool, the more information the MST design provided across the wide range of ability. The 

results from Wang, Fluegge, & Luecht (2012) also showed that the quality of item pool was the 

primary factor that impacted the efficiency of MST design. An item pool that was specifically 
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designed for a MST dramatically improved scoring accuracy. Item pool design is meant to 

develop a blueprint in which the statistical and non-statistical attributes of items are described 

(Veldkamp, 2014). Statistical attributes include the item selection algorithm, exposure control 

procedure, termination procedure, and item overlap restriction. The non-statistical attributes deal 

with such issues as target examinee population distribution characteristics, content balancing and 

test purpose (He & Reckase, 2014; Veldkamp, 2014). For CAT, two approaches have emerged 

for item pool design: the integer programming approach, represented by the shadow-test 

approach in Veldkamp & van der Linden (2000), and the heuristic approach, as represented by 

the p-optimality method in Reckase (2003; 2010). 

2.4.6.1 Integer programming approach  

The initial study of item pool design using integer programming was addressed by 

Boekkooi-Timminga (1991) in which integer programming was used to calculate the number of 

items needed for future test forms. A sequential approach was used to maximize the test 

information function under the Rasch model and the results were then applied to improve the 

composition of the item banks.  

To reduce item exposure and enhance item use efficiency, Stocking and Swanson (1998) 

applied an optimal design method for assigning items from a master bank to a set of generated 

banks, including independent banks and banks with overlapping items, using the three-parameter 

logistic (3PL) model and weighted deviation method in selection of items. The test assembly to 

desired content and measurement properties was achieved using a standard linear programming 

model. More detailed explanations of this model are described in Stocking and Swanson (1993).   

The definitive work for integer programming in optimal item pool design is found in van 

der Linden, Veldkamp and Reese (2000). The method was intended to create a blueprint for an 
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item pool which stipulates the attributes of the items, including both categorical constraints (e.g., 

item content, cognitive level, format, author, answer key) and quantitative constraints (e.g., word 

counts, exposure rates, TIFs, expected response times, and item difficulty and item 

discrimination) required for the assembly of a pre-specified number of test forms from the pool. 

The blueprint is optimal in the sense that the effort or “cost” of item pool creation is minimized 

(van der Linden et al., 2000), and the number of unused items in the pool is minimized. Using 

the 3PL model, the method was demonstrated through designing a new item pool for the Law 

School Admission Test (LSAT) which consists of both item sets with a common stimulus and 

discrete items. With the cost function being built from a previous item pool of 5,316 items, the 

new optimal item pool was designed to support 30 test forms with no overlapping items across 

different forms. The strategy used to solve the item assignment models was through the simplex 

algorithm, which was implemented in the Consolve module in the test assembly software 

package ConTEST (Timminga, van der Linden & Schweizer, 1996). It was suggested that 

modifications are needed for the application of integer programming models to the actual testing 

programs when the test specifications are varied.  

Extension of the integer programming approach to MST item pool design was discussed 

in Veldkamp (2014). Under the context of MST, several objective functions in the integer 

programming models were to be optimized for designing the optimal item pool, assuming the 

number of modules, and all the categorical and quantitative constraints are known. Objective 

functions, such as minimization of the costs of item writing, minimization of the number of 

items, and minimization of item overlap between modules, were all considered.  New logical 

constraints, such as the relationship between items (e.g., item enemies), item sets (e.g., items 

belonging to a common reading passage), and item overlap among modules, needed to be added 
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while presenting the blueprint design for the optimal item pool in MST. It should be noted that 

the blueprint of the item pool does not need to be a static entity. In the process of item pool 

maintenance, the newly added items might deviate from the blueprint because only part of the 

attributes can be controlled by the item writers. To correct for these deviations, the item pool 

blueprint needs to be updated on a regular basis. The author introduced an index that could be 

used to denote the iteration of the blueprint in the MST context (more details see Veldkamp, 

2014).  

2.4.6.2 p-optimality approach 

The p-optimality approach for designing optimal item pools in CAT was demonstrated 

using the Rasch model by Reckase (2003, 2010). In Reckase (2003), the study was limited to a 

fixed-length CAT program with no exposure control and content balancing. In Reckase (2010), 

the study was extended to a variable-length CAT program considering both exposure control 

procedures and content balancing. As defined in Reckase (2010), by optimal item pool, it refers 

to the fact that “whenever the CAT item selection algorithm is searching for a test item to 

administer, exactly the item that is desired is available in the item pool” (p. 129).  With the 

Rasch model, an optimal item pool is the one that has a b-parameter exactly equal to the current 

θ estimate for every item selection. Routinely the size of the item pool is as large as   -1, where 

n is the number of items administered to an examinee. For a CAT test with 20 items, the optimal 

item pool would need to contain 1,048,575 items, which is not practical for any item pool design. 

To make the concept of an optimal item pool realistic, Reckase (2003, 2010) applied the p-

optimality approach or r-optimality approach (He & Reckase, 2014). By this method, the 

difference in the amount of information provided by an item about the current θ estimate when 

there is an exact match with the b-parameter and when there is not an exact match is considered. 
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Reckase (2010) illustrated the information function for a test item as fit by Rasch model for the 

situation of 90% of the maximum possible information. Suppose the item that is available for 

selection has information that is within 95% of the maximum possible, the selected item is within 

about .35 of exactly matching the θ value. This specifies a range and the criterion was called 

range optimality. The goal is to be r-optimal (e.g. .35-optimal). If an item pool meets the 

criterion of always having items available for selection that are 95% or more of the maximum 

possible information, the item pool is called .95 p-optimal. The specification of p in p-optimality 

can be used to determine the value of r for r-optimality (Reckase, 2010). The bolded horizontal 

line in the following figure refers to the level of 95% maximum possible information. The dotted 

lines refer to the unit which contains the range of .35 on each side of the mid-point of 0. If the 

item difficulty is .35 logit away from the current ability estimate, the most loss of information for 

the examinee with the selected item is 5% compared with a perfect match between the selected 

item and the current ability estimate.  
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Figure 2.1 Item information function specified by a Rasch model 

If p is smaller than 0.95 (farther away from 1.0), the width of the bin will be wider. For a 

.85 r- optimal item pool, the item selected is within about .85 θ-units of the desired item, or the 

full range of acceptable items is 1.7. In this study, the θ-units of the desired item, for example, 

.35, is termed a bin. To be consistent with the previous research, the term p-optimality was used 

to imply the optimal item pool.   

The basic idea of implementing the p-optimality approach for optimal item pool design is 

to randomly select examinees from a target population. The selected items are sorted into a set of 

“bins” which are defined on examinees’ proficiency scale, for example, bins of width .35 as 

discussed above. The width of the bins is determined by the desired information for the target 

test (e.g., 90% maximum information for the selected test item or 95% maximum) and the model 

used for item parameter calibration (e.g., 1PL, 2PL or 3PL models) (Reckase, 2003; 2010). After 
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one examinee takes the simulated CAT test, the optimal item sets for him/her are allocated into 

bins according the optimality criteria. Another examinee is then selected and the same procedure 

is repeated. The minimum common item sets for these individual examinees are determined by 

taking the union of the two individual item sets. The process continues until the number of the 

items in the union reaches an asymptote (Reckase, 2010), which also constitutes the desired 

optimal item pool size. By this method, the bins are designed to tally the number of administered 

items needed for the correspondent range in the proficiency scale. Examinees with similar 

proficiency levels may share similar sets of items within the same bins. Thus the desired number 

of items in the pool is reduced.  

To show the practicality of the p-optimality approach, Reckase (2010) applied it to design 

the optimal item pool for a variable-length CAT test in certification/licensure using the Rasch 

model. With eight content areas involved in the test, the items were tallied into bins for each 

content area and 15 items were contained in the optimal item set at each bin to account for the 

exposure control requirement. The total size of the items for all content areas is 1,602, which is 

smaller than the operational item pool size of 2000.  To check the performance of the simulated 

item pools, two r-optimal pools with variable bin widths were compared with the operational 

item pool and conditional standard errors were computed at equally spaced points along the θ 

scale. The results showed that in the middle near the cutoff score, the different item pools 

resulted in equal precision of estimates. However, the conditional standard errors increased for 

the operational item pool at the two extremes while those for the simulated optimal item pools 

remained constant. The operational item pool had more items in the middle than necessary and 

less spread of item difficulty than the r-optimal pools.  
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He and Reckase (2014) provided additional details of applying the p-optimality method 

to design optimal item pools for a variable-length licensure CAT program using the Rasch 

model. Seven candidate item pools were designed to demonstrate how design factors, such as 

variable bin widths, exposure control, and content balancing, affected item pool characteristics 

and the performance of the CAT program. The results indicated that the item distributions across 

all the content areas were similar. More specifically, the item distributions were negatively 

skewed with the peak centering on the middle category of b values near the cutoff score; the 

number of items in the bins father away from the cutoff score decreased; all the item pools 

covered a wide range of item difficulty levels along the ability scale and provided sufficient 

items to support the exposure control procedures. In addition, the item exposure rate distribution 

for each content strand also shared a similar pattern. Comparatively speaking, the item pools 

with exposure control were found to yield slightly more accurate classification accuracy and 

higher rate of underexposed items than those with no exposure control, and the their item pool 

size increased by about threefold. The item characteristics of the pool were affected by bin 

width, for example, the narrower the bin width, the larger the item pool size. To evaluate the 

feasibility of the simulated item pools, the performances of two selected pools were compared 

with that of a retired operational item pool in the same CAT program. The comparison results 

showed that the operational item pool yielded slightly longer tests on average, slightly lower 

classification accuracy, and higher biases and MSEs at the extreme abilities. But the operational 

item pool demonstrated a better item usage than the simulated pools with a lower percentage of 

underexposed items although at the cost of 400 more items.  

The p-optimality approach was extended to the use of 3PL model in Gu (2007) for a CAT 

program (e.g., Armed Services Vocational Aptitude Battery, ASVAB) composed of dichotomous 
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items. Practical constraints, such as Sympson-Hetter exposure control method, were applied in 

the study for test security purpose, but content balancing was not considered. The results 

suggested that the simulated optimal item pools performed better than the operational pools no 

matter whether the exposure control procedure was implemented or not. More specifically, item 

pools designed with the p-optimality method had more items evenly distributed over a wider 

range of ability levels, which resulted in a better estimation accuracy at most latent ability levels. 

In addition, the simulated item pools had significantly smaller percentages of under-exposed 

items than the operational item pools.   

Zhou (2012) explored the impact of the practical constraints, such as a-stratified exposure 

control method (with a maximum rate of .20) and content balancing, on the optimal item pool 

design for a polytomous CAT using generalized partial credit model (GPCM). The results 

indicated that the practical constraints of the exposure control and content balancing had little 

effect on the item pool size.  However, the a-stratified exposure control affected the item pool 

characteristics. For example, the items in the simulated item pools without the constraint had 

larger a-parameters than those with the constraint. This resulted in the larger average maximum 

information as provided by those items and much larger item pool information than those with 

the constraint. Contrary to exposure control, the content balancing had little impact on the item 

pool design for the polytomous items. In the conditions where only the content balancing 

constraint differed, the distributions of the a- and b-parameters were quite similar. The 

evaluation results revealed that the optimal item pools designed with the p-optimality method 

supported the polytomous CAT implementations with regards to the measurement accuracy and 

item pool usage. More specifically, enough items were provided in the simulated item pools 
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which had maximum information across the entire ability continuum and the a-parameters 

spanned evenly under the a-stratified method constraint condition.  

Mao (2014) applied the p-optimality method in designing optimal item pools for a 

multidimensional CAT program using the multidimensional Rasch model. A total of 24 p-

optimal item pools were designed and then developed based on different test specifications, with 

different correlations among dimensions, different bin sizes and under different exposure control 

conditions. Content balancing was not considered. Since an operational multidimensional item 

pool in CAT does not exist in practice, the baseline item pools were created following those used 

in research articles. The results indicated that the simulated optimal item pools performed 

similarly with the baseline item pools in terms of the measurement accuracy for ability, but they 

contained fewer items (e.g., more than 100 items smaller) and had better item pool usage. 

Similar to Gu (2007) and Zhou (2012), the size of the simulated optimal item pools for MCAT 

was sufficient for a large number of examinees and the items in the pools spanned the entire 

range of item difficulty, which resulted in a good estimation accuracy at most ability levels. Item 

pool size was found to be related with several factors: the bin sizes, the test specifications, 

correlations among dimensions, and the exposure control condition.  For example, under the 

exposure control condition, a larger item pool was necessary when the bin size increased, the test 

became non-simple structure, and the dimensions were highly correlated.  

2.5 Statement of the problem 

The review of recent literature on MST design reveals that popularly investigated designs 

include two-stage, three-stage, and four-stage designs. It is concluded from the literature that 

although the four-stage designs with four levels at the final stage provided slightly higher correct 

classification rates than the three-stage designs, they only brought negligible increase in 
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estimation and scoring accuracy (Zheng et al., 2012; Jodoin et al., 2006-zheng et al). In some 

studies (e.g., Armstrong & Edmonds, 2004) the four-stage designs were even less favorable than 

the three-stage designs. Comparatively speaking, the cost of using four-stage designs was to 

bring in greater complexity in the routing algorithm and poorer item pool usage (Luecht & 

Nungester, 1998; Patsula & Hambleton, 1999; Zenisky, Hambleton, & Luecht, 2010).   

In terms of MST panel design, Reckase (2006) addressed the ideal test configurations for 

a 20-item or 24-item test especially regarding the proportion of the first-stage and second stage 

test length. But the study was only limited to short test length for a particular 1-2 design, the 

ideal MST configurations for other test lengths (e.g., medium and long), and for other panel 

designs (e.g., 1-3, 1-2-2, and 1-2-3) have not been explored and identified. Some studies (Zheng 

et al., 2012; Chang & Ying, 1996) investigated whether longer earlier stages and longer later 

stages in MSTs would bring differences in the measurement accuracy of the ability estimation, 

but no studies were conducted to address the ideal proportions of the test lengths at the module 

level for various MST panel designs.  

As shown in Armstrong and Edmonds (2004), the efficiency of any MST design relies on 

high item pool quality and effective utilization of its pool. A valuable resource for any testing 

agency is an ideal test blueprint which helps to design and maintain their item pool. As 

evidenced from the literature review that the implementation of the integer programming 

approach in item pool design relies heavily upon specialized knowledge of linear programming 

and specific software, such as CPLEX and LINDO (He & Reckase, 2014). More importantly, 

severe constraints are imposed in the test content specifications and other qualitative features of 

the items (e.g., item numbers, word count). One consequence of these severe constraints is that 

they may lead to statistically less optimal tests and pose security risks (Luecht, 2003). In 
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addition, when the number of constraints is large, the test procedures are cumbersome, time-

consuming or even infeasible (Zheng et al., 2012). Comparatively speaking, the p-optimality 

method is easier to implement and its application does not require any knowledge of a 

specialized sub-field of psychometrics and software. Currently many CAT programs, such as the 

National Council Licensure Examination and Armed Services Vocational Aptitude Battery use 

the p-optimality method in designing their item pools (He & Diao, 2014).  

Although Reckase (2006) applied the p-optimality method to support a MST 1-2 panel 

design for a short test using 3PL model, we are not clear whether this method is also feasible in 

supporting other MST panel designs (e.g., 1-3, 1-2-2 and 1-2-3) containing medium and long 

tests and different routing test proportions. The feasibility of applying the Rasch model in 

optimal item pool design using this method is also unknown. As more large-scale educational 

assessments are moving towards the MST design, it will be helpful to investigate the 

measurement accuracy provided by the various MST designs and inform possible optimal test 

design choice. 

Using one of the most popularly investigated IRT models, the Rasch model, one purpose 

of the present study was to enhance item pool utilization by the p-optimality method to support 

different MST panel designs, including 1-2, 1-3, 1-2-2, and 1-2-3. Item pools designed with and 

without exposure control were explored and item parameter characteristics were compared. 

Another purpose of the study was to evaluate the performances of various MST designs with 

different test configurations and see how the test lengths and routing test lengths impacted the 

measurement accuracy. Since the study was primarily interested in a test designed to have a good 

estimation across a range of ability levels, the target test proposed is an achievement test. For 

generalizability purpose, different test lengths (e.g., short, medium and long test) were all 
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included in the study. More specifically, different test lengths (e.g., 20-, 40-, 60-item test) with 

different proportions of the first stage (20%, 30% and 40% of the test) and the correspondent 

second-stage and third-stage tests were all studied. The performances of the simulated item pools 

were evaluated against many evaluation criteria in terms of measurement accuracy (e.g., bias, 

Root Mean Squared Error (RMSE), classification accuracy, item exposure rate, and the 

correspondent conditional evaluation statistics etc.). The p-optimality method was used to design 

an optimal item pool in an operational MST context to see if it was feasible to support the 

operational test. The following research questions were addressed in the present study:  

1) Will the p-optimality method achieve sufficient measurement accuracy when used to 

design optimal item pools to support the different MST panel designs under different test 

specifications (e.g., different test lengths and routing test proportions), and is this method 

applicable to operational item pool design?   

2) Will the test length and routing test proportions (e.g., the proportion of the routing test 

length to overall test length) have any impact on the measurement accuracy for all MST 

designs? 

3) How does the practical constraint of exposure control affect the features (e.g., item pool 

size and parameter characteristics) of the optimal item pools to support the different MST 

panel designs?  
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CHAPTER 3: Methodology 

 This chapter first introduces the optimal item pool design for the different MST panel 

designs in the study. Then it discusses the test development, including test designs, routing 

methods, practical constraints in item selection, such as exposure control, and test assembly 

methods. In the research design section, a simulation study design and procedure, together with 

the evaluation criteria for item pool performance are described.  This section also introduces how 

the operational item pool is formed and compared with the performance of the simulated optimal 

item pools. 

3.1 MST test development 

3.1.1 MST designs and test configurations  

For generalizability purpose, the simulated test lengths include short, medium and long 

tests with 20, 40, and 60 items. The MST designs explored are among the most popularly 

investigated ones in the literature, which include both two-stage and three-stage structures: MST 

1-2 design, MST 1-3 design, MST 1-2-2 design, and MST 1-2-3 design. In the MST 1-2 design, 

1 means one routing module at stage one with medium level items, 2 means two modules at stage 

two (one module with easy items and one module with difficult items). In the MST 1-3 design, 1 

means one routing module at stage one with medium level items, and 3 means three modules at 

stage two (one module with easy items, one module with medium level items, and one module 

with difficult items). In the MST 1-2-2 design, 1 means one routing module at stage one with 

medium level items, the first 2 means two modules at stage two (one module with easy items, 

and one module with difficult items), the second 2 means two modules at stage three (one 

module with easy items, and one module with difficult items). In the MST 1-2-3 design, 1 means 

one routing module at stage one with medium level items, 2 means two modules at stage two 
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(one module with easy items, and one module with difficult items), and 3 means three modules at 

stage three (one module with easy items, one module with medium level items, and one module 

with difficult items).  Since previous research suggested that four-level modules and more than 

three-stage panels provided a negligible increase in scoring accuracy (Armstrong & Edmonds, 

2004), and only increased the complexity of test assembly (Luecht & Nungester, 1998; Patsula & 

Hambleton, 1999; Zenisky, Hambleton, & Luecht, 2010), panels with more than three modules at 

each stage and more than three stages were not included in the study. The detailed design 

structures are shown in the following figures: 
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Figure 3.2 MST 1-3 design 

 

2H 

2M 

2E 

1M 

1M 

2H 3H 

3E 2E 

1M 

2H 

3H 

3M 

3E 

2E 

1M 

2H 

2E 

Figure 3.1 MST 1-2 design 
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In these figures, 1 means stage one, 2 means stage two, and 3 means stage three. M 

means items with medium item difficulty, E means easy items, and H means hard items. Given 

the examinees’ abilities are unknown at the beginning of a test, the length of the routing test is 

particularly significant. Various proportions of the routing test length are considered in the study 

to see how this variation impacts the ability estimation accuracy. For the MST 1-2 design and 

MST 1-3 design, the proportions of the routing test length to the total test lengths are: 20%, 30% 

and 40%. The proportions of the second stage modules are: 80%, 70% and 60% of the total test 

lengths respectively. For MST 1-2-2 and MST 1-2-3 designs, the proportions of the routing test 

length to the total test lengths are: 20%, 30% and 40%. The correspondent proportions in the 

second stage modules are 40%, 30% and 20%, and the proportions for the modules at the final 

stage are: 40%, 40% and 40%.  The rationale for splitting the proportions of the modules at the 

second and third stage is to ensure that enough items are allocated at the final stage for 

measurement accuracy purpose. For designs with no exposure control, the allocation of items for 

all the designs is described in Table 3.1 below. Take the MST 1-2-2 design as an example, for 

the test length of 40 (e.g., 1-2-2_n40) and routing test proportion of 40%, 16 items are allocated 

for stage one module, 8 items are allocated for each of the two modules at stage two respectively, 

and 16 items are allocated for each of the two modules at stage three. The allocation of items 

under exposure control conditions are described in Table 3.2 in 3.1.3.  

 

 

 

 

 



 
 

37 
 

Table 3.1 MST designs and the number of items across different stages 

   

Designs 

 

Proportions 

Stages 

1 2 3 

1-2_n20 20% 4 16 (16)  

 30% 6 14 (14)  

 40% 8 12 (12)  

1-2_n40 20% 8 32 (32)  

 30% 12 28 (28)  

 40% 16 24 (24)  

1-2_n60 20% 12 48 (48)  

 30% 18 42 (42)  

 40% 24 36 (36)  

1-3_n20 20% 4 16 (16, 16)  

 30% 6 14 (14, 14)  

 40% 8 12 (12, 12)  

1-3_n40 20% 8 32 (32, 32)  

 30% 12 28 (28, 28)  

 40% 16 24 (24, 24)  

1-3_n60 20% 12 48 (48, 48)  

 30% 18 42 (42, 42)  

 40% 24 36 (36, 36)  

1-2-2_n20 20% 4 8 (8) 8 (8) 

 30% 6 6 (6) 8 (8) 

 40% 8 4 (4) 8 (8) 

1-2-2_n40 20% 8 16 (16) 16 (16) 

 30% 12 12 (12) 16 (16) 

 40% 16 8 (8) 16 (16) 

1-2-2_n60 20% 12 24 (24) 24 (24) 

 30% 18 18 (18) 24 (24) 

 40% 24 12 (12) 24 (24) 

1-2-3_n20 20% 4 8 (8) 8 (8,8) 

 30% 6 6 (6) 8 (8,8) 

 40% 8 4 (4) 8 (8,8) 

1-2-3_n40 20% 8 16 (16) 16 (16,16) 

 30% 12 12 (12) 16 (16,16) 

 40% 16 8 (8) 16 (16,16) 

1-2-3_n60 20% 12 24 (24) 24 (24,24) 

 30% 18 18 (18) 24 (24,24) 

 40% 24 12 (12) 24 (24,24) 

  Note: 1-2_n20 means MST 1-2 design with a test length of 20 and the rest of the designs has 

similar representations; the number in parenthesis means the number of items at the same stage 

for another/other module(s). 
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3.1.2 Routing  

Given the higher correct classification rate by the maximum Fisher information method 

(FI) discussed in Weissman (2014) and its popularity in MST research (e.g., Zheng et al., 2012; 

Luecht, Brumfield, & Breithaupt, 2002), the FI method was used as the routing method in the 

present study. As discussed in Weissman (2014), if the focus is on individual examinee, routing 

rules based on information functions should be utilized. If the focus is on the group, the routing 

rules should take into account the distribution of proficiencies in the population and information 

functions. The routing rules that are used in the present study adhere to the following: the 

simulated routing test is targeted at providing maximum information at the cutoff score 

determined by the distribution of examinees in the target test so that equal proportion of 

examinees could be routed to the next stage. In the simulation study, the distribution of the target 

examinees is assumed normal with mean of 0 and variance of 1. For the interim-stage modules in 

MST, items are selected to provide maximum information at the true ability of examinees and an 

equal proportion of examinees are routed to the next stage.  

More specifically, with the Rasch model, the maximum information for the individual 

item is achieved when its item difficulty parameter matches the examinee’s latent ability. For the 

MST design following a 1-2 structure, one cutoff score is used to route half of the examinees to 

the easy module and half to the difficult module at the second stage. The cutoff score is 

determined based on the mean of the distribution of simulated examinees in the study. For the  

1-3 design, two cutoff scores are used to route one third of the examinees to one of the modules 

at the second stage. The two cutoff scores are determined based on 33
th

 percentile and 66
th

 

percentile of the distribution of simulated examinees so that an equal proportion of examinees 

are routed to the second stage modules. Three-stage MST designs are more complicated. For 
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example, for the 1-2-2 design, the routing from the first stage to the second stage is the same 

with that of the 1-2 design, but two cutoff scores are generated at the second stage for routing an 

equal proportion of examinees to one of the two modules at the final stage. The two cutoff scores 

are determined based on the observed score variance instead of the true score variance of the 

simulated examinees. More specifically, the two cutoff scores are determined based on the 25
th

 

percentile and 75
th

 percentile of the observed score distribution of simulated examinees at the 

second stage, which results in an equal proportion of examinees being routed to each of the 

modules at the final stage. Similarly, for the 1-2-3 design, two cutoff scores are generated based 

on the 33
th

 percentile and 67
th

 percentile of the observed score distribution of simulated 

examinees at the second stage, and an equal proportion of examinees are routed to one of the 

three modules at the final stage.  

3.1.3 Exposure control 

To maintain test security and module exposure control, the procedure for developing 

multiple panels and parallel modules in the study followed the method discussed in Zheng et al. 

(2012). The number of forms to be assembled for each module is inversely proportional to the 

number of modules of the stage it belongs to when an equal proportion of examinees are routed 

to different modules at later stages. By test forms in the study is meant the parallel modules at 

each stage. The numbers of items for each module under exposure control conditions are 

multiples of the ones as shown in Table 1 above. The number of test forms used for the exposure 

control conditions are shown below. 
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Table 3.2 The number of test forms in different MST designs with exposure control 

 

Designs 

Stages 

1 2 3 

1-2 18 9 (9)  

1-3 18 6 (6) (6)  

1-2-2 18 9 (9) 9 (9) 

1-2-3 18 9 (9) 6 (6) (6) 

                   Note: The number in parenthesis means the number of test forms at the same stage  

 for another/other module(s). 

 

The number of test forms is determined by considering several factors. First, the number 

of test forms must be whole numbers for each module at each stage; second, since there is one 

module at the first stage for every MST design, the number of test forms for the initial stage is 

set as the same; third, since the inverse proportion method is applied in the study for exposure 

control and fewer test forms would occur at the interim as well as the final stages, the minimal 

number of test forms required  for the second stage as well as the final stage for the various MST 

designs are determined using pilot studies. The factors, such as the exposure rate, the number of 

examinees used in the study,  the types of MST designs, are all considered for this selection. 

Finally 18 test forms were decided for the initial stage modules, and the test forms for the second 

stage and third stage modules were decided accordingly based on the inverse proportion method 

for every MST design.  As in the MST 1-2 design, 18 parallel test forms are available to be 

selected and assembled at the initial stage, and nine forms are available to be assembled for the 

easy module and nine for the difficult module at the second stage.  

The exposure rate for this study is 20% and the exposure control procedure is 

implemented at the module level. A randomization method is applied in the study to implement 

the exposure control. To implement this method, the items are first randomly selected within bins 

based on the number of items required for each module. By random selection, all the items 
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constructed for parallel modules share equivalent statistical attributes, and modules constructed 

also have no overlapping items across them. Examinees are then administered one of the 

multiple test forms at each stage. When one particular test form is administered to the examinee, 

and if the exposure rate is smaller than 0.2, this test form would be administered. Otherwise, it 

would be excluded from selection and the test form would be selected from the remaining ones. 

The above procedure continues until all the examinees complete the whole testing procedure for 

various MST panel designs.  

3.1.4 Test assembly 

In test assembly, one advantage of the bottom-up approach is that it addresses both 

statistical and non-statistical requirements of a test at the module level so that they can be mixed 

and matched easily at each stage to form parallel panels. Given this advantage, the bottom-up 

approach was applied in the present study for test assembly purposes.  

In the simulated optimal item pools, the item difficulty distributions for the hypothetical 

tests at various stages are assumed the same. Based on this assumption, the assembling of panels 

could be completed by mixing and matching the forms of the modules, and the pathways are 

parallel between different assembled panels. The initial routing test has a range of medium item 

difficulty, and it is divided into easy and hard modules or easy, medium and hard modules at 

later stages for different test designs. The range of item difficulty across modules at the same 

stage is allowed to have an overlap because this benefits the examinees whose abilities are at the 

border of two modules.  The TIFs target set up in the design stage is 20 per pathway with a 

reliability of 0.95 for the whole test. That is, the accumulated item information for all modules 

along each pathway is supposed to reach 20 to ensure the high reliability of the MST test 

constructed.  
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Panel assembly is completed in two steps: assembling items into modules from the item 

bank and assembling panels from the modules. A bottom-up approach was applied in the present 

study for test assembly purpose with content constraints controlled at the module level. In this 

way, the modules are parallel and the assembling of panels could be completed by mixing and 

matching the forms of the modules, and the pathways are parallel between different assembled 

panels.   

3.2 Item pool design  

With MST, the p-optimality method was used to determine the items needed for an 

optimal item pool and support a particular panel design. The basic idea was to randomly select 

examinees from a target population and simulate the MST procedure. With the application of the 

Rasch model in the study, the item difficulty parameter was the major factor to determine the bin 

size and item selection. If the item that is available for selection has information that is within 

95% of the maximum possible, the bin width is identified as .35 (Reckase, 2003). That is to say, 

if the item difficulty is .35 logit away from ability estimate, the loss of information for examinees 

with the selected item is 5% compared with a perfect match to the ability estimate. Considering 

the small amount of information lost for an item, a bin width of .35 was applied in the present 

study. The selected items were sorted into a set of “bins” which were defined on examinees’ 

proficiency scale. After a certain number of examinees took the simulated MST tests, the number 

of items in the item pool stabilized and reached an optimal quality, and the union of the items 

constituted the optimal item pool blueprint for that MST panel design.  

Taking the 1-2 design as an example, the detailed procedures for applying the p-

optimality method in the context of MST were: 
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1) Identify the mean of the true abilities from the target population (e.g., standard 

normal distribution) in the study and use it as the cutoff score for the routing test; 

2) randomly select examinees from the target population; 

3) simulate the administration of items matching the examinees’ true abilities for the 

routing test in which items are selected from the bin containing the mean of the true 

abilities; 

4) route the examinees to one of the two modules at the second stage using the cutoff 

score identified for routing; 

5) simulate the administration of items matching the examinees’ true abilities for the 

number of items in the routed module at stage 2; 

6) stop the procedure when the anticipated measurement precision is acquired for this 

fixed-length test;  

7) assign all items selected in both the routing test and stage 2 to the bins; 

8) conduct 100 replications to reduce the sampling error,  

9) obtain the average number of items required for each bin (e.g., rounded to the nearest 

whole number) and produce a bin count table, which indicates how many items are 

identified within each bin; 

10) randomly select item parameters based on the bin count table from each bin to meet 

the test length requirement. 

For the 1-3 design, step 1) is revised to include two cutoff scores based on 33
th

 percentile 

and 67
th

 percentile of the true ability distribution for the examinees. Step 3) is revised to include 

the administration of items matching the examinees’ true abilities for the routing test in which 
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items are selected from the two bins containing the two cutoff scores. In step 4), the examinees 

are routed to one of the three modules at stage 2, then steps 5) to 10) are repeated.  

For the 1-2-2 design, first steps 1) to 5) are repeated. In step 6), two cutoff scores are 

selected to route equal proportions of examinees to the final stage. In step 7), the procedure stops 

when the anticipated measurement precision is acquired for this fixed-length test. In step 8), 

assign all items selected in all stages to the bins. The rest of the steps from 9) to 11) are the same 

as 8) - 10) for MST 1-2 design. The two cutoff scores at stage 2 are calculated based on the 

observed score variance of the examinees with the following procedure. First, a fixed number of 

5,000 examinees are selected from the target population and administered the routing test. 

Second, reliability is calculated based on the examinees’ responses to all the items in the routing 

test. Third, the observed score variance is obtained with the known reliability and true ability 

variance (Thissen, 2000). Since the items in the first stage are selected from one bin and all 

examinees are exposed to the same set of items, marginal reliability is not used in this step. 

Fourth, the cutoff scores are determined based on the 25
th

 percentile and 75
th

 percentile of the 

observed score variance of the examinees.  Fifth, based on the examinees’ performance at stage 2 

modules, they are routed to one of the two modules at the final stage.  The procedures for 1-2-3 

design are similar to those of the 1-2-2 design. They differ in the second stage where two cutoff 

scores are determined (e.g., the cutoff scores are determined based on the 33
th

 percentile and 67
th

 

percentile of the observed score variance of the examinees) and the final stage where examinees 

are routed to one of the three modules represented by easy, medium and difficult items.  

The set of items that are selected in this process constitutes the optimal item pool used for 

item selection for the various MST designs. Under the exposure control condition, the number of 

items within each bin is adjusted according to the number of items that are required by the 



 
 

45 
 

inverse proportional exposure control method. For example, at stage 1, 18 test forms are 

established to control item exposure rate for all MST test designs. The number of needed items is 

obtained through multiplying 18 and the proportions of routing test for various conditions. At 

stage 2, for 1-2, 1-2-2 and 1-2-3 designs, 9 forms are constructed for the easy module and 9 

forms are constructed for the hard module. The numbers of needed items are obtained similarly 

with those at the first stage. For 1-3 design, 6 forms are constructed respectively for the easy, 

medium and hard modules. At stage 3, for 1-2-2 design, 9 forms are constructed for the easy 

module and 9 forms are constructed for the hard module. For 1-2-3 design, 6 forms are 

constructed respectively for the easy, medium and hard modules. All the selected items are 

combined together and constitute the optimal item pool under exposure control conditions. The 

item pool established this way for each design tailors to the distribution of examinees’ true 

abilities.  

Because the simulated test is a generalized test with no specific test blueprint and 

unidimensionality was assumed in the study, content balancing is not considered in the study. 

Assuming unidimensionality, item distributions for all hypothetical content areas are assumed 

the same for the simulated optimal item pool. In previous studies where the p-optimality method 

was applied in CAT (e.g., He & Reckase, 2014), unidimensionality was also assumed, but 

content balancing was considered. The results showed that item distributions across all the 

content strands were similar and the item exposure rate distribution for each content strand also 

shared a similar pattern. Another study by Zhou (2012) focused on the impact of exposure 

control and content balancing on the optimal item pool design for a polytomous CAT using the 

p-optimality method. The results obtained indicated that the practical constraints of content 

balancing had little effect on the item pool size and little impact on the item pool design for the 
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polytomous items. In the conditions where only the content balancing constraint differs, the 

distributions of item parameters were quite similar. 

3.3 Research design 

 This section is composed of two parts. The first part introduces the simulation study 

design, which investigates the effectiveness of applying the p-optimality method to design 

optimal item pools and support the various MST designs. It also studies the impact of test length 

and routing test length as well as the exposure control on measurement accuracy. The second 

part investigates whether the p-optimality method is applicable to support the optimal item pool 

design for an operational MST.  

3.3.1 Simulation study 

A simulation study was first conducted to design the optimal item pools and support the 

different MST designs for with and without exposure control conditions. To achieve this end, 

examinees were first randomly selected from a standard normal distribution. These examinees 

were then administered the simulated test items following the various MST panel designs (e.g., 

1-2, 1-3, 1-2-2, and 1-2-3) and routing rules discussed above to build up the correspondent tests. 

The maximum likelihood estimation method (MLE) was applied to estimate examinees’ abilities. 

One hundred replications were conducted in this step to reduce the sampling error. Items 

required by these examinees were placed into a set of bins ranging from -3.5 to 3.5 with a bin 

width of 0.35. 

After the number of items was obtained within each bin, specific item parameters were 

randomly selected from the bins assuming a uniform distribution. Thirty-six (4 test designs * 3 

test lengths * 3 routing proportions) item pools were designed using the p-optimality method to 

support the different MST panel designs. Exposure control was not implemented at this step. To 
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examine how the exposure control affects the item pool size, for each condition, two item pools 

were compared: one with the exposure control and one without. The final number of item pools 

constructed was 72. The randomization method discussed above was used to control the item 

exposure rate, which was set as 20% in the study, a commonly used cutoff value in MST. The 

number of forms assembled for each module was inversely proportional to the number of 

modules of the stage it belonged to and an equal proportion of examinees were routed to 

different modules at later stages. Thirty replications were conducted for each condition to reduce 

sampling error. All programming work in this study was implemented by MATLAB 7.10.0 

(R2010a). 

The evaluation of the item pool performance was carried out by using overall and 

selected samples respectively. A simulated fixed sample of 5,000 examinees was randomly 

drawn from a standard normal distribution and were administered the four MST tests using all 

the candidate item pools. The procedures were also conducted with selected samples. The 

performance for all candidate item pools were evaluated by the conditional samples, using 

simulated examinee samples with proficiency points equally spaced over the range between -3.5 

and 3.5 at an interval of .05. At each proficiency point, a simulated fixed sample of 100 

examinees was drawn and were administered the four MST tests using all the candidate item 

pools.  

Evaluation criteria include: Overall and conditional statistic values. The overall statistic 

values include: correlation between true abilities and estimated abilities, overall bias, root mean 

squared error (RMSE), test information, standard error of measurement, marginal reliability, 

item overlap rate and item exposure rate, and classification accuracy. The conditional statistic 

values include: conditional bias, root mean squared error (RMSE), standard error of 
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measurement, item overlap rate, and classification accuracy. Three different types of cutoff 

scores for median value, minimum competent and scholarship decisions are unitized for 

classification accuracy.  

3.3.2 Application of the p-optimality method in an operational MST context 

In this empirical study, the p-optimality method was applied to design an optimal item 

pool to support an operational licensure MST and see if it is applicable in real educational 

settings. The operational MST has a 1-2-2 design and all the items come from one content area in 

the test. The test has 75 operational items, and the item parameters were calibrated from a total 

sample of 27,261 examinees using Rasch model by fixing the person parameters in WINSTEPS. 

Based on the probit model scale, the calibrated item parameters have the mean of 0.97 and the 

variance of 0.59. The calibrated operational item pool consists of 1029 items. 

Following the procedures discussed in the methodology section, a group of 5,000 

examinees were selected from a standard normal distribution and administered the test assembled 

from the real pool built with the p-optimality method. Since the real pool contained more items 

than needed, an item pool assembly process was involved. In this process, the desired number of 

items for each module was selected based on the test specification (e.g., 25 items per module) of 

the operational test. The operational item pool had the capacity of assembling eight test forms for 

each module. Since the master item pool only contained items from one content area of the 

subject, content balancing was not considered in the item pool assembly process. The number of 

items within each bin was determined following the procedure discussed above in the 

methodology section. After the bin counts or the number of items within each bin were 

established, the real item pool parameters were re-distributed and filled out the bins as required 

by the bin counts. The width of the bin is still .35. For the real item pool, if there were no enough 
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items within certain bin, the adjacent items that were closest to them in terms of item difficulty 

would be moved to that bin. Since the target population had a larger variance as compared to the 

item parameter distribution in the real pool, and the bins covered a wider range along the θ scale, 

almost all the items in the real pool needed to be re-distributed to new bins. After this re-

distribution, although the item parameters were not aligned perfectly with the boundaries of bins 

on the proficiency scale, they were as close as possible to the targets. In this process, 29 

redundant items close to the middle range of the ability scale were removed from the pool. The 

re-distributed real item pool is called the R-Pool.  

As one of the anticipations in the p-optimality method is the alignment between target 

examinee population and the item parameter distribution in the optimal item pool, a simulated 

optimal item pool was created to compare with the real item pool performance. This simulated 

item pool is called the S-Pool. The examinee population used to design the optimal item pool 

was the same with that of the real pool situation, which also came from a standard normal 

distribution. The same group of 5,000 examinees (e.g., same with that in the operational item 

pool situation) was used to design the simulated item pool following the procedures as discussed 

in the methodology section. To enable the comparability between the item pool performance 

between the R-Pool and S-Pool, the simulated test for both followed the test configurations of the 

operational test (e.g., 75 item test with 1-2-2 MST design, and 25 items per module), exposure 

control procedure and content balancing. To implement the exposure control, all examinees were 

exposed to an equal number of modules at each stage. For example, at stage 1, each examinee 

was exposed to eight test forms, and after being routed to one of the two modules at stage 2, 

he/she was still exposed to eight test forms. The number of test forms built also followed that 

used in the operational test. Since the operational test comes from one section of the licensure 
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test and all the items share one content area, content balancing was not needed in this process. 

The p-optimality method was applied to both the simulated and operational item pools to support 

the 1-2-2- MST design and 30 replications were conducted to reduce sampling error. The item 

parameter distributions and item pool sizes in the different stages of both the simulated and 

operational item pools were compared.  

3.3.3 Study design elements 

 To sum up, for the simulation study, the research design involves the following factors: 

MST panel designs with four levels (e.g., 1-2, 1-3, 1-2-2, 1-2-3); test lengths with three levels 

(e.g.,  20, 40, and 60); routing test proportion with three levels at the first stage for all designs 

(e.g., 20%, 30%, and 40%), three levels at the second stage for MST 1-2 and MST 1-3 designs 

(e.g., 80%, 70% and 60%), three levels at the second stage for MST 1-2-2- and MST 1-2-3 

designs (e.g., 40%, 30%, 20%), and one level at the third stage for MST 1-2-2 and MST 1-2-3 

designs (e.g., 40%); exposure control with two levels (e.g., without exposure control and with 

exposure control). For the empirical study, the research design involves the following factors: 

MST panel design with one level (e.g., 1-2-2); test length with one level (e.g., 75-item test); 

module length with one level (e.g., 25 items per module); exposure control with two levels (e.g., 

without and with exposure control); application of the bin-and union method with two levels 

(e.g., real item pool and simulated item pool).  

3.3.4 Evaluation criteria  

The following section provides details or equations of how the overall evaluation 

statistics and conditional evaluation statistics are computed to evaluate the performance of the 

candidate item pools in the simulation study and the empirical study:  
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1) Equations used to calculate the correlation coefficients between estimated and true 

person abilities, overall and conditional bias, root mean squared error (RMSE), overall and 

conditional item overlap rate are given by the following equations:   
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where 


j and j are the estimated and true abilities of the 
thj examinee. S  and 

̂
S are the 

standard deviations of the true and estimated abilities. N is the number of examinees.   

2) Classification accuracy of the ability estimates. The classification accuracy is 

measured by dividing the number of examinees correctly classified by the total number of 

examinees. Three threshold scores are used in the study: classification accuracy based on the 

median value, 80% and 95% of the examinees’ score distribution. The cutoff score based on the 

median value is used to evaluate the pass/fail of the test, and the one based on 80% is used to 

evaluate whether the examinees possess a minimum competence in the subject area of the test, 

and the one based on 95% is used to evaluate if the examinees deserve any scholarship. 

Conditional classification accuracy is calculated using the number of examinees correctly 

classified conditional on the ability points from -3.5 and 3.5 at an interval of .05.  
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3) Item exposure rate. It is obtained through dividing the number of times the item is 

administered in the item pool by the number of examinees. For example, if the exposure rate is 

0.1, it means the module is administered to 10% of the examinees. If the module exposure rate is 

too high, it means the set of items is being exposed to too many examinees and the test security 

will be threatened. The item exposure rate is considered high if it is over .20 (Segall et al., 1997). 

On the contrary, if the module is rarely used in test administration, it is called underexposed. 

Underexposure of items indicates the underutilization of the item pool. In CAT, an item with an 

exposure rate lower than .02 is considered as underexposed (He & Reckase, 2014). This value is 

adopted in the current MST context for evaluating the underexposure rate of modules.    

To evaluate whether the items within bins at some parts of the θ scale are exposed more 

than the others, the item exposure rate conditional on bins is reported. Two evaluation statistic 

values are calculated: one is the average item exposure rate across bins, and another is the 

proportion of items above or below the threshold exposure rate as discussed above (e.g., <.02 or 

>.20).  The procedures for calculating the two statistic values are as follows. First, after obtaining 

the item exposure rates for all items by the overall sample, sort them into different bins based on 

their item parameters. Second, calculate and report the average value of the item exposure rates 

across bins. Third, calculate and report the proportion of item exposure rate above the threshold 

value of .20 for each bin under no exposure control condition, and the proportions of item 

exposure rate above the threshold value of .20 as well as below .02 for each bin under exposure 

control condition. 

4) Item overlap rate. It is defined as the number of common items shared by two 

randomly selected examinees divided by the test length in the test (Way, 1998). Both the average 
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item overlap rate and the conditional average item overlap rate were calculated. The following 

equation was used to calculate the average item overlap rate in the present study: 

R=
    

 

     
 
   

,                            (13) 

where T is the total number of items shared by the given number of pairs in the tests among N 

examinees.    is the total number of items administered for N examinees.  

 The overlap across modules in terms of the item difficulty range is checked at two stages, 

one is at the item pool design stage and another is at the simulated item pool stage. The former is 

based on the boundaries of the bins for different modules, which are equivalent to the minimum 

and maximum item difficulty parameters that are aligned with the lower and upper bound of the 

bin for each module involved. This applies to both types of exposure control conditions. The 

latter is decided by the minimum and maximum values of the item parameters in the simulated 

item pool. Under exposure control condition, the minimum and maximum values are decided 

after evaluating all the items in the simulated pool.  

 

 

 

 

 

 

 

 

 

 



 
 

54 
 

CHAPTER 4: Results 

 This chapter presents the results from the study. It first describes the results of the 

optimal item pools designed by the p-optimality method to support the various MST designs. 

Then it shows results from the simulation study and the empirical study. The results from the 

simulation study include the evaluation of the MST design, test configuration, and simulated 

item pool performance. The results from the empirical study include the evaluation of the p-

optimality method in an operational MST context through comparing it with a simulated optimal 

item pool.  

4.1 Results from the optimal item pools designed by the p-optimality method 

Figure 4.1 to Figure 4.8 showed the bin-counts for all the test configurations of all MST 

designs with and without exposure control. In the figures, n20, n40 and n60 mean the test length, 

and 20%, 30% and 40% mean the routing test proportions. For example, n20.20% means the 

condition of a test length of 20 and routing test proportion of 20%.  In these figures, the different 

modules at the second stage or third stage were marked with different colors. In 1-2-2 design and 

1-2-3 design, the two modules at the second stage were marked with the same color because they 

were always symmetric and contained the same number of items.   

 In each figure, the number of items within each bin for all the stages in the particular 

MST design was displayed. It is seen from the figures that the item frequency distributions 

across different MST designs and test configurations did not have any uniform characteristics. 

Generally speaking, some item distributions were symmetric and some were skewed. More items 

were distributed at the value of the cutoff score especially when the routing test proportions were 

large, such as 40%. The item distributions became more peaked with the increase of the routing 

test proportions. With the increase of the routing test proportions, the number of items 
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accumulated at the first stage became larger, and the items at the second and third stages in the 

various MST designs became comparatively fewer. From the observations we could see that the 

distributions of the item parameters for all the MST designs for the conditions of without 

exposure control and with exposure control were similar. Some differences are that the item pool 

sizes for under the exposure control conditions were much larger than those under no exposure 

control, and there were more items accumulated at the initial stages due to the implementation of 

the exposure control method. 

 

            Figure 4.1 Number of items within bins for MST 1-2 designs without exposure control 
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               Figure 4.2 Number of items within bins for MST 1-2 designs with exposure control 

 

 Figure 4.3 Number of items within bins for MST 1-3 designs without exposure control 
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 Figure 4.4 Number of items within bins for MST 1-3 designs with exposure control 

  

Figure 4.5 Number of items within bins for MST 1-2-2 designs without exposure control 
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Figure 4.6 Number of items within bins for MST 1-2-2 designs with exposure control 

 

Figure 4.7 Number of items within bins for MST 1-2-3 designs without exposure control 
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Figure 4.8 Number of items within bins for MST 1-2-3 designs with exposure control 

 

Since there were a clear cut for the boundaries of item parameters at the first stage for all 

the designs, and at the second stage for 1-2-2 and 1-2-3 designs, the overlap across modules in 
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design stage. One test length of 40 with 30% routing test proportion was selected as an example 

to demonstrate this phenomenon. Figure 4.9 to figure 4.12 displayed the overlap of the range of 

the item parameters under no exposure control conditions. In the figures, the x-axis represents 

the examinees’ ability, and the y-axis represents the probability. The curve indicates the 

probability density function and the lines display the item difficulty ranges for the different 
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Figure 4.9 Item overlap across modules at stage 2 in MST 1-2 design without exposure control at 

item pool design stage 

Figure 4.10 Item overlap across modules at stage 2 in MST 1-3 design without exposure control 

at item pool design stage 
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Figure 4.11 Item overlap across modules at stage 3 in MST 1-2-2 design without exposure 

control at item pool design stage 

 

 

Figure 4.12 Item overlap across modules at stage 3 in MST 1-2-3 design without exposure 

control at item pool design stage 
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Figure 4.13 to Figure 4.16 display the overlap of the range of the item parameters under 

exposure control conditions at the item pool design stage.  

 

Figure 4.13 Item overlap across modules at stage 2 in MST 1-2 design with exposure control at 

item pool design stage  

 

Figure 4.14 Item overlap across modules at stage 2 in MST 1-3 design with exposure control at 

item pool design stage 
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Figure 4.15 Item overlap across modules at stage 2 in MST 1-2-2 design with exposure control at 

item pool design stage 

 

Figure 4.16 Item overlap across modules at stage 2 in MST 1-2-3 design with exposure control at 

item pool design stage 
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There was an overlap across modules in terms of the item difficulty range for all the 

designs under both exposure control and non-exposure control conditions. However, no obvious 

differences were discovered from the comparisons between the two sets of figures under these 

two exposure control conditions. In order to check whether the developed tests were aligned with 

the item pool design features, the overlap across modules in terms of the item parameter range 

was also checked in the simulated item pools. One test length of 40 with 30% routing test 

proportion was selected as an example to demonstrate this phenomenon. Figure 4.17 to Figure 

4.20 display the overlap of the range of item parameters across modules under no exposure 

control conditions. 

Figure 4.17 Item overlap across modules at stage 2 in MST 1-2 design without exposure control 

in the simulated item pool 
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Figure 4.18 Item overlap across modules at stage 2 in MST 1-3 design without exposure control 

in the simulated item pool 

Figure 4.19 Item overlap across modules at stage 2 in MST 1-2-2 design without exposure 

control in the simulated item pool 

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5



P
ro

b
a
b
ili

ty

Module 1 item difficulty range

Module 2 item difficulty range

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5



P
ro

b
a
b
ili

ty
Module 1 item difficulty range

Module 2 item difficulty range

Module 3 item difficulty range



 
 

66 
 

 

Figure 4.20 Item overlap across modules at stage 2 in MST 1-2-3 design without exposure 

control in the simulated item pool 

 

Figure 4.21 to Figure 4.24 display the overlap of the range of the item parameters under 

exposure control conditions for the simulated item pools. 

 

Figure 4.21 Item overlap across modules at stage 2 in MST 1-2 design with exposure control in 

the simulated item pool 
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Figure 4.22 Item overlap across modules at stage 2 in MST 1-3 design with exposure control in 

the simulated item pool 

 

 

Figure 4.23 Item overlap across modules at stage 2 in MST 1-2-2 design with exposure control in 

the simulated item pool 
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Figure 4.24 Item overlap across modules at stage 2 in MST 1-2-3 design with exposure control in 

the simulated item pool 

 

The comparison between the results of the overlap across modules in the simulated item 

pool with those at the item pool design stage showed that the items developed in the simulated 

pool met the requirement of the item pool design.   

The test information functions in the test development stage for all MST designs were 

shown in Figure 4.25. The vertical comparison is for different test lengths, and the horizontal 

comparison is for different MST designs. Within each figure, the results from different routing 

test proportions are compared.  The test information functions were obtained by taking the 

average information for all the 100 replications in the test design stage. This curve was computed 

by setting up intervals on the θ scale and calculates the test information for each θ level. This 

procedure was replicated 100 times and the average values were used to draw the test 

information function curves. Except for some test configurations in MST 1-2 and MST 1-2-2 

designs where a bimodal distribution was identified, most of the information distributions were 

normal, especially for the ones with 40% routing test proportions. The upper-stage test provided 
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similar levels of test information as the lower-stage tests for all the designs. Except for the test 

lengths of 20, the rest of the tests provided more than the required test information over the range 

from -1 to 1 on the θ scale. These figures applied to the situations for both with and without 

exposure control.  

Figure 4.26 shows the module information curves for all MST designs under all test 

configurations for the test length of 40 with no exposure control. MST12.n40.20% means the 

condition of MST 1-2 design with a test length of 40 and routing test proportion of 20%. M 

means module. For all the MST design, M1 means the module at Stage 1. For MST 1-2 design, 

M21 means the easy module, and M22 means the hard module at Stage 2; for MST 1-3 design, 

M21 means the easy module, M22 means the module with medium difficulty, and M23 means 

the hard module at Stage 2; for MST 1-2-2 design, M21 means the easy module, M22 means the 

module with medium difficulty at Stage 2, M31 means the easy module, and M32 means the 

hard module at Stage 3; for MST 1-2-3 design, M21 means the easy module, M22 means the 

module with medium difficulty at Stage 2, M31 means the easy module, M32 means the module 

with medium difficulty at Stage 3, and M33 means the hard module at Stage 3. It was observed 

that the information curves for the modules at the same stage were almost symmetric. The 

module information curves for the first stage were more peaked for 1-2-2 and 1-2-3 designs and 

when the tests were longer.  The module information curves for the test length of 20 and 60 are 

displayed in the Appendix (See Figure A.1 and Figure A.2). The test information functions and 

module information functions in the following figures all showed that the item pool parameters 

selected using the p-optimality method were appropriate to support the different MST panel 

designs.  
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Figure 4.25 Test information functions for all test configurations in all MST designs at the item pool design stage 
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Figure 4.26 Module information curves for all test configurations in all MST designs at the test length of 40 
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4.2 Results from the different MST designs 

 These results come from the simulation study, which are summarized in two parts. The 

first part shows the evaluation of the optimal item pool performance to support the various MST 

designs through investigating the evaluation results within MST designs and across exposure 

control conditions.  The second part shows the comparison between different MST designs 

through comparing the overall and conditional evaluation statistics.  

4.2.1 Results within the different MST designs 

 Table 4.1 to Table 4.8 displayed the descriptive statistics for the item pools of all the 

MST designs under the conditions of without exposure control and with exposure control.  

Table 4.1 Item pool descriptive stastitics of the MST 1-2 design without exposure control  

Routing 

Proportion Pool Size Mean SD Minimum b Maximum b 

n20_20% 36 -0.10 0.92 -2.09 1.62 

n20_30% 34 0.01 0.87 -1.69 1.80 

n20_40% 32 -0.11 0.95 -2.13 1.85 

n40_20% 72 0.12 0.98 -2.16 2.67 

n40_30% 68 -0.01 1.01 -2.57 1.95 

n40_40% 64 0.01 0.96 -2.33 2.17 

n60_20% 108 -0.10 0.97 -2.56 2.27 

n60_30% 102 -0.02 1.00 -2.62 2.50 

n60_40% 96 0.00 1.09 -2.28 3.23 

Table 4.2 Item pool descriptive stastitics of the MST 1-2 design with exposure control 

Routing 

Proportion Pool Size Mean SD Minimum b Maximum b 

n20_20% 360 -0.10 0.87 -2.18 1.87 

n20_30% 360 0.05 0.82 -2.27 2.25 

n20_40% 360 0.05 0.75 -1.92 2.27 

n40_20% 720 -0.02 0.93 -2.26 2.61 

n40_30% 720 -0.01 0.94 -2.62 2.59 

n40_40% 720 -0.01 0.76 -2.27 2.21 

n60_20% 1080 0.00 0.93 -2.55 2.54 

n60_30% 1080 -0.02 1.01 -2.93 2.58 

n60_40% 1080 -0.02 0.99 -2.61 3.32 
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Table 4.3 Item pool descriptive stastitics of the MST 1-3 design without exposure control 

Routing 

Proportion Pool Size Mean SD Minimum b Maximum b 

n20_20% 52 0.05 0.89 -2.00 2.24 

n20_30% 48 -0.01 0.90 -1.99 2.14 

n20_40% 44 -0.02 0.83 -2.04 1.76 

n40_20% 104 -0.04 0.98 -2.59 2.43 

n40_30% 96 -0.04 0.87 -2.17 2.11 

n40_40% 88 -0.07 0.97 -2.79 2.52 

n60_20% 156 -0.03 1.00 -2.52 2.33 

n60_30% 144 -0.05 0.95 -2.80 2.19 

n60_40% 132 0.02 0.99 -2.51 2.78 

 

Table 4.4 Item pool descriptive stastitics of the MST 1-3 design with exposure control 

Routing 

Proportion Pool Size Mean SD Minimum b Maximum b 

n20_20% 360 0.02 0.82 -2.25 2.25 

n20_30% 360 0.03 0.76 -2.27 1.89 

n20_40% 360 0.03 0.81 -2.51 2.26 

n40_20% 720 -0.05 0.91 -2.27 2.55 

n40_30% 720 0.03 0.86 -2.62 2.26 

n40_40% 720 0.03 0.83 -2.44 2.94 

n60_20% 1080 -0.06 0.98 -3.51 2.95 

n60_30% 1080 0.01 0.93 -2.87 3.23 

n60_40% 1080 0.01 0.87 -2.94 2.54 

 

Table 4.5 Item pool descriptive stastitics of the MST 1-2-2 design without exposure control 

Routing 

Proportion Pool Size Mean SD Minimum b Maximum b 

n20_20% 36 -0.06 0.79 -2.15 1.53 

n20_30% 34 -0.05 0.72 -1.78 1.24 

n20_40% 32 0.05 0.72 -1.43 1.57 

n40_20% 72 -0.11 0.97 -2.86 2.35 

n40_30% 68 -0.05 0.88 -2.59 2.00 

n40_40% 64 0.03 0.93 -2.20 2.32 

n60_20% 108 0.00 1.28 -2.97 2.90 

n60_30% 102 0.03 1.32 -2.83 3.22 

n60_40% 96 0.04 1.24 -2.51 2.67 
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Table 4.6 Item pool descriptive stastitics of the MST 1-2-2 design with exposure control 

Routing 

Proportion Pool Size Mean SD Minimum b Maximum b 

n20_20% 360 0.00 0.75 -1.89 1.90 

n20_30% 360 -0.05 0.67 -1.88 1.51 

n20_40% 360 -0.05 0.64 -1.56 1.56 

n40_20% 720 -0.04 0.91 -2.95 2.26 

n40_30% 720 -0.02 0.79 -2.24 2.23 

n40_40% 720 -0.02 0.81 -2.59 2.24 

n60_20% 1080 -0.01 1.22 -2.92 3.26 

n60_30% 1080 0.00 1.12 -2.60 2.97 

n60_40% 1080 0.00 1.14 -2.96 3.31 

 

Table 4.7 Item pool descriptive stastitics of the MST 1-2-3 design without exposure control 

Routing 

Proportion Pool Size Mean SD Minimum b  Maximum b 

n20_20% 44 -0.07 0.82 -1.66 1.66 

n20_30% 42 0.01 0.77 -1.81 1.73 

n20_40% 40 0.04 0.86 -2.16 2.01 

n40_20% 88 -0.02 0.79 -1.99 2.10 

n40_30% 84 -0.01 0.90 -2.42 2.59 

n40_40% 80 -0.03 0.91 -2.47 2.10 

n60_20% 132 -0.03 1.09 -3.34 2.96 

n60_30% 126 -0.04 1.13 -2.76 2.65 

n60_40% 120 -0.04 1.13 -2.65 2.57 

 

Table 4.8 Item pool descriptive stastitics of the MST 1-2-3 design with exposure control 

Routing 

Proportion Pool Size Mean SD Minimum b Maximum b 

n20_20% 360 -0.01 0.75 -1.88 1.87 

n20_30% 360 0.03 0.65 -1.88 1.57 

n20_40% 360 0.03 0.73 -2.26 2.26 

n40_20% 720 -0.01 0.76 -2.95 2.55 

n40_30% 720 -0.01 0.79 -2.60 2.54 

n40_40% 720 -0.01 0.72 -2.55 2.13 

n60_20% 1080 -0.02 0.93 -2.88 2.92 

n60_30% 1080 -0.02 0.91 -2.58 3.29 

n60_40% 1080 -0.02 0.93 -2.51 2.62 
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The absolute values of the differences between the mean, SD, minimum and maximum 

values of the descriptive statistics of the item pools under exposure control and non-exposure 

control conditions were calculated and compared. From the comparisons, it was concluded that 

no difference values between the means and standard deviations of the item pools under 

exposure control and non- exposure control conditions were larger than .3, and many were 

smaller than .01. The majority of the difference values between the minimum and maximum of 

the item pool parameters were smaller than .5 and some values were as small as .01. These 

results are expected since exposure control procedures enlarged the item pool size, but the item 

parameter characteristics were not supposed to change a lot. Based on the exposure control 

characteristics, a higher proportion of items were accumulated at the first stage as compared with 

no exposure control conditions. Thus the mean and variance of the item parameters after the 

implementation of exposure control could possibly vary. With more items being added to the 

pool, the maximum and minimum values of the item parameters could also change. After 

exposure control was implemented, the item pool sizes under certain test length became the 

same. This is because the characteristics of the inverse proportional method made the item pool a 

matrix of test form number * test length. For example, for the MST 1-2 design under 20-item 

test, it is 18 (e.g., for first stage and second stage) *20.  So even the routing test proportion was 

different under certain test length, after the exposure control, they all shared the same item pool 

size. Comparatively speaking, with no exposure control implementation, the item pool sizes for 

different routing test proportions under the same test length was different.   

A ratio of the item pool size between exposure control and no exposure control 

conditions were calculated and a two-way ANOVA was conducted to see the association 

between item pool size, MST designs and routing test proportions. Since test length has no 
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variance on item pool size change, it was excluded from the analysis. The interaction term 

between MST design and routing test proportions was used as the error term in the model (Winer 

et al., 1991). Table 4.9 showed the values of the variables and the ratio in the two-way ANOVA. 

Table 4.10 showed the results of the two-way ANOVA analysis on item pool size comparisons. 

It was discovered that the main effects of MST design, F (3, 30) = 2975.90, p=.00, and 

routing test proportions, F (2, 30) = 551.93, p=.00 were both statistically significant.  

The null hypotheses were rejected and the ratio of the item pool size significantly differed from 

each other across the different MST designs and routing test proportions. Generally speaking, for 

MST 1-2 design, the item pool size under exposure control was about 10-11 times larger than 

those under no exposure control; for MST 1-3 design, the item pool size under exposure control 

was about 7-8 times larger than those under no exposure control; for MST 1-2-2 design, the item 

pool size under exposure control was about 10-11 times larger than those under no exposure 

control; for MST 1-2-3 design, the item pool size under exposure control was about 8-9 times 

larger than those under no exposure control. Variation occurred when the routing test proportion 

was different. 
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Table 4.9 Ratio of the item pool size between exposure control and non-exposure control 

MST Design Test Length Routing Length Ratio 

MST1-2 20 0.2 10 

MST1-2 20 0.3 11 

MST1-2 20 0.4 11 

MST1-2 40 0.2 10 

MST1-2 40 0.3 11 

MST1-2 40 0.4 11 

MST1-2 60 0.2 10 

MST1-2 60 0.3 11 

MST1-2 60 0.4 11 

MST1-3 20 0.2 7 

MST1-3 20 0.3 8 

MST1-3 20 0.4 8 

MST1-3 40 0.2 7 

MST1-3 40 0.3 8 

MST1-3 40 0.4 8 

MST1-3 60 0.2 7 

MST1-3 60 0.3 8 

MST1-3 60 0.4 8 

MST1-2-2 20 0.2 10 

MST1-2-2 20 0.3 11 

MST1-2-2 20 0.4 11 

MST1-2-2 40 0.2 10 

MST1-2-2 40 0.3 11 

MST1-2-2 40 0.4 11 

MST1-2-2 60 0.2 10 

MST1-2-2 60 0.3 11 

MST1-2-2 60 0.4 11 

MST1-2-3 20 0.2 8 

MST1-2-3 20 0.3 9 

MST1-2-3 20 0.4 9 

MST1-2-3 40 0.2 8 

MST1-2-3 40 0.3 9 

MST1-2-3 40 0.4 9 

MST1-2-3 60 0.2 8 

MST1-2-3 60 0.3 9 

MST1-2-3 60 0.4 9 

  Note: The ratio is a rounded up value calculated by dividing the item pool size   

under the exposure control condition by the no exposure control conditions. 
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Table 4.10 Two-Way ANOVA results on item pool size comparisons 

Source Sum of Squares df Mean Square F P 

Corrected Model 71.49
a
 5 14.30 2006.31 .00 

Intercept 3137.94 1 3137.94 440349.90 .00 

MST design 63.62 3 21.21 2975.90 .00* 

Routing length 7.87 2 3.93 551.93 .00* 

Error .21 30 .01   

Total 3209.64 36    

Corrected Total 71.70 35    

a. R Squared = .997 (Adjusted R Squared = .997); p*<.001 

 

Table 4.11 to Table 4.18 showed the evaluation results by the overall sample for within 

all the four MST designs under the conditions of without exposure control and with exposure 

control.  As in Figure 4.26, n20_20% means the test length is 20 and routing test proportion is 

20%. The results indicated that the correlations between true latent ability and estimated ability 

were all very high for all test configurations in all MST designs. The overall bias and RMSE 

were all quite small. Under the same routing test length proportion, with the increase of test 

length, the RMSE and standard error decreased.  The overall test information, reliability and 

classification accuracy all increased. With the increase of test length, the classification accuracy 

as indicated by the three cutoff scores became more accurate. The reliability for all test designs 

and configurations all exceeded .90. These results applied to both conditions for without 

exposure control and with exposure control. When no exposure control was implemented, the 

item overlap rates for all the conditions across all the MST designs were quite big. Under 

exposure control condition, the item overlap rates all became quite small, and the same was true 

with item exposure rate conditional on bin. Under the no exposure control condition, no item had 

exposure rate larger than .20 within each bin. Under the exposure control condition, no item had 

exposure rate larger than .20 and smaller than .02.     
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Table 4.11 The performance of the MST 1-2 optimal item pool without exposure control 

Proportion Corr Bias RMSE Infor SE R 

Class 

Median 

Class 

Competent 

Class 

Scholar 

Overlap 

rate 

Exposure 

rate 

n20_20% 1.00 0.01 0.35 9.72 0.32 0.92 0.90 0.93 0.97 0.61 0.52 

n40_20% 1.00 0.00 0.24 19.44 0.23 0.95 0.92 0.95 0.98 0.60 0.53 

n60_20% 1.00 0.00 0.19 30.01 0.18 0.97 0.94 0.96 0.98 0.60 0.53 

n20_30% 1.00 0.00 0.35 9.88 0.32 0.92 0.90 0.93 0.97 0.65 0.52 

n40_30% 1.00 0.00 0.24 19.41 0.23 0.95 0.93 0.95 0.98 0.65 0.52 

n60_30% 1.00 0.00 0.19 29.71 0.18 0.97 0.94 0.96 0.98 0.65 0.53 

n20_40% 1.00 0.01 0.35 9.69 0.32 0.92 0.91 0.93 0.96 0.70 0.52 

n40_40% 1.00 0.00 0.24 19.77 0.22 0.95 0.93 0.95 0.98 0.70 0.52 

n60_40% 1.00 0.00 0.19 29.24 0.18 0.97 0.94 0.96 0.98 0.70 0.53 

Note.Corr=Correlation; Infor=Information; SE=standard error of measurement; R=marginal reliability; Class 

Median/Competent/Scholar=Classification accuracy based on median/minimum competence/scholarship cutoff scores 

 

Table 4.12 The performance of the MST 1-2 optimal item pool with exposure control  

Proportion Corr Bias RMSE Infor SE R 

Class 

Median 

Class 

Competent 

Class 

Scholar 

Overlap 

rate 

Exposure 

rate 

n20_20% 1.00 0.00 0.36 16.48 0.25 0.94 0.90 0.93 0.97 0.06 0.04 

n40_20% 1.00 0.00 0.26 30.48 0.18 0.96 0.92 0.94 0.98 0.06 0.04 

n60_20% 1.00 0.00 0.22 43.03 0.15 0.96 0.94 0.96 0.98 0.06 0.04 

n20_30% 1.00 0.00 0.37 14.00 0.27 0.93 0.91 0.92 0.97 0.06 0.04 

n40_30% 1.00 0.00 0.27 27.63 0.19 0.95 0.93 0.95 0.98 0.06 0.04 

n60_30% 1.00 0.00 0.23 40.89 0.16 0.96 0.94 0.95 0.98 0.06 0.03 

n20_40% 1.00 -0.01 0.38 13.03 0.28 0.93 0.90 0.93 0.97 0.06 0.04 

n40_40% 1.00 0.00 0.27 26.82 0.19 0.95 0.93 0.94 0.98 0.06 0.03 

n60_40% 1.00 0.00 0.22 39.51 0.16 0.97 0.94 0.96 0.98 0.06 0.04 

Note.Corr=Correlation; Infor=Information; SE=standard error of measurement; R=marginal reliability; Class 

Median/Competent/Scholar=Classification accuracy based on median/minimum competence/scholarship cutoff scores 
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Table 4.13 The performance of the MST 1-3 optimal item pool without exposure control 

Proportion Corr Bias RMSE Infor SE R 

Class 

Median 

Class 

Competent 

Class 

Scholar 

Overlap 

rate 

Exposure 

rate 

n20_20% 1.00 -0.01 0.34 9.84 0.32 0.92 0.90 0.93 0.97 0.48 0.38 

n40_20% 1.00 0.00 0.23 20.36 0.22 0.96 0.94 0.95 0.98 0.47 0.41 

n60_20% 1.00 0.00 0.18 31.86 0.18 0.97 0.94 0.96 0.98 0.47 0.39 

n20_30% 1.00 0.00 0.34 9.80 0.32 0.92 0.90 0.93 0.98 0.56 0.35 

n40_30% 1.00 0.00 0.23 20.84 0.22 0.95 0.93 0.95 0.98 0.53 0.37 

n60_30% 1.00 0.01 0.18 31.81 0.18 0.97 0.95 0.96 0.99 0.53 0.38 

n20_40% 1.00 0.00 0.34 10.37 0.31 0.92 0.91 0.94 0.97 0.60 0.36 

n40_40% 1.00 0.00 0.23 20.72 0.22 0.96 0.93 0.95 0.98 0.60 0.36 

n60_40% 1.00 0.00 0.19 31.14 0.18 0.97 0.94 0.96 0.98 0.60 0.39 

Note.Corr=Correlation; Infor=Information; SE=standard error of measurement; R=marginal reliability; Class 

Median/Competent/Scholar=Classification accuracy based on median/minimum competence/scholarship cutoff scores 

 

Table 4.14 The performance of the MST 1-3 optimal item pool with exposure control 

Proportion Corr Bias RMSE Infor SE R 

Class 

Median 

Class 

Competent 

Class 

Scholar 

Overlap 

rate 

Exposure 

rate 

n20_20% 1.00 0.00 0.34 9.80 0.32 0.90 0.90 0.93 0.97 0.06 0.06 

n40_20% 1.00 0.00 0.23 20.55 0.22 0.95 0.93 0.95 0.98 0.06 0.06 

n60_20% 1.00 0.00 0.19 30.98 0.18 0.97 0.95 0.96 0.99 0.06 0.05 

n20_30% 1.00 0.00 0.34 9.88 0.32 0.90 0.90 0.94 0.98 0.06 0.06 

n40_30% 1.00 0.00 0.23 20.69 0.22 0.95 0.93 0.95 0.98 0.06 0.06 

n60_30% 1.00 0.00 0.19 31.26 0.18 0.97 0.95 0.96 0.98 0.06 0.06 

n20_40% 1.00 0.00 0.34 10.08 0.32 0.90 0.91 0.93 0.97 0.06 0.06 

n40_40% 1.00 0.00 0.23 20.55 0.22 0.95 0.93 0.95 0.98 0.06 0.05 

n60_40% 1.00 0.00 0.19 31.30 0.18 0.97 0.94 0.96 0.99 0.06 0.06 

Note.Corr=Correlation; Infor=Information; SE=standard error of measurement; R=marginal reliability; Class 

Median/Competent/Scholar=Classification accuracy based on median/minimum competence/scholarship cutoff scores 
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Table 4.15 The performance of the MST 1-2-2 optimal item pool without exposure control 

Proportion Corr Bias RMSE Infor SE R 

Class 

Median 

Class 

Competent 

Class 

Scholar 

Overlap 

rate 

Exposure 

rate 

n20_20% 1.00 0.01 0.36 9.68 0.32 0.92 0.90 0.93 0.97 0.61 0.54 

n40_20% 1.00 0.00 0.24 19.04 0.23 0.95 0.93 0.95 0.98 0.60 0.53 

n60_20% 1.00 0.00 0.19 27.31 0.19 0.96 0.93 0.96 0.98 0.60 0.54 

n20_30% 1.00 0.00 0.37 9.70 0.32 0.92 0.91 0.93 0.97 0.65 0.52 

n40_30% 1.00 0.00 0.24 19.05 0.23 0.95 0.92 0.95 0.98 0.65 0.53 

n60_30% 1.00 0.00 0.20 26.67 0.19 0.96 0.93 0.96 0.99 0.65 0.53 

n20_40% 1.00 0.00 0.39 9.50 0.32 0.93 0.91 0.93 0.97 0.70 0.53 

n40_40% 1.00 0.00 0.25 18.45 0.23 0.95 0.93 0.95 0.98 0.70 0.53 

n60_40% 1.00 0.00 0.20 26.56 0.19 0.96 0.94 0.96 0.98 0.70 0.54 

Note.Corr=Correlation; Infor=Information; SE=standard error of measurement; R=marginal reliability; Class 

Median/Competent/Scholar=Classification accuracy based on median/minimum competence/scholarship cutoff scores 

 

Table 4.16 The performance of the MST 1-2-2 optimal item pool with exposure control 

 

Proportion Corr Bias RMSE Infor SE R 

Class 

Median 

Class 

Competent 

Class 

Scholar 

Overlap 

rate 

Exposure 

rate 

n20_20% 1.00 0.00 0.36 9.70 0.32 0.92 0.89 0.93 0.97 0.06 0.05 

n40_20% 1.00 0.00 0.24 19.00 0.23 0.95 0.93 0.95 0.98 0.06 0.05 

n60_20% 1.00 0.00 0.20 27.14 0.19 0.97 0.94 0.96 0.99 0.06 0.06 

n20_30% 1.00 0.00 0.37 9.65 0.32 0.93 0.91 0.93 0.96 0.06 0.05 

n40_30% 1.00 0.00 0.25 19.06 0.23 0.95 0.93 0.95 0.98 0.06 0.05 

n60_30% 1.00 0.00 0.20 27.10 0.19 0.96 0.94 0.96 0.98 0.06 0.05 

n20_40% 1.00 0.01 0.39 9.49 0.32 0.93 0.90 0.92 0.96 0.06 0.05 

n40_40% 1.00 0.00 0.25 18.56 0.23 0.95 0.93 0.94 0.98 0.06 0.05 

n60_40% 1.00 0.00 0.20 26.22 0.20 0.96 0.94 0.95 0.99 0.06 0.05 

Note.Corr=Correlation; Infor=Information; SE=standard error of measurement; R=marginal reliability; Class 

Median/Competent/Scholar=Classification accuracy based on median/minimum competence/scholarship cutoff scores 
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Table 4.17 The performance of the MST 1-2-3 optimal item pool without exposure control 

Proportion Corr Bias RMSE Infor SE R 

Class 

Median 

Class 

Competent 

Class 

Scholar 

Overlap 

rate 

Exposure 

rate 

n20_20% 1.00 -0.01 0.33 10.75 0.31 0.93 0.90 0.93 0.97 0.54 0.37 

n40_20% 1.00 0.00 0.23 21.78 0.21 0.96 0.94 0.95 0.98 0.53 0.39 

n60_20% 1.00 0.00 0.19 31.16 0.18 0.97 0.95 0.96 0.98 0.53 0.38 

n20_30% 1.00 0.00 0.34 10.68 0.31 0.93 0.91 0.93 0.97 0.59 0.38 

n40_30% 1.00 0.00 0.23 21.29 0.22 0.96 0.94 0.95 0.98 0.58 0.37 

n60_30% 1.00 0.00 0.19 30.24 0.18 0.97 0.94 0.96 0.98 0.59 0.38 

n20_40% 1.00 0.01 0.34 10.36 0.31 0.92 0.90 0.93 0.97 0.64 0.39 

n40_40% 1.00 0.00 0.23 20.90 0.22 0.96 0.94 0.95 0.98 0.63 0.38 

n60_40% 1.00 0.00 0.19 29.64 0.18 0.97 0.94 0.96 0.98 0.63 0.39 

Note.Corr=Correlation; Infor=Information; SE=standard error of measurement; R=marginal reliability; Class 

Median/Competent/Scholar=Classification accuracy based on median/minimum competence/scholarship cutoff scores 

 

Table 4.18 The performance of the MST 1-2-3 optimal item pool with exposure control 

Proportion Corr Bias RMSE Infor SE R 

Class 

Median 

Class 

Competent 

Class 

Scholar 

Overlap 

rate 

Exposure 

rate 

n20_20% 1.00 0.00 0.33 10.80 0.30 0.92 0.90 0.93 0.97 0.06 0.05 

n40_20% 1.00 0.00 0.23 21.70 0.21 0.95 0.93 0.95 0.98 0.06 0.05 

n60_20% 1.00 0.00 0.19 31.18 0.18 0.97 0.94 0.96 0.99 0.06 0.05 

n20_30% 1.00 0.00 0.34 10.75 0.31 0.93 0.91 0.94 0.97 0.06 0.05 

n40_30% 1.00 0.00 0.23 21.20 0.22 0.95 0.93 0.95 0.98 0.06 0.05 

n60_30% 1.00 0.00 0.19 30.48 0.18 0.97 0.95 0.96 0.98 0.06 0.05 

n20_40% 1.00 0.00 0.34 10.35 0.31 0.92 0.91 0.92 0.97 0.06 0.06 

n40_40% 1.00 0.00 0.23 21.08 0.22 0.96 0.93 0.95 0.98 0.06 0.05 

n60_40% 1.00 0.00 0.19 29.58 0.18 0.97 0.94 0.96 0.99 0.06 0.06 

Note.Corr=Correlation; Infor=Information; SE=standard error of measurement; R=marginal reliability; Class 

Median/Competent/Scholar=Classification accuracy based on median/minimum competence/scholarship cutoff scores 
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 4.2.2 Results across the different MST designs 

The results for comparisons of classification accuracy across the different MST designs 

were presented in Figure 4.27 to Figure 4.32 for both without exposure control and with 

exposure control conditions. The meanings of the labels have the similar meanings with the 

labels in Figure 4.26. For example, MST12.n40.20% means the condition of MST 1-2 design 

with a test length of 40 and routing test proportion of 20%. M means module.  Based on the 95% 

correct classification rates, it was concluded that the MST 1-2-3 design was the best in terms of 

the classification accuracy for the median cutoff score at a test length of 20 for all routing test 

proportions, and the MST 1-3 worked the best for the minimum competence and scholarship 

cutoff scores under the same conditions. At the test length of 40, except for the routing 

proportion of 30%, the MST 1-2-3 design also worked the best for the median cutoff score. 

There is some variation for the minimum competence and scholarship cutoff scores. For the 

minimum competence cutoffs core, the MST 1-3 design was the best when the routing 

proportion is 20%, and the MST 1-2-3 design worked the best when the routing proportions were 

30% and 40%.  For the scholarship cutoff score, the MST 1-2-2 design worked the best when the 

routing proportions were 20% and 30%, and the MST 1-2 design had the highest classification 

accuracy when the routing proportion was 40%. At the test length of 60, the MST 1-2-3 design 

worked the best for the median cutoff score when the routing proportions were 20% and 30%, 

and the MST 1-3 design had higher classification accuracy when the routing test proportion was 

40%. Variation continued to occur for the minimum competence and scholarship cutoff scores. 

For the minimum competence cutoff score, the MST 1-2-3 design had the highest classification 

accuracy when the routing test proportion was 20%, and the best design was switched to the 

MST 1-2-2 design when the routing test proportion was 30%, and the MST 1-2 design when the 
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routing proportion was 40%. At the scholarship cutoff score, the MST 1-2-3 had the highest 

classification accuracy when the routing test proportion was 20% and 30%, and the MST 1-3 

design had the highest classification accuracy when the routing test was increased to 40%. 

 

Figure 4.27 Classification accuracy for median cutoff scores across MST designs without 

exposure control 

 

Figure 4.28 Classification accuracy for median cutoff scores across MST designs with  

exposure control 
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Figure 4.29 Classification accuracy for minimum competence cutoff scores across MST  

designs without exposure control 

 

 

Figure 4.30 Classification accuracy for minimum competence cutoff scores across MST  

designs with exposure control 
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Figure 4.31 Classification accuracy for scholarship cutoff scores across MST designs  

without exposure control  

 

 

Figure 4.32 Classification accuracy for scholarship cutoff scores across MST designs  

with exposure control 

 

Figure 4.33 to Figure 4.40 display the comparison results across the different MST 

designs for conditional bias, RMSE, SE and item overlap rate under no exposure control and 
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exposure control conditions. The differences across different MST designs, different test lengths 

and routing test proportions under both exposure control and no exposure control conditions 

were compared. When the test length is 20, there were some differences at the two extremes 

across different MST designs. For example, the MST 1-2-2 design had higher bias, RMSE and 

SE than the rest of the designs. Not much difference was discovered for the rest of the test 

lengths for all the other conditions. Since more items were accumulated in the middle range of 

the ability scale, the conditional item overlap rate was the lowest in the middle and highest at the 

two extremes across all MST designs. At the two extremes, under no exposure control condition, 

since there was only one test form for all the examinees, it was likely that they all shared the 

same set of items. Thus the conditional item overlap rate was almost 1. For the MST 1-2-3 

design, since there were more stages compared with two-stage design, and more modules 

compared with the MST 1-2-2 design, the item overlap rate was comparatively lower than the 

rest of the designs. But not many differences were discovered for all the designs under the 

exposure control condition except that the MST 1-3 design had slightly higher conditional 

overlap rate than the other three designs. In addition, the conditional item overlap rate was quite 

high for without exposure control conditions, but fell within the ideal range of .02 to .20 after 

exposure control was implemented. Slightly better measurement accuracy was discovered for 

some conditions under exposure control than no exposure control conditions. 

As is shown from the following figures, for within the different MST designs, the 

conditional bias, RMSE and SE were higher at the lower end and higher end of the θ scale, but 

close to zero in the middle range of the θ scale. The conditional bias decreased with the increase 

of test length. The bias was the lowest when the test length is 60 and the highest when the test 

length is 20, especially at the two extremes where negative bias was found at the lower end and 
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positive bias was found at the higher end. Similar conditions applied to the conditional RMSE 

and SE. The values of RMSE increased with the decrease of test length and became the largest 

when the test length is 20. The conditional SE shared the same characteristics. These results 

applied to all the conditions for both without exposure control and with exposure control.  

 

Figure 4.33 Conditional bias across MST designs without exposure control 

 

Figure 4.34 Conditional bias across MST designs with exposure control 
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Figure 4.35 Conditional RMSE across MST designs without exposure control 

 

 

Figure 4.36 Conditional RMSE across MST designs with exposure control 
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Figure 4.37 Conditional standard error across MST designs without exposure control 

 

Figure 4.38 Conditional standard error across MST designs with exposure control 
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Figure 4.39 Conditional item overlap rate across MST designs without exposure control 

 

Figure 4.40 Conditional item overlap rates across MST designs with exposure control 

4.3 Results from the application of the p-optimality method in an operational MST 

           The results from the simulated pool (S-Pool) and real pool (R-Pool) are summarized 

below. It includes the results from no exposure control conditions, and under exposure control 

conditions.  
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Figure 4.41 and Figure 4.42 showed the results of the number of items within each bin for 

all the stages in the MST 1-2-2 design for S-Pool and R-Pool under no exposure and exposure 

control conditions.  Basically the item frequency distributions were symmetric. Since each 

module included 25 items and the modules for the first stage and second stage were mainly used 

for correctly classifying the examinees into the next stage, items were centered around the cutoff 

scores at those stages, and the information was not as spread as that at the third stage.  

       

 

Figure 4.41 The frequency of items in the R-Pool and S-Pool without exposure control 
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Figure 4.42 The frequency of items in the R-Pool and S-Pool with exposure control 

 

Figure 4.43 shows the overlap of the item difficulty range across modules at Stage 3 for 

both R-Pool and S-Pool at the item pool design stage. Under the exposure control condition, the 

number of items within each bin for each module was multiplied by the number of test forms 

(e.g., by 8) that was required. Since the boundaries of the bins were the same with the non-

exposure control condition, the item overlaps across modules under the exposure control 

condition were not displayed. Unlike the 1-2-2 design in the simulation part discussed above, 

Figure 4.43 showed no overlapping of items across the modules at Stage 3. This is because the 

operational test contains 25 items in each module. After the examinees took 50 items for the first 

stage and second stage, enough information were provided at the middle range of the θ scale and 

examinees were classified more accurately into the third stage modules.  
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Figure 4.43 Item overlap across modules at Stage 3 for the R-Pool and S-Pool at the item pool 

design stage 

 

Figure 4.44 shows the overlap of the item difficulty range across modules at Stage 3 for 

the R-Pool at the simulated item pool stage. 

 

Figure 4.44 Item overlap across modules at Stage 3 for the R-Pool at the simulated item pool 

stage without exposure control 
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The results showed that most of the item parameters in the real pool covered the 

examinees’ abilities below 1. Figure 4.45 showed the item overlap across modules at Stage 3 for 

the S-Pool at the simulated item pool stage without exposure control.  

Figure 4.45 Item overlap across modules at Stage 3 for the S-Pool at the simulated  

item pool  stage without exposure control 

 

 

Figure 4.46 Item overlap across modules at Stage 3 for the R-Pool at the simulated  

item pool stage with exposure control 
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Figure 4.47 Item overlap across modules at Stage 3 for the S-Pool at the simulated  

item pool stage with exposure control 

 

Figure 4.46 and figure 4.47 show the results of item overlap under exposure control 

conditions. Comparatively speaking, the items in the S-Pool covered a wider range of ability 

levels and were more aligned with the item parameter requirement at the item pool design stage.  

Figure 4.48 shows the information function at the item pool design stage under no 

exposure control condition. As noted in Figure 4.48, the information function distribution was 

bimodal, which was determined by the features and requirements of the MST 1-2-2 design. In 

the middle of the information function, the line was jagged. Because 100 replications were 

conducted at the item pool design stage in order to reduce sampling error, it was possible that 

examinees were routed to different modules in different iterations. This possibility was more 

likely to occur with examinees in the middle range of the θ scale. After taking the average of the 

100 replications, the middle range of the information function curve became jagged. The 

information function exceeded the required test information.  
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Figure 4.48 Test information function at the item pool design stage 

 

Figure 4.49 shows the module information curves for the MST 1-2-2 design for both 

types of item pools under the no exposure control situation. The label M1 means module at Stage 

1, M21 means the easy module at Stage 2, M22 means the hard module at Stage 2, and M31 

means the easy module at Stage 3, and M32 means the hard module at Stage 3.  It is observed 

from the figures that the modules at the same stages for the S-Pool were all symmetric, which 

means the modules built using the p-optimality method were parallel with each other.  The 

modules for the R-Pool covered a narrower range in the ability scale than those for the S-Pool. 

The test information functions and module information functions in the following figures all 

indicated that the item pool parameters selected using the p-optimality method were appropriate 

for the MST design.   
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                Figure 4.49 Module information functions of the simulated pool and real pool   

  

Table 4.19 to Table 4.20 display the descriptive statistics for both the S-Pool and  

R-Pool for the MST 1-2-2 designs under no exposure control and exposure control conditions.  

 

Table 4.19 Item pool descriptive statsitics of the MST 1-2-2 design without exposure control 

Item pool type Pool Size Mean SD Minimum b Maximum b  

R-Pool 125 -0.95 0.60 -2.82 0.56 

S-Pool 125 -0.01 1.37 -2.91 2.91 

                Note: R-Pool=real pool; S-Pool=Simulated pool 

Table 4.20 Item pool descriptive statsitics of the MST 1-2-2 design with exposure control 

Item pool type Pool Size Mean SD Minimum b  Maximum b 

R-Pool 1000 -0.96 0.59 -2.82 1.03 

S-Pool 1000 -0.02 1.36 -2.97 2.96 

 Note: R-Pool=real pool; S-Pool=Simulated pool 

The results indicated that the item pool size under exposure control conditions was 8 

times larger than those with no exposure control. The mean and standard deviations of the item 
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pool parameters were quite similar. Since the calibrated item parameters from the real pool were 

transformed from the logit model scale (e.g., using WINSTEPS) to the probit model scale (e.g., 

the one used in the present study), the variance of the item parameters was smaller than 1. Table 

4.21 to Table 4.22 show the evaluation results by the overall sample for both the R-Pool and  

S-Pool under no exposure control and with exposure control conditions.  The results indicated 

that the correlations between true latent ability and estimated ability were both very high for the 

two types of item pools. The overall bias, RMSE and SE were both quite small and the test 

reliability and classification accuracy were both high. The marginal reliability for both types of 

items pools exceeded .95. These results applied to both conditions for without exposure control 

and with exposure control. When no exposure control was implemented, the item overlap rates 

for all the conditions across the two item pools were quite large. Under exposure control 

condition, the item overlap rates all became quite small and within an ideal range of .02 to .20.  

While comparing the two item pools, it was discovered that the correlations between true ability 

and estimated ability for the S-Pool were slightly higher than those for the R-Pool. Under both 

conditions, the overall bias, RMSE, SE, item overlap rate, and exposure rate for the S-Pool were 

slightly lower than the R-Pool, and the overall correlation between true ability and estimated 

ability, overall reliability, test information, and classification accuracy were slightly higher than 

the R-Pool.  The item exposure rate (e.g., conditional on bin) for the simulated item pool was 

slightly lower than that for the real pool under both exposure control and non-exposure control 

conditions. Generally speaking, both item pools performed slightly better under exposure control 

conditions than no exposure control conditions. Under no exposure control condition, no item 

had exposure rate larger than .20 within each bin. Under exposure control condition, no item had 

exposure rate larger than .20 and smaller than .02.     
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      Table 4.21 The performance of the MST 1-2-2 optimal item pool without exposure control 

Proportion Corr Bias RMSE Infor SE 

M-

Reliability 

Classi- 

fication 

Overlap 

rate 

Exposure 

rate 

R-Pool 0.99 0.05 0.27 29.05 0.19 0.96 0.93 0.67 0.55 

S-Pool 1.00 0.00 0.18 33.02 0.17 0.97 0.94 0.67 0.54 

Note.R-Pool=real pool; S-Pool=Simulated pool; Corr=Correlation; Infor=Information; SE=standard error of  

measurement; M-Reliability=marginal reliability 

 

 

Table 4.22 The performance of the MST 1-2-2 optimal item pool with exposure control 

Proportion Corr Bias RMSE Infor SE 

M-

Reliability 

Classi- 

fication 

Overlap 

rate 

Exposure 

rate 

R-Pool 0.99 0.05 0.28 28.41 0.19 0.96 0.93 0.08 0.07 

S-Pool 1.00 0.00 0.18 33.04 0.17 0.97 0.95 0.08 0.07 

Note.R-Pool=real pool; S-Pool=Simulated pool; Corr=Correlation; Infor=Information; SE=standard error of  

measurement; M-Reliability=marginal reliability 
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Figure 4.50 and Figure 4.51 display the results for classification accuracy for the two 

types of item pools. The cutoff score is determined by the real passing rate of the operational 

licensure exam used in the study. It is observed from the figure that the S-Pool and R-Pool 

performed similarly well in the cutoff score under both exposure control and no exposure control 

conditions. The S-Pool performed slightly better than the R-Pool under these two conditions.    

 
Figure 4.50 Classification accuracy of the real pool and simulated pool without exposure control 

 

Figure 4.51 Classification accuracy of the real pool and simulated pool with exposure control 
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Figure 4.52 and Figure 4.53 show the results of the conditional bias displayed by the two 

item pools. The conditional bias for the S-Pool was quite low along the whole range of the θ 

scale, and the conditional bias for the R-Pool was low between -4 to 1 on the θ scale. The same 

results were found for conditional RMSE (See Figure 4.54 and Figure 4.55) and conditional SE 

for the two item pools (See Figure 4.56 and Figure 4.57). The S-Pool was slightly lower in terms 

of the conditional SE at the lower end of the ability scale than the R-Pool. It should be noted that 

the decreased conditional bias and RMSE at the higher end of the ability scale for the R-Pool is 

artifact because when a maximum ability is assigned on the ability scale, the conditional bias and 

RMSE tend to be zero. Thus the end part of the conditional bias and RMSE for the R-Pool may 

be ignored. These results applied to both no exposure control and with exposure control 

conditions.  

 

        Figure 4.52 Conditional bias of the real pool and simulated pool without exposure control 
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           Figure 4.53 Conditional bias of the real pool and simulated pool with exposure control 

 

       Figure 4.54 Conditional RMSE the real pool and simulated pool without exposure control 
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Figure 4.55 Conditional RMSE of the real pool and simulated pool with exposure control 

 

          Figure 4.56 Conditional SE of the real pool and simulated pool without exposure control 
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Figure 4.57 Conditional SE of the real pool and simulated pool with exposure control 

 

Figure 4.58 Conditional item overlap rate of the real pool and simulated pool without exposure 

control 
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Figure 4.59 Conditional item overlap rate of the real pool and simulated pool with exposure 

control 

 

Figure 4.58 and Figure 4.59 show the conditional overlap rates for both without and with 

exposure control conditions. It is concluded from the figures that the items in the middle had 

lower overlap rate than those at the extremes for both situations. Since there is only one test form 

being administered, the conditional overlap rate was very high when no exposure control was 

implemented. After the exposure control was implemented, the conditional overlap rates for both 

simulated and real item pools fell within the range of .02 to .20.   
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CHAPTER 5: Discussion 

 This chapter first summarizes the findings of the study and then discusses the results and 

implications from the study. Recommendations on how to apply the p-optimality method to an 

operational item pool are discussed. Finally, limitations and future research recommendations are 

presented. 

5.1 Summary of the results  

The study was designed to use optimal item pools to support different MST panel designs 

by extending the p-optimality method in Reckase (2003, 2010), and see how the change of test 

length and routing test length impacted measurement accuracy. Seventy-two optimal item pools 

were simulated with and without the practical constraint of exposure control, and comparison 

between simulated and operational item pool performances was also conducted.  

In the simulated item pools, the item frequency distributions across different MST 

designs and test configurations did not have any uniform characteristics. Generally speaking, 

some item distributions were symmetric and some were skewed. More items were distributed at 

the value of the cutoff score especially when the routing test proportions were large, such as 

40%. The item distributions became more peaked with the increase in routing test proportions. 

Under the conditions of without and with exposure control, the distributions of item parameters 

and item pool characteristics for all the MST designs were similar. One exception was the item 

pool size. Depending on the types of MST designs and routing test proportions, the item pool 

sizes under the exposure control conditions were about 7 to 11 times larger than those under no 

exposure control.  

The test information functions in the test development stage for all the MST designs 

revealed that most of the information distributions were symmetric and the information curves 
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exceeded the required test information. These results applied to the situations for both with and 

without exposure control. The module information curves in Figure 4.26 for all MST designs 

displayed that modules built using the p-optimality method were parallel with each other. These 

results all support the fact that the item pool parameters selected using the p-optimality method 

were appropriate to support the different MST panel designs. 

The item pool performance by the overall sample indicated that the examinees’ true latent 

ability and estimated ability were all highly correlated for all test configurations across all MST 

designs. The overall bias and RMSE were all quite small. With increase of test length, the RMSE 

and standard error of measurement decreased, and the overall test information, reliability and 

classification accuracy increased. In terms of item pool usage, under the exposure control 

conditions, the item overlap rates for all the items were between .02 to .20, and the same was true 

with item exposure rate conditional on bin. Under the no exposure control condition, no item had 

an exposure rate larger than .20 within each bin. The test length also impacted the classification 

accuracy. With increase of test length, there was a tendency for more accurate classifications 

regarding the median, minimum competence and scholarship cutoff scores. However, no obvious 

difference in classification accuracy was observed when the routing test length varied within a 

given overall test length. These results applied to those under both exposure and no exposure 

conditions.  

  Conditional evaluation results also showed that test length impacted measurement 

accuracy for all MST designs. With increase of test length, the conditional bias, RMSE and SE 

all decreased. The bias was the lowest when the test length is 60 and the highest when the test 

length is 20, especially at the two extremes where negative bias was found at the lower end and 

positive bias was found at the higher end. The conditional bias, RMSE and SE were the highest 
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when the routing test proportion is 20%, however, not much difference was found between 30% 

and 40% routing test proportions. These results applied to all the exposure control and no 

exposure control conditions.  

From the results, it is concluded that all the MST designs worked well in achieving high 

measurement accuracy regarding correct classification accuracy. Some variation arose with the 

change of test length and routing test length. Generally speaking, among all the designs, based on 

the 95% correct classification rates, the MST 1-2-3 design worked the best in classification 

accuracy for a median cutoff score for a test with 20 and 40 items for all routing test proportions 

except for the 30% proportion; for the minimum competence cutoff score for a test of 60 items 

when the routing test proportion is 20% and for a test of 40 items when the routing proportions 

are 30% and 40%; and for the scholarship cutoff score for a test of 60 items when the routing test 

proportion is 20% and 30%. The MST 1-3 design worked the best for the minimum competence 

and scholarship cutoff scores for a test of 20 items with all routing test proportions; for a test of 

40 items for the minimum competence and scholarship cutoff scores when the routing test 

proportion is 20%; for a test length of 60 items for the median cutoff score where the routing test 

proportion is 40%; and for the scholarship cutoff score when the routing test proportion is 40%.  

The MST 1-2-2 design worked the best for a test length of 40 for the minimum competence and 

scholarship cutoff scores when the routing proportions are 20% and 30%, and for a test length of 

60 for the minimum competence cutoff score when the routing test proportion is 30%. The MST 

1-2 design had the highest classification accuracy for a test length of 40 for the scholarship cutoff 

score when the routing proportion is 40%; and for a test length of 60 for the minimum 

competence cutoff score when the routing proportion is 40%.  
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Regarding the conditional evaluation results as shown by the conditional bias, RMSE, SE 

and item overlap rate, not much difference was discovered across the different MST designs.  

When the test length is 20, the MST 1-2-2 design had slightly higher bias, RMSE and SE than 

the rest of the designs, especially at the two extremes on the θ scale. The MST 1-2-3 design had 

much lower conditional item overlap rate than the rest of the three designs across the whole θ 

scale, but not much difference was discovered across the rest of the three MST designs. The 

values of the conditional statistics, such as the conditional bias, RMSE and SE were found to 

decrease with the increase of test length. From the comparisons between the results under 

exposure control and no exposure control conditions, it is concluded that the item pool sizes 

under exposure control procedures were about 7 to 11 times larger than those without 

implementing the exposure control. The means and standard deviations of the item pool 

parameters were quite similar under the two conditions.  

The application of the p-optimality method in an operational item pool in a multistage 

licensure adaptive test indicated that this method was feasible in item pool design under real 

testing situations. The simulated optimal item pool had almost as good classification accuracy as 

the real pool. Compared with the real pool, the simulated pool covered the whole range of the 

ability scale in terms of good measurement accuracy. The measurement accuracy for the real 

pool was insufficient in the range above 1 on the ability scale. For conditional exposure rates and 

item overlap rates under exposure control conditions, both the real pool and simulated pool fell 

between the ideal range of .02 to .20.  

5.2 Discussion of the results 

 Van der Linden et al. (2006) defined the optimal item pool as “consisting of a maximal 

number of combinations of items that (a) meet all content specifications for the test and (b) are 
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most informative at a series of ability levels reflecting the shape of the distribution of the ability 

estimates for a population of examinees” (p. 82).   

As indicated in the results in both the simulation study and the empirical study, the 

simulated item pools built by the p-optimality method achieved good measurement accuracy 

along the whole range of the θ scale for all MST designs. This result is consistent with the 

optimal item pool design study in CAT by Reckase (2003, 2010), Gu (2007), He and Reckase 

(2014), Zhou (2012) and Mao (2014). This method was also proved to be effective in designing 

the optimal item pool for an operational licensure exam in multistage adaptive test.  

Although all the MST designs achieved similarly good measurement accuracy along the 

whole range of the θ scale, slight differences were discovered for different types of cutoff scores 

with different test lengths and routing test lengths. For example, the MST 1-2-2 design worked 

the best for the minimum competence and scholarship cutoff scores when the routing proportions 

are 20% and 30% for a 40-item test. However, the MST 1-2-3 design achieved better 

measurement accuracy than the rest of the designs for the minimum competence cutoff score 

when the test is composed of 60 items when the routing test proportion is 20% and of 40 items 

when the routing proportions are 30% and 40%; and for the scholarship cutoff score when the 

test is composed of 60 items when the routing test proportion is 20% and 30%. Therefore, in 

operational testing, the choice of the best MST design is dependent on multiple factors, such as 

test length, test configuration and test purpose.  

Not much difference was discovered regarding accurate ability estimation across the four 

MST designs in the present study given a certain test length and test configuration. This result is 

not consistent with those discussed in Patsula (1999), which concluded that three-stage MSTs 

produced smaller measurement error than two-stage MSTs by comparing four MST test 
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structures 1-3, 1-5, 1-3-3, and 1-5-5. This also confirms previous arguments about the choice of 

the number of stages for MST design, which stated that increasing the number of stages did not 

necessarily bring more measurement precision. (Jodoin et al., 2006). Similarly, the variation of 

the routing test proportions also did not show much difference in the results across all the MST 

designs under all test specifications. This result is consistent with the previous research about the 

importance of the routing test length in MST design studies (Patsula, 1999; Zheng et al., 2012). 

However, the test length did impact the performances of all the MST designs. The overall and 

conditional bias, RMSE and SE all decreased with the increase of test length.  

Comparing the no exposure and with exposure control conditions, depending on the type 

of MST design and test length as well as routing test length, the latter had an item pool size that 

was about 7 to 11 times larger than the former. The previous study found a situation where the 

implementation of exposure control enlarged the item pool size by threefold (He & Reckase, 

2014). The size of the item pool after the implementation of exposure control is the result of 

considering multiple factors, such as the routing test length, number in the examinee population, 

test mode and test designs. As revealed in the study results, the measurement accuracy was 

almost equally good for before and after implementing the exposure control. For the exposure 

control conditions, however, the measurement accuracy was higher and the conditional overlap 

rates all fell between an ideal range of .02 to .20. This implies that no items were overexposed or 

underexposed and the item pool usage was appropriate. This result applied to the two types of 

exposure control conditions implemented in the simulation study and empirical study.  

The inverse proportion exposure control method is advised for future use in operational 

testing since it achieved good measurement accuracy for all MST designs. Comparatively 

speaking, for the exposure control method where an equal number of test forms were assembled 
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for modules at each stage, some items were actually not used sufficiently, especially for the 

second and third stage modules. Since item creation is very costly, all items are expected to be 

sufficiently used in operational testing administrations.  The simulated item pool by the  

p-optimality method covered the whole range of the ability scale in terms of good measurement 

accuracy, the conditional item overlap rates (e.g., under exposure control conditions), and the 

item exposure rates conditional on bins all fell within the ideal range of .02 to .20, it is applicable 

in designing optimal item pools for both achievement test and licensure test in operational MST 

context.  

In the MST 1-2-2 and MST 1-2-3 designs, the items in the second stage were all piled up 

in the bins where the cutoff scores were located. This type of optimal design could reduce the 

complexity in the item pool design process and is desirable in reality. As done in the first stage, 

the items could be created around the cutoff scores in the second stage where maximum 

information is obtained for the provisional ability estimates of the examinees. There are several 

advantages for this type of design. First, given the target population distribution, the cutoff 

scores at the easy module and hard module in the second stage could be easily located before test 

administration and be implemented in the testing procedures. Second, it is more likely that 

misrouting is reduced to the minimum when the items at the second stage are all centered around 

the cutoff scores. Third, with this design, an equal proportion of the examinees could be routed 

to the third stage based on the two cutoff scores at the second stage. Fourth, a large proportion of 

the items, as much as 40% of the total test, are intentionally designed for the third stage in order 

to ensure that sufficient measurement accuracy are achieved.  Instead, suppose the items at the 

second stage were scattered across bins and the two cutoff scores were calculated in the testing 

process based on the estimated ability characteristics, part of the measurement accuracy would 
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be lost in order to compensate the decreased classification accuracy after the second stage test. 

Future studies might be conducted to see how much measurement accuracy could be lost if the 

items selected were scattered across the whole range of the ability scale at the second stage for 

MST 1-2-2 and MST 1-2-3 designs.  

5.3 Implications from the study 

 The output of the p-optimality method is a blueprint for designing the optimal item pool 

of the multistage computerized adaptive test. The number of items within each bin and the bin 

locations along the θ-scale provide the guidance for the statistical attributes that the items are 

supposed to possess in the process of item writing and test assembly. The non-statistical 

attributes, such as content balancing, can also be achieved through a built-in design. For 

example, the bins are designed for each of the anticipated content areas and then are combined 

together. Due to unidimensionality assumption and the implementation of a hypothetical test in 

the study, content balancing was not addressed. Future studies might consider choosing a 

specific operational test and implement the content balancing in the process of applying the p-

optimality method in the optimal item pool design.    

As revealed in the different information functions in the item pool design stage, the 

shapes of the information functions across the different MST designs under different test 

configurations were slightly different. This implies that items selected for different test 

configurations and test purposes should be different. If the test is designed to select examinees 

for scholarships, the examinee distribution for simulation procedures could follow a negatively 

skewed distribution and more items are selected to get higher measurement precision at the 

higher end. Essentially, the optimal item pool designed by the p-optimality method is to achieve 

a high measurement precision for a wide range of abilities along the θ-scale. Therefore, with a 
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normally distributed examinee population, the most popular distribution in reality, it could 

achieve an ideal measurement precision at all kinds of cutoff scores for different test purposes. 

The comparison results from the study about different MST designs and different test 

configurations could provide some general references for the optimal item pool design for future 

operational MSTs.  

Considering which MST design under which test configuration is the best in achieving 

the best measurement precision, there is not a uniform answer. Different MST designs perform 

differently given different conditions and cutoff scores, but all achieve desirable measurement 

accuracy along the whole θ-scale. The same is true with the operational item pool study. 

Therefore, from the cost-effective perspective, one could choose the simplest design, such as 

MST 1-2 design, to keep the cost of item creation and maintenance down. The MST 1-3 design 

is also good for consideration due to its simplicity in the whole testing algorithm and accurate 

classification accuracy as displayed in the results under several conditions. If for any reason the 

test practitioners hope to choose one of the three-stage designs, both the MST 1-2-2 and  

MST 1-2-3 designs are good choices.  The former is advantageous in that it requires fewer items 

than the latter. The latter has slightly higher measurement accuracy than the former and can be 

considered for various tests designed for various measurement purposes, such as for pass/fail 

decision, selection of minimum competent or scholarship recipients.  

Test length is an important factor to consider while designing a test for MST.  As is seen 

from the present study, a test length of 20 is not long enough to accomplish all the MST designs 

with a good measurement precision, especially for MST 1-2-2 and MST 1-2-3 design. 

Comparatively speaking, the test lengths of 40 and 60 are more appropriate for future MST 

designs. Regarding the routing test proportions, although the variation among them did not bring 



 
 

116 
 

much difference in the results, 20% is not recommended since it deviated from the 30% and 40% 

conditions in terms of all evaluation statistics. The 30% and 40% conditions did not vary a lot 

from each other. Given this situation, with the purpose of accumulating more items at the final 

stage for a better measurement precision, a routing test proportion of 30% is recommended for 

future test use.  

The comparison results between the real pool and simulated optimal item pool using the 

p-optimality method indicates that the method is applicable in real testing situations. However, if 

the item parameters in the real pool do not align well with the characteristics of the target 

population, direct application of the method may cause higher measurement error along the θ-

scale where the non-alignment occurs. Therefore, in real operational testing situations, the target 

examinee population characteristics need to be followed while designing the optimal item pool to 

support the various MST panel designs.  

Item pools are not a static entity. Some items become obsolete after they are released to 

the public or overexposed due to repeated test administrations. New items are frequently added 

to the item pools on a continuous basis and new item pools are established. van der Linden et al. 

(2000) discussed the difficulties of item pool management using the integer programming 

approach. By this approach, a previous item pool was needed to define a cost function and design 

the new item pool with newly added items. It was anticipated that the newly added items should 

address the same attributes of the items in the previous item pool so that the cost function could 

perform appropriately. However, as stated in van der Linden et al. (2000), it is possible that the 

attributes of the old items in the previous pool do not constitute a practical solution because they 

do not address the same attributes in the new items. Therefore, if new attributes of the items are 

introduced, this approach “might face an unsolvable missing data problem” (van der Linden et 
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al., 2000, p. 148). Comparatively speaking, the optimal item pool designed by the p-optimality 

method can be easily adapted to fit for the new blueprint and maintain the appropriate item pool 

development and management. More specifically, the retired items can be replaced by newly 

created items in the same bins since they share the same psychometric attributes.  

5.4 Limitations and future recommendations 

The results of the study demonstrated the advantages of the optimal item pools designed 

by the p-optimality method to support the different MST designs in achieving good measurement 

precision and item pool usage. However, this conclusion is restricted by several factors. For 

example, the items are assumed to be fit by the Rasch model under the unidimensionality 

assumption. As we know, Rasch model requires the data to fit the model. The values of misfit 

need to be considered before evaluating the final calibration results. Future research might 

consider using other IRT models, such as 2PL and 3PL models and compare the results.  

Based on the unidimensionality assumption and the nature of the hypothetical test in the 

simulation study, content balancing was not considered and items from different content areas 

were assumed to have the same distributions. Although previous research concluded that content 

balancing had little impact on the measurement precision under different conditions (He & 

Reckase, 2014; Zhou, 2012), it could be implemented in future studies with operational tests and 

see how the results actually work in practice. Multidimensional IRT models are also suggested in 

future studies and see how optimal item pools are designed for operational MSTs where multiple 

latent traits or subscores are considered and reported.   

In addition, the exploration of the test lengths and routing test proportions in MSTs were 

not exhaustive and they only represent short, medium and long test length and routing test 

length. Future studies might consider using other test lengths and routing test proportions as 
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needed and extend the results from the study. Furthermore, instead of using the fixed-length test 

in MST design, future studies might consider applying the variable-length MST design. For 

example, suppose examinees achieve very high scores or very low scores after the last stage of 

the test, and the measurement precision near the cutoff score is still not very high, an additional 

module might be administered so that they have some chance to recover from the possible 

accidental misrouting.  

The item types in the study are restricted to dichotomous items. As we know, it is 

possible that the MSTs are composed of different item types, such as polytomous items, testlet-

based items, performance-based items, and mixed-format items. It is of interest if future studies 

consider incorporating a different item type and examine how the p-optimality method applies in 

that context to support the operational MST assembly.   
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Figure A.1 Module information curves for all test configurations in all MST designs for the test length of 20 
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Figure A.2 Module information curves for all test configurations in all MST designs for the test length of 60 
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