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ABSTRACT

STATE FORMULATION OF LARGE-SCALE LINEAR
TIME-INVARIANT BOND GRAPH MODELS

by

Benjamin Moultrie

In this dissertation, topology-based equations are
developed which give the effort-flow basis order for the
juncture structure transformation of an arbitrary weighted
junction structure. These equations ae used to develop
three upper bounds for the numberof distinct sets of port
variables which can be used to specify weighted junction
structure input-output relations. Each successive bound is
shown to be numerically smaller and computationally more
expensive than its predecessor. Examples are given which
use the established bounds.

Also, a causal assignment procedure is specified which
simplifies the state model formulation process for linear
time-invariant bond graphs. This result is used to develop
an efficient computer implemented state model formulator for
linear time-invariant bond graphs. The key storage features
and novel matrix manipulation procedures of this state model

formulator are explored, and key computer subroutines are



given. The enhanced performance characteristics of this

formulator are validated by computer test results.
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I. INTRODUCTION
1.1 Background

Although very few dynamic systems are truly linear, they
are frequently adequately approximated by linear models.
This serves to decrease the system analysis effort, while
yielding acceptable design results. In general, as dynamic
systems increase in size and complexity, the creation and
analysis of even linear models becomes an arduous and tedious
task. Thus, the development of new and more powerful tools
which can be used in the modeling and analysis process 1is
necessarily a continuing effort.

Digital computers and linear simulation programs are
proving to be essential tools in the designing of dynamic
systems. The simulation of a system can be described as a
procedure which begins with the development of a system
model and continues with the 'processing'" of the model in
order to infer the performance characteristics of the system
under study [1].

In many engineering activities, the word '"'model'" has
come to mean the description of a system in mathematical
terms. Historically, the techniques used to obtain mathej
matical models have been given prominence in accordance with
the engineering discipline of the system analyst. Conse-
quently, numerous digital simulation programs have been

developed which require as input a particular energy domain

1



description of the system to be studied. In order to be
used for multiple energy domain systems, such programs
generally require the development of system element analo-
gies. This need to '"'reason by analogy'" tends to make
single-energy-domain simulation programs undesirable for
the analysis and simulation of complex multiple-energy-
domain systems. Representative examples of single-energy-
domain digital simulation programs are NET-2 [2] and SPICE
(3] for electrical circuits and systems, and DRAM [4] and
MEDUSA [5] for dynamic mechanical systems. Additional
examples of such specialized programs can be found in a 1975
volume of Shock and Vibration [6].

In contrast to the number of developed single-energy-
domain digital simulation programs, comparatively few simu-
lation programs have been developed which accept as input a
multiple-energy-domain description of a system. In develop-
ing multiple-energy-domain simulation programs, two approaches
may be used.

The first approach is to develop a program which accepts
more than one single-energy-domain element type as input.

The SUPER*SCEPTRE program is a digital simulation program

which uses this approach [7]. It accepts electrical system

and mechanical system element types as inputs. In general,

a desire for easy program implementation as well as constraints
on program size limits the number of single-energy-domain
element types which can be included as admissible inputs.

Therefore, the value of this approach is limited.



The second approach is to develop a program based on
a process which describesmany physical systems and uses a
small number of basic elements. The ENPORT-4 program uses
this approach [8].

ENPORT-4 is a digital simulation program which accepts
as input a linear, time-invariant, multiple-energy-domain
description of a physical system, and serves as a state model
formulator-analyzer. The foundation for ENPORT-4 is the
generalized energy-based modeling technique of bond graphs.
This provides ENPORT-4 with its very desirable ability to
treat all energy domains uniformly. An undesirable feature
of ENPORT-4 is its generally large processing time require-
ment. This is largely due to ENPORT-4's inefficient state

model formulator. This issue is addressed in this research.

1.2 The Status Of Bond Graph Theory And Practice

Traditionally, for physical systems, the concepts of
energy and energy-flow have been important considerations in
the development of system models. In 1960, Paynter introduced
a novel multiport approach by which a system's energy charac-
teristics can be explicitly exhibited and a system state
model can be systematically obtained [9]. This is the method
of bond graphs. A history of the process leading to its
development is contained in Karnopp and Rosenberg [10]. The
current situation regarding theory and practice is indicated
by a bond graph bibliography compiled by Gebben [11].

The majority of bond graph oriented research has been



in the area of applicability. The concerns of this disser-
tation are in the areas of theory and methodology rather
than applicability.

Works which relate directly to this research are the
junction structure studies by Nobuhide [12], Ort and Martens
(13], and Perelson [14]. Each study has as a prime objective
the establishment of conditions for the solvability of
junction structure algebraic loops.

In the Nobuhide study, a matrix representation of the
junction structure is developed with the aid of junction
structure power information, but without the aid of causal
information. Specific blocks of this matrix are then manipu-
lated to establish an algorithm by which loop solvability
can be determined for a restricted class of junction struc-
tures.

Ort and Martens rely on junction structure power infor-
mation and causal information to develop a junction struc-
ture matrix representation which is used to establish loop
solvability conditions. They also establish an orthogon-
ality relationship between particular types of junction
structure equations.

Perelson also relies on junction structure power infor-
mation and causal information to establish loop solvability
conditions. His results are more extensive than those
achieved by Ort and Martens. They are used in the state
model formulation procedure which is discussed in Chapter IV,

In the process of deriving loop solvability conditions,



each of the above works partially realizes the '"basis order
rules'" developed in this research. The broader results pre-
sented here are complete and developed without the aid of
junction structure power information or causal information.

An important work to be noted is the state model formu-
lation algorithm by Rosenberg [15]. This algorithm is the
foundation for the state model formulator in Chapter IV.

An additional work to be noted is the publication by
van Dixhoorn which demonstrates how block-diagram-oriented
digital simulation languages can be adapted for the inter-
active simulation of nonlinear bond graphs on minicomputers
~[16]. For linear or nonlinear bond graphs, the procedure
described requires that the analyst augment the graph in
terms of power and causality, resolve algebraic loops and
uncertainties, and define specific element blocks. For the
analyst, this graph analysis problem increases in difficulty
as the bond graph increases in size and complexity. Although
it processes only linear-time invariant bond graphs, ENPORT-4
does not require the analyst to analyze the graph. For this
reason and because of the great utility of linear simulation
programs, methods for increasing the efficiency of ENPORT-4

were of concern in this research.

1.3 Research Highlights And Dissertation Organization

The results of this research can be divided into the
categories of (1) bond graph theory and (2) bond graph

methodology. The first category encompasses the results



in Chapters II and III, and the second category encompasses

the results in Chapter IV.

The key research results can be highlighted by deline-

ating the major aspects of each chapter. The major aspects

of Chapter II are

1)

Z)

3)
4)

the graph theoretic development of junction structures
(from the node set {0,1,TF,GY}) and introduction to
standard junction structure concepts;

the introduction of new results for weighted junction
structures (the basis order rules and an upper bound
for the number of distinct bases for a junction struc-
ture transformation);

the precise defining of causal concepts;

the precise defining of causal complexes in bond graph

terms.

The major aspects of Chapter III are

1)

Z)

the specification of SSCAP (the standard sequential
causality assignment procedure);
the verification of the simplifying influence which

SSCAP has on the form of the reduced junction matrix.

The major aspects of Chapter IV are

1)

2)

the presentation of a new sparse-matrix-based state
model formulator which implements some results achieved
in Chapters II and III, and employs the novel sparse
matrix inversion subroutine INPRD (INverse-PRoDuct);

the results of a performance study (for the new state



model formulator) which considers computer storage and

processing time requirements for three test bond graphs.
The research results are summarized in Chapter V, and all
proofs and computer subroutines are in the appendices for

the sake of brevity.



II. BOND GRAPH JUNCTION STRUCTURES

Bond graphs are graphs whose nodes are called multi-
ports and whose edges are called bonds. The terms ''node"
and "multiport'" will be used interchangeably in the sub-
sequent development. The principal categories of bond graph
multiports are shown in Figure 2.1. A discussion on the
field multiports (sources, storages, and dissipators) 1is
deferred until Chapter III. This chapter develops standard
bond graph junction structure terminology and notation, and
extends such where necessary. In this development, graph
theory concepts and terminology are employed. Since there
is a broad range of terminology in the graph theory litera-
ture, textbooks by Busacker and Saaty [17] and Harary [18]

are cited as references.

2.1 Junction Structure Terminology And Notation

A junction structure is comprised of bond graph multi-
ports which ‘represent the features of a dynamic system which
neither store energy, supply power, or dissipate power. In
standard bond graph notation, these multiports are repre-
sented by the elements of the set {0,1,TF,GY}. The multiport
"0" is called '"zero" of "O-junction'" (zerc junction). The
multiport "1" is called a '"one'" or "l-junction'" (one-junc-
tion). The "TF" multiport is called a '"transformer'", and

the "GY" multiport is called a "gyrator'. As a mathematical



convenience, the node "EN" is introduced and will be added
to the set {0,1,TF,GY}; it will be called the "environment
node'". The elements of the set {0,1,TF,GY,EN} will be gene-
rally referred to as '"junction structure nodes'.

Definition: A bond is an unordered pair b=(v,w)=(w,V)

where v and w are distinct junctilion structure
nodes.

This definition restricts self-loops from being classi-
fied as bonds, e.g., (v,v) is not a bond. For the purpose
of model analysis, it is useful to distinguish between types
of bonds.

Definition: A port bond is a bond which is incident to an
EN-node.
A poft bond is also called an "external' bond.

Definition: An internal bond is a bond which is not incident

to an EN-node.
The concept of a junction structure can now be defined.
Definition: A junction structure G is a finite set, VG’

of junction structure nodes together with a set

of bonds, X such that if beX then there

G)
exist v,weVG so that b=(v,w).

G’

The shorthand notation "JS" will substitute frequently
for the phrase "junction structure'" in the balance of this
dissertation. Various types of JS's can be defined.

Definition: A standard junction structure is a JS in which

(1) every junction (0-junction or 1l-junction)

has degree greater than or equal to two, (2)
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every TF-node and GY-node has degree equal to
two, and (3) every EN-node has degree =qual to one

and is adjacent to a nonenvironment JS node.

Hereafter, unless otherwise stated, all JS's will be
considered to be standard.

Definition: A simple junction structure is a JS which con-

tains only elements from the set {0,1,EN} and
their incident bonds.
A simple junction structure will be denoted by '"SJS".
Two subclasses of SJS's are '"tripartite'" and 'proper'.

Definition: A tripartite simple junction structure is a

SJS in which every internal bond b has the form
b=(1,0), and every external bond d has the form
d=(1,EN) or d=(0,EN).

Definition: A proper simple junction structure is a SJS

which is tripartite and standard.

Definition: A weighted junction structure is a JS which

contains only elements from the set {0,1,EN,TF}

and their incident bonds.
A weighted junction structure will be denoted by "WJS".
Examples of JS's are shown in Figure 2.2 Properties of JS's

can be obtained from several publications [12-14, 19-24].

2.2 Power Orientation

Two conjugate variables or signals are associated with
each bond in every JS [25]. These are known as an "effort"

variable and a '"flow" variable, and are denoted by the symbols
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"e" and "f" respectively. The effort and flow variables are
scalar functions of an independent variable, taken to be time.
Definition: The power associated with the bond b is the

function given by

P(t) = e(t)-£f(t)
where e and f are the respective effort and
flow variables of b.
The bond variables e and f are frequently called '"power

variables'.

Definition: The power orientation of a bond b is the sense

of direction (with respect to b's incident
nodes) of b's power function.

The power orientation of a bond is indicated graphically
by placing half of an arrow-head on the bond-end which is
defined by the node to which the positive sense of power is
directed. This graphical procedure is illustrated by
example in Figure 2.3. The interpretation of the graphical
procedure is identical to that illustrated for any pair of

JS nodes.

2.3 Analytic Properties Of Junction Structure Nodes

Except for the EN-node, which is used as a bond termi-
nator, each JS node algebraically constrains the effort and
flow variables of its incident bonds. At a 0-junction,
effort variables are identical and flow variables sum to
zero; this 1s analogous to vertex relations in electrical

circuit analysis. At a l-junction, flow variables are
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identical and effort variables sum to zero; this is analogous
to loop relations in electrical circuit analysis. The alge-
braic signs in the variable constraint equations are deter-
mined by the power orientation associated with each bond [25].
A detail description of all JS node variable relations 1is

contained in Table 1.

2.4 Basis Order Rules

In studying systems using bond graphs, it is important
to develop a well-defined analytic input-output relation for
the JS. This relation is referred to as the "JS transfor-
mation'". Conditions for its existence have been developed
by Nobuhide [12], Ort and Martens [13], Perelson [14], and
Rosenberg and Andry [19,20].

Before the JS transformation can be analytically defined,
a basis for it must be specified. Algebraic equations which
determine the number and types of basis variables suitable
for expressing the JS transformation for a WJS have resulted
from this research. These WJS topology-based equations are
called the '"basis order rules'". Employing the given nomen-
clature, the basis order rules are presented here as Theorem
1 and Theorem 2 for the cases of SJS's and WJS's respectively.
Also, associated corollaries are given.
Theorem 1: Every standard SJS satisfies the relations

(1) E=Np+N,-B,-N,
and

(1i) F=Nx+N.-B.-N

B "1 "1 "0°



13

Corollary 1.1: Every proper SJS satisfies the relations

(1) E=Ny*P;-N;

and

(ii) F=N,+P,-N,.

1 0 °0
Corollary 1.2: Every standard SJS satisfies the relations

(1) NE=NB+NO-BO-N1

and
(ii) NF=NB+N1-B1-NO.
Theorem 2: Every standard WJS satisfies the relations
(1) E=NB+NO-BO-N1-NT
and

(ii) F=NB+N1-BI-NO-NT
Corollary 2.1: Every standard WJS satisfies the relations
(1) NE=NB+NO-BO-V1-NT
and

(11) NF=NB+N1-B1-N0-N

T
The above theorems and corollaries are formally developed
in Appendix A.
In Appendix B, the basis order rules are used to develop
three predictors of the number of distinct basis variable
sets which a WJS transformation may possess. The most accu-
rate of these predictors 1is given here in Theorem 3.

Theorem 3: The number of distinct basis variable sets

for a WJS transformation is bounded above by
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M M
E A A1 ZF AO A

0 1
U= 20 (e)(y . Y=o (y )(¢)
2 e=Lp Np-Po*e f—LF NE P1+f f

where ME=min(NE,AO), LE=max(0,NE-P1), MF=
min(NF,Al), and LF=max(0,NF-PO).

Application of the basis order rules yields the number
of effort inputs and flow inputs which can be independently
specified for a given WJS. Rosenberg has shown that a JS
which does not contain an '"essential' gyrator is equivalent
to a WJS by a transformation process [24]. Thus, the basis
order rules can be extended to any JS which does not contain
an essential gyrator.

Consider the application of Corollary 1.2 to an arbi-
trary proper SJS cycle, say C, with incident port bonds.

Then the following interpretation (which employs the conceptof
causality) of the resulting numbers NE and NF is based on

the publications of Ort and Martens [13] and Perelson [14];
although their results are for proper SJS cycles, the results
can be readily extended to include a union of WJS cycles.

The following notation is used by Perelson for cycle

quantities:
Nf = the number of linearly independent flow
equations;
J, = the number of junction causal port bonds;
J_ = the number of environment causal port bonds.
Note that J, + J_ = Np. From the above publications,
(Nf)max =J, + NI and (Nf)max = N0 + B1 - Nl’ where C is an
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n-port if and only if Nf=(Nf) i.e., the JS transformation

max’

for C exists if and only if Nf=(Nf)max'

Suppose NF<O' Then

N.<0 - N,+B,-N.>N

E 0*By-Ny>Np > Ne<(N

+B,-N

f)max=NO 171
since NfiNB' Therefore, Nf<0 implies that C is not an n-port.

Suppose NF=O where Nf=(Nf) Then

max’

Np=0 » 0=Np- (Ng+By-N;)=Np- (J, +N})

=(P;+Py)-J,=Np-J, » J =Ny » J =0

Therefore, NF=O implies that C is not an n-port (this con-
clusion represents an exclusion of a case where C acts like
a source of flow to its environment [26]). Similarly, Np<0
implies that C is not an n-port. Thus, in order for C to be
an n-port, it is necessary that 0<NE, NF<NP' In this context,
the basis order rules can be applied as a preliminary test to

determine if a bond graph model may have a '"physical reali-

zation".

2.5 Causal Concepts

In addition to power orientations, a JS can be further
augmented by associating with each bond an "input-output"
notion of directed flow and effort variables; this is the
concept of 'causality" [25].

Definition: The causal orientation of a bond b is the sense

of causality associated with b.
A causally oriented bond identifies its effort variables

as an input to one incident node, and identifies its flow
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variable as an input to the remaining incident node; thus,
it provides bi-directional input (and output) information.

Definition: The causal form of a JS is the assemblage of

the causal orientations of its bonds.

2.5.1 Causal Assignment

"Assigning causality" to a JS is the graphical process
of causally orienting its bonds. A bond's causal orientation
is indicated graphically by placing a short stroke (called a
"causal stroke') perpendicular to the bond at the bond-end
incident to the node of effort variable input. Thus, the
bond-end without the causal stroke is incident to the node

of flow variable input.

2.5.2 Causal Completeness

Definition: A bond is acausal if it has not been cawmsally
oriented.
Definition: A JS 1is acausal if all of its bonds are acausal.

Definition: A JS node is causally complete if none of its

incident bonds are acauasal.

Definition: A JS is causally complete if all of its nodes

are causally complete.

2.5.3 Causal Consistency

Definition: The causal form of a node is consistent if it

does not violate any of the constraints defined
by the node's algebraic properties.

Definition: The causal form of a node is inconsistent or

in conflict if it is not consistent.



Definition:

Definition:
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The causal form of a JS 1s consistent if the

the causal form of each of its nodes 1is con-
sistent.

The causal form of a JS in inconsistent or in

conflict if it 1s not consistent.

The consistent causal forms for JS nodes are given in

Figure 2.4.

Examples of node inconsistent causal forms are

given in Figure 2.5.

Remark 2.1:

2.5.4

The causal form of a node is inconsistent if
and only if the number of flow inputs (outputs)
or effort inputs (outputs) specified by it is

in violation of the node's algebraic properties.

Causal Extension

Prior to the discussion on the extension of causality,

the preliminary concept of '"causal implication'" is introduced.

Definition:

Definition:

Given a node v and incident bond b, b has strong

causal implication (with respect to v) if its

causal orientation specifies an effort input to
v where v is a 0-junction, or a flow input to

v where v is a 1l-junction, or either input to a
TF-node or GY-node.

A causally oriented bond has weak causal impli-

cation (with respect to a given incident node)

if it does not have strong causal implication.

The concept of causal implication proves to be useful

when considering causal extension procedures.
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Remark 2.2: For any node having only acausal incident bonds,
if any bond is given a causal orientation with
strong causal implication, or if all bonds but
one are given causal orientations with weak
causal implication, then the JS node can be
causally completed in a consistent manner by
observing the node's algebraic or causal assign-
ment properties.

The causal extension concept can now be introduced.
Consider a JS node which is causally completed by an effort
or a flow input. This node defines an input to each of its
adjacent nodes. In turn, these inputs contribute to the
causal completion of additional nodes, and may result in
additional causally complete nodes. Thus, a causally com-
plete node results in the propagation of causal information.

Definition: The extension of causality or causal extension

process is the propagation of causal information
in accordance with the algebraic properties of
the JS nodes.

It should be emphasized that the camsal extension process
implies the propagation of causal information until no addi-
tional nodes can be causally completed using the effort and
flow inputs which are known.

Remark 2.1 and the causal assignment properties of JS

nodes reveal two properties of the causal extension process

as applied to a causal orientation of an external bond b.



Property 2.1:

Property 2.2:
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If the initial causal orientation and sub-
sequent causal extension of b results in a
node causal conflict, then the reversal of
b's causal orientation (followed by causal
extension) does not yield a node causal con-
flict.

If the initial causal orientation and sub-
sequent causal extension of b results in a
node causal conflict, then sufficient prior
input information was available to determine
the variables associated with b in an implicit

manner.

Property 2.1 is proven in Appendix C. Property 2.2

follows directly from Remark 2.1 and Property 2.1.

Additional properties of the caunsal extension process

can also be given; each is stated without remark.

Property 2.3:

Property 2.4:

In JS trees the extension of a causal orien-
tation never yields causally inconsistent
nodes, since there is a unique path between
distinct nodes in a tree graph.

If the causal extension process terminates at
a nonenvironment JS node without causally
completing the given JS node, then the node

is a junction (0 or 1) of degree greater

than two; it has at least two incident acausal

bonds after the termination of the causal
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extension process.
Henceforth, unless otherwise stated, all causal orien-
tations will be assumed to be followed by the causal exten-

sion process.

2.6 Causal Complexes

A measure of the versatility of a simulation program is
its ability to identify and resolve algebraic loops. When
using a bond graph as a modeling tool, algebraic loops appear
graphically as '"'causal complexes'" in the junction structure.

Consider an arbitrary JS, say G. Suppose that G has a
complete and consistent causal form which can be realized by
a sequential causality assignment process in which the causal
orientation of external bonds is given priority. Assume the
causal orientation (by the sequential process) of the exter-
nal bonds of G does not causally complete G.

Definition: A causal complex in G is a set, C, of acausal

bonds and their incident nodes such that every
pair of distinct nodes in C is joined by a path
in C.

Definition: A causal complex is maximal if it is not con-
tained in any distinct causal complex.

In bond graph literature, a causal complex is called a
"causal loop'" if it is a cycle. For the sake of brevity,
all causal complexes will be considered to be maximal. An
example of a causal complex is given in Figure 2.6.

In mathematical terms, the occurrence of a causal complex
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represents an implicit relationship between JS variable sets,

i.e., an algebraic loop.

Definition: A causal complex is solvable if it can be rep-
resented by a nonsingular matrix of the form
(I-L) where I is the identity matrix and L is a
matrix determined by the algebraic constraint
equations of the nodes in the complex.

The solvability of causal complexes has been studied by
several workers [12-14,19,20]. It has been shown by Ort and
Martens that the solvability of causal complexes is a neces-
sary and sufficient condition for the existence of the JS
transformation. This condition is employed in the state

model formulation procedure discussed in Chapter IV.



Source Junction Structure Storage

Multiports Multiports Multiports

Dissipation Multiport

Figure 2.1. Generic categories of bond graph multiports.
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EN 0 EN
EN 1 EN
(a)
EN (I) TF 0 EN
EN 1 EN
(b)
EN 0 1I GY 1
1 GY 0
(c)

Figure 2.2. Junction structure examples. (a) SJS tree.
(b) WJS tree. (c) JS containing a cycle.
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EN 1 &0 EN

Figure 2.3. Example of power orientation. Positive sense
of power is directed from the 1-junction to
the 0-junction.
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Analytic Properties of Junction Structure Multiports.

Properties

(i) Admits exactly one flow variable
as an input.
(ii) If fk is the single flow variable

input, then fi=fk’ where i=1, 2,...,
m and i#k.

(iii) If fk is the flow variable input,

then

1
k
where o = * 1 depending upon the

i
i

power orientation of bond bi'

(i) Admits exactly one effort variable
as an 1input.
(ii1) If €y is the single effort variable

input, then e, T € where i=1, 2,

..., m and i#k.
(iii) If ey is the effort variable input,
then
m
f, = ¢ o.f.,
k i=1 i
i#k

where 0. =t 1 depending upon the
power orientation of bond bi'

There exists a single-valued function

such that e, = eZ:and fz = fls.

(1)

Table 1.
Multiport Degree
1 m>2
0 m22
TF m=2
GY m=2
EN m=1

There exists a single-valued function y

such that e1=f2w and e2=f1w.

No analytic properties; serves as a bond
terminator. :



Junctions: § 0 = { : 1}
1 n 1 n
Exactly one Exactly one
effort input flow input
Transformer: },1 TF}* 2
Exactly one flow input and one
effort input.
i |1 Z_] 1 _ 1ceyp22
Gyrator: | GY - 1 GY |
Exactly two Exactly two
flow inputs effort inputs

Figure 2.4. All consistent causal forms for junction

structure multiports.
ZT

(8]

(a8 ]

1

| GYI L 1| | 0 |
r I r { L
1 3 ' 3
Defines one flow input Defines two Does not define an
and one effort input flow inputs effort input

Figure 2.5. Examples of junction structure multiports with
inconsistent causal forms.
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Figure 2.6. Example of a causal complex (shown in solid
lines).



ITI. STATE MODEL FORMULATION FOR LINEAR TIME-INVARIANT
BOND GRAPHS

Bond graph digital simulation programs have proven to be
particularly important contributions to the arsenal of the
design engineer. Among their many attractive features, such
programs treat all energy domains uniformly. This feature
significantly reduces the design effort for multiple-energy-
domain systems.

Currently, there are two computer procedures for bond
graph simulation which have appeared in bond graph literature.
The first procedure is the ENPORT program [8]. ENPORT is a
digital program for the simulation of linear time-invariant
bond graphs. It is a state model formulator-analyzer.
Presently, it is in use at several academic and industrial
installations in various localized versions. The second pro-
cedure is based on the adaptation of a block-diagram-oriented
digital simulation language so that it can be used to inter-
actively simulate nonlinear bond graphs. It is described in
a publication by van Dixhoorn 1t6]. The procedure requires
the system analyst to augment the graph in terms of power and
causality, resolve algebraic loops and uncertainties, and
define specific element blncks. For the analyst, this graph
analysis process increases in difficulty as the bond graph
increases in size and complexity. The ENPORT program does not

require the analyst to analyze the graph. For this reason

28
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and because of the great utility of linear time-invariant

simulation programs, only the ENPORT program will be consid-
ered here.

In the computer simulation of systems, the fundamental
phase is the development of a mathematical model. For bond
graph modeled systems, an algorithm for the formulation of a
mathematical model (in state-space form) has been developed
by Rosenberg [(15]1. Prior to the discussion of the algorithm
for linear time-invariant bond graphs, it is necessary to
introduce the bond graph field multiports, and define a

causality assignment procedure.

3.1 Field Multiports

Through its multiports and bonds, a bond graph model
provides a graphical representation of a physical system's
power exchanges. The multiports used in the modeling process
are contained in the set {O, 1, TF, GY, SE, SF, C, I, R} where
SE, SF, C, I, and R topologically replace the environment
node in the formation of external bonds. The multiports "SE"
and "SF" represent independent power suppliers; they are
called "effort source" and '"flow source'" respectively. The
multiports "C" and "I" represent energy storages; they are
called ''capacitance'" and '"inertance'' respectively. The mul-
port "R" is called a "resistance'" and represents power dis-
sipation. It will be assumed that no two field multiports
are adjacent in bond graph models. An analytic description

of each field multiport is contained in Table 2.
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Frequently, an external bond is referred to by the type

of field multiport to which it is incident, e.g., an external

bond which is incident to a storage multiport is referred to

as a '"'storage'" bond. This convention will be assumed here.

Examples of consistent causal forms for each field multi-

port are given in Figure 3.1. The only consistent causal

orientations for source bonds are those illustrated in Figure

3.1. In general, any causal form is consistent for the multi-

ports C, I, and R.

Definition: The causal orientation of a storage bond is
integral if it specifies a flow input to a
C-multiport or an effort input to an I-multi-
port.

Definition: The causal orientation of a storage bond is

derivative if it is not integral.

In the state model formulation algorithm, only those
storage bonds with an integral causal orientation are identi-
fied with system state variables; it is these variables
which contribute to a basis for the JS transformation. See
Karnopp and Rosenberg for a more detailed discussion [25].
Now that the set of bond graph multiports has been completed,

a causality assignment procedure can be formalized.
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3.2 The Standard Sequential Causality Assignment Procedure

The manner in which a bond graph is causally completed
can influence the selection of system state variables and the
process by which a system state model is derived. A system-
atic causal completion procedure is given in Figure 3.2 which
simplifies the state model formulation procedure. It will be
referred to as the ''standard sequential causal assignment
procedure' (SSCAP) and may be found in Karnopp and Rosenberg
[25]1. The diagram in Figure 3.2 assumes that each causal
orientation is followed by the causal extension process, and
the reversal of a bond's causal orientation is preceded by
the restoration of the bond graph to the causal form possessed
prior to the initial causal orientation of that bond.

By its design, SSCAP assures that energy related vari-
ables are given priority over other system physical variables
for consideration as system state variables. Another impor-
tant feature of SSCAP is the significant impact it has on the
form of the JS transformation which is often referred to as
the "reduced junction matrix". The reduced junction matrix
equation and associated vector definitions are given in
Figure 3.3. It is shown in Appendix D that the SZZ’ 823, and
832 blocks of the reduced junction matrix are zero as a con-
sequence of Property 2.2 and SSCAP. This extends and vali-
dates conjectures made by Rosenberg [15]. These results sim-
plify the state model formulation algorithm for linear time-

invariant systems.
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3.3 The State Model Formulation Algorithm

The state model formulation stage is the central phase
in the computer simulation of bond graphs. The current for-
mulation procedure for the ENPORT program is based on the
state model formulation algorithm developed by Rosenberg [15].
This algorithm also serves as the foundation for the formula-
tion procedure discussed in Chapter IV.. Referring to the
matrix equation in Figure 3.3, the state model formulation
algorithm can be summarized as defining a procedure by which
the reduced junction matrix equation can be resolved to an
equation which expresses Xi in terms of Ei’ U, and Q where
&i and U are the time derivatives of X; and U respectively.

Prior to the development of the reduced junction matrix
it is necessary to construct a matrix from which all junction
structure node equations can be obtained. This is accomp-
lished with the aid of junction structure causal and power
information, and by ordering the junction structure effort
variables and flow variables. The resulting matrix is called
the "junction'" matrix, its implied equation is given in Fig-
ure 3.4 with associated vector definitions. The reduced

junction matrix is obtained by expressing !out in terms of

V from the junction matrix equation.

Vip® 1-€-» eliminating !i

nt

This process is illustrated in Figure 3.5. The matrix [S1 +
-1

S2 (I - S4) 3]

the reduced junction matrix illustrated in Figure 3.3.

S is then partitioned to give to the form of
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The reduced junction equation can be expanded into the

following

~
]

Qin

where the
the above

which are

3
|

Qout

The first

state form 1is toreplace_giin (4), (5), and (6) by (7).

equations,

Xg * Slsgout

* 515

S11%4

out ¥ SS4U

expression for V is not
equations are relations

obtained from parameter

Fiy + By

11 X4

(3]

1254 22%4

RSPL (4)
(5)
(6)

of interest. Coupled to

for the field multiports

and causal information,

(7)
(8)

(9)

step in the process of reducing these equations to

replace gd in (5) by (8).
(6), and solving for Kd in (5) yi
X = Sy * SpqF1pXg * S
24 = TX + TRU
Din = S31Fp1X; * S3qFpp%g + S
where
T, = (F,.-S,.F..) Y(s. . F,  -F
1 227521F12 21711
and
T, = (F,.,-S,.F.,) 1s
2 227521F12) "Syy-

elds

+ S + S,.,U

12854 1320ut 149

* 5344

|o

out

(93]
(93]

21)

Also,

Then collecting terms in (4) and

(10)
(11)

(12)

(13)

(14)
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Next replace gd and Qout in (10) and (12) by (11) and (9)

respectively. This yields the following equations for Ei

and D. _,
—1n
Xy = S (B *F T )X %8y 58 g#S 5D+ (S FypT)+Sy U (15)
D, = TX. + T,U (16)
where
o 1
Tz = (I - Sggl) "(Fpy + FpoTy) (17)
and
o ‘1
T, = (I - S, L) 1(s;,F,T, + S5,). (18)

For the final step, replace Qin in (15) by (16), and use (1l1)
to eliminate Xd in (15). Then solving for &i vields the

system state model,

X; = AX; + BU + EU | (19)
where
e -1
A= (I-S),T)) "1S) ) (Fy #F,T1)+S,4LT4] (20)
o -1
B = (I-S;,T;) "(S;1F;,T,*S;5LT,*S ) (21)
and
E = (I-S )y Is. T
1271 12'2° (22)

Some important aspects of the computer implemention of this

state model formulation algorithm are explored in Chapter IV.
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Table 2. Analytic Properties of Field Multiports (with
exactly one incident bond)

Multiport Properties

SE Defines the associated effort
variable as independent, i.e.,
e=e(t).

SF Defines the associated flow
variable as independent, i.e.,
f=f(t).

C Defines the associated effort

variable as e=0(q) for
*q(t)=q(tg)+/° £(1)dA where

f is the flow variable associ-
ated with C.

I Defines the associated flow
variable as f=¥(q) for

*P(t)=P(t0)+4f e(A\)d where

e is the effort variable asso-
ciated with I.

R For the associated effort and
flow variables, Z(e,f)=0.

*q is called a ''generalized displacement'", and p is
called a '"generalized momentum'.



Sources:

Storages:

Dissipation:

Figure 3.1.

SE — SF—

n+m>1 ' m
\" |
s 2
pageey
] T
n+m>1

Consistent causal forms for
field multiports.
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_ L - A -
X S11 12 S13 S L
Za | _| Sz S22 Sz Su X4
Din S31 S32 S33 S34 Dout

de S 2 %3 Sa || U

of inputs to independent storage elements

of inputs to dependent storage elements

of inputs to the dissipation elements

of inputs to the source elements

of outputs from the independent storage elements
of outputs from the dependent storage elements
of outputs from the dissipation elements

of outputs from the source elements

Figure 3.3. The reduced junction

matrix equation.
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Yout Sl SZ Yin

Vint 53 5 Vint
Vin - vector of all inputs to the junction structure
Vint - vector of all junction structure internal variables
Vout - Vector of all outputs from the junction structure

Figure 3.4. The junction matrix equation

!out - Slz-in * SZKint
Kint = SSKin * S4!-int
(a)
v. .= (I-5S,) 1szv
Zint 4 3Zin
(b)
v_ =[S, +S,(1-S,) !s, v
Yout 1 *o2Umog) oz vy

(c)

Figure 3.5. Derivation of the reduced junction matrix. (a) The
expanded junction matrix equation. (b) Internal
variables in terms of inputs. (c) The unpartitioned
reduced junction matrix equation.



IV. A COMPUTER IMPLEMENTED STATE MODEL FORMULATOR
OF INCREASED EFFICIENCY

The ENPORT-4 program is a powerful tool for the modeling,
analysis, and simulation of multiport systems. When given a
bond graph description of a system, ENPORT-4 selects physi-
cally-meaningful state variables and derives the system
state model, eigenvalues, and time response. The many addi-
tional features, available options and outputs, and the struc-
ture of ENPORT-4 are discussed in the program's documenta-
tion [8].

Although ENPORT-4 provides the system analyst with a
broad array of system information, it has significant in-
adequacies which have a profound affect on program perfor-
mance. Most of these inadequacies are revealed in the graph
reduction and state model formulation procedures. In the
following sections, deficiencies are identified in the
ENPORT-4 graph reduction and state model formulation pro-
cedures, and modifications are discussed which increase
overall program efficiency. These modifications have been
implemented in the ENPORT-5 program which is currently under
development. Key ENPORT-5 graph reduction and state model

formulation subroutines are listed in Appendix F.

40
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4.1 Design Features

4.1.1 Data Structures

At various stages in the bond graph processing procedure
assorted graph parameter and structural information must be
retained or manipulated. In general, when interpreted in
matrix form, this information results in a sparse matrix
analogous to a graph incidence or adjacency matrix [27]. A
major deficiency of ENPORT-4 is its use of full storage
(storage which includes all matrix zero entries) in multi-
dimensional arrays for the retention and manipulation of
bond graph information.

A major improvement in efficiency is realized in ENPORT-5
by minimizing data storage requirements through the use of
a sparse-matrix-based storage format. This is achieved by
using push-down stacks and linked data structures [28-30].
In particular, the ENPORT-5 graph reduction and state model
formulation procedures employ simple lists for the retention
and manipulation of data. These lists are grouped in pairs,
where the entries of each list are ordered. In each list
pair, one list contains the nonzero entries of an implied
matrix of known dimensions, and the other list contains the
coordinates of the matrix entries where each coordinate pair
is converted to a unique number. The conversion of a coor-
dinate pair is accomplished by representing the position of
a matrix entry as the entry's column coordinate added to the

product of the matrix column dimension and one less than the
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entry's row coordinate. An example of a list pair is given

in Figure 4.1.

4.1.2 Causal Assignment

The assignment of causality is an important stage in
the processing of a bond graph. The ENPORT-4 program uses
a caunsal assignment scheme which is a modification of SSCAP
(the standard sequential causality assignment procedure) in
that the scheme gives priority to user specified camsal orien-
tations. Although this feature provides the knowledgeable
user with a great deal of flexibility, the unwary user may
specify cansal orientations which may violate system con-
straints (such as constraints imposed by sources), give a
false indication of system order, or create uncertainty in
the state model formulation procedure.

The cagsal assignment scheme employed by the ENPORT-S
program is a direct implementation of SSCAP in which the
user cannot specify causal orientations until after all source
bonds and storage bonds have been causally oriented. This
scheme not only eliminates the difficulties discussed above,
but also guarantees that if a reduced junction matrix exists,

then it has the simplified form identified in section 3.2.

4.1.3 Determination Of Junction Structure Reducibility

The ENPORT-4 procedure for determining the reducibility
of the junction matrix represents an additional area of

inefficiency. The junction matrix equation was given in
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Figure 3.4. As illustrated in Figure 3.5, the junction
matrix is reducible if the matrix (I-S4) is nonsingular.

In ENPORT-4, junction matrix reducibility only can be deter-
mined during the process of attempting to invert the matrix
(1-54).

Based on previous work, the reducibility of the junc-
tion matrix depends on the solvability of causal complexes
(12-14,19,20]. Stating the case more explicitly, the
junction matrix is reducible if and only if each causal
complex is solvable. As an explicit step in the ENPORT-5
causal assignment procedure, causal complexes are identi-
fied and their graph locations are communicated to the user.
Prior to the formulation of the junction matrix, each caagsal
complex is tested for solvability in order to determine
junction matrix reducibility. If any causal complex is
determined to be unsolvable, then bond graph processing
aborts and the user is notified of all unsolvable causal

complexes.

4.1.4 Junction Matrix Formulation

As an intermediate step in the formulation of the
junction matrix in ENPORT-4, a matrix equation is expiicitly
formed for each junction structure node. The entries of
each node matrix are then placed in the junction matrix in
accordance with bond classifications and orderings.

The ENPORT-5 program does not explicitly form a matrix

equation for each junction structure node. Instead, the
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junction matrix is constructed directly by using node causal
forms, bond power orientations, and graph model parameters
to obtain the coefficients of the summation, identity, and
proportionality output equations for each junction struc-
ture node. Specifically, causal, power, and parameter in-
formation is used to identify the flow output variable and
the coefficients of the corresponding flow input variables
for each 0-junction, the effort output variable and the
coefficients of the corresponding effort input variables
for each 1-junction, the identity relations for each 0-
junction and 1-junction, and the proportionality relation-
ships for each transformer and gyrator. Once determined,
each of the above coefficients (except zeros) is directly
stored in a compact junction matrix where each entry
position is determined by bond classifications and order-
ings, and the dimensions of the implied full storage junc-

tion matrix.

4.1.5 Matrix Inversion

As illustrated in section 3.3, several calculations in
the state model formulation algorithm require the computa-
tion of a matrix inverse. The matrix inversion routine
used by ENPORT-4 is a Gauss-Jordan procedure which selects

a matrix entry of greatest magnitude for the pivot at each
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stage of the deflation process. In ENPORT-4, the selection
of a pivot requires a row and column scan of mostly zero
entries since each matrix 1is genera&ly sparse and in a full
storage format.

A result of this research was the development of the
sparse matrix inversion subroutine which is employed by the
ENPORT-5 program. This subroutine is called '"INPRD"
(INverse-PRoDuct). Its development was motivated by the
lack of a matrix inversion routine which can take advantage
of the special feétures of the equations in the state model
formulation algorithm.

A very important consideration in the development of
any sparse matrix inversion routine is the possible increase
in the storage requirements for the inverse of a sparse
matrix [31]. The INPRD subroutine effectively eliminates
the problem of storage growth by taking advantage of the
features of the matrix calculations in the graph reduction
and state model formulation procedures. In these procedures,
matrix inverses in calculations appear in the form A'lB
where the matrix product A_lB relates sets of junction
structure variables. INPRD is a Gauss-Jordan type pro-
cedure which controls storage requirements by accepting
the generally sparse matrices A and B as inputs and return-
ing the generally sparse matrix A'lB as output. Note that

-1

A is not explicitly computed unless B is the compatible

identity matrix. INPRD applies directly to B a set of
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transformations which represent elementary row operations for
the reduction of A to the identity matrix. In order to mini-
mize round-off errors, a matrix entry of greatest magnitude
in A is selected as the pivot at each stage in the process
of deflating A. The benefits of INPRD are evidenced by the

performance characteristics of the ENPORT-5 program.

4.2 State Model Formulator Computer Test Results

In this section, some performance aspects of the ENPORT-
4 and ENPORT-5 state model formulators will be considered.
In particular, processing times and junction matrix storage
requirements will be assessed for three test examples inter-
actively processed on the CDC 65500 computer.

The processing time will be interpreted as the CP
(central processor) execution time consumed from the point
of parameter input to the point of state model output.
Storage considerations are limited to the junction matrix,
since it is the largest system matrix in the formulation
process. For each example considered, the processing time
and junction matrix storage space requirements of ENPORT-4
will be used as benchmarks.

The first test example is a structural model of a lever
mechanism with inertia load (see Figure 4.2). The second
test example is a structural model of a beam-block trans-
ducer system (see Figure 4.3). The final test example is
a structural model of a radar pedestal position control

system (see Figure 4.4). Each of the above exampleé may be
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found in the user's manual for the ENPORT-4 program, where
each is studied in detail [8].

For each test example, the computational results are
contained in Table 3 and Table 4 for storage requirements
and processing time respectively. From Table 3, it is
observed that the ENPORT-5 formulator requires significantly
less storage (as typified by the junction matrix) than does
the ENPORT-4 formulator for a given bond graph model. 'The
ENPORT-4 storage requirement for the junction matrix is
given by (Np+2NI)2. The ENPORT-5 storage requirement for
the junction matrix is given by 4(Np+2NI-1). Thus, the
difference between the bond graph model storage demands of
the ENPORT-4 and ENPORT-5 formulators becomes increasingly
dramatic as the number of bonds in a graph model increases.

From Table 4, it is observed that the ENPORT-5 formu-
lator provides a significant savings in processing time for
the given test examples. In general, the size (and sign)
of this savings is a function of several variables, e.g.,
the number of causal complexes, and the density and dimen-
sions of matrices to be manipulated. As an explicit case,
consider the multiplication of an (nxm) matrix by an (mxp)
matrix, neither of which contains a zero entry. In a full
storage format, this matrix multiplication requires nmp
scalar multiplications and n(m-1)p scalar additions. In
ENPORT-5, this matrix multiplication requires nmp scalar

multiplications, nmp scalar additions, and 2nm(p+l) element
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comparisons. Note that full storage matrix multiplication
requires the same number of scalar operations irrespective
of the sparsity of either matrix factor. In general, the
above matrix multiplication in ENPORT-5 requires n(m-r) (p-s)
scalar multiplications, n(m-r)(p-s) scalar additions, and
2nm(p+1)-rn(p+2)-2ns(m-r/2) element comparisons where r is
the average number of zeros per row in the (nxm) matrix and
s is the average number of zeros per row in the (mxp) matrix.
Note that the worst case is given for the number of element
comparisons. It 1s seen that as r and s increase, matrix
multiplication in a full storage format rapidly becomes com-
putationally more demanding than matrix multiplication in
ENPORT-5. Thus, although it is possible for the processing
time required by ENPORT-5 to exceed the processing time
required by ENPORT-4, this possibility is minimized by the
general sparsity of system matrices and the "inverse-multi-
plication'" feature of the INPRD subroutine.

In conclusion, the combined results of Tabkle 3 and
Table 4 suggest that the ENPORT-S5 state model fofmulator not
oﬁly enhances the processing performance and capabilities
of the ENPORT-5 program, but also contributes to a reduced
dollar cost for the operation of a linear time-invariant

bond graph simulation program.
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A 3x4 matrix

-2. rl.
-1 3
5 6
3 8
4 12
Entry list Position 1list

Figure 4.1. Example of a list pair with the
corresponding matrix.
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Figure 4.2. Test example 1
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Figure 4.3. Test example 2



51

Figure 4.4. Text example 3

I R
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Table 3. Junction Matrix Storage For Test Examples

Example | Mwa | Pys | ws/wa
1 81 32 .395
2 289 64 221
3 841 112 133

(1) W4=Number of storage words for junction matrix

in ENPORT-4.

(2) W5=Number of storage words for junction matrix

in ENPORT-S5.

Table 4. Processing Time for State Model Formulation

Example | (Dpy ’ (2)prs PTS/PT4
1 0.604 0.138 0.228
2 0.905 0.346 0.382
3 1.420 0.927 0.653

(1) PT4=Processing time (in seconds)
(2) PTS5zProcessing time (in seconds)

for ENPORT-4.
for ENPORT-S.




V. SUMMARY

The basis order rules are among the most significant
results achieved in this investigation. For weighted junc-
tion structures, these topology-based formulations provide
the bond graph analyst with the composition of a basis for
the junction structure transformation. In addition, when
used with Theorem 3, the basis order rules provide a ''good"
estimate of the number of distinct basis variable sets for
the junction structure transformation.

Herein, it was shown that the standard sequential
causality assignment procedure assures that the 823, 832,
and 833 blocks of the reduced junction matrix are zero for
-a reducible junction structure. This resulted in a major
simplification in Rosenberg's state model formulation algo-
rithm which serves as a model for the ENPORT-S5 state model
formulator [19.

As indicated by the computer results in Chapter IV, the
ENPORT-5 state model formulator provides heretofore unreal-
ized efficiency and speed in the automated processing of
linear time-invariant bond graphs. The key features of
this formulator are (1) the use of sparse-matrix-based
storage, (2) the determination of junction structure reduci-
bility prior to the formation of the junction matrix, (3)

the direct construction of the junction matrix, and (4) the
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versatile sparse-matrix-based INPRD subroutine. As a result
of the storage and processing efficiency of the ENPORT-5
state model formulator, the ENPORT-S program has a greatly
enhanced capacity for the processing of large bonds graphs.
Future advances in graph processing efficiency can be
achieved by the development of a general technique which
does not require matrix inversions for the determination of
junction structure reducibility. A step in this direction
can be made by the development of '"basis order rules' which
are applicable to any junction structure containing a gyrator.
Such formulations would offer necessary conditions for the
reducibility of an arbitrary junction structure, as well as
serve as aids for the determination of a basis for the junc-

tion structure transformation.
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APPENDIX A
DERIVATION OF THE BASIS ORDER RULES

Al Basis Order and Simple Junction Structures

In this section we derive a pair of general compu-

tational rules for predicting the order and variable-type

composition of an N-port SJS basis. An N-port JS has exactly
N EN-nodes. It is common usage to refer to bonds (0,EN) or
(1,EN) as port bonds.

Motivation for these rules is derived by consider-
ing the number of free variables which remain following the
imposition of a set of independent constraint equations on a
set of system variables. Several types of proper SJS's are
studied first; then the results are extended to standard SJS's.
In passing, alternate forms of the order rules for proper
SJS's are given. The order rules are presented here as

Theorem 1.

Theorem 1: Every standard SJS satisfies the relations

+ Ny - B, - N

(1)E = Ng *+ Ng - By 1

and
(ii)F = NB + Nl - B1 - NO'

A.1.1 Basis Order for Proper Simple Junction Structure

Forests
Initially we establish Theorem 1 for an arbitrary

proper SJS tree G by demonstrating that G can be obtained
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from a forest of separate 1l-junctions and 0-junctions by a

series of subgraph concatenations. It is observed that
junctions satisfy the order rules. Following the assumption
that G contains more than a single junction, a 0-junction in

G is identified as a base node to which is added an appropriate
number of 1-junctions and 0-junctions, of specified degrees,
which yields a SJS equivalent to G. Additionally, it is noted
that the concatenation of a junction to a proper SJS tree
yields a proper SJS tree which satisfies the order rules, thus
yielding the results for G. Finally, by considering the order
rules for each component, the results are extended to an
arbitrary proper SJS forest.

Lemma A.1l: Every proper SJS forest satisfies the relations

E = NB + NO - BO - N1 and F = NB + N1 - B1 - NO.

Prior to proving Lemma A.1l, two definitions are needed.

First we state that two distinct SJS's are conformable if one

contains a 0 and the other contains a 1.

We now define the graph concatenation operator C

where C(G,H) = K is a binary operation performed on two proper
SJS's (G and H) which are conformable to yield a third proper
SJS (K). Let G be a connected proper SJS and H be a connected
proper SJS where VG n VH = f. Also, let u be a 1l-junction and
Upy be an EN-node in VG’ and v be a 0-junction and VEN be an
EN-node in VH’ where (u,uEN) eXG and (V,VEN) eXH. Then C[(G(u),

H(v)] will denote the connected proper SJS K where
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Vg

[VG u VH] - {VEN’uEN} and

X

K = [XG U XH u {(v,u)}1 - {(V,VEN),(U,UEN)}.

Note that if K = C[(G(u), H(v)] and K' = C[{G(u), H(V)]

(different EN-nodes are removed) then K and K' are isomorphic.
For C{G(u), H(v)l, it will be said that G and H are '"concaten-
ated'". Note that C[H(v), G(u)] = C(G(u), H(v)]. We now pro-

ceed with the proof of Lemma A.1l.

Proof: Let Gl(m) denote a connected proper SJS such that

VG (m) consists of exactly one 1l-junction and exactly
1

m EN-nodes, where m>2. Thus Gl(m) has the form shown

in Figure A.1.

(m)

Observe that the definition of a 1-junction applied to G1

yields the results

E = NB + NO - BO - N1 (m) + (0) - (0) - (1)

m - 1 and

9]
|
Z
+
z
'
o
]
4
1]
(1]
—

B 1 1 0 (m) + (1) - (m) - (0)

These results agree with Lemma A.1l.

Let Go(n) denote a connected proper SJS such that

VG (n) consists of exactly one 0-junction and exactly n EN-
0
nodes, where n22. Thus, G (n) has the form shown in

0
Figure A.2.
Observe that the definition of a 0-junction applied to Go(n)
yields the results
E = NB + N0 - BO - N1 = (n) + (1) - (n) - (0) =1 and
F =Ng+ N, - B1 - N0 = (n) + (0) - (0) - (1) = n -1
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These results agree with Lemma A.1l.

Note that Lemma A.1 applies to a forest with an
arbitrary number of components, each of which is a 0- or
l1-junction together with a set of EN-nodes.

Now consider a concatenation involving Gl(m) for m>2.
Let G be an arbitrary connected proper SJS where VG contains at
least one 0-junction, say v, and let EG and FG be given.
Observe that K = C[G(V),Gl(m)], where m22, contains one less
effort variable and one less flow variable than GlJGl(m)

GLJXG (m)) since o(X l(m)) - 1.

1 1
("o" denotes '"order of'".) Also, K and GLJGl(m) yield the

cv.uv, My

G G = O(XG,lJX

k) G
same number of independent flow constraint equations, since
the number of junctions and junction degrees are unchanged.
Then, clearly

EK = EG + chm) - 1 and FK = FG + Fcfm) - 1.

(m) } (m) . -
Let AEl = EK EG and AFl = FK FG.

Then
AE (m) . EG (m) - 1=m- 2 and AF (m) FG (m) -1 =0.
1

1 1 1
where m22.
That is, as a result of a concatenation involving Gl(m) the
incremental changes in E and F are known.
Now consider a concatenation involving Go(n) for
nx2. Let G be an arbitrary connected proper SJS where VG
contains at least one 1l-junction, say u, and let EG and FG

be given. Observe that K = C(G(u), Go(n)], where n22
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contains one less effort variable and one less flow variable

than Gu Go(n). Also, K and GuG (n) yield the same number

0
of independent effort constraint equations and the same num-

ber of independent flow constraint equations. Therefore,

EK = EG + EG(n) - 1 and FK FG + FG(n) - 1.

(n) } (n) )
Let AEO = EK EG and FO = FK FG. Then

AEO(n)

where n=22.

E. (n) - 1=20and aF (™ =F. (n) -1=n - 2,
G 0 G

0 0

We now establish lemma A.1 for an arbitrary proper SJS tree.
Let G be an arbitrary proper SJS tree. Suppose G contains

N, 1l-junctions and N

1 0 0
zero, since G is proper. If N0=0, G is a 1-junction com-

0-junctions; not both N1 and N, are

ponent; if N.=0, G is a 0-junction component. In either case,

1
we are done. Therefore, assume N1>0 and N0>0.
Enumerate the 0-junctions in V., by v_,v,,...,v, ,
G 1’72 NO
and the 1l-junctions in VG by VN #1°VN #2722 VN N Let
( 0 0 01
0) . ‘ (1) .
VG {vl,vz,...,vNO} and VG {VN0+1,VN0+2,...,VN0+N1}.

Then VG(I) nVG(O) - ¢ and VG(I) qu(O)

contains all junctions in G. The junctions in G will now be
partitioned according to their distances from v,. Let S_; = [
and Si = {VEVG(I)lJVG(O)Id(Vl,V) = i}, where i = 0,1,2,...
Note that Sin Sj = f if i # j. The order of VG(I)LJVG(O) is

finite and G is a tree imply that there exists a smallest
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positive k<N, + Nj-1 such that d(vy,v)<k for all VEVG(I) VG(O).

1

Without loss of generality, assume k is odd. Then

k-1 k-1

(3)S.=V(O)and(u)s. = v (1)

j=o 21 G j= 2i+1 G
Relabel the elements in S; so that Vij is the jth element
in Si’ where 0<i<k and 1iji°(si)- Let ai,j = deg(vi’j) for

; - ¢ (deg vy)
Vi,j in G. Also, let GO,O GO 1/, and let Gi,j be the
proper SJS tree corresponding to vy j where Gi ; is either
’ ’

Gl(m) or Go(n) if i is odd or even, respectively, and m or
n=a, ..
1,)

Now we will reconstruct G from a proper SJS forest

of N0 0-junction and N1 l1-junctions by using the internal bonds
of G as a directory. Note that the concatenation of two con-
formable proper SJS trees yields a proper SJS tree.

Let Gl,O - GO,O’ and let Gl,l = Gl,o(SO)be the proper

SJS tree obtained from the series of concatenations of Gl 0
bl

with G at VO,l for each j such that (Vo,l’vl,j)EXG; i.e.,

1,j
lijip(sl). Let GZ,O=G1,0(SO)’ and let GZ,l be the proper SJS
tree obtained from the series of concatenations of G, 0 with
Gz,j at Vl’1 for each j such that (V1,1’Vz,j)exc' Let GZ,Z
be the proper SJS tree obtained from the series of concatena-

tions of Gz,l with GZ,j at V1,2 for each j such that (Vl,Z’
vz,j)eXG.

In general, let G n be the proper SJS tree obtained
b

from the series of concatenations of G, with G, .
l,n'l 1,]

,j)EXG’ where Gi,O=Gi-1 o (S.
Then G =G.
k,o(Sk_l) ,

for each j such that (vi_l,n,vi

1<i<k and 1ini9(si-1)'
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An example of the construction procedure is given
in Figure A.3.
0—1 concaten-
ations of proper SJS trees having the form Go(n), and N

The construction procedure involves N

1
concatenations of proper SJS trees having the form Gl(m).
Therefore,
N N +N
Eg = E, =E, + I0AEj(degvy) + 50 ! ag (de8Vy)
k,o(Sk_l) 0,0 i=2 1=N0+1
NO+N1 NO+N1
= (1) + (0) + Z (deg v.-2) = L deg V.-ZN1+1 and
i=N_+1 t i=N_+1 !
0 0
N N, +N
F = F, =F, 0 oF, (98 Vy) o gL yp (e vy) .
k,0(5 _) 0,0 i=2 i=Nj+1
NO N0
(deg v,-1) + I (deg v.-2) + 0= ¥ degv.-2N  + 1.
1 . i . i°0
i=2 i=1
No
Observe that (i) B0 = I° deg v.,
. i
i=1
N, +N
(i1) B, = 10 ldegv,,
i=N_+1 1
0
(iii) NI = N1 + NO - 1 (Euler's Rule),
(iv) NB = B1 + BO - NI’
(v) PO = B0 - NI’ and
(vi) P1 = B1 - Nl'
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Therefore, if G is a proper SJS tree, then

N0+N1
E = .E deg v -ZN1 + 1 = NB + NO - B0 - N1
i=N_+1
0
No
F = iil deg v, = ZN0 + 1 = NB + N1 - B1 - NO'

Note that deg vy o2 2, 1x is;NO, implies that E>1 and F=1.
We now extend the results to an arbitrary proper SJS forest
G. VLet Gl’ GZ""’ Gn be the components of G. Then each
component Gi is a proper SJS tree.

Therefore,

E = N ) + N - NlG. and

i
Then
n n
Be =% Be, 7 iE WMo, * Nos, T Pos; T Mig))
n n n n
=k Mee TR Noa T E BBk N, T Y6 T No6 T Pos T M
and
n n
Fo= 2 Fe, 75 Bre, “ Mg, Pag, ™ Nog)
n n n
=2 M6, 2 Me I Nos, T Mee t Mg T Pig T Noe

where EG >n and FG >n.

Hence, if G is a proper SJS forest, then G satisfies the rela-

and F = N, + N, - B, - N,.

t10nsE=NB+NO-B0-N1 B 1 1
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Recall that B0 is the total number of (external
and internal) bonds incident to 0-junctions. Observe that
in a proper SJS every internal bond is incident to exactly
one l-junction and exactly one 0-junction; thus, in a
proper SJS, NI is included in BO' Therefore, for a proper
SJS, NB = P1 + BO‘ Similarly, for a proper SJS, NB==P0A-B1.
These results and Lemma A.1 validate the following corollary.

Corollary 1.1: Every proper SJS satisfies the relations

(i) E Ng + P, - N,

N;, + P, - N

(ii) F 1 0 0

A.1.2 Basis Order for Proper Simple Junction Structures

Now Theorem 1 will be established for an arbitrary
connected proper SJS G. This will be accomplished by removing
cycle bonds from G until a spénning tree is obtained, and then
demonstrating that the previous relations remain valid when
these bonds are replaced. These results will then be extended
to an arbitrary proper SJS.

Lemma A.2: Every proper SJS satisfies the relations

I\JB+N0-B0-I‘J1 and

m
1]

F = NB + Nl - B1 - NO.

Prior to proving Lemma A.2 we define a transformation T
which removes cycles from a connected proper SJS, and define
a transformation S which creates a cycle in a connected

proper SJS.
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To obtain T, let G be an arbitrary connected
proper SJS. Assume G contains at least one cycle, say C.
Let b be an arbitrary bond in C, and let VEN and Upy be
EN-nodes. Then there exists a unique 1l-junction veVG and a
unique 0-junction ueVG such that b = (v, u). Let T [(G(v, u)]
denote the SJS H where Vy = Voo {VEN’uEN} and XHEE[XGU{(V,VEN),
(u,uEN)}]-{(v,u)}. Then, clearly, H is a connected proper SJS
which contains one less cycle than G. Observe that N = NlG’

1H
Now = Nog» Piu = Pyg * 1» and Poy = Pyg + 1.
To obtain S, let G be an arbitrary connected proper
SJS. Suppose there exist 1l-junction vsVG and 0-junction ueVG
such that (v,u)¢XG. Also, assume there exist EN-nodes VEN
and Upy in VG such that (V,VEN) and (u,uEN) are in XG' Then

let S (G,v,u) denote the SJS H where VHEEV } and

¢ - YEN' UEn
Xy = (Xgul(v,u) 31 - {(v, vg), (uup ).

Then H is unique (to an isomorphism), and H is a
connected proper SJS which contains one more cycle than G.
Observe that S(G,v,u) contains one less flow variable and one
less effort variable than G, where S(G,v,u) and G yield the
same number of independent flow constraint equations and the
same number of independent effort constraint equations. There-
fore, if H = S(G,v,u), then

= E. - 1 and FH = F, - 1.

Ey = Eg G
Let AES = EH - EG and AFS = FH - FG.
Then AES = -1 and.AFs = -1.

We now proceed with the proof of Lemma A.2Z.
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Proof: Since for a proper SJS we have NB = P1 + B0 and Ng =

P0 + Bl’

SJS satisfies the relations F = N1 + P0 - NO and

it is sufficient to show that every proper

E = NO + P1 - Nl'

Consider an arbitrary proper SJS G. If G is a
forest, then, done, by Lemma A.1l. Therefore, assume G con-
tains at least one cycle. Let G be connected and let G0 =G.
Also, let v and u, denote 1l-junctions and 0-junctions
respectively, for all i. Then G, contains some cycle Cl'

0
Let b1 = (vl, ul) be an arbitrary bond in Cl, and set G1 =

T[GO,(vl,ul)]. In general, if Gi—l contains some cycle Ci’

let bi=(vi,ui) be an arbitrary bond in :i’ and set Si=T[Gi_1,

wi,ui)]. Then the order of XG finite implies that G contains

a finite number of cycles, which implies that there exists a

smallest positive integer k such that Gk is a spanning tree.

Note that N = N N = N P = P + k, and P =

OGk 0G’ le 1G? OGk 0G 1Gk
P1G + k. Gk is a proper SJS tree. Therefore,
E = N + P - N and F = N + P - N
Gk OGk 1Gk le GK le OGk OGk
Observe that S[Gi’vi’ui] = Gi-l’ i=k,k-1,...,1; i.e., k appli-

cations of S to Gk yields GO.
Therefore,

Eq = Eg *+ k (8E) = (N + P

SON.L )+ K(-1)
¢ = B o6, * P16, ~ Mg,
= (Ngg * Pig * k- Nyg) - k= Nyg *+ Pyg - Ny and
F.=F. +k (AFc) = (Niw + P - Non ) + k(-1)
¢~ o, S 16, * Pos, ~ Nog,
= (Nyg * Pyg * k- Nyg) - k= Nyg + Py - Ny
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Thus, if G is a connected proper SJS, then G satisfies
E = NO + P1 - N1 and F = N1 + P0 - NO’ »Assume G is not
connected. Let Gl’ GZ""’Gn be the components of G. Then

each eomponent of G is a connected proper SJS which implies

that
E = N + P - N and F = N + P - N ,
G OGi 1G.1 1Gi Gy 1Gi OG1 OGi
where 1<ic<n.
Therefore,
n n n n
E.= L F. = I N + L P - I N =N p N
e T AR (T s (T S (s (6
n n n n
and F.= I F. = I N + L P - I N =N,~+P.~ - N,-.
G i=1 Gi i=1 1Gi i=1 OGi i=1 OGi 1G 0G 0G

Hence, if G is a proper SJS, then G satisfies the relations

E = N0 + P1 - N1 and F = Nl + PO - NO’ and thus, G satisfies

the relations E = NB + NO - B0 - N1 and F = NB + N1 - B1 - NO'

A.1.3 Basis Order for Standard Simple Junction Structures

In this section we prove Theorem A.l.

Theorem 1: Every standard SJS satisfies the relations

E=NB+NO-BO-N1 and

F N, + N, - B, - N

B 1 1 0°
The proof of Theorem 1 is preceeded by the definition of the

transformation T which reduces the number of bonds formed by

nodes of the same type in a standard SJS.
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Let G be an arbitrary standard SJS. Assume G is

not proper, i.e., G contains a bond of the form (vl,vz)
where Vi and v, are nodes of the same type.

Then for (vl,VZ)sXG, where vy and v, are nodes of
the same type, let u be a junctionof a node-type distinct
vy and V. Without loss of generality, if vy and v, are EN-
nodes, then let u be a l-junction. Then T(G,vl,vz) will
denote the SJS H where VHEVGU{U} and XHE[XG - {(Vl,vz)}]u
{(vl,u),(u,vz)}. Observe that H is a standard SJS which con-
tains one less bond of the form (1,1), (0,0) or (EN,EN) than
G (see Figure A.4).
Note that H = T(G,vl,vz) contains one more effort variable
and yields one more independent effort constraint equation
than G. Therefore, EH=FG. Similarly, H contains one more
flow variable and yields one more independent flow constraint
F

equation than G. Thus, F G Observe that if vy and v, are

H=
Bu~Npc*ls Nig™Nige Now©

OG+2' Also, if vy and v, are 0-junctions or EN-nodes,

l-junctions, then N N

NOG+1, B1H=B1G’ and

B B

OH™

then N N 1, N,.,=N N

BH™ VpG* 1H V16" oH NMoG’ P1H™®16° OH™

We are now prepared to establish the order rules for an

1, N B B 2, and B B

0G*

arbitrary standard SJS.
Proof: Let G be an arbitrary standard SJS. If G is a proper

SJS, then done, by Lemma A.2. Therefore, assume G is not

proper. Let kO’kl’ and k2 be the number of bonds in G of the

forms (0,0),(1,1) and (EN,EN) respectivelv. Let k=kn+kl+k2<w.
) denote

Without loss of generality, assume k,>1. Let (v

0 1i°V21
bonds of the form (0,0) where 1iiik0; (Vli’VZi) denote bonds
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of the form (1,1) where ko + 1<1icx< kO + kl; 2i)

denote bonds of the form (EN,EN) where k + k + 1<1ic<k.

and (vll,v

Also, let GOE G and G = T(G “1°V1i°V2i ) where i = 1,2,...,k.
Observe that Gk is a proper SJS. Therefore, by Lemma A.2

Gk satisfies the relations

E = NB + NO - B0 - Nl and

F = NB + N1 - B1 - NO where NBGk = NBG + k,
No, T Noc T K1e Mg T N6 T Ko T Kpr Pig T Bug T kg * Kp), and
BOGk = BOG + 2k1.
Recall that for standard SJS H containing adjacent nodes vy
and v, of the same node-type, EH = ET(H’VI’VZ) and FH =
F

T(H,vlvz).

Therefore,

E. = E = E = N + N - B - N

G GO Gk BGk OGk OGk le

= WNpg * kg * ky +do) + (Nog * k) - (Byg * 2ky) - Ny * Ky + k)
= Npg * Nog = Bog = Nyg» and
F.=F. =F. =N + N - B - N
G G0 Gk BGk IGk IGk OGk
= (Npg * kg * Ky + k) + (Nyg * kg * kp) = (Byg * Zkg + 2k;) - (Nog * Kyp)
= Npg * Nig ~ Big ™ Noe:

Hence, every standard SJS satisfies the relations

E = NB + N0 - B0 - Nl and F = NB + N1 - B1 - VO.

A.1.4 Port Basis Order for Standard Simple Junction Structures

We now show that the number of independent effort/

flow variables corresponding to a given standard SJS is its
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number of independent port efforts/flow; i.e., NE = E and

NF = F.
Corollary 1.2: Every standard SJS satisfies the relations

(i) Np = N, + NO - BO - N1

and

(ii) Np = N + N; - B, - N

Proof: Let G be an arbitrary standard SJS. By Theorem
G satisfies

+ N, - B, - N and F = N, + N, - B, - N

E =N 0 0 1 B

Observe that in a node-bond incidence count, each internal

bond is counted twice and each external bond is counted once

in BO + Bl' Therefore,
(BO + Bl) + NP = ZNB; i.e., NP = ZNB - (BO + Bl).
Then E + F = (NB + NO - B0 - Nl) + (NB + N1 - B1 - NO)
= ZNB - (BO + Bl) = NP'
Note that NE <E, NF < F, and NE + NF = Np.

Assume NE< E. Then NFs F and NE< E imply that NP =
NE + NF sNE + F < E + F = NP; i.e., NP< NP.
Thus, NE = E. Similarly, NF = F.
Hence, every standard SJS satisfies the relations

N = NB + NO - B0 - N1 and NF = NB + N1 - B1 - NO.

A.2 Basis Order and Weighted Junction Structures

Section A.2 is devoted to the development of basis

order rules for standard weighted junction structures.



73

A.2.1 Basis Order for Standard Weighted Junction Structures

The basis order rules for a standard WJS are pre-

sented here in the form of Theorem 2.

Theorem 2: Every standard WJS satisfies the relations

E =N, + N, - B

B 0 0 1

NB + Nl - B1 - NO - NT'

- N, - NT and

F

The proof of Theorem 2 is preceded by the definition of a
transformation T which removes TF-nodes from standard WJS's.
Let G be an arbitrary standard WJS. Assume G contains at
least one TF-node u. Let nodes v, and v, be adjacent to u in

{u}l and

1
G. Then T(G,u) will denote the WJS H where VHE‘VG -
Xy = [XGu {(Vl,Vz)}]‘ {(vl,u),(u,vz)}. Note that H is a
standard WJS which contains one less TF-node and one less
internal bond than G.

Observe that H = T(G,u) contains one less effort variable and
yields one less independent effort constraint equation than G.
Therefore, EH = EG. Similarly, H contains one less flow vari-
able and yields one less independent flow constraint equation
than G. Thus, FH = FG. Note that NBH = NBG -1, NOH = NOG’

Niw = Nig» Bon T Boge @nd By = Byg:
We are now prepared to establish the order rules for an

arbitrary standard WJS.

Proof: Let G be an arbitrary standard WJS. If G does not
contain a TF-node (NT = 0), then G is a standard SJS
and we are done, by Theorem 1. Therefore, assume G

contains at least one TF-node. Let NT be the number
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of TF-nodes in G. Enumerate the TF-nodes in

G Ups Ugyenes U Let Gez G and Gi=’T(Gi_1,ui)

where lsisNT.

Np

Observe that GV is a standard SJS. Therefore,
T

GN satisfies E = NB + N0 - B0 - Nl and F = NB + Nl - B1 - NO

T
where NB(.1 = NBG - NT, NOG\I = NOG’ NIGNT = NlG’ BOG\IT = BOG’ and
&T 4
BIG\I = BlG' Recall that if H = T(G,u), then EG = E.H and FG = FH'
ST

67 "oy T Foy T Moy Mooy T Posy Mgy
= (Ngg = Np) + (Nog) - (Byg) - (Nyg) = Npg * Nog = By - Ny - Np and
6 7 e, T Fey T Meoy " Mgy 7 Pigy, Moo

T T T T T
= Npg = Np) + (Nyg) = (Byg) - (Ngg) = Ngg * Ny = Byg - Nog - Ny

Hence, every standard WJS satisfies the relations

E = NB + NO - B0 - Nl - NT and F = NB + N1 - B1 - NO - NT'

A.2.2 Port Basis Order For Standard Weighted Junction

Structures

We now show that the number of independent effort/
flow variables corresponding to a given standard WJS is its

number of independent port efforts/flows.

Corollary 2.1: Every standard WJS satisfies the relations

(1) Np =N+ Ny - By - N, - N;

and

(ii) N. = N, + N, - B, - N_ - N
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Proof: Let G be an arbitrary standard WJS. By Theorem 2,

G satisfies E = NB + NO - BO - N1 - NT and

F =N+ N - B1 - Ng - Np. In the proof of Theorem

2, it was observed that a standard WJS can be
"reduced" to a standard SJS by a series of applica-
tions of the transformation T. Also, it was noted
that each application of T decreases the TF-node count
by one and decreases the bond count by one. Recall

that for a standard SJS, 2N, = N, + (BO + B Then

b = Np 1)
for a standard WJS, the above observations yield

= .3 N = ON -
ZNB NP + (BO + Bl) + ZNT, i.e., NP ZNB (BO

Then E+ F = (N; + Ny - By - Ny - NJ) + (Ng + Nj - By - Nj - Np)

+ Bl) - ZNT'

= 7 - - = ]
hNB (BO + Bl) ZNT NP.

F < F, and NE + NF = NP.

Assume NE< E. Then NFS F and NE< E imply that

Note that NE <E, N

NP=NE+NFSNE+F<E+F=NP;

Therefore, NE = E. Similarly, N

Thus, NF = F.

. . N
i.e., NP< NP'

< F implies that N, <N

F P P’

Hence, every standard WJS satisfies the relations

NE = NB + NO - BO - N1 - NT and NF = NB - N1 - B1 - NO - NT'
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Figure A.1l.
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Figure A.2.
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EN 1 EN

m>2

A 1-junction proper SJS.

EN 0 EN

n>2

A 0-junction proper SJS.
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1

Figure A.3. Example of Lemma A.l construction procedure
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APPENDIX B
AN APPLICATION OF THE BASIS ORDER RULES

Definition: For a WJS (weighted junction structure), a
causal form is feasible if it does not
violate any l-junction, O-junction, or TF
node constraint, and every port bond is
causally oriented.

The effort-flow variable composition of a basis can be

determined from the topological properties of a WJS.

The composition is given by the basis order rules, the

general froms of which are

N N, + N

g - Ng + Ny - B

and (1)

N

F NB + N1 - Bl - Ny - N

Example 1
The WJS in Figure B.1l has the following topological pro-

perties: NB =12, NO = 2, Nl = 3, NT = 2, B0 =5, Bl = 9.

The basis order rules yield

NE =12+ 2 -5-3-2=4

and

80



NF=12+3-9-2-2=2

This input pattern is illustrated by the causally augmented

WJS in Figure B.2.

Henceforth, all weighted junction structures will be con-

sidered as n-port structures.

In the process of ottaining a '"'good" upper bound for the
number of unlabelled feasible port bond causal orienta-
tions, three expressions for upper bounds will be derived
where each successive expression requires greater knowledge
of the junction structure and yields a smaller upper

bEound.

B.1 An Unper Bound For C As A Direct Application Of

The Basis Order Rules.

A question of particular interest concerns the number of
distinct port-variable bases which an n-port possesses.
The basis order rules yield an upper bound for the number

of such bases.

From the fact that every port bond can accept exactly

two causal orientations it is easily seen that
C < U, (2)

where C 1is the total number of unlabelled feasible port

bond causal orientation and U0 = 2 NP.
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hHowever, an improvement over UO can be obtained by a

direct application of the basis order rules.

Given NP port bond with NE efforts as inputs, a (gen-

erally) smaller upper bound can be expressed as

<l (3)
where
N
. P
U, = (¢) (4)
1 NE
and
nl (£
m 1 0 <m<n,
Q) = (5)
0 otherwise,

for integers n and m.

Notice that U1 represents a significant reduction from
the coarse upper bound UO.

Noting that

Np = Np + Ng, (6)

one obtains the related form
N P 1 N

Py _ P
St NI T (N ) - 7

As would be expected, the results are symmetric with

respect to effort and flow variables.
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The inequality Ul < UO can be demonstrated by expressing
ZNP as a binomial expansion.

4

Recalling the Binomial Expansion Theory,

n 4
(a+ B = | (Da" bk,
k=0 =~
let a=1, b=1, and n = NP’ Then
N
P N
Mp=@a+nV%% =7 (). (8)
k=0 K

N N

Then for 0 < N < Np and 0 < Np < Np, (Ng) and (NP)

F
are merely symmetrical terms in (8). Thus U1 < UO'

In particular, if NP > 1, then Ul < UO .

Example 2
Referring to Figure B.1,

NP = 6, NE = 4, and Np = 2.

Then

and

Thus, C < 15 < 64.
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B.2 A Refined Upper Bound for C

In general, Ul can be improved upon considering the
constraint equations associated with WJS elements. It
will be assumed that the WJS of interest contains no
external TF elements. This assumption results in no loss
of generality, due to the causal properties of TF element

[25].

Let e be the number of port effort inputs to external
0-junctions. Similarly, let f be the number of port

flow inputs to external l-junctions.

"n_n

For a given e, if e port efforts are inputs to the
Ao external O-junctions, then PO - e port flows are
inputs to the remaining PO - e port bonds which are
incident to O-junctions. Thus, Rp - (Po - e) port flows
are inputs to the A; external l-junctions, and N - e

port efforts are inputs to the remaining P1 - (NF - P0 + e)

port tonds which are incident to l-junctions.
Note that
+ e (9)

and
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Then

c<Q, (16)
where

- VR

IJ2 = eiLE( e)(NF-PO+e) (11)
for some ME and LE.
If NE < AO, then ME = NE' If NE > Ao, then ME = Ao.
Thus,

ME = min(NE,AO) ) (12)

Suppose Pl < NE' Then there are at least NE - Pl port
effort inputs to tne AO external O-junctions. Then

L. = N. - Pl' Clserve that £ = 0 when e = NE - Pl‘

E E

Suppose P; > Np. Then Np > Py, and there can be a
minimum of zero port efforts inputs to the AO external
0-junctions. Then Lp = 0. Observe that f = Np - Py > 0

when e = 0. Thus,

L. = max (0, N. - P (13)

E g - Pp)

Equation (1l1) is symmetric in e and £f. Thus, U2 can
be formulated in terms of snecified port flow inputs, if

desired.
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]
=
]
lae)

By (9) we have e E 1 + £, since NE + NF = PO + Pl‘

Then, by (5),
! N P
F oo G- 1o 2y
e=Lg NFTFo e=L € F 50 f=Lp "E°1
?1 1 oGh bziF (00 oG
- (v -p.+8) (6 = Bog)
£oL, Np-P +E7 Uf £oL, Np-P +f £

where MF = min (NF, Al) and LF = max (O, NF - Po).
It will now be shown that U, < U;.

Suppose e port efforts are inputs to the AO external
A
1

O-junctions. Then there are at most (N -P causally
F

0+e)
consistent input assignments of NE - e port efforts to
the Pl port tonds incident to l-junctions, given
causally consistent input assignments of NF - PO + e
port flows to the P1 port tonds incident to l-junctions.

P
Observe that (F )

e is the number of unrestricted input
E

assignments of N - e port efforts to the P1 port tonds

incident to l-junctions. Therefore,

P

Ly Sy (14)
NF-PO+e — NE-e

Therefore, by (5) and (14),



. Eoy ) " oy L
N I .
E A P E P P P.+P N
0 1 0 1 _ 0 "1, _ P

Therefore, U2 < Ul' In particular, whenever A1 < P1

or AO < PO’ U, is a significant improvement over Ul'

Example 3
Again referring to Figure B.1, A0 = 0, A = 3, PO =0,

g = 4, and Np = 2. Therefore, M;

and LE = max (0, 4-6) = 0. Thus,

Pl = 6, N = min(4, 0) = 0

= Oy (3 -

which is much lower than the upper bound of 15 obtained
in example 2. In addition, the junction structure in

Figure B.1 has exactly three unlabelled causal orienta-
tions which are given in Figure B.3, hence, C = U2 in

this example.

The significance of U2 is captured by the following

theoren.

Theorem 3: The numter of distinct basis variable sets
for a WIS transformation is bounded above by

Mg Ay A Mz A A

= - 0 1
Uy = £ (e )(NF-PO+e) N fzLF(NE-Pl+f)(f )
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where ME = min(NE, Ao), LE = max (0, NE-PL),

MF = min(NF, Al), and L, = max(0, N

F r~Po) -
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EN — ] —EN

EN EN
1 TF 0 TF 0 1

\ /

EN EN

Figure B.1l. Example of a weighted junction
structure.
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Figure B.2. Causally augmented weighted
junction structure.
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EN —{1}—EN EN
EN ,\ _L /\
/y TF } 0 —] TF —{0 — /\
EN -

Figure B.3. Unlabelled causal orientations
of a weighted junction structure.



APPENDIX C

THE RESOLUTION OF A CONFLICT RESULTING FROM A PORT BOND

CAUSAL ORIENTATION

Property 2.1: Let G be a junction structure with a port bond
b. Suppose a causal orientation (and subsequent
causal extension) of b results in a causal con-
flict, then the opposite causal orientation
(and subsequent causal extension) of b will not

yield a causal conflict.

Proof:

It will be assumed that each causal orientation of b is
followed by the causal extension process, and that G is acausal
(since the pruning process of Appendix E can be initially
applied to remove all causally oriented bonds and causally
completed nodes).

G contains a node of degree greater than two since a
causal orientation of b results in a causal conflict. From a
graph theoretic perspective, a causal orientation of b defines
a "walk" of G [18]. Let ENO be the field-node incident to b.
Then there exists a shortest path in G joining ENO and a
JS-node, Vo’ of degree greater than two such that (1) every
JS-node (exclusively) between ENO and Vo has degree two, and
(2) there exists no shorter path in G joining ENO and a JS-

node of degree greater than two.
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Let d denote the path bond incident to Vo. A causal
orientation of b resulting in a causal conflict implies that
the resulting causal orientation of d gives d strong causal
implication with tespect to VO. The reversal of the causal
orientation of b results in a reversal of d's causal orien-
tation, since ENo and VO are joined by a sequence of JS-nodes
of degree two. This gives d weak causal implication with
respect to Vo, which leaves V0 causally incomplete; conse-
quently, no causal information propagates beyond Vo and no
causal conflict can result. Hence, if a causal orientation
of b yields a causal conflict, then the opposite causal

orientation of b will not yield a causal conflict.



APPENDIX D

THE IMPACT OF THE STANDARD SEQUENTIAL CAUSALITY ASSIGNMENT
PROCEDURE (SSCAP) ON THE REDUCED JUNCTION MATRIX

Theorem D.1: Let G be a bond graph with an algebraically
reducible junction structure. Assume that
G can be completely and consistently causally
oriented by SSCAP. Then dependent storage
field 1inputs are determined by source field
and independent storage field outputs. More-
over, no dissipation field input is determined

by a dependent storage field output.

Proof:

It will be assumed that (1) a causal assignment is
always followed by causal extension, (2) each field multiport
is a one-port, and (3) each field multiport is adjacent to a
0-junction or l-junction. It has been shown that a linear
time-invariant field multiport with n ports can be replaced
by n one-port field multiports [25]. Thus, for this reason
and due to the causal characteristics of junction structure
nodes, the above assumptions result in no loss of generality.

Consider the acasual representation of G, = G given in
Figure D.1 where n; is the number of sources, m is the

1
number of storage multiports, and Py is the number of dis-

sipation multiports. Without loss of generality, assume nlzl.
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In the following discussion only consistent causal orienta-
tions of source bonds will be considered.

Causally orient the bond incident to an arbitrary source
in Gl' Let uy denote the output from this source. Prune
(see Appendix E) from G, all resulting causally oriented bonds
and causally completed nodes. (Note that no causal conflicts
can result from source bond orientations due to the theorem's
hypothesis). Let G2 be the bond graph obtained from G1 by
the pruning procedure (see Figure D.2). If any dependent
storage field bond or any dissipation field bond is pruned from
Gl’ then each corresponding dependent storage field input or
dissipation field input is determined by uy together with
prior information. If G2 # #, then done. Assume G2 # 0.
Then G2 has the acausal form given in Figure D.1 where n,,
my, and p, are replaced by n,, Mm,, and P, respectively.
Observe that if nzzl, then the source bond causal orienta-
tion process together with the bond graph pruning procedure
can be repeated (at most n, times) until all source bonds
of G have been causally oriented. Then there exists a
smallest positive integer ksn1+1 such that Gk contains no
sources. (If n1=0, then k=1). nlzl = k=22. Then each
dependent storage input and each dissipation input specified
in Gh is determined by Ugs Usy o v o)y Uy where 1<hs<k-1

and up is defined similar to u;.
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Consider Gk' Gk has the acausal form given in Figure
D.3. If mk=0, then done. Assume mk>0. Assign integral
causality to an arbitrary storage bond, b, in Gk' If a
causal conflict results, then restore Gk to its acausal
form and select a different storage bond to causally orient.
In tﬁis case, property 2.2 of the causal extension process
indicates that sufficient input information was available
to determine the variables associated with bond b, i.e.,
the storage element incident to b is dependent and its in-
put is determined by Ups Ups o o vy Uy g Suppose the inte-
gral causal orientation of b does not result in a causal
conflict in Gk' Let X4 be the resulting output of the

storage node incident to the oriented b. Let G be the

k+1
bond graph obtained from Gk by the pruning procedure. If
any dependent storage bond or any dissipation bond is pruned
from Gk’ then each corresponding dependent storage input

or dissipation input isdetermined by X in Gk’ and therefore,
is determined by Ups Ugs o o oy Up g5 Xy in G.

Gk+1 has the acasual form given in Figure D.3 with k
replaced by k+1. If mk+1=0, then done. If mk+1#0, then the
above storage bond integral orientation and graph pruning
process can be repeated (at most my times) until the integral
orientation of any remaining storage bond yields a causal
conflict, i.e., there is a smallest integer 2£>0 such that
either the integral causal orientation of each storage bond

in Gk+2 results in a causal inconsistency or mk+£=0 where

L<my s As noted above, if the integral causal orientation of
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a storave bond results in a causal conflict, then the hond's
assoctiated variables are determined by previously specitied
source and (independent) storage outputs. Then each depen-
dent storage input and each dissipation Input specitied in
G

I 15 determined by

I if l<h<k-1

A S N IR A A N 3

1t k<h<k+?2-1 and ©>0
where ecach Xy 15 detined similar to Xy - Thus, all depcndent
storage i1nputs are Jetermined by source and independent

storage outputs, and no dissipation inputs is determined

by a dependent storage output.
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ny, my, and p, are nonnegative integers

Figure D.1. Symbolic bond graph representation with fields
identified.



Figure D.2.
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Example of subgraph generation by pruning.
(a) Bond graph G, with source bond causally
oriented. (b) Bofid graph G, obtain from Gy
by the pruning process.
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my and Py are nonnegative integers

Figure D.3. Symbolic bond graph representation
with source field pruned.



APPENDIX E

PRUNING AND SOME ASPECTS OF JUNCTION STRUCTURES

Let G be a junction structure and d be an arbitrary

bond in G. Assume that G is acasual. Then a casual set with

respect to d is the set of casually oriented bonds and cau-

sally completed nodes in G which result from the casual ex-

tension of a casual orientation of d. "S(d)" will denote a

casual set with respect to d; this notation assumes that the

casual orientation of d is known.

Consider the JS given in Figure E,1. If bond b67 is
causally oriented so that the effort variable is an input to
node 6, then S(b67) = {b67}. If bond b67 is causally orien-
ted so that the effort variable is an input to node 7, then
S(b67) = VGU XG where VG is the node set of G and XG is the
bond set of G.

Note that (1) a casual set does not contain any casually
incomplete notes; and (2) there is at least one and at most
two casual sets with respect to bond b in G, since b has
exactly two casual orientations and the casual extension
process implies the unique and exhaustive propagation of
input information.

Remark E.1: If G is a tree JS, then all causally complete
nodes in S(b) are consistent since there is a
unique path between distinct Aodes in a tree
graph.

Let G be a JS and d be an arbitrary bond in G.
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Arbitrarily,
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causally oriented d. Then '"prune S(d) from G"

will mean delete from G the bonds and nodes in S(d). "G-S(d)"

will denote the structure obtained by pruning S(d) from G.

Remark E.2:

Remark E.3:

Remark E.4:

Theorem E.1:

Pruning does not introduce additional port-bonds
since it does not introduce additional EN-nodes.
The removal or '"pruning'" of causally oriented
bonds from a causally incomplete junction does
not alter the input information which is re-
quired to causally complete the junction. That
is, a causally incomplete junction has n>2 in-
puts to be determined (i.e., bonds to be caus-
ally oriented) of which exactly one must have
strong causal implication. Thus, once an input
of strong causal implication is known or n-1
inputs of weak causal implication are known,

the junction can be causally completed in a con-
sistent fashion.

It follows from Property 2.4 of the causal
extension process that if G is a JS then G-S(b)
is a JS, where G-S(b) will be called the 'null
bond graph'" if G-S(b) is empty. A property of
JS trees can now be given.

Every JS tree can be causally completed in a
consistent fashion by the sequential causal
orientation (and causal extension) of its port-

bonds.
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Proof:
In the subsequent discussion, it will be assumed that
(1) each bond causal orientation is followed by the causal
extension process, and (2) for each set S(p), the bond b has
been arbitrarily causally oriented.
Let T1 be an arbitrary JS tree and R1 be the set of all

port bonds in T Then Zio(R1)<w. Let p;eR,. If Rll'IS(p1)=R1

1
(i.e. all port bonds of T1 are in S(pl)), then done by the

properties of pruning and the causal extension process.

Assume RlnS(pl)#Rl. Let T2=T1-S(pl) and R2=R1-
[RlnS(pl)]. By the properties of the pruning process, T, is
a JS forest. Therefore, o(RZ) is greater than or equal to

twice the number of components of TZ' Let pzeRz. Observe
that S(pl)nS(p2)=¢.

In generél, if RinS(pi)#Ri, then let Ti+1
Ri+1=R1-[R1aniS(pj)] where pjeR; for lgj<i and i>1.

=Ti-S(pi) and

Ti is a JS forest and o(Ri) is greater than or equal to
twice the number of components of Ti for each i.

o(R1)<m implies there exists a positive integer K such
that RKnS(pK)=RK; i.e., after the KEE pruning, all port bonds
(and thus, all bonds) have been pruned from Tl' This occurs
if and only if all bonds of T1 have been causally oriented.

Recall that the causal extension process results in
consistent causal assignments in JS trees, and pruning does
not affect the consistency of causal assignments.

K
Then VuX=i'~i1 S(pi) where V is the node set of Tl’ X is
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the bond set of Ty S(pi)nS(pj)=¢ if i#j, and each S(pi) is
a subset of bonds and nodes in T1 which have been causally
assigned in a consistent fashion.
Hence, T1 has been causally completed in a consistent
fashion by the sequential causal orientation of its port-

bonds.
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EN EN
(2) (3)
EN 1 0 1 EN
(1) (6) (7) (8) (5)
EN
(4)

Figure E.1. Junction structure with
labelled nodes.
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3
- TF EN
) /(4) "
7
2
T, EN —0»> 1 2 0
(1) (7) (3)
6
cY—2% EN
(5) (8)
Ry = {b,b,y,by,b,}
p; = b; with effort input to v,
R TF—3—EN
(2) (4) (6)
2 7
T2 le—2 0
(7) (3)
6
cY—2— EN
(5) (8)

Py = b2 with effort input to V4
S(P?_) = {b2vb3:b4’b5,b6nb7,vz ,V3,V4,V5,V6,V7,V8}

Figure E.2. Example of the pruning procedure.

bi = bond i and v; = node i
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Subroutine For The Determination Of Junction Matrix Entry Position
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Subroutine For Matrix Inversion
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