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ABSTRACT

ON THE HOMOLOGY OF LOCAL COHEN-MACAULAY RINGS

By

Alan B, Evans

Let (A,m,k) be a local Noetherian ring. The

. 4 . . .
Poincare series of A 1is the formal power series

P];(z) = 12=30 dimk(Tor?(k,k))zi.

A well-known conjecture is that Qi(z) is a rational

function of =z.

In this paper, several formulas giving 3§ are
derived in the case of A Cohen-Macaulay, that is
dimension(A) = dgpth(A). The embedding dimension of
a Cohen-Macaulay ring A is less than or equal to
e(A) +dim(A) -1, where e(A) is the multiplicity. When

equality holds, Pi is shown to be rational in Chapter I.

A perfect ideal I of A is an almost complete
intersection when I is minimally generated by grade(I)
+ 1 elements. In Chapter II, the homology of the Koszul
complex of a regular local ring modulo certain almost
complete intersections of grade three is computed. From

this, a formula for P is obtained. Furthermore, if I

>R
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is a perfect ideal of the regular local ring A such
that I/I2 has a free direct summand (as A/I-module) of

rank equal to grade(I) + 2, PX/I is computed.

In the last chapter, examples are given which show
that a composition of Golod homomorphisms need not be a
Golod homomorphism and that it does not seem possible to
characterize the class of Cohen-Macaulay rings using the

deviations, ei(A).
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CHAPTER O

INTRODUCTION

Let (A,m,k) be a local (Noetherian) ring with
maximal ideal m and residue field k = A/m, and let

M be a finite A-module. A projective resolution of

M over A 1is a (perhaps infinite) exact sequence of
finite projective A-modules

di+1 dl
(1) e Piy  ? P, #...> P, * Py~ M-~ O.

See [9], pP.75. M 1is said to have projective dimension

n over A if there is a projective resolution

n 1
(2) o -~ Pn + P +...” P -+ PO - M2 O

of length n, but none shorter. The projective dimension
of M 1is infinite if no finite resolution existé. Since
A is local, the modules Pi' may be assumed free [33],
3.G. Moreover, k serves as a test module for the pro-
jective dimension of M over A (abbreviated hereafter
as pdA(M)). Precisely pdA(M) < n if and only if
Torﬁ+l(M,k) = O, where Tor?(M,k), the ith left derived
functor of ® [8], p.l07, is computed as the ith homology

of the complex obtained by tensoring the resolution (1)

with k.



A free resolution of M

di1 d,
(3) .o Fi+l -+ Fi ».,. . Fl - Fo + M+ O

~

is minimal if di(Fi) cmF, ; for i > 1. In this case,

Tor?(M,k) = F, ® k [33], 18.E. It can be proved that
a minimal resolution always exists [33], Ex. 3, p.113. As
a consequence, each Tor?(M,k) is a finite vector space

over k. The ith Betti number of M is defined then to

be b. = dimk(Tor?(M,k)). The formal power series

i
M < i
PA(z) = 2 bizl is known as the Poincaré series of M.
i=0
With this notation, pdA(M) < @ if and only if Eg(z) is
a polynomial. It has been conjectured that Pg is in fact

a rational function of 2z for all M.

The homological properties of the ring A are
connected with problems in geometry. The dimension of A
is the length of the largest proper chain of prime ideals
m=9p,2p, g 2-2p; 2pg [33], p.71. A is called a
reqular local ring if m can be generated by elements
XqyseoesXgs where d = dimension of A. Regular local rings
correspond roughly to non-singular points on an algebraic
variety [34], p.343. For a local ring (A,m,k) of dimen-
sion n, the following are equivalent

(a) A 1is regular

(b) pdy(k) =n

(c) pdA(M) < n for all finite M

(a) p¥

A is a polynomial



(e) Pi(z) = (l4—z)n.

[33], Theorems 41, 42 and 45.

Closest to regular local rings from a homological
standpoint are the complete intersections. A sequence
of elements xl,...,xr € m are a regular sedquence if for

).

1<{igr, x; is not a zero-divisor on A/(xl'°"'xi-l

A local complete intersection is a local ring which can

be written as a homomorphic image of a regular local ring
modulo a regular sequence. The homological characteriza-
tion is

(a) A a complete intersection

if and only if
n
(b) P:(z) = (l+z) n,m > O integers.

(1-25)"
See [46]. Most progress on the problem of the rationality
of P§ since Tate's paper [46] has been based on the

elegant result of Golod [20]. There, the Poincare series
is related to homology operations on H(K) known as Massey
products. K denotes the Koszul complex over A, whose
underlying graded algebra is the exterior algebra on a
minimal generating set for m [33], 18.D. Regular local
rings and complete intersections may also be classified
using the Koszul complex. Namely, A 1is regular if and
only if Hl(K) = O [24], Theorem 1.4.13 and A 1is a com-
plete intersection if and only if H(K) is the exterior

algebra over Hl(K) [24], Theorem 3.5.2.



Of frequent use is the fact that P: has a

(unigque) representation as an infinite product

. €.
k _ ® (l-+221+l) 2i
PA(Z) = . €., . .
i=0 (l-221+2) 2i+1
This was first proved by Assmus using the Hopf algebra
structure on TorA(k,k) [2] . The exponents €; = ei(A)

are non-negative integers and are called the deviations

of A. It turns out that eo(A) = dimk(m/mz), the so-

called embedding dimension. Also, if A is a homomorphic

image of a regular local ring (R,n), with A = RAl and
2 e .

# < n”, then el(A) = dlmk(M/hM) = dlmk(Hl(K)), where

K 1is the Koszul complex [24], Lemma 1.4.15 and Prop. 3.3.4.

The general rationality problem for an A-module M
has been reduced to the case M =k, A of dimension zero

by Ghione and Gulliksen [19].

In the present paper, three formulas for Pi are

obtained. The results deal with local rings which are

Cohen-Macaulay, a concept which will be explained shortly.

Suppose M 1is a finite A-module. Then KpoeoosXy €m

form a reqular sequence on M if for 1 i r, Xy is

not a zero-divisor on M/(le+u..4-xi_lM). The depth of
M, written depthA(M), is the length of the longest

regular sequence on M [33], 15.C. The dimension of M
is the dimension of the ring A/ann(M), where ann(M) =

{x € A|xM = 0} is the annihilator of M. In general, the

depth of M is at most equal to the dimension of M [33],



Theorem 27, and M 1is defined to be Cohen-Macaulay when

depth(M) = dimension(M). A itself is a Cohen-Macaulay

ring if it is Cohen-Macaulay as A-module [33], 16.A. The
hierarchy of the types of local rings introduced thus

far is

regular =» complete intersection = Cohen-Macaulay.

The notation used is standard. The minimal number of
generators of the finite A-module M will be denoted by
u(M)., If q € m is an open ideal (m" c q for some n),
then e(A,q) = the multiplicity (48], p.294 of q, with
e(A) short for e(A,m). Let qA(M) = dimension of M
and d(A) = dimension of A itself. For an ideal I < m,
let ht(I) be the height of I, the infimum of the lengths
of saturated chains of prime ideals Ppn 2 Ppg 22 Poe
P, 2 minimal prime containing I [33], p.71. If N is
an A-module of finite length [3], p.77, then &(N) = length

of N.

For an ideal I < m, the grade of I is the length
of the longest regular sequence on A which is contained
in I. Given any ideal, grade(I)  ht(I), with equality
whenever A is Cohen-Macaulay [18], 11.15, Later, a
distinction will be made between the grade of I and
depthA(I), the depth of I as A-module. See [18], 21.7.

Finally, a system of parameters for A is a sequence

XyseeesXgo d = d(A), of elements from m such that

m" c (xl,...,xd) for some n. An alternate characterization



of the Cohen-Macaulay property is the requirement that
every system of parameters for A form a regular sequence

(18], 11.15.

When the superscript is omitted, Py will be under-

stood to mean P‘]Zt, and will be called the Poincare series

of A.



CHAPTER I
COHEN-MACAULAY RINGS OF
MAXIMAL EMBEDDING DIMENSION
Let (A,m,k) be a local, Cohen-Macaulay ring. Under
the assumption that k is infinite, Abhyankar showed
that eO(A) L e(A)+d(A) -1 [1l]. This restriction on
k is not important for the study of the Poincare series.

*
Define A = A([X] the localization of the polynomial

m[X]’
ring over A in one variable at the prime ideal m[X] =
i *

(f = Z}aixl]ai € m}. By passing from A to A , the

i
residue field may be assumed infinite ([38], Ch. IV. From
[24], Prop. 1.9.8 and Lemma 3.1.2, it follows that

* . *
ei(A ) = ei(A) for i > 1, and eO(A ) = eO(A), by a
result of Lech [29], Lemma 2, p.75. Thus from the

infinite product representation, PA =P ..

Now, eo(A) = e(A) +d(A) -1 if and only if

170Xy €m, d= d(A)

[41], Theorem 1. In the case d =1, m is said to be

(xl,...,xd)m = m2 for some x

stable [31], and the rationality of the Poincar€ series
has been established in [13]. The following is an ex-

tension of this result to higher dimensions.



Theorem 1.1. Let (A,m,k) be a local Cohen-

Macaulay ring of dimension d > 1 with eO(A) = e(A) +
d(A) -1. Then

b (z) = —(1+2)9

A l-(eo(A)-d)z :

Proof: As mentioned earlier, the case of interest
is d > 2. Assume (xl,...,xd)m = mz. First, note that

RyreeosXy form a system of parameters for A, Dbecause

Voo m = /I 0xy) n /m
=\/(xl,...,xd) =\/41-2-= m

[3], p.9. Next, at least one of the X; must lie in m\mz.

Otherwise, m3 =) (xl,...,xd)m = mz, contradicting Krull's
intersection theorem [33], Cor. 2, p.69. Now, for
1Ligd-1, the dimension of A/(xl,...,xi) is d-1
[33], 12.K. Moreover, (§i+l,...,§d)ﬁ = (m)%, where the
bar denotes the residue class in A/(xl,...,xi). Because
XqreeerXy form a regular sequence [18], 11.15,
A/(xl,...,xi) is again Cohen-Macaulay [33], p.104. By

induction on 4, x lies in fﬁ\(fﬁ)z, hence

i+1
2 . .
X1 € m\m~-, Therefore all of xl,...,xd lie outside
Let A = A/(X5s.00sXgq). Then (}?l)r_n = (E\)Z, so
that m is stable. Because Xys..0,Xy form a regular

sequence in m\mz, PA(z) = (l+z)d-l P (z) [24], Cor.

3.4.2. But since m is stable, P_(z) l+f [131.
A 1-(ey(A)-1)z

n i






Furthermore, reducing modulo each X5 decreases the
embedding dimension by one. To see this, note that

Xysee0sXyq can be extended to a minimal generating set

d n
for m. Suppose that 2 c.X, = 2 y.z. € m?. Since
S iTi ._ ji
i=1 j=1
5 d
(xl,...,xd)m = m°, ‘Z) c X, = _Z) wi;X, with w, €m.
i=1 i=1
If some c, £m, then from x.(c,-w.,) = 2, w.X. it
i itTi i 51 33
follows that
c.X (l-c—lw ) = ¥ w.x and so
iTi i i . 375’
j#i
-1 -1 -1
X, =c. (l=-c. w.) > w.X. ,
i i i Vi S~
j# 7 d
contradicting the fact that XqveeorXy form a regular

L4

sequence. Thus <y cem for i=1,...,4 and
XyreeerXy remain linear independent in m/mz. Then for
. 2 .
i=1,...,d, x; £ m”~ modulo (xl,...,xi_l). Now using
(18], 1.32 d-1 times, eo(i) = eO(A)-(d-l). Hence

d
_ (lL+2)
Pplz) = l-—(eO(A)-d)Z !

as claimed.

Remark 1.2.1. A is Cohen-Macaulay if and only if

*
A is Cohen-Macaulay [l11l], Theorem 2. Moreover, the
dimension and multiplicity are invariant under the

*
passage from A to A [32], Prop. p.277. As noted
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* *
earlier, eO(A) = eO(A ), so A has maximal embedding

dimension whenever A does.

Remark 1.2.2. If eO(A) = e(A)+d(A) -1, with
eO(A)-d(A) > 2, then A is not a complete intersection,

. . . . . ’ .
as is easily seen by comparing P with the Poincare series

A
2n
(l«-; m of a complete intersection.
(1-27)

Before proceeding, a brief review of projective
varieties is in order. Let Xk be an algebraically closed

field of characteristic zero. Projective m-space over Xk,

written Dfn, is defined to be the set of all points
(Xo,xl,...,xm) # (0,0,...,O), Xi e k' mOdUlO the equiva-
lence relation (xo,xl,...,xm) ~ (kxo,xxl,....kxm),

A € kX \{0}. A projective variety in " is the locus

k
of zeros of a finite set of homogeneous polynomials

fl,...,fr €S = k[xo,xl,...,xm] such that £ £

ll..o'r

generate a prime ideal in S. Associated to each projective

variety X < Dﬂz is its homogeneous coordinate ring,

S/I(X), where I(X) consists of all forms in S which
vanish identically on X, An ideal I of S 1is graded

if I can be generated by forms. Then projective sub-
varieties of X correspond to graded prime ideals containing
I(X), with the exception of the irrelevant maximal ideal
(XO,Xl,...,Xm), which contains every graded ideal. If

one ignores the grading and considers the locus of zeros

m+1

of I(X) in affine m+ 1 space 43( , one has the cone

associated to X, C(X). C(X) 1is an affine variety
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through the origin in A{?l which has dimension one
greater than the dimension of X. Furthermore, many
geometric properties of the vertex of C(X) are closely

linked to the geometry of X Dback in :EE.

Conversely, if R 1is a graded k-algebra of finite
type, there is a geometric object Proj(R) associated
with R [25], p.76. In case R is the homogeneous

coordinate domain of a projective variety X, then

Proj(R) = X,

Let R =@ Ri be the homogeneous coordinate domain
i>0
of a variety X of dimension d contained in nﬁg.

there is a polynomial P, of degree d with rational

Then

coefficients called the Hilbert polynomial of X such

that Px(n) = dlmk(Rn) for sufficiently large n. The

degree of X, written deg(X), 1is d! times the leading
coefficient of Px(n) [35], 6.25. The integer deg(X)
tells the number of points in which "most" linear subspaces
Lc ]%2 of dimension m-d meet X [35], Theorem 5.1.

At the lower end, p,(X) = (-1)%(R(0) -1) 1is called the

arithmetic genus of X and is an important geometric

invariant [35], p.1l1l5.

Now, in order to produce a Cohen-Macaulay ring of
maximal embedding dimension, the following fact will be

useful.
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Lemma 1.3. Let X < :IP]H(l be a projective variety

of dimension d over an algebraically closed field %k of
characteristic zero. Let (A,m,k) be the local ring at

the vertex of the cone C(X). That is, A 1is the localiza-
tion of the coordinate ring of X at its maximal ideal

(XO,X X ). Then e(A) = deg(X).

l"..,m

Proof: Let R be the homogeneous coordinate ring
of X. Let Px(n) be the Hilbert polynomial of X and

let RA(n) be the characteristic polynomial of A [48],

Ch. VIII. Consider Grm(A) = @ ml/ml+l, the associated
i>0

graded ring of A [33], 10.C. Since A 1is already graded,

Grm(A) = R, or geometrically, Proj(Grm(A)) = X. There-

fore, Px(n) = dimk(mp/mn+l) for large n. By definition,

n . .
P, (n) = _20 din1]<(ml/ml+1)
i=

for large n [48], Ch. VIII,
Theorem 19, Therefore, Px(ni-l) = PA(n+-l)-PA(n) for
sufficiently large n. But PA(n+-l)-3A(n) = PA(n)i-Ql(n),
where PA is the formal derivative of P, with respect

to n and Ql(n) is a polynomial of degree less than
deg(PA)-l. This means that PA(n) is the indefinite inte-

gral of Px(n), plus a polynomial Q(n) such that

d+1
_ e(A)n
deg(Q) < deg(PA). Now PA(n) = T (@+ 1" plus terms of
lower degree [48], Ch. VIII, §10, and Px(n) = B_Q%$i§l
plus terms of lower degree'[35], 6.25. Therefore,
d+1 d

2%%%?177 = f E—§§$i§l, the indefinite integral with respect

* : d+1
to n, which of course equals n(d4?§?$X) . Hence

e(A) = deg(X).
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Example 1.4. Let Y be the curve in IP2 defined

Oxl = Xg. sz is covered by affine

by the equation X
open sets Dy = {xo # 0}, D, = {xl # 0}, D, = {x2 # 0}
[35], 2A, on which the equations of Y are

X X X X X X
1 2 0 2,2 0 1 .
X = (==)", X = (i_) , and (i—)(i-) = 1, respectively.

(0] (o] 1 1 2 2
Therefore, Y is smooth by the Jacobian criterion [25],

p.31l. Consider the Segre’ embedding X = S(Y X IPl) <

s(p’x ®Y) ¢ @

(see [35], 2B). Since Y is rational,
{44], p.6, and since the arithmetic genus is a birational
invariant [25], III, Ex. 5.3, p,(Y) = pa(JPl) = 0., [25],
I, Ex. 7.2, So the Hilbert polynémials are PY(n) = 2n+ 1,
%ml (n) = n+1l. By a theorem of Seidenberg, Px(n) =
RY(n)'.gml (n) = 2n24-3n+-l [42], Theorem 2. Thus deg(X)
= 4 [35], 6.25. Furthermore, X 1is arithmetically Cohen-
Macaulay [45], Cor. on p.374. That is, (A,m), the local
ring at the vertex of the cone on X, is Cohen-Macaulay.
A 1is then a Cohen-Macaulay ring of dimension three and
embedding dimension six whose multiplicity is four, by
Lemma 1.4. Therefore PA(z) =-L%{%%%— . by Theorem 1.1.

A does not seem to fit any previously known criteria for

rationality.

Suppose (A,m,k) 1is a local ring. Then there is a
natural ring homomorphism from 2, the ring of integers,
to A which sends 1 to 1. The generator of the kernel

of this map is called the characteristic of A. A is said

to be equicharacteristic if char(A) = char(k). Let A Dbe
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an equicharacteristic zero, Cohen-Macaulay local ring
of dimension one. Two conditions which are known to imply
the stability of m are

(1) A saturated [31], Cor. 5.3
and (2) A seminormal [12], Theorem 1.
For higher dimensions, neither imply that A has maximal
embedding dimension. In fact, the stronger hypothesis of

normality does not suffice.

Example 1.5. Let k be a field, for simplicity

algebraically closed of characteristic zero. Let {Xij},
i=1l,i0e,8; J=1,...,r with s < r, Dbe indeterminants
and let R = k[[xij}]. Define I to be the ideal

generated by thé s X s minors of (Xij) and let m be

the ideal of S = R/I generated by the cosets {Xij-+I}.

Let U={}'cij}, i> 3 v={>'<ij}, i< s-r+3;
W= {iij';il+k,j+k}' j = 1,.;.,r-s-+l, k=1,...,s -1,
It is known that Sm is a Cohen-Macaulay [14], normal
[27], Cor. 3, p.1024, local ring. Moreover, Eagon has

shown that X = UU VUMW 1is a system of parameters for

S In fact, if Q is the ideal of S generated by X,

k[Y 'ooo'Y ]
(*) (s/Q) = —= Losti
(Y.,e000Y )
1 r-s+1
where the Yi are new indeterminants [14]. Therefore,
n
s S  _
(m+S )” €Q-8 . Suppose that Xiy= ?;& t,z, for

Xij £ X, with Zy € X, ty € Sm’ The ideal I 1is graded,

so S inherits a graded structure. Explicitly, if
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s n
t, = -—1'-, u, € S\m, letting u= 1 u and clearing
L u £ 2

) n =1

. =S — Vd . ’
denominators, uxij = ;fl (uzsz)zz, with uy € S\m. But
}-(ij € m°, therefore each u;sl € ms-l, since the elements
of X are all linear. Thus S, € mS°1 for £ =1,...,n.
Hence t!, € (m- Sm)s-l, £=1,...,n, which implies

S s-1 s-1

(m - Sm) c Q- Sm) (m Sm) . Clearly (Q Sm) (m . Sm)
s s _ s-1

cm.s)”, so (m-S)” =(Q-8)(m.S_ ) . In other
words, Q - Sm is a reduction of m- Sm' which entails that
e(Sm,Q . Sm) = e(Sm) [39], Theorem 5. But since Q - Sm is
generated by a regular sequence, e(Sm,Q . Sm) = 4((S/Q)m)
(48], VIII, Theorem 23 and [33], Theorem 32. The isomorphism

(*) yields then that

e(s_.Q- Sm) = 4((s5/Q)m)
s-1
= 2, (the number of monomials of
p=1 degree p in r-s+ 1 variables)
_ sil (p+ (r=-s+1) —l)
p=1. (r-s+1)-1
s-1
=z FrI %)
p=1
Now, eo(sm) = rs, dim(Sm) = rs-r+s-1, so Abhyankar's
scl +r-s
inequality becomes rs { rs-r+s-2 + 2 (pr—s ). An
s-1 p=1
easy computation shows that 2 (p+rr_—ss) > (s-1)(r-s+1),

p=1
with strict inequality for s > 3. Thus e(Sm) is too

large for Sm to have maximal embedding dimension. Notice

also that the Poincare series of Sm can be computed
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directly using [5], Theorem 6.7 and a comparison with the

formula of Theorem 1.1 above yields the same conclusion.

A local ring (A,m,k) 1is said to be Gorenstein if A

is Cohen-Macaulay and if every ideal I generated by a

system of parameters is irreducible. That is I = Jl n J2

implies Jy=1 or J,=1I., If A= R/M with R regular,

a more tractable characterization of Gorenstein rings is

the requirement that A be Cohen-Macaulay and

Extp(A,R) = A [5], Definition 8.1, where r = d(R)-d(a).
Equivalently, dimk(Extg(k,A)) =1, where 4 = d(A) [26],
p.13. The Example 1.5 is not Gorenstein [1l4]. However, no
conditions that ever imply Gorenstein can imply eO(A) =
e(A) +d(A) -1. Because, by Serre'é codimension two argument
[43], Prop. 5, an ideal I of height two in a regular local
ring R such that R/I 1is Gorenstein must be generated

by a regular sequence. In other words, R/I 1is a complete
intersection, and by Remark 1.2.2 above, local rings of
maximal embedding dimension are not complete intersections
when the regularity defect, eO(A)-d(A) is greater than

or equal to two. In particular, the Cohen-Macaulay property
together with unique factorization does not imply A has
maximal embedding dimension, because such rings which are

quotients of regular local rings are indeed Gorenstein [36].

Let I Dbe an ideal of the local ring A. An inequality
due to Rees states that grade(I) ( pdA(A/I) [33], 24.2.

When equality holds, I 1is said to be perfect. If A is
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assumed regular, then I is perfect if and only if A/I is
Cohen-Macaulay [18], 24.8. I (also A/I) is called an

almost complete intersection if u(I) = grade(I).

As a final addition to the preceding remarks, it is

possible to prove

Theorem 1.7. Let (A,m,k) Dbe regular of dimension
d >4, with I g_mz perfect of height two such that
eo(ﬁ) = e(A)+d(A) -1, where A =A/I. Then A is an

almost complete intersection.

Proof: I perfect of height two means that pdA(K) = 2,
so pd,(I) = pdA(zK) -1=1 [18], 18.1. As noted earlier,
A is not a complete intersection. Therefore, P_(z) =
A
PA(Z) (1+z)d

= , Wwhere r =
l-rzz-(r-l)z3 l-rzz—(r--l)z3

dim H (K(A)) = u(I), with K(A) the Koszul complex over A
1 d-2

[5], Theorem 7.1. But by Theorem 1.1, P (z) = iéi?£%—-— .
A - <42

Thus (l-kz)z(l-ZZ) = l--rzz--(r--l)z3 and so r = 3. That

is, A 1is an almost complete intersection.

Remark. As is well known, almost complete intersections

are not Gorenstein [28].




CHAPTER II
TWO CHANGE OF RINGS THEOREMS FOR
PERFECT IDEALS OF GRADE THREE
Suppose (A,m,k) is a regular local ring, I an
ideal of A. Then A/I is Cohen-Macaulay if and only
if I 1is perfect, that is grade(I) = pdA(A/I). Perfect

ideals of grade one are of course well understood, since

they are free [18], 18.1], and being of height one must be
principal. Perfect ideals of grade two were classified

by Burch [8], and found to be determinental. Recently,
structure theorems for perfect ideals of grade three

which are either Gorenstein or almost complete intersections
have been proven by Buchsbaum and Eisenbud [7]. Using the
Buchsbaum-Eisenbud structure theorems, Avramov has been
able to obtain a formula for the Poincare series of A/I,

I a Gorenstein ideal of grade three [5]. (A perfect ideal

is said to be Gorenstein when A/I 1is a Gorenstein ring).

Very little is known about the structure of perfect ideals

of grade > 4, and this remains an active area of research.

In this chapter, two change of rings formulas for the
Poincare series of a regular local ring modulo a perfect

ideal are obtained. The first is for certain almost complete

18
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intersections of grade three and is based on the character-
ization of such ideals by Buchsbaum and Eisenbud [7]. The
second formula concerns perfect ideals of height > 3

satisfying a regularity condition on the ¢onormal module.

The standard definition of an almost complete inter-
section does not require the ideal to be perfect. An ideal

Icm with ht(I) = grade(I) = r is an almost complete

intersection if u(I) = r+ 1. However, for the purposes of

this paper, almost complete intersections, (ACI for short),
are assumed perfect. Also, it is assumed that I C m2. Let
Ic m2 be an ACI of grade three. Then I = ((xl,xz,x3) : J),
where J = (Yl'°"’yn) is a Gorenstein ideal of grade

three and Xy 0¥ X € J form a maximal regular sequence

3
in J [7], Theorem 5.3, For brevity, put x = (xl‘XZ'XB)‘
The generators of J are given generically as the Pfaffians

of alternating matrices and there is a generic free resolu-

tion of A/J over A [5], 8.3 and [7], Section 3.

Precisely, there exists an nxn alternating matrix g

with entries zij € m such that
d d d

3 n 2 n 1
P:0-»A -» A - A -'A-’A/J-’O
. . . . t i+l
with differential defined by dl = d3 = (oee,(=1) Pfi(g),...),

d2 = g, furnishes a minimal A-free resolution of A/J.
Here Pfi(g) =y, denotes the Pfaffian of the (n-1)x (n-1)
alternating matrix obtained from g by deleting the ith row

and ith column. In addition, P admits a commutative,
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associative algebra structure compatible with 4 [5], 8.4.

Let Li' i=1,...,n, Mi' i=1,...,n and N be

bases for Pl,P2 and P3 respectively. The multiplication
n
on P is LiLj = ;El oijkpfijk(g)Mk. LiMj = MjLi = éijN.

where for i,j,kx € {1,...,n}, o,

i3k denotes the sign of

the permutation (i,3j,k,{l,...,n}\{i,3j,k}) and Pfijk
is obtained by deleting rows and columns 1i,j,k from g.

Iet K:0~+ K,* K, * K, » A=+ A/x+ O be the Koszul

3 2 1
resolution of A/x, and write dK for the differential on
K, dP for the differential on P, Then Kl = ATl @ AT2 ® AT3.
with dK(Ti) = X;. Since x < I, there exist xl,xz,x3 € Pl

such that dP(Xi) = X Defining wl(Ti) = Xi and extending
by wz(Tqu) = prq' ¢3(T1T2T3) = X;X,X,, gives a map
y : K+ P which is a homomorphism of differential graded

algebras:

P:0~+ P,* P, + P P +A/T=>O0

Moy th, tyy 1=

K:0-+ K, » K, » K, » K *A/I=+0

The construction of | is sketched on page 472 of [7].

Now déN = O implies the relations

n .
‘ i+l _ .o
(2.1) 'Z_/ ("l) yizij - 0, fOI‘ J - l"oolnc

1
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n
Let Xi = Eﬁ biij' Computing, one has

n n
(2 b_.L.)(Z bquk)

(2.2) XX =
pda j=1 P11 73" 'y=3
ro» >
= ' b_.b . [ 0., ,PEf.. ,(g)M,]
5=1 k=1 pi gk =1 jk4” "k 4

n n

n
= X 2 2 o.,.,b .b . Pf, M .
j=1 k=1 4=1 jk4 7 pjak sz(g) )

Because K 1is an exterior algebra, Tp =0, p=1,2,3,

which implies X2 = 0, since | 1is an algebra homomor-

phism. So,

n n n
> b _.b o. ,Pf. M,] =0
jza Z PoiPprl Z OkaFEyka (9]
which implies
n n
(2.3) 2z Z b .bpkojkszjkE(g) =0, for &£ =1,...,n

j=1 k=1 PJ
and p=1,2,3. Also,
(2.4) V4 (T T,T3) = X X X,
n n n

(2 b,.L.)(XZ b )(Z b,,L,)
R S e R kM L2 Pagty

n n n
= (X 2z 2 b..b,.b_,0.. ,Pf. ,(g))N.
51 k=1 =1 13 2K73473ke7T3k4

There are relations determined by the fact that ¢ 1is a

chain map. First, dP ° Wl = I4 o dK implies

i+ 1 -
-1)*t b, .v. =x. for i=1,2,3.
1 (-1) i3¥5 i

TNE

(2.5) '
J
Since dP ° ¢2 = ¢l ° dK' dP(Xqu) = wl(xqu-qup), so
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n n
b ,L,) - b_,L
xp(égl ql L) Xq(zza o4 z)
n n 21’5
=d (2 z 0., ,b_.b  PEf.. (g)M,)
P j=1 k=1 4=1 jk47pj gk ik 4
n g n n
= 2 P z cjkszjbqufjkz(g)(JEl z,,L.).

j=1 k=1 4=1
Therefore,

* b . .
(2.6)  x by —Xgbpi

n n
= Z o. ,b .b . Pf. .
jza kza 4=y Jk4°PI gk k4 (9244

i=1,...,n.

Finally,
by o Q(TyTrT3) = ¥y (k) ToTy =X, T T3+ x,3T)T))

n n n
=x.(Z2 T Z o, ,b .b. Pf. (g)M,)
1'yZ]) k=1 4oy JkE 2373k ke 4
2 T I
- x.( 0., ,b,.b_ PE.. (g)M,)
2°50) x=1 g=1 Jk4T13T3KT ks 4
n n %
+x (2 2 0., ,b..b_Pf.  (g)M,)
3 5=1 k=1 f=1 Jk£471) 72k " jk4 YA
n n n
— b
dp( L I I 0y bysbyby PEy,(9)N)

n n n
2 o.,.,b..b..b PEyg(9)).

n .
+1
= (2 (- yM)(Z T .
i=1 ii 5=1 k=1 4=1 Jk471372kT34
Therefore,
n n
(2.7) xl(jza kZﬁ ojkinjb3kajki(g))
n n
- xz(jzﬁ kzﬁ Ujkibljb3kajki(g))

n n
+ x.(Z 2 0...b..b. PFf...(g))
3 j=1 k=1 jki“1j 72k T jki
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_ i+l 2 3 3
j=1 k=1 4=1

95%4215P2xkP3 4 FE 5 (9))

for i=1,...,n.

Now, Peskine and Szpiro have shown that

F:0- p‘{-» (Kl@PZ)V-» (Kz@PB)V-» K;/-' A/I » O is an A-free
resolution of A/I [40], Prop. 2.6. The notation ( )v

is that of Peskine and Szpiro for the A-module dual. One
obtains F by reducing , the mapping cone of § :K + P,
modulo the subcomplex KO @0+ 0@ PO and then dualizing.

Let (Q stand for the reduced mapping cone. Recall that the

mapping cone of a map ® : U+ V of complexes is the complex

oo Ui ® Vi+ +,.. endowed with the differential

1
d(a,b) = (-dy(a), 9(a) +d,(b)). Note that F,=A, F,
Fz = An+3, F3 e An. Furthermore, according to Prop. 1.3 of

= a4,

[7], F possesses the structure of a commutative, associative,
differential algebra. What follows is an explicit calculation

of a multiplication table for F. |

As in [7], define SZ(F) = (F®F)/M, where M is the

graded submodule of F ® F generated by (f®g- (_l)(deg £)(degg)

g® f|f,g € F both homogeneous}. S,(F) is a complex with

S.(F), = ( 2 F.®F.)+G,, where
2 k i+j=k i Jj k
i<j
G, = 0 if %k 1is odd
ko
A F if k=4n+2, n >0

k/2
Sz(Fk/z) if kX = 4n, n > O.
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By the comparison theorem, there is a map of complexes

® :SZ(F) + F extending the isomorphism (A/I) ® (A/I) » A/I,
and which is the identity on the subcomplex A ® F g_sz(F).
Define f g = 3(f®g), where f®g is the image in

SZ(F) of £®g.

As a basis for Fl, choose Al'AZ'A3'A4 € Fl =
(K, @P )v such that
2 3
Al(Tsz) =1, Al(TlT3) = Al(T2T3) = Al(N) = 0

A2(T1T3) =1, AZ(TITZ) AZ(TZTB) = A2(N) =0

A3(T2T3) =1, A3(T1T2) = A3(T1T3) = A3(N) = 0
A4(N) = 1, A4(T1T2) = A4(T1T3) = A4(T2T3) = 0.
. _ Vv : _
As a basis for F2 = (K1®P2) , define Bi(Tj) = éij’

i=1,2,3 and j=1,...,n; Ci(Mj) = éij' 1<1i,j ¢ n.

Finally, in F R

= (O@Pl)v choose D Dn so that

3

Di(Lj) = 6ij’ 11i,j n.

To determine ¢, the action of the differential of
F on basis elements is needed. By definition of the

mapping cone,

By (=TT =X, T Ty + X311 Ty) 3 (T T,T3))

= =X by (2.4).

3
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Similarly,

(d8a,)(T;T,T;,0) = x, and (dA4)(TT,T,,0) = -x;.

Also
(dA ) (TyT)T3,0) = A, (=g (T)TyT3) ¥4 (T TyT3))
= A4(-xlT2T34-x2TlT3-x3TlT2,

n n n

(2 2z Z b..b_.b.,PEf.. ,(g))N).
521 kel g=1 13 2K347 k4

Therefore,

(2.8.1) dAl = -x

n n n

da, = X z Y b,.b,.b.,0.. ,PEf.., (g).
4 j=1 k=1 f=1 1372k 347 k4" " jk4

Let a=a,7,T.+a.T, T, +a.T. T, € K

3T T, +23, T T3 +2,T,T; € Ky, Then

(dB;) (a,bN) = B,d,(a,bN) = By (-dpa,d bN+y,(a))

=Bl(-—axlT +a X T, —a,x,. T, +a,x.T

3 2 37271 27173 27371

—alx2T34-alx3T2,

n .
i+1
b(i? (=1) yiMi)+-¢2(a))

Similarly,

i
Y
"
1
Y
%

(dBZ)(a,bN) and (dB3)(a,bN) = —a.Xx

271

Therefore

(2.8.2) dB1 = szli-x3A2, de = x3A3-x

dB3 = -xlAz-x2A3.

1

-a,X,.

2
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Now,

(dCi) (a,bN) = Ci(-dKa,deN+ 1l;2(a))

Ci( (a2x3 + a3x2)Tl - (alx2 + ale)T3

3 i+l
+ (a;x5-azx)T,, b(j_§1 (-1) y;M;)

+ a3XlX2 + alex3 + alX2X3)

= Ci( (a2x3 + a3X2)Tl - (alx2 + ale)T3

3 i+1
+ (alx3-a3xl)T2, b(i§1 (-1) yiMi)

n n n
+ a,(Zz 2z 2 o.,.,b,.b . Pf. . (g)M,)
3 =1 5=1 k=1 jk471372k™ T jk4 £

n n n
*ay( L L L 0y by by PR (9)M)

4=1 §=1 k=1

n

n n
(Z z 2 o., b_.b_. Pf (g)MJL)) by (2.2)

+ a . .
g=1 §=1 k=1 jk4 237 3k” " jk4

1

which equals

n n

(2 > 0...b,.b., Pf

i+l (@)
521 ey JkiTLIT2KTT ki

(-1) byi+a

3

n
52 kza 95xiP13P3kFE k1 (9))

n n
+a.( 2o z

.b_.b_.Pf.. .(g)).
1 k=1 ki

Ojkl 2373k 73

So,

. n n
i+1
—3 - O
(2.8.3) dCi (=1) yiA4+(j§1 Zl jkiblijkajki(g))Al

n n

+(Z > G., .b..b_. Pf

20y CixiPisPax ki (9))3,

n n
+(Z > 0...b..b., Pf

21 oy CikiP23tax jki(9) )23
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3 n
Finally, let (a,c) = (kza a,T,, #EE c;M;) € K; ® P,. Then
(dDi)(a,c) = Didn(a,c) = Di(—dKa,ch+ wl(a))
> 5
= D. (0O, c,z .L.+ a )
7 x=1 3= RRIT g K%
(since Kl = 0 in Q)
3 2 3
= D. (O, A c,z, L. + ‘ b, .L.)
e e MRt e BN R e e - b
Z (2 3
=D, (0, = ( c.z, .+ & a.b .)L.)
s k=1 KR ko KOKD
; »
= 2 c,2,.+ b
e o S s S T
Therefore,
3 n
(2.8.4) dp. = 2 b..B.+ X =z..C..
iooyo i j=1 3173

To compute the products in F, notice first that

él(f® l) = £, @l(l®g) = g. Thus @ld(AlQAz) =

él(dAl®A2-Al®dA2) = -x3A2-x2Al, @ld(A2®A3) =
x2A3+x1A2, and @ld(Al®A3) = -x3A3+xlAl. Hence
@2(A1®A2) = Al oA2 = --Bl
@2(A1®A3) = Al °A3 = -B2
@2(A2®A3) = A2 oA3 = -B3.
Clearly Ai -Ai =0 for 1i=1,2,3.
n
Next, d(- 2 b3.C.) by (2.8.3) equals
T i7i
i=1
> > x 3
(=2 b,.y.)A, - b, . 0., .b,.b_ PE.. .(g))A
i=1 3if1i°74 i=1 31 j=1 k=1 Jki“13 72k " jki 1

n

n n
-(Z b,. 2 2 0. .b..b . Pf.. .(g))A
i=1 31 5=1 k=1 JkiT1j73k” Tjki 2
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n n n
- (Z b,. Z 2 0.,.b .b_ Pf. .(g))A
i=1 3i j=1 k=1 jki“2373k” " jki 3

n n n

= -x.A - (2 Z 2 b..b_b_,PEf.. (g))A
3747 D) k=1 g=1 13 23473k 1

o]

n

n
- > .(k§1 igl Ojkib3kb3J‘_Pfjkj_(‘3’))Az

n n
: o b_.b .Pfjki(g))A3

jki 3k 3i

k=1 1i=1

n n

n
= -x_A, - (2 > 2 b..b_b. Pf. .(g))A (use (2.3))
j=1 k=1 f=1 1372k 34 "jki 1

= 3, (A ®4,)) by (2.8.1).

n
Therefore A, A, = —_E}l b3iCi' Similarly, A, - A, =
n n
- . . . = - b . .. . = .
iza b,.C; and A -3, iza 1iCy+ Clearly A, *A, =0

Progressing to products of higher degree,

ézd(Al®Bl) = éz(dAl® Bl) -@2(Al®dBl)

@2(—x B

3 l) —@2(Al® (x,A; +X A2))

271 3

= —x3Bl _szl . Al+x3Bl = 0,

ézd(Al®B2) éz(dAl®B2)—‘§2(Al®dB2)

= -x3B2 - éz(Al ® (x3A3 - xlAl))

= —x3B2 - x3Al . A3 + XlAl . Al

= —x3B2+x3B2 = 0.
de(Al®B3) = <§2(dAl®B3) —§2(Al®dB3)
= —x3B3 - §2 (Al ® (—xlA2 - x2A3) )

= —X3B3 - XlBl - x2B2.



Therefore, A, B

Yield A . B = A

2 1

2

9

n el 3 n
y.D.) = = 2 (-1)37* y. ¢ b,.B.+ L z,.C.)
J ] j=l oy i3i o) Tidd
n
_ (D (- 1)t b )B,
i=1 j=1 3 1
n n
1
+ D (Z (-1)F z,.)C
1=1(3=1( SEERERE L
n
= -2 x;B, by (2.5) and (2.1)
i=1
= ézd(Al®B3).
a i+l
3= - Z (-1) v;D; - Similar calculations
i=1l
, By =A, B, =A .B; =0 and
i+l _
iDi = —A3 -Bl. Next,
= 4,(dA,®B, -A, 8dB,)
n n
= ((JZ& kgﬁ zza P 5PoxP34% 51 PE5x (9))By)
+ 2, ((XA] - %5h,) ®A,)
n n

(Z  Z L Dyjbud . ,(g))B
j=1 k=1 4=1 13°2x°32%5x4% kz

21 4 380 "8y
n n
(jEIJ_ k§l £§l blijkb3jz, sz jkz(g))B
n
- ;El (b %, —X3by, )C
n n n
(j§l k§1 JL§1 blijkbu sz jkz(g))Bl
n n n n
i zgl(jza ;El ;Ea OJklb23b3kpf (g)zlz)

by (2.6).
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But,

n n n
d‘jéﬁ kzﬁ LEE 5k 4P25P3kFE ks (9)D)
n n n

jéﬁ kEﬁ zza O5x4P25PakFE kg (9) (P By + Py By + D3, Bs)

n n n n
- Z(Z 2 z cjkiszb3ka

(g)z.,)C,
4=1 j=1 k=1 i=1 SR

jki

n n n
= (% > > o.. b b_.b__ PEf. (g))B

j=1 k=1 g=1 OJK¥4 1472373k T3ks 1
+ b.. ( . 0., ,b,,b .Pf.. ,(g))B
k=l 3% 501 go1 k4 24723 ks 2
+ 2 b..( .., b b, Pf.. (g))B
5=1 2j k=1 4=1 jk43kT34 T 3ke 3

n n n

n
- LT L L 040, by PR (9)2;,)C

= cbzd(l-\4®Bl) by (2.3).

Therefore

n n n
A,®B) =2, *B = T I L 04 bybyPfo (g)D,.

3
4 5=1 k=1 4=1

3
Similarly,
n n n

z Z z
j=1 k=1 4=1

95x4P15°3xFE 5%, (9) Dy

>
w
I

and
n n n

YR
j=1 k=1 g=1

5k 4P135P2kFE 54 (9

o
w
i

Dz.

Continuing,

§2d(Al®Ci) = éz(dAl®Ci) -@2(A1®Ci)

. n
_ i+1
= x3C; + (-1) Yi(zza P34Cy)
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n n
+ (%X 2 o, .b . .b, Pf_ .(g))B
5=1 k=1 Jjki71373k T jki 1
n n
+ (2 2 O...b..b_ Pf. . B,,
(j=l Z O3xiP23Pak ki (9))B;
since Al -Al = 0.
However,
Eﬁ n
d 0.,.b  PE.. . D.
(j=l kzﬁ jki 3k jkl(g) J)
D>
= 0., .b..b. Pf.. .(g))B
j=1 k=1 jkiT1j7 3k T jki 1
n n
+ (= Y 0.,..b..b_ Pf.. .(g))B
j=1 k=1 jkiT23 73k" "Jjki 2
+ ( o...b_ Pf.. .(g))( z,.C ) by (2.3).
j=1 k=1 jki " 3k” "jki =1 L4374
Also,
n n n
P 2 0. .b

1 DL oy ki 3xPE %1 (972,45,

§3 EE %)
= b, ( o,..(g)z,.)C
=1 k=1 3k 5=1 kij 43774

since
(-1)" vy. if 4 =%k

n
j§1 O%i38Fk15(9)2y5 =
0 if 4 #k

n
~ k+1
and 2 ckiijkij(g)zij = (-1) Yy+ by the formula on

j=1
page 443 of [5]. So by (2.5),
i n
x3C; + (-1) Yl(El P34C4)
n n n
= z§1 :El ]El 95kiPakFExi(9)2,5C,
n n
and thus, d( .Z} > ijib3kajki(g)Dj) = @zd(A_.L@Ci).
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Therefore,

ApCy = &5(®C,) = ‘_% ér_l: 95xiP3xFE 51 (9D
j=1 k=1
Similarly,
n n
Ay'Cy = 83(A;8C,) = L L 04,byPE,(9)D,
j=1 k=1
and
n n
A ec, = 8,(B,8C,) = j§l k§l 0 41121 PE 331 (9D

I have been unable to find an explicit formula for products

of the form A4 *Ci. This turns out to be unnecessary for

the proof of Theorem 2.11 below, since it will be shown
that the corresponding products vanish in F ® k. Putting

together the above results gives

Table 2.9
Al'A2=-Bl Al Al=A2~A2=A3 A3=O
A2'A3=-B3
A.*A, =-2, b..C. A.+A, = - b..C. A, +A, = - b, .C
1 4 i=1 3171 2 4 i=1 2171 3 4 i=1 1171
Al-Bl=Al A2=O A2-Bl=A2-B3=O
% i+l 2 i+l
A, *B, = - (-1) A, +B, = 2 (=1) v.D,
1 3 i=1 i1 2 2 i=1 i1
A3 B2=A3-B3=O
n .
i+1
Ay By = -1 (-1) iPi
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Table 2.9 continued

n n
A, B, = 2 z 2 0., ,b,.b_.Pf._. (g)D
4 1 5=1 -1 4=1 Jjk472373k™ " ik )
>
A, B, = 2 O.,,b,.b_.Pf.. . (g)D
4 2 j=1 -1 =1 k47137 3k Tik4 )
SRS >
A, +B, = , 0. b .b_PEf. (g)D
4 3 5=1 -1 =1 Jjk£713 72k " jke 4
TS
A, °C, = 0.,..b,.PE.. .(g)D.
1 i j=1 k=1 Jjki 3k” Tjki J
X3
A,c*C, = 0.,:b,, PE.. .(g)D.
2 i j=1 k=1 jki 2k T ki j
n n
A_-C, = X 2z 0.,..b . PE. .(g)D..
3 i j=1 k=1 jki“1k " jki J

Before going farther, some terminology from the
homological theory of local rings must be introduced. The
general reference is the book of Gulliksen and Levin [24].
Let (R,m,k) be a local ring and let X be a differential
graded algebra whose graded pieces are R-modules. X is

strictly skew-commutative if xy = (—l)pq yx for x € Xp,

y € Xq and x2 = 0 1if deg x 1is odd., X 1is a divided

power algebra if to every element x € X of even positive

degree there is a sequence of elements x(z) €EX, L=

0,1,2,... satisfying

(1) x(o) =1, x(l) = x, deg x(z) = 4 .-deg x
(3) x+y) = ¢ xE)y0)

i+j=4
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(4) for 4 > 2

o if deg x and deg y are odd

(xy) ) )
Xy if deg x 1is even and deg y

is even and positive

5) (x3) ) 2 15,9x34) for 4 >0, 5> 1,
where [j,4] = 14 :l
41(90)

An (R)-algebra is a strictly skew-commutative, differential

graded algebra endowed with a system of divided powers which

is compatible with the differential. An (R)-algebra X is

assumed connected, that is 1 °*R = X where 1 is the

Ol
identity of X, and will usually be augmented over k. If
f:X+ Y is an (R)-algebra homomorphism, let FqY be the
(R)-subalgebra of Y generated by £(X) and all the elements
of Y of degree less than or equal to (. {FqY}qzO is

called the filtration associated with £f. A.homomorphism

f:X -+ Y is said to be a free extension when

Y=X® (® RKS.>), where R <Si> is the (R)-algebra
iex *

formed by adjoining the variable Si to the trivial (R)-

algebra in the following fashion. If deg Si is odd, then

R <Si> denotes the exterior algebra generated by Si' If

deg Si is even, R <Si> is the polynomial algebra in a

s{2), . .. with
1

relations Sij)sét) = iig%%%i S(j+z) for j,4 > 1.

countable numbexr of variables Si = Sil),

*
Let X Dbe an augmented (R)-algebra. The pair (X ,bh)

is an acyclic closure of X 1if
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*
(1) h:X+ X is a free acyclic extension and

(2) B(X') c C(X') +mX +X.

* *
Here C(X ) denotes the decomposable elements of X . That
*
is, C(X ) is the submodule generated by all elements xx°,
where x and x° have positive degree, together with all

divided powers y(z)

» 4 >1, y of even positive degree.
It turns out that a free acyclic extension X =+ Y of the
canonical augmented (R)-algebra X :R # R/m is an acyclic
closure of X if and only if Y is a minimal resolution of
k. Gulliksen has proven the existence of the acyclic closure

and in particular, the existence of a minimal (R)-algebra

resolution of k [22].

Returning to almost complete intersections, by making
an additional assumption, it is possible to determine the
homology of the Koszul complex with the help of Table 2.9.

First,

Lemma 2.10. Let (A,m,k) be a regular local ring

and let I c m2 be a (perfect) almost complete intersection

of grade three. Suppose further that I = (xl,xz,x3) : J,

J = (yl,...,y ) Gorenstein of grade three as above, and

n .
x, = % (-1)3*1 by v, with b, €m. Then ¢3(A/I) > n+3,

Proof: The resolution F -+ A/I is minimal precisely

when b;, €m for all i,j. Thus Tor™(A/I,k) = F 8, k.

Call this algebra A. Then A inherits the following

algebra structure from F :Al 'Az = -Bl, Al 'A3 = -B2,
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A2 oA3 = -B3, with all other products zero, except perhaps
those of the form A4 'Ci. Let K = K(A/I) = K(A) ®A (A/I)

be the Koszul complex over A/I. Then there is an iso-
morphism ¢ : A » H(K) of differential graded algebras
which preserves Massey products [5], p.401. First of all,
1= el(A/I) = u(I) = 4. Let X+ k be

the augmented (A/I)-algebra given by K, and let h:X - X*

dim Hl(K) = dim A

be the acyclic closure of X, that is, a minimal (A/I)-
*

algebra resolution of k. Let {FqX } be the filtration
associated with h. Define 21'22'23'24 € zl(x) to be
cycles of degree one such that Ei = m(Ai), i=1,2,3,4,
where the bar indicates the residue class in H(K). Adjoin
variables Sl,Sz,S3,S4
i=1,2,3,4, so that X <Si> CF

of degree two to X with dSi =z,

*
X . Then d(ziS4) =

3
(dzi)S4--zidS4 =-z,2, = —éi = -dki, i=1,2,3. Define
Vi = -xi-zis4, i=1,2,3. One has dVi = —éi-d(zis4) = O,
*
SO Vl,v2 and V3 are cycles of degree three in F3X .
91,52 and 93 are linearly independent in H3(F3X*) =

~ %* - -
H3(F3x ), the reduced homology, because z,,z and =z

172 3
are themselves linearly independent in H(K). Moreover,
§1,92,§3 and @(Di), i=1,...,n are linearly independent

because m(Di) €eX for i=1,...,n and S4 is an

indeterminant over X. Combining the homology classes Vi
~ *

with cp(Di) gives dim(H3(F3X )®k) > n+ 3, and by [24],

~ *
Lemma 3.1.2, €3(A/I) = dim(H3(F3X ) ®Kk).

Theorem 2.11. Suppose (A,m,k) 1is a regular local

ring, and let I C m® be a grade three ACI with I = x:J,
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J = (yl,...,yn) Gorenstein of grade three, where
n

- _qyJ+1 )
Xy jza (-1) bijyj’ bij €m, as in Lemma 2.10. Then
Hl(K) -H2(K) = 0, and there exists a basis 2112542542,
. 2 - -
for Hl(K) such that dlm(Hl(K) ) = 3 and z2y°2, =
22 -z4 = 23 -24 = 0,

Proof: Most of the calculations were done above,
2

The dimension of Hl(K)2 is the dimension of Al which is
three since Ai is spanned by Bl,B2 and B3. It remains

to show that Hl(K) on(K) = 0, From a formula due to
Levin, Sakuma and Okuyama [24], Theorem 3.3.4,
€1

e5(A/I) = dim(H;(K)/H) (K) * H, (K)) +<2) - dim(Hl(K)z)

which is greater than or equal to n+ 3, by Lemma 2.10.

But dim(H, (K)2) = dim(A%) = 3, ¢, =4 and dim H_(K) =
1 1 1 3

dim A3 = n, soO

n+3 < n-dim(H (K) * Hy(K)) + 3.

That is, H

Remark. The purpose in determining the structure of
H(K) 1is to be able to compute the Poincard series of A/I,

Since P is determined by H(K) [4], Cor. 5.10, and

A/I
since the structure of H(K) obtained above is the same as
that computed for almost complete intersections of embedding

dimension three by Golod in Proposition 1 of [21], it would

follow that
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P]zz/x("‘) = (%+Z)d 3 5 ¢
l1-2-32"+(3-n)z" -2z

But this result could be obtained without knowing H(K),

by first reducing modulo a regular sequence of length d -3

in m.\mz. Now the determination of H(K) is of inde-

pendent interest.

However, there exists a method of reduction to dimension
zero which avoids the somewhat complicated computations
above. Pick a regular sequence KyoeoosXg_ 3 of length
d-3 in m\m2 which remains regular under reduction modulo
I. Upon reducing modulo KireeosXg_ 30 the homology of the
Koszul complex is invariant [6], Prop. 1. So it is not
surprising that the structure determined in Theorem 2.1l

coincides with that in [21].

Consider an arbitrary ideal I < m of the regular local
ring (A,m,k). As is well-known, A/I 1is a complete inter-
section if and only if the conormal module I/I2 is free
as A/I-module [16],[47]. As a final note in this Chapter,
it is shown that local rings which are close to being com-
plete intersections in the above sense have rational Poincarée

series.

Theorem 2.12. Let (A,m,k) Dbe a regular local ring

of dimension d, I C m2 perfect of height r which is not
a complete intersection, such that I/I2 has a free direct

summand of rank r -2. Then PX/I is rational.
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Proof: Suppose I/I2 = (A/I)r-2 ® N. This means

that there exist Xx;,...,X__, €I and an ideal J,

2 . B
I>J>o1I with (xl,...,xr+2)+-J =1, (xl,...,x ) N J

c Iz. In fact, XyreeesX_ 5 can be chosen to be a

r-2

*
regular sequence ([47], Lemma 3. Let A = A/(xl""'xr-Z)'
*
I = I/(xl,...,xr_z). Then I/kll, and hence I/xlA,
has finite projective dimension over A/klA, (471,
Prop. 1.2 and Lemma 2. By the "triangle inequality", [18],
* *
18.3, I has finite projective dimension over A , as

remarked in [47]. Then by a change of rings theorem, [18],

18.7, since pd *(I*), and hence pd ,(A/I), is finite,
A A
pd L,(A/I) = pdA(A/I)-(r-Z) =2, as I is perfect.
A

*
Furthermore, grade ,(I ) = gradeA(I)-(r-z) =2 [24],
A

* *
Prop. 1.4.7, which equals ht ,(I ). Therefore, I is
A

*
perfect of height two in A ., As a consequence,
*

pd (I ) =1 [18], 18.1, and it is known then that
A
Xk
5 k(z) ) Prx(2)
A/T l-nzz— (n-l)z3

*

where n = u(I ), by [5], Theorem 7.1. But Pk*(z) =
A

(1-2%)7(572) pX(z) [24], cor. 3.4.2, which equals

(1-22)-(r-2)(l+-z)d. Thus

" (1+2)9

P (z) =
A/T (1-22)T"2(1-nz% - (n-1)2°)

is rational.




CHAPTER III

SOME EXAMPLES

A local ring (A,m,k) 1is said to be a Golod ring

if all the Massey operations on H(K) vanish. See [24],
Chapter 4. More generally, let £ : (A,m,k) » (B,n,k)
be a homomorphism of local rings over k. That is, a commu-

tative triangle

£
A - B
k
is given with £ 1local. Following Avramov, [5], f is

*
a small homomorphism if the induced map £ :TorA(k,k) -

TorB(k,k) is injective. A homomorphism £ : (A,m,k) -

(B,n,k) over k is then called a Golod homomorphism if

equivalently

(1) £ 4is small and TorA

(B,k) has trivial
Massey products
(2) n-I TorA(B,k) = 0 and

B
PA/PB = 1-z(pP(2) -1),

where I TorA(B,k) denotes the kernel of the canonical
augmentation TorA(B,k) + k. Since the definition of the

Massey products is quite lengthy and condition (2) is the

40
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one which will actually be used below, the interested reader
is again referred to [24] or to [4]. Notice that whenever
f:A -+ B 1is surjective, n -1 TorA(B,k) automatically is

Zero.

It is easy to see that a composition of small
homomorphisms is small, [5], Lemma 3.8. The next example
shows that a composition of Golod homomorphisms need not
be a Golod homomorphism, a fact which does not seem to have

appeared in the literature.

Example 3.1. Let (A,m,k) be a regular local ring

of dimension d. Let I = (Io,x), I a perfect ideal of
grade two, x a non-zero divisor on A/IO, with u(IO) = n.
Then pdA(A/IO) = 2 by definition. Let

F:0+ a1 a"5 a0 A/I » O
X

G:0-+ A+ A+ A/ O

.

be minimal resolutions over A of A/IO and x/xXA, res-
pectively. The fact that the ranks in F are equal to n
and n-1 1is seen by tensoring with the quotient field of
A, a flat extension. Consider the product complex

F®G:0- al™1 o a20-1 , a0l 0 a1 4 0.

Since the differential on F ® G 1is defined by

deg £

d(f®g) = df ® g+ (-1) f ® dg, d(F®G) < m(F®G),

as F and G were minimal to start with. Moreover,

Hi(F®G) = Tor?_‘(A/IO,A/xA) =0 for i > 1, since




42

pdA(A/xA) =1 ([33], 18.C, Lemma 6. But Hl(F®G) =
Tor?(A/IO,A/xA) can be computed as Hl(G®A/IO), which is
zero since x was chosen to be a non-zero divisor on A/Io.
Therefore, F ® G 1is a minimal resolution of A/I. So

the Betti numbers of A/I as A-module are b =1,

o)

bl = n+ 1' b2 = 2n—l, b3 = n-].' b4 = bs T e e e= O, and

Pi/I(z) =l+(n+1l)z+ (2n—1)zz+ (n-l)z3.

d
Now, P]Z:/I (z) = (]2""2) 3 - by [5], Theorem
o] l-nz"=-(n-1)z
7.1. Also,
P (z)
(1) Pk - A/IO - (l+z)d
A/T 1-22 (l-nzz-(n-l)z3)(l-22)
if x € m2 modulo IO' and
k
P (z)
2y o5 = 2o T (1+2)¢
A/T l+z (l-nzz-(n-l)ZB)(l+z)

2 .
for xXx € m\m modulo because x 1is a

IO'
non-zero divisor on A/IO, [24], Cor. 3.4.2.

Suppose A + A/I were a Golod homomorphism. Then by

definition,

Kk

P (z)
k A
(3) PA/I(Z)

1 -z(Pi/I(z) -1)

(l+z)d
1-(n+1)z%-(2n-1)z3 - (n-1)z

4 .

(l+z)d
l1-(n+1)z%-(2n-1)z3 = (n-1)2%

In case (1), PK/I(Z) #

’

since the denominators have different degrees. In case

(2), a simple multiplication shows that
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(l-i-z)d
l1-(n+ 1)22_ (2n—l)z3 -(n=-1)z

k .
2A/I(z) # Z ¢ as required

by (3). Thus the composition A - A/IO + A/I is not a
Golod homomorphism, whereas both A - A/IO and A/IO + A/I

are [5], Theorem 7.1 and [30], Theorem 3.7.

Remark. This example was first considered by
Buchsbaum and Eisenbud in [7], albeit for a different

purpose.

In [17], Froberg exhibited examples of two local
Artin rings, one Gorenstein the other not, with the same
Poincar€ series. Thus P§, or equivalently the deviations
ei(A), cannot be used to characterize the class of Gorenstein
local rings, something which is of course possible for
regular rings and complete intersections. In the next two
examples, the deviations are computed for two local rings,
one Cohen-Macaulay the other not, which shows that such a

homological characterization does not seem possible in this

case either.

Example 3.2. Let R = k[[X,Y¥,2]], A = R/Y, where

A = (XY,¥Y2). Now, dim(A) = 2 and it is not hard to see
that depth(A) = depthR(A) < 1. Since depthR(A) <

dimR(A) = dim(A) = 2 < depthR(R), from the exact sequence
of R-modules O+ U+ R+ A+ O it follows that

depthR(A) = depth, (%) -1 by [18], p.237. So depthp(d) (1
if and only if depthp(¥) < 2. But depthp (%) # 3, the

maximum possible value, since YU would then be free as
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R-module [33], p.113. Therefore, A 1is not Cohen-Macaulay.
This can also be seen geometrically, since the variety
k[X,Y,Z2]/(XY,¥2) has an embedded component of dimension

one through the origin. See [33], Theorem 30. However,
2
A 1is a Golod ring with PA(z) = {1tz) [24], Theorem

l--z--z2

4.3.4 (A 1is clearly not a complete intersection). Once

Py is known to be rational, the deviations can be computed

using the a-invariants of Castillon and Micali [10]. Let
g(z) = QA(-z). Then the a-invariants are the coefficients

of the formal power series -%R%%l, and one has the formula
m
=1 5 o
€ 1 = M(z)as,

where u here denotes the MObius function. For the example

qg’(z) _ 22 _4

under consideration, which is

g(z) (l+z—zz)(l-z)
Tt Yl%-z * Yz{-z' Y17 lkéfméi' Y2 T ;;éfméi' upon
expanding by partial fractions. From this, a; = -3, a, = 1,
ay = -6,..., @ = —2+-(-l)n(Y§+-yg). Hence, eO(A) = 3,

el(A) = u(¥) = 2, ez(A) = 1, e3(A) =1, e4<A) = 2, eS(A) = 3,

with the sequence monotone increasing from there on.

Example 3.3. Let S = k[[X,Y]], B = S/(X,Y)2.

Since dim(B) = O, B 1is Cohen-Macaulay. B is however, not

2

Gorenstein because O = (X2,Y) N (X,¥"). On the other hand,

B 1is a Golod ring [24], Theorem 4.3.5. Thus
P_(z) = (14-z)2 where ¢, = dim H, (K)
B\%/ = 2 3’ 1° 1 8

1 -clz -czz
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c, = dim HZ(K)' K being the Koszul complex over B [24],

Cor. 4.2.4. Now dim H(K) = G((X,¥)%) = 3 and

dim H2(K) = 2, since Hz(K) = ann(m), where m 1is the
maximal ideal of2 B [24], Lemma 1.4.2. Therefore,
l+2 1
PB(z) = ( 5 ) 3= 1-3z° Py can be computed at least
1-3z" -2z

two other ways. B 1is a complete intersection modulo its

socle [23], and B satisfies the hypotheses of Fraberg's
1

Cor. 1, p.38 of [17]. Let g(z) = Py(-z) = 7355 SO
g’(z) _ =2 - (_qyntl n+l =
5(z) - 1+2z Hence a_ = (-1) 2 and eO(B) = 2,
€l(B) = 3, €2(B) = 2, €3(B) = 3, €4(B) =6, with the

sequence monotone increasing thereafter.
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