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ABSTRACT

A PRELIMINARY INVESTIGATION

OF NARROW—STRIP SAMPLING

AS APPLIED TO FORESTRY

By

James Edward Kearis

Narrow—strip sampling consists of sampling a forest

stand by means of strips so narrow that the trees may be

linearly ordered along the strips. The term 'narrow-strip'

has been used in two basically different senses in previous

research. On the one hand the 'narrowness' meant that a

strip of a width much narrower than usually used was run

through the stand. On the other hand, as used in this

paper, 'narrowness' means that the trees which are sampled

by a narrow—strip are ordered, one after the other, along

the narow-strip. Pielou (1962) used narrow—strip sampling

in the second sense but her theoretical analyses are totally

different from those developed in this paper. In this study,

a theoretical basis is given for narrow—strip sampling,

a major componet of which is the derivation of the expected

distance between adjacent stems along a narrow-strip given

the density of stems per unit area, the average diameter

breast high of the stems, and the width of the narrow—strip.

Monte—Carlo techniques are used to verify theoretical

statements and to examine biases and precisions of
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narrow-strip estimators. A range of real and computer-

generated forest stands is used in the study and consists

of combinations of random, regular, and clustered stem pat—

terns with a realistic range of densities and diameter

distributions generated from an empirical distribution

function. Density and diameter considerations follow from

field data gathered in stands located in the New Jersey Pine

Barrens.

Distance sampling is anr unpractical method of sampling

for density but has been studied because of its theoretical

appeal. Three supposedly robust methods of estimating

density using distance sampling are compared with a density

estimator using narrow-strip sampling in a Monte-Carlo study

of 34 real and computer-generated stem maps. It is found

that narrow-strip sampling gives highly robust estimates

of density outperforming the best of the distance estimators.

Narrow-strip sampling, circular-plot sampling, and

point sampling are used to sample the 34 stem maps for basal

area, species proportion, diameter, and density using both

random and systematic location of the three types of sampling

elements which define clusters of stems. Strip width and

length, plot radius, and basal area factor are chosen such

that all three methods have an equal expected sample size.

Methods are compared on the bases of bias and precision.

On these bases, narrow-strip sampling generally performs

as well as the other two methods.

When data gathered in the field in one oak—dominated
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and in one pine-dominated stand are analyzed, it is found

that narrow-strip sampling performs very well. Narrow-

strip sampling takes about one—half the time of plot

sampling to estimate basal area, density, diameter, species

proportions, and stand table entries. These estimates

are close to the plot sample estimates. One low-intensity

narrow-strip sample takes half the time that a point sample

does to estimate basal area but, in addition, yields good

density and diameter estimates. Diameters were not taken

in the point sample in order to avoid tree-to-tree travel

time, but, since there is no travel time involved in measur-

ing diameters of trees which are narrow—strip sampled,

diameters were taken in the low—intensity narrow-strip

sample.

It seems likely that many areas of application lie

ahead for narrow-strip sampling, and a few are described

briefly. However, additional research will be required to

verify results of this study under different conditions.

Narrow—strip sampling is an attractive and practical alter-

native to circular-plot sampling, point sampling, and dis—

tance sampling for estimation of basal area, species pro—

portions, diameter, density, and stand table entries in

forest stand situations included in this study. Theoretically

there i£§ no reason why narrow-strip sampling for these

characteristics cannot be applied to any forest situation.
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CHAPTER I

INTRODUCTION

To describe a forest stand, a decision must be made

to employzisampling technique which will provide desired

information on selected stand characteristics. After

the stand characteristics have been selected, the choice

of a sampling technique is affected by available resources

(funds, manpower, time, and equipment) and by the desired

accuracy and precision of the required estimates. All

else equal, the most cost-efficient sampling technique

is preferred.

A new method of sampling called narrow—strip sampling 

is investigated in this paper. Narrow—strip sampling con—

sists of sampling a forest stand by means of strips so

narrow that the trees may be linearly ordered along the

strips. No matter how a narrow—strip is placed in the

forest, no two trees can lie side-by-side along the narrow—

strip (see trees A and B in Figure l); i.e., the trees are

linearly ordered along the narrow—strip. This means that

for any pair of trees sampled by the narrow—strip, one

tree must precede the other. Because of the narrowness of

the strip, inter-tree distances between neighboring stems

along the narrow-strip can be taken and this allows an



perpendicular to

centerline

tree A and tree B illustrate

what is meant by two stems lying ‘\ .

side-by-side along a narrow—strip

tree A

/ /

>/ /

°\

5 \

 

\

tree 3 ,

0 tree

centerline of

narrow-strip

defined by lOO-foot metal tape

//’ (direction of travel

////// is along centerline

as indicated by

r the arrows)

first tree

edge of 3-foot wide narrow-strip

defined by placing Biltmore

stick over centerline,

tree is sampled if any part of

stem at breast height meets any part

of the narrow-strip

Figure 1. Trees ordered along a narrow-strip.



estimate to be made of density (the number of stems per

unit area). Though trees can grow with stems in contact

at breast height, this is rare and can be adjusted for

in practice.

Besides density, volume and biomass are also important

characteristics of a forest stand. Estimation of these

characteristics using narrow-strip sampling could not be

covered in this paper because of the preliminary scope of

the study. However, diameters are measured as a part of

the narrow-strip samples, and since heights can be measured

as in any other sampling technique, volumes can also be

estimated. In fact, narrow strip sampling provides a

convenient frame from which to sample for any characteristic

desired.

This paper demonstrates that narrow-strip sampling

can provide cost—efficient estimates of density, diameter,

basal area, and species proportions while achieving an

accuracy and precision which compare quite favorably to

accuracies and precisions experienced with circular—plot and

point sampling. A major conclusion is that narrow—strip

sampling may be an attractive and practical alternative to

circular-plot and point sampling.



CHAPTER II

LITERATURE REVIEW

Narrow-strip sampling has not been used before as

used in this study. Warren (1971, 1972) mentioned the

possibility of some fruitful research in narrow-strip

sampling of forest stands. He pointed out that Pielou

(1962, 1963) used narrow-belt transects (another name for

narrow—strips) to study runs of one species with respect

to another and to study runs of healthy with respect to

diseased trees along the strips but he adds:

. we have only one type of individual,

and we record the distance between succes—

sive individuals as projected on the long

axis of the plot.’

Warren also points out some practical advantages of narrow-

strip sampling:

1. Searching for boundaries, a difficult

task in heavy understory, is eliminated.

2. It is a simple matter to tell whether

or not a tree is in the sample.

3. The crew is not as prone to feel it is

wasting time in travelling from sampling

point to sampling point since the crew

is involved in cruising continuously

along the strip.

Narrow-strips can be used to estimate density. Because

of its effect on density estimation, spatial pattern is

an important characteristic of a plant community. Pattern



is also difficult to assess. Three basic patterns are

generally recognized (Figure 2). The three areas have the

same density but possess widely divergent spatial patterns.

(The use of the word 'pattern' instead of the word 'distri-

bution' will be consistent throughout this paper to avoid

the connotation of an underlying statistical distribution

which the word 'distribution' carries with it.) The fact

that most plant populations have a clustered pattern is

generally accepted throughout plant ecology. Most of the

studies of pattern occur in forestry because trees are

generally very easily distinguishable as individuals.

Two measures of the presence of a species in an area

of interest are density, the number of plants per unit area,

and ggygr, the proportion of the total area covered by the

vertical projection of aerial shoots of the species (Greig-

Smith, 1964). Another measure of presence important in

forestry is basal arga, the number of square units of stem

per unit area occupied by trees using the diameter of the

stem at breast height, 4.5 feet above the ground. There

are a variety of ways to sample for these indicators of the

degree of presence of a species.

In quadrat sampling for density (Cowlin, 1932; Greig-

Smith, 1952; Thompson, 1958) the number of individuals con—

tained in a rectangle of fixed size is examined. Circular-

plots are also used for this purpose. The rectangles are

located randomly, systematically or contiguously. The

size of the rectangle is important and can cause problems

with the bias of the density estimate (Pielou, 1977).



 

   
regular

Figure 2.

 

 

 

    
random clustered

The three basic stem patterns.

 



Cover can be estimated by using the line-intercept

method of sampling. The proportion of the length of lines

that the species intercepts is used to estimate cover.

The lines are generally placed systematically (Johnston, 1957).

The line-intercept method assumes that aerial portions of

plants do not overlap or intermingle; i.e., individual plant

boundaries are well defined. That this is not the case

can cause a serious bias in the estimate.

The most popular method of estimating basal area in

forestry is the point sampling method (Grosenbaugh, 1952;

Dilworth and Bell, 1968). A fixed angle is projected (Figure

3) and depending on the distance of thetnxfiafrom the sampling

point and on the tree's diameter breast high, the tree appears

larger than, smaller than or the same size as the projected

angle. If the tree is a true 'borderline' tree (one which

is exactly the same size as the projected angle), it is

counted as a sample tree. Each sample tree represents the

same amount of basal area. The basal areas sampled are

averaged over all sampling points to obtain the estimate.

Density can also can be measured by distance sampling.

There are two types of distances measured in distance sampling:

point-to-plant and plant—to-plant. In point—to-plant sampling,

a point is chosen at random in the forest and the distance

from the point to the nearest stem is measured. Plant-to-

plant sampling assumes a stem is chosen at random and the

distance to the nearest neighboring stem is measured. Distances

. t

can also be measured from a po1nt or a plant to the k h nearest

 



“‘\sample

Odo not sample

pk.

sampling point

fixed sampling ’ . borderline

angle = or. .

Figure 3. Point sampling.

 



plant where k>l. Various estimators of density have been

derived using one or the other or some combination of the

two methods (for reviews see Mneller-Dombois (1974), Persson

(1971), and Pielou (1977)). All derivations assume a

random pattern of stems. Distance sampling is laborious,

contributes nothing to estimating stand characteristics

other than density and pattern, and must be carried out

independently of the sampling for these other characteristics.

As a result, distance sampling is rarely done except for

research purposes. A good study using distance methods to

estimate density is Persson (1964).

The introduction of bias into density estimates due

to non-random patterning of stems is covered by Persson

(1971). One way density can be estimated is to estimate the

expected value of ti where t1 is the distance between a stem

and its nearest neighbor. If e(ti) is such an estimate, then

ne(ti) is the estimated average area occupied by a stem and

the density estimate (in stems per acre if tl is in feet)

is 43560/@e(ti)). A small bias in e(ti) can cause a very

large bias in the density estimate. Robust techniques of

density estimation are currently being tested (Cox, 1976).

Robust techniques are those which are not seriously affected

by non-random patterns of stems.

The term 'narrow-strip' denotes strips narrower than

the usual 1/2-chain or l-chain widths which have been used

in the past to cruise a certain proportionrfifthe stand area —--

the same as circular—plot sampling does today. 'Narrow'
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means 16.5 feet to Meyer (1942) and 3.3 feet to Cottam

and Curtis (1949). At the other extreme, line-intersect

sampling uses lines to sample logs lying askew on the forest

floor (Bailey, 1969, 1970; DeVries, 1973a, 1973b, 1974;

Warren and Olsen, 1964). An interesting summary of similar

methods used in wildlife studies is given in Eberhardt

(1978). Of particular interest in Eberhardt's paper is a

denisty estimator using strips which are not necessarily

narrow. Eberhardt's density estimator will be discussed in

detail in Chapter VIII.

Studies using narrow-strip sampling have been conducted

by Pielou (1962, 1963, 1965). Pielou places narrow—strips

systematically and records the occurrence of one or the other

type of tree (diseased/healthy or first—species/second—species)

along the strips. When studying the incidence of disease,

she assumes that healthy trees can either be placed in

disease-free 'gaps' or infected 'patches'. She can conclude

from her analysis whether or not the two types of trees

are randomly mingled along the strips. She obtains probabili—

ties of runs of length k=l,...,5 (see Vitayasai, 1971); i e.,

she finds, for example, the probability of three healthy

trees occurring in succession.

Most recently Birth (1977) stated:

'Rock outcrops, minor slope changes, and other

site factors often result in micro—stands that

are substantially different from the major stand

encompassing them. Sampling with continuous,

narrow, fixed-area strips that traverse the

entire stand and are oriented across terrain

features is an appropriate way of including

the variation.’



CHAPTER III

DESCRIPTION OF DATA AND METHODS OF ANALYSIS

A description of two real stands which are used in

field applications of narrow-strip sampling along with a

description of 34 real and computer—generated stem maps used

in Monte-Carlo analyses are given in Sections A and B.

General discussions of the methods of analysis which are

used in Chapters IV-VII are given in Section C. Chapter

IV is the theoretical basis for this study. Chapters V

and VI are Monte-Carlo studies of 34 stem maps, and any

statement about bias or precision of an estimator in these

chapters refers only to these stem maps unless otherwise

stated. Chapter VII gives results aftwo field applications

in the stands mentioned in Section A. Full details of the

methods of analysis precede the disucssions of results in

the appropriate chapters.

A. Description of stands used in field studies.

The two stands which form the empirical basis for

this paper are located on lands managed by the New Jersey

Division of Fish, Game, and Shellfisheries. Stand 1 is

62.5 acres and Stand 2 is 43.0 acres. Stand 1 is dominated

by white oak (Quercus alba L.) and red oak (Quercus velutina
  

11
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L.). Pitch pine (Pinus rigida Mill.) is also present.
 

Stand 1 is contained in the Peaslee Wildlife Management

Area approximately six miles northwest of Tuckahoe. Stand

2 is contained in the Bevans Wildlife Management Area located

approximately six miles south of Millville. Stand 2 is

dominated by pitch pine but contains some white and red

oak. Distribution of stems by species and dbh (diameter

bnxmt high) is given in Tablelu These distributions were

obtained from stem counts in twenty—five 0.2-acre circular-

plots located systematically in each stand. These distri-

butions are also used to generate species and diameters for

computer-generated stem maps.

At each circular—plot center a 2-chain and 4-chain

rectangular plot was laid out (Figure 4). A point sample

was taken from the plot center and three narrow—strips were

run parallel to the 4-chain sides of the rectangular plot

and equidistant from each other. The strips were three

feet wide.

Both stands are in an area of very little topographic

relief. Elevation in the area is 80 to 120 feet above sea

level. The area is part of a broad sand, silt and gravel

plain sloping gently southwestward into Delaware Bay. The

area has a mild climate with high humidity. Drought is not

usually a problem. Since the area is well drained and the

soil is acidic and coarse textured, fires can be a problem.

Stand 2 was burned in the past ten years as evidenced by

scars on the pitch pine stems.
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Table 1. Stand tables

Stand 1

red white pitch

dbh oak oak pine species propor—

(inches) (stems per acre) tions

4 9.87 37.62 0.60 red oak 0.49

5 15.90 33.46 1.39 white oak .49

6 13.50 26.28 2.98 pitch pine .ll

7 15.10 10.95 2.98 1.00

8 14.50 6.37 4.17

9 13.90 3.60 4.77

10 7.05 —- 2.58

11 4.23 -- 2 98

l/ 12 2.82 -- 4.18

96.87 118.68 26 23 density = 242.18

Stand 2

pitch

dbh oaks pine species proportions

(inches) (stems per acre)

4 22.35 19.42 oaks 0.25

5 12.44 33.24 pitch pine .75

g 6 9.00 33.62 1.00

7 7.35 27.22

8 5.69 23.41

9 2.55 19.82

10 4 07 12.01

11 -- 8.60

12 -- 5 20

13 -- 7.82

63.45 190 36 density = 253.18

1/ 12 inches (13 inches) and up counted as one dbh class.
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B. Description of stem maps sampled by computer.

There are 34 stem maps analyzed by Monte-Carlo tech-

niques. The maps are numbered F = 1,...,34. Important char-

acteristics of the maps are listed in Table 2. F = 1,...,30

are computer-generated and F = 31,...34 are actual stem maps.

The patterns used in the generation of F = 1,...,30 are:

1. random (F = 1,...,5). stem center = (X,Y).

XmU(0,173') and YmU(0,346') where U denotes

the uniform probability density function.

ii. regular (Figure 5a.)

a. square (F = 6,. .,10)

b. rectangular (F = 11,. .,15)

c. equilateral—triangular (F = 16,...,20)

iii. clustered ( Figures 5b and 5c.)

a. square (F = 21, ..,25)

b. equilateral-triangular (F = 26,...,30)

Clusters consist of stems equally spaced around the circum—

ference of a circle of radius 10 feet with a stem at the cen-

ter. Cluster centers are then located either on a square or

equilateral-triangular pattern. The number of stems per

cluster is constant for a given stem map since only a cer-

tain number of clusters could fit within a 173 foot by 346

foot map. The number of stems per cluster varies from 7 to

12 depending on the desired density of the map as discussed below.

Species and diameter generation are accomplished using

probability density functions empirically determined from an

eight percent systematic sample by 0 . 2-acre circular—plots located
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in Stand 1. The method of generating a specific stem map is

as follows:

choose a pattern.

choose a density.

generate (X,Y).

D
W
N
H

for each (X,Y):

a. generate a species.

b. generate a diameter.

F = 31,...,34 are from field maps using a Suunto compass and

a 100 foot metal tape. F = 31 and F = 32 were made in Stand 1

 and F = 33 and F = 34 were made in Stand 2.

All values in Table 2 are population values for the 34

stem maps. Density in Stand 1, averaged over twenty—five

O 2-acre circular—plots, is 242.2 stems per acre. This average

density is denoted by DN. Densities in the stem maps cycle

from '1ow' (0.8DN) through ‘medium-low' (0.9DN) through 'average'

(DN) through 'medium-high' (1.1DN) through 'high' (1.2DN) as the

F cycle through 5j+1, 5j+2, 5j+3, 5j+4, 5j+5 for j = 0,1,....,5.

Densities, diameters, and species proportions for F = 31, ..,34

are exactly as mapped. For F = 1,...,30 the area is 173 by

346 feet or 1.37 acres. For F = 31,. .,34 the area is 132

by 264 feet or 0.8 acres. Patterns for F = 1,...,30 are as

previously discussed. Patterns for F = 31 and F = 33 were

found to be clustered and patterns for F = 32 and F = 34 were

found to be random by use of Pielou's index of non-randomness

(1959).

C. Methods of analysis
 

1. Theoretical basis.
 

Narrow—strip sampling is a cluster sampling technique



 

(Cochran, 1963) and a PPS (Probability Proportional to

Size) technique. Chapter IV includes the theoretical frame—

work of narrow-strip sampling upon which Monte-Carlo studies

of Chapters V and VI and field applications of Chapter VII

are based. Narrow—strip estimators of density, diameter,

basal area, species proportions, and stand table entries are

defined. Since the density estimator for narrow—strip samp-

ling establishes the narrow—strip technique as a viable and

practical sampling method, this estimator is the most impor-

tant theoretical concept of this paper. The effect upon

the density estimator of narrow—strip width, stem radius,

h nearest neighborand probability density functions of jt

distances is contained in the derivation of the expected

distance between two successive stems along a narrow-strip.

General considerations about narrow-strip sample size, the

ability of narrow strips to sample variation continuously,

effects of wrongly including or excluding trees from the

sample, and a mathematical definition of 'narrowness' are

also given in Chapter IV.

2. Comparison with distance sampling.

Monte—Carlo studies are discussed in detail in Chapters

V and VI. Such studies are designed to model particular

situations. A general reference dealing with the components

and design of such studies is Schmidt and Taylor (1970).

Some papers dealing with simulation studies in forestry are

Mawson (1968), Newnham (1966, 1968), Newnham and Maloley

(1970), O'Regan and Palley (1965), and Payandeh (1970a).
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A paper by Mohn and Stavem (1974) disucsses randomly located,

non-intersecting discs in the x—y plane. An article on

simulation of distance sampling is Diggle, Besag, and Cleaves

(1976).

Basic to the study of all systems containing stochastic

components is the generation of random numbers. Generators

are available which generate psuedo—random numbers. The

generator chosen for this paper is a modified version of

IBM's RANDU and it was found to be sufficiently random over

the range of values generated and over subsets of that range

according to the purposes for which the numbers were used.

No degenerate tendencies were exhibited and the cycle length

was at least ten times that of the number of psuedo-random

numbers generated.

In Chapter V distance sampling estimators of density

are compared with the narrow—strip density estimator. Three

supposedly robust estimators of density (Diggle, 1975; Lewis,

1976; Cox, 1976) are chosen to compare with the narrow-strip

density estimator. Dependence of the accuracy of density

estimation on spatial pattern prompted selection of all

robust estimators. Thelfluxuaestimators chosen appeared to

be successful.

3. Comparison with plot and point sampling.
 

Use of 'small' stem maps was necessitated by the

enormous number of calculations required for each of the

100 Monte-Carlo realizations run for each sampling method

over every stem map. Since narrow-strip, plot, and point

sampling were being studied as statistical methods, sizes of
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stem maps were large enough so that results could be extended

to larger stands. Similarly, the rectangular shape of stem

maps offers no real restriction to generaliztion of results.

Systematic location of sampling units was also employed

to study the three sampling methods. Behaviour of the three

methods was analyzed with respect to estimation of the

following characteristics: density, average diameter (total  and by species), basal area, and species proportions. Be-

haviour was analyzed for random and systematic location of

sampling units over all 34 stem maps.

Methods are compared on the basis of absolute value of

bias (accuracy), sign of the bias, and the coefficient of

variation of estimates averaged over 100 trials (precision).

The range of densities and patterns, combined with empirical

distribution functions for species and diameter—given-species,  
allowed for a comprehensive study of how well the three

sampling methods estimated the nine characteristics.

4. Field applications.
 

In Chapter VII the design of a narrow—strip sample is

discussed by means of two field applications. One application

is in Stand 1 and the other is in Stand 2. The design

includes specification of narrow—strip width to be used in

the cruise, choice of sampling intensity, location of narrow-

strips, equipment, methods, and cost-efficiency. Results of

the narrow—strip technique are compared with results of

circular-plot and point samples taken in both stands.



 

 

CHAPTER IV

THEORETICAL BASIS OF NARROW-STRIP SAMPLING

This chapter discusses narrow—strip sampling theoreti—

cally to explain how the method works and to provide a

basis for the Monte-Carlo studies in Chapters V and VI.

Accuracy and precision of the estimators will be considered

in Chapters V and VI because they provide the basis upon

which the judgements about the efficiency of narrow—strip

sampling will be made.

Section A is the derivation of E(D) = the expected

distance between two successive stems along a narrow—strip.

Derivation of E(D) results in a relationship which is used

to define the narrow-strip density estimator, e(DN). Narrow-

strip density estimation is accomplished in three parts:

(1) derivation of p(t) = the probability that a stem of

radius r which is a distance t from its neighbor (a neigh-

boring stem along the narrow-strip) is sampled by a narrow—

strip of width w given that its neighbor has already been

sampled; (2) derivation of E(D) resulting in an infinite

series whose terms involve integrals of p(t) and their

products; (3) definition of e(DN). Because of the apparently

highly robust nature of e(DN), the expression for E(D)

eliminates the necessity of either field sampling or Monte—

23
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Carlo sampling stem maps to find numerical values of e(DN)

corresponding to different values of w, r, DN and E(D).

Numerical integration programs (see IBM, 1974) can be used

to generate tables needed to look up e(DN) once the parameters

are specified and an estimate of E(D) is made. The Appendix

includes a description of a procedure used to obtain numerical

values which define e(DN) and a listing of the Fortran IV

program NRSTRP along with sample input and output for that

program. NRSTRP generates the table of values needed to

define e(DN) numerically for a given situation.

In Section B estimators used in Chapter VI are discussed.

Narrow-strip sampling is more of a PPS technique than plot

sampling, but less of a PPS technique than point sampling;

however, simple counts, instead of weighted counts, of

stems are used to define estimators for species proportions.

Later on (Chapter VIII) use of weighted counts is suggested

for this purpose. Diameter and density estimates are used

to estimate basal area. The estimated stand table entries,

like the basal area estimate, depend on diameter and density

estimates but the entries also depend on the accuracy with

which species proportions, as functions of species and diameter

class, can be estimated.

Section C includes a discussion of narrow—strip sample

size. Narrow-strip sampling nearest neighbor distances is

considered as a PPS technique. This section also includes

remarks about the way in which narrow-strips sample variation

continuously as they are run through a stand and about the
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effect that wrongly including or excluding stems in a narrow-

strip sample has on estimates. A mathematical definition

of 'narrowness' is also given.

A. Estimation of density.
 

1. Derivation of theAprobability that a stem is narrow-strip
 

sampled given that a neighboring stem has been narrow-strip
 

sampled.

Let CO be a stem of radius r0 and center x0. Let Cj be

a jth nearest neighbor to C where jgs-l and S = the number of

O

stems in a population. Cj has radius rj and center x,. Let

.J

tj = the distance between x0 and Xj so that tj is the random

variable denoting the jth nearest neighbor distance in the

population. Define the jth nearest neighbor circle to be

that circle centered at xO of radius tj (Figure 6). Select

one edge, e, of the narrow-strip and fix this edge for the

following derivation. Consider a line, e', parallel to e

and a distance rO from e. For notational purposes let 'NS'

denote 'narrow-strip'. Then e' lies outside the narrow—strip.

CorlNS # ¢ if, and only if, x0

w+2rO with centerline CL. Let w = width of NS and CL be

lies within a strip of width

located randomly. Let Q = the distance from xO to e' measured

perpendicular to CL. Q is a random variable. Figures 6a and

6b show how sampling of CO and Cj is done andluan is measured.

Cj is sampled only if it touches the NS and this implies that

xj falls within a strip of width w+2rj centered on CL.

Let D = the random variable of the distance between

 



    

 

jth nearest

neighbor

circle

Figure 6a. Both stems sampled.

 
Figure 6b. One stem sampled.

Figure 6, Given one stem is sampled, the other stem

is or is not sampled. Narrow— strip lies

between lines e and e' touches the

narrow- strip only ifx0 falgs in the strip

between e' and e"
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successive stems along a narrow-strip. For the time being,

the direction of travel along the narrow—strip is not spec—

ified so that D is measuredilleither direction. Since CL

is randomly located, the stem pattern does not affect p(tj) =

Pr(erWNS # ¢ICOFINS # ¢). Also, the random location of CL

implies that Q%U(0,w+2R), independently of stem pattern,

where Q = the random variable of the distance between x0

and e' and R = the random variable of stem radius in the

population. Refer to Figure 7:

p(tj> = 2<£fi+fiE>/<2wtj>

2(0 1+62)tj/(2n tj)

= %[Sin_1((q-r0+rj)/tj) + Sin—1( (w+2rO-(q+ro) +

_ $9731] . -1 .
— ;[S1n ((q-r0+rj)/tj) + S1n ((w rO+rj-q)/tj)]

See Figure 8. Assuming r0 = rj = E(R) and denoting E(R) by r:

p(tj> = $[Sin'l<q/tj> + Sin‘1<(w+2r—q>/tj>1

The assumption on the radii can be justifed if a uniform

diameter distribution is assumed and this assumption simplifies

later integrations and so it is made here. Further studies

could investigate the effect which non—uniform diameter distri-

butions might have on density estimation. Assuming q = E(Q) =

W/ 2+1”:

=
I
|
N
=
1
|
H

[Sin-1((w/2+r)/tj) + Sin—1((w+2r-w/2-r)/tj)]

sn{l((w+2r)/(2tj))

p(tj) -

Finally:

if tjil/2(w+2r)

p(tj) (l)

m
"
:

Shf1((w+2r)/(2tj)) otherwise
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w/2

 
 
 
 

 
 

 

3'

Figure 7.

th   nearest neigbhor circle

(x. can fall anywhere on its

circumference)

Derivation of the probability that

a stem is narrow-strip sampled given

that a neighboring stem has been

narrow-strip sampled. x = center

of stem C of radius r (k = 0,j)

and t. = Eistance betw en x and x..

w = w dth of narrow—strip an e isJ

fixed edge of that strip. e' = line

parallel to and a distance r away

from e. Q (= q in the Figure =

distance from xO to e'.
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w/2+r

E' CL __ 1 w

C' C

X.

J

m

L, I

as soon as t.

Y>W/2+r,

Cj misses the NS -/ —

 

V
Figure 8. Assume the population stem radii to be

constant and the center of the already

sampled stem falls on the narrow-strip

centerline.
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2. Derivation of the expected distance between two adjacent
 

stems along a narrow-strip,
 

Refer to Figure 9. The situation described in Section

A1 now exists. The following derivation assumes a random

pattern of stems. For D = tj to occur (i e., the narrow-

strip distance between two successive stems is in fact the

jth nearest neighbor distance in the population), it must be

true that erlNS # ¢. D = tj does not occur just because

erlNS ¢¢. It must also be true that Ckn NS =¢>for k = 1,. .,j-1

such that no Ck fall between (this is where 'narrowness' is

essential) CO and Cj' These j-l events still allow Ckn NS % ¢

to the left of C (since Cj falls to the right of CO in Figure

0

9). These j-l events occur independently of one another and

independently of ijlNS #q)with probabilities:

1 - (1/2)p(tk) for k = 1, ..,j—l

This implies:

j-l

Pr(D=t ) = E[(1/2)p(t ) H (1-(1/2)p(tk))]

J J k=1

j-l

= (1/2)E(p(t )) H [l-(1/2)E(p(tk))] (2)

J k=l

The (l/2)p(tj) is used insteadcifp(tj) since now the travel

is in a fixed direction (it does not matter which direction is

chosen) along the narrow—strip so that each inter-tree distance

is counted only once. Let Ij be the indicator random variable

for the event D = tj:

1 if D = t.

I. =“ J

J 0 if D ¢ tj

Finally:
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it is assumed that x0

is on the CL

P m

U

 

xk can fall anywhere on

‘ this arc given that

x. falls on

Xk X . 1, Vans arc

0

__ a 5, _

/// \\\\\xk cannot fall on this arc

Figure 9. Expected distance between two adjacent

stems along anarrow—strip. x. falls on

either one (right or left) othhe two

small arcs. Given this event occurs, the

x must fall on the larger arcs like the

ohes indicated for k = 1,...,j-1.
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and:

E(D) = ZE<tj)E<Ij)

j = 1

I
I
M
8

EKtj)(l-Pr(D =tj)+ 0-Pr(D ¢ tj))

j 1

E(D) = EE<tj)Pr(D = tj) (3)

j = 1

where in (2):

3(1-<1/2>Ek<p<t>>) = 1 (letting E<p<tk>> = Ek<p<t>>

k = 1 for notational purposes)

00

[OXKi(t)dtE.(X)

1 . . 2

Ki(t) 2(nm)lt21'1e'“mt /(i-1)! (i = 1,2,...)

The probability density functions, Ki’ are for the ti in

a random population with density m (Thompson, 1956).

3. Definition of the narrow-strip density estimator.

Equation (3) gives E(d) in terms of w, E(R), and m for

a random pattern. For English units m = DN/4356O stems per

square foot and for Metric units m = DN/lOOO stems per

square meter. In practice w is known while E(D) and E(R)

are estimated by e(D) and e(R) from a narrow-strip sample.

What is then required is an estimate, e(DN), of density.

A brief description of how to obtain e(DN) from a table of

values generated by numerical integration will now be given.

A full description is contained in the Appendix.

Suppose that in an area of interest it is known:
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7 inches :E(R) i 10 inches

200 i DN 1 280

Suppose also that it has been decided to sample with strips

of width w = 3 feet (see Chapter VII for a determination of

w). By numerically integrating (3) a table of the following

form may be generated (refer to Figure 10). The dbh range

from 5.0 to 12.0 inches and the densities range from 180

stems per acre to 300 stems per acre. These ranges have

been extended from the previously mentioned 7.0 to 10.0

inches and 200 stems per acre to 280 stems per acre to

faciliatate interpolation.

To generate the table in Figure 10, w is fixed at 3

feet while the dbh varies from 5.0 to 12.0 inches in steps

of 1.0 inches. For each dbh the densities are allowed to

vary from 180 stems per acre to 300 stems per acre by steps

of 20. Each of the 56 tabular values is the result of one

numerical intergration. Different forest situations will

require different ranges and increments for the dbh and

densities as well as adifferent choice of w. The integra—

tions can be formed for any situation.

After a narrow-strip sample of width w = 3 feet is com-

pleted, we have estimates of the average dbh and E(D) of a

a forest stand. All that is required to find the narrow-

strip estimate of density, e(DN), is to search down the

column corresponding to the dbh estimate until the estimate

of E(D) is reached and then proceed to the left to read

e(DN). Some interpolation will usually be required (see the

Appendix). Chapter V uses this same method of interpolation



DN

Figure 10.

34

w = 3 feet
 

dbh = 5.0 6.0 7.0 8.0 9.0 10.0 11.0

180 2:;

200

220 a
240*****x********kxxE(D)

260

280

300

Form for a density estimation table using

estimates from a narrow-strip sample.

w = width of narrow strip (feet); dbh =

diameter breast high (inches); DN = density

(stems/acre); E(D) = narrow-strip nearest

neighbor distance expected for the given

w, dbh, and DN (feet).

12. 0
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applied to the 34 stem maps. Monte-Carlo values of E(D)

are generated and differ significantly from the numerically

integrated values in the Appendix. The reason for these

differences is that the distributions of the tj are truncated

by the sizes of the stem maps.

B. Estimation of other characteristics
 

1. Estimation of species proportions.
 

Simple (unweighted) counts are used to estimate species

proportions in this paper. Weighted counts will be mentioned

in Chapter VIII. If:

Si = number of stems in a stand of species 1

(i = 1,...,s)

s

S = 2 Si = number of stems in stand

1 = 1

si = number of stemscflfspecies i which are

narrow-strip sampled

s

3* = 231

i = 1

then the narrow-strip estimator of the proportion of the

ith species in a stand is:

e(Si/S) = Si/Slk

2. Estimation of diameter.

If:

. .th . .
R. . = rad1us of the j stem of spec1es 1
1,]

(j = 1,...,si)
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ri j = radius of the jth stem of species 1 which

is narrow-strip sampled (j = l""’Si)

then:

s

E(2Ri) = % ZlRi j = average diameter of 1th species

1 j = l

2 3 S1
E(2R) = g') X Ri j = average diameter of all stems_

1.: lj = 1

and the narrow-strip estimators of these quantities are:

 

_ g i
e(E(2Ri)) — s. ri,j

1 .

J==1

2 3 Si
8(E(2R)) = S71: 2 XrLj

1.: 1 j = 1

3. Estimation of basal area.

If:

n Si 2
BA. = (— E R. .) DN = basal area in a stand

1 S 1,j

J = l for species 1

n S Si 2

BA = (§ 2 E Ri j) DN = basal area of stand

i.= lj = 1

S.

_ 1 1 2
e(BAi) — (8* Z ri J.)e(DN)

J = 1

_ n S Si 2
e(BA) — E. Z Z ri .)e(DN)

1==1.j = l

4. Estimation of stand table entries.
 

If:
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Si j = number of stems in a stand of species 1

)

which are also in diameter class j = 1,...,vi

si j = number of stems of species 1 in class j

S

which are narrow-strip sampled

then the (i,j)th entry in the stand table is:

(Si,j/S)DN

and the narrow-strip estimator of this quantity is:

e((Si,j/S)DN) = (si j/s*)e(DN)

C. General considerations.
 

1. Narrow-strip sample size.
 

Suppose that F0 is a forest stand of area A. Let C

be a stem of radius r such that C is located randomly in F0.

Let NS denote a narrow-strip of width w and length 1 such that

the centerline is located randomly over F0. Let PT denote a

circle of radius (2r)(PRF) located randomly in F0 where PRF =

some plot radius factor used in point sampling. Finally PL

denotes a circular—plot of radius Z located randomly in F0.

See Figure 11 from which the derivations of the following

formulae follow:

 

 

 

+

Pr(cn NS #1) = (2(r/12A+ w)1 = (w :/6)1

2

Pr(CrNPT #¢) = "(ZriRF)

2

Pr(Cn PL #1) = 1(2 Z r/12)

It is instructive to examine ratios of these three probabilities

because this gives a comparison of how much more (or how much

less) likely C is to be sampled according to one (or to another)

of the three sampling techniques. To study this behavior, r
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(2r)(PRF)

 

 

  
 

Figure 11. Geometry of stem sampled by the three

techniques. F = forest stand of area

A; C = stem of radius r (inches); CL =

centerline of narrow—strip of width w

(feet) and length 1 (feet); PRF = plot

radius factor of point sampling circle

PR; PL = circular-plot of radius Z (feet).
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is allowed to vary while w, 1, Z, and PRF are given the

values in Table 3. These values are representative of real

situations.

To be able to compare the techniques we fix wl = "22::

0.2 acre. The three ratios of interest are:

_ Pr(CerT #¢)

1‘1“) ‘ Pr(Cn PL #4.)

_ Pr(Cfl- PT 7%)

1‘2“) ‘ Pr(Cn NS #4))

_ Pr(Cn NS #e)

1‘3“) "' Pr(Cn PL 76¢)

 

 

 

These ratios are graphed in Figure 12.

The k3 curves in Figure 12 illustrate the phenomenon

that plot shape does make a difference when sampling stems

as circles as opposed to sampling stems as points. In each

situation the narrow-strip has a higher probability of

sampling stems of a given radius than does the circular-

2
plot even though wl = Hz This occurs partly because:

2/w = 21/wl = perimeter-to-area ratio for the

narrow-strip

2/Z = ZwZ/(nZZ) = perimeter—to-area ratio for

the circular-plot

so that:

Z/w = (2/w)/(2/Z) = relative amount of perimeter

in a narrow-strip as compared

to a circular-plot

In the three situations given in Table 3 we have, respectively,

Z/w = 17.55, 8.78, and 6.58.

Over the seven random stem maps (F = l,...,5,32,34):
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Table 3. Example of stem being sampled by the three

 

 

 

 

 

techniques.

DN E(tl) w 1 Z BAF PRF E(R) range of

r

250 6.60 3 2904 52.66 10 2.750 3.50 2-10

75 12.05 6 1452 52.66 30 1.588 14.00 10-20

35 17.64 8 1089 52.66 60 1.123 25.00 20—30

DN = density (stems/acre); E(tl) = expected value of lSt

nearest neighbor distance in random pattern with density

= DN; w = width of narrow-strip; 1 = length of narrow-

strop; Z = circular-plot radius; BAF = basal area factor;

PRF = plot radius factor; E(R) = average stem radius

in population; r = stem radius (inches).
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  Note:

random stem pattern

‘ l

 ratios are for a

\

 

4 6 8

Figure 12.

l \ l l ‘ \ L

10 12 14 16 18 20 22 24 26

radius (inches)

Comparisons of stem being sampled by

three methods.

28 30
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3* = (l+t)(a/A)S

where a/A = sampling intensity

a = area covered by narrow-strips

A = area of F (1.37 or 0.80 acres)

S = number of stems in F

l+t proportion of stems narrow-strip sampled

in 100 Monte-Carlo realizations as an

excess of (a/A)S = number of stems that

the narrow-strips should have sampled

on a strictly areal basis

For these seven stem maps E = .1218 and .0919:t:.l770. Over

all 34 stem maps E = .1068 and .0584:t:.l770. This says

that narrow-strips sampled, on the average, 10.68% more stems

than would be implied purely by their area.

Since the k2 curves fall below the line y = 1, the

narrow—strip also has a higher probability of sampling a

stem of a given radius than does the point sample. The k1

curves show the point to circular-plot sampling relationship

and are included for the sake of completeness.

2. Narrow-strip sampling of nearest neighbor distances as
 

a PPS method.
 

In PPS sampling, the size of a population element is a

measure of that element's importance in estimating some

characteristic of a population. For example, in point

sampling for basal area, if two stems, C1 and C2, are such

that r2 = krl, then Pr(Czn PT #¢) = kzPr(Cln PT #¢). When

narrow-strip sampling D to estimate E(D), the smaller distances
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are the more likely distances to be sampled. Consider

Figure 13 in which a first and second nearest neighbor circles

are pictured along with a narrow-strip. In the sense that

trees which are closer together exert more of an influence

on each other than trees which are further away, tj is, in

general, 'more important' than tk when j<k. tl<t2 implies

p(tl)>p(t2) so that k<l in p(tz) = kp(t1) since Sin-1 is

a strictly increasing function. This says that a stem

which is a distance tl away from a narrow—strip sampled

stem, CO, has a higher probability of being sampled than

does a stem which is a distance t2 away from C0'

3. Continuous sampling of variation.
 

Refer to Figure 14. This figure shows what is meant

by the statement that narrow-strips sample variation con-

tinuously as they are run through the stand. The shaded

portions represent area sampled by narrow-strips and not

sampled by circular-plots.

It is assumed that significant variation in a forest

will generally occur at right angles to the topography.

The narrow-strips are oriented to pick up this variation.

If the assumption is correct, then, generally, insignificant

variation will occur inside the circular-plots but outside

the narrow-strips. The notion of variation in this case

is quite elusive analytically and deserves further study.

4, Wrongly sampled stems.
 

In Section C1 it was mentioned that:

Pr(CnNS #¢) = (w+r/6)1/A
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N2

N8

N1 7’\ :4

t

X0 t2

\\\fl///

Figure 13. Narrow-strip sampling of nearest

neighbor distances as a PPS

method. x = center of stem sampled

by a narrgw-strip; NS = narrow-strip;

t = first nearest neighbor distance

t8 sampled stem; t = second nearest

neighbor distance %0 sampled stem;

N1,N2 = nearest neighbor circles.
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circular—plot narrow—strip ///

 

 W!   
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//////!////////UWW/fllfll///////xég2 VWWMMM/fl/W/l

topographic line

 

 

swamp

A A A

§?%%fl%flid VWfl”WOM%M&¢A¢¢@¢{ ){%&@¢%fi%&¢¢¢fié¢( %%§Q%@@Z

\J V V

500 feet 400 feet 500 feet 600 feet

Figure 14. Continuous sampling of variation.

um-aw-.' ..'_;. 4 .-‘o-...
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Suppose Cl has radius r1, C2 has radius r2, and r2 = kr

Pr(Cln NS #¢) = (w+r1/6)1/A

Pr(Czn NS ¢¢) (w+r2/6)1/A

so that:

Pr(Czn NS #¢) = vPr(Cln NS #¢)

implies:

Pr(CzrlNS ¢¢) w+krl/6

V: =————————.

Pr(ClrlNS ¢¢) w+rl/6

 

For example, if w = 3 feet, r1 = 6 inches and k = 2:

= 3+12/6 =

3+6 6
1.25

A stem, C2, twice as large in dbh as a stem, Cl’ has an

unconditional probability l/4 as great as does C1 of being

narrow-strip sampled by strips located randomly. This

suggests that stems which should be sampled and are not

sampled tend to be of smaller dbh while stems that should

not be sampled and are sampled tend to be of larger dbh.

If this tendency were the sole factor in sampling stems,

there would be a positive bias in dbh estimation; however,

larger dbh stems tend to lie further apart and so, given

that a larger stem is wrongly sampled, the probability of

sampling another large stem is lessened. These two factors

tend to compensate for each other it appears since, as

seen in Chapters VI and VII, narrow-strip sampling gives

accurate estimates of dbh.

5. Mathematical definition of 'narrowness'

Consider the forest to be a collection of n circles:
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F= {C.:i= 1,...,n}

_ . _ 2 _ 2 2
where Ci — {(X,y).(x Xi) + (y yi) iri}

(Xi’yi) = center of Ci

r. = radius of C.

1 1

It is assumed that none of the circles intersect. Denote

the d1stance between (Xi’yi) and (xj,yj) by Dij (1:1<j:n).

See F1gure 15. Let Kij = Dij-(ri+rj). Let w = w1dth of

the strip. Define K = min{ Kij‘lii<jin}- The strip is

narrow if, and only if, w<k.
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1).. ., ,1; (KJ yJ)

K..

13  

Figure 15. Distances used to define 'narrowness'.



CHAPTER V

COMPARISON OF NARROW-STRIP SAMPLING WITH DISTANCE

SAMPLING FOR ESTIMATING DENSITY

Three supposedly robust density estimators using

statistics derived from distance sampling are defined.

Next a narrow-strip density estimator, e*(DN), is defined

by means of Monte-Carlo sampling in contrast to the defini-

tion of e(DN) by means of numerical integration in Chapter

IV. Finally the three distance estimators and e*(DN) are

compared and conclusions are drawn.

A. Definition of distance estimators.
 

l. Cox's estimator.
 

Cox (1976) defines 5 by sampling N points at random.

He defines N = n+m pairs of distances thusly:

Xi = distance from ith point to nearest tree

Yi = distance from tree nearest the ith point

to its nearest neighbor

A = {(Xli’Yli):Yli:2Xli; 1 = 1,...,n}

B = {(XZi,YZi):Y2i>2X2.- i = 1,...,m}
l ’

Figure 16a is an example of an 'A-situation' and Figure 16b

is an example of a 'B-situation'. A random variable W1i is

now defined:

49
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Figure 16a. 'A-situation'.

 
Figure 16b. 'B-situation'.

Figure 16. Geometry of Cox's estimator. For

both figures the random point is

0, the nearest stem to O is P and

G is P's nearest neighbor.
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wli = [2H+SinBi-(n+Bi)COSBi]_l

where sin((1/2)Bi) = Yli/(lei)

Finally:

r

elifrn:(1/4)N

é =j.

62if1n<(1/4)N

where 61::(w/2)(1.17-.68m/N)H/N

 

2: (w/Z)(.20+3.20m/N)H/N

_n2 m2

H “ §Z1i+ {Yzi

2 _ 2

211 ‘ (1/“)X1iw1i

2. Diggle's estimator.

Diggle (1975) claims his y* is 'moderately' robust.

By robust he means that the mean standardized bias is 'small'

in absolute value for a wide variety of patterns. Mean

standardized bias is defined by:

E((Y*-Y)/Y)

where Y is the density. y* is defined by:

. n 2
YX (TI/I1)§Xi

A

n 2

YY 07/ani

where Xi = random point-to-plant distance

n
-
<

ll random plant to nearest neighbor distance

i

“ _ “ “ 1/2
Y - (YXYY)

1 = 435609'1'Yl\

3. Lewis' estimator.
 

Lewis (1975) defines R' as follows:
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t _ 2

R — 43560/(NR )

where R = —(1/4)R1+(3/2)R2

n

R1 = (l/n)§Rli

n

R2 = (l/n)§R2i

Rli = random point to nearest plant distance

R2i = random point to second nearest plant

distance

B. Monte—Carlo narrow-strip density estimator.
 

The interpolation procedure in the Appendix which defines

e(DN) is now used to define e*(DN). (See also IVA3). There

is one important difference in the two parameters, a and b,

which define e*(DN) and e(DN). That difference derives from

the fact that in regressing to obtain a and b for e(DN), the

'actual' (or 'numerically integrated') values for E(D) were

used. In the case of e*(DN) the values for E(D) which are

used to determine a and b are derived from 1500 Monte-Carlo

realizations over 34, l 37-acre or 0.80—acre stem maps and

so the resulting values for E(D) are substantially less than

the numerically integrated values for E(D) used to define

e(DN). In effect, the sizes of the stem maps truncate the

distributions of the tj' Nonetheless the regressions which

yield the values of a and b for e*(DN) exhibit very good fits

to the E(D) values.

Over populations with random, regular, and clustered

patterns and 6.5 inches:E(2R):7.5 inches and 1903DN1290,

narrow-strips of width w, where 2 feetgwi9 feet, were randomly



53

located. Fifteen hundred narrow-strips were used per stem

map per width. For a given stem.map and a given width the

1500 narrow—strips yielded approximately 10,500 values of

D and these values were summed and averaged to obtain one

Monte-Carlo value for E(D). The table of E(D) values in

the Appendix is for a width of 3 feet. E(D) values used to

define e*(DN) were obtained for widths of 2, 3,...,9 feet.

Values of a and b were obtained for each of these widths.

The lowest r2 for any w was .9596 and the largest average

absolute bias was .0637. Absolute bias is the absolute value

of the mean standardized bias as defined by Diggle using e*(DN)

in place of 7*. The absolute biases are then averaged over

the 34 stem.maps for a given width.

Eight pairs of a and b values (onepmfi1:for each w) were

regressed to obtain over-all values for a and b. The fit

for a was linear and the fit for b was quadratic:

a = .004633665(w+E(2R))+.10961952

with r2 = .9999

b = -5.9988485((w+E(2R))-4.8391573)2+725.84898

with r2 = .9831

Finally:

e*(DN) = be“aE<D)

where E(D) = Monte-Carlo average for D

C. Comparison of the estimators.

For the three distance estimators of DN, 25 and 50 random

points and/or plants were chosenilleach stem map to generate

estimates. To evaluate e*(DN) 100 Monte-Carlo realizations
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were performed for each stem map using a width of 5 feet.

E(2R) was known. There were about 35 distances per

realization. Each realization gave an estimate of E(D) and

these estimates were averaged over all realizations to

obtain an over—all estimate of E(D). The over-all estimate

of E(D), the known value of E(2R), and the width of 5 feet,

were then used to determine a and b and hence to evaluate

e*(DN) for a given stem map. The average absolute bias,

denoted by [B], was averaged over all 34 stem maps for

each estimator to yield Table 4.

Of the three distance estimators, RJr performed uniformly

best over all stem maps for each n. Though y* did not per-

form as well as R', it generally outperformed 6 except for

the two 'most regular' patterns which are the square

regular and the equilateral-triangular regular. The narrow-

strip estimator e*(DN) performed better than the distance

estimators. IBI for e*(DN) ranged from .0000 to .1402.

No correlation between pattern and [B] was evident and this

suggests that e*(DN) is quite robust. Recalling the discus-

sion in Chapter IVAl, it is possible that the robustness

of e*(DN) derives from the fact that, since narrow-strips

were randomly located, pattern did not affect the p(tj).
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Table 4. Bias of density estimators.

 

 

n = 25 n = 50

y* .193 .161

R' .151 .116

e .238 .213

e*(DN) .026





CHAPTER VI

COMPARISON OF NARROW-STRIP SAMPLING WITH

CIRCULUAR-PLOT SAMPLING AND POINT SAMPLING

A description of how the three sampling methods were

applied to the 34 stem maps is given along with necessary

formulae used to calculate estimates. Next the results

of a Monte-Carlo study which investigated the behaviour

of the three techniques under random location of their

sampling elements is presented. Finally a discussion of

the behaviour of the three sampling methods using standard

systematic location of their sampling elements is presented.

A. Sampling methods and formulae.
 

The three sampling techniques were applied to all

34 stem maps using random and systematic location of the

sampling units. Both random and systematic samples had

a sampling intensity of 10 percent for circular-plot

sampling. Twelve plot centers were located. Plot radii

were 12.60 feet for the computer—generated stem maps and

9.61 feet for the actual stem maps. The difference in

radii occurs because the two sets of stem maps are of

two different sizes. The systematic centers were located

in the standard way (Figure 17a) and the random centers

were located so that the entire plot was contained within

56
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Figure 17a. Standard Figure 17b. 'Standard'
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Figure 17c. 'Spoked' Figure 17d. 'Lattice'

Figure 17. Systematic layout for sampling elements.
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the boundaries of a stem map. This is standard practice

in real situations. Since there were twelve plots, each

comprising 1/120 of the area of a stem map, it is seen

that the expected number of stems per plot is S/120 where

S = number of stems in a map. The circular-plot estimators

of basal area and density are the usual ones and had a

constant blow—up factor of ten.

Point sampling was done from the plot centers. Averag—

ing S/120 stems per point was achieved by:

S/120 = BA/BAF

BAF = 120BA/S

where BA basal area of stem map

BAF = basal area factor to be used

As a result, basal area factors varied from stem map to

stem map depending on the number of stems per map and on

the basal area of the map.

Narrow—strips of width w = 5 feet were passed through

the stem maps until a sampling intensity of at least ten

percent was reached in the random case. These intensities

varied from 10.87 to 11.41 percent. In systematic sampling

(Figure 17b) narrow—strips were located and w was fixed

within each stem map so that the sampling intensity was

10 percent. The formula used to calculate basal area is:

e(BA) = “Tr/8*)? Sir? .)e*(DN)

qu

1.— 1 j = 1

This is the same formula as given on pageifi5 except e*(DN)

is used in place of e(DN).
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The point sampling estimators (Dilworth and Bell,

1968) used are:

e(BA) = (N/12)BAF

12 27

e(DN) = (1/12) X 2:1..(BAF/BA.)

j=1i=1lJ 1

12 27

e DT = 1 N d . .. BAF BA.( ) (/)j=ili£lln13( / 1)

12 27

e(PR) = (l/N) X X ni.(R)(BAF/BAi)

j=li=1 3

where N = total number of stems sampled

12 27

:1 Enij

j = le= 1

_ . .th .
nij — number of stems 1n 1 d1ameter

h
class at jt point

BAi = basal area of stem in ith

diameter class

di = diameter of 1th diameter class

(d1 = 4 inches, (12 = 5 inches,...,d27

= 30 inches)

.(R) = number of red oak stems in 1thn.

13

0 .th 0

d1ameter class at 3 p01nt

PR = proportion of red oak stems in map

The above point sampling estimators were also used to

estimate diameters within species classes (red oak, white

oak, and pitch pine), basal areas within species classes,

and species proportions for white oak and pitch pine. The

formulae are similar and so are not listed.
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B. Random Sampling
 

Bias is the average absolute bias defined on pagefi3.

Precision is the Monte-Carlo average of the coefficients

of variation over 100 realizations in each stem map for

each technique.

Table 5 summarizes the bias and precision for nine

stand characteristics for all three sampling methods under

the random location of sampling elements. Biases are computed

using the population means for each characteristic within

each stem map. Entries in Table 5 are defined by:

34

Bias = (1/34) 2 B.

i=1l

Precision = (1/34) $4 P.

i = 11

where Bi = Monte-Carlo average of the absolute

bias of a characteristic over 100

realizations in the ith stem map

Pi = Monte-Carlo average of precision of

a characteristic over 100 realizations

in the 1th stem map

It is evident that plot sampling and narrow—strip

sampling are quite accurate for dbh estimation while point

sampling is not as accurate as the other two methods.

According to a paper by Schreuder (1970), point sampling

furnishes unbiased estimates of characteristics given

certain circumstances. These results do not necessarily

contradict Schreuder's paper because the stem maps were

small due to: (1) computer storage requirementsadlowed a
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Table 5. Random sampling comparisons.

 

 

 

 

Bias Precision

plot point narrow- plot point narrow-

strip strip

basal

are? .07 .03 .05 .20 .16 .18

(ft /acre)

density

(stems/ .05 .13 .03 .16 .20 .15

acre)

dbh (in.)

(all .01 .13 .01 .07 .07 .06

species)

dbh

(red oak) .01 .14 .02 .10 .09 .09

dbh

(white oak) .01 .14 .01 .08 .11 .06

dbh

(pitch .04 .14 .02 .21 .12 .18

pine)

propor-

tion .07 .13 .12 .28 .31 .24

(r. oak)

propor-

tion .06 .16 .09 .26 .35 .23

(w. oak)

propor-

tion .11 .10 .14 .50 .45 .46

(p. pine)
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maximum of 400 stems per map in order to contain infor-

mation on 1500 narrow-strip clusters of stems when a

particular stem map was being studied; (2) in order to

compare the three methods on a common basis it was

necessary to sample the same stem.maps with points and

plots as were sampled by narrow—strips. The resulting

size of the stem maps (as mentioned in Chapter III, stem

maps were either 132 by 264 feet or 173 by 346 feet) did

not allow for an area within the maps in which no point

centers could fall. It is believed that, since species

and dbh were randomly generated, the sizes of the maps

did not unduly affect the results.

Precisions for all three methods are quite good

except for estimation of species proportion. Estimation

of the frequency of occurrence of pitch pine was quite

poor for each method. Pitch pine was by far the least

frequent of the three species with a frequency of .11.

This was true because the empirical distributions used

to generate the stem maps were based on data obtained in

Stand 1.

In Chapter V e*(DN) was obtained by averaging observed

values of D which were measured between adjacent stems

along narrow-strips. In practice a quicker method would

be to calculate an estimate, e(D), of E(D) as follows:

n n

e(D) = 2 di/ 2 (mi-1) (4)

1.: 1 i==l

where di = distance between first and last stem

on the 1th narrow—strip
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m. number of stems on the ith narrow—strip
l

n number of narrow-strips

This method was used to caculate e(D) in this chapter. By

using this method of estimating e(D), an insignificant

bias is introduced but this method is much quicker than

measuring every inter-tree distance along a narrow-strip.

Refer to Figure 18. It is assumed that,<n1the average,

one stem center will fall on the narrow-strip centerline

and the other stem center will fall on one of the edges.

This is equilavent to assuming that the y-coordinate

of the centers differ by w/2. The average value of Di

is what is being calculated in (4) where Dfi = biased inter-

tree distance. The density and corresponding expected

nearest neighbor distance will determine the choice of

w (see Chapter VIIAl). In a situation similar to that in

Stand 1, we might encounter E(D) = 40.0 while using a

width of 3 feet. This implies that E(Dé) = 39.972

which differs very little from E(D). As the density

decreases, the expected nearest neighbor distance and the

width used for cruising increase, so that the magnitude

of the above discrepancy between E(Dfi) and E(D) is typically

small.

Plot sampling and narrow—strip sampling for density

were the most accurate of the three methods and point

sampling provided inaccurate density estimates. All three

methods did well for estimating basal area with point

sampling being the most accurate. Narrow-strip sampling
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rXk+1

Dy

w/2

  DI
 [e

Figure 18.

 

4
L
1

k

Bias in estimating inter-tree distance

using the quick method of measurement.

Xk’Xk+l are stem centers for neighbor—

ing stems along a narrow- strip; w =

width of narrow-strip; = inter-tree

distance; biased infer- tree dis-

tance as coEputed in Equation (4).
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does not suffer from 'edge effect'; i.e., narrow-strip

centerlines were located at random without restriction

while the plot (and therefore the point) sampling centers

could not fall within a border one plot radius (12.60 or

9.61 feet) wide around the map. Point sampling suffered

more from this bias than did plot sampling.

For estimation of the proportions of red and white

oak, plot sampling performed best while point and narrow-

strip sampling did reasonably well. All three methods per-

formed poorly in detecting pitch pine proportions because,

though of larger dbh than the oaks, pitch pine occurred

relatively infrequently.

C. Systematic sampling.
 

Refer to Table 6. Since the behaviour of systematic

sampling with narrow-strips was quite erratic in the non-

random stem maps, the three methods were compared over only

random and real maps. The erratic behaviour of narrow-strips

was due to the deterministic placement of stems in conjunc—

tion with the standard location (Figure 17b) of narrow-

strips and the narrowness of the strips. Some strips

missed stems completely in some cases while other strips

sampled only a few stems in non—random maps. This behaviour

caused very serious inaccuracies in the estimates. The

nine stem maps in which the three methods were compared would

seem to represent real situations much better than the

stem maps which were not used in the analyses.

Over all 34 stem maps the 'spoked' and '1attice' place-
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Table 6. Systematic sampling comparisons

Bias Precision

plot point narrow- plot point narrow-

strip strip

basal

are? 0.18 0.16 0.23 0.81 0.67 0.65

(ft /acre)

density

(stems/ .15 .20 .16 .66 .85 --1/

acre

dbh (in.)

(all .08 .17 .04 .40 .44 .32

species)

dbh

(red oak) .07 .13 .08 1.02 1.05 .29

dbh

(white .06 .17 .04 1.04 1.38 .26

oak)

dbh

(pitch .08 .16 .19 1.98 1.39 .23

pine)

propor—

tion .34 .46 .22 1.18 1.28 --l/

(r. oak)

propor-

tion .26 .37 .20 1.12 1.43 --l/

(w. oak)

propor—

tion .29 .37 .58 1.79 1.37 --l/

(p. pine)

1/ Only two degrees of freedom, so coefficients of varia-

tion were not calculated (see page 67
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ments of narrow-strips (Figures 17c and 17d) were analyzed

also. These two types of placements were unquestionably

outperformed by the standard placement. In practice the

standard placement is the one which will be used, there-

fore study of only the standard placement is justified.

For systematic sampling the methods are compared on

the bases of absolute bias = I(estimated—actual)/actual|

and coefficient of variation = (standard deviation of

estimate)/estimate. All stems sampled were considered as

one collection for the narrow-strip estimates of density

and species proportions so there was no coefficient of

variation calculated for narrow-strip sampling of these

characteristics since, with three narrow-strips, there

would have been only two degrees of freedom to calculate

the variance of the estimates. The narrow-strip coeffi-

cients of variation were calculated from deviations of

each stem from the estimated value. The plot and point

sampling coefficients of variation were calculated over

the twelve sampling centers in the usual manner.

All three methods performed poorly with respect to

accuracy under systematic sampling except: (1) plot sampling

for density and dbh; (2) point sampling for red oak dbh;

(3) narrow-strip sampling for total dbh, red oak and white

oak dbh. The poorest performances for all three methods

were estimation of the species proportions. Narrow—strip

sampling performed more poorly than plot and point sampling

in basal area estimation but performed almost as well as
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plot sampling in estimating density.

Narrow-strip and point sampling had smaller coeffi-

cients of variation than did plot sampling for basal area.

The narrow-strip sampling coefficient of variation for

total dbh is lower than those for plot and point sampling.

In estimating the diameters of the individual species the

narrow-strip coefficients of variation are strikingly lower

than those for the other two methods. This could be due

to the two different ways in which variation was calculated,

so it doesn't necessarily mean that variation along the

narrow-strips is lower in these three cases. With larger

maps, more strips would have been used and, as would occur

in practice, each strip (just as each plot) would be con-

sidered a cluster and variation would be calculated in the

usual manner.

D. Conclusions.
 

Under random and systematic sampling by means of

narrow—strips, circular-plots and points over thirty com—

puter-generated and four real stem maps, it was found

that narrow-strip sampling was generally about as accurate

and at least as precise (sometimes more precise) than the

other two methods. This suggests that narrow—strip sampling

might be used to advantage in real situations for the

estimation of density, diameter, basal area, and species

proportions. With this in mind, the application of narrow-

strip sampling to the estimation of these characteristics

is presented in Chapter VII for two real stands.



CHAPTER VII

PRACTICAL APPLICATION OF NARROW-STRIP SAMPLING

Design of a narrow—strip sample is explained by means

of examples using data gathered in the New Jersey Pine

Barrens in two stands: (1) oak-dominated (Stand 1); (2)

pine-dominated (Stand 2). Topics covered first are choice

of narrow-strip width, sampling intensity, location of nar-

row-strips, equipment, methodology, and cost—efficiencies.

Next, narrow—strip sampling is compared with circular—plot

sampling and point sampling using 'high—intensity' narrow-

strip cruises. Finally narrow—strip sampling is compared

with point sampling using a 'low—intensity' narrow-strip

cruise in Stand 2. Figure 19 shows locations of sample

plots and Figure 4 shows sample plot layout.

A. Design of a narrow-strip sample.
 

1. Choice of width.
 

In order to determine an appropriate width, w, before

a narrow-strip cruise is made, a rough idea of density is

required:

f

'1 if E(t1)<2

w =<[E(tl)/2] if 2:E(t1)<18

8 if 18 :E(t1)

g 
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Stand 1

rectangular plots

 

   

   
Stand 2

Figure 19. Locations of sample plot centers.
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The 'greatest interger function' is defined by:

[x] = j = greatest integerix

For example:

[3.1416] = 3, [1.999]=]q [j] = j for any integer j

The tabulation for w given density is shown in Table 7.

Density for Stands 1 and 2 was though to be about 250 stems

per acre. Since l70.16:250:302.50, w = 3 was chosen for

the cruises. Should the density estimate be too uncertain,

choose the narrower of the two widths and adjust later if

necessary.

2. Location of narrow-strips and sampling intensity.

Centerlines of narrow-strips should be located parallel

and equidistant from each other so that travel along the

narrow-strips is generally at a right angle to major gradi-

ents of variation in the stand. Orientation of the narrow—

strip centerlines should be the same as orientation of lines

upon which circular-plot centers would be located to include

the maximum amount of variation in the sample. The spacing,

ul, between centerlines is governed by sampling intensity

(8.1.) and is illustrated in Figure 20.

Refer to Figure 19. It is suggested as a 'rule-of

thumb' that, for a 'high-intensity' narrow-strip sample,

narrow—strip sampling intensity be about one-quareter that

of the circular-plot sampling intensity which would normally

be used. To ensure enough degrees of freedom.with the

0.2-acre circular-plots, it was decided to use 25 plots.

Stand 1 is 25 chains by 25 chains square. Plot spacing of
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Table 7. Choice of width.

 

 

 

minimumi/ maximum width E(t1)g/

density density (feet)

(stems/ (feet)

acre)

680.63 -- 1 4

302.50 608.63 2 6

170.16 302.50 3 8

108.90 170.16 4 10

75.63 108.90 5 12

55.56 75.63 6 14

42.54 55.46 7 l6

-- 42.54 8 18

1/ minimum density = (43560/4E2(t1)).

2/ E(tl) = expected value of lSt nearest

neighbor distance in random pattern.
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Figure 20. Spacing between narrow-strip center-

lines.
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5 chains by 5 chains in Stand 1 results in a circular-

plot sampling intensity of eight percent. Running twelve

narrow-strips of width 3 feet (a total length of 300 chains)

through Stand 1 gives a narrow-strip sampling intensity

of 2.18 percent and a centerline spacing of 137.5 feet.

Stand 2 is 25 chains along the top edge, 20 chains

along the right edge, 18 chains along the bottom edge, and

21.2 chains along the left edge. Circular-plot sampling

intensity for this stand was 12.5 percent. Running fifteen

narrow-strips of width 3 feet beginning at the right edge

of the stand gives a narrow-strip sampling intensity of

3.41 percent and a centerline spacing of 88.0 feet.

3. Equipment and methods.
 

Equipment used in a cruise depends on what is to be

measured, how accurately measurements are to be taken,

available equipment, available manpower, available funds,

and personal preferences for such equipment. Equipment

used on narrow—strip cruises of Stands 1 and 2 included

a biltmore stick, 100-foot metal tape, Suunto compass,

field book, and pencil.

The first narrow—strip centerline should be located

randomly between 0 feet and ul feet from the stand boun-

dary. The head chain-person is also the compass-person.

The head chain-person walks 100 feet along the centerline

trailing the metal tape then stops and records that 100

feet has elasped. The tape is the centerline. The rear

chain-person calls out species and dbh of each tree sampled

and the head chain-person records values in the field book.
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If the rear chain-person encounters a borderline tree,

that person places the biltmore stick over the center-

line at breast height and determines whether any part

of the trunk touches the stick. A tree is sampled only

if its trunk touches the stick. A collapsable appendage

could be attached to the stick such that the appendage

opens up at a right angle to the stick, thus ensuring that

the stick is at a right angle to the tape and providing

a more accurate determination of whether or not a border-

line tree should be sampled.

There are two distances which must be measured per

narrow-strip. The distance along the centerline between

the first stem and the boundary from which the narrow-

strip was started, called the 'initial distance', and the

distance between the last stem and the boundary at which

the narrow-strip ends, called the 'terminal distance'.

An example of a narrow-strip data sheet used for Stands 1

and 2 is given in Figure 21.

B. Results of narrow-strip cruises in two stands.
 

1. Comparison with plot and point sampling.

High-intensity narrow-strip samples are now compared

with plot and point sampling in Stands 1 and 2. By 'high-

intensity' it is meant that narrow-strips covered about

one-quarter of the area that circular-plots covered. Point

sampling is compared with the other two methods only with

respect to basal area estimation since only stem counts

were taken in the point sample. Plot sampling is compared
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Stand___ Strip___ pg___of__

Initial Distance____ Terminal Distance____

stem species dbh stem species dbh

l 26

2 27

25 56)

Figure 21. Narrow-strip data sheet
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to narrow-strip sampling with respect to estimation of

species proportions, diameters, and density. The narrow-

strip density estimate is derived from running twelve

narrow-strips through Stand 1 and fifteen narrow—strips

through Stand 2 as described in Section A. Since e*(DN)

is used to estimate density, the narrow-strips were seg-

mented by segments of length 4 1/6 chains in Stand 1 and

of length 4 chains in Stand 2. Narrow—strip estimates of

characteristics other than density and all plot and point

sampling estimates are calculated using the formulae defined

in Chapters IVB and VIA respectively. Variances were cal-

culated using 24 degrees of freedom for the circular-plot

and point samples (there were 25 plots and points in each

stand) and using 417 and 434 degrees of freedom for the

narrow-strip samples (there were 418 and 435 stems sampled

by narrow-strips in Stands 1 and 2 respectively).

Estimates of the 0 2—acre circular-plots are used as

standards of comparison. Tables 8 and 9 contain numeric

results of the cruises. Figures 22 and 23 are graphs of Stand

1 and Stand 2 stand tables. Narrow-strip cruises, as de-

scribed in Chapter IIIA, took about twice as long as did the

point sample and about half as long as did the plot sample.

Narrow-strip cruises took about eight hours in each stand.

The difference in times between narrow-strip and point samples

was due to the fact that species and dbh were recorded for

each stem in the narrow-strip samples while only species

were recorded in the point samples. The differences in time
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Table 8. Basal area.

Stand 1

all red white pitch

gpecies oak oak pine

narrow?

strip 73.98 39.69 21.94 12.35

basal area circular-

(sq.ft./ plot 70.47 33.36 23.40 13.71

acre)

point 63.20 28.80 16.80 17.60

narrow-

strip 0.5287 0.5464 0.5020 0.5590

coefficient circular-

of plot .5514 .5703 .5384 .5370

variation

point .4538 1.0432 1.0125 1.4041

1/ narrow-

bias with— strip .05 .19 .06 .10

respect to

plot sample point —.11 .14 .28 .28

Stand 2

all red white pitch

species oak oak pine

narrow-

strip 88.07 6.47 9.09 75.51

basal area circular-

(sq ft./ plot 82.93 5.49 8.83 68.61

acre)

gpoint 80.40 6.60 13.80 60.00

narrow-

strip .6807 .7995 .5013 .7032

coefficient circular—

of plot .6602 .7841 .5648 .6679

variation

ppoint .3953 1.4787 1.5346 .6124

narrow—

bias with strip .06 .18 .03 .06

respect to

plot sample point —.03 .25 .56 .12
 

l/ bias = (other value - plot value)/plot value
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Table 9. Species proportions, dbh and density.

species proportions

Stand 1 Stand 2

red white pitch red white pitch

oak oak pine oak oak pine

plot 0.40 0.497 0.11 .08 .17 .75

mean

strip .46 .42 .12 .08 .18 .75

bias strip .15 -.14’ .09 -.O4 .07 .00

plot .26 .20 .09 .06 .13 .16

s.e.

strip .29 .25 .14 .10 .16 .19

plot .65 .423 .85 .73 .78 .22

c.v.

strip .62 .60 1.21 1.27 .94 .26

diameters

Stand 1 Stand 2

sp. oak oak pine sp. oak oak

plot 6.98 7.71 5.77 9.09 7.39 6.45 5.75 7.81

mean

strip 7.04 7.59 5.87 8.42 7.53 6.73 7.76 7.95

bias strip .01 -.02 .03 -.07 .02 .04 .00 .02

plot .48 .87 .47 1.65 .78 1.43 .76 .87

s.e.

strip .65 .84 .77 1.63 1.01 1.68 .84 1.20

plot .07 .ll .08 .18 .ll .22 .13 .11

c.v.

strip .09 .11 .13 .19 13 .25 .15 .15

density

3:. '2‘.. (m.-1)

Stand 1:: j_=]} e(D)£/ ag/ b e*(DN) DN bias

1 17709 484 36.59 .02758 716.44 261.15 242.80 .0782

2 17523 501 34.98 .02777 717.04 271.43 253.80 .0695

_ . . st th
1/ d — d1stance along narrow-str1p between 1 and m.

stems

l

stems sampled on 1thm. = number of narrow—strip

n n

e(D) = 2di/ )(mi-l)

i = 1 i 1

2/ see Chapter VB.
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stems/acre stems/acre

32 32

24 24

16 16

8 8

4 6 8 10 12 dbh 4 6 8 10 12 dbh

red oak white oak

stems/acre stems/acre

32 48

24 36

12 24

8 12

dbh dbh

4 6 8 10 12 4 6 8 10 12

pitch pine all species

Figure 22. Stand 1 stand tables. Narrow—strip

is solid line. Circular-plot is

dashed line.
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stems/acre stems/acre

32 32

24 24

l6 l6

 

8 \/

dbh  
  

12 4 6 8 10 12

pitch pine

 

stems/acre

48

36

24

12

   
4 6 8 10 12

all species

Figure. 23. Stand 2 stand tables. Narrow-strip

is solid line. Circular-plot is

doubled line.
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between narrow-strip and plot samples was due to the facts

that plot boundaries had to be searched and some extra

walking was required to visit every stem in the plot.

Narrow-strip sampling gave good estimates of basal area,

species proportions, diameters, density, and stand table

entries. Narrow-strip sample size was about 0.37 times the

sample size of the circular-plots in each stand. Density

was calculated using e*(DN) as defined in Chapter VB and E(D)

was estimated using the method of VIB.

2. Comparison with point sampling.
 

A low-intensity narrow—strip cruise is now compared with

point sampling in Stand 2. By 'low-intensity' it is meant that

narrow-strips covered about one-twelth the area covered by

circular-plots. Four narrow strips were run through Stand

2 in two hours. This is about half the time the point sample

took, but, in addition, narrow-strips gave very good estimates

of average diameter and density while at the same time giving

a very good estimate of basal area. e(DN) as defined in

the Appendix was used to estimate density and the method of

VIB was used to estimate E(D).

The narrow-strip estimate of basal area was 86.97 square

feet per acre which has a bias of 0.05 from the circular-plot

value given in Table 8. From Table 8 it is seen that the

point sampling bias is -.03 so narrow-strip sampling did very

well in estimating basal area. The estimated average dbh

(all species combined) was 7.35 inches which is unbiased
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with respect to the plot sample estimate in Table 9. The

desnity estimate is 275.16 which has a bias of 0.08. The

estimator e(DN) is far more convenient to use than e*(DN)

and so the use of e(DN) is suggested exclusively.



CHAPTER VIII

RECOMMENDATIONS

Further study is needed in order to establish narrow-

strip sampling as a basic sampling technique for forestry.

As has been demonstrated in this paper, narrow—strip samp-

ling has much promise as a practical sampling technique.

It is the intention of this chapter to list some possible

applications of the method. It should also be mentioned

that more theoretical development needs to be done, for

example, the detection of the type and intensity of spa-

tial pattern present in a population of stems. This

chapter is not intended to be an exhaustive list of possible

further areas of study of narrow-strip sampling and it is

not intended to suggest that narrow-strip sampling can be

used more effectively than existing methods of analysis

which are currently being applied to these areas.

Pattern in a forest stand is studied by distance

sampling (Pielou, 1960; Payandeh, 1975; Cox and Lewis,

1976). During the writing of this paper there were indi-

cations that spatial pattern might be detected by narrow-

strip sampling. The most promising approach seemed to

be:

1. Measure all values of t1 occurring along a

84
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narrow—strip where (see Chapter IVAl) values

of D are measured in both directions.

2. Calculate K = (nl+n2)/(2(mrl))where:

111 = number of t1 measured in one direction

n2 = number of tl measured in the other

direction

m = number of stems sampled by a narrow-

strip (generally 2(m-l)>n1+n2)

3. E1(p(t)) is defined on page 32:

{random if K = E1(p(t))

pattern =

non-random if K ¢ El(p(t))

4. If pattern is non-random:

{clustered if 32(e(t1)) % 0

pattern = . 2

regular 1f 3 (e(t1)) = 0

where sz(e(t1)) = narrow-strip sample

variance of the estimate of E(tl)

Pattern estimates based on narrow-strip sampling of the

34 stem maps were not always accurate and no theoretical

basis (only the intuitive basis of 1-4) could be found;

however, it seems that, if pattern is a population charac—

teristic important enough to study in some situation,

there very well could be some quick method of estimating

pattern as a part of a narrow—strip cruise for other

characteristics.

Tree growth in an even-aged stand can be sampled from

stems which are narrow-strip sampled and which are also

first nearest neighbors. Nearest neighbors in such a
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stand should exhibit more significant interaction in terms

of competition over their life-span than stems which are

further apart. Thinning causes changes in nearest neigh-

bors and growth responses could also be studied with

respect to this aspect.

Considerations similar to those on growth studies

also apply to yield studies in conjunctionvfiiflrnarrow-

strip sampling. For both growth and yield the narrow-

strip method's ability to sample variation continuously

might give new insight into the variability of these

characteristics. In these cases, narrow-strip sampling

offers a simple way (ocular estimation of successive stems

along a narrow-strip)in which to choose nearest neighbors

for measurement.

Narrow—strip sampling could also be combined with

other methods of sampling. For example suppose a narrow-

strip of length 1 is expected to encounter 100 stems.

Also suppose that along a transect of length 1 some points

are to be chosen for point sampling. At the tenth stem

along a narrow-strip a point sample would be taken. If

five points are to be chosen, the other four points would

occur at every twentieth stem after the tenth one. Due

to an effect called 'waves of density' (Zeide, 1972, 1975)

a narrow-strip would determine sampling points which would

allow point samplestx>occur in higher density regions thus

reducing the variance of a point sampling estimate (Figure

24a).
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Figure 24a. Point sampling. Figure 24b. Fuel samp-
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Figure 24. Two possible applications of narrow—strip sampling.
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Similar considerations apply to 3P sampling but in this

case every kth stem (k = l,...,50) might be tested to see

whether or not it fell into a 3P sample. Information on

species, diameter, etc. need not be taken at all as a part

of a narrow-strip sample in the 3P sampling and point samp-

ling cases just mentioned, rather the narrow-strips would

simply provide a sampling frame from which to sample stems

using one of the other two methods.

Stem maps made from aerial photographs (Payandeh, 1970)

could be used to gather pre-sampling information for a nar-

row strip cruise. The intersection of the major and minor

diameters of a tree crown would be used as the coordinates

of a stem center. A regression of crown area on the square

of the dbh would be used to determine stem diameter.

Forest fuel sampling and sampling for logging residue

have been done using the line-intersect method of sampling

(Bailey, 1969, 1970; DeVries, 1973a, 1973b; VanWagner, 1968);

Warren and Olsen, 1964). Narrow—strip sampling could be

used in these types of situations by counting a piece of

debris in the sample only if the shaded circles (Figure

24b) of diameter equal to the mid-diameter of the piece

are met by a narrow strip. The number of pieces sampled

should be much lower than in line-intersect sampling so that

more intensive measurements of each piece could be accomp—

lished in what should prove to be a shorter period of time.

Also, because circles in a plane parallel to the forest floor

are being sampled, orientation of the piece centerline with

respect to the forest floor should not be a problem.
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In a paper by Eberhardt (1978) discussion is given of

strip sampling in which the strips are not assumed to be

narrow. Density estimates using the method mentioned in

that paper might be studied by running narrow-strips through

aiforest stand and comparing the density estimate given by

Eberhardt, e'(DN), with the density estimate derived in this

paper, e(DN). The derivation in Eberhardt's paper relies

on the strip centerline being randomly located (see Figure

25) parallel to one edge of the area of interest.

Assume a narrow-strip has the x-coordinate of its

centerline located such that X%U(0,W). Let stems Ci of

radius ri be located independently of one another over a

forest stand for i = l,...,S. Suppose the forest stand is

a W by L rectangle and the narrow-strip centerline is located

parallel to the side of length L. Let k = the number of Ci

sampled by this narrow-strip. Define:

r

1 if Cir'NS # ¢

 

x<Ci> =4

0 if C.(\NS = 9
q 1

Now:

Pr(Cin NS #¢) = (w+2wri)L/(WL)

= (w+2ri)/W

where w = narrow-strip width

and so:

E(k) [0.Pr(X(Ci) =(D+l.Pr(X(Ci) = 1)]

.J

l
—
‘
M
C
D
l
—
‘
M
m

(w+2ri)/W
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= S(w+2r)/W

where E = E(r) = % Z r.

This gives a density estimate via:

S

e(S) = e(k)W/(w+2e(r))

e'(DN) = e(S)/(WL)

= e(k)/((w+2e(r))L)

where e(S) = estimate

stems in

e(k) = estimate

e(r) = estimate

1

of total number of

the stand

of E(k)

of E(r)

As a closing remark it must be emphasized that more

research is needed to compare narrow-strip sampling of vary-

ing intensities with currently used methods of sampling

such as plot, point and 3P sampling. Weighted estimators,

especially for dbh and species proportions, should be studied.

The study of estimation by means of narrow-strips of impor-

tant characteristics other than the ones studied in this

paper is also needed to explore this promising sampling

technique. Other characteristics which should be studied

are volume growth, and biomass. It is hoped that the few

possible areas of study listed here will generate enough

interest in narrow-strip sampling so that this method may

begin to become established as a basic sampling technique

in forestry.

 



CHAPTER IX

SUMMARY AND CONCLUSIONS

Narrow—strip sampling consists of sampling a forest

stand by means of strips so narrow that the trees may be

linearly ordered along the strips. Narrow—strip sampling

is a form of cluster sampling in which the number of elements

sampled is a random variable. Narrow—strip sampling is

also a PPS technique.

A theoretical basis for narrow-strip sampling is

given. Monte-Carlo techniques are used to verify theoretical

statements and to examine the biases and precisions of

narrow—strip estimators. A range of real and computer-

generatedforeststands are used in the study and they

consist of combinations of random, regular, and clustered

patterns with a realistic range of densities and diameter

distributions which are generated from an empirical distri—

bution function. Density anddiameterconsiderations follow

from field data gathered in two stands located in the New

Jersey Pine Barrens.

Distance sampling is an unpractical method of sampling

for density but hasbeen.studied because of its theoretical

appeal. Three supposedly robust methods of density esti—

mation using distance sampling are compared with a density

estimator using narrow—strip sampling in a Monte—Carlo
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study of 34 real and computer—generated stem maps. It

is found that narrow—strip sampling gave highly robust

estimates of density, outperforming the best of the distance

estimators.

Narrow—strip sampling, circular-plot sampling and

point sampling are used to sample the 34 stem maps for

basal area, species proportions, diameters, and density

using both random and systematic location of the three

types of sampling elements which define clusters of stems.

Strip length, plot radius, and basal area factor are

chosen such that all three methods have an equal expected

sample size. Methods are compared on the bases of bias

and precision. On these bases, narrow-strip sampling

generally performs as well as the other two methods.

When data gathered in the field (one oak—dominated

62.5-acre stand and one pine—dominated 43 O—acre stand)

are analyzed, it is found that narrow—strip sampling per-

forms very well. A high—intensity narrow—strip sample

takes about one-half the time of a plot sample to give

good estimates of the same characteristics which the plot

sample estimates and, in about twice the time it takes to

point sample only for basal area, the narrow—strip technique

samples for basal area, density, diameters, species pro—

portions, and stand table entries. A low—intensity narrow—

strip sample is compared to a point sample in the pine—

dominated stand. The low—intensity narrow-strip sample

performs remarkably well since it takes half the time of
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the point sample but also gives very good estimates of

average diameter (all species combined) and density.

It seems likely that many areas of application lie

ahead for narrow—strip sampling. A few possible such areas

are suggested in Chapter VIII. In the meantime many

empirical studies will be required to further verify what

this study has demonstrated: narrow-strip sampling is an

attractive and practical alternative to circular—plot samp—

ling, point sampling, and distance sampling for estimation

of basal area, species proportions, diameters, stand table

entries, and density in the types of situations included

in this study. Theoretically there is no reason why

narrow-strip sampling for these characteristics and other

characteristics like growth, volume, and biomass cannot be

applied to any forest situation.
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APPENDIX A

Generating a density equation
 

Table A1 is generated by means of a Fortran IV program

called NRSTRP. NRSTRP approximates the sum of the infinite

series for E(D) over a specified range of diameters and

densities and for a given width. Table A2 gives the results

of least-squares exponential curve fits for each graph in

Figure Al. Figures Al and A2 are graphs of Table A1 and A2.

Table A3 gives input card layouts and input values for five

test cases using NRSTRP. Table A4 gives the output of the

test cases listed in Table A3. Table A5 is a listing of

NRSTRP.

Since estimated diameters and inter-tree distances

encountered in a narrow—strip sample will not in general

match those values given in Table A1, interpolation will

usually be required to estimate density. One method of

interpolation is now discussed. This method results in:

e(DN) = beaD

where a = a(d)

b = b(d)

d = diameter estimate

D = inter-tree distance estimate

e = 2.71828... = the base of the natural

logarithms

By inspecting Figures A2 it appears that:

a(d) = rd+s
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b(d) = t(d-10)2+u

Refer to Table A2. Least—squares regressions are performed

on (di’ai) and on (di’bi) for i = l,...,8 yielding:

a(d) = -.00045145138d-.0168579l8

with r2 = .9999

b(d) = .090081282(d-10)2+635.18938

with r2 = .9824

In Table A2:
7

_ a(d.)E(D..)
Bi — (1/73 E [b(di)e 1 31 -DNj l/DNj

where E(Dji) = (j,i)th entry in Table A1

DN.
and J

200

220

240

260

280

300

r
o
w
o
m
p
m
N
H
u
.

In View of the r and Bi the interpolation equation:

e(DN) = b(d)ea(d)D

is a very good one.

Suppose a narrow-strip sample has been conducted and

the estimates d = 7.4 inches and D = 42 feet have been

obtained. This implies:

a(7.4)(42)
e(DN) b(7.4)e

.020198658)(42)
635.79833e(‘

272.20019

It is a straightforward matter to determine Table A1,

Table A2, a(d) and b(d) once the di and DNj have been chosen.

 

 

The cost of generating Table A1 with NRSTRP was less than $9.00
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A2. Exponential regression coefficients.

 

 

 

i dbh distance leading goodness l/bias

(in.) multiplier constant of fit (r )

l 5 —.019130974 637.43707 0.9948 0.0112

2 6 —.Ol9567004 636.57339 .9949 .0109

3 7 —.020014943 636.18527 .9949 .0108

4 8 -.020456716 636.57180 .9948 .0108

5 9 —.020909785 636.34289 .9947 .0110

6 10 —.021364480 635.21352 .9946 .0111

7 11 -.021827428 635.23293 .9944 .0114

8 12 —.102290705 635.36301 .9944 .0115

 

1/ see page 103.
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Tabe A3. NRSTRP sample input.

 

 

i/W D DN TOLl TOLZ JMAXl

 

JMAXZ ISR IUNITS

3/10 20 30 40 56 55 6O 65 70

3.0 4.0 180. .01 .01 25 1500 50 1

3.0 8.0 240 .01 .01 25 1500 50 1

3.0 12.0 300 .01 .01 25 1500 50 1

8.0 72.0 30 .01 .01 25 1500 50 1

1.0 2.0 2000 .01 .01 25 1500 50 1

 

l/ Fortran names for values (see page107).

2/ values are right—justified in these card columns.
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A = (di.ai)

A _ ..O = (di,b.) .0190

636.4 - o 1 - -.0194

A

637.2 - - -.Ol98

A

637.0 - 4 -.0202

A

636.8 - J - 0206

a.

636.6 - A 1 - —.0210

0

636.4 - A - -.0214

636.2 - o A - -.0128

636.0 - A-l -.0222

635.8 -

635.6 - 0

635.4 —

0 0

635.2 -
o o 

5 6 7 8 9 10 ll 12

dbh (inches)

Figure A2. Regression constants related to diameter.
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on an IBM 370/168 (OS/VS). Inputs to NRSTRP (width,

diameter, density) can be in English (feet, inches, stems/

acre) or in Metric (meters, centimeters, stems/hectare)

units.

There is one input card per run. The order of the

variables on the input card and their Fortran IV names

are: W,D, DN, TOLl, TOL2, JAMXl, JAMX2, ISR, IUNITS.

The meanings of these variables are:

W narrow-strip width

D = average stem diameter to be encountered

DN = density to be encountered

TOLl = tolerance on the integral of Kj(t)

using Simpson's rule. If Sj is the value of

this integral, then the program checks to  
see whether or not ISj-IJHETOLI.

TOL2 = tolerance on the sum of all probabilites

of a narrow-strip distance between two

 
successive stems, T, taking on the value

of a random variable tj. If k is the last

term calculated, the program checks to see

k

whether or not I Z Pr(T=tj)-l.0 I: TOL2.

j = 1

JMAXl = maximum number of terms to be calculated

using Simpson's rule.

JMAX2 = maximum number of terms to be allowed for

the convergence of the infinite series for E(T).

ISR = the number of subdivisions to be used in

Simpson's rule. Must be an even integer.

IUNITS = l (or 2) if English (or Metric) units are used.
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NRSTRP is comprised of two sections. The first section

uses Simpson's rule to integrate p(t)Kj(t) for j = l,...,l

in order to estimate Ej(p). ngMAXl. 'Should numerical

values become too large, the first section switches to

calculations using natural logarithms. Should these values

become too large or should any integral of Kj(t) not meet

the requirements of TOLl, control passes to the second

section. In this way it is possible for l<JMAXl to occur.

Tfluasecond.section of NRSTRP uses Stirling's approxi-

mation (see Thompson, 1956) to estimate the integrals of

p(t)Kj(t) in order to estimate Ej(p). In the output there

are three entries under Stirling's Approximation. The

entry under 'Started' is equal to 1+1. The entry under

'Finished' is the integer for which the program converged

and is less than or equal to JMAXZ. The third entry is the

sum of all the Pr(T = tj) for j = 1,...,k = the integer

for which the program converged. If the third entry is

not within TOL2 of 1.0, then JMAXZ should be increased

until convergence is achieved. Under 'Distance Statistics'

are listed E(D) = the expected value of T, V(D) = the vari-

ance of T and CV(D) = the coefficient of variation of T.

The IBM subroutine OVERFL is used to test whether or

not internal floating point capacity of the machine has been

exceeded. If this condition exists, calculations proceed

using natural logarithms and values are then converted using

the exponential function.
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Table A4. NRSTRP output.

 

 

W EXPECTED DISTANCE BETWEEN STEMS IN A NARROW-STRIP SAMPLE*

0.

*EXPECTED

xxx INPUT xxx

WIDTH DBH DENSITY

.30000000E 01 0.40000000E 01 0.18000000E 03

* SIMPSONS RULE *

TOLERANCE JMAX NO. SUBDIVISIONS

.99999979E-02 0.25000000E 02 0.50000000E 02

* STIRLINGS APPROXIMATION *

TOLERANCE JMAX

.99999979E-02 0.15000000E 04

xxx OUTPUT xxx

* STIRLINGS APPROXIMATIO- *

STARTED FINISHED PR(D=T(J):J<1448)

.26000000E 02 0.14470000E 04 0.99000084E 00

* DISTANCE STATISTICS 8

E(D) V(D) CV(D)

68766113E 02 0.40533047E 04 0.92582771E 00

DISTANCE BETWEEN STEIMS IN A NARROW-STRIP SAMPLE *

xxx INPUT xxx

WIDTH DBH DENSITY

.300000E 01 0.80000000E 01 0.24000000# 03

* SIMPSONS RULE *

TOLERANCE JMAX NO. SUBDIVISIONS

.99999979E—02 0.25000000E 02 0.50000000E 02

* STIRLINGS APPROXIMATION *

TOLERANCE JAMX

.99999979E-02 0.15000000E 04

xxx OUTPUT xxx

* STIRLINGS APPROXIMATION *

STARTED FINISHED PR(D=T(J):J<894)

.26000000E 02 0.89300000E 03 0 099000067E 00

* DISTANCE STATISTICS *

E(D) V(D) CV(D)

.46958878E 02 0.18630012E 04 0.91915507E 00
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Table A4. (continued).

 

 

* EXPECTED DISTANCE BETWEEN STEMS IN A NARROW-STRIP SAMPLE*

0.

*EXPECTED

xxx INPUT xxx

WIDTH DBH DENSITY

.30000000E 01 0.12000000E 02 0.30000000E 03

* SIMPSONS RULE *

TOLERANCE JMAX NO. SUBDIVISIONS

.99999979E-02 0.25000000E 02 0.50000000E 02

* STIRLINGS APPROXIMATION *

TOLERANCE JMAX

.99999979E—02 0.15000000E 04

xxx OUTPUT xxx

* STIRLINGS APPROXIMATION *

STARTED FINISHED PR(D=T(J):J<599)

.26000000E 02 0.59800000E 03 0.99003357E 00

* DISTANCE STATISTICS *

E(D) V(D) CV(D)

34489349E 02 0.98807300E 04 0.91140091E 00

DISTANCE BETWEEN STEMS IN A NARROW-STRIP SAMPLE*

xxx INPUT xxx

WIDTH DBH DENSITY

.80000000E 01 0.72000000E 02 0.30000000E 02

W SIMPSONS RULE “

TOLERANCE JMAX NO. SUBDIVISIONS

.99999979E-02 0.25000000E 02 0.50000000E 02

* STIRLINGS APPROXIMATION *

TOLERANCE JMAX

.99999979E-02 0.15000000E 04

xxx OUTPUT xxx

* STIRLINGS APPROXIMATION *

STARTED FINISHED PR(D=T(J):J<486)

.26000000E 02 0.48500000E 03 0.99000442E 00

E(D) V(D) CV(D)

.98294693E 02 0.79728594E 04 0.90839979E 00
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TABLE A4. (continued)

 
 

 

*EXPECTED DISTANCE BETWEEN STEMS IN A NARROW-STRIP SAMPLE*

xxx INPUT xxx

WIDTH DBH DENSITY

.10000000E 01 0.20000000E 01 0.20000000E 04

* SIMPSONS RULE *

TOLERANCE JMAX NO. SUBDIVISIONS

.99999979E-02 0.25000000E 02 0.50000000E 02

* STIRLINGS APPROXIMATION *

TOLERANCE JMAX

.99999979E-02 0.15000000E 03

xxx OUTPUT xxx

* STIRLINGS APPROXIMATION *

STARTED FINISHED PR.(D=T(J):J<1062)

.26000000E 02 0.10610000E 04 0.99002075E 00

* DISTANCE STATISTICS *

.17692978E 02 0.26627417E 03 0.92232902E 00
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TABLE A5. Program NRSTRP.

 

 

C
O
O

O
O
O
O
O
O
O
O
O
O
O
O
O

G
O
O

G
O
O

CALCULATE E(D)=EXPECTED DISTANCE BETWEEN STEMS ALONG A

NARROW-STRIP GIVEN WIDTH OF STRIP, AVERAGE D.B.H. OF

STAND AND STAND DENSITY.

JAMES E. KEARIS 7/22/78

REFERENCE: PH.D. DISSERTATION, MICHIGAN STATE

UNIVERSITY: 'A PRELIMINARY INVESTIGATION OF NARROW-

STRIP SAMPLING AS APPLIED TO FOREST SAMPLING'.

DIMENSION GX(57), T(102)

GENERATE FACTORIAL TABLE: GX(J)=(J-1) FACTORIAL

GX(1)=1.

DO 1 I=2,57

X=I-1

1 GX(I)=X*GX(I-1)

READ AND WRITE INPUT

998 READ(5,20,END=999) w,D,DN,T0L1,T0L2,JMAX1,JMAX2,ISR,

lIUNITS

WRITE(6,21) W,D,DN,TOL1,TOL2, JAMXl,JMAX2,ISR,IUNITS

20 FORMAT(5F10.4,415)

21 F0RMAT('W:',F10.4,' D=',F10.4,' DN=',F10.4,' TOLl='

l,FlO.4,' TOL2=',F10.4,/,'JMAX1=',IS,' JMAX2=',IS,

2' ISR=',15,' IUNITS=',15)

DEFINE CONSTANTS

XK=2

PI=3.1415927

GO TO (2,3), IUNITS

2 XP=43560.

WP=12.

GO TO 4

3 XP=10000.

WP=100.

4 XM=DN/XP

XMlR=SQRT(XP/DN)

PIXM=PI*XM

PIXMl=XP/DN/PI

PIXM1R=SQRT(PIXM1)

XISR=ISR

WPRIME=(W+D/WP)/2.

BJ=1.

SPDETJ=0.

SED=0.

SED2=0.
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TABLE A5. (continued).

 

 

O
O
O
O
O

G
O
O

G
O
O

G
O
O

G
O
O

G
O
O

190

109

101

110

102

201

164

202

165

111

ICNTRL=1

BEGIN SUM USING SIMPSON'S RULE

DO 100 J=1,JMAX1

IJ=1

XJ=J

GO TO (190,102), ICNTRL

IS FACTORIAL ARGUMENT WITHIN BOUNDS

IF(J—28) 101,101,109

ICNTRL=2

GO TO 102

FIND J-l, J, 2*J FACTORIALS

X1=GX(J)

X0=GX(J+1)

X2=GX(2*J+1)

ETJ=EXPECTED VALUE OF J-TH NEAREST NEIGHBOR DISTANCE

ETJ=XM1R*X2*XJ/(2.**J*X0)**2

CALL OVERFL(IOVFL)

GO TO (110,111,110), IOVFL

ICNTRL=2

CALCULATE ETJ USING LN FUNCTION

J2=2*J

J1=J+1

SZ=0.

DO 201 I=J1,J2

Y2=1

SZ=SZ+ALOG(Y2)

Sl=0.

IJ=2

IF(J—Z) 165,165,164

J2=J—1

DO 202 I=2,J2

Y2=I

Sl=Sl+ALOG(Y2)

ETJ=SZ-2.*XJ*ALOG(XK)—Sl

ETJ=XM1R* EXP(ETJ)

STJ=STANDARD DEVIATION OF J—TH NEAREST NEIGHBOR DISTANCE

STJ= SQRT(XJ*PIXM1—ETJ**2)
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TABLE A5. (continued)

 

 

(
"
3
0
0
0
0

C
O
O

0
0
0
0

171

170

140

120

141

148

147

146

149

122

121

155

156

151

152

A=LOWER LIMIT OF INTEGRATION

B=UPPER LIMIT OF INTEGRATION

H=WIDTH OF SUBDIVISION

A=ETJ-4.*STJ

B=ETJ+5.*STJ

IF(A-.01) 171,170,170

A=.01

H=(B-A)/XISR

TEST FOR OVERFLOW AT T(I)=B FOR THIS J

GO TO (140,141), ICNTRL

XKJTI=2.*PIXM**J*B**(2*J-1)* EXP(-PIXM*B**2)X/1

CALL OVERFL(IOVFL)

GO TO (120,121,120), IOVFL

ICNTRL=2

GO TO (148,149), IJ

SI=O

IF(J-2) 149,149,147

J2=J-;

DO 146 I=2,J2

Y2=1

SI=SI+ALOG(Y2)

(XKJTI=XJ*ALOG(PIXM)+(2.*XJ-1.)*ALOG(B)-PIXM*B**2-S1

XKHTI=2.* EXP(XKJTI)

CALL OVERFL(IOVFL)

JJ=J

GO TO 301

T(I)=A-H

ISS=ISR+2

SKJTI=O.

SPTHLF=O.

DO 150 I=2,ISS

T(I)=T(I-1)+H

Z=COEFFICIENT OF FIRST, LAST, ODD OR EVEN TERM IN

SIMPSON'S RULE

IF(I-Z) 151,151,155

IF(I-ISS) 156,151,151

GO TO (152,153), IZ

IZ=1

Z=1.

GO TO (154,157), ICNTRL

IZ=2

Z=4

GO TO (154,157), ICNTRL
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TABLE A5. (continued)

 

 

G
O
O

G
O
O

O
O
O
O
O

153

154

157

158

160

161

162

150

181

800

180

801

100

301

IZ=1

Z=2.

GO TO (154,157),ICNTRL

CALCULATE K(J) AT T(I)

XKJTI=2.*PIXM**J*T(I)**(2(J-l) EXP(-PIXM*T(I)**2)/X1

GO TO 158

XKJTI=XJ*ALOG(PIXM)+(2.*XJ-1.)*ALOG(T(I))-

1PIXM*T(I)**2-S1

XKJTI=2.*EXP(XKJTI)

XKJTI=Z*XKJTI

SKJTI=SKJTI+KJTI

ARG=WPRIME/T(I)

IF(ARG=1.) 161,160,160

PTHALF=.5

GO TO 162

PTHALF=ARSIN(ARG)/PI

SPTHLF=SPTHFL+PTHALF*XKJTI

CONTINUE

SKJTI=SKJTI*H/3.

SPTHLF=SPTHLF*H/3.

IS INTEGRAL OF K(J) BETWEEN A AND B WITHIN TOLERANCE

IF( ABS(SKJTI-1.)-TOL1) 180,180,181

WRITE(6,800) J, SKJTI

FORMAT('INTEGRAL OF K(‘I4,')=',E14.8)

PRDETJ=SPTHLF*BJ

BJ=BJ*(1.-SPTHLF)

SPDETJ=SPDETJ+PRDETJ

SED=SED+ETJ*PRDETJ

SED2=SED2+XK*PIXM1*PRDETJ

IF( ABS(SPDETJ-1.)—TOL2) 801,801,100

JJ=XJ+.05

XJJ=XJ

GO TO 450

CONTINUE

JJ=JMAX1+1

END SUM USING STIRLING'S APPROXIMATION

XJJ=JJ

D) 400 J=JJ,JMAX2

XJ=J

ETJ=PIXM1R* SQRT(CJ)

PTHALF= ARSIN(WPRIME/ETJ)/PI

PRDETJ=PTHALF*BJ
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TABLE A5. (continued)

 

 

C
O
O

SPDETJ=SPDETJ+PRDETJ

SED=SED+ETJ*PRDETJ

SED2=SED2+XJ*PIXM1*PRDETJ

IF( ABS(SPDETJ-1.)—TOL2) 450,450,400

400 CONTINUE

450 VD=SED2-SED**2

CVD= SQRT(VD)/SED

WRITE OUTPUT

WRITE(6,22)

22 FORMAT('l')

WRITE(6,23)

23 FORMAT(////)

WRITE(6,24)

24 FORMAT(SX,'* EXPECTED DISTANCE BETWEEN STEMS IN A

1NARROW-STRIP SAMPLE*')

WRITE(6,23)

WRITE(6,25)

25 FORMAT(28X,'*** INPUT ***',//)

WRITE(6,26)

26 FORMAT(ZOX,'WIDTH',19X,'DBH',15X,'DENSITY')

27 FORMAT(llX,E14.8,8X,E14.8,8X,E14.8,//)

WRITE(6,27) W,D,DN

WRITE(6,28)

28 FORMAT(26X,'* SIMPSONS RULE *')

WRITE(6,29)

29 FORMAT(16X,'TOLERANCE',18X,'JMAX',6X,'NO.SUBDIVISIONS')

X1=JMAX1

X2=ISR

WRITE(6,27) TOLl, X1, X2

WRITE(6,32)

32 FORMAT(ZIX,'* STIRLINGS APPROXIMATION 7~")

WRITE(6,30)

30 FORMAT(16X,'TOLERANCE',18X,'JMAX')

X1=JMAX2

WRITE(6,27)TOL2,X1

WRITE(6,23)

WRITE(6,31)

31 FORMAT(28X,'*** OUTPUT ***',//)

J=XJ+1.05

WRITE(6,32)

WRITE(6,33)

33 FORMAT(18X,'STARTED',14X'FINISHED',5X,'PR(D=T(J):J<',

lI4,')')

WRITE(6,27) XJJ, XJ, SPDETJ

WRITE(6,35)

35 FORMAT(23X,'* DISTANCE STATISTICS *')

WRITE(6,36)

36 FORMAT(21X,'E(D)',18X,'V(D)',17X,'CV(D)')
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TABLE A5. (continued).

 
 

WRITE(6,27) SED, VD, CVD

WRITE(6,22)

GO TO 998

999 CONTINUE

STOP

END
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