STUDIES OF SN/B BISMETALIC ARENES, ELECTRONIC-DRIVEN AROMATIC C-H BORYLATION CATALYZED BY IR-ELECTRON DEFICIENT BIPYRIDINE LIGANDS, AND DESYMMETRIZATION OF DIBORYL AROMATICS

By

Hao Li

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
Chemistry - Doctor of Philosophy

2016

ABSTRACT
 STUDIES OF SN/B BISMETALIC ARENES, ELECTRONIC-DRIVEN AROMATIC C-H BORYLATION CATALYZED BY IR-ELECTRON DEFICIENT BIPYRIDINE LIGANDS, AND DESYMMETRIZATION OF DIBORYL AROMATICS

By

Hao Li

Ir-catalyzed C-H activation/borylation was first reported in 1999. ${ }^{1}$ Within two decades this methodology evolved into a synthetic protocol to install a boron group on a prefunctionalized benzene or heterocycle. ${ }^{2}$ Earlier studies have characterized many features of this methodology. The Ir-catalyzed C-H activation/borylation tolerates a wide variety of functionalities pre-installed on the aryl or heteroaryl substances. It was also both predicted computationally and proven experimentally that the Ir-catalyzed C-H activation/borylation favors more acidic C-H bonds. ${ }^{3}$ Also demonstrated experimentally, steric effects govern the regioselectivity of the Ir-catalyzed C-H activation/borylation in most cases. ${ }^{4}$

My studies covered these topics: 1. Synthesis of boron/tin bimetallic arenes and chemoselective Suzuki coupling of these compounds; ${ }^{5}$ 2. Electronics driven regioselective Ir-catalyzted C-H activation/borylation of fluorinated benzenes. ${ }^{6}$ And 3. Desymmetrization of symmetrically diborylated benzenes. ${ }^{7}$

Copyright by
HAO LI
2016

My family, friends, professors, and colleagues

TABLE OF CONTENTS

LIST OF TABLES vii
LIST OF FIGURES viii
Chapter 1 Synthesis And Suzuki Coupling Of B/Sn Bismetallic Arenes 1
1.1 Introduction 1
1.2 Proposed pathways to bismetallic arenes. 5
1.3 Selective suzuki coupling of the b / sn bismetallic arenes 9
1.4 Experimental section. 12
1.5 Summary 21
Chapter 2 Electronics Driven Regioselective Ir-Catalyzted C-H Activation/Borylation Of Fluorinated Benzenes 22
2.1 Introduction 22
2.2 Screening borylation conditions 31
2.3 Ligand effects hypothesis 33
2.4 Searching for new ligands 34
2.5 Results and discussions 37
2.6 Tandem borylation-Suzuki coupling 41
2.7 Kinetics study of the borylations with electron deficient ligands 42
2.7.1 Preparation of stock solutions 43
2.7.2 Preparation of stock solutions 44
2.7.3 Preparation of stock solutions 46
2.7.4 Preparation of stock solutions 49
2.7.5 Preparation of stock solutions 51
2.7.6 Preparation of stock solutions 53
2.7.7 Preparation of stock solutions 55
2.8 Probing the ligand decomposition 57
2.9 Degradation of ttfbpy during borylation 60
2.10 Borylation under a H_{2} atmosphere. 61
2.11 Temperature effect or borylation reagent effect 65
2.12 Summary 66
2.13 Experimental 67
Chapter 3 Desymmetrization Of Diboryl Aromatics 86
3.1 Introduction 86
3.2 Synthesis of the $(\operatorname{PinB}) \operatorname{Ar}\left(\mathrm{BF}_{3}\right) \mathrm{Cs}$ salts. 90
3.2.1 Desymmetrizing 2,2'-(5-bromo-2-fluoro-1,3-phenylene)bis(BPin) 90
3.2.2 Desymmetrizing 2,2'-(5-methoxy-2-fluoro-1,3-phenylene)bis(BPin) 91
3.3 Synthesis of the (PinB)Ar(BMida). 92
3.4 Summary 102
APPENDIX 104
REFERENCES 224

LIST OF TABLES

Table 1. Attempts of borylation of arylstannanes 6
Table 2. Stannylation of bromophenyl boronic esters8
Table 3. Base screening for selective Suzuki couplings of B/Sn bismetallic arenes 10
Table 4. Selective Suzuki coupling of 2a-f with 8 11
Table 5. Borylation screening 32
Table 6. Borylation screening with bpy $\left(\mathrm{CF}_{3}\right)_{\mathrm{x}}$ ligands 38
Table 7. Borylation of $\mathbf{1 2 a}$ by HBPin 41
Table 8. Tandem borylation-Suzuki coupling 42
Table 9. Summary of kinectic studies at high concentration 49
Table 10. First order kinetic behavior of borylation of 12a 53
Table 11. Results of kinetic studies of the borylation of $\mathbf{1 2 c}$ 56
Table 12. Desymmetrizing 2,2'-(5-methoxy-2-fluoro-1,3-phenylene)bis(BPin) 91

LIST OF FIGURES

Figure 1. Different types of bifunctional cross coupling partners 1
Figure 2. Knochel's cross-coupling cascade synthesis of mepanipyrim 2
Figure 3. One pot C-N/C-C bond formations sequence 2
Figure 4. Syntheis and Stille coupling of 1,4-B/Sn diene compound 3
Figure 5. Synthesis and Stille coupling of a 1,4-B/Sn benzene 3
Figure 6. Staubitz's Sn / B thiophene building block and Stille/Suzuki CCR's sequence 4
Figure 7. Wang's Sandmeyer-type borylation-reduction-stannylation sequence on nitro- aniline and their Stille/Suzuki CCR's 4
Figure 8. Chmeoselective Suzuki coupling of B/Sn bismetalic diene 5
Figure 9. Proposed routes to $\mathrm{m}-\mathrm{B} / \mathrm{Sn}$ bismetallic arenes 6
Figure 10. Synthesis of B/Sn bismetallic arenes via Pd catalyzed stannylation 7
Figure 11. Synthesis of 2a via Zn mediated stannylation 7
Figure 12. Attempts of stannylation on bromoheteroaryl boronic esters 9
Figure 13. Suzuki couplings of $\mathbf{1 f}$ and $\mathbf{2 f}$ with various electrophiles 12
Figure 14. Structure of fludrocortisone 22
Figure 15. Ritter's fluoride derived late stage fluorination, and applications on complicated molecules 23
Figure 16. Borylation of fluorobenzenes or fluorination of aromatic boronic acids and/or esters 24
Figure 17. General Scheme of Balz-Shiemann reaction 24
Figure 18. Fluorination with DAST 25
Figure 19. An example of asymmetric electrophilic fluorination 25
Figure 20. Palladium catalyzed electrophilic C-H fluorinations 25
Figure 21. Lithiation/borylation at cryogentic condition and its possible risk 26
Figure 22. General scheme of a Suzuki-Miyaura coupling reaction 27
Figure 23. Ingelson's electrophilic aromatic borylation 27
Figure 24. Sandmeyer type borylation of ortho fluoroanilines 28
Figure 25. Pt-catalyzed C-H activation/borylation on fluorobenzene 28
Figure 26. Borylation ortho to F on a 1,4-substituted benzene. 28
Figure 27. Possible synthetic routes for regioselective borylation on 1-fluoro-3-chloro- benzene derivatives 29
Figure 28. Regiochemical outcomes in borylation of 1,3-disubstituted benzenes 30
Figure 29. Ligands used for screening 31
Figure 30. Literature synthesis of bis- and tetra- CF_{3} substituted bipyridines 34
Figure 31. Improving the synthesis of 4,4-bistrifluoromethyl bipyridine (btfbpy) 35
Figure 32. Proton NMR of the mixture of reduction products, aliphatic part 36
Figure 33. Proton NMR of the mixture of reduction products, aromatic part 36
Figure $34 .{ }^{19} \mathrm{~F}$ NMR of the mixture of reduction products 37
Figure 35. Improving the synthesis of 4,4',5,5'-tetratrifluoromethyl bipyridine (ttfbpy) 38
Figure 36. Resurrecting the borylation 39
Figure 37. Borylation by HBPin 40
Figure 38. Synthesis of pre-assembled catalyst 43
Figure 39. Kinetic study of the borylation of 12a 43
Figure 40. First order fitting for the reaction described in 2.7.1 44
Figure 41. ${ }^{19} \mathrm{~F}$ NMR of the CF_{3} region, from bottom to top: $0.0,1.0,2.3,3.5,4.8,6.0$ hours after substrate (12a) was added. 45
Figure 42. Kinetic study of the borylation of 12a 45
Figure 43. 1st order fitting for the reaction described in 2.7.2 46
Figure 44. ${ }^{19} \mathrm{~F}$ NMR of the CF_{3} region, from bottom to top: $0.0,1.0,2.3,3.5,4.8,6.0$ hours after substrate (12a) was added. 47
Figure 45. Kinetic study of the borylation of 12a 47
Figure 46. $1^{\text {st }}$ order fitting for the reaction described in 2.7.3 48
Figure 47. ${ }^{19} \mathrm{~F}$ NMR of the CF_{3} region, from bottom to top: 0.0, 1.0, 2.3, 3.5, 4.8, 6.0 hours after substrate (12a) was added 48
Figure 48. Kinetic study of the borylation of 12a 49
Figure 49. First order fitting for the reaction described in 2.7.4 50
Figure 50. ${ }^{19} \mathrm{~F}$ NMR of the CF_{3} region, from bottom to top: 0.0, 1.0, 2.3, 3.5, 4.8, 6.0 hours after substrate (12a) was added 51
Figure 51. Kinetic study of the borylation of 12a 51
Figure 52. First order fitting for the reaction described in 2.7.5 51
Figure 53. ${ }^{19} \mathrm{~F}$ NMR of the CF_{3} region, from bottom to top: $0.0,1.0,2.3,3.5,4.8,6.0$ hours after substrate (12a) was added 53
Figure 54. Kinetic study of the borylation of 12c 54
Figure 55. First order fitting for the reaction described in 2.7.6. 54
Figure 56. Kinetic study of borylation of 12c 55
Figure 57. First order fitting for the reaction described in 2.7.7 56
Figure 58. ${ }^{1} \mathrm{H}$ NMR of the preassembled catalyst (15) treated by $\mathrm{B}_{2} \mathrm{Pin}_{2}$ and HBPin in THF-d_{8}, top: Compound 15, mid: Compound 15 and 5 equiv $\mathrm{B}_{2} \mathrm{Pin}_{2}$ after 4 h at 298 K , bottom:
Figure 59. ${ }^{11} \mathrm{~B}$ NMR of the preassembled catalyst (15) treated by $\mathrm{B}_{2} \mathrm{Pin}_{2}$ and HBPin inTHF- d_{8}, top: Compound 15, mid: Compound 15 and 5 equiv $\mathrm{B}_{2} \mathrm{Pin}_{2}$ after 4 h at 298 K ,bottom: Additional 5 equiv HBPin added, then after 4 h at 298 K58
Figure 60. ${ }^{19} \mathrm{~F}$ NMR of the preassembled catalyst (15) treated by $\mathrm{B}_{2} \mathrm{Pin}_{2}$ and HBPin inTHF- $d s$, top: Compound 15, mid: Compound 15 and 5 equiv B2Pin2 after 4 h at 298 K ,bottom: Additional 5 equiv HBPin added, then after 4 h at 298 K59
Figure 61. Borylation of 12a by stoichiometric $\mathbf{1 5}$ 59
Figure 62. Borylation of 12c by stoichiometric Ir and ttfbpy 60
Figure 63. Borylation of 12c with stoichiometric Ir and ttfbpy, top: Before heating, mid4.5 h Heating, bottom: 9 h Heating.61
Figure 64. H_{2} influence on borylation. 62
Figure 65. Conversions of the borylation of 12a with HBPin affected by H_{2} 62
Figure 66. Regioselectivity of the borylation of $\mathbf{1 2 a}$ with HBPin affected by H_{2} 63
Figure 67. H_{2} influence on borylation 63
Figure 68. Borylation of 12a by HBPin affected by H_{2} 64
Figure 69. Borylation of $\mathbf{1 2 a}$ by HBPin affected by H_{2} 64
Figure 70. Borylation of 12a by HBPin with btfbpy at high temperature 65
Figure 71. Borylation of 12a by HBPin at high temperature 66
Figure 72. Borylation with $\mathrm{B}_{2} \mathrm{Pin}_{2}$ at higher temperature. 67
Figure 73. Borylation of substrate $\mathbf{1 2 d}$ 73
Figure 74. Suginome's B(dan) protection groups 86
Figure 75. Molander's exploitation of $\mathrm{ArBF}_{3} \mathrm{M}$ salts 86
Figure 76. Burk's exploitation of Mida protected boron 87
Figure 77. Two approaches toward unsymmetric diborates 88
Figure 78. Desymmetrizing $\operatorname{Ar}(\mathrm{BPin})_{2}$ by $\mathrm{H}_{2} \mathrm{Mida}$. 88
Figure 79. Desymmetrizing $\mathrm{Ar}(\mathrm{BPin})_{2}$ via $\mathrm{Ar}(\mathrm{BPin}) \mathrm{BF}_{3} \mathrm{M}$ salt 89
Figure 80. Desymmetrizing 2,2'-(5-bromo-2-fluoro-1,3-phenylene)bis(BPin) 89
Figure 81. Desymmetrizing 2,2'-(5-methoxy-2-fluoro-1,3-phenylene)bis(BPin) inwater.91
Figure 82. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PhBF}_{3} \mathrm{Cs}$ in $\mathrm{CD}_{3} \mathrm{CN}$ 92
Figure 83. ${ }^{11} \mathrm{~B}$ NMR of $\mathrm{PhBF}_{3} \mathrm{Cs}$ in $\mathrm{CD}_{3} \mathrm{CN}$ 93
Figure $84 .{ }^{19} \mathrm{~F}$ NMR of $\mathrm{PhBF}_{3} \mathrm{Cs}$ in $\mathrm{CD}_{3} \mathrm{CN}$. 94
Figure $85 .{ }^{11} \mathrm{~B}$ NMR after adding 1 equiv TMSCl 94
Figure 86. ${ }^{19} \mathrm{~F}$ NMR after adding 1 equiv TMSCl 95
Figure 87. ${ }^{11} \mathrm{~B}$ NMR after adding 2 equiv TMSCl 95
Figure 88. Activation of $\mathrm{PhBF}_{3} \mathrm{Cs}$ by TMSCl 95
Figure 89. Formation of $\mathrm{PhBF}_{3}{ }^{-}$after adding Na_{2} Mida 96
Figure 90. Protection of PhBF_{2} by Mida ligand in DMSO. 96
Figure $91 .{ }^{19} \mathrm{~F}$ NMR after adding 2 equiv TMSCl 96
Figure $92 .{ }^{1} \mathrm{H}$ NMR of the crude product of Figure 90 in DMSO-d6 97
Figure $93 .{ }^{11}$ B NMR of the crude product of Figure 90 in DMSO-d ${ }_{6}$ 98
Figure 94. Optimization of the reaction conditions 99
Figure 95. Attempted transformation of 17a 100
Figure 96. Stepwise transformation of 17a and 17b 100
Figure $97{ }^{119} \mathrm{Sn}$ NMR of compound $\mathbf{2 a}$ 105
Figure $98{ }^{11}$ B NMR of compound 2a 106
Figure $99{ }^{13} \mathrm{C}$ NMR of compound 2a 107
Figure $100{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 a}$ 108
Figure $101{ }^{119}$ Sn NMR of compound $\mathbf{2 b}$ 109
Figure $102{ }^{11} \mathrm{~B}$ NMR of compound $\mathbf{2 b}$ 110
Figure $103{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 b}$ 111
Figure $104{ }^{19}$ F NMR of compound $\mathbf{2 b}$ 112
Figure $105{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 b}$ 113
Figure $106{ }^{119} \mathrm{Sn}$ NMR of compound $\mathbf{2 c}$ 114
Figure $107{ }^{11} \mathrm{~B}$ NMR of compound $\mathbf{2 c}$ 115
Figure $108{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 c}$ 116
Figure $109{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 c}$. 117
Figure $110{ }^{119} \mathrm{Sn}$ NMR of compound 2d 118
Figure $111{ }^{11} \mathrm{~B}$ NMR of compound 2 d 119
Figure $112{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 d}$ 120
Figure $113{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 d}$ 121
Figure $114{ }^{119} \mathrm{Sn}$ NMR of compound $\mathbf{2 e}$ 122
Figure $115{ }^{11} \mathrm{~B}$ NMR of compound $\mathbf{2 e}$. 123
Figure $116{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 e}$. 124
Figure $117{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 e}$ 125
Figure $118{ }^{119} \mathrm{Sn}$ NMR of compound $\mathbf{2 f}$ 126
Figure $119{ }^{11} \mathrm{~B}$ NMR of compound $\mathbf{2 f}$. 127
Figure $120{ }^{13} \mathrm{C}$ NMR of compound 2 f 128
Figure $121{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{2 f}$. 130
Figure $122{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 f}$ 130
Figure $123{ }^{119}$ Sn NMR of compound $\mathbf{4 a}$ 131
Figure $124{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 a}$ 132
Figure $125{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 a}$ 133
Figure $126{ }^{119} \mathrm{Sn}$ NMR of compound $\mathbf{4 b}$ 134
Figure $127{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 b}$ 135
Figure $128{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{4 b}$ 136
Figure $129{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 b}$ 137
Figure $130{ }^{119} \mathrm{Sn}$ NMR of compound $\mathbf{4 c}$ 138
Figure $131{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 c}$ 139
Figure $132{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 c}$ 140
Figure $133{ }^{119}$ Sn NMR of compound $4 d$ 141
Figure $134{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 d}$ 142
Figure $135{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 d}$ 143
Figure $136{ }^{119}$ Sn NMR of compound $\mathbf{4 e}$ 144
Figure $137{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 e}$ 145
Figure $138{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 e}$ 146
Figure $139{ }^{119} \mathrm{Sn}$ NMR of compound $\mathbf{4 f}$ 147
Figure $140{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 f}$ 148
Figure $141{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{4 f}$. 149
Figure $142{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 f}$ 150
Figure $143{ }^{119}$ Sn NMR of compound 5 151
Figure $144{ }^{13} \mathrm{C}$ NMR of compound 5 152
Figure $145{ }^{1} \mathrm{H}$ NMR of compound 5 153
Figure $146{ }^{119}$ Sn NMR of compound 7. 154
Figure $147{ }^{13} \mathrm{C}$ NMR of compound 7 155
Figure $148{ }^{1} \mathrm{H}$ NMR of compound 7 156
Figure $149{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 1}$ 157
Figure $150{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 1}$ 158
Figure $151{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 1}$. 159
Figure $152{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 3 d}$ and $\mathbf{1 3 d}{ }^{\prime}$. 160
Figure $153{ }^{11}$ B NMR of mixture of compounds $\mathbf{1 3 d}$ and $13 d^{\prime}$ 161
Figure $154{ }^{13} \mathrm{C}$ NMR of mixture of compounds $\mathbf{1 3 d}$ and $\mathbf{1 3 d}{ }^{\prime}$ 162
Figure $155{ }^{19}$ F NMR of mixture of compounds $\mathbf{1 3 d}$ and $\mathbf{1 3 d}{ }^{\text {, }}$ 163
Figure $156{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 3} \mathbf{e}$ and $\mathbf{1 3} \mathbf{e}^{\mathbf{\prime}}$. 164
Figure $157{ }^{11} \mathrm{~B}$ NMR of mixture of compounds $\mathbf{1 3 e}$ and $\mathbf{1 3} \mathbf{e}^{\boldsymbol{\prime}}$ 165
Figure $158{ }^{13} \mathrm{C}$ NMR of mixture of compounds $\mathbf{1 3} \mathbf{e}$ and $\mathbf{1 3} \mathbf{e}^{,}$ 166
Figure $159{ }^{19} \mathrm{~F}$ NMR of mixture of compounds $\mathbf{1 3} \mathbf{e}$ and $\mathbf{1 3} \mathbf{e}^{\mathbf{\prime}}$ 167
Figure $160{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 3 f}$ and $\mathbf{1 3 f}$, 168
Figure $161{ }^{11} \mathrm{~B}$ NMR of mixture of compounds $\mathbf{1 3 f}$ and $\mathbf{1 3 f}{ }^{\prime}$ 169
Figure $162{ }^{13} \mathrm{C}$ NMR of mixture of compounds $\mathbf{1 3 f}$ and $\mathbf{1 3 f}{ }^{\prime}$ 170
Figure $163{ }^{19}$ F NMR of mixture of compounds $\mathbf{1 3 f}$ and $\mathbf{1 3 f}$ ' 171
Figure $164{ }^{1} \mathrm{H}$ NMR of mixture of compounds 13a and 13a' 172
Figure $165{ }^{11} \mathrm{~B}$ NMR of mixture of compounds $\mathbf{1 3 a}$ and $\mathbf{1 3 a}{ }^{\text {, }}$ 173
Figure $166{ }^{13} \mathrm{C}$ NMR of mixture of compounds $\mathbf{1 3 a}$ and $\mathbf{1 3 a}$, 174
Figure $167{ }^{19} \mathrm{~F}$ NMR of mixture of compounds $\mathbf{1 3 a}$ and 13a' 175
Figure $168{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 3} \mathbf{c}$ and $\mathbf{1 3} \mathbf{c}^{\prime}$. 176
Figure $169{ }^{11} \mathrm{~B}$ NMR of mixture of compounds $\mathbf{1 3} \mathbf{c}$ and $\mathbf{1 3} \mathbf{c}{ }^{\text {, }}$ 177
Figure $170{ }^{13} \mathrm{C}$ NMR of mixture of compounds $\mathbf{1 3} \mathbf{c}$ and $\mathbf{1 3 c} \mathbf{c}^{\text {, }}$ 178
Figure $171{ }^{19} \mathrm{~F}$ NMR of mixture of compounds $\mathbf{1 3 c}$ and $\mathbf{1 3 c} \mathbf{c}^{\boldsymbol{\prime}}$ 179
Figure $172{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 3 b}$ and $\mathbf{1 3 b}$, 180
Figure $173{ }^{11} \mathrm{~B}$ NMR of mixture of compounds $\mathbf{1 3 b}$ and $\mathbf{1 3 b}$, 181
Figure $174{ }^{13} \mathrm{C}$ NMR of mixture of compounds $\mathbf{1 3 b}$ and $\mathbf{1 3 b}$, 182
Figure $175{ }^{19} \mathrm{~F}$ NMR of mixture of compounds $\mathbf{1 3 b}$ and $\mathbf{1 3 b}$, 183
Figure $176{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 4 a}$. 184
Figure $177{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4 a}$ 185
Figure $178{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 4 a}$ 186
Figure $179{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 4 a}{ }^{\prime}$ 187
Figure $180{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4 a}$, 188
Figure $181{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 4 a}{ }^{\prime}$ 189
Figure $182{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 4 b}$ and $\mathbf{1 4 b}{ }^{\prime}$ 190
Figure $183{ }^{19}$ F NMR of mixture of compounds $\mathbf{1 4 b}$ and $\mathbf{1 4 b}{ }^{\text {, }}$ 191
Figure $184{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 4 b}$, 192
Figure $185{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4 b}$, 193
Figure $186{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 4 b}$, 194
Figure $187{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 4 c}$ 195
Figure $188{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4 c}$ 196
Figure $189{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 4 c}$ 197
Figure $190{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 4 c}$ ' 198
Figure $191{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4 c}{ }^{\prime}$ 199
Figure $192{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 4 c}{ }^{\text {, }}$ 200
Figure $193{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 4 d}$ 201
Figure $194{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4 d}$ 202
Figure $195{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 4 d}$ 203
Figure $196{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 4 d}{ }^{\prime}$ 204
Figure $197{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 4 d}{ }^{\prime}$ 205
Figure $198{ }^{19}$ F NMR of compound $\mathbf{1 4 d}{ }^{\prime}$ 206
Figure $199{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 4 e}$ and $\mathbf{1 4 e}{ }^{\mathbf{\prime}}$. 207
Figure $200{ }^{13} \mathrm{C}$ NMR of mixture of compounds $\mathbf{1 4 e}$ and $\mathbf{1 4 e} \mathbf{e}^{\boldsymbol{\prime}}$ 208
Figure $201{ }^{19} \mathrm{~F}$ NMR of mixture of compounds $\mathbf{1 4 e}$ and $\mathbf{1 4 e}{ }^{\text {, }}$ 209
Figure $202{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 4 f}$ and $\mathbf{1 4 f}$, 210
Figure $203{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 4 f}$ and $\mathbf{1 4 f}$ ' 211
Figure $204{ }^{19} \mathrm{~F}$ NMR of mixture of compounds $\mathbf{1 4 f}$ and $\mathbf{1 4 f}$, 212
Figure $205{ }^{1} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 7 a}$ and 18a 213
Figure $206{ }^{11} \mathrm{~B}$ NMR of mixture of compounds $\mathbf{1 7 a}$ and $\mathbf{1 8 a}$ 214
Figure $207{ }^{19} \mathrm{~F}$ NMR of mixture of compounds $\mathbf{1 7 a}$ and 18a. 215
Figure $208{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 7 b}$ 216
Figure $209{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 7 b}$ 217
Figure $210{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 9 a}$. 218
Figure $211{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 9 a}$ 219
Figure $212{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 9 b}$ 220
Figure $213{ }^{11}$ B NMR of compound $\mathbf{1 9 b}$ 221
Figure $214{ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 9 b}$ 222
Figure $215{ }^{19} \mathrm{~F}$ NMR of compound $\mathbf{1 9 b}$ 223

Chapter 1 Synthesis and Suzuki Coupling of

B/Sn Bismetallic Arenes

1.1 Introduction

Transition metal catalyzed cross-coupling reactions are powerful tools for C-C bond formations. ${ }^{8}$ Suzuki couplings ${ }^{9}$ and Stille couplings ${ }^{10}$ have found wide applications in the synthesis of both simple and complex molecules. Molecules that bare two functional groups that can participate in a sequence of controlled tandem two-step cross couplings are potential powerful building blocks for organic synthesis. One can consider there to be three different models of such building blocks: Molecules with two nucleophilic groups, molecules with one nucleophilic group and one electrophilic group, and molecules with two electrophilic groups (Figure 1).

Figure 1. Different types of bifunctional cross coupling partners

Building blocks bearing one electrophilic group and one nucleophilic group

The electrophilic partners of transition metal catalyzed cross-coupling reactions typically display a sequence of reactivity of $\mathrm{I}>\mathrm{Br}>=\mathrm{OTf} \gg \mathrm{Cl} .{ }^{11}$ Based on this order, electrophile selective cross couplings have been realized. ${ }^{12}$ One brilliant cascade of Negishi, Sonagashira, and Buchwald-

Hartwig cross-couplings with a chloro-bromo-iodopyrimidine led to the systhesis of mepanipyrim, as demonstrated in Figure 2.

Figure 2. Knochel's cross-coupling cascade synthesis of mepanipyrim

In contrast nucleophile-selective cross-coupling reactions are less developed. Several examples of Buchwald-Hartwig cross-coupling reactions on a bromobenzene bearing a boron group exist. Jonathan Grob and his team demonstrated a one pot strategy of Buchwald-Hartwig and Suzuki cross-coupling reactions for $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ bond formations (Figure 3). ${ }^{13}$ Several examples involving boron groups of different reactivity will be discussed in Chapter 3.

Figure 3. One pot C-N/C-C bond formations sequence

Hetero-bismetallic compounds bearing both boron and tin have served as versatile synthetic building blocks. The laboratories of Carboni, ${ }^{14}$ Coleman, ${ }^{15}$ Snieckus, ${ }^{16}$ and Burke ${ }^{17}$ (one example is illustrated in Figure 4) are among those to have developed preparations of boron/tin (B/Sn)
bissubstituted dienes and trienes. These bismetallated species can undergo preferential Stille reaction by running the Pd -catalyzed cross-coupling in the absence of base. The remaining boronic ester then can undergo a second cross-coupling under standard Suzuki conditions.

Figure 4. Syntheis and Stille coupling of 1,4-B/Sn diene compound

Figure 5. Synthesis and Stille coupling of a 1,4-B/Sn benzene

Besides the diene and triene bimetallic molecules discussed above, Yamamoto reported the
preparation and Stille reaction of a 1,4-B/Sn substituted benzene in 1989 (as shown in Figure 5), ${ }^{18}$ but few applications of this chemistry followed.

Figure 6. Staubitz's $\mathbf{S n} / \mathrm{B}$ thiophene building block and Stille/Suzuki CCR's sequence

1) 1.0 equiv PhBr , $1 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 2 \mathrm{~mol} \%$ SPhos, toluene, $65{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$
2) 1.0 equiv 5 -Bromofuraldehyde, 2.0 equiv $\mathrm{K}_{3} \mathrm{PO}_{4}$, water, $100^{\circ} \mathrm{C}, 3 \mathrm{~h}$

In recent years, Staubitz and her group developed an interesting chemistry that desymmetrized a 1,4-distannyl thiophene and demonstrated the Stille /Suzuki CCR's (cross coupling reactions) sequence of this building block (Figure 6). ${ }^{19}$

Figure 7. Wang's Sandmeyer-type borylation-reduction-stannylation sequence on nitroaniline and their Stille/Suzuki CCR's

Wang and his group reported a sequence of two Sandmeyer type reactions to introduce $(t-\mathrm{Bu})_{3} \mathrm{Sn}$ and BPin groups onto a nitro aniline derivative, provided other existing functional groups survive the Sandmeyer conditions and the Pd catalyzed hydrogenation (reduction of nitro group to amino
for the second Sandmeyer transformation). They then demonstrated a Stille/Suzuki CCR's sequence as shown in Figure 7. ${ }^{20}$

Such successive Stille/Suzuki cross-couplings have proven quite useful in target synthesis. ${ }^{21}$ In contrast, B / Sn bismetallic substrates have rarely been made to undergo a complementary Suzuki/ Stille cross-coupling sequence. Coleman described a single example of a trisubstituted vinyl tin moiety surviving the Suzuki coupling of a coexisting E-vinyl boronic ester. ${ }^{22}$ In this case, the cross-coupling preference is likely due to sterics about the vinylstannane slowing down the Stille or the presence of water accelerating the Suzuki, as shown in Figure 8. ${ }^{23}$

Figure 8. Chmeoselective Suzuki coupling of B/Sn bismetalic diene

1.2 Proposed pathways to bismetallic arenes

Owing to the ability of organotins to undergo not only Stille reactions, but transmetallations, $\mathrm{Sn} /$ halogen exchanges and other useful transformations, ${ }^{24}$ we sought to clearly establish a universal protocol for performing a selective Suzuki coupling on similar B / Sn bismetallic compounds. We were jointly interested in evaluating the ability of Ir-catalyzed borylations ${ }^{25,26}$ to function on aryl stannanes. Furthermore, given the halogen tolerance of Ir-catalyzed borylations, we recognized that Pd-mediated stannylation of the corresponding halo-substituted arylboronic ester would provide an equally direct route to stannylated aryl boronic esters. Thus, we set out to explore both approaches as illustrated in Figure 9.

Figure 9. Proposed routes to $\mathbf{m - B} / \mathbf{S n}$ bismetallic arenes
route 1, stannylation then borylation:

route 2, borylation then stannylation:

Table 1. Attempts of borylation of arylstannanes
entry
${ }^{\text {a }}$ Isolated by column chromatography.

Unfortunately the attempted borylations of several 3'-substituted phenylstannanes as well as tributylstannylthiophene only gave recovered starting materials (75-88\%) and none of the desired products (Table 1). To gain insight into these failures, we attempted to borylate an equal mixture of 3-tributylstannyltoluene and 3-bromotoluene. Monitoring the reaction by ${ }^{11} \mathrm{~B}$ NMR never gave any indication of $\mathrm{C}-\mathrm{B}$ bond formation. Furthermore, a stoichiometric reaction of $\operatorname{Ir}(\mathrm{COE})(\mathrm{dtbpy})(\mathrm{BPin})_{3}$ complex ${ }^{27}$ with 3-stannyl-trifluorotoluene gave no borylation by ${ }^{11} \mathrm{~B} \mathrm{NMR}$, but the dissapearance of the starting stannane by ${ }^{119} \mathrm{Sn}$ NMR. Given these NMR data and the highly reactive nature of thiophenes and 3-bromotoluene in most Ir-catalyzed borylations, we
concluded that the presence of a $\mathrm{R}_{3} \mathrm{Sn}$ group reacts with the active $\mathrm{Ir}(\mathrm{III})$ species in a way that shuts down catalysis.

Figure 10. Synthesis of $\mathbf{B} / \mathbf{S n}$ bismetallic arenes via Pd catalyzed stannylation

With route 1 proving unsuccessful, route 2 was brought to trial. Compound 1a was readily prepared from 3-bromotoluene, however Pd-catalyzed coupling with hexabutylditin afforded the desired product 2a in a disappointing 28% isolated yield (Figure 10). This low yield was a consequence of unwanted coupling of the substrate with the aryl tin product.

Figure 11. Synthesis of 2a via $\mathbf{Z n}$ mediated stannylation

Seeking a higher yielding approach to stannylated aryl boronic esters, our attention was drawn to Gosmini's report describing the $\mathrm{Zn}(\mathrm{II}) / \mathrm{Co}(\mathrm{II})$ mediated stannylations of aryl iodides and bromides. ${ }^{28}$ Although no examples of halogenated arylboronic esters were described in that work, the functional group tolerance noted argued in favor of us testing the methodology on 1a. We were gratified when this stannylation protocol (Figure 11) afforded a synthetically useful yield of $\mathbf{2 a}(54 \%)$ and exhibited none of the typical incompatibility between organozinc species and aryl boronates. ${ }^{29}$

Table 2. Stannylation of bromophenyl boronic esters

${ }^{\text {a }}$ Same condition as described in Scheme 2. ${ }^{\text {b }}$ Isolated yields.
${ }^{\text {c }}$ Unseparable mixture with 2d

Encouraged by this result, several bromoarenes were borylated under Ir-catalysis and then subjected to the $\mathrm{Zn}(\mathrm{II}) / \mathrm{Co}(\mathrm{II})$ stannylation conditions (Zn dust (3.3 equiv), ZnBr_{2} ($10 \mathrm{~mol} \%$), CoBr_{2} (10 mol \%), then allyl chloride (30 mol \%), TFA (50 $\mathrm{mol} \%$), then substrate, then $n-\mathrm{Bu} 3 \mathrm{SnCl}$ (1.5 equiv)). We were able to perform this stannylation on a variety of substrates. Electron rich, neutral, and poor arenes all afforded the B / Sn products in synthetically useful isolated yields. Furthermore, potentially reactive functionality (e.g. CN and Cl) remained intact under the reaction conditions (Table 1.2). In contrast to arenes, the two heteroarenes studied proved more troublesome. While substrates $\mathbf{1 c}$ and $\mathbf{1 d}$ (entries 3 and 4) afforded minor amounts of distannylated byproducts, the reaction of 4-bromo-2-borylated thiophene $\mathbf{1 g}$ gave a 1:1.6 ratio of the desired B/Sn product and the 2,4-bistributyltinthiophene in 35% yield. Moreover, 5-bromo-3-borylated
pyridine $\mathbf{1 h}$ afforded none of the desired product and actually favored B / Sn exchange over $\mathrm{Br} / \mathrm{Sn}$ exchange (Figure 12).

Figure 12. Attempts of stannylation on bromoheteroaryl boronic esters

The observed B / Sn exchange products presumably arise from a boron-zinc followed by zinc-tin transmetallations. Bolm has describe similar B / Zn exchanges on aryl boronic acids. ${ }^{21}$ However, Gosmini successfully stannylated 4-bromobenzaldehyde, ${ }^{20(b)}$ suggesting that the organozinc species generated from these two processes may exhibit distinct reactivity profiles. Certainly the heteroaryl boronic esters studied are more prone undergo boron-zinc transmetallations relative to their aryl counterparts.

1.3 Selective Suzuki coupling of the $\mathbf{B} / \mathbf{S n}$ bismetallic arenes

These troubled substrates aside, the borylation/stannylation sequence gave us a set B / Sn metallated arenes that could be used to identify conditions that afford selective Suzuki couplings. The search for suitable conditions commenced with a screening of various bases. As the presence of water is known to accelerate Suzuki reactions, ${ }^{15}$ we explored wet THF in the reactions. Our aim was to
determine conditions that afforded high yields of the Suzuki product and recovered stannane. During the screening, we noticed that triethylamine provided poor chemoselectivity, but strong inorganic bases provided satisfactory differentiation, favoring the Suzuki coupling over Stille coupling. Importantly the stannyl group survived the condition. ${ }^{30}$ As expected, the coupling reaction performed better with heating than at room temperature. We chose the conditions in entry 4 to further test for the selective Suzuki coupling of the B/Sn compounds (Table 3).

Table 3. Base screening for selective Suzuki couplings of B/Sn bismetallic arenes

Conditions: 0.2 mmol scale reactions in a mixture of 2 mL THF and 0.4 mL water were carried out in closed tube purged with N_{2}, and all reagents are added together in one batch. After 6 h , the reaction was cooled down quickly in icewater bath, and diluted by $\sim 10 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$, then $\sim 1.5 \mathrm{~mL}$ of the organic layer was passed through a short plug of MgSO_{4} into a GC sample vial for quantitative determinations

The reaction of 1.5 equivalents of $\mathbf{2 a}$ with methyl p-iodobenzoate (8) and 2 equiv KOH in THF/water clearly favored the Suzuki coupling, affording $\mathbf{4 a}$ in 85% yield based on the limiting reagent 8. In as much as the B / Sn metallated arenes will often be the more precious coupling partner, we examined the reaction with lower loads of 2a. While 1:1 ratio of $\mathbf{2 a}$ and $\mathbf{8}$ gave $\mathbf{4 a}$ in
59% yield, using 1.2 equivalents of 2a provided a good balance of yield and stoichiometry. Thus, a series of other B / Sn metallated arenes with variety of substituents ranging from strong EWG such as CF_{3} or CN , to strong EDG such as OMe, were tested with $\mathbf{8}$ (Table 4), and gave moderate to high yields of the selective Suzuki coupling products.

Table 4. Selective Suzuki coupling of 2a-f with 8

${ }^{\text {a }}$ Isolated yield based on 1.5 equiv $\mathbf{2 a}$ used. ${ }^{\text {b }}$ Isolated yield based on 1.2 equiv $\mathbf{2 x}$
used. ${ }^{\text {c I }}$ solated yield based on 1.0 equiv $\mathbf{2 x}$ used.

So as to benchmark this approach to stannylated biaryls, we looked to synthesize $\mathbf{4 f}$ by crosscoupling $1 \mathbf{1 f}$ with the iodide 8, bromide 9, and triflate 10. As illustrated in Figure 13, $1 \mathbf{f}$ successfully coupled with iodide $\mathbf{8}$ to give $\mathbf{1 1}$ with little evidence of polyphenylene formation. In
contrast, polymerization of $\mathbf{1 f}$ predominated the attempted cross-couplings with $\mathbf{9}$ or $\mathbf{1 0}$, which afforded none of Suzuki product 10. Meanwhile, $\mathbf{2 f}$ was smoothly coupled with $\mathbf{8 , 9}$ and $\mathbf{1 0}$ giving selective Suzuki product 4f in 72-75\% yield, corresponding to $45-47 \%$ overall yields (two steps) from 1f.

Figure 13. Suzuki couplings of 1 f and 2 f with various electrophiles

1.4 Experimental section

General Methods: All substrates were purified before use. Aryl halides were refluxed over CaH_{2}, distilled, and degassed. Pinacolborane (HBPin) was purchased from Aldrich, stirred over PPh_{3} overnight, vacuum transferred into an air free flask and brought into the glove box. $\operatorname{Bis}\left(\right.$ pinacolato)diboron $\left(\mathrm{B}_{2} \mathrm{Pin}_{2}\right)$ was purchased from various sources and was used without purification. 1, 1^{\prime}-Bis(diphenylphosphino)ferrocene dichloropalladium (II) $\left(\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\right)$ was purchased from Aldrich and used as received. 4,4'-Di-t-butyl-2,2'-bipyridine (dtbpy) was purchased from Aldrich and was sublimed before use. (η^{5}-Indenyl)(cyclooctadiene)iridium
$\{(\operatorname{Ind}) \operatorname{Ir}(\mathrm{COD})\}$ and $\operatorname{bis}\left(\eta^{4}-1,5\right.$-cyclooctadiene $)$-di- μ-methoxy-diiridium $(\mathrm{I}) \quad\{\operatorname{Ir}(\mathrm{OMe})(\mathrm{COD})\}_{2}$ were prepared per literature procedures. ${ }^{1,2}$

All reactions were carried out in oven-dried flasks, magnetically stirred, and monitored by Varian CP-3800 GC-FID (column type: WCOT Fused silica $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID coating CP-SIL 8 CB). GC-FID method: $70^{\circ} \mathrm{C}$, 2 min .; $20^{\circ} \mathrm{C} / \mathrm{min}, 50 \mathrm{~min}$.; $250{ }^{\circ} \mathrm{C}$, 20 min .; $1.8 \mathrm{~mL} / \mathrm{min}$ flow rate. All yields are of isolated materials and are average of at least two runs.

All compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{11} \mathrm{~B}$ NMR, ${ }^{119} \mathrm{Sn}$ NMR and ${ }^{19} \mathrm{~F}$ NMR, IR spectroscopy, and low resolution mass spectroscopy. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian VXR-500, or Varian Unity-500-plus spectrometer (499.74 and 125.67 MHz respectively) or Varian Inova-600 (599.81 and 150.84 MHZ respectively) and referenced to residual solvent signals. ${ }^{11} \mathrm{~B}$ spectra were recorded on a Varian VXR-300 operating at 96.29 MHz and were referenced to neat $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ as the external standard. ${ }^{19} \mathrm{~F}$ spectra were recorded on a Varian Inova-300 operating at 282.36 MHz and were referenced to neat CFCl_{3} as the external standard. ${ }^{119} \mathrm{Sn}$ NMR spectra were recorded on a Varian VXR-500, or Varian Unity-500-plus spectrometer (operating at 186.42 MHz), or Varian Inova-600 (operating at 223.66 MHz). All coupling constants are apparent J values measured at the indicated field strength. GC-MS data were obtained using a Varian Saturn $220 \mathrm{GC} / \mathrm{MS}$ (column type: WCOT Fused silica $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID coating CP-SIL 8 CB). High-resolution mass spectra were obtained at Michigan State University Mass Spectrometry Service Center with a JOEL-AX505 mass spectrometer (resolution 7000). Melting points were measured on Thomas-Hoover capillary melting apparatus and are uncorrected.

General Procedure for Preparation of B/Sn-Bismetallic Compounds: Zn dust (220 mg, 3.3 $\mathrm{mmol}), \mathrm{ZnBr}_{2}(22.5 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $\mathrm{CoBr}_{2}(21.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ were charged into a 10 mL round bottom flask. Then 1 mL MeCN was added, followed by allyl chloride ($24 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) and TFA ($3.7 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$). At this moment, the color of the solution turned from cobalt blue to a reddish brown. The mixture was stirred at room temperature for 5 min . Then the aryl bromide (1.0 mmol) was added. The flask was then connected to a condenser and the reaction mixture was stirred in a $50^{\circ} \mathrm{C}$ pre-heated oil bath for 30 min . The solution usually turned to colorless or pale yellow. Tri-n-butyltin chloride ($489 \mathrm{mg}, 1.5 \mathrm{mmol}$) was then added in one batch. After 6 h heating, the reaction mixture is then filtered through a short plug with silica gel and purified by column chromatography or bulb to bulb distilation.

General Procedure for Selective Suzuki Couplings of B/Sn-Bismetallic Compounds: Borontin compound (0.2 mmol), methyl p-iodobenzoate $(0.2 \mathrm{mmol})$ and $\mathrm{PdCl}_{2} \cdot \mathrm{dppf}(0.01 \mathrm{mmol})$ were mixed in an air free flask with 2 mL THF. The mixture was then degassed and the flask was filled with nitrogen. 1 M NaOH solution $(0.4 \mathrm{~mL})$ prepared with water freshly sparged by nitrogen was then added to the flask. The reaction mixture was then heated in an $80^{\circ} \mathrm{C}$ oil bath for 6 h . The crude reaction mixture was washed through a basic alumina short plug and then purified by silica gel chromatography.

Tributyl(3-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)stannane

Compound 1a was subjected to the general procedure for preparation of B / Sn-Bismetallic compounds, and purified by a silica gel column with hexanes : EtOAc 20 : 1, to give a colorless oil, 54% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69$ (br, 1 H), 7.57 (br, 1 H), 7.36 (br, 1 H), 2.33 $(\mathrm{s}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~m}, 18 \mathrm{H}), 1.05(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.0,140.2,139.8,136.3,135.2,83.6,29.1,27.4,24.8,21.3,13.7,9.5 ;{ }^{11} \mathrm{~B}$ NMR
(160 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 30.9 ;{ }^{119} \mathrm{Sn} \operatorname{NMR}\left(186 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-43.6$ (s); HRMS (ESI+) calculated 451.1830 for $\left[\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{BO}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}-\mathrm{nBu})^{+}$, found 451.1833. IR neat: 2958, 2926, 2871, 2854, 1354, $1146 \mathrm{~cm}^{-1}$.

Tributyl(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trifluoromethyl)phenyl)-

stannane (2b): Compound $\mathbf{1 b}$ was subjected to the general procedure for preparation of $\mathrm{B} / \mathrm{Sn}-$ Bismetallic and compounds, purified by a silica gel column with hexanes : EtOAc 20:1 to give a colorless oil, 50% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, $1.56(\mathrm{~m}, 6 \mathrm{H}), 1.36(\mathrm{~m}, 18 \mathrm{H}), 1.12(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 146.0,142.4,135.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 131.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right), 129.3(129.7 \mathrm{ppm}, 129.4 \mathrm{ppm}$, $\left.129.2 \mathrm{ppm}, 128.9 \mathrm{ppm}, \mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31 \mathrm{~Hz}\right), 124.8(128.0 \mathrm{ppm}, 125.8 \mathrm{ppm}, 123.6 \mathrm{ppm}, 121.5 \mathrm{ppm}, \mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=273 \mathrm{~Hz}\right), 84.1,29.0,27.3,24.8,13.6,9.7 ;{ }^{11} \mathrm{~B}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.4 ;{ }^{119} \mathrm{Sn}$ NMR $\left(186 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-38.9\left(\mathrm{q}, J_{\mathrm{Sn}-\mathrm{F}}=2.8 \mathrm{~Hz}\right) ;{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-65.5 ;$ HRMS (ESI+) calculated 505.1548 for $\left[\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{BF}_{3} \mathrm{O}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}-\mathrm{nBu})^{+}$, found 505.1556. IR neat: 2959, 2928, 2873, $2854,1486,1323,1126 \mathrm{~cm}^{-1}$.

3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(tributylstannyl)benzonitrile
Compound 1c was subjected to the general procedure for preparation of B / Sn-Bismetallic compounds, and purified by a silica gel column with hexanes : EtOAc $10: 1$ to give a colorless oil, 55% yield. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.76(\mathrm{dd}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~m}, 18 \mathrm{H}), 1.08(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 9H); ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.4,143.1,141.9,137.8,119.5,111.6,84.3,28.9,27.2,24.8$, 13.6, 9.7; ${ }^{11} \mathrm{~B} \delta\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 30.2 ;{ }^{119} \mathrm{Sn}\left(186 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-37.4$. HRMS (ESI+)
calculated 520.2409 for $\left[\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{BNO}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$, found 520.2420. IR neat: 2957, 2927, 2872, 2854, 2227, 1587, 1426, 1352, 1144, $705 \mathrm{~cm}^{-1}$.

Tributyl(3-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)stannane
 (2d):

Compound 1d was subjected to the general procedure for preparation of B / Sn-Bismetallic compounds, and purified by a silica gel column with hexanes : EtOAc $20: 1$ to give a colorless oil, 50% yield, with small amount of impurity 3d.Analytical pure 2d can be accessed by Kugelrohr distillation, at $150{ }^{\circ} \mathrm{C}, 0.2 \mathrm{mmHg}$, as a colorless oil ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}\right.$, acetone-d $\left.\mathrm{d}_{6}\right) \delta 7.46(\mathrm{t}, \mathrm{J}=$ $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=2.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=2.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.59(\mathrm{~m}$, $6 \mathrm{H}), 1.36(\mathrm{~m}, 18 \mathrm{H}), 1.11(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}\right.$, acetone-d $\left.\mathrm{d}_{6}\right) \delta$ 159.7, 143.0, 135.9, 126.3, 119.3, 84.6, 55.3, 28.1, 25.3, 14.0, 10.2; ${ }^{11} \mathrm{~B}\left(160 \mathrm{MHz}\right.$, acetone-d $\left.\mathrm{d}_{6}\right) \delta$ 32 (br); ${ }^{119} \mathrm{Sn}$ (186 MHz, acetone-d 6) $\delta-39.6$; IR neat 2956, 2935, 2879, 2871, 1352, $1146 \mathrm{~cm}^{-1}$; HRMS (ESI+) calculated: 467.1774 for $\left[\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{BO}_{3} \mathrm{Sn}\right]^{+}(\mathrm{M}-n-\mathrm{Bu})^{+}$, found 467.1787.

Tributyl(3-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)stannane

Compound 1e was subjected to the general procedure for preparation of B / Sn-Bismetallic compounds, and purified by a silica gel column with hexanes : EtOAc $20: 1$ to give a colorless oil, 61% yield. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.51(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~m}, 18 \mathrm{H}), 1.06(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 143.9,140.4,138.6,84.0,29.0,27.3,24.8,13.6,9.1 ;{ }^{11} \mathrm{~B}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.16 ;{ }^{119} \mathrm{Sn}(186$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-37.4. IR neat: 2957, 2925, 2871, 2843, $13421145 \mathrm{~cm}^{-1}$; HRMS (ESI +) calculated: 471.1279 for $\left[\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BClO}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}-n-\mathrm{Bu})^{+}$found 471.1285.

Tributyl(4-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)stannane

Compound 1f was subjected to the general procedure for preparation of B / Sn-Bismetallic
compounds, and purified by a silica gel column with hexanes : EtOAc $20: 1$ to give a colorless oil, 60% yield. ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=6.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{ddd}, J=8.1$, $6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=10.0,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~m}, 6 \mathrm{H}), 1.32(\mathrm{~m}, 18 \mathrm{H}), 1.04(\mathrm{~m}, 6 \mathrm{H}), 0.88$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=251 \mathrm{~Hz}\right), 144.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.3\right.$ $\mathrm{Hz}), 141.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=7.5 \mathrm{~Hz}\right), 136.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=4.6 \mathrm{~Hz}\right), 114.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.9 \mathrm{~Hz}\right) ;{ }^{11} \mathrm{~B}(192 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 30.2 ;{ }^{119} \mathrm{Sn}\left(224 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-39.0,{ }^{19} \mathrm{~F}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-101.7$ (m). IR neat: 2958, 2924, 2872, 2840, 1447, 1379, 1266, 1149, $740 \mathrm{~cm}^{-1}$; HRMS (ESI +) calculated: 455.1574 for $\left[\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{BFO}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}-n-\mathrm{Bu})^{+}$, found 455.1587.

Methyl 3'-methyl-5'-(tributylstannyl)-[1,1'-biphenyl]-4-carboxylate (4a) 1.0 equiv 2a was subjected to the general condition for selective Suzuki coupling and purified by a silica gel column with hexanes : EtOAc $5: 1$ to give a 59% yield of $\mathbf{4 a}$ as a colorless oil. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.09\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.3,2.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.63\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.3,2.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.47(\mathrm{~m}, 1 \mathrm{H})$, $7.34(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~m}, 6 \mathrm{H})$, $0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,146.3,142.8,139.4,137.7,137.0$, $132.2,130.0,128.6,127.9,127.1,52.1,29.1,27.4,21.5,13.7,9.6 ;{ }^{119} \mathrm{Sn}\left(186 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 41.7; HRMS (ESI +) calculated 517.2129 for $\left[\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$found 517.2133. IR neat: 2956, 2926, 2853, 1727, $1277 \mathrm{~cm}^{-1}$.

Methyl 3'-(tributylstannyl)-5'-(trifluoromethyl)-[1,1'-biphenyl]-4-carboxylate (4b) 1.2 equiv $\mathbf{2 b}$ was subjected to the general condition for selective Suzuki coupling and purified by a silica gel column with hexanes : EtOAc $5: 1$ to give a 77% yield of $\mathbf{4 b}$ as a colorless oil. ${ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.13\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.8,2.01 .7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.82(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{~m}, 1 \mathrm{H}), 7.64$ (AA'BB', $J=8.8,2.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~m}, 6 \mathrm{H}), 1.13(\mathrm{~m}, 6 \mathrm{H}), 0.89$
$(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}),{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.8,144.7,144.6,139.8,138.3(\mathrm{~m}), 132.1$ $(\mathrm{m}), 130.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}\right), 130.2(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.4,127.2(\mathrm{~m}), 124.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=273.1 \mathrm{~Hz}\right)$, $123,7,52.29\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 29.0,27.3,12.6,9.8 ;{ }^{119} \mathrm{Sn}\left(186 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-37.2 ;{ }^{19} \mathrm{~F}(282$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$-64.3; $\mathrm{HRMS}(\mathrm{ESI}+)$ calculated 513.1063 for $\left[\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}-n-\mathrm{Bu})^{+}$found 513.1063. IR neat: $2958,2928,2873,2854,1728,1611,1334,1279,1200,1137 \mathrm{~cm}^{-1}$.

Methyl 3'-cyano-5'-(tributylstannyl)-[1,1'-biphenyl]-4-carboxylate (4c) 1.2 equiv 2c was subjected to the general condition for selective Suzuki coupling and purified by a silica gel column with hexanes : EtOAc $5: 1$ to give a 81% yield of $\mathbf{4 c}$ as a colorless oil. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.13\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.8,2.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.84(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{dd}, J=1.9,0.8,1 \mathrm{H}), 7.59\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.8,2.0,1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.93(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~m}, 6 \mathrm{H})$, $1.53(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,165.5$, $145.3,13.8,140.0,139.0(\mathrm{~d}, J=14.5 \mathrm{~Hz}), 130.3,130.2,129.7,127.1,119.2,112.6,52.2,29.0$, 27.3, 13.6, 9.9; ${ }^{119} \mathrm{Sn}\left(186 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-33.63$; IR neat: 2957, 2926, 2871, 2852, 2227, 1726, 1610, 1461, 1436, 1278, 1190, 1112, 1018, 908,774, $697 \mathrm{~cm}^{-1} ;$ HRMS (ESI +) calculated: 470.1137 for $\left[\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{Sn}^{+}(\mathrm{M}-n-\mathrm{Bu})^{+}\right.$found 470.1146.

Methyl 3'-methoxy-5'-(tributylstannyl)-[1,1'-biphenyl]-4-carboxylate (4d) 1.0 equiv 2d was subjected to the general condition for selective Suzuki coupling and purified by a silica gel column with hexanes : EtOAc $5: 1$ to give a 57% yield of $\mathbf{4 d}$ as a colorless oil. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.09\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} J=8.6,2.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.63\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} J=8.6,2.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.24(\mathrm{~b}, 1 \mathrm{H})$, $7.03(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~m}, 6 \mathrm{H}), 1.34(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.0,159.3,146.0,144.4,140.8,130.0,128.9,127.6$, 127.2, 121.7, 112.3, 55.2, 52.1, 29.1, 27.3, 13.7, 9.7; ${ }^{119} \mathrm{Sn}\left(186 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-37.6$; IR neat:

2954, 2912, 2871, 2856, 1726, 1609, 1581, 1462, 1436, 1276, 1210, 1111, 773, $699 \mathrm{~cm}^{-1}$; HRMS $(\mathrm{ESI}+)$ calculated: 475.1290 for $\left[\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Sn}\right]^{+}(\mathrm{M}-n-\mathrm{Bu})^{+}$found 475.1299.

Methyl 3'-chloro-5'-(tributylstannyl)-[1,1'-biphenyl]-4-carboxylate (4e) 1.0 equiv 2e was subjected to the general condition for selective Suzuki coupling and purified by a silica gel column with hexanes : EtOAc $5: 1$ to give a 76% yield of $\mathbf{4 e}$ as a colorless oil ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.10\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.5,2.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.60\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.5,2.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.50(\mathrm{dd}, J=$ $1.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=2.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) 1.54(\mathrm{~m}, 6 \mathrm{H})$, $1.33(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9,145.5$, $144.7,141.1,135.4,134.7,133.0,129.3,127.1,52.2,29.0,27.3,13.6,9.8 ;{ }^{119} \mathrm{Sn}\left(186 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ-34.9; IR neat: $2956,2921,2871,2851,1725,1610,1462,1436,1276,1104,851,774,741,965$ cm^{-1}; HRMS (ESI+) calculated: 479.0794 for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClO}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}-n-\mathrm{Bu})^{+}$found 479.0797.

Methyl 2'-fluoro-5'-(tributylstannyl)-[1,1'-biphenyl]-4-carboxylate (4f) 1.0 equiv 2f was subjected to the general condition for selective Suzuki coupling and purified by a silica gel column with hexanes : EtOAc $5: 1$ to give a 72% yield of $\mathbf{4 f}$ as a colorless oil. ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.11\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.8,2.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.62(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{dd}, J=8.6,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{ddd}, J=7.8,5.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=11.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) 1.55(\mathrm{~m}$, $6 \mathrm{H}), 1.34(\mathrm{~m}, 6 \mathrm{H}), 1.08(\mathrm{~m}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.9$, $160.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=249.1 \mathrm{~Hz}\right), 140.9,138.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=6.9 \mathrm{~Hz}\right), 137.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=4.6 \mathrm{~Hz}), 129.6,129.1,129.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.9 \mathrm{~Hz}\right), 127.6\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=11.5 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.7\right.$ Hz), 52.1, 29.0, 27.3, 13.6, 9.7; ${ }^{119} \mathrm{Sn}\left(224 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-37.3 ;{ }^{19}$ FNMR (282 MHz, CDCl_{3}) $\delta-$ 116.8 (m); IR neat: 2956, 2922, 2871, 2850, 1762, 1612, 1482, 1463, 1363, 178, 1112, 817, 776, 740, $703 \mathrm{~cm}^{-1}$; HRMS (ESI +) calculated: 463.1090 for $\left[\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FO}_{2} \mathrm{Sn}\right]^{+}(\mathrm{M}-n-\mathrm{Bu})^{+}$found 463.1099.

3,5-Bis(tributylstannyl)pyridine (5) and 3,5-Bis(tributylstannyl)pyridine (7): Compound $\mathbf{1 g}$ was subjected to the general procedure for preparation of B / Sn-Bismetallic compounds, and purified by a silica gel column with hexanes : EtOAc $20: 1$ to give compound $\mathbf{5}$ as a colorless oil, 11% yield. ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.52$ $(\mathrm{m}, 12 \mathrm{H}), 1.31(\mathrm{~m}, 12 \mathrm{H}), 1.06(\mathrm{~m}, 12 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 18 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 155.3,152.4,136.8,29.0,27.3,13.6,9.6 ;{ }^{119} \mathrm{Sn}\left(224 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-41.7$; HRMS (ESI+) calculated: 652.2604 for $\left[\mathrm{C}_{29} \mathrm{H}_{58} \mathrm{~N}^{116} \mathrm{Sn}_{2}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$found 652.2625 . and compound 7 as a colorless oil 21% yield ${ }^{1} \mathrm{HNMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}) ; 7.81(\mathrm{dd}, J=2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.51(\mathrm{~m}, 6 \mathrm{H}), 1.31(\mathrm{~m}, 6 \mathrm{H}), 1.09(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 9H); ${ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.8,150.1,145.9,139.5,122.0,28.9,27.3,13.6,9.8 ;{ }^{119} \mathrm{Sn}$ (224 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-36.4 ; \mathrm{HRMS}(\mathrm{ESI}+)$ calculated: 444.0642 for $\left[\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{BrN}^{116} \mathrm{Sn}\right]^{+}(\mathrm{M}+\mathrm{H})^{+}$ found 444.0657 .

Methyl 5'-bromo-2'-fluoro-[1,1'-biphenyl]-4-carboxylate (11): 1.0 equiv $\mathbf{1 f}$ was subjected to the general condition for selective Suzuki coupling and purified by a silica gel column with hexanes : EtOAc $5: 1$ to give a 85% yield of $\mathbf{1 1}$ as a white solid. ${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.09(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~m}$, overlapping, 3 H$) ; 7.43$ (ddd, $J=8.8,4.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.04$ (dd, $J=10.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}) ;{ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6(\mathrm{C}=\mathrm{O}), 158.7$ (159.7 ppm, $157.7 \mathrm{ppm}, \mathrm{d}, ~ J=249 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 138.8,133.2(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}$), $129.9(\mathrm{~d}, J=14 \mathrm{~Hz}), 129.8,128.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 118.0(118.1 \mathrm{ppm}, 117.9 \mathrm{ppm}, \mathrm{d}, J=24 \mathrm{~Hz})$, $116.9(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 52.2 ;{ }^{19} \mathrm{FNMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-116.8(\mathrm{~m}) ;$ HRMS (ESI+) calculated: 307.9848 for $\left[\mathrm{C}_{14} \mathrm{H}_{10}{ }^{79} \mathrm{BrFO}_{2}\right]^{+}(\mathrm{M})^{+}$found 307.9818. IR neat: 3063, 2954, 2922, 2852, 1720, $1480,1282,1110,804 \mathrm{~cm}^{-1}$.

1.5 Summary

We found that Ir catalyzed C-H activation/borylation is not compatible with aryl tin compounds. But we were able to synthesis variety of B / Sn bimetallic compounds via Zn mediated stannylation of aryl bromides bearing a BPin group. This method was somewhat problematic with heterocyclic substrates. Finally, we found conditions for the selective Suzuki coupling of these B/Sn bimetallic compounds where the stannyl group survived.

Chapter 2 Electronics Driven Regioselective Ir-Catalyzted C-H Activation/Borylation of Fluorinated Benzenes

2.1 Introduction

Figure 14. Structure of fludrocortisone

Fludrocortisone

Ever since the introduction of fludrocortisone (Figure 14), ${ }^{31}$ the first fluorine-containing drug, fluorinated compounds have been intensively interesting to chemists studying bio-active molecules and medicines. As summarized in this review, ${ }^{32}$ the electronegativity, size, omniphobicity/lipophilicity, and electrostatic interactions of fluorine or fluorine containing functional groups can lead to dramatic differences in reactivity, stereochemistry, and bioavailability. Liu and others reviewed 40 fluorinated or fluorine containing new drugs introduced into the market in the decade from 2001 to $2011,{ }^{33}$ covering compounds that include anticancer drugs, drugs acting on the central nervous system, drugs affecting the cardiovascular system, drugs for infectious diseases, eye care drugs, drugs acting on the genitourinary system, respiratory system drugs, antidiabetes drugs, gastrointestinal tract drugs, endocrine system drugs, nutrition affecting drugs.

The preparation of fluorinated or fluorine containing organic molecules may take two routes: Late stage fluorination of organic molecules, or construction of the molecule with fluorinated building blocks. New methods have been developed in recent years for the late stage fluorination of
complicated organic molecules. ${ }^{34}$ In Ritter's work, an octahedron Pd(IV) fluoride was formed, and its fluoride transferred to a $\mathrm{Ar}-\mathrm{Pd}(\mathrm{II})$ species generated from a corresponding aryl boronic acid. This proceeds via an $\mathrm{S}_{\mathrm{N}} 2$ mechanism by $\mathrm{Pd}(\mathrm{II})$ attacking on F , to give an $\mathrm{Ar}-\mathrm{Pd}(\mathrm{IV})$-F intermediate, which then affords the fluoroarene via a reductive elimination (Figure 15). This method avoids direct contact between strongly oxidative fluorinating species and potentially sensitive substrates.

Figure 15. Ritter's fluoride derived late stage fluorination, and applications on complicated molecules

Due to stability of C-F bonds under most reaction conditions, construction of complicated molecules with fluorine containing building blocks is very attractive. We are interested in fluorinated aromatic boronic acids and/or esters, especially, o-fluoro boronic acids/esters. While late stage introduction of fluorine is attractive on paper, chemoselectivity in such fluorinations remains a challenge. In contrast, many simple fluorinated aromatics and heteroaromatics are
already commercially available. Fluorine does not require to be protected during further applications of boronic acids or esters in various transformations, especially Suzuki coupling reactions. Thus relatively simple fluorinated boronic acid or ester building blocks may enable introduction of fluorinated aromatics into complex molecules by multi-step synthesis. We proposed two routes for the synthesis of such compounds (Figure 16): the borylation of fluorobenzenes and the fluorination of aromatic boronic acids and/or esters.

Figure 16. Borylation of fluorobenzenes or fluorination of aromatic boronic acids and/or esters

Although the fluorination of an aromatic boron compound was not found in a literature search. The chemistry of introducing fluorine into a small molecule has a long history. Regio- and chemoselective fluorinations have been performed in these ways: ${ }^{35}$

1) The Balz-Shiemann reaction was reported as early as 1927. A recent look into this chemistry gave it new life. ${ }^{36}$ Nonetheless, the reaction requires the formation of potentially dangerous diazzonium salts $\mathrm{ArN}_{2}{ }^{+} \mathrm{BF} 4^{-}$and requires an amino group on the benzene ring (Figure 17).

Figure 17. General Scheme of Balz-Shiemann reaction

2) Nucleophilic fluorination, especially with aminosulfuranes such as DAST (Figure 18). ${ }^{37} \mathrm{~A}$ drawback of this methad is that those reagents are toxic and corrosive.
3) Electrophilic fluorination, ${ }^{38}$ where nucleophiles such as enolates or electron-rich aromatic rings attack fluorines attached on a good leaving group (Figure 19).

Figure 18. Fluorination with DAST

Figure 19. An example of asymmetric electrophilic fluorination

Yu , and Sanford have developed palladium catalyzed electrophilic C-H fluorinations. Their methods rely on activation of C-H bonds by palladium catalyst to generate a nucleophilic organometallic intermediate, which picks up an electrophilic fluorine from fluorinated reagents. ${ }^{39}$ The reactions go through a Pd (II)-Pd(IV) catalytic cycle, allowing the survival of a bromine
(Figure 20).

Figure 20. Palladium catalyzed electrophilic C-H fluorinations
Yu, 2009

Sanford, 2006

These fluorination methodologies mentioned above all involve conditions unfavorable for the survival of aryl boronic esters, such as formation of HF, application of strong Lewis base nucleophiles, and transition metal catalysts.

The introduction of a boryl group ortho to fluorine on a benzene ring has been achieved in different ways.

Figure 21. Lithiation/borylation at cryogentic condition and its possible risk

1) $\mathrm{C}-\mathrm{H} / \mathrm{X}$ lithium exchange: Due to the electronegativity of F , ortho $\mathrm{C}-\mathrm{H}$ bond acidity is increased. Thus a strong base such as $n-\mathrm{BuLi}$ may lithiate the position ortho to fluorine. Quenching the litho salts with $\mathrm{B}(\mathrm{OMe})_{3}$ can give the corresponding boronic esters (Figure 21). ${ }^{40}$ Some drawbacks are associated with these reactions. These $\mathrm{H}-\mathrm{Li}$ exchange or $\mathrm{Br}-\mathrm{Li}$ exchange reactions require cryogenic temperature conditions. Chilling a large size industrial reactor to cryogenic temperature and maintaining it at such temperature is energy intensive and requires specially built reactors. Alkyl lithium solutions at industry scale also pose safety issues. Furthermore, even at cryogenic
temperature, the formation of benzyne from the elimination of LiF is possible. ${ }^{41}$ In this specific example, the o-lithofluorobenzene intermediate tends to form benzyne above $-70^{\circ} \mathrm{C}$ in THF. The resulting benzyne tends to polymerize to form a black tar via an exothermic process. The heat released from this process naturally facilitates more benzyne formation. Another concern is that such reaction conditions may also require protection of many functional groups. Lastly, the corresponding bromo starting material may be expensive or inaccessible.

Figure 22. General scheme of a Suzuki-Miyaura coupling reaction

2) Suzuki-Miyaura coupling reactions: As demonstrated in Figure 22, Pd-catalyzed borylations proceed under mild conditions. However those reactions again require arylhalides, which in addition to their accessibility can be toxic.

Figure 23. Ingelson's electrophilic aromatic borylation

DMTol $=N, N$-dimethyl- p-toluidine, $\mathrm{PyCl}_{2}=2,6$-dichloropyridine
3) Electrophilic aromatic borylation: Ingelson and his team reported the electrophilic borylation of bezene rings. ${ }^{42}$ The reaction of 1,3-substituted fluorobenzenes selectively borylates ortho to fluorine, however, the 1,2-substituted fluorobenzenes give a mixture, favoring para to fluorine (Figure 23). A significant drawback of this protocol is the need to use a large excess of
fluoroaromatics to suppress di-borylation. A few other examples of similar reactions are also known. ${ }^{43}$

Figure 24. Sandmeyer type borylation of ortho fluoroanilines

4) Sandmeyer-type borylation: Sandmeyer reactions convert corresponding ortho fluoroanilines nicely into desired fluoroaryl boronic acids (Figure 24). ${ }^{44}$ Similar reactions was also mentioned in Chapter 1. Again, such reactions involve potentially explosive diazonium salt intermediates.

Figure 25. Pt-catalyzed C-H activation/borylation on fluorobenzene

Figure 26. Borylation ortho to F on a 1,4-substituted benzene

5) Pt-catalyzed C-H activation/borylation: Tobisu and Chatani developed a method for aromatic C-H activation/borylation catalyzed Pt-NHC complexes (Figure 25). ${ }^{45}$ These catalysts favor borylation of C-H bonds ortho to the fluorine and are less sensitive to steric effects, and therefore can borylate very hindered C-H bonds. A large excess of the arene substrate is used in this reaction, but the borylations of heteroaromatic substrates catalyzed by these platinum complexes are carried out with stoichiometric amount of borylation reagent and substrate.
6) Ir-catalyzed C-H activation/borylation was first reported in $1999 .{ }^{46}$ Within two decades this methodology evolved into a widely used synthetic protocol to install a boron group on an unfunctionalized benzene or heterocycle. ${ }^{47}$ Early studies of Ir-catalyzed C-H activation/borylation showed that on substituted benenes the regiochemistry favors the least hindered C-H site. Later, several recent works demonstrated substituent directed regioselectivity. ${ }^{48}$ Due to the relatively small size of F, borylation ortho to fluorine is achievable, especially in a 1,4-disubstituted case, such as that illustrated in Figure 26.

Figure 27. Possible synthetic routes for regioselective borylation on 1-fluoro-3chlorobenzene derivatives

In our project, we were interested in borylation ortho to F on 1-fluoro-3-chlorobenzene derivatives. Based on our knowledge of the literature, several possible synthetic routes were considered
(Figure 27). The Suzuki-Miyaura coupling and borylation-hydrodebromination require a preexisting bromine at certain positions on the benzene ring. Sandmeyer type borylations require the
existence of an NH_{2} at ortho to F . The region chemical outcome of the electrophilic borylations can be dramatically affected by the -X group.

However the possibility for a regioselective boryaltion that is governed by the electronic features of the substrate remains largely uncharted. To probe this possibility, we started with the borylation of substituted 1,3-fluorochlorobenzenes. Such substrates present a competition between a generally more reactive $\mathrm{C}-\mathrm{H}$ bond ortho to F (the electronic product), ${ }^{49}$ and a sterically unhindered C-H bond (the steric product), as shown in Figure 28.

As described in the literature, several substrates listed in Figure 28 can be borylated ortho- to F via lithiation at cryogenic temperatures, followed by quenching with the corresponding boronic electrophiles. This route benefits from the high regioselectivity of ortho- deprotonation of fluorobenzenes, however, there are the previously described drawbacks. Ir catalyzed C-H activation/borylation, on the other hand, performs at room temperature or mild heating, and is known to tolerate many functional groups.

Figure 28. Regiochemical outcomes in borylation of 1,3-disubstituted benzenes

12a

12b

12d

12f

12g

The goal of the study is to better understand factors that affect the regioselectivity and chemical yields of such borylations. Eventually we aim to be able to uncover the conditions that will enable
selective borylations to either electronic or steric products. Several different ligands were used in the screening, as listed in Figure 29.

Figure 29. Ligands used for screening

2.2 Screening borylation conditions

The borylations of these substrates under different combinations of ligands, solvents ${ }^{50}$ and temperatures were carried out with the assistance of high throughput techniques. The screening reactions were analyzed by ${ }^{19} \mathrm{~F}$ NMR. The full analysis of these results are detailed in Table 5. The most profound factors affecting the borylation regioselectivities are the substrate and ligand effects. Clearly observed is a trend for electron donating substituents to favor electronic products and vice versa. Also, the BOX ligand favors electronic products more than any other ligands. Temperature, does not affect the regioselectivity significantly, but of course does affect reactivity. The heated reactions, in most cases gave higher conversions than their room temperature counterparts. Solvent choice also affects mainly reactivity rather than selectivity. As one might expect, reactions in polar NMP gave lower conversions than those in less polar solvents, namely cyclohexane, THF, and Hünig's base. Notably, the reactivity of the BOX ligand also depended on its solubility in the corresponding solvent.

Table 5. Borylation screening

	2 equiv			1 \qquad s	mol 2 m \qquad 1 e olven	\% [$\operatorname{lr}(\mathrm{OMe})$ mol \% ligan equiv $\mathrm{B}_{2} \mathrm{Pin}$ nt, tempera	$) \operatorname{cod}]_{2}$ d n_{2} ature	Cl		F Ste				ic (ele)	
entry	X	ligand	solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	t (h)	conversion ${ }^{\text {a }}$	st/ele	entry	X	ligand	solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$t(h)$	conversion ${ }^{\text {a }}$	st/ele
1	Me	dtbpy	CyH	r.t.	12	66\%	73:27	47	F	tmp	Hünig's base	60	6	69\%	39:61
2	OEt	dtbpy	CyH	r.t.	12	54\%	50:50	48	CN	tmp	Hünig's base	60	6	70\%	67:33
3	NMe_{2}	dtbpy	CyH	r.t.	12	49\%	56:44	49	Me	BOX	Hünig's base	60	6	20\%	45:55
4	Cl	dtbpy	CyH	r.t.	12	58\%	53: 47	50	OEt	BOX	Hünig's base	60	6	28\%	17:83
5	F	dtbpy	CyH	r.t.	12	74\%	39:61	51	NMe_{2}	BOX	Hünig's base	60	6	26\%	28:72
6	CN	dtbpy	CyH	r.t.	12	57\%	70:30	52	Cl	BOX	Hünig's base	60	6	42\%	21:79
7	Me	tmp	CyH	r.t.	12	51\%	73: 27	53	F	BOX	Hünig's base	60	6	42\%	12:88
8	OEt	tmp	CyH	r.t.	12	78\%	53: 47	54	CN	BOX	Hünig's base	60	6	53\%	45:55
9	NMe2	tmp	CyH	r.t.	12	85\%	59:41	55	Me	dpm	Hünig's base	60	6	50\%	65:35
10	Cl	tmp	CyH	r.t.	12	90\%	57: 43	56	OEt	dpm	Hünig's base	60	6	56\%	47: 53
11	F	tmp	CyH	r.t.	12	85\%	59:41	57	NMe2	dpm	Hünig's base	60	6	58\%	56:44
12	CN	tmp	CyH	r.t.	12	67\%	70:30	58	Cl	dpm	Hünig's base	60	6	88\%	58:42
13	Me	dtbpy	CyH	60	6	61\%	73: 27	59	F	dpm	Hünig's base	60	6	86\%	40:60
14	OEt	dtbpy	CyH	60	6	74\%	52: 48	60	CN	dpm	Hünig's base	60	6	75\%	63:37
15	NMe	dtbpy	CyH	60	6	66\%	57:43	61	Me	bom	Hünig's base	60	6	2\%	-
16	Cl	dtbpy	CyH	60	6	69\%	57: 43	62	OEt	bom	Hünig's base	60	6	1\%	-
17	F	dtbpy	CyH	60	6	82\%	44:56	63	NMe_{2}	bom	Hünig's base	60	6	1\%	-
18	CN	dtbpy	CyH	60	6	74\%	68:32	64	Cl	bom	Hünig's base	60	6	1\%	-
19	Me	tmp	CyH	60	6	75\%	72: 28	65	F	bom	Hünig's base	60	6	2\%	-
20	OEt	tmp	CyH	60	6	55\%	56 : 44	66	CN	bom	Hünig's base	60	6	N.R.	-
21	NMe_{2}	tmp	CyH	60	6	79\%	64:36	67	Me	dtbpy	Hünig's base	r.t.	12	10\%	70:30
22	Cl	tmp	CyH	60	6	67\%	57: 43	68	OEt	dtbpy	Hünig's base	r.t.	12	19\%	46:54
23	F	tmp	CyH	60	6	85\%	57: 43	69	NMe_{2}	dtbpy	Hünig's base	r.t.	12	10\%	58:42
24	CN	tmp	CyH	60	6	78\%	71: 29	70	NMe_{2}	dtbpy	Hünig's base	r.t.	12	51\%	55:45
25	Me	BOX ${ }^{\text {b }}$	CyH	60	6	2\%	-	71	F	dtbpy	Hünig's base	r.t.	12	54\%	33:67
26	OEt	BOX	CyH	60	6	2\%	-	72	CN	dtbpy	Hünig's base	r.t.	12	30\%	60:40
27	NMe_{2}	BOX	CyH	60	6	2\%	-	73	Me	tmp	Hünig's base	r.t.	12	N.R.	-
28	Cl	BOX	CyH	60	6	3\%	-	74	OEt	tmp	Hünig's base	r.t.	12	N.R.	-
29	F	BOX	CyH	60	6	3\%	-	75	NMe_{2}	tmp	Hünig's base	r.t.	12	N.R.	-
30	CN	BOX	CyH	60	6	15\%	58:42	76	Cl	tmp	Hünig's base	r.t.	12	N.R.	-
31	Me	dpm	CyH	60	6	26\%	63: 37	77	F	tmp	Hünig's base	r.t.	12	N.R.	-
32	OEt	dpm	CyH	60	6	35\%	43:57	78	CN	tmp	Hünig's base	r.t.	12	N.R.	-
33	NMe2	dpm	CyH	60	6	45\%	54:46	79	Me	BOX	Hünig's base	r.t.	12	N.R.	-
34	Cl	dpm	CyH	60	6	75\%	57: 43	80	OEt	BOX	Hünig's base	r.t.	12	N.R.	-
35	F	dpm	CyH	60	6	66\%	36: 64	81	NMe2	BOX	Hünig's base	r.t.	12	N.R.	-
36	CN	dpm	CyH	60	6	25\%	63: 37	82	Cl	BOX	Hünig's base	r.t.	12	N.R.	-
37	Me	dtbpy	Hünig's base	60	6	75\%	73: 27	83	F	BOX	Hünig's base	r.t.	12	N.R.	-
38	OEt	dtbpy	Hünig's base	60	6	78\%	53:47	84	CN	BOX	Hünig's base	r.t.	12	N.R.	-
39	NMe_{2}	dtbpy	Hünig's base	60	6	75\%	59:41	85	Me	dpm	Hünig's base	r.t.	12	N.R.	-
40	Cl	dtbpy	Hünig's base	60	6	86\%	57: 43	86	OEt	dpm	Hünig's base	r.t.	12	N.R.	-
41	F	dtbpy	Hünig's base	60	6	93\%	40: 60	87	NMe_{2}	dpm	Hünig's base	r.t.	12	N.R.	-
42	CN	dtbpy	Hünig's base	60	6	88\%	66 : 34	88	Cl	dpm	Hünig's base	r.t.	12	N.R.	-
43	Me	tmp	Hünig's base	60	6	47\%	75: 25	89	F	dpm	Hünig's base	r.t.	12	N.R.	-
44	OEt	tmp	Hünig's base	60	6	64\%	54 : 46	90	CN	dpm	Hünig's base	r.t.	12	N.R.	-
45	NMe_{2}	tmp	Hünig's base	60	6	49\%	54:46	91	Me	dtbpy	NMP	60	6	45\%	72: 28
46	Cl	tmp	Hünig's base	60	6	63\%	57:43	92	OEt	dtbpy	NMP	60	6	44\%	59:41

Table 5 (cont'd)

entry	X	ligand	solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$t(h)$	conversion ${ }^{\text {a }}$	st/ele	entry	X	ligand	solvent	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	t (h)	conversion ${ }^{\text {a }}$	st/ele
93	NMe_{2}	dtbpy	NMP	60	6	46\%	67:33	119	F	tmp	THF	r.t.	12	51\%	37: 63
94	Cl	dtbpy	NMP	60	6	36\%	62:38	120	CN	tmp	THF	r.t.	12	68\%	76:24
95	F	dtbpy	NMP	60	6	40\%	31: 69	121	Me	dpm	THF	60	6	13\%	73: 27
96	CN	dtbpy	NMP	60	6	9\%	10:90	122	OEt	dpm	THF	60	6	14\%	66:34
97	Me	dpm	NMP	60	6	10\%	78: 22	123	NMe_{2}	dpm	THF	60	6	14\%	67:33
98	OEt	dpm	NMP	60	6	11\%	57: 43	124	Cl	dpm	THF	60	6	66\%	63:37
99	NMe_{2}	dpm	NMP	60	6	9\%	70 : 30	125	F	dpm	THF	60	6	62\%	42:58
100	Cl	dpm	NMP	60	6	21\%	64:36	126	CN	dpm	THF	60	6	15\%	72: 28
101	F	dpm	NMP	60	6	22\%	45:55	127	Me	BOX	THF	60	6	12\%	45:55
102	CN	dpm	NMP	60	6	10\%	64:36	128	OEt	BOX	THF	60	6	15\%	25:75
103	Me	BOX	THF	r.t.	12	N.R.	-	129	NMe2	BOX	THF	60	6	12\%	37:63
104	OEt	BOX	THF	r.t.	12	2\%	-	130	Cl	BOX	THF	60	6	24\%	33:67
105	NMe2	BOX	THF	r.t.	12	N.R.	-	131	F	BOX	THF	60	6	22\%	23:77
106	Cl	BOX	THF	r.t.	12	15\%	20:80	132	CN	BOX	THF	60	6	30\%	55:45
107	F	BOX	THF	r.t.	12	15\%	9:91	133	Me	tmp	THF	60	6	46\%	74:26
108	CN	BOX	THF	r.t.	12	19\%	39:61	134	OEt	tmp	THF	60	6	61\%	54:46
109	Me	dtbpy	THF	r.t.	12	47\%	75:25	135	NMe_{2}	tmp	THF	60	6	66\%	62:38
110	OEt	dtbpy	THF	r.t.	12	71\%	51:49	136	Cl	tmp	THF	60	6	74\%	61:39
111	NMe_{2}	dtbpy	THF	r.t.	12	65\%	57 : 43	137	F	tmp	THF	60	6	85\%	41:59
112	Cl	dtbpy	THF	r.t.	12	79\%	57:43	138	CN	tmp	THF	60	6	64\%	74:26
113	F	dtbpy	THF	r.t.	12	84\%	37 : 63	139	Me	dtbpy	THF	60	6	75\%	74:26
114	CN	dtbpy	THF	r.t.	12	84\%	80:20	140	OEt	dtbpy	THF	60	6	52\%	57:43
115	Me	tmp	THF	r.t.	12	50\%	74:26	141	NMe_{2}	dtbpy	THF	60	6	63\%	61:39
116	OEt	tmp	THF	r.t.	12	50\%	49:51	142	Cl	dtbpy	THF	60	6	59\%	61:39
117	NMe_{2}	tmp	THF	r.t.	12	46\%	60:40	143	F	dtbpy	THF	60	6	86\%	47:53
118	Cl	tmp	THF	r.t.	12	53\%	59:41	144	CN	dtbpy	THF	60	6	72\%	67:33

b. Box ligand is not well dissolved in cyclohexane.

2.3 Ligand effects hypothesis

Earlier research showed that electron rich ligands are more effective borylation catalysts (due to the proton transfer characteristics of the C-H activation transition state). Because of their high reactivity in activating $\mathrm{C}-\mathrm{H}$ bonds, the regioselectivity is mostly dictated by steric effects. We hypothesized that if the ligands were electron poor, then the reactivity of the $\mathrm{C}-\mathrm{H}$ bond itself might become a driving force of the reaction regioselectivity. Based on this argument, we believed a suitable ligand for selective borylation ortho to fluorine should be an electron deficient molecule that would discriminate $\mathrm{C}-\mathrm{H}$ bonds based on their relative acidity, provided there is insignificant steric hindrance at that C-H bond.

2.4 Searching for new ligands

Figure 30. Literature synthesis of bis- and tetra- CF_{3} substituted bipyridines

The tetrahydrodiboxazole (BOX) ligand fits into our criteria for an ortho to F selective ligand, as it is electron poorer than dtbpy or tmp, and is not sterically hindered. Also, in practice the BOX ligand favored electronic products with most of the substrates. However BOX gave lower conversions and formation of large amount of borates $\left(\mathrm{B}(\mathrm{OR})_{3}, \sim 22 \mathrm{ppm}\right)$ were observed in the ${ }^{11} \mathrm{~B}$ NMR of the reaction crude. We considered the relatively open bite angle ($\mathrm{N}-\mathrm{Ir}-\mathrm{N}$ angle) of a BOX-Ir complex might lead to less efficient L-Ir binding. ${ }^{51}$ Thus we looked into bipyridines with electron withdrawing substituents. Such ligands might inherit the good geometry of bipyridine parent model, but the electron deficient rings could still favor the electronic product. We proposed two tentative structures, 4,4'-bistrifluoromethyl bipyridine (btfbpy) and 4,4',5,5'-tetrakistrifluoromethyl bipyridine (ttfbpy) for exploration. The synthesis of both ligands were described in the literature, but these synthesis suffered from relatively low yields, especially the latter, as illustrated in Figure 30. ${ }^{52}$ Thus we sought to improve the yields by modifying the conditions. ${ }^{53}$ We started with the synthesis of btfbpy. Naturally, we began by increasing Ni catalyst load to equal that of the substrate, and we observed a significant increase in the yield (Figure 31). We then considered a different reaction set up, namely NiCl_{2} and PPh_{3} instead of the pre-assembled catalyst.

The reaction was performed in DMF. Since the Ni salt was hydrated, we used DMF without drying. We at first had feared the water be problematic, but it turned out not to inhibit the success. The reaction was followed by GC-MS until the starting material was fully consumed, and in the end 89\% isolated yield was achieved (Figure 31).

Figure 31. Improving the synthesis of 4,4-bistrifluoromethyl bipyridine (btfbpy)

1 equiv $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$
1 equiv $\mathrm{Et}_{4} \mathrm{NI}$
THF, $60^{\circ} \mathrm{C}, 3 \mathrm{~d}$
1.5 equiv Zn

We next applied these conditions to the synthesis of ttfbpy. We observed a 31% isolated yield, as opposed to the 3% literature yield. ${ }^{52} \mathrm{We}$ attempted to further optimize the conditions by doubling the zinc load to 3 equivalents. After 48 hours of heating, GC-MS indicated full consumption of the starting material, but the desired product was not found. Instead, a peak with m/e 374 was found, which could be bpy $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{CH}_{3}$. We partially separated from the crude, a mixture of two proposed byproducts. In the ${ }^{1} \mathrm{H}$ NMR (Figure 32 and 33), we observed two methyl peaks at 2.56 and 2.61 ppm 3:1 ratio. In the ${ }^{19} \mathrm{~F}$ NMR (Figure 34) we observed a set of peaks at -59.2 ppm , -61.7 ppm and -64.1 ppm (1:1:1) overlapping with another set of peaks at -59.2 ppm and -61.7 ppm (1:2). It was most likely that the excessive Zn lead to the reduced byproduct, Based on the proposed structure, an isolated yield of 18% was achieved.

Figure 32. Proton NMR of the mixture of reduction products, aliphatic part

Figure 33. Proton NMR of the mixture of reduction products, aromatic part

Figure 34. ${ }^{19} \mathrm{~F}$ NMR of the mixture of reduction products

When we reduced the load of Zn to 1 equivalent, the byproducts were no longer seen by GC-MS, but the desired product was observed. A 71% isolated was achieved on 1 mmol scale, and 67% isolated yield on 10 mmol scale (Figure 35). These ligands were reported as borylation catalyst, and borylation catalysts are usually electron rich ligands, however electron deficient ligands were used in published borylation reactions by Ishiyama. ${ }^{25}$ (b)

2.5 Results and discussions

We subjected both new ligands to high throughput screening and the results are listed in Table 7. We were pleased to find that the regioselectivity in those reactions significantly switched towards the electronic products. The conversions with election rich substrates were lower, but moderate with electron poor substrates.

Figure 35. Improving the synthesis of 4,4',5,5'-tetratrifluoromethyl bipyridine (ttfbpy)

Table 6. Borylation screening with bpy $\left(\mathrm{CF}_{3}\right)_{\mathrm{x}}$ ligands

We found out the borylation of 1,2-dichloro-3-fluorobenzen (12a) with btfbpy as ligand can also be carried out at room temperature, but the reaction stops at 50% conversion based on boron atom equivalent, ${ }^{11} \mathrm{~B}$ NMR of the crude reaction mixture showed the formation of borylation products
and HBPin. The reaction seems to be only consuming $\mathrm{B}_{2} \mathrm{Pin}_{2}$, but not the HBPin generated in situ after the borylation with $\mathrm{B}_{2} \operatorname{Pin} 2$. We set up a group of reactions to exam whether adding more $\mathrm{B}_{2} \mathrm{Pin}_{2}$ or catalyst can push the reaction further (Figure 36).

Figure 36. Resurrecting the borylation

a. $1 \mathrm{~mol} \%[\mathrm{Ir}(\mathrm{OMe}) \mathrm{cod}]_{2}$, $2 \mathrm{~mol} \%$ btfbpy, 1 equiv $\mathrm{B}_{2} \mathrm{Pin}_{2}$, dodecane (GC internal standard), Hünig's base, rt, $4 \mathrm{~h} . \mathrm{b}$. rt 4 h . c. additional $1 \mathrm{~mol} \%[\mathrm{rr}(\mathrm{OMe}) \mathrm{cod}]_{2}$ and $2 \mathrm{~mol} \% \mathrm{btfbpy}, \mathrm{rt}, 4 \mathrm{~h}$. d. additional 1 equiv $\mathrm{B}_{2} \mathrm{Pin}_{2}$, rt, 40 h

Three reactions were set up parallel. All three proceeded to around 50% conversion at room temperature after 4 hours. As a control group, reaction (1) was allowed to go for another 4 hours. No progress in the reaction was observed and the ratio of the products remained the same. To reaction (2) additional catalyst was added after the reaction reached 50% conversion. The additional Ir and ligands did not push the reaction further. To reaction (3) an additional 1 equiv of $\mathrm{B}_{2} \mathrm{Pin}_{2}$ lead to further borylation, which eventually achieved 91% conversion after 40 hours. This suggests under such conditions only one boron of the $\mathrm{B}_{2} \mathrm{Pin}_{2}$ is utilized for the borylation. Note
that in Table 7, electron poor substrates went over 50% conversion (entries 10, 11, and 12), suggesting in situ HBPin was consumed in these borylations. Borylations by HBPin were then compared among several substrates as shown in Figure 37.

Figure 37. Borylation by HBPin

The presence of $\mathbf{1 2 e}$ or $\mathbf{1 2 g}$ did not shut down the borylation of $\mathbf{1 2} \mathbf{c}$ with HBPin, however they gave very low conversions. Generally the borylations by HBPin with these ligands are not practical, especially with electron rich substates. We then further tested borylations of another substrate (1,2-dichloro-3-fluorobenzen, 12a by HBPin with btfbpy as the ligand, and with different combinations
of temperature/solvent (Table 8). The results show that the combination of electron deficient ligand and HBPin is inefficient for the borylations.

Table 7. Borylation of 12a by HBPin

entry	solvent	ligand	temp	time	conversion $^{\text {a }}$	st/ele $^{\mathrm{a}}$
1	THF	dtbpy	rt	12 h	trace	-
2	THF	tmp	rt	12 h	trace	-
3	THF	btfbpy	rt	12 h	trace	-
4	THF	dtbpy	$80^{\circ} \mathrm{C}$	12 h	72%	$72: 28$
5	THF	tmp	$80^{\circ} \mathrm{C}$	12 h	45%	$66: 34$
6	THF	btfbpy	$80^{\circ} \mathrm{C}$	12 h	14%	$33: 67$
7	NMP	btfbpy	rt	12 h	trace	-
8	Hünig's Base	btfbpy	rt	12 h	trace	-
9	Hünig's Base	btfbpy	$80^{\circ} \mathrm{C}$	12 h	11%	$34: 66$
a Conversion based on boron atoms.						

2.6 Tandem borylation-Suzuki coupling

The application of electron deficient ligands greatly improved the yield of electronic products that are difficult to obtain under conversional Ir-catalyzed borylation conditions. However, even in our best cases, we only achieved a 1:4 ratio of products. As it was hard for us to separate those products, we reasoned that perhaps if these boronic ester intermediate could be transformed to more easily separated products, this methodology could still be of synthetic value. We decided to subject mixture of borylation products to Suzuki conditions aiming to generate a more stable and separable final product. We borylated several substrates with dtbpy (4,4'-di-tert-butylbipyride), btfbpy (4,4’bistryfluoromethylbipyride) and ttfbpy (4,4',5,5'-tetrakistryfluoromethylbipyride). The reaction crude was partially purified to give a mixture of two borylation products that could be subjected to a Suzuki coupling. This purification was necessary to avoid deboryltion catalyzed by Ir residue during the Suzuki coupling. The results of our attempts are listed in Table 9, but it should be noted that some of the Suzuki regioisomeric mixtures were still difficult to be separated.

Table 8. Tandem borylation-Suzuki coupling

12a-f

13a-f

14a-f

13a-f'

14a-f'

entry	-X	borylation conversion and $13 / 13^{\prime}$ ratio $^{\text {e }}$	Suzuki crude yeld and 14/14' ratio f	Suzuki isolated yield ${ }^{\text {e }}$
$1^{\text {a }}$	Cl	93\% (33:67)	99\% (33 : 67)	15\% 14a, 30\% 14a'
$2^{\text {a }}$	OH	96\% (31:69)	84\% (29:71)	3% 14b, 48\% mixture (26:74)
$3^{\text {b }}$	F	85\% (18:82)	85\% (15:85)	7\% 14c, 41\% 14c'
$4^{\text {b }}$	CN	80\% (36 : 64)	68\% (32 : 68)	8\% 14d, 17\% 14d'
$5^{\text {c }}$	Me	87\% (75:25)	88\% (81: 19)	59\% mixture ($72: 28$)
$6^{\text {c }}$	NMe_{2}	94\% (61:39)	70\% (66:34)	30\% mixture ($62: 38$)

a. $1 \%[\operatorname{lr}(\mathrm{OMe}) \mathrm{Cod}]_{2}, 2 \%$ btfbpy, 1.0 equiv $\mathrm{B}_{2} \mathrm{Pin}_{2}$, Hünig's Base, rt, 12 h
b. $1 \%[\operatorname{Ir}(\mathrm{OMe}) \mathrm{cod}]_{2}, 2 \%$ ttfbpy, 0.5 equiv $\mathrm{B}_{2} \mathrm{Pin}_{2}$, Hünig's Base, $60^{\circ} \mathrm{C} 6 \mathrm{~h}$
c. $1 \%[\operatorname{Ir}(\mathrm{OMe}) \mathrm{cod}]_{2}, 2 \%$ dtbpy, 0.5 equiv $\mathrm{B}_{2} \mathrm{Pin}_{2}, \mathrm{THF}, 60^{\circ} \mathrm{C} 6 \mathrm{~h}$
d. Methyl 4-Iodobenzoate; e. Based on substrate; f. Based on borylated materials

2.7 Kinetics study of the borylations with electron deficient ligands

To further investigate these electron deficient ligands, we performed kinetic studies. We synthesized a pre-assembled catalyst $\operatorname{Ir}(\mathrm{Bpin})_{3} b t f b p y(c o e)$ (15) using a protocol similar to literature method of making $\operatorname{Ir}(\mathrm{Bpin})_{3} \mathrm{dtbpy}(\mathrm{coe})$ (Figure 38). ${ }^{25(\mathrm{~b})}$

We set up kinetic studies using pre-assembled catalyst (15). We decided to monitor the reaction by ${ }^{19} \mathrm{~F}$ NMR, as fluorine NMR gives fewer but well distinguished peaks for the starting material, products and also the catalyst. We fixed the concentration of starting material, varied the concentration of between 5 to 10 equivalents. While this looks to be a narrower range than typical setups for pseudo-first order studies, we were limited by solubility of $\mathrm{B}_{2} \mathrm{Pin}_{2}$ and the minimum concentration of catalyst $\mathbf{1 5}$ needed to afford reliable NMR integration. We considered this to be
acceptable as Ishiyama and Hartwig operated in an even narrower range of excess $\mathrm{B}_{2} \mathrm{Pin}_{2}$ (between 1.5 and 2.4 equivs). ${ }^{25(b)}$

Figure 38. Synthesis of pre-assembled catalyst

Figure 39. Kinetic study of the borylation of 12a

2.7.1 Preparation of stock solutions: 1. In a nitrogen glovebox, a stock solution was prepared with $\operatorname{Ir}(\text { Bpin })_{3} b t f b p y(c o e)(\mathbf{1 5}, 24 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{C}_{6} \mathrm{~F}_{6}(218 \mathrm{mg}, 1.17 \mathrm{mmol})$ in THF in a 10.00 mL volumetric flask. The volumetric flask was filled to the 10.00 mL line. 2. Another stock solution was prepared with $\mathrm{B}_{2} \mathrm{Pin}_{2}(1.299 \mathrm{~g}, 5.114 \mathrm{mmol})$ and 2.000 mL of the stock solution prepared in step $1\left(0.005 \mathrm{mmol} \mathrm{Ir}, 0.234 \mathrm{mmol} \mathrm{C}_{6} \mathrm{~F}_{6}\right)$ in THF in a 10.00 mL volumetric flask. This volumetric flask was filled to the 10.00 mL line. The total amount of THF was 7.623 g (105.71 mmol).

A 1.000 mL stock solution prepared in step $2\left(0.511 \mathrm{mmol}_{2} \mathrm{Pin}_{2}, 0.0005 \mathrm{mmol} 15,0.0215 \mathrm{mmol}\right.$ $\mathrm{C}_{6} \mathrm{~F}_{6}$) was transferred into an NMR tube and sealed with a rubber cap. After tuning and gradient shimming, substrate $\mathbf{1 2 a}(11.7 \mu \mathrm{~L}, 0.100 \mathrm{mmol})$ was added. Precise concentration of 12a and catalyst can be determined by NMR. NMR sample: $\mathrm{B}_{2} \mathrm{Pin}_{2} 0.511 \mathrm{~mol} / \mathrm{L}$, determined by NMR: 12a
$0.103 \mathrm{~mol} / \mathrm{L}, 155.7 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, THF $10.57 \mathrm{~mol} / \mathrm{L}$. The reaction (Figure 39) was followed by ${ }^{19} \mathrm{~F}$ NMR every 15 min for 12 h . The concentrations of each species, 12a, 13a, 13a', and $\mathbf{1 5}$ were calculated by NMR integration. Data up to 75% conversion (two half-lives) were used for rate law fitting. first order fitting: $\mathrm{R}^{2}=0.999, \mathrm{k}_{\mathrm{obs}}=1.02 \times 10^{-4} \mathrm{~s}^{-1}$ (Figure 40).

Figure 40. First order fitting for the reaction described in 2.7.1

We also looked into the CF_{3} region (about -50 to -70 ppm) of the ${ }^{19} \mathrm{~F}$ NMR spectra obtained from the experiment (Figure 41). Several new peaks developed in this area, suggesting the original preassembled catalyst was decomposing. This was also observed in several other experiments, described in the following paragraphs.
2.7.2 Preparation of stock solutions: 1. In a nitrogen glovebox, a stock solution was prepared with $\operatorname{Ir}($ Bpin $)$ btfbpy (coe) $(\mathbf{1 5}, 24 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{C}_{6} \mathrm{~F}_{6}(200 \mathrm{mg}, 1.07 \mathrm{mmol})$ in THF in a 10.00 mL volumetric flask. The volumetric flask was filled to the 10.00 mL line. 2. Another stock solution was prepared with $\mathrm{B}_{2} \mathrm{Pin}_{2}(1.905 \mathrm{~g}, 7.501 \mathrm{mmol})$ and 2.000 mL of the stock solution
prepared in step $1\left(0.005 \mathrm{mmol} \mathrm{15}, 0.215 \mathrm{mmol}_{6} \mathrm{C}_{6}\right)$ in THF in a 10.00 mL volumetric flask. This volumetric flask was filled to the 10.00 mL line. The total amount of THF was $7.068 \mathrm{~g}(98.02$ mmol).

Figure 41. ${ }^{19}$ F NMR of the CF_{3} region, from bottom to top: $\mathbf{0 . 0}, \mathbf{1 . 0}, \mathbf{2 . 3}, \mathbf{3 . 5}, 4.8,6.0$ hours after substrate (12a) was added.

Figure 42. Kinetic study of the borylation of 12a

A 1.000 mL stock solution prepared in step $2\left(0.750 \mathrm{mmol} \mathrm{B}_{2} \mathrm{Pin}_{2}, 0.0005 \mathrm{mmol}\right.$ Ir, 0.0215 mmol $\mathrm{C}_{6} \mathrm{~F}_{6}$) was transferred into an NMR tube and sealed with a rubber cap. After tuning and gradient shimming, substrate, 12a ($11.7 \mu \mathrm{~L}, 0.100 \mathrm{mmol}$) was added. Precise concentration of substrate and catalyst can be determined by NMR. NMR sample: $\mathrm{B}_{2} \mathrm{Pin}_{2} 0.750 \mathrm{~mol} / \mathrm{L}$, determined by NMR: 12a $0.114 \mathrm{~mol} / \mathrm{L}, 155.7 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, THF $9.80 \mathrm{~mol} / \mathrm{L}$. The reaction (Figure 42) was followed by
${ }^{19}$ F NMR every 15 min for 12 h . The concentrations of each species, 12a, 13a, 13a', and $\mathbf{1 5}$ were calculated by NMR integration. Data up to 75% conversion (two half-lives) were used for rate law fitting. First order fitting: $\mathrm{R}^{2}=0.996, \mathrm{k}_{\mathrm{obs}}=7.80 \times 10^{-5} \mathrm{~s}^{-1}$ (Figure 43). Again, we observed the degradation of catalysts, as shown in Figure 44.

Figure 43. 1st order fitting for the reaction described in 2.7.2

2.7.3 Preparation of stock solutions: 1. In a nitrogen glovebox, a stock solution was prepared with $\operatorname{Ir}(\text { Bpin })_{3} b t f b p y(c o e)(\mathbf{1 5}, 24 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{C}_{6} \mathrm{~F}_{6}(197 \mathrm{mg}, 1.06 \mathrm{mmol})$ in THF in a 10.00 mL volumetric flask. The volumetric flask was filled to the 10.00 mL line. 2. Another stock solution was prepared with $\mathrm{B}_{2} \operatorname{Pin} 2(2.548 \mathrm{~g}, 10.03 \mathrm{mmol})$ and 2.000 mL of the stock solution prepared in step $1\left(0.005 \mathrm{mmol} \mathrm{Ir}, 0.212 \mathrm{mmol} \mathrm{C}_{6} \mathrm{~F}_{6}\right)$ in THF in a 10.00 mL volumetric flask. This volumetric flask was filled to the 10.00 mL line, total amount of THF was $6.484 \mathrm{~g}(89.92 \mathrm{mmol})$.

Figure 44. ${ }^{19}$ F NMR of the CF_{3} region, from bottom to top: $\mathbf{0 . 0}, \mathbf{1 . 0}, \mathbf{2 . 3}, \mathbf{3 . 5}, 4.8,6.0$ hours after substrate (12a) was added.

Figure 45. Kinetic study of the borylation of 12a

A 1.000 mL stock solution prepared in step $2\left(1.003 \mathrm{mmol}_{2} \operatorname{Pin}_{2}, 0.0005 \mathrm{mmol} 15,0.0212 \mathrm{mmol}\right.$ $\mathrm{C}_{6} \mathrm{~F}_{6}$) was transferred into an NMR tube and sealed with a rubber cap. After tuning and gradient shimming, substrate, $\mathbf{1 2 a}(11.7 \mu \mathrm{~L}, 0.100 \mathrm{mmol})$ was injected. Precise concentration of substrate and catalyst can be determined by NMR. NMR sample: $\mathrm{B}_{2} \mathrm{Pin}_{2} 1.00 \mathrm{~mol} / \mathrm{L}$, determined by NMR: 12a $0.109 \mathrm{~mol} / \mathrm{L}, 155.7 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, THF $8.99 \mathrm{~mol} / \mathrm{L}$. The reaction (Figure 45) was followed by ${ }^{19}$ F NMR, every 15 min for 12 h . The concentrations of each species, 12a, 13a, 13a', and $\mathbf{1 5}$ were calculated by NMR integration. Data up to 75% conversion (two half-lives) were used for rate law fitting. Frist order fitting: $\mathrm{R}^{2}=0.990, \mathrm{~K}_{\text {obs }}=6.24 \times 10^{-5} \mathrm{~s}^{-1}$ (Figure 46). Again, we observed the degradation of catalysts, as shown in Figure 47.

Figure 46. $1^{\text {st }}$ order fitting for the reaction described in 2.7.3

Figure 47. ${ }^{19}$ F NMR of the CF_{3} region, from bottom to top: $0.0,1.0,2.3,3.5,4.8,6.0$ hours after substrate (12a) was added

The results of these kinetic runs are summarized in Table 10. Seemingly, the reactions demonstrated a decreasing reaction rate and conversion, as the $\mathrm{B}_{2} \mathrm{Pin} 2$ initial concentration increases. Comparing Figures 41, 44, and 47, we also noticed that the preassembled catalyst was
converting into other species during the reactions, and at higher concentrations of the $\mathrm{B}_{2} \mathrm{Pin}_{2}$ the decay of catalyst was more severe. We then tried to perform the kinetic studies at lower concentration.

Table 9. Summary of kinectic studies at high concentration

a. based on first 75\% conversion (one half-lives)

Figure 48. Kinetic study of the borylation of 12a

2.7.4 Preparation of stock solutions: 1. In a nitrogen glovebox, a stock solution was prepared with $\operatorname{Ir}(\text { Bpin })_{3}$ btfbpy (coe) $(\mathbf{1 5}, 24 \mathrm{mg}, 0.025 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{~F}_{6}(22.5 \mathrm{mg}, 0.121 \mathrm{mmol})$ in THF in a 10.00 mL volumetric flask. The volumetric flask was filled to the 10.00 mL line. 2. Another stock solution was prepared with $\mathrm{B}_{2} \mathrm{Pin}_{2}(254 \mathrm{mg}, 1 \mathrm{mmol})$ and 2.000 mL of the stock solution prepared in step $1\left(0.005 \mathrm{mmol} 15,0.024 \mathrm{mmol} \mathrm{C}_{6} \mathrm{~F}_{6}\right)$ in THF in a 10.00 mL volumetric flask. This volumetric flask was filled to the 10.00 mL line. The total amount of THF was 8.548 g (118.54 $\mathrm{mmol})$. A 1.000 mL stock solution prepared in step $2\left(0.100 \mathrm{mmol} \mathrm{B}_{2} \mathrm{Pin}_{2}, 0.0005 \mathrm{mmol} 15,0.0215\right.$ mmol $\mathrm{C}_{6} \mathrm{~F}_{6}$) was transferred into an NMR tube and sealed with a rubber cap. After tuning and
gradient shimming, substrate (12a $1.2 \mu \mathrm{~L}, 0.010 \mathrm{mmol})$ was added. Precise concentration of substrate and catalyst can be determined by NMR. NMR sample: $\mathrm{B}_{2} \operatorname{Pin}_{2} 0.1 \mathrm{~mol} / \mathrm{L}$, determined by NMR: 12a $0.011 \mathrm{~mol} / \mathrm{L}, \mathbf{1 5} 5.3 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, THF $11.8 \mathrm{~mol} / \mathrm{L}$. The reaction (Figure 48) was followed by ${ }^{19} \mathrm{~F}$ NMR, every 15 min for 12 h . The concentrations of each species, 12a, 13a, 13a', and 15 were calculated by NMR integration. Data up to 75% conversion (two half-lives) were used for rate law fitting. First order fitting of $0-75 \%$ conversion: $\mathrm{R}^{2}=0.999, \mathrm{~K}_{\mathrm{obs}}=1.02 \times 10^{-4} \mathrm{~s}^{-1}$ (Figure 49). As observed the CF_{3} region of the ${ }^{19} \mathrm{~F}$ NMR spectra the degradation of catalyst seemed to be suppressed at lower reaction concentrations (Figure 50).

Figure 49. First order fitting for the reaction described in 2.7.4

Figure 50. ${ }^{19}$ F NMR of the CF_{3} region, from bottom to top: $0.0,1.0,2.3,3.5,4.8,6.0$ hours after substrate (12a) was added

2.7.5 Preparation of stock solutions: 1. In a nitrogen glovebox, a stock solution was prepared with $\operatorname{Ir}(\text { Bpin })_{3} b t f b p y(c o e)(\mathbf{1 5}, 24 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{C}_{6} \mathrm{~F}_{6}(22.7 \mathrm{mg}, 0.122 \mathrm{mmol})$ in THF in a 10.00 mL volumetric flask. The volumetric flask was filled to the 10.00 mL line. 2. Another stock solution was prepared with $\mathrm{B}_{2} \operatorname{Pin}_{2}(127 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 2.000 mL of the stock solution prepared in step $1\left(0.005 \mathrm{mmol} 15,0.0244 \mathrm{mmol}_{6} \mathrm{~F}_{6}\right)$ in THF in a 10.00 mL volumetric flask. This volumetric flask was filled to the 10.00 mL line, total amount of THF was $8.693 \mathrm{~g}(120.6 \mathrm{mmol})$. A 1.000 mL stock solution prepared in step $2\left(0.010 \mathrm{mmol} \mathrm{B}_{2} \operatorname{Pin} 2,0.0005 \mathrm{mmol} 15,0.0024 \mathrm{mmol}\right.$ $\mathrm{C}_{6} \mathrm{~F} 6$) was transferred into an NMR tube and sealed with a rubber cap.

Figure 51. Kinetic study of the borylation of 12a

Figure 52. First order fitting for the reaction described in 2.7.5

After tuning and gradient shimming, substrate (12a, $1.2 \mu \mathrm{~L}, 0.010 \mathrm{mmol}$) was added. Precise concentration of substrate and catalyst can be determined by NMR. NMR sample: $\mathrm{B}_{2} \mathrm{Pin}_{2} 0.050$ $\mathrm{mol} / \mathrm{L}$, determined by NMR: 12a $0.0094 \mathrm{~mol} / \mathrm{L}$, catalyst $5.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, THF $12.1 \mathrm{~mol} / \mathrm{L}$. The reaction (Figure 51) was followed by ${ }^{19} \mathrm{~F}$ NMR every 15 min for 12 h . The concentrations of each species, 12a, 13a, 13a', and $\mathbf{1 5}$ were calculated by NMR integration. Data up to 75% conversion (two half-lives) were used for rate law fitting. First order fitting of $0-75 \%$ conversion: $\mathrm{R}^{2}=0.999$, $\mathrm{K}_{\text {obs }}=1.03 \times 10^{-4} \mathrm{~s}^{-1}$ (Figure 52). As observed in the CF_{3} region on ${ }^{19} \mathrm{~F}$ NMR spectra the degradation of the catalyst seemed to be suppressed at lower reaction concentrations (Figure 53).

As summarized in Table 11, the reaction demonstrated a 0 -order kinetic behavior of $\mathrm{B}_{2} \mathrm{Pin}_{2}$ which would be expected at lower concentrations without ligand decomposition. We also studied the kinetics of the borylation of $\mathbf{1 2 c}$.

Figure 53. ${ }^{19}$ F NMR of the CF_{3} region, from bottom to top: $0.0,1.0,2.3,3.5,4.8,6.0$ hours after substrate (12a) was added

Table 10. First order kinetic behavior of borylation of 12a

a. based on first 75% conversion (two half-lives)
2.7.6 Preparation of stock solutions: 1. In a nitrogen glovebox, a stock solution was prepared with $\operatorname{Ir}(\text { Bpin })_{3}$ btfbpy (coe) $(\mathbf{1 5}, 24 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{C}_{6} \mathrm{~F}_{6}(20.4 \mathrm{mg}, 0.110 \mathrm{mmol})$ in THF in a 10.00 mL volumetric flask. The volumetric flask was filled to the 10.00 mL line. 2. Another stock solution was prepared with $\mathrm{B}_{2} \operatorname{Pin}_{2}(127 \mathrm{mg}, 0.5 \mathrm{mmol})$ and 2.000 mL of the stock solution prepared in step $1\left(0.005 \mathrm{mmol} \mathrm{15}, 0.022 \mathrm{mmol} \mathrm{C}_{6} \mathrm{~F}_{6}\right)$ in THF in a 10.00 mL volumetric flask. This
volumetric flask was filled to the 10.00 mL line. The total mass of stock solution was 8812 mg , so that total amount of THF was $8.677 \mathrm{~g}(120.3 \mathrm{mmol})$.

Figure 54. Kinetic study of the borylation of 12c

Figure 55. First order fitting for the reaction described in 2.7.6

A 1.000 mL stock solution prepared in step $2\left(0.0500 \mathrm{mmol}_{2} \mathrm{Pin}_{2}, 0.0005 \mathrm{mmol} \mathbf{1 5}, 0.022 \mathrm{mmol}\right.$ $\mathrm{C}_{6} \mathrm{~F} 6$) was transferred into an NMR tube and sealed with a rubber cap. After tuning and gradient shimming, substrate ($\mathbf{1 2 c} 0.9 \mu \mathrm{~L}, 0.0100 \mathrm{mmol}$) was added. Precise concentration of substrate and catalyst can be determined by NMR. NMR sample: $\mathrm{B}_{2} \mathrm{Pin}_{2} 0.050 \mathrm{~mol} / \mathrm{L}$, determined by NMR: 12c $0.0099 \mathrm{~mol} / \mathrm{L}, 155.2 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, THF $12.0 \mathrm{~mol} / \mathrm{L}$. The reaction (Figure 54) was followed by ${ }^{19} \mathrm{~F}$

NMR, every 15 min for 12 h . The concentrations of each species, $\mathbf{1 2 c}, \mathbf{1 3} \mathbf{c}, \mathbf{1 3} \mathbf{c}^{\prime}$, and $\mathbf{1 5}$ were calculated by NMR integration. Data up to 75% conversion (two half-lives) were used for rate law fitting. First order fitting of $0-75 \%$ conversion: $\mathrm{R}^{2}=0.990, \mathrm{~K}_{\text {obs }}=7.71 \times 10^{-5} \mathrm{~s}^{-1}$ (Figure 55).
2.7.7 Preparation of stock solutions: 1. In a nitrogen glovebox, a stock solution was prepared with $\operatorname{Ir}(\text { Bpin })_{3}$ btfbpy (coe) $(\mathbf{1 5}, 25 \mathrm{mg}, 0.025 \mathrm{mmol})$, and $\mathrm{C}_{6} \mathrm{~F}_{6}(23.3 \mathrm{mg}, 0.125 \mathrm{mmol})$ in THF in a 10.00 mL volumetric flask. The volumetric flask was filled to the 10.00 mL line. 2. Another stock solution was prepared with $\mathrm{B}_{2} \operatorname{Pin} 2(190 \mathrm{mg}, 0.748 \mathrm{mmol})$ and 2.000 mL of the stock solution prepared in step $1\left(0.005 \mathrm{mmol} \mathrm{15}, 0.025 \mathrm{mmol}_{6} \mathrm{C}_{6}\right)$ in THF in a 10.00 mL volumetric flask. This volumetric flask was filled to the 10.00 mL line. The total mass of stock solution was 8780 mg , so that total amount of THF was $8.580 \mathrm{~g}(119.0 \mathrm{mmol})$. A 1.000 mL stock solution prepared in step $2\left(0.075 \mathrm{mmol} \mathrm{B}_{2} \operatorname{Pin}_{2}, 0.0005 \mathrm{mmol} 15,0.025 \mathrm{mmol} \mathrm{C}_{6} \mathrm{~F}_{6}\right)$ was transferred into an NMR tube and sealed with a rubber cap. After tuning and gradient shimming, substrate (12c $0.9 \mu \mathrm{~L}, 0.01 \mathrm{mmol}$) was added. Precise concentration of substrate and catalyst can be determined by NMR. NMR sample: $\mathrm{B}_{2} \operatorname{Pin}_{2} 0.075 \mathrm{~mol} / \mathrm{L}$, determined by NMR: $12 \mathrm{c} 0.0085 \mathrm{~mol} / \mathrm{L}, 155.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, THF $11.9 \mathrm{~mol} / \mathrm{L}$. The reaction (Figure 56) was followed by ${ }^{19} \mathrm{~F}$ NMR, every 15 min for 12 h . The concentrations of each species, 12c, 13c, 13c', and $\mathbf{1 5}$ were calculated by NMR integration. Data up to 75% conversion (two half-lives) were used for rate law fitting. First order fitting of 0-75\% conversion: $\mathrm{R}^{2}=0.994, \mathrm{~K}_{\text {obs }}=7.78 \times 10^{-5} \mathrm{~s}^{-1}$ (Figure 57)

Figure 56. Kinetic study of borylation of 12c

The results of the kinetic studies of the borylation of $\mathbf{1 2 c}$ are summarized in Table 12. The
borylations also demonstrated first order behavior against substrate and 0 order against $\mathrm{B}_{2} \mathrm{Pin}_{2}$.
Compared to the borylation of 12a, a difference of reaction rate due to substrate effect is clearly observed, but too few substrates were tested to draw any conclusions based on the trend.

Figure 57. First order fitting for the reaction described in 2.7.7

Table 11. Results of kinetic studies of the borylation of 12 c

a. based on first 75\% conversion (two half-lives)

2.8 Probing the ligand decomposition

During the kinetic studies, we noticed the decomposition of the preassembled catalyst and formation of other species. Also we noted that this phenomenon is more significant at higher reaction concentrations. At first we believed it to be an interaction between the Ir catalyst and $\mathrm{B}_{2} \mathrm{Pin}_{2}$ or HBPin. To test this, we mixed the preassembled catalyst $\mathbf{1 5}$ and $\mathrm{B}_{2} \mathrm{Pin} 2$ or HBPin in THF-d8, as illustrated in Figures 58, 59 and 60.

Figure 58. ${ }^{1} \mathbf{H}$ NMR of the preassembled catalyst (15) treated by $\mathbf{B}_{2} \mathrm{Pin}_{2}$ and HBPin in THFd_{8}, top: Compound 15, mid: Compound 15 and 5 equiv $B_{2} P_{i n}$ after 4 h at 298 K , bottom: Additional 5 equiv HBPin added, then after 4 h at 298 K

Figure 59. ${ }^{11} \mathrm{~B}$ NMR of the preassembled catalyst (15) treated by $\mathrm{B}_{2} \mathrm{Pin}_{2}$ and HBPin in THF- d_{8}, top: Compound 15, mid: Compound 15 and 5 equiv B_{2} Pin $_{2}$ after 4 h at 298 K , bottom: Additional 5 equiv HBPin added, then after 4 h at 298 K

After treating 15 with 5 equiv $\mathrm{B}_{2} \mathrm{Pin}_{2}$ at r.t for 4 hours, we did not observe any noticeable change in the aromatic region of the ${ }^{1} \mathrm{H}$ NMR and the ${ }^{19} \mathrm{~F}$ NMR of the preassembled catalyst. Neither had we found any change to the $\mathrm{B}_{2} \mathrm{Pin} 2$ peak in ${ }^{11} \mathrm{~B}$ NMR. After an additional 5 equiv HBPin was added and kept at r.t for another 4 h . Again we did not observe any noticeable change in the aromatic region of the ${ }^{1} \mathrm{H}$ NMR and the ${ }^{19} \mathrm{~F}$ NMR of the preassembled catalyst. Neither had we found any change to the HBPin peak in ${ }^{11}$ B NMR. This ruled out the decomposition of catalyst resulting from an interaction of HBPin or $\mathrm{B}_{2} \mathrm{Pin}_{2}$ with the preassembled catalyst (15)

Figure 60. ${ }^{19}$ F NMR of the preassembled catalyst (15) treated by $\mathrm{B}_{2} \mathrm{Pin}_{2}$ and HBPin in THFd_{8}, top: Compound 15, mid: Compound 15 and 5 equiv B_{2} Pin $_{2}$ after 4 h at 298 K , bottom: Additional 5 equiv HBPin added, then after 4 h at 298 K

Figure 61. Borylation of 12 a by stoichiometric 15

We then set up a borylation of 12a with the stoichiometric preassembled catalyst $\mathbf{1 5}$ (Figure 61). By ${ }^{19}$ F NMR, the CF_{3} peak area became messy and after $12 \mathrm{~h}, 84 \%$ conversion was achieved. At this time, 1 equiv $\mathrm{B}_{2} \mathrm{Pin} 2$ was added, but we did not observe the restoration of peak for coumpond 15 restored. These observations suggest the decomposition is due to a side reaction or side
reactions of the borylation intermediates. The reaction could most likely be bimolecular, since the decomposition of the catalyst is more severe at higher reaction concentrations.

2.9 Degradation of ttfbpy during borylation

Figure 62. Borylation of 12c by stoichiometric Ir and ttfbpy

84% conversion 81 : 19 at 20 h
While studying the borylations catalyzed with ttfbpy ligand, we noticed that the reactions were often displayed an induction period. Furthermore for successful borylations, signals for the ligand's CF_{3} 's were never observed in the ${ }^{19} \mathrm{~F}$ NMR of the reaction crude. To probe these phenomena, we borylated 12c with stoichiometric Ir and ttfbpy (Figure 62), and monitored the reaction by both ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR.

We found after that only the reaction was heated for 4.5 h , the consumption of the $\mathrm{B}_{2} \mathrm{Pin} 2$ started At that time the original ligand CF_{3} peak had disappeared and three broad peaks were observed in typical CF_{3} area by ${ }^{19} \mathrm{~F}$ NMR. The total integration of the ${ }^{19} \mathrm{~F} \mathrm{NMR}^{\mathrm{NH}} \mathrm{CH}_{3}$ area shrank to about 13% that of the original. After 9 h , the total integration of the ${ }^{19} \mathrm{~F}^{\mathrm{NMR}} \mathrm{CF}_{3}$ area increased to 25% that of the original and we found a sharp peak at -149 ppm , likely F-BPin, with an integration equal to 11% of the original ligand. At this point, 10% conversion of the expected borylation was observed by ${ }^{19} \mathrm{~F}$ NMR (Figure 63). By ${ }^{11} \mathrm{~B}$ NMR, we observed the formation of a peak at 22 ppm , likely FBPin. We observed further increases in the integration of the F-BPin peak in both ${ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ NMR, but the total integration of the three broad peaks in the CF_{3} area remained the same. Unfortunately we were not able to isolate the residue of the ligand, but based on our past
observation of the ttfbpy ligand being reduced by Zn metal, ${ }^{52}$ we hypothesized that the ligand might be reduced by $\mathrm{B}_{2} \mathrm{Pin}_{2}$ or HBPin.

Figure 63. Borylation of 12c with stoichiometric Ir and ttfbpy, top: Before heating, mid: 4.5 h Heating, bottom: 9 h Heating

2.10 Borylation under a H_{2} atmosphere

We also looked into the mechanism of the borylations, especially the role of HBPin and H_{2} in the borylations. We setup the reaction as following (Figure 64): In a nitrogen atmosphere glove box, $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$, and dtbpy $(5.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ were dissolved in Hünig's
base 2.0 mL , HBPin $(146 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was added and well mixed. Compound $\mathbf{1 2 a}(152 \mu \mathrm{~L}, 1.3$ mmol) was added. A portion of the reaction mixture was then sealed in an NMR tube and reaction was followed by ${ }^{19}$ F NMR every 15 min . Another reaction was prepared in this same way, and a portion of the reaction mixture was sealed into a thick wall screw-capped NMR tube and then charged with 100 PSI H_{2} gas, and the reaction was followed by ${ }^{19} \mathrm{~F}$ NMR every 15 min .

Figure 64. $\mathrm{H}_{\mathbf{2}}$ influence on borylation

Figure 65. Conversions of the borylation of $\mathbf{1 2 a}$ with HBPin affected by $\mathbf{H}_{\mathbf{2}}$

The borylation slowed down (Figure 65, conversions are based on HBPin), but the regioselectivity was not much affected (Figure 66).

Figure 66. Regioselectivity of the borylation of 12a with HBPin affected by $\mathbf{H}_{\mathbf{2}}$

Figure 67. $\mathrm{H}_{\mathbf{2}}$ influence on borylation

We also looked into how H_{2} effects on borylation with $\mathrm{B}_{2} \mathrm{Pin}_{2}$. In a nitrogen atmosphere glove box, $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{B}_{2} \operatorname{Pin}_{2}(254 \mathrm{mg}, 1.0 \mathrm{mmol})$, and btfbpy ($\left.5.8 \mathrm{mg}, 0.02 \mathrm{mmol}\right)$ were dissolved in Hünig's base (2.0 mL) and well mixed. Compound 12a ($152 \mu \mathrm{~L}, 1.3 \mathrm{mmol}$) was added. A portion of the reaction mixture was then sealed into a NMR tube and the reaction was followed on ${ }^{19}$ F NMR every 15 min . Another reaction was prepared in this same way and a part of the reaction mixture was sealed into a thick wall screw-capped NMR tube and then charged with 100 PSI HH_{2} gas. The reaction was followed on ${ }^{19} \mathrm{~F}$ NMR every 15 min . (Figure 67).

Figure 68. Borylation of 12 a by HBPin affected by $\mathrm{H}_{\mathbf{2}}$

Figure 69. Borylation of 12 a by HBPin affected by $\mathbf{H}_{\mathbf{2}}$

The reaction is setup as shown in Figure 67. Even without generating H_{2} as a byproduct, the reaction was slow with the presence of H_{2} (Figure 68), but the regioselectivity was not much affected (Figure 69).

Unexpectedly, the presence of H_{2} gas slowed down the rate of borylation reactions that do not generate H_{2} as a by-product. However the regioselectivity of the reaction was not affected. These data suggest that H_{2} might bind with one of the Ir species in the catalytic cycle to hinder the recovery of the catalyst, but the form of active catalyst does not change.

2.11 Temperature effect or borylation reagent effect

We also tried to push borylations with HBPin using btfbpy as the ligand. The reaction at room temperature was extremely slow, but could be accelerated upon heating. The reaction was setup as follows: In a nitrogen atmosphere glove box, $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$, dtbpy $(5.4 \mathrm{mg}$, 0.02 mmol) were dissolved in Hünig's base 2.0 mL , HBPin ($146 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was added and well mixed. Compound $\mathbf{1 2 a}(152 \mu \mathrm{~L}, 1.3 \mathrm{mmol})$ was added. A part of the reaction mixture was then sealed into a J-Young NMR tube and reaction was followed by VT ${ }^{19} \mathrm{~F}$ NMR every 15 min at $120^{\circ} \mathrm{C}$. (Figure 70).

Figure 70. Borylation of $\mathbf{1 2 a}$ by HBPin with btfbpy at high temperature

 steric product ('st')
17% conversion based on HBPin $50: 50$

Less than 20% conversion was achieved after 8 hours, but what was immediately noticed was that the st/ele ratio changed over time and the ratio $(50: 50)$ achieved was different from that observed
with $\mathrm{B}_{2} \mathrm{Pin}_{2}$ at room temperature (33: 67), as shown in Figure 71. We pondered whether this was a temperature effect or a reagent effect (HBPin vs $\mathrm{B}_{2} \mathrm{Pin} 2$). So, another reaction was set up as follows: In a nitrogen atmosphere glove box, $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{Pin}_{2}(254 \mathrm{mg}$, 1.0 mmol), and btfbpy ($5.8 \mathrm{mg}, 0.02 \mathrm{mmol}$) were dissolved in Hünig's base (2.0 mL) and well mixed. Compound 12a ($152 \mu \mathrm{~L}, 1.3 \mathrm{mmol}$) was added. The reaction mixture was transferred into a screw-capped tube and heated at $120^{\circ} \mathrm{C}$ for 1 h (Figure 72). The reaction was terminated at an early stage, where contribution from HBPin borylation should be trivial. The ratio of the two products were similar to that of the borylation at room temperature suggesting a possible reagent effect.

Figure 71. Borylation of 12a by HBPin at high temperature

2.12 Summary

We probed electronic factors regulating the regioselectivity during the borylations of fluorobezenes and established that electron deficient ligands favor borylation ortho to F. We
improved the synthesis of 4,4'-bistrifluoromethyl bipyridine (btfbpy) and 4,4',5,5'tetrakistrifluoromethyl bipyridine (ttfbpy) and applied these compounds as borylation ligands. These ligands provided improved selectivity for the electronically controlled products, but gave lower yields with electron rich substrates and were not effective in borylation with HBPin. We then looked into the kinetic profiles of the borylations with electron deficient ligands, finding them similar to that of the borylations with electron rich ligands, suggesting similar catalytic cycles. We noticed the degradation of catalyst during the borylation with ttfbpy, making a kinetic study of this ligand impossible. We also studied other aspects of the borylations, such as effect of the presence of H_{2} gas, temperature, $\mathrm{B}_{2} \mathrm{Pin}_{2}$ vs HBPin . We found the interesting phenomenon that in some cases boryaltion with HBPin to give different products ratio compared to borylation with $\mathrm{B}_{2} \mathrm{Pin}_{2}$.

Figure 72. Borylation with $\mathbf{B}_{2} \mathrm{Pin}_{2}$ at higher temperature

2.13 Experimental

Assignment and Characterization of Borylation Products ${ }^{54}$

The borylations of the substrates were carried out on 0.1 mmol scale in a J-Young NMR tube to precisely determine conversions and isomeric product ratios in the reaction crude. Excess substrate was used to suppress possible diborylation. The general procedure for liquid substrates is shown
as follows: In a nitrogen atmosphere glove box, pinacol diborane ($\left.\mathrm{B}_{2} \mathrm{Pin}_{2}, 254 \mathrm{mg}, 1.0 \mathrm{mmol}\right)$ was weighed into a 20 mL vial and dissolved in about 2 mL THF and then transferred to a 10 mL volumetric flask. The vial was then washed by $3 \times 1 \mathrm{~mL}$ THF and the resulting solution was transferred to the same volumetric flask. The volumetric flask was then diluted to the 10 mL mark by adding more THF, giving a 0.10 M stock solution of $\mathrm{B}_{2} \mathrm{Pin}_{2}$. $[\operatorname{Ir}(\mathrm{OMe}) \text { cod }]_{2}(33.1 \mathrm{mg}, 0.050$ mmol) was weighed into a 20 mL vial and dissolved in about 2 mL THF and transferred to a 10 mL volumetric flask. The vial was then washed by $3 \times 1 \mathrm{~mL}$ THF and resulting solution was transferred to the same volumetric flask. The volumetric flask was then diluted to the 10 mL mark by more THF, giving a 0.0050 M stock solution of $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}$. Di(pyridin-2-yl)methane (dpm, $17.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) was weighed into a 20 mL vial and dissolved in about 2 mL THF and transferred to a 10 mL volumetric flask. The vial was then washed by $3 \times 1 \mathrm{~mL}$ THF and resulting solution was transferred to the same volumetric flask. The volumetric flask was then diluted to the 10 mL mark by more THF, giving a 0.010 M stock solution of dpm. A J-Young NMR tube was charged with $200 \mu \mathrm{~L}$ of the 0.0050 M stock solution of $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]$, then 1.0 mL of the 0.10 M stock solution of $\mathrm{B}_{2} \mathrm{Pin}_{2}$ was added, then $200 \mu \mathrm{~L}$ of the 0.010 M stock solution of dpm was added. Finally, $121 \mu \mathrm{~L}(1.0 \mathrm{mmol})$ 2-chloro-6-fluorotoluene was added. The J-Young NMR tube was capped and shaken to well mix the liquids, and then taken out of the glove box and heated in an oil bath at $80{ }^{\circ} \mathrm{C}$. The reaction was observed by ${ }^{19} \mathrm{~F}$ and ${ }^{11} \mathrm{~B}$ NMR were taken until no further progress in borylation. The reaction mixture was then transferred to a 10 mL flask and all volatiles were removed by rotary evapration, the residue was then purified by Kugelrohr distillation to give a mixture of borylated products.

Preparation of 2-(3-chloro-5-fluoro-4-methylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (13e) and 2-(4-chloro-2-fluoro-3-methylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (13e'): ${ }^{\mathbf{5 5}}$ Subjecting 2-chloro-6-fluorotoluene ($121 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) to the general procedure, with di(pyridin-2-yl)methane ($17.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) as ligand and THF as solvent for 96 h at ${ }^{\circ} \mathrm{C}$. Kugelrohr distillation $\left(0.2 \mathrm{mmHg}, 150{ }^{\circ} \mathrm{C}\right)$ afforded $49.3 \mathrm{mg}(91 \%$ yield based on boron) of a 76:24 ratio of 2-(3-chloro-5-fluoro-4-methylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane and 2-(4-chloro-2-fluoro-3-methylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane as a white solid mixture. For 2-(3-chloro-5-fluoro-4-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (major) ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone-d ${ }_{6}$) $\delta 7.51$ (s, 1 H , overlapping with the other isomer), $7.30(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}$, overlapping with the other isomer). ${ }^{19} \mathrm{~F}$ NMR $(470 \mathrm{MHz}$, acetone- d 6$) \delta-115.0(\mathrm{dt}, J=9.3,2.5 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz , acetone-d 6) $\delta 162.3(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 136.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 132.0(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 120.2,(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 85.3,25.2,12.2(\mathrm{~d}, J=4.3 \mathrm{~Hz})$. For 2-(4-chloro-2-fluoro-3-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (minor) ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone-d 6) $\delta 7.51(\mathrm{~m}, 1 \mathrm{H}$, overlapping with the other isomer), $7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34\left(\mathrm{~s}, 12 \mathrm{H}\right.$, overlapping with the other isomer). ${ }^{19} \mathrm{~F}$ NMR (470 MHz , acetone$\left.\mathrm{d}_{6}\right) \delta-102.4(\mathrm{~m}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , acetone- $\left.\mathrm{d}_{6}\right) \delta 166.9(\mathrm{~d}, J=252.7 \mathrm{~Hz}), 136.9(\mathrm{~d}, J=6.7 \mathrm{~Hz})$, $135.8(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 125.0(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 84.8,25.2,11.8(\mathrm{~d}, J=4.8 \mathrm{~Hz})$.

Preparation of 2-chloro-6-fluoro-N,N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)aniline (13f) and 6-chloro-2-fluoro-N,N-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (13f): ${ }^{56}$ Subjecting 2-chloro-6-fluoro-N,N-dimethylaniline (148 $\mu \mathrm{L}$, 1.0 mmol) to the general procedure, with $4,4^{\prime}$-di-tert-butyl-2,2'-bipyridine ($26.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) as ligand and THF as solvent for 6 h at $80^{\circ} \mathrm{C}$. Kugelrohr distillation $\left(0.2 \mathrm{mmHg}, 150^{\circ} \mathrm{C}\right)$ afforded $53.8 \mathrm{mg}(90 \%$ yield based on boron) of a $69: 31$ ratio of 2 -chloro-6-fluoro-N,N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline and 6-chloro-2-fluoro-N,N-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline as a colorless oil. For 2-chloro-6-fluoro-N,N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (major) ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 120.2(\mathrm{~d}, J=11.6 \mathrm{~Hz})$. For 6-chloro-2-fluoro-N,N-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (minor) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ (dd, $J=$ $7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (470 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-108.4$ (b). For the mixture ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4$ (d, $J=255.6$ $\mathrm{Hz}), 159.7(\mathrm{~d}, J=250.8 \mathrm{~Hz}), 140.4(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 137.7(\mathrm{~d}, J=16.2 \mathrm{~Hz}), 137.0(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, $132.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.9,131.8(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 125.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 121.0(\mathrm{~d}, J=20.0 \mathrm{~Hz})$, 84.1, 83.9, $43.4(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 43.2(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 24.7$

Preparation of 2-(3-chloro-4-ethoxy-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (13g) and 2-(4-chloro-3-ethoxy-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (13g'): ${ }^{\mathbf{5 7}}$ Subjecting 1-chloro-2-ethoxy-3-fluorobenzene ($153 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) to the
general procedure, with 4,4'-di-tert-butyl-2,2'-bipyridine ($26.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) as ligand and THF as solvent for 12 h at $80^{\circ} \mathrm{C}$. Kugelrohr distillation $\left(0.2 \mathrm{mmHg}, 150{ }^{\circ} \mathrm{C}\right)$ afforded $53.5 \mathrm{mg}(89 \%$ yield based on boron) of a 64:36 ratio of 2-(3-chloro-4-ethoxy-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 2-(4-chloro-3-ethoxy-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane as a colorless oil. For 2-(3-chloro-4-ethoxy-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (major) ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone-d6) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}$, 1 H , overlapping with the other isomer), $4.22(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, overlapping with the other isomer), $1.33\left(\mathrm{~s}, 12 \mathrm{H}\right.$, overlapping with the other isomer). ${ }^{19} \mathrm{~F}$ NMR (470 MHz, acetone-d 6) $\delta-129.3(\mathrm{~d}, J=10.0 \mathrm{~Hz})$. For 2-(4-chloro-3-ethoxy-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (minor) ${ }^{1} \mathrm{H}$ NMR (500 MHz , acetone-d 6) $\delta 7.37$ (m, 1H, overlapping with the other isomer), $7.24(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}), 4.14(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, overlapping with the other isomer), $1.34(\mathrm{~s}, 12 \mathrm{H}$, overlapping with the other isomer). ${ }^{19} \mathrm{~F}$ NMR (470 MHz, acetone- $\left.\mathrm{d}_{6}\right) \delta-117.9(\mathrm{~d}, J=5.0 \mathrm{~Hz})$. For the mixture ${ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, acetone-d ${ }_{6}$) $\delta 161.5(\mathrm{~d}, J=254.2 \mathrm{~Hz}), 156.8(\mathrm{~d}, J=248.9 \mathrm{~Hz}), 146.7(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 144.3(\mathrm{~d}, J$ $=15.7 \mathrm{~Hz}), 132.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 131.6(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=3.6$ $\mathrm{Hz}), 121.7(\mathrm{~d}, J=18.1 \mathrm{~Hz}), 85.3,84.9,70.9(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 70.8(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 25.2,25.0,15.9$, 15.9.

Preparation of 2-(3,4-dichloro-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (13a) and 2-(3,4-dichloro-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (13a'): 58

Subjecting 1,2-dichloro-3-fluorobenzene ($117 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) to the general procedure, with 4,4'-di-tert-butyl-2,2'-bipyridine ($26.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) as ligand and THF as solvent for 6 h at $80^{\circ} \mathrm{C}$. Kugelrohr distillation $\left(0.2 \mathrm{mmHg}, 150{ }^{\circ} \mathrm{C}\right)$ afforded $54.5 \mathrm{mg}(94 \%$ yield based on boron) of a 60:40 ratio of 2-(3,4-dichloro-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 2-(3,4-dichloro-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane as a white solid. For 2-(3,4-dichloro-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (major) ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.53(\mathrm{~s}, 1 \mathrm{H}) ; 7.34(\mathrm{dd}, J=8.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta-120.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 159.4(\mathrm{~d}, J=250.8 \mathrm{~Hz}), 134.3$, $132.2(\mathrm{~d} J=2.9 \mathrm{~Hz}), 123.8(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 120.8(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 85.7,25.2$. For 2-(3,4-dichloro-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (minor) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ $7.48(\mathrm{dd}, J=7.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.25(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}), 1.30(\mathrm{~s}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta-100.7(\mathrm{~d}, J=5.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (125.72 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 163.4(\mathrm{~d}, J=254.6 \mathrm{~Hz})$, $137.5,135.5(\mathrm{~d}, ~ J=9.5 \mathrm{~Hz}), 126.6(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 121.1(\mathrm{~d}, J=21.9 \mathrm{~Hz}), 85.4,25.2$.

Preparation of 2-(3-chloro-4,5-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (13c) and 2-(4-chloro-2,3-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (13c'): ${ }^{59}$

Subjecting 1-chloro-2,3-difluorobenzene ($93 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) to the general procedure, with 4,4'-di-tert-butyl-2,2'-bipyridine ($26.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) as ligand and THF as solvent for 12 h at $80^{\circ} \mathrm{C}$.

Kugelrohr distillation $\left(0.2 \mathrm{mmHg}, 150{ }^{\circ} \mathrm{C}\right)$ afforded $50.5 \mathrm{mg}(92 \%$ yield based on boron) of a 55:45 ratio of 2-(3-chloro-4,5-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 2-(4-chloro-2,3-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane as a white solid. For 2-(3-chloro-4,5-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{dt}, J=6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.46(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-134.5$ (m, 1F), -135.9 (dd, $J=21.6,10.0 \mathrm{~Hz}, 1 \mathrm{~F})$. For 2-(4-chloro-2,3-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~m}, 1 \mathrm{H}) ; 7.13(\mathrm{~m}, 1 \mathrm{H}), 1.33$ ($\mathrm{s}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-125.5(\mathrm{dd}, J=21.6,5.0 \mathrm{~Hz}, 1 \mathrm{~F}),-139.9(\mathrm{dd}, J=20.7$, $5.8 \mathrm{~Hz}, 1 \mathrm{~F})$. For the mixture ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0(\mathrm{dd}, J=255.7,11.6 \mathrm{~Hz}), 150.7$ (dd, $J=251.9,12.0 \mathrm{~Hz}), 149.0(\mathrm{dd}, J=254.5,14.7 \mathrm{~Hz}), 147.1(\mathrm{dd}, J=251.3,16.5 \mathrm{~Hz}), 131.8(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}), 130.6(\mathrm{dd}, J=8.1,5.2 \mathrm{~Hz}), 125.6(\mathrm{dd}, J=14.4,1.8 \mathrm{~Hz}), 125.1,(\mathrm{dd}, J=3.7,1.5 \mathrm{~Hz})$, $122.3(\mathrm{~d}, J=14.3 \mathrm{~Hz}), 121.5(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 84.6,84.4,24.8,24.8$.

The borylation of 2-chloro-6-fluorobenzonitrile (12d) was carried out in a slightly different way as showing in Figure 73.

Figure 73. Borylation of substrate 12d

Preparation of 2-chloro-6-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzonitrile (13d) and 6-chloro-2-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2$\mathbf{y l}$)benzonitrile ($\mathbf{1 3 d}^{\prime}$): ${ }^{60}$ In a nitrogen atmosphere glove box, bis(pinacolato)diboron ($\mathrm{B}_{2} \mathrm{Pin}_{2}$) ($127 \mathrm{mg}, 0.5 \mathrm{mmol}$), $[\operatorname{Ir}(\mathrm{OMe}) \mathrm{cod}]_{2}(3.3 \mathrm{mg}, 0.005 \mathrm{mmol})$ were dissolved in 2 mL Hünig's base
in a 20 mL vial fitted with a stir bar. Btfbpy $(2.9 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added. The resulting solution was stirred at room temperature for 1 h , to give a black color. 2-chloro-6-fluorobenzonitrile (77.5 $\mathrm{mg}, 0.5 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for $24 \mathrm{~h} . \mathrm{GC}-\mathrm{MS}$ showed no substrate left and two monoborylated products formed. The volatiles were removed by rotary evaporation. The residue was then stirred with 10 mL water and 2 mL diethy ether. The ether phase was separated and the water phase was extracted with approximately 2 mL diethyl ether $\times 2$. The combined ether solution was dried over MgSO_{4}, and the solvent was removed by rotary evaporation. The residue was purified by Kugelrohr distillation at $150^{\circ} \mathrm{C}, 0.2 \mathrm{mmHg}$ to give the regiochemical mixture of borylated products 105.1 mg (74% yield based on arene) of a $41: 59$ ratio of 2-chloro-6-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile and 6-chloro-2-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile as a white solid. For 2-chloro-6-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (minor), ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~s}, 1 \mathrm{H}) ; 7.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-$ $104.2(\mathrm{~d}, \quad J=7.8 \mathrm{~Hz})$. For 6-chloro-2-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzonitrile, ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{dd}, J=8.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, 1H), $1.31(\mathrm{~s}, 12 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-92.2(\mathrm{~d}, J=4.2 \mathrm{~Hz})$. For the mixture, ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8(\mathrm{~d}, J=266.8 \mathrm{~Hz}), 163.1(\mathrm{~d}, J=263.0 \mathrm{~Hz}), 141.4(\mathrm{~d}, J=10.3$ $\mathrm{Hz}), 140.6(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 137.2,131.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 119.7(\mathrm{~d}, J=18.1$ $\mathrm{Hz}), 111.3(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 104.9(\mathrm{~d}, J=18.1 \mathrm{~Hz}), 103.1(\mathrm{~d}, J=20.3 \mathrm{~Hz}), 85.1,84.7,24.8$, 24.7.

Tandem borylation-Suzuki coupling

Tandem C-H activation/borylation and Suzuki coupling of 1,2-dichloro-3-fluorobenzene: In a nitrogen glove box, $\mathrm{B}_{2} \mathrm{Pin} 2(127 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $[\mathrm{Ir}(\mathrm{OMe}) \mathrm{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in 2 mL Hünig's base in a 20 mL vial fitted with a stir bar, giving a yellow solution.

Then btfbpy ($5.8 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added and the mixture was stirred for 30 min . Substrate $(117 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ was added, and the mixture was stirred at room temperature for $12 \mathrm{~h} .{ }^{19} \mathrm{~F}$ NMR of crude material showed a 93% conversion of starting materials and 67:33 ratio of two products. The solvent was removed on a rotary evaporator, and the residue was partitioned between 50 mL deionized water and $20 \mathrm{mLEtOAc} \times 3$. The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was removed by rotary evaporator, the residue was then further purified on a Kugelrohr distillation at $0.2 \mathrm{mmHg}, 150^{\circ} \mathrm{C}$ to provide a mixture of 2-(3,4-dichloro-5-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 2-(3,4-dichloro-2-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, ($232 \mathrm{mg}, 80 \%$ combined yield, $33: 67$). Methyl 4-iodobenzoate ($260 \mathrm{mg}, 0.99 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (221 $\mathrm{mg}, 1.6 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5.6 \mathrm{mg}, 0.008 \mathrm{mmol})$ were weighed into a screw capped tube fitted with a stirbar. 1.6 mL of water was then added to dissolve the $\mathrm{K}_{2} \mathrm{CO}_{3}$, and then the mixture from the Kugelrohr distillation was transferred to the screw capped tube dissolved in a total of 6.4 mL THF. The biphasic mixture was sparged with argon for 30 min before the vial was capped and heated in an oil bath at $60{ }^{\circ} \mathrm{C}$. After $4 \mathrm{~h},{ }^{19} \mathrm{~F}$ NMR of the reaction crude was taken, showing the Suzuki product of the ele boronate ester, and the Suzuki product of the st boronate ester (ratio of 67:33), and 1% unidentified peakes. The crude reaction was filtered through a basic alumina short plug and then washed by ethyl acetate. The solvents were then removed by rotary evaporation. and the residue was purified on a silca gel column with a mixture of hexane and diethyl ether (50:1). Methyl 3',4'-dichloro-2'-fluoro-[1,1'-biphenyl]-4-carboxylate (14a') was isolated as a white solid (mp 150-152 ${ }^{\circ} \mathrm{C}$), $89.7 \mathrm{mg}\left(30 \%\right.$ from starting arene). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10$ (AABB, observed $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56 (doublet of AABB, observed $J=8.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (m , resolved into dd, coupling constants $J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28 (t, resolved into dd, coupling constants $J=8.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.93(\mathrm{~s}, 3 \mathrm{H}),{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.9$ (dd, resolved
into dq, $J=7.5,1.6 \mathrm{~Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,155.8(\mathrm{~d}, J=253.2 \mathrm{~Hz}), 138.6(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}), 133.7,129.9,129.9,128.8(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 127.8(\mathrm{~d}, J=14.1$ $\mathrm{Hz}), 125.6(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}), 121.7(\mathrm{~d}, J=20.7 \mathrm{~Hz})$, 52.3. Methyl 3',4'-dichloro-5'-fluoro-[1,1'-biphenyl]-4-carboxylate (14a) was isolated as a white solid ($\mathrm{mp} \mathrm{134-136}{ }^{\circ} \mathrm{C}$), $45.3 \mathrm{mg}(15 \%$ from starting arene). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09$ (AABB , observed $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.57 (doublet of AABB, observed $J=8.5,2 \mathrm{H}), 7.50(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=9.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{~s}, 3 \mathrm{H}),{ }^{19} \mathrm{~F}$ NMR (470 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-109.2(\mathrm{dd}, J=9.5,1.6 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.5,159.0(\mathrm{~d}, J=251.1 \mathrm{~Hz}), 142.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 140.2(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 134.6(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}), 130.4,130.2,126.8,124.3(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 120.4(\mathrm{~d}, J=19.8 \mathrm{~Hz}), 113.5(\mathrm{~d}, J=22.7$ Hz), 52.3.

Tandem C-H activation/borylation and Suzuki coupling of 2-chloro-6-fluoro-phenol: In a nitrogen glove box, $\mathrm{B}_{2} \operatorname{Pin} 2(127 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ were dissolved in 0.5 mL THF, giving a yellow solution, then $\mathrm{ttfbpy}(8.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added, and the mixture was stirred in a 20 mL vial. Substrate (12b) ($146 \mathrm{mg}, 1.0 \mathrm{mmol}$) was dissolved in 1 mL THF in a 100 mL Schlenk flask, then HBPin ($160 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) was added, and the mixture was stirred for 30 min . Gas bubbles formed during this process. The previous mixture of Ir , ligand and $\mathrm{B}_{2} \mathrm{Pin} 2$ was then transferred into the Schlenk flask and washed by $0.35 \mathrm{~mL} \mathrm{THF} \times 3$, with the washings combined into the Schlenk flask. The Schlenk flask was then capped and transferred out of the glove box and connected onto an argon Schlenk line through a condenser. The Schlenk flask was then purged by argon flow for 5 min and then heated in an oil bath at $60^{\circ} \mathrm{C}$ for 6 h , under argon. ${ }^{19} \mathrm{~F}$ NMR of crude material showed a 96% conversion of starting materials and 69:31 ratio of two products. The reaction was cooled to room temperature and 1 mL of MeOH was added and stirred for 10 min . Gas bubbles were formed rapidly during this time. Crude NMR confirmed a
96% conversion of starting arene, with $69: 31$ ratio of the two products. THF and MeOH were removed on a rotary evaporator, and the residue was partitioned between 50 mL deionized water and $20 \mathrm{~mL} \mathrm{EtOAc} \times 3$. The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and solvent was removed by rotary evaporator, the residue was then further purified by a Kugelrohr distillation at 0.2 mmHg , $150{ }^{\circ} \mathrm{C}$ providing a mixture of 2-chloro-6-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenol and 6-chloro-2-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol, (165 mg, 61% combined yield, 69:31). Methyl 4-iodobenzoate ($177 \mathrm{mg}, 0.67 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(169 \mathrm{mg}, 1.2$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(4.3 \mathrm{mg}, 0.0061 \mathrm{mmol})$ were weighed into a screw capped tube fitted with a stirbar. At this time 1.2 mL of water was then added to dissolve the $\mathrm{K}_{2} \mathrm{CO}_{3}$, and then the mixture from the Kugelrohr distillation was transferred to the screw capped tube by dissolved in a total of 4.8 mL THF. The biphasic mixture was sparged with argon for 30 min was capped and heated in an oil bath at $60^{\circ} \mathrm{C}$. After $4 \mathrm{~h},{ }^{19} \mathrm{~F}$ NMR of the reaction crude was taken, showing peaks that integrated for 59% of the Suzuki product of the ele boronate ester, 23% of the Suzuki product of the st boronate ester (ratio of $71: 29$), 10\% 2-chloro-6-fluoro-phenol and 8% unidentified peakes. The crude reaction was filtered through a basic alumina short plug and then washed by ethyl acetate. The solvents were then removed by rotary evaporation and the residue was purified on a silca gel column with a mixture of hexane and EtOAc (10:1), affording a very small amount of pure methyl 4'-chloro-2'-fluoro-3'-hydroxy-[1,1'-biphenyl]-4-carboxylate 8 mg (3\% based on starting phenol), and a mixture of methyl 4'-chloro-2'-fluoro-3'-hydroxy-[1,1'-biphenyl]-4-carboxylate (major) and methyl 3'-chloro-5'-fluoro-4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (minor) 135 mg (48% based on starting phenol, 73:27), making a combined yield of methyl 4'-chloro-2'-fluoro-3'-hydroxy-[1,1'-biphenyl]-4-carboxylate (major) and methyl 3'-chloro-5'-fluoro-4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (minor) 143 mg (51\% based on starting phenol, 75:25).

Methyl 4'-chloro-2'-fluoro-3'-hydroxy-[1,1'-biphenyl]-4-carboxylate (14b'): ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.09$ (aabb, observed largest $\left.J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.57(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{dd}, J=8.3,2.0 \mathrm{~Hz}), 6.94(\mathrm{dd}, J=8.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{br} . \mathrm{S}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}-138.9(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 166.75$ (s), $148.47(\mathrm{dd}, J=246.1,1.0 \mathrm{~Hz}), 141.08(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 139.19(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 129.81(\mathrm{~s})$, $129.66(\mathrm{~s}), 128.83(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 127.72(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 124.62(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 121.10(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 52.26(\mathrm{~s})$.

Unseparated mixture of methyl 4'-chloro-2'-fluoro-3'-hydroxy-[1,1'-biphenyl]-4-carboxylate (major) and methyl 3'-chloro-5'-fluoro-4'-hydroxy-[1,1'-biphenyl]-4-carboxylate (14b \& 14b') (minor) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.11-8.06$ (overlapping of the two compounds), 7.59 -7.53 (overlapping of the two compounds), $7.39(\mathrm{t}, J=2.0 \mathrm{~Hz}$, minor 1 H$), 7.28(\mathrm{dd}, J=11.0,2.2$ Hz , minor 1 H$), 7.19(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}$, major 1 H$), 6.93(\mathrm{dd}, J=8.3,7.3 \mathrm{~Hz}$, major 1 H$), 3.93(\mathrm{~s}$, major, 3 H), $3.92(\mathrm{~s}$, minor, 3 H$) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}-133.6(\mathrm{dd}, J=11.0,1.4 \mathrm{~Hz}$, minor) $-138.9(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}$, major)

Tandem C-H activation/borylation and Suzuki coupling of 1-chloro-2,3-difluorobenzene

 (12c): In a nitrogen glove box, $\mathrm{B}_{2} \operatorname{Pin} 2(127 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$, and ttfbpy ($8.5 \mathrm{mg}, 0.02 \mathrm{mmol}$) were mixed in a Schlenk flask fitted with a stirbar in 2.0 mL Hünig's base, and stirred for 1 h at room temperature. 1-Chloro-2,3-difluorobenzene ($93 \mu \mathrm{~L}, 1.0$ mmol) was then added. The Schlenk flask was then connected to an argon manifold through a water condenser outside the glovebox and heated in a $60^{\circ} \mathrm{C}$ oil bath for $6 \mathrm{~h} .{ }^{19} \mathrm{~F}$ NMR was taken of the crude reaction mixture, showing 85% conversion of the starting material, and $82: 18$ ratio of the two products. Solvent was then removed by rotary evaporation. Kugelrohr distillation at 0.2 $\mathrm{mmHg}, 150{ }^{\circ} \mathrm{C}$ provided a mixture of 2-(4-chloro-2,3-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 2-(3-chloro-4,5-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane as colorless oil (solidified in the fridge, $217 \mathrm{mg}, 79 \%$ yield combined, $82: 18$ ratio). Methyl 4iodobenzoate ($228 \mathrm{mg}, 0.87 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(218 \mathrm{mg}, 1.58 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5.5 \mathrm{mg}, 0.008$ $\mathrm{mmol})$ were weighed into a screw capped tube fitted with a stirbar. Water $(1.6 \mathrm{~mL})$ was then added to dissolve the $\mathrm{K}_{2} \mathrm{CO}_{3}$ and then the mixture of 2-(4-chloro-2,3-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 2-(3-chloro-4,5-difluorophenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane was transferred to the screw capped tube by being dissolved in a total of 6.4 mL THF. The biphasic mixture was sparged with argon for 30 min before the tube was capped and heated in an oil bath $60^{\circ} \mathrm{C}$. After 4h, GC-MS showed a small amount of bromide left, no boronate esters left, and an overlapped peak of Suzuki coupling products. ${ }^{19} \mathrm{~F}$ NMR of the reaction crude was taken, showing peaks that integrated for 72% of the Suzuki product of the major boronate ester, 13% of the Suzuki product of the minor boronate ester (ratio of $85: 15$), and 15% for unidentified peakes. The crude reaction was filtered through a basic alumina short plug and then washed by ethyl acetate. The solvents were then removed by rotary evaporation, and the residue was purified by a silca gel column with a mixture of hexane and diethyl ether (20:1), affording methyl 3'-chloro-4',5'-difluoro-[1,1'-biphenyl]-4-carboxylate (14c) as a white solid, mp $104^{\circ} \mathrm{C}$, ($21 \mathrm{mg}, 0.074 \mathrm{mmol}, 7 \%$ isolated yield based on 1-Chloro-2,3-difluorobenzene) ${ }^{1} \mathrm{H}$ NMR (500 MHz in $\left.\mathrm{CDCl}_{3}\right) \delta 8.09\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.6,2 \mathrm{H}\right), 7.55\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.41(\mathrm{dt}, J=5.9$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{ddd}, J=10.5,6.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-$ 137.5 (ddd, $J=20.7,10.7,2.1 \mathrm{~Hz}, 1 \mathrm{~F}),-139.2(\mathrm{dt}, J=20.8,6.2 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,151.1(\mathrm{dd}, J=251.8,13.4 \mathrm{~Hz}), 146.0(\mathrm{dd}, J=251.8,15.3 \mathrm{~Hz}), 142.2,136.8(\mathrm{dd}$, $J=7.6,4.8 \mathrm{~Hz}), 130.3,129.9,126.9,124.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 123.2(\mathrm{dd}, J=14.3,1.9 \mathrm{~Hz}), 114.6(\mathrm{~d}$, $J=18.1 \mathrm{~Hz}$), 52.3. Methyl 4'-chloro-2',3'-difluoro-[1,1'-biphenyl]-4-carboxylate (14c') as a
white solid, $\mathrm{mp} 101{ }^{\circ} \mathrm{C}$, ($117 \mathrm{mg}, 0.41 \mathrm{mmol}, 41 \%$ isolated yield based on 1-chloro-2,3difluorobenzene) ${ }^{1} \mathrm{H}$ NMR (500 MHz in DMSO- d_{6}) $\delta 8.08$ (AA'BB', $J=8.8,2 \mathrm{H}$), 7.74 (doublet of an $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, ~ J=8.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.57(\mathrm{ddd}, J=8.7,6.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{ddd}, J=8.7,7.3$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-137.5(\mathrm{ddd}, J=20.5,6.4,2.1 \mathrm{~Hz}, 1 \mathrm{~F}),-$ 139.0 (ddq, $J=20.4,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,148.5$ (dd, $J=253.7$, $13.4 \mathrm{~Hz}) 147.7(\mathrm{dd}, J=251.8,15.3 \mathrm{~Hz}) 138.3,130.0,129.9,128.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}), 125.2(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 124.6(\mathrm{t}, J=2.9 \mathrm{~Hz}), 122.2(\mathrm{~d}, J=15.3 \mathrm{~Hz}), 52.3$.

Tandem C-H activation/borylation and Suzuki coupling of 2-chloro-6-fluorobenzonitrile (12d): In a nitrogen glove box, $\mathrm{B}_{2} \mathrm{Pin}_{2}(127 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $[\mathrm{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$, and ttfbpy $(8.5 \mathrm{mg}, 0.02 \mathrm{mmol})$ were mixed in a Schlenk flask fitted with a stirbar in 2.0 mL Hünig's base and the mixture was stirred for 1 h at room temperature. 2-chloro-6fluorobenzonitrile ($156 \mathrm{mg}, 1.0 \mathrm{mmol}$) was then added. The Schlenk flask was then connected to an argon manifold through a water condenser outside the glovebox and heated in a $60^{\circ} \mathrm{C}$ oil bath for $6 \mathrm{~h} .{ }^{19} \mathrm{~F}$ NMR was taken of the crude reaction, showing 80% conversion of the starting material and a $64: 36$ ratio of the two products. Solvent was then removed by rotary evaporation. Kugelrohr distillation at $0.2 \mathrm{mmHg}, 150{ }^{\circ} \mathrm{C}$ provided a mixture of 6-chloro-2-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile and 2-chloro-6-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile and 2-chloro-6-fluorobenzonitrile as a white solid (213 mg, 64:4:32, 74% yield of borylated products). Methyl 4-iodobenzoate ($213 \mathrm{mg}, 0.81 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($204 \mathrm{mg}, 1.48 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5.2 \mathrm{mg}, 0.0074 \mathrm{mmol})$ were weighed into a screw capped tube fitted with a stirbar. Water (1.5 mL) was then added to dissolve the $\mathrm{K}_{2} \mathrm{CO}_{3}$, and then the mixture from the Kugelrohr distillation result was transferred to the screw capped tube by being dissolved in a total of 6.0 mL THF. The biphasic mixture was sparged with argon for 30 min before
the tube was capped and heated in an oil bath $60^{\circ} \mathrm{C}$. After 4 h , GC-MS showing no boronate esters left and two overlapped peaks of Suzuki coupling products. ${ }^{19}$ F NMR of the reaction crude was taken, showing peaks that integrated for 46% of the Suzuki product of the major boronate ester, 22% of the Suzuki product of the minor boronate ester (ratio of 68:32), and 13% unborylated arene, and 19% for unidentified peakes. The crude reaction was filtered through a basic alumina short plug and then washed by ethyl acetate. The solvents were then removed by rotary evaporation, and the residue was purified on a silca gel column with a mixture of hexane and EtOAc (5:1), affording 2-chloro-6-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (14d') as a white solid, $\mathrm{mp} 209-211{ }^{\circ} \mathrm{C}$, ($49 \mathrm{mg}, 0.17 \mathrm{mmol}, 17 \%$ isolated yield based on 2-chloro-6fluorobenzonitrile) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CDCl}_{3}\right) \delta 8.14\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.3,2 \mathrm{H}\right), 7.62\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=9.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (470 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-102.2(\mathrm{dd}, J=9.5,0.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,163.9(\mathrm{~d}$, $J=262.3 \mathrm{~Hz}), 147.2(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 141.1,138.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 131.3,130.6,127.2,124.4(\mathrm{~d}, J$ $=2.9 \mathrm{~Hz}), 113.3(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 111.2,102.4(\mathrm{~d}, J=18.1 \mathrm{~Hz})$, 52.4. 6-chloro-2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (14d) was isolated as a white solid, mp 148$150{ }^{\circ} \mathrm{C}$, ($23 \mathrm{mg}, 0.08 \mathrm{mmol}, 8 \%$ isolated yield based on 2-chloro-6-fluorobenzonitrile) ${ }^{1} \mathrm{H}$ NMR (500 MHz in DMSO- d_{6}) $\delta 8.18\left(\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.3,2 \mathrm{H}\right), 7.63(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}$ of AA'BB', $J=8.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $106.6(\mathrm{dt}, J=8.3,1.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,160.6(\mathrm{~d}, J=264.2 \mathrm{~Hz}), 137.3$ (br, s), $137.0(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 130.6,130.1,128.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 127.7(\mathrm{~d}, J$ $=13.4 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 111.2,104.2(\mathrm{~d}, J=19.1 \mathrm{~Hz}), 52.4$. A mixed fraction of the two ($\left.\mathbf{1 4 d} \& \mathbf{1 4} \mathbf{d}^{\prime}\right)(46 \mathrm{mg}, 0.12 \mathrm{mmol}, 12 \%$ of the first product, $0.04 \mathrm{mmol}, 4 \%$ for the second product) was also isolated.

Tandem C-H activation/borylation and Suzuki coupling of 2-chloro-6-fluorotoluene (12e): In a nitrogen glove box, $\mathrm{B}_{2} \operatorname{Pin} 2(127 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $[\operatorname{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$, and $\mathrm{ttfbpy}(8.5 \mathrm{mg}, 0.02 \mathrm{mmol})$ were mixed in a Schlenk flask fitted with a stirbar in 2.0 mL THF base, and the mixture was stirred for 1 h at room temperature. 2-chloro-6-fluorotoluene ($131 \mu \mathrm{~L}, 1.0$ mmol) was then added. The Schlenk flask was then connected to an argon manifold through a water condenser outside the glovebox and heated in a $60^{\circ} \mathrm{C}$ oil bath for $6 \mathrm{~h} .{ }^{19} \mathrm{~F}$ NMR was taken of the crude reaction, showing 87% conversion of the starting material, and a 25:75 ratio of the two products. Solvent was then removed by rotary evaporation. Kugelrohr distillation at 0.2 mmHg , $150{ }^{\circ} \mathrm{C}$ provided a mixture of 6-chloro-2-fluoro-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)toluene and 2-chloro-6-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)toluene as a white solid ($222 \mathrm{mg}, 26: 74,82 \%$ yield of borylated products). Methyl 4-iodobenzoate (236 mg , $0.90 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(407 \mathrm{mg}, 1.62 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(5.8 \mathrm{mg}, 0.0082 \mathrm{mmol})$ were weighed into a screw capped tube fitted with a stirbar. Water $(2.0 \mathrm{~mL})$ was then added to dissolve the $\mathrm{K}_{2} \mathrm{CO}_{3}$, and then the mixture from the Kugelrohr distillation was transferred to the screw capped tube by being dissolved in a total of 8.0 mL THF. The biphasic mixture was sparged with argon for 30 min before the tube was capped and heated in an oil bath $60^{\circ} \mathrm{C}$. After $4 \mathrm{~h}, \mathrm{GC}-\mathrm{MS}$ showed no boronate esters left, and two overlapped peaks of Suzuki coupling products. ${ }^{19}$ F NMR of the reaction crude was taken, showed peaks that integrated for 16% of the Suzuki product of the ele boronate ester, 71% of the Suzuki product of the st boronate ester (ratio of $18: 82$), and 13% unidentified peakes. The crude reaction was filtered through a basic alumina short plug and then washed by ethyl acetate. The solvents were then removed by rotary evaporation, and the residue was purified on a silca gel column with a mixture of hexane and EtOAc (5:1). The two products came out as one fraction. Several different combinations of solvents were tried, but no separation was achieved. The
resulting 164 mg ($0.59 \mathrm{mmol}, 59 \%$ combined yields, based on substrate, 28:72) was isolated as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz in CDCl_{3}) $\delta 8.08$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ overlapping of two products), $7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, the steric product), $7.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$, the electronic product), 7.42 ($\mathrm{s}, 1 \mathrm{H}$, the steric product), 7.22-7.18 (m, overlapping), 3.92 ($\mathrm{s}, 3 \mathrm{H}$, overlapping of two products), $2.36\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, the electronic product), $2.33\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, the steric product), ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,166.6,161.5(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 158.0(\mathrm{~d}, J=249.9 \mathrm{~Hz}), 142.9$ $(\mathrm{d}, J=2.9 \mathrm{~Hz}), 139.8,139.4(\mathrm{~d}, J=9 . \mathrm{Hz}), 136.0(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 135.2(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 130.2$, 129.6, 129.6, 129.3, $128.8(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 127.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 126.7,126.3(\mathrm{~d}, J=14.3 \mathrm{~Hz})$, $124.8(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 123.7(\mathrm{~d}, J=19.1 \mathrm{~Hz}), 123.2(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 112.2$ $(\mathrm{d}, J=24.8 \mathrm{~Hz}), 52.1,12.5(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 11.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}),{ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ $112.3(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, the steric product), $-116.4(\mathrm{~m}$, the electronic product)

Tandem C-H activation/borylation and Suzuki coupling of 2-chloro-6-fluoro-N,Ndimethylaniline (12f): In a nitrogen glove box, $\mathrm{B}_{2} \mathrm{Pin}_{2}(127 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $[\mathrm{Ir}(\mathrm{OMe}) \operatorname{cod}]_{2}$ $(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$, and dtbpy $(5.4 \mathrm{mg}, 0.02 \mathrm{mmol})$ were mixed in a Schlenk flask fitted with a stirbar in 2.0 mL THF. 2-Chloro-6-fluoro-N,N-dimethylaniline ($153 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$) was then added. The Schlenk flask was then connected to an argon manifold through a water condenser outside the glovebox and heated in a $60{ }^{\circ} \mathrm{C}$ oil bath for $6 \mathrm{~h} .{ }^{19} \mathrm{~F}$ NMR was taken of the crude reaction, showing 94% conversion of the starting material, and a 38:62 ratio of the two products. Solvent was then removed by rotary evaporation. Kugelrohr distillation at $0.2 \mathrm{mmHg}, 150{ }^{\circ} \mathrm{C}$ provided a mixture of 6-chloro-2-fluoro- N, N-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline and 2-chloro-6-fluoro-N,N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)aniline as a colorless oil (199 mg, 29:71, 66% yield of borylated products). Methyl 4iodobenzoate (192 mg, 0.73 mmol$), \mathrm{K}_{2} \mathrm{CO}_{3}(184 \mathrm{mg}, 1.33 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(4.7 \mathrm{mg}$,
$0.0066 \mathrm{mmol})$ were weighed into a screw capped tube fitted with a stirbar. Water (1.3 mL) was then added to dissolve the $\mathrm{K}_{2} \mathrm{CO}_{3}$, and then the mixture from the Kugelrohr distillation was transferred to the screw capped tube by being dissolved in a total of 5.2 mL THF. The biphasic mixture was sparged with argon for 30 min before the tube was capped and heated in an oil bath $60^{\circ} \mathrm{C}$. After $4 \mathrm{~h}, \mathrm{GC}-\mathrm{MS}$ showing no boronate esters left, and two peaks of Suzuki coupling products. ${ }^{19} \mathrm{~F}$ NMR of the reaction crude was taken, showing peaks that integrated for 24% of the Suzuki product of the ele boronate ester, 46% of the Suzuki product of the st boronate ester (ratio of $34: 66$), and 30% unidentified peakes. The crude reaction mixture was filtered through a basic alumina short plug and then washed by ethyl acetate. The solvents were then removed by rotary evaporation, and the residue was purified on a silca gel column with a mixture of hexane and EtOAc (10:1). However, the two products came out as one fraction. Several different combinations of solvents were tried, but no separation was achieved. The resulting $92 \mathrm{mg}(0.30 \mathrm{mmol}, 30 \%$ combined yields, based on substrate, $38: 62$) of products was isolated as a white solid. ${ }^{1} \mathrm{H}$ NMR (500 MHz in CDCl_{3}) $\delta 8.07$ (d, 2 H overlapping of two products, unable to determine coupling constant), 8.05 (d, 2 H overlapping of two products, unable to determine coupling constant), 7.54 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ overlapping of two products), $7.40(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, the steric product), $7.21-$ 7.15 (m, overlapping), $7.04(\mathrm{t}, J=7.81 \mathrm{~Hz}, 1 \mathrm{H}$, the electronic product), $3.91(\mathrm{~s}, 3 \mathrm{H}$, overlapping of two products), 3.91 (s, 3 H , overlapping of two products), $2.89(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 6 \mathrm{H}$, overlapping of two products), 2.88 (d, $J=2.5 \mathrm{~Hz}, 6 \mathrm{H}$, overlapping of two products). ${ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.7,166.6,160.5(\mathrm{~d}, J=248.9 \mathrm{~Hz}), 157.9(\mathrm{~d}, J=253.7 \mathrm{~Hz}), 142.7(\mathrm{~d}, J=1.9 \mathrm{~Hz})$, $139.7,138.4(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 137.6(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 136.4(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, $133.1(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 129.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 128.0(\mathrm{~d}, J=13.4 \mathrm{~Hz}), 125.6(\mathrm{~d}$, $J=3.8 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 113.9(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 52.1(\mathrm{~s}), 43.4-43.3$
(m), ${ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.1$ (br, d, $J=12.4 \mathrm{~Hz}$, the steric product), -123.1 (s, br, the electronic product).

Chapter 3 Desymmetrization of Diboryl Aromatics

3.1 Introduction

Figure 74. Suginome's B(dan) protection groups

Differentiation of symmetric functionality is a widely used synthetic strategy, because the value of the unsymmetrical compounds that result is almost always greater than that of the symmetrical precursors. One class of compound where desymmetrization has met with limited success is boronic esters and acids. Solutions to this problem could have broad appeal because boronic acids and esters are synthons for a broad range of chemical functionality, and are widely used in cross coupling reactions like Suzuki-Miyaura cross-couplings.

Figure 75. Molander's exploitation of $\mathrm{ArBF}_{3} \mathrm{M}$ salts

There have been numerous attempts to differentiate two or more boron atoms in a molecule. ${ }^{61}$ Success on this front has been relatively recent with noteworthy reports from the laboratories of Suginome (Figure 76), ${ }^{62}$ Molander (Figure 75), ${ }^{63}$ and Burke (Figure 76). ${ }^{64}$ In these examples, the key to differentiating the boron sites is to install those sequentially using orthogonal transformations that are chemically compatible. It is important to note that this approach requires starting materials in which the carbon positions where boron will ultimately reside are chemically distinct, and in no case has this been achieved from a symmetric starting material.

Figure 76. Burk's exploitation of Mida protected boron

Our interest in this problem originated in Ir-catalyzed $\mathrm{C}-\mathrm{H}$ borylation chemistry, where a significant number of substrates yield diborylated products where the boron sites are chemically equivalent. If these positions could be selectively transformed, $\mathrm{C}-\mathrm{H}$ borylation would provide a simple protocol for desymmetrizing $\mathrm{C}-\mathrm{H}$ bonds. Two approaches for preparing differentiated diborylated compounds are borylation/protection/ borylation and diborylation/desymmetrization, as shown in Figure 77. The former strategy has an additional step and the protecting group must be compatible with Ir-catalyzed borylation. Both approaches require selectivity for one of two
symmetric sites. The borylation/protection/borylation route requires that diborylation be avoided in the first step, while the diborylation/ desymmetrization strategy calls for a selective monoprotection of the symmetric diboronate.

Figure 77. Two approaches toward unsymmetric diborates

For evaluation of the diborylation/protection route, Burke's MIDA protecting group was used exclusively. ${ }^{65}$ It is conceivable that $\mathrm{BF}_{3} \mathrm{~K}$ or dan (1,8-diamidonapthalene) protecting groups could be used, but our decision was based on (i) the expectation that transesterification of the pin groups to MIDAs could be achieved by reacting ArBpin compounds with MIDAH2, and (ii) product purification would be aided by the differences in solubilities of ArBpin, ArBMIDA, and MIDAH2.

Figure 78. Desymmetrizing $\mathrm{Ar}(\mathrm{BPin})_{2}$ by H_{2} Mida

Previously Smith's group found that such symmetrically diborylated compounds could be desymmetrized by protecting one of the two borons by methylimidodiacetic acid (Mida ligand or Mida acid, or $\mathrm{H}_{2} \mathrm{Mida}$), by reaction of diborylated compounds and $\mathrm{H}_{2} \mathrm{Mida}$ at high temperature.

To avoid formation of $\operatorname{Ar}(\mathrm{BMida})_{2}$ products, a large excess of the $\operatorname{Ar}(\mathrm{BPin})_{2}$ compound was required, though the starting material could be recovered (Figure 78).

Figure 79. Desymmetrizing $\mathbf{A r}(\mathbf{B P i n})_{2}$ via $\mathbf{A r}(\mathbf{B P i n}) \mathrm{BF}_{3} \mathbf{M}$ salt

We considered if it would be possible to convert one of the two BPin's into a $-\mathrm{BF}_{3} \mathrm{M}$ salt by treating the $\mathrm{Ar}(\mathrm{BPin})_{2}$ compounds with a $2: 1$ mixture of $\mathrm{HF} / \mathrm{MF}$, activating the $-\mathrm{BF}_{3} \mathrm{M}$ salt with a silicon reagent such as TMSCl would give $\mathrm{a}-\mathrm{BF}_{2}$ group as a reactive intermediate, which could be protect with $\mathrm{Na}_{2} \mathrm{Mida}$ under mild conditions (Figure 79). Although this route adds one more step to the protection, it does not require the use of large excess of diborylated material. This could be very convenient, especially for bench top scale reactions.

Figure 80. Desymmetrizing 2,2'-(5-bromo-2-fluoro-1,3-phenylene)bis(BPin)

The key step of this transformation is the first step, where the desymmetrization of the diborylated compounds takes place. The formation of $\mathrm{ArBF}_{3} \mathrm{Cs}$ salts by treating $\mathrm{ArB}(\mathrm{OR})_{2}$ or $\mathrm{ArB}(\mathrm{OH})_{2}$ with a mixture of HF (conc. aq) and CsF was first published by Matterson ${ }^{66}$ and has found application in many transformations. However, preventing the transformation of both BPin group might still issue a challenge to our proposed transformations.

3.2 Synthesis of the $(\operatorname{PinB}) A r\left(\mathrm{BF}_{3}\right)$ Cs salts.

We started by adopting Matteson's method:

3.2.1 Desymmetrizing 2,2'-(5-bromo-2-fluoro-1,3-phenylene)bis(BPin)

$\operatorname{CsF}(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ was weighed into a Teflon flask fitted with a stirbar and HF ($830 \mathrm{mg}, 48 \%$ aq, 20 mL) was weighed in a plastic syringe and injected into the Teflon flask. The mixing of HF and CsF resulted in a solution and the process was exothermic. The Teflon flask was then cooled in an ice bath to room temperature or below. Diborylated arene $\mathbf{1 6 a}(4.27 \mathrm{~g}, 10 \mathrm{mmol})$ dissolved in 20 mL of $\mathrm{Et}_{2} \mathrm{O}$ (distilled to remove antioxidant) was added in one dose. The flask was then sealed and the reaction mixture was stirred at room temperature for 4 hours. This resulted in a large amount of white solid, which was filtered out and washed with a large amount of $\mathrm{Et}_{2} \mathrm{O}$, giving a white solid $4.04 \mathrm{~g}, 69 \%$ yield of the desired product $\mathbf{1 7 a}$, and 11% of the undesired by-product $\mathbf{1 8 a}$ as mixture (ratio based on NMR's), as shown in Figure 80. Mp of this solid is not available, for it starts to decompose above $220{ }^{\circ} \mathrm{C}$. Compound 17a: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta \mathrm{ppm} 7.49$ $(\mathrm{dd}, J=4.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.39(\mathrm{dd}, J=4.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}) .{ }^{11} \mathrm{~B} \mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ δ ppm 30.5 (br. s., 1B), 2.5 (q, $J=45.0 \mathrm{~Hz}, 1 \mathrm{~B}),{ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta \mathrm{ppm}-97.3$ (br. s.), -137.8 (m). Compound 18a, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta \mathrm{ppm} 7.09(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.28(\mathrm{~s}, 12 \mathrm{H}) .{ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta \mathrm{ppm} 2.49(\mathrm{q}, J=45.0 \mathrm{~Hz}, 1 \mathrm{~B}),{ }^{19} \mathrm{~F}$ NMR (282 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) $\delta \mathrm{ppm}-102.7$ (br. s.), -136.0 (m.).

The crude product (1.97 g) was stirred with dry $\mathrm{CH}_{3} \mathrm{CN}$ and filtered. The $\mathrm{CH}_{3} \mathrm{CN}$ was removed from the solution by a rotary evaporator, to give a white solid, which was then dried in Abderhaldron's drying pistol to give 1.01 g of purer $\mathbf{1 7 a}$ (100:3 by ${ }^{1} \mathrm{H}$ NMR) Mp of this solid is not available, for it starts to decompose above $220^{\circ} \mathrm{C}$.

3.2.2 Desymmetrizing 2,2'-(5-methoxy-2-fluoro-1,3-phenylene)bis(BPin)

Table 12. Desymmetrizing 2,2'-(5-methoxy-2-fluoro-1,3-phenylene)bis(BPin)

Figure 81. Desymmetrizing 2,2'-(5-methoxy-2-fluoro-1,3-phenylene)bis(BPin) in water

When $\mathbf{1 6 b}$ was treated by the same procedure, the reaction favored the undesired di-salt $\mathbf{1 8 b}$. We then tried to run the reaction with different organic solvents, reasoning that the solubility of $\mathbf{1 7 b}$ might play a role in promoting or suppressing formation of $\mathbf{1 8 b}$. The results are summarized in Table 13. At first, we anticipated that in a less polar solvent, $\mathbf{1 7 b}$ might precipitate faster and thus reduce the chance of further fluorinated into 18b. However, the experiments showed absolutely the opposite selectivity trend, with THF giving slightly better selectivity and hexanes giving only 18b. These results suggest, once the $(\mathrm{PinB}) \mathrm{Ar}\left(\mathrm{BF}_{2} \cdot \mathrm{HF}\right)$ intermediate forms, the higher concentration of Cs^{+}helps the precipitation of $\mathbf{1 7 b}$ and preventing formation of $\mathbf{1 8 b}$. Based on this argument, we tested the reaction without organic solvent (Figure 81). Compound $\mathbf{1 6 b}(3.78 \mathrm{~g}, 10$
$\mathrm{mmol})$ and $\operatorname{CsF}(1.52 \mathrm{~g}, 10 \mathrm{mmol})$ was weighed into a Teflon flask fitted with a stir bar, and 20 mL of deionized water was added. $\mathrm{HF}(830 \mathrm{mg}, 48 \% \mathrm{aq} .20 \mathrm{mmol})$ was weighed in a plastic syringe and added to the flask dropwise. The mixture was stirred at room temperature for 4 h , giving a white solid. This solid was then transferred to a glass flask with help of $\mathrm{CH}_{3} \mathrm{CN}$. Water was removed by azeotropy with $\mathrm{CH}_{3} \mathrm{CN}$. The dried solid was washed by 100 mL of hot and dry $\mathrm{CH}_{3} \mathrm{CN}$ 3 times and the liquid phases were filtered out and combined. $\mathrm{CH}_{3} \mathrm{CN}$ was removed on a rotary evaporator to give a white solid, which was then washed by 150 mL hot hexanes to give pure $\mathbf{1 7 b}$ $2.71 \mathrm{~g} 60 \%$ yield. Compound 17b: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) δ ppm $6.96(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$ $6.76(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}) 3.66(\mathrm{~s}, 3 \mathrm{H}) 1.27(\mathrm{~s}, 12 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO-d d_{6}) $\delta \mathrm{ppm} 164.4$ $(\mathrm{d}, J=239.7 \mathrm{~Hz}) 153.8123 .3(\mathrm{~d}, J=14.8 \mathrm{~Hz}) 116.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 83.0,55.1,24.6$.

Figure 82. ${ }^{1} \mathrm{H}$ NMR of $\mathrm{PhBF}_{3} \mathrm{Cs}$ in $\mathrm{CD}_{3} \mathrm{CN}$

3.3 Synthesis of the (PinB)Ar(BMida).

We tested the protection conditions by using $\mathrm{PhBF}_{3} \mathrm{Cs}$. $\mathrm{PhBF}_{3} \mathrm{Cs}$ was dried in an Abderhalden's drying pistol and $\mathrm{CD}_{3} \mathrm{CN}$ was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$. $\mathrm{PhBF}_{3} \mathrm{Cs}(29 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in 1 $\mathrm{mL} \mathrm{CD}_{3} \mathrm{CN}$ in a nitrogen glove box and transferred into an NMR tube that was sealed by a rubber
cap. NMRs were taken, showing the pure starting material with a trace water. ${ }^{11} \mathrm{~B}$ NMR showed the $\mathrm{ArBF}_{3}{ }^{-}$at 3.9 ppm as a quartet with $J=55 \mathrm{~Hz}$, resulting from coupling with the 3 F 's and the rigid tetrahedron structure. $\mathrm{By}{ }^{19} \mathrm{~F} \mathrm{NMR}$, the $\mathrm{ArBF}_{3}{ }^{-}$was observed at -136.8 ppm as quartet with $J=55 \mathrm{~Hz}$, resulting from coupling with the B, as illustrated in Figures 82, 83 and $\mathbf{8 4}$.

Figure 83. ${ }^{11} \mathrm{~B}$ NMR of $\mathrm{PhBF}_{3} \mathrm{Cs}$ in $\mathrm{CD}_{3} \mathrm{CN}$

With the NMR data of the starting material secure, we next set out to establish the ability of TMSCl to activate the ArBF_{3} salts. Toward this end, TMSCl (distilled over $\mathrm{CaH}_{2}, 12.5 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) was injected through a micro syringe. CsCl precipitations started to form and 30 min later we observed formation of TMSF (-157 ppm, m) and a chemical shift change in the ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR's. By ${ }^{11} \mathrm{~B}$ NMR, the quartet at 3.9 ppm was gone, instead, we saw a broad singlet at 12.8 ppm , suggesting a relaxed planar B center, as illustrated in Figure 85.

Figure 84. ${ }^{19} \mathrm{~F}$ NMR of $\mathrm{PhBF}_{3} \mathrm{Cs}$ in $\mathrm{CD}_{3} \mathrm{CN}$

Figure 85. ${ }^{11}$ B NMR after adding 1 equiv TMSCI

By ${ }^{19} \mathrm{~F}$ NMR, we observed formation of TMSF, and PhBF_{2}, as illustrated in Figure 86, $\mathrm{PhBF}_{3} \mathrm{Cs}$ still existed. So, another dose of $\operatorname{TMSCl}(12.5 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ was injected, and by ${ }^{11} \mathrm{~B}$ NMR, we observed that the boron peak shifted further down field to 14.5 ppm , as shown in Figure 87. By ${ }^{19}$ F NMR, we observed a broad single peak at -116.5 ppm that integrated into two fluorines if the TMSF (-155 ppm) was normalized as one fluorine, as shown in Figure 88.

Figure 86. ${ }^{19}$ F NMR after adding 1 equiv TMSCI

Figure 87. ${ }^{11}$ B NMR after adding 2 equiv TMSCI

Our conclusion based on these NMR data was that by treatment with TMSCl , the $\mathrm{ArBF}_{3} \mathrm{Cs}$ salt lost one fluorine to give ArBF_{2}. Two equiv of TMSCl is enough to push the equilibrium to the end, as illustrated in Figure 88. Activation of the $\mathrm{ArBF}_{3} \mathrm{Cs}$ by TMSCl was successful.

Figure 88. Activation of $\mathrm{PhBF}_{3} \mathrm{Cs}$ by TMSCl

The clear liquid phase of this NMR sample was transferred by a syringe with long needle and injected into a flask charged with $\mathrm{Na}_{2} \mathrm{Mida}(19 \mathrm{mg}, 0.1 \mathrm{mmol})$ and a stir bar. The mixture was stirred at room temperature for 6 h , and was then transferred back into another NMR tube. Only open chain Mida ligand was observed, but the PhBF_{2} species remained largely untouched with a small amount of PhBF_{3} - "revived". We proposed a possible mechanism in Figure 89.

Figure 89. Formation of $\mathrm{PhBF}_{3}{ }^{-}$after adding $\mathrm{Na}_{2} \mathbf{M i d a}$

Figure 90. Protection of $\mathbf{P h B F}_{\mathbf{2}}$ by Mida ligand in DMSO

Figure 91. ${ }^{19} \mathrm{~F}$ NMR after adding 2 equiv TMSCI

The same reaction was repeated several times, resulting in the same observation. At first, we thought the poor solubility of Na_{2} Mida in $\mathrm{CH}_{3} \mathrm{CN}$ might be the possible problem. We decided to use a combination of dry DMSO and 15-c-5 to help the process. We performed the formation of PhBF_{2} as elaborated above in an NMR tube and monitored the process by NMR. The clear liquid phase of the NMR reaction was transferred into a flask charged with $\mathrm{Na}_{2} \mathrm{Mida}$ ($19 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $15-\mathrm{c}-5(40 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ dissolved in 1 mL of DMSO (dry) and a stir bar. The reaction was stirred at room temperature (Figure 88). After 6 hours, the solvent of the reaction was removed by vacuum distillation and NMR spectra of the 12 mg residue were collected in DMSO-d6. By ${ }^{1} \mathrm{H}$ NMR of the crude material, two peaks at 4.32 ppm and 4.09 ppm integrated into two protons each, and demonstrated ${ }^{2} \mathrm{~J} \mathrm{H}-\mathrm{H}$ coupling 17 Hz , which is a finger print of -BMida group. By ${ }^{11} \mathrm{~B}$ NMR, a major peak was observed at 12 ppm marching the -BMida group, as illustrated (Figures 91 and 92).

Figure 92. ${ }^{\mathbf{1}} \mathbf{H}$ NMR of the crude product of Figure 90 in DMSO-d \mathbf{d}_{6}

Encouraged by these results, we decided to follow the protections steps by NMR. We set up an experiment where PhBF_{2} was pre-generated in the same way as elaborated above. The clear liquid
phase of the NMR sample was then transferred into another NMR tube charge with Na_{2} Mida (19 $\mathrm{mg}, 0.1 \mathrm{mmol})$, and $15-\mathrm{c}-5(40 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ dissolved in 1 mL of DMSO-d6 (dry). As expected, we observed formation of $\mathrm{PhBF}_{3}-$ by both ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR, presumably via the mechanism proposed in Figure 89. After 1 h at room temperature, however we did not observe any formation of desired PhBMida. Dissappointed, we stopped the experiment, and distilled out all solvents and volatiles, to obtain about 11 mg residue. We dissolved this residue in DMSO- d_{6}, to see if we got the $\mathrm{PhBF}_{3} \mathrm{M}$. Strikingly, the ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMRs suggested that the residue was that of almost pure PhBMida. So the problem was solved: The 10-15 min of heating during the distillation of DMSO promoted the reaction!

Figure 93. ${ }^{11}$ B NMR of the crude product of Figure 90 in DMSO-d \mathbf{d}_{6}

To confirm this finding, we performed a small scale transformation of $\mathrm{PhBF}_{3} \mathrm{Cs}$ to PhBMida : In a 25 mL round bottom flask $(\mathrm{A}), \mathrm{PhBF}_{3} \mathrm{Cs}(28 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in 1 mL dry $\mathrm{CH}_{3} \mathrm{CN}$. In a 25 mL round bottom flask (B), and $\mathrm{Na}_{2} \mathrm{Mida}(19 \mathrm{mg}, 0.1 \mathrm{mmol}), 15-\mathrm{c}-5(40 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$ were dissolved in 1 mL of dry DMSO. To flask A, TMSCl (distilled, $38 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was injected and swirled for 1 min . The clear liquid phase of flask A was then cannulated into flask B. A white
solid formation was observed. Flask B was the attached to a condenser and then heated in an oil bath at $100{ }^{\circ} \mathrm{C}$ under nitrogen, for 14 h . The reaction crude was distilled under vacuum to remove DMSO and the residue was partitioned between water and EtOAc. The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of EtOAc on a rotary evaporator gave 18 mg of residue. By NMR a 10:4 mixture of desired PhBMida and the crown ether (about 78% yield in crude materials) were observed. This reaction was successful and relatively clean, as shown in Figure 94. We further optimized the reaction conditions. Using $\mathrm{CH}_{3} \mathrm{CN}$ as solvent for second step gave a crude product yield of 79% contaminated by crown ether. Running the reaction in one-pot gave a crude product yield of 87% also contaminated by crown ether. Performing the one-pot transformation without crown ether gave 78% of clean product without column purification.

Figure 94. Optimization of the reaction conditions

We thereby applied the optimized conditions to 17a as shown in Figure 95. The reaction gave a complex mixture, and no desired product was found in the crude. We rolled back to a stepwise reaction, as shown in Figure 96.

Figure 95. Attempted transformation of 17 a

17a

2) $80^{\circ} \mathrm{C} .12 \mathrm{~h}$
sign of desired
product in crude NMR

Figure 96. Stepwise transformation of 17a and 17b

Synthesis of compound 19a (Figure 94 reaction 1): In a nitrogen glove box, compound 17 (dried, $500 \mathrm{mg}, 1.00 \mathrm{mmol}$) was weighed into a 20 mL vial fitted with a stir bar. The substrate was dissolved in 5 mL dry $\mathrm{CH}_{3} \mathrm{CN}$. The vial was then sealed by a rubber septum. Na_{2} Mida (dry, 191 $\mathrm{mg}, 1.00 \mathrm{mmol}$) was weighed into a 50 ml round bottom flask fitted with a stir bar and capped by a rubber septum. Outside the glove box, to the vial with $\mathbf{1 7} \mathbf{a}$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{TMSCl}$ (freshly distilled, $0.50 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was injected, and the mixture was stirred at room temperature for 30 min. Then the slurry was then entirely cannulaed into the round bottom flask with $\mathrm{Na}_{2} \mathrm{Mida}$. The
flask was then attached to a condenser and the mixture was stirred at room temperature under nitrogen for 5 min , and then heated in an oil bath at $80^{\circ} \mathrm{C}$ for 12 h . The resulting slurry was filtered, and the solids was washed by $\mathrm{CH}_{3} \mathrm{CN}$. The combined solution phases was evaporated on a rotary evaporator to give a crude material. The crude material was then passed through a silica gel short plug by EtOAc and solvent was removed to give pure product. The product was transferred by acetone to into a 20 mL vial to be finally pumped dry, resulting in an adduct of the desired product with one acetone molecule. Unsuccessful attempts to remove the acetone including column separation lead to some loss of the product, giving $318 \mathrm{mg}, 62 \%$ yield, as a white solid, decomposes above $250{ }^{\circ} \mathrm{C}$. Compound 19a: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta \mathrm{ppm} 7.76-7.81(\mathrm{~m}$, $2 \mathrm{H}), 4.14(\mathrm{dd}, J=17.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta \mathrm{ppm} 207.9,170.5(\mathrm{~d}, J=246.2 \mathrm{~Hz}) 169.5,142.1(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}) 141.7(\mathrm{~d}, J=9.8 \mathrm{~Hz}) 118.1(\mathrm{~d}, J=2.3 \mathrm{~Hz}) 85.7,64.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}) 31.3$, 25.5. Consistent with Smith group's previous NMR data.

Synthesis of compound 19b (Figure 94 reaction 2): In a nitrogen glove box, compound 17b (dried, $45 \mathrm{mg}, 0.1 \mathrm{mmol}$) was weighed into a 20 mL vial fitted with a stir bar. The substrate was dissolved in 5 mL dry $\mathrm{CH}_{3} \mathrm{CN}$. The vial was then sealed by a rubber septum. Na2Mida (dry, $191 \mathrm{mg}, 1.00$ mmol) was weighed into a 50 ml round bottom flask fitted with a stir bar and capped by a rubber septum. Outside the glove box, to the vial with $\mathbf{1 7 a}$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{TMSCl}$ (freshly distilled, $0.50 \mathrm{~mL}, 4.0 \mathrm{mmol}$) was injected, and the mixture was stirred at room temperature for 30 min . Then the slurry was then entirely cannulaed into the round bottom flask with $\mathrm{Na}_{2} \mathrm{Mida}$. The flask was then attached to a condenser and the mixture was stirred at room temperature under nitrogen for 5 min , and then heated in an oil bath at $80^{\circ} \mathrm{C}$ for 12 h . The resulting slurry was filtered, and the solids was washed by $\mathrm{CH}_{3} \mathrm{CN}$. The combined solution phases was evaporated on a rotary
evaporator to give a crude material. The crude material was then passed through a silica gel short plug by EtOAc and solvent was removed to give pure product. The substrate was dissolved in 5 mL dry $\mathrm{CH}_{3} \mathrm{CN}$. The vial was then sealed by a rubber septum. $\mathrm{Na}_{2} \mathrm{Mida}$ (dry, $191 \mathrm{mg}, 1.00 \mathrm{mmol}$) was weighed into a 50 ml round bottom flask fitted with a stir bar and capped by a rubber septum. Outside the glove box, to the vial with $\mathbf{1 7 a}$ dissolved in $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{TMSCl}$ (freshly distilled, 0.50 $\mathrm{mL}, 4.0 \mathrm{mmol}$) was injected, and the mixture was stirred at room temperature for 30 min . Then the slurry was then entirely cannulaed into the round bottom flask with Na_{2} Mida. The flask was then attached to a condenser and the mixture was stirred at room temperature under nitrogen for 5 min , and then heated in an oil bath at $80^{\circ} \mathrm{C}$ for 12 h . The resulting slurry was filtered, and the solids was washed by $\mathrm{CH}_{3} \mathrm{CN}$. The combined solution phases was evaporated on a rotary evaporator to give a crude material. The crude material was then passed through a silica gel short plug by EtOAc and solvent was removed to give pure product. The product was transferred by $\mathrm{CH}_{3} \mathrm{CN}$ to into a 20 mL vial to be finally pumped dry, afford $38 \mathrm{mg}, 93 \%$ yield, as a white solid, decomposes above $250{ }^{\circ} \mathrm{C}$. Compound 19b: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta \mathrm{ppm} 7.13-7.25(\mathrm{~m}$, 2H) $4.13(\mathrm{dd}, J=17.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}) 3.94(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 2 \mathrm{H}) 3.78(\mathrm{~s}, 3 \mathrm{H}) 2.66(\mathrm{~s}, 3 \mathrm{H}) 1.32(\mathrm{~s}$, 12H). ${ }^{11}$ B NMR ($97 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ ppm 30.9 (br. s., 1B) 11.6 (br. s., 1B), ${ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta \mathrm{ppm} 169.7,165.7(\mathrm{~d}, J=237.5 \mathrm{~Hz}) 156.7,124.8(\mathrm{~d}, J=9.9 \mathrm{~Hz}) 123.1(\mathrm{~d}, J=9.9 \mathrm{~Hz})$ 85.3, $64.2(\mathrm{~d}, J=2.8 \mathrm{~Hz}) 56.7,49.0(\mathrm{~d}, J=1.1 \mathrm{~Hz}) 25.5 .{ }^{19} \mathrm{~F}$ NMR $\left(283 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta \mathrm{ppm}-$ 105.4 (s)

3.4 Summary

In this project, we explored the potential of dessymmetrizing $\operatorname{Ar}(\mathrm{BPin})_{2}$, diboryl compounds, via $\mathrm{a}(\mathrm{PinB}) \mathrm{Ar}\left(\mathrm{BF}_{3} \mathrm{Cs}\right)$ intermediate. We established and optimized the reaction conditions for the transformation from $\operatorname{Ar}(\mathrm{BPin})_{2}$ to the $(\mathrm{PinB}) \mathrm{Ar}\left(\mathrm{BF}_{3} \mathrm{Cs}\right)$, minimizing the formation of undesired
bisalts $\operatorname{Ar}\left(\mathrm{BF}_{3} \mathrm{Cs}\right)_{2}$. Then we looked into the mechanism of the transformation from the $\mathrm{PhBF}_{3} \mathrm{M}$ salt to the PhBMida compound, including the formation of the key intermediate PhBF_{2}, and the protection of difluoroboryl by Mida ligand. We established and optimized a clean one-pot protocol for this transformation that does not require column purification to obtain the product with decent purity. We applied this method to $\operatorname{Ar}(\mathrm{BPin})_{2}$, finding it problematic. We then applied the method in a stepwise manner, leading to high yield of the clean product with high purity without the aid of column purification.

APPENDIX

NMR spectra

Figure $97{ }^{119}$ Sn NMR of compound 2a

Figure $98{ }^{11}$ B NMR of compound 2a

Figure $99{ }^{13} \mathrm{C}$ NMR of compound 2a

Figure $100{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 2a

Figure $101{ }^{119}$ Sn NMR of compound 2b

Figure $102{ }^{11}$ B NMR of compound 2b

Figure $103{ }^{13} \mathrm{C}$ NMR of compound 2b

Figure $104{ }^{19}$ F NMR of compound 2b

Figure $105{ }^{1} \mathbf{H}$ NMR of compound 2b

Figure $106{ }^{119}$ Sn NMR of compound 2c

Figure $107{ }^{11} B$ NMR of compound 2c

Figure $108{ }^{13} \mathrm{C}$ NMR of compound 2c

Figure $109{ }^{1} \mathrm{H}$ NMR of compound 2c

Figure $110{ }^{119}$ Sn NMR of compound 2d

Figure $111{ }^{11}$ B NMR of compound 2d

Figure $112{ }^{13} \mathrm{C}$ NMR of compound 2d

Figure $113{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 2d

Figure $114{ }^{119}$ Sn NMR of compound 2e

Figure $115{ }^{11}$ B NMR of compound 2 e

Figure $116{ }^{13} \mathrm{C}$ NMR of compound 2 e

Figure $117{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 2 e

Figure $118{ }^{119}$ Sn NMR of compound $2 f$

Figure $119{ }^{11}$ B NMR of compound $2 f$

Figure $120{ }^{13} \mathrm{C}$ NMR of compound 2 f

Figure $121{ }^{19}$ F NMR of compound $2 f$

Figure $122{ }^{1} \mathrm{H}$ NMR of compound $2 f$

Figure $123{ }^{119}$ Sn NMR of compound 4 a

Figure $124{ }^{13} \mathrm{C}$ NMR of compound 4 a

Figure $125{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 4a

Figure $126{ }^{119}$ Sn NMR of compound 4b

Figure $127{ }^{13} \mathrm{C}$ NMR of compound 4 b

Figure $128{ }^{19}$ F NMR of compound 4b

Figure $129{ }^{1} \mathbf{H}$ NMR of compound 4b

Figure $130{ }^{119}$ Sn NMR of compound $4 c$

Figure $131{ }^{13} \mathrm{C}$ NMR of compound 4 c

Figure $132{ }^{1} \mathrm{H}$ NMR of compound 4 c

Figure $133{ }^{119}$ Sn NMR of compound 4d

Figure $134{ }^{13} \mathrm{C}$ NMR of compound 4 d

Figure $\mathbf{1 3 5}{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound $\mathbf{4 d}$

Figure $136{ }^{119}$ Sn NMR of compound 4 e

Figure $137{ }^{13} \mathrm{C}$ NMR of compound 4 e

Figure $138{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 4 e

Figure $139{ }^{119}$ Sn NMR of compound $4 f$

Figure $140{ }^{13} \mathrm{C}$ NMR of compound $4 f$

Figure $141{ }^{19}$ F NMR of compound $4 f$

Figure $142{ }^{1} \mathrm{H}$ NMR of compound $4 f$

Figure $143{ }^{119}$ Sn NMR of compound 5

Figure $144{ }^{13} \mathrm{C}$ NMR of compound 5

Figure $145{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 5

Figure $146{ }^{119}$ Sn NMR of compound 7

Figure $147{ }^{13} \mathbf{C}$ NMR of compound 7

Figure $148{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 7

Figure $149{ }^{13} \mathrm{C}$ NMR of compound 11

Figure $150{ }^{19} \mathrm{~F}$ NMR of compound 11

Figure $151{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 11

Figure $152{ }^{1} \mathrm{H}$ NMR of mixture of compounds 13 d and 13 d '

Figure $153{ }^{11} \mathrm{~B}$ NMR of mixture of compounds 13 d and 13 d ,

Figure $154{ }^{13} \mathrm{C}$ NMR of mixture of compounds 13 d and 13 d '

Figure $155{ }^{19}$ F NMR of mixture of compounds 13 d and 13 d '

Figure $156{ }^{1} \mathrm{H}$ NMR of mixture of compounds 13 e and $13 e^{,}$

Figure $157{ }^{11} B$ NMR of mixture of compounds 13 e and $13 e^{\text {, }}$
This report was created by ACDNMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure $158{ }^{13} \mathbf{C}$ NMR of mixture of compounds 13 e and 13 e ,
This report was created by ACDNMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc

Figure $159{ }^{19}$ F NMR of mixture of compounds 13 e and $13 e^{\prime}$

Figure $160{ }^{\mathbf{1}} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 3 f}$ and $\mathbf{1 3 f}$,

Figure $161{ }^{11}$ B NMR of mixture of compounds $\mathbf{1 3 f}$ and $13 f$ '
This report was created by ACDNMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure $162{ }^{13} \mathrm{C}$ NMR of mixture of compounds 13 f and 13 f ,
This report was created by ACDNMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc

Figure $163{ }^{19}$ F NMR of mixture of compounds $13 f$ and $13 f$,
This report was created by ACD/NMR Processor Academic Edition. For more information go to www.acdlabs.com/nmrproc/

Figure $164{ }^{1} \mathrm{H}$ NMR of mixture of compounds $13 a$ and $13 a^{\prime}$

Figure $165{ }^{11} \mathrm{~B}$ NMR of mixture of compounds $13 a$ and $13 a$,

Figure $166{ }^{13} \mathrm{C}$ NMR of mixture of compounds 13 a and $13 a$,

Figure $167{ }^{19}$ F NMR of mixture of compounds $13 a$ and $13 a$,

Figure $168{ }^{1} \mathrm{H}$ NMR of mixture of compounds 13 c and 13 c ,

Figure $169{ }^{11} \mathrm{~B}$ NMR of mixture of compounds 13 c and 13 c ,

Figure $170{ }^{13} \mathbf{C}$ NMR of mixture of compounds 13 c and $13 \mathrm{c}^{\prime}$

Figure $171{ }^{19} \mathrm{~F}$ NMR of mixture of compounds 13 c and $13 \mathrm{c}^{\prime}$

Figure $172{ }^{1} \mathbf{H}$ NMR of mixture of compounds $\mathbf{1 3 b}$ and 13b,

Figure $173{ }^{11} \mathrm{~B}$ NMR of mixture of compounds $\mathbf{1 3 b}$ and 13b,

Figure $174{ }^{13} \mathrm{C}$ NMR of mixture of compounds 13 b and 13 b ,

Figure $175{ }^{19} \mathrm{~F}$ NMR of mixture of compounds $\mathbf{1 3 b}$ and $\mathbf{1 3 b}$,

Figure $176{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 14 a

Figure $177{ }^{13} \mathrm{C}$ NMR of compound 14 a

Figure $178{ }^{19} \mathrm{~F}$ NMR of compound 14 a

Figure $179{ }^{1} \mathrm{H}$ NMR of compound 14 a ,

Figure $180{ }^{13} \mathrm{C}$ NMR of compound $14 \mathrm{a}^{\prime}$

Figure $181{ }^{19}$ F NMR of compound $14 a$,

Figure $182{ }^{1} \mathrm{H}$ NMR of mixture of compounds 14 b and 14 b ,

Figure $183{ }^{19}$ F NMR of mixture of compounds $14 b$ and $14 b$,

Figure $184{ }^{1} \mathrm{H}$ NMR of compound 14 b ,

Figure $185{ }^{13} \mathrm{C}$ NMR of compound 14 b ,

Figure $186{ }^{19}$ F NMR of compound $14 b$,

Figure $187{ }^{1} \mathrm{H}$ NMR of compound 14 c

Figure $188{ }^{13} \mathrm{C}$ NMR of compound 14 c

Figure $189{ }^{19}$ F NMR of compound 14 c

Figure $190{ }^{1} \mathrm{H}$ NMR of compound $14 \mathrm{c}^{\prime}$

Figure $191{ }^{13} \mathrm{C}$ NMR of compound 14 c ,

Figure $192{ }^{19} \mathrm{~F}$ NMR of compound $14 \mathrm{c}^{\text {, }}$

Figure $193{ }^{1} \mathrm{H}$ NMR of compound 14 d

Figure $194{ }^{13} \mathrm{C}$ NMR of compound 14d

Figure $195{ }^{19}$ F NMR of compound 14d

Figure $196{ }^{1} \mathrm{H}$ NMR of compound 14 d ,

Figure $197{ }^{13} \mathrm{C}$ NMR of compound 14 d '

Figure $198{ }^{19}$ F NMR of compound 14d ${ }^{\prime}$

Figure $199{ }^{1} \mathrm{H}$ NMR of mixture of compounds 14 e and 14 e ,

Figure $200{ }^{13} \mathrm{C}$ NMR of mixture of compounds 14 e and $14 e^{\prime}$

Figure $201{ }^{19} \mathrm{~F}$ NMR of mixture of compounds 14 e and $14 \mathrm{e}^{\text {, }}$

Figure $202{ }^{\mathbf{1}} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 4 f}$ and $\mathbf{1 4 f}$,

Figure $203{ }^{\mathbf{1}} \mathrm{H}$ NMR of mixture of compounds $\mathbf{1 4 f}$ and $14 f$ '

Figure $204{ }^{19}$ F NMR of mixture of compounds $14 f$ and $14 f$ '

Figure $205{ }^{1} \mathrm{H}$ NMR of mixture of compounds 17 a and 18 a

Figure $206{ }^{11} B$ NMR of mixture of compounds $17 a$ and $18 a$

Figure $207{ }^{19}$ F NMR of mixture of compounds 17 a and 18a

Figure $208{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 17b

Figure $209{ }^{13} \mathrm{C}$ NMR of compound 17b

Figure $210{ }^{\mathbf{1}} \mathrm{H}$ NMR of compound 19 a

Figure $211{ }^{13} \mathrm{C}$ NMR of compound 19a

Figure $212{ }^{1} \mathrm{H}$ NMR of compound 19b

Figure $213{ }^{11}$ B NMR of compound 19b

Figure $214{ }^{13} \mathrm{C}$ NMR of compound 19b

Figure $215{ }^{19}$ F NMR of compound 19b

REFERENCES

REFERENCES

${ }^{1}$ Iverson, C. N.; Smith, M. R. J Am Chem Soc 1999, 121, 7696-7697.
${ }^{2}$ (a) Smith, M. R.; Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E. Jr. Science 2002, 295, 305-308. (b) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390-391. (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890-931.
${ }^{3}$ (a) Vanchura, B. A.; Preshlock, S. M.; Roosen, P. C.; Kallepalli, V. A.; Staples, R. J.; Maleczka, R. E.; Singleton, D. A.; Smith, M. R. Chem Commun 2010, 46, 7724-7726. (b) Tajuddin, H.; Harrisson, P.; Bitterlich, B.; Collings, J. C.; Sim, N.; Batsanov, A. S.; Cheung, M. S.; Kawamorita, S.; Maxwell, A. C.; Shukla, L.; Morris, J.; Lin, Z. Y.; Marder, T. B.; Steel, P. G. Chem Sci 2012, 3, 3505-3515.
${ }^{4}$ (a) Chotana, G. A.; Rak, M. A.; Smith, M. R. J Am Chem Soc 2005, 127, 10539-10544. (b) Maleczka, R. E.; Shi, F.; Holmes, D.; Smith, M. R. J Am Chem Soc 2003, 125, 7792-7793.
${ }^{5}$ Maleczka and Smith groups unpublished results
${ }^{6}$ (a) ACS catalysis paper (b) Dow computational paper (c) Smith, M. R. III; Maleczka, R. E. Jr.; Li, H.; Jayasundara, C.; Oppenheimer, J.; Sabasovs, D. US 20150065743 A1, 2015.
${ }^{7}$ Maleczka and Smith groups unpublished results
${ }^{8}$ Suzuki, A. Angew Chem Int Edit 2011, 50, 6722-6737.
${ }^{9}$ Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed.; Wiley-VCH: Weinheim, 2011.
${ }^{10}$ Stille, J. K. Angew Chem Int Edit 1986, 25, 508-523.
${ }^{11}$ Miyaura, N.; Suzuki, A. Chem Rev 1995, 95, 2457-2483.
${ }^{12}$ (a) One early example of chemoselective Suzuki coupling of iodobromobenzene. Hensel, V.; Schluter, A. D. Liebigs Ann-Recl 1997, 303-309. More examples: (b) Wu, X. F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew Chem Int Edit 2010, 49, 7316-7319. (c) Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. L. J Am Chem Soc 1999, 121, 4369-4378. (d) Cho, G. Y.; Remy, P.; Jansson, J.; Moessner, C.; Bolm, C. Org Lett 2004, 6, 3293-3296. (e) Mosrin, M.; Knochel, P. Chem-Eur J 2009, 15, 1468-1477.
${ }^{13}$ Grob, J. E.; Dechantsreiter, M. A.; Tichkule, R. B.; Connolly, M. K.; Honda, A.; Tomlinson, R. C.; Hamann, L. G. Org Lett 2012, 14, 5578-5581.
${ }^{14}$ Lhermitte, F.; Carboni, B. Synlett 1996, 377-379.
${ }^{15}$ Coleman, R. S.; Walczak, M. C. Org. Lett. 2005, 7, 2289-2291.
${ }^{16}$ Snieckus, V.; Kalinin, A. V.; Scherer, S. Angew. Chem. Int. Ed. 2003, 42, 33993404.
${ }^{17}$ Burke, M. D.; Lee, S. J.; Gray, K. C.; Paek, J. S. J. Am. Chem. Soc. 2008, 130, 466-468.
${ }^{18}$ (a) Yamamoto, Y.; Seko, T.; Nemoto, H. J. Org. Chem. 1989, 54, 4734-4736. (b) vonderSaal, W.; Engh, R. A.; Eichinger, A.; Gabriel, B.; Kucznierz, R.; Sauer, J. Arch. Pharm. 1996, 329, 7382.
${ }^{19}$ (a) Linshoeft, J.; Heinrich, A. C. J.; Segler, S. A. W.; Gates, P. J.; Staubitz, A. Org Lett 2012, 14, 5644-5647. (b) Heinrich, A. C. J.; Thiedemann, B.; Gates, P. J.; Staubitz, A. Org Lett 2013, 15, 4666-4669.
${ }^{20}$ (a) Qiu, D.; Wang, S. A.; Tang, S. B.; Meng, H.; Jin, L.; Mo, F. Y.; Zhang, Y.; Wang, J. B. J Org Chem 2014, 79, 1979-1988. (b) Takenak, H.; Ohta, Y; Taguchi, Y; Ueda, S.; Ishino, Y; Nakashima, H; Uehara, K; Kirihata, M. Chiral 4-boronophenylalanine (bpa) derivative and method for producing same, and method for producing 18f-labeled bpa using said derivative WO2014061508 A1. (c) Wang, J. B.; Qiu, D.; Ye, Y. X.; Deng, Y. F.; Zhang, Y. Synthesis method of aryltin compounds from aromatic amine, distannane and alkyl nitrite CN 103665026 A. (d) Qiu, D.; Meng, H.; Jin, L.; Wang, S.; Tang, S. B.; Wang, X.; Mo, F. Y.; Zhang, Y.; Wang, J. B. Angew Chem Int Edit 2013, 52, 11581-11584.
${ }^{21}$ (a) Roush, W. R.; Tortosa, M.; Yakelis, N. A. J. Am. Chem. Soc. 2008, 130, 2722-2723. (b) Coleman, R. S.; Walczak, M. C.; Campbell, E. L. J. Am. Chem. Soc. 2005, 127, 16038-16039. (c) Coleman, R. S.; Walczak, M. C. J. Org. Chem. 2006, 71, 9841-9844. (d) Coleman, R. S.; Lu, X. L.; Modolo, I. J. Am. Chem. Soc. 2007, 129, 3826-3827.
${ }^{22}$ Coleman, R. S.; Lu, X. L. Chem. Comm. 2006, 423-425.
${ }^{23}$ (a) Braga, A. A. C.; Morgon, N. H.; Ujaque, G.; Maseras, F. J. Am. Chem. Soc. 2005, 127, 92989307. (b) Hartwig, J. F.; Carrow, B. P. J. Am. Chem. Soc. 2011, 133, 2116-2119.
${ }^{24}$ (a) Chemistry of Tin; Smith, P. J., Ed.; Blackie Academic \& Professional: New York, 1998. (b) Davies A. G. In Organotin Chemistry; VCH: New York, 1997.
${ }^{25}$ (a) Smith, M. R.; Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E. Jr. Science 2002, 295, 305-308. (b) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390-391. (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890-931.
${ }^{26}$ For an example of Ir-catalyzed borylation on arylsilanes see Reus, C.; Liu, N. W.; Bolte, M.; Lerner, H. W.; Wagner, M. J Org Chem 2012, 77, 3518-3523.
${ }^{27}$ Hartwig, J. F.; Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N. J Am Chem Soc 2005, 127, 14263
${ }^{28}$ (a) Gosmini, C.; Fillon, H.; Périchon, J. J. Am. Chem. Soc. 2003, 125, 3867-3870. (b) Gosmini, C.; Périchon, J. Org. Biomol. Chem. 2005, 3, 216-217.
${ }^{29}$ (a) Bolm, C.; Rudolph, J.; Schmidt, F. Adv. Synth. Catal. 2004, 346, 867-872. (b) Rudolph, J.; Schmidt, F.; Bolm, C. Synthesis 2005, 840-842. (c) Bolm, C.; Schmidt, F.; Rudolph, J. Synthesis 2006, 3625-3630. (d) Bolm, C.; Schmidt, F.; Stemmler, R. T.; Rudolph, J. Chem. Soc. Rev. 2006, 35, 454-470. (e) Bolm, C.; Schmidt, F.; Rudolph, J. Adv. Synth. Catal. 2007, 349, 703-708. For mechanism discussions see: (f) Maseras, F.; Jimeno, C.; Sayalero, S.; Fjermestad, T.; Colet, G.; Pericas, M. A. Angew. Chem. Int. Ed. 2008, 47, 1098-1101. (g) Partyka, D. V. Chem. Rev. 2011, 111, 1529-1595.
${ }^{30}$ At the time of this work, few commercial suppliers had TlOEt in stock and thus this base was not screened in Table 3. When this base was finally secured, its use in the reaction of $\mathbf{2 f}$ via the procedure of Linshoeft, J.; Heinrich, A. C. J.; Segler, S. A. W.; Gates, P. J.; Staubitz, A. Org Lett 2012, 14, 5644. gave $4 f$ in 47% isolated yield.
${ }^{31}$ (a) Fried, J.; Sabo, E. F. J Am Chem Soc 1953, 75, 2273-2274. (b) Fried, J.; Sabo, E. F. J Am Chem Soc 1954, 76, 1455-1456.
${ }^{32}$ Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem Soc Rev 2008, 37, 320-330.
${ }^{33}$ Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem Rev 2014, 114, 2432-2506.
${ }^{34}$ Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.; Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T. Science 2011, 334, 639-642.
${ }^{35}$ Hagmann, W. K. J Med Chem 2008, 51, 4359-4369.
${ }^{36}$ Laali, K. K.; Gettwert, V. J. J Fluorine Chem 2001, 107, 31-34.
${ }^{37}$ Shimizu, M.; Hiyama, T. Angew Chem Int Edit 2005, 44, 214-231.
${ }^{38}$ (a) Rozen, S. Accounts Chem Res 2005, 38, 803-812. (b) Singh, R. P.; Shreeve, J. M. Accounts Chem Res 2004, 37, 31-44. (c) Lal, G. S.; Pez, G. P.; Syvret, R. G. Chem Rev 1996, 96, 1737-1755. (d) Ma, J. A.; Cahard, D. Chem Rev 2004, 104, 6119-6146.
${ }^{39}$ (a) Lyons, T. W.; Sanford, M. S. Chem Rev 2010, 110, 1147-1169. (b) Wang, X. S.; Mei, T. S.; Yu, J. Q. J Am Chem Soc 2009, 131, 7520-+. (c) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J Am Chem Soc 2006, 128, 7134-7135.
${ }^{40}$ Examples or such borylations: (a) Newby, J. A.; Blaylock, D. W.; Witt, P. M.; Pastre, J. C.; Zacharova, M. K.; Ley, S. V.; Browne, D. L. Org Process Res Dev 2014, 18, 1211-1220. (b) Oppenheimer, J. Methods of isolating 4-chloro-2-fluoro-3-substituted-phenylboronic acids. US 20130030213 A1, 2013.
${ }^{41}$ Examples of reactions utilizing benzyne generated in this way: (a) Soorukram, D.; Qu, T.; Barrett, A. G. M. Org Lett 2008, 10, 3833-3835. (b) Riggs, J. C.; Ramirez, A.; Cremeens, M. E.; Bashore, C. G.; Candler, J.; Wirtz, M. C.; Coe, J. W.; Collum, D. B. J Am Chem Soc 2008, 130, 3406-3412.
${ }^{42}$ Del Grosso, A.; Carrillo, J. A.; Ingleson, M. J. Chem Commun 2015, 51, 2878-2881.
${ }^{43}$ Knochel, P. Metallic amidoborates for functionalizing organic compounds WO2012085169 A1, 2012
${ }^{44}$ Erb, W.; Hellal, A.; Albini, M.; Rouden, J.; Blanchet, J. Chem-Eur J 2014, 20, 6608-6612.
${ }^{45}$ Furukawa, T.; Tobisu, M.; Chatani, N. J Am Chem Soc 2015, 137, 12211-12214.
${ }^{46}$ Iverson, C. N.; Smith, M. R. J Am Chem Soc 1999, 121, 7696-7697.
${ }^{47}$ (a) Smith, M. R.; Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E. Jr. Science 2002, 295, 305-308. (b) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390-391. (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890-931.
${ }^{48}$ (a) Kawamorita, S.; Ohmiya, H.; Hara, K.; Fukuoka, A.; Sawamura, M. J Am Chem Soc 2009, 131, 5058-5059. (b) Ishiyama, T.; Isou, H.; Kikuchi, T.; Miyaura, N. Chem Commun 2010, 46, 159-161. (c) Boebel, T. A.; Hartwig, J. F. J Am Chem Soc 2008, 130, 7534-7535. (d) Roosen, P. C.; Kallepalli, V. A.; Chattopadhyay, B.; Singleton, D. A.; Maleczka, R. E.; Smith, M. R. J Am Chem Soc 2012, 134, 11350-11353. (e) Preshlock, S. M.; Plattner, D. L.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M. R. Angew Chem Int Edit 2013, 52, 12915-12919.

49 Previous computational studies showed the transition state of C-H activation exhibits a significant proton transfer characteristics, and experimental studies also suggest more acidic C-H bonds are favored for Ir catalyzed C-H activation/borylation: (a) Vanchura, B. A.; Preshlock, S. M.; Roosen, P. C.; Kallepalli, V. A.; Staples, R. J.; Maleczka, R. E.; Singleton, D. A.; Smith, M. R. Chem Commun 2010, 46, 7724-7726. (b) Tajuddin, H.; Harrisson, P.; Bitterlich, B.; Collings, J. C.; Sim, N.; Batsanov, A. S.; Cheung, M. S.; Kawamorita, S.; Maxwell, A. C.; Shukla, L.; Morris, J.; Lin, Z. Y.; Marder, T. B.; Steel, P. G. Chem Sci 2012, 3, 3505-3515.
${ }^{50}$ We also included Hunig's base as one of the solvent in the screening, due to its excellent performance in literature for borylation reactions: Preshlock, S. M.; Ghaffari, B.; Maligres, P. E.; Krska, S. W.; Maleczka, R. E.; Smith, M. R. J Am Chem Soc 2013, 135, 7572-7582.
${ }^{51}$ N-Ir-N angle for $\operatorname{Ir}($ Bpin $) 3$ dtbpy(coe) complex is 74.7°, ref $2(\mathrm{~b})$. Is that of box actually known?
${ }^{52}$ (a) Chan, K. S.; Tse, A. K. S. Synthetic Communications 1993, 23, 1929-1934. (b) Iyoda, M.; Otsuka, H.; Sato, K.; Nisato, N.; Oda, M. B Chem Soc Jpn 1990, 63, 80-87. (c) Furue, M.; Maruyama, K.; Oguni, T.; Naiki, M.; Kamachi, M. Inorg Chem 1992, 31, 3792-3795. (d) McFarland, S. A.; Lee, F. S.; Cheng, K. A. W. Y.; Cozens, F. L.; Schepp, N. P. J Am Chem Soc 2005, 127, 7065-7070.
${ }^{53}$ Li, H.; Oppenheimer, J.; Smith, M. R.; Maleczka, R. E. Tetrahedron Lett 2016, 57, 2231-2232.
${ }^{54}$ Synthesis and characterization of these compounds are also described in Smith, M. R. III,; Maleczka, R. E. Jr.; Li, H.; Jayasundara, C.; Oppenheimer, J.; Sabasovs, D. Methods for the selective borylation of arenes, including arenes substituted with an electron-withdrawing group. US2015/65743 A1, 2015.
${ }^{55}$ Synthesis and characterization of 2e' was also described in: Vrudhula, V. M. R. P.; Pan, S.; Rajamani, R.; Macor, J. E.; Bronson, J. J.; Dzierba, C. D.; Nara, S. J.; Karatholuvhu, M. S.; aryl ether-base kinase inhibitors. US2013/237555 A1, 2013.
${ }^{56}$ Synthesis and characterization of $2 \mathrm{f}^{\prime}$ ' was also described in: Epp, J. B.; Schmitzer, P. R.; Guenthenspberger, K. A.; Lo, W. C.; Siddall, T. L. 2-(Substituted phenyl)-6-amino-5-alkoxy, thioalkoxy and aminoalkyl-4-pyrimidinecarboxylates and their use as herbicides. Patent: US2009/62125 A1, 2009.
${ }^{57}$ (a) Synthesis and characterization of a compound structurally similar to 2 g was also described in: Matsuo, y.; Hisada, S.; Nakamura, Y.; Ahmed, F.; Walker, J. R.; Huntley, R. 1,5-Naphthyridine derivatives and melk inhibitors containing the same. WO2013/109388 A2, 2013. (b) Synthesis and characterization of 2g' was also described in: Newby, J. A.; Blaylock, D. W.; Witt, P. M.; Pastre, J. C.; Zacharova, M. K.; Ley, S. V.; Browne, D. L. Org Process Res Dev 2014, 18, 1211-1220.
${ }^{58}$ Synthesis and characterization of a compound structurally similar to 2 a was also described in: Sott, R.; Hawner, C.; Johansen, J. E. Tetrahedron 2008, 64, 4135-4142.
${ }^{59}$ Synthesis and characterization of 2c was also described in: Akama, T.; Balko, T. W.; Defauw, J. M.; Plattner, J. J.; White, W. H.; Winkle, J. R.; Zhang, Y.-K.; Zhou, Y. Boron-containing small molecules. US2013/131016 A1, 2013. Synthesis and characterization of 2c' was also described in: ref. 33
${ }^{60}$ Synthesis and characterization of 2d' was also described in: ref. 34(b)
${ }^{61}$ (a) Wang, C. Y.; Glorius, F. Angew Chem Int Edit 2009, 48, 5240-5244. (b) Tobisu, M.; Chatani, N. Angew Chem Int Edit 2009, 48, 3565-3568.
${ }^{62}$ (a) Iwadate, N.; Suginome, M. Org Lett 2009, 11, 1899-1902. (b) Noguchi, H.; Hojo, K.; Suginome, M. J Am Chem Soc 2007, 129, 758-759. (c) Noguchi, H.; Shioda, T.; Chou, C. M.; Suginome, M. Org Lett 2008, 10, 377-380.
${ }^{63}$ Molander, G. A.; Sandrock, D. L. J Am Chem Soc 2008, 130, 15792-+.
${ }^{64}$ (a) Gillis, E. P.; Burke, M. D. J Am Chem Soc 2007, 129, 6716-+. (b) Gillis, E. P.; Burke, M. D. J Am Chem Soc 2008, 130, 14084-+. (c) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J Am Chem Soc 2008, 130, 466-+.
${ }^{65}$ See Molander , G. A.; Sandrock, D. L. J. Am. Chem. Soc. 2008, 130, 15793 and references cited therein.
${ }^{66}$ Matteson, D. S.; Kim, G. Y. Org. Lett. 2002, 4, 2153.

