This is to certify that the
thesis entitled
STATE FORMULATION OF LARGE-SCALE LINEAR TIME-INVARIANT BOND GRAPH MODELS
presented by
Benjamin Moultrie
has been accepted towards fulfillment of the requirements for

Ph.D._degree in Mechanical Engineering

STATE FORMULATION OF LARGE-SCALE LINEAR TIME-INVARIANT BOND GRAPH MODELS
 By
 Benjamin Moultrie

A DISSERTATION

Submitted to
Michigan State University in partial fulfillment of the requirement for the degree of
DOCTOR OF PHILOSOPHY
Department of Mechanical Engineering
by

Benjamin Moultrie

In this dissertation, topology-based equations are developed which give the effort-flow basis order for the juncture structure transformation of an arbitrary weighted junction structure. These equations ae used to develop three upper bounds for the numberof distinct sets of port variables which can be used to specify weighted junction structure input-output relations. Each successive bound is shown to be numerically smaller and computationally more expensive than its predecessor. Examples are given which use the established bounds.

Also, a causal assignment procedure is specified which simplifies the state model formulation process for linear time-invariant bond graphs. This result is used to develop an efficient computer implemented state model formulator for linear time-invariant bond graphs. The key storage features and novel matrix manipulation procedures of this state model formulator are explored, and key computer subroutines are
given. The enhanced performance characteristics of this formulator are validated by computer test results.

ACKNOWLEDGMENTS

With apologies to Buffon:
For in those few men whose head is steady, whose heart is
compassionate, and whose sense is exquisite - there is
substance, thought and reason; there is the art of speaking
to the mind.
Thanks Doc.

TABLE OF CONTENTS

Page
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE ix
Chapter
I. INTRODUCTION. 1
1.1 Background 1
1.2 The Status Of Bond Graph Theory And Practice. 3
1.3 Research Highlights And Dissertation Organization. 5
II. BOND GRAPH JUNCTION STRUCTURES 8
2.1 Junction Structure Terminology And Notation. 8
2.2 Power Orientation 10
2.3 Analytic Properties Of Junction Structure Nodes 11
2.4 Basis Order Rules 12
2.5 Causal Concepts 15
2.5.1 Causal Assignment 16
2.5.2 Causal Completeness 16
2.5.3 Causal Consistency 16
2.5.4 Causal Extension. 17
2.6 Causal Complexes 20
III. STATE MODEL FORMULATION FOR LINEAR TIME-INVARIANT BOND GRAPHS. 28
3.1 Field Multiports 29
3.2 The Standard Sequential Causality Assignment Procedure 31
3.3 The State Model Formulation Algcrithm 32
IV. A COMPUTER IMPLEMENTED STATE MODEL FORMULATOR OF INCREASED EFFICIENCY 40
4.1 Design Features. 41
4.1.1 Data Structures. 41
4.1.2 Causal Assignment. 42
4.1.3 Determination of Junction Structure Reducibility 42
4.1.4 Junction Matrix Formulation. 43
4.1.5 Matrix Inversion 44
4.2 State Model Formulator Computer
Test Results 46
V. SUMMARY. 53
BIBLIOGRAPHY. 55
APPENDICES. 58
Appendix
A. DERIVATION OF THE BASIS ORDER RULES. 58
A. 1 Basis Order And Simple JunctionStructures58
A.1.1 Basis Order For Proper Simple Junction Structure Forests 58
A.1.2 Basis Order For Proper Simple Junction Structures. 66
A.1.3 Basis Order For Standard Simple Junction Structures. 69
A.1.4 Port Basis Order For Standard Simple Junction Structures 71
A. 2 Basis Order And Weighted Junction Structures 72
A.2.1 Basis Order For Standard Weighted Junction Structures 73
A.2.2 Port Basis Order For Standard Weighted Junction Structures 74
B. AN APPLICATION OF THE BASIS ORDER RULES. 80
B. 1 An Upper Bond For C As A Direct Application Of The Basis Order Rules 81
B. 2 A Refined Upper Bound For C. 84
C. THE RESOLUTION OF A CONFLICT RESULTING FROM A PORT BOND CAUSAL ORIENTATION. 92
D. THE IMPACT OF THE STANDARD SEQUENTIAL CAUSALITY ASSIGNMENT PROCEDURE (SSCAP) ON THE REDUCED JUNCTION MATRIX 94
Appendix Page
E. PRUNING AND SOME ASPECTS OF JUNCTION STRUCTURES 101
F. COMPUTER SUBROUTINES 107

LIST OF TABLES

Table Page
1 Analytic Properties Of Junction Structure Multiports 25
2 Analytic Properties Of Field Multiports (with exactly one incident bond) 35
3 Junction Matrix Storage For Test Examples 52
4 Processing Time For State Model Formulation 52
5 Subroutine For Causal Complex Identification 107
6 Subroutine For The Determination Of Causal Complex Solvability 110
7 Subroutine For The Computation Of The Reduced Junction Matrix. 115
8 Subroutine For The Construction Of The Junction Matrix 125
9 Subroutine For The Determination Of Junction Matrix Entry Position 129
10 Subroutine For Matrix Inversion. 130

LIST OF FIGURES

Figure Page
2.1 Generic categories of bond graph multiports 22
2.2 Junction structure examples. 23
2.3 Examples of power orientation. 24
2.4 All consistent causal forms for junction structure multiports 26
2.5 Examples of junction structure multiports with inconsistent causal forms 26
2.6 Example of a causal complex (shown in solid lines) 27
3.1 Consistent causal forms for field multiports 36
3.2 Diagram of the standard sequential causal assignment procedure. 37
3.3 The reduced junction matrix equation 38
3.4 The junction matrix equation 39
3.5 Derivation of the reduced junction matrix. 39
4.1 Example of a list pair with the corresponding matrix 49
4. 2 Test example 1 50
4.3 Test example 2 50
4.4 Test example 3 51
Figure Page
A. 1 A 1 -junction proper SJS. 76
A. 2 A 0 -junction proper SJS. 76
A. 3 Example of Lemma A. 1 construction procedure 77
A. 4 Transformation for converting a standard SJS to a proper SJS 79
A. 5 Transformation for converting a WJS to a SJS 79
B. 1 Example of a weighted junction structure 89
B. 2 Causally augmented weighted junction structure 90
B. 3 Unlabelled causal orientations of a weighted junction structure 91
D. 1 Symbolic bond graph representation with fields identified 98
D. 2 Example of subgraph generation by pruning 99
D. 3 Symbolic bond graph representation with source field pruned 100
E. 1 Junction structure with labelled nodes 105
E. 2 Example of the pruning procedure 106

NOMENCLATURE

A_{1} - number of external 1 -junctions
A_{0} - number of external 0 -junctions
B_{1} - sum of the degrees of the 1 -junctions
B_{0} - sum of the degrees of the 0 -junctions
E - number of independent effort variables
F - number of independent flow variables
N_{1} - number of 1 -junctions
N_{0} - number of 0 -junctions
N_{B} - number of bonds
N_{E} - number of independent (port) effort inputs
N_{F} - number of independent (port) flow inputs
N_{I} - number of internal bonds
N_{p} - number of port bonds
N_{T} - number of TF multiports
P_{1} - number of port bonds incident to 1 -junctions
P_{0} - number of port bonds incident to 0 -junctions

Note that $A_{1} \leq P_{0}$ and $A_{0} \leq P_{C}$.

I. INTRODUCTION

1.1 Background

Although very few dynamic systems are truly linear, they are frequently adequately approximated by linear models. This serves to decrease the system analysis effort, while yielding acceptable design results. In general, as dynamic systems increase in size and complexity, the creation and analysis of even linear models becomes an arduous and tedious task. Thus, the development of new and more powerful tools which can be used in the modeling and analysis process is necessarily a continuing effort.

Digital computers and linear simulation programs are proving to be essential tools in the designing of dynamic systems. The simulation of a system can be described as a procedure which begins with the development of a system model and continues with the "processing" of the model in order to infer the performance characteristics of the system under study [1].

In many engineering activities, the word 'model' has come to mean the description of a system in mathematical terms. Historically, the techniques used to obtain mathematical models have been given prominence in accordance with the engineering discipline of the system analyst. Consequently, numerous digital simulation programs have been developed which require as input a particular energy domain
description of the system to be studied. In order to be used for multiple energy domain systems, such programs generally require the development of system element analogies. This need to "reason by analogy" tends to make single-energy-domain simulation programs undesirable for the analysis and simulation of complex multiple-energydomain systems. Representative examples of single-energydomain digital simulation programs are NET-2 [2] and SPICE [3] for electrical circuits and systems, and DRAM [4] and MEDUSA [5] for dynamic mechanical systems. Additional examples of such specialized programs can be found in a 1975 volume of Shock and Vibration [6].

In contrast to the number of developed single-energydomain digital simulation programs, comparatively few simulation programs have been developed which accept as input a multiple-energy-domain description of a system. In developing multiple-energy-domain simulation programs, two approaches may be used.

The first approach is to develop a program which accepts more than one single-energy-domain element type as input. The SUPER*SCEPTRE program is a digital simulation program which uses this approach [7]. It accepts electrical system and mechanical system element types as inputs. In general, a desire for easy program implementation as well as constraines on program size limits the number of single-energy-domain element types which can be included as admissible inputs. Therefore, the value of this approach is limited.

The second approach is to develop a program based on a process which describesmany physical systems and uses a small number of basic elements. The ENPORT-4 program uses this approach [8].

ENPORT-4 is a digital simulation program which accepts as input a linear, time-invariant, multiple-energy-domain description of a physical system, and serves as a state model formulator-analyzer. The foundation for ENPORT-4 is the generalized energy-based modeling technique of bond graphs. This provides ENPORT-4 with its very desirable ability to treat all energy domains uniformly. An undesirable feature of ENPORT-4 is its generally large processing time requirement. This is largely due to ENPORT-4's inefficient state model formulator. This issue is addressed in this research.

1.2 The Status Of Bond Graph Theory And Practice

Traditionally, for physical systems, the concepts of energy and energy-flow have been important considerations in the development of system models. In 1960, Paynter introduced a novel multiport approach by which a system's energy characteristics can be explicitly exhibited and a system state model can be systematically obtained [9]. This is the method of bond graphs. A history of the process leading to its development is contained in Karnopp and Rosenberg [10]. The current situation regarding theory and practice is indicated by a bond graph bibliography compiled by Gebben [11].

The majority of bond graph oriented research has been
in the area of applicability. The concerns of this dissertation are in the areas of theory and methodology rather than applicability.

Works which relate directly to this research are the junction structure studies by Nobuhide [12], Ort and Martens [13], and Perelson [14]. Each study has as a prime objective the establishment of conditions for the solvability of junction structure algebraic loops.

In the Nobuhide study, a matrix representation of the junction structure is developed with the aid of junction structure power information, but without the aid of causal information. Specific blocks of this matrix are then manipulated to establish an algorithm by which loop solvability can be determined for a restricted class of junction structures.

Ort and Martens rely on junction structure power information and causal information to develop a junction structure matrix representation which is used to establish loop solvability conditions. They also establish an orthogonality relationship between particular types of junction structure equations.

Perelson also relies on junction structure power information and causal information to establish loop solvability conditions. His results are more extensive than those achieved by Ort and Martens. They are used in the state model formulation procedure which is discussed in Chapter IV. In the process of deriving loop solvability conditions,
each of the above works partially realizes the "basis order rules" developed in this research. The broader results presented here are complete and developed without the aid of junction structure power information or causal information.

An important work to be noted is the state model formulation algorithm by Rosenberg [15]. This algorithm is the foundation for the state model formulator in Chapter IV.

An additional work to be noted is the publication by van Dixhoorn which demonstrates how block-diagram-oriented digital simulation languages can be adapted for the interactive simulation of nonlinear bond graphs on minicomputers [16]. For linear or nonlinear bond graphs, the procedure described requires that the analyst augment the graph in terms of power and causality, resolve algebraic loops and uncertainties, and define specific element blocks. For the analyst, this graph analysis problem increases in difficulty as the bond graph increases in size and complexity. Although it processes only linear-time invariant bond graphs, ENPORT-4 does not require the analyst to analyze the graph. For this reason and because of the great utility of linear simulation programs, methods for increasing the efficiency of ENPORT-4 were of concern in this research.
1.3 Research Highlights And Dissertation Organization

The results of this research can be divided into the categories of (1) bond graph theory and (2) bond graph methodology. The first category encompasses the results
in Chapters II and III, and the second category encompasses the results in Chapter IV.

The key research results can be highlighted by delineating the major aspects of each chapter. The major aspects of Chapter II are

1) the graph theoretic development of junction structures (from the node set $\{0,1, T F, G Y\}$) and introduction to standard junction structure concepts;
2) the introduction of new results for weighted junction structures (the basis order rules and an upper bound for the number of distinct bases for a junction structure transformation);
3) the precise defining of causal concepts;
4) the precise defining of causal complexes in bond graph terms.

The major aspects of Chapter III are

1) the specification of SSCAP (the standard sequential causality assignment procedure);
2) the verification of the simplifying influence which SSCAP has on the form of the reduced junction matrix.

The major aspects of Chapter IV are

1) the presentation of a new sparse-matrix-based state model formulator which implements some results achieved in Chapters II and III, and employs the novel sparse matrix inversion subroutine INPRD (INverse-PRoDuct);
2) the results of a performance study (for the new state
model formulator) which considers computer storage and processing time requirements for three test bond graphs. The research results are summarized in Chapter V, and all proofs and computer subroutines are in the appendices for the sake of brevity.

II. BOND GRAPH JUNCTION STRUCTURES

Bond graphs are graphs whose nodes are called multiports and whose edges are called bonds. The terms "node" and "multiport" will be used interchangeably in the subsequent development. The principal categories of bond graph multiports are shown in Figure 2.1. A discussion on the field multiports (sources, storages, and dissipators) is deferred until Chapter III. This chapter develops standard bond graph junction structure terminology and notation, and extends such where necessary. In this development, graph theory concepts and terminology are employed. Since there is a broad range of terminology in the graph theory literature, textbooks by Busacker and Saaty [17] and Harary [18] are cited as references.
2.1 Junction Structure Terminology And Notation

A junction structure is comprised of bond graph multiports which represent the features of a dynamic system which neither store energy, supply power, or dissipate power. In standard bond graph notation, these multiports are represented by the elements of the set $\{0,1, T F, G Y\}$. The multiport "0" is called "zero" of "0-junction" (zerc junction). The multiport "1" is called a "one" or "1-junction" (one-junction). The "TF" multiport is called a "transformer", and the "GY" multiport is called a "gyrator". As a mathematical
convenience, the node "EN" is introduced and will be added to the set $\{0,1, T F, G Y\} ;$ it will be called the "environment node". The elements of the set $\{0,1, T F, G Y, E N\}$ will be generally referred to as "junction structure nodes". Definition: A bond is an unordered pair $b=(v, w)=(w, v)$ where v and w are distinct junction structure nodes.

This definition restricts self-loops from being classified as bonds, e.g., (v, v) is not a bond. For the purpose of model analysis, it is useful to distinguish between types of bonds.

Definition: A port bond is a bond which is incident to an EN-node.

A port bond is also called an "external" bond.
Definition: An internal bond is a bond which is not incident to an EN-node.

The concept of a junction structure can now be defined. Definition: A junction structure G is a finite set, V_{G}, of junction structure nodes together with a set of bonds, X_{G}, such that if $b \varepsilon X_{G}$, then there exist $v, w \in V_{G}$ so that $b=(v, w)$.
The shorthand notation "JS" will substitute frequently for the phrase "junction structure" in the balance of this dissertation. Various types of JS's can be defined. Definition: A standard junction structure is a JS in which (1) every junction (0-junction or l-junction) has degree greater than or equal to two,
every TF-node and GY-node has degree equal to two, and (3) every $E N$-node has degree aqual to one and is adjacent to a nonenvironment JS node.
Hereafter, unless otherwise stated, all JS's will be considered to be standard.

Definition: A simple junction structure is a JS which contains only elements from the set $\{0,1, E N\}$ and their incident bonds.

A simple junction structure will be denoted by "SJS".
Two subclasses of SJS's are "tripartite" and "proper".
Definition: A tripartite simple junction structure is a
SJS in which every internal bond b has the form $b=(1,0)$, and every external bond d has the form $d=(1, E N)$ or $d=(0, E N)$.
Definition: A proper simple junction structure is a SJS which is tripartite and standard.

Definition: A weighted junction structure is a JS which contains only elements from the set $\{0,1, E N, T F\}$ and their incident bonds.

A weighted junction structure will be denoted by "WJS". Examples of JS's are shown in Figure 2.2 Properties of JS's can be obtained from several publications [12-14, 19-24].

2.2 Power Orientation

Two conjugate variables or signals are associated with each bond in every JS [25]. These are known as an "effort" variable and a "flow" variable, and are denoted by the symbols
"e" and "f" respectively. The effort and flow variables are scalar functions of an independent variable, taken to be time. Definition: The power associated with the bond b is the function given by

$$
P(t)=e(t) \cdot f(t)
$$

where e and f are the respective effort and flow variables of b.

The bond variables e and f are frequently called 'power variables'.

Definition: The power orientation of a bond b is the sense of direction (with respect to b's incident nodes) of b's power function.

The power orientation of a bond is indicated graphically by placing half of an arrow-head on the bond-end which is defined by the node to which the positive sense of power is directed. This graphical procedure is illustrated by example in Figure 2.3. The interpretation of the graphical procedure is identical to that illustrated for any pair of JS nodes.

2.3 Analytic Properties Of Junction Structure Nodes

Except for the EN-node, which is used as a bond terminator, each JS node algebraically constrains the effort and flow variables of its incident bonds. At a 0 -junction, effort variables are identical and flow variables sum to zero; this is analogous to vertex relations in electrical circuit analysis. At a l-junction, flow variables are
identical and effort variables sum to zero; this is analogous to loop relations in electrical circuit analysis. The algebraic signs in the variable constraint equations are determined by the power orientation associated with each bond [25]. A detail description of all JS node variable relations is contained in Table 1.

2.4 Basis Order Rules

In studying systems using bond graphs, it is important to develop a well-defined analytic input-output relation for the JS. This relation is referred to as the "JS transformation". Conditions for its existence have been developed by Nobuhide [12], Ort and Martens [13], Perelson [14], and Rosenberg and Andry [19,20].

Before the JS transformation can be analytically defined, a basis for it must be specified. Algebraic equations which determine the number and types of basis variables suitable for expressing the JS transformation for a WJS have resulted from this research. These WJS topology-based equations are called the "basis order rules". Employing the given nomenclature, the basis order rules are presented here as Theorem 1 and Theorem 2 for the cases of SJS's and WJS's respectively. Also, associated corollaries are given. Theorem 1: Every standard SJS satisfies the relations
(i) $\mathrm{E}=\mathrm{N}_{\mathrm{B}}+\mathrm{N}_{0}-\mathrm{B}_{0}-\mathrm{N}_{1}$
and
(ii) $\mathrm{F}=\mathrm{N}_{\mathrm{B}}+\mathrm{N}_{1}-\mathrm{B}_{1}-\mathrm{N}_{0}$.

Corollary 1.1: Every proper SJS satisfies the relations
(i) $E=N_{0}+P_{1}-N_{1}$
and
(ii) $\mathrm{F}=\mathrm{N}_{1}+\mathrm{P}_{0}-\mathrm{N}_{0}$.

Corollary 1:2: Every standard SJS satisfies the relations
(i) $N_{E}=N_{B}+N_{0}-B_{0}-N_{1}$
and
(ii) $N_{F}=N_{B}+N_{1}-B_{1}-N_{0}$.

Theorem 2:
Every standard WJS satisfies the relations
(i) $E=N_{B}+N_{0}-B_{0}-N_{1}-N_{T}$
and
(ii) $F=N_{B}+N_{1}-B_{1}-N_{0}-N_{T}$

Corollary 2.1: Every standard WJS satisfies the relations
(i) $N_{E}=N_{B}+N_{0}-B_{0}-N_{1}-N_{T}$
and
(ii) $\quad N_{F}=N_{B}+N_{1}-B_{1}-N_{0}-N_{T}$.

The above theorems and corollaries are formally developed in Appendix A.

In Appendix B, the basis order rules are used to develop three predictors of the number of distinct basis variable sets which a WJS transformation may possess. The most accurate of these predictors is given here in Theorem 3.

Theorem 3: The number of distinct basis variable sets for a WJS transformation is bounded above by

$$
\begin{aligned}
& \quad U_{2}=\sum_{e}^{M_{E}} L_{E}\binom{A_{0}}{e}\binom{N_{1}}{N_{F}-P_{0}+e}=\sum_{f=L_{F}}^{M_{F}}\left(\begin{array}{c}
A_{0}-P_{1}+f
\end{array}\right)\binom{A_{1}}{f} \\
& \text { where } M_{E}=\min \left(N_{E}, A_{0}\right), L_{E}=\max \left(0, N_{E}-P_{1}\right), M_{F}= \\
& \min \left(N_{F}, A_{1}\right) \text {, and } L_{F}=\max \left(0, N_{F}-P_{0}\right) .
\end{aligned}
$$

Application of the basis order rules yields the number of effort inputs and flow inputs which can be independently specified for a given WJS. Rosenberg has shown that a JS which does not contain an "essential" gyrator is equivalent to a WJS by a transformation process [24]. Thus, the basis order rules can be extended to any JS which does not contain an essential gyrator.

Consider the application of Corollary 1.2 to an arbitrary proper SJS cycle, say C, with incident port bonds. Then the following interpretation (which employs the conceptof causality) of the resulting numbers N_{E} and N_{F} is based on the publications of Ort and Martens [13] and Perelson [14]; although their results are for proper SJS cycles, the results can be readily extended to include a union of WJS cycles.

The following notation is used by Perelson for cycle quantities:
$N_{f} \equiv$ the number of linearly independent flow equations;
$J_{+} \equiv$ the number of junction causal port bonds;
$J_{\text {. }} \equiv$ the number of environment causal port bonds.
Note that $J_{+}+J_{-}=N_{p}$. From the above publications, $\left(N_{f}\right)_{\text {max }}=J_{+}+N_{I}$ and $\left(N_{f}\right)_{\max }=N_{0}+B_{1}-N_{1}$, where C is an
n-port if and only if $N_{f}=\left(N_{f}\right)_{\text {max }}$, i.e., the JS transformation for C exists if and only if $N_{f}=\left(N_{f}\right)_{\max }$.

Suppose $N_{F}<0$. Then

$$
N_{F}<0 \rightarrow N_{0}+B_{1}-N_{1}>N_{B} \rightarrow N_{f}<\left(N_{f}\right)_{\max }=N_{0}+B_{1}-N_{1}
$$

since $N_{f} \leq N_{B}$. Therefore, $N_{f}<0$ implies that C is not an n-port. Suppose $N_{F}=0$ where $N_{f}=\left(N_{f}\right)_{\max }$. Then

$$
\begin{aligned}
& N_{F}=0 \rightarrow 0=N_{B}-\left(N_{0}+B_{1}-N_{1}\right)=N_{B}-\left(J_{+}+N_{I}\right) \\
= & \left(P_{1}+P_{0}\right)-J_{+}=N_{P}-J_{+} \rightarrow J_{+}=N_{P} \rightarrow J_{-}=0
\end{aligned}
$$

Therefore, $N_{F}=0$ implies that C is not an n-port (this conclusion represents an exclusion of a case where C acts like a source of flow to its environment [26]). Similarly, $\mathrm{N}_{\mathrm{E}} \leq 0$ implies that C is not an n-port. Thus, in order for C to be an n-port, it is necessary that $0<N_{E}, N_{F}<N_{p}$. In this context, the basis order rules can be applied as a preliminary test to determine if a bond graph model may have a "physical realization'.

2.5 Causal Concepts

In addition to power orientations, a JS can be further augmented by associating with each bond an "input-output" notion of directed flow and effort variables; this is the concept of "causality" [25].

Definition: The causal orientation of a bond b is the sense of causality associated with b.

A causally oriented bond identifies its effort variables as an input to one incident node, and identifies its flow
variable as an input to the remaining incident node; thus, it provides bi-directional input (and output) information. Definition: The causal form of a JS is the assemblage of the causal orientations of its bonds.
2.5.1 Causal Assignment
"Assigning causality" to a JS is the graphical process of causally orienting its bonds. A bond's causal orientation is indicated graphically by placing a short stroke (called a "causal stroke") perpendicular to the bond at the bond-end incident to the node of effort variable input. Thus, the bond-end without the causal stroke is incident to the node of flow variable input.

2.5.2 Causal Completeness

Definition: A bond is acausal if it has not been causally oriented.

Definition: A JS is acausal if all of its bonds are acausal.
Definition: A JS node is causally complete if none of its incident bonds are acausal.

Definition: A JS is causally complete if all of its nodes are causally complete.

2.5.3 Causal Consistency

Definition: The causal form of a node is consistent if it does not violate any of the constraints defined by the node's algebraic properties.

Definition: The causal form of a node is inconsistent or in conflict if it is not consistent.

Definition: The causal form of a JS is consistent if the the causal form of each of its nodes is consistent.

Definition: The rausal form of a JS in inconsistent or in conflict if it is not consistent.

The consistent causal forms for JS nodes are given in Figure 2.4. Examples of node inconsistent causal forms are given in Figure 2.5.

Remark 2.1: The causal form of a node is inconsistent if and only if the number of flow inputs (outputs) or effort inputs (outputs) specified by it is in violation of the node's algebraic properties.
2.5.4 Causal Extension

Prior to the discussion on the extension of causality, the preliminary concept, of "causal implication" is introduced. Definition: Given $a \operatorname{node} v$ and incident bond b, b has strong causal implication (with respect to v) if its causal orientation specifies an effort input to v where v is a 0 -junction, or a flow input to v where v is a 1 -junction, or either input to a TF-node or GY-node.

Definition: A causally oriented bond has weak causal implication (with respect to a given incident node) if it does not have strong causal implication.
The concept of causal implication proves to be useful when considering causal extension procedures.

Remark 2.2: For any node having only acausal incident bonds, if any bond is given a causal orientation with strong causal implication, or if all bonds but one are given causal orientations with weak causal implication, then the JS node can be causally completed in a consistent manner by observing the node's algebraic or causal assignment properties.

The causal extension concept can now be introduced. Consider a JS node which is causally completed by an effort or a flow input. This node defines an input to each of its adjacent nodes. In turn, these inputs contribute to the causal completion of additional nodes, and may result in additional causally complete nodes. Thus, a causally complete node results in the propagation of causal information. Definition: The extension of causality or causal extension process is the propagation of causal information in accordance with the algebraic properties of the JS nodes.

It should be emphasized that the causal extension process implies the propagation of causal information until no additional nodes can be causally completed using the effort and flow inputs which are known.

Remark 2.1 and the causal assignment properties of JS nodes reveal two properties of the causal extension process as applied to a causal orientation of an external bond b.

Property 2.1: If the initial causal orientation and subsequent causal extension of b results in a node causal conflict, then the reversal of b's causal orientation (followed by causal extension) does not yield a node causal conflict.

Property 2.2: If the initial causal orientation and subsequent causal extension of b results in a node causal conflict, then sufficient prior input information was available to determine the variables associated with b in an implicit manner.

Property 2.1 is proven in Appendix C. Property 2.2 follows directly from Remark 2.1 and Property 2.1.

Additional properties of the causal extension process can also be given; each is stated without remark. Property 2.3: In JS trees the extension of a causal orientation never yields causally inconsistent nodes, since there is a unique path between distinct nodes in a tree graph.

Property 2.4: If the causal extension process terminates at a nonenvironment JS node without causally completing the given JS node, then the node is a junction (0 or 1) of degree greater than two; it has at least two incident acausal bonds after the termination of the causal

extension process.

Henceforth, unless otherwise stated, all causal orientations will be assumed to be followed by the causal extension process.

2.6 Causal Complexes

A measure of the versatility of a simulation program is its ability to identify and resolve algebraic loops. When using a bond graph as a modeling tool, algebraic loops appear graphically as "causal complexes" in the junction structure.

Consider an arbitrary JS, say G. Suppose that G has a complete and consistent causal form which can be realized by a sequential causality assignment process in which the causal orientation of external bonds is given priority. Assume the causal orientation (by the sequential process) of the external bonds of G does not causally complete G.

Definition: A causal complex in G is a set, C, of acausal bonds and their incident nodes such that every pair of distinct nodes in C is joined by a path in C.

Definition: A causal complex is maximal if it is not contained in any distinct causal complex.

In bond graph literature, a causal complex is called a "causal loop" if it is a cycle. For the sake of brevity, all causal complexes will be considered to be maximal. An example of a causal complex is given in Figure 2.6.

In mathematical terms, the occurrence of a causal complex
represents an implicit relationship between JS variable sets, i.e., an algebraic loop.

Definition: A causal complex is solvable if it can be represented by a nonsingular matrix of the form (I-L) where I is the identity matrix and L is a matrix determined by the algebraic constraint equations of the nodes in the complex.

The solvability of causal complexes has been studied by several workers [12-14,19,20]. It has been shown by Ort and Martens that the solvability of causal complexes is a necessary and sufficient condition for the existence of the JS transformation. This condition is employed in the state model formulation procedure discussed in Chapter IV.

Figure 2.1. Generic categories of bond graph multiports.

Figure 2.2. Junction structure examples. (a) SJS tree. (b) WJS tree. (c) JS containing a cycle.

$$
\mathrm{EN} \longrightarrow \mathrm{l} \longrightarrow 0 \longrightarrow \mathrm{EN}
$$

Figure 2.3. Example of power orientation. Positive sense of power is directed from the l-junction to the 0 -junction.

Table 1. Analytic Properties of Junction Structure Multiports.
Multiport Degree Properties
(i) Admits exactly one flow variable as an input.
(ii) If f_{k} is the single flow variable input, then $f_{i}=f_{k}$, where $i=1,2, \ldots$, m and $i \neq k$.
(iii) If f_{k} is the flow variable input, then

$$
\mathrm{e}_{\mathrm{k}}=\sum_{\substack{\mathrm{i}=1 \\ \mathrm{i} \neq \mathrm{k}}}^{\mathrm{m}} \sigma_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}
$$

where $\sigma_{i}= \pm 1$ depending upon the power orientation of bond b_{i}.
(i) Admits exactly one effort variable as an input.
(ii) If e_{k} is the single effort variable input, then $e_{i}=e_{k}$, where $i=1,2$, \ldots, m and $i \neq k$.
(iii) If e_{k} is the effort variable input, then

$$
\mathrm{f}_{\mathrm{k}}=\sum_{\substack{\mathrm{i}=1 \\ \mathrm{i} \neq \mathrm{k}}}^{\mathrm{m}} \sigma_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}
$$

where $\sigma_{i}= \pm 1$ depending upon the power orientation of bond b_{i}.

Junctions:
$\underbrace{26}_{\substack{\text { Exactly one } \\ \text { effort input }}}$

Exactly one flow input

Transformer:

Exactly one flow input and one effort input.

Gyrator:

> Exactly two
> flow inputs

> Exactly two effort inputs

Figure 2.4. All consistent causal forms for junction structure multiports.

Defines one flow input and one effort input

Defines two flow inputs

Does not define an effort input

Figure 2.5. Examples of junction structure multiports with inconsistent causal forms.

Figure 2.6. Example of a causal complex (shown in solid lines).

III. STATE MODEL FORMULATION FOR LINEAR TIME-INVARIANT BOND GRAPHS

Bond graph digital simulation programs have proven to be particularly important contributions to the arsenal of the design engineer. Among their many attractive features, such programs treat all energy domains uniformly. This feature significantly reduces the design effort for multiple-energydomain systems.

Currently, there are two computer procedures for bond graph simulation which have appeared in bond graph literature. The first procedure is the ENPORT program [8]. ENPORT is a digital program for the simulation of linear time-invariant bond graphs. It is a state model formulator-analyzer. Presently, it is in use at several academic and industrial installations in various localized versions. The second procedure is based on the adaptation of a block-diagram-oriented digital simulation language so that it can be used to interactively simulate nonlinear bond graphs. It is described in a publication by van Dixhoorn [r6]. The procedure requires the system analyst to augment the graph in terms of power and causality, resolve algebraic loops and uncertainties, and define specific element blocks. For the analyst, this graph analysis process increases in difficulty as the bond graph increases in size and complexity. The ENPORT program does not require the analyst to analyze the graph. For this reason
and because of the great utility of linear time-invariant simulation programs, only the ENPORT program will be considered here.

In the computer simulation of systems, the fundamental phase is the development of a mathematical model. For bond graph modeled systems, an algorithm for the formulation of a mathematical model (in state-space form) has been developed by Rosenberg [15]. Prior to the discussion of the algorithm for linear time-invariant bond graphs, it is necessary to introduce the bond graph field multiports, and define a causality assignment procedure.

3.1 Field Multiports

Through its multiports and bonds, a bond graph model provides a graphical representation of a physical system's power exchanges. The multiports used in the modeling process are contained in the set $\{0,1, T F, G Y, S E, S F, C, I, R\}$ where SE, $S F, C, I$, and R topologically replace the environment node in the formation of external bonds. The multiports "SE" and "SF" represent independent power suppliers; they are called "effort source" and "flow source" respectively. The multiports "C" and "I" represent energy storages; they are called "capacitance" and "inertance" respectively. The mulport "R" is called a "resistance" and represents power dissipation. It will be assumed that no two field multiports are adjacent in bond graph models. An analytic description of each field multiport is contained in Table 2.

Frequently, an external bond is referred to by the type of field multiport to which it is incident, e.g., an external bond which is incident to a storage multiport is referred to as a "storage" bond. This convention will be assumed here. Examples of consistent causal forms for each field multiport are given in Figure 3.1. The only consistent causal orientations for source bonds are those illustrated in Figure 3.1. In general, any causal form is consistent for the multiports C, I, and R.

Definition: The causal orientation of a storage bond is integral if it specifies a flow input to a C-multiport or an effort input to an I-multiport.

Definition: The causal orientation of a storage bond is derivative if it is not integral.

In the state model formulation algorithm, only those storage bonds with an integral causal orientation are identified with system state variables; it is these variables which contribute to a basis for the JS transformation. See Karnopp and Rosenberg for a more detailed discussion [25]. Now that the set of bond graph multiports has been completed, a causality assignment procedure can be formalized.
3.2 The Standard Sequential Causality Assignment Procedure

The manner in which a bond graph is causally completed can influence the selection of system state variables and the process by which a system state model is derived. A systematic causal completion procedure is given in Figure 3.2 which simplifies the state model formulation procedure. It will be referred to as the "standard sequential causal assignment procedure" (SSCAP) and may be found in Karnopp and Rosenberg [25]. The diagram in Figure 3.2 assumes that each causal orientation is followed by the causal extension process, and the reversal of a bond's causal orientation is preceded by the restoration of the bond graph to the causal form possessed prior to the initial causal orientation of that bond.

By its design, SSCAP assures that energy related variables are given priority over other system physical variables for consideration as system state variables. Another important feature of SSCAP is the significant impact it has on the form of the JS transformation which is often referred to as the "reduced junction matrix". The reduced junction matrix equation and associated vector definitions are given in Figure 3.3. It is shown in Appendix D that the S_{22}, S_{23}, and S_{32} blocks of the reduced junction matrix are zero as a consequence of Property 2.2 and SSCAP. This extends and validates conjectures made by Rosenberg [15]. These results simplify the state model formulation algorithm for linear timeinvariant systems.

3. 3 The State Model Formulation Algorithm

The state model formulation stage is the central phase in the computer simulation of bond graphs. The current formulation procedure for the ENPORT program is based on the state model formulation algorithm developed by Rosenberg [15]. This algorithm also serves as the foundation for the formulation procedure discussed in Chapter IV. Referring to the matrix equation in Figure 3.3, the state model formulation algorithm can be summarized as defining a procedure by which the reduced junction matrix equation can be resolved to an equation which expresses \underline{X}_{i} in terms of $\underline{x}_{i}, \underline{U}$, and \underline{U} where $\underline{\dot{x}}_{i}$ and $\underline{\dot{U}}$ are the time derivatives of \underline{x}_{i} and \underline{U} respectively.

Prior to the development of the reduced junction matrix it is necessary to construct a matrix from which all junction structure node equations can be obtained. This is accomplished with the aid of junction structure causal and power information, and by ordering the junction structure effort variables and flow variables. The resulting matrix is called the "junction" matrix, its implied equation is given in Figure 3.4 with associated vector definitions. The reduced junction matrix is obtained by expressing $\underline{V}_{\text {out }}$ in terms of $\underline{V}_{i n}$, i.e., eliminating $\underline{V}_{i n t}$ from the junction matrix equation. This process is illustrated in Figure 3.5. The matrix $\left[S_{1}+\right.$ $S_{2}\left(I-S_{4}\right)^{-1} S_{3}$] is then partitioned to give to the form of the reduced junction matrix illustrated in Figure 3.3.

The reduced junction equation can be expanded into the following equations,

$$
\begin{align*}
& \underline{\dot{x}}_{i}=S_{11-} \underline{i}_{i}+S_{12} \underline{\underline{x}}_{d}+S_{15-\underline{D}_{o u t}}+S_{14 \underline{U}} \tag{4}\\
& \underline{Z}_{\mathrm{d}}=\mathrm{S}_{21 \underline{Z}_{\mathrm{i}}}+\mathrm{S}_{24 \underline{U}} \tag{5}\\
& \underline{D}_{\text {in }}=S_{31} \underline{Z}_{i}+S_{33-D_{\text {out }}}+S_{34} U \tag{6}
\end{align*}
$$

where the expression for \underline{V} is not of interest. Coupled to the above equations are relations for the field multiports which are obtained from parameter and causal information,

$$
\begin{align*}
\underline{z}_{i} & =F_{11} \underline{x}_{i}+F_{12} \underline{x}_{\mathrm{d}} \tag{7}\\
\underline{z}_{\mathrm{d}} & =\mathrm{F}_{12} \underline{x}_{\mathrm{i}}+\mathrm{F}_{22} \underline{x}_{\mathrm{d}} \tag{8}\\
\underline{D}_{\text {out }} & =\mathrm{LD}_{\mathrm{in}} \tag{9}
\end{align*}
$$

The first step in the process of reducing these equations to state form is to replace \underline{Z}_{i} in (4), (5), and (6) by (7). Also, replace \underline{Z}_{d} in (5) by (8). Then collecting terms in (4) and (6), and solving for \underline{X}_{d} in (5) yields

$$
\begin{align*}
& \underline{x}_{i}=S_{11} F_{11} \underline{x}_{i}+S_{11} F_{12} \underline{x}_{d}+S_{12} \underline{\dot{x}}_{d}+S_{13} \underline{D}_{o u t}+S_{14-U} \tag{10}\\
& \underline{X}_{d}=T_{1} \underline{X}_{i}+T_{2} \underline{U} \tag{11}\\
& \underline{D}_{i n}=S_{31} F_{11} \underline{X}_{i}+S_{31} F_{12} \underline{X}_{d}+S_{33} \underline{D}_{o u t}+S_{34} \underline{U} \tag{12}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{T}_{1}=\left(\mathrm{F}_{22}-\mathrm{S}_{21} \mathrm{~F}_{12}\right)^{-1}\left(\mathrm{~S}_{21} \mathrm{~F}_{11}-\mathrm{F}_{21}\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{2}=\left(\mathrm{F}_{22}-\mathrm{S}_{21} \mathrm{~F}_{12}\right)^{-1} \mathrm{~S}_{24} \tag{14}
\end{equation*}
$$

Next replace \underline{X}_{d} and $\underline{D}_{\text {out }}$ in (10) and (12) by (11) and (9) respectively. This yields the following equations for X_{i} and $\underline{D}_{i n}$,

$$
\begin{align*}
& \dot{\underline{x}}_{\mathrm{i}}=\mathrm{S}_{11}\left(\mathrm{~F}_{11}+\mathrm{F}_{12} \mathrm{~T}_{1}\right) \underline{\mathrm{X}}_{\mathrm{i}}+\mathrm{S}_{12} \dot{\mathrm{X}}_{\mathrm{d}}+\mathrm{S}_{13} \underline{L D}_{i n}+\left(\mathrm{S}_{11} \mathrm{~F}_{12} \mathrm{~T}_{2}+\mathrm{S}_{14}\right) \underline{U} \tag{15}\\
& \underline{\mathrm{D}}_{\mathrm{in}}=\mathrm{T}_{3} \underline{\mathrm{X}}_{\mathrm{i}}+\mathrm{T}_{4} \mathrm{U} \tag{16}
\end{align*}
$$

where

$$
\begin{equation*}
T_{3}=\left(I-S_{33} L\right)^{-1}\left(F_{11}+F_{12} T_{1}\right) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{T}_{4}=\left(\mathrm{I}-\mathrm{S}_{33} \mathrm{~L}\right)^{-1}\left(\mathrm{~S}_{31} \mathrm{~F}_{12} \mathrm{~T}_{2}+\mathrm{S}_{34}\right) . \tag{18}
\end{equation*}
$$

For the final step, replace $\underline{D}_{\text {in }}$ in (15) by (16), and use to eliminate $\dot{\underline{x}}_{d}$ in (15). Then solving for $\dot{\underline{x}}_{i}$ yields the system state model,

$$
\begin{equation*}
\dot{\underline{x}}_{i}=A \underline{X}_{i}+B \underline{U}+E \underline{U} \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\left(I-S_{12} \mathrm{~T}_{1}\right)^{-1}\left[\mathrm{~S}_{11}\left(\mathrm{~F}_{11}+\mathrm{F}_{12} \mathrm{~T}_{1}\right)+\mathrm{S}_{13} \mathrm{LT}_{3}\right] \tag{20}\\
& B=\left(\mathrm{I}-\mathrm{S}_{12} \mathrm{~T}_{1}\right)^{-1}\left(\mathrm{~S}_{11} \mathrm{~F}_{12} \mathrm{~T}_{2}+\mathrm{S}_{13} \mathrm{LT}_{4}+\mathrm{S}_{14}\right) \tag{21}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{E}=\left(\mathrm{I}-\mathrm{S}_{12} \mathrm{~T}_{1}\right)^{-1} \mathrm{~S}_{12} \mathrm{~T}_{2} . \tag{22}
\end{equation*}
$$

Some imporiant aspects of the computer implemention of this state model formulation algorithm are explored in Chapter IV.

Table 2. Analytic Properties of Field Multiports (with exactly one incident bond)

Multiport	Properties
SE	Defines the associated effort variable as independent, i.e., $e=e(t)$.
SF	Defines the associated flow variable as independent, i.e., $f=f(t)$.
C	Defines the associated effort variable as $e=\Phi(q)$ for * $q(t)=q\left(t_{0}\right)+\int_{t_{0}}^{t} f(\lambda) d \lambda$ where f is the flow variable associated with C.
I	Defines the associated flow variable as $f=\Psi(q)$ for ${ }^{*} p(t)=p\left(t_{0}\right)+\int_{t_{0}}^{t} e(\lambda) d$ where e is the effort variable associated with I.
R	For the associated effort and flow variables, $\equiv(e, f)=0$.

*q is called a "generalized displacement", and p is called a "generalized momentum".

Sources:

SF

Storages:

Dissipation:

Figure 3.1. Consistent causal forms for field multiports.

Figure 3.2. Diagram of the standard sequential causal assignment procedure

$$
\left[\begin{array}{l}
\underline{\mathrm{x}}_{\mathrm{i}} \\
\underline{\mathrm{z}}_{\mathrm{d}} \\
\underline{\mathrm{D}}_{\mathrm{in}} \\
\underline{\mathrm{~V}}
\end{array}\right]=\left[\begin{array}{llll}
\mathrm{s}_{11} & \mathrm{~s}_{12} & \mathrm{~s}_{13} & \mathrm{~s}_{14} \\
\mathrm{~s}_{21} & \mathrm{~s}_{22} & \mathrm{~s}_{23} & \mathrm{~s}_{24} \\
\mathrm{~s}_{31} & \mathrm{~s}_{32} & \mathrm{~s}_{33} & \mathrm{~s}_{34} \\
\mathrm{~s}_{41} & \mathrm{~s}_{42} & \mathrm{~s}_{43} & \mathrm{~s}_{44}
\end{array}\right]\left[\begin{array}{l}
\underline{\mathrm{z}}_{\mathrm{i}} \\
\dot{\mathrm{x}}_{\mathrm{d}} \\
\underline{\mathrm{D}}_{\mathrm{out}} \\
\underline{\mathrm{U}}
\end{array}\right]
$$

$\dot{\mathrm{x}}_{\mathrm{i}} \quad$ - vector of inputs to independent storage elements
$\underline{Z}_{\mathrm{d}}$ - vector of inputs to dependent storage elements
$\underline{D}_{\mathrm{in}}$ - vector of inputs to the dissipation elements
V - vector of inputs to the source elements
\underline{Z}_{i} - vector of outputs from the independent storage elements
$\dot{\underline{x}}_{d} \quad$ - vector of outputs from the dependent storage elements
$\mathrm{D}_{\text {out }}$ - vector of outputs from the dissipation elements
$\underline{\mathrm{U}} \quad$ - vector of outputs from the source elements

Figure 3.3. The reduced junction matrix equation.

$$
\left[\begin{array}{l}
\underline{v}_{\text {out }} \\
\underline{v}_{\text {int }}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{S}_{1} & \mathrm{~S}_{2} \\
\mathrm{~S}_{3} & \mathrm{~S}_{4}
\end{array}\right]\left[\begin{array}{l}
\mathrm{v}_{\mathrm{in}} \\
\underline{v}_{\mathrm{int}}
\end{array}\right]
$$

$\underline{v}_{\text {in }}$ - vector of all inputs to the junction structure
vint $^{\text {- vector of all junction structure internal variables }}$
$\underline{v}_{\text {out }}$ - vector of all outputs from the junction structure

Figure 3.4. The junction matrix equation

$$
\begin{aligned}
& \underline{v}_{\text {out }}=S_{1} \underline{v}_{\text {in }}+S_{2} \underline{v}_{\text {int }} \\
& \underline{v}_{\text {int }}=S_{3} \underline{v}_{\text {in }}+S_{4} \underline{v}_{\text {int }}
\end{aligned}
$$

(a)

$$
\underline{v}_{i n t}=\left(\mathrm{I}-\mathrm{S}_{4}\right)^{-1} \mathrm{~S}_{3} \underline{v}_{\text {in }}
$$

(b)

$$
\underline{v}_{\text {out }}=\left[\mathrm{S}_{1}+\mathrm{S}_{2}\left(\mathrm{I}-\mathrm{S}_{4}\right)^{-1} \mathrm{~S}_{3}\right] \mathrm{v}_{\text {in }}
$$

(c)

Figure 3.5. Derivation of the reduced junction matrix. (a) The expanded junction matrix equation. (b) Internal variables in terms of inputs. (c) The unpartitioned reduced junction matrix equation.
IV. A COMPUTER IMPLEMENTED STATE MODEL FORMULATOR OF INCREASED EFFICIENCY

The ENPORT-4 program is a powerful tool for the modeling, analysis, and simulation of multiport systems. When given a bond graph description of a system, ENPORT-4 selects physi-cally-meaningful state variables and derives the system state model, eigenvalues, and time response. The many additional features, available options and outputs, and the structure of ENPORT-4 are discussed in the program's documentation [8].

Although ENPORT-4 provides the system analyst with a broad array of system information, it has significant inadequacies which have a profound affect on program performance. Most of these inadequacies are revealed in the graph reduction and state model formulation procedures. In the following sections, deficiencies are identified in the ENPORT-4 graph reduction and state model formulation procedures, and modifications are discussed which increase overall program efficiency. These modifications have been implemented in the ENPORT-5 program which is currently under development. Key ENPORT-5 graph reduction and state model formulation subroutines are listed in Appendix F.

4.1 Design Features

4.1.1 Data Structures

At various stages in the bond graph processing procedure assorted graph parameter and structural information must be retained or manipulated. In general, when interpreted in matrix form, this information results in a sparse matrix analogous to a graph incidence or adjacency matrix [27]. A major deficiency of ENPORT-4 is its use of full storage (storage which includes all matrix zero entries) in multidimensional arrays for the retention and manipulation of bond graph information.

A major improvement in efficiency is realized in ENPORT-5 by minimizing data storage requirements through the use of a sparse-matrix-based storage format. This is achieved by using push-down stacks and linked data structures [28-30]. In particular, the ENPORT-5 graph reduction and state model formulation procedures employ simple lists for the retention and manipulation of data. These lists are grouped in pairs, where the entries of each list are ordered. In each list pair, one list contains the nonzero entries of an implied matrix of known dimensions, and the other list contains the coordinates of the matrix entries where each coordinate pair is converted to a unique number. The conversion of a coordinate pair is accomplished by representing the position of a matrix entry as the entry's column coordinate added to the product of the matrix column dimension and one less than the
entry's row coordinate. An example of a list pair is given in Figure 4.1.

4.1.2 Causal Assignment

The assignment of causality is an important stage in the processing of a bond graph. The ENPORT-4 program uses a causal assignment scheme which is a modification of SSCAP (the standard sequential causality assignment procedure) in that the scheme gives priority to user specified causal orientations. Although this feature provides the knowledgeable user with a great deal of flexibility, the unwary user may specify caasal orientations which may violate system constraints (such as constraints imposed by sources), give a false indication of system order, or create uncertainty in the state model formulation procedure.

The caasal assignment scheme employed by the ENPORT-5 program is a direct implementation of SSCAP in which the user cannot specify causal orientations until after all source bonds and storage bonds have been causally oriented. This scheme not only eliminates the difficulties discussed above, but also guarantees that if a reduced junction matrix exists, then it has the simplified form identified in section 3.2 .
4.1.3 Determination Of Junction Structure Reducibility

The ENPORT-4 procedure for determining the reducibility of the junction matrix represents an additional area of inefficiency. The junction matrix equation was given in

Figure 3.4. As illustrated in Figure 3.5, the junction matrix is reducible if the matrix ($\mathrm{I}-\mathrm{S}_{4}$) is nonsingular. In ENPORT-4, junction matrix reducibility only can be determined during the process of attempting to invert the matrix $\left(\mathrm{I}-\mathrm{S}_{4}\right)$.

Based on previous work, the reducibility of the junction matrix depends on the solvability of causal complexes [12-14,19,20]. Stating the case more explicitly, the junction matrix is reducible if and only if each causal complex is solvable. As an explicit step in the ENPORT-5 causal assignment procedure, causal complexes are identified and their graph locations are communicated to the user. Prior to the formulation of the junction matrix, each caasal complex is tested for solvability in order to determine junction matrix reducibility. If any causal complex is determined to be unsolvable, then bond graph processing aborts and the user is notified of all unsolvable causal complexes.

4.1.4 Junction Matrix Formulation

As an intermediate step in the formulation of the junction matrix in ENPORT-4, a matrix equation is explicitly formed for each junction structure node. The entries of each node matrix are then placed in the junction matrix in accordance with bond classifications and orderings.

The ENPORT-5 program does not explicitly form a matrix equation for each junction structure node. Instead, the
junction matrix is constructed directly by using node causal forms, bond power orientations, and graph model parameters to obtain the coefficients of the summation, identity, and proportionality output equations for each junction structure node. Specifically, causal, power, and parameter information is used to identify the flow output variable and the coefficients of the corresponding flow input variables for each 0 -junction, the effort output variable and the coefficients of the corresponding effort input variables for each l-junction, the identity relations for each 0junction and 1-junction, and the proportionality relationships for each transformer and gyrator. Once determined, each of the above coefficients (except zeros) is directly stored in a compact junction matrix where each entry position is determined by bond classifications and orderings, and the dimensions of the implied full storage junction matrix.

4.1.5 Matrix Inversion

As illustrated in section 3.3 , several calculations in the state model formulation algorithm require the computation of a matrix inverse. The matrix inversion routine used by ENPORT-4 is a Gauss-Jordan procedure which selects a matrix entry of greatest magnitude for the pivot at each
stage of the deflation process. In ENPORT-4, the selection of a pivot requires a row and column scan of mostly zero entries since each matrix is generálly sparse and in a full storage format.

A result of this research was the development of the sparse matrix inversion subroutine which is employed by the ENPORT-5 program. This subroutine is called "INPRD" (INverse-PRoDuct). Its development was motivated by the lack of a matrix inversion routine which can take advantage of the special features of the equations in the state model formulation algorithm.

A very important consideration in the development of any sparse matrix inversion routine is the possible increase in the storage requirements for the inverse of a sparse matrix [31]. The INPRD subroutine effectively eliminates the problem of storage growth by taking advantage of the features of the matrix calculations in the graph reduction and state model formulation procedures. In these procedures, matrix inverses in calculations appear in the form $A^{-1} B$ where the matrix product $A^{-1} B$ relates sets of junction structure variables. INPRD is a Gauss-Jordan type procedure which controls storage requirements by accepting the generally sparse matrices A and B as inputs and returning the generally sparse matrix $A^{-1} B$ as output. Note that A^{-1} is not explicitly computed unless B is the compatible identity matrix. INPRD applies directly to B a set of
transformations which represent elementary row operations for the reduction of A to the identity matrix. In order to minimize round-off errors, a matrix entry of greatest magnitude in A is selected as the pivot at each stage in the process of deflating A. The benefits of INPRD are evidenced by the performance characteristics of the ENPORT-5 program.

4. 2 State Model Formulator Computer Test Results

In this section, some performance aspects of the ENPORT4 and ENPORT-5 state model formulators will be considered. In particular, processing times and junction matrix storage requirements will be assessed for three test examples interactively processed on the CDC 6500 computer.

The processing time will be interpreted as the CP (central processor) execution time consumed from the point of parameter input to the point of state model output. Storage considerations are limited to the junction matrix, since it is the largest system matrix in the formulation process. For each example considered, the processing time and junction matrix storage space requirements of ENPORT-4 will be used as benchmarks.

The first test example is a structural model of a lever mechanism with inertia load (see Figure 4.2). The second test example is a structural model of a beam-block transducer system (see Figure 4.3). The final test example is a structural model of a radar pedestal position control system (see Figure 4.4). Each of the above examples may be
found in the user's manual for the ENPORT-4 program, where each is studied in detail [8].

For each test example, the computational results are contained in Table 3 and Table 4 for storage requirements and processing time respectively. From Table 3, it is observed that the ENPORT-5 formulator requires significantly less storage (as typified by the junction matrix) than does the ENPORT-4 formulator for a given bond graph model. The ENPORT-4 storage requirement for the junction matrix is given by $\left(N_{p}+2 N_{I}\right)^{2}$. The ENPORT-5 storage requirement for the junction matrix is given by $4\left(N_{p}+2 N_{I}-1\right)$. Thus, the difference between the bond graph model storage demands of the ENPORT-4 and ENPORT-5 formulators becomes increasingly dramatic as the number of bonds in a graph model increases.

From Table 4, it is observed that the ENPORT-5 formulator provides a significant savings in processing time for the given test examples. In general, the size (and sign) of this savings is a function of several variables, e.g., the number of causal complexes, and the density and dimensions of matrices to be manipulated. As an explicit case, consider the multiplication of an (nxm) matrix by an (mxp) matrix, neither of which contains a zero entry. In a full storage format, this matrix multiplication requires nmp scalar multiplications and $n(m-1) p$ scalar additions. In ENPORT-5, this matrix multiplication requires nmp scalar multiplications, $n m p$ scalar additions, and $2 n m(p+1)$ element
comparisons. Note that full storage matrix multiplication requires the same number of scalar operations irrespective of the sparsity of either matrix factor. In general, the above matrix multiplication in ENPORT-5 requires $n(m-r)(p-s)$ scalar multiplications, $n(m-r)(p-s)$ scalar additions, and $2 n m(p+1)-r n(p+2)-2 n s(m-r / 2)$ element comparisons where r is the average number of zeros per row in the (nxm) matrix and s is the average number of zeros per row in the (mxp) matrix. Note that the worst case is given for the number of element comparisons. It is seen that as r and s increase, matrix multiplication in a full storage format rapidly becomes computationally more demanding than matrix multiplication in ENPORT-5. Thus, although it is possible for the processing time required by ENPORT-5 to exceed the processing time required by ENPORT-4, this possibility is minimized by the general sparsity of system matrices and the "inverse-multiplication" feature of the INPRD subroutine.

In conclusion, the combined results of Table 3 and Table 4 suggest that the ENPORT-5 state model formulator not only enhances the processing performance and capabilities of the ENPORT-5 program, but also contributes to a reduced dollar cost for the operation of a linear time-invariant bond graph simulation program.

$$
\left[\begin{array}{rrrr}
2 & 0 & -1 & 0 \\
0 & 5 & 0 & 3 \\
0 & 0 & 0 & -4
\end{array}\right]
$$

A $3 x 4$ matrix

Entry list Position list

Figure 4.1. Example of a list pair with the corresponding matrix.

Figure 4.2. Test example 1

Figure 4.3. Test example 2

Figure 4.4. Text example 3

Table 3. Junction Matrix Storage For Test Examples

Example	$(1)_{W 4}$	$(2)_{W 5}$	W5/W4
1	81	32	.395
2	289	64	.221
3	841	112	.133

(1) W4 \equiv Number of storage words for junction matrix in ENPORT-4.
(2) W5 \equiv Number of storage words for junction matrix in ENPORT-5.

Table 4. Processing Time for State Model Formulation

Example	(1)PT4	(2) PT5	PT5/PT4
1	0.604	0.138	0.228
2	0.905	0.346	0.382
3	1.420	0.927	0.653

(1) PT4 \equiv Processing time (in seconds) for ENPORT-4.
(2) PT5 Processing time (in seconds) for ENPORT-5.

V. SUMMARY

The basis order rules are among the most significant results achieved in this investigation. For weighted junction structures, these topology-based formulations provide the bond graph analyst with the composition of a basis for the junction structure transformation. In addition, when used with Theorem 3, the basis order rules provide a "good" estimate of the number of distinct basis variable sets for the junction structure transformation.

Herein, it was shown that the standard sequential causality assignment procedure assures that the S_{23}, S_{32}, and S_{33} blocks of the reduced junction matrix are zero for -a reducible junction structure. This resulted in a major simplification in Rosenberg's state model formulation algorithm which serves as a model for the ENPORT-5 state model formulator [15].

As indicated by the computer results in Chapter IV, the ENPORT-5 state model formulator provides heretofore unrealized efficiency and speed in the automated processing of linear time-invariant bond graphs. The key features of this formulator are (1) the use of sparse-matrix-based storage, (2) the determination of junction structure reducibility prior to the formation of the junction matrix, the direct construction of the junction matrix, and (4) the
versatile sparse-matrix-based INPRD subroutine. As a result of the storage and processing efficiency of the ENPORT-5 state model formulator, the ENPORT-5 program has a greatly enhanced capacity for the processing of large bonds graphs. Future advances in graph processing efficiency can be achieved by the development of a general technique which does not require matrix inversions for the determination of junction structure reducibility. A step in this direction can be made by the development of "basis order rules" which are applicable to any junction structure containing a gyrator. Such formulations would offer necessary conditions for the reducibility of an arbitrary junction structure, as well as serve as aids for the determination of a basis for the junction structure transformation.

BIBLIOGRAPHY

```
[1] Chorafas, D.N., Systems and Simulation, Academic Press, 1965.
```

[2] Malmberg, A.F., "NET-2 Network Analysis Program-User's Manual Release 9', HDL-050-1, Braddock, Dunn, and McDonald, Inc., El Paso, Texas, 1973.
[3] Nagel, L.W., and Pederson, D.O., "SPICE (Simulation Program with Integrated Circuit Emphasis)", ERL-M382, Electronic \bar{s} Research Laborato $\bar{r} y$, College of Engineering, Univ. of California, Berkeley, Ca., 94720, April, 1973.
[4] Chace, M.A., and Ange11, J.C., "Users Guide to DRAM (Dynamic Response of Articulated Machinery)", Design Engineering Computer $\bar{A} i d s$ Laboratōry, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Mich., Feb., 1976.
[5] Dix, R.C., "A Users Manual for MEDUSA (MEchanism-Dynamics-Universal System Analyzer)", Mechanics, $\bar{M} e c h a n i c a \overline{1}$ and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, ILL., Jan., 1975.
[6] Pilkey, W., and Pilkey, B., eds, Shock and Vibration Computer Programs - Reviews and Summaries, SVM-10, The Shock and Vibration Information Center, Naval Research Laboratory, Washington, D.C., 1975.
[7] Bowers, J.C., O'Reilly, J.E., and Shaw, G.A., 'SUPER* SCEPTRE - User's Manual', DAAA-21-73-C-0655, AMC, Picatinny Arsenal, Dover, N.J., 1975.
[8] Rosenberg, R.C., 'A User's Guide to ENPORT-4'", John Wiley, Inc., 1974 .
[9] Paynter, H.M., Analysis and Design of Engineering Systems, M.I.T. Press, 1960.
[10] Karnopp, D.C., and Rosenberg, R.C., Analysis and Simulation of Multiport Systems - The Bond Graph Approach to Physical System Dynamics, M.I.T. Press, 1968 (68A35012).
[11] Gebben, V.D., "Bond Graph Bibliography for 1961-1976", Trans. ASME, J. Dyn. Sys., Meas., and Control, 99 (1977) pp. 143-145.
[12] Nobuhide, S., "Bond Graphs: Structural Properties and Augmentation Algorithm", Presented at the Conference on System Control Theory and its Applications to Dynamic Economic Models, Nagoya City University, Mar. 27-29, 1976.
[13] Ort, J.R., and Marten, H.R., "The Properties of Bond Graph Junction Structure Matrices", Trans. ASME, J. Dyn. Sys., Meas., and Control, 95 (1973) pp. 362-367.
[14] Perelson, A.S., "Bond Graph Junction Structures", Trans. ASME, J. Dyn. Sys., Meas., and Control, 97 (1975) pp. 189-195.
[15] Rosenberg, R.C., "State-Space Formulation for Bond Graph Models of Multiport Systems", J. Dyn. Sys., Meas., and Control, Trans. ASME, 93 (1971) pp. 35-40.
[16] Dixhoorn, J.J. van, "Simulation of Bond Graphs on Minicomputers", J. Dyn. Sys., Meas., and Control, Trans. ASME, 99 (1977) pp. 9-14.
[17] Busacker, R.G., and Saaty, T.L., Finite Graphs and Networks - An Introduction with Applications, McGraw-Hill, 1965.
[18] Harary, F., Graph Theory, Addison-Wesley, 1972.
[19] Rosenberg, R.C., and Andry, A.N., Jr., "Solvability of Bond Graph Junction Structures with Loops', IEEE Trans. on Circuits and Systems, $26(1979)$ pp. 130-137.
[20] Rosenberg, R.C., and Andry, A.N., Jr., "Solvability of Certain Classes of Bond Graph Junction Structures", Proceedings of the Second International Symposium on Large Engineering Systems, Univ. of Waterloo, Waterloo, Ontario, Canada, May, 1978, pp. 537-541.
[21] Ort, J.R., and Martens, H.R., "A Topological Procedure for Converting a Bond Graph to a Linear Graph", Trans. ASME, J. Dyn. Sys., Meas., and Control, 96 (1974) pp. 307-314.
\therefore Percison，$\therefore . \mathrm{S} . \mathrm{Discussion} \mathrm{re} \mathrm{[13]}, \mathrm{Trans}. \mathrm{Asme}, \mathrm{J}$. Ry．Sre．，Moas．，and Control，93（1976）pp．209－210．
：Fi Pero！son，A．S．，and Oster，G．F．，＂Bond Graphs and linear Graphs＂，J．Franklin Institate，3n2（1976）159－185．
－．：Garnonp，D．C．，and Rosenberg，R．C．System Dynamics： IUnitici Apprach，John Wiley［nc．，To7t．
．\quad Rocemore，R．C．．＂Essential Gyrators and Reciprocity in janction structures＂，（accepted for publication） ．i．iranklin Institute．

Z：Karnopp，D．C．，＂Some Bond Graph Identities Involving Junction Structurcs＇，Trans．ASide，J．Dyn．Sys．， Acas．，and Controi，97（1975）pp．＋39－440．
$\therefore \because$ ．Kor hasa，R．R．，Jiscrote Computational Structures， Acacemic Press．IVF．

B Beratiss，N．T．，Data structures－Theory and Practice， deademic press， 1971.
：Knuth，D．E．，The irt of Comutor Programming，Vol．I， Chap．2，ddison－ivesley，197．

ここ：－Stonc，H．S．，Introduction to Computer Organization and Data Structures，Metraw－ilill，1972．

Zこ：Tewarson，R．P．，Sparse Matrices，Academic Press， 1973.
－$:=1$ Riordan，J．，Combinatorial Iduntities，Niley， 1968.

APPENDIX A

DERIVATION OF THE BASIS ORDER RULES

A. 1 Basis Order and Simple Junction Structures

In this section we derive a pair of general computational rules for predicting the order and variable-type composition of an N-port SJS basis. An N-port JS has exactly N EN-nodes. It is common usage to refer to bonds ($0, E N$) or (1,EN) as port bonds.

Motivation for these rules is derived by considering the number of free variables which remain following the imposition of a set of independent constraint equations on a set of system variables. Several types of proper SJS's are studied first; then the results are extended to standard SJS's. In passing, alternate forms of the order rules for proper SJS's are given. The order rules are presented here as Theorem 1.

Theorem 1: Every standard SJS satisfies the relations
(i) $E=N_{B}+N_{0}-B_{0}-N_{1}$
and

$$
\text { (ii) } F=N_{B}+N_{1}-B_{1}-N_{0} .
$$

A.1.1 Basis Order for Proper Simple Junction Structure

Forests

Initially we establish Theorem 1 for an arbitrary proper SJS tree G by demonstrating that G can be obtained
from a forest of separate 1 -junctions and 0 -junctions by a series of subgraph concatenations. It is observed that junctions satisfy the order rules. Following the assumption that G contains more than a single junction, a 0 -junction in G is identified as a base node to which is added an appropriate number of 1 -junctions and 0 -junctions, of specified degrees, which yields a SJS equivalent to G. Additionally, it is noted that the concatenation of a junction to a proper SJS tree yields a proper SJS tree which satisfies the order rules, thus yielding the results for G. Finally, by considering the order rules for each component, the results are extended to an arbitrary proper SJS forest.

Lemma A.l: Every proper SJS forest satisfies the relations

$$
E=N_{B}+N_{0}-B_{0}-N_{1} \text { and } F=N_{B}+N_{1}-B_{1}-N_{0} .
$$

Prior to proving Lemma A.l, two definitions are needed. First we state that two distinct SJS's are conformable if one contains a 0 and the other contains a 1.

We now define the graph concatenation operator C where $C(G, H)=K$ is a binary operation performed on two proper SJS's (G and H) which are conformable to yield a third proper SJS (K). Let G be a connected proper SJS and H be a connected proper SJS where $V_{G} \cap V_{H}=\emptyset$. Also, let u be a l-junction and $u_{E N}$ be an EN-node in V_{G}, and v be a 0 -junction and $v_{E N}$ be an $E N-$ node in V_{H}, where $\left(u, u_{E N}\right) \varepsilon X_{G}$ and $\left(v, v_{E N}\right) \varepsilon X_{H}$. Then $C(G(u)$, $H(v)]$ will denote the connected proper SJS K where
$V_{K} \equiv\left[V_{G} \cup V_{H}\right]-\left\{v_{E N}, u_{E N}\right\}$ and
$X_{K} \equiv\left[X_{G} \cup X_{H} \cup\{(v, u)\}\right]-\left\{\left(v, v_{E N}\right),\left(u, u_{E N}\right)\right\}$.
Note that if $K=C[G(u), H(v)]$ and $K^{\prime}=C[G(u), H(v)]$
(different $E N$-nodes are removed) then K and K^{\prime} are isomorphic.
For $C[G(u), H(v)]$, it will be said that G and H are "concatenated". Note that $C[H(v), G(u)]=C[G(u), H(v)]$. We now proceed with the proof of Lemma A.1.

Proof: Let $G_{1}{ }^{(m)}$ denote a connected proper SJS such that $V_{G_{1}}(m)$ consists of exactly one 1 -junction and exactly m EN-nodes, where $m \geq 2$. Thus $G_{1}(m)$ has the form shown in Figure A. 1.

Observe that the definition of a l-junction applied to $G_{1}(\mathrm{~m})$ yields the results
$E=N_{B}+N_{0}-B_{0}-N_{1}=(m)+(0)-(0)-(1)=m-1$ and
$F=N_{B}+N_{1}-B_{1}-N_{0}=(m)+(1)-(m)-(0)=1$.
These results agree with Lemma A.l.
Let $G_{0}(n)$ denote a connected proper SJS such that $V_{G_{0}}(n)$ consists of exactly one 0 -junction and exactly n ENnodes, where $n \geq 2$. Thus, $G_{0}{ }^{(n)}$ has the form shown in Figure A. 2.
Observe that the definition of a 0 -junction applied to $G_{0}^{(n)}$ yields the results
$E=N_{B}+N_{0}-B_{0}-N_{1}=(n)+(1)-(n)-(0)=1$ and
$F=N_{B}+N_{1}-B_{1}-N_{0}=(n)+(0)-(0)-(1)=n-1$.

These results agree with Lemma A.l.
Note that Lemma A.l applies to a forest with an arbitrary number of components, each of which is a 0 - or l-junction together with a set of EN-nodes.

Now consider a concatenation involving $G_{1}^{(m)}$ for $m \geq 2$. Let G be an arbitrary connected proper $S J S$ where V_{G} contains at least one 0 -junction, say v, and let E_{G} and F_{G} be given. Observe that $K=C\left[G(v), G_{1}^{(m)}\right]$, where $m \geq 2$, contains one less effort variable and one less flow variable than $G \cup G_{1}{ }^{(m)}=$ $<V_{G} \cup V_{G_{1}}{ }^{(m)}, X_{G} \cup X_{G_{1}}(m)>$ since $o\left(X_{K}\right)=0\left(X_{G}, \cup X_{G_{1}}{ }^{(m)}\right)-1$. ("o" denotes "order of".) Also, K and $G \cup G_{1}{ }^{(m)}$ yield the same number of independent flow constraint equations, since the number of junctions and junction degrees are unchanged. Then, clearly

$$
E_{K}=E_{G}+E_{G_{1}}(m)-1 \text { and } F_{K}=F_{G}+F_{G_{1}}(m)-1
$$

Let $\Delta E_{1}(m) \equiv E_{K}-E_{G}$ and $\Delta F_{1}(m) \equiv F_{K}-F_{G}$.
Then

$$
\Delta E_{1}(m)=E_{G_{1}}(m)-1=m-2 \text { and } \Delta F_{1}(m)=F_{G_{1}}(m)-1=0
$$

where $m \geq 2$.
That is, as a result of a concatenation involving $G_{1}{ }^{(m)}$ the incremental changes in E and F are known.

Now consider a concatenation involving $G_{0}{ }^{(n)}$ for $n \geq 2$. Let G be an arbitrary connected proper SJS where V_{G} contains at least one l-junction, say u, and let E_{G} and F_{G} be given. Observe that $K=C\left[G(u), G_{0}{ }^{(n)}\right]$, where $n \geq 2$
contains one less effort variable and one less flow variable than $G \cup G_{0}{ }^{(n)}$. Also, K and $G \cup G_{0}{ }^{(n)}$ yield the same number of independent effort constraint equations and the same number of independent flow constraint equations. Therefore,

$$
E_{K}=E_{G}+E_{G}(n)-1 \text { and } F_{K}=F_{G}+F_{G}(n)-1 .
$$

Let $\Delta E_{0}{ }^{(n)} \equiv E_{K}-E_{G}$ and $F_{0}{ }^{(n)} \equiv F_{K}-F_{G}$. Then
$\Delta E_{0}{ }^{(n)}=E_{G_{0}}(n)-1=0$ and $\Delta F_{0}^{(n)}=F_{G_{0}}(n)-1=n-2$, where $n \geq 2$.

We now establish lemma A. 1 for an arbitrary proper SJS tree. Let G be an arbitrary proper SJS tree. Suppose G contains N_{1} 1-junctions and $N_{0} 0$-junctions; not both N_{1} and N_{0} are zero, since G is proper. If $N_{0}=0, G$ is a 1 -junction component; if $N_{1}=0, G$ is a 0 -junction component. In either case, we are done. Therefore, assume $N_{1}>0$ and $N_{0}>0$.

Enumerate the 0 -junctions in V_{G} by $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{N}_{0}}$, and the 1 -junctions in V_{G} by $v_{N_{0}+1}, v_{N_{0}+2}, \ldots, v_{N_{0}+N_{1}}$. Let $v_{G}{ }^{(0)}=\left\{v_{1}, v_{2}, \ldots, v_{N_{0}}\right\}$ and $v_{G}{ }^{(1)}=\left\{v_{N_{0}+1}, v_{N_{0}+2}, \ldots, v_{N_{0}+N_{1}}\right\}$. Then $\mathrm{V}_{\mathrm{G}}{ }^{(1)} \cap \mathrm{V}_{\mathrm{G}}{ }^{(0)}=\emptyset$ and $\mathrm{V}_{\mathrm{G}}{ }^{(1)} \cup \mathrm{V}_{\mathrm{G}}{ }^{(0)}$ contains all junctions in G. The junctions in G will now be partitioned according to their distances from v_{1}. Let $S_{-1}=\emptyset$ and $S_{i}=\left\{v \varepsilon V_{G}{ }^{(1)} u V_{G}{ }^{(0)} \mid d\left(v_{1}, v\right)=i\right\}$, where $i=0,1,2, \ldots$ Note that $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$. The order of $V_{G}{ }^{(1)} \cup V_{G}{ }^{(0)}$ is finite and G is a tree imply that there exists a smallest
positive $k \leq N_{1}+N_{0}-1$ such that $d\left(v_{1}, v\right) \leq k$ for all $v \varepsilon V_{G}{ }^{(1)} V_{G}{ }^{(0)}$. Without loss of generality, assume k is odd. Then

Relabel the elements in S_{i} so that $v_{i, j}$ is the j th element in S_{i}, where $0 \leq i \leq k$ and $1 \leq j \leq 0\left(S_{i}\right)$. Let $\alpha_{i, j}=\operatorname{deg}\left(v_{i, j}\right)$ for $v_{i, j}$ in G. Also, let $G_{0,0}=G_{0}\left(\operatorname{deg} v_{1}\right)$, and let $G_{i, j}$ be the proper SJS tree corresponding to $v_{i, j}$ where $G_{i, j}$ is either $G_{1}{ }^{(m)}$ or $G_{0}{ }^{(n)}$ if i is odd or even, respectively, and m or $n=\alpha_{i, j}$.

Now we will reconstruct G from a proper SJS forest of $N_{0} 0$-junction and N_{1}-junctions by using the internal bonds of G as a directory. Note that the concatenation of two conformable proper SJS trees yields a proper SJS tree.

$$
\text { Let } G_{1,0}=G_{0,0} \text {, and let } G_{1,1}=G_{1,0\left(S_{0}\right)} \text { be the proper }
$$

SJS tree obtained from the series of concatenations of $G_{1,0}$ with $G_{1, j}$ at $v_{0,1}$ for each j such that $\left(v_{0,1}, v_{1, j}\right) \varepsilon X_{G}$; i.e., $1 \leq j \leq 0\left(S_{1}\right)$. Let $G_{2,0}=G_{1, o\left(S_{0}\right)}$, and let $G_{2,1}$ be the proper SJS tree obtained from the series of concatenations of $G_{2,0}$ with $G_{2, j}$ at $v_{1,1}$ for each j such that $\left(v_{1,1}, v_{2, j}\right) \varepsilon X_{G}$. Let $G_{2,2}$ be the proper SJS tree obtained from the series of concatenations of $G_{2,1}$ with $G_{2, j}$ at $v_{1,2}$ for each j such that ($v_{1,2}$, $\left.\mathrm{v}_{2, \mathrm{j}}\right) \varepsilon \mathrm{X}_{\mathrm{G}}$ 。

In general, let $G_{i, n}$ be the proper SJS tree obtained from the series of concatenations of $G_{i, n-1}$ with $G_{i, j}$ at $v_{i-1, n}$ for each j such that $\left(v_{i-1, n^{\prime}} v_{i, j}\right) \varepsilon X_{G}$, where $G_{i, 0}=G_{i-1, o\left(S_{i-2}\right)}$, $1 \leq i \leq k$ and $1 \leq n \leq o\left(S_{i-1}\right)$. Then $G_{k, o}\left(S_{k-1}\right)=G$.

An example of the construction procedure is given in Figure A. 3.

The construction procedure involves $N_{0}-1$ concatenations of proper SJS trees having the form $G_{0}{ }^{(n)}$, and N_{1} concatenations of proper SJS trees having the form $G_{1}{ }^{(m)}$.

Therefore,
$E_{G}=E_{G_{k, 0}\left(S_{k-1}\right)}=E_{G_{0,0}}+\sum_{i=2}^{N_{0}} \Delta E_{0}\left(\operatorname{deg} v_{i}\right)+\sum_{i=N_{0}+1}^{N_{0}+N_{1}} \Delta E_{1}\left(\operatorname{deg} v_{i}\right)$
$=(1)+(0)+\sum_{i=N_{0}+1}^{N_{0}+N_{1}}\left(\operatorname{deg} v_{i}-2\right)=\sum_{i=N_{0}+1}^{N_{0}+N_{1}} \operatorname{deg} v_{i}-2 N_{1}+1$ and
$F_{G}=F_{\left.G_{k, 0\left(S_{k-1}\right)}\right)}=F_{G_{0,0}}+\sum_{i=2}^{N_{0}} \Delta F_{0}\left(\operatorname{deg} v_{i}\right)+\sum_{i=N_{0}+1}^{N_{0}+N_{1}} \Delta F_{1}\left(\operatorname{deg} v_{i}\right)=$
$\left(\operatorname{deg} v_{1}-1\right)+\sum_{i=2}^{N_{0}}\left(\operatorname{deg} v_{i}-2\right)+0=\sum_{i=1}^{N_{0}} \operatorname{deg} v_{i}-2 N_{0}+1$.
Observe that (i) $B_{0}=\sum_{i=1}^{N_{0}}$ deg v_{i},
(ii) $B_{1}=\sum_{i=N_{0}+1}^{\mathrm{N}_{0}+N_{1}} \operatorname{deg} \mathrm{v}_{\mathrm{i}}$,
(iii) $\quad N_{I}=N_{1}+N_{0}-1$ (Euler's Rule),
(iv) $\quad N_{B}=B_{1}+B_{0}-N_{I}$,
(v) $\quad P_{0}=B_{0}-N_{I}$, and
(vi) $\quad P_{1}=B_{1}-N_{1}$.

Therefore, if G is a proper SJS tree, then

$$
\begin{aligned}
& E=\sum_{i=N_{0}+1}^{N_{0}+N_{1}} \operatorname{deg} v_{i}-2 N_{1}+1=N_{B}+N_{0}-B_{0}-N_{1} \\
& F=\sum_{i=1}^{N_{0}} \operatorname{deg} v_{i}=2 N_{0}+1=N_{B}+N_{1}-B_{1}-N_{0}
\end{aligned}
$$

Note that $\operatorname{deg} \mathrm{v}_{\mathrm{i}} \geq 2,1 \leq \mathrm{i} \leq \mathrm{N}_{0}$, implies that $\mathrm{E} \geq 1$ and $\mathrm{F} \geq 1$. We now extend the results to an arbitrary proper SJS forest G. Let $G_{1}, G_{2}, \ldots, G_{n}$ be the components of G. Then each component G_{i} is a proper SJS tree.
Therefore,

$$
\begin{aligned}
& E_{G_{i}}=N_{B G_{i}}+N_{0 G_{i}}-N_{1 G_{i}} \text { and } \\
& F_{G_{i}}=N_{B G_{i}}+N_{1 G_{i}}-B_{1 G_{i}}-N_{0 G_{i}} \text {, where } 1 \leq i \leq n .
\end{aligned}
$$

Then

$$
\begin{aligned}
& E_{G}=\sum_{i=1}^{n} E_{G_{i}}=\sum_{i=1}^{n}\left(N_{B G_{i}}+N_{0 G_{i}}-B_{0 G_{i}}-N_{1 G_{i}}\right) \\
= & \sum_{i=1}^{n} N_{B G_{i}}+\sum_{i=1}^{n} N_{0 G_{i}}-\sum_{i=1}^{n} B_{0} G_{i}-\sum_{i=1}^{n} N_{1 G_{i}}=N_{B G}+N_{0 G}-B_{0 G}-N_{1 G},
\end{aligned}
$$

and

$$
\begin{aligned}
F_{G} & =\sum_{i=1}^{n} F_{G_{i}}=\sum_{i=1}^{n}\left(N_{B G_{i}}+N_{1 G_{i}}-B_{1 G_{i}}-N_{0 G_{i}}\right) \\
& =\sum_{i=1}^{n} N_{B G_{i}}+\sum_{i=1}^{n} N_{1 G_{i}}-\sum_{i=1}^{n} N_{0 G_{i}}=N_{B G}+N_{1 G}-B_{1 G}-N_{0 G}
\end{aligned}
$$

where $E_{G} \geq n$ and $F_{G} \geq n$.
Hence, if G is a proper SJS forest, then G satisfies the rebations $E=N_{B}+N_{0}-B_{0}-N_{1}$ and $F=N_{B}+N_{1}-B_{1}-N_{0}$.

Recall that B_{0} is the total number of (external and internal) bonds incident to 0 -junctions. Observe that in a proper SJS every internal bond is incident to exactly one 1 -junction and exactly one 0 -junction; thus, in a proper $S J S, N_{I}$ is included in B_{0}. Therefore, for a proper SJS, $N_{B}=P_{1}+B_{0}$. Similarly, for a proper SJS, $N_{B}=P_{0}+B_{1}$. These results and Lemma $A .1$ validate the following corollary. Corollary 1.1: Every proper SJS satisfies the relations
(i) $E=N_{0}+P_{1}-N_{1}$
(ii) $\mathrm{F}=\mathrm{N}_{1}+\mathrm{P}_{0}-\mathrm{N}_{0}$.

A.1.2 Basis Order for Proper Simple Junction Structures

Now Theorem 1 will be established for an arbitrary connected proper SJS G. This will be accomplished by removing cycle bonds from G until a spanning tree is obtained, and then demonstrating that the previous relations remain valid when these bonds are replaced. These results will then be extended to an arbitrary proper SJS.

Lemma A. 2: Every proper SJS satisfies the relations

$$
\begin{aligned}
& E=N_{B}+N_{0}-B_{0}-N_{1} \quad \text { and } \\
& F=N_{B}+N_{1}-B_{1}-N_{0}
\end{aligned}
$$

Prior to proving Lemma A. 2 we define a transformation T which removes cycles from a connected proper SJS, and define a transformation S which creates a cycle in a connected proper SJS.

To obtain T, let G be an arbitrary connected proper SJS. Assume G contains at least one cycle, say C. Let b be an arbitrary bond in C, and let $v_{E N}$ and $u_{E N}$ be EN-nodes. Then there exists a unique 1 -junction $v \varepsilon V_{G}$ and a unique 0 -junction $u \varepsilon V_{G}$ such that $b=(v, u)$. Let $T[G(v, u)]$ denote the SJS H where $V_{H} \equiv V_{G} \cup\left\{v_{E N}, u_{E N}\right\}$ and $X_{H} \equiv\left[X_{G} u\left\{\left(v, v_{E N}\right)\right.\right.$, $\left.\left(u, u_{E N}\right)\right\}-\{(v, u)\}$. Then, clearly, H is a connected proper SJS which contains one less cycle than G. Observe that $N_{1 H}=N_{1 G}$, $N_{0 H}=N_{0 G}, P_{1 H}=P_{1 G}+1$, and $P_{0 H}=P_{0 G}+1$.

To obtain S, let G be an arbitrary connected proper SJS. Suppose there exist 1 -junction $v \varepsilon V_{G}$ and 0 -junction $u \varepsilon V_{G}$ such that $(v, u) \notin X_{G}$. Also, assume there exist EN-nodes $v_{E N}$ and $u_{E N}$ in V_{G} such that $\left(v, v_{E N}\right)$ and $\left(u, u_{E N}\right)$ are in X_{G}. Then let $S(G, v, u)$ denote the $S J S H$ where $V_{H} \equiv V_{G}-\left\{v_{E N}, u_{E N}\right\}$ and $X_{H} \equiv\left\{X_{G} u\{(v, u)\}\right]-\left\{\left(v, v_{E N}\right),\left(u, u_{E N}\right)\right\}$.

Then H is unique (to an isomorphism), and H is a connected proper SJS which contains one more cycle than G. Observe that $S(G, v, u)$ contains one less flow variable and one less effort variable than G, where $S(G, v, u)$ and G yield the same number of independent flow constraint equations and the same number of independent effort constraint equations. Therefore, if $H=S(G, v, u)$, then

$$
E_{H}=E_{G}-1 \text { and } F_{H}=F_{G}-1
$$

Let $\Delta \mathrm{E}_{\mathrm{S}} \equiv \mathrm{E}_{\mathrm{H}}-\mathrm{E}_{\mathrm{G}}$ and $\Delta \mathrm{F}_{\mathrm{S}} \equiv \mathrm{F}_{\mathrm{H}}-\mathrm{F}_{\mathrm{G}}$.
Then $\Delta \mathrm{E}_{\mathrm{S}}=-1$ and, $\Delta \mathrm{F}_{\mathrm{S}}=-1$.
We now proceed with the proof of Lemma A. 2 .

Proof: Since for a proper SJS we have $N_{B}=P_{1}+B_{0}$ and $N_{B}=$ $P_{0}+B_{1}$, it is sufficient to show that every proper SJS satisfies the relations $F=N_{1}+P_{0}-N_{0}$ and $E=N_{0}+P_{1}-N_{1}$.

Consider an arbitrary proper SJS G. If G is a
forest, then, done, by Lemma A.l. Therefore, assume G contans at least one cycle. Let G be connected and let $G_{0} \equiv G$. Also, let v_{i} and u_{i} denote 1 -junctions and 0 -junctions respectively, for all i. Then G_{0} contains some cycle C_{1}. Let $b_{1}=\left(v_{1}, u_{1}\right)$ be an arbitrary bond in C_{1}, and set $G_{1}=$ $T\left[G_{0},\left(v_{1}, u_{1}\right)\right]$. In general, if G_{i-1} contains some cycle C_{i}, let $b_{i}=\left(v_{i}, u_{i}\right)$ be an arbitrary bond in \mathcal{C}_{i}, and set $G_{i}=T\left[G_{i-1}\right.$, $\left.\left(v_{i}, u_{i}\right)\right]$. Then the order of X_{G} finite implies that G contains a finite number of cycles, which implies that there exists a smallest positive integer k such that G_{k} is a spanning tree. Note that $N_{0 G_{k}}=N_{0 G}, N_{1 G_{k}}=N_{1 G}, P_{0 G_{k}}=P_{0 G}+k$, and $P_{1 G}=$ $P_{1 G}+k . \quad G_{k}$ is a proper SJS tree. Therefore,

$$
E_{G_{k}}=N_{0 G_{k}}+P_{1 G_{k}}-N_{1 G_{k}} \text { and } F_{G_{K}}=N_{1 G_{k}}+P_{0 G_{k}}-N_{0 G_{k}}
$$

Observe that $S\left[G_{i}, v_{i}, u_{i}\right]=G_{i-1}, i=k, k-1, \ldots, 1 ;$ i.e., k applecations of S to G_{k} yields G_{0}.

Therefore,
$E_{G}=E_{G_{k}}+k\left(\Delta E_{S}\right)=\left(N_{0 G_{k}}+P_{1 G_{k}}-N_{1 G_{k}}\right)+k(-1)$
$=\left(N_{0 G}+P_{1 G}+k-N_{1 G}\right)-k=N_{0 G}+P_{1 G}-N_{1 G}$ and
$F_{G}=F_{G_{k}}+k\left(\Delta F_{S}\right)=\left(N_{1 G_{k}}+P_{0 G_{k}}-N_{0 G_{k}}\right)+k(-1)$
$=\left(N_{1 G}+P_{0 G}+k-N_{0 G}\right)-k=N_{1 G}+P_{0 G}-N_{0 G}$.

Thus, if G is a connected proper SJS, then G satisfies $E=N_{0}+P_{1}-N_{1}$ and $F=N_{1}+P_{0}-N_{0}$. Assume G is not connected. Let $G_{1}, G_{2}, \ldots, G_{n}$ be the components of G. Then each eomponent of G is a connected proper SJS which implies that

$$
\begin{aligned}
E_{G_{i}}= & N_{0 G_{i}}+P_{1 G_{i}}-N_{1 G_{i}} \text { and } F_{G_{i}}=N_{1 G_{i}}+P_{0 G_{i}}-N_{0 G_{i}} \\
& \text { where } 1 \leq i \leq n .
\end{aligned}
$$

Therefore,

$$
E_{G}=\sum_{i=1}^{n} F_{G_{i}}=\sum_{i=1}^{n} N_{0 G}+\sum_{i=1}^{n} P_{1 G_{i}}-\sum_{i=1}^{n} N_{1 G_{i}}=N_{0 G}+P_{1 G}-N_{1 G}
$$

and $F_{G}=\sum_{i=1}^{n} F_{G}=\sum_{i=1}^{n} N_{1 G_{i}}+\sum_{i=1}^{n} P_{0 G}-\sum_{i=1}^{n} N_{0 G_{i}}=N_{1 G}+P_{0 G}-N_{0 G}$.
Hence, if G is a proper SJS, then G satisfies the relations $E=N_{0}+P_{1}-N_{1}$ and $F=N_{1}+P_{0}-N_{0}$, and thus, G satisfies the relations $E=N_{B}+N_{0}-B_{0}-N_{1}$ and $F=N_{B}+N_{1}-B_{1}-N_{0}$.

A.1.3 Basis Order for Standard Simple Junction Structures

In this section we prove Theorem A. 1.
Theorem 1: Every standard SJS satisfies the relations

$$
\begin{aligned}
& E=N_{B}+N_{0}-B_{0}-N_{1} \text { and } \\
& F=N_{B}+N_{1}-B_{1}-N_{0}
\end{aligned}
$$

The proof of Theorem 1 is preceeded by the definition of the transformation T which reduces the number of bonds formed by nodes of the same type in a standard SJS.

Let G be an arbitrary standard SJS. Assume G is not proper. i.e., G contains a bond of the form (v_{1}, v_{2}) where v_{1} and v_{2} are nodes of the same type.

Then for $\left(v_{1}, v_{2}\right) \varepsilon X_{G}$, where v_{1} and v_{2} are nodes of the same type, let u be a junction of a node-type distinct v_{1} and v_{2}. Without loss of generality, if v_{1} and v_{2} are ENnodes, then let u be a 1 -junction. Then $T\left(G, v_{1}, v_{2}\right)$ will denote the SJS H where $V_{H} \equiv V_{G} u\{u\}$ and $X_{H} \equiv\left[X_{G}-\left\{\left(v_{1}, v_{2}\right)\right\}\right] u$ $\left\{\left(v_{1}, u\right),\left(u, v_{2}\right)\right\}$. Observe that H is a standard SJS which contains one less bond of the form $(1,1),(0,0)$ or (EN,EN) than G (see Figure A.4).

Note that $H=T\left(G, v_{1}, v_{2}\right)$ contains one more effort variable and yields one more independent effort constraint equation than G. Therefore, $E_{H}=F_{G}$. Similarly, H contains one more flow variable and yields one more independent flow constraint equation than G. Thus, $F_{H}=F_{G}$. Observe that if v_{1} and v_{2} are 1-junctions, then $N_{B H}=N_{B G}+1, N_{1 H}=N_{1 G}, N_{0 H}=N_{0 G}+1, B_{1 H}=B_{1 G}$, and $B_{0 H}=B_{0 G}+2$. Also, if v_{1} and v_{2} are 0 -junctions or EN-nodes, then $N_{B H}=N_{B G}+1, N_{1 H}=N_{1 G}+1, N_{0 H}=N_{0 G}, B_{1 H}=B_{1 G}+2$, and $B_{0 H}=B_{0 G}$. We are now prepared to establish the order rules for an arbitrary standard SJS.

Proof: Let G be an arbitrary standard SJS. If G is a proper SJS, then done, by Lemma A.2. Therefore, assume G is not proper. Let k_{1}, k_{1}, and k_{2} be the number of bonds in G of the forms $(0,0),(1,1)$ and (EN,EN) respectivelv. Let $k=k_{n}+k_{1}+k_{2}<\infty$. Without loss of generality, assume $k_{0} \geq 1$. Let ($v_{1 i}, v_{2 i}$) denote bonds of the form $(0,0)$ where $1 \leq i \leq k_{0} ;\left(v_{1 i}, v_{2 i}\right)$ denote bonds
of the form (1,1) where $k_{0}+1 \leq i \leq k_{0}+k_{1}$; and ($\left.v_{1 i}, v_{2 i}\right)$ denote bonds of the form (EN, EN) where $k_{0}+k_{1}+1 \leq i \leq k$. Also, let $G_{0} \equiv G$ and $G_{i} \equiv T\left(G_{i-1}, v_{1 i}, v_{2 i}\right)$ where $i=1,2, \ldots, k$. Observe that G_{k} is a proper SJS. Therefore, by Lemma A. 2 G_{k} satisfies the relations

$$
\begin{aligned}
& \quad E=N_{B}+N_{0}-B_{0}-N_{1} \text { and } \\
& \\
& \quad F=N_{B}+N_{1}-B_{1}-N_{0} \text { where } N_{B G_{k}}=N_{B G}+k, \\
& N_{0 G_{k}}=N_{O G}+k_{1}, N_{1 G_{k}}=N_{1 G}+k_{0}+k_{2}, B_{1 G_{k}}=B_{1 G}+2\left(k_{0}+k_{2}\right) \text {, and } \\
& B_{0 G_{k}}=
\end{aligned}
$$

Recall that for standard SJS H containing adjacent nodes v_{1} and v_{2} of the same node-type, $E_{H}=E_{T\left(H, v_{1}, v_{2}\right) \text { and } F_{H}=, ~=~}^{\text {a }}$. $\mathrm{F}_{\mathrm{T}\left(\mathrm{H}, \mathrm{v}_{1} \mathrm{v}_{2}\right)}$.
Therefore,

$$
\begin{aligned}
& \quad E_{G}=E_{G}=E_{G_{k}}=N_{B G_{k}}+N_{0 G}-B_{0 G_{k}}-N_{1 G_{k}} \\
& =\left(N_{B G}+k_{0}+k_{1}+k_{2}\right)+\left(N_{0 G}+k_{1}\right)-\left(B_{0 G}+2 k_{1}\right)-\left(N_{1 G}+k_{0}+k_{2}\right) \\
& =N_{B G}+N_{0 G}-B_{0 G}-N_{1 G}, \text { and } \\
& F_{G}=F_{G_{0}}=F_{G_{k}}=N_{B G_{k}}+N_{1 G_{k}}-B_{1 G_{k}}-N_{0 G_{k}} \\
& =\left(N_{B G}+k_{0}+k_{1}+k_{2}\right)+\left(N_{1 G}+k_{0}+k_{2}\right)-\left(B_{1 G}+2 k_{0}+2 k_{2}\right)-\left(N_{0 G}+k_{1}\right) \\
& = \\
& =N_{B G}+N_{1 G}-B_{1 G}-N_{0 G} .
\end{aligned}
$$

Hence, every standard SJS satisfies the relations $E=N_{B}+N_{0}-B_{0}-N_{1}$ and $F=N_{B}+N_{1}-B_{1}-N_{0}$.
A.1.4 Port Basis Order for Standard Simple Junction Structures

We now show that the number of independent effort/ flow variables corresponding to a given standard SJS is its
number of independent port efforts/flow; i.e., $N_{E}=E$ and $N_{F}=F$.

Corollary 1.2: Every standard SJS satisfies the relations

$$
\text { (i) } \quad N_{E}=N_{B}+N_{0}-B_{0}-N_{1}
$$

and
(ii) $\quad N_{F}=N_{B}+N_{1}-B_{1}-N_{0}$.

Proof: Let G be an arbitrary standard SJS. By Theorem G satisfies
$E=N_{B}+N_{0}-B_{0}-N_{1}$ and $F=N_{B}+N_{1}-B_{1}-N_{0}$.
Observe that in a node-bond incidence count, each internal bond is counted twice and each external bond is counted once in $B_{0}+B_{1}$. Therefore,

$$
\left(B_{0}+B_{1}\right)+N_{P}=2 N_{B} ; \text { i.e., } N_{P}=2 N_{B}-\left(B_{0}+B_{1}\right) .
$$

Then $E+F=\left(N_{B}+N_{0}-B_{0}-N_{1}\right)+\left(N_{B}+N_{1}-B_{1}-N_{0}\right)$

$$
=2 N_{B}-\left(B_{0}+B_{1}\right)=N_{p} .
$$

Note that $N_{E} \leq E, N_{F} \leq F$, and $N_{E}+N_{F}=N_{P}$.
Assume $N_{E}<E$. Then $N_{F} \leq F$ and $N_{E}<E$ imply that $N_{P}=$ $N_{E}+N_{F} \leq N_{E}+F<E+F=N_{P}$; i.e., $N_{P}<N_{P}$.

Thus, $N_{E}=$ E. Similarly, $N_{F}=F$.
Hence, every standard SJS satisfies the relations

$$
N_{E}=N_{B}+N_{0}-B_{0}-N_{1} \text { and } N_{F}=N_{B}+N_{1}-B_{1}-N_{0} .
$$

A. 2 Basis Order and Weighted Junction Structures

Section A. 2 is devoted to the development of basis order rules for standard weighted junction structures.

A.2.1 Basis Order for Standard Weighted Junction Structures

 The basis order rules for a standard WJS are presented here in the form of Theorem 2.Theorem 2: Every standard WJS satisfies the relations

$$
\begin{aligned}
& E=N_{B}+N_{0}-B_{0}-N_{1}-N_{T} \text { and } \\
& F=N_{B}+N_{1}-B_{1}-N_{0}-N_{T} .
\end{aligned}
$$

The proof of Theorem 2 is preceded by the definition of a transformation T which removes $T F$-nodes from standard WJS's. Let G be an arbitrary standard WJS. Assume G contains at least one TF-node u. Let nodes v_{1} and v_{2} be adjacent to u in G. Then $T(G, u)$ will denote the WJS H where $V_{H} \equiv V_{G}-\{u\}$ and $X_{H} \equiv\left\{X_{G} \cup\left\{\left(v_{1}, v_{2}\right)\right\}\right]-\left\{\left(v_{1}, u\right),\left(u, v_{2}\right)\right\}$. Note that H is a standard WJS which contains one less TF-node and one less internal bond than G.

Observe that $H=T(G, u)$ contains one less effort variable and yields one less independent effort constraint equation than G. Therefore, $E_{H}=E_{G}$. Similarly, H contains one less flow variable and yields one less independent flow constraint equation than G. Thus, $F_{H}=F_{G}$. Note that $N_{B H}=N_{B G}-1, N_{O H}=N_{O G}$, $N_{1 H}=N_{1 G}, B_{0 H}=B_{0 G}$, and $B_{1 H}=B_{1 G}$.

We are now prepared to establish the order rules for an arbitrary standard WJS.

Proof: Let G be an arbitrary standard WJS. If G does not contain a TF-node $\left(\mathrm{N}_{\mathrm{T}}=0\right)$, then G is a standard S.JS and we are done, by Theorem 1. Therefore, assume G contains at least one $T F$-node. Let N_{T} be the number
of TF-nodes in G. Enumerate the TF-nodes in
$G u_{1}, u_{2}, \ldots, u_{N_{T}}$. Let $G_{\theta} \equiv G$ and $G_{i}=T\left(G_{i-1}, u_{i}\right)$ where $1 \leq i \leq \mathrm{N}_{\mathrm{T}}$.

Observe that G_{T} is a standard SJS. Therefore, $G_{N_{T}}$ satisfies $E=N_{B}+N_{0}-B_{0}-N_{1}$ and $F=N_{B}+N_{1}-B_{1}-N_{0}$ where $N_{B C_{N_{T}}}=N_{B G}-N_{T}, N_{0 G_{N_{T}}}=N_{0 G}, N_{1 G_{N_{T}}}=N_{1 G}, B_{0 G_{N_{T}}}=B_{0 G}$, and ${ }^{B}{ }_{1 G_{N}}=B_{1 G}$. Recall that if $H=T(G, u)$, then $E_{G}=E_{H}$ and $F_{G}=F_{H}$. Therefore,

$$
\begin{aligned}
& \quad E_{G}=E_{G_{0}}=E_{G_{N_{T}}}=N_{B G_{N_{T}}}+N_{0 G_{N}}-B_{0 G_{N}}-N_{1 G_{N}} \\
& =\left(N_{B G}-N_{T}\right)+\left(N_{0 G}\right)-\left(B_{0 G}\right)-\left(N_{1 G}\right)=N_{B G}+N_{0 G}-B_{0 G}-N_{1 G}-N_{T} \text { and } \\
& F_{G}=F_{G_{0}}=F_{G_{N_{T}}}=N_{B G_{N_{T}}}+N_{1 G_{N_{T}}}-B_{1 G_{N_{T}}}-N_{0 G_{N}} \\
& =\left(N_{B G}-N_{T}\right)+\left(N_{1 G}\right)-\left(B_{1 G}\right)-\left(N_{0 G}\right)=N_{B G}+N_{1 G}-B_{1 G}-N_{0 G}-N_{T} .
\end{aligned}
$$

Hence, every standard WJS satisfies the relations
$E=N_{B}+N_{0}-B_{0}-N_{1}-N_{T}$ and $F=N_{B}+N_{1}-B_{1}-N_{0}-N_{T}$.

A.2.2 Port Basis Order For Standard Weighted Junction

Structures

We now show that the number of independent effort/ flow variables corresponding to a given standard WJS is its number of independent port efforts/flows.

Corollary 2.1: Every standard WJS satisfies the relations
(i) $N_{E}=N_{B}+N_{0}-B_{0}-N_{1}-N_{T}$ and

$$
\text { (ii) } N_{F}=N_{B}+N_{1}-B_{1}-N_{0}-N_{T} \text {. }
$$

Proof: Let G be an arbitrary standard WJS. By Theorem 2 , G satisfies $E=N_{B}+N_{0}-B_{0}-N_{1}-N_{T}$ and $F=N_{B}+N_{1}-B_{1}-N_{0}-N_{T}$. In the proof of Theorem 2, it was observed that a standard WJS can be "reduced" to a standard SJS by a series of applicalions of the transformation T. Also, it was noted that each application of T decreases the $T F$-node count by one and decreases the bond count by one. Recall that for a standard SJS, $2 \mathrm{~N}_{\mathrm{b}}=\mathrm{N}_{\mathrm{p}}+\left(\mathrm{B}_{0}+\mathrm{B}_{1}\right)$. Then for a standard WJS, the above observations yield $2 N_{B}=N_{P}+\left(B_{0}+B_{1}\right)+2 N_{T}$; i.e., $N_{p}=2 N_{B}-\left(B_{0}+B_{1}\right)-2 N_{T}$.
Then $E+F=\left(N_{B}+N_{0}-B_{0}-N_{1}-N_{T}\right)+\left(N_{B}+N_{1}-B_{1}-N_{0}-N_{T}\right)$

$$
=2 \mathrm{~N}_{\mathrm{B}}-\left(\mathrm{B}_{0}+\mathrm{B}_{1}\right)-2 \mathrm{~N}_{\mathrm{T}}=\mathrm{N}_{\mathrm{P}}
$$

Note that $N_{E} \leq E, N_{F} \leq F$, and $N_{E}+N_{F}=N_{P}$.
Assume $N_{E}<E$. Then $N_{F} \leq F$ and $N_{E}<E$ imply that
$N_{P}=N_{E}+N_{F} \leq N_{E}+F<E+F=N_{P}$; i.e., $N_{P}<N_{P}$.
Therefore, $N_{E}=E$. Similarly, $N_{F}<F$ implies that $N_{P}<N_{P}$.
Thus, $N_{F}=F$.
Hence, every standard WJS satisfies the relations $N_{E}=N_{B}+N_{0}-B_{0}-N_{1}-N_{T}$ and $N_{F}=N_{B}-N_{1}-B_{1}-N_{0}-N_{T}$.

Figure A.1. A l-junction proper SJS.

Figure A.2. A 0-junction proper SJS.

$$
\begin{aligned}
& G: \quad \int_{0}^{\text {(} \left.v_{1}\right)} \\
& V_{G}^{(1)}=\left\{v_{4}, v_{5}\right\}, V_{G}^{(0)}=\left\{v_{1}, v_{2}, v_{3}\right\} . \\
& \text { Internal Bonds }-\left\{\left(v_{1}, v_{4}\right),\left(v_{2}, v_{4}\right),\left(v_{3}, v_{4}\right),\left(v_{3}, v_{5}\right)\right\} \\
& \mathrm{k}=3 \\
& S_{0}=\left\{v_{1}\right\}, S_{1}=\left\{v_{4}\right\}, S_{2}=\left\{v_{2}, v_{3}\right\}, S_{3}=\left\{v_{5}\right\} \\
& \text { Junctions - } \mathrm{v}_{0,1} \equiv \mathrm{v}_{1} ; \mathrm{v}_{1,1} \equiv \mathrm{v}_{4} ; \mathrm{v}_{2,1} \equiv \mathrm{v}_{2} ; \mathrm{v}_{2,2} \equiv \mathrm{v}_{3} ; \mathrm{v}_{3,1} \equiv \mathrm{v}_{5} \text { 。 } \\
& \text { Degrees - } \alpha_{0,1}=2 ; \alpha_{1,1}=3 ; \alpha_{2,1}=3 ; \alpha_{2,2}=2 ; \alpha_{3,1}=2 \text {. } \\
& G_{0}(2): E N \longrightarrow \quad\left(v_{1}\right) a \xrightarrow{2} E N \\
& G_{1,1}: E N-\frac{a}{\left(v_{4}\right)} \frac{b / e_{c}^{E N}}{E N} \\
& \mathrm{G}_{2,1}: \mathrm{EN}-\frac{\mathrm{b}}{\left(\mathrm{v}_{2}\right)}-\mathrm{EN} \\
& G_{2,2}: E N-\frac{d}{\left(v_{3}\right)} E N \\
& \mathrm{G}_{3,1}: \quad \mathrm{EN}-\mathrm{d}-1-\mathrm{EN} \\
& G_{0,0}: \quad \mathrm{EN} \longrightarrow \mathrm{~V}_{1}-\mathrm{a} \text { EN (same as } G_{0}{ }^{(2)} \text {) }
\end{aligned}
$$

Figure A.3. Example of Lemma A.l construction procedure

Figure A. 3 (cont'd.).

Figure A.4. Transformation for converting a standard SJS to a proper SJS

Figure A.5. Transformation for converting a WJS to a SJS.

APPENDIX B AN APPLICATION OF THE BASIS OPDER RULES

Definition: For a WJS (weighted junction structure), a causal form is feasible if it does not violate any l-junction, 0 -junction, or $T F$ node constraint, and every port bond is causally oriented.

The effort-flow variable composition of a basis can be determined from the topological properties of a WJS.

The composition is given by the basis order rules, the general froms of which are

$$
N_{E}=N_{B}+N_{0}-B_{0}-N_{1}-N_{T}
$$

and

$$
\begin{equation*}
N_{F}=N_{B}+N_{1}-B_{1}-N_{0}-N_{T} \tag{1}
\end{equation*}
$$

Example 1

The WJS in Figure B. 1 has the following topological properties: $\quad N_{B}=12, N_{0}=2, N_{1}=3, N_{T}=2, B_{0}=5, B_{1}=9$.

The basis order rules yield

$$
N_{E}=12+2-5-3-2=4
$$

and

$$
N_{F}=12+3-9-2-2=2
$$

This input pattern is illustrated by the causally augmented WJS in Figure B. 2.

Henceforth, all weighted junction structures will be considered as n-port structures.

In the process of ottaining a "good" upper bound for the number of unlabelled feasible port bond causal orientations, three expressions for upper bounds will be derived where each successive expression requires greater knowledge of the junction structure and yields a smaller upper bound.

B. 1 An Üpper Bound For C As A Direct Application Of

 The Basis Order Rules.A question of particular interest concerns the number of distinct port-variable bases which an n-port possesses. The basis order rules yield an upper bound for the number of such bases.

From the fact that every port bond can accept exactly two causal orientations it is easily seen that

$$
\begin{equation*}
C \leq U_{0} \tag{2}
\end{equation*}
$$

where C is the total number of unlabelled feasible port bond causal orientation and $U_{0}=2 N_{P}$.

However, an improvement over U_{0} can be obtained by a direct application of the basis order rules.

Given N_{P} port bond with N_{E} efforts as inputs, a (generally) smaller upper bound can be expressed as

$$
\begin{equation*}
\mathrm{C} \leq \mathrm{U}_{1} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{1}=\left({ }_{N}^{N} P_{E}\right) \tag{4}
\end{equation*}
$$

and

$$
\binom{n}{m}=\left\{\begin{array}{cl}
\frac{n!}{m!(n-m)!} & \text { if } 0 \leq m \leq n \tag{5}\\
0 & \text { otherwise }
\end{array}\right.
$$

for integers n and m.

Notice that U_{1} represents a significant reduction from the coarse upper bound U_{0}.
Noting that

$$
\begin{equation*}
N_{P}=N_{E}+N_{F} \tag{6}
\end{equation*}
$$

one obtains the related form

$$
\begin{equation*}
\binom{N_{P}}{N_{E}}=\frac{N_{P!}}{N_{E}!N_{F}!}=\left({ }_{N_{F}}^{N_{F}}\right) \tag{7}
\end{equation*}
$$

As would be expected, the results are symmetric with respect to effort and flow variables.

The inequality $U_{1} \leq U_{0}$ can be demonstrated by expressing ${ }_{2} \mathrm{~N}_{\mathrm{P}}$ as a binomial expansion.

Recalling the Binomial Expansion Theory,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k_{b} k},
$$

let $\mathrm{a}=1, \mathrm{~b}=1$, and $\mathrm{n}=\mathrm{N}_{\mathrm{P}}$. Then

$$
\begin{equation*}
2^{N_{P}}=(1+1)^{N_{P}}=\sum_{k=0}^{N_{P}}\left({ }_{k}^{N_{P}}\right) \tag{8}
\end{equation*}
$$

Then for $0 \leq N_{E} \leq N_{P}$ and $0 \leq N_{F} \leq N_{P},\binom{N_{P}}{N_{E}}$ and $\binom{N_{P}}{N_{F}}$ are merely symmetrical terms in (8). Thus $\mathrm{U}_{1} \leq \mathrm{U}_{0}$. In particular, if $\mathrm{N}_{\mathrm{P}} \geq 1$, then $\mathrm{U}_{1}<\mathrm{U}_{0}$.

Example 2

Referring to Figure B.1,

$$
N_{P}=6, N_{E}=4, \text { and } N_{F}=2
$$

Then

$$
L_{0}=2^{6}=64
$$

and

$$
\mathrm{U}_{1}=\binom{6}{4}=\frac{6!}{4!2!}=15
$$

'Thus, $C \leq 15<64$.

B. 2 A Refined Upper Bound for C

In general, U_{1} can be improved upon considering the constraint equations associated with WJS elements. It will be assumed that the WJS of interest contains no external TF elements. This assumption results in no loss of generality, due to the causal properties of TF element [25].

Let e be the number of port effort inputs to external 0 -junctions. Similarly, let f be the number of port flow inputs to external l-junctions.

For a given e, if " e " port efforts are inputs to the A_{0} external 0 -junctions, then $P_{0}-e$ port flows are inputs to the remaining $P_{0}-e$ port bonds which are incident to 0 -junctions. Thus, $N_{F}-\left(P_{0}-e\right)$ port flows are inputs to the A_{1} external l-junctions, and $N_{E}-e$ port efforts are inputs to the remaining $P_{1}-\left(N_{F}-P_{0}+e\right)$ port bonds which are incident to 1 -junctions.

Note that

$$
\begin{equation*}
f=N_{F}-P_{0}+e \tag{9}
\end{equation*}
$$

and

$$
\begin{array}{r}
P_{1}-\left(N_{F}-P_{0}+e\right)=\left(P_{1}+P_{0}\right)-N_{F}-e \\
=N_{P}-N_{F}-e=N_{E}-e .
\end{array}
$$

Then

$$
\begin{equation*}
\mathrm{C} \leq \mathrm{U}_{2} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{2}=\sum_{e=L_{E}}^{M_{E}}\binom{A_{0}}{e}\binom{A_{1}}{N_{F}-P_{0}+e} \tag{11}
\end{equation*}
$$

for some M_{E} and L_{E}.

If $N_{E} \leq A_{O}$, then $M_{E}=N_{E}$. If $N_{E}>A_{O}$, then $M_{E}=A_{0}$.
Thus,

$$
\begin{equation*}
M_{E}=\min \left(N_{E}, A_{0}\right) \tag{12}
\end{equation*}
$$

Suppose $P_{1} \leq N_{E}$. Then there are at least $N_{E}-P_{1}$ port effort inputs to the A_{0} external 0 -junctions. Then $L_{E}=N_{E}-P_{1}$. Observe that $f=0$ when $e=N_{E}-P_{1}$.

Suppose $\mathrm{P}_{1}>\mathrm{N}_{\mathrm{E}}$. Then $\mathrm{N}_{\mathrm{F}}>\mathrm{P}_{0}$, and there can be a minimum of zero port efforts inputs to the A_{0} external 0 -junctions. Then $L_{E}=0$. Observe that $f=N_{F}-P_{0}>0$ when $e=0$. Thus,

$$
\begin{equation*}
L_{E}=\max \left(0, N_{E}-P_{1}\right) \tag{13}
\end{equation*}
$$

Equation (11) is symmetric in e and f. Thus, U_{2} can be formulated in terms of specified port flow inputs, if desired.

By (9) we have $e=N_{E}-P_{1}+f$, since $N_{E}+N_{F}=P_{0}+P_{1}$. Then, by (5),
$\sum_{e=L_{E}}^{M_{E}}\left(e^{A_{0}}\right)\binom{A_{1}}{N_{F}-P_{0}+e}=\sum_{e=L_{E}}^{N_{E}}\left({ }^{A_{0}}\right)\binom{A_{1}}{N_{F}-P_{0}+e}=\sum_{f=L_{F}}^{P_{N}}\left(\begin{array}{c}A_{0} \\ P_{1} \\ A_{1}\end{array}\right)\left({ }_{f}^{1}\right)$

$$
=\sum_{f=L_{F}}^{A_{1}}\binom{A_{1}}{N_{E}-P_{1}+f}\left({ }_{f}^{A_{1}}\right)=\sum_{f=L_{F}}^{M_{F}}\left(N_{E}^{A_{0}} P_{1}+f\right)\left({ }_{f}^{A_{1}}\right)
$$

where $M_{F}=\min \left(N_{F}, A_{1}\right)$ and $L_{F}=\max \left(0, N_{F}-P_{0}\right)$.

It will now be shown that $U_{2} \leq U_{1}$.

Suppose e port efforts are inputs to the A_{0} external 0-junctions. Then there are at most $\left({ }_{N_{F}}-\mathrm{A}_{0}+e\right)$ causally consistent input assignments of $N_{E}-e$ port efforts to the P_{1} port bonds incident to 1-junctions, given causally consistent input assignments of $N_{F}-P_{0}+e$ port flows to the P_{1} port bonds incident to 1-junctions.

Observe that $\binom{\mathrm{P}_{1}}{\mathrm{~N}_{\mathrm{E}}-\mathrm{e}}$ is the number of unrestricted input assignments of $N_{E}-e$ port efforts to the P_{1} port bonds incident to 1-junctions. Therefore,

$$
\begin{equation*}
\binom{\mathrm{A}_{1}}{\mathrm{~N}_{\mathrm{F}}-\mathrm{P}_{0}+e} \leq\binom{\mathrm{P}_{1}}{\mathrm{~N}_{\mathrm{E}}-e^{2}} \tag{14}
\end{equation*}
$$

Therefore, by (5) and (14),

$$
\begin{aligned}
& \sum_{e=L_{E}}^{M_{E}}\left(e^{A_{0}}\right)\binom{A_{1}}{N_{F}-P_{0}+e}=\sum_{e=0}^{87}\binom{N_{E}}{A_{0}}\binom{A_{1}}{N_{F}-P_{0}+e} \\
& \leq \sum_{e=0}^{N_{E}}\left(\begin{array}{l}
A_{0}
\end{array}\right)\binom{P_{1}}{e^{-e}} \leq \sum_{e^{N}}^{N_{E}}\left(\begin{array}{l}
P_{0}
\end{array}\right)\binom{P_{N_{1}}}{N_{E}-e}=\binom{P_{0}+P_{1}}{N_{E}}=\binom{N_{P}}{N_{E}} .
\end{aligned}
$$

Therefore, $U_{2} \leq U_{1}$. In particular, whenever $A_{1}<P_{1}$ or $A_{0}<P_{0}, U_{2}$ is a significant improvement over U_{1}.

Example 3

Again referring to Figure $B .1, A_{0}=0, A_{1}=3, P_{0}=0$, $P_{1}=6, N_{E}=4$, and $N_{F}=2$. Therefore, $M_{E}=\min (4,0)=0$ and $L_{E}=\max (0,4-6)=0$. Thus,

$$
C \leq U_{2}=\binom{0}{0}\binom{3}{2}=3,
$$

which is much lower than the upper bound of 15 obtained in example 2. In addition, the junction structure in Figure B. 1 has exactly three unlabelled causal orientLions which are given in Figure B. 3 , hence, $C=U_{2}$ in this example.

The significance of U_{2} is captured by the following theorem.

Theorem 3: The number of distinct basis variable sets for a WJS transformation is bounded above by

$$
U_{2}=\sum_{e=L_{E}}^{M_{E}}\left(\begin{array}{l}
A_{0}
\end{array}\right)\binom{A_{1}}{N_{F}-P_{C}+e}=\sum_{f=L_{F}}^{M_{F}}\left(N_{E}-P_{1}+f\right)\left({ }_{f}^{A_{1}}\right)
$$

where $M_{E}=\min \left(N_{E}, A_{0}\right), L_{E}=\max \left(0, N_{E}-P_{L}\right)$, $M_{F}=\min \left(N_{F}, A_{1}\right)$, and $L_{F}=\max \left(0, N_{F}-P_{0}\right)$.

Figure B.1. Example of a weighted junction structure.

Figure B.2. Causally augmented weighted junction structure.

Figure B.3. Unlabelled causal orientations of a weighted junction structure.

APPENDIX C

the resolution of a conflict resulting from a port bond causal orientation

Property 2.1: Let G be a junction structure with a port bond b. Suppose a causal orientation (and subsequent causal extension) of b results in a causal conflict, then the opposite causal orientation (and subsequent causal extension) of b will not yield a causal conflict.

Proof:

It will be assumed that each causal orientation of b is followed by the causal extension process, and that G is acausal (since the pruning process of Appendix E can be initially applied to remove all causally oriented bonds and causally completed nodes).

G contains a node of degree greater than two since a causal orientation of b results in a causal conflict. From a graph theoretic perspective, a causal orientation of b defines a "walk" of G [18]. Let $E N_{o}$ be the field-node incident to b. Then there exists a shortest path in G joining $E N_{0}$ and a JS-node, V_{o}, of degree greater than two such that (1) every JS-node (exclusively) between $E N_{0}$ and V_{o} has degree two, and (2) there exists no shorter path in G joining $E N_{o}$ and a JSnode of degree greater than two.

Let d denote the path bond incident to V_{o}. A causal orientation of b resulting in a causal conflict implies that the resulting causal orientation of d gives d strong causal implication with tespect to V_{0}. The reversal of the causal orientation of b results in a reversal of d's causal orientation, since $E N_{o}$ and V_{o} are joined by a sequence of JS-nodes of degree two. This gives d weak causal implication with respect to V_{o}, which leaves V_{0} causally incomplete; consequently, no causal information propagates beyond V_{0} and no causal conflict can result. Hence, if a causal orientation of b yields a causal conflict, then the opposite causal orientation of b will not y ield a causal conflict.

APPENDIX D

THE IMPACT OF THE STANDARD SEQUENTIAL CAUSALITY ASSIGNMENT PROCEDURE (SSCAP) ON THE REDUCED JUNCTION MATRIX

Theorem D.1: Let G be a bond graph with an algebraically reducible junction structure. Assume that G can be completely and consistently causally oriented by SSCAP. Then dependent storage field inputs are determined by source field and independent storage field outputs. Moreover, no dissipation field input is determined by a dependent storage field output.

Proof:
It will be assumed that (1) a causal assignment is always followed by causal extension, (2) each field multiport is a one-port, and (3) each field multiport is adjacent to a 0 -junction or 1 -junction. It has been shown that a linear time-invariant field multiport with n ports can be replaced by n one-port field multiports [25]. Thus, for this reason and due to the causal characteristics of junction structure nodes, the above assumptions result in no loss of generality.

Consider the acasual representation of $G_{1}=G$ given in Figure D. 1 where n_{1} is the number of sources, m_{1} is the number of storage multiports, and p_{1} is the number of dissipation multiports. Without loss of generality, assume $n_{1} \geq 1$.

In the following discussion only consistent causal orientations of source bonds will be considered.

Causally orient the bond incident to an arbitrary source in G_{1}. Let u_{1} denote the output from this source. Prune (see Appendix E) from G_{1} all resulting causally oriented bonds and causally completed nodes. (Note that no causal conflicts can result from source bond orientations due to the theorem's hypothesis). Let G_{2} be the bond graph obtained from G_{1} by the pruning procedure (see Figure D.2). If any dependent storage field bond or any dissipation field bond is pruned from G_{1}, then each corresponding dependent storage field input or dissipation field input is determined by u_{1} together with prior information. If $G_{2} \neq \emptyset$, then done. Assume $G_{2} \neq \emptyset$. Then G_{2} has the acausal form given in Figure D. 1 where n_{1}, m_{1}, and p_{1} are replaced by n_{2}, m_{2}, and p_{2} respectively. Observe that if $n_{2} \geq 1$, then the source bond causal orientation process together with the bond graph pruning procedure can be repeated (at most n_{1} times) until all source bonds of G have been causally oriented. Then there exists a smallest positive integer $k \leq n_{1}+1$ such that G_{k} contains no sources. (If $n_{1}=0$, then $k=1$). $n_{1} \geq 1 \Rightarrow k \geq 2$. Then each dependent storage input and each dissipation input specified in G_{h} is determined by $u_{1}, u_{2}, \ldots ., u_{h}$ where $1 \leq h \leq k-1$ and u_{h} is defined similar to u_{1}.

Consider G_{k}. G_{k} has the acausal form given in Figure D.3. If $\mathrm{m}_{\mathrm{k}}=0$, then done. Assume $\mathrm{m}_{\mathrm{k}}>0$. Assign integral causality to an arbitrary storage bond, b, in G_{k}. If a causal conflict results, then restore G_{k} to its acausal form and select a different storage bond to causally orient. In this case, property 2.2 of the causal extension process indicates that sufficient input information was available to determine the variables associated with bond b, i.e., the storage element incident to b is dependent and its input is determined by $u_{1}, u_{2}, . ., u_{k-1}$. Suppose the integral causal orientation of b does not result in a causal conflict in G_{k}. Let x_{1} be the resulting output of the storage node incident to the oriented b. Let G_{k+1} be the bond graph obtained from G_{k} by the pruning procedure. If any dependent storage bond or any dissipation bond is pruned from G_{k}, then each corresponding dependent storage input or dissipation input isdetermined by x_{1} in G_{k}, and therefore, is determined by $u_{1}, u_{2}, . ., u_{k-1}, x_{1}$ in G.
G_{k+1} has the acasual form given in Figure D. 3 with k replaced by $k+1$. If $m_{k+1}=0$, then done. If $m_{k+1} \neq 0$, then the above storage bond integral orientation and graph pruning process can be repeated (at most m_{k} times) until the integral orientation of any remaining storage bond yields a causal conflict, i.e., there is a smallest integer $\ell \geq 0$ such that either the integral causal orientation of each storage bond in $G_{k+\ell}$ results in a causal inconsistency or $m_{k+\ell}=0$ where $\ell \leq m_{k}$, As noted above, if the integral causal orientation of
a storage hond results in a causal conflict, then the bond'; associated variables are determined by previously specified source and (independent) storage outputs. Then each dependent storage input and each dissipation input specified in G_{h} is determined by

$$
\begin{aligned}
& u_{1} \text {, . . . , } u_{h} \text { if } 1 \leq h \leq k-1 \\
& u_{1}, \ldots .,{ }_{k-1} \text { if } \quad l=() \\
& u_{1}, \cdot ., u_{k-1}, x_{1}, \cdot . ., x_{h-k+1} \\
& \text { if } k \leq h \leq k+?-1 \text { and } p>0
\end{aligned}
$$

where each $x_{i} i s$ defined similar to x_{1}. Thus, all dependent storage inputs are determined by source and independent storage outputs, and no dissipation inputs is determined by a dependent storage output.

$$
\mathrm{n}_{1}, \mathrm{~m}_{1} \text {, and } \mathrm{p}_{1} \text { are nonnegative integers }
$$

Figure D.1. Symbolic bond graph representation with fields identified.

Figure D.2. Example of subgraph generation by pruning. (a) Bond graph G_{1} with source bond causally oriented. (b) Bond graph G_{2} obtain from G_{1} by the pruning process.

m_{k} and p_{k} are nonnegative integers

Figure D.3. Symbolic bond graph representation with source field pruned.

APPENDIX E

PRUNING AND SOME ASPECTS OF JUNCTION STRUCTURES

Let G be a junction structure and d be an arbitrary bond in G. Assume that G is acasual. Then a casual set with respect to d is the set of casually oriented bonds and causally completed nodes in G which result from the casual extension of a casual orientation of d. "S(d)" will denote a casual set with respect to d; this notation assumes that the casual orientation of d is known.

Consider the JS given in Figure E.1. If bond b_{67} is causally oriented so that the effort variable is an input to node 6 , then $S\left(b_{67}\right)=\left\{b_{67}\right\}$. If bond b_{67} is causally oriented so that the effort variable is an input to node 7 , then $S\left(b_{67}\right)=V_{G} U X_{G}$ where V_{G} is the node set of G and X_{G} is the bond set of G.

Note that (1) a casual set does not contain any casually incomplete notes; and (2) there is at least one and at most two casual sets with respect to bond b in G, since b has exactly two casual orientations and the casual extension process implies the unique and exhaustive propagation of input information.

Remark E.1: If G is a tree JS, then all causally complete nodes in $S(b)$ are consistent since there is a unique path between distinct nodes in a tree graph.

Let G be a JS and d be an arbitrary bond in G.

Arbitrarily, causally oriented d. Then "prune S(d) from G" will mean delete from G the bonds and nodes in S(d). "G-S(d)" will denote the structure obtained by pruning $S(d)$ from G. Remark E.2: Pruning does not introduce additional port-bonds since it does not introduce additional EN-nodes.

Remark E.3: The removal or "pruning" of causally oriented bonds from a causally incomplete junction does not alter the input information which is required to causally complete the junction. That is, a causally incomplete junction has $n \geq 2$ inputs to be determined (i.e., bonds to be causally oriented) of which exactly one must have strong causal implication. Thus, once an input of strong causal implication is known or n-1 inputs of weak causal implication are known, the junction can be causally completed in a consistent fashion.

Remark E.4: It follows from Property 2.4 of the causal extension process that if G is a JS then $G-S(b)$ is a JS, where G-S(b) will be called the "null bond graph" if G-S(b) is empty. A property of JS trees can now be given.

Theorem E.l: Every JS tree can be causally completed in a consistent fashion by the sequential causal orientation (and causal extension) of its portbonds.

Proof:

In the subsequent discussion, it will be assumed that (1) each bond causal orientation is followed by the causal extension process, and (2) for each set $S(p)$, the bond p has been arbitrarily causally oriented.

Let T_{1} be an arbitrary $J S$ tree and R_{1} be the set of all port bonds in T_{1}. Then $2 \leq 0\left(R_{1}\right)<\infty$. Let $p_{1} \varepsilon R_{1}$. If $R_{1} \cap S\left(p_{1}\right)=R_{1}$ (i.e. all port bonds of T_{1} are in $S\left(p_{1}\right)$), then done by the properties of pruning and the causal extension process.

Assume $\mathrm{R}_{1} \cap \mathrm{~S}\left(\mathrm{p}_{1}\right) \neq \mathrm{R}_{1}$. Let $\mathrm{T}_{2}=\mathrm{T}_{1}-\mathrm{S}\left(\mathrm{p}_{1}\right)$ and $\mathrm{R}_{2}=\mathrm{R}_{1}-$ $\left[R_{1} \cap S\left(p_{1}\right)\right]$. By the properties of the pruning process, T_{2} is a JS forest. Therefore, $o\left(R_{2}\right)$ is greater than or equal to twice the number of components of T_{2}. Let $p_{2} \varepsilon R_{2}$. Observe that $S\left(p_{1}\right) \cap S\left(p_{2}\right)=\varnothing$.

In general, if $R_{i} \cap S\left(p_{i}\right) \neq R_{i}$, then let $T_{i+1}=T_{i}-S\left(p_{i}\right)$ and $R_{i+1}=R_{1}-\left[R_{1} \cap_{j}{\underset{i}{i}}_{i} S\left(p_{j}\right)\right]$ where $p_{j} \varepsilon R_{j}$ for $1 \leq j \leq i$ and $i \geq 1$.
T_{i} is a JS forest and $o\left(R_{i}\right)$ is greater than or equal to twice the number of components of T_{i} for each i.
$o\left(R_{1}\right)<\infty$ implies there exists a positive integer K such that $R_{K} \cap S\left(p_{K}\right)=R_{K}$; i.e., after the $K \underline{t h}$ pruning, all port bonds (and thus, all bonds) have been pruned from T_{1}. This occurs if and only if all bonds of T_{1} have been causally oriented.

Recall that the causal extension process results in consistent causal assignments in JS trees, and pruning does not affect the consistency of causal assignments.

Then $V U X=\underset{i=1}{K} S\left(p_{i}\right)$ where V is the node set of T_{1}, X is
the bond set of $T_{1}, S\left(p_{i}\right) \cap S\left(p_{j}\right)=\emptyset$ if $i \neq j$, and each $S\left(p_{i}\right)$ is a subset of bonds and nodes in T_{1} which have been causally assigned in a consistent fashion.

Hence, T_{1} has been causally completed in a consistent fashion by the sequential causal orientation of its portbonds.

Figure E.1. Junction structure with
labelled nodes.

$R_{1}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$
$p_{1}=b_{1}$ with effort input to v_{7}
$\mathrm{S}\left(\mathrm{p}_{1}\right)=\left\{\mathrm{b}_{1}, \mathrm{v}_{1}\right\}$

$$
\begin{align*}
& R_{2}=R_{1}-\left[R_{1} \cap S\left(p_{1}\right)\right]=\left\{b_{2}, b_{3}, b_{4}\right\} \tag{8}\\
& p_{2}=b_{2} \text { with effort input to } v_{7} \\
& S\left(p_{2}\right)=\left\{b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}
\end{align*}
$$

Figure E.2. Example of the pruning procedure.

$$
b_{i} \equiv \text { bond } i \text { and } v_{i} \equiv \text { node } i
$$

APPENDIX F

COMPUTER SUBROUTINES

FiN
$1-1$JFN
I）ぐいいが－zzーNう inonorn
Table

$$
\stackrel{\gtrless}{2}
$$

Table 6. Subroutine Ior The Determination Of Causal Complex Solvability

（continued）
00 ज《न心 《円o － 11 U11：

$\omega 1$
ω
ω
ω
NH
now
Nusm
Ns
us

Qu

$L 1$

 CENTITY RELATIONS
30

 $\cdots \rightarrow$

8
0
0
0
wo

75

W 0

[^0]\cup

-エリ

(continued)

\qquad
к以
лия

Table 7. (continued)

CALL JSGET(LEN,NEIN,IEFOLT,IPUT)	
IFIIEKRF•RE•O)RETURIN	
BY ROWS	
IPASS $=1$	
CONTINUE	
LIMI =IFUT-I	
DO $100 \mathrm{I}=1 \mathrm{LINI}$	
DO $100 \mathrm{~J}=1$ IFU1	
IFIIFS(J) ©GT.IPS(I)) GOTO 100	
IHOLD $=1 F S(1)$	
$I P S(I)=I P S(J)$	
IFS (J) $=1 H C, D$	
HOLD =SDATA(I)	
SDATA(I) $=$ SCATA(U)	
SDCTA(J) = HCLD	
CCNTINUE	
IF (IfASS.AE•O)GO10 295	
IF (NHIN.EG.O)GGTO 500	

[^1]

CFRINT JSETRANSFORMATICN

\rightarrow
\cdots
WIU
Ner
$\begin{array}{lll}0 & 68 & \infty \\ \omega & \omega & m \\ m & N\end{array}$
Table 7. (continued)

- D.う j..

の

लusurow
Table 8．（continued）
C CBIAIN PCWER LIRECIION
IDIREC＝I
IFIIGMX（ICUT，I）．NE．
CIFSIBMXCICUT•II•NE IDICIRECE2

[^2]

Table 8 . (continued)

nin
$\infty \infty$
00
*)
$1395 r$
Table 9. Subroutine For The Determination Of Junction Matrix Entry Position

 C LETERMINE IF IROND IS INIERAAL BOND

Table 10. (continued)

Table 10. (continued)

[^0]: ω

[^1]: JS－TRANSFCRMATION
 $\stackrel{\rightharpoonup}{4}$ －1）＊$\triangle B E X$

 IB2IGOTO ：70
 BEX＋M2）
 かメメーブーズ

 $x \rightarrow+2 x \times 4$
 ジーーのロハース

 ールーがいいいー

[^2]: ENTRIES
 90 C
 T）$=1 \bullet-1) \cdot L E N+M 2$
 ミゅがージ
 にコロローロ

 ールットートロ
 ついくいで にのにロロルロー

