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ABSTRACT

ON THE HOMOLOGY OF LOCAL COHENFMACAULAY RINGS

BY

Alan B. Evans

Let (A,m,k) be a local Noetherian ring. The

. l . . .

P01ncare series of A is the formal power series

22(2) = 1:0 dimk(Tor?(k,k))zi.

A well-known conjecture is that 22(2) is a rational

function of 2.

In this paper, several formulas giving 2: are

derived in the case of A Cohen-Macaulay, that is

dimension(A) = depth(A). The embedding dimension of

a Cohen-Macaulay ring A is less than or equal to

e(A)4—dim(A)-l, where e(A) is the multiplicity. When

k
equality holds, BA is shown to be rational in Chapter I.

A perfect ideal I of A is an almost complete

intersection when I is minimally generated by grade(I)

+-l elements. In Chapter II, the homology of the Koszul

complex of a regular local ring modulo certain almost

complete intersections of grade three is computed. From

fi
’
W

this, a formula for P is obtained. Furthermore, if I
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is a perfect ideal of the regular local ring A such

that I/I2 has a free direct summand (as A/I—module) of

k
rank equal to grade(I)-t2, PA/I is computed.

In the last chapter, examples are given which show

that a composition of Golod homomorphisms need not be a

Golod homomorphism and that it does not seem possible to

characterize the class of Cohen-Macaulay rings using the

deviations, ei(A).
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CHAPTER 0

INTRODUCTION

Let (A,m,k) be a local (Noetherian) ring with

maximal ideal m and residue field k = A/m, and let

M be a finite A-module. A projective resolution of

M over A is a (perhaps infinite) exact sequence of

finite projective A-modules

d1+1 d1

(1) ...-’ Pi+l 4 Pia...» Pl 4 PO—oM-vo.

See [9],-p.75. M is said to have projective dimension

n over A if there is a projective resolution

n l

(2) O 4 Pn 4 P 4...* P 4 PO 4 M'+ O

of length n, but none shorter. The projective dimension

of M is infinite if no finite resolution exists. Since

A is local, the modules Pi. may be assumed free [33],

3.G. Moreover, k serves as a test module for the pro-

jective dimension of M over A (abbreviated hereafter

as pdA(M)). Precisely pdA(M) ghn if and only if

TorA (M,k) = 0, where Tor?(M,k), the ith left derived

n+1

functor of ® [8], p.107, is computed as the ith homology

of the complex obtained by tensoring the resolution (1)

with k.



A free resolution of M

d1+1 d1

(3) ...4 Fi+l -9 Fi-4..:’Ed. 4 FO-4D44 O

is minimal if di(Fi) E mFi-l for i‘Z 1. In this case,

Tor?(M,k) 2 Pi ®A k [33], 18.E. It can be proved that

a minimal resolution always exists [33], Ex. 3, p.113. As

a consequence, each Tori(M,k) is a finite vector space

over k. The ith Betti number of M is defined then to

 

be bi = dimk(Tor?(M,k)). The formal power series

PiKz) = Z] bizl is known as the Poincare series of M.

i=0

With this notation, pdA(M) < m if and only if 22(2) is

a polynomial. It has been conjectured that Pi is in fact

a rational function of z for all M.

The homological properties of the ring A are

connected with problems in geometry. The dimension of A

is the length of the largest proper chain of prime ideals

m = pn D pn-l D...D pl 3 po [33], p.71. A is called a

regular local ring if m can be generated by elements

xl,...,xd, where d = dimension of A. Regular local rings

correspond roughly to non-singular points on an algebraic

variety [34], p.343. For a local ring (A,m,k) of dimen-

sion n, the following are equivalent

(a) A is regular

(b) pdA(k) = n

(c) pdA(M)‘g_n for all finite M

(d) PkA is a polynomial



(e) 9],:(2) = n+2)“.

[33], Theorems 41, 42 and 45.

Closest to regular local rings from a homological

standpoint are the complete intersections. A sequence

of elements xl,...,xr 6 m are a regular sequence if for

).l g.i g_r, xi is not a zero-divisor on A/'(xl,...,xi_l

A local complete intersection is a local ring which can

be written as a homomorphic image of a regular local ring

modulo a regular sequence. The homological characteriza-

tion is

(a) A a complete intersection

if and only if

n

(b) Pk(z) = Ll4LEl-—' n,m 2 O integers.

See [46]. Most progress on the problem of the rationality

of P: since Tate's paper [46] has been based on the

elegant result of Golod [20]. There, the Poincaré’series

is related to homology Operations on H(K) known as Massey

products. K denotes the Koszul complex over A, whose

underlying graded algebra is the exterior algebra on a

minimal generating set for m [33], l8.D. Regular local

rings and complete intersections may also be classified

using the Koszul complex. Namely, A is regular if and

only if Hl(K) = O [24], Theorem 1.4.13 and A is a com—

plete intersection if and only if H(K) is the exterior

algebra over Hl(K) [24], Theorem 3.5.2.



Of frequent use is the fact that P: has a

(unique) representation as an infinite product

 

m . s .
k _ (l-+221+l) 21

PA(Z) _ .H . e ‘ 0

i=0 (l-221+2) 21+l

This was first proved by Assmus using the Hopf algebra

structure on TorA(k,k) [2]. The exponents Si = ei(A)

are non-negative integers and are called the deviations
 

of A. It turns out that eO(A) = dimk(m/m2), the so—

called embedding dimension. Also, if A is a homomorphic

image of a regular local ring (R,n), with A 3 R/M and

2 _ . _ .
m ELn , then sl(A) - dimk(M/hfl) — dimk(Hl(K)), Where

K is the Koszul complex [24], Lemma 1.4.15 and Prop. 3.3.4.

The general rationality problem for an A-module M

has been reduced to the case M = k, A of dimension zero

by Ghione and Gulliksen [19].

In the present paper, three formulas for P: are

obtained. The results deal with local rings which are

Cohen-Macaulay, a concept which will be explained shortly.

Suppose M is a finite A-module. Then xl,...,xr E m

form a regular sequence on M if for l g_i g_r, xi is

not a zero-divisor on M/(le+u..+uxi_lM). The depth of

M, written depthA(M), is the length of the longest

regular sequence on M [33], 15.C. The dimension of M
 

is the dimension of the ring A/ann(M), where ann(M) =

[x E A[xM = O] is the annihilator of M. In general, the

depth of M is at most equal to the dimension of M [33],



Theorem 27, and M is defined to be Cohen—Macaulay when

depth(M) = dimension(M). A itself is a Cohen-Macaulay
 

ring if it is then-Macaulay as A-module [33], l6.A. The

hierarchy of the types of local rings introduced thus

far is

regular 4 complete intersection = Cohen—Macaulay.

The notation used is standard. The minimal number of

generators of the finite A-module M will be denoted by

H(M). If qig m is an open ideal (mn E q for some n),

then e(A,q) = the multiplicity [48], p.294 of q, with

e(A) short for e(A,m). Let dA(M) = dimension of M

and d(A) = dimension of A itself. For an ideal I‘g m,

let ht(I) be the height of I, the infimum of the lengths

of saturated chains of prime ideals pn D pn-l 3...: p0,

pn a minimal prime containing I [33], p.71. If N is

an A-module of finite length [3], p.77, then £(N) = length

of N.

For an ideal I g_m, the ggagg of I is the length

of the longest regular sequence on A which is contained

in I. Given any ideal, grade(I) g_ht(I), with equality

whenever A is Cohen-Macaulay [18], 11.15. Later, a

distinction will be made between the grade of I and

depthA(I), the depth of I as A-module. See [18], 21.7°

Finally, a system of parameters for A is a sequence
 

x "Xd' d = d(A), of elements from m such that1)..

mn C (Xl’°°"xd) for some n. An alternate characterization



of the Cohen-Macaulay property is the requirement that

every system of parameters for A form a regular sequence

[18], 11.15.

When the superscript is omitted, PA will be under-

k . . .

stood to mean PA, and Will be called the POincaré'series

of A.



CHAPTER I

COHEN-MACAULAY RINGS OF

MAXIMAL EMBEDDING DIMENSION

Let (A,m,k) be a local, Cohen-Macaulay ring. Under

the assumption that k is infinite, Abhyankar showed

that eO(A) g_e(A)4-d(A)-—1 [1]. This restriction on

k is not important for the study of the Poincare series.

it

Define A = A[X] the localization of the polynomial
m[X]'

ring over A in one variable at the prime ideal m[X] =

[f = ZDaiXilai E m]. By passing from A to A*, the

residue field may be assumed infinite [38], Ch. IV. From

[24], Prop. 1.9.8 and Lemma 3.1.2, it follows that

ei(A*) = ei(A) for i 2 1, and eO(A*) = €O(A), by a

result of Lech [29], Lemma 2, p.75. Thus from the

infinite product representation, PA = PA*.

NOW, eO(A) = e(A)4—d(A)-—l if and only if

- 2 _
(x1....,xd)m — m for some x1....,xd E m, d - d(A)

[41], Theorem 1. In the case d = l, m is said to be

stable [31], and the rationality of the Poincare series

has been established in [13]. The following is an ex-

tension of this result to higher dimensions.



Theorem 1.1. Let (A,m,k) be a local Cohen—

Macaulay ring of dimension d 2_1 with eO(A) = e(A)4—

d(A)-l. Then

(1+2)d

PA(Z) = l-(eO(A)-d)z °

Proof: As mentioned earlier, the case of interest

. 2 . '

is d‘z 2. Assume (x1....,xd)m = m . First, note that

x1....,x form a system of parameters for A, because
d

  

.Vflxl,...,xd)m.=.¢Qxl,...,xd) fl.¢fi

=‘/(X1’°°"Xd) =¢4§= m

[3], p.9. Next, at least one of the xi must lie in m‘xmz.

 

Otherwise, m3 2_(x1,...,xd)m = m2, contradicting Krull's

intersection theorem [33], Cor. 2, p.69. Now, for

l g_i g_d-l, the dimension of A/le,..., ) is d-ix.
1

[33], 12.K. Moreover, (§i+l,...,§d)a = (5)2, where the

bar denotes the residue class in A/(xl,...,xi). Because

x1....,xd form a regular sequence [18], 11.15,

A/le,...,xi) is again Cohen-Macaulay [33], p.104. By

induction on d, §i+l lies in m \(m)2, hence

x. 6 mfl\m2. Therefore all of x ,...,x lie outside
1+1 1 d

2
m 0

Let A =.A/(X2....,Xd). Then (il)fi = (5)2, so

that m is stable. Because X1”°"Xd form a regular

d‘1 p (z) [24], Cor.

3.4.2. But since m is stable, P_(Z) lCFE

A l-(eO(A)-l)2

sequence in m‘\m2, PA(z) = (l+—z)

H
W
I

[13].





Furthermore, reducing modulo each xi decreases the

embedding dimension by one. To see this, note that

xl,...,xd can be extended to a minimal generating set

d n

for m. Suppose that Z} c.x. = Z) y.z. 6 m2. Since
._ i i ._ j i

i-l 3—1

2 d

(xl,....xd)m = m , .Z) cixi = .Z) wiXi With wi E m.

i=1 i=1

If some c. fl'm, then from x.(c.-W.) = Z} w.x. it
i i i i j#i j 3

follows that

c x (l-c_lw ) = Z) W’X and so
i i i i . . ' "

#1

-l -l -l .
x. = c. (l-c. w.) Z} w.x. ,

i i i . .

l 3311 3 3

contradicting the fact that X1"”’Xd form a regular

sequence. Thus ci 6 m for i = 1,...,d and

x1....,xd remain linear independent in m/mz. Then for

. 2 .
i — 1,...,d, xi E'm modulo (Xl""'xi-l)' NOW uSing

[18], 1.32 d-l times, 30(A) = eO(A)-(d-l). Hence

(1+2)d

PA(Z) = 1- (60(A) -d)z '

as claimed.

Remark 1.2.1. A is Cohen—Macaulay if and only if

*

A is Cohen—Macaulay [11], Theorem 2. Moreover, the

dimension and multiplicity are invariant under the

*

passage from A to A [32], Prop. p.277. As noted



lO

* *

earlier, eO(A) = eO(A ), so A has maximal embedding

dimension Whenever A does.

Remark 1.2.2. If eO(A) = e(A)4—d(A)-—l, with

eO(A)-d(A) 2.2, then A is not a complete intersection,

as is easily seen by comparing P with the Poincare series
A

(l-QP

(1-22)m

of a complete intersection.

Before proceeding, a brief review of projective

varieties is in order. Let k be an algebraically closed

field of characteristic zero. Projective m-space over k,

written 113:1, is defined to be the set of all points

(XO’X1""'Xm) # (0,0,...,O), xi 6 k, modulo the equiva-

lence relation (x0,xl,...,xm) ~ (1x0,1xl,...,kxm).

A E k \[O]. A projective variety in E31 is the locus
k

of zeros of a finite set of homogeneous polynomials

 

f fr 6 S = k[XO,Xl,...,Xm] such that f f1’°°" 1""’ r

generate a prime ideal in 8. Associated to each projective

variety X E 113;: is its homogeneous coordinate ring,

S/I(X), where I(X) consists of all forms in S which

vanish identically on X. An ideal I of S is graded

if I can be generated by forms. Then projective sub-

varieties of X correspond to graded prime ideals containing

I(X), with the exception of the irrelevant maximal ideal

(X0,Xl,...,Xm), which contains every graded ideal. If

one ignores the grading and considers the locus of zeros

m+1
of I(X) in affine m4—l space Jfi< , one has the cone

associated to X, C(X). C(X) is an affine variety
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through the origin in..A§?l’ which has dimension one

greater than the dimension of X. Furthermore, many

geometric pr0perties of the vertex of C(X) are closely

m

k 0linked to the geometry of X back in 3’

Conversely, if R is a graded k—algebra of finite

type, there is a geometric object Proj(R) associated

with R [25], p.76. In case R is the homogeneous

coordinate domain of a projective variety X, then

Proj(R) a X.

Let R = 6 R. be the homogeneous coordinate domain

iZQ

of a variety X of dimension d contained in IPE. Then

there is a polynomial P of degree d ‘With rational
X

coefficients called the Hilbert polynomial of X such

that Px(n) = dimk(Rn) for sufficiently large n. The

degree of X, written deg(X), is d! times the leading

coefficient of Px(n) [35], 6.25. The integer deg(X)

tells the number of points in which "most" linear subspaces

L _<_:_ IPI}:t of dimension m-d meet X [35] , Theorem 5.1.

At the lower end, pa(X) = (—1)d(PX(O)-1) is called the

arithmetic genus of X and is an important geometric

invariant [35], p.115.

Now, in order to produce a Cohen-Macaulay ring of

maximal embedding dimension, the following fact will be

useful.
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Lemma 1.3. Let X g 11311:I be a projective variety

of dimension d over an algebraically closed field k of

characteristic zero. Let (A,m,k) be the local ring at

the vertex of the cone C(X). That is, A is the localiza-

tion of the coordinate ring of X at its maximal ideal

(XO,X X ). Then e(A) = deg(X).l'OOO'm

Proof: Let R be the homogeneous coordinate ring

of X. Let Px(n) be the Hilbert polynomial of X and

let PA(n) be the characteristic polynomial of A [48],

Ch. VIII. Consider Grm(A) = o ml/ml+l, the associated

iZQ

graded ring of A [33], lO.C. Since A is already graded,

 

 

Grm(A) a R, or geometrically, Proj(Grm(A)) a X. There-

fore, Px (n)—-dimk(mn/mn+l) for large n. By definition,

xn

A(n) = 1230 dimk( mi/'mi+l) for large n [48], Ch. VIII,

Theorem 19. Therefore, Px(n4-l) = PA(n4-1)-PA(n) for

sufficiently large n. But PA(n4-l)-PA(n) = P1;(n)+ Ql(n) .

Where PA is the formal derivative of PA with respect

to n and Ql(n) is a polynomial of degree less than

deg(PA)-l. This means that PA(n) is the indefinite inte-

gral of Px(n), plus a polynomial Q(n) such that

 

de (Q) de (P ) NOW P (n) - Eiélflf:i lus ter f
g < 9 A ' A - (di-l)! p ms 0

lower degree [48], Ch. VIII, §10, and Px(n) = E—gggiél

plus terms of lower degree [35], 6.25. Therefore,

§%%H§§j1-=j‘E—Q§$L—L, the indefinite integral with respect

nd+l

to n, which of course equals n(d4?i?§X) . Hence

e(A) = deg(X).
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Example 1.4. Let Y be the curve in P2 defined

by the equation XOXl = X3. IP2 is covered by affine

 

Open sets D0 = {x0 7! 0}, D1 = [x1 '71 o}, [)2 = {x2 7; o)

[35], 2A, on which the equations of Y are

X X X X X

1 2 2 O l .
X7. , 27- (if) , and (if)(§f0 = 1, respectively.

0 O l l 2 2

Therefore, Y is smooth by the Jacobian criterion [25],

p.31. Consider the Segre’ embedding X = S(Yx 1P1) g

S(IP2x I91) g P5 (see [35], 2B). Since Y is rational,

[44], p.6, and since the arithmetic genus is a birational

invariant [25], III, Ex. 5.3, pa(Y) = pa(fl?l) = O. [25],

I, Ex. 7.2. So a... Hilbert polynomials are PY(n) = 2n+ l,

PE>1 (n) f n+-l. By a theorem of Seidenberg, Px(n) =

PY(n)‘-PEA_(n) = 2n24-3n4-l [42], Theorem 2. Thus deg(X)

= 4 [35], 6.25. Furthermore, X is arithmetically Cohen-

Macaulay [45], Cor. on p.374. That is, (A,m), the local

ring at the vertex of the cone on X, is Cohen—Macaulay.

A is then a Cohen-Macaulay ring of dimension three and

embedding dimension six whose multiplicity is four, by

Lemma 1.4. Therefore PA(z) =-;%%}§%— , by Theorem 1.1.

A does not seem to fit any previously known criteria for

rationality.

Suppose (A,m,k) is a local ring. Then there is a

natural ring homomorphism from Z, the ring of integers,

to A which sends l to l. The generator of the kernel

of this map is called the characteristic of A. A is said

to be equicharacteristic if char(A) = char(k). Let A be
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an equicharacteristic zero, Cohen-Macaulay local ring

of dimension one. Two conditions which are known to imply

the stability of m are

(l) A saturated [31], Cor. 5.3

and (2) A seminormal [12], Theorem 1.

For higher dimensions, neither imply that A has maximal

embedding dimension. In fact, the stronger hypothesis of

normality does not suffice.

Egample 1.5. Let k be a field, for simplicity

algebraically closed of characteristic zero. Let [Xij],

i = 1,...,s; j = l,...,r with s < r, be indeterminants

and let R = k[[Xij]]. Define I to be the ideal

generated by the s><s minors of (Xij) and let m be

the ideal of S = R/I generated by the cosets [Xij4-I].

Let U: [Xij]: l>37 V: {Xij}: l<S-r+j;

w= {iij -'xl+k'j+k}, j = l,...,r-s+1, k = 1,...,s-1.

It is known that Sm is a Cohen-Macaulay [14], normal

[27], Cor. 3, p.1024, local ring. Moreover, Eagon has

shown that X = U U V U W is a system of parameters for

Sm. In fact, if Q is the ideal of S generated by X,

k[Y Y ]
l’°"’ r-s+l

s

(YlIOOOIY )

I<*) (5mm 2

r-s+l

where the Yi are new indeterminants [14]. Therefore,

n
s -s _

(m Sm) EgQ -Sm. Suppose that Xij — ;?1 tkzk for

Xij fi'X, With 2k 6 X, tk E Sm. The ideal I is graded,

so Sm inherits a graded structure. Explicitly, if
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SE n

t1 = E—' uL é S\\m, letting u = H u

£ n L=1

. -S _ I

denominators, uXij — AZ: (ufi L

E and clearing

s )22, with u; E S‘(m. But

.. 6 ms, therefore each u’s

13 z E

sof X are all linear. Thus

6 mS-l, since the elements

2 6 ms"1 for L = l,...,n.

Hence t 6 (m.-Sm)s-l, fl = l,...,n, which implies
L

s s-l s-l

(m - Sm) g (Q . Sm) (m . Sm) . Clearly (Q ° Sm) (m . Sm)

s s _ s-l

g;(ntosm) , so (m Sm) - (Q .Sm)(m.-Sm) . In other

words, Q 'Sm is a reduction of Hl-Sm, which entails that

e(Sm,Q ~Sm) = e(Sm) [39], Theorem 5. But Since Q osm. lS

generated by a regular sequence, e(Sm,Q 'Sm) = £((S/Q)m)

[48], VIII, Theorem 23 and [33], Theorem 32. The isomorphism

(*) yields then that

e(Sm.Q - Sm) = 2((S/Q)m)

s-l

= Z} (the number of monomials of

p=l degree p in r-s+-l variables)

= Bil (p-l- (r-s+l) -1)

13:1. (r—s+l)—l

s-l

= 23 ass-s)
p=l

Now, eO(Sm) = rs, dim(Sm) = rs-r+s-l, so Abhyankar's

s-l

inequality becomes rs g_rs-r~+s-2 + Z} (pglrg-s). An

s—l p=l
(p4-r-s

easy computation shows that Z

p=l

with strict inequality for 5.2 3. Thus e(Sm) is too

r-s ) 2 (s—1)(r-s+l),

large for Sm to have maximal embedding dimension. Notice

also that the Poincare series of 8m can be computed
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directly using [5], Theorem 6.7 and a comparison with the

formula of Theorem 1.1 above yields the same conclusion.

A local ring (A,m,k) is said to be Gorenstein if A
 

is Cohen-Macaulay and if every ideal I generated by a

system of parameters is irreducible. That is I = Jl 0 J2

implies Jl = I or J2 = I. If A a R/m with R regular,

a more tractable characterization of Gorenstein rings is

the requirement that A be Cohen-Macaulay and

Ext;(A,R) a A [5], Definition 8.1, where r d(R)-d(A).

Equivalently, dimk(Ext:(k,A)) = l, where d = d(A) [26],

p.13. The Example 1.5 is not Gorenstein [14]. However, no

conditions that ever imply Gorenstein can imply 60(A) =

e(A)4—d(A)-—l. Because, by Serre's codimension two argument

[43], Prop. 5, an ideal I of height two in a regular local

ring R such that R/I is Gorenstein must be generated

by a regular sequence. In other words, R/I is a complete

intersection, and by Remark 1.2.2 above, local rings of

maximal embedding dimension are not complete intersections

when the regularity defect, A)-d(A) is greater thansO(

or equal to two. In particular, the Cohen—Macaulay property

together with unique factorization does not imply A has

maximal embedding dimension, because such rings which are

quotients of regular local rings are indeed Gorenstein [36].

Let I be an ideal of the local ring A. An inequality

due to Rees states that grade(I) g pdA(A/I) [33], 24.2.

When equality holds, I is said to be pgrfect. If A is
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assumed regular, then I is perfect if and only if A/I is

COhen-Macaulay [18], 24.8. I (also A/I) is called an

almost complete intersection if u(I) = grade(I).

As a final addition to the preceding remarks, it is

possible to prove

Theorem 1.7. Let (A,m,k) be regular of dimension

d 234, with I ELmZ perfect of height two such that

30(A) = e(A)4-d(A)-—l, where A = A/I. Then A is an

 

almost complete intersection.

Proof: I perfect of height two means that pdA(A) = 2,

so pdA(I) = pdA(A)-l = l [18], 18.1. As noted earlier,

A is not a complete intersection. Therefore, P_(z) =

A

PA(z)

l-rzz-(r-l)z

d

= (11'2) 3 , where r==

l-rzz-(r-l)z

 

3

dimkHl(K(A)) = u(I), with K(A) the Koszul complex over A

(l-l-z)d-2
[5], Theorem 7.1. But by Theorem 1.1, P_(z) = 1-22 .

A

Thus (l-tz)2(l-Zz) = l--rzz--(r--l)z3 and so r = 3. That

 

is, A is an almost complete intersection.

Remark. As is well known, almost complete intersections

are not Gorenstein [28].



CHAPTER II

TWO CHANGE OF RINGS THEOREMS FOR

PERFECT IDEALS OF GRADE THREE

Suppose (A,m,k) is a regular local ring, I an

ideal of A. Then A/I is Cohen-Macaulay if and only

if I is perfect, that is grade(I) = pdA(A/I). Perfect

ideals of grade one are of course well understood, since

they are free [18], 18.1, and being of height one must be

principal. Perfect ideals of grade two were classified

by Burch [8], and found to be determinental. Recently,

structure theorems for perfect ideals of grade three

which are either Gorenstein or almost complete intersections

have been proven by Buchsbaum and Eisenbud [7]. Using the

Buchsbaum-Eisenbud structure theorems, Avramov has been

able to obtain a formula for the Poincare series of .A/I,

I a Gorenstein ideal of grade three [5]. (A perfect ideal

is said to be Gorenstein when A/I is a Gorenstein ring).
 

Very little is known about the structure of perfect ideals

of grade .2 4, and this remains an active area of research.

In this chapter, two change of rings formulas for the

Poincare’series of a regular local ring modulo a perfect

ideal are obtained. The first is for certain almost complete

18
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intersections of grade three and is based on the character-

ization of such ideals by Buchsbaum and Eisenbud [7]. The

second formula concerns perfect ideals of height .2 3

satisfying a regularity condition on the Conormal module.

The standard definition of an almost complete inter-

section does not require the ideal to be perfect. An ideal

I E;m ‘With ht(I) = grade(I) = r is an almost complete
 

intersection if d(I) = r4—l. However, for the purposes of

this paper, almost complete intersections, (ACI for short),

2
are assumed perfect. Also, it is assumed that I Elm . Let

Igm2 be an ACI of grade three. Then I = ((xl,x2,x3) :J),

where J = (yl,...,yn) is a Gorenstein ideal of grade

three and xl.x2,x 6 J form a maximal regular sequence

3

in J [7], Theorem 5.3. For brevity, put 5.: (xl,x2,x3)°

The generators of J are given generically as the Pfaffians

of alternating matrices and there is a generic free resolu—

tion of A/J over A [5], 8.3 and [7], Section 3.

Precisely, there exists an n><n alternating matrix g

with entries zij E m such that

d d . d

3 11 2 11 l

P:O4A4 A 4 A 4 A4A/J4O

. . . . t i+l
With differential defined by d1 = d3 = (...,(-l) Pfi(g),...),

d = g, furnishes a minimal A-free resolution of A/J.
2

Here Pfi(g) = yi denotes the Pfaffian of the (n-l)><(n-l)

alternating matrix obtained from g by deleting the ith row

and ith column. In addition, P admits a commutative,
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associative algebra structure compatible with d [5], 8.4.

Let Li' i = l,...,n, Mi' i = 1,...,n and N be

bases for Pl,P2 and P3 respectively. The multiplication

n

' . . = .. P .. , .M. = . . = .. ,on P is LlLJ “£21 013k fijk(g)Mk L:L ] MJLl éle

Where for i,j,k 6 [l,...,n], Gijk denotes the sign of

the permutation (i,j,k,[l,...,n}‘\[i,j,k]) and Pfijk

is obtained by deleting rows and columns i,j,k from 9.

Let Klzo 4 K ‘4 K -4 K. 4 A 4 A/x 4 0 be the Koszul

   
3 2 1

resolution of .Aflx, and write dK for the differential on

K, dP for the differential on P. Then K1 2 ATl @ AT2 @ AT3, 1

With dK(Ti) = Xi' Since §.E I, there eXist X1,X2,X3 6 Pl

such that dP(Xi) = Xi' Defining wl(Ti) = Xi and extending

by ¢2(Tqu) = Xqu, ¢3(T1T2T3) = XlX2X3, gives a map

w:iK-4 P which is a homomorphism of differential graded

algebras:

P: 0-4 P 4 P 4 P 4 P 4 A/U 4 0

($3 ((2 ’11 ¢=

K:O4K4K4K4K4A/I4O

The construction of w is sketched on page 472 of [7].

Now diN = 0 implies the relations

n i+l
(201) Z; (-1) y-z'u = O, for j: l,...,n.

i= 1 ij
1
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n

Let Xi = E: biij° Computing. one has

n n

(2.2) prq = (jig bijj)(#E£ bquk)

n n n

= jig PE: bpjbqkpggi ijflpfjk£(g)ML]

n n n

Z] Z) Z)

j=l k=l i=1

b f
ijz pjbqu jk£(g)ML’

Because K is an exterior algebra, T: = O, p = 1,2,3,

which implies X2 = 0, since ¢ is an algebra homomor-

phism. So,

 

n n n

Z3 Z3 b .b Z) c. Pf. M = o

j=l k=l pj pk[k=l jkL jk£(g) L]

which implies

n n

2.3 Z3 Z3 b .b o. Pf. = o, for z = l,...,n

‘ ) jzl kzl p3 pk :kz Jk1(g)

and p = 1,2,3. Also,

(2.4) ¢3(T1T2T3) = XlX2X3

n n n

= ( Z: b .L.)( Z} b )( Z) b L )
j=1 13 3 k=1 2kLk i=1 32 2

n n n

= ( Z3 Z) Z) b .b b o. Pf. (g))N.
j=l k=1 £=1 1] 2k BE jkL ij

There are relations determined by the fact that w is a

chain map. First, dP 0 $1 = Id 0 dK implies

(.1)3+1 b. y. = x. for i = 1.2.3.2.5< > 1 13 j 1

"
[
4
5

3

Since dP 0 $2 = $1 0 dK, dP(Xqu) = ¢l(xqu-qup), so
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nn

b L - b L

n n n

d ( Z} Z) Z) c. b .b Pf. (g)M )
P j=l k=l £=l jkfi pj qk jkfl E

n n n n

= Z V Z O. b -b Pf. .L. 0

i=1 ktl L=l 3k“ P3 qk 3k‘(g)(F§1 2‘1 1)

Therefore,

(2.6) x b .-x b

n

= Z) Z Z G. b .b Pf. .,
j=1 k=l i=1 jk£ pj qk jk£(g)z£i

  

.
_
.
.
-
l
l
H
l
l
|
|
|
|

.

Finally,

12 ° dK(TlT2T3) = q’2‘X1T2T3""‘2Tir‘r3""‘3TiT2)

n n n

= x ( Z) Z) Z) c. b .b Pf. (g)M )
1 j=l k=1 2:1 gkz 23 3k jkL 2

n n n

' X2( 4:3 Z" Z ijzbljb3kpfjkz(g)Mz)

n

+ x (.23 Z} Z} ijzblijkajk£(g)ML)

n n n

_ T‘

‘ dP(an k:& 2;: ijzbljbzkb3zpfjkz(g)N)

= -1 .M. . . .

Therefore,

I1 n

(2.7) x ( Z) Z) 0. .b .b Pf. .(g))
l j=l k=l jki 2] 3k jki

n n

(2 Z 0 .b .b Pf.ki(g))_. x .

j=l k=l jki 1] 3k 32

n 1'1

+ x ( Z} Z) o. .b .b Pf. .
3 j=l k=l jkl 13 2k jkl(g))
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n. n 1'1

1+1(-1) “(32:1 kill 3:31 Ojkzblijkb3£Pfjk£(g))

NOW, Peskine and Szpiro have shown that

V V V V .

F : O 4 Pl 4 (KlOPZ) 4 (KZOPB) 4 K3 4 A/I 4 O is an A-free

resolution of A/I [40], Prop. 2.6. The notation ( )V

is that of Peskine and Szpiro for the A-module dual. One

obtains F by reducing Q, the mapping cone of ¢:ZK-4 P,

modulo the subcomplex KO O O 4 O o P and then dualizing.
0

Let 0 stand for the reduced mapping cone. Recall that the

mapping cone of a map O :U’4 V of complexes is the complex

...4 Ui O Vi+l 4... endowed with the differential

4

d(a.b) == (—dU(a). Cp(a)+dv(b)). Note that F =_-_ A, F e: A ,
O 1

n+3 n ' ~F2 2 A , F3 2 A . Furthermore, according to Prop. 1.3 of

[7], F possesses the structure of a commutative, associative,

differential algebra. What follows is an explicit calculation

of a multiplication table for F.

As in [7], define 82(F) = (F69F)/M, Where M is the

graded submodule of F ® F generated by {f®g - (-1) (deg f) (deg g)

g ® f|f,g 6 F both homogeneous}. 52(F) is a complex with

s (F) a-.( Z F.®F.)+G , where
2 k i+j=k i j k

i<j

G = 0 if k is odd

k 2

A F if k = 4n4-2, n‘Z O

k/2

52(Fk/2) if k = 4n, n‘Z O.
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By the comparison theorem, there is a map of complexes

4 :SZ(F) 4 F extending the isomorphism (A/I) ® (A/I) 4.A/I,

and which is the identity on the subcomplex A O F E 52(F).

Define f -g = @(EEFE), Where EEIE’ is the image in

S2(F) of f®g.

As_a baSlS for F1’ choose Al,A2,A3,A4 6 Fl =

(K2@P3)V such that

A1(T1T2) = l, Al(T1T3) = Al(T2T3) = Al(N) = O

A2(T1T3) = 1, A2(TlT2) = A2(T2T3) — A2(N) = O

A3(T2T3) = l, A3(TlT2) = A3(T1T3) = A3(N) = O

A4(N) = 1, A4(T1T2) = A4(TlT3) = A4(T2T3) — O.

. _ v . _
As a baSlS for F2 — (K1@P2) , define Bi(Tj) - 5ij’

i = 1,2,3 and j = 1,...,n; Ci(Mj) = éij’ l g 1,] g_n.

. . _ v

Finally, in F3 - (OGBPl) choose D1,...,Dn so that

Di(Lj) = 5ij' 1 g_i,j g_n.

To determine 4, the action of the differential of

F on basis elements is needed. By definition of the

mapping cone,

(dAl)(TlT2T3'O) = Al(-dK(TlT2T3):W(T1T2T3))

A1(‘ (X1T2T3 ' X2T1T3 + X3T1T2) '13(T1T2T3) )

= -X by (2.4).
3
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Similarly,

(dA2)(TlT O) = x and (dA3)(T O) = -x .
2T3' 2 1T2T3' 1

Also

(dA4)(TiT2T3'O) = A4(‘do(T1T2T3)'13(T1T2T3))

= A4(—xlT2T34-x2TlT3-x3TlT2,

( b .b b Pf. (g))N).
j=l k=l 2:1 13 2k 32 3k2

Therefore,

(2.8.1) dAl = -x

I1 n n

dA = Z3 Z3 Z3 b .b b o. Pf. (g).
4 j=l k=l 3:1 13 2k 32 3k2 3k2

Let a = a T T 4—a T T 4—a T T E K

3 1 2 2 1 3 1 2 3 2' The“

(dBl)(a,bN) = BldQ(a,bN) = Bl(-dKa,deN4-wz(a))

= Bl(—a3xlT2+a3x2Tl--a2xlT3+a2x3Tl

-alx2T34-alx3T2,

n .

13(2 (-l)l+l y.Mi=1 1 i)+¢Z(a))

= a3x2 + a2x3 .

Similarly,

(dBZ)(a,bN) = alx3--a3xl and (dB3)(a,bN) = -a2xl-alx2.

Therefore

(2.8.2) dBl = X2Alj-X3A2, dB2 = x3A3-xlAl,

dB = -x A -x A .

3 1 2 2 3
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Now,

(dCi)(a,bN) Ci(-dKa,deN4-¢2(a))

Ci((a2x3+a3x2)Tl-—(alxz-l-alefl3

n

X1)T20 b(§ ('1

i—l

+ a3XlX24-a2XlX34-alX2X3)

)i+l y M.)
+ (a x

i i13'a3

= Ci((a x 4—a2 3 3x2)Tl--(alx 4-a x

2 2 1>T3

“.2 (-1)i+l y.M.))T
1:1 i i+ (aix3"a3xi 2'

n n n

+ a ( Z} Z) Z} 0. b .b Pf. (g)M )
3 i=1 j=l k=l jkfl 1] 2k jkL L

n n n

Z) Z) Z) 0. b .b Pf. (g)M
2:1 j=l k=l 3k2 13 3k 3k2

 

)+a

2( 2

nn n

(2 23 Z30 b .b Pf (g)M£>) by (2.2)+ a . .
1 2:1 j=1 k=1 jk2 2] 3k jk2

which equals

. n n
1+1

(-1) by.-+a ( Z3 Z) c. .b .b Pf. .(g))
i 3 j=l k=l jki 13 2k jki

2 <3+a( 0. .b .b Pf. .(g))

2 j=l k=l jki 13 3k jki

<2 2-+a 0. .b .b Pf. . .

l(j=l k=l jki 2] 3k jkl(g))

So,

. n n
i+1

= _ 0(2.8.3) dci ( l) yiA4't(,§3 §> jkiblijkajki(g))Al
j—l k-l

n n

+(Z Z] c. .b .b Pf. .(g))A
j=l k=1 jki 13 3k jki 2

n n

+(Z 230 b.be
j=1 k=l jki 23 3k jki(g))A3’



3 n

Finally, let (a,c) = (kg: aiTi’ fig: ciMi) 6 K1 ® P2. Then

(dDi)(a,c) = DidQ(a,c) = Di(—dKa,ch+-¢l(a))

2 2 2= D (O, c z .L.4— a )

l k=l 3:1 k k3 3 k=1 kxk

(since Kl = O in Q)

=D.(O, _ Z c 2 .L. + ‘ b .L.)

l k=1 3:1 k k3 3 k=l 3:1 k3 3

2 2 2= D.(O, ( c z .-+ ‘ a b .)L )

i 3:1 =1 k kj :1 k kj

n 2= Z} c z .-+ b ..
=1 k k k=l ak k1

Therefore,

3 n

(2.8.4) dD. = Z: b..B.—t Z) z..C .

l j=l 31 j=1 )1 3

To compute the products in F, notice first that

 

21(f®l) = f, 21(189) = 9. Thus @ld(Al®A2) =-

 

§l(dAl®A2-Al®dA2) = -x3A2-x2Al, @ld(A2®A3) =

x2A3+xlA2, and @ld(Al®A3) = -x3A3+xlAl. Hence

§2(A1®A2) = A1 0A2 = -Bl

22(A1®A3) = A1'A3 = '32

§2(A2®A3) = A2 .A3 = -B3.

Clearly Ai oAi = O for i = 1,2,3.

n

Next, d(- Z} b .C.) by (2.8.3) equals
._ 3i i
i—l

“ 2 2 2(_ Z) b .y.)A -( b . o. .b .b Pf. .(g))A

i=1 3i i 4 i=1 31 j=l k=l jki 13 2k jki l

n n n

-( E b . Z) Z} b .b Pf
31 O3ki 13 3k jki(g))A2

i=1 3:1 k=1

 



28

 

n n n

-(2 b, 2 z: o. .b.b Pf. .(g))A
i=1 3i j=l k=l jki 23 3k jki 3

n n E) ~

=-xA-(Z Z3 b.bb Pf. (g))A
3 4 j=l k=l 2:1 1] 2k 32 jk2 l

2 2 n- ( b .( Z) c. .b b .Pf. .(g))A
j=1 1] k=1 i=1 jki 3k 31 jki 2

n n n

._( 2) b ,( Z) Z) o. .b b .Pf. .(g))A
j=l 23 k=l i=1 jki 3k 3i jki 3

n n n

= -xA —(Z} Z 23 b .b b Pf. .(g))A (use (2.3))
3 4 j=l k=l i=1 1] 2k 32 jki 1

= 61(d(Al®A4)) by (2.8.1).

n 1
Therefore Al A4 - -‘E) bBiCi° Similarly, A2 ~A4 =

i-l
n n

_ o = — b ° =E) b2]..ci and A3 A4 Z licl. Clearly A4 A4 0.

i—l l—l

Progressing to products of higher degree,

§2d(Al® Bl)

§2d(Al®B2)

§2d(Al® B3)

§2(dAl® Bl) - 42(Al®dBl)

 

_-. §2(-X3Bl) - 92(Alo (x2A1+x3A2))

= —X3Bl—X2Al 'Al+X3Bl = O.

 

= -x B --2

32 2(A
1 ® (x3A3 - xlAl))

= —x382--x3Al -A34-xlAl oAl

= -x B 4-x B =

32 32 0'

A deB

=<22(‘m18’13’3)‘§2( l 3)

 

= -x3B3 - 22 (Al 8 (—xlA2 — x2A3))

= “X333 " X1131 ‘ X2B2°
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n . 3 n

1)j+1yb.)—-Z (1)3+1 (2: b 3+2: >

3 3 j=l 1:1 13 1 i=1 13 l

3 n

= Z<Z<-l>j+lyybl)B
i=1 j=—1 3

n n .

+ Z<Z<n3+lyz >c
i—l j=l J l] l

 

 

i=1

= 22d(Al®B3)

n i+l
Therefore, A1 B3 = - Z} (—1) YiD Similar calculations

i=1

yield A2 . l = A2 ~B3 = A3 -82 = A3 ~83 = O and

_ i+l _ _ .
AZ-BZ— (-1) le — A3 B1. Next

a d(A4®B ) - 32(dA4OBl-A4Odsl)

n

=§2((Z 23 beb Pf-(g))B)
j--1 k-l 2-1 lj 2k 32ijL 3k2 1

+ 22"((X2A1X3A2)®A4)

n n n

=(23 Z be b o. Pf. (g))B
j=1 k=1 2:1 13 2k 32 jkE jkz

n n

= (:3 E E blijkb3203k2Pfjk2(g))B

n

‘ Z (b3ix2‘x3bzi)ci

n n

= ( E Z 23 b1310219932C7 3k2Pfjk2(g))Bl

n

- Z) Z} Z} Z) c b b Pf . 2. C

2:1(j=1 k=l i=1 jki Zj 3k jkl(g) 12)

by (2.6).
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n

“.2 Z Z ijzijkaPfjk2(g)DL)

n

= 3E1 #23 2E: Ojk2b23b3kpf3k2(g)(bl2Bll'b22B21'b32B3)

n n

= ijinjb3kajki(g)zi2)Ci
2:1 j=l k=1 1 l

b b .b Pf (g))B
O3k2 12 23 3k jk2 1

n

221 Ojk2b22b23Pf3k2(g))Bz

 

Cjk2b3kb32Pfjk2(g))B3
l

n

- Z3( Z3 Z3 Z3 0 .b .b Pf.

1:1 j=l k=l i=1 jkl 2] 3k Jki(g)zi£)ci

= §2d(A4®Bl) by (2.3).

Therefore

n n n

a (A 233 ) = A °B = Z3 Z3 Z) c. b .b Pf. (g)D .
3 4 l 4 1 j=l k=l 2:1 jkl 23 3k jkfi 2

Similarly,

n n n

A .B = Z3 Z3 Z3 0. b .b Pf- (g)D
4 2 3:1 k=l 2:1 jkz 13 3k jk2 L

and

A .B = ‘ Z) c b .b Pf (g)D .
4 3 3:1 k=l 2:1 k2 13 2k k2 2

Continuing,

§2d(Al®Ci) = C22(dA18Ci) -22(Al®ci)

. n
_ 1+1

— x3C -+(-1) l( E) bBECL)
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I1 II

+ ( Z3 Z) c .b b Pf .(g))B
j=l k=1 jki lj 3k jki 1

+ (jg: £51 Gjkib23b3kpf3ki(g))B2

since A °A = 0.

However,

n n

d(Z) Z) c. .b Pf. .(g)D.)
j=1 k=l jki 3k jki 3

I1 n

11 I1

+ ( Z) Z) O b b Pfjki2(g))B
j=l k=l jki 2j 3k

I1 I1 I1

+ ( z) z) o. .b Pf. .(g))( Z) z .c ) by (2.3).

 

 

j=l k=1 jki 3k jki 2 1 2] 2

Also,

n n 2%

Z) G. .b Pf. .(g)z .C

2=l j=1 k=1 jki 3k jki 23 2

E5 n

= Z3 b ( Z3 6 .-(g)2 -)C
2=l k=1 3k j=l kij 23 2

since

F

(-1)1 yi if 2 = k

n (
3E1 Gkilj Pfkij(g)ztj

=

o if 2 4 k

K

n k+1
and Z) G’ Pf (g)zi . = (-l) y , by the formula on

j_—1 k11j ki1j13 k

page 443 of [5]. So by (2.5),

x3Ci+(-l)l 5751,2110 )
32C 2

I1 I1 n

= 2 E Z ijib3kajki(g)z2jc2
2:1 3 l k=1

I1 I1

and thus, d( E :3 OjkikaPfjki(g)Dj) = @deloci).

j=1 1
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Therefore,

A1°Ci = §3(A1®Ci) = g: g Ojkib3kpfjki(g)Dj'
j—l k~l

Similarly,

I1 I].

A2 "31 = §3(A2®Ci) = :43 :43 Ojkinkajki(g)Dj
j—l k-l

and

n n

A3 .ci = §3(A3®C_i) = 321 131 Ojkiblkajki(g)Dj.

I have been unable to find an explicit formula for products

of the form A4 .Ci' This turns out to be unnecessary for

 

the proof of Theorem 2.11 below, since it will be shown

that the corresponding products vanish in F ® k. Putting

together the above results gives

Table 2.9

Al°A2=-Bl Al Al=A2 A2=A3 A3=O

A .213=-132 A4-A4=O

A2°A3‘1’B3

n n n

A1°A4 = ‘2 b3lci A2 A4 = '1? b2 1 A3°A4='Z blicl
l=l 1—1 1:1

Al-B1=Al A2=O A2.Bl=A2.B3-—-o

n . I1

+l . i+l

A-B=-23(1)l D AoB=Z(1)
l 3 i=1 1 l 2 2 i=1 i l

A3-B2=A3-B3=O

I1 .

1+1

A3 B1 — 523 (-1) 1D;
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Table 2.9 continued

n n

A ~13 = 2 Z E o. b .b Pf. (g)D
4 l j=l k=l 2:1 jk2 2] 3k jk2 2

§ 2“: nA °B = Z) G. b .b Pf. (g)D
4 2 j=l k=l 2=l jk2 13 3k jk2 2

n E} n

A -B = '23 2‘; o. b .b Pf. (g)D
4 3 j=l k=l 1:1 jk2 13 2k jk2 2

<2 iA °C. = G. .b Pf. .(g)D.

l l j=l k=l jkl 3k jki 3

2‘5 §A ’C. = G. .b Pf. .(g)D.

2 l j=l k=l jki 2k jki j

n n

A cc. = 23 23 o. .b Pf. .(g)D..
3 l j=l k=l jki lk jki 3

Before going farther, some terminology from the

homological theory of local rings must be introduced. The

general reference is the book of Gulliksen and Levin [24].

Let (R,m,k) be a local ring and let X be a differential

graded algebra whose graded pieces are R-modules. X is

strictly skew-commutative if xy = (-l)pq yx for x E Xp,
 

y e xq and x2 = o if deg x is odd. x is a divided

power algebra if to every element x E X of even positive
 

degree there is a sequence of elements X(L) 6 X, 2 =

O,l,2,... satisfying

(1) X(O) = l, X(l) = x, deg x(£) = 2 odeg x

(2) X(j)X(£) = ”ii/”((342), where (j'£) =_£.j_j+_‘£_.:_:.

i+j=2

 



fl
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(4) for 2.2 2

0 if deg x and deg y are odd

(2)

(2) _
(XY) "' 2

x y if deg x is even and deg y

is even and positive

(5) (x(j))(£) = [j:2]x(j£) for 2.2 O. j.2 l,

'2 1
where [j,2] = fl

21(j1)

An (R)—algebra is a strictly skew-commutative, differential

graded algebra endowed with a system of divided powers Which

is compatible with the differential. An (R)—algebra X is

 

assumed connected, that is l -R = X where l is theol

identity of X, and will usually be augmented over k. If

f':X + Y is an (R)-algebra homomorphism, let FqY be the

(R)-subalgebra of Y generated by f(X) and all the elements

of Y of degree less than or equal to q. {FqY}qZO is

called the filtration associated with f. A homomorphism

 

f :X«+ Y is said to be a free extension when

Y'a X ® ( ® R <S.>), Where R <Si> is the (R)—algebra

iEI 1

formed by adjoining the variable Si to the trivial (R)—

algebra in the following fashion. If deg Si is odd, then

R <Si> denotes the exterior algebra generated by Si. If

deg Si is even, R <Si> is the polynomial algebra in a

countable number of variables Si = Sil), 8:2),... with

relations 5:3)séfi) = ilj§%%i-S(j+£) for jI2 2,1.

*

Let X be an augmented (R)-algebra. The pair (X ,h)

is an acyclic closure of X if
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'k

(l) h.:X + X is a free acyclic extension and

(2) 1308") g C(x*) +mx*+x.

* *

Here C(X ) denotes the decomposable elements of X . That

*

is, C(X ) is the submodule generated by all elements xx’,

where x and x’ have positive degree, together with all

divided powers y(£) , 2 > 1, y of even positive degree.

It turns out that a free acyclic extension X‘+ Y of the

canonical augmented (R)-algebra X':Ru4 R/m is an acyclic

closure of X if and only if Y is a minimal resolution of

 

k. Gulliksen has proven the existence of the acyclic closure

and in particular, the existence of a minimal (R)—algebra

resolution of k [22].

Returning to almost complete intersections, by making

an additional assumption, it is possible to determine the

homology of the Koszul complex with the help of Table 2.9.

First,

Lemma 2.10. Let (A,m,k) be a regular local ring

and let I Eimz be a (perfect) almost complete intersection

 

of grade three. Suppose further that I = (xl,x2,x3) :J,

J = (yl,...,yn) Gorenstein of grade three as above, and

n .

_ _ 3+1 ~ A
x. — E: ( l) bijyj' With bij E m. Then c3(A/I)‘2 n+-3.

Proof: The resolution F * A/I is minimal precisely

when bij 6 m for all i,j. Thus TorA(A/I,k) E F 8A k.

Call this algebra A. Then A inherits the following

algebra structure from F :Al °A2 = -Bl, Al -A3 = -B2,
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A2 0A3 = -B3, with all other products zero, except perhaps

those of the form A4 °Ci. Let K = KLA/I) a K(A) ®A (A/I)

be the Koszul complex over A/I. Then there is an iso-

morphism. m :A » H(K) of differential graded algebras

which preserves Massey products [5], p.401. First of all,

dim H1(K) = dim A1 = eltA/I) = u(I) = 4. Let X a k be

the augmented (A/I)-algebra given by K, and let h.:X * X*

be the acyclic closure of X, that is, a minimal (A/I)-

algebra resolution of k. Let {FqX*} be the filtration

associated with h. Define 21,22,23,z4 E Zl(X) to be

cycles of degree one such that 2i = w(Ai), i = l,2,3,4,

where the bar indicates the residue class in H(K). Adjoin

variables 51,82,8354 of degree two to X With dSi = zi,

*

i = l,2,3,4, so that X <Si> E.F X . Then d(ziS4) =
3

(dzi)S4--zidS4 = -ziz4 = -51 = ~dli, i = 1,2,3. Define

V. = -1 -z.Sl l l 4, i = 1,2,3. One has dVi = -6i-d(ziS4) = O,

*

so Vl,V2 and V3 are cycles of degree three in F X .

1,92 and v3 are linearly independent in H3(F

* ..

3(F3X ), the reduced homology, because 2

3

*

3X)‘

1’22 and 23

are themselves linearly independent in H(K). Moreover,

\7

E

V1.92,93 and m(Di), i = l,...,n are linearly independent

because m(Di) 6 X for i = l,...,n and S4 is an

indeterminant over X. Combining the homology classes Vi

~ *

with cp(Di) gives dim(H3(F3X )®k) 2 n+ 3, and by [24],

~ *

Lemma 3.1.2, e3(A/I) = dim(H3(F x )®k).
3

Theorem 2.ll. Suppose (A,m,k) is a regular local

ring, and let 1'; m2 be a grade three ACI with I = xin)
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J = (yl,...,yn) Gorenstein of grade three, where

n 3+1
xi = Z) (-l) bijyj' bij E m, as in Lemma 2.10. Then

j=l

Hl(K)i-H2(K) = O, and there eXists a baSis 21,22,23,z4

. 2 _ -

for H1(K) such that dim(Hl(K) ) _ 3 and 21 .24 _

z oz4=23oz4=0.

Proof: Most of the calculations were done above.

2

1

. 2 .

three Since Al 1.82 and B3. It remains

to ShOW’that H1(K)i-H2(K) = O. From a formula due to

The dimension of Hl(K)2 is the dimension of A which is

is spanned by B

 

Levin, Sakuma and Okuyama [24], Theorem 3.3.4,

6

63(A/I) = dim<H3(K>/H1(K> -H2(K» +(21) - dim<Hl(K>2>

which is greater than or equal to ni—3, by Lemma 2.10.

But dim(Hl(K)2) = dim(Ai) = 3, 61 = 4 and dim H3(K) =

dim A3 = n, so

n+ 3 g n-dim(Hl(K) ° H2(K)) + 3.

That is, H

Remark. The purpose in determining the structure of

H(K) is to be able to compute the Poincaré series of A/I.

Since PA/I is determined by H(K) [4], Cor. 5.10, and

since the structure of H(K) obtained above is the same as

that computed for almost complete intersections of embedding

dimension three by Golod in Proposition 1 of [21], it would

follow that
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Pk (z) = (1+2)d

A/I l-z-322+(3-n)23-25

But this result could be obtained without knowing H(K),

by first reducing modulo a regular sequence of length d-3

in m‘xmz. NOW the determination of H(K) is of inde-

pendent interest.

However, there exists a method of reduction to dimension

zero which avoids the somewhat complicated computations

above. Pick a regular sequence x1,...,xd_3 of length

d-3 in m‘xm2 which remains regular under reduction modulo

 

I. Upon reducing modulo xl,...,xd_3, the homology of the

Koszul complex is invariant [6], Prop. 1. So it is not

surprising that the structure determined in Theorem 2.11

coincides with that in [21].

Consider an arbitrary ideal I gim of the regular local

ring (A,m,k). As is well—known, .A/I is a complete inter-

section if and only if the conormal module I/I2 is free

as .A/I—module [l6],[47]. As a final note in this Chapter,

it is shown that local rings which are close to being com—

plete intersections in the above sense have rational Poincare

series.

Theorem 2.12. Let (A,m,k) be a regular local ring

of dimension d, 1.; m2 perfect of height r which is not

2
a complete intersection, such that I/I has a free direct

summand of rank r4-2. Then PX/I is rational.
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Proof: Suppose I/I2 a (A/I)r"2 @ N. This means

that there exist X1”'°’Xr-2 E I and an ideal J,

I 3 J': 12 with (xl,..

2
E_I . In fact, x1....,xr

.,xr+2)4-J = I, (xl,...,x H J

r-2)

_2 can be chosen to be a

*

regular sequence [47], Lemma 3. Let A = A/(xl,...,xr_2),

'k

I = I/(xl,...,xr_2). Then I/xlI, and hence I/xlA,

has finite projective dimension over A/xlA, [47],

Prop. 1.2 and Lemma 2. By the "triangle inequality", [18],

**

18.3, I has finite projective dimension over A , as

remarked in [47]. Then by a change of rings theorem, [18],

 

*

18.7, since pd *(I ), and hence pd *(A/I), is finite,

A A

pd *[A/I) = pdA(A/I)-(r-2) = 2, as I is perfect.

A

*

Furthermore, grade *(I ) = gradeA(I)-(r-2) = 2 [24],

A

* *

Prop. 1.4.7, which equals ht *(I ). Therefore, I is

A
*

perfect of height two in A . As a consequence,

*

 

 

pd *(I ) = l [18], 18.1, and it is known then that

A

k
P k(z) = PA*(z)

A/I l-nzz—(n-l)z:3

*

where n = u(I ), by [5], Theorem 7.1. But Pk*(z) =

A

(l _22)—(r—2) P:(z) [24], Cor. 3.4.2, which equals

(l-22)_(r-2)(l+-z)d. Thus

P k(z) = (1+2)d

A/I (1-22)r-2(1-n22-(n-1)23)

is rational.



CHAPTER I I I

SOME EXAMPLES

A local ring (A,m,k) is said to be a Golod ring

if all the Massey operations on H(K) vanish. See [24],

Chapter 4. More generally, let f :(A,m,k) 4 (B,n,k)

be a homomorphism of local rings over k. That is, a commu-

 

tative triangle ‘
f .

A 4 B

k

is given with f local. Following Avramov, [5], f is

*

a small homomorphism if the induced map f :TorA(k,k) 4
 

TorB(k,k) is injective. A homomorphism. f :(A,m,k) 4

(B,n,k) over k is then called a Golod homomorphism if
 

equivalently

(l) f is small and TorA(B,k) has trivial

Massey products

(2) n -I TorA(B,k) = O and

B

PA/PB — 1-z(PA(z)-l),

where I TorA(B,k) denotes the kernel of the canonical

augmentation TorA(B,k) 4 k. Since the definition of the

Massey products is quite lengthy and condition (2) is the

40
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one which will actually be used below, the interested reader

is again referred to [24] or to [4]. NOtice that Whenever

f :A 4 B is surjective, n -I TorA(B,k) automatically is

26330.

It is easy to see that a composition of small

homomorphisms is small, [5], Lemma 3.8. The next example

shows that a composition of Golod homomorphisms need not

be a Golod homomorphism, a fact which does not seem to have

appeared in the literature.

Example 3.1. Let (A,m,k) be a regular local ring

 

of dimension d. Let I = (10.x), I a perfect ideal of

grade two, x a non—zero divisor on .A/IO, with u(IO) = n.

Then pdALA/IO) = 2 by definition. Let

1
on-vAn' +An4A4A/IO-*O

x

G :O‘* A v A 4 A/XA * 0

be minimal resolutions over A of A/IO and x/xA, res-

pectively. The fact that the ranks in F are equal to n

and n-1 is seen by tensoring with the quotient field of

A, a flat extension. Consider the product complex

F®G:o»An“l+A2n‘l»An+l»A+A/I—»o.

Since the differential on F ® G is defined by

degif

d(f®g) = df e g+ (-1) f o dg, d(F®G) gm(F®G),

as F and G were minimal to start with. Moreover,

Hi(F®G) = Tor?(A/IO,A/xA) = O for i > 1, since
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pdA(A/xA) = l [33], 18.C, Lemma 6. But H1(F®G) =

Tor}:(A/IO,A/XA) can be computed as H1(G®A/IO), which is

zero since x was chosen to be a non-zero divisor on A/IO.

Therefore, F ® G is a minimal resolution of A/I. So

the Betti numbers of .A/I as A-module are bO = l,

bl=n+l,b2=2n-l, b3=n-1,b4=b5 =...= O, and

Pi/IM) = 1+ (n+l)z+ (2n-l)zz+ (n-1)23.

k (1+2)d
 

by [5], TheoremNOW, PA/Io(z) = 3 ,

l-nzz-(n-l)z

7.1. Also,

 

  

 

 

P (z)

(1) Pk = A/Io _ (1+2)C1

A/I 1-22 (l-nzz-(n-l)z3)(l-22)

if x E m2 modulo IO, and

k

P (z)

(2) Pk = 'A/IO = [14-Z)d

A/I 1+2 (l-nzz—(n-l)z3)(l+z)

for x E m\m2 modulo I because x is a0’

non-zero divisor on A/IO, [24], Cor. 3.4.2.

Suppose A +.A/I were a Golod homomorphism. Then by

 

 

definition,

k

P (z)
k A

(3) P (2)

AA l-Z(P§/I(Z)-l)

= (1+2)d

l - (n+ 1)z2 - (2n- 1)z3 - (n-1)z4

k (1+2)C1
 

IIn case (1), P (z) #

A/I 1_(n+]_)z2-(2n-1)z3-(r1--l)z4

since the denominators have different degrees. In case

(2), a simple multiplication shows that
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(l-I-z)dk
P (z) 7!

A/I l-(n+1)22--(21’1"]-)Z3‘”1"“z
4 , as required

by (3). Thus the composition A 4 A/IO 4 A/I is not a

Golod homomorphism, whereas both A 4 A/IO and A/IO 4 A/I

are [5], Theorem 7.1 and [30], Theorem 3.7.

Remark. This example was first considered by

Buchsbaum and Eisenbud in [7], albeit for a different

purpose.

In [17], Fr5berg exhibited examples of two local

 

Artin rings, one Gorenstein the other not, with the same

Poincare series. Thus PX, or equivalently the deviations

ei(A), cannot be used to characterize the class of Gorenstein

local rings, something which is of course possible for

regular rings and complete intersections. In the next two

examples, the deviations are computed for two local rings,

one Cohen-Macaulay the other not, which shows that such a

homological characterization does not seem possible in this

case either.

Example 3.2. Let R = k[[X,Y,Z]], A = R/m, where

T = (XY,YZ). Now, dim(A) = 2 and it is not hard to see

that depth(A) = depthR(A) g_l. Since depthR(A) g

dimR(A) = dim(A) = 2 < depthR(R), from the exact sequence

of R-modules O 4 m 4 R‘4 A44 0 it follows that

depthR(A) = depthR(fl)-l by [18], p.237. So depthR(A) g_1

if and only if depthR(M) g_2. But depthR(fl) # 3, the

maximum possible value, since M would then be free as
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R-module [33], p.113. Therefore, A is not Cohen-Macaulay.

This can also be seen geometrically, since the variety

k[X,Y,Z]/KXY,YZ) has an embedded component of dimension

one through the origin. See [33], Theorem 30. However,

=[13-z)2

l--z--z2

A is a Golod ring with P (z)A [24], Theorem

4.3.4 (A is clearly not a complete intersection). Once

PA is known to be rational, the deviations can be computed

using the d—invariants of Castillon and Micali [10]. Let

g(z) = PA(-z). Then the d-invariants are the coefficients

of the formal power series €365?” and one has the formula

 

6

m

= l_—I]r‘l—)— Z “(IE)Q

d|m d d’m-l

where u here denotes the Mobius function. For the example

, 2

under consideration, H—éf%-= z '34 which is

g (l+z-z)(l—z)

-3 + l + 1 Y1 =li;%4£5 Y2 = 1 -345 upon

l-z yl-z yz-z’ 2 ’

   

expanding by partial fractions. From this, a = -3, a = l,

_ _ n 2 2
d3 - -6,.... an — —2+-(-l) (Yli-YZ). Hence, 60

61(A) = 11(91)= 2. 62(A) = l. 63(A) = l. 64(A) = 2. es(

with the sequence monotone increasing from there on.

Example 3.3. Let S = k[[X,Y]]. B = S/KX.Y)2.

Since dim(B) = O, B is Cohen-Macaulay. B is however, not

Gorenstein because O = (X2,Y) fl (X,Y2). On the other hand,

B is a Golod ring [24], Theorem 4.3.5. Thus

) - (l+—z)2 where c = dim.H (K)

Z ‘ 2 3 ' 1 l '
l-clz -c22

PB(
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c2 = dim H2(K), K being the Koszul complex over B [24],

Cor. 4.2.4. NoW dim Hl(K) = u((X,Y)2) = 3 and

  

dim H2(K) = 2, since H2(K) a ann(m), where m is the

maximal ideal of2 B [24], Lemma 1.4.2. Therefore,

P (z) = (13-2) = l . P can be computed at least
B 2 3 1-22 B

l-3z -22

two other ways. B is a complete intersection modulo its

socle [23], and B satisfies the hypotheses of Froberg's

 

 

_ _ 1

.3;151._ ‘2 = _ n+1 n+1 _

9(2) " 1+ 22' Hence an ( 1) 2 and 60(B) - 2,

81(3) = 3, €2(B) = 2, 53(B) = 3, 84(5) = 6, with the

 

sequence monotone increasing thereafter.
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