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ABSTRACT

CONVOLUTIONAL NEURAL NETWORKS FOR AUTOMATED CELL DETECTION IN
MAGNETIC RESONANCE IMAGING DATA

By

Muhammad Jamal Afridi

Cell-based therapy (CBT) is emerging as a promising solution for a large number of serious

health issues such as brain injuries and cancer. Recent advances in CBT, has heightened interest in

the non-invasive monitoring of transplanted cells in in vivo MRI (Magnetic Resonance Imaging)

data. These cells appear as dark spots in MRI scans. However, to date, these spots are manually

labeled by experts, which is an extremely tedious and a time consuming process. This limits the

ability to conduct large scale spot analysis that is necessary for the long term success of CBT. To

address this gap, we develop methods to automate the spot detection task. In this regard we (a)

assemble an annotated MRI database for spot detection in MRI; (b) present a superpixel based

strategy to extract regions of interest from MRI; (c) design a convolutional neural network (CNN)

architecture for automatically characterizing and classifying spots in MRI; (d) propose a transfer

learning approach to circumvent the issue of limited training data, and (e) propose a new CNN

framework that exploits labeling behavior of the expert in the learning process. Extensive experi-

ments convey the benefits of the proposed methods.
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Chapter 1

Introduction

1.1 Background

Cell-based therapies are poised to make a significant impact across a broad spectrum of medical

scenarios. In regenerative medicine, stem cell transplants are in various stages of clinical trials for

treating or slowing a myriad of diseases, including Parkinson’s disease [4, 5], rheumatoid arthri-

tis [6, 7] and multiple sclerosis [8, 9]. Cell-based therapy in the form of cancer immunotherapy

is also being tested in clinical trials [10, 11]. It is well acknowledged that imaging the location

of transplanted cells, both immediately and serially after delivery, will be a crucial component for

monitoring the success of the treatment. Two important applications for imaging transplanted cells

are:

1. to non-invasively quantify the number of cells that were delivered or that homed to a partic-

ular location, and

2. to serially determine if there are cells that are leaving desirable or intended locations and

entering undesirable locations.

For multiple reasons, including image resolution, lack of radiation, and established safety and

imaging versatility, magnetic resonance imaging or MRI has emerged as the most popular and per-

haps most promising modality for tracking cells in vivo following transplant or delivery. In general,

MRI-based detection of cells is accomplished by first labeling cells with superparamagnetic iron
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oxide nano- or microparticles, though some cell types can be labeled directly in vivo, such as neu-

ral progenitor cells . Following transplant, these labeled cells are then detected in an MRI by using

imaging sequences where the signal intensity is sensitive to the local magnetic field inhomogeneity

caused by the iron oxide particles. This results in dark contrast in the MRI [12, 13]. In the case of

a transplant of large numbers of magnetically labeled cells, large areas of dark contrast are formed.

In the case of isolated cells, given sufficient magnetic labeling and high image resolution, in vivo

single cell detection is possible, indicated by a well-defined and well characterized dark spot in the

image (See Fig. 1).

Due to the rather complex relationship between iron content, particle distribution, iron crystal

integrity, distribution of magnetic label and cells etc., it is difficult to quantify cell numbers in an

MRI-based cell tracking experiment. This is especially the case for a single graft with a large num-

ber of cells. There are efficient methods of quantifying iron content, most notably using SWIFT

based imaging [14], but the direct correlation to cell number is not straightforward, due to the

reasons listed above. MRI-based detection of single cells presents a much more direct way of enu-

merating cells in certain cell therapy type applications, such as hepatocyte transplant [13], or for

immune cells that have homed to an organ or a tumor [15]. In this case, the solution is straightfor-

ward: if dark spots in the MRI are from single cells, then counting these spots in the MRI should

yield cell number. While seemingly straightforward, performing such quantitative analysis on

three-dimensional data sets is a difficult task that cannot be accomplished using traditional manual

methodologies. Manual analysis and enumeration of cells in MRI is tedious, laborious, and also

limited in capturing patterns of cell behavior. In this respect, a manual approach cannot be adopted

to analyze large scale datasets comprising dozens of research subjects. Various commercial soft-

ware that are currently available for MRI can only assist a medical expert in conducting manual

analysis. The problem is further compounded in the case of eventual MRI detection of single cells
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Figure 1.1: Three orthogonal MRI slices extracted from 3D data sets of the brain from animals
injected with unlabeled MSCs (top row) and magnetically labeled MSCs (middle row). Note the
labeled MSCs appear as distributed dark spots in the brain only. The bottom row shows three
different fluorescence histology sections from animals injected with magnetically labeled MSCs
confirming that these cells were present in the brain mostly as isolated, single cells. Blue indicates
cell nuclei, green is the fluorescent label in the cell, red is the fluorescent label of the magnetic
particle.

at clinical resolution, which is lower than that achieved on high field small animal systems. At

lower image resolution, the well-defined, well-characterized dark spot loses shape and intensity

and can be difficult to manually define in a large number of MRI slices.
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These hurdles highlight the pressing need to develop an automatic and intelligent approach for

detecting and enumerating transplanted cells in MRI, meeting all the aforementioned challenges.

An automatic and intelligent approach can allow researchers to efficiently conduct large scale

analysis of transplanted cells in MRI, facilitating the exploration of new transplant paradigms and

cell sources. Such generalized intelligent tools will find use across a broad spectrum of biomedical

pursuits. However, the unique challenges of designing such a tool has not been addressed in any

prior literature, especially in the context of detecting cells in MRI.

With microscopy imaging, automatic cell detection approaches have achieved reasonable suc-

cess, especially when making use of florescence to highlight the cells in an image. Notable is the

work in [16], which presents a detailed comparative study of different automatic approaches for

cell detection in florescence microscopy images. Their study concluded that a machine learning

(ML) based automatic cell detection approach performed more superior than other well known

methods. However, Note that detecting and locating transplanted cells in a 3D MRI is a different

and more challenging task than cell detection in microscopy imaging. Cells appear as very small

dark spots, and unlike florescence microscopy images in [16], the MRI data also contains back-

ground tissue with many spot-like structural entities. The problem becomes more difficult with

small groups of noisy pixels in MRI slices that are also dark.

To design and evaluate an intelligent and automatic approach for cell spot detection in MRI,

ground truth definitions, i.e., labels, that annotate spots in MRI images, are required. In [17],

authors recognized the need for automation and adopted a threshold based strategy for automat-

ically detecting spots in MRI. However, their approach was not evaluated using a ground truth.

Although such threshold reliant approaches are not known to be intelligent for handling variations

and diversity in data, their study in fact highlights the need for automation [16, 18]. Automatic ML

approaches have been successfully used in a wide range of image analysis applications [19, 20, 16].
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However, it is unexplored how such approaches can be appropriated to the problem of MRI spot

detection. Further, state-of-the-art ML approaches rely on a large volume of training data for accu-

rate learning. Unfortunately, due to practical limitations, generating large scale annotated data is

challenging in both preclinical and the clinical arenas. Annotation can also be prohibitively time-

consuming and can only be performed by a medical expert. Hence, crowd sourcing approaches

such as the use of Amazon’s Mechanical Turk [21], cannot be adopted for annotation in such ap-

plications. Therefore, the problem of spot detection using a limited amount of annotated training

data, is an additional unaddressed challenge.

1.2 Challenges and contributions

1. Dataset collection: For thorough evaluation and training of the automated approach, an

annotated MRI database needed to be developed. Therefore, a diverse database consisting

of 40 MRI scans was assembled and more than 19,700 manual labels were assigned. To

the best of our knowledge, this is the first annotated database collected for automated cell

detection in MRI.

2. Candidate region extraction: Given an MRI scan, a set of candidate regions needed to

be extracted effectively. Each candidate region must represent a region in MRI that can

potentially contain a spot. This study discusses how a superpixel based strategy can be

designed to extract such regions.

3. Feature design: Spots have high intra-class variation due to their diverse appearances in

terms of shape and intensity. Therefore, for machine learning approaches to work effectively,

a set of robust feature descriptors needed to be extracted from the candidate regions. A new
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CNN architecture was designed, specifically for this problem, to automatically extract the

most useful spot features. The performance of these features was systematically compared

against those extracted by utilizing hand-crafted feature extraction techniques. Results show

that automatically learned features performed better with an accuracy of up to 97.3% in vivo.

4. Learning with limited data: Machine learning approaches typically require a large train-

ing dataset for accurate learning. However, in applications in the medical domain, it can be

challenging to obtain a large volume of training data. Therefore, this thesis explored how

automatic spot detection can be performed using a limited amount of training data. A novel

transfer learning strategy for CNNs was developed, where the best source CNN is automati-

cally selected from an ensemble of many source CNNs.

5. Exploiting labeling behavior: Labeling data in medical applications is usually more ex-

pensive and requires a medical expert. Therefore, can the labeling process in medical appli-

cations be better exploited by the classifier? More specifically, in addition to the labels on

spots, can the labeling behavior of a medical expert be incorporated in a supervised learning

framework? In this context, a new CNN framework is proposed that addresses the technical

challenges associated with this research and exploits labeling behavior in CNN learning.
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Chapter 2

Developing MRI Database

2.1 Introduction

Developing a labeled cellular MRI database requires several steps and involves experts with dif-

ferent specialities. Therefore, the goal of this chapter is to provide a general reader, an overview

of our data collection process. Specific details of the collected data will also be explained. The

overall process can be divided into four main steps: (1) Cell preparation where the goal is to grow

a cell culture with magnetic particles injected in them. (2) Animal preparation where the prepared

cells are injected into the animal under the study. This step involves the process of anaesthesia

and animal incubation. (3) MRI scanning where the animal undergoes an MRI and the scan of

the required organ is obtained. The injected cells appear as dark spots in MRI. In case of in vitro

MRI, the animal may be replaced with a tube containing prepared cells. (4) Label collection where

a medical expert thoroughly analyzes each slice in the MRI scan using a customized software

and provides manual ground truth on the spots. The architecture of this procedure can be seen

in Fig. 2.1. In the overall context of collecting a labeled database for spot detection in MRI, the

contributions here can be listed as follows:

• By following all the aforementioned four steps, this study collects the first labeled MRI

database that can be utilized for research in automatic spot detection. A diverse set of 40

MRI scans( both in vivo and in vitro ) constitute this database.
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Figure 2.1: Overall architecture of the data collection process

• For label collection, a customized software was developed for experts to conveniently ana-

lyze MRI slices and provide labels. The software allows an expert to perform zoom-in and

zoom-out operations; change contrast of the image; see basic statistics; and also record the

labeling behavior.

• A total of more than 19,700 manual labels were collected on the given MRI database.
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More details of on each step of the collection approach is presented next.

2.2 Approach

Figure 2.2: The two images on the left show the media utilized in cell culture. The media usually
contains a diverse set of essential ingredients such as glucose and glutamine. The image on the
right show the MPIO package utilized in our cell preparation process.

Figure 2.3: (Left) Containers with cell culture. (Middle) Temperature and air control equipment
that was utilized. (Right) Temperature and Air control settings for the culture.

2.2.1 Cell preparation

The goal here is to culture stem cells such that their final form contains superparamagnetic iron

oxide particles (MPIOs) inside them. In this study we utilized Mesenchymal stem cells (MSCs).
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Figure 2.4: Cultured MSCs with MPIOs as seen under a microscope.

These cells were cultured using a media that was mixed with nano-sized MPIOs. In Fig. 2.2, the

images of the utilized media and the MPIOs are shown. Cells feed on this media and thus, absorb

MPIOs. The media generally contains a number of ingredients including glucose and glutamine.

This takes place in special container that is maintained inside a temperature and air controlled

equipment shown in Fig. 2.3. Once the cell absorb these particles, they can be viewed under a

microscope. In Fig. 2.4, one such image of cells with MPIOs is shown. The intense dark regions

represnt the particles inside the cell. Note that the large dark regions outside cells are free floating

iron particles which are later cleaned using a centrifuge based procedure. Such a procedure pushes

the cells low in a tube whereas the particles float on top which are then removed. This procedure

may be repeated several times. More specific details related to the collected in vitro and in vivo

MRI scans will be discussed later.
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2.2.2 Animal preparation

2.2.2.1 Anaesthesia

The goal of this step is to prepare a subject animal for cell injection and for conducting MRI.

Generally, a colony of required living animals(Rats in this case) is maintained by experts under

special, university approved guidelines. For collecting each MRI scan, the animal is first given

anesthesia to keep it unconscious during the rest of the procedure. Anesthesia is performed by

allowing the animal to inhale Isoflurane gas. Once, the animal is unconscious, the inhalation is

still monitored by an expert for a short time (about 5 min. in this case). Fig. 2.5 shows an albino

rat going through the unconscious inhalation of Isoflurane which is monitored by an expert.

2.2.2.2 Cell injection

As a next step, a region on animal’s body is clearly marked for cell injection. The marking also has

a sterilizing purpose and is performed here using a 10% iodine solution. In Fig. 2.5, one such mark

for the rat is shown. The figure shows the mark over the heart region of the of the rat indicating that

the subject animal will undergo an intracardiac injection. In Fig. 2.6, an expert is shown injecting

labeled cells via an intracardiac injection.

2.2.2.3 Incubation

As a next step, the animal goes through an incubation phase. The animal is first mounted on a

frame by an expert as shown in Fig. 2.7 and then the incubation equipment is attached to it. The

incubation equipment controls the breathing cycle of the unconscious rat. This makes sure that

the rat inhales adequate oxygen and that CO2 is properly exhaled from its lungs. Fig. 2.8 visually

show this procedure for a rat.
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Figure 2.5: (Top) Rat undergoes anaesthesia by inhaling Isoflurane. (Bottom) Iodine solution is
utilized to mark the heart region of the rat.

2.2.3 MRI scanning

The prepared animal with MPIO labeled cells is then shifted to the MRI machine frame which is

later inserted into the machine. This procedure is shown in Fig. 2.9. Usually, before performing
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Figure 2.6: MSCs with MPIOs are injected into the rat (intracardiac injection).

Figure 2.7: A medical expert carefully mounts the rat to a suitable frame and prepares it for the
incubation equipment.

this step, experts wait for at least an hour to make sure that the injected cells circulate through the

rat’s body and reach the desired organ. After this, an MRI expert performs the imaging under a

specific field strength using a specific echo time (TE).
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Figure 2.8: (Top) Incubation equipment is attached to the rat. (Bottom) A general view of the
incubation procedure. The equipment displays the status of the rat’s breathing process.

Note that in addition to performing in vivo MRI (those involving living animals), in vitro scans

were also obtained. Tab. 2.1 shows the basic details of the collected database. A set of 33 in vitro
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scans and 7 in vivo scans were collected. The specific details of our collected in vitro and in vivo

MRI along with the corresponding scanning details are presented next.

Figure 2.9: (Top) Mounting the rat to the MRI machine’s mechanical frame. (Bottom) Rat to
undergo an MRI
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Table 2.1: Collection details and characteristics of our MRI database

Set Type Subject Labeler Machine Labeled Scans Total Labels Resolution Size

GA in vivo Brain R1 11.7T G1A,G2A,G3A,G4A,G5A 15442 100µm 256×256×256
GB in vivo Brain R2 7T G1B,G2B 2992 100µm 256×200×256
GC in vitro Tube R2 7T G1C,G2C,G3C,G4C 814 100µm 128×80×80
GD in vitro Tube R2 7T G1D,G2D,G3D,G4D 514 200µm 64×40×40
GE in vitro Tube t 7T G1E ,G2E ,G3E ...,G25E (2400×25) 100µm 100×64×64

2.2.3.1 In vitro MRI scans

Imaging phantoms were constructed consisting of a known number of 4.5 micron diameter, mag-

netic microparticles with 10 pg iron per particle, suspended in agarose samples. Each microparticle

approximates a single magnetically labeled cell with appropriate iron content for MRI-based single

cell detection [13]. T2*-weighted gradient echo MRI was then performed on these samples at a

field strength of 7T.

As can be seen in Tab. 2.1, these scans have variation in resolution, matrix sizes, and amount

of spots (labels). GE has 25 data sets, collected from 5 samples under 5 different MRI conditions.

These conditions were variations in TE from 10 - 30 ms (signal to noise > 30:1), and images with

low signal to noise ratio (∼ 8:1) at TE = 10 and 20. The effect of increasing TE is to enhance

the size of the spots. The higher the TE, the larger the spot [13]. The downside of higher TE is

that the physics which governs enlargement of the spot, the difference in magnetic susceptibility

between the location in and around the magnetic particles and the surrounding tissue, also causes

the background tissue to darken. The rationale to collect images with both high and low signal to

noise ratio is to test the robustness of our spot detection procedure in two potential in vivo sce-

narios. Manual ground truths were collected from experts on 8 in vitro MRI scans of GC and GD.

Note that, to study the effect of change in image resolution, GD was obtained using a low resolu-

tion MRI. For GE , the theoretically computed ground truth was known. This set was used for a

direct comparison between the automatically detected spots and the theoretically expected number.
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Figure 2.10: A-F show variation in the brain morphology across MRI slices.

2.2.3.2 In vivo MRI scans

Two different sets of in vivo MRI were collected from two different machines having different field

strengths. Using one machine with a field strength of 11.7T, 5 MRI scans of rats were collected,

which are denoted as GA in Tab. 2.1. Three of them were injected intracardiac, 1−1.5 hours prior

to the scan, with rat mesenchymal stem cells (MSCs) that had been labeled with micron sized iron

oxide particles (MPIOs) to a level of ∼14 pg iron per cell. This transplantation scheme delivers

cells to the brain - an intravenous injection would deliver cells only to the liver and lungs. Two

additional rats were not injected at all. Using another machine with 7T, 2 additional brain MRI

scans of rats were collected. These were also transplanted with MPIO labeled MSCs. GB is used to
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denote these 2 scans in Tab. 2.1. The rationale behind collecting these two different in vivo sets was

to be able to validate the generalization and robustness of our learned algorithm against potential

variations arising from different imaging systems. Note that a different amount of MSCs were

injected in different rats to achieve further variations in the data. All MRI were 3D T2*-weighted

gradient echo.

2.2.4 Label collection

To collect labels on data, a Labeling tool was designed with the assistance of a medical expert.

This tool was designed and tested several times by an expert to meet the requirements of this

research work. The final tool that was adopted by the expert is available as an executable and can

be conveniently utilized without installing Matlab. The tool allows a medical expert to analyze

images and zoom in to specific portions of the image, at the pixel level, if necessary. An option

for contrast adjustment is also provided. Experts can view some basic statistics on the interface of

the software tool, e.g., the total number of spots labeled, labeled spots on the current slice, slice

number, etc. If required, the experts can delete a previously labeled point and immediately skip to

a different slice in the MRI.

In addition to collecting traditional data, the tool also captures aspects related to the labeling

behavior of an expert. For example, the time taken to label each point, overall time spent on each

slice, number of keyboard hits, time of the day, number of deleted points, etc. are also recorded.

Note that these labels represent the entities that a human expert considers as spots/cells in the

MRI. Due to human labeling error, it is also possible to have some MRI noise being incorrectly

marked as spots and spots being confused with MRI noise. On the other hand, for the set GE , the

number of spots is theoretically computed. However, considering that the process of preparing and

injecting spots are manually conducted, the actual spot numbers in these scans may not be exactly
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the same as the theoretically estimated number.
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2.2.4.1 Data loading and slice selection

Figure 2.11: (Top) The software interface provides an option to browse to the directory containing
the MRI data. (Bottom) Once the data is loaded, an expert can begin labeling from any slice using
the slider indicated with a red arrow.
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2.2.4.2 Zooming-in to pixel level

Figure 2.12: (Top) For zooming-in, the operator simply click and drag in the direction shown with
the red arrow. This creates a boxed region that will appear in the zoomed-in view. This process
can be repeated multiple times if further zoom-in is required within that boxed region. (Bottom)
The corresponding zoomed-in view.
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2.2.4.3 Operating a Zoom-out

Figure 2.13: Illustrating the zoom-out operation. The expert clicks and drags along the diagonal
direction as indicated by the red arrow. This operation brings up the original labeling view.
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2.2.4.4 Labeling statistics and contrast adjustment

Figure 2.14: (Top)The expert labels are overlaid on the MRI slice.The operator uses a left-click
to indicate a label. A label can also be deleted by clicking on it again. Basic labeling statistics,
such as location of the last labeled point, total number of labeled spots, labeled spots on the current
slide, and the slice number, are displayed on the right side of the tool. (Bottom) Shows the effect
of contrast adjustment. Note that all these operations can also be performed with the zoomed-in
view.
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Figure 2.15: The squares represent the labels from an expert. Distribution of these labels on two
MRI slices is shown here.
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Figure 2.16: The squares represent the labels from an expert. Distribution of these labels on two
MRI slices is shown here.
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Figure 2.17: The squares represent the labels from expert. Distribution of these labels on two MRI
slices is shown here.
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Chapter 3

Regions-of-Interest and Feature

Representations

3.1 Introduction

In machine learning, a classification approach maps a real world problem into a classification task

where two or more entities (classes) are to be intelligently distinguished from each other (see [22]

for basic details). For example, classifying a potential candidate region in MRI as spot or non-spot

can be viewed as a classification task. However, in the context of this work, the first challenge is

how to effectively extract these potential candidate regions, called Regions-of-Interest(RoI), from

an MRI scan. Should the RoI be based on one pixel, two pixels, how many pixels? what will

be a systematic approach to extract such RoI? Once extracted, the RoI can be input to a classifier

that can be constructed using different classification paradigms. The classifier will then learn to

distinguish a spot from a non-spot in these RoIs.

In the context of this work, classification paradigms can be categorized into two fundamental

types. In the first paradigm type (P-1), discriminating information is extracted from the images

(RoI in this case) using a pre-defined approach that is designed by an expert based on intuition and

experience. This information may be in the form of a numeric array of values known as features.

For each RoI such features along with their ground truth classification labels are then forwarded to

another algorithm called classifier or classification technique which learns to distinguish between
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the classes.

In the second paradigm type (P-2), the feature representations are not manually designed by an

expert but rather automatically learned from the data. Generally, both feature representations and

the classifiers are learned automatically in a single unified framework. Many neural network based

approaches fall into this category which can take image datasets directly as input, along with the

labels, and learn a classification model.

Note that both the aforementioned approaches require RoI as input. Therefore, in the next

section we first propose an effective superpixel based strategy to extract RoI and then investigate

the design of approaches that belong to both the classification paradigms.

3.2 Approach

3.2.1 Generating RoI

The first challenge in this research is to define the RoI. Processing each pixel an RoI can result in

a huge computational burden. We addressed this issue by extracting superpixels from each MRI

scan [18]. A superpixel technique groups locally close pixels with similar intensities into a single

unit. Each unit is called a superpixel. Superpixel-based methods are becoming increasingly popu-

lar. For example, authors of [23] discuss how the superpixels extracted using different techniques

can be combined to achieve better image segmentation. Similarly, various studies utilize superpix-

els for classifying local image segments. In [24], authors use a multi-scale superpixel classification

approach for tumor segmentation. Furthermore, superpixels have been utilized in various other ap-

plications as shown in [25, 26, 27]. Since spots are usually darker than their surrounding, they are

characterized as superpixels with lower average intensity than the surrounding superpixels. This

superpixel based model of a spot as illustrated in Fig. 3.1.
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MRI Scan Cross-sections
Superpixels capturing 
spots in MRI slices

Figure 3.1: A diagrammatic representation of a spot in MRI slices. The figure also shows two real
spots in MRI slices and how they were captured by superpixels.

Based on this idea, a novel set of features utilizing the average superpixel intensities, was

proposed in our study in [18] (see supplementary material in Chap 6 for details). However, this

approach has the following limitations: (1) The accuracy of the approach was dependent on the

preciseness of the superpixel algorithms. (2) The approach assumes a superpixel based model for

a spot in terms of its depth across consecutive MRI slices. This does not hold true for all spots in

different MRI settings.

The strategy adopted in this thesis is resilient to imprecisions in the superpixel extraction al-

gorithms. Based on each superpixel unit, a representative patch is extracted from the MRI scan as

explained in Fig. 3.2. Each patch is then taken as a candidate region and undergoes a feature ex-

traction process. The approach is model-free and imitates the strategy adopted by a human labeler.

All candidate patches are first detected in 2D MRI slices and then neighboring patches detected in

consecutive slices are connected without imposing any restriction on their depth in 3D.

The spatial location of each patch in MRI is also recorded. Consequently, these extracted

patches are forwarded to the machine learning algorithms as input data.

29



Extracted 
Superpixels

MRI SliceSegmented 
Slice

Potential
Spot
patch

Figure 3.2: (Top) Illustrating the generation of candidate regions: A superpixel algorithm is first
applied to each slice in MRI and then the brain region is automatically segmented using basic
image processing techniques. The superpixels that correspond to only the segmented brain region
are considered and the rest are ignored. For each such superpixel, the darkest pixel is selected
as the center and a fixed size patch is extracted around it. (Bottom) A mosaic of several 9 × 9
patches extracted from an MRI slice. It can be seen that all patches have a dark region in the center
representing a spot in a 2D slice.

3.2.2 Feature extraction

3.2.2.1 Feature extraction with fixed designs (P-1)

This is the traditional and most widely adopted paradigm in computer vision and pattern recogni-

tion based studies [18, 16]. Many studies on automated cell detection in microscope-based imaging
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are based on this paradigm [16]. Further, our initial study proposed in [18] can also be categorized

into this particular paradigm. In this study, an elaborate set of feature extraction methods are uti-

lized that extract shape, intensity, texture and context information about the entities in the candidate

patches. Fig. 3.3, Fig. 3.4, and Fig. 3.5 present a brief explanation on how hand-designed features

can be extracted specifically for the task of capturing spot appearance in MRI.

Figure 3.3: Principle Component Analysis (PCA) was utilized to extract eigen spot shapes using
all of the 9× 9 spot patches in the training set. The top PCA components for the spot patches
obtained on three labeled rats in GA are shown here. An iteratively increasing threshold is then
applied on the values of these top PCA components to extract different binary patches that are
utilized as filters to capture the shape and intensity information on spot patches.

All the extracted features are finally concatenated to form a feature vector for each candidate

patch. Usually, in long feature vectors, some features are irrelevant or redundant. Therefore,

from the obtained feature vector, the most useful features are selected and the irrelevant features

are eliminated using a feature selection module that employs a correlation based feature selection

algorithm [28]. These selected feature vectors along with their corresponding labels for the patches

are then forwarded to tune a classifier. In this study, a diverse group of well-known classifiers

such as probabilistic (Naive bayes), functional (Multi-layer perceptron(MLP)), and decision tree

(Random Forest), are utilized and compared (see [22] for details).
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Figure 3.4: Binary shape filters are obtained using the top PCA components. By iteratively increas-
ing the threshold values from dark to light intensities, PCA components can result in different bi-
nary shapes. Domain experts agree that these binary filter patches represent many frequent shapes
of the actual spots. All these patches are rotated and translated to obtain a large set of different
shape filters. These filters are convolved with each candidate patch and the computed response is
taken as a feature. A large set of these responses comprehensively capture the shape and intensity
information of spot patches.

3.2.2.2 Feature extraction with learned designs (P-2)

Based on expert intuition and experience, features extracted in P-1 can be subjective. Therefore, the

key goal of P-2 approaches is to automatically learn the most optimal spot feature representation

from the data. Neural networks are a well-known example of the P-2 approaches.

Deep convolutional neural networks (CNN) [29, 19] have been highly successful in many im-

age based ML studies. Before, we discuss the design of the proposed CNN architecture for this

task, a brief introduction of the well-known CNN architectures is presented as follows:

• LeNet: This is one of the first CNN architecture proposed by Yann LeCun in the 1990’s.

This architecture was applied for automatically reading zip codes, hand written digits, etc.

More details on this architecture can be seen in [30].

• AlexNet:This architecture popularized the use of CNN architectures in modern computer
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Figure 3.5: Visual representation of context features for two context patches: While learning the
definition of a spot, it may also be useful for a classifier to learn more about its surrounding
context. Therefore, to capture the appearance of the patch’s context, a larger patch of 21× 21
was extracted around the center of a candidate patch xi. Two well-known appearance descriptors
in computer vision were then used to extract features: (a) Histogram of Gradients (HoG) [1] and
(b) Gist [2]. A visual representation of HoG for two context patches is shown here. Red lines here
indicate the different directions of intensity gradients whereas the lengths of the lines determine
their magnitude.

vision. This was proposed in 2012 by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton.

This architecture was more deeper than LeNet and significantly performed superior to other

approaches on the ImageNet ILSVRC-2012. Their approach popularized the use of rectified

linear units (ReLU) as non-linearities in the CNN architectures. Also, their use of dropout

technique to selectively ignore neurons in the training phase was considered effective to

avoid over-fitting. More details can be seen in [29].

• Overfeat: Overfeat architecture was the winner of the localization task of the ILSVRC-
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2013. This architecture can be seen as a derivative of the AlexNet CNN architecture. Over-

feat also obtained competitive results for the detection and classifications tasks in ILSVRC-

2013. More details can be seen in [31].

• ZFNet: This CNN architecture was proposed by Matthew Zeiler and Rob Fergus and hence

became famous as ZFNet. This architecture is also a derivative of the basic AlexNet archi-

tecture. This architecture became famous after its high accuracy on ILSVRC-2013. The

details on ZFNet can be seen in [32].

• VGG Net: VGG was the runner-up of the ImageNet ILSVRC-2014. VGG presented a

more deeper CNN networks which resulted in a better performance. For example, VGG-

16 (16 layered) and VGG-19 (19 layered) were significantly deeper than AlexNet and its

derivatives. Another interesting property of their architecture was the use of very small filters

for convolution (3×3) and pooling (2×2). Further details on VGG CNN architectures can

be seen in [33].

• GoogLeNet: This CNN architecture by Szegedy et al. from Google was the winner of the

ImageNet ILSVRC-2014. Due to the use of their proposed inception module, this CNN

architecture was able to significantly reduce the number of parameters in their network. For

more details on GoogLeNet see [34].

• ResNet: Kaiming He et al. in [35] designed Residual network which was the winner of

ILSVRC 2015. It utilizes special skip connections which allows the lower layers to be con-

nected with the higher layers. ResNet also allows for learning much deeper CNNs to improve

performance. More recent work of Kaiming He can be seen in [36].

Note that unlike P-1 approaches, features were hierarchically learned in all the aforementioned
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CNNs using multiple layers in an automatic fashion. In these CNN architectures, feature extrac-

tion and classification was performed in a unified framework. However, these architectures were

designed for standard computer vision tasks where a large entity is of interest in the image.

Consider, M = f () as an overall classification model learned by our P-2 approach. In the con-

text of this work, let this M denote a sequence of convolutional filters and transformation functions

that will serially applied to an input image to output a classification decision. Considering this, f

can be decomposed into multiple functional layers:

Figure 3.6: CNN architecture used in this work. The network takes a 9x9 image patch as input
for a classification task i. Each composite layer Lk , k ∈ {1,2,3}, is composed of a convolutional
layer Cik which produces the feature maps F ik and a non-linear gating function β producing the
transformed feature maps F ik

β
. After passing through the composite layers, the net passes through

the fully connected layer L f c which produces the output. The softmax function is then applied to
the output. Note that in the context of this work, this architecture represent the model M. The
weights of all the filters across its processing layers are learned using the training data.

f () = ( fu ◦ f(u−1) ◦ f(u−2) ◦ ...◦ f1). (3.1)

Here, each function, f j, j ∈ [1,u], can represent a (a) convolutional layer, (b) non-linear gating

layer, (c) pooling layer, (d) full-connected layer (see [29, 37, 19] for more details). For a given task,

weights for these convolutional filters are learned automatically using the training data. Different

architectures of a CNN are created by utilizing different number of layers and also by sequencing

these layers differently. CNN architectures also vary depending on the choice of the non-linear
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gating function. Filter sizes for convolutional layers are also determined depending on the appli-

cation at hand. Well-known CNN architectures such as AlexNet [29] or GoogLeNet [34] cannot

be utilized for spot detection in MRI. Therefore, a new CNN architecture, specifically designed for

spot detection in MRI, is proposed here. The proposed CNN architecture has 3 composite layers

and 1 fully connected layer (see Fig 3.6). Each composite layer consists of a convolutional layer

and a gating function. Note that in a conventional CNN architecture, a pooling layer is also used

which reduces the dimensionality of the input data. However, a pooling layer is not utilized in

this architecture due to the small size of the input patches (9 × 9). Using a pooling layer, in this

context, may result in the loss of valuable information which may be essential to be utilized by the

next layers. Further, a gating function is usually added for introducing non-linearity into a CNN.

Without non-linear gating, a CNN can be seen as a sequence of linear operations which can hinder

its ability to learn the inherent non-linearities in the training data. In conventional neural networks,

a sigmoid function or a hyperbolic tangent function was generally utilized for this purpose. How-

ever, in recent studies, utilizing ReLU (Rectified Linear Units) has shown significantly superior

results for this role [29]. Therefore, the proposed architecture uses ReLU as a non-linear gating

function.

Further customizing to the task at hand, the sizes of all the convolutional filters were kept small.

However, their numbers were kept high. The goal was to provide a higher capacity to the CNN

architecture for capturing a diverse set of local features of a patch. Filter sizes and dimensions of

resulting feature maps can be seen in Fig. 3.6 (see Fig. 3.7 for learned filters). For any task i, the

proposed model (CNN architecture) can be written as

M = (γ ◦L f c ◦β ◦Ci3 ◦β ◦Ci2 ◦β ◦Ci1). (3.2)
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Table 3.1: Experimental comparison of in vivo spot detection performance using P-1 and P-2.

Algorithms J1 J2 J3 J4 J5 J6 means
P-

1 Random Forest 94.0 86.9 95.3 94.1 86.0 94.7 91.8±4.2
Naive Bayes 82.9 81.8 84.3 84.1 80.1 83.7 82.8±1.6

P-
2 CNN 96.4 92.3 96.1 96.4 91.2 95.0 94.6±2.3

MLP 91.1 85.2 90.9 91.4 84.2 90.3 88.9±3.3
MLP (P-1/2) 93.9 89.4 95.8 95.4 90.0 95.7 93.4±2.9

means 91.7±5.2 87.1±4.0 92.5±5.0 92.3±4.9 86.3±4.5 91.9±5.0

where γ represents a standard softmax function that can be applied to the output of the fully con-

nected layer L f c. β denotes the non-linear gating function and Cik represents the convolutional

layer in the composite layer k.

3.3 Experiments, results and discussion

Experiments were performed to answer the following main questions: (1) Which of the two ML

technique results in the best detection accuracy for in vivo spots in MRI? (2) How does the best

approach perform on in vitro evaluation studies? (4) Can a ML approach learned on in vivo data

be tested for spot detection on in vitro data? (5) How is the performance affected if the MRI

is conducted at low resolution? (6) Is the proposed approach robust to the differences in MRI

machines in terms of field strength, make and model etc.? Importantly, it is also of interest to

investigate how the theoretically computed number of spots for in vitro MRI scans compares with

the automatically detected spot numbers.

3.3.1 In vivo evaluation studies

In this study, the spot classification performance of a diverse set of approaches was evaluated using

the two sets of in vivo MRI scans i.e GA and GB. First, experiments and results are discussed for GA

that has 5 different MRI scans obtained from one MRI machine and labeled by one expert. Three
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of these in vivo scans contain spots that were manually labeled by experts whereas the remaining

two were naive. Six combinations of testing and training pairs are created such that two scans are

always present in the testing set of each pair, where one of the scans is a naive and the other contains

spots. The remaining 3 out of the 5 scans are used for training the ML algorithms. Note that each

MRI scan resulted in about a 100,000 candidate patches and about 5000 of these represented the

spots. Area Under the Curve (AUC) was utilized as a standard measure for classification accuracy.

Experimental results for all the algorithms are listed in Tab. 3.1.

It was observed that the best results were achieved by a CNN, with a mean accuracy of 94.6%.

The superior performance of CNN can be mainly attributed to its ability to automatically explore

the most optimal features using training data rather than relying on hand-crafted features utilized

in traditional machine learning. Second, CNN learn features in a deep hierarchy across multiple

layers. Recent research shows that such a hierarchy provides a superior framework to CNN for

learning more complex concepts, unlike traditional machine learning approaches which learns in a

shallow manner [29, 34, 37].

The second best results were observed with the simple MLP approach when it takes the care-

fully designed, handcrafted features as an input, rather than the raw data X . This MLP can be

viewed as a mixed paradigm approach (P-1/2). However, the deep learning CNN that inherently

extracts hierarchical features without using any hand crafted features resulted in the overall best

performance.

Probabilistic Naive bayes, using P-1, shows the worst detection performance with an average

accuracy of 82.8%. This can be because naive bayes assumes complete independence between the

features which in many practical problems may not be true. Further, it can be seen in Tab. 3.1 that

J2 and J5 testing sets proved to be the most challenging with low mean accuracies of 87.1% and

86.3%, respectively, from all algorithms. Dataset J4 resulted in the overall best performance with
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mean accuracy of 92.5%. When investigating this, it was found that both J2 and J5 contained MRI

scan GA1 in their test set accompanied with a different naive scan. It was seen that the labeled

patches in GA1 were significantly more challenging in terms of morphology and intensity than

those extracted from other scans.

The best two approaches, i.e., MLP (P-1/2) and deep CNN (P-2), were then further compared

using another set of in vivo scans i.e GB. This data was collected from a different machine having

a different field strength and was also labeled by a different expert. In this study, all the previous

5 scans of GA were used for training both approaches (creating a larger training set), and then the

learned spot detection models were tested on the in vivo scans in GB = {GB1,GB2}. Note that

despite the differences in machine, its field strength, and also the labeling expert, CNN performed

best with an accuracy of 97.3% whereas the mixed paradigm MLP (P-1/2) achieved 95.3%. We

show the ROC curves for this test in Fig. 3.8.

3.3.2 In vitro evaluation studies

It can be observed that CNN yields the best result on the in-vivo datasets despite the simplicity

of its approach. In this study, its performance is evaluated on the in vitro data in set GC and GD.

Its performance is first tested on GC that has 4 in vitro MRI scans each with a 100µm resolution

creating a 3D matrix of (128× 80× 80). Using these 4 scans, 3 different testing and training

pairs were developed. Each testing and training pair has 2 MRI scans. The naive MRI scan was

always kept in the test set, thereby generating 3 combinations with the remaining other sets. It was

observed that CNN performed with a mean accuracy of 99.6% on in vitro scans. The individual

ROC plots for these tests are shown in Fig 4.

A different study was then conducted to see the degradation in performance when each of

the 4 in vitro scans are obtained with a much lower resolution of 200µm creating a matrix of
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Figure 3.7: Some convolution filters learned by the 2nd composite layers of our deep learning
approach. Usually, each filter acts as a neuron and due to co-adaptation between a large number
of such neurons, highly sophisticated features are extracted that can potentially model spot shape,
intensity, texture etc.

(64× 40× 40). Such a study is desirable since in some practical applications it may be more

convenient to rapidly obtain an MRI at a lower resolution, particularly in human examinations.

Using the same procedure as before, three different testing and training pairs were created. It was

noted that the mean performance decreased to 86.6%±5.6. However, it was also seen that when

the number of learning layers for CNN was increased to 5 (4 composite and 1 fully connected)

the performance improves to 90.6%± 7.1. The individual improvements on all the three sets are

shown in Fig. 3.8.
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Table 3.2: Automatically detected number of spots in 5 samples under 5 conditions. The
theoretically expected number of spots in each sample is 2400.

Condition Tube 1 Tube 2 Tube 3 Tube 4 Tube 5

TE 10 2147 2272 2474 2152 2270
TE 20 2608 2750 3039 2644 2660
TE 30 2844 2993 3272 2809 2909

TE 10 (Low SNR) 1982 2023 2247 1949 2014
TE 20 (Low SNR) 2419 2563 2794 2401 2445

3.3.3 Comparison with theoretically computed spot numbers

A comparison between the automatically detected number of spots with the theoretically computed

number of spots was conducted using 25 in vitro MRI scans of set GE . This is an important

experiment as it allows a direct comparison with the actual number of injected spots. All the

available data from GA to GD was used for training a CNN and then the trained CNN model was

used for testing on these 25 scans in set GE . Each scan is expected to contain about 2400 spots.

However, it is important to understand that due to the use of manual procedures in preparing the

solution in tubes, the actual number of spots may vary about 2400. The results of automatic spot

detection are tabulated in Tab. 3.2 under different MRI conditions.

3.3.4 Model generalization studies

In this section, the generalization ability of the proposed approach is determined by testing it in

different possible practical scenarios. In practice, in vivo scans might be collected with different

MRI machines at different laboratories using different field strengths. GA and GB represent two

such in vivo datasets. As discussed before in the in vivo evaluation studies, and as shown in Fig. 3.8,

the CNN based approach demonstrates robustness to such variations and achieves 97.3% accuracy

despite such differences. Further, it is necessary to know how the performance would be affected
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if in vivo data is used for training but the in vitro data is used for testing. Therefore, an experiment

was conducted where a CNN was trained using GA (in vivo) and then tested it using GC (in vitro).

CNN still performed with an accuracy of 96.1%. A visualization for the detected spots in in vitro

and in vivo MRI scans is shown in Fig. 3.9 and Fig. 3.9 respectively.
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Figure 3.8: Comparison and results: (Top) in vitro results 100 micron, (Middle) generalization test
using in vivo scans, (Bottom) in vitro results 200 micron.
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Figure 3.9: 3D visualization of the detected spots in an in vitro scan.

Figure 3.10: 3D visualization of the detected spots in an in vivo scan.
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3.4 Conclusion

In conclusion, this study investigated different feature design approaches for spot detection in MRI.

An approach to extract RoI from MRI was presented. A CNN architecture specific to the problem

of spot detection was also proposed. Results show that features that are automatically learned

using a deep learning CNN outperform hand-crafted features. Further, the proposed approach was

evaluated using a diverse set of MRI scans that were obtained with variations in field strength, echo

times, and resolution changes. A study was also conducted to compare its performance against the

known number of spots in in vitro MRI scans.
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Chapter 4

Learning with Small Training Data

4.1 Introduction

4.1.1 Background and motivation

One key reason behind the unprecedented success of CNNs is the availability of large application-

specific, annotated datasets. However, in many practical applications, especially those related to

medical imaging and radiology (e.g. spot detection), obtaining a large annotated (e.g., labeled)

dataset can be challenging. In many cases, annotation can only be performed by qualified field

experts and so crowd sourcing methods, such as Amazon’s Mechanical Turk [21], cannot be used

for annotating data. These limitations can often preclude the use of CNNs in such applications.

In order to address the problem of limited training data, the concept of transfer learning can

be used. In transfer learning, knowledge learned for performing one task is used for learning a

different task. The idea of transfer learning is not new. For example, the NIPS’95 workshop on

Learning to Learn highlighted the importance of pursuing research in transfer learning. A num-

ber of research studies have been published in the past investigating different aspects of transfer

learning as summarized in Tab. 4.2.

In case of CNNs, transfer learning typically entails the transfer of information from a selected

source concept (source CNN, learned for a source task) to learn the target concept (target CNN,

learned for a target task). Recent studies detail how transfer learning can be performed via CNNs
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Figure 4.1: Given a large number of pre-trained source CNNs, the proposed approach ranks them
in the order in which they are likely to impact the performance of a given target task. The source
task data is not used in this determination.

by transplanting the learned feature layers from one CNN to initialize another [37] (See Fig. 4.2

and Fig. 4.3). Due to its significant impact on improving the performance of the target task, transfer

learning is becoming a critical tool in many applications [38][39]. Usually this process is referred

to as fine-tuning to indicate that the transplanted feature layers of a source CNN are merely refined

using the target data. It is necessary to note that for such a transfer, the source data is not needed;

only the source concept as embodied by the source CNN is required. This allows researchers to

freely share and reuse previously learned CNN models.1 Attempts to convert CNN models from

one programming platform to another2 has also facilitated the reusability of CNNs. Given these

1https://github.com/BVLC/caffe/wiki/Model-Zoo
2https://github.com/facebook/fb-caffe-exts
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Figure 4.2: The availability of source task data is not necessary in CNN based transfer learning.
Transfer learning may only require the source CNN model and the target data for tuning.

Source CNN Target CNN

Source data Target data 

Figure 4.3: This figure demonstrate the basic process of knowledge transfer. Learned feature layers
of a source CNN are transplanted to initialize a target CNN which is then tuned using the target
data.

developments, it has become necessary to investigate how CNN models learned on various source

tasks can be effectively used when learning a target task that has very limited training data.

Given a selected source task or a source CNN, recent studies show a number of useful ways to

transfer and exploit its information for maximizing the performance gain on the target task [37][40][41][42][43].
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Previous research has clearly demonstrated that the choice of the source CNN has an impact on the

performance of the target task [37]. Some sources3 may also result in a phenomenon called nega-

tive transfer where the performance on the target task is degraded as a result of transfer learning.

However, a principled reason for such a degradation has not been clearly determined. Further, in

CNN-based transfer learning, the source is manually chosen (e.g., [39, 38]). Several different ap-

proaches have been suggested to manually select a source for transfer learning. In [38], Agrawal et

al. demonstrate that source data obtained from a moving vehicle [44] can be effective for transfer

learning, thereby highlighting the importance of motion-based data. In [37], Yosinki et al. argue

that source tasks that appear to be semantically relevant to the target task would result in better

performance. A large number of studies, however, show that semantic relevance between source

and target tasks is not always necessary; performance improvement has been observed even when

the source and target tasks are superficially not related [38][45].

Manual selection has three major drawbacks: it is subjective, where multiple experts may

choose a different source for the same target task; unreliable, where there is no guarantee that the

chosen source will result in better performance than others; and laborious, where an expert has to

manually analyze a very large number of potential sources tasks. Currently, there is no principled

way to automatically select the best source CNN for a given target task.

4.1.2 Technical goal

The key technical goal of this study, therefore, is to investigate the possibility of automating source

CNN selection. By choosing the best source CNN for a given target task, we anticipate that high

performance can be achieved despite tuning with very limited target data. Since, this is the first

study attempting to automate source CNN selection, we first present the following three ideal

3Note that in this study, source will be used as a general term referring to both source task and source CNN.
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requirements of such a ranking measure:

• Scalable: It only utilizes source CNNs. It does not require us to additionally store and

maintain the source data of each source task.

• Efficient: Unlike a standard learning based problem where an objective function is defined

and optimized using a training dataset, the ideal ranking approach should perform a zero-

shot ranking of CNNs, i.e. the ranking approach should not utilize a learning phase that is

based on source CNN characteristics.

• Reliable: Ideally, the ranking measure should not be based on heuristics, especially those

simply based on the notion of perceived similarity or difference between the tasks. The

ranking measure should be theoretically sustained and not heavily dependent on the specific

target task.

4.1.3 Novelty and contributions

• This study is the first to demonstrate that automatically ranking pre-trained source CNNs is

possible.

• This study presents an information theoretic framework to rank source CNNs in an efficient,

reliable, zero-shot manner thereby satisfying all the requirements stated above.

• This study presents a thorough experimental evaluation of the proposed theory using Places-

MIT database, CalTech-256 database, MNIST database and a real-world MRI database

(which is the focus of this thesis).
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Table 4.1: A summary of related research in transfer learning via CNNs

Research Focus Source selection
Oqub et al. [46] Transfer in CNNs by transplanting feature layers Manual

Yosinki et al. [37] Impact of transplanting different CNN layers Manual
Long et al. [40] CNN based transfer in deeper layers Manual

Agrawal et al. [38] Application of transfer learning via CNN Manual
Tulsiani et al. [39] Application of transfer learning via CNN Manual

E. Littwin et al. [43] Effect of a multiverse loss for improving transfer in CNNs Manual
Proposed Zero-shot ranking of source CNNs Automated

4.1.4 Related work

4.1.4.1 Transfer learning via CNNs

Oqub et al. in [46] explained how transfer between CNNs can be implemented by transplanting

network layers from one CNN to initialize another. This procedure provides significant improve-

ment on the target task and has been utilized in different applications [38][39][45]. Yosinki et al.

in [37] present an empirical understanding of the impact of transferring features learned in differ-

ent CNN layers. They show that CNN features learned in the first layer are generic and similar

across multiple tasks. These features become more and more task specific in the deeper layers. The

authors also discuss the differential impact of source CNNs on the target task. Long et al. in [40]

describe how deeper layers can be more effectively transferred to the target CNN. A recent study

in [43] provides intuitions on the effect of a multiverse loss function in improving the performance

of transfer learning in CNNs.

The goal of our work is significantly different from the above. In particular, we seek to develop

a principled way for automatically ranking source CNNS based on their potential to favorably

influence the performance of the target task. Given the increasing availability of source CNNs in

the public domain and the diversity of practical applications that have to contend with scarcity of

training data, the proposed approach is expected to have a significant impact on the viability of

transfer learning.
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4.1.4.2 Transfer learning in traditional research

As shown in Tab. 4.1, a number studies have been published in traditional transfer learning research

that does not utilize CNNs. These studies adopt different approaches for transferring information

across tasks. In the context of transfer learning, the meaning of several learning terminologies vary

across different studies in the literature. In the following subsections, we present a brief discussion

on these terminologies and differences.

4.1.4.3 Supervised transfer learning

Different studies refer to the term supervised transfer learning to represent slightly different con-

texts of learning. In many studies supervised transfer learning means the case where there is

abundant labeled data for the source task but limited labeled data for the target task. Research

by Daume [47] and Chattophadyay [48] use this terminology to mean this particular context. On

the other hand, in studies such as those by Gong [49] and Blitzer [50] use a different term for

this setup. They relate such a setup with a semi-supervised transfer learning. For Cook [51] and

Feuz [52], the term supervised transfer learning only relates to the source task data. If the source

task has any labeled data, they consider it as the case of supervised transfer learning. Further, they

call the learning as informed or uninformed based on the availability or absence of labeled, target

task data.

4.1.4.4 Semi-supervised transfer learning

The term semi-supervised transfer learning has also been used in the literature to represent differ-

ent contexts. For example, studies by Daume [47] and Chattophadyay [48] use this term to refer

to a case where there is abundant availability of labeled source task data but the target task data

is not available. On the other hand, as mentioned before, Blitzer [50] and Gong [49] use the term
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semi-supervised transfer learning to refer to a case where the labeled source task data is abundant

and the labeled target task data is limited.

4.1.4.5 Unsupervised transfer learning

In the general context, when learning approach only utilizes unlabeled training data, the approach

is referred to as unsupervised. In the context of transfer learning, different studies use the term

unsupervised transfer learning to refer to slightly different contexts. For Fuez [52] and Cook [51]

unsupervised transfer learning represents a case where the labeled source task data is not available.

For Blitzer [50] and Gong [49], it means the case where there is abundant labeled data for the

source task but no labeled data for the target task. Note that this scenario was referred as semi-

supervised transfer learning by Chattophadyay [48] and Daume [47]. Further, for Pan [53], this

term refers to the case where there is no labeled data for both, the source task and the target task.

4.1.4.6 Inductive and transductive transfer learning

Pan [53], use the term inductive transfer to refer to a scenario where some labeled data for the

target task available. On the other hand, transductive transfer refer to a case where labeled target

task data is not available, however, labeled source task data is present. Note that for this setup,

Gong [49] and Blitzer [50] used the term of unsupervised learning.

Based on what is transferred, these approaches can be mainly categorized as (1) instance-based

transfer learning, where the labeled data in the source task is re-weighted to be utilized for the tar-

get task [54, 55, 56, 57], (2) feature-based transfer learning, where the features of the source task

are transformed to closely match those of the target task, or a common latent feature space is dis-

covered [58, 59, 60], (3) parameter-based transfer learning, where the the goal is to discover shared

parameters across tasks [61, 62] and (4) relational knowledge-based transfer learning, which is a
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Table 4.2: A brief overview of transfer learning research

Paper Focus of research
Dai et al. [54] Transfer learning via boosting algorithm
Jiang et al. [55] Source instance weighting for domain adaptation
Liao et al. [56] Utilizing auxiliary data for target labeling
Wu et al. [57] Integrating source task data in SVM learning framework
Pan et al. [58] Transfer learning via dimensionality reduction
Pan et al. [59] Domain adaptation using efficient feature transformation
Blitzer et al. [50] extracting features to reduce difference between domains
Dai et al. [64] Labeling target task data using unlabeled source task data
Duame et al. [47] Domain adaptation using feature augmentation
Xing et al. [65] Correcting the predicted labels of shift-unaware classifier
Rosenstein et al. [66] Negative transfer between tasks
Pan et al. [67] Spectral feature alignment for transfer learning
Raina et al. [60] Learning high-level features for transfer learning
Gong et al. [49] Reducing domain difference in a low dimensional feature space
Tommasi et al. [61] Transferring SVM hyperplane information
Yao et al. [62] Transferring internal learner parameter information
Mihalkova et al. [63] Markov logic networks for transferring relational knowledge
Long et al. [68] Joint domain adaptation
Ammar et al. [3] Automated source selection in reinforcement learning using RBMs

comparatively less explored area in this context, and where the goal is to transfer the relationship

among data from a source task to a target task [63].

While the history of transfer learning research spans over two decades [69, 70, 53], the question

of how to predict the transferability of a source task, in a supervised framework, is relatively less

studied. Some studies assumed that the source and target tasks had to be similar in order for the

transfer learning to be effective [66][54]. Such an assumption may not be true in practice. For

example, if the target task itself is duplicated and presented as a source task, the similarity between

target and source tasks would be maximal; however, such an arrangement will be undesirable due

to redundancy and over-fitting. In addition, such approaches may necessitate the storing of source

data. In [71], a method to choose auxiliary training data to facilitate transfer learning is discussed.

The method utilizes a validation set based on the target task in order to select the auxiliary training
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samples. However, the method is iterative, computationally expensive, and does not utilize the

auxiliary data in a zero-shot manner. Recently, in [3], the authors utilized a restricted boltzman

machine based approach to automatically select the source task for transfer in the specific context

of reinforcement learning. However, the approach has two distinct shortcomings. Firstly, it is

based on the implicit assumption that the source and target data have to be visually similar in order

for the transfer learning to be effective. Secondly, the approach does not explicitly link the ranking

criteria with performance gain on the target task. However, the approach is observed to perform

well on the target tasks considered by the authors. Therefore, we compare the proposed approach

with the approach in [3].

4.2 Approach

In this section, before we present the proposed theoretical framework, two intuitive and preliminary

studies are discussed first. The detailed experimental results from these two intuitive approaches

will be presented later in the supplementary material. In the following subsections, only the mo-

tivation for these approaches and their limitations are discussed. This will be followed by a detail

discussion on the proposed theoretical framework that meets all the design requirements mentioned

previously.

4.2.1 Intuitive approach: A solution space based approach

The approach here is based on the hypothesis that given a CNN architecture, there exist a solution

space for it. Different points in this space represent CNN based solutions for different applications.

This indicates that there may be a spatial region representing ideal solution(s). Thus, the data is

merely utilized by a CNN during its training phase to traverse this space so as it moves away
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from a randomly initialized spatial location. As the CNNs utilize training data for a specific task,

it traverses far from the random, non-ideal space and hence learns more useful features. In this

regard, the following concepts are more formally presented:

4.2.1.1 CNN solution space

Consider a high dimensional solution space with each point denoting the weights in the layers of

a CNN that are transferred. For a fixed CNN architecture, each point in this space denotes a CNN

based solution for some task. For example, one point in this space may represent an ideal solution

for the face-recognition problem whereas another may represent a non-ideal solution for disease

estimation. It has been generally accepted in the literature that the weights in the initial layers of

a CNN act as general feature extraction operators and, thus, the CNNs for many different tasks

may have similar first layers; in contrast, the weights that are in the deeper layers of the network

become increasingly task specific [37, 40]. Hence, the weights in the deepest convolutional layers

represent the most task specific weights and are utilized here to denote a CNN.

4.2.1.2 Solution difference

This measures the Euclidean distance between two points in the solution space. Solution difference

between two CNNs Ni and N j is computed as ρi j = ||Wi−Wj||22. Here Wi and Wj are two points in

solution space denoting Ni and N j respectively.

4.2.1.3 Solution path

During training, a CNN is first initialized to a point (random or otherwise) in the solution space.

Then the learning algorithm adjusts the weights incrementally after each epoch, and the updated

weights traverse a path in the solution space, referred to here as the solution path. For a task i, let
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Figure 4.4: The output of the last layer m is task dependent and is therefore its dimensionality is
different depending on task. Hence, the k-dimensional output of layer m−1 is utilized. Also, it is
the output of this layer which will be utilized later in the experiment section for visualization.

Pτ
i = [No

i ,N
1
i , ...,N

τ
i ] denote its solution path, where Ni

τ denotes the solution point at epoch τ and

Ni
o represents the initialization point.

4.2.1.4 Path-to-point profile

A sequence of differences between a CNN N j and each point in Pi can be computed using the

solution difference measure above. This results in a sequence of differences ητ
i j = [ρo

i j,ρ
1
i j, ...,ρ

τ
i j],
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where ρo
i j is the solution difference between No

i and N j.

4.2.1.5 Source CNN ranking

Given a source CNN Nτ
i and a randomly initialized CNN No, the ranking score can be computed

as,

Ei = ρ
τ
io. (4.1)

Now, the training process results in τ intermediate CNNs: i.e., the CNNs in Pτ
i . Any of these τ

CNNs could potentially be a suitable candidate for transfer learning; it is not necessarily the case

that Nτ
i will result in the best performance gain after transfer on the target task. Therefore, the

criterion Ei is updated as,

Ei = max{ητ
i j}. (4.2)

Note that the development of Ei relies on the fact that small training datasets, in general, are

incapable of imputing a comprehensive representational power to a CNN. As the supplementary

information shows this approach can work well when the target training data is limited (see Chap. 6

for experimental results). However, this approach also has two distinct drawbacks:

• The presented approach is intuitive and is not derived from theory.

• CNN ranking does not take into consideration the variability in the target task.

Considering these limitations, a theoretical approach is presented next which meets all the

aforementioned ideal requirements. In Supplementary material (Sec. 6.2) experimental results of

this approach are presented.
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Table 4.3: Summary of the basic notations used in this section

Notation Description
Di = (Xi,Yi) Training dataset for source task i.
De = (Xe,Ye) Test dataset for target task.
Dt = (Xt ,Yt) Training dataset for target task.
Dv = (Xv,Yv) Validation dataset for target task.
Xi Training samples (images) for source task i.
Yi Corresponding ground truth labels on Xi.
Xt , Xv, Xe Training, Validation, and Test samples for target task, respectively.
Yt , Yv, Ye Corresponding ground truth labels on Xt , Xv, and Xe respectively.
Ni Source CNN learned using data Di.
Nt Target CNN learned using data Dt .
m Total number of processing layers in a CNN.
l Denotes the layer number in a CNN, where l ≤ m.
H(A) Entropy of variable A.
H(A|B) Conditional entropy of A given variable B.
I(A;B) Mutual information between A and B.

4.2.2 Theoretical approach

4.2.2.1 Notations

Consider a set of q source tasks with corresponding training datasets {D1,D2, ...,Dq}. For each

task i ≤ q, dataset Di = (Xi,Yi) where Xi represents the training samples and Yi denotes the corre-

sponding labels on them. Also, for each task i, a CNN Ni is learned by utilizing Di for training.

This results in a set of q source CNNs {N1,N2, ...,Nq}.

Similarly, consider a target dataset that is divided into De and Da. The test set is represented as

De while Da = {Dt ,Dv} represents the data that can be utilized for training (Dt) and validation (Dv).

Note that the sizes of the training and validation data will be kept very small in our experiments

in order to assess efficacy of the proposed approach in real-world applications with small training

data.

Similar to the source task datasets, each of the datasets corresponding to the target task also

comprises of images and corresponding labels. For example, the target training set can be denoted
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l=1 l=2 l=m-1

Figure 4.5: The output of the last layer m is task dependent and is therefore its dimensionality is
different depending on task. Hence, the k-dimensional output of layer m−1 is utilized. Also, it is
the output of this layer which will be utilized later in the experiment section for visualization.

as Dt = (Xt ,Yt), where Xt are the images and Yt are the corresponding labels. Further, let Nt denote

the CNN that is learned using the small training set Dt . A brief summary of the notations is tabu-

lated in Tab. 4.3.

4.2.2.2 Deriving the measure

The goal here is to derive a ranking measure on source CNNs that is explicitly based on reducing

the error on the target task. The uncertainty in predicting the testing labels Ye is given by the

entropy H(Ye), where H() represents the entropy function. A higher entropy value would mean a

larger uncertainty in prediction and, therefore, the goal is to reduce H(Ye). With the availability of

more information, which can be potentially useful in label prediction, this uncertainty can decrease.

Given that we have a trained CNN Nt that was derived using the small training data Dt , additional

information Nm
t (Xe) can, in principle, be extracted from the test images Xe. The notation Nm

t (Xe)
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indicates that images in Xe are input into the CNN Nt and the output of the mth layer is obtained.

Here, m is the last layer (total depth) of the CNN. Since, Nm
t (Xe) represents the final output score

by the last layer of Nt on Xe, we write Nm
t (Xe) as Nt(Xe) for simplicity.

Theoretically, as conditioning reduces entropy, therefore,

H(Ye)≥ H(Ye|Nt(Xe)). (4.3)

Similarly, additional information can also be extracted from Xe by utilizing the feature repre-

sentations learned by the CNN for a source task i. This information can be denoted as Nl
i (Xe).

Since, the dimensionality of the output of last layer, i.e., at l = m, can be different for different

source tasks4, the output of the layer l = m− 1 is extracted and utilized. Again, as conditioning

reduces the entropy, we have,

H(Ye)≥ H(Ye|Nt(Xe))≥ H(Ye|Nt(Xe),Nm−1
i (Xe)). (4.4)

Further, as the test images Xe and the labels Ye will not be available during the training stage,

the validation data Dv = (Xv,Yv) is utilized instead. Thus,

H(Yv)≥ H(Yv|Nt(Xv))≥ H(Yv|Nt(Xv),Nm−1
i (Xv)). (4.5)

This equation shows that with additional information extracted using a source CNN, the uncer-

tainty in prediction can further decrease. Now, the total decrease in uncertainty can be written as

4Here, the dimensionality pertains to the number of classes in a task
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the difference between the following terms:

φ = H(Yv)−H(Yv|Nt(Xv),Nm−1
i (Xv)). (4.6)

In information theory, this difference φ is called gain or information gain. This gain can also

be rewritten in the form of mutual information as,

φ = H(Yv)− [H(Yv|Nt(Xv))− I(Nm−1
i (Xv);Yv|Nt(Xv))]. (4.7)

Here, the mutual information is denoted by the function I(). For any three variables A, B and

C; I(A,B|C) = I(B,A|C) and so:

φ = H(Yv)−H(Yv|Nt(Xv))+ I(Yv;Nm−1
i (Xv)|Nt(Xv)). (4.8)

In the context of two variables, H(Yv)−H(Yv|Nt(Xv)) = I(Yv;Nt(Xv)) hence:

φ = I(Yv;Nt(Xv))+ I(Yv;Nm−1
i (Xv)|Nt(Xv)). (4.9)

The final equation here has two terms. The first term I(Yv;Nt(Xv)) denotes the gain due to

the mutual information between the target labels Yv and the predicted output scores Nt(Xv) by the

target CNN. The higher this mutual information, the lesser the uncertainty in predicting Yv. Fig. 4.6

shows an information diagram5 for the aforementioned terms. Region-1 in this figure represents

the first term of Eqn. (7).

Note that the second term, I(Yv;Nm−1
i (Xv)|Nt(Xv)), represents the gain due to a specific source,

5An information diagram is similar to a venn diagram but is used to show relationship between Shannon’s basic
measures of information.
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Figure 4.6: Information diagram: The first term in Eqn. (7) is represented by region-1 whereas
the second term is represented by region-2. The larger the region-2, the more useful is the source
CNN.

that is not already accounted for by Nt(Xv). In Fig. 4.6, region-2 represents this term. This term

provides additional, relevant information that was not available when only utilizing the target’s

training data Dt . The higher the value of this term, the more useful a source will be. Since, the first

term is independent of the source, the second term here can be utilized to measure the worth of a

source CNN. Therefore, for a source CNN Ni, its transferability6 γ i is given as,

γ
i = I(Yv;Nm−1

i (Xv)|Nt(Xv)). (4.10)

Note that this term can easily be computed using publicly available implementations for mutual

information. For the reproducibility of the results, the implementation and datasets used here will

be made publicly available.

6In this study, the term transferability and ranking score will be used alternatively.
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4.2.2.3 Discussion

The proposed term is aware that if the information extracted via source CNN is exactly that of the

target CNN, i.e., Nm−1
i (Xv) =Nt(Xv), the transferability will be zero. By computing the conditional

mutual information, the term is explicitly evaluating a source CNN, Ni, based on the additional,

predictive information between Yv and Nm−1
i (Xv) that cannot be obtained from Nt(Xv). If the source

CNN is completely irrelevant, the additional, predictive information from Nm−1
i (Xv) will have zero

mutual information with Yv, resulting in zero transferability.

4.2.2.4 Upper bound on transferability

The upper-bound on transferability can also be estimated. This estimate will denote the maximum

transferability that can be achieved by a source CNN. The total uncertainty in predicting labels is

estimated by H(Yv). Some predictive information is provided by Nt that is trained on the target’s

training data. This information is denoted by region-1 in Fig. 4.6. This overlap of information can

be written as H(Yv)∩H(Nt(Xv)) or simply as the mutual information I((Yv);Nt(Xv)), as discussed

before. The remaining information, H(Yv)− I((Yv);Nt(Xv)), can be provided by a source CNN.

Theoretically, this estimates the maximum amount of information that is required. Since, H(Yv)−

I((Yv);Nt(Xv)) = H(Yv|Nt(Xv)), the upper bound on transferability, γmax, can simply be written as

H(Yv|Nt(Xv)).
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4.2.3 Datasets

4.2.3.1 Target Data - MRI database

A real world MRI dataset [18][72] is utilized as the target data. The task is to detect the injected

cells in in vivo MRI scans that appear as dark spots. In this thesis, this data is denoted by set GA.

In many medical applications such as this, not only is the collection of data challenging but the

labeling of the data is also expensive and highly time consuming. For the long-term success of cell

based therapies, it is essential that in such applications, injected cells are detected accurately with

minimum labeling input which is currently a practical challenge [72][73].

This dataset comprises of 5 MRI scans of different in vivo rat brains. Spots in 3 of these scans

were labeled by a medical expert. These 3 scans were utilized in this study. From each scan about

100,000 patches were extracted as potential spots by authors in [72]. Only about 5,000 of these

were spot-patches (positive class) and the remaining were non-spot patches (negative class). Train

and test scans were mutually exclusive. From each training scan, only 5% of the patches (about

5,000) were randomly selected and utilized. Further, only 85% of the selected 5% were used for

training Nt and the remaining 15% was used as the validation set Dv.

4.2.3.2 Target Data - MNIST database

In a separate experiment, we test the generalization of the proposed approach using the standard

MNIST database. Here, the multi-class task involves differentiating between written digits ranging

from “0" and “9". The total number of training samples in MNIST database is about 60,000, out

of which only 5% are randomly chosen and utilized in the same manner.
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Figure 4.7: Each image in the source dataset was converted to gray scale and then down-sampled
to 20×20 and 9×9. Some of these images along with their transformed versions are shown here.

4.2.3.3 Source Data - Places-MIT database

In this study, the publicly available Places-MIT dataset was utilized[74]. This dataset has a diverse

set of 205 different classes with images containing cluttered urban scenes, empty hall-ways, cakes

(in bakery), fish (in aquarium), etc. A set of 500 different tasks were randomly generated with

classes ranging from 2 to 205. The images in this database are much different in dimensions from

the 9×9 patches in the MRI database and the 20×20 images of the MNIST database. Therefore,

each image here was converted to gray scale and then down-sampled to the size compatible with
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the images of the two target tasks. The transformed images exhibit diversity in their content, as

shown in Fig. 4.7.

4.3 Experiments, Results and Discussion

In this section, we design experiments to answer the following questions: (1) How well does the

proposed measure rank the source CNNs for a target task that has scarcity of training data? (2)

How does the performance of the proposed approach compare with a previous approach in the

literature that is heuristic-based? (3) Can the impact of the top and the worst ranked source on the

target task be visualized and compared? (4) How does the number of training samples impact the

performance gain due to transfer learning in CNNs? In all experiments, AUC (Area Under ROC)

was utilized as the measure of accuracy.

4.3.1 MRI based target task

Ranking Source CNNs: Using the 500 source tasks generated from Places-MIT database, 500

CNNs were learned. The CNN architecture used in [72][73] was adopted for this target task.

Using the proposed approach, all these source CNNs were ranked prior to conducting the transfer.

The ranking scores for each CNN, i.e., measured transferability, is shown on the horizontal axis

of Fig. 4.8 while the performance with transfer learning is presented on the vertical axis. For

vertical axis in Fig. 4.8, 500 more CNNs were learned by tuning each source CNN on the target

training data. Note the high degree of correlation between the ranking score and the degree of

improvement in performance after transfer learning. The scores shown here are the normalized

scores obtained after dividing the rank score of each source CNN by the maximum score achieved

by any of the 500 source CNNs. The two sub-figures in Fig. 4.8 represent the results on two
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different test MRI scans. In each case 500 CNNs were evaluated on the complete set of test

patches (about 100,000 in each scan).

When training using the source data, each source CNN underwent a pre-determined number

of 15 epochs. When tuning on the target data, the training of each source CNN proceeded until

convergence.

Performance Comparison: In this experiment, the goal is to compare the performance of the

proposed approach with another approach in the literature that merely relies on similarity between

the source and target tasks. In [3] the authors propose utilizing RBMs for automated source se-

lection which is based on the similarity between tasks. Therefore, using their proposed protocol,

an RBM model was first trained for each source task. Then, using each source RBM model, the

reconstruction error on the target data is computed. The normalized reconstruction errors for each

source RBM model is shown on the horizontal axis in Fig. 4.8. The vertical axis represents the per-

formance transfer learning using the corresponding source CNN. It can be clearly observed that

there is a lack of correlation between reconstruction error and performance improvement

after transfer learning. As mentioned before, the approaches based on heuristics of similarity or

difference can fail in practice and may not be applicable for all source/target tasks.

Analyzing Ranked Source CNNs: The goal here is to visually investigate the difference be-

tween source CNNs that were ranked the best and the worst. To both these source CNNs, two

different test sets were given as inputs and the 200-dimensional output of the fully connected layer

the samples was obtained for all test samples. Note that these outputs are from source CNNs that

have not yet been tuned using any target data. The 200 dimensional outputs were then projected to

a 3D space using principal component analysis. The spot samples and the non-spot samples were
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Figure 4.8: (Top row) The two sub-figures show the result of the proposed approach on two dif-
ferent test sets. (Bottom Row) These two sub-figures show the result of the Restricted Boltzmann
Machine based approach in [3]. The horizontal axis shows the reconstruction error computed on
the target’s training data using the source RBM model. Note the high degree of correlation exhib-
ited by the proposed measure (top row) with improvement in performance.

colored differently and visualized in this space (see Fig 4.9). In each figure, the viewpoint that best

illustrates the decision boundary is presented.

It can be seen that the best ranked source, even prior to observing any MRI data, has the po-
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Figure 4.9: Prior to conducting any transfer, the ability to discriminate between spot and non-spot
patches is visualized in 3D space for the best ranked and the worst ranked CNN. The figures in
the left column correspond to the best ranked CNN on two test sets, while the figures in the right
column correspond to the worst ranked CNN on two test sets. See text for further explanation.

tential to separate spot samples (yellow) from non-spot samples (black). The worst ranked source

does not differentiate between the two classes. In fact, the spread of samples across the three di-

mensions is very low and all samples appear to be concentrated in a smaller region. Therefore,

taking the best CNN as the initial point in learning the target concept clearly provides an edge over

random initialization or using other source CNNs with much lesser ranking scores.

Impact of training sample size: Although, the main focus of this study is to test the efficacy
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Figure 4.10: The horizontal axis show the percentage of the target training data utilized in tuning.
The y-axis shows the performance after transfer. Dataset size was incremented in values of 5%,
and for each dataset, the proposed approach was used to rank the source CNNs. Here, the transfer
was only conducted using the best and the worst ranked CNN. Note the performance improvement
for smaller training sizes which conveys the importance of the proposed method.

of the proposed approach when the target training data is very small, we are also interested in in-

vestigating the effect of increasing the target training size. In Fig. 4.10, we see that the proposed

approach is especially very useful when the target training sizes are small. Using only 5% of the

available training data, the performance is observed to improve by more than 35% after transfer

learning. This means that the labeling effort from a medical expert can be significantly reduced

without compromising the AUC performance. However, when there is already a large amount

of training data available, transfer of knowledge from a source CNN may not bring a significant

change in the results.
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Figure 4.11: Ranking performance for the MNIST target task: 44 CNNs, based on randomly
chosen source tasks, are ranked. For tuning, only 5% of the available training set was randomly
chosen for the given task. Testing was performed on all the images in the MNIST test set. Note that
the performance without transfer learning, using the selected 5% of the training data, was about
0.21.

4.3.2 MNIST based target task

We further evaluate the proposed ranking measure using the multi-class MNIST database. The

experimental protocol used here is the same as the one used in the previous target task. A standard

LeNet-like CNN architecture with ReLU activation layers was utilized. However, only 44 different

source tasks were randomly picked and the corresponding CNNs were learned. Note that similar

to the previous target task, only 5% of the available data was utilized, as explained in 4.2.3.2. The

experimental results are shown in Fig. 4.11.
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Figure 4.12: (Top row) The two sub-figures show the result of the proposed approach on two
different test sets. (Bottom Row) These two sub-figures show the result of the Restricted Bolzmann
Machine based approach in [3]. The horizontal axis shows the reconstruction error computed on
the target’s training data using the source RBM model.

4.3.3 Experiments using CalTech-256

Generally, in the literature on transfer learning, the target task is assumed to contain limited training

data while the source task is assumed to have a large amount of training data. In this experiment,
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Figure 4.13: Information diagram: Emphasizing the need to exploit multiple sources.

a challenging, non-conventional case is considered to further test the robustness of the ranking

measure. Here, the source CNNs are also trained using limited training data. Further, the training

data for each class has large intra-class variations. To facilitate this, 500 additional source tasks

were randomly generated using the publicly available CalTech-256 dataset. This dataset contains

about 256 classes and the average number of images in each class is about 120. Classes in the

additional source tasks ranged from 2 to 256. The problem of spot detection in MRI, as discussed

in 4.2.3.1, was used for the target task. Despite a non-traditional scenario, we see in Fig. 4.12 that

the approach is still able to differentiate between the sources when tested on two different MRI test

sets. However, the variance at higher ranking scores is larger, indicating the challenge posed by

ranking such CNN models.

74



4.4 Conclusion

This study is the first to show that the source CNNs can be ranked in increasing order of benefit for

a given target task. An information theoretic framework that performs reliable, zero-shot ranking

of CNNs was presented. The approach was thoroughly evaluated using Places-MIT database,

CalTech-256 database, MNIST datbase, and a real world MRI database (which is the focus of

this thesis). We demonstrated that due transferring knowledge from the best source CNN, high

performance can be achieved on the target task despite using small training data. Automating the

crucial step of source selection is a fundamental improvement in the standard practice of transfer

learning in CNNs. This study, also open doors to better investigate several other related research

problems such as automatically finding the optimal numbers of layers to transfer. More details on

potential future work are as follows:

4.4.1 Multiple sources

Using the proposed framework, in Fig. 4.13, we show an information diagram where another

source CNN N j brings information that is not accounted for by both Nt and Ni. Since, Region-3 is

much smaller in comparison to Region-2, such a source should have a low rank score and is antici-

pated to be less beneficial compared to Ni. However, if N j is utilized appropriately in combination

with other sources such as Ni, the overall entropy will further reduce as H(Yv|Nt(Xv),Nm−1
i (Xv))≥

H(Yv|Nt(Xv),Nm−1
i (Xv),Nm−1

j (Xv)) Therefore, one interesting future direction would be to extend

the current framework to incorporate multiple source CNNs.

For example, the formulation presented here can also be seen as simplifying the problem of

source CNN selection to a feature selection exercise. In this context, it will also be interesting

to investigate how different feature selection approaches can be appropriated and experimentally
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compared in this context.

4.4.2 Layers to transfer

The goal of this study was not to find the optimal number of layers to transfer, rather all the

convolutional layers were transferred here. Finding an optimal number of layers to transfer, in a

principled manner, is still an open problem. In future, we plan to investigate how the performance

due to different number of transfer layers is correlated with the ranking score of a given source

CNN.
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Chapter 5

Exploiting Labeling latency

5.1 Introduction

In this chapter, we investigate the role of incorporating an expert’s labeling behavior into a partic-

ular classifier, the convolutional neural network (CNN). The inspiration for this approach comes

from research in psychophysiology where it has been observed that the human mind processes dif-

ferent images differently, based on the salient characteristics of individual images/stimuli [75][76].

This is perhaps the case when a medical expert carefully analyzes and labels spots in MRI scans.

For example, an easy-to-classify spot may take less time to label, while a difficult-to-locate spot

may require more time to label. Thus, the time taken by an expert to label each spot, i.e., the label-

ing latency, can be viewed as a variable that models the labeling behavior of an expert. However,

the labeling latency value associated with a spot (positive sample) provides additional informa-

tion that is only available during training and is absent during testing. Further, a medical expert

only labels the positive samples in an MRI (the remaining samples in the MRI are automatically

assumed to be negative samples). Thus, labeling latency is only available for one class, i.e., the

positive class.

The paradigm of learning using privileged information (LUPI) is closely related to the problem

at hand. Privileged information (also known as side or hidden information) is also available only

during training but absent during testing [77, 78, 79, 80, 81, 82, 83, 84]. However, existing LUPI

approaches cannot be appropriated in the context of supervised classifier learning where the side
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Figure 5.1: This chapter describes a CNN architecture that incorporates the labeling behavior of an
expert during the training phase. The labeling behavior is anticipated to provide side information
that captures the intra-class variability of positive exemplars in a two-class problem. (Note: Green
markers have been used to indicate spots in a MRI scan).

information is only available for samples of one class and missing for the other class(es).

In this regard, the contributions of this chapter are three-fold:

� Utilizing labeling latency as an additional variable for learning in the context of a medical imag-

ing application.

� Introducing the problem of exploiting side information that is only available for one class.

� Designing a new CNN framework, L-CNN,1 that exploits labeling latency as side information.

5.1.1 Prior literature

In this section, a brief overview of the related work is presented.

1The term L-CNN is used to indicate that the CNN exploits Labeling behavior.
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Figure 5.2: Unlike traditional features, labeling latency is only available during the training phase.
Further, unlike traditional side information, it is associated with a single class only. In this figure,
a two-class problem (“+" and “-") is considered.

5.1.1.1 Classifier learning with labeling latency

The literature on LUPI-based approaches is closely related to our work. The basic goal of the

LUPI paradigm is to exploit side or privileged information that is available only during training

and not during testing. Side information has been successfully utilized in the context of unsuper-

vised learning frameworks [85, 86]. A number of approaches also show the benefits of using side

information in a supervised learning framework [77, 78, 79, 80, 81, 82, 83]. However, in the su-

pervised learning framework, existing LUPI approaches cannot be utilized if the side information

is only available for a single class and completely absent for the other classes.

A recent study [84] utilized reaction time of a labeler as an additional side information in a

SVM based framework. However, in [84], the side information is available for both positive and

negative classes. In the experiments, an image was displayed for a very short period of time to

the labeler, who had to indicate whether the image contained a face image or not. The reaction

time to label was taken as the side information for each image that could potentially model the

classification difficulty of each image.
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Figure 5.3: Basic architecture of the proposed L-CNN framework.

5.1.1.2 CNN learning with side information

The idea of exploiting side information with CNNs is relatively less explored, especially in the

context of image based learning. The few approaches that have been studied [87, 88] suffer from

the same limitation as standard LUPI approaches and, therefore, cannot be easily appropriated to

the problem at hand. This study is one of the first to demonstrate how a CNN learning framework

can exploit labeling latency.

5.2 Approach

The basic architecture of the proposed L-CNN framework is shown in Fig. 6.1.

The human computer interface (HCI) takes an MRI scan G as an input and extracts patches

X from its slices, where each extracted patch can potentially contain a spot. During the training

phase, it also allows the expert to label spots (positive patches) in each slice in an interactive

manner using an image viewer (e.g., by zooming in, changing image contrast, etc.), resulting in a

set of labels Y associated with these patches. Further, the labeling latency value associated with

each positive spot label is also recorded. Labeling latency is utilized later as an additional source

of information to categorize spot patches. After this, a transfer learning paradigm is adopted for
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which the source task involves learning a CNN that can distinguish between these categories of

spot patches. The target task is to differentiate between spot and non-spot patches using training

data that has a limited number of positive examples. Since CNNs are initialization dependent and

unfavorably impacted when the training data is limited, rather than using a randomly initialized

CNN, the proposed approach transfers layers from the source CNN to the target CNN. The results

obtained with this approach are significantly superior to previous state-of-the-art for the problem

of spot detection in MRI scans.

5.2.1 Image viewer: Human-computer interface

This module has two main purposes: First, it is used to obtain ground truth on spots and to record

labeling latency when an expert manually locates spots in an MRI scan. Second, after the spots

have been labeled by the expert, the system extracts patches (described below) from the MRI slice.

An extracted patch containing a clicked pixel is labeled as a positive sample (containing a spot)

and the corresponding labeling latency is associated with it. The remaining patches are labeled as

non-spot patches (negative samples).

5.2.1.1 Labeling spots

Given an MRI scan G, this module presents a software with zooming and contrast adjustment

capabilities for the expert to carefully analyze each 2D slice in the MRI scan and click on the

spatial location to indicate a spot. Collectively, these 3D locations are denoted by a set Φ =

{∪φu}k
u=1 where φu denotes the location of a clicked point and k represents the total number of

clicked points. In addition, the time lapse between clicks is also recorded as labeling latency. It

was observed that experts label the easier spots first without engaging in any detailed analysis

as shown in Fig. 5.4. Difficult-to-label spots, on the other hand, were typically labeled at the
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end. Every potential spot entity is carefully analyzed by the medical expert by zooming-in and,

occasionally, by changing the contrast of the locally selected region (see Fig. 5.5). Labeling latency

is indirectly related to the cognitive overload involved in labeling a point as a spot. It is denoted

as R = {∪ru}k
u=1 where ru is the labeling latency associated with the clicked point φu. Certain

latency values were rather high, due to breaks taken by the expert or due to distractions. Hence,

values greater than 45 seconds were simply replaced with the mean time taken between mouse

clicks. These pre-processed values of labeling latencies corresponding to one MRI scan are shown

in Fig. 5.6. Factors such as spatial distance between two consecutive clicks have little or no effect

on labeling latency (as small movements on the mouse, translate to large spatial distances on the

screen). For simplicity, any possible effects of such factors are ignored.

Since the labeling task is laborious, experts are asked to indicate positive samples (spot en-

tities) only. However, this means that latency information is available only for positive samples

and not for the negative samples. For experts, this creates an easier and more practical labeling

environment. However, from a pattern classification standpoint, this introduces a new challenge:

“features" that are available during training but not during testing and are associated with one class

only.

5.2.1.2 Extracting RoI for classification

The annotated (i.e., clicked) locations, Φ, must be associated with some regions in the MRI scan;

these regions, representing a collection of pixel intensities, will then be input to the classifier. The

question to address here is, how should a region be defined? This has been discussed before in

Chapter 2. For a brief overview, a superpixel [89] based strategy similar to [18] is utilized to

extract a large number of patches from MRI G and these regions are denoted as X = {x1,x2, ...xn}

where n > k. As shown in Fig. 3.2, for each superpixel in a 2D MRI slice, a patch of size z× z is
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Figure 5.4: Basic view is used to label easy-to-detect spots.

Figure 5.5: (Left) Zoomed-in view to locate a spot. (Right) Zoomed-in view with contrast adjust-
ment for detailed contextual observation prior to labeling spots.

extracted by keeping the darkest pixel of the superpixel at the center (since spots typically appear

darker than the surrounding tissue). Note that a superpixel approach is preferred over a dense

sampling method for defining regions as the former results in fewer but more relevant patches

for further processing and is less likely to associate multiple spots to a single patch. Further, as

mentioned in [18], the superpixel algorithm used in [89][20] outperforms other superpixel and 3D

supervoxel algorithms (such as 3D SLIC) for capturing spot boundaries. Therefore, the 2D spot

patches detected in neighboring slices are later joined to form a 3D spot.

Formally, X = {x1,x2, ...xn} where each patch xu has a center au. Note that aq
u denotes the slice
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Figure 5.6: Labeling latency for a single MRI scan.

A B

Figure 5.7: (A) Spot patches extracted from one MRI scan (concatenated as 10× 15 patches),
(B)Spot patches from another MRI scan. These patches represent inter-scan and intra-scan varia-
tions in spot patches.

number where the patch is located based on the 2D spatial location defined by a1
u and a2

u. The

distance between the center location of each patch with respect to all the clicked locations in Φ is

computed. If the smallest of these distances, dmin, is less than or equal to a pre-defined threshold

τ , the patch is considered to be a spot; otherwise, it is considered to be a non-spot that forms
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the negative class of the dataset. Note that dmin = min j ‖φ j− au‖2 and 1 ≤ j ≤ k. Based on this

step, a label yu is assigned to each patch xu. Thus, Y = {y1,y2, ...,yn} where yu ∈ {0,1}. Further,

X = {X p,Xg}where X p = {x1,x2, ...xk} denotes all the spot patches while Xg = {xk+1,xk+2, ...,xn}

represents all the non-spot patches. Note that ∀xu ∈ X p, the training samples exist as triplets

{∪(xu,yu,ru)}k
u=1, while for the remaining non-spot patches the labeling latency values (ru) are

not available.

5.2.2 Classification approach

5.2.2.1 Clustering

The variation in labeling latency values for an MRI scan can be seen in Fig. 5.6. A Gaussian Mix-

ture Model (GMM) is utilized here to categorize Xp into m clusters based on their corresponding

labeling latency values. Here, m denotes the optimum number of clusters selected using the stan-

dard Akaike infomation criterion. Thus, each patch xu ∈ X p is associated with a clustering index

vu where 1≤ vu ≤ m and V = {v1,v2, ...,vk}.

5.2.2.2 Transfer learning

In transfer learning, the knowledge gained to perform one task (source task) is used to benefit

learning in another task (target task). In the context of CNNs, transfer learning can be imple-

mented by transplanting the learned network layers (feature representations) from a source CNN

for initializing a target CNN. In this study, the target task is the task of separating spot patches

from non-spot patches. To train a CNN to perform this task, one approach would be to initialize

it randomly and then utilize the target task training data to update it. Another approach would be

to initialize it based on the layers of a source CNN that has been trained for a different task. Here,

85



the source task involves differentiating between categories of spots generated using the clustering

process described earlier. The layers of the ensuing source CNN is then used to initialize the target

CNN.

The source dataset DS = (X p,V ) is developed, where the cluster indices in V act like labels for

the spot patches in X p. A CNN, NS, is then trained to distinguish between the patches of these

clusters. Formally, the goal is to learn weights for NS that minimize the loss ∑
k
u=1 J(NS(xu),vu)

where J denotes the standard cross-entropy loss function. Functionally, this CNN learning process

is denoted as NS = h(No,DS) where No represents a randomly initialized CNN architecture and NS

denotes the CNN that has learned a feature representation (weights) to distinguish between spot

patches belonging to different clusters. The CNN architecture customized for this data is shown in

Fig. 3.6. Note that due to the small size of the input patches (z = 9), a pooling layer has not been

utilized.

In the second step, the goal is to utilize the target dataset DT = (X ,Y ) for learning a target

CNN, NT , which can distinguish between spot and non-spot patches. Formally, the objective is to

minimize the loss ∑
n
u=1 J(NT (xu),yu). However, in this case, NT is not randomly initialized; rather

the feature layers in NS are transplanted to initialize it. This is denoted as NT = h(NoS,DT ). The

transfer is conducted in the standard manner detailed in [37, 40]. In this case, all the convolutional

layers are transferred for initialization. The fully connected layer is incompatible for transfer due

to structural differences induced by the two tasks. Therefore, as typically done in transfer learning,

the fully connected layer is randomly initialized. The resulting initialized CNN is denoted as

NoS. Experimental results show that this transfer of knowledge brings an improvement that is not

achieved when using a randomly initialized CNN NT = h(No,DT ) that is updated using only the

dataset DT . Note that it may be possible to achieve different levels of improvement based on the

labeling behavior of different experts. This could be one interesting direction to explore in the
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future.

5.3 Experiments, results, and discussion

In this section experiments are designed to answer the following questions: (a) How does the L-

CNN compare with a traditional CNN? (b) What is the result if random clustering is used instead

of GMM based clustering? (c) What is the effect of transferring different number of CNN layers?

(d) How do the results obtained in this study compare with the previous state-of-the-art for spot

detection in MRI scans? Note that in all experiments, the Area Under the Curve (AUC) value was

used as measure of accuracy.

Setup In this study, the in vivo MRI database of [18] comprising 5 MRI scans of different

Rat brains was used. 3 of these Rats were injected with Mesenchymal stem cells which appear as

dark spots in MRI. About 100,000 patches are extracted from each of the 3 scans. The number

of positive samples in each scan is about 5000. The labeling latency for each labeled patch was

also documented. Each of the three scans is successively used for training while the remaining

two independent MRI scans are used for testing. This creates 6 testing scenarios. The following

parameters were used: z = 9, m ∈ [5,9], and τ =
√

2.

5.3.1 Comparison with conventional CNN approach

In this experiment, the result of L-CNN is compared with a conventional CNN NT that is randomly

initialized and then simply trained using DT . Results in Fig. 5.8 clearly demonstrate that the

L-CNN results in better performance than the conventional CNN on all 6 testing scenarios. It

is interesting to note that exploiting labeling behavior using L-CNN can provide a performance

increase of up to 4% (see test set T 3). Thus, the significance of labeling behavior in performance
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improvement has been clearly established.

5.3.2 Comparison with random clustering

It can be seen that the L-CNN architecture exploits clustering to create sub-categories of the labeled

spot patches. In this experiment, we investigate the performance when spot patches are randomly

assigned to categories instead of using GMM. These results are shown in Fig. 5.8 for each of the

6 testing scenarios, and also compared with the L-CNN. In all testing scenarios, L-CNN clearly

performs better when GMM is used instead of random clustering. Further, it can be seen that the

performance due to random clustering is, in general, very similar to that of the conventional CNN.

5.3.3 Comparison using different number of transfer layers

Here, the effect of transferring different layers is investigated. The proposed CNN architecture has

three convolutional layers and a fully connected layer. The results of transferring different number

of convolutional layers are shown in Fig. 5.9. It is evident that , in general, transferring all three

layers results in superior performance.

5.3.4 Comparison with a previous approach

We compare the results of L-CNN with the previous state-of-the-art for spot detection reported

in [18]. For this comparison to be compatible, a leave-2-out approach was utilized using the

same experimental setup mentioned in [18]. The proposed approach clearly results in superior

performance with an accuracy of 94.68%, compared to the 89.1% accuracy achieved in [18].

88



Testing dataset
T1 T2 T3 T4 T5 T6

A
cc

u
ra

cy

0.85

0.9

0.95

1
Conventional CNN
Random Clustering
L-CNN

Figure 5.8: Performance of the proposed L-CNN.
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Chapter 6

Supplementary Information

In order to make this thesis self-contained, information on our related supplementary studies is

presented in this chapter. The following two studies have been referenced in the main chapters:

1. A model based approach for spot detection: This study was briefly discussed in Chap. 3.

details of the approach and the experimental results are discussed here.

2. CNN ranking with intuitive approach: This approach was briefly discussed in Chap. 4.

Experimental results using this approach are presented here.
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6.1 A model based approach for spot detection

This section presents supplementary information on our learning-based approach that utilizes a

spot model. The limitations of this approach were discussed in Chap. 3. In this approach, we

consider spots as 3D entities and represent its general structural model using superpixels. We then

extract a novel set of “superferns” features and finally classify it using multiple definitions of spots

learned by a partitioning-based ensemble of Bayesian networks. Experimental results show that it

performs significantly better than previously related approaches.

In summary, this chapter makes the following contributions: (i) It proposes a novel superpixel-

based 3D model to characterize cellular spots that can potentially be used in other medical prob-

lems. (ii) It introduces the superferns feature that exploits superpixel-based representations and is

more discriminative than traditional fern features. (iii) It demonstrates how a partitioning-based

ensemble learning can be effectively utilized for MRI spot detection.

6.1.1 Approach

As mentioned before, the cell/spot detection problem in MRI scans has unique challenges, where

a number of questions should be carefully considered prior to algorithm design. First, since a

spot is essentially a 3D entity in an MRI cube, how to model its three dimensional characteristics?

Second, a spot is also a small group of dark pixels with varying shapes and sizes. What is the

basic unit within an MRI cube (e.g., one, two, or N pixels) for which the two-class classification

decision can be made? Third, there is a huge number of candidate locations. Therefore, our feature

representation for spots should be not only highly discriminative, but also efficient and based on

computationally light operations. Fourth, the appearance of a spot varies relative to its local and

regional neighborhood. How to make learning robust to these variations should be addressed.
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Figure 6.1: The architecture of our approach. Blue, red, and black arrows are the processing flow
during the training stage, testing stage and both stages, respectively.

Considering these challenges, we design our technical approach as in Fig. 6.1, with details below.

6.1.1.1 Spot modeling

Visually, a cellular spot S appears as a cluster of N dark 3D pixels with high variations in its 3D

shape and intensity, wrapped inside a cover of background pixels. In this work, we call the small

group of dark pixels as a spot’s interior I, and their local neighboring pixels in the background as

the exterior E of a 3D spot. This model is consistent with the manual labeling of spots by domain

experts, who inspect the cross-sections of these spots in consecutive 2D MRI slices, and look for

a small region (interior) that is darker than its neighboring pixels (exterior). Furthermore, human

eyes can also adjust the amount of relative darkness based on the characteristics of the specific

brain region containing that spot. Therefore, in addition to model a spot with its interior/exterior,

we also model the specific region it belongs to, termed region context R.

6.1.1.2 Model instantiation via superpixel

Given the conceptual spot model S = {I,E,R}, we now describe how to define I, E, and R for a

spot, by three steps. Since no spot should be outside the brain region, the first step is to perform

brain segmenation in every 2D MRI slices with basic image processing techniques. The second
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step is to define I and E by applying 2D superpixel extraction [89] to the segmented brain region

of each MRI slice. A superpixel is a group of N neighboring pixels with similar intensities, i.e.,

Vz,u = {xi,yi,z}N
i=1 where u is the superpixel ID in slice z. In general superpixels can tightly

capture the boundaries of a spot’s interior; however, some imprecise localization is also expected

in practice (see Chap. 3). After extraction, we denote M= {Vz,u}L,U
z=u=1 as the set of all superpixels

in the brain region, where L and U are the number of slices and superpixel IDs, respectively. Due

to the exclusiveness of the interior and exterior of spots, we have M = I∪E where I and E are

the set of all interior or exterior superpixels, respectively. With that, for a spot S with length

l in z-axis, we formally define its interior as I = {Vz,u, · · · ,Vz+l,u | V ⊂ I} and the exterior as

E = {Vz−1,.,Vz,ū, . . . ,Vz+l,ū,Vz+l+1,. | ||(m(I)−m(V )|| ≤ τ,V ⊂ E}, where m() computes the mean

of a set, τ is the maximum L2 distance between the centers of a spot and an exterior superpixel,

and Vz−1,. and Vz+l+1,. are superpixels in two adjacent neighboring slices. Assuming the second

step extracts N1 superpixels per slice, the third step also relies on superpixels to define R where

the number of extracted superpixels N2� N1. This is reasonable since R can include very large

superpixels that are representative of the regional appearance. Thus, we define the region context

of a spot as R = {Ṽz,v | m(I)⊂ Ṽz,v}, which is the large superpixel enclosing the spot center m(I).

The superpixel-based 3D spot model has a few advantages. First, it addresses the issue of unit,

by going beyond pixels and using the superpixel-based model for feature extraction and classifi-

cation. Second, this model substantially reduces the number of total candidate spots to be tested,

since the candidates can be nominated based on superpixels rather than pixels. Note that we may

extend our model instantiation by using 3D supervoxel instead of 2D superpixel. We choose the

latter in this work due to its demonstrated reliability and efficiency during the experiments.
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6.1.1.3 Superferns feature extraction

With an instantiated spot model S = {I,E,R}, the next step is to extract a discriminative and

efficient feature representation. Since a spot generally has darker interior than its exterior, it makes

sense to define features based on the computationally efficient intensity differences between pixels

in the interior and exterior. Difference-based fern features have shown great success in computer

vision [90]. Ferns compute the intensity difference between a subject pixel and another pixel with

a certain offset w.r.t. the subject pixel. Using the same offset in different images leads to feature

correspondence among these images.

For our problem, the spot center m(I) can be regarded as the subject pixel, and its intensity

is the average intensity of all interior pixels m(G(I)). We then randomly generate h 3D offsets

O = {oi}h
i=1 with a uniform distribution, whose center is the spot center and radius is τ . Finally,

the feature set is computed as F = { fi}h
i=1, where fi = G(m(I) + oi)−m(G(I)). While fi is

efficient to compute, G(m(I)+ oi) is the intensity of a single pixel, which can be noisy, specially

in in-vivo MRI and lead to low discriminability of fi. Thus, it is desirable to replace it with the

average intensity of all pixels within an exterior superpixel. However, the exterior superpixels

around different spots have no correspondence, and, as a result, fi for different spots also have the

correspondence issue.

To address this issue, we present an approach to exploit the average intensity without losing

correspondence information. The new feature, termed as “superferns", is similar to F except it

replaces the single pixel-based intensity with the average intensity of the superpixel, i.e., F ′ =

{ f ′i }h
i=1, where f ′i = m(G(V ))−m(G(I)), ∀ m(I)+oi ∈V . Note that it is possible to have the same

feature at two different offsets due to them being in the same superpixel, i.e., f ′i = f ′j. This is not

an issue because this equality may not be true for other spots, hence the feature distributions of f ′i
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Figure 6.2: Ferns vs. Superferns.

and f ′j are not the same, and they contribute differently to the classification.

Features are also needed for the region context R. Given its role of supporting region-dependent

classifiers, we find that simple features work well for R, e.g., the mean and standard deviation of

pixel intensities in R, Fr = (m(G(R)),σ(G(R))).

6.1.1.4 Partition-based bayesian classification

Having computed the feature Fs = (F,Fr) for a set of spots and non-spots, we now present our

approach to learn an accurate two-class classifier. Since different local regions have different

appearance, we partition the brain region into N0 partitions, learn a set of N0 classifiers each for

one region, and fuse them via a probabilistic Bayesian formulation. Specifically, for any spot
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candidate S, its probability of being a spot is

P(Fs) =
N0

∑
i=1

P(Fs,ri) =
N0

∑
i=1

P(Fs|ri)P(ri), (6.1)

where ri represents the ith partition, P(ri) is the probability of S belonging to ri, and P(Fs|ri) is the

conditional probability of a spot at ri.

We learn P(ri) using the well-know Gaussian Mixture Models (GMM) technique. By collecting

Fr for all training samples, we perform GMM to estimate N0 component Gaussian densities, each

considered as one partition. During the testing, {P(ri)}N0
i=1 is obtained by evaluating Fr of the

testing sample w.r.t. each component densities. In order to learn P(Fs|ri), we group all training

samples into N0 groups based on their respective maximum {P(ri)}, and train the P(Fs|ri) using

the standard implementation of Bayesian Networks in [91]. During the test, for a testing candidate

spot, GMM enables a soft partition assignment, and its final probability of being a spot is the

weighted average.

6.1.2 Experimental results

In this section we design experiments to investigate answers to the following questions: (i) how

does our approach perform and compare with the previous approaches using both in vivo and in

vitro data? (ii) how does the discriminating potential of superferns quantitatively compares with

the fern features? (iii) how diverse is the classifier ensemble created by our proposed approach?

6.1.2.1 Experimental setup

The ROC, and Area under the Curve (AUC) are used as the evaluation metrics. For the 5-scans

in vivo data (GA), we adopt a leave-two-out scheme such that our testing set always contains one
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Figure 6.3: Detection performance comparisons and with various components.

labeled and one spotless scan. This creates six pairs of training and testing sets, which allows us to

compute the error bar of ROC. For the 4-scans in vitro data, three pairs of training and testing sets
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A B C

Figure 6.4: Spot detection examples: (a) true detection, (b) false negative, (c) false alarm.

are formed such that the naive scan always remains in the testing set accompanied by every other

scan once. We implement the prior work of [92] and [16] and use them as the baselines, since

they are the most relevant examples of MRI cell detection using learning-based and rule-based

methods. We experimentally determine ζ = 2, τ = 9, h varies from 200−2000 and q from 20−60

depending on the size of brain regions.

6.1.2.2 Performance and comparison

As shown in Fig. 6.3 (a,b), the proposed method outperforms two baselines with an average AUC

of 98.9% (in vitro) and 89.1% (in vivo). The improvement margin is especially larger at lower

FPRs, which are the main operation points in practice. Further, Fig. 6.3(c) shows that with in

vivo data, by using ferns instead of superferns or by making no partitions of the brain region, we

observe a decrease in performance to 85.3% and 87.1%, respectively.

Fig. 6.4 shows three types of spot detection results with our method. Each column represents

two consecutive slices of one spot. The appearance and shape variations among the spots clearly

show the challenge of this problem.

6.1.2.3 Superferns vs. ferns

To further illustrate the strength of the novel superferns feature, we compare the discriminating

potential of superferns with ferns, regardless the classifier design. Information gain is a standard

tool to measure the worth of a feature, where a higher gain indicates its higher discriminating
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Figure 6.6: Classifier diversity analysis

potential. Given a set of 50 randomly generated offsets oi, we calculate their superferns features

on the in vitro training data including both spots and nonspots, which allows us to compute the

information gains As of each offset or superfearn. The same offsets are applied to the ferns features

and results in their information gains A f . Then we compute the ratio of two information gain, As(i)
A f (i)

,

for oi, and collectively their cumulative density function (CDF) is shown in Fig. 6.5. Using 100

random offsets, the same experiment is repeated for the in vivo data. The fact that almost all ratios

are larger than 1 shows the superiority of superferns.

6.1.2.4 Diversity analysis

Our classification framework includes an ensemble of classifiers, one for each partition. Since

diverse discriminative features are utilized in different partitions, learning on disjoint partitions

should favor high diversities among classifiers, which is an strong indicator for effective classifi-

cation. To evaluate the diversity of our classifier ensemble, we use the standard Cohen’s kappa

value as [93], which ranges from 0 to 1, with a lower value indicating a higher diversity. For each

of six in vivo training sets, we compute N0(N0−1)
2 kappa values, each between a pair of classifiers

learned on different partitions. Fig 6.6 shows their mean and standard deviation for each training

set. Based on the study in [93], we consider our kappa values to be very low, indicating the high
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diversity in our learned ensemble.
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6.2 CNN ranking with intuitive approach

This section provides supplementary information on the experiments and results of the intuitive

approach for CNN ranking which was proposed in Chap. 4.

6.2.1 Experimental setup

6.2.1.1 Target task

Since many medical applications specifically suffer from the lack of large scale annotated data,

in this study, an existing, real world MRI database [18] was utilized as a target task. In this

thesis, this set is denoted by GA. This database has three different sets of labeled MRI scans

pertaining to rat brains. The injected stem cells appear as dark spots in these images. From each

scan about 100,000 non-spot patches and 5000 spot patches were extracted as mentioned before.

These patches were obtained directly from the authors in [18]. In the experiments below, all

patches from a single scan (single set) were used for training and the patches from the remaining

two scans were independently utilized for testing, generating a total of 6 testing scenarios. In

all the experiments, the Area Under the Curve (AUC) was utilized for summarizing classification

accuracy.

6.2.1.2 Source task

The focus of this study is to rank a set of given source tasks in order to determine their transferabil-

ity for a fixed target task. Therefore, 25 diverse source tasks were arbitrarily designed using the

publicly available, standard ImageNet database. Fourteen of these were binary classification tasks,

while the number of classes ranged from 5 to 20 for the remaining source tasks. Note that the goal

here is to be agnostic to the data characteristics of a source and only utilize the weights learned by
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Figure 6.7: Transforming source images to 9×9. Transformed, average images for different enti-
ties are shown here.

the source CNN to assess its transferability to the target domain.

In the following sections, experiments are designed to study the following questions: (1) How

well does the proposed approach rank the sources from best to worst? (2) What is the difference

in performance when the best ranked source is used for transfer learning in comparison to the

worst ranked source? (3) What is the gain in classification accuracy when results are compared

against a CNN without any transfer learning? (4) How does the size of the target training data

impact the performance gain? (5) What role does the choice of layers, that are transplanted, have

on transfer learning?(6) Does the information fusion of sources provide robustness against ranking

errors? (7) Can the negative impact of transfer learning be predicted in advance, based on the

source task’s ranking score? (8) What does the ranking score of a source task tell us about its data

characteristics?

6.2.2 Results and discussion

6.2.2.1 Impact of size of target training set

In this experiment, we compare the following: (1) The performance of transfer learning when

using the source that was ranked the best against the source that was ranked worst by the proposed
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Figure 6.8: Source entities and their corresponding transformed average images.

source ranking approach. (2) Performance of best and worst ranked against a baseline CNN that

was only trained using target training data X with no transfer learning. (3) Performance of the

aforementioned CNNs when using a different proportion of target training data. Training was

accomplished with 12 different percentage values that ranged from 5% to 60% of the training set

in increments of 5. Fig. 6.9 shows the results on three different testing scenarios. Fig. 6.9(left)

indicates a performance gain of about ∼ 35% with respect to the baseline when only 5% of the

target training data is used! We further observe that the performance gain is more significant when

the training data is small in size which is precisely the scenario envisioned in this study.
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Figure 6.9: Comparison of empirical results on three of the six testing scenarios. Note the per-
formance gain on datasets with smaller amounts of training data and the efficacy of the ranking
metric.

6.2.2.2 Correlation between source ranking and performance gain

In Fig. 6.10 (A), the x-axis represents the ranking score of a source task that is computed using

the proposed approach, with the top-ranked source having the largest value. The y-axis shows the

normalized sum of the overall performance gain achieved by using that source in all the afore-

mentioned 12×6 scenarios (12 different sized training sets, 6 test scenarios). This figure (6.10A)

depicts the overall correlation, when utilizing training set sizes ranging from 5% to 60%. How-

ever, it is observed that such a correlation is significantly high when the size of the target training

data is small, as can be seen in Fig. 6.10 (B,C,D,E). Performance gain is measured in terms of the

difference between the Area Under the Curve (AUC) values. Since the criterion was specifically

designed for small target training sets, this result is desired. From (F to I) in Fig. 6.10, the training

data size increases and it can be seen that performance gain begins to decrease as the target training

data is now sufficient for the spot detection problem.

6.2.2.3 Layers to be transferred

Fig. 6.11(A) denotes the classification accuracy when (a) only the most general layer (weights

from the first convolutional layer only) is transferred from the source CNNs, and (b) all three
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Figure 6.10: Correlation between ranking score and performance gain.

convolutional layers are transferred from the best ranked source. The shaded region represents

the area between the curves plotted when only 1 layer was transferred from all 25 source CNNs

(indicated by L1). Experimental results on all 6 testing scenarios clearly show that for sources

with higher ranking scores, transferring all layers result in superior performance. For example,

Fig. 6.11(A) shows that the shaded region lies completely under the best ranked source when all

three layers of the source CNNs are transferred. In the future, we would like to utilize the ranking

scores to determine the number of layers that can be transferred.
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Figure 6.11: (A) Performance gain analysis w.r.t transferring layers. L1 indicates that only 1
convolutional layer was transferred and L3 that all 3 convolutional layers were transfered. The red
regions shows the area spanned by 20 different sources, while the black line shows only the best
ranked source out of 25. (B) Benefit of information fusion. (C) Correlation of ranking score with
number of classes.

6.2.2.4 Benefit of information fusion

Transfer learning can involve transferring information from multiple source CNNs, Z, simultane-

ously, rather than from a single CNN only. Let two source CNNs be Ni and N j, respectively. Let Nti

and Nt j, respectively, be the updated CNNs after transfer learning. The CNNs are updated using
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the training data, from the target task. The output of each CNN is the set of probabilities indicating

the posterior probability that the given input belongs to a particular class (label). Consider a test

sample s. Then, each CNN will predict the class labels of the input data differently, the respective

probabilities can be denoted as P(s|Nti) and P(s|Nt j), respectively. These two expressions can be

combined as:

P(s) = ζiP(s|Nti)+ζ jP(s|Nt j). (6.2)

Using the ranking scores, the weights can be computed as:

ζi =
Ei

Ei +E j
, ζ j =

E j

Ei +E j
. (6.3)

For d sources, this approach can be extended such that ∑
d
k=1 ζk = 1.

Fig. 6.11(B) shows that the fusion approach can overcome any potential errors in ranking the

sources. The shaded region displays the area between the top-3 ranked source CNNs. The result

of the fused performance is plotted as a line which clearly stays near the top of this area. In cases,

where ‘poor’ sources are ranked higher, using a fusion approach can prove to be more reliable.
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Chapter 7

Conclusion

This work presented the first comprehensive study on learning based, automated spot detection

and quantification in MRI. This work highlighted and addressed a number of challenges in this

context. To utilize intelligent machine learning and computer vision approaches, the first annotated

MRI database was developed for spot detection. An extensive study was conducted by designing a

diverse set of learning based approaches which were evaluated using both in vitro and in vivo MRI

scans. Evaluation was also performed against a known number of spots in in vitro MRI scans.

The impact of resolution change in MRI was also studied. Further, in many medical applications

such as this, it is challenging to collect a large volume of annotated data. In this study, we also

investigated how accurate convolutional neural network architectures can be learned using transfer

learning schemes despite using very limited training data. In fact, more than 35% improvement in

accuracy was observed when training was conducted only with 5% of the available training data.

In this context, a theoretical framework was also presented which can be also generalized to other

related tasks. In addition, we also demonstrate that the labeling process of a medical expert can be

incorporated into the classification framework.

It is important to note that MRI-based cell tracking has remained largely phenomenological for

its history, starting in the late 80’s. Moving forward, automated spot detection for MRI-based cell

tracking would prove useful across a broad spectrum of research tracks. For example, Walczak

et al, infused neural stem cells via the carotid artery in an effort to target stroke lesions [94].

High resolution in vivo and in vitro MRI appear to show small clusters of cells, perhaps even
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single cells, distributed in the brain as a function of the intervention. Only qualitative analysis was

performed on this imaging data; automated spot detection would have enabled quantitative metrics

of cell numbers. Another application would be for the evaluation of transplanted islets encapsulated

with iron oxide nanoparticles within alginate microspheres. These imaging features, typically are

individual hypointensities, examples being [95] and [96]. In both cases, only qualitative or semi-

quantitative data were compiled, without a direct enumeration of transplanted and surviving grafts.

A last example would be for enumeration of kidney glomeruli in conjunction with the use of

cationized ferritin as a contrast agent [97].

The general use of MRI-based cell tracking and this specific approach to quantifying this data

has some limitations. Still, MRI of magnetically labeled cells only detects the iron, not the cell

itself, and this method is still unable to distinguish live cells from dead cells. Further, if more

than one cell generates a particular spot in the MRI, then the calculated cell number would be

inaccurate. In this work, only 67% of spots were resultant from individual cells, the other 33%

from 2 or 3 cells. It remains an open question as to how accurate an automated spot detection

algorithm for MRI-based cell tracking needs to be in order to provide useful clinical information.

However, we do not feel that heterogeneous magnetic cell labeling is a significant problem. Indeed,

cells with more internalized iron would have darker and larger spots on MRI, while cells with less

internalized iron would have lighter and smaller spots. However, our automated quantification

algorithm can account for differences in spot size and intensity to compensate for heterogeneous

cell labeling.

For future work, several different studies have been suggested at the end of Chap. 4 and Chap. 5.

In addition to these, it will be interesting to explore the efficacy of the proposed approach using

the ground truth obtained with histology. Such a ground truth can also be utilized to evaluate the

labeling performance of a medical expert. Another interesting direction would be to utilize a hier-
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archical classification approach where the different classifiers are exploited in multiple layers. A

classifier in each layer can reject some of the spot candidates and transfer the other candidates to

the next layer. This will allow classifiers in deeper layers to specialize in detecting highly challeng-

ing spot candidates. Further, obtaining high resolution MRI can be time-consuming. Therefore,

another interesting direction of research would be to explore CNN architectures that can perform

accurate mapping of low resolution MRI to a higher resolution.
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