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ABSTRACT

SATURATIONS OF AN ANALYTIC RING OVER

AN ALGEBRAICALLY CLOSED FIELD

By

Ulrich Daepp

The objective of this thesis is to adapt the theory

of saturation as developed by Oscar Zariski to the case

of analytic rings. We show that some of the necessary

conditions for an adequate description of equisingularity

‘with the help of saturation are fulfilled in this

particular case.

Let k be an algebraically closed, complete and?

non-trivially valued field. Let A be an equidimensional

and reduced analytic ring over k. A = k[{x1,...,xd}][yl,....ym]

where x1....,xd is a system of parameters of A and

all yi are integral over the convergent power series

ring k[[xl....,xd}]. x1....,xd are called strongly

separating if there exist m monic polynomials Pi(Z),

l g_i g_m, which are separable over the quotient field

k({xl....,xd}) and such that Pi(yi) = 0. Systems of

strongly separating parameters always exist. The saturation

of A with respect to a strongly separating system of
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parameters is defined and is again an analytic ring over

k; we denote it by' Ax. We can associate analytic set

germs V and V; with A and fix respectively.
A

AX

We show that VA and V: are tepologically equivalent,

x

that is, there are representatives for each of them.which

are homeomorphic. The total ring of quotients is §(A) =

§(A/pl) @...® @(A/ps) where the pi's are the minimal

primes of A. Denote by F; the least Galois extension

of k({xl.....xd]) which contains §(A/pj). If we

assume further that. [F; :k({xl,...,xd})] and char(k)

are relatively prime for all j, l g_j g_s, and that

(x1....,xd)A is a reduction of the maximal ideal in A

then the multiplicities of A and Xx are the same.

We denote the relative Lipschitz-saturation of A

by A;. If k and A are as above, except that no

*

separability conditions are needed, then Ax is again an

analytic ring over k and VA and V * are topologically

A

equivalent. x
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CHAPTER 0

INTRODUCTION

In a series of three papers published between

1965 and 1968, [23,24 and 25], Zariski started a theory

with the aim of classifying the singularities of alge-

braic and algebroid varieties. In the last paper [25]

he introduced the algebraic concept of the saturation

of a local ring. His intention was to show that two

points are equisingular if and only if their local rings

have isomorphic saturations. In [25], p.985, Theorem 2.1

he succeeded in doing so for plane algebroid curves

over algebraically closed fields of characteristic zero.

He also obtained good results in the hypersurface case,

Corollary 7.5 of [25], p.1019. In general, however, the

question of equisingularity is still open. The definition

itself is not agreed upon and several suggestions are

competing with each other, see [29]. But the concept of

saturation is also interesting from a purely ring theoretic

point of view: it is a way to construct a new local ring

from a given one. Zariski's second series of three papers,

[26,27 and 28], which he published between 1971 and 1975,



puts algebraic questions in the foreground. The relation

between saturation and other ring theoretic concepts,

like localization and completion, are explored.

In 1972, A. Seidenberg published a paper in Which he

applied the saturation to the complex analytic case. In

particular, he proved that two complex analytic varieties

Whose saturations of the local rings at the origin are

isomorphic, are locally homeomorphic at the origin, [22],

Corollary, p.430. Similar results were already obtained

by Zariski in [25]. §5 and 6.

Our objective is to adapt the theory of saturation

to the case of analytic rings of positive characteristic.

The geometric objects which are associated with these rings

are the analytic set germs. ‘We show that the saturation

of this class of rings is well defined and yields other

local rings which are again analytic; Theorem (2.12). As

in the complex case, we can show that analytic set germs

which belong to two analytic rings with isomorphic satura-

tions are tOpologically equivalent, Corollary (3.5). under

some restrictions the multiplicity of a ring is unchanged

if we pass to the saturation, Theorem (4.3). These results

can be considered as a minimum requirement for a success-

ful algebraic tool Which can help in classifying singu-

larities of analytic set germs. This study is therefore

a preliminary test for saturations of analytic rings.

However, if it will eventually prove adequate has still to



be seen. While pursuing this main goal some results

concerning analytic rings and separability questions have

been obtained which may be of interest on their own, see

Chapter III. Also at the end, Chapter V, we include a

brief discussion of the situation, if the relative Lipschitz-

saturation of Pham-Teissier as defined in [12] is taken

instead of the one by Zariski.

Terminoloqy and notation not defined explicitly in

the text follow that used by Zariski and Samuel in their

books [30].



CHAPTER I

PRELIMINARIES

l.l Analytic Rings

A field k is said to be valued if there is a map

H :k.» IU- satisfying the following three conditions:

1) 1a] = 0 if and only if a = O

2) |a+b| g |a|+|b| for all a,b 6 k

3) lab] = |a[|b| for all a,b e k.

This value defines a metric on k by setting d(a,b) =

la-b| if a,b E k. The valuation is said to be non-

trivial if there is an element a E k such that |a| #’O,l.

It is complete if the induced topology is complete. If

char(k) > O and the valuation is non-trivial then it is

non-archimedean and we can replace condition 2) by

2*) |aa+b|‘g_max{|a|,lb|] for all a,b 6 k.

k[[xl,...,xn]] denotes the ring of formal power

series in n .variables over the field k. f(Xl,...,Xn) =

J. 1

23f. x
l n

11'...'ln

1 ...Xn E k[[X1,...,Xn]] is said to be

convergent if there exists a neighborhood U of O in kn

such that to every (al,...,an) E U there are elements

(A An) 6 (11+)“ and D e m” such that1100.]



j'n
OOOAn gD

i
l

[al| < Al....,lan[ < An and Ifil....,i [Al

n

for all (i1....,in) E (Z+) In All convergent power series

form a subring of k[[X1,...,Xn]]. We denote it by

k[{xl,...,xn]], it is called the convergent power series

ring in n variables.

By an analytic ring over k we mean a k-algebra

which is the k-homomorphic image of some convergent power

series ring with coefficients in k. A local ring A is

called k-analytic if it contains a subring B such that B

is an analytic ring over k and A is a finite B-module.

If k is algebraically closed then a ring A is k-analytic

if and only if it is an analytic ring over k, Corollary

1.5, p.30 of [2].

We will need the following, later on:

Lemma [1.1). Let k be an algebraically closed,

complete valued field. Let A be an integral domain con-

taining k[{xl,...,xd]] as subring where the xi's are

analytically independent. If A is a finite module over

k[[x1,...,xd]], then A is an analytic ring over k.

‘ggggfz In view of the above remark it is enough to

show that A is local. By Hensel's Lemma as stated in

(12.2), p.95 of [l], k[{xl,...,xd]] is Henselian.

Theorem (43.12), p.183 of [14] gives now the required

conclusion.



We will need a slightly stronger form of the

normalization theorem for convergent power series rings

than can usually be found. (Compare e.g., Theorem (45.5).

on p.193 of [14].)

Theorem (1.2). Let k be an algebraically closed,

complete and non-trivially valued field and A a local

ring of dimension d.

If A is an analytic ring over k and xl,...,xd

is any system of parameters of A then k[{xl,...,xd]] EiAo

k[[xl,...,xd]] is k-isomorphic to a convergent power series

ring in d variables k[{X1,...,Xd]] and A is a finite

k[[xl,...,xd]]-module.

Conversely, if k[[x1,...,xd]] ggA, A is a finite

k[{x1,...,xd]]-module and dim(k[[xl,...,xd}]) = d, then

A is an analytic ring over k and xl,...,xd is a

system of parameters of A.

gzggf: If x1....,xd is a system of parameters

then they are analytically independent. Otherwise there

exists F(Zl,...,Zd) E k[{Zl,...,Zd]], a convergent power

series ring in d variables, such that F(x1,...,xd) = 0.

‘We can apply a k-automorphism m to k[[Zl,...,Zd]]

such that CF is regular in 2d“ See Lemma 3, p.147 of

[30]. (NOtice that the automorphism given there on the

formal power series ring restricts to one on the convergent

power series ring). By the Weierstrass Preparation Theorem



3—1

we have CD]? = E(zl....,zd)(z§+ Rs-l(zl""'zd—1)Zd +...)

Where E is a unit and the Ri's are non-units. Hence

_ . . s s-l _
wF(xl,...,xd) — 0 implies xd-I-Rs_1(xl,...,xd_l)xd -+...—

. . . s .
This implies that xd 6 (Xl""'xd-1)A making x1,...,x

O.

d-l

into a system of parameters and thus leading to a contra-

diction. It is now clear that k[{xl,...,xd]] is k-isomorphic

to k[{xl....,xd}].

Next we show that A is a finite module over

k[{x1,...,xd]]. We can write A = k[{xl,...,xd,zl,...,zm}].

Since x1,...,xd is a system of parameters we get

2; 6 (xl,...,xd)A for some n. Hence f(xl,...,xd,zl,...,zm)

= z: - £51 fi(xl,...,xd,zl,...,zm)xi = 0. If we replace in

the above series xj by Xj and zj by Zj' where capital

letters genote indeterminates and set F(X1,...,Xd,zl,...,Zm)

= z; - 1:: fi(xl,....xd,zl,...,zm)xi then F is Zm—regular.

By the Weierstrass Preparation Theorem we can write an

arbitrary G 6 k[{xl,...,xd,zl,...,zm]] as G = tI-F-+

n-l . .
. 1 .

Z) Ri(xl,...,Xd,Zl,...,Zm_l)Zm. Therefore, if

i=1 n-l

G(xl,...,xd,zl,...,zm) 6 A then G = l2; Ri(xl"°"xd'

i . . . .
21,...,zm_l)zm, showing that A is a finite module over

k[{x1,...,xd,zl,...,zm_l]]. Inductively we see that A is

finite over k[{xl,...,xd]].

For the converse we need only show that x1,...,xd

is a system of parameters of A. Let p be an associated

prime of (xl,...,xd)A. Then



p 0 k[[xl,...,xd]] = (x1,...,xd)k[{xl,...,Xd}]. From

Corollary 5.8, p.61 of [3] we conclude that p is the

maximal ideal of A. This implies that (xl,...,xd)A

is p-primary and hence is generated by a system of parameters.

Whenever we have a complete, non-trivial and alge-

braically closed field k and a ring A which is an

analytic ring over k then the above theorem allows us to

write A = k[{x1,...,xd}][yl,...,ys] where x1,...,xd

is any system of parameters of A. This is the standard

representation of such a ring.

1.2 Analytic Set Germs

Again, let k be a valued and algebraically closed

field. A set v _c_:_ kn is called analytic at a 6 kn if

there is a neighborhood U of a such that U n V is

the set of zeroes of finitely many functions which are

analytic on V. If Uh is an Open neighborhood of zero

in kn and Va is a set which is analytic at each point

of U6 then an equivalence relation is defined as follows:

(Vfi,Ufi) ~ (VB'UB) if and only if there is a third pair

EUanU and vanu =v nu =v.
Y B Y B Y Y

The equivalence class (Va'Uc) is called an analytic

(VY'UY) 'With U

set germ and is often only denoted by V or V.

Two germs V1 and V2 are topologically equivalent

if there are representatives V1 and V2 and continuous

maps m :V1 4 V2 and w :Vé 4 V1 such that the



compositions to :V1 4 V1 and my :V2 4 V2 are the

identity maps. In addition, if the two maps m and w

are analytic, then we say V1 and V2 are analytically

equivalent. For more details compare [7], where these

concepts are develoPed in the case k = C.

We associate an analytic set germ V with an analytic

ring over k, A, as follows: If A = k[{X1....,Xn}]/m

and Fl....,Fs generate m, then there is a neighborhood

U of 0 in kn on which Fl,...,F converge. Let W
s

be the set of the common zeroes of F1....,Fs in U.

V is the equivalence class to which (W,U) belongs.

As in the algebraic case, V does not depend on the parti-

cular generators we took. Also, the radical of u gives

rise to the same set germ. We will therefore usually

assume that U is a radical ideal. we will show that the

analytic set germ does not depend on the particular

representation of A.

Theorem gl.3). Let k be an algebraically closed,

complete and non-trivially valued field . If

k[{x Xn]]/m and k[{Yl....,Ym]]/B are k-isomorphic10...]

then their associated analytic set germs are analytically

equivalent.

Proof:- Choose generators, U = (ol,...,as) and

B = (51,...,3t). We set A = k[[Xl,...,Xn]]/fl and

B = k[[Yl,...,Ym]]/E. We denote the k-isomorphisms by

f :A.4 B and g = f-l. By xi we denote Xi modulo u
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and by yi, Yi modulo 58. Let Oj(x) E k[{Xl,...,Xn]]

such that §j(x) = 9(yj) for 1 g j g m, where fij is

Qj modulo 91. Let Ak(Y) E k[{Yl,...,Ym]] such that

Kk(y) = fuck) for lgkgn. Here X is A modulo $5.
k k

For some set UO 5 km we define f# : U0 4 kn by

f*(hl,...,hm) = (Al(b),...,An(b)) and for an appropriate

V Ekn,g#:V 4km by 9*O O (alto-opan) = (01(3).....Qm(a)).

Further define Hk(X) = Ak(fll(X),...,Qm(X)) -Xk for

l g k g n and Qj(Y) = Qj(A1(Y),...,An(Y)) -Yj for

l g j g m. We claim that Hk(X) 6 9.1 and Qj(Y) 6 58 for

all j. For, we have Hk(x) = Kk(§l(x),...,§m(x)) —xk =

Kk(g(y1).....g(ym))--xk = 9(Kk(y))-xk) = gf(xk)--xk = 0.

Hence Hk(X) 6 91. In the same way we prove that

s

E oktal. whereQj(Y) E 8. Hence we can write Hk(X) =

i=1
t

URL 6 k[[X1,...,Xn]] and Qj(Y) = 23 e . B where

sz e k[{Yl,....Ym]].

Let U1 be a neighborhood of zero in kn such that

0]”,ch and Qj converge on it for lgkgn, lgzgs,

and l g j g m. Let V1 be a neighborhood of zero in k"1

such that 931,51! and Ak converge on it for 1 g j g m,

l g L g t, and l g k g n. Let VA be the analytic set

defined in U1 by the functions al,...,at. Let VB be

the analytic set defined in V1 by the functions 51,...,Bs.

Let U2 = g#-1Vl. Then U3 = U D U is a neighborhood
1 2

of zero in kn and g# : VA n U3 4 kn is now well defined.
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We have: 9 (a) =

f#g#

a for all a = (a1....,an) 6 VA n U3.

(a)-a = f#For, (01(a),...,Qm(a))-a =

(A1m(a)).....An(ma))) -a = (H1(a).....Hn(a)) = 0.

(Subtraction is meant as a vector Space Operation in kn.)

Consequently g* is one-to-one on VA 0 U3. Let

_ #-1 _ . . .
V2 - f U1. V3 - V1 0 V2 is a neighborhood of zero in

km.

#

We claim.that 9 :‘U n‘v '4 V n V is a homeomorphism.
3 A 3 A

The only thing left to show is that g#(U3 n VA) §3V3 n VB.

We have §£(§1(x),...,fim(x)) = 53(9(y1)....,g(ym)) =

9(EL(Y1""'ym)) = O for l g_£ g_t. Hence

B£(01(X),....Qm(X)) 6 a for l g_£ g_t. If a 6 U3 0 VA

then Bi(g#(a)) = Bi(Ql(a),...,Qm(a)) = O for l g.£ g.t,

# ##
hence g (a) 6 VB. From above we have a = f g (a),

hence 9* 6 V2. Since a 6 U2 = g#'lvl, also g#(a) 6 V1.

This establishes the claim.

#
g is analytic on U3 and f

#

is analytic on V3.

This shows that the germs VA and VB are analytically

equivalent.

The following lemma and its corollary give some

information about the dimension of the ambient space of

an analytic set germ associated with a given analytic ring

over k.
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Lemma (1.4). Let k be a complete, non-trivially

valued and algebraically closed field. Let A be an

analytic ring over k and y1,...,yS a set of generators

for the maximal ideal in A. Then A = k[{yl,...,ys]].

Proof: Clearly k[[yl,...,ys]] EgA and therefore

A = k[{yl,...,ys,xl,...,xn]] with maximal ideal

A(yl,...,ys,xl,...,xn) = A(y1,...,ys). Hence

5

x1 = 2231 AL(Y'X)XL where A£(y,x) 6 A. Set

8

F = x - Z) A£(Y,X)X£. If G(Y,X) is any convergent

i=1

power series then by Weierstrass' Preparation Theorem there

1

are convergent series U(Y,X) and RO(Y,X2,...,Xn) such

that G(Y,X) = U(Y,X)F(Y,X)4-RO(Y,X2,...,Xn). Hence

G(y.x) = Ro(y.x2.....xn) showing that A = klly.x2.....xn}].

After applying this reduction n times we see that

A = k[{yl,...,ys}].

Corollary(l.5). Let k be a complete, non-trivially

valued and algebraically closed field. Let A be an

analytic ring over k of embedding dimension n. we have

associated analytic set germs in kl for all L zun.

1.3 Saturation

In [25] Zariski gives a definition of saturation

which we are going to use and which we will recall here,

adapted to the special case of analytic rings over a

field k.



13

k is an algebraically closed, complete and non-

trivially valued field. A = k[{xl,...,xd]][y1,...,yn]

is an analytic ring over k with x1,...,xd a system of

parameters. §(A) denotes the total ring of fractions of

A, k({xl,...,xd]) is the field of fractions of

k[[x1,...,xd]]. The saturation Xx of A with respect

to xl,...,xd will only be defined if the following five

conditions hold (b,c and e are trivially satisfied):

a) A is reduced.

b) @(A) is Noetherian and hence @(A) = F @...@ F
l s

is a direct sum of fields.

c) k({xl,...,xd}) contains the element 1 of d(A).

d) Let 6i be the identity of Pi in @(A). Then

Pi is a finite separable extension of

eik([xl,...,xd]) for all i, l g_i g_s.

e) A is integral over R = A n k({xl,...,xd]).

We will need some notation and a preliminary definition.

We denote by Q the algebraic closure of k({x1,...,xd]).

If y and z are two elements of §(A) then we say that

y dominates 2 if for any two k([xl,...,xd])-homomorphisms

$1 and $2 of §(A) into 0 the following is true:

If ¢1(Z) i'W2(z) then [W1(Y)-¢2(Y)]/[¢l(2)-¢2(Z)] is

integral over R and if ¢l(z) = w2(z) then wl(y) = w2(y).

A ring A is said to be saturated if every element

of its integral closure A (in its total ring of fractions)

which dominates an element of A is contained in A. The
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intersection of all saturated rings lying between A

and A is called the saturation of A and is denoted by

~

Ax‘ Apparently it depends on the system of parameters we

have chosen.

Recall that if we have two rings A §_B then the

morphism f : Spec(B) 4 Spec(A) defined by f(p) = p n A

is called radicial if the following two conditions are

satisfied:

(1) for every prime ideal p in A there is

at most one prime in B which lies over p.

(2) If p 6 Spec(A), q 6 Spec(B) and q lies

over p then §(B/q) is a purely inseparable

extension of §(A/p).

Zariski's Theorem.4.l [25], p.997 shows that the morphism

Spec(Ax) 4 Spec(A) is radicial. ‘We will make extensive

use of this fact.



CHAPTER II

SATURATION OF.AN ANALYTIC RING

In this section we will show that we can find good

systems of parameters so that it is possible to define

the saturation. The saturation is then again an analytic

ring over the same field as the original ring.

Lemma (2.1). Let k be a valued field which is

perfect and let A be a reduced analytic ring over k.

The integral closure A of A in its total ring of

quotients §(A) is a finite A-module.

§(A) is the direct sum of fields §(A) =

F @...@ F3 and if ei is the identity of Pi as an
1

element in @(A), then A is the direct sum of the

integral closures of the Aei's in the Fi's.

lggggf: Since A is a finite module over a convergent

power series ring we have by [14], (45.6) on p.194 that A

is a Weierstrass ring and hence is in particular pseudo-

geometric. That is, if p 6 Spec(A) then the integral

closure of. A/p in its field of quotients is a finite

A/p-module. The lemma follows now from (19.23), p.167

of [l].

15
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The total ring of quotients of a Neetherian ring,

and hence of a ring A which is reduced and analytic

over k can be described more precisely. Namely

§(A) = @(A/pl) @...® @(A/ps) where p1,...,ps denote

the minimal primes of A.

We introduce the following definition:

Definition (2.2). Suppose A = k[{xl.....xd]][Y1:---.ym]

where xl,...,xd is a system of parameters for A and

the yl,...,ym are integral over k[[x1,...,xd]]. The

system of parameters x1....,xd is said to be strongly

separating if there exist m monic polynomials Pi(z)

in k[{x1,...,xd]][Z] such that Pi(yi) = O for l g_i g.m

and which are separable considered as polynomials over

the field k({x1,...,xd]).

An analytic ring over k which has a strongly

separating system of parameters is called strongly separable.

A ring A is called equidimensional if dim(A) =

dim(A/p) for all associated primes p of the zero-ideal

in A.

Lemma (2.3). Let k be an algebraically closed,

complete and non-trivially valued field. Let A be a

reduced and equidimensional analytic ring over k and

@(A) = Fl @...@ Fs its total ring of quotients. e.
i

denotes the unit of Fi in §(A). If x1....,xd is a



1?

strongly separating system of parameters of A then

Fi is a finite algebraic and separable extension of

eik({xl,...,xd]) for 1 g_i g s.

Proof: We first consider the case where A is a

domain. We have then the following commutative diagram

where all maps are the obvious inclusions.

k({xl,...,xd])(yl....,ym)

/ \_
k({xl,...,xd]) k[(xl....,xd]][y1....,ym]

\ /
k[{x1.....xd}]

Clearly k({le...de})(yloooOIYm) = §(k[{x100000xd}] [y1’0001ym])

= §(A). The monic irreducible polynomial of y1 over the

field k({x1,...,xd]) divides Pi which is separable.

Hence, n is separable.

We can now look at the general case and denote the

minimal primes of A by p1,...,ps. We claim that

k[[x1,...,xd]] 0 pi = (O) for l g,i g,s. To see this
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we notice that for each pi we have a chain of prime

ideals pi C ql C...C qd of length di-l in A.

Contracting this chain to k[{x1,...,xd]] we get another

proper chain in this ring of length di-l, hence

pi n k[[xl,...,xd]] = (O). This establishes the claim.

We define the maps in the diagram beneath as follows:

11 1m -11 -1m
fl(Z ail"'im Y1 ...Ym +pi)=2ai1...imY1 ...Ym .

Since k[{xl,...,xd]] 0 pi = (0) this is an isomorphism.

f2 is defined analogously. gl(a) = (a4-p1,...,a4-ps).

92 is defined in the same way. e and h are the natural

embeddings. It is clear that all subdiagrams commute,

except for diagram D.
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@(A)

h

k({X))(Y) 3 F1 92

I ll [K

e D

91

‘\
\

r1 ‘

k({Xl) k[{x}] [5?] a A/Pi k({Xl)
A\

I:

A

4

HBO]

x stands for x1....,xd and y for y1,...,ym. y

denotes y 4- pi .
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If Pi(Z) is an integral relation for yi over

k[{xl,...,xd]] then it is also one for §i over the

same ring. The special case treated first shows now

that Pi is a finite separable algebraic extension of

k({x1,...,xd]). The lemma will be proven if we show

that hf2e(k({x})) = eigz(k({x])) =hfze(a) = h(a4-pi) =

(opooo'a+Pipooo'O) = €i(a+Pl'...'a+ps) = 6192(a)o

Our next goal is to show that all analytic rings

over k are strongly separable. To achieve this we will

have to introduce some notation and to quote some theorems

from [21].

Suppose A is an analytic ring over k. A k-derivation

6 :A.4 M is called finite if M is a finite A-module.

The pair (Dk(A)'dk)' where Dk(A) is a finite A-module

and dk;:A’4 Dk(A). is a derivation, is called the univer-

sally finite derivation of A if the following holds:

For every finite module M and every k-derivation. 5 :A.4 M

there exists a unique A-homomorphism. h which makes the

following diagram commutative:

Dk(A)

In case d.k :A.4 Dk(A) exists, it is determined uniquely

up to A-isomorphism. Dk(A) is called the universally

finite module of k-differentials of A.
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Theorem(2.4) (Sheja-Storch) [21], p.146, (2.6).

If A is an analytic ring over k then Dk(A) exists.

Definition (2.5) [21], p.149. Suppose A is an

analytic integral domain of dimension d. A system of

parameters x1....,xd in A is called separating if

the quotient field of A is separable algebraic over

k({x1a...pxd)).

Note that separating and strongly separating agree

for analytic domains over k.

If A is a domain and M is an A-module then

rankA(M) = dim§(A)(M.Qk i(A)).

Theorem (2.6) (Scheja-Storch) [21], p.149, (4.1).

Suppose A is an analytic integral domain of dimension d.

Then

1) rankA(Dk(A)) 2Dd.

2) rankA(Dk(A)) = d if and only if A contains

a separating system of parameters.

3) A system of parameters x1,...,xd of A is

separating if and only if Dk(A)/(Adxl+...+ Adxd)

is a torsion module.

Definition (2.1) [21], p.150. Suppose A is an

analytic ring over k and p 6 Spec(A). p is said to

be separable if and only if rankA/P(Dk(A/p)) = dim(A/p).

A is said to be separable if A is reduced and each

minimal prime of A is separable.
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Theorem (2.8) (Scheja-Storch) [21]. (4.2), p.150.

If k is perfect then every reduced analytic ring over

k is separable.

For our purposes we need strong separability. However,

the following theorem shows that the two conditions imply

each other.

Theorem (2.9). Let k be an algebraically closed

complete and non-trivially valued field. Let A be an

equidimensional and reduced analytic ring over k. Then

A is separable if and only if it is strongly separable.

Proof: Of course we can assume that char(k) = p > 0.

It follows easily from Lemma (2.3) and Theorem (2.6)

that strongly separable implies separable.

NOw we assume that A is separable. Let p1,...,pS

be the minimal primes, Wi.:A'* A/pi the projections

and di:A./'pi 4 Dk(A/pi) the universally finite derivations.

By [21], p.149, Zusatz zu (4.1) we get d = dim(A) =

dim(A/pi) = rankA/Pi(di(wim)). We can now apply Hilfssatz

(7.2) in [21], p.157, to find xl,...,xd 6 m such that

for all i {wi(x1),...,wi(xd)] is a system of parameters

and a di-free set, that means {divi(xl),...,diri(xd)] is

linearly independent over A/pi. Let Y1’°'°'Yd be any

system of parameters of A. Then y§,...,y§ is a system

of parameters, too. Now let 21 = yEKlntxi); then
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21,...,zd is a system of parameters since lwtxi are

. = p
units. dj[wj(y§(l-txi))] (wjyj) djrj(xi) and

wj(yi) # 0 for otherwise dim(A/pj) g dim(A/yiA) = d-1

by [6], (10.5), p.73. Hence [wj(zl),...,wj(zd)] is

dj-free for l g_j g,s.

Consider the following sequence:

a. .

o 4 [i (A/pj)dj7rj(zj) 4 Dk(A/pj) 4 nkm/pjviz (A/pj)djvrj(zi)

4 0

Since 4(A/pj) is flat over A/pj ‘we get:

0‘4 (§:(A/pj)djfij(zi)) G @(A/pj) 4 Dk(A/pj) ® é(A/pj)

4 (ka/PjV‘E’ (A/pj)dj7rj(zi)) 0A MA/Pj) 4 O
/pj

Since the ranks of the first two terms are equal, the rank

fth lat ' ,that an A.ZA.d.1r..o e 3 one is zero me 8 Dk( /pJ)/ti( /p3) 3 3(21)

is torsion. It follows now from (2.6) that wj(zl),...,wj(zd)

are separating systems of parameters for all j, l g.j g_s.

We write now' A = k[{zl,...,zd]][y1,...,ym] where

21,...,zd is the system of parameters defined above. For

clarity we set y = y1 where i is any of the indices

1,...,m. ‘We denote by AssA(O) the set of all associated

primes of the ideal (0) in A. Let p 6 AssA(0) with

n-l

yip and let P(Z)=Zn+a z +...+a e
O

k[{zl,...,zd}][Z] such that P(y) = 0. Since

n-l

k[{zl,...,zd]] n p = (O) ‘we have a canonical inclusion

k[{zl,...,zd]] E A/p and we denote the image of

a 6 k[{zl,...,zd]] in A/p by a. Let
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n-l -
5(2) =zn+ar1 z +...+a =I>l(2)...15k(2) where 51(2)

-1 0

denote the irreducible factors of P(Z) as polynomials

over wk[(zl,...,zd]] which is a unique factorization

domain. By a corollary to Gauss Lemma, see [8], p.147,

Lemma 3, the Pi(Z)'s are irreducible over vk({zl,...,zd]).

Since also P(y) = 0 (here y = w(y) where w :A.4 A/p

is the canonical surjection), we get 51(2) =

Irr(y,wk([zl,...,zd])), the irreducible monic polynomial,

for some i, 1 g_i g_k. By choice of notation we may

assume that i = 1. Since §(A/p) is separable over

#k[{zl,...,zd}] we have that P1(Z) is separable. If

m-l.. m _ -

131(2) -z +bm_z +...+b
l

m m-l
Z +bm-lz +...+ bO

of Bi under the map F. Since Pi is separable so is

0 then we set QP(Z) =

where bi denotes the unique preimage

d 6 .QP an Qp(y) P

If t is the number of primes belonging to zero and

containing y then set

t
z = .Fy( ) z 11 Q (2)

p6AssA(0) P

Yip

Fy is a monic polynomial over k[[zl,...,zd]] which is

separable since each irreducible factor is. Also Fy(0) = 0

since

F(y)=ytHQ(y)€ n pg 0 p=(o).

Y P p6AssA(O) p6AssA(O)

This shows that 21,...,zd is a strongly separating system

of parameters.
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Corollar 2.10 . If k and A are as in Theorem

(2.9) then A is strongly separable.

Proof: Immediate consequence of (2.8) and (2.9).

The following example serves two purposes. First, it

shows that not every system of parameters is strongly

separating. It also shows that a system of parameters may

be separating for one summand of the total ring of fractions

but not for another one.

Example (gylll, Let k be an algebraically closed,

complete and non-trivially valued field of characteristic

p > 2. Then k[{xl,x2}] is a regular local unique

factorization domain of dimension 2. Xi-—X2 and X§-X2

are two prime elements in this ring. Let P =

(Xi-szllxlmzll. Q = (XE-x2)k[{xl,x2}] and I = P n Q.

The example we want to consider is A = k[[X1,X2]]/I.

If we set p = P/I and q = 0/1 then AssA(0) = [p,q]

and A is reduced. A/p a k[[xl]] and A/q a k[[xl]].

Hence dim(A/p) dim(A/q) = dim(A) = l and A is equi-

dimensional. m = (xl,x2)A is the maximal ideal of A

. . 2 .

and x1 is a parameter since m ‘EEXIA' We can now write

1

Z2- (xi+x§)z+x§+2 = (Z-xiHZ-XE) is separable over

A = k[{xl]][Y]/(Y2- (xi+x§)Y+xp+2). Since Py(Z) =

k([xl}). x1 is a strongly separating parameter. x2 is

a parameter, too: ml»2 5; sz. Therefore A =

k[{x2]] [YJ/(Ypil'Z-szp-szz-I-xg), A/p # k[{x2]] [SH/(Y2 -x2)

= k[{x2]] and A/q = k[[x2]][Y]/KYp-x2). We see that
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@(A/p) is separable and §(A/q) is not separable over

k({x2}).

We can now state and prove our desired result:

Theorem (2.12). Let k be an algebraically closed,

complete and non-trivially valued field. Let A be an

equidimensional and reduced analytic ring over k. Then

there exists a system of parameters xl,...,xd of A such

that the saturation of A with respect to this system

exists. For each system of parameters for which it exists

the saturation is again an analytic ring over k of

dimension d.

‘ggggf: ‘We first have to check conditions a through e

mentioned in Section 1.3: a) is part of the assumptions;

b) follows from (2.1); c) is obvious. To satisfy d) we

have to choose a strongly separating system of parameters.

That we can find such a system follows from Corollary (2.10).

Lemma (2.3) shows now that d) is fulfilled. For e):

k[{xl,...,xd]] 93A n k({xl,...,xd]) = R and that A is

integral over R follows from Theorem (1.2).

Now suppose that x1....,xd is a system of parameters

for which the saturation is defined. we denote it by Ax

and A stands for the integral closure of A in §(A).

From Lemma (2.1) and the fact that A is Noetherian we

conclude that Ax is a finite A module. From Theorem

(1.2) it follows that Ax is finite over k[{xl,...,xd]].



27

Since k[{xl,...,xd]] is integrally closed in its quotient

field we have R = A n k({x1,...,xd]) and it follows from

[25], (4.1), p.997 that Spec(Ax) .. Spec(A) is radicial.

Hence Ax is a local ring and dim(Ax) = dim(A) = d. By

the second part of Theorem (1.2) we get that Ax is an

analytic ring over k.

Corollagy (2.13). Let k and A be as in Theorem

(2.12). If xl,...,xd is a system of parameters for which

the saturation exists then it is strongly separating.

Proof: The second half of the proof to Theorem (2.9)

shows that Zariski's condition d) implies that the system

of parameters is strongly separating.



CHAPTER III

TOPOLOGICAL RELATION BETWEEN

RING AND SATURATION

As we have shown the saturation of an analytic

ring over k is again an analytic ring over k, provided

one takes a strongly separating system of parameters. As

explained in Section 1.2 one can associate analytic set

germs with both rings. The requirement that the two

analytic set germs are t0pologically equivalent can be

considered as a minimum requirement for an adequate

definition of equisingularity. The purpose of this sec-

tion is to show that this requirement is fulfilled.

Suppose we have two analytic rings over k, A and

A’, AEA’ and A’ is finite over A, say

A’ = A[y1,...,ym]. If A = k[{xl,...,xn]] then there

is an associated analytic set germ VA in kn.

A’ = k[{x1,...,xn,yl,...,ym]] gives then rise to a set

germ VA, in kn+m. In this situation we say that VA,

lies over VA.

If D 6 A then we will write D(xl,...,xn) for a

representation of D in k[{xl,...,xn]]. D(X1,...,Xn)

is then the power series which has the same coefficients

28
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as D(xl....,xn) but has the ring elements xi replaced

by the indeterminates xi. If a = (al,...,an) 6 kn

then D(a) simply means D(Xl,...,Xn) evaluated at

Lemma (3.1). Let k be an algebraically closed,

complete and non-trivially valued field of characteristic

p > 0. Let A ggA’ be two analytic rings over k such

that A’ is a finite A-module. Further assume that there

are D 6 A, D y'o and a 6 It such that Dapa 6 A for all

a 6 A’. Then the analytic set germs VA and VA. , where VA,

lies over VA. have representatives (VA,U) and (VA,,U’)

sudh that above every a 6 VA with D(a) #’0 there lies

one and only one point of YA”

Proof: We first prove the uniqueness: If

a

A’ = A[yl,...,ym] then we‘have Dy? = 9i 6 A for l g.i g_m.

We take a set of defining functions for VA, and include

a

among them the m functions D(X)Y§ -—gi(x). D(X) and gi(X)

are defined as explained previous to the statement of the

theorem. Let a = (a1,...,an) 6 VA with D(a) y'o. Let

b and c be two different points above a in YA”

b = (all-colanlbIIOOOlbm) and c = (alIOOOIanIclIOOOICm)O

G

Since b and c are in V I we have D(a)b§ -gi(a) = 0
A

or bpa - gi(a) - 0 for l ' I th1 D(a) - g_i g,m. n e same way

pa 91(a) .

ci — D(a) = O for l g_i g.m. Hence b1 and c1 are
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both solutions of the equation ZpG-r = 0. Since k is

algebraically closed there is s 6 k such that spa = r

and therefore Zpa-r = (Z-s)pa = 0. Hence the equation

has only one solution and we conclude that bi = ci for

l g.i g.m, ‘which shows that b = c.

It remains to show the existence. If

A =k[{xl,...,xn,yl,...,Ym]]/$ let F1(X,Y),...,FS(X,Y)

be a set of generators for 8. Since A’ is a finite

A-module we may assume that Fi(X,Y)6 k[{X]][Y]. Take

p big enough such that

-a —G G

[D(X)lP[Fi<x.[g1<X)/D<xnp .....[gm(X)/D(xnp n"

= Gi(x) 6 k[[X]] for l g_i g_s.

I n+1“.

We let Ué = [(bl,...,bn+m) 6 k ||bi| < e]. We choose 6

small enough such that all Fi(X,Y),. 1 g_i g.s converge

on U; and consider (VA,,Ué). Now let w > 0 such that

-a

m g e, [gi(a)/D(a)]p < e for all i, 1 g i g m when—

' n
ever a 6 ow = [(al,...,an) 6 k llail < w] and such that

all Gi(X), l g_i g_s and D(X) are convergent on Uw'

We can now include the Gi(X) among the generators for

an analytic set (V ,UE). If a 6 VA and D(a) #'0 then

G G

we let b= (a,[gl(a)/D(a)]P .....[gmtr=1)/D(zi)]p ).

a

b 6 U8 and [Fi(b)]p = Gi(a)/D(a)p = o for l g i g s.

Hence Fi(b) = 0 which implies that b 6 (VA,,U€).

We now state two lemmas which are well known in the

complex case. We will point out at the end of this section
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(see Theorem (3.6)) why the usual short proofs will not

work in our case. We think it is justified to repeat

the proofs given by Kneser [10] here because they are

not well known and are given only for the case k = C.

But the reader will see that the particular field is not

of importance.

Lemma (3.2). Let k be a valued field. Let

1 g_m g n and 01,...,on 6 k ordered such that

 
[all g,..g [on . Then there is a non-negative real valued

function cpm on (11+)m such that the following two

conditions are satisfied:

(1) |am|‘$-mmitl""'tm) where ti =

Isn_i+1(ol,...,on)| and sj denotes the

j-th elementary symmetric polynomial.

(2) cpm(x100001xk) 4 O as x1 ‘0 Op...,Xk 4 0.

Proof: Kneser [10], pp.102-104. We do induction

on m. If m= 1 then we set Cp1(x) = :35. (2) is

clearly satisfied. To see that (1) holds, consider

cpl(tl) = Mal...on| 2 n./lcl|n= loll.

 

We assume now that we have functions $1,...,@k each

of them satisfying (1) and (2). Suppose that ak+l = 0.

We set mk+l = 0. we can therefore assume that ak+l # 0.

Then we have oi #‘O for all i 2_k4-1. Setting

r = mdn{k,n-k] we get
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(3) Sn_k(allooolan) = (a](+l ocean) [1+

1' -1 -1
.Z} si(cxl,...,ak)si(ak+1,...,dn )].

i=1

We notice the following inequalities:

(4) [si(ol,...,o.k)| 3 [all [oi] +...+ ‘Gk-il lakl

S cpl-(t1) coo cpi(tllooooti) +ooo+cpk_i(tllooootk_i) oo-

wk(t1.....tk) = si(ml(tl).....mk(tl.....tk))

for i g_k.

Also:

n—k

(5) IO‘k+1| 31Qk+1"’ani

(e) (si(a;il.....a;1>1 g (“gknakfll'i for all

i g n-k.

USing (4) through (6) in (3) we get:

-k

tk+l = Isn_k(allooopan)!
2 |01C+lin [1...

I}: (a )s ('1 a‘l)

i=1 Si 1'..°'ak i ak+l’°"' n i]

r .

2 Well“ k” '?3 '(nik>|°k+ll 1 si(<p1(tl).....
i=1

CPk(tl....,t—k) )1.

We write this inequality as

(7) i (n'kH I'i (60 (t) (t ))
i=1 i CIk+l Si 1 l '°°°'°"k 1"”‘tk

+ tk+l'ak+llk-n'2 l; r = min{k,n-—k].

1

i=1

+ k+1

where (x1""'xk+l) 6 CR.) . If (x1....,xk+l) #'0

then L(Z) 4 m as Z 4 w and L(Z) 4 O as Z 4 0. Let

Let Lx(Z) exk+1zn‘k+ 23 (n;k)si(cpl(xl),...,cpk(xl,....xk))z



33

Zx be the smallest positive root of the equation

Lk(z) = 1. We define now

21:1 if x710

cP (X..... )=
k+l 1 xk+1 o if x=0

-1

From (7) we get |ak+1| Z-Zt' hence iak+1"g

mk+l(tl""'tk+l) that means (1) is satisfied. It is

easy to see that condition (2) is fulfilled, too.

Lemma (3.3). Let k be an algebraically closed

n-l
n-lx +...+ aO

ai,bi 6 k. Denote the roots of f

field, f1(x) = xni-a and f2(x) =

n n-l

X +bn_1X +...+ boy

by x1,...,xn and suppose c is a root of f1 of mul-

2

tiplicity m. Then for every 6 > 0 there is a 6 > 0

such that if [ai-bi| < 6, O g.i g_n-l, then

|x1-c| < e,...,|xm-c| < c after appropriate enumeration

of the roots of f2.

Proof: If c 6 k we define

_ _ n n-l

91(y) - fl(y+ C) — y +an_ly +...+aly

and

- _ n n-l

n n

n , L E-k k

g(y)=(y+c) +...+a = 2(2) ( _ )ac ]y

n n

6‘ fl t-k k

= 2.:[21 (k)aLc ]y .

Ik=0 £=k

(NOte that if m 6 It and a 6 k then we write ma to

m

abbreviate the field Operation. 2) a. In particular, ex—

i=1

pressions of the form ($)a have to be understood in this



34

sense, that is, with (E) 6 nu.) Similar 92(y) =

n. n r L-k k
21[ Z} ( )b c ]y . Hence the new coefficients are

k L
k=0 £=k

n n

c:k = 23h (fi)c"ka£ and Bk = ‘3‘ (fi)c“kbfi. lok-Bkl =

I; <fi>c""<a,-by>l _<. £2: (fiHCIL’kIay-byl _<.

n(n!)c*[a£*-b£*l where c* = max{l,[c|n-k] and E* is

such that [a£*-b£*l = max {lai-bil].

Qgign-l

Suppose now that c is a root of multiplicity m of

f1(x), then do =...= a

roots of 92(y) ordered such that [Y1] g,..g,|vn

= O. Denote by Yl,...,y the
m—l n

 
. Using

the notation from Lemma (3.2) we have ti =

 

Is (Y1....,Yn)l = [Bi-l . By Lemma (3.2) there is a
n-i+1

function wm. such that |Yl| g,..g_|le g_¢m(tl,...,tm).

By the above inequalities we have ti = IBi-ll S

n.-(n!)c*|a£*-b£*|, l g_i g_m. Since mm(tl,...,tm) 4 O

as tl,...,tm4 O and [xi-cl = IYi+C-C| = [Yil g

wm(tl,...,tm) for l g_i g_m, the lemma is proven.

We will now combine the lemmas to prove the following

theorem:

Theorem (3.4). Let A = k[{x1,...,xn]] and

I

A = k[{x1,...,xn,y1,...,ym]] where k is an algebraically

closed complete and non-trivially valued field. Suppose

that

l) A’ is a finite A-module and A E:A’-

2) A' is reduced.

3) A’ is a radicial extension of A.
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Let VA and VA, be associated analytic set germs in

n and kn+m respectively. Then there are repre-k

sentatives (V ,U) and (VA, ,U’) such that the

projection w':kn+m‘4 kn induces a homeomorphism on the

analytic sets.

Proof: If char(k) = 0 then R = c and the theorem

is identical to Theorem 9 of [22], p.429. Hence we assume

throughout the proof that char(k) > 0.

Let P1,...,PS be the minimal primes of A’. Since

A’ is reduced P1 n...n P8 = (0) is an irredundant

primary decomposition. Let pi = Pi 0 A, then (0) =

pl n...n p8. Suppose we could leave out one of the primes,

say p1. Then pl 3 p2 n...n ps and we have p1 _:_:>_ pi

for some i, 2 g_i g_s, say pl 2,p2. By the going up

theorem, [3], (5.11), p.62, there is a prime Q in A’

such that P2.E:Q and Q n A = p1: Since the extension

is radicial we have Q = P1 and hence PZEPl which

is a contradiction. This shows that p1,...,ps are

exactly the minimal primes of A and A is therefore

also reduced. we have now 6(A) = 6(A/pl) @...® 6(A/ps)

and §(A') = @(A’/P1) @...@ HIV/P8). The map

(a+pi)/(b+pi) 4 (a+Pi)/(b+Pi) determines a natural

embedding of MA) in @(A').
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Next we show that there are analytic sets (VA,U)

and (VA’ ,U’) such that above every point of VA there

lies exactly one point of VA,. Hence the projection is

a bijection between (VA,U) and (VA, n (U><kn),

u’ n (kan)). We will show this by induction on the

dimension d of A. Suppose d = 0, then (VA,U) and

(VA? ,U’) both contain only the origin and the statement

follows trivially. Let us now assume that d > O and

that the existence of two sets lying above each other in

the required way is established for all smaller dimensions.

Since A g A’ g 6(A’) we can write A’ = 2%Aai where

a. 6 6(A’). Since the extension is radiciil, each
J.

§(A’/Pi) is purely inseparable over 6(A/pi) and hence

a

there is an a 6 nt such that a? = r./s. 6 @(A),
i i i t

r.,s. 6 A, for all i, l g_i g.t. Let D = n s. 6 A.
i l a 1 1

Then D 7! o and Dap e A for all a e A’. By Lemma

(3.1) we can find (VA,U) and (VA, ,U’) such that there

is exactly one element in VA, above each element

a 6 VA if D(a) #'0. We consider the analytic subset

of V on whidh D vanishes. Let I’ = rad(D -A7),
A

1 = 1’ n A, A = A/I and A" = A’/i’. Clearly, (I),

37' is a finite A-module and, (2), A7' is reduced. But

also (3) holds, the extension A EEK? is radicial. For,

suppose p 6 Spec(A), then it corresponds to some

'5 6 Spec(A) with I555. If P and Q are primes in

A7} P n A = Q n A = p then consider the corresponding

primes P and 5 in A’. NOW ‘3 n A = 5 n A = p.



37

This contradicts the radiciality of A’ over A, hence

there is at most one prime above p in A7} Further

we have A/p a A/E and A7]? 2.A’/P. Since A/E 4 A’/P

is purely inseparable so is A/p 4 Af/P. In conclusion

we have that Spec(Av) 4 Spec(A) is radicial. Since D

is not a zero divisor in A’ ‘we have dim A7.< dim.A’.

By the induction hypothesis we have two sets (V§,W) and

(V;7.,W’) which lie above each other in the required

A

way and therefore do the sets (VA,UTTW) and (VA, ,UJFWW’).

It remains to show that the projection restricted

to the analytic sets is a topological map. Clearly it

is continuous, so the only thing left to show is that

(x1,...,xn) 4 (x1....,xn,yl,...,ym) is continuous.

Let (xii),...,xél)) be a sequence in V which
A

(0) (0),.
n

converges to (x1 ,...,x Denote by (xii),...,xéi),

(1))
Yil).....ym the corresponding sequence in V ,. Let

A

m be a set of generating functions for VA, which

includes the integral relations of the generators for

q

A’ over A. We denote by Fk(x,Z) = Z kkt..utfko(x)

the integral polynomial for yk and hence

fkj(xl,....xn) 6 k[{xl,...,xn]] for all j and k.

(0) (0),
ak1,...,aqu are the qk roots of Fk(xl ,...,xn Z) = O

and we set .akl = yfio). Let EL be a sequence of positive

real numbers such that e£+1 < EL, 2el < Iaki-akj|

if aki y'akj and 6‘ 4 0 as L 4 m. ‘We denote by
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zfii),...,zfié) the solutions of Fk(x(l),Z) = 0. Then

k

y(i) (i)

=zk Qk(i)'

all continuous functions we can apply Lemma (3.3)

m

( Z, q )-times to find N such that whenever i‘z N
k_1 k I. r

then we will have Iakj-

1 g_flk(i) g qk. Since the fkj are

(1)] < en for l g_k.g_m and

l g_j g qk. The above statement requires a proper choice

of indexing for the roots of Fk = 0 which can always

be made. If we have y(i)-

it follows that yfil) 4kyfio ) as required. Suppose this

—zki) from some L on, then

is not the case for at least one k. Since we have only

a finite number of choices we would have a subsequence

ir such that Qk(ir) #’1 for some k but Qk(ir) = uk

(ir ) (ir)

= constant for all k. Since P(x1,...,ym ) = O

for all F 6 N and since all F are continuous we have

(0) (0)
P(x1,...,xn 'alul""'amu ) = 0 for all F 6 u with

m

a. y'a. for at least one i, l g_i gim. Thus we
aui 11

‘would have a second element lying above (xio),...,xéo))

which contradicts our previous findings.

The main theorem of this section follows now

easily.

Theorem (3.5). Let k be an algebraically closed,

complete and non-trivially valued field. Let A be an

equidimensional reduced ring which is analytic over k.

Let xl,...,xd be a strongly separating system of para-

meters of A and AX the saturation with respect to
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this system. Then the two associated analytic set germs

are tOpologically equivalent.

In fact, the homeomorphism can be induced by the

natural projection of the ambient spaces if the repre-

sentations of the rings are chosen so that the associated

set germs lie above each other.

[Egggf: By Theorem (2.12) Ax is analytic over k

and hence a finite k[{x]]-module. This shows that Ax

is finite over A. Since Ax E §(A) and A is reduced,

we conclude that A; is reduced. The fact that Ax is

radicial is proven in Theorem 4.1, [25], p.997. We can

now apply (3.4) and get the second half of our theorem.

Theorem (1.3) shows that the particular representation of

the ring does not matter and therefore finishes up the

proof.

Lemma (3.2) and the part in the proof to Theorem (3.4)

which establishes the continuity of the map can be proven

much more easily in the case when k = C. The shorter

proofs are based on the fact that every bounded sequence

in C has a convergent subsequence. The following theorem

shows that we do not have this fact available in our situ-

ation and that we can therefore not h0pe to adapt the

usual proofs.

Recall that a space is called sequentially compact

if and only if every sequence has a convergent subsequence.
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Theorem (3.6). Let k be an algebraically closed,

non-trivially valued field of positive characteristic

and let Ac = [x 6 k|1x| g a], where a 6 I91. Then

Ad is not sequentially compact.

‘ggggf: Since AG is metric it is paracompact; see

[4], p.186, Theorem 5.3. By [9], p.162, E). part (d), Ad

is sequentially compact if and only if it is countably

compact. The latter is the case if and only if Ad is

compact, [4], p.230, Corollary 3.4.

Now suppose Ad is sequentially compact and hence

compact. Then k is locally compact, since addition is

continuous. Since char(k) > O the valuation is non-

archimedean and from Theorem 1 of [18], p.245, it follows

that the valuation is discrete, that is [k-—[0]| is a

cyclic subgroup of the positive real numbers. Say Ix]

is a generator of this group. We can assume that [xl > 1.

It is easy to see that [x] = min{|y| > lly 6 k]. Since

k is algebraically closed there is a 6 k such that

2
a = x and therefore 1 < [a| < [x . This contradiction

 

shows that Ad cannot be sequentially compact.



CHAPTER IV

MULTIPLICITY

In order to be equisingular it is certainly a

necessary condition for two analytic set germs that their

local rings have the same multiplicity. One of the main

theorems in [28], Theorem 4.1, p.455, states that under

certain conditions the multiplicity is preserved by

passing to the saturation. The proof of our corresponding

theorem follows basically the one of Zariski. However,

the conditions are somewhat different so that some of

the details have to be changed. For this reason we include

here the somewhat lengthy proof in full.

We will need some definitions and results which are

due to NOrthcott and Rees.

Definition (4.1). If u and B are ideals of a

ring R then B is a reduction of m if Big A and

r r+l

8% = T for at least one positive integer r.

Theorem (4.2) (NOrthcott-Rees, [17], p.357). Let

(A,m) be local with char(A) = char(A/m). If q is an

meprimary ideal of A and (x1,...,xd) = u is a parameter

ideal which is a reduction of q then their multiplicities

are the same: e(fl) = e(q).

41
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Now we come to the main theorem in this section.

Theorem (4.3). Suppose k is an algebraically

closed, complete and non-trivially valued field. Let A

be an equidimensional and reduced ring which is analytic

over k. Suppose x1....,xd is a strongly separating

system of parameters and the ideal it generates is a

reduction of the maximal ideal of A. Denote by F; the

least Galois extension of k({xl,...,xd]) which contains

e(A/pj), where {p1,...,ps] = AssA(O). Suppose that

char(A) and [F3 :k({x1,...,xd])] are relatively prime

for all j, 1 g_j g_s. Then e(A) = e(Ax).

Proof: See [28], §4. We construct a sequence of rings

A. = Ai-1[L1]’ where Al O = A and Li contains all

elements of A which dominate some element in 'Ai-l' By

Lemma (2.1), A is a finitely generated NOetherian A-

~

module and hence so is Ax. Thus, there is an integer n

such that An = Ax. Each Ai is finitely generated over

A and thus over k[{x1,...,xd]]. Since the latter ring

is a Henselian domain, we see that Ai is local ([14],

(43.12), p.183). Hence each A1 is analytic over k

~

‘Wlth maXimal ideal Mi' Clearly Aix = Ax'

If m is the maximal ideal in k[{x1,...,xd]] then

(1) e(mA) = e(mAi) for all 1 2,0.

We will show first that no element of k[[x1,...,xd]] is

a zero divisor in Ai' Recall from the proof of Lemma (2.3)

that k[[xl,...,xd]] 0 p = (O) for all primes p in A
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which belong to zero. If r 6 A and r is not a

zero divisor in A then r is not a zero divisor in

e(A), for, otherwise there is an element a/s with

a,s 6 A and (r/l) ~(a/s) = 0. Then rat = O for some

non-zero divisor t in A. This is impossible. Con-

sequently, if a 6 Ai is a zero divisor and a 6 A, then

a 6 p for some p 6 AssA(O) and hence a £’k[{xl,...,xd]].

We can now apply the projection formula of [30], p.299,

Corollary 1 and get:

[Ai/h&_:k[[x1,...,xd]]/m]e(mAi) = [A1 :k[[x1,...,xd]]e(m)

[A.:k[{xl,...,xd]]e(m)

[A/M : k[{xl,. . . ,xd]]/m]e(mA) .

This implies that e(mAi) = e(mA).

we will need a valuation theoretic characterization

of a reduction: Let Fj = §(A/pj) where (Pl....ops} =

‘ASSA(O)‘ Then @(A) = F @...® Fs and we denote by ”j
l

the j-th projection. Let Sj be the set of all non-

trivial valuations of Fj which are nonnegative on A/pj.

If v 6 Sj and x 6 A then we will write v(x) for

v(wj(x)) in order to keep the notation simpler. If v 6 Sj

and u is an ideal in A, then v(m) = min(v(x)|x 6 N].

n. denotes the ideal in A/pj which is generated by rjfl.

J

The derived complete ideal of m is defined as
s A

91'= n (n 15191.3 ) where R denotes the valuation

j=l v68. 3 3 V V

3 5

ring of v. S = L) S..
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Claim: If m and B are ideals of A, T contains

some non-zero divisor and fl 9:8, then m is a reduction

of B if and only if v(fl) = v(B) for all v 6 S.

First, assume that T is a reduction of B. We set

A = {x 6 Alx is integral over U]. By [16], p.156,

Theorem 3, is 9 it. By [15]. p.167, Theorem 1, we have

8 E m’. For arbitrary v 6 Sj and arbitrary x 6 B ‘we

have x 6 fl’ and in particular x 6 #31 ijv. We can

n

'write wj(x) = 121 aiwj(ai) where (a1....,an) = m and

oi 6 RV. Now v(x) 2_min{v1(ole(al)),...,v(onwj(an))] =

v(dfiwj(a£))‘2 v(at) for some t, l g.£ g_n. Therefore

v(m) g v(B). The other inequality is obvious and we get

v(fl) = v(B).

Now suppose that v(m) = v(B) for all v 6 S. Let

b 6 B, wj(b) #’O and v 6 S then there is a 6 fljl

such that v(a) g v(b). In case v(a) = v(b) then

v(a/b) = v(a)-v(b) = O or wj(a)/hj(b) = u 6 Rv and

-1 1
u = Wj(b)/hj(a) 6 Rv' Hence wj(b) = u wj(a) 6 N.Rv.

J

In case v(b) > v(a), then v(a+b) = v(a). We may

assume 1rj(a+b) a! 0, then v(a/a+b) = 0, hence

-1 _

wj(a)/wj(a4-b) — u 6 Rv and nj(a)u — rj(a4-b) 6 Nij.

Since wj(a) 6 9.1.R.V we get as before wj(b) 6 N.R The

3 JV'

same is true_if rj(b) = 0. Since j and v were

arbitrary we see that b 6 u’ and hence B E_U'. By

Theorem 1 of [15], p.167, 8 g.§ and by Theorem 3 of

[16], p.156 we have that B is a reduction of m as

required. This finishes the proof of the claim.
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We will now use induction on the index i to show

that (x1....,xd)Ai is a reduction of Mi for all

i 2_O. The case i = O is trivial. The fact that

x1....,xd is a system of parameters in Ai for all i

follows from [30], p.276, Theorem 15(d). We may now

assume that (x1,...,xd)Ai is a reduction of Mi or,

equivalently, that v(mAi) = v(Mi) for all v 6 S. We

have to show that this implies

(2) v(mA.1+1) = v(Mi+l) for all v 6 S.

To prove (2) notice first that we clearly have

v(M ) g_v(mAi+l). We write Ai+1 = Ai[T] where we can
i+l

assume that T E-Mi+l’ For, if y 6 T, but y £.Mi+1

then replace it by z = y-c where c 6 k. It suffices

now to show the following: For all y 6 T and for all

v 6 S- we have v(y) 2 v(xi) for all i, 1 g_i g,d.

If this were true and a 6 M1+1 then a = ZLGibi, bi 6 T

and ci 6 Ai. v(a) 2_min{v(oibi)] = v(olbl) = v(a£)4-

v(bz) 2_v(b£) for some L. Hence v(Mi+1) 2 v(T) 2

v("‘Ai+l) ‘

Let F; be the least Galois extension of

K = k({xl,...,xd]) containing Fj' Denote by s; the

set of all valuations of F; which are nonnegative on

R = k[[xl,...,xd]]. Since ij is integral over R the

*

elements of Sj are nonnegative on rjA, that means

* *

v*|F e sj for all v e sj. By [5], Theorem 13.2, p.94

j

to every v 6 Sj there is an extension v* 6 8;. Hence
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*

Sj consists exactly of the extensions of v 6 Sj to

* at

Fj. Hence we can also prove equivalently that v (y) 2

'k 'k 'k

v (m) for all v 6 S and all y 6 T. Let S0 be

all valuations of K. which are nonnegative on R. we have

** O . * * .

v [K 6 S if v 6 Sj and Sj conSlsts of all the

extensions of S0 to F3. All extensions belonging to

V0 6 So form a complete set of conjugates under

* *

G = Gal(Fj|K). More precisely, if v extends v0 and

*

T 6 G then v T extends v0 and if v’ extends v

I

then v' = v*r’ for some T 6 G; see [30], p.28,

0

Corollary 3.

(3) If y 6 T arbitrary and v0 6 SO arbitrary,

* *

then there exists at least one v 6 Sj which

extends v and v*(y) 2.v*(m).
O

For the proof of this statement, assume that this is

* * *

not the case, or v (y) < v (m) for all v extending v0.

*

Let h = [Fj : K], g = [Fj : K]. Note that if p = char(A)

then (h.p) = l = (9.1:) and hlg. T * (y) = )3 yr =

FjIK rec

(g/h)TFj/K(Y)' Let Y0 = (l/ngFf KW) = (l/thFj‘KW)

J n

= (1/9)Z 171‘. (If n62 then n= 2 1, 16k and

TEG
i=1

(l/n) = n‘l.)

We ShOW'that yO 6 m, the maximal ideal of R. Since

y is integral over R there is a minimal polynomial

f(X) = Xn4-cn_lxn'1+u... of y over R. By [8], p.147,
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Lemma 3, f(x) is irreducible over K and hence

y0 = cn-l 6 R. Let Rj be the integral closure of R

in Fj. By the lying over theorem there is p 6 Spec(Rj)

such that p n ‘lTj (A )T is integral

by [3] .

i+1 i+1

T

over R and we have p n (Fin+l) - (iji+1)

(5.8), p.61. USing the same theorem, R n p = m.

) = FjMi+l' (WjA

T

wj(y0) 6 p Since y 6 Mi+l' Hence yO 6 m.

*

For all extensions v of V0

* * * * 'k

v (m), hence v (y) < v (yo), hence v (y-yo) = v (y)

we have V*(YO)-2

* T
0' Therefore v ( E (y -y)) =

* T6G
*

v (y) for all extensions v of v0. This implies that

there is an element

*

for all v extending v

'k

for every extension v of V0

*

T 6 G such that v*(yT-y) g_v (y). Since y 6 Li+1 it

*

dominates some 2 6 A1 and we have v (yT-y).2 v*(zT-z)

for all v* in .S; and for all T 6 G. We may assume

that z 6 Mi (if not, replace by z-c where c-I-Mi

* *

= zani and c 6 k). Hence v (y) 2 v (zT-z) for all

'k*

v extending v0 and for a suitable T 6 G. Fix vO

* T

extending v0 and TO 6 G such that vo(z 0) =

. * T w w *

min{vo(z )]. Set v1 = vOT0 then we have Vl(2) =

T6G T

'k 'k 'k * -

vo'ro(2) = vo(z o) = minivotzTH = min[v1Tol(zT)] =

_1 TEG T6G

1' 'T

min{v:(z O )]. v:(z) = min{v:(zT)]. Hence v:(zT-z)

TEG T6G

2_v:(z) for all T 6 G. For some T 6 G, v:(y)‘2

* T w H w ) w ) w M )__ *

v1(z -z '2 v1(z). ence v1(y 2_vl(z 2_v1( i - vl(m).

The last equality comes from the induction hypothesis.

This proves statement (3).
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*

Now conSider an arbitrary extension v of v .
O

v*(m) = V*(Mi) and since 2 6 Mi ‘we have for all v*

* * *

in Sj and for all T in G, v (zT) 2_v (m). Hence

*

v*(zT-z) 2,v (m). Since y dominates 2 'we get

* T * * * .

v (y -y) 2_v (m) for all v 6 Sj and T 6 G. USing

* T . * T * * .

(3) we get v1(y ) 2m1n[v1(z -2),v1(y)] 2v1(m). Since

1' *

m = m and VlT ranges over all extensions of v 'we
0

* *

have v (y) 2.v (m) for all v* extending v0. This

finishes the proof of (2).

The theorem follows now easily. Namely, by Theorem

(4.2) and the assumption that mA is a reduction of M ,

'we have e(A) = e(Mo) = e(mA). By (1), e(mA) = e(mAn).

By (2), together with Theorem (4.2): e(mAn) = e(Mh) = e(An).

Since An.= A.x ‘we have e(A) = e(Ax) as desired.

Definition (4.4). A system of parameters xl,...,xd

of a local ring (A,m) is said to be transversal if

e((xl,...,xd)A) = e(m).

Corollary (4.5). Let k be as in (4.3). Let A be

an analytic integral domain over k. Let xl,...,xd be

a (strongly) separating and transversal system of para-

meters. Denote by F* the least Galois extension of

k([xl,...,xd]) which contains 6(A). Suppose that char(k)

and. [F* :k({x1,...,xd])] are relatively prime. Then

e(A) = e(Ax).
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‘ggggf: The statement follows from (4.3) if we can

show that (xl,...,xd)A is a reduction Of the maximal

ideal in A. This follows from [20], p.16, Theorem 3.2,

if we can show that all minimal primes in the completion

of A are of dimension d = dim(A). [14], p.188, Theorem

(44.1) implies that A is analytically irreducible, that

is, the completion is a domain.

As shown in (2.10) we can always find a strongly

separating system of parameters if k is algebraically

closed and A is equidimensional. If k is infinite

(which is Of course the case if k is algebraically closed),

then there is a system of parameters in A which generates

a reduction Of the maximal ideal, [17], p.356, Corollary to

Theorem 2. It is not known to us, under what conditions

we can find a system of parameters which satisfies both

conditions. As in the algebroid case, the question remains

Open, whether the multiplicity is preserved if the parameters

do not generate a reduction of the maximal ideal (see

the remark beneath Corollary 4.2 in [28], p.460). However,

there definitely are non-trivial cases to which our theorem

applies. To show this, is the purpose of the following

example.

Example (4.6). This is a ring satisfying all con-

ditions of (4.5) and having non-trivial saturation. Let

k be an algebraically closed, non-trivially valued field

with char(k) > 3. We consider A = k[{X,Y]]/(Y34-Y24-X2

+ 2XY). It is easy to check that A is a domain and



50

dim(A) = 1. We write x and y for X and Y modulo

the relation. m = (x,y) is the maximal ideal and x

is a system Of parameters since m2 E (x). Hence

A=k[{x]][y] where y3+y2+2xy+x =0. (x) isa

reduction of m since m2(x) = m3. One also checks

that it is (strongly) separating. f(Z) = 234-224-2x24-x2

N

is irreducible in k[{x]][Z] and hence in k({x])[Z].

Therefore [e(A) :k({x])] = [k({x])(y) :k({x])] = deg(f(Z))

= 3. F* is the splitting field of f(Z) over k({x]),

hence char(A) and [F* :k({x])] are relatively prime.

That A is not saturated can be seen as follows: If it

were saturated then A were an .Arf ring since dim(A) = l

and A is Cohen-Macaulay, [11], p.682, Corollary 5.3.

Then we would have dimA/m(m/m2) = e(A), by [11], p.661,

2+2xr+x2) g (x,y)2 andTheorem 2.2. Since (Y34VY

k[{x,Y]] is a regular local ring of dimension 2, we have

dimA/m(m/m2) = 2. To calculate the multiplicity of A we

use [30], p.299, Corollary 1 and get e(xA) = 3. Since

(x) is a reduction Of m.= (x,y) we have e(A) = 3. This

contradiction shows that A is not saturated.



CHAPTER V

RELATIVE LIPSCHITZ-SATURATION

An alternative definition of saturation was

develOped by Pham and Teissier [19]. We repeat it here

as given in [12], p.792.

Definition (Ell). Let R be a ring and let

9 :A.4 B be a homomorphism of R—algebras. The Lipschitz-

*

saturation AB R Of A in B, relative to R.4 A.4 B

I

* O O

is the set AB,R = {x 6 le ORIJ-l GR}: is integral over

the kernal of the canonical map B ®R B44 B GA B]. (This

kernal is generated by all the elements g(a) O l-l 3 g(a),

a 6 A).

A is saturated in B relative to R.4 A 4 B if

A = 9(A).

For properties of this saturation, see [12]. In the

case Of an analytic ring A = k[{xl,...,xd]][y1,...,yn]

we have k[{xl,...,xd]] 4 A.4 A, A is the integral

closure Of A in e(A). We will just write A; for

*

A , where x = (xl,...,xd).

A.k[{Xl]

51
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Theorem (Ball. Let k be an algebraically closed,

complete and non-trivially valued field, A an equi—

dimensional and reduced analytic ring over k, and

x1,...,xd a strongly separating system Of parameters Of

~ *

C .A. Then, Ax __AX

Proof: The existence Of Ax is proven in Theorem

(2.12). In the proof of Lemma (2.3) we have shown that

under the present hypothesis, [ L) p] n

p 6AssA(O)

k[{x1,...,xd}] = (O). k[{xl,...,xd]] is integrally

closed in its quotient field. Hence the conditions for

Corollary (4.2) of [12], p.807 are fulfilled and we get

the statement of the theorem.

proposition (1.4) of [12], p.797 shows that A .. A;

is a radicial extension. For this reason we can translate

some of our earlier results directly to the case of the

Lipschitz—saturation. Because of Theorem (5.2) these

results are actually stronger. Notice also, that no

separability conditions are required in this case.

Corolla 5.3 . Let k be an algebraically closed,

complete and non-trivially valued field. Let A be an

equidimensional and reduced analytic ring over k. The

Lipschitz—saturation of A with respect to any system

Of parameters exists, is again an analytic ring over k

and dim(A) = dim(A;).
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Proof: The same as for Theorem (2.12) except that

we use Proposition (1.4) of [12], p.797 instead of [25],

(4.1).

Corollary (5.4). Let k and A be as in (5.3).

If V and w are analytic set germs associated with A

and A; respectively, then V and W are topologically

equivalent. For apprOpriate representations, the

homeomorphism is induced by the natural projection Of the

ambient spaces.

Proof: The same proof as for (3.5). Again PrOposition

(1.4) Of [12], p.797 replaces Theorem (4.1) of [25].

we do however not know if an analogous statement

to Theorem (4.3) holds.
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