lllllllllllllllllljljl\llllllllll z. R‘ Y Micbigan State Tnams LhfiYCflfiQV This is to certify that the thesis entitled Part I The Synthesis of Porphyrins Part II The Synthesis and Reactions of Pyrroles presented by Kim Steven Chamberlin has been accepted towards fulfillment of the requirements for Ph. D. _ Organic Chemistry degree1n______________ gag/W Major professor June 7, 1979 I)ate 0-7 639 OVERDUE FINES ARE 25¢ PER DAY PER ITEM Return to Book drop to remove r this checkout from your record. PART I THE SYNTHESIS OF PORPHYRINS PART II THE SYNTHESIS AND REACTIONS OF PYRROLES By Kim Steven Chamberlin A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1979 N______ . ABSTRACT PART I THE SYNTHESIS CH“ PORPHYRINS PART II THE SYNTHESIS AND REACTIONS OF PYRROLES By Kim S. Chamberlin PART I The most widely used models for the study of porphyrin chemistry is the sparingly soluble 2,3,7,8,12,13,l7,18— octaethylporphyrin. Thus, a general synthetic route to more soluble higher homologues was developed. Condensation Of 3,4—dialkylpyrroles with formaldehyde in the presence of hYdrobromic acid in a large volume of ethanol gave 2,3,7,8,— l2,13,l7,l8—octaalkylporphyrins. Tetra(polymethylene)porphyrins were synthesized in one Step from ethyl 2—methy1—3,4-polymethylenepyrrole—S— ’7//O'//j" carboxylates. The 2—methylpyrroles were transformed into their monoacetoxymethyl derivatives when treated with one equivalent of lead tetraacetate in acetic acid. The result— ing diesters were hydrolyzed with potassium hydroxide fol- lowed by cyclization to porphyrin in refluxing acetic acid. PART II Various acylmethylenetriphenylphosphoranes were syn— thesized by alkylation of lithiotriphenylphosphinioacetonide Kim S. Chamberlin d,B—Unsaturated ketones were efficiently produced by reflux— ing these ylides with the appropriate aldehyde in methylene chloride. 3,4—Disubstituted pyrroles were prepared by the reaction of p-toluene—sulfonyl methyl isocyanide with the a,B—unsaturated ketones in the presence of base. Reduction of these acylpyrroles with lithium aluminum hydride led to six new 3,4—dialkylpyrroles. Two pyrrole molecules were directly coupled or connected by one, three, or five carbon bridges to give bipyrroles, di— pyrromethanes, dipyrrotrimethines, or dipyrropentadienones respectively. To Marian ii ACKNOWLEDGMENTS I would like to thank the Department of Chemistry at Michigan State University for providing financial support in the form of teaching assistantship for the past five years. I would also like to express my appreciation to Professor Eugene LeGoff for his guidance, enthusiasm, and for arranging financial support. ”Like all young men I set out to be a genius, but mercifully laughter intervened." Clea Lawrence Durrell iv TABLE Cfi‘ CONTENTS PART I INTRODUCTION RESULTS AND DISCUSSION EXPERIMENTAL General procedure Tetrapropyltetrapropyrylporphyrin (12) Tetrabutyltetrabutyrylporphyrin (13) Tetrapentyltetrapentyrylporphyrin (14) Tetrahexyltetrahexyrylporphyrin (l5) Tetraheptyltetraheptyrylporphyrin (16) Tetraoctyltetraoctyrylporphyrin (17) . . Tetrabutyltetraarhydroxy)butylporphyrin (18) Octapropylporphyrin (19) . Octabutylporphyrin (20) . Octapentylporphyrin (21) Octahexylporphyrin (22) Octaheptylporphyrin (23) Octaoctylporphyrin (24) . l ,2 3, 4— 5, 6— 7, 8— Tetra(trimethylene)porphyrin (25) l ,2— 3, 4— 5, 6— 7, 8— Tetra(tetramethylene)— porphyrin (26) . . . 1 ,2— 3, 4— 5, 6— 7, 8— Tetra(decamethylene)— porphyrin (27) APPENDIX PART II INTRODUCTION RESULTS AND DISCUSSION EXPERIMENTAL General . l— (2— Thienyl)- -hex— l- ene (36) 6— —Hydroxy— 4- ~decyne (38) . . Propyrylmethylenetriphenylphosphorane (4la) Butyrylmethylenetriphenylphosphorane (41b) Pentyrylmethylenetriphenylphosphorane (410) Hexyrylmethylenetriphenylphosphorane (41d) Heptyrylmethylenetriphenylphosphorane (4le) V Page 66 7O 87 87 87 89 89 90 90 TABLE OF CONTENTS (continued) Octyrylmethylenetriphenylphosphorane (41f) . l, 3— —Diacety1methylenetriphenylphosphorane (41g) 4- Octene— 3— —one (39a) 5— Decene— 4— —one (39b) 6— Dodecene— 5— —one (390) . 7— Tetradecene— 6— —one (39d) 8— Hexadecene— 7— —one (39s) 9- Octadecene— 8— —one (39f) 3, 11— Tridecadiene— 4, 10— dione (39g) 3— —Propyl— —4- —propyry1pyrrole (42) 3—Butyl—4-butyrylpyrrole (43) 3—Pentyl-4—pentyrylpyrrole (44) 3—Hexyl—4—hexyrylpyrrole (45) 3— —Heptyl— 4— —heptyry1pyrrole (46) 3— —Octyl— —4— —octyrylpyrrole (47) . l, 7— bis[— 3— (4— —methy1pyrro)]— —l, 7— —heptanedione (48) 1H——pyrro— [3, 4 ,a]- y— butyrolactone (49) . . 3— ~Butyryl- -4— (2— thienyl) —pyrr01e (11) 2——Carbethoxy— 3, 4, 5—tr1methylpyrrole (50) 2— Carbethoxy— 3, 4— diethyl— —5— —methylpyrrole (51) 2—Carbethoxy—3, 4—trimethy1ene—5-methylpyrrole (52) . . 2-Carbethoxy— 3, 4—tetramethy1ene- 5—methylpyrrole (53 2-Carbethoxy—3, 4—decamethylene—5—methylpyrrole (54) . 2—Carbo- -t- butoxy— 3, 4, 5— —trimethylpyrrole (55 ). 2- Carbo— t— butoxy— 3, 4- tetramethylene— 5— —methyl— pyrrole (56) . . 2— —Carbobenzyloxyl- 3, 4, 5— —trimethy1pyrrole (57) 3, 4, 5— —Trimethyl- -2— —pyrrole carbonitrile (58) . Diethyl 2— —methyl— —4— phenylpyrrole 3— carboxamide (59) . . 3, 4— —Dipropylpyrrole (60) 3, 4—Dibuty1pyrrole (61) 3, 4— —Dipentylpyrrole (62) 3, 4—Dihexy1pyrrole (63) . 3, 4— —Diheptylpyrrole (64) 3, 4— —Dioctylpyrrole (65) 2——Formyl— 3, 4, 5—trimethy1pyrr01e (67) . 5— —Acetoxymethyl— 2— carbethoxy— -3, 4— —decamethylene— pyrrole (68) . . 2— —Carbethoxy- -5— formyl— 3, 4— decamethylenepyrrole (69) . . . , 4—Acety1—3——ethyl—2—iodopyrrole (70) 4— —Carbethoxy— 3— —methyl— 2- -iodopyrrole (71) . 3——Acetyl— 5——methy1——4——pheny1——2— iodopyrrole (72) 3 ,4— —Dimethyl— —5— formyl— 2— iodopyrrole (73) 2 ,5——Dimethy1——3,4—diiodopyrrole (77) . 5, 5'—Diiodo— 2, 2' —dipyrroketone (78) Vi 101 101 102 102 102 103 104 104 105 105 105 105 106 107 107 109 .‘ 109 109 110 110 110 TABLE OF CONTENTS (continued) Page Ethyl 3, 4—dimethy1—5—iodopyrro1e—2-carboxy1ate (74) . . . 111 Diethyl 3-methy1— —5— iodopyrro1e- -2, 4— —dicarboxy1ate (75) . . 111 2— —Benzy1 4— ethyl 5— iodo— 3—methy1pyrrole- 2 ,4— dicarboxylate (76) . . . . 112 Diethyl 3, 3', 4, 4'—tetramethy1— 2, 2' —bipyrro1e— 5,5'— —dicarboxy1ate (79) . . . . . 112 Tetraethyl 4, 4'— —dimethy1— 2 ,2'— —bipyrrole—3, 3', 5, 5‘—tetracarboxy1ate (81) . . . . 113 5,5'—Dibenzy1 3, 3‘ —diethy1 4 ,4 —dimethy1— 2, 2'— bipyrrole—3,3', 5, 5' —tetracarboxy1ate (99) . . 113 3,3 ,4 ,4'— Tetramethy1~ ~2, 2' ~bipyrrole—5, 5'— dicarboxylic acid (80) . . . . 113 3,3'—Diethy1——4, 4'— dimethyl— 2, 2'—bipyrrole— 3, 3'— dicarboxylate— 5, 5'— —dicarboxylic acid (99) . . 114 3—Acety1—4-pheny1-2,2'—bipyrrole (92) . . . . . . 115 3—Acety1—3',4'—dimethy1—4—pheny1—2,2‘- bipyrrole (99) . . . . . . . . . . . . . . . . 116 2-Methy1—4—pheny1—3,2'—dipyrroketone (99) . . . . 116 2, 3', 4' —Trimethy1-4—pheny1—3,2'—dipyrroketone (91) . . . . . . . . . . . . . . . . 116 5, 5'—Dicarbethoxy— 3, 3' ,4 4'—tetramethy1-2,2'— dipyrromethane (93) . . . . . . . . . . . 117 3,3' ,5 5' —Tetracarbethoxy- —4, 4'— —dimethy1—2, 2'— dipyrromethane (94) . . . 117 5,5'— —Carbobenzy10xy— 3, 3' ,4 ,4' —tetramethy1— —2 ,2'— dipyrromethane (95) . . . 118 3,3', 4, 4' -Tetramethy1— —2, 2' ~dipyrromethane, 5, 5'— dicarboxylic acid (96) . . . . 119 Diethyl 4 ,4' -dimethy1— —2, 2'— —dipyrromethane— —5, 5'— dicarboxylic acid— 3, 3' —dicarboxy1ate (97) . . 119 5,5'-D1ethoxycarbony1— 3, 3' ,4 ,4'— —tetramethy1- 2, 2' —dipyrroketone (98) . . . . . . . 119 3, 3' ,4 4' 5, 5'-Hexamethy1dipyrro— 2 ,2'— trimethme hydrobromide (100) . . _ 121 1 ,5— Di— (5— carbo— t— butoxy— 3, 4— dimethy1— 2— —pyrro)— 1 ,4— —pentadiene— 3— —one (103) . . , , 122 2 ,5— Di— (5— —carbo— t- butoxy— 3, 4— —dimethy1- pyrr- 2— y1methy1ene)- cyclopentanone ($94) . . . . . . 122 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . 123 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . 231 Table [0 \‘lQCfibbCO LIST OF TABLES PART I Acylporphorphyrins Symmetrical octaalkylporphyrins 13CMR chemical shifts of octaalkylporphyrins Cyclomethylene porphyrins PART II a,B-Unsaturated ketones 3,4—Disubstituted pyrroles Tetrasubstituted pyrroles 3,4—Dia1ky1 pyrroles Iodopyrroles Bipyrroles and dipyrroketones Dipyrromethanes viii Page 16 25 26 28 73 74 75 77 79 81 83 Figure PART I 1. Porphyrin isomers 2. PMR of meso protons of porphyrin isomers 3. Infrared spectrum of tetrapropyltetra— propyrylporphyrin (12 ) . . . 4. Infrared spectrum of tetrabutyltetra— butyrylporphyrin (13) . . 5. Infrared spectrum of tetrapentyltetra— pentyrylporphyrin (l4) . . 6. Infrared spectrum of tetrahexyltetra- hexyrylporphyrin (15) . . . 7. Infrared spectrum of tetraheptyltetra— heptyrylporphyrin (16) . . . . 8. Infrared spectrum of tetraoctyltetra- octyrylporphyrin (l7) . . . . 9. Infrared spectrum of tetrabutyltetra(d— hydroxy)butylporphyrin (18) . 10. Infrared spectrum of octapropylporphyrin (I?) ll. Infrared spectrum of octabutylporphyrin (g9) 12. Infrared spectrum of octapentylporphyrin (a1). 13. Infrared spectrum of octahexylporphyrin (EE) 14. Infrared spectrum of octaheptylporphyrin (%§)' 15. Infrared spectrum of octaoctylporphyrin (24) 16. PMR spectrum of tetrapropyltetrapropyryl— porphyrin (12) . - l7. PMR spectrum of tetrabutyltetrabutyryl- LIST OF FIGURES porphyrin (13) ix Page 17 18 44 45 46 47 48 49 57 57 Figure 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. LIST OF FIGURES (continued) PMR spectrum PMR PMR PMR PMR PMR PMR PMR PMR PMR porphyrin spectrum porphyrin spectrum pOrphyrin spectrum porphyrin spectrum spectrum spectrum spectrum spectrum spectrum Mass spectra PMR spectrum of (1:1) of (15 of (lg) of <13) of of of of of of of of (tetramethyle tetrapentyltetrapentyryl— tetrahexyltetrahexyryl— ) . . . . . . . . . . . tetraheptyltetraheptyryl— tetraoctyltetraoctyryl— octapropylporphyrin (19) octabutylporphyrin (20) octapentylporphyrin (21) octahexylporphyrin (22) octaheptylporphyrin (23) octaoctylporphyrin (24) octaalkylporphyrins l,2—3,4—5,6—7,8—tetra— ne)porphyrin (26) PMR spectrum of 1,2—3,4—5,6—7,8—tetra— Infrared spec (36) . . (decamethylene)porphyrin (23) PART II trum of 1—(2—thienyl)—heX—l-ene Infrared spectrum of 6—hydroxy—4—decyne (§§). Infrared spectrum of propyrylmethylenetri— phenylphosphorane (41a) . . . . . . . . Infrared spectrum of butyrylmethylenetri— phenylphosphorane (41b) . . . . . . . Infrared spectrum of pentyrylme phenylphosphorane (419) . . thylenetri- Page 58 58 59 59 6O 6O 61 61 62 62 63 64 64 123 123 124 125 Figure 6. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. LIST OF FIGURES (continued) Infrared spectrum of phenylphosphorane Infrared spectrum of phenylphosphorane Infrared spectrum of phenylphosphorane Infrared spectrum of triphenylphosphorane (41g) Infrared Infrared Infrared Infrared (39d) Infrared Infrared Infrared dione Infrared spectrum spectrum spectrum spectrum spectrum spectrum spectrum <§g§> spectrum pyrrole (42) Infrared spectrum pyrrole (43) Infrared spectrum pyrrole (44) Infrared spectrum pyrrole (45) Infrared spectrum pyrrole (46) Infrared spectrum pyrrole (47) of of of of of hexyrylmethylenetri— (41d) . heptyrylmethylenetri— (41e) octyrylmethylenetri— (41f) . . . . 1, 3— —diacety1methy1ene— 4—octene-3—one (39a) 5—decene—4-one (39b) 6—dodecene—5-one (390). 7—tetradecene—6—one 8—hexadecene-7—one (39e). 9—octadecene—8—one (39f). 3,11—tridecadiene—4,10,— 3—propy1—4—propyry1— 3—buty1—4—butyryl— 3-penty1—4—pentyry1- 3—hexy1—4—hexyry1— 3—heptyl—4—heptyry1— 3—octy1—4—octyry1— Infrared spectrum of 1, 7- -bis[— —3- (4— methyl— pyrro)]1, 7— —heptanedione (48) . . . xi Page 127 128 129 130 131 132 133 135 136 137 139 140 141 143 144 LIST OF FIGURES (continued) Figure 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. Infrared spectrum of lH—pyrro— [3, 4 ,a]— y- butyrolactone (49) . Infrared spectrum of 3——butyry1-—4—(2- thieny1)— pyrrole (11) . . Infrared spectrum of 2-carbethoxy—3,4,5— trimethylpyrrole (50) . . . . . . Infrared spectrum of 2-carbethoxy-3,4— diethyl—5-methy1pyrr01e (51) . . Infrared spectrum of 2—carbethoxy-3,4— trimethy1ene-5—methy1pyrr01e (52) Infrared spectrum of 2—carbethoxy—3,4— tetramethylene-5—methy1pyrrole (53) Infrared spectrum of 2—carbethoxy—3,4—deca— methylene—5—methy1pyrrole (54) . Infrared spectrum of 2—carbo—t—butoxy- 3,4,5—trimethy1pyrrole (55) Infrared spectrum of 2— carbo- t-butoxy— 3, 4- -tetramethy1ene- 5—methy1pyrrole (56) Infrared spectrum of 2—carbobenzyloxy1- 3,4,5—trimethy1pyrrole (57) . . . Infrared spectrum of 3, 4, 5- trimethy1-2— pyrrole carbonitrile (58) . Infrared spectrum of diethyl 2—methy1—4— phenylpyrrole 3—carboxamide (59) Infrared spectrum of 3,4—dipropy1pyrrole (60). Infrared spectrum of 3,4—dibuty1pyrrole (61) Infrared spectrum of 3,4—dipentylpyrrole (62). Infrared spectrum of 3,4—dihexy1pyrrole (63) Infrared spectrum of 3,4—dihepty1pyrrole (64). Infrared spectrum of 3,4—diocty1pyrrole (65) Infrared spectrum of 2— —formy1— 3, 4, 5— trimethylpyrrole (67) xii Page 145 146 147 148 149 150 151 152 153 154 LIST OF FIGURES (continued) Figure 43. Infrared spectrum of 5-acetoxymethy1-2— carbethoxy—B,4—decamethy1enepyrrole (68). 44. Infrared spectrum of 2—carbethoxy—5—formy1— 3,4—decamethy1enepyrrole (69) . . . . 45. Infrared spectrum of 4— acetyl— 3— .ethy1——2— iodopyrrole (70) . . 46. Infrared spectrum of 4- -carbethoxy— 3-methy1— 2— iodopyrrole (71) . . . . . . 47. Infrared spectrum of 3— acety1—5—methy1——4— pheny1—2——iodopyrrole (72) . 48. Infrared spectrum of 3, 4—dimethy1—5—formy1— 2— iodopyrrole (73) . . . . 49. Infrared spectrum of ethyl 3,4—dimethy1—5— iodopyrrole—Z—carboxylate (74) . 5O Infrared spectrum of diethyl 3—methy1—5- iodopyrrole—2,4—dicarboxylate (75) 51 Infrared spectrum of 2—benzy1 4—ethy1 5— iodo—3—methy1pyrrole—2,4—dicarboxy1ate(76) 52. Infrared spectrum of 2 ,5— dimethyl— 3, 4— diiodopyrrole (77) . 53 Infrared spectrum of 5,5'—diiodo—2,2'— dipyrroketone (78) . . . . . . 54. Infrared spectrum of diethyl 3, 3' ,4 ,4'— tetramethyl— —2, 2' -bipyrrole— 5, 5'— dicarboxylate (79) 5. Infrared spectrum of 3,3',4,4'—tetramethy1- 2,2'-bipyrr01e—5,5'—dicarboxy1ic acid (80). 6. Infrared spectrum of tetraethyl 4,4'—dimethy1— 2,2'—bipyrrole—3,3',5,5'—tetracarboxy1ate (81) . . . . . . . . . . . . . . . 7. Infrared spectrum of 5,5'—dibenzy1 3,3'— diethyl 4,4'—dimethy1—2,2'—bipyrrole— 3,3',5,5'—tetracarboxy1ate (82) 8. Infrared spectrum of 3,3'—diethy1 4,4'-di— methyl—2,2'—bipyrrole—3,3'-dicarboxylate— 5,5'—dicarboxy1ic acid (83) . . . . xiii Page 164 165 166 167 168 169 170 171 172 174 175 176 177 178 LIST OF FIGURES (continued) ‘igure 59. 60. 61. 62. 63. 35. Infrared spectrum of 3— acety1——4- -phenyl- 2, 2'—bipyrrole (87) . Infrared spectrum of 3—acety1—3',4'—dimethy1— 4—pheny1-2,2‘-bipyrrole (88) Infrared spectrum of 2— —methyl— 4-pheny1- 3, 2' -d1pyrroketone (90) . . Infrared spectrum of 2,3',4'-trimethy1-4— pheny1—3,2'—dipyrroketone (91) . Infrared spectrum of 5,5'-dicarbethoxy-3,3',— 4,4'—tetramethy1—2,2'—dipyrromethane (93) Infrared spectrum of 3, 3', 5, 5'—tetra- carbethoxy— —4, 4' —dimethy1— 2, 2'— —dipyrro— methane (94) . . . . . . . . Infrared spectrum of 5, 5'-carbobenzyloxy- 3, 3', 4 ,4'—tetramethy1— 2, 2'— —dipyrro— methane (95) . . . . Infrared spectrum of 3, 3' ,4 ,4 —tetramethy1— 2, 2' —dipyrromethane— 5, 5' —dicarboxylic acid (96) . . . . . .. Infrared spectrum of diethyl 4,4'—dimethy1— 2,2'—dipyrromethane—5,5'-dicarboxylic acid—3,3'—dicarboxy1ate (97) Infrared spectrum of 5, 5'- -diethoxycarbony1— 3, 3' 4, 4'—tetramethy1— 2, 2' —dipyrro- ketone (98) Infrared spectrum of 3, 3' ,4 ,4‘ ,5 5' —hexa~ methyldipyrro— 2, 2'—trimethine hydro— bromide (100) . . Infrared spectrum of 3, 3', 4 4' ,5 5' —hexa— methyldipyrro— 2, 2‘ -hexacyclotrimethine hydrobromide (101) . Infrared spectrum of 1 ,5— di- (5— carbo— t— butoxy— 3, 4— dimethyl— 2— pyrro)— 1, 4- pentadiene— 3— —one (103) . . . Infrared spectrum of 2, 5— di— (5— carbo— t— butoxy- 3, 4—dimethy1pyrr—2—y1methy1ene)- cyclopentanone (104) xiv Page 180 181 182 183 184 185 186 187 188 190 191 193 ——'——— Figure 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. LIST OF FIGURES (continued) PMR spectrum of 1— (2— thienyl)— —hex- 1— —ene (36) . PMR spectrum of 6—hydroxy—4-decyne (38) PMR spectrum of propyry1methy1enetripheny1— phosphorane (41a) . PMR spectrum of butyrylmethylenetriphenyl— phosphorane (41b) . PMR spectrum of pentyrylmethylenetri— phenylphosphorane (410) . . . PMR spectrum of hexyrylmethylenetriphenyl— phosphorane (41d) . . PMR spectrum of heptyrylmethylenetri— phenylphosphorane (41e) . PMR spectrum of octyrylmethylenetri— phenylphosphorane (41f) . . . PMR spectrum of 1, 3— —diacety1methylenetri— phenylphosphorane (41g) . . PMR spectrum of 4—octene—3-one (39a) PMR spectrum of 5—decene-4—one (39b) PMR spectrum of 6-dodecene—5—one (399) PMR spectrum of 7—tetradecene—6—one (399) PMR spectrum of 8—hexadecene—7—one (39g) PMR spectrum of 9—octadecene—8—one (393) PMR spectrum of 3,11—tridecadiene—4,10,— dione (39g) . . . . . . . . . . . . . PMR spectrum of 3—propy1—4—propyry1pyrrole (42) PMR spectrum of 3—buty1—4—butyry1pyrrole (43) . . . . . . . . . . . . . PMR spectrum of 3—pentyl—4—pentyry1pyrrole (:13)............ XV Page 194 194 195 196 197 197 198 199 199 200 200 201 201 202 203 Figure 92. 93. 94. 95. 96. 97. 98. 99. O4. 35. LIST OF FIGURES (continued) PMR spectrum of 3— —hexyl— —4— —hexyry1pyrrole (45) PMR spectrum of 3— —hepty1— —4— —heptyry1pyrr01e (46) PMR spectrum of 3— octy1— —4- -octyry1pyrrole (47) PMR spectrum of 1, 7— bis[— 3— (4—methylpyrro)]— l, 7- -heptanedione (48) PMR spectrum of 1H—pyrro-[3,4,a]—y—butyro- lactone (49) . . . . . . . . . . . . . . PMR spectrum of 3-butyryl—4-(2—thieny1)— pyrrole (11) . . . . . . . . . . . . PMR spectrum of 2— carbethoxy— 3, 4, 5— tri— methylpyrrole (50) PMR spectrum of 2— —carbethoxy— 3, 4— —diethy1— 5— —methy1pyrrole (51) . . PMR spectrum of 2—carbethoxy—3,4—tri— methylene—5—methy1pyrr01e (52) . . PMR spectrum of 2—carbethoxy—3,4—tetra— methylene—5—methylpyrrole (53) . . . PMR spectrum of 2—carbethoxy—3,4—deca— methylene-5—methy1pyrrole (54) . . PMR spectrum of 2— carbo- t- —butoxy— 3, 4 ,5— trimethylpyrrole (55) . . . . PMR spectrum of 2- carbo— t— —butoxy— 3, 4— tetra— methylene- 5— —methy1pyrrole (56) . . . PMR spectrum of 2— carbobenzyloxyl- 3, 4 ,5- trimethylpyrrole (57) . . , PMR spectrum of 3, 4, 5-trimethy1——2-—pyrrole carbonitrile (58) . PMR spectrum of diethyl 2- -methyl- 4— —pheny1— pyrrole 3— carboxamide (59) . _ PMR spectrum of 3,4—dipropy1pyrrole (69) xvi Page 203 204 204 205 205 206 206 207 208 209 210 211 gure 10. 11. L3. LIST OF FIGURES (continued) PMR spectrum of 3,4-dibutylpyrrole (61) PMR spectrum of 3,4-dipenty1pyrrole (Q2) PMR spectrum of 3,4—dihexy1pyrrole (g3) PMR spectrum of 3,4—diheptylpyrrole (64) PMR spectrum of 3,4-dioctylpyrrole (g5) PMR spectrum of 2-formyl-3,4,5—trimethyl— pyrrole (67) . . . . . . . . . . . . PMR spectrum of 5—acetoxymethyl—2— carbethoxy—B,4—decamethy1enepyrrole (§§) PMR spectrum of 2— carbethoxy— 5— formyl— 3, 4— decamethylenepyrrole (69) , PMR spectrum of 4—acety1—3——ethyl——2-iodo— pyrrole (70) . . . . . PMR spectrum of 4— carbethoxy— 3— —methy1— 2— iodopyrrole (71) . . . PMR spectrum of 3— acetyl— 5—methy1- -4— ~pheny1— 2— iodopyrrole (72) . , PMR spectrum of 3, 4— —dimethyl— 5— formyl— 2— iodopyrrole (73) . . . . . PMR spectrum of ethyl 3,4—dimethy1—5- iodopyrrole—Z—carboxylate (74) . . PMR spectrum of diethyl 3—methy1—5—iodo— pyrrole-2,4—dicarboxy1ate (Z5) . . . . PMR spectrum of 2—benzy1 4—ethy1 5-iodo—3— methylpyrrole-2,4—dicarboxylate (76) . . PMR spectrum of 2, 5— —dimethyl- 3, 4— diiodo- pyrrole (77) . . PMR spectrum of 5, 5‘ —diiodo— 2 ,2 —dipyrro— ketone (78) . . . . PMR spectrum of diethyl 3, 3' ,4,4'—tetra— methyl——2, 2' —bipyrr01e—5, 5'——dicarboxylate (79) . . . . . . . . .. . xvii Page 212 212 213 213 214 214 215 215 216 216 217 217 218 218 220 LIST OF FIGURES (continued) PMR spectrum of 3,3',4,4'—tetramethyl—2,2'— bipyrrole-5,5'—dicarboxylic acid (89) PMR spectrum of tetraethyl 4 ,4'— —dimethyl- 2, 2' -bipyrrole— 3, 3' ,5 5'—tetra— carboxylate (81) . . . PMR spectrum of 5, 5' —dibenzy1 3, 3' —diethyl 4 4' —dimethy1——2 2' -bipyrrole— 3, 3' ,5,5'— tetracarboxylate (82) . . . PMR spectrum of 3— —acety1- -4- -pheny1— 2, 2'— bipyrrole (87) . . PMR spectrum of 3— acety1——3', —d1methy1— 4— —pheny1— 2, 2' —bipyrrole (88) . . PMR spectrum of 2— ~methy1— —4— —pheny1— —3, 2'— dipyrroketone (90) . . . PMR spectrum of 2, 3' 4' —trimethy1—4——pheny1— 3, 2' —dipyrroketone (91) . , PMR spectrum of 5,5'—dicarbethoxy—3,3',— 4,4'—tetramethy1-2,2'—dipyrromethane (93). 5,5’—tetracarbethoxy- PMR spectrum of 3,3', -dipyrromethane (94) 4,4'—dimethy1—2,2' PMR spectrum of 5,5'—carbobenzyloxy—3,3',— 4,4'-tetramethyl—2,2'—dipyrromethane (g§). 4,4'—tetramethy1—2,2'— PMR spectrum of 3,3', —dicarboxylic acid dipyrromethane-5,5' (9g) . . . PMR spectrum of diethyl 4, 4'——dimethy1—2,2'— dipyrromethane— 5, 5' —dicarboxy1ic acid— 3, 3'—dicarboxy1ate (97) . . . . . PMR spectrum of 5, 5'— —diethoxycarbony1— 3, 3', 4, 4'- tetramethy1——2, 2'— dipyrro— ketone (98) . . . . . . PMR spectrum of 3,3',4,4',5,5'—hexamethy1— dipyrro—2,2'—trimethine hydrobromide (100) . . . . . . PMR spectrum of 3,3',4,4',5,5'—hexamethy1— dipyrro-2,2'-hexacyclotrimethine hydro— bromide (101) . . . . . . . . . . xviii Page 221 221 222 222 223 223 224 224 225 225 226 226 227 227 228 LIST OF FIGURES (continued) Figure 142. PMR spectrum of 1, 5— di— (5— carbo- t— —butoxy— 3,4-dimethy1——2——pyrro)——1,4——pentadiene— 3—one (103) . 143. PMR spectrum of 2, 5— di— (5— —carbo— t—butoxy— 3, 4- dimethyl— pyrr- 2— —y1methy1ene)— cyclopentanone (104) . . . . Page 228 229 PART I THE SYNTHESIS OF PORPHYRINS - £33. INTRODUCTION -ergy mediators of life. Chlorophylls a and b trap energy a reductive process while porphyrins release the energy the controlled oxidative processes of metabolism. Since 2 ./ classic studies of Hans Fischerl—s, culminating in the 1thesis of chlorophyll4, a great deal of knowledge of the rmistry and structure of porphyrins has been accumulated. Various strategies for the synthesis of the pigments 8 been developed from pyrroles (a), pyrrole aldehyde (b), ilomethylpyrrole (c), dipyrromethanes (d), dipyrro— lenes (e and f), dipyrroketones (g), (oxy—)bilanes (h), enes (i), or biladienes (j), Scheme 1. The relative t of each route, which is largely dependent on symmetry the nature of the substituent has been discussed in 5 11 previously The synthesis of porphyrins from pyrroles (routes a, Id 0) has often been used in the formation of symmetri— Orphyrins. In 1935, Fischer6 condensed pyrrole alde— in refluxing formic acid to yield the parent compound in. In the same year Rothemund7 obtained porphin from aerobic reaction of pyrrole and formaldehyde. Neither :ed yields of greater than 0.026%. A third approach 2 me 1 NH RICHO _ NH... 8:!» "I Owl II: Bu : 23.: r NH N 2HBr NHN 4 porphin was reported by Krol8 who obtained a 5% yield an 2—hydroxymethylpyrrole was refluxed in acetic acid [taining benzoyl peroxide as an oxidizing agent. The lZOYl peroxide irreversibly oxidized the porphyrinogens ,ch formed as intermediates to porphyrins. Beitchman9 lified this procedure by using atmospheric oxygen as the .dizing agent. Although only a slightly higher yield of 'phin was obtained, Beitchman found it considerably easier purify his product. Longo and Adler10 discovered that a .0% yield of porphin was formed when a total volume of 11 of Z—hydroxymethylpyrrole was added to 3 liters of Lacidified, chromatographed ethylbenzene at 1000C. They >orted that efforts to increase the reaction rate caused .ecrease in yield. The above reactions are shown in eme 2. eme 2 3‘ HcozH HOAc / \ I CHO ‘—"' ’ p] {‘4‘ H I p. H2CO MeOH f. CSHSN / \ [/ \5 N N H I I e higher yields which are generally obtained are the re— lt of decreased side reactions involving electrophilic tack at the 8 positions and increased nucleophilicity the a position. Steric effects enhance the formation of )yrryomethene (1) over its geometric isomer (2) which le require isomerization before cyclization to porphyrin ld be possible. 2,3,7,8,12,13,l7,l8—Octamethylporphyrin (0MP) was first 'rted by Fischerll who prepared it in 12% yield by heat— 3,4—dimethylpyrrole in formic acid. Siedel and lerlz synthesized 0MP in 47% yield by decarboxylation yrrole (3) in refluxing formic acid with concomitant ansation. An amazing 77% 13 when they refluxed 3,4—dimethylpyrrole with yield was obtained by Treibs Iaberele .ldehyde in acetic acid and pyridine. A similar yield 14 . P was described by Cheng and LeGoff us1ng the same ants in acidified ethanol. The change of solvents rise to a far simpler work—up in the latter case, 3 3. )Ctaethylporphyrin (OEP) is one of the most widely used : for the study of porphyrin chemistry. In addition to 6 Scheme 3 CH3 CH3 H 2/ \S C02” HCOZH / \ N CC>H H OH 3' 2 3 HOAc/CSHSN H2CO r HBr /EtOH CH3 CH3 2/ \S N H ts ”natural” substitution pattern, OEP is highly symmetri- tl, stable, and lacks extraneous functional groups. These asirable properties have prompted numerous syntheses of iP. Any discussion of OEP must include the synthesis and ansformations of its pyrrole precursors since these reac— Ons represent the major hurdle to its formation. Thus the iginal preparation of OEP by Fischer and Baumler (Scheme 4) ve poor yields and the product was invariably contaminated :h bromine. Modern routes to OEP take advantage of its symmetry by ng condensations of monopyrroles. 2—Carboethoxy—3,4— thyl—S—methyl pyrrole (4) is the usual intermediate in se Syntheses owing to its stability and well established Scheme 4 /\n’ O «gs-2v sew—we 4p HOzAcW H . ,F H350, H H u c025: ' Br ansformations. Inhoffen, Furhop, Voight, and Brockmanl6 ported the first high yield preparation of OEP, shown in heme 5. The acetoxymethylpyrrole (§) was isolated in % yield when 4 was treated with one equivalent of lead traacetate. This was then converted to the air—sensitive l-diethyl—5—hydroxymethylpyrrole 2—carboxylic acid in 96% 31d. Cyclization in the presence of potassium ferri— .nide in hot acetic acid gave, after chromatography, 44% OEP. Unfortunately, this last step was reported to have en a disappointingly low yield when scaled up. 8 eme 5 / \ PHOAc). / a C02” N com 4 2‘ JKOH PK)“: HC1\~:§r-j§: (—___ K3Fe(CN), N COQH H Until recently the most widely used synthesis of OEP based on the improvements Whitlock and Hanauer14 de— ped for the Eisner and Linstead18 approach, Scheme 6. titative diborane reduction eliminated the need for pressure hydrogenation of 4—acetylpyrrole and subse— t chromatography of the product. / c / \ ‘BZHL" N\ ”28$an an 02E? H 1)NaOAm NaOH —CO2 FKJAc Jflggflfl ““"'HC¥C N CCQH 9 In 1976, Dolphin et al.19 developed an efficient syn— thesis of OEP on a large scale using inexpensive starting materials as shown in Scheme 7. Hydrolysis of (6) gave ethyl propionylacetate contaminated by regenerated start- ing material. This impurity was carried through the Knorr reaction, Since even pure ethyl propionylacetate gives rise to some undesired ethyl—3,5—diethylpyrrole 2—carboxylate f7) via the Fischer—Fink side reaction. After reduction )f the mixture, the undesired pyrrole (7) was easily removed »y conversion to the Mannich base (§) followed by acid ex— raction. The large scale conversion of 4 to OEP owed its uccess to the avoidance of the often unreliable trichlori— ation of the d—methylpyrrole and lack of isolation of any ensitive intermediates. In the year following Dolphin's OEP synthesis, 1d LeGoff14 Cheng published an even more efficient preparation ‘ the porphyrin, Scheme 8. Quantitative reduction of the omeric porphyrins led to a 55% overall yield for the four— ep sequence in which no overly sensitive intermediates re formed. Only two syntheses of octapropylporphyrin (OPP) have in reported. Both routes start from 2—methyl—3,4—dipropyl— 'role (9) which was prepared20 by a long reaction sequence, -gued by poor yields and sensitive intermediates, Scheme 9. cher2O chose to make OPP through the dipyrromethene route le Siedel and Winklerlz used the milder but longer method n monopyrrole (10), as shown in Scheme 10. 11 me8 ‘5)3PZCHCOCH3 L CH3CH2CHZCHCOCH3 CH,QSO,CH,N:C: NaH HZCO EtOH RI me 9 a» gram 5' HOAc 5' H E g A Dill—g H2505 - 1 C02Et N c025: NH2NH2 EtONCI / \ \cozm N CZ: Zn HOAc \ I 12 1e 10 g R IN _B_ra__,k H \R COQH B HBr [55 r Br R R R R RZanyopyl’ V EH“ Br MeOH Pb(OA . g ()4, KOH / \ / \ com \9/0 N com A N H H lctaarylporphyrinsz1 have been 11. This method worked well ed derivatives, but extension aliphatic d—diketones failed :ondensation of these compounds under basic conditions. prepared as outlined in with benzil and its sub— of this pyrrole synthe— due to a facile self— A A 13 ell RESULTS AND DISCUSSION >rder to provide a general synthetic route to meso— lmetrical octasubstituted porphyrins a number of 3,4— ,uted pyrroles (preparation in Part II) were required. 'roles were effective intermediates, not only because reactive d—positions but because the substituents in ition prevent reaction at those sites. The relatively nthesis of porphyrins devised by Cheng and LeGoff14 n because of the high yields and ease of work—up. ategies to the target compounds (Scheme 12) seemed y well suited. The most direct route to these por— s by condensation of 3,4—dialkylpyrrole with formalde— Wever, 3,4-dialkylpyrroles must be synthesized from roles and thus the number of steps in each path would 3e. In addition the electron-rich 3,4—dialkylpyrroles Lir sensitive. Therefore, condensation of B-acyl— 'ith formaldehyde to give acylporphyrins followed by was attempted first. ituted thiophenes can be reduced to alkanes and as a source of butyl or higher alkyl substituentsgz E B-thienylpyrrole (ll, R'=H) with formaldehyde and >nly trace amounts of the porphyrin. Indeed a pure he product was never obtained. This is probably tivation of the pyrrole by the electron withdrawing l4 15 3:2 / \ H2CO :IZ l6 ,tuent. Consequently, electrophilic attack occurs at the ositions on the thiophene moiety. Even if a modest yield phyrin could have been isolated from the resulting black r, nickel would probably have been incorporated into the from the reactions normally employed in reducing the -containing heterocycle. This would have required an >nal step to obtain the metal—free product. tention was next turned to porphyrin synthesis via the —4—acylpyrrole condensation with acidified formaldehyde. ults are tabulated in Table l. R’ R RI R R' HBr R N EtOH H R R R’ R’ role R R' % yield porphyrin 12 ; CH3(CH2)2 CH3CH2CO 17 M 7 13 F CH3(CH2)3 CH3(CH2)2CO 5 ”W 4 l4 CH3(CH2)4 CH3(CH2)3CO 3 MW CH3(CH2)5 CH3(CH2)4CO 42 l5 l6 CH3(CH2)6 CH3(CH2)5CO 40 W 17 CH3(CH2)7 CH3(CH2)6CO 36 N isomeric porphyrins are possible in the condensation Insymmetrical pyrroles, Figure l. Tetraacetyltetra— yrin which had been separated by high pressure liquid 17 l R' R R R R R' R’ R’ R' R R’ R’ R R’ R R Type1 Type 2 R R' R R R' R R, R’ R' R' R R R R R’ R' Type 3 Type 4 : )graphy, was obtained as a 2:4 1 mixture of Type II, f, and Type IV isomers respectively23. Comparison of » region in the PMR of the new porphyrins with the mixture of tetraacetyltetraethylporphyrin shows that probably a statistical l 1 4:2 mixture of isomers gure 2. This is consistent with the distribution re— from the condensation of 3—tert—butylpyrrole with 1yde. :e results suggest that steric and electronic factors 1e effect on the formation of porphyrin isomers conditions used. A possible mechanism is shown in .mHmEowH ETTEQHOQ Mo meowosm omoE wo MES .N ohswfim Own oomflmmoommo go .lvfimmovmmo u .m.m oomfimmovmmo no .umfimmocmmo u .m.m commommo he .lmxmmocmmo u .m.m oommo he .«mmommo u .m.m 19 20 All! I I . .m AME? .~_ /.~_ riuv :2 8 + U \z a b «qu117. AU.HQOU¢ 04. D~3D3)) 21 l Ji|rj MOQ}F an>h men»; —0Q>P +£u 3 ~— .1 IV 36 n . . z: :z E .m a z .x L LI/ 3 a . MIN \l._._ :2 22 u :2 a, + . A‘fu 17:. ..I-. l Jill. V 0&3. i m 0Q>h 23 I: :2 +/ . 3 ~— /1V Z: 22‘: V K II 24 One possible route to symmetrical porphyrin was to duce the tetraalkyltetraacylporphyrin to octaalkyl— rphyrin. Diborane reduction resulted in a product which ssessed a visible spectrum similar to OEP but required re polar solvents to elute it from silica columns. The 1e result was obtained for 1) commercial diborane in Lrahydrofuran, 2) freshly prepared diborane in tetrahydro— ‘an, 3) diborane in methylene chloride, 4) diborane gen— ted in situ, 5) tetrabutylammonium borohydride, and diborane stored over sodium borohydride. The major band lated from chromatography was identical in every respect :he sole product obtained through the use of sodium >hydride. Infrared and mass spectroscopy confirmed that product was a mixture of isomers of tetraalkyltetra— oxyalkylporphyrins (18). More vigorous conditions gave to visible spectra which indicated proportionately 3r concentrations of chlorin, formed by hydroboration 1e porphyrin ring. 25 Reduction of acylporphyrins with lithium aluminum [ride resulted in the formation of aluminum—containing 'phyrins. Aluminum can not be removed easily from the 'and and thus represents a poor route to the metal—free phyrins. Other reduction methods, such as Clemmensen Wolff—Kishner reactions, resulted in the destruction the porphyrin moiety. Since the various methods of reducing ketones to hydro— Jons proved to be unsuitable for ketoporphyrins lg—lz, )rts were directed to forming the target compounds from Ietrical pyrroles. The 3,4—dia1kylpyrroles were con— :ed with formaldehyde in acidified ethanol under nitrogen. r refluxing for one day, the cooled solution was exposed ir for one week to permit oxidation to the porphyrin. results of these reactions are shown in Table 2. R a 2 R R R R /Z \S H2CO EtOH _ N HBr H R R R R )yrrole R % yield porphyrin 69 CH3(CH2)2— 32 lg 61 CH3(CH2)3— 33 29 62 CH3(CH2)4— 40 a} §§ CH3(CH2)5— ll 23 gg CH3(CH2)6— 11 a3 @115 CH3(CH2)7— 22 24 «M, .L . . _ L L. .r but K. v .1 (C HKKQKRQVKPM\KRNNNNRR —i— 26 The 13 CMR of these alkyl porphyrins are shown in ‘able 3. As expected, the chemical shifts of the ring arbons are unaffected by different alkyl groups. The meso, 6”, and ”a“ carbons appear at 96.8, 140.2, and 144.1 f .1 ppm respectively. The assignment of the alkyl carbons see experimental) is based on the Grant and Paul equation25 sing a predetermined pentylporphyrin as the modelze. The Llculated chemical shifts are within i 0.5 ppm of the :tual values. .ble 3 27 A new class of symmetrical porphyrins was synthesized .sing alkyl 2-methyl—3,4—polymethylenepyrrole 5—carboxylate s an intermediate. This approach was preferable to the se of 3,4—disubstituted pyrroles, since the tetrasubsti— uted pyrroles are simpler to synthesize and less air ensitive. The usually near quantitative monohalogenation of the zrrole methyl group did not proceed as expected with these 7rroles. When ethyl 2—methyl—3,4—trimethylenepyrrole -carboxylate (52) was treated with one equivalent of bromine, greenish solution developed. This is in stark contrast to e light orange to red hue normally obtained at the end of e reaction. Upon treatment with diethylamine and work—up, st of the starting pyrrole was recovered. The greenish Lution may have been a charge—transfer complex since ‘role—halogen complexes of this type are known27. Since :ochlorination of 52 with sulfuryl chloride also gave back arge amount of starting material, monoacetoxymethyl— roles were synthesized using one equivalent of lead raacetate. Due to difficulties in the purification of ;e diesters, they were often hydrolyzed to the corre— Lding hydroxy acids which were then transformed into hyrins without isolation. The reactions and results summarized in Table 4. Another variation in the synthesis of 21 was to use L 2—formyl—3,4-decamethylenepyrrole 5-carboxylate (69). pyrrole, which was synthesized from 54 using two 28 ble 4 KOH C , ( H9. *9. CH)” HOAc / \ If: fl CIHK /, H % yield from pyrrole n methylpyrrole porphyrin 52 3 12 25 53 4 27 26 54 10 12 21 W 'alents of lead tetraacetate, gave only a 1% yield of yrin when treated with potassium hydroxide followed fluxing in acetic acid. The addition of a second ron withdrawing group to the pyrrole ring apparently Lses the acidity of the nitrogen hydrogen to such an that it is removed by base at a much faster rate he ester is hydrolyzed. 29 A third approach to these systems involved the ”one— at” reaction of tert-butyl 2-methyl—3,4-trimethy1enepyrrole -carboxylate (56) with bromine. Tert—butylpyrrole esters re rapidly hydrolyzed by acids. Addition of bromine to 'rrole (56) in cold acetic acid under nitrogen gave an ’ange solution which rapidly turned dark red when refluxed d exposed to air. The bromine reacted to give 2—bromo— thylpyrrole and hydrobromic acid. This acid hydrolyzed e ester which decarboxylated to give 27% of porphyrin 26, heme 14. 1eme 14 / \ __§;.,__, \ +HBr N u HOAc H 56 O O HOAc O O 26 In an attempt to synthesize an isomerically pure II porphyrin, B—bridged pyrrole (48) was condensed formaldehyde in acidified ethanol, Scheme 15. The Scheme 15 \ / ’\ NHHN / 48 30 HBr PBCO "i .. . 31 v sible spectrum showed that the reaction stopped at the pyrromethene or porphodimethene stage. This indicates at the reaction failed either because the formaldehyde uld not find its way inside the cavity of the initially rmed dipyrromethene, or more likely, the attack of the ectrophile was not selective. The d—position adjacent the methyl is more nucleophilic than a—position next the ketone. This should lead to the formation of the metrical dipyrromethene. If on the other hand the re— ion lacked sufficient regioselectivity, then formation the unsymmetrical dipyrromethene could occur and prevent )hyrin formation due to steric strain. It was envisioned that a symmetrical.porphyrin bear— functionalized substituents could be formed via the ensation of pyrrole (49) by the usual conditions. Un- unately the lactone ring proved labile and provided an 11y effective electrophile in the B—position. A red luble polymer was the sole product obtained. This is .ned in Scheme 16. 32 ;heme 16 2:2 I2 HBr [fat H,co N H O jg—ggja pdynwr N H EXPERIMENTAL neral Procedure The melting points were determined on a Thomas Hoover i—melt melting point apparatus and are uncorrected. The infrared spectra were recorded on a Perkin—Elmer lel 237B or 137 spectrometer. The PMR spectra were ob— ned on a Varian T—60 spectrometer with chemical shifts orted in 6—units measured from tetramethylsilane as the ernal standard. The 13CMR were obtained on a Varian -20 spectrometer with chemical shifts reported in é—units n CDCl as the internal standard. The UV and Visible 3 :tra were reporded on a Unicam SP—SOO spectrometer using 1 quartz cells. A Hitachi Perkin—Elmer EMU-6 mass ;trometer was used to obtain the mass spectra. Microanalyses were performed by Spang Microanalysis ratory, Eagle Harbor, Michigan. Although not all of analyses are within the generally accepted limits, they included for completeness. The tendency of porphyrins )mplex metals and the difficulty in crystallizing these :ules frequently causes such deviations. 33 34 Tetrapropyltetrapropyrylporphyrin (12), tetrabutyltetra— butyryrlporphyrin (13), tetrapentyltetrapentyrylporphyrin (14), tetrahexyltetrahexyrylporphyrin (15), tetraheptyl- tetraheptyrylporphyrin (16), and tetraoctyltetraoctyryl— porphyrin (II) General Procedure: A solution of pyrrole (42:47) (1.5 mmol), 37% aqueous formaldehyde (6 ml), 48% hydrobromic acid (1 ml), in abso— Lute ethanol was refluxed for 24 hours. The reaction mix— :ure was then allowed to stand at room temperature for one 'eek. The ethanol was removed under reduced pressure. fter neutralizing the residue with aqueous sodium carbo— ate it was extracted with methylene chloride. The ethylene chloride was removed and the residue chromato— raphed on silica gel (methylene chloride/1% methanol Luent). The yields are listed in Table 1 on page 16. )ectral characteristics of 12, 13, 14, 15, 16, and 17 'e summarized below. trapropyltetrapropyrylporphyrin (12) Amax (CHC13): 428 nm, 523, 555, 594, 648; IR (CHClB): l 90 cm‘ (N—H), 1660 (c=0); PMR (CDC13): 5—3.44 (broad s, , N—H), 1.25 (m, 12H, CHZCH2CH3), 1.52 (m, 12H, COCHZCHs), 35 (m, 8H, CH CHZCHB), 3.59 (m, 8H, cocg ), 4.12 (m, 8H, 2 ,—porphyrin), 10.00 (s, 1H, meso—H), 10.40 (s, 2H, meso—H), 61 (s, 1H, meso—H); MS (70 eV): m/e = 702 (parent). Anal. Calcd for C44H54N4O4: C, 75.18; H, 7.79; N, 7.97 Found: C, 74.90; H, 7.58; N, 8.22. 35 Tetrabutyltetrabutyrylporphyrin (13) Amax (CHC13): 427 nm (e = 240,000), 522 (16,000), 556 (8,900), 594 (7,100), 648 (3,100); IR (CHC13): 3400 cm—1 (N-H), 1655 (C=O); PMR (CDC13): 5—3.39 (broad s, 2H, N—H), 1.03—1.07 (m, 24H, CH ), 1.75—2.25 (m, 24H, CHZCHZCH2CH3 and COCH2CH2CH3), 3.59 (m, 8H, COCHZ), 4.20 (m, 8H, CH2— porphyrin), 10.09 (s, 1H, meso—H), 10.45 (s, 2H, meso—H), L0.60 (s, 1H, meso—H); MS (70 eV): m/e = 814 (parent). Anal. Calcd for C52H7ON4O4: C, 76.62; H, 8.66; N, 6.87 Found: C, 76.28; H, 8.36; N, 6.93. etrapentyltetrapentyrylporphyrin (14) Amax (CHCls): 427 nm, 521, 556, 593, 647; IR (CHC13): 300 cm~l (N-H), 1665 (C=O); PMR (CDC13):6—3.60 (broad s, 1, N-H), O 98—l.20 (m, 24H, CH3), 1.43—2.34 (m, 40H, 12(CH2)3CH3 and COCH2(CH2)ZCH3), 3.60 (m, 8H, C0CH2), 4.05 1, 8H, CHZ—porphyrin), 9.70 (s, 1H, meso—H), 10.18 (s, 2H, eso—H), 10.39 (s, 1H, meso—H); MS (70 eV): m/e = 926 arent). Anal. Calcd for C6OH86N404: C, 77.71; H, 9.35; N, 6.04 Found: C, 77.05; H, 9.20; N, 6.36. trahexyltetrahexyrylporphyrin (15) Amax (CHC13): 426 nm, 520, 556, 592, 647; IR (CHClB): )0 cm—1 (N-H), 1670 (C=O); PMR (CDC13): 6-3.34 (broad s, N-fi), 0.70—1.06 (m, 24H, CH3), 1.10—2.50 (m, 56H, (CH2)4CH3 and COCH2(CH2)3CH3), 3.53 (m, 8H, COCH2), 4.10 8H, CHZ—porphyrin), 10.00 (s, 1H, meso—H), 10.30 (s, 36 2H, meso—H), 10.45 (s, 1H, meso-H); MS (70 eV): m/e = 1038 (parent). Tetraheptyltetraheptyrylporphyrin (16) Amax (CHC13): 427 nm, 522, 558, 594, 650; IR (CHC13): 3300 cm_1 (N—H), 1665 (C=O); PMR (CD013): 6-4.03 (broad s, 2H, N—H), 0.80-1.13 (m, 24H, CH3), 1.15—2.50 (m, 72H, CH2(C_H2)5CH3 and COCH2(CH2)4CH3), 3.57 (m, 8H, COCHZ), 4.08 (m, 8H, CHZ—porphyrin), 9.50 (s, 1H, meso—H), 10.15 (s, 2H, meso—H), 10.42 (s, 1H, meso—H); MS (70 eV): m/e = 1150 (parent). Tetraoctyltetraoctyrylporphyrin (12) Amax (CHC13): 427 nm, 520, 555, 594, 650; IR (CHClB): 3290 cm"1 (N—H), 1665 (C=O); PMR (CDC13): 6—4.17 (broad s, 2H, N—H), 0.70—0.97 (m, 24H, CH3), 1.00—2.44 (m, 88H, 3H2(CH2)6CH3 and COCH2(CHZ)5CH3), 3.50 (m, 8H, COCHZ), 3.90 'm, 8H, CHZ—porphyrin), 9.35 (s, 1H, meso—H), 10.10 (s, 2H, leso-H), 10.37 (s, 1H, meso—H); MS (70 eV): m/e = 1262 parent). etrabutyltetra(d—hydroxy)butylporphyrin (18) Tetrabutyltetrabutyrylporphyrin (0.32 mmol) was dis— )lved in 150 ml of tetrahydrofuran and cooled in an ice 1th under nitrogen. Diborane (4 m1 of a 1N tetrahydrofuran >1ution) was added and the reaction mixture was stirred at ’ for one hour and at room temperature for four hours. The action was quenched with hydrochloric acid (45 ml of a 5% ueous solution). The mixture was poured into 100 m1 of an 37 aqueous 1M sodium carbonate solution and the product ex— tracted into methylene chloride. After removal of the solvent, the residue was chromatographed on alumina using 8% methanol in chloroform as eluent. Removal of the solvent yielded 0.278 mmol (87%) of 18: Amax (CHC13): 408 nm, 508, 540, 575, 626; IR (CHC13): 3425 cm_1 (O—H), 3210 (N—H); MS (70 eV): m/e = 750 (parent — 4H20). Octapropylporphyrin (19), octabutylporphyrin (29), octa— pentylporphyrin (21), octahexylporphyrin (22), octaheptyl— porphyrin (23), and octaoctylporphyrin (24) General Procedure: A solution of pyrrole (69—65) (2.5 mmol), 37% aqueous formaldehyde (12 m1), and 48% hydrobromic acid (0.5 ml) in 100 ml of absolute alcohol was refluxed for 24 hours under nitrogen and for an additional 24 hours exposed to the at— mosphere. The resulting solution was allowed to stand at 700m temperature for seven days. The ethanol was removed Lnder reduced pressure. After neutralizing the residue with .queous sodium carbonate, the organics were extracted into ethylene chloride. The methylene chloride was removed and he residue chromatographed on silica gel (1:1 hexane/toluene luent). The yields are listed in Table 2 on page 25. Spec- cal characteristics of 19, 29, 21, 22, 23, and 24 are Immarized below. 38 Octapropylporphyrin (19) 20’21 sintered 2760);A mp. sintered 275—278O (lit. max (CHC13)Z 399 nm, 499, 535, 569, 622; IR (CHClS): 3310 cm—1 (N—H); PMR (CDC13): 0—3.44 (broad s, 2H, N—H), 1.40 (t, 24H, CH3), 2.42 (hextet, 16H, CHZCHS), 4.03 (t, 16H, CH2- porphyrin), 9.97 (s, 4H, meso—H); l3 CMR (CDC13): 014.72 (9H3), 26.87 (QHZCHB), 28.62 (QHZ—porphyrin), 96.90 (meso carbons), 140.17 (“8” carbons), 144.35 (”d” carbons); MS (70 eV): m/e = 646 (parent). Anal. Calcd for C44H62N4: C, 81.68; H, 9.66; N, 8.66 Found: C, 81.35; H, 9.44; N, 8.53. Octabutylporphyrin (2Q) mp. sintered 266—2670; Amax (03013): 400 nm, 500, 535, 569, 622; IR (CHC13): 3310 em‘l (N—H); PMR (CDC13): 6—3.65 {broad s, 2H, N—H), 1.12 (t, 24H, 023), 1.77 (m, 16H, CHZCHBL 3-20 (m, 16H, cg CH2CH3), 3.95 (t, 16H, CHZ—porphyrin), 9.85 2 s, 4H, meso-H); 13CMR (CDC13): 614.20 (9H3), 23.42 (QHZCHB), 6-32 (QHZ-porphyrin), 36.10 §H24H§CH3), 96.70 (meso carbonsL 40.17 (”8” carbons), 144.07 (”9” carbons); MS (70 eV): /e = 758 (parent). Anal. Calcd for C52H78N4: C, 82.26; H, 10.36; N, 7.38 Found: C, 82.93; H, 9.57; N, 7.18. :tapentylporphyrin (21) mp. sintered 222—2270; Amax (CHC13): 401 nm, 500, 535, ‘9, 594, 621; IR (CHC13): 3370 cm"1 (N—H); PMR (CDC13)= 39 6-3.58 (broad s, 2H, N—H), 1.08 (t, 24H, CH3), 1.75 (m, 32H, CHZCHZCHB), 2.36 (m, 16H, CHZCH2CH porphyrin), 10.00 (s, 4H, meso—H); CH3), 4.03 (t, 16H, CH2- 13 2 CMR (CDC13): 014.06 [CH3), 22.74 (CHZCHB), 26.61 (CH2-porphyrin), 32.56 :QHZCHZCHB), 33.56 (QHZCHZCHZCHB), 96.79 (meso carbons), .40.22 (”8” carbons), 144.19 (”3” carbons); MS (70 eV): n/e = 870 (parent). Anal. Calcd for C H N C, 82.70; H, 10.88; N, 6.43 94 4: Found: c, 82.88; H, 10.74; N, 6.40. 60 ctahexylporphyrin (22) mp. sintered 173.5—175.50; A (CHC13): 399 nm, 500, max 34, 569, 622; IR (CHC13): 3295 cm’1 (N—H); PMR (CDC13): -3 45 (broad s, 2H, N—g), 1.08 (t, 24H, C23), 1.70 (m, 48H, [2CH2CH2CH8), 2.45 (m, 16H, cg CH2 2 Lz'Porphyrin), 10.08 (s, 4H, meso—H); CH CH2CH3), 4.15 (t, 16H, 136MB (CDC13): 614.03 H3), 22.64 (9H2CH3), 26.67 (QHZ—porphyrin), 30.01 H2(CH2)2CH3), 31.90 (QHZCHZCHB), 33.80 (CH2(CH2)3CH3), .78 (meso carbons), 140.31 (”8” carbons), 144.08 (”d” rbons); MS (70 eV): m/e = 982 (parent). :aheptylporphyrin (23) mp. 151—1520; A (CHC13); 400 nm, 501, 535, 569, 622; max (CHC13): 3310 om‘l (N—H); PMR (CD013): 61.05 (t, 24H, .): 1.57 (m, 64H, (CH2)4CH3), 2.47 (m, 16H, CH2(CH2)4CH3), 5 (t, 16H, CHZ—porphyrin), 10.05 (s, 4H, meso—H), N—H not erved; 13CMR (cnc13): 614.01 (9H3), 22.66 (QHZCHS), 26.63 Z‘porphyrin), 29.42 (CHZCHZCH4CH3), 30.34 (CH2(CH2)3CH3), 40 31.90 (QHZCHZCHS), 33.91 (9H2(CH CH3), 96.78 (meso carbonSL 2)4 140.22 (”8” carbons), 144.08 (”0” carbons); MS (70 eV): m/e = 1094 (parent). Anal. Calcd for C76H126N4: C, 83.30; H, 11.59; N, 5.11 Found: C, 83.61; H, 11.48; N, 4.91. )ctaoctylporphyrin (24) mp. 140.5—1410; Amax (CHC13): 400 nm, 500, 536, 568, :21; IR (CDC13): 3310 cm‘1 (N—H); PMR (00013): 6—3.53 (broad , 2H, N-H), 1.00 (t, 24H, CH3), 1.48 (m, 80H, (c32)5cn3), .42 (m, 16H, CH2(CH2)5CH3), 4.10 (t, 16H, CH 13 Z—porphyrin), 0.03 (s, 4H, meso—H); CMR (CDC13): 614.01 (CH3), 22.63 zHZCHB), 26.63 (QHZ—porphyrin), 29.39 (9H2(CHZ)ZCH3), 29.74 :H _ 2(CH2)3CH3), 30.41 (9H2(CH2)4CH3), 31.93 (QHZCHZCH3), 3°93 (QHZ(CH CH3), 96.79 (meso carbons), 140.21 (”8” car— 2)5 )nS), 144.19 (”3” carbons); MS (70 eV): m/e = 1206 (parent). A . . . . nal Calcd for C84Hl42N4. C, 83.51, H, 11.85, N, 4.64 Found: C, 83.25; H, 11.71; N, 4.70. 2-3,4—5,6—7,8—Tetra(trimethylene)porphyrin (25) Ethyl 2—methy1—3,4—trimethy1enepyrrole 5—carboxylate 3) (0.24, 1.3 mmol) was dissolved in 10 ml of acetic acid. 1d tetraacetate (0.6g) was added and the mixture was .rred at room temperature for 10 min. Water (50 ml) was led and the product was extracted into methylene chloride. er removal of the methylene chloride, 0.25 g of potassium roxide in 5 m1 of water and 5 m1 of ethanol was added to residual oil. This solution was refluxed for 2 hours, 41 cooled, and diluted with 20 m1 of acetic acid. This acidic solution was refluxed for 1 hour while air was blown over the surface. After sitting one day, the black solution was poured into water and extracted into methylene chloride. the methylene chloride was removed under reduced pressure Lnd the residue chromatographed on alumina using 1% methanol .n methylene chloride as the eluent. Removal of the solvent "ave 0.017 g (12%) of 25: A (CHC13): 419 nm, 516, 552, max 88, 638; MS (70 eV): m/e = 470 (parent). ,2-3,4—5,6—7,8—Tetra(tetramethylene)porphyrin (26) ) Ethyl 2—methyl-3,4—tetramethylenepyrrole 5—carboxylate [.78 g, 8.6 mmol) was dissolved in 10 ml of acetic acid. sad tetraacetate (4.2 g) was added over a 15 min period. Lter (100 ml) was added and the product extracted into ‘thylene chloride. The methylene chloride was removed der reduced pressure and 2 g of potassium hydroxide in m1 of water and 10 ml of ethanol was added to the re— dual oil. This solution was refluxed for 2 hours, cooled, i diluted with 20 ml of acetic acid. The acidic solution 5 refluxed for one hour while air was blown over the sur— :e. After evaporation of the solvent, the porphyrin was 'omatographed on alumina using 1% methanol in methylene oride as an eluent to yield 0.3 g (27%) of 26. 2-Carbo-t—butoxy—3,4-tetramethy1ene—5—methylpyrrole ) (1.17 g, 5 mmol) was dissolved in 10 ml of acetic acid cooled to 00 under nitrogen. Sulfuryl chloride (5 mmol) 42 in 20 m1 of acetic acid was added dropwise to the pyrrole solution over 15 min. The initially light yellow solution turned green. After stirring for one hour at room tempera— ture, the nitrogen was removed and the solution was refluxed. Heating was continued for three hours and the solution was allowed to sit for a week at room temperature. After re— moval of the solvent the residue was chromatographed on silica gel using 1% methanol in methylene chloride as eluent to yield 0.02 g (1%) of 26: Amax (CHCl3): 419 nm, 518 nm, 553, 589, 638; PMR (CDC13): 62.58 (m, 16H, porphyrin— 2CHZCHZCHZ—porphyrin), 4.17 (m, 16H, porphyrin—CH2CH2CH2CHZ— porphyrin), 10.00 (s, 4H, meso—H); MS (70 eV): m/e = 526 CH (parent). .,2-3,4—5,6—7,8—Tetra(decamethylene)porphyrin (22) .) 2—Carbethoxy—5—formyl—3,4—decamethy1enepyrrole (2.95, .7 mmol) and 3 g of potassium hydroxide were refluxed for hours in 80 ml of 50% aqueous ethanol. After cooling to oom temperature, the solution was neutralized with acetic :id. The solvent was removed under reduced pressure. :etic acid (60 ml) was added to the residue and the solu— .on was refluxed for 3 hours while air was blown over the erace. After sitting one week, the solvent was removed d the mixture was chromatographed on silica gel using The product was recrys— thylene chloride as the eluent. lized from toluene to yield 0.02 g (1%) of 27. IIIIIIIIIIlIll"::::7____________——i 43 B) 2—Carbethoxy—5—acetoxymethy1—3,4—decamethylene-pyrrole (1.0 g, 2.9 mmol) was dissolved in 20 m1 of 50% aqueous ethanol. Potassium hydroxide (l g) was added and the solu— tion was refluxed for two hours. Acetic acid (50 ml) was deed to the cooled solution and this was refluxed for one [our while air was passed over the surface. After sitting ‘ne week, the solvent was removed and the residue was hromatographed on silica gel using 1:1 toluene/methylene hloride as eluent. Recrystalization from toluene yielded .07 (12%) of 23: Amax (CHC13): 400 nm, 502, 535, 520, 622; AR (CDC13/DMSO—d6): 01.3—2.0 (m, 48H, -CH2CH2(CH2)6(3H2CH2—L 2CH2‘ CHZCH2-), 10.42 (m, 4H, meso—H); MS (70 eV): m/e = .43 (m, 16H, —CH2CH2(CH2)6CH2CH2—), 4.13 (m, 16H, —CH ’H2)6 12 (parent). APPENDIX TRANSMHTANCE(%) 5.0 I2 Lgure 3. 44 MICRONS Rtrztmmm Of n 2500 2000 FREQUENCY kM on 70 80 MKRONS 100 1L0120 ¢ R! : (“EEC") 1800 1600 I400 VRECIIEN,V (v Infrared spectrum of tetrapropyltetra— propyrylporphyrin (12). 160 45 MICRONS TRANSMITTANCE (%) 3500 3000 2500 2000 FREQUENCV cw MICRONS ‘0‘0 (D O u . N H 66 67 Ten new pyrroles were prepared by this reaction and arved as precursors to the porphyrins described in Part I. The reductive condensation of oximes with B—diketones LS reported by Kleinspehn32 in 1955. The oxime is reduced , situ and always condenses with the least hindered car— nyl function. An internal aldol condensation then forms five—membered ring, which after ester cleavage and tauto— rization gives the pyrrole (Scheme 2). This modified )rr reaction led to the synthesis of several novel pyrroles I several well—known, synthetically useful pyrroles. eme 2 g kw R NQH Zn NH I B’Lk HOAC Wklz? H RI .‘fl N R R H I 9‘ g A 1;}? I I 02B or CN Several potentially useful dipyrrolic intermediates synthesized for use in the synthesis of ring expanded yrins (223)33’34’35. These included dipyrroles of the wing kind: 68 28 n1+nIEil_ m:n_1_ porphyfin 1) Two pyrrole units are directly connected to form )yrrole (29). /\II ”\/ 29 2) Two pyrrole units are connected by a one carbon dge to form dipyrromethane (30), dipyrromethene (31), dipyrroketone (32). C) .\\ ,/ IH HN H \/NH HN 30 3] 32 3) Two pyrrole units are connected by a three carbon ge to form dipyrrotrimethine (33). \x ‘\ <\ Mm 33 4) Two pyrrole units are connected by a five carbon :e to form dipyrropentadienones (34, 35). 69 35 RESULTS AND DISCUSSION nthesis of pyrroles In order to prepare the 3,4-disubstituted pyrroles ad in Part I, a general synthesis of a,B-unsaturated ;ones was required. Four possible routes were explored shown in Schemes 3 and 4. eme 3 U m.» H ___+ co R s A103 5 NHzNHz R s ’OH ‘ Cg MF \A w ' m RvflvH s CH:CHCO(CH2)4R NaOH 5 n O 36 ' NaH CHa-QSOZCHzNZC: ~s \ MR kw Ni /N\ Jr a 43 H II 70 71 :heme 4 :(CH,)2 cacu RCHZCECH (C6H5)3P:CHCOCH3 - ,7 40 I I EfMgBr . R2'3“ 2IR'(CH,)2CH0 3 "‘332“ H CH2I2CH=CH3R2 RCH2CECCHICH2I2R (C6H5)3P:CHCOCH2R 38 41 Hg+2 H9C|2 “30+ RICH2)2CHO 2H2)2CH:CHHgCI R(CH2)2CH:CHCO.CH2R I37 AICL, I 39 RC H2COCI a. ' b ' c Thiophene-Z—carboxaldehyde was condensed with 2— :anone in the presence of base to give l—(2—thienyl)- -l—ene (36). Unlike furfural, which is known to give .1 amounts of the wrong isomer36, no competing condensa— , at the methylene group was observed. This d,B- turated ketone reacted with TosMIC under basic condi— s to give 3—butyryl—4—(2—thieny1)pyrrole (11). At— ted reduction of the thiophene moiety using Raney nickel ed unpromising, but nickel boride was effective under 30nditions described by C. A. Brown37, giving pyrrole which was contaminated with small amounts of 3—(2— Lyl)-4—butyry1pyrrole. This route to the target compound 72 I I as discontinued for the following reasons: 1) It is not Litable for preparing octapropylporphyrin; 2) 5—alkyl thio— iene—2—carboxaldehyde would have to be prepared in three :eps—Friedel—Crafts acylation of thiophene followed by alff-Kishner reduction of the ketone and formylation-for is route to be applicable to the higher homologues; high regioselectivity of the aldol condensation is re— ired; 4) better routes to pyrrole (39) were found. Another synthesis of d,B—unsaturated ketones involved 3 use of vinyl mercuric chloride (33), as shown in leme 4 path a. This reagent was prepared in the manner 38 Thus treatment of vinyl boranes scribed by H. C. Brown :h mercuric acetate gave 33, along with large quantities elemental mercury. This mixture defied purification de— te repeated washing of the precipitate. Although crude reacted smoothly with acid chlorides to give 39, the te was marred by modest yields, toxic compounds, and a iously unpleasant odor associated with the vinyl mercuric Jride. A different approach to d;B—unsaturated ketones was de- led to use the Meyer—Schuster rearrangement of acetylenic Iinols prepared by addition of acetylenic Grignard re— .ts to appropriate aldehydes, as shown in Scheme 4 path b. e a large number of terminal alkynes and aldehydes can btained from chemical supply houses, path b would pro- an easy access to the a,B—unsaturated ketones. How— , yields of the isomerized product were only modest, |IIIIIIIIIIII::::_________________——_ 73 Ind the development of an improved synthesis led to dis— pntinuation of this route. I The best synthesis of a,B-unsaturated ketones proved 3 be via a Wittig reaction. Alkylation of the deep red 'Lthiotriphenylphosphinoacetonide4O gave the substituted -ketophosphorane (41) as shown in Scheme 4 path 0. The asired d,B-unsaturated ketone (39) was efficiently produced ' refluxing the new ylide with a suitable aldehyde in thylene chloride (Table l). 1) n-BuLi ———————v-+ ble 1. (C6H5)3P = CHCOCH3 2) RX (C6H5)3P==CHCOCH2R 4O 41 R(CH2)2CHO ———————*——-+ R(CH ) CH = CHCOCH R 2 2 2 % yield R d,B-unsaturated ketone from $9 §9 I— CH3(CH2)2CH=CHCOCH2CH3 . 85 a ICHZ— CH3(CH2)3CH=CHCO(CH2)2CH3 92 b (CH2)2- CHBCCH2)4CH=CHCO(CH2)3CH3 64 C (CH2)3— CH3(CH2)5CH=CHCO(CH2)4CH3 56 d (CH2)4- CH3(CH2)6CH=CHCO(CH2)5CH3 62 e (CH2)5— CH3(CH2)7CH=CHC0(CH2)6CH3 62 f 2CHZCHZ— CHBCH=CHCO(CH2)SCOCH=CHCH3 68 g It was found that removal of lithium salts from the .methylenetriphenylphosphorane prior to its reaction with aldehyde resulted in higher yields. Apparently the ium cation complexes the ylide and decreases the charge arbon by creating a more enolate—like species, which is IIIIIIIIIIIT___________________——_V 74 is likely to react with aldehydes to form a betaine inter— Iiate. The alkylated Wittig reagents were invariably con— ninated with starting material. Separation at this stage not possible, so the impurity was carried through the ction and the resulting methyl ketone separated from the ger chain ketone by distillation. 3,4—Disubstituted pyrroles were synthesized by reacting MIC under basic conditions with d,B—unsaturated carbonyls shown in Scheme 1. Results are summarized in Table 2. I R R Le 2 U N H R R' % yield pyrrole COCH2CH3 CHZCHZCH3 74 42 CO(CH2)2CH3 CH2(CH2)2CH3 69 43 CO(CH2)3CH3 CH2(CH2)3CH3 34 43:1 CO(CH2)4CH3 CH2(CH2)4CH3 28 45 CO(CH2)5CH3 CH2(CH2)5CH3 31 46 CO(CH2 )6CH3 CH2(CH2 ) 6CH3 42 4:1 -CO(CH2)5CO— 2 CH3 53 48 —COOCH2CH2— ll 49 CO(CH2)2CH3 2—thienyl 35 11 This provides a simple method for preparing 2,5— stituted pyrroles which were previously inaccessible. the C C and nitrogen atoms of the pyrrole ring 2’ 5’ arived from TosMIC, a large variety of pyrroles can 75 I obtained by varying the structure of the Michael ceptor. A different pyrrole synthesis gave various 2,3,4,5— trasubstituted pyrroles by reductive condensation of imes with B—diketones, Scheme 2. Results are summarized Table 3. )le 3 I / \ N H, H R R' pyrrole % yield ref CH3 C02Et 59 65 32 CHZCH3 COZEt 51 _ 64 43 -CH2CH2CH2— COZEt 52 7 -— —CH2(CH2)2CH2— COZEt 53 56‘ ~— —CH2(CH2)8CH2— C02Et 54 50 —— CH3 C02C(CH3)3 55 50 43 —CH2(CH2)2CH2— C02C(CH3)3 56 43 -— CH3 COZCH2C6H5 57 76 43 CH3 CN 58 46 32 This modified Knorr synthesis led to extremely useful ole intermediates since mono—, di— or trihalogenation he d—methyl group yielded reactive alkyl halides, alde— s, or carboxylic acids respectively. A convenient one pot synthesis of a B-pyrrole car— nide (59) was conducted as shown in Scheme 5. Reaction Lethylamine with diketene gave N,N—diethyl acetoacetamide 76 ,heme 5 + Ni(a¢:c1c)2 h ,A H . N J H 59 Lch was reacted without isolation with 2—phenylazirine give 59 in 61% yield. Variation of the nucleophile le lead to different acetoacetic acid derivatives which .ld also be converted to pyrroles. The functionalized roles could serve as useful intermediates in the syne sis of porphyrins and other pyrrolic annulenes. ctions of pyrroles Transformation of functional groups: Following a reported synthesis of 3,4-dipropylpyrrole4l, reduction of B-ketopyrroles with lithium aluminum hy— le was investigated. The reduction of amides to amines lithium aluminum hydride is well known and extension his reaction to these vinylogous amides proved to be an edingly clean, high—yield method for reducing the nes (Table 4). The crude, spectroscopically pure ales, were extremely air sensitive. It proved necessary )nvert them to the octaalkylporphyrins, as shown in I. Another useful reduction procedure for the transforma— of functional groups on pyrroles utilizes the rela— y recent discovery that reduction of nitriles can be 77 le 4 R R R R N [N3 H H R % yield pyrrole CH3(CH2)2— 7O 99 CH3(CH2)3— 76 g} CH3(CH2)7— 85 51.5 Jed at aldehydes using one equivalent of diisobutyl Lnum hydride (66)42. Cyanopyrrole (§§) was reduced .dehyde (63) using DiBAl in 66% yield. This reagent fly simplifies the lengthy procedure43 previously used eparing 67. )xidation of d—alkylpyrroles can also be used to pro— :he necessary functionalization for synthetic inter— :es. Thus when ethyl 2—methyl-3,4-decamethylenepyrrole toxylate (54) was treated with one equivalent of lead ,cetate, it yielded 82% of monoacetoxymethylpyrrole (6§). 78 equivalents of lead tetraacetate gave a-formylpyrrole ) in 55% yield. These new functionalized pyrroles were d in the preparation of porphyrins described in Part I. Preparation and derivatization of dipyrrolic intermedi—. ates: Much of the synthetic effort in this part of the re— ch was directed toward the preparation of dipyrrolic rmediates (29)—(35). They are divided into four gories. (i) Zero carbon bridge: Bipyrroles have been prepared by the Ullman reaction 44 )dopyrroles. In an earlier study of bipyrroles, it poted that the iodopyrroles must contain at least one \ ' for the coupling to succeed. Various new iodopyrroles synthesized to test this statement and to provide syn— cally useful intermediates (Table 5). t was found that the Ullman coupling succeeded only he 2—iodopyrrole bore an ester function at the 5— on and that yields improved if an ester was also d at the 3—position. Other electron—withdrawing onality in 70, 72, and 78 failed to activate the 79 1e 5 R: R” N R H I R' R" R"' 2 yield pyrrole method ref CH3CO CH2 CH3 I 7 l 19 A -— COZEt CH3 I 54 Z} A —- CH3CO C6H5 I 84 Z3 A -—— CH3 CH3 I 21 73 A —- CH3 CH3 I 95 Zé B 44 CH3 C02Et I 88 Z? B 44 1C6H5 CH3 002Et I 78 29 B 44 I I CH3 99 ZZ A —— H H CO 15 78 A —— I A = pyrrole-H + KI + H202. Method B = pyrrol;:C02H + 12. a and an ester at the 4-position proved equally though no new bipyrroles resulted from this study, a of improvements were found. Iodopyrrole (34) led to pected product when the reaction was run in dimethyl— de as described44, see page 84. However, bipyrrole 3 formed in 38% yield when dimethylacetamide was used ent. mew method of coupling iodopyrroles gave improved Bis(triphenylphosphine)nickel(II) dichloride was with zinc in the presence of triphenylphosphine to F tris(triphenylphosphine)nickel(O) in situ. Yields 8O nging from 50—100% were obtained when this homogeneous ckel reagent45 was used in place of copper as the coupling agent. The lower yields occurred when the extremely air— nsitive nickel coupling reaction was scaled—up. The oduct had to be isolated as the bipyrrole diacid (39) due difficulty in separating the very insoluble bipyrrole m the triphenylphosphine used in the reaction. Hydrolysis the esters gave a base soluble product which could be Eily isolated by basic extraction of the reaction mixture Llowed by neutralization. Synthetically useful bipyrroles could be produced by lification of the functionality on the existing bi— ‘roles. Since difficulties were encountered in the pref— ntial hydrolysis of tetraester (3}), mixed bipyrrole raester (§§) was synthesized by coupling iodopyrrole (26), lowed by removal of the benzyl groups by catalytic hy— genation43. In contradiction to an earlier report46 3h claimed ”benzilic compounds are not significantly ?ogenolyzed” by nickel boride, it was found that diacid could be conveniently produced by nickel boride reduc— of the mixed tetraester (§2)' The reagent is readily ared by the reduction of nickel(II) dichloride hexa— ate with sodium borohydride while hydrogen is provided gh the reaction of water with the reducing reagent. method of reducing pyrrole benzyl esters eliminates eed for an external hydrogen source and specialized ment. 81 H R N H R/ R R' . bipyrrole COZEt CH3 Z? COZH CH3 é? COZEt C02Et §l COZCHZC6H5 C02Et 33 COZH C02Et 33 A new method for synthesizing bipyrroles was developed .zing pyrroles (§Q), (§l), and (§g) bearing substitu— which are suitable for pyrrole syntheses. These pyr— were synthesized by known methods47’48. Thus a ‘ate conversion to bipyrroles g] and §§ was obtained 2—phenylazirine was stirred with pyrroles ag and §§ ight in acetone. Two isomeric products were isolated, own in Table 6. 6 R R / N H lvkxndz rrole R. R' bipyrrole yield dipyrroketone 4¥yield §3 H CH3 §Z 17.4 29 40.0 fl; CH CH §§ 37.4 2; 59.3 3 86 CH3 OEt 89 0 23 0 W4 82 The minor component, which eluted first during chroma— raphy, was tentatively assigned the bipyrrole structure. extreme insolubility of both isomers made spectroscopic ;urements difficult. Supportive evidence for the assign— ‘ was found in the beautiful blue fluorescence of the r component, which is characteristic of bipyrroles, and xtreme air-sensitivity which would be expected of its {tron—rich half. A possible mechanism is shown in me 6. Dipyrroketone is formed predominantly in this tion because it results from the kinetically preferred eophilic attack at the ketone rather than the vinylogous 83 A small amount of uncharacterized solid was obtained n a corresponding reaction of B—ketoester (86). NO Irrole could be isolated from the modified Knorr reac— 1 with any of these pyrroles. (ii) Single carbon bridge: As possible precursors to porphyrins and platyrinsBS, mber of dipyrromethanes were prepared in the manner ribed by Paine43, Table 7. e 7 R R R 33’ \ NOH (3A: ” a 3* ' \ NHHN / -' \ NHHN / R' R' R R' R" % yield dipyrromethane ‘ CH3 COZEt -- 40 9E COzEt COZEt -- 54 Q4 CH3 COZCH2C6H5 -- 42 2? CH3 -- COZH 55 a? C02Et -- COZH 84 g3 In contrast to Paine's report, the d—ethyl esters be preferentially hydrolyzed when treated with base, 5 it unnecessary to synthesize the mixed tetraesters, ved by catalytic reduction of the benzyl esters. LS mentioned on page 79, ethyl 2—iodo—3,4—dimethyl- .e—5—carboxylate led to an unexpected product when lman reaction was run in dimethylformamide. Although 84 product had a PMR spectrum identical to that expected bipyrrole, it was identified as dipyrroketone (98) on basis of its melting point49’ 50 and mass spectrum. Re— tion with sodium borohydride yielded dipyrromethene (99) :h verified the existence of the inserted carbon. Cu DMF Since the product might have incorporated carbon :ide, formed by decomposition of dimethylformamide, as . in Scheme 7, the reaction was repeated under a carbon ide atmosphere. The resulting product was bipyrrole and these proved to be the only conditions under which oheues formed using dimethylformamide as the solvent. er investigation is necessary to provide a plausible iism and explain the change of products under carbon ide. :iii) Three carbon bridge: lipyrrotrimethine has proven useful in the synthesis landed porphyrin systems35. Dipyrrotrimethines (£99) 01) were synthesized by reacting tert—butyl ester ith the appropriate B—dicarbonyl compound under acidic ions, Scheme 8. 85 eme 8 Me Me e \ HBr ~N H 55 cgk 86 (iv) Five carbon bridge: As a possible precursor to a 26 pi annulene, both 1,5— (5—carbo—t—butoxy-3,4—dimethyl—2—pyrro)—l,4—pentadiene- ne (l98) and 2,5—di—(5—carbo-t—butoxy—3,4—dimethyl—pyrr— lmethylene)-cyclopentanone (lgg) were synthesized by sting pyrrole aldehyde (l9?) under aldol condensation iitions with acetone and cyclopentanone respectively leme 9). eme 9 >1: NaOH .[ . 8.1 102 C) NaOH OED-t0 EXPERIMENTAL ineral Instruments used are described in Part I. (2—Thienyl)—hex—l—ene (36) Thiophene 2—carboxaldehyde (7 g, 62.5 mmol) and 2— ntanone (13 g, 150 mmol) was stirred in 150 ml of water 700 for four hours along with l g of sodium hydroxide. a resulting oil was separated and the aqueous layer was :racted twice with ether (50 ml). The organic layers 'e combined and dried over magnesium sulfate. The vola— .es were removed under reduced pressure to yield 9.7 g %) of 36: IR (Neat): 1670 cm"1 (C=O); PMR (CDC13): 60.97 3H, CH3), 1.67 (hextet, 2H, CHZCH3), 2.54 (t, 2H, a2), 7.50 (d, 1H, CH=CHCO); MS (70 eV): m/e = 180 (parent). 6.43 (d, 1H, CH=CHCO), 6.85—7.33 (m, 3H, thiophene— ydroxy—4—decyne (38) Magnesium turnings (1.2 g, 49.3 mmol) was added to 11 of tetrahydrofuran under nitrogen along with a crystal .odine. Bromoethane (6 g, 54.9 mmol) was added at such ,te that the exothermic reaction remained mildly vigor— After one hour no more magnesium was visible. 1— yne (25 mmol) in 20 ml of tetrahydrofuran was added wise over three hours, followed by the dropwise addi— of n—pentanal (25 mmol). After sitting overnight the 87 88 ution was added to 500 ml of saturated ammonium chloride water. This was extracted with ether (2 X 100 ml) and ed over magnesium sulfate. The volatiles were removed er reduced pressure to yield 3.6 g (93%) of 38: IR at): 3400 cm“1 (N—H), 2375 (CEC); PMR (CDC13): 60.93 erlapping t, 6H, CH ), 1.43 (m, 6H, CHBCHZCHZCECCH(OH)— in ZCH3), 2.20 (t, 2H, chCEC), 3.47 (broad s, 1H, OH); :70 eV): m/e = 154 (parent). tyrylmethylenetriphenylphosphorane (41a), butyrylmethyl— riphenylphosphorane (419), pentyrylmethylenetriphenyl— phorane (419), hexyrylmethylenetriphenylphosphorane ), heptyrylmethylenetriphenylphosphorane (gle), and rylmethylenetriphenylphosphorane (41f) ral Procedure: To a solution of acetylmethylenetriphenylphosphorane 3 g, 85 mmol) in dry tetrahydrofuran (700 ml) was added ution of n—butyllithium (40 ml of a 2.2 N hexane solu— 85 mmol) was added. After stirring the dark red ion for 15 min at —780 alkyl halide (85 mmol) was The solution was stirred overnight at room tempera— (red color of ylide anion was discharged). The tetra- furan was removed under reduced pressure. The residual is dissolved in methylene chloride. This solution was 1 with water followed by removal of the methylene .de. Yields, spectral characteristics, and purifica— lethods (if any) are summarized below. 89 ‘pyrylmethylenetripheny1phosphorane (41a) The residual oil was taken up into 50 ml of methylene oride and filtered into 400 m1 of ether. The white solid collected by filtration and vacuum dried to give 27.8 g 1 95% pure 41a: mp 193—1950; IR (Nujol): 1535 cm’ (C=O); (CDC13): 61.17 (t, 3H, CH ), 2.30 (q, 2H, CEZCHs), 3.64 1H, p=cg), 7 o—7.7 (m, 15H, c6g5); 130MB (CDC13): .79 (2H3), 35.84 (d, cogHZ, JP_C 15.6 Hz), 51.09 (d, I, JP—C 106 Hz), 126.50—134.57 (seven signals, 96H5), 23 (C=O). rylmethylenetriphenylphosphorane (41b) The residual oil was taken up into 50 ml of methylene ride and filtered into 400 m1 of ether. The white solid collected by filtration and vacuum dried to give 29.4 g 1 0% pure 419: mp 132—1340; IR (Nujol): 1535 cm- (C=O); \ l J 1 (CDC13): 60.95 (t, 3H, CH3), 1.58 (sextet, 2H, CHZCHS), I (m, 2H, COCHZ), 3.57 (d, 1H, P=CH), 7.0—7.7 (m, 15H, ); 13CMR (CDC13): 613.40 (9H3), 19.60 (QHZCHB), 42.45 IOCH2, JP—C 1513 Hz), 50.22 (d, P=QH, JP—C :5—132.32 (seven signals, Q6H5), 192.76 (C=O). 106 Hz), rylmethylenetriphenylphosphorane (41c) The resulting ylide was 89% pure and was used without 1 er purification. IR (Nujol): 1535 cm" (C=O); PMR 60.90 (t, 3H, CH3), 1.50 (m, 4H, CH CHZCH3), 2.27 3)‘ 1, cocgz), 3.66 (d, 1H, p=cg), 7 o-7.7 (m, 15H, c6g5); (CDC13): 613.38 (9H3), 22.05 (QHZCHs), 28.05 90 : CH2CH3), 40.66 (d, cocgg, JP_C 15.4 Hz), 50.16 (d, 108 Hz), 124.43—132.50 (seven signals, 96H5)’ 2 H, JP—C .16 (9:0). yrylmethylenetriphenylphosphorane (41d) The resulting ylide which was 88% pure was used without :her purification. IR (CHC13): 1535 cm“1 (C=O); PMR :13): 60.85 (t, 3H, ch), 1.0—1.8 (m, 6H, CHZCHZCHZCH3), : (m, 2H, coch), 3.60 (d, 1H, P=CH), 7.047.7 (m, 15H, );13CMR (09013): 612.86 (9H3), 21.31 (QHZCHs), 25.58 (CH CH3), 30.65 (QHZCHZCHB), 40.35 (d, COCH J — 2’ P—C 107 HZ), 124.46—132.54 2)2 Hz), 50.29 (d, P=gH, JP_C en signals, Q6H5), 192.45 (g=0). Vrylmethylenetripheny1phosphorane (41g) The resulting ylide which was 73% pure was used without 1 1er purification. IR (Nujol): 1535 cm- (C=O); PMR .3): 60.83 (t, 3H, 033), 1.1—l.8 (m, 8H, (CH2)4 (q, 2H, Cocgz), 3.61 (d, 1H, P=CH), 7.0—7.7 (m, 15H, 13 CH3), CMR (CDC13): 613.52 (9H3), 22.05 (QHZCHB), 26.60 CH2)3CH3), 28.76 (9H2(CH2)2CH3), 31.24 (QHZCHchB), (d, cogHZ, JP_C 14.6 Hz), 50.33 (d, P=§H, Jp_C 107 124.63—132.66 (seven signals, 96H5)’ 193.45 (9:0). Ilmethylenetriphenylphosphorane (41f) The resulting ylide was 73% pure and was used without 2r purification. IR (Nujol): 1535 cm"1 (C=O); PMR t): 60.83 (t, 3H, CH3), 1.1-1.8 (m, 10H, (CH2)5 q, 2H, COCHZ), 3.63 (d, 1H, P=CH), 7.0—7.7 (m, 15H, CH3), 91 , 13 , CMR (CDC13): 611.76 (9H3), 20.13 (QHZCHB), 24.70 CH2)4CH3), 26.76 (9H2(CH2)2CH3), 27.13 (9H2(CH2)3CH3), (9H2CH2CH3), 39.12 (d, COQH2, JP—C 15.2 Hz), 49.21 (d, JP—C 108 Hz, 122.86-132.04 (seven signals, 96H5)’ 6 (9:0). iacetylmethylenetriphenylphosphorylpropane (41g) To a solution of acetylmethylenetriphenylphosphorane g, 21.3 mmol) in dry tetrahydrofuran (150 ml) was added ution of n-butyllithium (10 m1 of a 2.2 N hexane solu— 21.3 mmol). After stirring the solution for 15 min at 1,3—diiodopropane (1.23 ml, 10.7 mmol) was added. The ion was stirred overnight at room temperature (red of ylide anion was discharged). The tetrahydrofuran emoved under reduced pressure. The resulting solid was Lved in methylene chloride and filtered into 100 ml ler. The white solid which precipitated was collected .tration and vacuum dried to yield 7.2 g (100% yield) , bis—Wittig reagent: IR (Nujol): 1535 cm_1 (C=O); 'DClB): 61.50 (m, 6H, COCH2(CH2)3CH2CO), 2.21 (m, 4H, , 3.59 (d, 2H, p=cg), 7 0—7.7 (m, 30H, 0635); 130MB ): 626.08 (CHZQHZCHZQHZCHZ), 27.34 (CHZCHZQHZCHZCHZ), (d, COQHZ, JP—C 23.68—132.00 (seven signals, Q6H5), 192.59 (2:0). 14.8 Hz), 49.78 (d, P=§H, JP-C 107 II 92 tene—3—one (999), 5—decene—4—one (99p), 6-dodecene—5— (99g), 7—tetradecene—6—one (99g), 8—hexadecene-7—one ), and 9—octadecene—8—one (39f) ral Procedure: A solution of ylide (gig—f) (60 mmol) and the appro— :e aldehyde (12 mmol) in 250 m1 of methylene chloride 'efluxed under nitrogen for 24 hours. Pentane was added :he precipitate of triphenylphosphine oxide filtered the solution. Distillation gave the d,B—unsaturated e. The yields are listed in Table l on page 73. Spec— characteristics of 999, 99E, 99g, 99g, 999, and 99f are rized below. ene—3—0ne (999) IR (Neat): 1685 cm_1 (C=O); PMR (CDC13): 60.8—1.1 Lapping t, 6H, C93), 1.47 (hextet, 2H, CHZCHB), 2.0—2.7 .apping t, 4H, CHZCH=CH and COCH2), 5.8—7.0 (AB quartet, [=CH); MS (70 eV): m/e = 126 (parent). ne~4—one (999) 6—Hydroxy—4—decyne (l g, 6.5 mmol) and mercuric oxide , 0.48 mmol) were refluxed in 25 ml of 85% formic acid 6 hour. The cooled solution was diluted with 200 ml sodium carbonate in water. The product was extracted ther (3 X 50 ml). The ether was removed under reduced 7e and the brownish liquid (60%) was suitable for con— l to pyrrole (43). 93 b) From Wittig reaction: IR (Neat): 1680 cm‘1 (C=O); {R (CDC13): 60.93 (t, 6H, CH3), 1.2-1.7 (m, 6H, CHBCHZCH2 2CH2 CH3), 2.0-2.6 (overlapping t, 4H, CHZCH=CH and CH2), 5.7—6.9 (AB quartet, 2H, CH=CH); MS (70 eV): m/e = d COCH 4 (parent). Dodecene—5—one (99g) IR (Neat): 1700 cm‘1 (C=O); PMR (09013): 60.90 (t, 6H, 3), 1.1—1.8 (m, 10H, CH 3(CH2)3 and COCH 2(CH2)2CH3), 2.0- s (m, 4H, CHZCH=CH and 00092), 5.7—7 0 (AB quartet, 2H, =CH); MS (70 eV): m/e = 182 (parent). ‘etradecene—6-one (99g) IR (Neat): 1710 cm‘1 (C=O); PMR (CDC13): 60.90 (t, 6H, ), 1.1—1.8 (m, 14H, CH 3(CH and COCH2(CH2)3CH3), 2.0—2.6 2)4 CH=CH and 00092), 5.8—7.0 (AB quartet, 2H, cg=cg); 5 4H, C92 (70 eV): m/e = 210 (parent). axadecene—7—one (39e) W IR (Neat): 1710 0111—1 (C=O); PMR (CDC13): 60.87 (t, 6H, , 1.0—1.5 (m, 18H, CH3(CH_2)5 and COCH2(CH2)4CH3), 2.1—2.6 4H, cg CH=CH and 00692), 5.8—7.0 (AB quartet, 2H, 09:03): 2 70 eV): m/e = 238 (parent). tadecene—S—one (39f) IR (Neat): 1700 cm"1 (C=O); PMR (CDC13): 60.90 (t, 6H, , 1. 1— l. 5 (m, 22H, CH3 (CH and COCH2 (CH CH3), 2.1—2.6 —2)6 —2)5 1H, CH2CH=CH and 60092), 5.8—7.0 (AB quartet, 2H, cg=cg); 70 eV): m/e = 266 (parent). 94 11—Tridecadiene-4,10—dione (99g) A solution of ylide (41g) (7.4 g, 11 mmol) and acetal— hyde (44 mmol) in 50 ml of methylene chloride was stirred room temperature for 84 hours. The solvent and remaining iehyde was removed under reduced pressure. Pentane was led and the precipitate of triphenylphosphine oxide Ltered from the solution. The pentane was removed under luced pressure to give 1.7 g (68%) of Egg : IR (Neat): ’0 and 1640 cm—1 (C=O); PMR (CD013): 61.43 (m, 6H, COCHZ— :2)3CH2CO), 1.82 (two 8, 6H, Cfls), 2.50 (overlapping t, COCHZ), 5.8—7.0 (AB quartet, 2H, CH=CH). ropyl—4—propyrylpyrrole (42), 3—buty1—4—butyrylpyrrole ), 3—pentyl—4—pentyry1pyrrole (44), 3—hexy1—4—hexyryl- role (46), 3—heptyl—4-heptyrylpyrrole (46), 3—octyl—4— Irylpyrrole (4]), l.7—bisfi3—(4—methylpyrro)]—1,7-heptane— te(4§), lH—pyrro—[3,4,a]— butyrolactone (42), and 3— ryLA—(Z—thienyl)—pyrrole (11) Iral Procedure: A solution of p—toluenesulfonyl methyl isocyanide (20 ) and d,B—unsaturated ketone (89) (20 mmol) in 100 m1 ther—dimethyl sulfoxide (2:1) was added dropwise to a red solution of sodium hydride (40 mmol) in 40 m1 of r. The mixture was stirred for 15—30 min after comple— of addition. Water (100 ml) was added to the stirred Ire and the product was extracted with ether (3 X 100 ml) ether was removed under reduced pressure and the product 95 ecrystalized from methylene chloride/pentane. Yields are isted in Table 2 on page 75. Spectral characteristics of 2, 43, 44, 45, 4g, 47, 4g, 49, and g9. -Propyl—4—propyry1pyrrole (42) mp. 96—980; IR (Nujol): 3200 cm'1 (NvH), 1535 (C=O); [R (CDC13): 01.13 (overlapping t, 6H, CH ), 1.58 (hextet, ?, CH CHZCHZ), 2.72 (m, 4H, COCH and CHZ—pyrrole), 6.45 3 2 , 1H, 2—pyrrole—H), 7.23 (m, 1H, 5—pyrrole-H), 9.22 13 road 8, 1H, N—H); CMR (CDC13): 07.85 (QHBCHZCO), 13.00 HBCHZCHZ)’ 22.11 (CHBQHZCHZ), 27.55 (CHBCHZQHZ), 31.40 HZCO), 116.39 (CS—pyrrole carbon), 121.09 (CB—pyrrole rbon), 123.81 (CZ—pyrrole carbon), 124.01 (C4-pyrrole ébon), 195.85 (9:0); MS (70 eV): m/e = 164 (parent). 3utyl—4—butyrylpyrrole (43) a) 3-Butyryl-4—(2—thienyl)—pyrr01e (0.6 g, 2.7 mmol) 1 . nickel (II) dichloride hexahydrate (6.45 g, 27 mmol) e dissolved in 300 m1 of ethanol. The solution was led to 00 and refluxed under nitrogen while sodium boro— ride (81.5 mmol) in 80 ml of water was added dropwise. er completion of addition the solution was refluxed for hour. The precipitated nickel was filtered from the Led solution and the solvent removed under reduced pres— e. The crude product was eluted from an alumina column 'ield 80% of 43 after removal of the solvent. )) From TosMIC reaction: mp. 70—720; IR (Nujol): 3200 (N—H), 1665 (C=O); PMR (CDC13): 00.97 (overlapping t, 96 H, CH3), 1.2—1.9 (m, 6H, CHBCHZCHZCHZ and COCHZCHZCHB), .70 (overlapping t, 4H, COCH2 and CEZ—pyrrol), 6.48 (m, , CZ—pyrrole—H), 7.27 (m, 1H, C5—pyrrole—fl), 9.28 (broad 13 , 1H, N—fl); CMR (CDC13): 512.93 (QHB's), 17.41 (CHSQH — 2 2CO), 21.50 (CH39H2(CH2)2), 25.18 (CH3(CH2)29H2), 31.28 H3CH2§H2CH2), 40.58 (QHZCO), 116.39 (Cs—pyrrole carbon—H), 1.67 (CB—pyrrole carbon—E), 124.03 (CZ-pyrrole carbon—H), 4.39 (C4—pyrrole carbon—H), 195.51 (C=O); MS (70 eV): e = 192 (parent). Penty1—4-pentyrylpyrrole (44) mp. 63—650; IR (Nujol): 3210 cm—1 (N—H), 1640 cm— 1 ‘=O); PMR (CDC13): 00.88 (overlapping t, 6H, CH3), 1.1— 9 (m, 10H, CH3(CHZ)3CH2 and COCH2(CHZ)2CH3), 2.70 (over— pping t, 4H, CH —pyrrole and COCH2), 6.45 (m, 1H, C — 2 —pyrrole—g), 9.00 (broad s, 1H, 2 rrole—H), 7.25 (m, 1H, C 13 5 i); CMR (CDC13): 013.81 and 13.93 (QHB'S), 22.46 (CH3— ,'s), 26.43 (CH3(CH 9H2), 27.24 (CH3CH 9H CHZCO), 29.66 2)3 2 2 {3(CH2)29H2CH2), 31.75 (CHBCHZQHZCHZCHZ), 39.63 (QHZCO), 7.33 (C5—pyrrole carbon), 123.04 (CB—pyrrole carbon), 2.87 (C2-pyrrole carbon), 126.23 (C4—pyrrole carbon), :.44 (C=O); MS (70 eV): m/e = 220 (parent). exyl—4—hexyry1pyrrole (45) mp. 65.5—670; IR (Nujol): 3200 cm’1 (N-H), 1625 (C=O); (CDC13): 00.90 (overlapping t, 6H, CH3), 1.1—1.9 (m, 14H, (C32)4CH2 and COCH2(CH2)3CH3), 2.70 (overlapping t, 4H, 97 —pyrrole and COCHZ), 6.42 (m, 1H, CZ—pyrrole—H), 7.23 13 1H, c5 .82 and 14.19 (QHB's), 22.48 (CHBCHZ'S), 24.79 (CH3(CH2)2— ‘CH2CO), 26.46 (CH3(CH2)4CH2), 29.19 (CH3(CH2)22H2(CH2)2), 2)3_ 2)3 and CHBCHZ- (CH2)2CO), 39.90 (CH3(CH2)39H2c0), 117.33 (Cs—pyrrole $96 (CH3(CH CH 2CH2), 31.65 (CHBCH CH2(CH bon), 123.08 (CB—pyrrole carbon), 124.84 (CZ-pyrrole Don), 126.23 (C4—pyrrole carbon), 197.47 (C=O); MS (70 m/e = 248 (parent). aptyl—4-heptyrylpyrrole (46) mp. 64.5—670; IR (Nujol): 3195 cm“1 (N—H), 1610 (C=O); (CDC13): 00.85 (overlapping t, 6H, C33), 1.34 (m, 18H, CH2)2CH2 and COCH2(CH2)4CH3), 2.71 (overlapping t, 4H, pyrrole and COCHz), 6.45 (m, 1H, C2—pyrrole—H), 7.27 1H, C5-pYrrole-fl), 9.13 (broad S,_1H, N‘E); 13CMR 13): 013.84 (QHB'S), 22.37 and 22.48 (CH39H2's), 25.20 (CH2)3 CH2 CH 2c0), 26.53 (CH 3(CH2) 59H2), 29.06 and 29.49 CH2 (CH CO and CH3(CH CH2 (CH 31.56 and 2)3— 2)2)’ CH2§H2(CH2)3CO), 39.96 (CH3— CH2)2 2)2 5 (CH 3CH29H2(CH2)4 and CH3 14C HZCO) 117.49 (CS-pyrrole carbon), 122.79 (Cs—pyrrole an), 125.20 (CZ—pyrrole carbon), 126.02 (C4—pyrrole car— 197.80 (9:0); MS (70 eV): m/e = 266 (parent). iyl-4—octyry1pyrrole (41) F hp. 42—440; IR (Nujol): 3200 cm—1 (N—H), 1620 (C=O); 1 DC13): 00.90 (overlapping t, 6H, CH3), 1.27 (m, 22H, 2)6CH2 and COCH 2(CH2)50H3), 2.67 (overlapping t, 4H, —pyrrole—H), 8.32 (broad s, 1H, N—H); CMR (CDClSM 98 2H2 5—pyrrole—H), 9.73 (broad s, 1H, N—H); MS (70 eV): m/e = —pyrrole and COCHZ), 6.42 (CZ—pyrrole—H), 7.25 (m, 1H, 94 (parent). ,7-Bis[~3—(4—methylpyrro)]—1,7—heptanedione (48) Same procedure as other 3,4—disubstituted pyrroles ex— pt two equivalents of p—toluenesulfonyl methyl isocyanide d four equivalents of sodium hydride were used to give a 1 % yield of 48: mp. 78—800; IR (Nujol): 3290 em’ (N—H), 50 cm—1 (C=O); PMR (CDCIB/DMSO-de): 01.53 (m, 6H, COCHZ— 132)3CH2CO), 2.23 (s, 6H, C33), 2.65 (t, 4H, COCHZ), 6.40 1, 1H, CZ—pyrrole—H), 7.22 (m, 1H, C5—pyrrole—H), 10.04 13 Iroad s, 1H, N-H), CMR (DMSO—ds): 012.81 (9H3), 25.32 OCH2CH CH CH CHZCO), 29.53 (COCH CH CH CH CHZCO), 39.49 2 2— 2 2 2— 2 2 QQHZ), 118.94 (C2—pyrrole carbon), 119.35 (C4—pyrrole rbon), 123.46 (CB—pyrrole carbon), 126.03 (C5—pyrrole rbon), 196.52 (C=O); MS (70 eV): m/e = 286 (parent). -pyrro—[3,4,a]—y—butyrolactone (49) mp. 163—1660 (decomp.); IR (Nujol): 3300 cm"1 (N—H), :0 (C=O); PMR (CDC13): 05.15 (s, 2H, CH2), 6.60 (m, 1H, pyrrole-H), 7.10 (m, 1H, C —pyrrole—H), 9.83 (broad s, 5 N—H); MS (70 eV): m/e = 123 (parent). utyryl—4—(2-thienyl)—pyrr01e (ll) mp. 136-1370; PMR (CDC13): 00.95 (5, 3H, CH3), 1.70 (tet, 2H, CHZCHB), 2.67 (t, 2H, COCHZ), 6.8—7.4 (m, 5H, 'ole and thiophene protons), 10.07 (broad s, 1H, N—H); [R (CDC13): 012.91 (9H3), 17.34 (QHZCH3), 40.95 (COQH2), 99 116.61, 118.88, 121.01, 122.34, 124.77, 125.23, 125.81, and 136.17 (eight signals, pyrrole and thiophene carbons), 195.08 (C=O); MS (70 eV): m/e = 219 (parent). 2—Carbethoxy—3,4,5—trimethylpyrrole (59), 2—carbethoxy— 3,4—diethyl—S—methylpyrrole (51), 2—carbethoxy—3,4— trimethylene—5-methylpyrrole (52), 2—carbethoxy—3,4— tetramethylene—S-methylpyrrole (53), 2—carbethoxy-3,4— decamethylene—5—methy1pyrrole (54), 2—carbo—t—butoxy— 3,4,5—trimethy1pyrrole (55), 2—carbo—t—butoxy—3,4— trimethylene—5—methylpyrrole (26), 2—carbobenzyloxyl—3,4,5- trimethylpyrrole (57), and 3,4,5-trimethy1—2—pyrrole carbonitrile (58) General Procedure: The appropriate B—diketone (1 mole) and zinc dust (265 g) in 500 ml of acetic acid were stirred rapidly while diethyl oximinomalonate (or ethyl oximinocyanoacetate) (1 mole) in 250 m1 of acetic acid was added dropwise. The exothermic reaction was kept at 950 by adjusting the rate )f addition. Towards the end of the addition a steam bath 'as required to maintain the temperature. After being tirred and heated for an additional hour, the solution was oured into 2 kg of ice. The product was collected by fil— ration and recrystalized from 95% ethanol. Yields and pectral characteristics are summarized below. 100 2—Carbethoxy—3,4,5—trimethylpyrrole (59) 1 IR (Nujol): 3380 cm_ (N—H), 1665 (C=O); PMR (CDC13): 01.40 (t, 3H, CH CH3), 1.92, 2.18, and 2.28 (three 5, 9H, 13 2 CH3), 4.28 (q, 2H, CH2CH3), 8.97 (broad s, 1H, N—H); CMR (CDC13): 08.50 (C4—QH3), 10.50 (Cs—9H3), 11.10 (CS—QHS), 14.38 (OCH2QH3), 59.38 (OQHZCHB), 116.45 and 116.79 (C2 and C4 pyrrole carbons), 127.18 and 129.66 (C3 and C5 pyrrole carbons), 161.91 (C=O); MO (70 eV): m/e = 181 (parent). 2—Carbethoxy-3,4—diethyl—S—methylpyrrole (51) IR (Nujol): 3280 cm“1 (N-H), 1650 (C=O); PMR (CDC13): m 0O.9—1.4 (overlapping t, 9H, CHZCHB), 1.95 (S, 3H, CH3), 2.28 (q, 2H, C —CH2CH3), 2.61 (q, 2H, C4—CH2CH3), 4.17 (q, 13 3 2H, OCHZCHB), 8.83 (broad s, 1H, N-H); CMR (CDC13): 011.11 (CS-9H3), 14.32 (OCHZQHB), 15.78 (C3 and C4—QH3), 16.90 _ _ 1 (C4 QHZCHB), 18.24 (C3 QHZCHS), 59.36 (OQHZCHB), 116.50 ' (C2—pyrrole carbon), 122.89 (C4—pyrrole carbon), 129.46 (C5— pyrrole carbon), 133.34 (CB—pyrrole carbon), 161.56 (C=O); AS (70 eV): m/e = 209 (parent). é—Carbethoxy—B,4—trimethy1ene—5—methy1pyrrole (52) l . mp. 139—1410; IR (Nujol): 3270 cm‘ TMR (CD013): 01.33 (t, 3H, CHZCHB), 2.13 (S, 3H, CH3), 2.0— (N—H), 1645 (C=O); .9 (m, 6H, —cg2cH2cH2—), 4.23 (q, 2H, OCHZCHB), 8.67 (broad ,, 1H, N-H); 13CMR (cnc13): 611.89 (c5-9H3), 14.38 (0CH29H3), .4.1O (—CH29H2CH2—), 26.50 (C4—9H2), 30.74 (CB—9H2), 59.38 QQHZCHB), 112.54 (CZ—pyrrole carbon), 125.53 (C4-pyrrole 101 carbon), 129.36 (C5-pyrrole carbon), 138.95 (CB-pyrrole carbon), 161.56 (C=O); MS (70 eV): m/e = 193 (parent). 2-Carbethoxy—3,4—tetramethy1ene—5—methy1pyrrole (53) 1 mp. 132—1330; IR (Nujol): 3290 em‘ (N—H), 1635 (C=O); PMR (CDC13): 01.30 (t, 3H, CHZCH3), 1.72 (overlapping p, 4H, —CH CH CHZCH2—), 2.12-2.67 (m, 4H, —CH CH CH CH —), 2.20 2 2 2 2 2 —2 (s, 3H, CH3), 4.18 (q, 2H, CHZCHS), 8.83 (broad s, 1H, N—H); 13CMR (CDC13): 010.01 (CS—9H3), 14.27 (OCHZQHB), 20.81 (CB—9H2), 22.66 (—CH29H29H2CH2-), (OQHZCHB), 116.83 (CZ—pyrrole carbon), 119.21 (C4—pyrrole 23.06 (C4—QH2), 59.30 carbon), 125.54 (C5~pyrrole carbon), 132.50 (CB—pyrrole carbon), 162.14 (C=O); MS (70 eV): m/e = 207 (parent). 2-Carbethoxy-3,4—decamethy1ene—5—methy1pyrrole (54) mp. 142-1430; IR (Nujol): 3275 cm-1 (N—H), 1630 (C=O); PMR (CDClS): 01.30 (t, 3H, CHZCH3), 1.42 (m, 16H, -CH2(CH2)— CH2—), 2.17 (s, 3H, CH3), 2.27 (q, 2H, c —CH2), 2.73 (q, 2H, 4 CS—CHZ), 4.23 (q, 2H, CHZCHB), 8.83 (broad s, 1H, N—fi); 13 , CMR (CDC13). 011.47 (C5—9H3), 14.27 (OCHZ—QHB), 21.10, 22.58, 25.52, 25.63, 26.13, 26.44, 28.50 (—(§H2)1O—), 59.25 :QQHZCHB), 116.21 (CZ—pyrrole carbon), 122.02 (C4—pyrrole :arbon), 130.03 (C5—pyrrole carbon), 132.49 (Cs—pyrrole :arbon), 161.43 (C=O); MS (70 eV): m/e = 291 (parent). —Carbo—t—but0xy-3,4,5—trimethylpyrrole (55) IR (Nujol): 3310 cm_1 (N—H), 1660 (C=O); PMR (CDC13): 1.57 (s, 9H, C(CH3)3), 1.87, 2.13, 2.20 (three s, 9H, C33), .07 (broad s, 1H, N—H); 13CMR (CDC13): 08.51 (C4—QH3), 3.59 (CB—CH3), 11.12 (cs—9H3), 28.36 (C(CH3)3), 79.67 102 (9(CH3)3), 116.49 (C2-pyrrole carbon), 117.76 (C4-pyrrole carbon), 126.18 (CB—pyrrole carbon), 129.05 (CS—pyrrole car— bon), 161.60 (C=O); MS (70 eV): m/e = 209 (parent). 2—Carbo—t-butoxy—3,4—tetramethy1ene—5—methy1pyrrole (56) 1 IR (Nujol): 3310 cm— (N—H), 1650 (C=O); PMR (CDC13): 61.57 (s, 9H, C(CH3)3), 1.73 (m, 4H, ~CH2(CH2)2CH2—), 2.18 (s, 3H, CH3), 2.53 (m, 4H, —CH2(CH2)CH2—), 9.20 (broad s, 1H, N-H); 13CMR (CDC13): 610.17 (Cs—9H3), 20.92, 22.85, 23.15, 26.59 (~(QH2)4—), 28.32 (C(CH3)3), 79.59 (C(CH3)3), 118.26 (CZ—pyrrole carbon), 119.00 (C4-pyrrole carbon), 124.55 (CB—pyrrole carbon), 132.28, (CB—pyrrole carbon), 161.77 (C=O); MS (70 eV): m/e = 235 (parent). 2—Carbobenzyloxyl—3,4,5—trimethy1pyrrole (57) 1 IR (Nujol): 3300 cm” (N—H), 1655 (C=O); PMR (CDC13): 51.83, 2.12, 2.20 (three 8, 9H, CH3), 5.15 (S, 2H, OCHZ), 13 7.15 (s, 5H, C6E5)’ 8.92 (broad s, 1H, N—H); CMR (CDC13): 68.52 (C4-QH3), 10.62 (CS—QH3), 11.18 (Cs—9H3), 65.16 *OQHZ)’ 116.08, (CZ-pyrrole carbon), 117.06 (C4—pyrrole ,arbon), 127.77 (ortho and para phenyl carbons), 128.33 , ICB—pyrrole carbon), 129.76 (meta phenyl carbons), 130.01 bs—pyrrole carbon), 136.62 (quaternary phenyl carbon), 61.41 (9:0); MS (70 eV): m/e = 243 (parent). 1 1 L4,5—Trimethy1—2-pyrrole carbonitrile (58) ? IR (Nujol): 3265 cm'1 (N—H), 2210 (CN); PMR (CDC13): ..83, 2.05, 2.10 (three 8, 9H, CH3), 8.60 (broad s, 1H, 13 JH); CMR (CDC13): 08.41 (C4—9H3), 9.88 (cs—9H3), 11.17 $1 103 (C5-QH3), 96.06 (9N), 115.63, 130.83, 131.36 (pyrrole car— bons); MS (70 eV): m/e = 134 (parent). Diethyl 2—methy1-4—phenylpyrrole 3—carboxamide (59) Diethylamine (2 m1, 19.3 mmol) was stirred in 40 m1 of dry acetone under nitrogen. Diketene (19.3 mmol) was added dropwise and the solution was stirred for three hours at room temperature. 2-Phenylazirine (2.0 m1) and 0.1 g of nickel acetylacetonate was added and the solution was stirred overnight. Water (120 ml) was added and the beige crystals were collected by filtration to yield 3.0 g (61%) of 59: mp 162-1630; IR (Nujol): 3125 and 3180 cm_1 (N—H), 1580 (C=O); PMR (CDC13): 00.72 and 1.12 (two t, 6H, CH2CH3), 1.98 (s, 3H, CH3), 3.00 and 3.47 (two q, 4H, NCHZCHB), 6.50 (d, 1H, C —pyrrole-H), 7.28 (m, 5H, C635), 9.78 (broad s, 1H, 13 2 N—HO); CMR (CDC13): 09.35 (C2—QH3), 10.78 and 11.74 (QHZCHB'S), 41.00 (NQHZCHB'S), 111.82, 112.84, 119.76, 123.29 pyrrole carbons), 124.09 (ortho phenyl carbons), 124.83 para phenyl carbon), 126.37 (meta phenyl carbons), 134.02 quaternary phenyl carbon), 166.68 (C=O); MS (70 eV): m/e = 56 (parent). ,4—Dipropylpyrrole (69), 3,4—dibuty1pyrrole (61), 3,4— ipentylpyrrole (62), 3,4-dihexylpyrrole (63), 3,4—diheptyl— brrole (64), and 3,4-diocty1pyrrole (g5) eneral Procedure: Lithium aluminum hydride (50 m1 of a 0.67 M ether solu— ion, 33.4 mmol), was added to a stirred solution of pyrrole 104 (42-42) (8.3 mmol) in 150 m1 of tetrahydrofuran under nitrogen. The mixture was refluxed for three hours. To the cooled solution was added cautiously and in order water (1.3 m1), sodium hydroxide (1.3 m1 of 15% w/w aqueous solution), and water (3.9 ml). The inorganic precipitate was filtered by suction and washed with tetrahydrofuran. The tetrahydrofuran was removed under reduced pressure. Yields are given in Table 4 on page 77. Spectral charac— teristics of 60, 61, 62, 63, 64, and 65 are summarized below. 3,4—Dipropy1pyrrole (60) 1 IR (Neat): 3380 cm— (N-H); PMR (CDC13): 50.93 (t, 6H, CH. 1.58 (hextet, 4H, CEQCH3)» 2.37 (t, 4H, GHQ—pyrrole), 13 3), 6.23 (d, 2H, pyrrole—H), 7.42 (broad s, 1H, N—H); CMR (CDC13): 013.98 (CH3), 23.47 (QHZCHB), 27.30 (QHZCHZCH3), 114.73 (C2— and C —pyrrole carbons), 122.53 (C3— and C4— 5 yrrole carbons). ,4—Dibuty1pyrrole (g1) 1 IR (Neat): 3380 cm' (N—H); PMR (CDC13): 60.95 (t, 6H, I13), .41 (d, 2H, pyrrole—H), 7.67 (broad s, 1H, N—H); 1.52 (m, 8H, CH2CHZCH3), 2.43 (5, 4H, CHZ-pyrrole), 13CMR CDC13): 013.90 (9H3), 22.65 (QHZCH3), 24.86 (9H2(CH2)2CH3), 2.59 (QHZCHZCHB), 114.70 (C2- and C5—pyrrole carbons), 22.95 (C3— and C —pyrrole carbons). 4 105 3,4-Dipenty1pyrrole (62) 1 IR (Neat): 3375 cm- (N-H); PMR (CD013): 00.88 (t, 6H, CH3), 1.40 (m, 12H, (CH2)3CH3), 2.38 (t, 4H, CHZ-pyrrole), 6.35 (d, 2H, pyrrole-H), 7.56 (broad s, 1H, N-H); 13CMR (CDC13): 613.90 (9H3), 22.47 (QHZCH3), 25.16 (9H2(CH2)3CH3), 30.10 (CH2(CH2)ZCH3), 31.84 (QHZCHZCHs), 114.70 (02— and 05-pyrrole carbons), 122.94 (C3- and C4—pyrrole carbons). 3,4—Dihexy1pyrrole (63) IR (Neat): 3380 cm”1 (N—H); PMR (CD013): 00.87 (t, 6H, CH 1.35 (m, 16H, (CH2)4CH3), 2.36 (t, 4H, CHZ-pyrrole), 13 3), 6.27 (d, 2H, pyrroleffl), 7.50 (broad s, 1H, Neg); CMR (CDC13): 013.87 (CH3), 22.50 (QHZCHB), 25.15 (9H2(CH2)4CH3), 29.26 (9H2(CH2)2CH3), 30.34 (9H2(CH2)3CH3), 31.65 (QHZCHZCHBL 114.62 (CZ— and C5—pyrrole carbons), 122.72 (C3— and C4— :pyrrole carbons). 3,4-Dihepty1pyrrole (64) IR (Neat): 3380 cm"1 (N-H); PMR (CDC13)I 60.95 (t. 6H, H3), 1.58 (m, 20H, (CH2)5CH3), 2.46 (t, 4H, CHZ—pyrrole), 13CMR .45 (d, 2H, pyrrole—H), 7.73 (broad s, 1H, Nfifi); CDC13): 013.90 (9H3), 22.54 (QHZCHB), 25.18 (QHZ(CH2)5CH3), .9.13 (9H2(CH2)ZCH3), 29.58 (QH2(CH2)3CH3), 30.41 (9H2(CH2)4— 3H3), 31.77 (QHZCHZCHs), 114.65 (C2— and C5—pyrrolecarbons), .22.81 (03— and C4—pyrrole carbons). .,4—Dioctylpyrrole (65) IR (Neat): 3380 om‘l (N—H); PMR (CDC13): 60.85 (t, 6H, H 1.28 (m, 24H, (CH2)6CH3). 2.38 (t, 4H. CEZ-pyrrole), 3). 106 13 6.33 (d, 2H, pyrrole—H), 7.57 (broad s, 1H, N—H); CMR (CDC13): 613.84 (9H 22.51 (QHZCHB), 25.14 (9H2(CH2)6CH3), 3), 29 19 (9H2(CH2)2CH3), 29.40 (QH2(CH2)3CH3), 29.59 (9H2- (CH CH3), 30.39 (QHZ(CH2)5CH3), 31.77 (CHZCHZCHS), 114.61 2)4 (C2— and 05-pyrrole carbons), 122.66 (03— and C4-pyrrole carbons). 2—Formyl—3,4,5—trimethy1pyrrole (67) 2—Cyano—3,4,5—trimethy1pyrrole (6.7 g, 50 mmol) was stirred in 50 m1 of benzene. Diisobutyl aluminum hydride (50 ml of a 1N hexane solution) was added slowly at room temperature under nitrogen. The initially colorless solu— tion turned orange and warmed slightly as the reducing agent was added. After one hour 3 ml of methanol was added and the solution was stirred for 15 min. Water (5 ml) was added and the solution turned warm and gelatinous. The inorganics were removed by suction filtration and washed ith methylene chloride. The solvent was removed from the iltrate under reduced pressure and the crude product re— rystalized from methanol/water to yield 4.5 g (66%) of 67. 1 R (Nujol): 3245 cm‘ (N—H), 1635 (C=O); PMR (CDCl 01.85 3)‘ s, 3H, C —CH3), 2.19 (s, 6H,(3-and(thH 9.20 (s, 1H, 3 3), 13CMR (CDCl 68.05 (C4—QH 5 H0), 10.04 (s, 1H, N—H); 3): 3), .60(C3—QH3), 11.13 (CS—9H3), 117.54 (C4—pyrrole carbon), 753 (C2—pyrrole carbon), 132.86 (C5—pyrrole carbon), .71 (CB—pyrrole carbon), 175.06 (9&0); MS (70 eV): m/e = 7(parent). 107 5—Acetoxymethyl—2—carbethoxy—3,4—decamethy1enepyrrole (68) 2—Carbethoxy—3,4—decamethylene—5-methy1pyrrole (5.82 g, 20 mmol) was dissolved in 200 m1 of acetic acid. Lead tetraacetate (9.8 g) was added in small portions over one— half hour. The slurry was stirred for 15 min after comple— tion of addition. Water (100 ml) was added and the crude product which precipitated was collected by filtration, washed with water and recrystalized from hexane to yield 5.7 g (82%) of 68: mp. 152—1530; IR (Nujol): 3285 cm-1 (N—H), 1710 (C=O); PMR (CDC13): 01.32 (t, 3H, CHZCH3), 1.43 (m, 16H, —CH2(CHZ)CH2—), 2.05 (s, 3H, CH ), 2.65 (m, 4H, —CH2(CH2)8CH2—), 4.20 (q, 2H, CHZCHB), 6.57 (s, 2H, CH3— COCHZ—), 9.05 (broad s, 1H, N—H); 13CMR (CDC13): 014.31 (OCHZQHB), 20.84, 22.39, 22.76, 25.51, 25.79, 26.34, 26.41, 28.42 (—(gH2)lO—), 29.72 (COCHB), 57.28 (QHZOCOCHS), 118.80 (CZ—pyrrole carbon), 125.34, 127.01 (C4— and 05—pyrrole carbons), 131.74 (CB—pyrrole carbon), 161.00 (EtOQ=O), 171.45 (CH3Q=O); MS (70 eV): m/e = 349 (parent). 3—Carbethoxy—5—formyl—3,4—decamethy1enepyrrole (69) 2—Carbethoxy—3,4—decamethylene—5—methylpyrrole (5.82 , 20 mmol) was dissolved in 200 m1 of acetic acid. Lead etraacetate (19.6 g) was added over 15 min at room tem- erature. The solution was heated on a steam bath for one ur after completion of addition and then diluted with 0 m1 of water. The product was extracted into methylene loride. The methylene chloride was stripped off and the IIIIIIIIIIIIT_______________________h_—_-________________—__—____—-='7T7‘ 108 product recrystalized from hexane to yield 3.35 g (55%) of 69: IR (Nujol): 3270 om‘l (N—H), 1675 (C=O); PMR (CDC13): 01.33 (t, 3H, CHZCHB), 1.47 (m, 16H, —CH2(CH2)8CH2-), 2.67 (t, 4H, —C§2(CH2)8CH2-), 4.28 (q, 2H, CHZCHB), 8.67 (broad s, 1H, N—H), 9.62 (s, 1H, CH0); 13 CMR (CDC13): 014.05 (OCHZQHB), 20.69, 21.63, 22.18, 22.72, 25.09, 26.05, 26.31, 28.31, 31.05 (—(9H 60.69 (OQHZCHB), 124.38 (C2— 2)10‘)’ pyrrole carbon), 129.88, 131.79 (C4— and C5—pyrrole carbons), 135.50 (CB—pyrrole carbon), 160.51 (EtOg=O), 179.46 (HC=O); MS (70 eV): m/e = 305 (parent). 4—Acety1—3—ethy1—2—iodopyrrole (ZQ), 4—carbethoxy—3—methyl— 2—iodopyrrole (71), 3-acetyl—5—methy1-4—pheny1—2—iodopyrrole (72), 3,4—dimethy1—5—formy1-2—iodopyrrole (73), 2,5—dimethyl— ‘3,4—diiodopyrrole (7]), and 5,5'—diiodo—2,2'-dipyrroketone (Z§) General Procedure: To a refluxing solution containing 12.5 mmol each of the appropriate pyrrole, acetic acid and 30% hydrogen per— oxide in 15 m1 of ethanol, there was added 12.5 mmol of potassium iodide in 10 ml of water. The rate of addition as adjusted so that the dark red color which immediately formed with each drop, rapidly disappeared. The solution as refluxed for one hour after completion of addition and llowed to sit at room temperature overnight. The white rystals were collected by suction filtration, washed with 109 95% ethanol, and allowed to dry. Spectral characteristics of 70, 71, 72, 73, 77, and 78 are summarized below. M 4-Acety1—3—ethyl—2—iodopyrrole (ZQ) mp. 146-147.50; IR (Nujol): 3125 cm"1 (N—H), 1620 (C=O); PMR (CDC13): 01.07 (t, 3H, CHZCH3), 2.67 (q, 2H, CHZCHs), 7.30 (d, 1H, C5-pyrrole-fi), 8.83 13 2.37 (s, 3H, COCHB), (broad s, 1H, N—H); CMR (CDC13): 013.89 (CHZQHB), 19.91 (QHZCH3), 26.09 (COQH3), 68.82 (CZ—pyrrole carbon), 122.72 (Cs—pyrrole carbon), 128.15 (C5—pyrrole carbon), 130.15 (C4—pyrrole carbon), 191.34 (C4—pyrrole carbon); MS (70 eV): m/e = 263 (parent). 4-Carbethoxy—3—methy1—2—iodopyrrole (11) IR (Nujol): 3235 om’1 (N-H), 1660 (C=O); PMR (CDC13): 201.30 (t, 3H, CH2CH3), 2.20 (s, 3H, CH3), 4.17 (q, 2H, QHZCH3), 7.28 (d, 1H, c5 N-H);13CMR (CDC13): 612.20 (Cs-CH3), 13.37 (CH29H3), 58.08 —pyrrole—H), 8.37 (broad s, 1H, (OQHZ), 67.35 (CZ—pyrrole carbon), 114.02 (CS-pyrrole carbonL I W! ' .‘..' '— 126.76 (03— and C —pyrrole carbons), 161.29 (C=O); MS (70 4 eV): m/e = 279 (parent). B-Acetyl-5—methyl-4-pheny1-2-iodopyrrole (12) mp. 158—1590; IR (Nujol): 3145 om‘l (N-H), 1615 (C=O); ’MR (CDC13): 61.81 (s, 3H, C -CH3), 2.45 (s, 3H, COCH3), 5 ._ 13 '.17 (S, 5H, C6E5)’ 10.95 (broad S, 1H, N—H); CMR (CDCl 3)‘ 12.48 (CS-CH3), 28.75 (COQH3), 64.84 (CZ—pyrrole carbon), 20.95, 125.51, 129.26, 135.46, 137.34 (C3-, C4—, Cs—pyrrole 110 .carbons and quaternary and para phenyl carbons), 126.53 (ortho phenyl carbons), 128.90 (meta phenyl carbons), 192.66 (C=O); MS (70 eV): m/e = 325 (parent). 3,4—Dimethyl’5—formy1-2-iodopyrrole (73) 1 IR (Nujol): 3195 cm‘ (N-H), 1620 (C=O); PMR (CDC13/ DMSO-d6): 01.92 and 2.23 (two S, 6H, CH3), 9.18 (S, 1H, CHO), 13 10.98 (broad S, 1H, N-H); CMR (CDClB/DMSO-d6): 08.11, 10.00 (9H3), 80.36 (CZ—pyrrole carbon), 124.28, 128.09, 132.38 (C3—, C and C —pyrrole carbons), 174.86 (C=O); MS (70 eV): 4" 5 m/e = 249 (parent). 2,5-Dimethy1—3,4—diiodopyrrole (77) mp. 113-114.50; IR (Nujol): 3345 (N—H); PMR (CDC13/ DMSO-da): 02.23 (s, 6H, C33), 10.10 (broad s, 1H, N—H); , 120MB (CDCl /DMSO—d ): 013.65 (CH ), 70.78 (C - and C — 3 6 —-3 3 4 . pyrrole carbons), 128.68 (C2— and C5—pyrrole carbons); EMS (70 eV): m/e = 347 (parent). 5,5'—Diiodo-2,2'—dipyrroketone (78) 1 IR (Nujol): 3165 cm‘ (N—H); PMR (Ruse—66): 67.22 (m, 4H, —pyrrole—H); MS (70 eV): m/e = 412 (parent). Ethyl 3,4-dimethy1—5—iodopyrrole—2—carboxylate (14), diethyl 3-methyl—5—iod0pyrrole—2,4—dicarboxy1ate (Z5), and 2-Benzy1 4-ethy1 5-iodo—3—methy1pyrrole 2,4-dicarboxy1ate (16) General Procedure: The appropriate pyrrole-Z-carboxylic acid43 (200 mmol) was dissolved in 250 m1 of ethanol and 365 m1 of water 111 containing 43.6 g of sodium bicarbonate. The solution was warmed to 650 and a mixture of iodine (47.1 g) and potassium iodide (69 g) in 550 m1 of water was added dropwise as fast as it was decolorized. After being stirred for an addi— tional 10 min, the hot solution was filtered and allowed to cool. The product was collected by suction filtration. Spectral characteristics of 74, Z5, and 76 are summarized below. Ethyl 3,4—dimethyl—5—iodopyrrole—2—carboxylate (74) IR (Nujol): 3250 cm‘1 (N—H), 1670 (C=O); PMR (CDC13): 01.33 (t, 3H, CH2CH3), 1.93, 2.27 (two S, 6H, CH3), 4.25 13 (q, 2H, CHZCHB), 9.00 (broad s, 1H, N—H); CMR (CDC13): 4—QH3), 14.34 (CH2CH3), 60.08 (OCHZ), 73.36 (Cs—pyrrole carbon), 123.56, 126.68, 128.68 610.92, 11.66 (c3- and c (C3-, C4—, and C2—pyrrole carbons), 160.82 (C=O); MS (70 eV): m/e = 293 (parent). Diethyl 3—methy1—5—iodopyrrole—2,4-dicarboxy1ate (Z5) IR (Nujol); 3240 cm_1 (N-H), 1665 and 1690 (C=O); PMR (CDC13): 01.33 (t, 6H, CHZCHB), 2.50 (s, 3H, C3—CH3), 4.20 (q, 4H, CH2CH3), 11.83 (broad s, 1H, N—H); 13CMR (CDCIB): 010.30 (CB-CH3), 12.62, 12.70 (CHZQHB), 57.88, 58.26 (QHZCHS), 77.67 (C5—pyrrole carbon), 118.08, 123.20, 128.48 (C3—, C4—, and C2—pyrrole carbons), 158.46, 161.73 (C=O); MS (70 eV): m/e = 351 (parent). 112 4—Benzyl 2—ethyl 5—iodo—3—methylpyrrole—2g4—dicarboxylate (76) IR (Nujol): 3230 cm”1 (N—H), 1670 and 1685 (C=O); PMR (CDC13): 61.50 (t, 3H, CHZCHB), 2.68 (CB—CH3), 4.38 (q, 2H, CHZCHB), 5.37 (S, 2H, CH C6H5), 7.35 (S, 5H, C6H 9.48 _. _5)7 (broad s, 1H, N—H); MS (70 eV): m/e = 412 (parent). Diethyl 3,3',4,4'-tetramethy1—2,2'—bipyrrole—5,5'- dicarboxylate (19), tetraethyl 4,4'—dimethy1—2,2'—bipyrrole- 3,3',5,5'—tetracarboxy1ate (81), and 5,5'—dibenzy1 3,3'— diethyl 4,4'—dimethyl—2,2'—bipyrrole—3,3',5,5'—tetra— carboxylate (82) General Procedure: The iodopyrrole (10 g) was dissolved in N,N—dimethy1— formamide (5 m1) and 1 g of copper bronze was added. The mixture was stirred at 1000 for three hours. The copper was then filtered and washed with hot chloroform (4 X 501n1) The filtrate and washings were extracted with 1N hydro— chloric acid (2 X 100 m1) and with water (2 X 100 m1) and dried over magnesium sulfate. After removal of the solvent, the product was recrystalized from chloroform/hexane. The spectral characteristics of 79, 81, and 82 are summarized below. Diethyl 3,3',4,4'-tetramethyl—2,2'—bipyrrole—5,5'- iicarboxylate (19) —1 _ . . IR (Nujol): 3240 cm (N—H), 1655 (C—O), PMR (CDC13). 51.28 (t, 6H, CHZCHS), 1.95, 2.23 (two S, 12H, CH3), 4.17 113 (q, 4H, CHQCHS), 11.00 (broad s, 2H, N-H); MS (70 eV): m/e = 332 (parent). Tetraethyl 4,4'—dimethyl—2,2'—bipyrrole—3,3',5,5'- tetracarboxylate (81) IR (Nujol): 1690 and 1615 (C=O); PMR (CDC13): 01.55 (t, 12H, CHZCH3), 2.55 (s, 6H, C4-CH3), 4.28 (overlapping q, 4H, CHZCHs), 13.98 (broad s, 2h, N—fi); MS (70 eV): m/e = 448 (parent). _§L5'—Dibenzy1 3,3'—diethyl 4,4'-dimethy1-2,2'-bipyrrole— 3,3',5,5'-tetracarboxy1ate (82) IR (Nujol): 1720 and 1625 (C=O); PMR (CDC13): 01.38 (t, 6H, CHZCHB'S), 2.57 (s, 6H, C4-CH3), 4.30 (q, 4H, CHZCH3), 5.25 (s, 4H, CH C6H5), 7.20 (m, 10H, Gags), 14.13 (broad s, 2H, N—H); MS (70 eV): m/e = 572 (parent). 3,3',4,4'—Tetramethy1-2,2'—bipyrrole—5,5'—dicarboxylic acid (§9) In an oven—dried 100 m1 flask, bis(triphenylphosphine)— nicke1(II)dichloride (4.0 mmol), triphenylphosphine (8.0 mmol), and zinc dust (4.0 mmol) were stirred in 20 m1 of oxygen—free N,N-dimethy1formamide. The system was evacu- ated by a pump and flushed with nitrogen. This was repeated twice before the flask was immersed in an oil bath at 500 and stirred for an hour. The deep blue solution turned green and then brown. Ethyl 3,4-dimethy1-5—iodopyrrole—2— carboxylate (3.0 mmol) in 20 m1 of oxygen-free N,N-dimethy1- formamide was added and the solution was stirred overnight. 114 The cooled solution was poured into 80 m1 of 2% aqueous hydrochloric acid. The product was extracted into 120 m1 of chloroform and diluted with 120 m1 of ether. This solution was washed with water, then brine, and dried over magnesium sulfate. The solvent was removed under reduced pressure and the residual solid and 1.0 g of potassium hydroxide was refluxed overnight in 50 m1 of 1:1 ethanol/ water. The cooled solution was extracted twice with ether. Acetic acid (1 ml) was added to the aqueous layer to pre— cipitate a quantitative yield (contaminated by a small amount of triphenylphosphine) of 89: IR (Nujol): 3280 cm—1 (N-H), 1700 (C=O); PMR (CDC13/DMSO-d6): 01.93, 2.25 (two s, 12H, CH3), 10.62 (broad s, 2H, N—H); MS (70 eV): m/e = 188 (parent). 3,3'—Diethyl—4,4'—dimethyl—2,2'-dipyrrole—3,3'-dicarboxy- late—5,5'—dicarboxylic acid (83) 5,5'-Dibenzyl 3,3'—diethyl 4,4'-dimethy1—2,2'— bipyrrole-3,3',5,5'-tetracarboxylate (1.4 mmol) and nicke1(II)dichloride hexahydrate (27.2 mmol) were dissolved in 300 ml of absolute ethanol under nitrogen and cooled to 00. Sodium borohydride (81.5 mmol) in 80 m1 of water was added dropwise. The black mixture was refluxed for one Iour after completion of addition. The black precipitate vas removed by suction filtration and the solvent removed Inder reduced pressure. The residue was dissolved in ether 1nd extracted with 10% aqueous sodium hydroxide. The basic 115 aqueous layer was neutralized to precipitate 1.1 mmol (78%) 1 of §§‘ IR (Nujol): 3200-3400 om‘ (N4H) and OH), 1635 (C=O); MS (70 eV): m/e = 348 (parent —2C02). 3-Acety1-4-phenyl-2,2'-bipyrrole (81), 3-acety1-3',4'— dimethyl—4-phenyl—2,2'-bipyrrole (88), 2—methyl-4-phenyl— 3,2'-dipyrroketone (90), and 2,3',4'-trimethy1-4—pheny1— 3,2'-dipyrroketone (91) General Procedure: 2-Acetoacetylpyrrole (84 or 85) (12 mmol) and nickel acetylacetonate (0.1 g) were dissolved in 20 m1 of acetone -under nitrogen. 2—Pheny1azirine (12 mmol) was added and the solution was stirred overnight. Water (75 ml) was added and the product collected by suction filtration. The Acrude product was chromatographed on silica gel using .methylene chloride to elute bipyrrole (87 or 88) and 2% ‘methanol in methylene chloride to elute dipyrroketone (90 or 91). Yields are given in Table 6 (page 81) and spectral characteristics are summarized below. 3—Acetyl-4—phenyl—2,2'-bipyrrole (8]) IR (Nujol): 3400 and 3200 cm—1 (N—H), 1600 (C=O); PMR (CDC13): 02.02 (COCHB), 6.19-6.75 (four m, 4H, pyrrole—g), 7.20 (s, 5H, CGHS), 8.50 and 11.70 (two broad s, 2H, N-g); l3CMR (CDC13): 631.02 (cogHB), 105.78, 109.49 (03,— and —pyrrole carbons), 118.57, 116.95, 118.81, 124.03, 126.93, C C4, 127.66, 130.98 (C2,-, C5,-, C2—, C3-, C4—, 5-pyrrole and 116 para phenyl carbons), 128.24 (ortho phenyl carbons), 129.36 (meta phenyl carbons), 136.06 (quaternary phenyl carbon), 193.42 (C=O); MS (70 eV): m/e = 250 (parent). 3—Acety1-3‘,4'-dimethy1-4—phenyl-2,2'—bipyrrole (88) IR (Nujol): 3330 and 3190 cm"1 (N—H), 1615 (C=O); PMR (CDC13): 62.08 (s, 3H, C0053), 2.13, 2.35 (c3- and C4— CH3), 6.63 (m, 2H, pyrrole—H), 7.30 (s, 5H, C6H5), 8.53, 11.22 (two broad s, 2H, N—H); 13CMR (CDC13): 610.10, 10.85 (CH3), 31.10 (COQHB), 116—136 (aromatic carbons), g=0 not observed; MS (70 eV): m/e = 278 (parent). 2-Methy1—4-phenyl—3,2'-dipyrroketone (99) IR (Nujol): 3260 and 3185 cm"1 (N-H), 1570 (C=O); PMR (CDC13): 02.40 (s, 3H, pyrrole-CH3), 6.00-6.80 (four m, 4H, pyrrole—H), 7.17 (m, 5H, C6H5), 8.43, 9.53 (two broad s, 2H, N—H): 13CMR (CDC13): 612.56 (CZ-9H3), 105-136 (aromatic carbons), 9:0 not observed; MS (70 eV): m/3 = 250 (parent). 2,3',4'—Trimethy1-4-phenyl-3,2'dipyrroketone (91) IR (Nujol): 3355 and 3150 om"l (N-H), PMR (CDC13): 02.02, 2.05, 2.30 (three s, 9H, pyrrole-CH3), 6.60, 6.73 (two m, 2H, pyrrole—H), 7.13 (m, 6H, C655 and pyrrole-H), 9.83, 10 42 (two broad s, 2H, N-H); 13CMR (CDClS/DMSO—da): 58.82, 9.02, 10.87 (pyrrole-9H3), 113—136 (aromatic carbons), 2=O not observed; MS (70 eV): m/e = 278 (parent). 117 5,5'-Dicarbethoxy-3,3'L4,4'-tetramethyl—2,2'—dipyrromethane (93), 3,3',5,5'-tetracarbethoxy-4,4'-dimethy1-2,2'—dipyrro— methane (94), and 5,5'—carbobenzyloxy—3,3',4,4'-tetra- methyl-2,2'-dipyrromethane (95) General Procedure: The appropriate 2—methylpyrrole (300 mmol) was dis— solved in 550 ml of acetic acid and warmed to 50°. Sulfuryl chloride (300 mmol) in 30 m1 of acetic acid was added drop— wise over an hour. The crude chloromethylpyrrole was col— lected by suction filtration and used without further purification. The chloromethylpyrrole was refluxed in acetic acid (90 m1) and water (60 ml) for two hours. Water (30 ml) was added and the dipyrromethane was collected by filtration. Yields are given in Table 7 (page 83) and spectral characteristics are summarized below. 5,5'-Dicarbethoxy—3,3',4,4'—tetramethyl—2L2'—dipyrromethane (93) IR (Nujol): 3320 cm“1 (N-H), 1670 and 1625 (C=O); PMR (CD013): 01.25 (t, 6H, CHZCHB), 1.92, 2.20 (two s, 12H, pyrrole—CH3), 3.77 (s, 2H, pyrrole—CHZ—pyrrole), 4.13 (q, 4H, OCH CH3), 9.15 (broad s, 2H, N—H); MS (70 eV): m/e = 2 346 (parent). 3L3',5,5'—Tetracarbeth0§y74,4'-dimethy1—2,2'—dipyrro— nethane (94) IR (Nujol): 3410 om"l (N—H), 1725 and 1695 (C=O); PMR [CDC13): 01.58 (overlapping q, 12H, CHZCHB), 2.50 (s, 6H, 118 pyrrole-CH3), 4.20 (s, 2H, pyrrole—CHZ-pyrrole), 4.37 (overlapping q, 8H, CH CH3), 10.00 (broad s, 2H, N—H); l3CMR (CDC13): 611.76 (C4-9H3), 14.20 (0CH29H3), 24.39 (pyrrole—QHZ—pyrrole), 60.02 (QQHZ), 112.98, 118.59, 129.58, 138.77 (pyrrole carbons), 160.93, 166.33 (9:0); MS (70 eV): m/e = 462 (parent). 5,5'—Carbobenzyloxy—3,3',4J4'-tetramethyl—2,2'- dipyrromethane (95) IR (Nujol): 3315 om‘l (N—H), 1670 and 1640 (C=O); PMR (CD013): 01.93, 2.20 (two s, 12H, CH3), 3.70 (s, 2H, pyrrole-CHZ—pyrrole), 5.13 (s, 4H, OCH C6H5), 7.15 (s, 10H, C6H5), 9.17 (broad s, 2H, N-H); 13CMR (CDC13): 68.70 (C4— QHB), 10.71 (CB-9H3), 22.70 (pyrrole—QHZ—pyrrole), 65.49 (QQHZ), 116.99 (CS-pyrrole carbons), 117.09 (CB—pyrrole carbons), 127.52 (ortho phenyl carbons), 127.67, 127.88 (C4-pyrrole and para phenyl carbons), 128.23 (meta phenyl carbons), 130.63 (CZ—pyrrole carbons), 136.19 (quaternary phenyl carbon), 161.89 (§f=0); MS (70 eV): m/e = 470 (parent). 3,3',4,4'—Tetramethyl—2,2'-dipyrromethane-5,5'—dicarboxylic acid (96) and diethyl 4,4'-dimethy1—2,2'—dipyrromethane— 5,5'-dicarboxylic acid-3,3'—dicarboxylate (97) general Procedure: Dipyrromethane (93 or 94) (78.8 mmol) was heated to boiling in 350 m1 of ethanol. Sodium hydroxide (20 m1 of 119 a 4.1M aqueous solution, 82 mmol) was added and the solu- tion was refluxed for three hours. Hydrochloric acid (20 ml) was diluted with 100 m1 of ethanol and added to the cooled basic solution. The product was collected by suc— tion filtration and washed with ethanol. Yields are given in Table 7 (page 83) and spectral characteristics of 96 and 97 are summarized below. 3,3',4,4'—Tetramethy1—2,2'—dipyrromethane-5,5'— dicarboxylic acid (96) IR (Nujol): 3325 (N-H and O-H), 1670 (C=O); PMR (CDCls/DMSO—de): 02.00, 2.23 (two s, 12H, CH3), 3.73 (s, 2H, pyrrole—CHZ—pyrrole), 9.07 (broad s, 2H, N—H); MS (70 eV): m/e = 290 (parent). Diethyl 4,4'—dimethy1—2,2'—dipyrromethane—5,5'- dicarboxylic acid—3,3'-carboxylate (92) 1 IR (Nujol); 3420, 3365, and 3215 om’ (N-H and o—H), 1710 and 1650 (C=O); PMR (CDC13/DMSO—d6): 01.32 (t, 6H, CH2 pyrrole), 8.70 (broad s, 2H, N—H); MS (70 eV): m/e = 406 CH3), 2.43 (s, 6H, CH3), 4.20 (q, 2H, pyrrole-CH2— (parent). 5,5'—Diethoxycarbonyl-3,3',4J4'—tetramethy1—2,2'- dipyrroketone (98) Ethyl 3,4—dimethy1—5—iodopyrrole—Z—carboxylate (7 g, 23.9 mmol) and copper bronze (7 g) were stirred in 35 m1 of N,N—dimethylformamide at 1000 for three hours. The hot solution was filtered by gravity. The copper was washed 120 with chloroform (4 X 50 ml). The filtrate and combined washings were extracted with 1N hydrochloric acid (2 X 100 m1) and water (2 X 100 ml). The solvent was remoVed under reduced pressure and the crude product was recrys- talized from chloroform/hexane to give 1.2 g (27%) of 98: mp. 210-2110 (Iit.50 212-2140); IR (Nujol); 3255 cm‘1 (N-H), 1665 and 1625 (C=O); PMR (CD013): 01.38 (t, 6H, CHZCHs), 2.23, 2.28 (two s, 12H, CH3), 3.98 (q, 8H, CHZCH3), 8.97 (broad s, 2H, N—H); 13CMR (CDC13): 69.71, 10.04 (C3— and C4—QH3), 14.04 (CHZQHB), 60.65 (OQHZ), 121.78 (CS—pyrrole carbon), 126.64, 126.80 (C3— and C4— pyrrole carbons), 131.59 (CZ-pyrrole carbon), pyrrole- §=O—pyrrole not observed; MS (70 eV): m/e = 360 (parent). 3,3',444’,5,5'-Hexamethy1dipyrro—2,2’—trimethiH§ hydrobromide (190) and 3,3',4,4',5,5'—hexamethy1dipyrro— 2,2'—hexacyclotrimethine hydrobromide ($01) General Procedure: 2—Carbo—t-butoxy-3,4,5-trimethy1pyrrole (10 mmol) and 5 mmol of malonaldehyde bis-(dimethyl acetal) or 1,3-cyclo— hexadione were brought to a reflux in 40 ml of ethanol. Hydrobromic acid (1 ml) was added to the refluxing solution which immediately turned ink—blue. After refluxing for one— half hour, the solution was allowed to cool overnight. The product was collected by suction filtration and washed with ether. Yields and spectral characteristics of 100 and 101 are summarized below. 121 3,3',4,4',5,5'-HexametHyldipyrro-2,2'—trimethine hydrobromide (1gp) 65%; IR (Nujol): 3125 om‘l (N—H), 1560 (C=C); PMR (CDC13): 01.98 (s, 6H, C3— and C3rCH3), 2.17 (s, 6H, C4— and C4,—CH3), 2.50 (s, 6H, C5— and C5,—CH3), 7.17 (m, 3H, vinyl-H); MS (70 eV): m/e = 254 (parent—HBr). 3,3‘,4L4',5,5'-Hexamethy1dipyrro—2,2'—hexacyclo— trimethine hydrobromide (191) 33% yield; IR (Nujol): 3125 mm1 (N—H), 1555 and 1510 (C=O); PMR (CDC13): 01.97 (s, and m, 8H, C3- and C3,—CH3and C=CH—CH2CH2), 2.28 (s, 6H, C4- and C4,—CH3), 2.55 (s, 6H, C5— and C5,-CH3), 2.88 (t, 4H, C=CH-CH2), 7.95 (s, 1H, C=CH), 11.88 (broad s, 2H, N—H);13CMR (CD013): 08.74 (C4—QH3), 12.31(CB-QH3), 13.77 (C5—CH3), 27.15 (C=CH-QH2), 35.89 (C=CH-CH2—QH2), 115.88, 123.98, 130.17, 134.47 (pyrrole carbons), 146.34 (Q=CH), 153.71 (C=QH); MS (70 eV): m/e = 292 (parent—HBr). 1,5—Di—(5-carbo—t-butoxy—3J4—dimethyl—2—pyrro)—1L4— pentadiene-B—one (193) and 2,5-di-(5—carbo—t—butoxy— 3,4—dimethy1—pyrr—2-y1methylene)-cyclopentanone (igg) General Procedure: To a stirred mixture of 5—carbo-t—butoxy—3,4— dimethylpyrrole—Z-carboxaldehyde43 (10 mmol), 4 m1 of 15% NaOH, 10 m1 of water and 14 m1 of ethanol was added 5 mmol of acetone or cyclopentanone at room temperature. The mixture was stirred for two hours and then allowed to stand 122 overnight. The orange precipitate was collected by suction filtration to yield 1.5 g (65%) of 103 or 0.8 g (33%) of 104. Spectral characteristics are summarized below. 1,5—Di-(5-carbo-t—butoxy—3,4-dimethyl-2—pyrro)—l,4— pentadiene—B—one (103) IR (Nujol): 3350 and 3225 cm—1 (N-H), 1655 (C=O), 1595 (C=C); PMR (CDC13/DMSO—d6): 01.57 (s, 18H, C(CH3)3), 2.10, 2.17 (two s, 12H, CH3), 6.88—7.67 (AB q, 4H, J = 18 Hz, vinylic protons), 10.72 (broad s, 2H, N—H); MS (70 eV): m/e = 468 (parent). 2,5—Di-(5-carbo-t-but0xy—3,4—dimethy1epyrr72-ylmethylene)— cyclopentanone (lgg) IR (Nujol): 3460 om‘1 (N—H), 1655 (C=O), 1580 (C=O); PMR (CDC13/DMSO—d6): 61.58, 1.63 (two s, 18H, C(CH3)3), 2.07, 2.12, 2.22 (three s, 12H, CH3), 2.95 (s, 4H, -CH2CH2—), 6.63, 7.35 (two 8, 2H, vinylic protons), 8.67 (broad s, 2H, N—H); MS (70 eV): m/e = 494 (parent). APPENDIX 123 i 4000 3000 2000 1500 CM" 1000 900 800 700 ..... ............... ...... LU U. z < :0 m. 0 ..... (I) m. < ::.: ........................................ (CH,),CH, 1 1' 32:21:.ii' - T7:'T':Tl’f.'."..... i m 3 4 5 6 7 8 9 10 H 12 I3 14 15 WAVELENGTH (MICRONS) Figure 2. Infrared spectrum of 6-hydroxy—4-decyne (H8). 4000 3000 2000 1500 (Jw* 1000 900 800 /00 0.0 .. 1‘ : :, ...T.‘1'T.“...‘... . ‘ . ‘, 0 ------------ ....... I . ........... o... -.. ..6. q...‘ ..... ...... , ABSORBANCE co 3‘ 4 5 6 7 8 9 10 WAVELENGTH (MICRONS) 11 12 13‘ 14 m Figure 1. Infrared spectrum of 1—(2—thienylfhex—1—ene (36). 124 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 Ioois'qgjg, . ..I',..Ioo 80 80 .03 E £2) 60 60 < ........ p— : 2 3 4° 40 < ........... O: .— 20 20 4000 3500 3000 2500 2000 . 1500 FPEOIJINU CM _ 5.0 ' 6.0 7.0 8.0 M'CRONS 10.0 11.0 12.0 16.0 100 100 80 .3 E’ U 260 60 < .— : 2 12 40 <40 O: .— 20 20 0 § : ‘ , 7 ' O 2000 1800 1600 I 400 1200 1000 800 VDFO'IENT' 2M 'igure 3. Infrared spectrum of propyrylmethylenetriphenyl- phosphorane (413). 125 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 . . . . 100 Q 80 ....... ............ ooooo 0 O 60 b C TRANSMITTANCE(%) 'fl 1 I“. 1‘“ 1... .1.] u '0 O O : 3 ' ‘ t : . I : : : ; : : ' : -. : ' ‘ : t . : :2 4000 3500 3000 2500 2000 1500 ' moumc' cc» '. 5.0 ' 6.0 7.0 0.0 M'CRONS 10.0 11.0 12.0 16.0 100 80 E H J E 60 K E 3 E40 1: 2O 7%00 1800 1600 1400 1700 1000 800 Figure 4. Infrared spectrum of butyrylmethylenetriphenyl— phosphorane (419).. 126 25 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 ' , : - m0 80 80 3 O I U60 2 60 < p.- t S Z4o < I 20 O , ' I . I I f ‘ ’ ' 4000 3500 3000 2500 2000 1500 ‘REOUENC 1’ «CM 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 ' ‘ 100 80 8 I J 5 60 E 540 1 ~._,._.... A 1800 1600 1400 1200 1000 800 0 2 2000 CM Infrared spectrum of pentyrylmethylenetri- 'igure 5. phenylphosphorane (419). TRANSMITTANCE(°/o) 127' 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 1 00 1 00 80 80 60 60 40 40 20 l\) O -_.._.... 0 3 . . i . : : . ' 4000 3500 3000 2500 2000 1500 FREQUENCY CM ' 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 ‘ ' ' 100 _.._.,-- 80 8? I U 21 60 < p— 'Z 2 2 < 40 40 0: ?igure 6. 20 20 1 0 . 2000 1400 1200 1000 800 FPEQIJI NC V r. M Infrared spectrum of hexyrylmethylenetriphenyl- phosphorane (gig). 1800 1600 128 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 100 ‘ ' N ' ‘ ' 100 80 30 83 E U60 2 60 < .— : 5 240 40 < a: .— 20 2o 0 ' ' i ' ‘ ' ‘ ‘ o 4000 3500 3000 2500 2000 1500 FREOUtN- - (M 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 ‘ 100 80 80 §_ _____ E’ U 260 60 < p— 'Z 2 3 <(4o 40 m .— 20 20 0 2%00 1800 1600 1400 1200 1000 800 Figure 7. Infrared spectrum of heptyrylmethylenetriphenyl- phosphorane (4&9). 129 25 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 1001 100 80 80 3 a E 11_11 U60 2 60 < .— : 5. 240 40 < C: p- 20 20 O . ' * : : : . : ' 4000 3500 3000 2500 2000 1500 FREQUENCV CM 1 60 70 80””30N5100 H0120 160 100 80 8‘ E' U 2, 60 < 6? l— t E. Z, 40 ‘(40 a: ,i— 20 1400 1200 1000 800 ”[3ij N61 (M 2000 1800 1600 Infrared spectrum of octyrylmethylenetriphenyl— Fi ure 8. g ,phosphorane (41f). 130 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 100 100 80 80 83 E ‘2’ 6° 60 < p— : 2 g 40 40 < a: .— 20 20 0 0 ' ’ ' i ' ' , . 4000 3500 3000 2500 2000 1500 FREQUENCY CMH 5.0 ‘ 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 100 100 80 80 8" E U 260 60 < p. t E ‘2 40 <40 0: .— 20 20 o - 1 5 : ' ' | . . C 0 2000 1800 1600 1400 1200 1000 800 “£0.58! igure 9. Infrared spectrum of 1,3—diacetylmethylenetri- phenylphosphorane (4lg). 131 __ -__4~—-—. i i ' . , . ‘——‘ : . 100 t . ! +~ 80 I *_ .‘— *_ +_— l 1. 1- - l “7' fcu,(cu,),cn‘:ggco(cu,),CH, 60 . O .2 Z < . " 1 —~~ «~44 - .l ‘ . = ’: 1, ‘ 3 ,2 ‘ 1,1- , a 2 : ' ‘ :7" 1*gt'2”‘-"9' 'J) ' 1 ' ' : ' : : 240! ,1 “ ““ -_-- . i , j: ,40 < ; ~+-1-~‘ ~ - i o: ' 2 I ‘ ’ . >— ‘ "‘ 1 "I ; f ——4' - - _. ‘S’H"*i- 20--»it-———?,_:,IH'EV 20 4000 w 3500 3000 2500 2000 1500 5.0 6.0 7.0 8.0 M'CRON3 10.0 11.0 12.0 16.0 ‘ 100 80 00 O 60 0 O 40 a. O TRANSMITTANCE(°/o) 20 N O O I . 2000 1800 1600 1400 ”402% N 1‘ C” 1200 1000 800 Figure 10. Infrared spectrum of 4—octene—3—one (§2§)° 132 2.5 370 3.5 4.0 M'CRONS 5.0 6.0 8.0 100 80 $5 E LH50 Z 60 < .— Z 5, 240 40_ < M .— 2O O . J I I ' ' . ' ' 4000 3500 3000 2500 2000 1500 FREQUENCV 'CM ‘ ’ 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 ' 100 80 § 5' U z 60 < p— '2 2 3 <(40 M l.— 20 I .. l ;%00 1800 1600 1400 1200 1000 800 FREOUENCV CM , Figure 11. Infrared spectrum of 5-decene-4-one (§22)‘ 133 3x. 3.5 4.0 M'CRONS 5.0 6.0 8.0 7 '“"—“"‘r*“‘~*“'f—~~wfi*-1-t , ~ ‘ 100 2' . < - - 2 - : - *~ 3 1 I? 7 :‘i"%4 : €40 ’ ’ ""‘I “” i é-F ? 3 3 40 < ; ~ ~ 4---4«% ——e E i ' :1 ' ...... {if _,--._ - i-‘ _T_4A ”-mQ- % 20 a --“ f - , ' : f 20 . - l i .‘ i _-_ i_ < 7- 1 g I f , . c ;; _.- --; 1¢_; ;7; c\. .-i-- 0L~____ I I ' / ' - ' : 0 4000 3500 3000 2500 2000 1500 .543 In - ’M 5.0 6.0 7.0 8.0 M‘CRONS 10.0 11.0120 16.0 100 ‘ 100 80 co O 03 I U 2 60 60 < .— Z 2 U) 40 Z <(40 a: .— 20 M O O 2000 1800 1600 1400 1200 1000 800 m; -' Figure 12. Infrared spectrum of 6—dodecene-5—one (§29)° 134 2.5 100 Hui“. 1‘! l W: i! l 7.» o ’ " ’ 4000 3500 3000 2500 2000 1500 . —___;F’EQUENCY (CH4) . _ . 5.0 ' 6.0 7.0 8.0 M'CRONS 10.0 11.0 12.0 16.0 100 * - ‘ 100 so so 60 I 60 4o- 40 :20- ’20 i 0 _ V : : l ' - _ , ‘7 , ‘ 7 ”I. _ _ 0 2000 1800 1600 1400 1200 1000 800 FREQUENCY (CM" ) zigure 13. Infrared spectrum cf 7—tetradecene-6—one (39d). 1135 2.5 ‘ 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 100 100 80 80 5 I 360 60 E E40 40 i 20 20 O : : 3 3 3 :7 ‘ 9 i . : f t 3 i : E : : 7. : . : : 0 4000 3500 3000 2500 2000 1500 FREQUENCY (CM ') 5.0 ' 6.0 7.0 8.0 M'CRONS 10.0 11012.0 - 16.0 ‘Oo'f’f7": 3 :7 . ; Q 2 § 2 § 2 I E 2 $7 g g ' ' ' ' ' ' <‘00 80 ,80 E J g — 0 t6 ‘ .60 E40 40 20 20 O .' I I T I I , C 3 3 ' , ? i O 2000 1800 1600 1400 1200 1000 800 FREQUENCY (CM ‘ will-Jill (f igure 14. Infrared spectrum of 8-hexadecene-7—one (39e). 136 — 2.5 ’ 3.0 3.5 4.0 M'CRONS 5.0 6.0 - 8.0 80 8‘; I.” U 60 z. < .— t“,- 5. Z 40 < M .— 20 0 ,, :I 7:: 4000 3500 3000 2500 2000 1500 FREQUENCY (CM") 5.0 ' - 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 100 100 80 80 83‘ 3.7 L2’ <60 60 l— L- z 3 <40 40 K O- 20 f_ 20 O f t f : : 3‘ : 5' . I" 7. ' 7. -- O 2000 1800 1000 1400 1200 1000 800 FREQUENCY (CM ') 'Figure 15. Infrared spectrum of 9—octadecene—8—one (323). 137 | MICRONS " 3500 3000 2500 2000 1500 FREQUENCV (CM'I) MKRONS 1400 1200 1000 800 FREQUENCY KM") 16. Infrared spectrum of 3,11—tridecadiene—4,10, dione (gag). 1800 1600 138 2.5 ' 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 m0 ' ‘ m0 ..... 80 80 60 - n t , . , . . , , r-._.—-_.—o-__ I I . | . A . ~ 4 o 01,), co(CH,I,CH,_ ,H [l \I t N H -‘2 A l 311 2311 ll 40 TRANSMITTANCE (%I 20 20 O , 1 t . _ : ‘ : " : ‘ ' I ‘ ‘ ‘ : , j ' I . 4000 3500 3000 2500 2000 1500 FREQUENCY ICM". 50 80 70 80 ““38N5 KM)IBOIZO 180 A A A A fl ' . l L L l I 1 1 1 l A 1 1 l I L J A A l JL ”0 5 ‘ I : l 3 i S 2% g 2 2 m0 oo o I I I n J I ,I 1.... 0 O .I II hr: 7"? I. I I l ”R"'“tiliiffl' . I I 1w I I I 1 .......I , C . . - I . .- . . . . . . . - . — . - - - - .— , - - . - o . . . . . . . . . . ,. . . . _ - . . - . o . - - . . - . . . .4 . - » . . I. . . . .. . ..I . . . . ... . - . t . . . . . . -5 .- . .. .--. . r _ - . c - . . . -7- -- . - . -I— . . ..I . . r - . I . I .i I . -1 . .. . . , .. - . . .. 1 . .n . , . . . ,. . . . . .. . . - .. . . - - < . I .- I. . - .. | . , . I -. . . . . . ., .- .. - -. I V . . - . . - .- .. - - . . . . . -- .- . . _ . _. n . . . .. . , - h . . . -- .- . . . . I . - . . - - - ~ -~ -4- --. --4» . . -. -._. A -p . ___._..._._‘__‘ b -- . - » v i. . . I .1 r >— |-J - . -. - l . . . . . -. . . .. . .- .-- I ~ . -c - _ . . . . . -I . . .. . . — ..- . . . .a . . . I . . - . . . . ._- . . - .._ . . - . . . _ . ,, _ I ..- I . i . V . _ . . H - . n l —4 n I I I , u . o u 4 ' I . u I . 40 TRANSMITTANCE (do) 8 gimpimfl- l I ..I I I ..T... I III II I I I _I - I I -I I I I I I I I I I L¢.L. I l . I I I I I I O : . : . 3 . : 2000 1800 1600 1400 1200 1000 800 I FREQUENCY (CM ' Figure 17. Infrared spectrum of 3—propy1-4—propyry1- pyrrole (42). 139 1 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 m0 80 60 40 ..... ..‘1 TRANSMITTANCE (%I .4. I w-—‘ 'l I i .j iii 0 §ff f' I g ; sf 5 , ficugcnp, counggcu,i;; N H _-. .43 --W 0 f: """ , ;_- 5 3 I - : ‘ 1? :; 4000 3500 3000 \2500 2000 1500 FREQUENCY ICM‘I‘, 5.0 6.0 7.0 8.0 M'CRONS 10.0 11.0 12.0 _ 18.0 80 80 E; g} 60 60 < E E 940 < 40 CZ .— 20 M O 0 ‘ " I ' ‘ '“ -' ‘ ‘ ‘ 2000 1800 1000 1400 1200 1000 800 FREQUENCY (CM'l I 18. Infrared spectrum of 3—butyl-4—butyrylpyrrole Figure (:18). 140' 2.5 3.0 '3.5 4.0 M'CRONS 5.0 6.0 8.0 - - - ~ - A 1 1 - 100 80 80 E 580 : . 60 Z < 1; 2 r f i :i . i U) . . : : . ; ' Z40 ' ‘ ' i" f‘ ., ,1 40 < *- co(c1-1,),cu, ,7 p - g7 : a: . - .— ' i, 20 3' -1 20 0 7,? 3 .7. 5 3 T f . . § { ' ‘ 5' 0: if f A 4000 3500 3000 2500 2000 1500 FRE’QUENCY (CMl , 5.0 ' 6.0 7.0 8.0 M'CRONS 10.0 11.0 12.0 18.0 21,01, VI” 807 F 80 660 00 z < 1“: E , z i ‘240 ‘ 40 < :33 M h. 20 M 0 f1. 5- 1000 800 $000 I I 1800' ‘1000 1400 1200 FREQUENCY ICM" I ”igure 19. Infrared spectrum of 3—pentyl—4-pentyry1- pyrrole (44). 141 25 ‘ 30 is 40 “KRONS 50 80 80 100 ‘ ' ' ' 'if' I 100 00 O 80 E -H,“ , ( . -- . , E -- 11 540 1 Q‘ """ < 40 E ...... 20 20 o ' : ' . . , 1 f : E ‘ f ‘ 5 t ' ' 7 O 4000 3500 3000 2500 2000 1500 FREQUENCY -(M' 5.0 ' 6.0 7.0 8.0 M'CRONS 10.0 11012.0 16.0 ‘00 _.. . . 1 . . , ‘00 80 80 g 360 60 z 5 E : 3 7 t : z "'3 3 - ' ‘ ‘ ‘ ' ‘ ' 40 3‘0 5 11,1ch flown.“ j J 3 ‘ ‘ ' - as? 2 N . . H . a -< -; 20 , 5’20 “W“ '1‘: t 3 . g o ‘ . : ' z I I ' ' ~ , O 7000 1800 1600 1400 1200 1000 800 Figure 20. Infrared spectrum of 3—hexy1—4-hexyry1pyrrole (45). 2.5 3.0 3.5 4.0 M'CRONS 5.0 670 8.0 ‘00 _ 1 100 80 80 E 860 1 60 z -- ........... ' 3 . . . — a < . I t 7 3 g . 014%,). co(CH,),c113 ‘ . m 1 U i ‘ f i 240 - - t 40 < I: i . ' : 2o 20 O : f , : ' . . ' . , O 4000 3500 3000 2500 2000 1500 FREQUENCY CM ' 6.0 7.0 8.0 M'CRONS 10.0 110120 .16-0 100 80 80 83‘ 5.7 U 260 00 < .— :- E ‘2 40 <[40 a: .— 20 20 O . . . i . . O 2000 1800 1600 1400 1200 1000 800 IDIOJINCV CM 'Figure 21. Infrared spectrum of 3—hepty1-4—heptyry1pyrrole. 142 " (39>. 143 l . 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 10055; 2 g r 2 ; ; .;.;.-; ~__; a -_ 100 00 O (D O I 60 LIUIHI 0 O ‘-_40 IKANDMII IANLt 1% I A o 720 i000 3500 3000 2500 2000 1500 FREQUENCY (CAN I ' 6.0 ' 7.0 8.0 M'CRONS 10.0 11012.0 16.0 80 7 60 O O Inl‘VL‘IU-I :40 40 20 20 2000 1800 1600 1400 1200 1000 800 Infrared spectrum of 3-octy1-4-octyry1pyrrole. Figure 22. (47). 144 5. 2 8 0 100 80 60 40 20 0 4.0 MICRONS 50 3.5 o. ___“mammmmn... ffiEE_____________________g =====_==== 5...: __":_fi fiEEF. ;=__—_—_=_EEO ___ “as_________=__,i____________“___“___=§____________ 5.. __=__________________ “___: _______ _____a==_...____ _=___________Ea_____“________=____§_=__=______________ s “___; unnfi___mn_n==_=_____ ________ Ear? ___n___=mfi__________.________fifiE—E =32. ___=_____ =_ _________i____ _;______ _______=“ “a; __n._____ ___________________==____ a ____n_____§=__=______r_==__==______ ____.==___“__________________________ ___________ “___ ___—mafi________o____nmmn_____ _ ___. ___o______ ______________o____________===__o________________”__o 33 3252523: 100_ 80 4000 moutucv (curl 1 MICRONS 5.0 Asymuzmethylpyrrole'(EE). 152 2.5 . 3.0 . 3.5 4.0 M'CRONS 5.0 6.0 8.0 100 I 100 80 80 $5 5’ U60 2 60 < .— ’2 5, 240 40 < a: 1.. 20 20 0 ' ' ‘ ‘ ' 0 4000 2500 2000 FREQUENCY CM I 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 ' 100 80 03 3 260 60 < .— L". E <(40 40 a: .— 20 2O ..... ..... _ .. , I400 1200 1000 800 at 1 ,ft.‘ 0 ' ' 2000 1800 1600 Infrared spectrum of 2—carbo-tebutoxy—3,4,5— Figure 31. trimethylpyrrole (§§). I . 2.5 3.0 3.5 4.0 M'CRONS 5.0 00 80 . l I IllllllllAllllllllllllljlilllA‘Jl. 'mo um 80 80 E; {360 60 z < E g 24 < 0 40 a: .- 20 20 0 II I o 4000 3500 so? 2500 2000 1500 ~ ”QUINCY (0“) 5.0 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 100 100;f; "*80 §‘ 3' U 2: 60 < p— t E ‘2 40 <49 0: p. 20 20 1400 1200 1000 800 FREQUENCY (CM 'I 0 i V : ' 2000 1800 1600 Infrared spectrum of 2-carbo—t—butoxy—3,4— Figure 32. I — teffamethy1ene-5—methylpyrrole (§§)° '154 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 100 ' ' ‘ - ‘K - - ' ' ' 100 g? E . 060 z 60 f.‘ t E, z 40 40 < a: p... 20 N) O o L ' ‘ I . . ’ i . 4000 3500 3000 2500 2000 I 500 FREOJENCV CM 5.0 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 100 *+—-~ 100 80 80 Q? E’ U 2 60 60 < p— L’. 2 $2 40 < 40 a: p,— O £500 1800 — 1600 1400 1200 1000 800 Infrared spectrum of 2—carbobenzyloxy1-3,4,5_ Figure 33. trimethylpyrrole (éZ). 155 2.5 3.0 3 5 4.0 M'CRONS 5.0 6.0 8.0 l l l J l I I l l l l l l l l l l I l l I l . . l l a n 1 . 1 . . 100 1m) 80 HF 30 ' E 560 60 E E 5, 11 240 0': CN 40 § a ,- 20 20 1 1%00 3500 3000 2500 2000 1500 FREQUENCY (CAN) 8.0 M'CRONS 10.0 11.0120 16.0 (‘70) IRHNOMIHIUVLC 5‘ O 20 0 2000 Figure 34. 6.0 7.0 100 80 60 1800 1600 1400 1200 1000 800 FREQUENCY CM Infrared spectrum of 3,4,5—trimethy1_2_ .pyrrole carbonitrile (§§). 156 2.5 w . 3.0 3.5 4.0 MICRONS 5.0 6.0 8.0 100 ' - d 'I' I 100 80 80 § I . L“’60 Z 60 < i Z40 40 < Z 20 20 0 ‘ i f 1 3. 5 E 3 3 3, § 3 :* 3 ; _:.. : E : : : : : : ' 0 4000 3500 3000 2500 2000 1500 FREQUENCY (CM‘) 5.0 6.0 7.0 8.0 M'CRONS 10.0 11.0 12.0 16.0 100 I I ' l 100 80 80 a3 K J Z 60 60 < E 0 Z 40 I 40 : 20-~ 20 0' ' ' ' ‘ 1 ‘ 0 “H .‘E\' Figure 35. Infrared spectrum of diethyl 2—methy1-4— phenylpyrrole3—carboxam1de (£2). 157 2.5 3.0 3.5 4.0 MICRONS 5.0 6.0 8.0 100 100 8° 3:};§9§0? E‘Qné 3": '2 ‘ ' 80 § K J z 60 60 < E z 40 4o ( Z 20t 20 0 T '. '_' L ‘ ,7. 4 , ' ' ' 7 o 4000 3500 3000 2500 2000 1500 FREQUENCY (CM') 5.0 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 100 :- ., -7 -7 - . . . . . . . I . . . . . . . __7100 80 § 3 J zoo 60 t E E40 40 20 20 0 : 5 ' 0 2000 1800 1600 1400 1200 1000 800 FRLOUENCY ICM‘ Figure 36. Infrared spectrum of 3,4-dipropy1pyrrole (g9). 2.5 ' 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 . I I I I I I I I I I I . I I I I I I l I I I I I 1 1 1 I l n 1 . n A 1 1m) 1m) p-u. 80 80 33: 560 60- 5 E f““” ’ W ‘ 2 i z 2 S 240 y ' u ‘ 40 »°-‘ 13:95? 20 20 o . o 4000 3500 3000 2500 2000 1500 unwaxv(av) ' . . ' 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 ‘ 100 .. . * 80 $3 33’ U . z 60 < .— 2: 2 ‘2 * 40 < 40 M .— 2O 1400 I 200 1000 800 FREQUENCY ICM 'l O 2 a 3 : ; 2000 1800 1600 Figure 37. Infrared spectrum of 3,4—dibutylpyrrole (g3). 159 2.5 3.0 3.5 4.0 MICRONS 5.0 6.0 8.0 100 100 80 80 E “J , U 60 z ,- _ 60 < . C E z 40 _ 40 < . "I E 3 :- 20 .20 O : I ‘ ' .' ' . . . ' f .: '— 1' 4* * 0 4000 3500 3000 2500 2000 1500 FRFOUEN(Y oCM‘ 6.0 7.0 870 M'CRONS 10.0 11.0 12.0 16.0 100 80 80 § 5’ U 260 60 < p— t E ‘2 4o <(40 (z .— 20 20 $500 1800 1600 1400 1200 1000 800 Flag 1 IN ' Figure 38. Infrared spectrum of 3,4—dipentylpyrrole (fig). 100 TRANSMITTANCE(°/o) 100 160 2.5 3.0 3.5 4.0 MICRONS 5.0 6.0 8.0 . , _ , , n . . 100 60 7 50 40 z s 4o 2:] Z CH,),CH,T " ' a ‘ ’ 20 N O ,,., _. -- -. ‘.._ 2000 I 500 2500 3000 0 ' V “ ‘ 4000 3500 FREQUENCY (CM ‘) 5.0 ' _ 6.0 7.0 3.0 M'CRONS 10.0 11.0120 16.0 100 80 o3 E’ U 2 60 60 < y... ':. 2 ‘2 40 < 40 a: .— 20 20 O z ‘ . : - ‘ I ' f ‘ 0 2000 1800 1600 1400 1200 1000 800 FPEOUIN' v' (.M Figure 39. Infrared spectrum of 3,4-dihexy1pyrrole (§§). I 161 25 10 as 40 MKRONS 50 60 80 00 ' ' 100 80 80 03 E’ U 2 60 60 < .— ’2 5 240 40 < a: y— 20 ;"_2o 0 3 t : . : f .f i 37 Z 1. :: :'_ ‘- 4000 3500 3000 2500 2000 _ 1500 FREQUENCY (CM ’1 5.0 ' 6.0 7.0 8.0 M'CRONS 10.0 11012.0 16.0 100 80 80 a? E’ U Zoo 60 < .— L: E ‘2 4o <49 CZ .— 20 20 i O I I ‘ ' ' 3 I ' - 0 2000 1800 1600 1400 1200 1000 800 Figure 40. FREO'ifM - C" Infrared spectrum of 3,4—dihepty1pyrrolef(§§). 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 . I I I I IIIIIII Illllllllllllllllll-Jll 100 , 100 80 80 E . 86° '60 5 2 I E N ' 3, a = «men. 240 65 40 < a: .— 20 2o 0 4000 3500 3000 2500 2000 1500 neauencv (cu-u 5.0 ' . 6.0 7.0 8.0 M'CRONS 10.0 11012.0 16.0 100 ' ' 100 80 a? E’ U 260 60 < y... : S ‘2 4o <(40 (z .— 20 2° 0 - T ; ; ‘ O 2000 1800 1600 1400 1200 1000 300 fREOIJINC Y CM Figure 41. Infrared spectrum of 3,4—diocty1pyrr01e (fig). 163 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 100 80 80 o3 I . “’6 21 O , 60 E ’2 3, 2240 40 < a: .— 20 20 o : ' z : s z . - , ; 4000 3500 3000 2500 2000 1500 FREO-JENCY (M 5.0 . 6.0 7.0 8.0 M'CRONS 10.0 110120 16.0 100 100 80 80 § If U 2:60 60 < y.- :I '2 U) 40 Z <4O a: p— 20 1600 1400 1200 1000 800 2000 1800 Infrared spectrum of 2-formyl- 3, 4, 5— —trimethy1- Fi urc 42. g pyrrole (67). .164 2.5 ' 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 . I I I I I I lllll ILIIJIIIIIII .111411-... 100 100 80 q 80 '? f LAW :5 560 I 60 z < E 3, 540 4o 95 : fl ”1" 63 20 20 o L 4000 3500 3000 2500 2000 1500 FREQUENCY (CM" ) . 6.0 7.0 8.0 M'CRONS 10.0 110120 16.0 100 80 (%) u.) U 2 60 60 < p... ': 2 ‘2 < 40 40 a: '— 20 ' 20 0 ' : ' . . ' E O 2000 1800 1600 1400 1200 1000 800 Figure 43. Infrared spectrum of 5—acetoxymethy142- carbethoxy-B,4-decamethylenepyrrole (§§). 165 l 2.5 3.0 3.5 4.0 M'CRONS 50 6.0 3.0 100 I 1 I11J111111-.|J|11111|11I.141...-...'oo 80 80 E 860 60 Z E — r" 3, 54° - 40 E : fl CQF 09 2o ’ 4 W 20 0 W 4000 3500 3000 2500 2000 1500 mousscv (cm) 6.0 7.0 8.0 M'CRONS 10.0 11012.0 16.0 . . .. I , w . . 100 ‘ 80 § 5' U 2 60 60 < p— ’: 2 Q 40 < 40 z 20 2o 0 .7 1 I , i . ‘ ; . ‘ o 2000 1800 1600 1400 1200 1000 800 FREQUENCY ICM I Figure 44. Infrared spectrum of 2-carbethoxy—5-formy1— 3,4-decamethy1enepyrrole (62). 166 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 mo 180 :::::: 60 0 O '40 TRANSMITTANCE (%) A o ..... 20 M O ..... 0 E 5 5 5 - ' Q ' ‘ E ' F . - : _ I ' r : ' : ; : . 4000 3500 3000 2500 2000 1500 _ FREQUENCY ICM" , I 50 00 70 ao‘mmgNsldo melao ”00 mo 4‘ 3‘ ' 7‘ 1 ‘7 ; ; ; I ; 4‘3? mo I I . (I) O I. I ‘ I I . -I I I . I . co 0 60 A O I |.. J I I I TRANSMITTANCE (Zn) 8 In ..1 “ I H I I I I "—0“ 'I I I I; I L I m I ‘ ' I. . J. . . . V I . . - .... . I -I—— 4 I1, _-_-. . . - ~ , . . . . I I . . n l , ' ‘ ‘ I . . . . . . I ' ' .. . . ~ I - , . . u - 1 ~ ~~~ . .. . .20 l I I ' I I ' ' . . . M O I I I I I I I I I I _J 1800 1600 1400 1200 1000 800 FREQUENCY 'CM " O 2000 Figure 45. Infrared spectrum of 4—acety1-3—ethyl-2- iodopyrrole (39). 167 100 80- 60 40 ? TRANSMITTANCE(°/o) 2O I . . I | ._.* _._..V _‘ . -'IP"“—_.“_——.— , . . a 2500 2000 1500 8.0 MICRONS 10.0 11.0120 16.0 80 (%) 60 0 O TRANSMITTANCE A ' o 20 $000 1800 1600 1400 I200 1000 800 WEO~IINQ v I'. 5‘ Infrared spectrum of 4-carbethoxy-3-methyl— Figure 46. 2-iodopyrr01e (11). 168 2.5 3.0 3.5 4.0 MICRONS 5.0 6.0 8.0 Ioo;‘;;;,w; '100 80 $5 E _. U z . 60 < .— I: 5 Z 40 40 < a: p... 20 N O 0 ‘ . A . A , f : ‘. 4000 3500 3000 2500 2000 1500 FREQUENCY ICM'I 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 ' 100 80 § 5' U " ' ; v I 1 I E . i , 260 : . 3 . I ; g , i 60 < : ' 2 ~ 2 _I‘ _ ‘ _ 1 . H _ __u- _., . . , . , . , . I: 2 W 2 <(40 40 O! p... 20 2O o ‘ ' _ _ 2000 1800 1600 I400 1200 1000 85 Q Figure 47. Infrared spectrum of 3—acety1—5-methyl—4— phenyl—2-iodopyrrole (23). 169 z :0 3s 40 ‘NCRONS 50 60 80 I """“" - —— ~—-»---» T7100 80 E {‘3 Z <( E Z -4! ~'—I 40 < 3 ‘ ' (I . _kfl - “1-“...— 20- ~ 1 —« é— *~—~«2o I I 0a —- , ~ ~ ~ —~-~ 1-. ', 4000 350: 3000 2500 2000 1500 6.0 7.0 8.0 M'CRONS 10.0 11.0120 16.0 ' ' ' ' 100 80 80 § E U 260 60 < ’— ’2 E ‘2 < 40 40 o: I'— 2000 1800 1600 1400 I 200 1000 800 $9!) IIN v Figure 48. Infrared spectrum of 3,4—dimethyl-5-formyl- 2—iodopyrrole (Z§)' 170 2.5 3.0 3.5 4.0 MICRONS 5.0 6.0 8.0 I I I IIIIIIIIIAIIIIIIIIIIII.IIIIIPILII m0 mo 80 80 3% I360 / “I“: 60 z < t u cqa % n 240 40 < a: ..— 20 2o 4%00 3500 3006' 2500 2000 1500 REQUENCY (CM“) 6.0 7.0 8.0 M'CRONS 10.0 110120 16.0 ' ' ' ' 100 80 §‘ I U 260 60 < .— ’2 z 3 40 <40 c: y— 20 20 o I ' I l ' 0 2000 1800 1600 I400 I200 1000 800 “I; ”:N'v ‘2 Figure 49. Infrared spectrum of ethyl 3,4-dimethyl—5— ' ,iodopyrrole—Z—carboxylate (33). 171 25 30 as 40 MKFONS 50 60 00 100 O O 401' IKHIVOMII IANLt("’Ol '. ,, ,v , ._ . , _ , I 0 40000 3500 3000 2 500 2000 1500 50 00 70 80 MICRON5100 110120 160 ‘100 O___ b- O vunmuuu- IMIVgC‘V’O‘} 0 N O __,47__.__ _ 7‘ v og—vfiii - 7 Vii—J W- W” V V ‘\ V V 11' l"~‘” 2000 1800 ‘03:? IAN ‘. gure 50. Infrared spectrum of diethyl 3-methy1~5—iodo— pyrrole—2,4-dicarboxy1ate (Zé). 172 60 lk’ANlel IANLt “m 1:. O m r.» , , , «um ~ . ,_ "W —— , 4000 3500 3000 2500 2000 1500 50 60 70 a0 MKRONS 100 1L012D Iao 100 IKANDMII lANLt(”/o) O A 2000 1800 1600 1400 1200 1000 800 FMDUENZ" (N 'igure 51. Infrared spectrum of 2—benzy1 4—ethyl 5—iodo— ,3—methy1pyrrole—2,4-dicarboxylate (Z§)' 173 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8 O 4000 3500 3000 2500 2000 1500 FREQUENfiY VCM U 50 a0 70 80 MICRONS100 1L0120 160 100_———»+~A-<————+——w~<47s¢~ -r~7. 7 ‘ ”A-w7*_“ 80 3 I ) for I i7 E f”' '3 I :40: * - ----- I ‘ x I I 1 . —~ ——— 20' a A -, o ,, ,4 __, . , , , , 7* _,, ,,,,__ W _.ffin,‘ 2000 1850 (~(‘w 1400 2'30 1000 800 igure 52. Infrared spectrum of 2,5—dimethyl-3,4—di- iodopyrrole (23). .0 100 ’40 2O 174 25 30 35 40 MWM”5 50 00 80 100 ' 100 80 30 i, 60 60 :40 40 20 20 0 f . ' r I ‘ ; ' : 4000 3500 3000 2500 2000 1500 5.0 6.0 7.0 3.0 M'CRONS 10.0 11012.0 16.0 I00 ' 100 80 80 60 60 40 40 20 20 0 2000 1800 1600 1400 1200 1000 800 FREQUENCY vCM igure 53. Infrared spectrum of 5,5'—diiodo—2,2'-di— pyrroketone (78). 175 25 3.0 3.5 4.0 M'CRONS 5.0 6.0 so I I I I I I I I I I I I I | I I I I I I I I I I I | I J 1 n 100 - 100 80 80 160 H 60 E I ~ . g H :40 40 2o 20 c c 4000 3500 3000 2500 2000 1500 FREQUENCY (CM") 50 ‘ 60 10 80 MKRON5100 1L0120 160 1800 1600 1400 1200 1000 800 igure 54. Infrared spectrum of diethyl 3,3',4,4'— tetramethyl—2,2'—bipyrrole—5,5'— dicarboxylate (79). 176 100 80 60 . v 7 . _ : _'_ _._ ~ - . _ ,_ _ _ - . I . ._ . '_ - _- ~ 40 " ' ’ ' ‘ ‘ ' ; ”w W " ' ‘ ' a ‘ " u -— . , ,. . . . . . . . . . ,_ . _ _ , . - 4o - I . I ’ ‘ 1 -' 7- . _ , ‘ .7 --> - _‘ , — _- - . . . ' ‘ 0 - . _ _ ‘ _ , _ , . - . .1 . ~ . _ _ __ ____ :,- _ _ A 4 -- ‘ . I _ ‘ - r V“ O: , *3 ‘ z ; ‘ ‘ ‘ — a'5:.--‘ 4000 2500 2000 1500 FREQUENCY ICM I I 510 ' 6.0 7.0 8.0 M'CRONS 10.0 11.0 12.0 16.0 7 100 60 _._ ,_., I400 I200 1000 800 FREQUENCY lCM") 000 1800 1600‘ ure 55. Infrared spectrum of 3,3',4,4'—tetramethy1_ 2,2'—bipyrrole-5,5'—dicarboxylic acid (80). 177 H ”N 5 0 Ll 8.0 r 80 t h ‘ 00 H 7 I . / N . .fi [I E'OIC N I I H . no L“ I a] I 40 I "4 2O ‘ " ?%‘W 2000 1500 50 00 7. 50 * ‘ 00 wt 00 w“ 00 ‘”—'—‘ *7 — _._ — * A ‘ .> 100 7:" f”! I? '2 I : 4 I 20'" 1036’ I ;, gf. .gure 56. Infrared spectrum of tetraethyl 4,4'—dimethyl— 2,2'—bipyrrole—3,3',5,5'—tetracarboxylate (§}). 178 15 I 30 4.0 MKRONS 50 mo ‘ TRANSMHTANCE(%I 3500 3000 2500 2000 1500 FREQUENCV (MI 50 00 70 a0 MKRONS 100 1L0120 100 (D O . l\r\l VQIVII I IHIVLE I70} I800 I600 I400 I200 IOOO 800 rnsouchv cu‘ Lgure 57. Infrared spectrum of 5,5‘—dibenzyl 3,3'-diethy1 4,4'—dimethy1—2,2'—bipyrrole—3,3‘,5,5'—tetra— .carboxylate (§E)' 179 2.5 30 3.5 4.0 M'CRONS 5.0 60 I I 1 I111 I I IIIIIIIJIIIIIII... ”80 I00 I00 80 80 6° ' [I / I ”I fl 60 I w H Ho,c N 04" I, 7 H II 20 . 50 20 C 0 4000 3500 3000 2500 2000 1500 Intouzucv Icn') 8.0 M'CRONS 10.0 11012.0 I 100 , . _ . . 0 I 1800 I600 1400 1700 1000 800 gure 58. Infrared spectrum of 3,3'—diethyl 4,4'—dimethy1- 2,2'-bipyrrole—3,3'—dicarboxylate—5,5'- dicarboxylic acid (§§)' 180 4 MIL RONS 5 L; 0.0 8.0 80 ~ e ~~60 40LI 39“' 3000 2500 2000 1500 5.0 6.0 7.0 8.0 M'CRONS 10.0 I'I.0 12.0 16.0 00 ’ f ; j ——+~‘ ~w~+—a-m-v+———e~ %— j I 100 , , - - - - < 4 - o - . - v - - - v - , - - . - I . I , - I . I . I l . I . . . | “___ _...__. 2699 ’0' I500“ ‘ 7‘100C- I400 I200 I000 800 igure 59. Infrared spectrum of 3-acety1—4-pheny1-2,2'— ' bipyrrole (87). / 181 _3 ,k' NIICRONS 50 60 8 0 _" 100 80 I ‘i’ . I .. :c‘ 20 T,._ O‘—- ‘_- _. 7 .u_ _- . ' . . f I 4000 5. 3:90 2500 2000 1500 5.0 6.0 7.0 8.0 M'CRONS 10.0 11.0 12.0 16.0 00 100 80 60 IO 40 20 IO I.-. I I400 I200 IOOO 800 [m :0” N . 2%00 I 800 1600 I / sure 60. Infrared spectrum of 3—acety1—3',4'-dimethy1- 4-phenyl—2,2'-bipyrrole (§§). 182 3 5 4 O MICRONS 5 (I 6 0 8 C H N IMHH- *' ‘_'*—“~‘ A m-" I” - ___h-‘H -— IUQ 30 Z 60 E g «40 < E! 20 O __ ._- ,_ - .-__ I-.. __ a- 4000 3500 3000 2500 2000 I500 50 6.0 7.0 8.0 MICRONS I0.0 II.0 I20 16.0 I00 ------ a I00 80 80 z D J I Z 60- 60 i I €40 40 20 0 I 800 I600 I400 I 200 IOOO 800 I'd ' "igure 61. Infrared spectrum of 2-methy1— —4- -phenyl- 3, 2'— dipyrroketcne (90). 183 8.0 I00 80 60 4O 50 00 10 80 "“CRONS I00 III)IZO 150 )0 ' ' ' m0 - - g a - ___ 80 ----- '0 60 4O OI_ ..... . .‘ _-g.-.; . . . .__ .---_j_________ -__: . 20 I000. I400 I200 I000 800 3,_ , n, ___,_____ __ 000 I800 gure 62. Infrared spectrum of 2,3',4'-trimethy1—4— phenyl—3,2'-dipyrroketone (2}). 184 (VI ISL‘II’ 5.0 6.0 7.0 8.0 M'CRONS I0.0 II.0 I2.0 16.0 I00; . - ~~~ r : uI——~—:-uw—j———~_+——~-+~—~~I—--a --~~%~-I00 I . I I ' , I ‘ If 1 - +4 _«___‘.__.__.: _ _-._I_.-_+‘.- _4.--..__ -..__.__. 80 '.‘I 40 TRAMS/VIIITANCEI0 ?5,{ 1856 1600 I400 1200 I000 800 Infrared spectrum of 5,5'-dicarbethoxy-3,3g- Fi ure 63. , g 4,4I_tetramethy1-2,2'—d1pyrromethane (29). 185 2.5 3.0 3.5 4.0 MICRONS 5.0 6.0 8.0 I00 IOO 80 80 ’ 60 60 40 40 20 20 0 ' ' ' 3 ' ' ‘ : 2 t 4000 3500 3000 2500 2000 1500 50 60 70 80 M'CRONSI00 II0I20 I60 100 ; . % I-—---~~——v-- —r— ~---‘~- - - 4 - - ~~ ~ 1,- - -' A- t-wIOO , _'4 _ I I - . . . . by“; I- ‘._- 4 — ._---_-._-.--._- -——-~-- 80 fl; _ .- .80 i 60 f '160 .I ‘ I . 40 , ~ 540 I I , 20 I '20 _fi—‘fifi _. - - - .. - .. .. 0 I ' ' ““ht'O 2000 I800 I600 I400 I200 I000 800 gure 64. Infrared spectrum of 3,3',5,5'-tetracarbethoxy— 4,4'-dimethy1—2,2'-dipyrromethane (23). 186 35 40 MKRONS 50 60 80 fi'"“ "' -~~—TII00 760 I z "'“’“ fi“” I :‘ Q_ nu _Q ~— m . _ . ..... .0. . . 2, 40 - - « ~ . - + —---—~- “"‘, ; 4o 2; ' t " 20 —~ v#~—~~2o 0 -— ~ ~ , ~-- — ——-—— .N-_._- ' I 4000 3600 3000 2500 2000 I500 5.0 6.0 7.0 8.0 M'CRONS I0.0 II.0 I20 I60 100 80 80 3 Lu U 2:60 < 60 .— t: .2 3 <14O CZ ’— 2O . _ ‘ , O 2000 1800 1600 1400 1200 1000 800 FREQUENCY -CM I Infrared spectrum of 5,5'-carbobenzyloxy- ?igure 65. 3,3',4,4'-tetramethyl—2,2'-dipyrromethane (95). 187 2.5 3.0 3.5 4.0 M'CRONS 5.0 60 8.0 . . . . .- I00 ........................ ...... 80 60 60 40 40 2O 20 O . ' ‘ ' f I I I . i ' 4000 3500 3000 2500 2000 I500 ‘DEOUFN(V CM 5.0 - 6.0 7.0 8.0 M'CRONS I00 I10 I20 I60 - ‘ ' ‘ I00 80 60 40 20 ) 000 1800 1600 1400 1200 1000 800 FREQUENCY CM - gure 66. Infrared spectrum of 3,3',4,4'—tetrameth¥1_ 2,2'—dipyrromethane-5,5'-dicarboxy11c ac1d <93). 188 25 30 35 60 MKRONS 50 60 so 100 , - W‘r- ‘7 77 —r~ . -~. ‘7 ---NA- I r§m0 0 (I) O O TRANSMITTANCE(°/o) a. o 0 . . 4000 3500 2500 2000 50 60 70 80 MICRON5100 II0I20 I60 A , . < v - - I00 TRANSMITTANCE(%) 04———~—«—_—— r~m~~a-n 7 _ 2000 1800 I600 I400 I200 IOWC aw Infrared spectrum of diethyl 4,4’—dimethy1— 2,2'—dipyrromethane-5,5'-dicarboxylic acid— 3,3'—dicarboxylate (g3). igure 67. 189 2.5 ' 3.0 3.5 4.0 M'CRONS 5.0 6i0 8.0 I | I | I I I I I | I l I I I I I I I I mo mo 80 80 E ,3 60 60 E I: NHHN 5 no ” 03 z 40 40 < QC ’— 20 20 0 0 4000 3500 3000 2500 2000 1500 FlEOUENCY 1044] 00 "“CRONS I00 110 120 I60 §60£_:I II In I I £000 I800 I600 1400 I200 1000 800 Lgure 68. Infrared spectrum of 5,5'—diethoxycarbonyl— 3,3',4,4'—tetramethyl—2,2'-dipyrroketone (g§). 190 25 30 36 60 MKRONS 50 60 80 II\I"'\IVIJIV\II IHIVLEI‘VOI 0 . , 4000 3500 3000 2500 2000 1500 60 60 70 60 MKRONS 100 IL0120 I60 I 100 I~I Hi jmgo I800 I600 I400 1200 1000 800 gure 69. Infrared spectrum of 3,3',4,4',5,5'-hexa— methyldipyrro-Z,2'—trimethine hydrobromide (299- 191 25 30 35 40 MKRONS 50 60 80 0 . 4000 3500 3000 2500 2000 1500 50 6o 70 60 MKRONS 100 IL0I20 I60 1800 1600 1400 1200 1000 800 FREQUENCV CM 0 2000 gure 70. Infrared spectrum of 3,3',4,4',5,5'—hexa— methyldipyrro-2,2’—hexacyclotrimethine hydrobromide (101). 192 25 3.0 3.5 4.0 M'CRONS 5.0 6.0 so I | I I I I I I I I l I I I | I I I I I I l I I I I I I I | . I mo mo 80 30 60 60 4o 40 20 20 c 4000 3500 3000 2500 2000 1500 FREQUENCY (cu-I) 50 60 70 80 MICRONSI00 H0I20 I60 3 ' ; . r~47v~»u»-n-r~-w-A - - - - - . «~~—r——II00 Im q+ 000 1800 _VAI60077 I400 I200 :000 800 gure 71. Infrared spectrum of l,5—di—(5-carbo-t—butoxy— 3,4-dimethy1-2-pyrro)—l,4—pentad1ene—3—one (103). 193 2.5 3.0 3.5 4.0 M'CRONS 5.0 6.0 8.0 I I I I I I I I I I I I . I I I I I I I I I I I I I I I I I I I I I I I 30 I00 30 —/ ~ I 80 " ‘ I 50 I 60 I0 I 40 I0 20 3300 3500 3000 2500 2000 1500 FREQUENCY (cu-I) 5.0 6.0 7.0 8.0 M‘CRONS I0.0 II.0 I20 I60 ' ' ' I00 80 ) 60 40 - -—»- ~ 20 IOO I800 I600 I400 I200 I000 800 3'ure 72. Infrared spectrum of 2,5-di—(5-carbo—t—butoxy- D 3,4—dimethylpyrr-2-ylmethylene)—cyclopentanone (104). 194 I. II I I l 41 I l .IA.I_I I .II IIIIL. I 20 7C 60 )I am | ‘0 3‘» In :0 0 Figure 73. PMR spectrum of l—(2—thienyl)—hex—l-ene (36). Figure 74. PMR spectrum of 6—hydroxy-4—decyne (§§). 195 A I ' ' I I I ' ' I I ' ' ' l j—‘ l 5L) ‘& 300 2& ‘40 DH )H’ (C‘HSIJPZSECO(CH2)ICH: _—/’/— J I I I l I I I]...III...IAI I I I I . an 70 60 5‘0 pm“) w 30 70 10 0 Figure 75. PMR spectrum of propyrylmethylenetripheny1— phosphorane (41a). ‘ v rvrv-IIIII K— _I 0— o_I_ 'LI' .I. §—._ 5 (CbHSIJPZSECOKHIIfiH, I I I | I l I .2.44***r . I . . . I . . 30 PPM I.) . Io . . In . II II . . I I Iigure 76.. PMR spectrum of butyrylmethylenetripheny1— phosphorane (41b). 196 (chsIavzcncotchqu 4k ‘ , I , I I .IIIIIIJIIIIT I . I l I ILII 0 8.0 70 6.0 5,0 pm I}! 4.0 10 20 1.0 Figure 77. PMR spectrum of pentyrylmethylenetriphenyl— phosphorane (41c). A jin L I I I I I VI 1 r 1 I rj—. 550 ML) £0 filo 130 I'M-n I}. (C H I PZCHCOICH )CH 6 5 J 41d 2 4 J an ‘ ‘ ‘ 70 A 60 5.0 ”M‘II ‘0 “igure 78.I PMR spectrum of hexyrylmethylenetripheny1— phosphorane (gig). 197 A I I ' ' I ' ' ‘I I ' ' ' I I I Ifi ' r v 5&) ‘& MO 2&3 1J0 0H1 )HD (CoHsIJPZSII-lCOICHz)SCH3 . I . . I . . . I I . . I . . . I ._II ,I II..II...II.,..I....I....I...I. 8.0 7.0 5.0 5,0 pm I,” 0.0 3.0 20 1.0 o Figure 79. PMR spectrum of heptyrylmethylenetriphenyl- phosphorane (41e). A 'l fl 'I' I 'I' I I I rs 5L) 4& 31'!) 2& ‘40 0H: ”-0 F f— (CbHSIJPZSII-‘ICOKHch H3 / L . I . I . . . . I . I . I I . . I n..I.‘.j.I.l...I. ...I I. ...I. ...I. ...I. A A A I A A A so 70 6.0 5.0 pm '3’ 4.0 so 2.0 III 0 Figure 80. PMR spectrum of octyrylmethylenetripheny1— phosphorane (Elf). ‘ _fl#‘g£?p -' _"a..‘.'.;- «I. . - . 198 IA ' ] ‘ r' ' .‘ w 1 I v . 7 . I ' * .I ! I 1 .I I l I T E I [COHQJPZSIZCOKI-‘lzgcm A I figk I . I I I I I I . I I I; I .j I. .7 IIE‘I.I .LIJII IlguII Figure 81. PMR spectrum of 1,3—diacetylmethy1ene— triphenylphosphorane (41g). A l' I I} A! ‘ Ile I I I~ j T'I :TIY I YI ' fir ; I I T 'l I II LI IVIV lf 1' I I 530 4& k 2& 130 III-Ix i CH3(CH2I2CH§,§°HCO(CH,),CHJ / i W I . . III I I i I . I I i I iJ‘I I I.{ .1.. .1.... . .II ..IiI .I I II. 9.0 7.0 so 5p pm ‘3’ to 3.0 10 1.0 o Figure 82. PMR spectrum of 4—octene—3—one (§2E)- III I, 'L' ,I, ‘10 J g CHJ(CH,)3CH:3.9CbI-ICO(CH,)1CHJ J I I A I I I I I I I I . u I I l I I I I I I I I I I I I I I so 70 so 5,0 ”’L‘I) do JO :0 1,0 I) Figure 83. PMR spectrum of 5—decene—4—one (39b). CHJ(CH,).CH:CHCO(CH,)3CH, 39c. I I I I . I 0 MI 40 30 20 to no 70 5° 5:0 "LI Figure 84. PMR spectrum of 6—dodecene—5—one (§EE)- 200 CH3(CH,)5CH§§§ICOICH,)4CH3 L WI] I IAJIIJAAIALIIIIJII A 3.0 2.0 1.0 4.0 l A l A I l J ‘ A l l l I l l ‘ l I 60 5.0 pm "I Figure 85. PMR spectrum of 7—tetradecene—6-one (39d) A far I rvjjr V. "y'r L 1 1 I r T I I '1 1 v I T I I I ‘l'fi bk AL Ill!) 2&3 110 OH: HO CH3(CH2)6CH:CHCOICH,)5CHJ 39o I I I I A u I I I I I I u A I A A j A I A J A I A A l A I A A A A A A l 8.0 7.0 e o 5.0 pm I,” 86. PMR spectrum of 8—hexadecene-7—one (§2§)‘ 4.0 Figure 201 -A—_yu‘ .. -- , ”a“ .' A $' 1 1 f I‘’ I I V " fl } ‘7 l Iii I 'l I T I I I '1 ‘l 1 '4 ‘ & m A .& I ) CH,(CH,I,CH:CHCO(CH,)6CH3 39f MW [- i I I I I J J , .1 L A A I A A A A ]L J 4L# 1 L A A A A A A I A A 1 A AL 14 A I A 3.0 70 so 5,0 pm_I}T 4.0 3.0 2.0 to 0 Figure 87. PMR spectrum of 9—octadecene—8—one (39f). 4H EHJCH: CHco(CH,I‘LCH, JHL J ‘ I I A I A A A A I A A A A I A A A A I A A A | Figure 88. dione (§2§)° l I l L PMR spectrum of 3,11—tridecadiene—4,10, _""= .... .I P '_ _. - A I I! g I l I Y I ! I' l I . l 1' I I l I I I I l I T—"l 5&0 ‘L, “I,0 2&3 v v'JO ......... om )I-D CHJICHzIz/ \COICH,),CH3 N H _ 42 4f- I I I I I I I , I I I I l I I I I l I ..... I _mI I I I I I I I I I I I I I I I I I 8.0 70 6.0 5,0 mn_‘:’ 4.0 3.0 2.0 1.0 0 Figure 89. PMR spectrum of 3—propyl-4-propyry1pyrrole (42). A Y Y I 7‘ fr r T Y Y r T 'I V Y— T I: I I T Y I," T Y V' I Y ' 'rvi V V Tr VI Y ' ‘f' T'j'fi I "' *" " I I I Im )I-D 043(03): COICH2I2CH3 K \ N H 43 W I I I . l I I I I l I l . I I I l I I I I QIJI II ImLIIIImI IIIIIIIIIIII 1I°III 8.0 70 6.0 5.0 pm 3 4.0 3.0 2.0 Figure 90. (39>. PMR spectrum of 3—butyl-4—butyrylpyrrole 203 A I I I! T r I I 'I I I l I 1 I‘l l r I I I IA I I I V T' I I I I I '1; H9 CH3(CH,)I COICH,)3CH3 (/ \5 N H _ 44 1f 1 I I II I I . I.JII{IIII4 I I 1.4 III I.1II I IIIII PIIIIIIIIIIILIIIIAIIIIIIIIIIIIIIALIIIIIII.TI 0.0 7.0 60 5.0 "M (9) 4.0 3.0 2.0 L0 0 Figure 91. PMR spectrum of 3—pentyl—4—pentyry1pyrrole (44). A '.LI . '.'.J .' 1L ‘.TITL' '.1. fl 1*.1. ...ilfi k k 2% 1& ([301: NO CH,(CH,)s COICH2LCHJ /\ N H 45 A I A A A A I I 4 A I l l A I A A . J I A A A A_]_ I l i “‘;II{ II1III IIIIII IIIIII .II II IIIIII III. ‘ ‘ 0.0 7.0 5.0 5.0 pm (9) 4.0 30 2.0 1.0 0 Figure 92. (45). PMR spectrum of 3—hexy1—4—hexyry1pyrrole 204 I . ' | I I I I I I I I soc .97 I .1; I I CHJICH,)6 C0(CH,)§CH, [/ \3 ' N H 46 M I l . l I | 4 I .4_L l L I I I I I J I I so ab 5' , igure 93. PMR spectrum of 3-heptyl—4—heptyrylpyrrole (46). I I I I I 1 fi] fl 1 I I I I I | I 500 406 )0“ 20(. IDC 0 m CHJ(CH,), co(CH,),,CH, [/ \I N H 47 vumwnwfkwfiflA“*n. Tt‘ r }h L I I | I L gure 94. PMR spectrum of 3-octyl—4—octyry1pyrrole (47). \ NHHN 48 f M 29% Figure 95. PMR spectrum of 1,7—bis[—3—(4—methylpyrro)]— 1,7—heptanedione (48). I1 . I 1 | .1. A I I | I I ' I I I I I l T | I I I N H 49 u] n- u - “7“" "' Li . 1.3:; .- ‘u‘w—v "1""! l V' ' "VW‘VW ' WL I I . I . I I I I I I I . A I J . I I I L | I Figure 96. PMR spectrum of lH—pyrro-[3,4,a]—y— butyrolactone (£9). 206 o __I— I ‘ l A A L ‘ I A l I A l g A I A l A I l A A A A I l A A _A I l A A A I A l A A I l A A A 1 A A A l I 80 70 00 50 ppm ‘ 40 39 70 7; Figure 97. PMR spectrum of 3-butyryl-4—(2-thienyl- pyrrole (ll). §- .‘ §_ ga :3 )H’ 59 FL 1 . - . 1 A i J - A . 1 . . - 1 - - . i 1 -. .1.. A.1.- ..1..,..1.. .-1-- ..1.. ..1.. ..J.. ..1. 9.0 70 so 5,0 mm ‘97 4.0 3.0 2.0 1.0 0 Figure 107. PMR spectrum of diethyl 2—methyl—4— phenylpyrrole 3-carboxamide (59). .A rfi7! firvl 'Y'LYY‘IT‘IVfiI vrvl'rv‘rrvluvu VYYT"'YTL1VYV'Y'[' I L I I I I; _ R R R : (CH,),CH3 60 1 . - . 1 . . 1 . . - - 1 - A - 1 .'.1.1.‘.1.{. .1... .1... . ... .1... .1... .1.i.iir. 5,0 pm ‘H to 3.0 20 1.0 o 8.0 70 60 Figure 108. PMR spectrum of 3,4—dipropylpyrrole (g9). A f £7 V I V 1' Tfil’ T 7 l U T I V V I IV 7 I Y T I I 6L lb 1'30 2& 1L) """" Er H. R R R:(CH2)3CH3 61 -l ..... l s i i - i i l ...... i J . ..... l s I 14 ..Js.. JL.. I I iirli. .1 .. I so 10 so 5.0 mg? 40 - so 20 1o 0 Figure 109. PMR spectrum of 3,4—dibutylpyrrole (61). A I fi' I ! VT 'T Ur T I VI I r '7 ‘r' 17 '7 '71 '17 ‘.‘ I 'I 1' Y I7 7 'l Ifi: I I L Y vrfi 1' Yr 1 V I V' V ! YY YI 1 1' ijfi 5L) 4L) III!) E ‘10 3H: ”-9 d ' 2f§ R : (mafiaJ / i 62 g ! . . l . . . l . . . . l . i . 4 J . i i J 11‘ 1....1....1........1..i.1...1 .1. l 0.0 ‘ A A ‘ 7.0 60 5,0 mm ‘9) to 3.0 2.0 1.0 0 Figure 110. PMR spectrum of 3,4—dipenty1pyrrole (g2). 213 H R : (CH2)5CH3 63 I . s i i u . i J A I i A i i l . . . I I I I I L L i 4 J I I l I I I I I I I I I I I l I I I I l J I J 6 o 5.0 pm ‘.' ’ 4.0 3.0 2.0 1.0 o Figure 111. PMR spectrum of 3,4—dihexy1pyrrole (63). T I 1 I II t rr V l v I v r v r I t ! 1 1 r v I 'l I I v rfi & & m & r '1: )I'D H R I (01960-13 64 l L A A A l A A l A AL A A l J 1 1 A J 1 . 4 J I A A A A I A A A A I A A A A l A A A L L A A A A l A L A A I A A A A T A A A A l A 7 o 6.0 5.0 mm W 4.0 3.0 2.0 1.0 o Figure 112. PMR spectrum of 3,4—diheptylpyrrole (gfi). 214 A l I v I I I I II I g l I I Ir l ' l I 5& ‘k 2!!) 2k 1&3 (I) H: H. — R R R : (cs-1,),CH, 65 /—‘ . . . . l . . . . l - . . . . . I . . l . J . l A—A_ A I A A A A I A l A A l A A A A A A A A A A A I A A ' A A l A A A A I A A A I A 0.0 7.0 5.0 6.0 pm ‘9) 4.0 3.0 2.0 m 3 67 1AA A l l . 1 l . l i L #414 A L A I A A A A I A A A A I 1 A ; A A l Figure 114. PMR spectrum of 2—formy1-3,4,5—trimethyl— pyrrole (g2). 215 — N (025' m a J g V l . A J l A A I I .T..I.7IA...:IK..A.:II.W;;.‘ICAI..1....JI....'ICJ...I. Figure 115. PMR spectrum of 5—acetoxymethyl—2— carbethoxy-B,4-decamethylenepyrrole (68). ffi I I L jfr’ I I I I I I Ifi I I V I I T f r I /\ o H ‘ 1 69 . I wl‘fir-“ ‘ :: _.‘W MN A A I A l A A l A J fri... .I.{. I ...Al... .1....I ....I.A. .1.A‘41, I Figure 116. PMR spectrum of 2—carbethoxy-5-formyl— 3,4edecamethylenepyrrole (g2). 216 A. I I .. ' l I I I l I I I I r WI I . . l . I . I . . I . I I I _A.I. ...I‘ ‘..}; ..AII 1;.1. ,..IJ ...I. ...1 Figure 117. PMR spectrum of 4—acety1~3—ethy1—2— iodopyrrole (70). IA ‘ ' ’ IF ’fifi 'j ' I I I f ijfi r I I I I I I [I ..l _ l A 4L A A J A l l 1 i A I A A A i A A A A I I A A 4 I A I A I l L A A A I A A A A T A A A A I I Figure 118. PMR spectrum of 4—carbethoxy—3-methy1—2— iodopyrrole (2}). 217 I I I T 5L0! IIIJIII 'I'YWJ ,I‘.t..!, It..r‘ $0 2& 1& 0H: no _ /_—‘ n f . .‘.—AM I I A A 4 g A J I A A A A l; A A A I A-l A A I A A 1A A A AAAAA J A A—J¥L l A LJ‘A I A A l 1 I L A l A I L A l 1 l A L A A l A A l l I l A L A I LA L L l l 8.0 7.0 6.0 5,0 pm I}! 4.0 3.0 2.0 1.0 o Figure 119. PMR spectrum of 3-acetyl—S-methyl—4—phenyl— 2-iodopyrrole (72). ' FY rIV I I l I I TV '11 I ' '4' I 1 lil l I '1' I V TII I I V I ‘l I I I‘lfi I vv Iv v fi‘v T '.' Y r u IlI1rv I I I . , . . I . . . . I i . L I . . . I I _ I I I A I. A A I L A A A I A A A A I A l A l I A A A A I l A A A l A A A A I A A A A I A A J A_ 1 I 8.0 7.0 5.0 5,0 pm_‘ 3’ 4.0 3.0 2.0 1.0 o Iigure 120. PMR spectrum of 3,4—dimethy1—5—formyl—2- iodopyrrole (Z§)° IA 1' l fiffw'uv ’1 [fit I 1 I t A "m """"" I j {m ‘ . i , M NC02E3 H I 74 . ILL A . . 1‘. I . I 1 . A A A J . A A . J I - . s 1 LAIII...LA.III....I.,.11.,..T....l....II.JAI. 0.0 7.0 6.0 5,0 m (3T 4.0 3.0 2.0 1.0 0 Figure 121. PMR spectrum of ethyl 3,4-dimethyl—5- iodopyrrole-Z-carboxylate (74). IA _ A ‘ _ AAA - A h A V v- 7" fly 'v—v "V v ’ 80%: I N C025: ; I H . 75 I '.L- A A .A - 4 W f h “A“AM r _A.‘ A A _“_A AA- ———‘ A A “_A A vw—V 1w 1 I . I J I I I I l . . . A I . . I I l I . I I . A I A A A A I A A A A l A A A A l A A A A I A A A A I A A A A l A A A A I A A A A I A ‘ 3.0 7.0 so 5,0 mm '3) 4.0 3.0 2.0 1.0 0 Figure 122. PMR spectrum of diethyl 3—methy1—5—iodo— ' pyrrole—2,4—dicarboxy1ate (2?). 219 III! 1.1 ! llY 1" ! I I ‘E I I I l I rTfi 500 I ‘00 300 [OI (I) (EH1 I E'Oz HO I I _:;> I N C02 I H ¥ 76 I l W I 1 ' i l . I. l I l I WWJ I l I A A . I l . I A I l . . . l . . . J I I . I .1....1....II..III...T....I.IIII....T....I. 80 70 so so am I 40 3c 20 10 o Figure 123. PMR spectrum of 2—benzy1 4—ethyl 5-iodo— 3-methylpyrrole—2,4—dicarboxylate (76). A ‘I_‘I L ff er 1 I 1' Ir 1' Y fliTT Ifi'TVI I Tr ILLfYYfier‘Tv! Ti I y ‘r—[fi &I ’I I m I 3m NO fir I Il A i ff.— N H 77 I . A , I . I . J . . A I I A A A I I I I A A; I A A I A A A A l A A A A l A A A A I A A A A I A A A A l A A A A I A A A A I A A A l J 8.0 7.0 so 5‘0 pm I.” ‘0 3.0 2.0 1.0 o PMR spectrum of 2,5-dimethy1—3,4-diiodo- Figure 124. pyrrole (77). 220 I I I I I I I I I ' T I I l l T 500 400 300 200 00 o n: O \ NH HN 78 I . . I I I . . I I . I . I I I I . I I I P; A I A A A_ A I A A J A I A A A A I I A A A I A I A l I l A A A I A A 1 A I A I so 70 oo 50 Dmv | 40 30 70 IO 0 Figure 125. PMR spectrum of 5,5'—diiodo—2,2'-dipyrro— ketone (78). A "L I‘L' [171' l r ' WI'jfi 6k 4k 31; 2% IL) (IN! H. p, i «M‘- H / I I 79 I V*.. ... A-‘r—v v"* A .7 _V Awfw “ ‘v , J I I I I I . I I . I _I I I A I I I I A A I I . I I I L A I A_A L A I A A A A I A A A A I A A A A I A A A A1 A J J A I L L A A I A A L A I an 7.0 6.0 6‘0 "’L‘I’ 4.0 an 10 1.0 o Figure 126. PMR spectrum of diethyl 3,3',4,4'—tetra- - methyl-2,2'—bipyrrole—5,5'—dicarboxylate (353). 221 ‘A i l f. ! I. 'Y" I 1 .T I l T V I I I I V 1 fl 5 k k & , f & 3m H \ N HOfi N CO?‘ . H / . w i l J A A 4 4‘ J llllllll l J J J l 80 70 6.0 5‘0 pm (H 40 30 2.0 10 o Figure 127. PMR spectrum of 3,3',4,4'-tetramethy1— 2,2'-bipyrrole—5,5'—dicarboxylic acid (80). W A 'fflffoll'.'T'.T.".','.'T.r:'v',!I"".!.'.' '1 ..... T7 Ob IE JD 2& ‘ (IJHz )l!’ f _ ,/\m IV O,Et l H i N ‘ ; aqc N \ cqa ~ K H H2] ‘ “_J: _J; A A l . A . . L l ‘4 A ‘ . A . I 4 A . . . J A J 4 . J J T A A l A A I A I A L A A l L I I A l l I A A A A 1 A A A A I J l L 1 L4 . ‘ A 8.0 I 7.0 6,0 5,0 ""1. (g) 4.0 3.0 2.0 1.0 0 'Figure 128. PMR spectrum of tetraethyl 4,4'-dimethyl— 2,2'-bipyrrole—3,3',5,5'-tetracarboxylate (81). - h -——r—-- ._~—_~—_1,-, 222 e . ‘_i4...NI..:1i.,.l.i.‘...i.'...i11..J Figure 129. PMR spectrum of 5,5'—dibenzy1 3,3'—diethyl 4,4'—dimethy1-2,2'-bipyrrole-3,3',5,5'— tetracarboxylate (82). I I I I I ' I f I r ' I ' ' ' ' lfi I I I I 7 , I , Y 500 40C 300 200 '00 OH: H N H 87 ——I"—" —" I . .'. “—2.: “‘ A u M i , I I J I A J I 4‘ I .‘.—_‘l I I A I I l A A A I A l A A I l A A A II 4 g A I I a L o v a k' pm. ' u .5 20 o Figure 130. PMR spectrum of 3—acety1-4—phenyl—2,2'— bipyrrole (§Z). 223 500 ‘00 300 2‘10 ”I“ O H: 3 H .? N .’ H 1 j 88 t 3! ,1 I; 4 I I_.L I J I 80 7 O 0 Figure 131. PMR spectrum of 3—acetyl—3',4'-dimethyl— 4-phenyl—2,2'-bipyrrole (88). I 1 I I ’ l I I I ' 7“ I I I I I 500 £00 300 200 |00 OH: I. \ i. H N 90 H J I . . I l A , A A I A I I A l . . . , l A A I A A A L I A A A A I A A A A I I A A A I A I A A I l A A A I A A A A I A A A A I A so 70 oo 50 pm I 40 30 20 no 0 Figure 132. PMR spectrum of 2—methyl-4—phenyl—3,2'— dipyrroketone (29). 224’ ‘-“‘_-.—‘.r ~— A r v Ir ! 7 I Y' I I, ‘ ! .... I ! I l I """ , v v I ' h 5& ‘& J” ’g 7‘& ' (II-l: )H’ \ NH N’ 91 H . J I I I . I I . I I I I II . . . I mr.I A...I ....I I...I .... ....I A .I I ... . 3.0 7.0 6.0 5.0 pm I!) 4.0 3.0 2.0 to 0 Figure 133. PMR spectrum of 2,3',4'—trimethy1-4—pheny1— 3,2'-dipyrroketone (91). IA I I I I I ' I '* ' Tr ' ' ' ' ' I, ' A ' .I 3m I I . I I . l . l }.T. I I I r ILA I I ‘II I I I tetramethyl-2,2'—dipyrromethane (93). Figure 134. PMR Spectrum Of 5,5'-dicarbethoxy-3,3',4,4'— 225 A I ‘ I , ! - I v ' l’ j! I V V I 1 l I v I v 1 v I I u I I v I 1 v . v 1—‘ 53° 40 ago 2;) ' ‘10 ' t ' ‘ arm ”-0 5'02 0,5: I....JI.A...II.A....J..JI.I,4 glilll‘ll‘llll‘l‘l . . . I I J I I I A I A A l I l A A l A A A 1 I 1 I A A T j so 5'0 ”M—(I I 4.0 3.0 2.0 1.0 o Figure 135. PMR Spectrum of 3,3',5,5'-tetracarbethoxy— 4,4'—dimethyl—2,2'—dipyrromethane (94). IA . [WHIP !T II? I I I l, ,1 Y I.. I f ; i W JI _J .f__/ / NN QM p 7 95 lo2 I J ..‘IIIHIINLHIHI.I....II_immIHHJUHI. Figure 136. PMR spectrum of 5,5’—carbobenzyloxy-3,3',— 4,4'—tetramethy1—2,2'-dipyrromethane (g§). 226 LA A‘ v‘ “‘ J “_‘A-AA“ A ‘A I ‘1 *' .1 . r fa v 530 T «10 1 i, I 250 I l I l I ~ I l x ’ l N N i ‘i H H i . . HO: 96 02“ 1 I l . l L L l I Figure 137. PMR spectrum of 3,3',4,4'-tetramethyl— 2,2'—dipyrromethane—5,5'-dicarboxylic acid (96). ‘A ‘j IF I ' I I ‘ T I ' ' I ' ‘4 ' ‘ I I I I ' .I I ;I ' I F k T?;j/E:§f' I N / 5 H H 1 H0 97 O,H I V'V’VVV'V‘V'VWV—W 7.7.7... Ki.“Ii.l...i.1..I....i..,l.i...‘l‘i.l...fri.”1. Figure 138. PMR spectrum of diethyl 4,4'-dimethyl—2,2'— dipyrromethane-5,5'—dicarboxy11c a01d— 3,3'~dicarboxylate (32). "227 A 1T!‘T'1'Y‘x! I T'l‘.!'7‘r vI'r 7] TI ' l ‘ 5L ‘b J” ’& f '5": no 0 AJ A A A A 4* A_ A A ALA #n—L 4 AA A L A J A #4 J A A J A J A A A A A 4 J I A J A A - I A A A l A I A A J A I A A A L I A A A AA T J A A A I A A A A l A l A A A A J A A A J l A 3.0 7.0 6.0 5.0 pm GI 4.0 3.0 2.0 1.0 o PMR spectrum of 5,5'-diethoxycarbonyl—3,3',— Figure 139. 4,4'—tetramethyl-2,2'—dipyrroketone (98). IA I I I ' I I I l ' I Ff fl f ‘ F I T I I Y i I ' I T I 500 400 300 200 I00 0H: m \ NH HN Br 100 A . A l ‘ A A A l ‘ 4 A A l A A A A l A A A l A1 l A A A A I A A A A I A A A A I l A A A I A I A A I l A A A I A A A A l A A A A l (:0 7w oo 50 pm I 40 JD 70 I0 0 PMR spectrum of 3,3',4,4',5,5'—hexa— methyldipyrro—2,2'—trimethine hydrobromide ($92» - Figure 140. 228 I I ' ' I I f ' L' J I ' I I I_ I I ' ' I f I I 50'.) IOC 300 200 IU‘ \ - I I I \ NH HN " Br I . “_A AA AA “AA“ _AAA AAA AA—‘A AAAAA‘ ‘AflA‘ 'F—w‘v'v'wv'v w-vv- W uw-v‘v vv-‘V " ' W I . . I . . l I A A A A A A A A A A A A A l A A A I A I A A T4 AL AL A I A A A A BO 7U 00 50 pm; I 40 3C 20 Figure 141. PMR spectrum of 3,3',4,4',5,5',-hexa— methyldipyrro-2,2'—hexacyclotrimethine hydrobromide (101). Y I 1 r I 1 1 I 1 I 1 T I v w I v v 1 *v I v v v 1*! I T f T I I f I ' Y I 500 “1 30c n IOO W— U m I " o J / NH H W 7 ___. P . . I . A l . l I A I . l L; A I A L A A I A A A A I A A A A I A A A A I A I A A I I A A A I A A A A I A A A A L A L ‘ ‘ 3' pp ‘ .1 I' ; I Figure 142. PMR spectrum of 1, 5- di— (5— carbo— t- -butoxy— 3, 4— dimethyl- -2- pyrro)- -l 4- pentadiene- 3— one (£99)‘ 229, f I | ' I 'l‘ I ' L I T I ‘ * I T I 'Ifi I I I soc- 400 300 700 no 10m "<0 1!! I I I ,I I \ l A ; L L l 1 l A 1 I - ‘ A J I A A A l L l A I A A l j A A L J I A l l l L J A L l l A L J T A l l l I l 4 L L l A A L L I 1 A A A I 1 80 7c 00 50 pa» * 4o 30 70 lo 0 Figure 143. PMR spectrum of 2,5-di-(5-carbo—g—butoxy— 3,4—dimethyl—pyrr-2-ylmethylene)— cyclopentanone (104). 10. 11. 12. 13. 14. 15. BIBLIOGRAPHY H. Fischer and H. Orth, "Die Chemie des Pyrrols”, Vol. 1, Akademische Verlag, Liepzig, 1934. H. Fischer and H. Orth, ”Die Chemie des Pyrrols”, Vol. IIi, Akademische Verlag, Liepzig, 1937. H. Fischer and H. Stern, "Die Chemie des Pyrrols”, Vol. 1111, Akademische Verlag, Liepzig, 1940. R. B. Woodward, W. A. Ayer, J. M. Beaton, F. Bickel— haupt, R. Bonnett, P. Buchschacher, G. L. Closs, H. Dutler, J. Hannah, F. P. Hauck, S. It6, A Langemann, E. LeGoff, W. Leimgruber, W. Lwowski, J. Sauer, Z. Valenta, and H. Volz, J. Amer. Chem. Soc., 82 3800 (1960). M” K. M. Smith, ”Porphyrins and Metalloporphyrins”, Elsevier Scientific Publishing Company, 1975, pp. 29— 55. H. Fischer and W. Gleim, Justus Liebigs Ann. Chem., 521, 157 (1935). P. Rothemund, J. Amer. Chem. Soc., 57, 2010 (1935). S. Krol, J. Org. Chem., 24, 2065 (1959). S. Beitchman, Ph.D. thesis, University of Pennsyl— vania, 1966. F. R. Longo, E. J. Thorne, A. D. Adler, and S. Dym, J. Heterogycl. Chem., 12, 1305 (1975). H. Fischer and B. Walach, Justus Liebigs Ann. Chem., 450, 164 (1926). W. Siedel and F. Winkler, Justus Liebigs Ann. Chem., 554, 162 (1943). A. Treibs and N. Haberle, Justus Liebigs Ann. Chem., 718, 183 (1968). D. 0. Cheng and E. LeGoff, Tetrahedron Lett., 1469 (1977). H. Fischer and R. Baumler, Justus Liebigs Ann. Chem., 468, 58 (1929). 230 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 231 H. H. Inhoffen, JrH. Fuhrhop, H. Voigt, and H. Brockman, Jr., Justus Liebigs Ann. Chem., 695, 133 (1965). "w“ H. W. Whitlock and R. Hanauer, J. Org. Chem., 33, 2169 (1968). ”W O. Eisner, A. Lichtarowicz, and R. P. Linstead, J. Chem. Soc., 733 (1957). J. B. Paine III, W. B. Kirsher, D. W. Moskowitz, and D. Dolphin, J. Org. Chem., 41, 8857 (1976). H. Fischer, M. Goldschmidt, W. Nfissler, Justus Liebigs Ann. Chem., 486, 1 (1931). M. Friedman, J. Org. Chem., 30, 859 (1965). G. R. Peltit and E. E. van Tamelen, Org. Reactions, 12, 356 (1962). D. 0. Cheng, Ph.D. thesis, Michigan State University, 1977. B. J. Whitlock, H. w. Whitlock, and H. Alles, g. Amer. Chem. Soc., 96, 3959 (1974). D. M. Grant and E. G. Paul, J. Amer. Chem. Soc., 86, 2984 (1964). M. Kuo, Private Communication. R. P. Lang, J. Amer. Chem. Soc., 84, 4438 (1962). A. M. van Leusen, H. Siderius, B. E. Hoogenboom, and D. van Leusen, Tetrahedron Lett., 5337 (1972). A. Gossauer, ”Die Chemie der Pyrrole”, Springer—Verlag, Berlin, 1974. J. M. Patterson, Synthesis, 281 (1963). E. Baltazzi and L. I. Krimen, Chem. Rev., 511 (1963). G. G. Kleinspehn, J. Amer. Chem. Soc., 77, 1546 (1955). M. King, Ph.D. thesis, Harvard University, 1970. $é7§owman, Ph.D. thesis, Michigan State University, 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 232 R. Berger, Ph.D. thesis, Michigan State University, 1977. H. Midorikawa, Bull. Chem. Soc. Jpn., 27, 143 (1954). C. A. Brown and V. K. Ajuja, J. Org. Chem., 38, 226 (1973). ”W H. C. Brown, R. C. Larock, and S. K. Gupta, J. Amer. Chem. Soc., 93, 4371 (1971). R. C. Larock and J. C. Bernhardt, Tetrahedron Lett., 3097 (1975). J. D. Taylor and J. F. Wolf, Chem. Comm., 876 (1972). K. Teo, G. Barnett, H. Anderson, and C. Loader, Can. J. Chem., 56, 221 (1978). R. V. Stevens, L. E. DuPree, Jr., and P. L. Loewonstein, J. Org. Chem., 25, 1673 (1960). J. B. Paine III, Ph.D. thesis, Harvard University, 1973. R. Grigg, A. W. Johnson, and J.W.F. Wasley, J. Chem. Soc., 359 (1963). A. Tetrahedron Lett. S. Kende, L. S. Liebeskind, and D. M. Braitsch, , 3375 (1975). C. A. Brown and U. K. Akuja, J. Org. Chem., 38, 2226 (1976). "w A. Treibs and K.-H. Michl, Justus Liebigs Ann. Chem., 577, 129 (1952). H. Fischer, K. Schneiler, and W. Zerweck, Chem. Ber., 55, 2390 (1922). P. S. Clezy, A. J. Lieps, A. W. Nichol, and G. A. Smythe, Aust. J. Chem., 23, 589 (1970). J. B. Paine III and D. Dolphin, Can. J. Chem., 54, 411 (1976). ”w I llIIIIHIIIWIIIWIHIHIWWIIIIllIWHIIIIIIIIHIIWI :4 £5 ” E