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ABSTRACT

NOISE IN NONLINEAR MICRO-RESONATORS

By

Nicholas Miller

In this work we examine several noise-induced phenomena that are found in nano-

and micro-electromechanical systems. Our aim is to exploit these phenomena, where

possible, for system identification and sensing applications. The exception being our

discussion of nonlinear oscillators, where our goal is to remove the effect of noise

as much as possible. In general, however, our viewpoint is one of embracing the

noise and nonlinearity that are an inevitable part of miniaturization and seek new

modes of micro- and nano-system operation applicable where noise and nonlinearity

are fundamentally unavoidable.

In this work we discuss three different, but related, topics. First, we discuss the

dynamics of a system subject to a parameter sweep through a bifurcation in the pres-

ence of noise. We develop approximate distributions for the time at which a system

swept through a subcritical pitchfork or a saddle-node bifurcation will leave the local

region of phase space, leading to a sudden jump in response amplitude. These distri-

butions are developed in the limit of “fast” sweeping, where the sweep rate is large

compared to the noise strength, which is relevant to most MEMS applications. We

then present the results of sweeping experiments performed on a MEMS resonator

and show the value of our analytic predictions. Our primary conclusion is that de-

layed bifurcation is prominent in MEMS devices, and we provide predictive tools for

predicting the resulting distribution of jump events.

Next, we consider a novel dynamical bridge sensing paradigm. This sensing

methodology employs a vibrating bistable system arranged, by tuning of parameters,

such that the rate of noise-activated escape out of the two stable basins of attraction

are identical. The ratio of occupation probabilities can become extremely sensitive at



this point when the noise is weak. We calculate the sensitivity and detection time of

the balanced dynamical bridge for use as a general use detector and we develop the

conditions required and demonstrate its application as a detector of non-Gaussian

noise. We illustrate the measurement of the parameters of a shot-noise process using

a one-dimensional bridge model.

Finally, we discuss phase noise in oscillators employing nonlinear frequency selec-

tive elements. We employ the method of averaging to develop an expression for the

spectrum of fractional frequency fluctuations in an oscillator. The expression for the

spectrum of frequency fluctuations is quite general, although it neglects dynamics in

the feedback elements of the oscillator. The expression contains elements of the noise

model and the nominal limit cycle shape of the oscillator. We demonstrate the utility

of the results by exploring the parameter space of a prototypical oscillator modeled

by a biased Duffing equation. We find that one can reduce the phase diffusion con-

stant of the oscillator by tuning the system to a zero-dispersion point of the resonator

element, thus eliminating the action-angle coupling at zero-dispersion points of the

resonator frequency can lower the phase diffusion constant.
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Chapter 1

Introduction

It is well known that small fluctuations in nonlinear systems can have large reper-

cussions in terms of the system response. One means by which this occurs is noise

activated escape, where a series of pulses from a weak noise source may conspire in

such a way as to push a system out of a potential well. For small noise, this process

is a rare event which can be described by an average rate of occurrence. For classical

systems the rate, W , of activated escape is given by the Arrhenius law [100]

W ∝ exp(−R/D), (1.1)

where R is the activation energy and D is the noise strength. From this expression, we

can see, for small noise (small D), that a small change in the activation energy, ∆R,

corresponding to a small change in the system or its environment, can produce a large

change in W if the ratio ∆R/D is not small. This change in escape rate is described as

a logarithmic susceptibility [100], a nomenclature which implies that the logarithm of

W changes linearly with respect to a small perturbation acting on the system. Thus

highly sensitive measurements can be, and have been [2, 91, 116, 77], made using

the principle of activated escape. However, the full utility of such measurements in
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the field of MEMS and NEMS has yet to be explored. The aim of this work is to

investigate noise phenomena in micro- and nano- electromechanical systems (MEMS

and NEMS). This includes the investigation of noise activated escape in N/MEMS

resonators for sensing, analysis of noise-dispersed delayed bifurcations for bifurcation

point detection, and phase diffusion in N/MEMS based nonlinear oscillators.

In this chapter we provide motivation and a brief overview of the main contribu-

tions described in this dissertation. In section 1.1 MEMS and NEMS are introduced

and demonstrated to be a rich and interesting area of research. In section 1.2 we dis-

cuss the intrinsic nature of noise and nonlinear dynamics in MEMS and NEMS that

makes them an appropriate area in which to exploit noise induced phenomena in non-

linear dynamic systems. In section 1.3 we give introductions to the phenomena that

are the primary foci of this work: noise activated escape, delayed bifurcations, noise

in slow-fast systems, etc. In section 1.4 we give a summary of the major contributions

of this work.

1.1 MEMS and NEMS

The field of microelectromechanical systems (MEMS) emerged during the years be-

tween the 1960s to 1980s, arising from the integrated circuit industry [75]. It has since

expanded rapidly, driven by commercial successes and the development of new en-

abling technologies. The ability to fabricate even smaller and smaller devices has led

to the related field of nanoelectromechanical systems (NEMS) [26, 41]. The ability to

batch fabricate such small mechanical structures and integrate them with electronics

has had a large impact on both commercial electronics and research in fundamental

physics alike. Devices such as pressure sensors, accelerometers, gyroscopes, ink jet

printer nozzles, and DLP projectors have found a great deal of success in the com-

mercial arena [75]. Devices such as cell sorters, retinal and cochlear implants, neural
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probes, and other in vivo sensors have had significant impact on biological research

[51]. Atomic force microscopy [13] and the use of nanoresonators to probe mesoscopic

electrical systems [24, 116, 6] have had significant impact on fundamental and applied

physics research. The list goes on, but this is sufficient to make the point that the

field of MEMS and NEMS is rich and promising.

MEMS and NEMS can generally be split up into various subfields including sen-

sors, actuators, and signal processing devices such as filters and oscillators. In this

work, we focus on sensors and oscillators, specifically, systems that rely on vibration

for operation.

The oscillators we consider employ nonlinear resonators as frequency selective

devices. These resonators are models of N/MEMS devices. Our goal is to optimize

the oscillator performance, in terms of phase noise, by tuning the feedback parameters

and designing the nonlinearity in the N/MEMS resonators.

The sensors we consider are parametric sensors. A parametric sensor is a general

type of sensor in which the signal to be detected influences the dynamic behavior of

the sensing device. The system is then interrogated to retrieve the signal. Examples

include gyroscopes [71] and resonant chemical mass sensors [118]. Gyroscopes encode

the rotation rate in a coupling parameter that governs the interaction between two

resonant modes of vibration. These two modes are designed to have identical natural

frequencies and to be uncoupled save for the coupling arising from Coriolis effects.

One mode is driven, and the other is monitored, or sensed. The amplitude of vibration

of the sensed mode is then correlated with the rotation rate of the gyro. Resonant

chemical mass sensors encode the mass of the substance being detected in the natural

frequency, specifically by shifts in the natural frequency, of a resonator. This is

typically monitored using a self-excited oscillator scheme based on a phase locked loop

[40, 49]. In such a setup, the resonator is made to oscillate at its natural frequency

via feedback, and the frequency of oscillation is monitored and correlated with the
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measured mass.

While the above examples of dynamical sensors employ linear dynamic systems,

nonlinear dynamics systems are often exploited for properties that might either avoid

the problems inherent in the linear systems, attain more sensitivity, or simply provide

functionality that is not possible with linear systems. For example, Oropeza-Ramos

et al. constructed a gyroscope that employs nonlinear dynamics to circumvent the

difficulty of matching the modal frequencies of its drive and sense modes [89]. Buks

and Yurke explored the idea of using nonlinear dynamics in a chemical mass sensor to

increase sensitivity by operating at a point of infinite slope in the frequency response

curve [15]. A frequency response with infinite slope can only be produced by a

nonlinear system. It was found that the increase in sensitivity came at the price

of a slower response time. For a more complete review of applications of nonlinear

dynamics in MEMS and NEMS, see [73, 92].

1.2 Noise and Nonlinearity

The use of nonlinear dynamics in MEMS and NEMS is in no way artificial. Such small

devices are subject to significant thermal and electrical noise forces. Accordingly, it

is often necessary to drive the devices hard enough to elicit a nonlinear response in

order to obtain a response with good signal to noise ratio. It is by virtue of the

smallness of these devices that the linear dynamic range is made small and one must

account for the noise and nonlinear effects. To illustrate this, consider the following

simple example. The equation describing a simple harmonic oscillator coupled to a

thermal bath is [26]

mẍ+mω2
0x = −

mω0
Q

ẋ+

√
2mω0kBT

Q
ξ(t), (1.2)
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where x is the displacement, m is the mass, ω0 is the natural frequency, Q is the

quality factor, kB is Boltzmann’s constant, T is the temperature, and ξ(t) is a white

Gaussian noise force with 〈ξ(t)ξ(t′)〉 = δ(t− t′). The noise force, ξ(t), and the dissi-

pative force, −mω0
Q ẋ, result from coupling of the resonator to the environment and

are responsible for keeping the oscillator in a state of thermal equilibrium. Dividing

equation (1.2) through by m gives

ẍ+ ω2
0x = −

ω0
Q
ẋ+

√
2ω0kBT

mQ
ξ(t). (1.3)

As devices are made smaller the mass, m, clearly must decrease if we continue to

use the same materials. The quality factor, Q, also tends to decrease [81, 74, 43].

Meanwhile, the natural frequency, ω0, tends to increase. Thus, we can see from (1.3)

that as devices decrease in size, the effective noise strength increases. Meanwhile, for

a fixed-fixed beam, for example, the amplitude of vibration corresponding with the

onset nonlinearity goes as tQ−1/2, where t is the thickness of the beam [41]. This

upper limit of linear dynamic range will decrease with device size if t decreases faster

than Q1/2. While it is unclear what the result of this competition is in general, we

can concede that for many small devices the linear dynamic range is not large. Thus,

in order to take advantage of the many attractive properties of small devices, one

must consider models that go beyond the linear dynamic range and account for both

nonlinear effects and random forcing. In this simple example, we have only considered

thermal noise acting on the oscillator. However, MEMS and NEMS devices are often

subject to additional noise sources. The reader is referred to [41] for a more complete

discussion of linear dynamic range in NEMS, and to [25, 82] for a review of noise in

MEMS and NEMS.

The host of phenomena created by the interplay of random fluctuations and non-

linearity in dynamic systems is quite large. In this work we will only touch on a
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Figure 1.1: Activated escape in one dimension.

few examples, all of which can be found in nonlinear MEMS or NEMS resonators

subject to noise, but they are also relevant to other physical systems of interest. In

the following section we will introduce the phenomena of interest and cite some of

the other interesting contexts in which they arise.

1.3 Noise-Induced Phenomena

Perhaps the most basic noise-induced phenomenon is diffusion. Diffusion arises from

the sum of a large number of random variables. The value taken by this sum is

itself random with a variance that grows with the number of variables in the sum.

Brownian motion is one example [39]. Brownian motion can be illustrated by a

particle suspended in a fluid. The random force acting on the particle resulting from

many collisions with the fluid molecules is integrated in time to produce a wandering

trajectory. A similar situation occurs in clocks [72]. A clock cannot have knowledge

of a reference point in true time and so random perturbations on the clock accumulate

causing the phase to diffuse. This results in the clock’s estimate of true time drifting.

Quartz and MEMS clocks are ubiquitous in electronic devices and the reduction

of phase noise in these clocks can have significant impact on communication and

navigation for example.

Another very important noise-induced phenomenon is activated escape. As men-
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tioned above, activated escape is a rare event where a series of noise pulses drives a

system out of a confining potential well, or metastable state. To understand this in

more detail, but still from a qualitative perspective, it is helpful to consider a simple

one dimensional case. Suppose we have a particle trapped in a potential well, as

illustrated in figure 1.1, and subject to a random force. In the overdamped limit, the

particle behaves as if it has no inertia and its dynamics are captured by the Langevin

equation

ẋ = −U ′(x) + ξ(t) (1.4)

where U(x) is the potential and ξ(t) is the random force. If the noise, ξ, is small, and

the particle starts inside the potential well, then it will very likely relax to near the

bottom of the well at point A. The particle will then rattle around the vicinity of

point A for some time as the noise pushes it back and forth. On occasion a rare large

outburst of noise may overcome the potential force, −U ′(x), and push the particle

up and over the hill, past point B. It will then roll down the hill and will have thus

escaped the potential well. If the probability of such an outburst is nonzero, then it

will inevitably occur, if one waits long enough. The question is: what are the statistics

of the escape times for a given noise process? We can answer this question for a few

cases. The simplest of which is where ξ(t) is a white Gaussian noise. Considering this

case, we take 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). This is just restating that ξ is

white and adding that it has zero mean and the strength of this noise is 2D, which

we assume to be small. The escape rate, W , in this case is given by the celebrated

Kramers result [64, 93]

W =
1

2π

√
U ′′(xA)|U ′′(xB)| exp

[
−∆U

D

]
. (1.5)
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A rate of this form is often referred to as an Arrhenius equation, or Arrhenius law,

which gives the rate constant, k, of chemical reactions in terms of the temperature,

T , and activation energy, Ea,

k = A exp

[
−Ea
RT

]
(1.6)

where A is the prefactor and R is the gas constant.

Near a simple bifurcation point with a zero eigenvalue the dynamics of a system,

e.g., a noisy nonlinear resonator, squeeze down onto a one dimensional slow manifold,

under certain conditions [62, 19]. If a resonator is operated just before a saddle-node

bifurcation, for example, the dynamics are governed by a one dimensional equation

with a potential similar to that shown in figure 1.1. Such systems are used in the

readout of superconducting quantum bits, or qubits. Readout of qubits is difficult with

conventional amplifiers because the amplifier must minimally disturb the system while

maintaining high sensitivity [98]. However, a method proven to be successful is to

employ what is called a Josephson junction bifurcation amplifier [98, 97, 116, 78, 76].

The method is to operate a Josephson junction in a bistable regime near a saddle-node

bifurcation. The Josephson junction is used because “the superconducting tunnel

junction is the only electronic dipolar circuit element whose nonlinearity remains

unchanged at arbitrary low temperatures” [98]. The resonator is coupled to the qubit

so that the actual position of the bifurcation point depends on the qubit state. In

other words, the height of the energy barrier preventing escape depends on the qubit

state. The resonator is operated in one of its states near the bifurcation point, held

there for some time. It is then backed away from the bifurcation point, after which the

state of the resonator is measured. If activated escape occurs in the resonator, that

is, the response switches from one metastable state to the other, the amplitude and

phase of the resonator will be found to have been changed. Because the probability
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of such a state switch in the resonator by activated escape is related to the state of

the measured qubit through the energy barrier, the state of the qubit can be inferred

with some degree of confidence by determining whether or not the resonator switched

during the measurement time.

Josephson junctions are commonly used in many practical uses of activated es-

cape, because this switching phenomenon is intrinsic in their behavior. In the early

study of the Josephson junction, it was found that the low current features of the

current-voltage relationship across the junction, which are not predicted by a noise-

free theory, are the result of activated escape events in a potential shaped like a tilted

washboard [4, 102]. Thus, Josephson junctions make excellent test-beds for experi-

mental observation of escape phenomena, including so-called resonant activation [28],

and switching between dynamic states over a dissipation barrier [117]. The washboard

potential of a current biased Josephson junction is of the form

U(x) = −ax− cosx, (1.7)

which is analogous to a classical pendulum subject to a constant torque. When

operated in the overdamped regime, these devices exhibit activated escape in one

dimension, similar to the discussion above. The use of these junctions was proposed

for the experimental measurement of the full counting statistics of electrical current

[109]. However, the details of such an experiment prevent the use of the overdamped

regime, requiring underdamped junctions to be used instead [105, 88]. Nevertheless,

the third cumulant of the current fluctuations can be measured from one dimensional

escape event statistics [56, 70] using the asymmetry of the switching rate with respect

to the bias current. In the study of current fluctuations using activated escape, the

random force is no longer white and Gaussian, but has an arbitrary set of cumulants

that we are trying to measure. The problem of escape due to an arbitrary noise force
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Figure 1.2: Most probable paths (dashed lines) of activated escape in a two dimen-
sional system. Invariant stable and unstable manifolds (solid lines) represent under-
lying noise free dynamics.

is still open. However, the problem of poisson noise induced escape in one dimension

has been recently solved [31].

Activated escape out of a multidimensional basin of attraction, as in the case of

the underdamped Josephson junction, is more complex than escape in one dimension.

For the underdamped Josephson junction the basin is two-dimensional, where the

dimensions are the system coordinate and conjugate momentum. The coordinate

in this case is the phase difference of the superconducting order parameters across

the junction. The added complexity in the multi-dimensional case comes from the

necessity to consider the path of escape in the higher dimensional phase space. In the

one dimensional case we know the system must travel from point A to point B, from

the local potential minimum to the local maximum, and it can only do so in a straight

line. In the multidimensional case the escape event occurs along some path through

phase space [37]. In the case of small noise, these paths are tightly packed around

an optimal path which can be found by solving the variational problem for the most

probable path. Such paths have been experimentally observed in MEMS resonators

[21, 20]. Nevertheless, there are details that prevent a complete solution of the escape

problem. The escape rate can only be found up to an approximately constant pre-

factor. Escape in distributed systems amounts to escape in infinite dimensions. This
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phenomenon arises in nucleation [100] at the onset of changes in thermodynamic

phase, for example, in boiling. Figure 1.2 shows an example of optimal paths of

escape for a bistable two dimensional system (described in more detail in Chapter 3).

The figure shows the invariant manifolds (solid lines) of the saddle point in a system

containing one saddle and two stable foci. The invariant manifolds give a picture of

the underlying noise free dynamics. The stable manifold of the saddle point divides

the phase space into the basins of attraction of the two stable points. Escape occurs

when noise drives the system across this line. For weak noise, the escape events

traverse paths very close to the optimal escape paths, the first segments of which

are shown as dashed lines in the figure. Once the neighborhood of the saddle point

is reached along such a path, the system will ride a trajectory close to one of the

branches of the unstable manifold of the saddle point, and either escape or return to

the region from which it started.

An interesting situation, related to the above, is escape out of a time varying

potential well. Examples include periodically modulated systems [32] and systems

swept through a bifurcation, where the potential well may vanish, as in the saddle-

node or subcritical pitchfork bifurcations, or split into two wells, as in the supercritical

pitchfork. Stochastic-dynamic bifurcations are particularly interesting candidates for

application in MEMS and NEMS devices as they can easily be employed for device

interrogation by setting up simple parameter sweeping experiments. The concept of

a bifurcation in a stochastic system must be treated somewhat delicately, however.

The reason is that, unlike a deterministic system, the solution of a stochastic system,

described by a probability distribution over phase space, does not undergo any sudden

change in form or structure as a function of the system parameters. Therefore, in

some sense, the concept of a bifurcation point in a stochastic system is meaningless

and the notion must be replaced with a bifurcation region [79]. Still, the underlying

deterministic drift in a stochastic system still retains the structure of a deterministic
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system, and so we can speak of the bifurcation points of a corresponding noise free

system. In this work this is the perspective we take. When we speak of an escape

event occurring before or after the bifurcation point, we mean that it occurs at a time

during the sweep before or after the bifurcation of the deterministic drift term. For

the present investigation, a suitable partition of stochastic-dynamic bifurcations is to

distinguish between the concepts of escape before (activated escape) or after (delayed

bifurcation) the noise-free bifurcation point is reached.

Escape before the bifurcation point in a swept system occurs with very high prob-

ability when the system is swept in a quasi-static fashion. That is, when the time-rate

of change of the potential well is much slower than the escape attempt frequency. For

small noise intensity a system will form a quasi-stationary distribution at the bottom

of a potential well. Only rarely does a large noise pulse come along that pushes the

system farther away from the minimum than the width of this quasi-stationary dis-

tribution. The escape attempt frequency is the rate of occurrence of these large noise

pulses. Only a few of these large pulses will be large enough to cause escape. In this

limit of slow change with respect to the escape attempt frequency, the escape rate in

a time-varying potential can be well approximated by the quasi-static rate. For ex-

ample, if we have a time-varying quasi-static escape rate, W (t), then the probability

to escape at time t, Pe(t), is governed by the differential equation

Ṗe(t) = W (t)(1− Pe(t)). (1.8)

If we take initial conditions Pe(t0) = 0, i.e. assume that the system starts inside the

potential well, then the solution to equation (1.8) is

Pe(t) = 1− exp

[
−
∫ t

t0
W (t′)dt′

]
. (1.9)
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Measuring the distribution Pe(t) by many repeated sweeping experiments can be

a useful tool for gaining information about a system in the vicinity of a bifurcation

point. For example, this experimental technique has often been employed in the study

of switching fields in magnetic material, which has applications in magnetic record-

ing media [115], high speed magnetoelectronics [63], and magnetic RAM cells [106]

among other things. In the late 1980s a fundamental question was determining the

power law dependence of a coercive field strength, as measured from the critical field,

on the switching rate for a single particle magnet. The original model, due to Néel

[115], suggested a power law dependence of (∆H)2. However, the refined Néel-Brown

model, suggested a dependence of (∆H)3/2 [120]. Another relevant issue is whether

switching dynamics actually follow a simple Arrhenius law, or is it more complicated?

Experimental confirmation of the 3/2 dependence and agreement with Arrhenius law

was obtain using sweeping experiments [120] following the theory of Kurkijärvi [67].

However, in submicron-sized magnetic thin films a different behavior is observed. Ac-

tivated escape experiments, where the system is placed close to the bifurcation point,

and then the time until switching is recorded, showed that the behavior in magnetic

thin films can be explained as an “energy ladder” wherein the system climbs through

repeated thermally activated escape events up a ladder of states of increasing energy

[63]. In [106] the authors use sweeping experiments to characterize the switching

dynamics of submicron magnetic tunneling junctions, used in magnetic RAM cells,

and found the Arrhenius law to hold. In [84, 65] the authors use thermally activated

escape to experimentally investigate magnetic reversal due to spin-polarized currents.

In [119] the authors use sweeping experiments based on the theory of Kurkijärvi [67]

to determine the magnetic properties of single-molecule magnets: the energy bar-

rier, magnetic anisotropy constant, spin, and crossover temperature from classical to

quantum regime.

Similar sweeping experiments have also been use to study superconducting inter-
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ference devices (SQUIDs), atomic friction, and rare molecular events such as protein

unfolding and ligand dissociation. The study of escape is important in determining

limits of sensitivity of weak link superconducting devices [47], such as SQUIDs, which

are very sensitive magnetometers. In a superconducting ring with a weak link junc-

tion, however, the fluctuations in the internal flux can be very small. Thus, it proves

convenient to investigate such systems through dynamic bifurcation or sweeping ex-

periments [67, 58]. In experimental studies of friction between two surfaces, a friction

microscope is used where a tip is dragged at constant slow velocity across a surface.

The tip exhibits stick-slip behavior which can be described by activated escape out of

a diminishing potential well [95, 83], similar to the magnetic and superconducting ring

experiments mentioned above. This rate-state model for atomic friction is, of course,

just one of many models for friction [113]. In the study of rare molecular events,

pulling experiments are often used [57]. The technique is also referred to as dynamic

force spectroscopy [29]. These experiments are carried our by using an atomic force

microscope or laser tweezers to pull on an anchored molecule via a pulling spring,

possibly a linker molecule, until some molecular transition occurs, e.g. unfolding,

unwrapping, or dissociation. These experiments are also analogous to the sweeping

experiments discussed above.

Escape after the bifurcation point occurs with high probability when the sweep

rate is sufficiently fast such that the time it takes the system to respond in a significant

way is greater than the time it takes to sweep past the bifurcation point. This

occurs with certainty in situations where the bifurcating fixed point is stable and not

metastable before the bifurcation point [87]. The concept of escape, when discussing

escape after the bifurcation point, is, however, somewhat poorly defined because

after the bifurcation point there is typically no longer a well defined region from

which the system can be said to have escaped. This phenomenon is also called

delayed bifurcation, though this term is usually used in the literature to refer to
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the noise free situation. The term delayed bifurcation is also ambiguous as there

is no well defined counter-part to the static bifurcation point in the swept (time

varying) system. Thus multiple different definitions for the bifurcation time have

been suggested. These include first threshold crossing time [104, 110], last threshold

crossing time [59], time at which the variance of escape trajectories reaches a threshold

[122, 14], and time of escape to infinity. The latter definition is employed in the

present investigation, and to our knowledge, it is not used by anyone else. One

reason for this might be that the bulk of the literature addresses delayed bifurcation

in noisy systems that are globally bounded, since the systems considered exhibit

supercritical pitchfork or Hopf bifurcations. Both of these bifurcations have one

stable equilibrium before the bifurcation, and after the bifurcation this equilibrium

is unstable, and there exist stable states that emerge from this equilibrium at the

bifurcation. In the case of the supercritical pitchfork, the stable post-bifurcation

states are a symmetric pair of stable equilibria, as in bucking of a symmetric elastic

beam. In contrast, the supercritical Hopf bifurcation gives rise to a stable periodic

orbit. The literature focuses on these supercritical bifurcations because they describe

the important problem of laser turn-on [107, 103, 104, 122, 110, 111, 14]. These

bifurcations can also be used to describe the firing of nuerons [59]. In contrast,

the saddle-node and subcritical pitchfork bifurcations we consider in this work both

exhibit metastable states before the bifurcation and escape from the region of this

state after the bifurcation. The time of escape to infinity is finite for the generic local

models of these bifurcations. Since these bifurcation models describe a local picture

of the dynamics of the full system model in the region of interest (in both the phase

space and parameter space), the (finite) time of escape to infinity for the local models

provide good estimates of the times of escape from the local region.
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1.4 Summary of Results

In this work we discuss three different, but related, topics. The first topic is the

dynamics of a system subject to a parameter sweep through a bifurcation in the

presence of noise. This topic is examined in chapter 2. In this chapter we review

the normal form models of dynamic systems near bifurcation points. We then review

noise-activated escape in one-dimensional systems subject to white Gaussian noise.

Our primary contributions follow this review material. We first develop approximate

distributions for the time at which a system swept through a subcritical pitchfork

or a saddle-node bifurcation will leave the local region of phase space. The general

problem must be solved numerically, and we do so for comparison with the approx-

imate solution. Our approximate expressions for these distributions are developed

in the limit of “fast” sweeping. We determine that the ratio of sweep rate to noise

strength is the important parameter condition that separates fast and slow sweeping.

These results are compared with the numerical solution of the general case. We then

present the results of sweeping experiments performed on a MEMS resonator, carried

out in collaboration with colleagues at the University of California-Santa Barbara.

Our primary conclusion is that delayed bifurcation is prominent in MEMS devices.

While small, the noise levels we expect to see in MEMS devices is not large enough

to cause an activated escape event before the bifurcation is reached, unless the sweep

rate is extremely slow, to the point of being infeasible for some devices. Therefore,

understanding this phenomenon is important if one wishes to locate the bifurcation

point for system identification, sensing, or for use as a bifurcation amplifier. We how-

ever also conclude from our study that performing many sweeping experiments is an

overly time-consuming way to retrieve information from a MEMS resonator. Ongo-

ing work makes use of feedback to track the bifurcation point for bifurcation-based

sensing strategies [17].
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Our second topic is the novel dynamical bridge sensing paradigm, which we discuss

in chapter 3. This sensing methodology employs a bistable system arranged such that

the rate of noise-activated escape out of each stable basin of attraction is identical.

The ratio of occupation probabilities can become extremely sensitive at this point

if the noise is weak. Our contributions to this sensing concept are divided into two

parts. First, we calculate the sensitivity and detection time of the dynamical bridge

for use as a general use detector. Second, we develop the conditions required and

demonstrate the application of the dynamical bridge as a detector of non-Gaussian

noise. We illustrate the measurement of the parameters of a shot-noise process with

a one-dimensional bridge model. In terms of the bridge as a general use detector, we

conclude that it is a time-consuming sensing method. The reason is that the bridge

sensitivity scales with the inverse of the noise strength while the measurement time

is exponential in this same quantity. As a detector of the full-counting statistics of a

shot-noise process, the bridge should perform comparable to other methods with the

added convenience that one does not need to reset the system.

Our third topic is phase noise in oscillators employing nonlinear frequency selective

elements. This is discussed in chapter 4. We review the theory of a nonlinear oscillator

coupled to a medium [36], and employ this microscopic resonator model to gain

insight into the origin of phase noise. Our primary contribution is the use of the

method of averaging to develop an expression for the spectrum of fractional frequency

fluctuations in an oscillator. The method of averaging applied to a noisy system is

discussed in appendix B. The expression for the spectrum of frequency fluctuations

is quite general, although it does ignore dynamics in the feedback elements of the

oscillator. The expression contains elements of the noise model and nominal limit

cycle shape of the oscillator. We demonstrate its utility by exploring the parameter

space of a prototypical oscillator. It is shown that the action-angle decoupling at

zero-dispersion points of the resonator frequency provide an operating point that
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reduces the phase diffusion constant. Our conclusion is that these zero dispersion

points are near the optimal operating points for strongly nonlinear oscillators. The

reduction in phase noise gleaned from oscillator tuning should be complimented by

the reduction of noise influence at the source. These results are relevant to the design

of high performance N/MEMS frequency sources.
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Chapter 2

Escape Statistics for Parameter

Sweeps Through Bifurcations

In this chapter we discuss the dynamics of nonlinear N/MEMS resonators near co-

dimension one bifurcation points that result in large changes in system response. Of

the phenomena discussed in this dissertation, we choose to begin with this because

the one-dimensional models we use provide ease of visualization and yield more com-

plete solutions than the more complicated systems considered in later chapters. Our

primary purpose is to examine the initial transient that occurs when the parame-

ters of a system are swept through a saddle-node or subcritical pitchfork bifurcation.

Since these bifurcations exhibit a loss of local stability, and have no stable states

emerging from the bifurcation, we can qualitatively say that the system will undergo

a transient, a “jump,” or an “escape”, to another region in phase space. These es-

cape events are highly visible transient processes and therefore useful for detection.

However, they can also be strongly influenced by noise and therefore must be under-

stood as random events. In this chapter we formulate the general problem, determine

conditions which separate fast and slow sweeping, and then develop the distribution

of escape times in the limit of fast sweeping through a saddle-node or a subcritical
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pitchfork bifurcation. These are new results, relevant for many N/MEMS resonators,

and possibly for other systems as well.

This work is motivated by the applications of escape statistics to sensing, pa-

rameter fitting, and system identification. For example, circuits containing Joseph-

son junctions often exhibit saddle-node bifurcations. Interrogating such systems by

sweeping through the bifurcation point has been used to fit the critical current param-

eter of the junction [67, 47, 58]. In the study of nanomagnetic systems, the measured

distribution of escape events was used to determine the type of bifurcation occurring

in the the system, leading to support for certain system models [115, 120]. More re-

cently escape due to a parameter sweep trajectory approaching a bifurcation has been

used as a method for reading the state of a qubit coupled to a nonlinear resonator

[116]. Another important example is the supercritical pitchfork or Hopf bifurcation

encountered during parameter sweeps during laser turn-on [14, 110, 122, 8]. This

example, however, does not exhibit loss of local stability and so differs qualitatively

from the others.

As one might expect from these example applications, noise-activated escape near

bifurcations has been the subject of many previous investigations. Many of these

focus on systems in which parameters remain fixed [85, 108] or vary slowly [67, 48,

44, 116, 44, 54]. However, systems with comparatively weak noise typically exhibit

delayed bifurcation during parameter sweeps [16]. It is this regime in which we

are primarily interested. Berglund and Gentz [9] developed scaling laws which are

applicable to the distribution of delayed bifurcation trajectories. However, more

quantitative results are required for bifurcation-based sensing schemes, for example,

in dynamic M/NEMS [16, 66].

We will begin, in section 2.1, by discussing the modeling of a nonlinear N/MEMS

resonator by a reduced model, the normal form, near the bifurcation point. This

section concludes by recalling the normal forms for the saddle-node and subcritical
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pitchfork bifurcations. We then discuss, in section 2.2, how noise can cause the

system to escape from the region of the bifurcating equilibria by reviewing Kramers

[64, 93] escape formulation, which is valid in the limiting case of slow (adiabatic)

sweeping. We then proceed with our solution to the problem of delayed saddle-node

and subcritical pitchfork bifurcations. The saddle-node is discussed in section 2.3

and the pitchfork in section 2.4. Experimental demonstration of a delayed subcritical

pitchfork bifurcation is presented in section 2.5 and future research directions related

to this subject are discussed in section 2.6.

2.1 Stochastic Normal Forms

In this section we sketch the transformation of a weakly nonlinear resonator to a

reduced one-dimensional stochastic differential equation that describes the resonator

dynamics close to a bifurcation point. It is well known that the resonantly forced

Duffing and nonlinear Mathieu resonators exhibit saddle-node and pitchfork bifur-

cations of equilibria, respectively, in an averaged rotating frame in which equilibria

represent nearly-harmonic periodic system responses. In appendix C we develop the

pitchfork normal form arising in the nonlinear Mathieu type resonator. In this sec-

tion, however, we leave our discussion more general. For more background material,

the reader is directed to [52] for the noise-free case. For additional discussion of

stochastic normal forms, see [62].

A resonator with weak damping and weak nonlinearity can be described by

q̈ + ω2
0q = F (q, q̇, t), (2.1)

where q is the resonator coordinate and the function F represents small forces acting

on the resonator including damping, nonlinear effects, periodic forcing, stochastic
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processes, etc. From equation (2.1) we proceed to make a series of approximations

based on the relative size of various terms. The first step is to transform equation

(2.1) into a set of coupled first order equations with small right hand side. This

can be done with the well-known Van der Pol transformation. A polar form of the

transformation is given by

q = a(t) cos(ωt+ φ(t)),

q̇ = −ωa(t) sin(ωt+ φ(t)), .

(2.2)

where ω is the frequency of the harmonic excitation in F . This transformation is

analogous to the method of variation of parameters. Applying equations (2.2) to

(2.1) gives

ȧ = − sin(ωt+ φ)

[
σa cos(ωt+ φ) +

F (a, φ, t)

ω

]
,

φ̇ = − cos(ωt+ φ)

[
σ cos(ωt+ φ) +

F (a, φ, t)

ωa

]
.

(2.3)

where σ = (ω2 − ω2
0)/ω is the detuning, which is assumed small, and F (a, φ, t) is

understood to imply F (q(a, φ, t), q̇(a, φ, t), t). Owing to the smallness of the right

hand side, equations (2.3) imply that a and φ change on a much longer time scale

than the period of oscillation 2π/ω. Accordingly, fast oscillating periodic terms in

(2.3) integrate to approximately zero and can be ignored. A more complete discussion

of this approximation, called the method of averaging, is given in appendix B, where

particular attention is given to dealing with stochastic processes. The result is an

approximate set of envelop equations describing the slow variation of the resonator’s

amplitude and phase. We may assume that the equations (2.3) can be approximated

by (see appendix B)

ẋ = f(x, µ) +G(x, µ)ξ(t), (2.4)
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where we have lumped a and φ into a state vector, x, µ is some resonator param-

eter, ξ(t) is an n-dimensional vector of zero mean stochastic processes, and G is a

2-by-n dimensional matrix. Now, suppose there exists a point, x∗ and a correspond-

ing parameter value, µ∗ such that f(x∗, µ∗) = 0 and the Jacobian at this point,

Dxf(x∗, µ∗), has one zero eigenvalue and one negative eigenvalue, −λ. The bifurca-

tion point is understood to be the pair (x∗, µ∗). The bifurcation value is µ∗ alone,

and the term bifurcation describes a change in the sign of the real part of an eigenvalue

of an equilibrium point resulting from a change of the parameter µ near µ∗.

Let u be the deviation from x∗ along the stable eigenvector, i.e., the eigenvec-

tor associated with eigenvalue −λ, and let v be the deviation from x∗ along the

marginally stable eigenvector, i.e., the eigenvector associate with the zero eigenvalue.

We express equation (2.4) in the (u, v) coordinate system and expand in both the

coordinates and the parameter about (u, v, µ) = (0, 0, µ∗). Keeping leading order

terms, the equations for u and v take the form

u̇ = −λu+ a1ξ1(t) + · · · , (2.5)

v̇ = b1v
n1 + b2uv

n2 + b3u
2vn3 + cvn4δµ+ a2ξ2(t) + · · · , (2.6)

where aiξi are the weighted projections of ξ onto the two eigenvectors and δµ = µ−µ∗.

For sufficiently small noise and small u, v, and δµ the u dynamics evolve much faster

than the v dynamics owing to the nonzero eigenvalue −λ. Thus we assume that u is

quite small. Accordingly, we keep the mean contribution from those terms containing

powers of u in equation (2.6), that is the terms that arise in the deterministic normal

form [52], but ignore the fluctuating parts of u, as it is dominated by the fluctuating

term a2ξ2(t). This amounts to simply averaging equation (2.6) over u, and it results
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in the stochastic normal form

v̇ ≈ b1v
n1 + b3〈u

2〉vn3 + cvn4δµ+ a2ξ2(t). (2.7)

Expanding equation (2.4) in powers of u and v is called the tangent space approxima-

tion since u and v describe a deviation in the eigenspace of the bifurcation point. A

more detailed reduction can be performed by seeking the deterministic center mani-

fold u = h(v) + ε such that u̇ = h′(v)v̇ for ξ = 0. h(v) can be found by expressing it

as a series in v and then using the condition u̇ = h′(v)v̇ to solve for the coefficients by

matching like powers. This provides a more complete picture of the slow manifold in

phase space. We take this approach when we consider the nonlinear Mathieu equation

in appendix C.

The exponents ni in equation (2.7) define the type of bifurcation. The coefficients

bi and c can be given standard values by a scaling of the coordinate v and time

and re-normalizing the bifurcation parameter, yielding a normal form with minimal

parameters.

For the saddle-node bifurcation n1 = 2 and n4 = 0. For the pitchfork bifurcation

n1 = 3 and n4 = 1. In the nonlinear Mathieu resonator we also have n3 = 1, which

simply shifts the bifurcation point, an effect that can be accounted for by re-defining

the bifurcation parameter, δµ [85, 86]. This effect can also be neglected if the noise

is sufficiently weak. Thus, in the saddle-node and pitchfork bifurcations, only the

value of a2 and the relationship between δµ and the original resonator parameters

are specific to any given system undergoing such a bifurcation. For this reason the

model is very general and valid for a wide class of systems undergoing the bifurcations

of interest.

There are two types of pitchfork bifurcations, the supercritical, for which b1 > 0,

and the subcritical, for which b1 < 0. As mentioned above the supercritical pitchfork
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arises in laser dynamics, but also in parametric resonance of the nonlinear Mathieu

resonator, when the system restoring force is hardening. The subcritical pitchfork

likewise can be found in parametric resonance, for systems with softening restoring

force. Again, we are interested in the subcritical bifurcation because it results in a

loss of local stability and an escape event.

Since the normal form, equation (2.7), is one-dimensional, we can write

v̇ = −U ′(v) +
√
Dξ(t), (2.8)

where U is an effective potential, D is the effective noise strength, and ξ(t) is the

effective noise on the slow manifold arising from a combination of the components

of ξ. As we mentioned above, we have neglected any parametric noise terms by

appealing to an appropriate scaling, c.f. appendix C. Coordinate v can be understood

as describing the position of an overdamped particle in the potential U . We are

particularly interested in bifurcations for which U presents a finite barrier for the

system to escape to v → ±∞. The finite barrier allows the system to escape from

the local region of phase space and exhibit a highly visible transient that can be

used for sensing or system identification, as discussed above. Two examples are the

saddle-node and the subcritical pitchfork. The supercritical pitchfork does not have

this property, since responses stay in the neighborhood of the bifurcation point.

Now, we wish to consider the parameter sweeping experiments described above.

Thus, we will let δµ vary in time according to a prescribed parameter sweep trajectory.

In order for the reduced model to remain valid, this variation, as well as other effects,

including the noise, should not push the system far from the slow manifold. This

should be the case so long as the time rate of change of the eigenvectors is much

smaller than λ and the noise is sufficiently weak. For the remainder of the analysis,

we assume these assumptions hold. As we will see, when sweeping the bifurcation
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U(v)

vmin vmaxv1 v2 a
v

Figure 2.1: Example potential governing normal form dynamics.

parameter linearly in time, only the ratio of the sweep rate to the noise strength is

important. Therefore we speak of fast and slow sweep rates according to whether

this ratio is large or small, but always assume the sweep rate is sufficiently slow (i.e.,

noise sufficiently small) so that the normal form model holds.

2.2 Kramers Escape Rate

Consider equation (2.8) and suppose that the potential U presents a finite barrier

beyond which the system response will become unbounded. For example, see figure

2.1. Since the barrier height is finite, there is some chance that the noise will push

the system out of the potential well and it will escape to∞. Of course, equation (2.8)

is only a local model of the full system dynamics, obtained from the reduction to the

slow mode. As v grows, this model will eventually become invalid, and rather than

escape to ∞, the resonator state will move to another region of phase space that is

outside the domain of this local picture.

The probability per unit time of escape out of the well was first derived in the

classic 1940 work of Kramers [64]. This result applies to a time-independent poten-

tial, but can be applied to a slowly varying potential via an adiabatic approximation.
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This important result is the counterpoint to the new results we develop in sections 2.3

and 2.4. These new fast sweeping solutions complement the slow sweeping (adiabatic)

solutions since they are the two asymptotic cases that bracket the complete picture.

For this reason we review the celebrated Kramers’ result and the corresponding adia-

batic approximation in this section. Our development of Kramers’ escape rate comes

from Risken [93]. We assume that U is time independent, D is constant, and ξ is a

zero mean white Gaussian noise with 〈ξ(t)ξ(t′)〉 = 2δ(t− t′). Under the white noise

assumption, the probability distribution, ρ, for v is governed by the Fokker-Planck

(FP) equation [93]

∂ρ

∂t
= −∂S

∂v
, (2.9)

S = −De−U/D ∂

∂v

[
eU/Dρ

]
, (2.10)

where S is the probability current. If the potential barrier is high, it is unlikely

that the system will escape and ρ will settle into a quasi steady state distribution.

Accordingly, ∂tρ is small and S is approximately constant. Making this assumption,

we integrate equation (2.10) over the interval [vmin, a] (see figure 2.1)

S

∫ a

vmin
eU/Ddv ≈ D

[
eU(vmin)/Dρ(vmin)− eU(a)/Dρ(a)

]
, (2.11)

where a an arbitrary point sufficiently beyond the barrier peak. We can also assume

that the probability of finding the system at point a is small. We therefore drop the

second term on the right hand side of equation (2.11). Thus, the probability current

is approximately given by

S ≈ DeU(vmin)/Dρ(vmin)

[ ∫ a

vmin
eU/Ddv

]−1
. (2.12)

Returning to the initial assumption that ∂tρ is small, we approximate ρ by its steady
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state distribution

ρ ≈ ρ(vmin) exp
[
−[U(v)− U(vmin)]/D

]
. (2.13)

Thus, the probability for the system to be near vmin is

p =

∫ v2

v1
ρdv ≈ ρ(vmin)eU(vmin)/D

∫ v2

v1
e−U/Ddv. (2.14)

The inverse escape rate, W , is given by the ratio of the probability to be near the

bottom of the well to the probability current out of the well.

1

W
≡ p

S
≈ 1

D

∫ v2

v1
e−U/Ddv

∫ a

vmin
eU/Ddv. (2.15)

The integrals can be approximated by the method of steepest decent. In this method

U is expanded to second order about the point that maximizes the integrand and

the bounds of the integration are taken to ±∞. For the first integral U is expanded

about vmin, and for the second integral U is expanded about vmax. The resulting

escape rate is thus found to be

W =
1

2π

√
U ′′(vmin)|U ′′(vmax)| exp

[
−(U(vmax)− U(vmin))/D

]
. (2.16)

If the potential allows escape in both directions, the total escape rate is the sum of

the rates for escape in the two directions.

Now, suppose that the potential is changing slowly in time. We can model the

probability to escape the potential well per unit time with equation (2.16). Thus, the

probability for the system to remain in the well until time t, ρ, is governed by

ρ̇ne = −W (t)ρne, ρne(t0) = 1, (2.17)
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where the subscript “ne” stands for “not escaped.” This equation admits the solution

ρne = exp

[∫ t

t0
Wdt

]
. (2.18)

The probability to escape from the well by time t is ρe = 1 − ρne. The probability

density, P , of escape at time t, is ρ̇e. This gives

P = W exp

[∫ t

t0
Wdt

]
. (2.19)

This result is valid in the slow sweeping limit. In this limit noise-activated escape

occurs with probability 1 by the time the the sweep has reached the bifurcation value.

If the sweep is fast, however, there must be nonzero probability to pass through

the bifurcation value before escape occurs. Results analogous to equation (2.19) for

the saddle-node and subcritical pitchfork bifurcations in the fast sweeping limit are

developed in the following sections.

Before proceeding to discuss escape in the non-adiabatic, or fast, sweeping condi-

tion, a few words must be said about what it means to “escape” in this context. In the

slow sweeping limit, discussed above, the duration of the escape event is small com-

pared to the time scale of the sweep. On the long time scale of the sweep it appears

that escape happens instantaneously. Accordingly, the escape rate is independent of

the point a at which escape is defined to occur. However, when the sweep is fast, the

transient escape process may occur over a duration in which the bifurcation param-

eter changes significantly. Escape, therefore, does not appear instantaneous and the

probability density to escape per unit time depends on the threshold at which “es-

cape” is said to occur. To deal with this complication, we observe that both normal

form models considered herein exhibit escape to ∞ in finite time. Accordingly, the

escape trajectories become extremely steep at (locally) large values of v. We thus
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Figure 2.2: Illustration of the evolution of the potential (a), and the standard bifur-
cation diagram (b), for a saddle-node bifurcation.

define escape to occur when v → ±∞ and note that the arrival time at some large

value of v, taken to be the limit of the domain of validity of the normal form model,

is well approximated by the arrival time at ±∞.

2.3 Escape Near a Saddle-Node Bifurcation

When sweeping a parameter near a saddle-node bifurcation, the dynamics along the

slow manifold are described by a one-dimensional Langevin equation representing the

stochastic normal form. Switching notation from the previous section, the saddle-

node normal form is given by [9],

ẋ = µ(t) + x2 + εξ(t), (2.20)

where µ(t) is the bifurcation parameter and ξ(t) is zero mean, delta-correlated white

noise with autocorrelation 〈ξ(t)ξ(t′)〉 = 2δ(t − t′). For simplicity, we assume that µ

is non-decreasing. In this case, the sweep trajectory can be classified by the charac-
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teristic sweep rate, r.

r =
µc − µ0
tc − t0

, (2.21)

where µc is the bifurcation value (for equation (2.20) µc = 0), tc is defined by

µ(tc) = µc, µ0 is the initial value of the bifurcation parameter, and t0 is the time

at which the sweep is initiated. The dynamics of equation (2.20) are conveniently

visualized by an overdamped particle moving in a time-varying potential, as illustrated

in figure 2.2a. The bifurcation diagram is shown in figure 2.2b. Our goal is to

determine the distribution of escape times T , i.e., those values of T for which x→∞

as t → T . A numerical solution for this problem can be obtained by solving the FP

equation associated with equation (2.20),

∂ρ

∂t
= − ∂

∂x
[(µ+ x2)ρ] + ε2

∂2ρ

∂x2
, (2.22)

with appropriate initial and boundary conditions at large, but finite, x, the results of

which are used to illustrate the connection between the fast and slow sweeping limits.

It can be shown by the following simple scaling argument that these limits are given

by ε2 � r and ε2 � r, respectively: Scaling time by r−1/3 and the coordinate by

r1/3 gives rise to a renormalized characteristic sweep rate of unity and a renormalized

noise strength of ε2/r.

Now, suppose that the system is initially near the local minimum of the potential

that exists for µ < 0 and the sweep is slow (or the noise is large). If µ is increased

slowly (for the given level of noise intensity), one can approximate the rate of escape

by the well-known adiabatic approximation due to Kramers [64, 54] as discussed in
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the previous section. For the saddle-node, this rate is

W (t) =

√
−µ(t)

π
exp

[
−4(−µ(t))3/2

3ε2

]
. (2.23)

The probability to remain in the well diminishes according to the product of this

rate and the probability to remain in the well. Accordingly, the probability density

function for escape at time T in the limit of adiabatic sweeping is given by [67, 54],

P (T ) = W (T ) exp

[
−
∫ T

t0
W (t)dt

]
. (2.24)

Of particular interest to us is the case where the noise strength is small compared

to the characteristic rate of change of the bifurcation parameter, that is, 0 ≤ ε2 � r.

In this case, the potential well will disappear before noise activated escape is likely

to occur, and the system thus exhibits a delayed bifurcation, escaping to x → ∞ at

a finite time T , for which µ(T ) > 0. To approximate the distribution of escape times

for equation (2.20) in this situation, we employ a direct perturbation method. To

this end it is convenient to transform the equation using a variation of parameters

approach, in which the ε = 0 solution, x0, plays the role of the homogeneous solution.

The transformation x0 = −u̇/u in equation (2.20) with ε = 0 yields,

ü+ µ(t)u = 0, (2.25)

which has linearly independent solutions u1 and u2, so that x0 can be written as,

x0 = −
u̇1 + cu̇2
u1 + cu2

, (2.26)

where c is a constant of integration. To account for the presence of noise, we let c vary

in time. Utilizing expression (2.26) with c(t) in equation (2.20) gives the equation for
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c(t) as,

ċ = −εa(u1 + cu2)2ξ, (2.27)

where a−1 = u1u̇2− u̇1u2 is the Wronskian. The variable c is a means of parameter-

izing the solutions of the noise-free problem, and noise causes the system to diffuse

among the noise-free trajectories according to equation (2.27).

The escape time, T , is given by the time at which x0 becomes unbounded, which,

according to equation (2.26), corresponds to c(t) reaching the condition,

c(t) = c∞(t) = −
u1(t)

u2(t)
. (2.28)

Here the first passage time problem reduces to a transformation of the stochastic

variable c(t) to the times T for which c(T ) = c∞(T ), for some initial distribution

of initial conditions. To determine the distribution of T , it is useful to consider the

features of c∞(t). The function c∞(t) has branches, separated by vertical asymptotes

at the zeros of u2(t), and c(t) evolves between these branches, as depicted in figure 2.3.

Also, note that since

dc∞
dt

=
1

au2
2

(2.29)

does not change sign, c∞(t) is monotonic between branches. In addition, by consider-

ing equations (2.27) and (2.28), it is seen that ċ = 0 when c = c∞. Thus, trajectories

of c(t) cross each branch of c∞(t) at a single time. Consequently, in considering the

first passage time of c(t) across a particular branch of c∞(t), we do not need to ac-

count for trajectories that cross the branch multiple times. We can therefore do away

with the adsorbing wall boundary condition usually employed in first passage time

problems. Without an adsorbing wall boundary condition, a crossing corresponds to
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reinjection at x = −∞. Hence, subsequent crossings of c∞ occur on immediately

subsequent branches only. These subsequent crossings occur when the system has

once again reached x =∞.

The change of coordinates from x(t) to c(t), expressed in equation (2.26), makes

the problem amenable to direct perturbation analysis. To develop a first order asymp-

totic approximation of the escape current, we begin with the expansion,

c = c0 + εc1 + · · · . (2.30)

Substitution of this into equation (2.27) and expanding in powers of ε yields,

ċ0 = 0, (2.31)

ċ1 = −a(u1 + c0u2)2ξ. (2.32)

Note that the first order perturbation removes the state-dependent diffusion, and

thus Ito and Stratonovich calculus give the same result at this order. Solving equa-

tions (2.31-2.32) gives a time-dependent Gaussian probability density function (PDF)

for the noisy response of c, as follows,

Pc(c, t) =

(
4πa2ε2

∫ t

t0
(u1 + c0u2)4dt′

)−1/2

(2.33)

× exp

− (c− c0)2

4a2ε2
∫ t
t0

(u1 + c0u2)4dt′

 .
Using this result, the PDF of escape times can be expressed as,

P∞(T ) = Pc(c∞, T )

∣∣∣∣dc∞(T )

dT

∣∣∣∣ . (2.34)

Combining equations (2.29), (2.33), and (2.34), we arrive at an expression for the
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Figure 2.3: c∞ boundary for linear sweeping, µ(t) = µ0 + rt, with µ0 < 0. The first

two branches are shown along with the variance (shaded region) of c for ε2 = 0.05.

PDF of escape times,

P∞(T ) =

(
4πa4ε2u4

2(T )

∫ T

t0
(u1 + c0u2)4dt

)−1/2

(2.35)

× exp

− (u1(T ) + c0u2(T ))2

4a2ε2u2
2(T )

∫ T
t0

(u1 + c0u2)4dt

 .
Note that this result is quite general, since the details of the parameter sweep µ(t),

which dictates u1,2(t), are not yet specified. The simplest method for sweeping

the bifurcation parameter is linear in time, that is, µ = µ0 + rt, with µ0 < 0 and

r > 0. The affine relationship between the bifurcation parameter and time allows one

to identify the bifurcation parameter as a renormalized time variable. Thus, without

loss of generality, we take µ = t. With this form of sweeping, equation (2.25) becomes

Airy’s equation in backwards time, that is, ü+ tu = 0, with independent solutions,

u1(t) = Ai(−t), (2.36)

u2(t) = Bi(−t), (2.37)

where Ai and Bi are the standard Airy functions, for which the standard parameter

a = −π [1]. In principle, u1 and u2 can be taken as linear combinations of Ai and
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Bi, however, the present choice is most convenient here. The first two branches of

the c∞ boundary, c
(1,2)
∞ , are shown in figure 2.3. In the weak noise case, only the

second boundary can be crossed, since c
(1)
∞ is bounded above by zero (c

(1)
∞ < 0) and

monotonically decreases (ċ
(1)
∞ < 0), while c0 > c

(1)
∞ must hold for initial conditions

restricted to be near the minimum of the potential well. Thus, the only way to

cross c
(1)
∞ is for c(t) to diffuse to +∞ and be reinjected at −∞, and this cannot

happen under the weak noise assumption. Therefore, computing escape times we

consider only those trajectories that reach c
(2)
∞ . Note that c

(2)
∞ spans the time interval

between the first and second zeros of Bi(−t), so that our approximation of the escape

distribution times is necessarily limited to this time interval, which is given below. In

principle, this time interval can be adjusted by taking a different linear combination

of Ai and Bi for u1 and u2, since the time interval is specified by the zeros of u2.

However, as the perturbation solution requires small noise, the probability of escape

outside this time interval is also small.

Equation (2.35) captures the escape distribution with the system initially situated

on the noise-free trajectory specified by c0 at time t0. Generally, the dependence on

c0 and t0 becomes weak as |t0| becomes large since

c ∼ exp

[
−2

3
|t0|

3/2
]
, (2.38)

assuming the system begins the sweep near the bottom of the potential well. This

weak dependence on this class of initial conditions is a property of the deterministic

system and results from the annihilation of the fixed point after the bifurcation.

Diffusion only increases this effect as the system settles into a quasi-steady state

distribution early in the sweep. Thus, when the sweep is started well before the

bifurcation point, the initial conditions are forgotten.

With this understanding, the initial conditions for the linear sweep are taken to
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be c0 = 0 and t0 = −∞. The resulting escape distribution then applies to all initial

conditions where c0 is near zero and t0 � −1. The corresponding escape current is

computed using equations (2.35) and (2.37), resulting in,

P∞(T ) =

(
4π5ε2B4

i (−T )

∫ T

−∞
A4
i (−t)dt

)−1/2

(2.39)

× exp

 −A2
i (−T )

4π2ε2B2
i (−T )

∫ T
−∞A4

i (−t)dt

 ,
with T restricted to the range between the first two zeros of Bi(−t), that is, 1.17 <

T < 3.27.

The first two moments of the escape distribution given by equation (2.39) are

illustrated in figure 2.4 along with two sample distributions, one representative of the

slow sweeping limit and one representative of the fast sweeping limit. The moments

are plotted over a wide range of noise strengths, spanning adiabatic (Kramers) escape

and delayed bifurcation. The solid lines represent the solution obtained by numerically

solving the FP equation over a finite domain. The equation was solved using the

Crank-Nicolson method with Dirichlet boundary conditions at large coordinate values

where drift dominates diffusion. The moments for the adiabatic approximation and

the approximation developed here are shown as dashed lines. Note that the two

limiting cases bracket an intermediate region near ε2 = 1, where one must rely on the

numerical solution to obtain the distribution. Thus, the present analysis, in addition

to providing convenient approximations for the fast sweep rate escape distributions,

also offers information about the parameter limitations for the two limiting cases, and

a method for determining the distributions when neither approximation holds.

Note that the variance is dramatically larger in the adiabatic case, ε2 � 1, when

compared to the non-adiabatic case, ε2 � 1. This is the result of the different escape

mechanisms in these two limiting cases. In the adiabatic case, escape is a rare event
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Figure 2.4: Mean (a), variance (b), and sample distributions (c) of the escape time
away from a swept saddle-node bifurcation. Numeric solution (solid line) and approx-
imations (dashed) for fast and slow sweeping are shown.
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Figure 2.5: Illustration of the evolution of the potential (a), and the standard bifur-
cation diagram (b), for a subcritical pitchfork bifurcation.

in which the noise overcomes a potential barrier. Thus, the probability of escape

over a small time interval is small, but the sweep takes a long time, so escape is

virtually inevitable. In this way, the escape events have a wide distribution. In

the non-adiabatic case, escape is inevitable, since the potential well disappears, and

the solution closely follows the deterministic trajectory that would result from an

initial condition at the bottom of the potential well. The escape times are randomly

distributed about this trajectory due to diffusion. These observations also indicate

why the mean escape time is insensitive to the noise strength for small noise intensity,

but highly sensitive to the noise strength for large noise intensity.

2.4 Escape Near a Subcritical Pitchfork Bifurca-

tion

Near a subcritical pitchfork bifurcation, the dynamics with noise along the slow man-

ifold are described by the normal form [62],

ẋ = 2µ(t)x+ 4x3 + εξ(t), (2.40)
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where, as before, µ is the bifurcation parameter, ε2 is the noise strength, and ξ is zero

mean, delta-correlated white noise with autocorrelation 〈ξ(t)ξ(t′)〉 = 2δ(t− t′). It is

recognized that the presence of noise shifts the effective bifurcation parameter [85], so

µ here includes that shift. The illustration of this system as a particle in an evolving

potential is shown in figure 2.5a. The bifurcation diagram is shown in figure 2.5b.

The FP equation corresponding with equation (2.40) is given by,

∂ρ

∂t
= − ∂

∂x
[(2µx+ 4x3)ρ] + ε2

∂2ρ

∂x2
, (2.41)

where ρ = ρ(x, t) is the probability distribution for the system state. As in the saddle-

node case, we compare approximate results for fast and slow sweeping with numerical

solutions of this FP equation.

Suppose the system is initially near the local minimum x = 0 for µ < 0. If µ is

increased slowly, the rate of escape can be approximated by the well-known adiabatic

Kramers result [64, 54], given by,

W (t) =

√
8

π
|µ(t)| exp

[
−µ

2(t)

4ε2

]
. (2.42)

The probability to remain in the well diminishes according to the product of this

rate and the probability to remain in the well. Accordingly, the probability density

function for escape at time T in the limit of adiabatic sweeping is given by [67, 54],

P (T ) = W (T ) exp

[
−
∫ T

−t0
W (t)dt

]
. (2.43)

If µ is swept quickly, that is 0 ≤ ε2 � µ̇, the system response is dominated by delayed

bifurcations. We develop an approximate expression for the escape current in this

case using asymptotic expansions.

Note that the method employed for the saddle-node bifurcation is not convenient
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for the pitchfork, since the approach is not capable of capturing noise induced in-

dependence of initial conditions. This results from the fact that, for the pitchfork,

the noise-free system maintains an equilibrium state, albeit unstable, beyond the bi-

furcation point. For the noise-free system, the initial conditions enter the solution

multiplicatively and cannot be neglected. Nevertheless, diffusion removes the depen-

dence on initial conditions when the parameter sweep is started sufficiently far from

the bifurcation point, such that the system settles into a quasi-steady-state distribu-

tion [122, 14, 104]. To capture this effect we must employ an alternative method.

In this case the solution of the corresponding FP equation is approximated by the

method of matched asymptotic expansions. Following Suzuki [107], we separate the

sweeping time into a first interval, over which nonlinear drift is ignored, and a second

interval, over which diffusion is ignored. We show that, under some assumptions,

there exists a time interval over which both approximations are valid, allowing one

to match the solutions. A change of coordinates in equation (2.41) makes clear the

two phases of response. Let

y =
x

σ
where (2.44)

σ2 = ε2e
4
∫ t
t0
µdt′

σ2
0 + 2

∫ t

t0
e
−4
∫ t′
t0
µdt′′

dt′
 . (2.45)

and where µ is assumed to grow monotonically with t. This particular σ2 is the

variance of the solution to the linearized problem in which the nonlinear drift term

is neglected. By changing coordinates into one in which the linearized problem has

a constant solution, we more explicitly expose the roles of nonlinear drift and its

relationship to diffusion. σ has the following properties: it is positive, takes on the

value εσ0 ≥ 0 at time t = t0, it decreases until the time at which 2µσ2/ε2 = −1, which

must occur before the bifurcation point is reached, and it increases monotonically for
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σ0 < ε/
√
−2µ0. Taking y as the new coordinate, equation (2.41) becomes,

∂ρ

∂t
− ε2

σ2
y
∂ρ

∂y
= −2µρ− 4σ2 ∂

∂y

[
y3ρ
]

+
ε2

σ2
∂2ρ

∂y2
. (2.46)

The second term on the LHS of equation (2.46) arises since y changes with time, t.

The three terms on the RHS correspond to, in order, linear drift, nonlinear drift, and

diffusion. In equation (2.46), the two regions of time become apparent by comparing

the coefficients of the nonlinear drift and diffusion terms, namely 4σ2 and ε2/σ2. The

ratio of the two coefficients is,

4σ4

ε2
. (2.47)

In the initial phase of the response, this ratio is O(ε2) (assuming σ0 is O(1)), implying

that diffusion dominates the nonlinear drift. At later times, the ratio is O(ε−2),

owing to the exponential growth of σ, and the nonlinear drift dominates diffusion. In

the intermediate region, the ratio is O(1), and thus σ2 ∼ O(ε). Delayed bifurcation

dominates the system response when this overlap region occurs beyond the bifurcation

point. Now, an upper bound for σ2 at the bifurcation point, i.e., when µ = 0, is

2πε2/min µ̇. Thus, the condition ε2 � µ̇ ensures that the overlap region occurs after

the bifurcation point and the system will exhibit delayed bifurcation.

In the initial time region we ignore the nonlinear drift with respect to diffusion

and obtain an approximate solution, ρl, of equation (2.46) by solving,

∂ρl
∂τ

= −2µρl +
ε2

σ2

(
y
∂ρl
∂y

+
∂2ρl
∂y2

)
. (2.48)
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Taking a Gaussian initial condition with zero mean and variance σ2
0, ρl is given by

ρl(y, τ) =
1√

2πσ2
exp

[
−y

2

2

]
. (2.49)

At the other end of the process, in the second time region, which leads to escape,

diffusion can be ignored with respect to drift. An approximate solution, ρnl, of

equation (2.46) for this case is obtained by solving,

∂ρnl
∂τ

= −2µρnl − 12σ2y2ρnl − 4σ2y3∂ρnl
∂y

. (2.50)

This equation is solved using the method of characteristics, which yields,

ρnl(y, t) = ρ
(1)
nl

(y1, t1)

(
y1
y

)3
exp

[
−2

∫ t

t1
µ dt′

]
, (2.51)

y1(y, t|t1) = y

[
1 + y2

∫ t

t1
8σ2 dt′

]−1/2

, (2.52)

where ρ
(1)
nl

(y1, t1) captures the constant of integration along each characteristic. This

corresponds to the initial conditions for equation (2.50). Now, time t1 need not be

the starting time of the sweep, but can be taken to be any time before escape. To

match the linear and nonlinear solutions, we take t1 to be some time in the common

region where the quantity in equation (2.47) is O(1). To do the matching, we choose

ρ
(1)
nl

such that ρnl and ρl are identical to leading order in the common region.

We begin by rewriting equation (2.49) as,

ρl =
1√

2πσ(t1)
exp

[
−y

2

2
− 2

∫ t

t1
µ dt′ −

∫ t

t1

ε2

σ2
dt′
]
. (2.53)
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In the common region, the last integral is O(ε), and it can be ignored, resulting in,

ρl ≈
1√

2πσ(t1)
exp

[
−y

2

2
− 2

∫ t

t1
µ dt′

]
. (2.54)

Note that this is valid because t is not too far from t1 as both are in the common

region. By the same argument, we drop the integral in equation (2.52). Thus, y1 ≈ y

and the nonlinear solution is approximated by,

ρnl ≈ ρ
(1)
nl

(y, τ1) exp

[
−2

∫ t

t1
µ dt′

]
. (2.55)

The two distributions are matched by taking,

ρ
(1)
nl

(y1, t1) =
1√

2πσ(t1)
exp

[
−
y2
1
2

]
. (2.56)

It only remains to calculate the probability current at ±∞, the escape current.

The escape current comes entirely from the nonlinear drift which is responsible for

escape to ∞ in finite time. Thus, the current is given by P∞(T ) = limx→∞ 8x3ρ.

This gives

P∞ =
8σ2(T )√

2π

(
8

∫ T

t1
σ2dt

)−3/2

exp

∫ T

t1

ε2

σ2
dt−

(
16

∫ T

t1
σ2dt

)−1
 .(2.57)

Equation (2.57) depends weakly on the choice of t1, and to leading order, this de-

pendence can be removed, as follows. First, since ε2/σ2 is small for times after t1,

we drop the first integral in the exponent. Second, since σ2 is small for times before

t1, we extend the lower bound of integration for the remaining integrals back to the

bifurcation point, which is a well-defined time and makes a convenient choice. The
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resulting approximation is given by,

P∞(T ) ≈ 8σ2(T )√
2π

(
8

∫ T

tb

σ2dt

)−3/2

exp

−(16

∫ T

tb

σ2dt

)−1
 , (2.58)

where tb is the time at which the bifurcation point is reached.

To solve a specific example, we again consider the linear sweep, for which µ = t.

In this case,

σ2 = ε2
√
π

2
e2t

2
(√

2σ4
0
π
e
−2t20 + erf(

√
2t)− erf(

√
2t0)

)
. (2.59)

For large |t0|, that is, starting far from the bifurcation point, σ becomes approximately

independent of σ0 and t0. Under this assumption, we take the approximation,

σ2 ≈ ε2
√
π

2
e2t

2
(

1 + erf(
√

2t)

)
. (2.60)

For µ = t, the bifurcation point is reached when t = tb = 0. Thus, the integration of

σ2 gives,

8

∫ T

0
σ2dt = 2πε2

(
erfi(
√

2T) +
4T2

π 2F2(2T2)

)
, (2.61)

where erfi is the imaginary error function, and 2F2 is the hypergeometric function

2F2(1, 1; 3/2, 2; 2T2) [1]. Thus, the escape distribution for a linear sweep is approxi-

mated by,

P∞(T ) ≈ 2(1 + erf(
√

2T ))
√

2πε(π erfi(
√

2T ) + 4T2
2F2(2T2))3/2

(2.62)

× exp

[
− 1

4ε2(π erfi(
√

2T ) + 4T2
2F2(2T2))

]
.

Figure 2.6 illustrates the first three moments and two example distributions of
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Figure 2.6: Mean (a), variance (b), skewness (c), and example distributions (d) of
the distribution of escape times away from a swept subcritical pitchfork bifurcation.
Numeric solution (solid lines) and approximations (dashed) for fast and slow sweeping
are shown. Dots represent data points from Monte-Carlo simulations of the nonlin-
ear Mathieu equation, equations (C.17) and (C.17), swept through the subcritical
pitchfork bifurcation.

46



the escape current for a linearly swept subcritical pitchfork bifurcation over a wide

range of noise intensities computed using numerical and approximate solutions of the

FP equation. Solid lines indicate the solution obtained by numerically solving the

FP equation over a finite domain. The moments for the adiabatic approximation

(large noise) and the delayed bifurcation (small noise) approximation developed in

this paper, given in equation (2.62), are shown as dashed lines. The dots represent

data points obtained by Monte-Carlo simulation of a nonlinear Mathieu equation

near the subcritical pitchfork bifurcation point. In appendix C we illustrate how this

system reduces to the one-dimensional model employed in this analysis. An interesting

feature of the distributions is that the skewness is positive for delayed bifurcations and

negative for activated escape, indicating that the sign of the skewness is an indicator

of the sweep rate relative to the noise strength.

2.5 Subcritical Pitchfork Bifurcation in a MEMS

Resonator

In an experimental setting, it is common to interrogate a nonlinear resonator by

slowly sweeping its drive frequency through resonance. This practice captures a por-

tion of the frequency response curve from which device parameters can be fit. Given

the discussion in the previous sections of this chapter, we must acknowledge that

the branch end points, i.e., the bifurcation points, are not faithfully captured by this

experimental technique. To examine this further and compare equation (2.62) with

experimental data, in this section we consider a set of sweeping experiments carried

out by Chris Burgner at the University of California, Santa Barbara, under the su-

pervision of Prof. Kimberly Turner [16]. These experiments where done on a MEMS

gyroscope which exhibits parametric resonance. A scanning electron microscope im-

age of the device is shown in figure 2.7 (a). Figure 2.7 (b) shows the amplitude and
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Figure 2.7: (a) SEM of MEMS gyroscope [89]. (b) Amplitude and phase of drive axis
vibration during an example escape event under parameter sweep. For interpretation
of the references to color in this and all other figures, the reader is referred to the
electronic version of this dissertation.

phase of the drive mode of the device during an escape event while the forcing fre-

quency is swept. The device, described in more detail in [89], was employed for this

work because it was conveniently available and exhibits a subcritical pitchfork bifur-

cation in its subharmonic resonant response. The gyroscope possesses two nominally

orthogonal vibration modes, the drive mode and the sense mode. The wide frequency

range of the resonant response of this nonlinear gyro allows these modes to be sig-

nificantly mistuned and so in our experiment, which focuses on the drive mode, the

sense mode can be ignored. We model the drive mode by

z̈ + 2Γż + ω2
o(1 + δ1 + δ1 cos 2ωt)z + γ(1 + δ3 + δ3 cos 2ωt)z3 = ξ(t) (2.63)

〈ξ(t)〉 = 0 〈ξ(t)ξ(t′)〉 =
4ΓkBT
m δ(t− t′) (2.64)

where Γ is the damping rate, ω0 is the natural frequency, ω is the drive frequency,

δ1 is the normalized variation of the linear stiffness due to parametric forcing, γ

is the nonlinear stiffness coefficient, δ3 is the normalized variation of the nonlinear
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stiffness due to parametric forcing, m is the effective mass of the resonator, T is the

temperature, and ξ is a white Gaussian thermal noise. The reduction of this model

near the subcritical pitchfork is carried out in appendix C following the method

presented in [62]. The reduced model is

dq

dτ
= 2µq + 4q3 +

√
Dξ(τ),

〈ξ〉 = 0, 〈ξ(τ)ξ(τ ′)〉 = 2δ(τ − τ ′),
(2.65)

where

τ = Γt (2.66)

µ =
1

2
(−1 +

√
β2 − α2), (2.67)

r =
1

Γ

dµ

dt
=

1

8Γ2

(
(2α + β)ω0

dδ1
dt
− 4α

dω

dt

)
, (2.68)

D =
kBTγ

32ω3Γ

αβ2(3 + 2δ3) + δ3β(β + α)2

(β2 − α2)3/2
, (2.69)

α =
ω2 − ω2

0(1 + δ1)

2ωΓ
≈ −

ω0δ1
2Γ

+
σ

Γ
, (2.70)

β =
δ1ω

2
0

4ωΓ
≈
ω0δ1
4Γ

. (2.71)

In the reduced model, the dynamic variable q is a linear combination of averaged

quadrature components of z and ż. The details of the transformation are left to ap-

pendix C. τ is a scaled time variable, µ is the bifurcation parameter which depends on

the device parameters, r is the non-dimensional sweep rate of the bifurcation param-

eter assuming that the swept parameters are δ1 and/or ω, D is the non-dimensional

effective strength of the noise on the slow manifold, α is the effective detuning between

the drive and natural frequencies, and β is the effective parametric forcing strength.

Note that the effective noise strength is also a function of the detuning and forcing

strength. To capture the leading order term, these parameters should be evaluated at

the bifurcation point where β2
b = α2

b + 1. The non-dimensional noise to sweep ratio
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is given by

ε2 =
D

r
=

3ΓkBTγ

4ω3
0

αbβ
2
b

(2αb + βb)ω0δ̇1 − 4αbω̇
. (2.72)

In this expression we have dropped terms proportional to δ3 for convenience since

δ3 � 1 these terms don’t contribute much to the value of ε2. Note the overdots in

equation (2.72) denote derivative with respect to the lab frame time, not the non-

dimensionalized scaled time. The non-dimensional parameters αb and βb appear up

in equation (2.72) because the dynamics near the bifurcation point depend on the

system parameters. These values have been given the subscript b to denote that they

should be evaluated at the bifurcation point encountered during the parameter sweep.

Again, this is the point along the parameter sweep trajectory where β2
b = α2

b + 1.

When the frequency is swept along, i.e. δ̇1 = 0, equation (2.72) simplifies to

ε2 =
D

r
=

3kBT |γ|δ
2
1

256ω0Γ|ω̇|
, (2.73)

which indicates how ε2 depends on physical parameters.

A frequency response for the device is shown in figure 2.8. The device was placed

in a vacuum chamber at 1mTorr and monitored via a laser vibrometer. At this vacuum

level the quality factor of the resonator is Q ≈ 3000 and the natural frequency is near

8.485kHz. An electrostatic potential of 15V was placed across the non-interdigitated

combs seen in figure 2.7 (a) and the frequency of the drive voltage was swept downward

from well above the subcritical pitchfork bifurcation point, which is seen in figure 2.8

to be near 8485Hz. Sweep rates between 0.005 and 0.3 Hz/sec were used and 1000

escape measurements were performed for each sweep rate to generate the family of

escape distributions shown in figure 2.9. A single example escape event is shown

in figure 2.7 (b). This set of escape distributions was taken with ambient noise.
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Figure 2.8: (Top) Frequency response for the MEMS resonator. Blue data points
track the sweep up and red data points track the sweep down. The green data points
represent the mean jump frequency for various sweep rates. Black lines represent
fitted stable (solid) and unstable (dashed) frequency response branches. (Bottom)
Real and imaginary parts of the eigenvalues belonging to the fixed point at zero.
Dashed line represents the linear sweep approximation.

Additional noise was added with base excitation using a piezo element, in order to

reach smaller values of the sweep rate to noise ratio. Recall that the normalized mean

and variance of escape are functions of this ratio when the sweep is linear in time.

The inset of figure 2.9 shows three different distributions that share the same value

of r/D in order to illustrate that, while the normalized statistics depend only on the

ratio, the true statistics depend on both values. The experimental distribution shown

in the inset has had its mean shifted for comparison. The reason this was required will

be discussed presently. The primary attribute we notice about the measured escape

distributions is that they all appear to be described by delayed bifurcations. Despite

sweeping so slowly that a single escape data point took several minutes to acquire,

activated escape over the barrier was not observed. The skew of the distributions was

expected to confirm this, but the data was inconclusive. This may be because the

data may have been somewhat contaminated by the drifting parameter values of the
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Figure 2.9: Experimentally measured distributions of escape events for ambient noise
and sweep rates ranging from 0.005 to 0.3 Hz/sec. The inset shows one such dis-
tribution, artifically shifted, and compared against the theoretical distribution. The
purpose of the shift is discussed in the text. The three distributions in the inset
correspond each to different sweep rate and noise intensities yet all three with the
same ratio. This illustrates that, while the normalized statistics depend only on the
ratio, the true statistics depend on both values.
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resonator. The drift observed was noted to be periodic and correlated to the HVAC

cycles of the lab environment. In the data presented here the drift was compensated

for by measuring the natural frequency prior to each sweeping experiment.

Figure 2.10 shows the normalized mean and variance of the escape distributions

plotted against the sweep rate to noise ratio. The results show qualitative agreement

with the result in equation (2.62). We believe the reason for the difference is a

deviation from the assumptions employed in the development of equation (2.62).

The assumption of a linear sweep requires that the eigenvalue of the bifurcating

fixed point change linearly in time. Figure 2.8 shows the quasistatic values of the

eigenvalues of the fixed point at zero amplitude during the sweep. The green dots

show the mean frequency of escape. It is clear that the linear approximation, shown

as the dashed line, is a poor representation of the actual eigenvalue. The eigenvalue

is smaller than anticipated and so the response does not grow as fast as expected.

Hence the mean occurs later than expected, as seen in figure 2.10(a). This is the

reason the example curve in the inset of figure 2.9 was shifted for comparison with

the theoretical distribution. The variance is also larger than predicted for most data

points. This may also arise from the failure of the linear sweep assumption, since

the eigenvalue was smaller than expected it took more time for the system to escape.

During this added time the system continued to diffuse, resulting in a larger spread

of escape times. In addition, over this wide range of parameter variation the effective

noise strength on the center manifold will depend on the bifurcation parameter. Thus,

while equation (2.58) could be employed to capture the nonlinear relationship between

the eigenvalue and the forcing frequency, it does not account for the change in effective

noise intensity.
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Figure 2.10: Normalized mean (a) and variance (b) of the bifurcation parameter at
escape. The solid line represents the mean of the distribution for a linear sweep
predicted from the normal form, as given in equation (2.62). The data points were
calculated from the measured distributions shown in figure 2.9.

2.6 Outlook

As mentioned at the beginning of this chapter, this work was motivated by applica-

tions to sensing, parameter fitting, and system identification. Escape experiments,

used for these applications, employ highly visible transients which can be useful in

very small systems that are difficult to measure [58]. However, when compared to

more conventional methods, measurement by collecting escape event data is quite

slow [17]. The reason is that there are three time scales acting in the system and

activated escape near a bifurcation point operates on the slowest time scale. More-

over, many escape events must be observed (with the exception of single-shot qubit

readout [78]) to obtain an estimate of the escape moments. This brings the added

complication of parameter drift over such long time scales. If bifurcation location

or tracking is to be used for sensing or system identification in a device that can

be monitored with reasonable precision, then feedback control [17] or experimental

continuation [99] may be more appropriate techniques.
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Chapter 3

The Dynamical Bridge

In this chapter we discuss the use of noise activated escape in a parametric sen-

sor. The past decade has seen significant advances in the employment of micro- and

nano-electromechanical (M/NEMS) resonators as parametric sensors. The small size

and high quality factors of these devices enables very sensitive coupling to and/or

detection of adsorbed masses on the resonator surface [40, 42, 121, 33, 92, 43, 66],

superconducting qubit states [23, 68, 112], and electron transport statistics [6, 5], to

cite a few examples. Many of the implementations of NEMS resonators for para-

metric sensing mirror those of Josephson junction circuits for the same applications

[55, 76, 88, 114, 70, 105, 78, 116, 96]. Accordingly, the sensing paradigms are very

similar to the methods developed in the 1970s to measure the Josephson junction

critical current [67, 58, 47].

The current biased Josephson junction is analogous to the simple pendulum where

the critical current is likened to the coefficient of the restoring torque (mg` in a

pendulum) and the phase difference, δ, between the superconductor order parameters

across the junction is likened to the pendulum angle. For small δ the junction is

modeled, like many NEMS resonators, by Duffing’s equation. Accordingly, it is not

surprising to find many common experimental methods associated with both systems.
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The measurement paradigm we highlight here is, roughly speaking, the use of

such a Duffing resonator as a threshold detector. While there are several variations

on this concept, the basic principle is as follows. The system is placed in the bi-

stable regime and brought close to a bifurcation (the threshold). Noise in the system

blurs the threshold and so the system is placed sufficiently far from the threshold

so that noise only occasionally pushes the system over the edge. This occurs when

a rare large outburst of noise pushes the system out of the domain of attraction

belonging to the occupied attractor. When this happens the system is said to have

escaped. The probability per unit time, or rate, of escape is exponentially sensitive

to the distance from the operating point to the threshold and, by extension, to the

system parameters. Accordingly, monitoring the time until escape, and performing

many such escape experiments, allows one to calculate the mean escape rate and thus

determine parameter variation in the resonator with high precision. The threshold

position can be thought of as being detected through the measurement of the escape

rate. The escape events monitored in this method are often highly visible transient

dynamics of the resonator. This can enable a very precise measurement to be made

even when the detailed motion of the resonator is difficult to resolve, c.f. [58].

A single-shot variation of this method is employed in qubit readout, relevant for

quantum computing [116, 78]. If the state of the qubit, which is coupled to the res-

onator, displaces the bifurcation sufficiently, then an escape event can be strongly

correlated with the qubit state. The qubit state can then be inferred from the occur-

rence, or lack thereof, an escape event. This detection scheme has become known as

the Josephson bifurcation amplifier [116].

The phenomenon of noise activated escape, on which these measurement method-

ologies are based, has been studied in great detail. The escape rate has been calculated

for Gaussian noise [64], Poisson noise [31] and non-Gaussian perturbations superim-

posed on Gaussian noise [105, 11, 10, 12]. These and similar results have application
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in the measurement of electron transport statistics [7, 55, 53, 88, 114]. It is also

known that the escape events occur along trajectories forming narrow tubes in phase

space [21, 20]. This gives experimental credence to the method of calculating the

escape rate by considering the most probable path.

In this chapter we discuss a variant on the detection schemes described above,

called the balanced dynamical bridge [30]. In the dynamical bridge paradigm a

bistable system subject to weak noise is arranged such that the probability to be

in either state is equal. A perturbing parameter variation or change in the noise

statistics can then be measured by the resulting shift in relative state populations,

or by the force required to rebalance the system. The balanced dynamical bridge

is so named because it is analogous to a bridge circuit in which the voltage across

the bridge connection is tuned to zero in order to measure, for example, a resistance.

However, here we consider a dynamical system driven by noise, hence the “dynamical”

designation.

Our discussion of the balanced dynamical bridge is organized in the following

way. In section 3.1 we review the theory of noise activated escape, treating both

Gaussian noise and a non-Gaussian perturbing process. In section 3.2 we discuss the

dynamical bridge as a general use detector, formulating expressions for the sensitivity

and measurement time of the device. In section 3.3 we discuss the dynamical bridge

as a detector of non-Gaussian noise. In section 3.4 we discuss the Duffing resonator

as an example of a prototypical bistable system. We present the locus of operating

points in a two-dimensional parameter space at which the bridge is balanced. In

section 3.5 we give an example of measuring non-Gaussian noise by considering a

one-dimensional dynamic bridge subject to weak shot noise. Concluding remarks and

a discussion of future work are given in section 3.6.
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3.1 Activated Escape

In section 2.2 we reviewed activated escape by white Gaussian noise in one dimension.

In this section we review the general theory of noise activate escape due to additive

Gaussian noise perturbed by weak non-Gaussian noise; see [11]. This theory lays

the groundwork for our subsequent discussions of bridge sensitivity and detection of

non-Gaussian noise.

We begin with a general nonlinear system

q̇ = K(q) +
√
Df(t) +G(q)ξ(t), (3.1)

where q ∈ Rn is the system state vector, K is the nonlinear vector field, f is a

stationary Gaussian noise vector with characteristic strength D, G ∈ Rn×m is the

non-Gaussian noise matrix coefficient, and ξ ∈ Rm is the non-Gaussian noise vector,

assumed to be independent of f . Suppose that the noise free system possesses two

stable fixed points, qa and qb, and a saddle point, qs, on the boundary between

the basins of attraction for qa and qb. If the noise is weak, then the system will

likely settle down to the vicinity of one stable fixed point, say qa. It may happen

subsequently that a large rare burst of noise pushes the system out of this basin and

into that belonging to qb. Suppose we know the path by which the system exits

the basin and the accompanying realization of ξ, then the Gaussian noise realization

required to make this transition follows from equation (3.1),

f(t) = D−1/2(q̇ −K(q)−G(q)ξ(t)
)
. (3.2)
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The probability for such a noise outburst to occur is [46]

P [f(t)] ∝ exp
[
−1

2

∫ ∫
fT (t′)F̂(t′ − t)f(t)dtdt′

]
, (3.3)∫

〈f(t)fT (s)〉F̂(s)ds = Iδ(t), (3.4)

where F is the inverse pair correlator of ξ(t). We assume that f possesses time

reversal symmetry so that F̂(t) = F̂(−t) = F̂T (t). From equation (3.2) we see that

the integrand of (3.3) is inversely proportional to the characteristic noise strength.

Thus, for weak noise, the probability for a transition to occur is sharply peaked

about the most probable switching path, i.e., the path that minimizes P [f(t)] in

equation (3.3) where f is given by (3.2). The mean switching rate is approximately

proportional to the probability for the realization of the most probable switching

path. If ξ = 0, the rate is

r0 ∝ exp [−S0/D] (3.5)

S0 = min
{

1
2

∫ ∫
(q̇ −K)T

t′ F̂(t′ − t)(q̇ −K)t dtdt
′
}

(3.6)

where (q̇−K)t denotes q̇(t)−K(q(t)) and the minimum is taken over all paths that

take the system from qa to qb.

When 〈f(t)fT (s)〉 = Iδ(t− s), then F̂(t) = Iδ(t) and S0 simplifies to

S0 = min

{
1

2

∫
|q̇ −K|2 dt

}
, (3.7)

which is the action belonging to an auxiliary Hamiltonian system

H =
1

2
|p|2 + pTK(q), p ≡ q̇ −K(q). (3.8)

The costate, p, in this case, is proportional to the optimal noise realization, and the
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constant of proportionality is
√
D. The path minimizing S0 in equation (3.7) is the

made up of two parts. The first part is the heteroclinic trajectory going from qa to

qs along which p 6= 0, since this transition requires noise. The second part is the

heteroclinic trajectory going from qs to qb along which p = 0, since this response is

noise free. This second part of the switching trajectory does not contribute to the

calculation of the switching probability and so our focus is on the first (noisy) part.

If f and ξ are independent noise processes and ξ is small compared to f , then

the mean switching rate can be expressed as [11].

r ∝ 〈exp [−S[ξ]/D]〉ξ (3.9)

where, to leading order, S[ξ] is

S[ξ] = S0 +
∫
χ(t)T ξ(t)dt, (3.10)

χT (t) = −
∫ [
q̇(t′)−K(q(t′))

]T F̂(t′ − t)G(q(t))dt′. (3.11)

The quantity χ can be thought of as the susceptibility of the activation energy to a

perturbing force. The switching rate in the presence of this perturbing noise is

r ∝ Ar0, (3.12)

A =
〈

exp
[
− 1
D

∫
χT ξdt

]〉
= Φξ[iχ/D], (3.13)

where Φξ is the characteristic functional of ξ.

3.2 Dynamical Bridge Sensitivity

We now turn to the dynamical bridge. In this section we set ξ = 0 and discuss the

bridge as a general use detector. We calculate the sensitivity and measurement time
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assuming the rates developed in the previous section are known.

Equation (3.1) serves as the microscopic model for the dynamic bridge. The bridge

itself functions on a much longer time scale. For times scales exceeding that of the

switching dynamics and correlations of f , the coarsened dynamics may be modeled

by the master equation

Ṗ1 = −r1P1 + r2P2,

Ṗ2 = r1P1 − r2P2,

(3.14)

where P1 and P2 are the probabilities to find the system in the first or the second

states respectively, and ri is the switching rate out of the ith state, i = 1, 2. Normal-

ization of the probability distribution requires P2 = 1−P1 and so we will work with

P1 only for this analysis. The solution to equations (3.14) is

P1(t) =
r2

r1 + r2

(
1− e−(r1+r2)t

)
+ P1(0)e−(r1+r2)t, (3.15)

from which we see that the characteristic relaxation time of the system is tr ∼

(r1 + r2)−1.

To make a measurement with the dynamic bridge we must measure the probability

P1. This may be done by measuring some quantity x that takes on the value X1

when the system is in state 1 and X2 when the system is in state 2. The probability

to be in state 1 can be estimated from N measurements of x, where the system is

given time to relax between each measurement. Thus, the total measurement time is

on the order Ntr and gives the probability estimate

P̂1 =
1

N(X1 −X2)

N∑
i=1

(xi −X2). (3.16)
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The mean and variance of the estimator P̂1 are

〈P̂1〉 = P̄1, (3.17)

〈(P̂1 − P̄1)2〉 =
P̄1 − P̄2

1
N

, (3.18)

where P̄1 = r2/(r1 + r2) is the steady state value of P1. Equations (3.17) and (3.18)

show that P̂1 is an unbiased estimator of P̄1 with uncertainty proportional to N−1/2.

Now, suppose that some parameter of the bridge system, λ, changes by an amount

∆λ. The sensitivity of the dynamic bridge is given by ∂λP̄1. In calculating this

quantity, we ignore the dependence of the rate prefactor on λ under the assumption

that D is small. Thus the dominant change in the transition rates comes from the

change in activation energy with respect to λ. Under this assumption, the bridge

sensitivity is given by

∂P̄1
∂λ

=
r1r2

D(r1 + r2)2

(
∂(S1 − S2)

∂λ
+
S1 − S2

D

∂D

∂λ

)
, (3.19)

where Si is the activation energy (equation (3.6)) to escape from the ith state, i = 1, 2.

Equation (3.19) applies for any r1 and r2. The most sensitive operating point is at

the balance point where r1 = r2 and S1 ≈ S2. In this case equation (3.19) simplifies

to ∂λP̄1 ≈ D−1∂λ(S1 − S2), which quantifies how the dynamical bridge becomes

increasingly sensitive with decreasing noise.

In order to detect a change ∆λ, we must measure P̄1 to sufficient accuracy. In

order to see a shift in the occupation probability, the shift in P̄1 should be on the

order of the error in our estimate. Thus, we require

√
〈(P̂1 − P̄1)2〉 ∼

∂P̄1
∂λ

∆λ (3.20)
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The variance of P̂1, equation (3.18), is bounded by 1/4N , so we use this value to

obtain an upper bound for the number of measurements that must be made on the

bridge. Solving for N and multiplying by the relaxation time gives the measurement

time

Ntr =
(r1 + r2)3

4r21r
2
2

D2

∆λ2

(
∂(S1 − S2)

∂λ
+
S1 − S2

D

∂D

∂λ

)−2
, (3.21)

≈ r

(
D

∆λ∂λ(S1 − S2)

)2
, at the balance point. (3.22)

From expressions (3.21) and (3.22), we find that the measurement time increases

exponentially with decreasing noise, owing to the exponential dependence of r1,2 on

D.

We conclude this section by again considering the case where 〈f(t)fT (s)〉 =

Iδ(t− s). This gives F̂(t) = Iδ(t) and ∂λSi can be written as a simple integral along

the most probable switching path.

∂S1,2

∂λ
=

∫ (
q̇ −K(q)

)T ∂K(q)

∂λ
dt, (3.23)

where q, for S1,2, is evaluated along the heteroclinic trajectory taking the system

from qa,b to qs.

3.3 Detection of Non-Gaussian Noise

The dynamical bridge can also be used as a sensitive detector of non-Gaussian noise.

Suppose we have the system (3.1) and we have the ability to turn ξ on and off.

Then we can use the the system as a dynamical bridge to determine a degree of

non-Gaussian character in the noise ξ. The ability to turn ξ on and off allows us to

remove the mean by examining the mean fluctuation of the coordinate q about the
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fixed points qa or qb. A bias can then be applied to compensate for the mean of ξ,

which is convenient for the development, as described below.

In general, the addition of the perturbing noise ξ will change the transition rates,

see section 3.1, and this will shift the relative occupancy ratio in the bridge. The

ratio of probabilities to be in state 1 and 2 is

P1
P2

=
r2
r1

=
A2
A1

r
(0)
2

r
(0)
1

, (3.24)

where r
(0)
i is the switching rate out of the ith state when ξ = 0. Balancing the bridge

before exposure to the perturbation sets r
(0)
1 = r

(0)
2 . We now introduce the random

variable

zi =

∫
dtχTi (t)ξ(t), (3.25)

where χi(t) is given in equation (3.11) and the subscript denotes escape from the ith

state. Let κ
(i)
n be the nth cumulant of zi. From equation (3.13), the pre factors, Ai,

are the moment generating functions for zi and the logarithm, lnAi, is the cumulant

generating function. Thus,

lnAi =
∞∑
n=1

κ
(i)
n

n!(−D)n
. (3.26)

Note, if ξ is Gaussian, then zi is also Gaussian and κn = 0 for n > 2. Of course,

here we assume ξ is non-Gaussian, so we keep all cumulants. From equation (3.26),

the probability ratio becomes

P1
P2

= exp

[ ∞∑
n=1

κ
(2)
n − κ(1)

n
n!(−D)n

]
. (3.27)

We have mentioned above how the mean of ξ can be removed by an applied bias. If
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the second cumulants κ
(1)
2 and κ

(2)
2 can be balanced, they too can be removed from

equation (3.27). In this case, the population ratio will depend only on higher order

cumulants, i.e., on the non-Gaussian character of ξ. The second cumulant of zi can

be expressed as follows

κ
(i)
2 =

∫
dtdt′χTi (t)〈ξ(t)ξT (t′)〉χi(t

′). (3.28)

From equations (3.11) and (3.28) it can be shown that κ
(1)
2 and κ

(2)
2 will be equal if

∫
dsds′F̂ (s− t)G(qi(s))〈ξ(s)ξT (s′)〉GT (qi(s

′))F̂ (s′ − t′) = cF̂ (t− t′), (3.29)

where qi is evaluated along the heteroclinic escape trajectory out of state i and c is

some constant, equal for i = 1, 2. This condition is satisfied if, for example, f is a

vector of uncorrelated Gaussian white noise processes, ξ is a vector of uncorrelated

Poisson noise processes, and G ∝ I. If the mean has been removed, and if the second

cumulants cancel, then the population ratio of the bridge will reflect a measure of

the non-Gaussian character of ξ, which is captured in the series of cumulants of z1,2,

that is, by the projection of the noise realizations onto the switching susceptibility.

This will be illustrated by an example in section 3.5. Note that while the second

cumulants drops out of equation (3.27), they remain in equation (3.26) and thus

change the switching rate. In this case, the second cumulant can be lumped together

with that of the Gaussian noise, f , and be understood as a renormalization of the

Gaussian noise strength.

65



3.4 The Duffing Resonator Bridge

In this section we discuss the lightly damped Duffing resonator and its use as a

dynamic bridge. We map out the bistable region of parameter space and numerically

determine the locus of points in this space where the bridge is balanced, i.e., r1 = r2.

The resonator, subject to a periodic driving force and additive noise, is described by

ÿ + 2Γẏ + ω2
0y + γy3 = h cosωt+ f̂(t), (3.30)

where, y is the oscillator coordinate, ω0 is its natural frequency, Γ is the friction

coefficient, (Γ � ω0), γ is the nonlinearity parameter, and f̂(t) is Gaussian white

noise with 〈f̂(t)〉 = 0 and 〈f̂(t)f̂(t′)〉 = 2D̂δ(t− t′). We assume near resonant forcing

of amplitude h and frequency ω with ω2 − ω2
0 � ω2. It is convenient to switch

from y to a slowly-varying complex amplitude, u, using the well-known Van der Pol

transformation

y(t) =

√
2ωΓ

3|γ|
ueiωt + c.c., (3.31a)

u̇eiωt + c.c. = 0. (3.31b)

We apply this transformation to equation (3.30), neglect fast oscillating terms, and

move to a nondimensional time scale, τ , to obtain

u̇ = −(1 + iΩ)u+ i sgn(γ)|u|2u− i
√
β − if(τ), (3.32)

where the dot, ˙( ), is now interpreted as the derivative with respect to τ and the fol-

lowing nondimensional parameters have been defined, along with the nondimensional
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noise f(τ),

τ = Γt, (3.33)

Ω =
ω2 − ω2

0
2ωΓ

, (3.34)

β =
3|γ|h2

32ω3Γ3
, (3.35)

f(τ) =

√
3|γ|

8ω3Γ3
e−iωτ/Γf̂(τ/Γ), (3.36)

where f(τ) refers to f(t) in (3.1). By neglecting the fast oscillating moments, we

approximate the real (fr) and imaginary (fi) parts of f as two independent white

Gaussian noise processes with [35]

〈fr(τ)〉 = 〈fi(τ)〉 = 〈fr(τ)f∗i (τ ′)〉 = 0, (3.37a)

〈fr(τ)f∗r (τ ′)〉 = 〈fi(τ)f∗i (τ ′)〉 = Dδ(t− t′). (3.37b)

where D is the nondimensional noise strength

D =
3|γ|D̂
8ω3Γ2

. (3.38)

In the absence of noise (f(τ) = 0), the fixed point are found by setting equation

(3.32) to zero. Thus, the fixed points must satisfy

u =

√
β

sgn(γ)|u|2 − Ω + i
. (3.39)

Taking the norm of (3.39) gives a cubic equation in |u|2,

|u|6 − 2 sgn(γ)Ω|u|4 + (Ω2 + 1)|u|2 − β = 0. (3.40)
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The fixed points are associated with the the positive real roots of this equation. The

bistable region is bounded by two saddle-node bifurcations. The amplitudes of u at

which these bifurcations occur can be found by taking the derivative of (3.40) with

respect to |u|2 and solving for the bifurcation value of |u|2

|u|2B =
2

3
sgn(γ)Ω±

√
Ω2 − 3, (3.41)

where the subscript B denotes a saddle-node bifurcation value. This solution is

substituted back into (3.40) to determine the boundaries of the bistable region in

parameter space, which can be expressed as

βB =
2

27

(
sgn(γ)Ω(Ω2 + 9)± (Ω2 − 3)3/2

)
, Ω2 ≥ 3. (3.42)

This bistable region is illustrated in figure 3.3 as the region between the solid lines.

Plotting with axes Ω−2 and βΩ−3 allows us to visualize the bistable region as a

closed region of parameter space. Inside the bistable region the system posses two

stable fixed points and one saddle point. Returning to the notation of section 3.1, we

set the real and imaginary components of u to be the elements of the two component

vector q ∈ R2. The costate, p ∈ R2, is proportional to the optimal realization of the

noise quadratures; the real and imaginary components of f(τ). The most probable or

optimal switching trajectories, as described in section 3.1, are heteroclinic solutions

of the Hamiltonian system, given here by

H =
|p|2

2
+ (|q|2 − Ω)(q ∧ p)− qTp− p2

√
β, (3.43)

where ∧ is the wedge product defined as q∧p = q1p2−q2p1, and p2 is understood to

be the second component of the two dimensional vector p. The pair of heteroclinics

for a sample set of parameters is depicted in figures 3.1 and 3.2. In figure 3.1 the
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Figure 3.1: The blue and magenta lines depict heteroclinic solutions connecting the
operation points to the saddle point for system (3.43), as projected onto the (q1, q2)
plane. Solid lines represent the p 6= 0 solutions and the dashed lines are the noise-
free (p = 0) stable and unstable manifolds of the saddle point. Parameter values:
Ω = 4.706182 and β = 8.501802

heteroclinic is projected onto the (q1, q2) plane. The dashed lines are noise-free stable

and unstable manifolds of the saddle point. The solid lines show the most probable

path by which noise will drive the system from the stable fixed points to the saddle

point. Upon reaching the saddle point, the system will relax to one of the stable

fixed points, most likely following quite closely the corresponding noise-free unstable

manifold. Figure 3.2 shows the heteroclinic projected onto the (p1, p2) plane. The

trajectories represent the most probable realization of the noise quadratures that gives

rise to a switching event. These trajectories begin and end at the noise-free equilibria,

hence at p = 0.

The heteroclinics shown in figures 3.1 and 3.2 were obtained by the method of

shooting. The parameter values were chosen because the action along these two hete-

roclinics is equal. Thus, these heteroclinics represent a balanced bridge configuration

(at least up to the difference in prefactors). The locus of points in parameter space

for which the action is equal for both switching directions is plotted as the dashed line
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Figure 3.2: Heteroclinic solutions for system (3.43) projected onto the (p1, p2) plane.
For the solution with Ω = 4.706182 and β = 8.501802. Note that these heteroclinics
start and end at noise-free points where p1 = p2 = 0.

in figure 3.3. The balance curve in figure 3.3 was determined numerically. However,

the end points were obtained from results given in [36], where it was shown that (for

γ > 0) on this locus lim
Ω−2→0

βΩ−3 = 0.13 and near the cusp at Ω−2 = 1/3 the

balance curve lies approximately halfway between the two saddle-node branches, and

is given by βblΩ
−3 = 2(1 + 9Ω−2)/27. These results set the stage for using the

Duffing system with additive Gaussian noise as a balanced bridge.

3.5 Shot Noise Measurement

Near the cusp (Ω−2 = 1/3) the system discussed above collapses onto a one-dimensional

slow manifold. On the balance curve, the system reduces to the classic overdamped

symmetric quartic double well potential. In this section we discuss the measurement

of shot noise statistics by such a system.

Shot noise is characterized by the pulse area, g, and pulse rate, ν. Thus, we
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Figure 3.3: Two dimensional parameter space for the Duffing resonator. Solid lines
are saddle-node branches which enclose the bistable region. The dashed line is the
balance curve on which the escape actions for two stable states are equal, S1 = S2.
In the weak noise limit this line is very close to the line where the escape rates are
equal.

suppose our system is described by the equation

q̇ = −U ′(q) +
√
Df(t) + ξ(t)− νg, (3.44)

where q is a scalar, f(t) is a white Gaussian noise with 〈f(t)f(t′)〉 = δ(t − t′), and

ξ(t) is a Poisson process. We assume that the shot noise acting on the resonator

is modulated by the resonator driving signal so that it appears as a simple Poisson

process on the slow manifold. Our system is assumed to move in a overdamped

double-well potential, as shown in Fig. 3.4, that can be described by

U(q) = −1

2
q2 +

1

4
q4. (3.45)

The mean 〈ξ〉 = νg has been explicitly removed in order that the bridge, as dis-

cussed in section 3.3, will be sensitive to only the higher moments. It is assumed that

this mean can be measured and compensated for. This measurement also amounts
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q1 q2qs

g > 0

Figure 3.4: Double-well potential of equation (3.45); q1 and q2 denote positions of
stable fixed points, while qS refers to the unstable fixed point. Poisson pulses with
positive area g change the switching rates such that r1 > r2, resulting in a shift of
the occupation probability from q1 towards q2.

to the first of the two data points required to calculate ν and g.

The cumulant generating function is known for the Poisson process. For the zero

mean Poisson process under consideration, ξ − νg, it is given by

lnAi = ν

∫
dt
{
e−gχi(t)/D + gχi(t)/D − 1

}
. (3.46)

Equating this term by term to equation (3.26), (repeated here)

lnAi =
∞∑
n=1

κ
(i)
n

n!(−D)n
,

gives

κ
(i)
1 = 0, (3.47)

κ
(i)
n = νgn

∫
dtχni (t), n > 1. (3.48)

As discussed in section 3.1, the susceptibility, χi, is a heteroclinic solution of the
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auxiliary Hamiltonian system. For this system, the Hamiltonian is

H =
p2

2
− pU ′(q), p = q̇ + U ′(q). (3.49)

The heteroclinic trajectories of interest connect the fixed points (q, p) = (±1, 0) with

the saddle point (q, p) = (0, 0). By inspection, we see that H = 0 along these

trajectories. Accordingly, the heteroclinics are solutions to

q̇ = U ′(q), (3.50)

that is, the reversed-time deterministic trajectories. For the potential given in equa-

tion (3.45), the solutions are

q
(h)
± (t) = ±

[
1 + e2t

]−1/2
, (3.51)

and the attendant susceptibilities are given by

χ1,2 = −2q̇
(h)
± (t) = ±2e2t

(
1 + e2t

)−3/2. (3.52)

Using equation (3.50), the integrals in equation (3.48) can be evaluated explicitly.

Applying the result to equation (3.27) gives

P1
P2

= exp

−ν ∑
n=1

(
2g

D

)2n+1 Γ(n+ 1/2)

(2n+ 1)Γ(3n+ 3/2)

 , (3.53)

where Γ(n) is the Euler Gamma function. Figure 3.5 shows log(P2/P1)/ν as a func-

tion of g/D along with Monte-Carlo simulation results. The inset in the figure shows

the same quantities as the primary axes over a larger range. The Monte-Carlo simu-

lations were carried out with parameter values D = 0.04 and ν = 0.5. The weak noise

73



• •
•

•
• •

•

•

0.0 0.5 1.0 1.5 2.0

-0.5

0.0

0.5

1.0

1.5

2.0

g/D

L
og

[P
2
/P

1
]/
ν

• •
•
•
• •

0 1 2 3 4 5 6 7
0
2
4
6
8

10

Figure 3.5: Change in probability ratio due to the addition of zero mean shot noise,
equations (3.53). Data are results from Monte-Carlo simulations with D = 0.04 and
ν = 0.5. The inset shows the same quantities over a larger range.

limit assumed by the analysis requires D/2∆U � 1, where ∆U is the barrier height.

We also assumed that the non-Gaussian noise was weak compared to the Gaussian

noise; this condition is νg2 � D. The parameters used give D/2∆U = 0.08 and

require g/D � 7. Figure 3.5 shows reasonable agreement in this region.

For g/D not too large, the series can be truncated at n = 2. This accounts for up

to the fifth order moments of ξ. The error due to this truncation grows monotonically

with g/D, reaching approximately 2% error for g/D = 6. The truncation, and use of

the relation 〈ξ〉 = νg, give a quadratic equation for g2. Solving for g2 and taking the

positive root gives

g2 = −715

32
D2 +

√(
715

32
D2
)2
− 225225D5

256〈ξ〉
ln
P1
P2
, (3.54)

where the label “1” applies to the stable fixed point at q = −1 and the label “2”

applies to the stable fixed point at q = 1. By considering the two cases of positive

and negative g we now show that equation (3.54) gives a positive real result for g2.

For positive g, 〈ξ〉 is also positive. Moreover, since the system is overdamped, pulses
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pushing in the positive direction can only decrease P1 while increasing P2. Thus,

for positive pulses, g > 0, lnP1/P2 < 0 and 〈ξ〉 > 0, and so equation (3.54) gives a

positive real result for g2 from which we take the positive root for g. On the other

hand, when g < 0, we have lnP1/P2 > 0 and 〈ξ〉 < 0, and equation (3.54) still gives

a positive real result for g2 from which we take the negative root for g. Generally,

the sign of g is found from the sign of ln(P1/P2).

Equation (3.54) is our final result, from which g is found. Use of this equation

requires measurement of the quantities D, 〈ξ〉, and P1/P2. The Gaussian noise

strength, D, and the non-Gaussian noise mean, 〈ξ〉, can be measured from the quasi

steady state distribution around a fixed point of the drift vector. Specifically, the

Gaussian noise strength can be found from the width of the distribution about the

fixed point, and the mean can be found from the force required to rebalance the

distribution, as described above, and reiterated here: With ξ turned off, the mean of

this quasi steady state distribution is measured. With ξ turned on, this mean may

shift. A bias force is applied until the mean has been restored to the value found

with ξ turned off. The force to rebalance gives 〈ξ〉. The final quantity required to

estimate g is the population ratio P1/P2. This is found by observing the system for

a period of time over which many escape events occur. The system can be sampled

with sufficiently long sampling period and the probabilities can be estimated by use

of equation (3.16). From these three measurements, the full counting statistics are

found.

3.6 Outlook

In this chapter we discussed a parametric sensing strategy based on noise-induced

escape. Parametric sensing is applicable to a wide range of problems. It only requires

that one can couple a quantity of interest to the parameters, or effective parameters,
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of the device while preventing disturbances from doing the same. While this may

not be a trivial task, parametric sensors have found success in force and mass [121,

40, 42, 33, 43, 66] spectroscopy, and measurement of electron transport [6, 5], among

other applications. Likewise, the dynamic bridge may be employed for force or mass

spectroscopy, as it can be made extremely sensitive to changes in the natural frequency

of the resonator. However, this comes at the cost of long measurement times.

Alternatively, the bridge can be used for measurements of counting statistics, as

demonstrated in sections 3.3 and 3.5. The processes that may be counted with a

NEMS bridge depend on the mean rate and how it compares to the relaxation time

of the resonator. Pulse rates much faster than the relaxation time of the resonator will

appear approximately Gaussian, and therefore the higher moments will be difficult to

measure. Intriguing possible applications include measuring the transport of electrons

through a single electron transistor, or the transport of cells through a micro-channel,

both of which can be viewed as shot noise processes that can affect the dynamics of

a NEMS resonator.
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Chapter 4

Phase Noise in Nonlinear

Oscillators

An oscillator is a device which produces a periodic signal. Such devices are central

to many areas of science and technology including timing, spectroscopy, communica-

tions, radar, GPS, etc. An oscillator is constructed from a frequency selective device,

which is inevitably lossy, and a feedback loop designed to compensate for this energy

loss in order to maintain a constant amplitude periodic signal. See, for example,

Figure 4.1(b). The frequency selective element may be, for example, a mechanical

pendulum as in a grandfather clock, a quartz crystal as in many electronic oscillator

circuits, or a microwave cavity as in a hydrogen MASER. In all cases there are ran-

dom perturbations acting on the elements of the oscillator system stemming from the

environment. Each perturbation may knock the oscillator phase a little forward or

backward. Over time many small perturbations accumulate and the oscillator phase

diffuses. Figure 4.1(a) illustrates the different routes by which fluctuations affect the

oscillator phase. Fundamentally, this diffusion problem cannot be completely elim-

inated because an oscillator must be autonomous and thus have time-translational

symmetry. In other words, if we build an oscillator and set it up in a given initial
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Figure 4.1: Noise roadmap (a) illustrating the different routes by which fluctuations
may affect the angle. Prototypical oscillator block diagram (b).

configuration, then we can observe its behavior. If we and set the oscillator in the

same initial configuration at a different time, we expect it to behave the same. This

property implies that the oscillator cannot know about a fixed reference point in time.

Likewise, it has no way to know if its perception of time has slipped a little bit from

“true” time. Thus, the only thing we can do to make a better oscillator is to reduce

the action of perturbations on the phase. There are two approaches one can take to

address this problem. The first approach, which is hardware specific, is to combat the

disturbances at their source. For example, we can put the oscillator in a temperature

controlled environment to diminish perturbations due to temperature fluctuations.

The second approach is to tune the oscillator parameters so that it operates opti-

mally given the perturbations that are present. Returning to the noise roadmap in

figure 4.1(a), the first approach is analogous to reducing the quantity of noise de-

scending along the four lines from the environment block. The second approach may

be used to, for example, cut the noise route connecting the action to the angle or re-

duce the noise strength relative to the oscillator’s inertia. In general both approaches

must be employed. In this chapter, however, we focus on some fundamental issues

related to the second approach.
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Our goal is to analyze oscillators constructed with nano-eletro-mechanical sys-

tems (NEMS) as frequency selective elements. During the past decade NEMS have

demonstrated operation at high frequencies with high quality factors and low power

consumption [94]. These qualities put NEMS in a position to be a key component in

the development of compact, robust, low phase-noise frequency sources [45]. However,

due to their size, NEMS exhibit strong nonlinearity and relatively large noise levels,

which limit the linear dynamic range [90]. The realization of NEMS microwave sources

therefore requires engineering beyond the linear dynamic range of the frequency se-

lective element. Thus, a fully nonlinear treatment of the problem is required. We

approach the problem by examining the slow dynamics in the action-angle coordinate

representation of an oscillator. For alternative analyses of phase noise, see [27, 22, 80].

Our treatment of this problem is arranged as follows. Our fundamental assump-

tions include neglecting the dynamics of the feedback loop and treating the resonator

as nearly conservative. We therefore model the oscillator with the resonator’s equa-

tions of motion. The most appropriate coordinate system in which to perform the

analysis is in terms of the action-angle coordinates of the resonator. Accordingly,

we review action-angle coordinates in section 4.1. We then discuss a microscopic

model for the resonator in section 4.2. This section provides insight into the noise

forces acting on an open-loop resonator. In section 4.3, we consider the closed loop

dynamics of a general nonlinear oscillator. Our primary result is an expression for

the spectrum of fractional frequency fluctuations in the oscillator. This expression is

useful for oscillator tuning and optimization. We illustrate this by example in section

4.4, in which we examine an oscillator employing a biased Duffing resonator. Using

noise and damping effects developed from the microscopic model presented in section

4.2, and a simple feedback model, we discuss oscillator tuning over a reduced two-

dimensional parameter space. The region of parameter space we consider is restricted

to reasonable values. In this restricted region, the minimum phase diffusion rate is
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found when the resonator is maximally biased and operated at a particular ampli-

tude where the frequency of the resonator is locally independent of the amplitude.

Following this example, we conclude the chapter with section 4.5 in which we discuss

possible directions for future research.

4.1 Action-Angle Coordinates

In the treatment of weakly nonlinear resonators we often employ the van der Pol trans-

formation in order to write the equations as a set of coupled first order differential

equations with small perturbations (see section 2.1). The van der Pol transformation

represents the solution to the linear unperturbed problem, and the effects of the per-

turbations are incorporated by allowing the constants of motion (e.g., amplitude and

phase) to vary in time. These variations are slow when the perturbations are small.

To handle a strongly nonlinear resonator we can also perform a change of coordinates

based upon the solution of the unperturbed system, which is nonlinear in this case.

For perturbations of strongly nonlinear conservative systems the appropriate trans-

formation is to action-angle coordinates, as described in this section. This review of

action-angle coordinates follows from [50, 69]. The coordinate transformation leads

to equations for the action and angle of the resonator, which are analogous to the

amplitude and phase coordinates employed in the weakly nonlinear case. For the

complete solution it is necessary to know the solution of the unperturbed nonlinear

problem. In this section, however, we perform the transformation using general func-

tions which contain the solution, and appeal only to properties that these functions

can be shown to posses. Thus, while we demonstrate the method, its application is

case specific. We provide an example with explicit calculations in section 4.4.

We begin by considering a nearly conservative nonlinear resonator described by
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the equations of motion

q̇ = p,

ṗ = −U ′(q) + F (q, p, t),

(4.1)

where U(q) is the potential describing the nonlinear stiffness of the resonator and F is

a perturbation. As discussed above, we wish make a change of coordinates reflecting

the solution of the conservative subsystem described by the Hamiltonian

H =
p2

2
+ U(q). (4.2)

We assume that the potential, U , is confining so that the system exhibits periodic

behavior. The conservative subsystem can also appropriately be called an oscillator

since it exhibits periodic motion. For a given energy, E = H, the system will oscillate

between two turning points, qa and qb, which are solutions of the equation E =

U(qa) = U(qb). In phase space, the trajectory of the system belongs to a family

of closed orbits parameterized by E. To achieve action-angle coordinates we want

to transform the coordinate and momentum of the system such that this family of

orbits becomes a family of circles, each of which is traversed at a constant, but

energy dependent, angular rate, Ω(E). This transformation must preserve the area

of the orbits so that the parameterized family remains ordered by the energy; such

a transformation is a canonical transformation. By virtue of this transformation, an

orbit will be transformed into a circle with a radius given by its area normalized by

2π. This radius is the action, I, defined by

I(E) =
1

2π

∮
pdq., (4.3)

which is a monotonic function of E. We can therefore use I in place of E to param-
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eterize the family of periodic orbits. To show that I is monotonic, we consider the

derivative,

∂I

∂E
=

1

π

∫ qb

qa

∂p

∂E
dq =

1

π

∫ qb

qa

1

p
dq =

1

π

∫ tb

ta
dt =

T

2π
≥ 0, (4.4)

where T is the period of the orbit. To obtain this result we have used ∂pE = ∂pH = p

and dq = pdt. Thus, for any orbit of finite non-zero period, I is monotonic and we

find that the resonator frequency is given by

ω(I) =

(
∂I

∂E

)−1
. (4.5)

In order to ensure that the phase space transformation preserves area, we used a gen-

erating function for the transformation [50]. For the action-angle coordinate trans-

formation, the generating function is

S0(q, I) =

∫
p(q, I)dq. (4.6)

The function p(q, I) is obtained from equations (4.2) and (4.3) with E(I) = H. The

canonical coordinate transformation defined by a generating function of this type is

given by [50]

p =
∂S0(q, I)

∂q
, (4.7)

Θ =
∂S0(q, I)

∂I
, (4.8)

where q and p are the old coordinate and conjugate momentum and Θ and I are the

new coordinate and conjugate momentum. In principle, to perform this coordinate

change, it is necessary to evaluate and invert equations (4.3) and (4.8). However,

here we are looking at the general case, and so we do not need to do this, only note
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that it is possible. In order to apply this transformation to equations (4.1), we make

use of the following identities,

(
∂q

∂Θ

∣∣∣∣
I

)−1
=

∂Θ

∂q

∣∣∣∣
I

=
∂2S0(q, I)

∂I∂q
=
∂p

∂I

∣∣∣∣
q

=
∂p

∂E

∣∣∣∣
q

∂E

∂I
=
ω

p
, (4.9)

∂p

∂Θ

∣∣∣∣
I

= −1

p
U ′(q) ∂q

∂Θ

∣∣∣∣
I

= − 1

ω
U ′(q), (4.10)

∂p

∂I

∣∣∣∣
Θ

=
ω

p
− 1

p
U ′(q)∂q

∂I

∣∣∣∣
Θ
. (4.11)

Now, we can rewrite equation (4.1) in terms of the new coordinates, Θ and I, by

using the functions p(Θ, I) and q(Θ, I), as follows

q̇ =
∂q

∂Θ
Θ̇ +

∂q

∂I
İ =

p

ω
Θ̇ +

∂q

∂I
İ = p, (4.12)

ṗ =
∂p

∂Θ
Θ̇ +

∂p

∂I
İ = − 1

ω
U ′(q)Θ̇ +

(
ω

p
− U ′(q)

p

∂q

∂I

)
İ = −U ′(q) + F. (4.13)

Solving for İ and Θ̇ gives the resonator equation in action-angle coordinates

İ = (∂Θq)F,

Θ̇ = ω(I)− (∂Iq)F.

(4.14)

Note that when F = 0 this provides the desired form in which the phase space consists

of circles on which I remains constant and which are traversed at constant angular

rate ω(I). When F is small, we use this convenient solution as a basis for perturbation

calculations.

4.2 Microscopic Resonator Model

Before proceeding to treat equations (4.14), we pause to discuss what kind of terms

we might expect to find in the perturbation, F , for an oscillator. Generally, we
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can split F up into two parts, one arising from the resonator’s interaction with the

environment and another arising from the feedback loop. In this section we consider

the first part. In section 4.3 we consider the complete closed loop dynamics.

In order to examine components of F that arise from the resonator’s interaction

with the environment, we must model the resonator and environment as a complete

system. We therefore review the theory of an oscillator coupled to a medium, following

Dykman and Krivoglaz [36]. The interested reader is directed to this reference and

its cited works for a more complete discussion.

Our microscopic resonator model is a nonlinear conservative oscillator coupled to

a bath modeled by a large number of harmonic oscillators. This model is appropriate

for a NEMS resonator where the nonlinear resonator of interest is a particular mode of

the complete device and substrate system. The thermal bath consists of the myriad of

other vibrational modes of this system. We assume the nonlinear oscillator is driven

by an external force and therefore it’s coordinate and momenta are not necessarily

small. On the other hand, the bath oscillators are assumed to have small amplitude

so that the we can drop cubic and higher order terms in the Hamiltonian. A change of

coordinates among the bath variables is always possible that will decouple the linear

bath subsystem, and so we also drop coupling between modes of the bath. Finally,

we assume that the coupling between the oscillator of interest and the bath is weak,

and so we keep only the linear terms in the bath coordinates. The Hamiltonian for

this combined system is given by

H =
p20
2

+ U(q0) +
∑
k

(
p2k
2

+
1

2
ω2
kq

2
k + εkqkHI (p0, q0)

)
− q0f0 cosωt, (4.15)

where the singled-out nonlinear oscillator is described by coordinate q0, momentum

p0, and potential U(q0), and the bath oscillators are described by coordinates qk and

momenta pk. The function HI captures the dependence of the interaction energy on
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the nonlinear oscillator’s coordinate and momentum. For now, we leave this function

unspecified. The equations of motion for this system can be written as

q̇0 = p0 +
∂HI
∂p0

∑
k

εkqk, (4.16)

ṗ0 = −U ′(q0)−
∂HI
∂q0

∑
k

εkqk + f0 cosωt, (4.17)

q̈k + ωkqk = −εkHI (p0, q0), (4.18)

where we have removed the bath momenta variables by the substitution pk = q̇k. We

can remove the bath variables from equations (4.16) and (4.17) by formally solving

equation (4.18). The solution is

qk(t) = Ak cos(ωkt+ φk)−
∫ t

0

εk
ωk

sin
(
ωk(t− τ)

)
HI
(
p0(τ), q0(τ)

)
dτ, (4.19)

where Ak and φk capture the initial conditions of the kth environmental oscillator.

These are unknown and so we model them as random variables distributed according

to the laws of equilibrium thermodynamics. Since the bath oscillators are uncoupled,

their initial conditions are independent random variables. The probability for the kth

bath oscillator to have amplitude Ak ∈ [A,A + dA] and phase φk ∈ [φ, φ + dφ] is

given by the Boltzmann distribution

P{Ak ∈ [A,A+ dA], φk ∈ [φ, φ+ dφ]} =
ω2
k

2πkbT
exp

[
−
ω2
kA

2

2kbT

]
A dA dφ, (4.20)

where Ak ≥ 0, φk ∈ [0, 2π], kb is Boltzmann’s constant, and T is the bath temper-

ature. The phase, φk, is uniformly distributed, so equation (4.20) is independent of

φ. To apply equation (4.19) to equations (4.16) and (4.17) we must consider the sum
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over k on εkqk. We partition this term into two pieces. The first piece is the sum

over the homogeneous solutions, which gives a random process, ξ(t), parameterized

by the random variables Ak and φk. The second piece is the sum over the particular

solutions which gives a functional, L[p0, q0], describing the retarded reaction of the

environment on the nonlinear oscillator. These effects are expressed as

ξ(t) ≡
∑
k

εkAk cos(ωkt+ φk), (4.21)

L[p0, q0] ≡
∑
k

∫ t

0

ε2k
ωk

sin
(
ωk(τ − t)

)
HI
(
p0(τ), q0(τ)

)
dτ. (4.22)

The environment is assumed to contain a large number of harmonic oscillators. Ac-

cordingly, we approximate the sum over k as an integral. Toward this end, we define

the spectral density of the bath, g(ω), as

∑
ω<ωk<ω+dω

ε2k
ωk

= ωg(ω)dω. (4.23)

As mentioned above, the sum over the homogeneous solutions of the bath oscillators,

ξ(t), represents a stochastic process. This process has zero mean, since the phases are

uniformly distributed over [0, 2π], and the autocorrelation function for this process is

given by

〈ξ(t)ξ(t′)〉 = kbT

∫ ∞
0

g(ω) cos
(
ω(t− t′)

)
dω. (4.24)

In the simple case where g is a constant, we have 〈ξ(t)ξ(t′)〉 = πgkbTδ(t − t
′). The

power spectral density for ξ is then given by

Sξ(ω) =

∫ ∞
−∞

e−iωt〈ξ(t)ξ(0)〉dt = πkbTg(ω). (4.25)
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The sum over the particular solutions of the bath oscillators, equation (4.22), requires

more detailed treatment. First, we write the interaction term, HI , as

HI
(
p0(τ), q0(τ)

)
=
∑
n
An(τ)eiΩnτ , (4.26)

where Ωn = nΩ are the harmonics of the expansion frequency Next we note that

when t − τ becomes sufficiently large the summation of sinusoids in equation (4.22)

becomes approximately zero. The time beyond which this occurs is the correlation

time of the bath, tc. This correlation time is of the order ω−1
c where ωc is the cutoff

frequency, i.e., the largest frequency of the bath oscillators. We now assume that the

coefficients An change very little over the bath correlation time, tc. Accordingly, we

expand An in a Taylor series about τ = t and keep only the first term,

HI
(
p0(τ), q0(τ)

)
=

∑
n
eiΩnτ (An(t) + Ȧn(t)(τ − t) + · · · ), (4.27)

≈
∑
n
An(t)eiΩnτ . (4.28)

This assumption requires that the resonator relaxes slowly with respect to the bath

correlation time. After making this approximation in equation (4.22) we can evaluate

the integral over the time variable, τ . This gives

L ≈
∑
n,k

ε2k
ωk

An(t)eiΩnt
∫ 0

−t
dt1e

iΩnt1 sin(ωkt1)

=
∑
n,k

ε2k
2ωk

An(t)eiΩnt

[
1− e−i(Ωn−ωk)t

Ωn − ωk
− 1− e−i(Ωn+ωk)t

Ωn + ωk

]
.

(4.29)

In order to further simply the expression for the functional L, we consider only times

much large than the correlation time of the bath, t � tc. This allows us to ignore

the initial transient of the bath and arrive at a “steady-state” resonator model. For
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large t, we make the approximation (for t > 0)

1− e−i(Ωn±ω)t

Ωn ± ω
≈ iπδ(Ωn ± ω) + v. p.

1

Ωn ± ω
, (4.30)

where v. p. stands for the principal value. Approximating the sum as an integral in

equation (4.29) and applying equation (4.30) gives

L ≈
∑
n
An(t)eiΩnt [2iΓnΩn − Pn] , (4.31)

where Γn and Pn are

Γn ≡ 1

4
πg(Ωn), (4.32)

Pn ≡ v. p.

∫ ∞
0

ω2g(ω)

Ω2
n − ω2

dω. (4.33)

This completes the development of the microscopic resonator model. We now rewrite

the resonator equations so that they can be viewed collectively. We also drop the

subscript ’0’ on the coordinate and momentum, since all other similar coordinates

have been removed. The resulting resonator equations are

q̇ = p+
∂HI
∂p

(
ξ(t) + L[p, q]

)
, (4.34)

ṗ = −U ′(q)−
∂HI
∂q

(
ξ(t) + L[p, q]

)
+ f0 cosωt, (4.35)

An =
Ω

2π

∫ π/Ω

−π/Ω
HIe
−inΩtdt, (4.36)

L[p, q] ≈
∑
n
einΩtAn

[
2inΩΓn − Pn

]
. (4.37)

As a simple example, suppose that U = 1
2ω

2
0q

2 and HI = q, which is the sim-

plest example that yields a nontrivial result. We suppose that q = ueiωt + c.c. and
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p = iωueiωt + c.c. where c.c. stands for complex conjugate. For this example, the

expansion frequency for HI is Ω = ω and we have A1 = u, A−1 = u∗ and An = 0

for all other n. Applying this example to equations (4.34)-(4.37) yields a differential

equation u(t). Assuming that u changes slowly in time, we apply the method of

averaging. The resulting slow flow equation for u is

u̇ =

(
− Γ− i(ω − ω̂0)

)
u−

if0
4ω

+
ie−iωt

2ω
ξ(t), (4.38)

where ω̂0 is the renormalized resonator frequency ω̂2
0 = ω2

0 −P and we have dropped

the subscripts on Γ and P since there is only one value for each, namely Γ1 and

P1. This result is self consistent with our assumptions so long as the damping rate,

Γ, the detuning, ω − ω̂0, the external excitation amplitude, f0, and the noise ξ

are sufficiently small. This is consistent with a high quality resonator forced near

its resonant frequency. The noise force ie−iωtξ(t)/2ω can be approximated by a

complex white Gaussian noise with uncorrelated real and imaginary parts, each with

strength ΓkbT/ω
2, so smallness of Γ implies smallness of ξ. This is the same slow

flow equation one would obtain from the phenomenological resonator model

q̈ + 2Γq̇ + ω̂2
0q = f0 cosωt− ξ(t). (4.39)

Thus we see that the coupling to the bath has the net effect of producing a frequency

shift, a damping force, and a noise force for the resonator.

As another example, suppose that U = 1
2ω

2
0q

2 + 1
4γq

4 and HI = q + αq2. Then

we employ the conventional van der pol transformation q = x cosωt + y sinωt, p =

−ωx sinωt+ωy cosωt. Applying this transformation to equations (4.34)-(4.37) gives

the equations for the quadrature coordinates x and y. These coordinates vary slowly in

time if the detuning ω−ω̂0, the renormalized nonlinear coefficient, γ̂ = γ− 2
3α

2(2P0+
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P2), the damping coefficients, Γn, and the noise, ξ(t), are small. As in the previous

example, ω̂0 is the renormalized linear oscillator frequency, ω̂2
0 = ω2

0−P1. Assuming

that these terms are small, we apply the method of averaging and obtain

ẋ = −Γ1x− α
2Γ2(x2 + y2)x− (ω − ω̂0)y − 3γ̂

8ω
(x2 + y2)y (4.40)

+
ξ(t)

ω
sinωt

(
1 + 2αx cosωt+ 2αy sinωt

)
,

ẏ = −Γ1y − α
2Γ2(x2 + y2)y + (ω − ω̂0)x+

3γ̂

8ω
(x2 + y2)x+

f0
4ω

(4.41)

−ξ(t)
ω

cosωt
(
1 + 2αx cosωt+ 2αy sinωt

)
.

These slow flow equations are consistent with those resulting from the phenomeno-

logical model

q̈ + 2Γ1q̇ + 8α2Γ2q
2q̇ + ω̂2

0q + γ̂q3 + (1 + 2αq)ξ(t) = f0 cosωt. (4.42)

This model exhibits additive and multiplicative noise. It is known that the diffusion

rate of the phase of a self excited oscillator resulting from additive noise decreases

with increasing oscillator amplitude [72]. This motivates strong driving of the oscil-

lator’s frequency selective element, eliciting nonlinear behavior. The above example

illustrates that how larger resonator amplitudes can bring multiplicative noise from

the coupling to the environment. The multiplicative noise can be thought of as a fluc-

tuation in the frequency of the resonator. We show below, equation (4.84), that the

multiplicative noise produces phase diffusion in an oscillator that does not decrease

with oscillator amplitude while the oscillator is operated in the linear range.

In the analysis above we have neglected quadratic terms in the bath coordinates,

qk, in the interaction energy which couples the oscillator to the environment, see

equation (4.15). This was done to simplify the discussion in this dissertation. These

terms, however, can contribute to phase noise in self excited oscillators. Analysis
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of a resonator model including these terms can be found in references [34, 36]. Our

analysis in the following section begins with a general phenomenological model, so the

simplified microscopic model employed in this section does not diminish the generality

of the subsequent results.

4.3 Oscillator Frequency Fluctuations

In this section, we consider general closed loop equations for a self-sustained nonlinear

oscillator. We neglect the dynamics of the feedback loop, modeling the feedback forces

on the resonator as instantaneous functions of the resonator state. As in the previous

section, the resonator is assumed to be lightly damped as a result of weak coupling

to a thermal bath. In the previous section we demonstrated that coupling to the

bath produces three types of forces acting on the resonator: conservative forces that

renormalize the resonator potential, damping forces which account for the loss of

energy into the bath, and stochastic forces which result from the summed motion of

the many degrees of freedom present in the bath. From this insight, we model our

self-excited oscillator phenomenologically as follows. The resonator is assumed to be

nearly conservative with a potential U(q). This contains the conservative forces due

to coupling to the bath. In addition, we add the friction forces L(p, q) which capture

the energy loss into the bath, the driving, or gain, forces G(p, q) which arise from

the feedback loop, and the fluctuating forces f(p, q, t) which arise from the thermal

motion of the bath and the noise processes produced by the feedback electronics.

Thus, the resonator equation of motion is

q̇ = p, (4.43)

ṗ = −∂qU +G(p, q)− L(p, q) + f(p, q, t). (4.44)
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Note that we found that coupling to the bath can produce additional terms in the q̇

equation when the coupling is a function of p. For this model, we assume that should

any such coupling be present, we can redefine p to be identically q̇ and lump the

resulting perturbations into f . We assume that L and G are small compared to the

characteristic value of the conservative force, |∂qU |, which implies small dissipation

and small gains required to maintain oscillation. The various effects lumped into f

are also assumed to be similarly small, and the stochastic processes found in f(p, q, t)

are taken to be stationary with zero mean. Stationarity is required for the oscillator

to have time-translational symmetry, and any nonzero mean may be moved from f

to the other terms in the equation.

Important for our analysis is the separation of time scales into the “fast” time

on the order of the vibration period, and slow times on the order of the vibration

decay rate. It is this slow scale on which small random perturbations accumulate.

As discussed in section 4.1, action-angle coordinates are the natural variables for the

treatment of this nearly conservative system, for which the action and angle will vary

on the slow time scale. Thus, we use a canonical coordinate transformation from (p, q)

to action-angle coordinates, (I, φ), expressed by functions p(φ, I), q(φ, I) that are 2π

periodic in φ. Without loss of generality, we set φ = 0, π at the turning points at

which p = 0. Accordingly, q is an even function in φ and p is odd in φ. To describe the

oscillator in action-angle coordinates, we use equation (4.14) with the perturbation,

F , from equations (4.43) and (4.44). This gives

İ = (∂φq)(G− L+ f), (4.45)

φ̇ = ω(I)− (∂Iq)(G− L+ f). (4.46)

The assertion that G, L, and f are weak perturbations on the resonator imply that all

terms in equations (4.45) and (4.46) are small compared to ω(I) during steady-state
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operation. The oscillator action and frequency fluctuate about their mean values,

I0 = 〈I〉 and Ω = 〈φ̇〉 respectively. It is assumed that these fluctuations are small

and that ω(I) remains close to Ω, i.e. any shift in the resonator frequency due to

the perturbative terms is also small. Equations (4.45) and (4.46) exhibit a separation

of time scales, since the angle, φ, varies rapidly while the action, I, and the time

deviation, x(t), defined by [3],

x(t) =
φ− Ωt

Ω
, (4.47)

vary slowly. The time deviation x(t) is a quantity of primary interest for the appli-

cations of a resonator as a time standard, as it describes the deviation of time as

measured by the oscillator from the desired (true) time. A related quantity is the

time derivative of x(t), known as the fractional frequency fluctuation [3],

y(t) = ẋ(t) =
φ̇− Ω

Ω
, (4.48)

which is an instantaneous measure of the oscillator frequency deviation. Among the

common measures of oscillator stability [3] is the spectrum of fractional frequency

fluctuations, Sy(ν), which we presently use to quantify the frequency noise in our

oscillator model.

We begin by defining the phase deviation ϕ = φ− Ωt. Changing phase variables

from φ to ϕ in equations (4.45) and (4.46) gives

İ = (∂ϕq)(G− L+ f), (4.49)

ϕ̇ = σ(I)− (∂Iq)(G− L+ f), (4.50)

where σ(I) = ω(I)−Ω is the oscillator detuning, which is assumed to be small. With

the change to the phase deviation, the right hand sides of equations (4.49) and (4.50)
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have become small, and are also periodic in time. Thus, the oscillator equations are

now in a form amenable to the method of averaging.

In appendix B we discuss how a near-identity coordinate transformation can be

used to push the time-periodic aspects of the system out to higher order. Subsequent

truncation of the series yields a simplified model that asymptotically describes the

system behavior. This method can be used to treat non-white noises, and therefore

can handle 1/f type noise (here f is frequency) so long as the perturbations remain

small. This requires that either a finite time interval be considered, or a low frequency

cut-off be imposed on 1/f type noises, which amounts to the same thing. We now

treat equations (4.49) and (4.50) with this method. First, we expand the stochastic

terms in a Fourier series in φ. We assume that the Fourier coefficients can be separated

into functions of action, I, and time, t,

(∂µq)f =
∑
n,k

A
(µ)
n,k

(I)eik(ϕ+Ωt)ζn(t), µ = I, ϕ. (4.51)

The near identity coordinate transformation operates on the use of a fictitious nar-

row band filter with impulse response h(t) and frequency response H(ω) centered

at ω = 0 with H(0) = 1. Moreover, we assume that the cutoff frequency for this

filtering function is less than Ω/2. By use of this filtering function, we construct the

transformed stochastic processes, ξϕ and ξI , by the integral

ξµ ≡
∑
n,k

A
(µ)
n,k

eikϕ
∫ ∞
−∞

h(t− t′)ζn(t′)eikΩt′dt′. (4.52)

The processes ξµ have zero mean by our original assumption on f . The spectra of ξµ

can be calculated from the spectra of ζn(t). Let

〈
ζn(t)ζm(t′)

〉
=

1

2π

∫ ∞
−∞

Rn,m(ω)eiω(t−t′)dω. (4.53)
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Since we assumed the filtering function has a cutoff frequency less than Ω/2, the

transformed noise processes are wide-sense stationary. Letting Sµ,ν be the cross-

spectrum of ξµ and ξν , we find

Sµ,ν(I, ω) =

∫ ∞
−∞
〈ξµ(I, t)ξν(I, 0)〉e−iωtdt

=
∑
n,m,k

A
(µ)
n,k

(I)A
(ν)
m,−k(I)Rn,m(ω − kΩ)|H(ω)|2. (4.54)

From equation (4.54) we can see how the nearly periodic motion of the oscillator

selects the noise spectra near the harmonics of its fundamental frequency. The noise

in these narrow bands is modulated down to baseband by the oscillator motion and

accumulates over long times, resulting in diffusion of the phase. A diagram illustrating

this phenomenon is shown in figure 4.2. In this figure a hypothetical noise spectrum

is plotted along with several narrow-band filtering functions. These functions are

given different heights illustrating that the magnitudes of the harmonics modulating

the noise typically decrease as the order of the harmonic increases. This effect is

described in the functions A
(µ)
n,k

A
(ν)
m,−k, which we expect to show a general trend of

decreasing with increasing k.

The formulation in appendix B illustrates how the noise terms (∂µq)f also give

rise to a deterministic drift term. The noise-induced drift can likewise be written in

terms of the Fourier expansion coefficients, as follows

dµ =
∑
n,m,k

A(ϕ)
n,k

∂A
(µ)
m,−k
∂I

+ ikA
(I)
n,k

A
(µ)
m,−k


×
∫ ∞
−∞

Rn,m(ω − kΩ)
1− |H(ω)|2

2πiω
dω. (4.55)

From equation (4.55) we can see that the noise-induced drift is a mean effect arising

from the noise at frequencies away from the oscillator harmonics. If the noise is taken
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noise spectrum

Schematic representation of the
oscillator transfer function
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ν/Ω

Figure 4.2: Illustration depicting how noise is filtered and down-converted. The noise
is selected near the oscillator harmonics, that is, in the shaded regions, weighted by
the Fourier coefficients in equation (4.51), and modulated down to baseband by the
oscillator motion.

to be white, then Rn,m is a constant and the integrand is odd. Thus, the integration

gives zero and this drift is zero.

The final term in the transformed equations comes from the deterministic part of

the oscillator equation. This is simply the average of the deterministic terms over one

period. The final form of equations (4.49) and (4.50) after the transformation is

İ ≈ (∂ϕq)(G− L) + dϕ(I) + ξϕ(I, t), (4.56)

ϕ̇ ≈ σ(I)− (∂Iq)(G− L)− dI (I)− ξI (I, t), (4.57)

where the overline means averaging over ϕ. We note that the right hand sides of

equations (4.56) and (4.57) are independent of ϕ. This is a consequence of the time-

translational symmetry of the oscillator. Without knowledge of a reference time, the

phase must have a zero eigenvalue and so it does not appear in equations (4.56) and

(4.57). We expect the oscillator to reach a steady state where the action fluctuates

about a mean value, denoted I0. Assuming these fluctuations are small, we expand
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equations (4.56) and (4.57) in I about I0. Let

0 =
[
(∂ϕq)(G− L) + dϕ(I)

]
I=I0

, (4.58)

Ω =
[
ω(I)− (∂Iq)(G− L)− dI (I)

]
I=I0

, (4.59)

α =
∂

∂I

[
(∂ϕq)(G− L) + dϕ(I)

]
I=I0

, (4.60)

β =
∂

∂I

[
σ(I)− (∂Iq)(G− L)− dI (I)

]
I=I0

. (4.61)

Keeping only leading order terms in the expansion, we approximate equations (4.56)

and (4.57) as

İ = −α(I − I0) + ξϕ(I0, t), (4.62)

ϕ̇ = β(I − I0)− ξI (I0, t). (4.63)

The fractional frequency fluctuation, defined in equation (4.48), can be expressed as

y = ϕ̇/Ω. To find its first two moments, we solve equation (4.62) and substitute the

solution into equation (4.63). Naturally y has zero mean since we defined Ω to be

the mean frequency. We characterize the second moment of y by its power spectral

density. The spectrum of frequency fluctuations can be written as a function of the

spectra of the noises acting on the action and angle coordiantes, ξϕ and ξI , and is

given by

Sy(ω) =
β2

Ω2

Sϕ,ϕ(ω)

α2 + ω2
− 2αβ

Ω2

Sϕ,I (ω)

α2 + ω2
+

1

Ω2
SI,I (ω), (4.64)

where the spectra Sµ,ν are given in equation (4.54). From equation (4.64) we see

that the fluctuations that cause phase diffusion can be sorted into two groups. The

first group are noise sources that cause fluctuations in the resonator action, which

then couples to the phase, resulting in phase diffusion. The second group are noise
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sources that directly affect the phase. The first group can be removed by setting

β = 0 such that the oscillator action and phase coordinates are decoupled. For an

oscillator employing a linear resonator as the frequency selective element, we have

σ′(I) = 0. In addition, we note that ∂Iq is an even function of φ. Therefore, the

action and phase coordinates will be uncoupled if G− L is an odd function of φ and

dI = 0. This is often the case, and even if it is not, the coupling will generally be

small since σ′(I) = ω′(I) is the dominant term in (4.61). This is one reason why it

is often favorable to use linear resonators in oscillator designs. However, nonlinear

resonators may also exhibit decoupling of the action and phase coordinates [38]. In

the next section we discuss an example and examine the phase noise characteristics

of a hypothetical oscillator constructed with such a resonator.

Before discussing the example, however, we will provide a summary of the neces-

sary steps required to calculate the spectrum of frequency fluctuations. The necessary

tasks are as follows.

1. Obtain an ODE model for the oscillator.

2. Separate the model into i) a conservative subsystem with potential U , ii) a deter-

ministic perturbation, G− L, and iii) a zero mean stochastic perturbation, f .

3. Calculate the action-angle transformation for the conservative subsystem to obtain

the orbit function q(Θ, I) and the frequency dispersion ω(I).

4. Calculate the Fourier coefficients of the noise terms (∂µq)f for µ = Θ, I, implicitly

defined in equation (4.51).

5. Choose a filtering function, H(ω), e.g. a rectangular window of width min[ω(I)/2].

6. Calculate the noise induced drift using equation (4.55).

7. Average the deterministic perturbation over one cycle of the angle.

8. Calculate Ω, α, and β using equations (4.59-4.61).

9. Calculate the slow noise spectra using equation (4.54).

10. Calculate the spectrum of frequency fluctuations using equation (4.64).
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4.4 The Biased Duffing Oscillator

In this section, we examine the phase noise in an oscillator employing a prototypical

nonlinear resonator modeled by Duffing’s equation with constant bias force. The exer-

cise is an illustration of the results obtained in the previous section and demonstrates

how phase noise can be reduced by tuning the oscillator’s operating point. We begin

by considering the conservative subsystem that generates the periodic orbits along

which the perturbations are calculated. The potential of the conservative subsystem

is given by

U(q) =
1

4
q4 +

1

2
q2 + λq, (4.65)

where λ is the bias force. Equation (4.65) is a one-parameter family of resonator

potentials which brings another parameter to our optimization problem in addition

to those describing the feedback force. In order to do this, we must first calculate the

action-angle coordinate transformation. This requires the four roots of the equation

U(q)− E = 0, which are difficult to find in closed form for arbitrary λ. Thus, we let

a, b, c, and c∗ represent the four roots, to be found numerically, and proceed with

the analysis. Note that these roots are functions of the bias parameter, λ, and the

operating action, I. We let a and b be the real roots with b > a, q(0, I) = b, and

q(π, I) = a. The complex root are not of interest for the present analysis.

The conservative subsystem of our oscillator model is described by the differential

equation q̈ + U ′(q) = 0. The solution to this equation is

q(t) =
(aB + bA) + (bA− aB) cn(u|m)

(A+B) + (A−B) cn(u|m)
, (4.66)

u =

√
AB

2
t, (4.67)

where cn(u|m) is a Jacobi elliptic function with argument u and parameter m, and
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Figure 4.3: Frequency dispersion for the biased Duffing resonator for several values
of the bias. Red dashed line is the locus of critical (zero dispersion) points.

A, B, and m are

A = |a− c|, (4.68)

B = |b− c|, (4.69)

m =
(a− b)2 − (A−B)2

4AB
. (4.70)

The fundamental frequency of q(t) given in equation (4.66) is

ω(I) =
π
√

2AB

4K(m)
, (4.71)

where K(m) is the complete elliptic integral of the first kind with parameter m [1, 18].

The frequency as a function of action is shown in figure 4.3 for various values of λ. The

key feature of the frequency dispersion curves is the extrema, called zero dispersion

points, which exist for sufficiently large λ. The red dashed line in figure 4.3 traces

the locus of these extrema. While this resonator exhibits points of zero dispersion,

it is just one example of a broad class of nonlinear resonators with this feature; for

other examples see [101]. The complete action-angle coordinate transformation can

be constructed from the solution (4.66) by assigning each point on the orbit an angle
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Figure 4.4: Several closed orbits belonging to the potential (4.65) with (a) λ = 0 and
(b) λ = 4.

from 0 to 2π. We do this by relating the angle to time,

t =
2K(m)

π

√
2

AB
φ. (4.72)

This gives the coordinate transformation

q(φ, I) =
(aB + bA) + (bA− aB) cn(u|m)

(A+B) + (A−B) cn(u|m)
, (4.73)

p(φ, I) = ω(I)
∂q(φ, I)

∂φ
, (4.74)

u =
2K(m)

π
φ. (4.75)

Several example orbits are shown in figure 4.4, for λ = 0 and λ = 4. These figures

show that the one parameter family of potentials considered in this problem includes

orbits with a variety of shapes.

Before proceeding to discuss the other aspects of our oscillator model, we will

examine the function q(φ, I) in the limits of large and small action. For small action
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U(q) can be approximated as a parabola. Thus

q(φ, I) ≈ q0(λ) +

√
2I

ω0(λ)
cosφ, (4.76)

where ω0(λ) is the frequency of the resonator in the limit I → 0. For small action

the frequency is independent of the action and so we have q ∝ I1/2 and p ∝ I1/2.

For large action, the potential can be approximated by U ≈ q4/4, giving

q(φ, I) ≈
(

3π

2K(0.5)
I

)1/3
cn

(
2K(0.5)

π
φ

)
. (4.77)

In this approximation we have q ∝ I1/3 and ω ∝ I1/3, so p ∝ I2/3. From these

limiting cases for q(φ, I), we can develop scaling laws for noise sources that may

provide insight useful for locating an optimal operating point. For example, suppose

that f includes the term (q− q0)apbζi(t). Such noise terms may arise from nonlinear

coupling, through the coordinate, to the environment or noise in the feedback loop.

By considering time symmetries of the response and the small and large action limits

of p and q, we can obtain some useful information about the noise processes ξϕ and

ξI that are ultimately responsible for diffusion of the oscillator phase. First, we recall

that q is evenin φ and p is odd in φ. It follows that

A
(I)
i,−k = (−1)bA

(I)
i,k

, (4.78)

A
(ϕ)
i,−k = (−1)b+1A

(ϕ)
i,k

. (4.79)

Next, by applying the scaling limits for p and q noted above we determine the following
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scaling of the harmonic coefficients,

A
(I)
i,k
∝

{
I(a+b−1)/2 for small I

I(a+2b−2)/3 for large I
, (4.80)

A
(ϕ)
i,k
∝

{
I(a+b+1)/2 for small I

I(a+2b+1)/3 for large I
. (4.81)

Using the symmetry arguments, equations (4.78) and (4.79), the sum over k with

n = m in equation (4.55) gives zero. Therefore, a noise such as the one considered

here cannot directly induce a frequency shift, though such a shift may be possible

through correlations with other noises. Next we examine the scaling of the spectral

components, Sµ,ν , arising from the noise term considered. Applying the scaling laws

in equations (4.80) and (4.81) to equation (4.54) we find

Sϕ,ϕ ∝

{
Ia+b+1 for small I

I(2a+4b+2)/3 for large I
, (4.82)

Sϕ,I ∝

{
Ia+b for small I

I(2a+4b−1)/3 for large I
, (4.83)

SI,I ∝

{
Ia+b−1 for small I

I(2a+4b−4)/3 for large I
. (4.84)

It is understood that additive noise in an oscillator employing a linear resonator pro-

duces phase noise that decreases as the inverse of the oscillator amplitude squared

[72]. This result is captured here as well. For small action the resonator is approx-

imately linear and the action-angle coupling coefficient is approximately zero. The

spectrum SI,I dominates the spectrum of fractional frequency fluctuations. For an

additive noise a = b = 0 and we have SI,I ∝ I−1. For large action multiplicative

noise will dominate additive noises. Moreover, Sϕ,ϕ will dominate SI,I unless the
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action linear coefficient α is very large and/or the action-angle coupling coefficient β

is very small. Thus we again see, as we saw in equation (4.64), that is favorable to

operate the oscillator where the action and angle become decoupled, that is, where

β = 0. Operating in this parameter subspace, the remaining parameters should be

chosen to minimize SI,I . Note that a minimum w.r.t. action should exist if multi-

plicative noises of sufficiently high order, 2a+ 4b−4 > 0, exist. Otherwise, we should

raise the action as high as possible to reduce the phase noise.

To continue with our example, we now construct the remaining terms in our

oscillator model. We choose our loss and noise terms by appealing to the microscopic

resonator model discussed in section 4.2. Moreover, we will assume the “Ohmic

dissipation model” by taking g(ω) to be a constant value g for ω up to a cutoff

frequency ωc. This model is valid when the bath can respond quickly compare to the

motion of the resonator. The consequence of this assumption is that we take Pn = P

and Γn = Γ for all n. Next, we take

HI = (q − q0) +
1

2
(q − q0)2, (4.85)

and assume those terms proportional to P have already been incorporated into the

potential given in equation (4.65). With this form of the interaction function, HI , the

loss of energy to the bath is given by the microscopic resonator formulation, equations

(4.16) and (4.17),

L = 2Γp

(
1 + 2(q − q0) + (q − q0)2

)
. (4.86)

The first term is the usual viscous friction, the averaged effect of which is linear in

the action, I,

(∂φq)L1 =
Γ

π

∫ π

−π
p
∂q

∂φ
dφ =

Γ

π

∮
p dq = 2ΓI. (4.87)
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The higher order terms, which cannot be averaged in closed form, give nonlinear

friction. This loss model does not shift the frequency since q− q0 and ∂Iq are even in

φ and p is odd, rendering (∂Iq)L = 0 by symmetry. The microscopic resonator model

also gives the multiplicative noise acting on the resonator due to the environment

fenv = ξenv(t)

(
1 + q − q0

)
. (4.88)

For simplicity we assume that ξenv(t) is a white noise with strength Denv. The white

noise assumption is the simplest since the noise-induced drift terms dϕ and dI in the

averaged oscillator model, equations (4.56) and (4.57), are zero.

To compensate for the energy loss, the feedback loop must replenish the resonator’s

energy. This can be done in a variety of ways from simple positive feedback to

parametric forcing. The various methods may differ in the details, but they result

in a qualitatively similar average effect. We therefore choose to consider a saturated

feedback of the resonator velocity, with specific gain model of

G = g1 tanh
[
g2
(
q(φ+ θ, I)− q0

)]
, (4.89)

where g1 is the feedback saturation level, g2 is a parameter used to capture the

rapid, but finite, rate of change of the saturation device in the feedback circuit, and

θ is a phase shift. This phase shift is necessary for the force G to do work on the

resonator. The maximum work is done when θ = ±π/2. This type of feedback could

be constructed by measuring the resonator motion, amplifying it, and then passing it

through a hard limiter. The physical implementation of the feedback loop must also

bring with it some noise. We therefore add to our noise model a term arising from

the feedback loop. A simple model is to assume that the feedback coefficients g1 and
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θ fluctuate about their nominal values. This leads to the feedback noise model

ffb = ξfb,1(t) tanh
[
g2
(
q(φ+ θ, I)− q0

)]
+ξfb,2(t)

g1g2
ω

sech2[g2(q(φ+ θ, I)− q0
)]
p(φ+ θ, I), (4.90)

where ξfb1
(t) represents the fluctuations of g1 and ξfb2

(t) represents the fluctuations

of θ. Both noises are assumed to be white and uncorrelated with each other and ξenv,

and the noise strengths are taken to be Dfb,i, i = 1, 2.

This oscillator model possesses three tunable parameters: the feedback parame-

ters, g1, and θ, and the resonator (bias) parameter λ. All other parameters can be

thought of as given once a resonator element is selected. The feedback parameter g1

is related to the action at the oscillator operating point by requiring 〈İ〉 = 0. Thus,

we can replace this parameter with the operating action I0. For simplicity, we set

θ = π/2 so that the feedback does the maximum work on the resonator. We are

thus left with two tunable parameters which we can vary over a reasonable range.

The action will be confined to values less than 10, where the nonlinearity becomes

extremely strong. The bias will be confined to values less than 2.5 which corresponds

with shifting the equilibrium position to q0 = −1.11, pushing the system again into

the strongly nonlinear region. For our numeric study we will let Γ = 5× 10−4 which

corresponds with a quality factor of Q = 1000 when the resonator is unbiased and

undergoing small oscillations. This value of the quality factor is commonly obtainable

for N/MEMS devices [81]. For the slew rate parameter we set g2 = 500, and for the

noise strengths we set Dfb,1 = Dfb,2 = 10Denv.

Figure 4.5 shows the logarithm of the spectrum of fractional frequency fluctuations

evaluated at zero frequency, Sy(0), normalized by Denv. This quantity represents

the long term phase diffusion coefficient. Figure 4.6 shows the corresponding mean

oscillator frequencies. In both plots a dashed white line indicates the locus of zero
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Figure 4.5: The logarithm of the normalized long term phase diffusion coefficient,
log10

(
Sy(0)/Denv

)
, as a function of operating action and bias force. Dashed white

line is the locus of zero dispersion (∂Iω(I) = 0) points. For interpretation of the
references to color in this and all other figures, the reader is referred to the electronic
version of this dissertation.

dispersion points. Figure 4.5 is remarkable in its complex topography. The key

feature is the narrow valley around the zero dispersion line for large action. Recall

that we noted, based upon the scaling results found above, that SI,I dominates in

the expression for Sy for small action. This is why the narrow valley around the zero

dispersion curve fades away for small action. Meanwhile, for large action, we observed

that Sϕ,ϕ should dominate. Accordingly, we see a reduction in the phase diffusion

coefficient near the zero dispersion line, where the phase is protected from fluctuations

in the action. In the parameter range considered the phase diffusion coefficient can

be reduced by at most 5dB by these tuning parameters. This is consistent with

observations made by Chris Burgner at the University of Santa Barbara (private

communication) on a real device. Improvement on the order of 10’s of decibels will

likely require attacking the noises at their source.

107



2.4

2.2

2

1.8

1.6

1.4

1.2

1

F
req

u
en

cy,
Ω

0

-1

-2

-3

-4
0 0.5 1 1.5 2

L
og

A
ct

io
n
,

L
og

10
(I

)

Bias, λ

Figure 4.6: Mean oscillator frequency as a function of operating action and bias
force. Dashed white line is the locus of zero dispersion (∂Iω(I) = 0) points. For
interpretation of the references to color in this and all other figures, the reader is
referred to the electronic version of this dissertation.

4.5 Outloook

Equation (4.64) is the primary result of this chapter. It can be employed as a tool to

guide the effort to engineer better N/MEMS oscillators. The equation can serve as a

cost function for oscillator optimization or to help target primary noise sources. In

this work, we demonstrated the utility of this expression with a hypothetical oscillator

model. Building a model matched to experimental observations of a real oscillator

may prove more informative. In addition, an interesting problem that could be inves-

tigated using this formulation is to determine the optimum potential for an oscillator.

Equation (4.64) evaluated at ω = 0 would provide the cost function for the optimiza-

tion problem. It is likely that the answer will depend on the noise model and so an

appropriate model would need to be generated. Such an effort is beyond the scope of

this work, but could be the next step.
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Chapter 5

Conclusions

In this work we examined several noise-induced phenomena that are to be found

in nano- and micro-electromechanical systems. Our aim has been to exploit these

phenomena, where possible, for system identification and sensing applications. The

exception being our discussion of nonlinear oscillators in chapter 4 where our goal was

to remove the effect of noise as much as possible. In general, however, our viewpoint

has been one of embracing the noise and nonlinearity that are an inevitable part of

miniaturization.

In chapter 2 we examined delayed subcritical pitchfork and saddle-node bifurca-

tions in the presence of noise. This investigation was born out of an attempt to port,

to MEMS sensors, the bifurcation detection methods used in the 1970s to locate the

critical current in Josephson junctions. During the initial stages of our investigation

the issue of sweep rate become important, and it was not clear what it meant to

sweep fast or slow. In the present work we determined that “fast” means fast with

respect to the noise strength, and that this is indeed the situation in many MEMS

devices, leading to delayed bifurcations. The experimental demonstration of our an-

alytic results met with limited success. It turned out that the sweeping experiments

took so long that drift in the device parameters became problematic. Despite efforts
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to remove this effect by measuring the device frequency before each parameter sweep,

this effect may have influenced the data. In addition the sweep rate required for

the normal form to remain valid appears to have been so slow that we swept clean

though the local region. These issues arose in large part because these experiments

were performed before the analysis was complete. A more systematic experiment on

a MEMS device has yet to be done, and is left for future work.

In chapter 3 we examined the balanced dynamical bridge as a general use de-

tector and a detector of non-Gaussian noise. This dynamic bridge sensing strategy

was inspired by the exponential dependence of the escape rate on device parameters

and the success of the Josephson bifurcation amplifier. As a general use detector,

we found that the bridge requires a long time to produce a measurement. The prob-

lem is that the system encodes the information in the occupation probabilities and

measuring these probabilities is time-consuming, requiring the record of many events.

The detection of non-Gaussian noise suffers from this same problem. However, using

the bridge in this manner can be slightly faster since the non-Gaussian noise can

increase the switching rate. Moreover, other methods of detecting the non-Gaussian

character of a stochastic process operate on similar principles, and so here the dy-

namic bridge becomes competitive. We discussed an example where we considered

shot noise measured by a one-dimensional bridge. Future work on this project may

include a comparison of the dynamical bridge sensitivity to other detection methods.

In addition, one may consider a dynamical bridge constructed from a parametric

resonator. The inherent symmetry in parametric resonance will automatically bal-

ance the occupation probabilities and create a device that is sensitive to symmetry

breaking perturbations such as direct forcing at the resonant frequency.

In chapter 4 we examined the spectrum of fractional frequency fluctuations in an

oscillator with a nonlinear frequency selective element. We ignored the dynamics of

the feedback loop elements, focusing on the resonator equation. We developed an
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expression for the spectrum of fractional frequency fluctuations as a function of the

oscillator noise model and the nominal resonator orbit. We proposed that such an

expression could be useful to tune an oscillator to minimize the rate of phase diffusion.

We considered a prototype model based on the biased Duffing resonator with which to

demonstrate this oscillator tuning. We showed how the oscillator can be tuned using

the resonator zero-dispersion points to decouple the action and angle fluctuations.

The minimum phase diffusion constant w.r.t. the oscillator operating action was

found to be near the zero-dispersion points for sufficiently large action. The example

system showed reduction in the phase diffusion rate of up to 5 decibels by operating

at this point. Future work on this subject of oscillator design can be divided into two

separate projects. First, a detailed model of an existing oscillator can be constructed

in an effort to optimally tune that oscillator. Second, one could attempt to minimize

the phase diffusion constant by shaping the limit cycle. The tools we employed would

limit the class of limit cycles to those arising from a one degree-of-freedom potential

system. However, other perspectives would allow the consideration of more general

limit cycles [27, 80]. This problem naturally depends on the noise model employed,

and so these two suggested directions for future research are closely related.
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Appendix A

Stochastic Processes

In this appendix we discuss some of the tools for the analysis of dynamic systems

with random terms. This discussion provides some background for the material in

the body of this dissertation. The interested reader is directed to references [93, 61, 60]

for additional material.

A.1 The Kinetic Equation for a Stochastic Process

Consider a stochastic process, X(t), where X ∈ Rd. We’ll use X(t) to denote the

stochastic process itself and x to denote possible values that X(t) can take at various

times. Now, let ρ(x, t) be the probability distribution for X(t) at time t. Thus,

ρ(x, t)dx is the probability that X(t) = x. Also, let P (x, t+τ |x′, t) be the probability

that X(t+τ) = x given that X(t) = x′; this is known as the transition probability.

It is the probability that the process X(t) will make a transition from x′ to x over

the time [t, t + τ ]. A Markov process is one whose future value depends only on

the present, not the past. We can see that P (x, t+ τ |x′, t) takes only two arguments,

the value of X at the present time t and the value of X at the future time t+ τ . So,

if X(t) is Markovian, then P (x, t + τ |x′, t) contains the complete description of the
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process. Using the transition probability, P , we can determine the evolution of the

probability distribution ρ. The probability for X(t + τ) = x can be understood as

the the sum of the probabilities for the process, X, to transition to x over the time

[t, t + τ ] from all values x′ at time t. That is, ρ(x, t + τ) is the probability to get to

x in the time interval [t, t+ τ ] from anywhere. Thus, we can write

ρ(x, t+ τ) =

∫
P (x, t+ τ |x′, t)ρ(x′, t)dx′. (A.1)

We can make use of (A.1) to develop a partial differential equation for ρ(x, t).

We begin by expanding the integrand for small x−x′. We will assume that x is a

d-dimensional real vector, x ∈ Rd. Let ∆ = x− x′, then we can write the integrand

of equation (A.1) as

P (x, t+ τ |x′, t)ρ(x′, t) = P (x′ + ∆, t+ τ |x′, t)ρ(x′, t), (A.2)

=
∑

n1,··· ,nd

(−∆1)n1 · · · (−∆d)nd

n1! · · ·nd!

∂n1+···+nd

∂x
n1
1 · · · ∂x

nd
d

×P (x+ ∆, t+ τ |x, t)ρ(x, t), (A.3)

where we have expanded x′ about x in a Taylor series and the sum for ni goes from

0 to ∞. Substitution of this into equation (A.1) gives

ρ(x, t+ τ) = (A.4)∑
n1,··· ,nd

(−1)n1+···+nd ∂n1+···+nd

∂x
n1
1 · · · ∂x

nd
d

ρ(x, t)

×
∫ ∆

n1
1 · · ·∆

nd
d

n1! · · ·nd!
P (x+ ∆, t+ τ |x, t)d∆.
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Now, the integral in equation (A.4) can be written as

d∏
i=0

∫ ∆
ni
i
ni!

P (x+ ∆, t+ τ |x, t)d∆ =

〈 d∏
i=0

1

ni!
[Xi(t+ τ)− xi]

ni

〉∣∣∣∣
Xi(t)=xi

, (A.5)

which are the moments of the probability distribution of X(t+ τ)−X(t) given that

X(t) = x, weighted by 1/(n1! · · ·nd!). The collection of these quantities describe the

probability distribution of the next step that the stochastic process, X(t), takes over

the time τ if it takes on the value x at time t. We now introduce the Kramers-Moyal

coefficients, D(n1···nd)(x, t).

D(n1···nd)(x, t) = lim
τ→0

1

τ

〈 d∏
i=0

1

ni!
[Xi(t+ τ)− xi]

ni

〉∣∣∣∣
Xi(t)=xi

. (A.6)

These are the coefficients of the first order term in an expansion of equation (A.5) in

τ about τ = 0, so long as at least one ni is nonzero. When all ni are zero the integral

equation (A.5) is equal to 1 by the normalization of P . Thus, for small τ , we have

ρ(x, t+ τ) = ρ(x, t) +
∑

n1,··· ,nd
m=n1+···+nd 6=0

(−1)m
∂m

∂x
n1
1 · · · ∂x

nd
d

ρ(x, t)D(n1···nd)(x, t)τ.

(A.7)

Next we subtract ρ(x, t) from both sides of equation (A.7) and divide by τ . In the

limit of τ → 0 we have the kinetic equation of the stochastic process X(t), given

by

∂ρ(x, t)

∂t
=

∑
n1,··· ,nd

n1+···+nd 6=0

(−1)n1+···+nd ∂n1+···+nd

∂x
n1
1 · · · ∂x

nd
d

D(n1···nd)(x, t)ρ(x, t). (A.8)

We now further discuss the meaning of the Kramers-Moyal coefficients. There are d
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coefficients for which only one of the integers ni = 1 and the rest are zero. Changing

to a more compact notation, we can write this sub set as D(1)
i ≡ D(0,0,...1,...,0)

where the 1 occurs in the ith place. In D(1)
i the superscript denotes the order of

the coefficient and the subscript denotes which ni = 1. This set of coefficients give

the mean step made by the stochastic process X(t) over a small time normalized by

the time. Thus these coefficients are called the drift vector or drift coefficient.

Similarly, we can consider the coefficients of order 2. We can label these as D(2)
ij ≡

D(0,0,...1,0,0,...0,1,...0) denoting the second order coefficient where ni = 1 and nj = 1

if i 6= j and ni = 2 if i = j. These coefficients describe the variance of the step made

by the stochastic process over a small time normalized by this time. Thus D(2) is

called the diffusion coefficient.

Now, equation (A.8) is pretty unwieldy when it represents an infinite series. Cal-

culating the infinite number of coefficients D(n1···nd) could be difficult, if not impos-

sible. However, the Pawula Theorem says that the series D(n1···nd) will terminate

at either the first or the second order (i.e. n1 + n2 + · · ·nd = 1 or 2) or, if it does

not, it must have an infinite number of terms in it. Thus, one only has to check the

third order term to find out if the series terminates at second order or is infinite. This

holds under the condition that ρ(x, t) is to be always positive, which it must be, since

its a probability distribution.

As an example, consider the standard one-dimensional Brownian motion, a.k.a.

a Wiener process, defined by

D(1) = 0 D(2) = 1 D(n) = 0, n ≥ 3. (A.9)

In this case equation (A.8) and its solution are

ρ̇ = ρ′′ ⇒ ρ(x, t) =

√
1

4πt
exp

[
−(x− x(0))2

4t

]
. (A.10)
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The case where the Kramers-Moyal coefficients are nonzero only at first and sec-

ond order is very interesting and useful. Now we know one process that fits in that

category, Brownian motion, but what about a stochastic process that represents the

response of a dynamic system? As we will see in the next section, when a dynamic

system is forced by Gaussian white noise, it’s Kramers-Moyal expansion is also trun-

cated at second order. So, all that is left to do is to calculate these coefficients for our

system of interest. To do this, all we have to do is solve our system equation over a

short time interval τ , and then take the limit according to (A.6). Solving our system

over a small time interval τ , however, is where the trouble comes in. It turns out that

the answer depends on how we interpret the noise. We will discuss this further in the

next two sections. We begin with a “physical” interpretation of the noise, assuming

that it is smooth on time scales much shorter than the time scale of the evolution of

our system.

A.2 The Langevin Equation

Suppose we have the system

Ẋi = fi(X, t) + gij(X, t)ξj(t). (A.11)

This is our Langevin equation. The time functions ξj(t) are assumed to be zero

mean random functions that are smooth on a sufficiently short time scale. This

smoothness comes from the ’physical’ interpretation, arguing that real quantities are

smooth. Smoothness implies that the standard rules of calculus apply. Now, we want

to integrate our equation over a short time τ with initial condition X(t) = x. So we
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integrate (A.11) w.r.t. time

Xi(t+ τ)− xi =

∫ t+τ

t

[
fi(X(t′), t′) + gij(X(t′), t′)ξj(t′)

]
dt′, (A.12)

and apply an iterative approach, assuming f and g are sufficiently well behaved

functions. First we approximate f and g as

f(X(t′), t′) ≈ fi(x, t
′), (A.13)

gij(X(t′), t′) ≈ gij(x, t′). (A.14)

Applying these approximations to equation (A.12) gives the zeroth order approxima-

tion,

X
(0)
i (t+ τ)− xi =

∫ t+τ

t

[
fi(x, t

′) + gij(x, t′)ξj(t′)
]
dt′. (A.15)

Going to the next order, we take

fi(X(t′), t′) ≈ fi(x, t
′) +

∂fi(x, t
′)

∂xk
(X

(0)
k

(t′)− xk), (A.16)

gij(X(t′), t′) ≈ gij(x, t′) +
∂gij(x, t′)

∂xk
(X

(0)
k

(t′)− xk), (A.17)

to get the first order approximation

X
(1)
i (t+ τ)− xi =

∫ t+τ

t

{
fi(x, t

′) + gij(x, t′)ξj(t′) (A.18)

+

∫ t′

t

[
∂fi(x, t

′)
∂xk

fk(x, t′′) +
∂fi(x, t

′)
∂xk

gkj(x, t′′)ξj(t′′)

+
∂gij(x, t′)

∂xk
fk(x, t′′)ξj(t′) +

∂gij(x, t′)
∂xk

gkl(x, t
′′)ξj(t′)ξl(t

′′)
]
dt′′
}
dt′.
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This is a sufficient order for our purposes. Now, we take the expectation or ensemble

average, then we take f(x, t′) ≈ f(x, t) and g(x, t′) ≈ g(x, t), and find

〈Xi(t+ τ)− xi〉 =

∫ t+τ

t
fi(x, t

′)dt′ (A.19)

+

∫ t+τ

t

∫ t′

t

∂gij(x, t′)
∂xk

gkl(x, t
′′)〈ξj(t′)ξl(t

′′)〉dt′′dt′ +O(τ2).

Now, we assume that the noise processes ξi are wide sense stationary. This means

that 〈ξi(t)ξj(t′)〉 depends only on the time difference t − t′. Moreover, we assume

that the processes have short memory compared to the rate of change of X. Thus,

〈ξi(t)ξj(t′)〉 is a narrow function of t − t′ that goes to zero for t − t′ � τ . It is

reasonable, therefore, to make the approximation 〈ξi(t)ξj(t′)〉 = 2Dijδ(t − t′). The

δ-correlation implies that the power spectral density is constant, so the noise is white.

Unfortunately, things are not quite that simple. In equation (A.19) we integrate δ(t)

up to t = 0 from below and thus the result of the integration depends on how we

define the δ function. For example, we could assume

δ(t) = lim
h→0

θ(t+ h)− θ(t− h)

2h
, (A.20)

where θ(t) is the unit step function. In this case integration over half the δ-function

gives 1/2. Alternatively, we could assume

δ(t) = lim
h→0

θ(t)− θ(t− h)

h
. (A.21)

In this case the integration gives zero. The choice we make for the definition of the

δ-function must reflect the noise properties. We will continue with our discussion
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assuming the former case so the integration gives 1/2. Thus, we obtain

〈Xi(t+ τ)− xi〉 = fi(x, t)τ +
∂gij(x, t)

∂xk
gkl(x, t)Djlτ +O(τ2). (A.22)

Next, we consider the second moments of Xi(t+ τ)− xi.

〈[Xi(t+ τ)− xi][Xj(t+ τ)− xj ]〉 = (A.23)∫ t+τ

t

∫ t+τ

t
gik(x, t′)gkl(x, t

′′)〈ξk(t′)ξl(t
′′)〉dt′′dt′ + · · ·

= 2τgik(x, t)gjl(x, t)Dkl +O(τ2).

The third and higher moments are all higher order in τ ,

〈[Xi(t+ τ)− xi][Xj(t+ τ)− xj ][Xk(t+ τ)− xk]〉 = O(τ2). (A.24)

Thus we find that a dynamic system subject to white Gaussian noise is Markovian

with Kramers-Moyal coefficients

D(1)
i (x, t) = fi(x, t) +

∂gij(x, t)

∂xk
gkl(x, t)Djl, (A.25)

D(2)
ij (x, t) = gik(x, t)gjl(x, t)Dkl, (A.26)

D(n)(x, t) = 0, n ≥ 3. (A.27)

Plugging these coefficients into equation (A.8) gives the Fokker-Planck equation.

A.3 Ito and Stratonovich Integrals

The stochastic process ξ(t) is not a proper function when it is truely δ-correlated

because it is discontinuous at every point. Rather than deal with this, mathematicians

prefer to deal with the Brownian motion or the Wiener process we saw earlier. And
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so, rather than write a Langevin equation like (A.11), they write the stochastic

differential equation (SDE)

dXi = fi(X, t)dt+ gij(X, t)djkdWk, (A.28)

where dWk is the increment of a Brownian motion. The noise strength and correlation

has been explicitly written in the matrix d. Note that, to agree with the above,

ddT = D. Since a Brownian motion is continuous, the increments dWk are well

defined. Now, if we integrate the SDE (A.28) with initial conditions X(t) = x we get

Xi(t+ τ)− xi =

∫ t+τ

t
fi(X(t′), t′)dt′ +

∫ t+τ

t
gij(X(t′), t′)djkdWk(t′). (A.29)

Applying the same iterative procedure as above, we find

X
(0)
i (t+ τ)− xi =

∫ t+τ

t
fi(x, t

′)dt′ +
∫ t+τ

t
gij(x, t′)djkdWk(t′), (A.30)

and

X
(1)
i (t+ τ)− xi =

∫ t+τ

t

{
fi(x, t

′)dt′ + gij(x, t′)djkdWk(t′) (A.31)

+

∫ t′

t

[
∂fi(x, t

′)
∂xk

fk(x, t′′)dt′′dt′

+
∂fi(x, t

′)
∂xk

gkj(x, t′′)djldWl(t
′′)dt′

+
∂gij(x, t′)

∂xk
fk(x, t′′)djldt

′′dWl(t
′)

+
∂gij(x, t′)

∂xk
gkl(x, t

′′)djndlmdWm(t′′)dWn(t′)

]}
.
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As in the Langevin approach discussion, we take f(x, t′) ≈ f(x, t) and g(x, t′) ≈

g(x, t), and find

X
(1)
i (t+ τ)− xi = fi(x, t)τ + gij(x, t)djk

∫ τ

0
dWk(t′) (A.32)

+
∂gij(x, t)

∂xk
gkl(x, t)djndlm

∫ τ

0

∫ t′

0
dWm(t′′)dWn(t′) + · · · .

We have pushed all terms that won’t contribute into the · · · and shifted the limits on

the integrals w.r.t. dW because the Brownian motion increment dW is stationary,

that is its statistics don’t depend on the the location of the time origin. The reason

why we needed to shift the limits of integration is because the definition of these

stochastic integrals is written with these limits. Now, these stochastic integrals can

be of either the Ito or Stratonovich type, depending on interpretation. These integrals

are defined as follows. Let 0 = t0 < t1 < t2... < tN−1 < tN = τ and ∆ = ti+1− ti.

Then an integral of the Ito type of a function Φ(W (t), t) with respect to dW (t) is

defined by

II =

∫ τ

0
Φ(W (t), t)dW (t) = lim

∆→0

N−1∑
i=0

Φ(W (ti), ti)
[
W (ti+1)−W (ti)

]
, (A.33)

and an integral of the Stratonovich type is defined by

IS =

∫ τ

0
Φ(W (t), t)dW (t) (A.34)

= lim
∆→0

N−1∑
i=0

Φ

(
W (ti+1) +W (ti)

2
,
ti+1 + ti

2

)[
W (ti+1)−W (ti)

]
.
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In both integrals, W (t) is a standard Wiener process or Brownian motion defined as

W (0) = 0, 〈W (t)〉 = 0, (A.35)

Var(W (t)) = 2t, Var(W (t)−W (s)) = 2t− 2s. (A.36)

Now if we consider the term
∫ τ
0 dW (t′) in (A.32), we have Φ = 1 and so both Ito and

Stratonovich give the same answer

∫ τ

0
dW (t′) = lim

∆→0

N−1∑
i=0

[W (ti+1)−W (ti)] = W (τ). (A.37)

So, the double intergal in (A.32) gives

∫ τ

0

∫ t′

0
dW (t′′)dW (t′) =

∫ τ

0
W (t′)dW (t′). (A.38)

What we need is the expectation of this integral. The Stratonovich definition gives

〈∫ τ

0
W (t′)dW (t′)

〉
S

=

〈
lim

∆→0

1

2

N−1∑
i=0

[W (ti+1 +W (ti))][W (ti+1)−W (ti)]

〉

= lim
∆→0

1

2

N−1∑
i=0

〈W2(ti+1)−W2(ti)〉 = lim
∆→0

N−1∑
i=0

ti+1 − ti = τ.

(A.39)

The Ito definition gives

〈∫ τ

0
W (t′)dW (t′)

〉
I

=

〈
lim

∆→0

N−1∑
i=0

W (ti)[W (ti+1)−W (ti)]

〉
(A.40)

= lim
∆→0

1

2
〈W2(τ)〉 − 1

2

N−1∑
i=0

〈[W (ti+1)−W (ti)]
2〉 = 0.
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Applying equations (A.37)-(A.40) to (A.32) we obtain our expression for X(t+τ)−x.

〈Xi(t+ τ)− xi〉 = fi(x, t)τ +
∂gij(x, t)

∂xk
gkl(x, t)djndlm

〈∫ τ

0
Wm(t)dWn(t)

〉
I,S

,

(A.41)

with

〈∫ τ

0
Wm(t)dWn(t)

〉
I

= 0, (A.42)〈∫ τ

0
Wm(t)dWn(t)

〉
S

= τδnm. (A.43)

Thus, we have

D(1)
i,Ito = fi(x, t), D(1)

i,Strat = fi(x, t) +
∂gij(x, t)

∂xk
gkl(x, t)Djl. (A.44)

It can also be shown that the diffusion coefficient, D2, is the same for both. The

Stratonovich interpretation matches the Langevin approach of the previous section

with definition (A.20) and the Ito interpretation matches the Langevin approach

with definition (A.21). The choice of stochastic calculus to be used should be made

by considering the origin and character of the noise processes. In [61] there is a

chapter on this topic. Ito calculus appears better suited for numeric solutions of

stochastic differential equations [61] because the equations can be directly integrated.

Stratonovich calculus would require an implicit scheme. When performing simula-

tions of Stratonovich stochastic systems it is usually necessary to write an equivalent

Ito SDE. To do this one would take the drift and diffusion coefficients from the

Stratonovich system and write an Ito SDE that gives rise to these same coefficients

using Ito calculus.
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Appendix B

Stochastic Averaging

In this appendix we discuss the method of averaging applicable to dynamic systems

with random terms. This method should apply to systems with non-white and/or

non-Gaussian noise. The approach is meant to be as simple as possible, employing

only basic understanding of stochastic processes. No proof is given however, just an

explanation of the method and the thought processes behind it.

We are interested in equations of the form

ẋi = εfi(x, t) + ε1/2gij(x, t)ξj(t), (B.1)

where ξ represents some stochastic process, the functions f and g are periodic, or

at least have discrete spectrum, and ε is a small parameter. Note that this scaling

is consistent with the microscopic resonator model in section (4.2). The noise ξ is

assumed to be continuous and differentiable so that conventional calculus rules apply.

In other words, equation (B.1) is to be interpreted in the Stratonovich sense. The

goal is to simplify this system by pushing the non-essential aspects of the system

to higher orders in ε by means of a near-identity coordinate transformation. These

non-essential terms are then ignored by virtue of their smallness, recognizing that
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the truncated equations will provide a good approximation over a long but generally

finite time scale. In addition to the above, we assume that the stochastic process ξ is

wide-sense stationary with zero mean, that is

〈ξi(t)〉 = 0, (B.2)

〈ξi(t)ξj(t+ τ)〉 = rij(τ), (B.3)

and, we introduce the power spectrum of ξ,

Rij(ω) =

∫ ∞
−∞

rij(τ)e−iωτ dτ. (B.4)

For this averaging process only the second order statistics are needed, so we will not

specify ξ any further. As stated above, we assume the time variation of f and g is

made up of several discrete frequencies. Thus we write

fi(y, t) =
∑
n
F

(n)
i (y)eiΩnt, (B.5)

gij(y, t) =
∑
n
G

(n)
ij (y)eiΩnt, (B.6)

with F
(−n)
i = (F

(n)
i )∗, G(−n)

ij = (G
(n)
ij )∗, and Ω−n = −Ωn. Here we must make

a point of notation. We make use of the convention of summation over repeated

indices written as subscripts, and we often use i as an index. So, when i appears as

a subscript it is meant as an index. However, when it appears elsewhere it is meant

as the imaginary unit. We now proceed with the coordinate transformation.
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B.1 A Near-Identity Coordinate Transformation

In order to simplify equation (B.1), we would like to change to a coordinate system

in which the system appears as simple as possible, given the smallness of ε. To do

this, we begin by defining the general near-identity coordinate transformation

xi = yi + ε1/2Ui(y, t) + εVi(y, t). (B.7)

The functions U and V are left unspecified for the present. The problem of defining

these two functions is the subject of the next two sections. In this section, we simply

solve for the equation of motion of y with these general functions. We do this by

first taking the time derivative of (B.7) and equating it with (B.1) in which we have

replaced x with y via a Taylor series expansion

ẋi = ẏi + ε1/2
∂Ui(y, t)

∂yj
ẏj + ε

∂Vi(y, t)

∂yj
ẏj + ε1/2U̇i(y, t) + εV̇i(y, t), (B.8)

= εfi(y, t) + ε1/2gij(y, t)ξj(t) + ε
∂gij(y, t)

∂yk
Uk(y, t)ξj(t) + · · · . (B.9)

From (B.8) and (B.9) we solve for ẏ up to O(ε).

ẏi = ε1/2
(
gijξj − U̇i

)
+ ε

(
fi +

∂gij

∂yk
Ukξj −

∂Ui
∂yj

gjkξk +
∂Ui
∂yj

U̇j − V̇i

)
.

(B.10)

Now, it remains to choose U and V such that equation (B.10) becomes as simple

as possible. The constraint on the choice is that the coordinate transformation,

equation (B.7), must remain well ordered. Thus, we must choose U and V such that

they remain bounded. It is by this condition that we identify the principle part of

equation (B.1) that cannot be reduced.
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B.2 Stochastic Averaging Part I: O(ε1/2)

To begin, we consider the function U . The role of this function is to replace the

stochastic process g(y, t)ξ(t) with something simpler, call it ξ̄(y, t). The process gξ

is wide-sense cyclo-stationary. Thus, the most general form of ξ̄ then is also a wide-

sense cyclo-stationary process. We don’t go through the exercise here, but it can

be shown that the principle part of gξ, that is the part that must be contained in

ξ̄, need only be wide-sense stationary. This is done by taking ξ̄ to be a general

wide-sense cyclo-stationary process and calculating 〈U2〉. One then finds that the

secular terms contain only the wide-sense stationary component of ξ̄ and its (cyclo-

stationary) correlation with ξ. We therefore need only seek a wide-sense stationary

process ξ̄ to replace gξ. We can construct such a process by defining our “slow noise”

process, ξ̄, as a low-pass filtering of gξ. Thus, we take

U̇i(y, t) = gij(y, t)ξj(t)− ξ̄i(y, t), (B.11)

ξ̄i(y, t) =

∫ ∞
−∞

h(t− t′)gij(y, t′)ξj(t′) dt′, (B.12)

where h(t) is the time-domain filtering function, the filter’s ‘impulse response’. Note

that equation (B.12) defines the simplified noise ξ̄ as a functional of the original

process, ξ. Thus, in principle, the statistics of ξ̄ may be calculated for non-white

and/or non-Gaussian ξ. The definition of this coordinate transformation, however,

does not require a causal filtering function and so we are free to choose h(t) 6= 0 for

t < 0. By a proper choice of the filter we can make ξ̄ wide-sense stationary. For

example, we may choose an ideal low-pass filter with appropriate cut-off frequency.

Our filter may also be characterized by the frequency domain filtering function,

H(ω) =

∫ ∞
−∞

h(t)e−iωtdt. (B.13)
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For an ideal low-pass filter, this is simply a rectangular pulse, in ω space, centered

zero. We now wish to show that U remains bounded, at least with high probability.

To do this, we demonstrate that 〈U2
i 〉 is bounded for every i. For this to be so, the

tails of the probability distribution for U(y, t) should decay sufficiently fast and so the

probability for U to be very large is very small. In order to facilitate the calculation,

it is convenient to first calculate the second moment of ξ̄ and its correlator with ξ.

From equation (B.12) we find

〈ξj(t)ξ̄i(y, s)〉 =
∑
n

1

2π

∫ ∞
−∞

G
(n)
ik

Rkj(ω)H(Ωn − ω)eiω(t−s)eiΩns dω,

(B.14)

and

〈ξ̄i(y, t)ξ̄j(y, s)〉 =
∑
n,m

1

2π

∫ ∞
−∞

G
(n)
ik

G
(m)
j`

Rk`(ω)H(Ωn − ω)H(Ωm + ω)

×eiω(s−t)eiΩnteiΩms dω. (B.15)

Equation (B.15) is of particular importance since it is the autocorrelation of the slow

noise, ξ̄. From this equation we can see how the oscillations of g select the noise

around the frequencies Ωn. The oscillating function g modulates components of the

noise ξ down to baseband. These low frequency components of the modulated noise

are then selected by the low-pass filter. Moreover, we see that if H(Ωm − ω) and

H(Ωn + ω) are orthogonal, except in the case m = −n, then the slow noise ξ̄ is

wide-sense stationary. Returning to the ideal low-pass example, suppose H(ω) is

a rectangular window centered at ω = 0 and with width less than the minimum

distance between any pair of frequencies Ωn and Ωm, (m 6= n). In this case, only the

wide-sense stationary terms in equation (B.15) survive.

It remains to show that our choice of U̇ in equation (B.11) is valid. To do this we
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will calculate 〈U2〉 and show that it remains bounded in time. Thus, from equation

(B.11), we take

Ui =

∫ t

−∞
gij(y, t′)ξj(t′)− ξ̄i(y, t

′) dt′, (B.16)

and calculating the variance gives

〈U2
i 〉 =

∫ t

−∞

∫ t

−∞

[
gij(y, t′)gik(y, s′)〈ξj(t′)ξk(s′)〉 − gij(y, t′)〈ξj(t′)ξ̄i(y, s

′)〉

−gij(y, s′)〈ξj(s′)ξ̄i(y, t
′)〉+ 〈ξ̄i(y, t

′)ξ̄i(y, s
′)〉
]
dt′ ds′. (B.17)

Applying equations (B.14) and (B.15) and moving into the frequency domain yields

〈U2
i 〉 =

∑
n,m

1

2π

∫ ∞
−∞

dω G
(n)
ij G

(m)
ik

Rkj(ω)

(
1− 2H(Ωm − ω) (B.18)

+H(Ωm − ω)H(Ωn + ω)

)
ei(Ωn+Ωm)t

×
∫ 0

−∞

∫ 0

−∞
ei(Ωn+ω)t′ei(Ωm−ω)s′ds′dt′.

The time integrals over t′ and s′ can be understood as Fourier transforms of the unit

step,

∫ 0

−∞
eiat
′
dt′ =

1

ia
+ πδ(a). (B.19)

Now, the secular terms in equation (B.18) are those for which m = −n. In these terms

the poles and delta functions double up to make the integration over ω unbounded.

However, these terms are removed by the filtering on the condition that H(0) = 1.
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This can be assumed without any restriction on the approach, in which case we find

〈U2
i 〉 =

∑
n,m
m 6=−n

ei(Ωn+Ωm)t

i(Ωn + Ωm)
G

(n)
ij G

(m)
ik

Rkj(−Ωn)

(
1−H(Ωn + Ωm)

)
,

(B.20)

=
∑
n 6=0

einΩt

inΩ

(
1−H(nΩ)

)(∑
m

G
(m)
ij G

(n−m)
ik

Rkj(−mΩ)

)
. (B.21)

Thus, we find that 〈U2
i 〉 is given by a Fourier series and it is bounded so long as this

series converges. For example, if G
(n)
ij diminish sufficiently fast with large n.

B.3 Stochastic Averaging Part II: O(ε)

With the choice of U(y, t) derived in the previous section, we now move onto the

selection of the deterministic term V (y, t). With our selection of U(y, t) equation

(B.10) now becomes

ẏi = ε1/2ξ̄i(y, t) + ε

(
fi(y, t) + ηi(y, t) + di(y, t)− V̇i(y, t)

)
+ · · · , (B.22)

where η+d is the O(ε) noise, η is the fluctuating part and d is the expectation, given

by

ηi(y, t) =
∂gij

∂yk
Ukξj −

∂Ui
∂yj

ξ̄j − di(y, t), (B.23)

di(y, t) =

〈
∂gij

∂yk
Ukξj −

∂Ui
∂yj

ξ̄j

〉
. (B.24)

We have explicitly separated d from η because η will be dropped when we scale time

(in the next section), but d, the term of interest, will be retained.

In order to simplify equation (B.22) as much as possible, understanding that η

131



will be dropped, we take

V̇i(y, t) = fi − f̄i + di − d̄i, (B.25)

f̄i(y) =

∫ ∞
−∞

h(t− t′)fi(y, t
′) dt′, (B.26)

d̄i(y, t) =

∫ ∞
−∞

h(t− t′)di(y, t
′) dt′, (B.27)

where h is the filter function from the previous section. It is clear that V will remain

bounded since it is the integral of oscillating functions with their low frequency com-

ponents removed by the filter. We are therefore satisfied that this choice of V is valid

and proceed to calculate d̄. Evaluating the two parts of equation (B.24) gives

〈
∂gij

∂yk
Ukξj

〉
=

∑
n,m

∫ ∞
−∞

dω
∂G

(m)
ij

∂yk
G

(n)
k`

R`j(ω)
1−H(Ωn − ω)

2πi(Ωn − ω)
ei(Ωn+Ωm)t,

(B.28)

and

〈
∂Ui
∂yj

ξ̄j

〉
=

∑
n,m

∫ ∞
−∞

dω
∂G

(m)
ij

∂yk
G

(n)
k`

R`j(ω)H(Ωn − ω)

×1−H(Ωm + ω)

2πi(Ωm + ω)
ei(Ωn+Ωm)t. (B.29)

Subtracting equation (B.29) from equation (B.28) and then filtering the difference

gives the expression for d̄,

d̄i(y, t) =
∑
n,m

∫ ∞
−∞

dω
∂G

(m)
ij

∂yk
G

(n)
k`

R`j(ω)H(Ωn + Ωm)

[
1−H(Ωn − ω)

2πi(Ωn − ω)

−H(Ωn − ω)
1−H(Ωm + ω)

2πi(Ωm + ω)

]
ei(Ωn+Ωm)t. (B.30)
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Equation (B.30) simplifies significantly if H(Ωn + Ωm) = δm,−n. In this case we

have

d̄i(y, t) =
∑
n

∫ ∞
−∞

dω
∂G

(−n)
ij

∂yk
G

(n)
k`

R`j(Ωn − ω)
1− |H(ω)|2

2πiω
. (B.31)

If R`j is even and real d̄i(y, t) becomes

d̄i(y, t) =
∞∑
n=1

Im

∂G(−n)
ij

∂yk
G

(n)
k`

∫ ∞
−∞

dωR`j(ω − Ωn)
1− |H(ω)|2

πω
. .(B.32)

From equation (B.31) or (B.32) it is easy to see that d̄ is the contribution to the slow

dynamics produced by the noise away from the frequencies Ωn. For white noise, for

which R`j = const, the weights are all zero and so d̄ is zero. In the more general

case, however, it may nonzero.

B.4 Time Scaling

With the coordinate transformation chosen, we scale time to put all important terms

at O(1). Thus, we introduce the slow time τ ,

τ = εt. (B.33)

Assuming we have removed all oscillating components by the coordinate transforma-

tion,the equation of motion for y now takes the form

dyi
dτ

= f̄i(y) + d̄i(y) + ε−1/2ξ̄i(y, ε
−1τ) + ηi(y, ε

−1τ) +O(ε1/2). (B.34)
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We replace the noise terms ξ̄ and η with noises defined in the new time τ as follows.

Let

ζi(y, τ) ≡ ε−1/2ξ̄i(y, ε
−1τ), (B.35)

η̂i(y, τ) ≡ ε−1/2ηi(y, ε
−1τ). (B.36)

We introduce the factor of ε1/2 to that ζ and η̂ maintain the same spectral magnitude.

The signal power, however, increases. This can be understood by imagining that the

noises appear to be ‘more white’ over the long time scale τ . To see this, consider the

spectrum, Sζ ,

〈ζ(y, t)ζ(y, t+ τ)〉 =
1

2πε

∫ ∞
−∞

dω′ Sξ̄(y, ω′)eiω
′ε−1τ , (B.37)

Sζ (y, ω) =

∫ ∞
−∞

dτ 〈ζ(y, t)ζ(y, t+ τ)〉e−iωτ , (B.38)

=
1

2πε

∫ ∞
−∞

∫ ∞
−∞

dω′ dτ Sξ̄(y, ω′)ei(ε
−1ω′−ω)τ , (B.39)

=

∫ ∞
−∞

dω′ Sξ̄(y, ω′)δ(ω′ − εω), (B.40)

Sζ (y, ω) = Sξ̄(y, εω). (B.41)

Thus the spectrum of ζ is the stretched spectrum of ξ̄. It is similar for η. In this

way, we keep the spectral strength of the noise processes at a unit level, and let the

coefficients multiplying these processes capture their scale. Accordingly, the process

η becomes ε1/2η̂ with the scaling of time, and is thus deemed small in comparison to

the other terms. We therefore drop η̂.

The resulting averaged equations are

dyi
dτ

= f̄i(y) + d̄i(y) + ζi(y, τ) +O(ε1/2), (B.42)
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where f̄+d̄ are the deterministic parts of the approximate system, defined in equations

(B.26) and (B.31), and ζ is a non-Markovian stochastic process, for which the relevant

equations are (B.12), (B.15), (B.35), and (B.41).

Since our coordinate transformation remains well ordered, and the neglected terms

are small, a solution of (B.42) should remain close to our original system, (B.1), for

some time until the neglected terms in ẏ build up. This time is expected to be

O(ε−1/2). Moreover, again since the coordinate transformation is well ordered, a

stationary distribution of (B.42) is expected to be O(ε1/2) close to a stationary

distribution of (B.1).

B.5 Approximation by a Markov Process

Now the averaged equation (B.42) contains a non-Markovian process, ζ, and so y is

also non-Markovian. However, in some cases we may be able to approximate y as

Markovian. If we suppose the cut-off frequency of the filter H(ω) used to generate

equation (B.42) is given by ωc, then ζ might be uncorrelated over times ∆ >> 2πε/ωc.

For example, suppose that R(ω) is flat around the frequencies Ωn, so that ζ is a band-

limited white noise. In this case its autocorrelation is given by

〈ζi(τ)ζj(τ + ∆)〉 ∝ ωc
επ

sinc

(
ωc∆

ε

)
. (B.43)

Since ε is small, this is a sharp delta-like function which goes approximately to zero

for times of O(ε1/2), over which the system state y has changed very little. We can

therefore approximate y as a Markov process. We can describe this Markov process by

its Kramers-Moyal coefficients. These coefficients are the moments of an infinitesimal
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step of the process defined for a process z(t) as

D(n) = lim
τ→0

1

n!τ
〈(z(t+ τ)− z(t))n〉

∣∣∣
z(t)=z

. (B.44)

In this section we will calculate the first two coefficients. These are all that is required

for a Gaussian noise. For a non-Gaussian noise all coefficients are required for a

complete description. However, it may be that higher-order coefficients are higher-

order in ε. This suggests that in the limit of small ε, the noise may become Gaussian

as well as white, which in turn suggests a type of of central limit result. This can

be viewed in a discrete sense, noting that for very small ε, each step in coordinate

results from the sum of many noise pulses, and the central limit theorem says such a

sum should have a Gaussian distribution.

Returning to our calculation, in our approximation of y as Markovian, we cannot

take the limit to zero as was done in equation (B.44), but rather we must take it

to a small time of O(ε1/2). Thus, to approximate D(n), we must first calculate

y(τ + ε1/2∆) − y(τ) given y(τ) = y(0). We do this by the method of successive

integration. We first integrate equation (B.42)

yi(τ + ε1/2∆)− y(0)
i =

∫ τ+ε1/2∆

τ

(
f̄i(y(t′)) + d̄i(y(t′)) + ζi(y(t′), t′)

)
dt′,

(B.45)

and then expand the integrand in a Taylor series in y about y(0). For example, for

f̄ ,

f̄i(y(t′)) ≈ f̄i(y
(0)) +

∂f̄i(y
(0))

∂yj
(yj(t′)− y(0)

j ), (B.46)

and similarly for the other terms. We then insert expression (B.45) into equation
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(B.46) and repeat the Taylor series expansion. This process yields

yi(τ + ε1/2∆)− y(0)
i = ε1/2∆

(
f̄i(y

(0)) + d̄i(y
(0))

)
+

∫ τ+ε1/2∆

τ
ζi(y

(0), t′)dt′

+

∫ τ+ε1/2∆

τ
dt′
∫ t′

τ
dt′′

∂ζi(y
(0), t′)
∂yj

ζj(y(0), t′′) +O(ε). (B.47)

The first Kramers-Moyal coefficient, the drift coefficient is thus approximated by

D(1)
i ≈ 1

ε1/2∆
〈yi(τ + ε1/2∆)− yi(τ)〉

∣∣∣∣∣
y(τ)=y

(B.48)

= f̄i(y) + d̄i(y) +
∑
n

∂G
(−n)
ij

∂yk
G

(n)
k`

∫ ∞
−∞

dωR`j(εω + Ωn)H(εω) (B.49)

×1 + iε1/2∆ω − eiε
1/2∆ω

2πε1/2∆ω2
.

Since we asserted that R(ω) is approximately constant around the frequencies Ωn,

we have

D(1)
i ≈ f̄i(y) + d̄i(y) +

∑
n

∂G
(−n)
ij

∂yk
G

(n)
k`

R`j(Ωn)

×
∫ ωc/ε

−ωc/ε
dω

1 + iε1/2∆ω − eiε
1/2∆ω

2πε1/2∆ω2
. (B.50)

Moreover, at the limits of integration, the integrand in equation (B.50) is O(ε3/2).

We therefore extend the limits to ±∞ and the value of the integration is 1/2. Thus,

we find

D(1)
i ≈ f̄i(y) + d̄i(y) +

1

2

∑
n

∂G
(−n)
ij

∂yk
G

(n)
k`

R`j(Ωn). (B.51)
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The second Kramers-Moyal coefficient is approximated by

D(2)
ij ≈ 1

2ε1/2∆

〈
(yi(τ + ε1/2∆)− yi(τ))(yj(τ + ε1/2∆)− yj(τ))

〉∣∣∣∣∣
y(τ)=y

(B.52)

≈ 1

2

∑
n
G

(n)
ik

G
(−n)
j`

Rk`(Ωn)

∫ ωc/ε

−ωcε
1− cos(ε1/2∆ω)

πε1/2∆ω2
. (B.53)

Again, we let the integration limits go to ±∞ and the integration evaluates to 1,

resulting in

D(2)
ij ≈ 1

2

∑
n
G

(n)
ik

G
(−n)
j`

Rk`(Ωn). (B.54)

Note that when the noise in the original equation is white, then d̄ = 0 and the drift

and diffusion coefficients are simply those belonging to the original equation averaged

over one period. Other cases are significantly more challenging.
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Appendix C

Derivation of Equation (2.65)

In this appendix we derive equation (2.65), the stochastic normal form for the pitch-

fork bifurcation arising from parametric resonance. Our main source for this de-

velopment is reference [62]. We start with the equation for a parametrically forced

resonator,

z̈ + 2Γż + ω2
o(1 + δ1 + δ1 cos 2ωt)z + γ(1 + δ3 + δ3 cos 2ωt)z3 = ξ(t), (C.1)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′). (C.2)

In principle this equation could include all terms of the form (δn + δn cos 2ωt)xn for

n = 0, 1, 2, 3, but only the n = 1, 3 terms survive the averaging, and so only these are

included here. We first transform this equation into a form amenable for stochastic

averaging. We begin by rescaling time as

τ = Γt, (C.3)

〈ξ(τ)ξ(τ ′)〉 = 2DΓδ(τ − τ ′), (C.4)
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which gives the rescaled equation

Γ2z′′ + 2Γ2z′ + ω2
o(1 + δ1 + δ1 cos (2ωτ/Γ))z

+γ(1 + δ3 + δ3 cos (2ωτ/Γ))z3 = ξ(τ), (C.5)

where (·)′ = d(·)/dτ . Next, the system is transformed into scaled Cartesian coordi-

nates (a, b) that rotate with ω/Γ, defined via

z =

√
8ωΓ

3|γ|
(a cos(ω/Γτ) + b sin(ω/Γτ)), (C.6)

z′ =

√
8ωΓ

3|γ|
(−aω/Γ sin(ω/Γτ) + bω/Γ cos(ω/Γτ)). (C.7)

Applying this substitution and solving for a′ and b′ gives

 a′

b′

 =

√
3|γ|

8ω3Γ3

 − sin(ω/Γτ)

cos(ω/Γτ)

(− 2Γ2z′ + ω2z − ω2
o(1 + δ1

+δ1 cos (2ωτ/Γ))z − γ(1 + δ3 + δ3 cos (2ωτ/Γ))z3 + ξ(τ)

)
. (C.8)

In appendix B we showed that the slow time drift and diffusion coefficients for a

system like (C.8) can be approximated by their time-average. The averaged drift and
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diffusion coefficients are

D̄(1)
1 = −a−

(
ω2 − ω2

o − δ1ω2
o

2ωΓ
+
δ1ω

2
o

4ωΓ

)
b+ sgn(γ)b(a2 + b2) (C.9)

+ sgn(γ)δ3b

(
a2 +

1

3
b2
)
,

D̄(1)
2 = −b+

(
ω2 − ω2

o − δ1ω2
o

2ωΓ
−
δ1ω

2
o

4ωΓ

)
a− sgn(γ)a(a2 + b2) (C.10)

− sgn(γ)δ3a

(
5

3
a2 + b2

)
,

D̄(2)
11 =

3D|γ|
16ω3Γ2

, (C.11)

D̄(2)
12 = 0, (C.12)

D̄(2)
21 = 0, (C.13)

D̄(2)
22 =

3D|γ|
16ω3Γ2

. (C.14)

To simplify the expressions for the drift coefficient, we define the nondimensional

parameters

α =
ω2 − ω2

o(1 + δ1)

2ωΓ
, (C.15)

β =
δ1ω

2
o

4ωΓ
. (C.16)

The parameter α is the renomalized detuning, accounting for the shift in the resonant

frequency from δ1. β is the effective parametric pump strength and |β| = 1 is the

minimum parametric pump required to induce parametric resonance. For the next

several steps it is convenient to work with the Langevin description of the system.

We therefore write a Langevin system that gives the drift and diffusion coefficients

above. In addition, we now use the overdot to denote derivatives w.r.t. τ . The
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averaged Langevin equations are

ȧ = −a− (α + β)b+ sgn(γ)b(a2 + b2) + sgn(γ)δ3b

(
a2 +

1

3
b2
)

+ ξ1(τ), (C.17)

ḃ = −b+ (α− β)a− sgn(γ)a(a2 + b2)− sgn(γ)δ3a

(
5

3
a2 + b2

)
+ ξ2(τ),(C.18)

〈ξi〉 = 0, 〈ξi(τ)ξj(τ)〉 =
3D|γ|
8ω3Γ2

δijδ(τ − τ
′), (C.19)

which describe the evolution of (a, b) in convenient form. Next, we reduce the dimen-

sion of this system by restricting it to the slow invariant manifold that exists near

the bifurcation point. We begin by applying a linear change of coordinates to the

eigendirections. The linear deterministic part of this system is

ȧ = −a− (α + β)b, (C.20)

ḃ = (α− β)a− b, (C.21)

which has eigenvalues λ± = −1±
√
β2 − α2 and eigenvectors

v+ = (− 1

β

√
β(β + α)

2
,

√
β − α

2β
), (C.22)

v− = (
1

β

√
β(β + α)

2
,

√
β − α

2β
). (C.23)

This motivates the linear coordinate transformation,

u =
β√

2β(β + α)
a+

√
β

2(β − α)
b, a =

1

β

√
β(β + α)

2
(u− v),(C.24)

v = − β√
2β(β + α)

a+

√
β

2(β − α)
b, b =

√
β − α

2β
(u+ v), (C.25)
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that will render the linear part of the equation in normal form. The full equations in

these coordinates are given by

u̇ = (−1−
√
β2 − α2)u− sgn(γ)

3β

√
β2 − α2

(
(3αβ + δ3(α2 + β2 + 3αβ))u3 (C.26)

−(6αβδ3 + 6α2(1 + δ3) + 3β2(1 + δ3))u2v

+(3α2δ3 + 3β2δ3 + 9αβ(1 + δ3))uv2

−β(2αδ3 + 3β(1 + δ3))v3
)

+
β√

2β(β + α)
ξ1(τ) +

√
β

2(β − α)
ξ2(τ),

v̇ = (−1 +

√
β2 − α2)v − sgn(γ)

3β

√
β2 − α2

(
β(2αδ3 + 3β(1 + δ3))u3 (C.27)

−(3α2δ3 + 3β2δ3 + 9αβ(1 + δ3))u2v

+(6αβδ3 + 6α2(1 + δ3) + 3β2(1 + δ3))uv2

−(3αβ + δ3(α2 + β2 + 3αβ))v3
)
− β√

2β(β + α)
ξ1(τ) +

√
β

2(β − α)
ξ2(τ).

As is typical, the linear terms are uncoupled, but at the expensive of more complicated

nonlinear terms. We will need the deterministic center manifold u = h(v), determined

from the equation u̇|h = ∂h
∂v
v̇|h with ξ1 and ξ2 set to zero. This gives, to leading

order,

u =
sgn(γ)(3β + δ3(2α + 3β))

12(β2 − α2)− 6

√
β2 − α2

v3. (C.28)
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Next we write the Fokker-Planck equation for the system in (u, v) coordinates. For

ease of notation, let

u̇ = F1(u, v) + ĝ1ζ1(τ) + ĝ2ζ2(τ), (C.29)

v̇ = F2(u, v)− ĝ1ζ1(τ) + ĝ2ζ2(τ), (C.30)

ĝ1 = β

√
3D|γ|

32ω3Γ2
1

β(β + α)
, (C.31)

ĝ2 =

√
3D|γ|

32ω3Γ2
β

β − α
, (C.32)

〈ζ1(τ)〉 = 〈ζ2(τ)〉 = 〈ζ1(τ)ζ2(τ ′)〉 = 0, (C.33)

〈ζ1(τ)ζ1(τ ′)〉 = 〈ζ2(τ)ζ2(τ ′)〉 = 2δ(τ − τ ′), (C.34)

and the Fi’s are the deterministic part of the equations. Moreover, by defining

g1 = ĝ2
1 + ĝ2

2, (C.35)

g2 = 2(ĝ2
2 − ĝ

2
1). (C.36)

the Fokker-Planck equation for the probability distribution of u and v, denoted as P ,

is given by

∂P
∂τ

= − ∂

∂u
(F1P)− ∂

∂v
(F2P) + g1

∂2P
∂u2

+ g2
∂2P
∂u∂v

+ g1
∂2P
∂v2

. (C.37)

To restrict the system to be near the suspended center manifold, we assume that P

is confined to a narrow strip around u = h(v), specifically, P is taken to be a narrow

tube distribution with mean along the deterministic center manifold and Gaussian
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cross section, as follows,

P = p(u, τ |v)P (v, τ), (C.38)

p(u, τ |v) =

√
Λ(v)

π
exp

[
− Λ(v)[u− h(v)]2

]
. (C.39)

To formulate the FP equation for P we will need the partial derivatives of p(u, τ |v)

up to second order. These are

∂p

∂u
= −2Λ(u− h)p, (C.40)

∂p

∂v
=

Λ′

2Λ
p+ (u− h)p(2Λh′ − Λ′(u− h)), (C.41)

∂2p

∂u2
= −2Λp+ 4Λ2(u− h)2p, (C.42)

∂2p

∂u∂v
= 2Λh′p+ (u− h)p

[
2ΛΛ′(u− h)2 − 3Λ′ − 4Λ2h′(u− h)

]
, (C.43)

∂2p

∂v2
= −2Λh′2p− Λ′2

4Λ2
p+

Λ′′

2Λ
p+ (u− h)p

{
6Λ′h′ − (u− h)

Λ′2

Λ

+(u− h)[2Λh′ − (u− h)Λ′]2 + 2Λh′′ − (u− h)Λ′′
}
. (C.44)

Substitution of the form of P given in equation (C.38) into the Fokker-Planck equation

gives

p
∂P

∂τ
= −p ∂

∂u
(F1P )− F1P

∂p

∂u
− p ∂

∂v
(F2P )− F2P

∂p

∂v
+ (C.45)(

p
∂2P

∂u2
+ 2

∂p

∂u

∂P

∂u
+ P

∂2p

∂u2

)
g1+

(
p
∂2P

∂v2
+ 2

∂p

∂v

∂P

∂v
+ P

∂2p

∂v2

)
g1

+

(
p
∂2P

∂u∂v
+
∂p

∂u

∂P

∂v
+
∂p

∂v

∂P

∂u
+ P

∂2p

∂u∂v

)
g2.
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To get an equation for P (v, τ), we integrate this equation over u, treating p(u, τ |v)

like a δ(u− h(v)). This yields

∂P

∂τ
=

[
− P

∂F1
∂u
− ∂

∂v
(F2P )− Λ′

2Λ
F2P − 2Λg1P + g1

∂2P

∂v2
+

Λ′

Λ
g1
∂P

∂v

−2Λh′2g1P −
Λ′2

4Λ2
g1P +

Λ′′

2Λ
g1P + 2Λh′g2P

]
u=h

. (C.46)

Next, we assume Λ = Λ0 +Λ1v+Λ2v
2, and use scaling arguments to greatly simplify

this equation. For notational ease, we also express F1 and F2 as

F1 = a1u+ b1u
3 + c1u

2v + d1uv
2 + e1v

3, (C.47)

F2 = a2v + b2u
3 + c2u

2v + d2uv
2 + e2v

3. (C.48)

The scaling employed is motivated by proximity to the bifurcation point and weak

noise, and is given by

v → εv, (C.49)

a2 → ε2a2, (C.50)

gi → ε4gi, (C.51)

Λi → ε−4Λi. (C.52)

Keeping terms up to ε2 gives

∂P

∂τ
= ε2

{
− ∂

∂v
[(a2v + e2v

3)P ] + g1
∂2P

∂v2

}
+ P

(
− 2Λ0g1 − a1 − 2εΛ1g1v

+ε2(−d1v
2 + 6Λ0a3g2v

2 − 2Λ2g1v
2)

)
. (C.53)

To ensure that the P equation represents a conservation of probability along the

center manifold, it is necessary that all terms proportional to P vanish. Accordingly,
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we take

Λ0 = −
a1
2g1

, (C.54)

Λ1 = 0, (C.55)

Λ2 =
6Λ0a3g2

2g1
−

d1
2g1

. (C.56)

The resulting Fokker-Planck equation is given by

∂P

∂τ
= − ∂

∂v

[(
a2v + e2v

3
)
P

]
+ g1

∂2P

∂v2
, (C.57)

which corresponds with the Langevin equation

v̇ = a2v + e2v
3 +
√
g1ξ(τ). (C.58)

We scale this according to

q =

√
e2
2
v, (C.59)

resulting in

q̇ = a2q + 4q3 +

√
e2g1

4
ξ(τ). (C.60)

Substitution of the values of a2, e2, and g1 into the above gives the final normal

form, expressed as

q̇ = (−1 +

√
β2 − α2)q + 4q3 +

√
Dγ

64ω3Γ2
αβ2(3+2δ3)+δ3β(β+α)2

(β2−α2)3/2
ξ(τ),

(C.61)

〈ξ〉 = 0, 〈ξ(τ)ξ(τ ′)〉 = 2δ(τ − τ ′). (C.62)
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