

This is to certify that the

thesis entitled

HALOGENATED ALIPHATIC HYDROCARBON NEPHROTOXICITY

presented by

William Michael Kluwe

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Pharmacology & Toxicology

Major professor

Date____5-1-79

O-7639

OVERDUE FINES ARE 25¢ PER DAY PER ITEM

Return to book drop to remove this checkout from your record.

and the second of the second s

٠.,

HALOGENATED ALIPHATIC HYDROCARBON NEPHROTOXICITY

By

William Michael Kluwe

A DISSERTATION

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Pharmacology & Toxicology

ABSTRACT

Halogenated Aliphatic Hydrocarbon Nephrotoxicity

by

William Michael Kluwe

Dietary ingestion of polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) increased renal and hepatic aryl hydrocarbon hydroxylase (AHH) activities in a dietary concentration-dependent manner. Mixed-function oxidase (MFO) activities were also induced in liver and kidney by i.p. administration of 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) and 3-methylcholanthrene (3MC), but sodium phenobarbital (NaPb) increased hepatic MFO activities only.

Renal and hepatic AHH activities and cytochrome P-450 (P-450) concentrations in male, Fischer 344 rats were increased by treatments with PBB, PCB and 3MC. NaPb increased hepatic AHH activity and P-450 content only. The rates of increase (and decline to normal values) of AHH activities following single oral doses of PBB, PCB and 3MC were much greater in the kidney than in the liver.

Treatment with 3MC increased the susceptibilities of renal and hepatic AHH to inhibition by α -napthflavone (ANF) in <u>vitro</u> while NaPb increased the susceptibility of hepatic but not renal AHH to inhibition by metyrapone (MET). PBB and PCB increased the susceptibility of renal AHH to inhibition by ANF but did not alter the susceptibility of hepatic AHH to inhibition by ANF or MET. Renal AHH was significantly

William Michael Kluwe

less susceptible than hepatic AHH to inhibition by SKF 525-A and MET. Low concentrations of ANF stimulated hepatic AHH activity <u>in vitro</u> but inhibited renal AHH activity. Renal AHH activities were less susceptible than hepatic AHH activities to reduction by i.p. administration of SKF 525-A and piperonyl butoxide (PB).

Treatments of mice with PBB and PCB potentiated the nephrotoxicity and hepatotoxicity of carbon tetrachloride $(CC1_4)$ in rats and mice. PBB, PCB and HCB also increased total lipid content of the liver but not the kidney.

Treatments of mice with PBB and NaPb increased the hepatotoxicity of chloroform (CHCl₃). CHCl₃ nephrotoxicity was increased by PBB but decreased by PCB, 3MC and TCDD.

Preadministration of PB reduced the toxicity of CHCl₃ in mice. Administration of SKF 525-A before (120 min) CHCl₃, and SKF 525-A or PB after (60 min) CHCl₂, potentiated CHCl₄ toxicity.

CHCl₃ depleted renal and hepatic glutathione (GSH) in intact mice in a dose-dependent manner. PBB enhanced CHCl₃ depletion of renal and hepatic GSH. PCB blocked CHCl₃ depletion of renal GSH but did not alter CHCl₃ depletion of hepatic GSH. Diethyl maleate reduced renal and hepatic GSH concentrations and increased the susceptibility of mice to CHCl₄ toxicity.

Incubation of (^{14}C) -CHCl₃ with renal and hepatic microsomes resulted in the covalent binding of radioactivity to microsomal protein (290 pmoles/mg protein/5 min, liver; 15 pmoles/mg protein/5 min, kidney). Hepatic microsomes from PBB and PCB treated mice bound more radioactivity than hepatic microsomes from control mice. Renal

William Michael Kluwe

microsomes from PCB treated mice bound more radioactivity than renal microsomes from control and PBB treated mice.

Radioactivity was covalently bound to renal and hepatic endoplasmic reticulum (ER), mitochondria (M), cytoplasmic protein (CP) and nuclear RNA and DNA following i.p. administration of (^{14}C) -CHCl₃ to mice. The magnitude of binding to hepatic M and CP was increased by pretreatment with PBB and PCB but binding to renal ER, M, CP, RNA and DNA was decreased. Clearance of radioactivity from venous blood was a first-order process and occurred more rapidly in PBB and PCB pretreated mice than in control mice.

The results of this dissertation suggest that the nephrotoxicities of halogenated aliphatic hydrocarbons may depend, in part, on biotransformation to a metabolite which is responsible for the toxicity. The site of toxic metabolite formation may be liver, kidney or both.

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Drs. Steven Aust, Theodore Brody, Bernard Schwetz and Robert Roth for constructive criticism of the dissertation research and especially to Dr. Jerry Hook for moral support and intellectual guidance throughout my graduate studies at Michigan State University. I would also like to thank Forest Clark, Cathy Herrmann, Robert McNish, Harriett Sherman and Kenneth Smithson for their excellent technical assistance.

Most of all I would like to thank Cathy, who stood fast beside me through some exciting, but often difficult, times. Much of this dissertation is owed to her patience and soothing presence.

TABLE OF CONTENTS

Page

ACKNOWLED	OGEMENTS	ii
LIST OF T	TABLES	vi
LIST OF H	IGURES	viii
INTRODUCT	CION	1
Α.	The Kidney as a Target Organ	1
	 Incidence and costs of human nephropathy Pathophysiology of toxic nephropathy Aspects of renal structure and function predisposing to kidney injury Nephrotoxic chemicals 	1 2 4 6
В.	Metabolic Activation of Toxicants	8
	 Reactive metabolites and tissue injury Locations and functions of drug-metabolizing enzyme (DME) systems	8
	 Balance between enzymatic toxification and detoxi- fication Tissue-specific metabolic activation 	13
C.	Biotransformation Capacity of the Kidney	17
	 Characteristics Physiological and toxicological significance of renal biotransformation 	17 20
D.	Nephrotoxicity of Halogenated Aliphatic Hydrocarbons	23
	 Incidence Toxicological manifestations Mechanisms of toxicity 	23 26 28
Ε.	Purpose	31
F.	Objectives	32
MATERIALS	AND METHODS	34
Α.	Animals and Experimental Diets	34
В.	Toxicity Tests	34
	1. Serum analyses	34

TABLE OF CONTENTS (continued)

Page

	 Renal cortical slice accumulation of PAH and TEA 31 LD determinations 34 Histology 35 Definitions of toxicity 35 	5 6 6 7
С.	Analyses of Components of the Drug-metabolizing Enzyme Systems 3	8
	 Tissue preparation	8
	 Aryl hydrocarbon hydroxylase (AHH) assay 3 Biphenyl-2-hydroxylase (BP-2-OH) and biphenyl-4- 	39
	5. Cytochrome P-450 assays 4	+0 40
D.	Individual Experiments 4	41
	1. Time-dependency and organ-specificity of induction and inhibition of renal and hepatic drug-metaboli-	, ,
	 2. Effects of stimulation and inhibition of renal and hepatic drug-metabolizing enzyme systems on CHCl₃ 	÷Τ
	and CC1 ₄ toxicity	43 47
	4. Covalent binding of CHC1 ₃ metabolites in mice 4	49
E.	Statistics	52
RESULTS		54
Α.	Enzyme Induction and Inhibition	54
	1. Effects of length of exposure and dietary concen- tration of PBB and PCB on renal and hepatic AHH activities	54
	2. Effects of NaPb, 3MC, PCB and TCDD on renal and hepatic enzymes in mice	57
	 Biggette enzymes in mice	57
	4. Inhibition of renal and hepatic AHH activity in vitro 6	9
	5. Time-dependent effects of single doses of SKF 525-A and PB on renal and hepatic PCNMA and AHH activities in rats and mice7	3

TABLE OF CONTENTS (continued)

В.	Enzyme Modulation and CC1 ₄ and CHC1 ₃ Toxicity	76
	1. Effects of dietary PBB and PCB on CC1 ₄ toxicity in	76
	2. Effects of PBB, PCB and HCB on CC1 ₄ toxicity in	70
	3. Effects of PBB and PCB on hepatocellular GPT and	81
	 GOT activities in rats 4. Effects of maternal consumption of PBB on the toxicities of CCl₄ and CHCl₃ in developing male 	91
	rats	101
	6. Effects of NaPb, 3MC, PCB and TCDD on CHCl ₃ toxi-	101
	7. Effects of SKF 525-A and PB on CHCl ₃ toxicity in	107
	mice	114
С.	Interactions of CHCl ₃ with GSH	114
	1. Effects of PBB and PCB on CHC1induced depletion of GSH	114
	2. Effects of diethyl maleate on GSH depletion and CHC1, toxicity in mice	121
D.	Covalent Binding of CHCl Metabolites in Mice	126
2.	Constant binding of Onol anteholites in Mice	120
	1. Covalent binding of CHCl ₃ metabolites to renal and benatic microsomal protein in vitro	126
	 Clearance of CHCl₃ and metabolites from blood and covalent binding to total renal and hepatic pro- 	120
	tein in vivo	126
	3. Covalent binding to subcellular fractions in vivo-	135
DISCUSSIO	N	139
Α.	Chemical Modulation of Renal Drug Metabolism	139
Β.	Renal Drug Metabolism and CC1, Nephrotoxicity	156
С.	Renal Drug Metabolism and CHCl ₃ Nephrotoxicity	163
SPECULATI	ON	177
Α.	Phosgene and CHCl ₃ Toxicity 1	177
SUMMARY	1	180
BTRLTOCPAT		107
	· · · · · · · · · · · · · · · · · · ·	104

Page

LIST OF TABLES

Table	P	age
1	Nephrotoxic Halogenated Aliphatic Chemicals	24
2	Dietary concentration-dependent induction of aryl hydrocarbon hydroxylase (AHH) activities by polybro- minated biphenyls (PBBs) and polychlorinated biphenyls (PCBs)	55
3	Time-dependent induction of aryl hydrocarbon hydroxy- lase (AHH) activities by polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB)	56
4	Induction of mixed-function oxidases (MFOs) in liver and kidney	58
5	Measurements of aryl hydrocarbon hydroxylase (AHH) activities, p-chloro-N-methylaniline N-demethylase (PCNNA) activities and cytochrome P-450 concentrations in liver, kidney and testis of naive rats	59
6	Time-dependent effects of polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB), sodium pheno- barbital (NaPb), and 3-methylcholanthrene (3MC) on the location of soret maxima of reduced cytochrome P-450 difference spectra	63
7	α-Napthoflavone (ANF) inhibition of renal aryl hydro- carbon hydroxylase (AHH) activities in vitro at various times after a single dose of polybrominated biphenyls (PBB) or polychlorinated biphenyls (PCB)	70
8	Effects of dietary polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) on liver weight/body weight (LW/BW) and kidney weight/body weight (KW/BW)	77
9	Effects of polybrominated biphenyls (PBB) on the acute ${ m LD}_{50}$ of CC14	80
10	Effects of aromatic organohalides on liver weight/body weight (LW/BW) and kidney weight/body weight (KW/BW)	82
11	Effects of aromatic organohalides and CCl ₄ on lipid content of Liver (L) and kidney (K)	83

LIST OF TABLES (continued)

Table

12	Effects of aromatic organohalides and CCl ₄ on 48-hour	
13	Effects of aromatic organohalides and CC1 ₄ on 48-hour body weight gain	
14	86 Bffects of dietary polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) on henetic current	,
15	Effects of dietary polybrominated biphenyls (PBB) on liver weight/body weight (LW/BW) and kidney weight/body weight (KW/BW))
16	Percent of administered dose of CHCl ₃ remaining in liver and kidney 3, 6 and 12 hr after i.p. administra-	į
17	Covalent binding of CHC1 ₃ metabolites to subcellular fractions in vivo3	2
18	Covalent binding of CHCl ₃ metabolites to RNA and DNA	,
	138	

LIST OF FIGURES

Figure	e	
1	Metabolic fate of xenobiotic commoundance	Page
2	Time-dependent induction of cytochrome P-450 in liver, kidney and testis	- 14
3	Time-dependent induction of aryl hydrocarbon hydroxy- lase (AHH) activity in liver, kidney and travis	- 60
4	α-Napthoflavone (ANF) and metyrapone (MET) inhibition of aryl hydrocarbon hydroxylase (AHH) activities in vitro after multiple doses of polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB), sodium pento- barbital (NaPb) or 3-methylcholanthrene (MWC)	- 64
5	Inhibition of renal and hepatic microsomal ary hydro- carbon hydroxylase (AHH) activities in vitro by allyl- isopropylacetamide (AIA), SKF 525-A, metyrapone (MET), piperonyl butoxide (PB) and arganaphedra	- 67
6	Time-dependent inhibition of p-chloro-N-methylaniline N-demethylase (PCNMA) and aryl hydrocarbon hydroxylase (AHH) activities by SKF 525-A and piperonyl bucoxide (PB)	• 71
7	Effects of polybrominated biphenyls (PBB) and poly- chlorinated biphenyls (PCB) and CCl ₄ on SGOT and PAH S/M	74
8	Effects of aromatic organohalides and CCl ₄ on renal QO ₂ and PAH S/Ms	78
9	Effects of aromatic organohalides and CCl ₄ on SGPT activities	87
10	Sections of livers from rats receiving a sec	89
11	Hepatic tissue from rats receiving 0.00 ml/kg CC14-	92
12	Hepatic tissue from rats receiving 0.05 mL/kg CC14	94
13	Hepatic tissue from rats receiving 2.00 ml/kg CCl ₄	96 98

LIST OF FIGURES (continued)

Figure

14	Effects of exposure to polybrominated biphenyls (PBB) during development of body weight at 52 days of age 102	
15	Effects of polybrominated biphenyls (PBB) and CC1 ₄ on SGPT and PAH S/M 104	
16	Effects of dietary polybrominated biphenyls (PBB) and i.p. CHCl ₃ on SGOT activity 108	3
17	Effects of dietary polybrominated biphenyls (PBB) and i.p. CHCl ₃ on BUN concentration and PAH S/M 110)
18	Effects of chloroform and inducers of mixed-function oxidases (MFOs) and SGPT activity 11	2
19	Effects of chloroform and inducers of mixed-function oxidases (MFOs) on PAH S/M 11	.5
20	Effects of CHCl ₃ and piperonyl butoxide (PB) or SKF 525-A (SKF) on SGPT and PAH S/M 11	L7
21	Reduction of renal and hepatic glutathione (GSH) con- tent by CHC1 ₃ 11	L9
22	Depletion of renal and hepatic reduced glutathione (GSH) by diethyl maleate 12	22
23	Effects of diethyl maleate and CHCl ₃ on SGPT and PAH S/M 12	24
24	Covalent binding of CHCl ₃ metabolites to microsomal protein in vitro 12	27
25	Covalent binding of CHCl ₃ metabolites to renal and hepatic protein in vivo and residual radioactivity in kidney and liver 12	29
26	 A) Blood concentrations of radioactivity versus time. B) Log blood concentrations of radioactivity versus time	33
		-

INTRODUCTION

A. The Kidney as a Target Organ

1. Incidence and costs of human nephropathy

It is generally believed among health professionals that renal dysfunction is a major factor in human disease, either as the primary cause of disease, a contributing factor, or as a major symptom. Though accurate estimates of the overall incidence of kidney-related maladies are not currently available, more than 12 million persons in the United States alone are known to suffer from chronic debilitating diseases of the kidney and urinary tract (including prostatic enlargement, urolithiasis, chronic urinary tract infection and neuromuscular disorders of bladder control), and renal failure is the probable cause of death in an estimated 80,000 to 100,000 fatalities yearly (DHEW-NIH, 1978).

In addition to the human suffering wrought, kidney-related diseases are quite probably a significant contributing factor to rapidly rising health care costs. Though total expenditures for the diagnosis and treatment of kidney-related diseases are not known, the cost of a single federal program providing Medicare benefits to approximately 40,000 victims of end-stage renal disease (32,556 renal dialysis patients and 4,450 recipients of kidney transplants) was greater than 1 billion dollars in 1977 and is expected to rise to 3 billion dollars by 1984 (DHEW-NIH, 1978).

These indications of the high incidence and economic costs of human nephropathies suggest that laboratory and clinical investigations leading to the elucidation of the causes and consequences of renal injury as well as to its prevention may be of great benefit to mankind. Although the percentage of clinical nephropathies originating from or exacerbated by occupational and environmental exposure to nephrotoxicants is not known, the great variety of chemicals demonstrated to be nephrotoxic in experimental animals and their wide use in medicine, agriculture and manufacturing industries indicate that the potential for chemically induced nephrotoxicity is great.

2. Pathophysiology of toxic nephropathy

Chemically induced toxic nephropathy was defined by Schreiner and Maher (1965) as an "adverse functional or structural change in the kidney due to the effect of a chemical . . . inhaled, injected, ingested or absorbed, or which yields toxic metabolites with an identifiable effect on the kidney". While the consequences of such toxic insults to the kidney can be many and varied, the most important, perhaps, is renal failure, a condition in which the regulation of body fluid and solute balance is lost. Prolonged renal failure is incompatible with continued survival and artificial means (hemodialysis) must be employed if the victim is to survive.

Renal failure in humans is characterized by oliguria (less than 400 ml urine per day) or anuria, a low urine to plasma urea and creatinine ratio (urine is isotonic), and a high fractional sodium excretion (Levinsky, 1977). Renal resistance is increased with a concomitant decrease in renal blood flow. Such nonspecific signs

provide few hints of the etiology of this condition. Renal failure has been produced in experimental animals by administration of a variety of chemicals and mechanical constriction of the renal artery. Two general models of acute renal failure have emerged from studies on experimental animals. In the first, the vasoconstrictor model, increased resistance in the pre-glomerular vasculature appears to be responsible for tubular ischemia and resultant cellular hypoxia and the loss of energy-dependent tubular functions (Levinsky, 1977; Stein et al., 1978). In the other, the nephrotoxic model, tubular dysfunction appears to be caused by direct disruptive effects of nephrotoxicants on epithelial tubular cells, primarily those of the proximal tubule (Levinsky, 1977; Stein et al., 1978). It is generally believed that renal failure in humans, as a clinical entity, most likely encompasses aspects of both experimental models and that renal ischemia and tubular necrosis are interdependent phenomena (Levinsky, 1977). Acute renal failure may gradually revert to normal renal function when exposure to the toxicant is stopped, but the condition may be permanent if the initial injury is severe.

Although morphological and functional characteristics of experimentally induced toxic nephropathy have been described in detail (Biber <u>et al.</u>, 1968; Dach and Kurtzman, 1976; McDowell <u>et al.</u>, 1976), the animal studies reported to date have failed to clearly identify critical subcellular lesions and mechanisms of injury. However, it is likely that the initiating event in many cases occurs on the molecular level and that the overall response of the kidney to the initial lesion may be determined by the types of cells affected,

the quantitative amount of tissue damage produced and, in the case of immature animals, developmental status of the kidney at the time of exposure to the toxicant. The mature kidney, for example, is composed of anatomically segregated groups of cells with highly specialized functions, and even damage limited to a relatively small, discrete population of cells may upset the functional interrelationships between diverse cell groups and produce a generalized loss of functional renal capacity. The fetal kidney, in contrast, is both anatomically and functionally immature and insult occurring during this period generally manifests as structural anomalies such as renal agenesis, renal cysts or hydronephrosis (Gibson, 1976). The relative amount of tissue damage initially produced may also determine the overall renal response to chemical insult because the normal kidney contains a significant functional reserve capacity that allows for the maintenance of normal kidney function despite the loss of functional tissue. The kidney, furthermore, is capable of limited regeneration of damaged tubular epithelium (Foulkes and Hammond, 1975). The effects of these factors on renal response to molecular lesions greatly complicate detection of renal injury and elucidation of the pathophysiology of toxic nephropathies.

Aspects of renal structure and function predisposing to kidney injury

Several factors contribute to the overall sensitivity of the mammalian kidney to chemical injury. These include a high rate of perfusion, high oxygen demand, active and passive transport of chemicals across tubular epithelium and the serial arrangement of the

nephrons. Although human kidneys comprise only 4% of body weight, they receive nearly 25% of resting cardiac output, most in the cortical region, enhancing the possibility that renal cells will be exposed to large amounts of blood-borne toxicants. In addition, the kidney has a high rate of oxygen consumption and is very sensitive to cellular anoxia (Berndt, 1976; Venkatachalam et al., 1978). Equally important in determining sensitivity to toxicants is the anatomical and functional segmentation of the nephron, the basic unit of the kidney. In brief, each nephron is composed of a vascular, a glomerular, and a tubular component. The vascular component regulates the initial flow of blood to the nephron but also remains closely associated with the tubular component with which it exchanges fluids and solutes (Tischer, 1976). Filtration of fluids and solutes from capillary blood into the tubular lumen occurs in the glomerular component and absorption, secretion and excretion of fluid and solute occurs largely in the tubular component. Because of the serial arrangement of the nephron components direct toxicant-induced damage and loss of normal function in one nephron component may indirectly alter function in the other components and produce a generalized loss of functional renal capacity.

The tubule appears to be the part of the nephron that is most sensitive to chemically induced injury (Schreiner and Maher, 1965). One reason for this sensitivity may be that renal tubular cells are exposed to much higher concentrations of certain toxicants than are other cells. For example, nearly 99% of the fluid volume filtered at the glomerulus is reabsorbed across tubular epithelium, most in the

proximal portion of the tubule. Thus, proximal tubular cells are exposed to large quantities of filtered, reabsorbed toxicants and cells of the pars recta as well as cells of the distal tubule are exposed to high concentrations of filtered, non-reabsorbed toxicants. Furthermore, the countercurrent multiplier system, dependent on high medullary tissue oncotic pressure and low medullary blood flow, may lead to the development of prolonged, high concentrations of toxicants in the renal medullary interstitium. Additionally, high intracellular concentrations of toxicants may be produced by the active transport of toxicants from blood or tubular fluid into tubular cells. Even toxicants tightly bound to plasma proteins may be accumulated intracellularly by active transport mechanisms (Foulkes and Hammond, 1975). Finally, cells of the proximal tubule contain cytochrome P-450 and several mixed-function oxidases (MFOs) that are potentially capable of metabolizing xenobiotic chemicals to reactive, toxic products (Uehleke and Greim, 1968; Fowler et al., 1977; Kluwe et al., 1978). These properties, therefore, may be largely responsible for the high sensitivity of renal tubular cells to chemical toxicity.

4. Nephrotoxic chemicals

A great number of chemicals with diverse structural and physical characteristics have been identified as nephrotoxicants. Many of these compounds are of great importance to medicine, agriculture and the manufacturing industries (Schreiner and Maher, 1965; Hook <u>et al.</u>, 1978a). In addition, some food additives and food contaminants, many naturally occurring fungus-derived food contaminants and recognized pollutants of air and water produce renal injury when

administered to experimental animals (Suzuki <u>et al</u>., 1975; Krogh <u>et</u> <u>al</u>., 1976; Thacker and Carlton, 1977; Ross <u>et al</u>., 1978). However, the lack of sensitive, non-invasive diagnostic techniques for detecting functional renal damage and the absence of a centralized system for the reception and assimilation of reports concerning suspected cases of chemically induced nephropathy may delay or prevent the recognition of the nephrotoxic effects of many such chemicals in man. For these reasons it is difficult to assess the importance of nephrotoxic chemicals in the etiology of human kidney disease.

Therapeutic agents recognized as nephrotoxicants include many non-marcotic analgesics, general anesthetics, x-ray contrast materials, and numerous antibiotics (Mazze <u>et al.</u>, 1976; Appel and Neu, 1977; Hook <u>et al.</u>, 1978a). Except for non-narcotic analgesics, access to nephrotoxic drugs generally is restricted to persons under medical care and the hazard of renal injury can be minimized by judicious drug use and careful monitoring for signs of renal dysfunction.

Nephrotoxic agents to which exposure generally occurs in the absence of medical supervision, that is, the non-therapeutic chemicals, include many metals (As, Bi, Cd, Cr, Hg, Pb, Pt, Ur), organic solvents, glycols, monomeric chemicals (e.g., vinyl chloride), chemical flame retardants, pesticides and fungal toxins (Plaa and Larson, 1965; Schreiner and Naher, 1965; Berndt and Hayes, 1977; Kociba <u>et al</u>., 1977; Osterberg <u>et al</u>., 1977; Hook <u>et al</u>., 1978a; Ross <u>et al</u>., 1978). Although attempts have been made to identify chemical properties and structures common to nephrotoxicants, such endeavors to date have not been fruitful.

B. Metabolic Activation of Toxicants

1. Reactive metabolites and tissue injury

In 1947 Miller and Miller reported that the administration of several chemical carcinogens to rats resulted in covalent binding of the carcinogens to hepatic proteins. The initial studies documenting the covalent binding of carcinogens to genetic molecules were published ten years later (Wheeler and Skipper, 1957). Subsequent studies have demonstrated that nearly all chemical carcinogens bind covalently to macromolecules; either in their native form (alkylating agents) or after metabolism to electrophilic products (Miller, 1970; Cavalieri et al., 1978). Current evidence indicates that the nonspecific alkylation or arylation of critical informational macromolecules may be an initiating event in the neoplastic transformation of mammalian cells by carcinogenic chemicals (Miller and Miller, 1974; Miller and Miller, 1977). Enzymatic metabolism within mammalian cells, furthermore, may largely determine the carcinogenic potential of certain classes of chemicals. Qualitative and quantitative differences in the metabolism of foreign compounds in various tissues and species appear to contribute greatly to the tissue-specificities and species-specificities of chemical carcinogens (Bartsch et al., 1977).

More recently, the metabolism of xenobiotic chemicals to toxic, reactive intermediates has been implicated in chemically induced mutagenesis, teratogenesis and necrogenesis and in the development of certain blood dyscrasias and immunological disorders (Brodie, 1967; Ames <u>et al.</u>, 1973; Gillette <u>et al.</u>, 1974). It has been proposed, for example, that strong electrophilic products of xenobiotic
metabolism covalently bind to nucleophilic sites on cellular macromolecules in a nonspecific manner (Gillette, 1974). Sufficient alkylation of essential macromolecules may lead to cell dysfunction and cell death. Relationships between the generation of reactive metabolites and the development of acute tissue injury have been studied most extensively in the rodent (primarily rat and mouse) liver, where positive correlations have been demonstrated between the binding of reactive metabolites to hepatic proteins and lipids and the disruption of membrane structures, loss of hepatocyte function and hepatocellular necrosis (Gillette, 1977). Few positive correlations between alkylation in non-hepatic organs and acute tissue injury, however, have been reported (Mitchell et al., 1977). Although direct cause and effect relationships between covalent binding and acute hepatic injuries have not been unequivocally demonstrated, many investigators have proposed that covalent binding may be a mechanism of toxicity and that the generation of reactive intermediates is the critical step in the activation of many hepatotoxicants (Gillette, 1974; Mitchell and Jollow, 1975; Thorgeirsson and Wirth, 1977).

Locations and functions of drug-metabolizing enzyme (DME) systems

Xenobiotic chemicals undergo at least four basic types of etabolism in mammals; oxidation, reduction, hydrolysis and conjugaion. The metabolic activation of many toxicants is believed to be ediated primarily by cytochrome P-450-dependent MFOs, a heteroenous group of membrane-bound enzymes that catalyze the oxidation numerous endogenous and exogenous compounds. MFO-mediated idations include: aliphatic and aromatic hydroxylations, N and O

dealkylations, N oxidations and hydroxylations, S demethylation, sulfoxidation, desulfuration and the deamination of primary and secondary amines (Goldstein <u>et al</u>., 1974). It is evident, therefore, that MFOs can accommodate a great variety of substrates.

Hepatic MFOs have been studied extensively in vitro. Homogenates of liver can be fractionated to obtain endoplasmic reticulum (ER) membrane fragments (microsomes) containing high specific activities of MFOs. By such investigations it has been determined that MFO reactions consume molecular oxygen and reduced pyridine nucleotides (NADPH) and require a specific hemoprotein (or a group of related hemoproteins) that acts as a terminal oxidase in the enzymatic reaction, and an unidentified lipid component (Goldstein et al., 1974). Cytochrome P-450 (P-450), the hemoprotein, is so-named because the difference spectrum of the reduced CO:hemoprotein complex displays an absorption maximum at 450 nm. Several forms of P-450 have been isolated from rat liver (Grasdalen et al., 1975; Ryan et al., 1975; Guengerich, 1977; Mailman et al., 1977; Ullrich and Kremers, 1977), and each appears to have different affinities for MFO substrates. his has led to speculation that quantitative and qualitative MFO ctivities within a single tissue, as determined by in vitro investiations with microsomes, may be regulated in part by the relative pncentrations of the different forms of P-450 present in the tissue Ullrich and Kremers, 1977).

P-450-dependent, MF0-mediated oxidations, as studied <u>in</u> <u>tro</u>, consume one mole of molecular oxygen and two reducing equivants (2 electrons) for each mole of substrate oxidized. The products

of the reaction are an oxidized substrate molecule and a mole of H_20 . In brief, the reaction is thought to occur in the following manner: the substrate binds to oxidized P-450, this complex is reduced by an electron from a reduced flavoprotein molecule (the electron is originally from NADPH), molecular oxygen "binds" with the reduced P-450substrate complex and another electron (from NADPH or NADH) is introduced, whereupon the complex decomposes and releases oxidized substrate (containing an atom of oxygen from molecular oxygen), oxidized P-450 and H_20 (from the reduction of an atom of oxygen) (Goldstein <u>et</u> <u>a1</u>., 1974). The wide substrate specificity of the P-450-dependent MFO system allows for the oxidative metabolism of a great variety of chemicals, both endogenous and exogenous, by a single enzyme system.

P-450-dependent MFOs are generally located in cellular membranes, primarily in the ER but also in the mitochondria and the nuclear envelope (Ghazarian and DeLuca, 1974; Kashnig and Kasper, 1969). Mitochondrial MFO activities are particularly high in the adrenal cortex where extensive steroid hydroxylation occurs (Zampaglione and Mannering, 1973). Although MFO systems have been identified in many extrahepatic tissues (lung, kidney, adrenal, intestinal spithelium, skin, gonads, placenta) the specific activities of MFOs in hepatic ER, in general, are much greater than those in extrahepatic organs (Litterst <u>et al</u>., 1975, 1977; Fry <u>et al</u>., 1978). Many substrates for MFOs are lipid soluble, a property which may facilitate iffusion across the plasma membrane and dissolution into the ER embrane prior to binding to P-450.

Non-microsomal oxidations and microsomal reductions have been less well-characterized. Their relationships to the metabolic activation of toxicants is not presently clear, though the metabolism of carbon tetrachloride to a reactive species appears to be mediated by microsomal reduction (Uehleke and Werner, 1975; Sipes <u>et al.</u>, 1977). Enzymatic hydrolysis, on the other hand, is generally restricted to esters and amides (Goldstein <u>et al.</u>, 1974) though the presence of an enzyme in the ER membrane that catalyzes the hydrolysis of epoxides (epoxide hydratase) has been reported recently and appears to be of great toxicological significance (Brooks, 1977; Oesch <u>et al.</u>, 1977). Synthetic reactions include glucuronidation (a microsomal reaction), acetylation (a non-microsomal reaction), mercapturic acid formation (non-microsomal) and sulfotransferase reactions (nonmicrosomal).

DMEs were originally described as "detoxification" systems, largely because the pharmacological activities of many therapeutic drugs were reduced by enzymatic degradation and the excretion of lipophilic toxicants was frequently hastened by enzymatic biotransformation (Goldstein <u>et al</u>., 1974). More specifically, however, DMEs appear to convert lipophilic substrates into more polar products that can be readily excreted in the urine or faces (Goldstein <u>et al</u>., 1974). In certain instances, however, the products of microsomal metabolism, though more polar than the parent compound, may be chemically unstable species that rapidly react with appropriate, proximate, cellular molecules in a nonspecific manner (Gillette, 1977; follow and Smith, 1977). Examples of such reactions include oxidative

dehalogenations of chlorinated aliphatic hydrocarbons and epoxidations of polycyclic aromatic hydrocarbons (Docks and Krishna, 1976; Pohl <u>et al.</u>, 1977; Cavalieri <u>et al.</u>, 1978). The metabolites produced by the above reactions are generally strong electrophiles that attack nucleophilic sites on proximate macromolecules in a nonspecific manner (Miller and Miller, 1970, 1974; Gillette, 1974, 1977).

3. Balance between enzymatic toxification and detoxification

The extent of damage produced in a specific tissue by a highly reactive intermediate is probably proportional to the innate sensitivity of the affected tissue to the presence of the reactive species and proportional to the concentration of reactive metabolites in the tissue. Thus, tissues possessing mechanisms to protect against electrophile injury or to repair electrophile damage will probably be less sensitive than tissues without such protective mechanisms. In addition, the molecular lesion produced may be of greater functional consequence in some tissues than in others. Where these factors are equal, however, relative tissue injury may be directly proportional to the amount of reactive metabolite formed within the tissue.

Most P-450-dependent MFO activities appear to be firstorder reactions under <u>in vitro</u> conditions (and, presumably, under <u>in</u> <u>vivo</u> conditions) (Goldstein <u>et al</u>., 1974; Jollow and Smith, 1977). The rate of generation of reactive metabolites, therefore, is dependent upon the affinity of the enzyme for the substrate and the amount of substrate available (Gillette, 1977). Availability of substrate (generally the parent compound) in biological systems can be directly

affected by the presence of competing pathways of metabolism and by the excretion of substrate in an unchanged form. In addition, toxic, reactive metabolites can frequently be enzymatically transformed to more stable, non-toxic products (Brooks, 1977; Jollow and Smith, 1977). These principles are illustrated in Figure 1 and have been reviewed recently by Jollow and Smith (1977). The relative activities of enzymatic metabolism to toxic products and to non-toxic products within a specific tissue may determine, to a large extent, the sensitivity of that particular tissue to chemical injury. That is, the balance between enzymatic toxification and detoxification reactions determines the concentration of reactive species present in the tissue at any specific time. Modifications of the relative activities of pathways 1, 2 or 3 in Figure 1 may change the percentage of parent compound metabolized to a toxic product via pathway 3 and,

Figure 1

thereby, cause an increase or decrease in the net amount of metaboite B formed. Similarly, changes in the activities of pathways 3 or

4 may alter the concentration of metabolite B, the proximate toxicant, within the tissue. Therefore, if tissue damage occurs as a result of the actions of a toxic, reactive intermediate on sensitive, cellular macromolecules then the extent of injury produced may be dependent on a set of interrelated pharmacokinetic parameters.

Reactions depicted by pathway 3 in Figure 1 are generally catalyzed by P-450-dependent microsomal MFOs and those of pathway 2 by MFOs or non-oxidative cytosolic enzymes (Jollow and Smith, 1977). Pathway 4 enzymes generally catalyze conjugation reactions (UDPglucuronyl transferase, glutathione-S-transferases, 3'-phosphoadenosine-5'-phosphosulfate transferase), but may also catalyze hydrations of electrophilic epoxides (Goldstein et al., 1974; Brooks, 1977; Jerina and Bend, 1977). Conjugations with glutathione (glutathione-S-transferases) and sulfate (sulfotransferases) are catalyzed by several different forms of cytosolic enzymes. The fact that many reactive metabolites thought to be generated at the ER are conjugated with glutathione and sulfate by cytosolic enzymes suggests that even reactive metabolites may possess limited mobility within the cell. UDP-glucuronyl transferase and epoxide hydratase, though, are microsomal enzymes and may metabolize reactive intermediates to more stable products prior to relocation from the ER membrane.

Recent investigations have demonstrated that complex aromatic molecules may undergo oxidative metabolism at multiple sites. 3,4-Benzo(a)pyrene, for example, can be oxidized to the 4,5-, 7,8-, r 9,10-epoxides (Conney <u>et al.</u>, 1977). Benzo(a)pyrene-7,8-epoxide an then be hydrated to benzo(a)pyrene-7,8-dihydrodiol and this

compound may be subsequently oxidized to benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide, a very potent mutagen and cytotoxicant (Borgen et al., 1973; Sims et al., 1974). Sequential metabolism of chemicals may enable relatively stable metabolites (e.g., benzo(a)pyrene-7,8dihydrodiol) to travel from the site of formation to other tissues where activation to the proximate toxicant (e.g., benzo(a)pyrene-7,8dihydrodiol-9,10-epoxide) may occur. For such chemicals the reaction sequences illustrated in Figure 1 may oversimplify the relationship of metabolism to toxicity.

4. Tissue-specific metabolic activation

The toxic effects of reactive intermediates are thought by many investigators to result from their chemical instability (Gillette, 1977; Jollow and Smith, 1977). Since biological membranes resist the passage of polar and ionic species, and since reactive chemical moieties exhibit short half-lives, it is unlikely that a truly reactive intermediate formed in one tissue would travel to another tissue and there produce direct injury. Bartsch et al. (1975, 1977), for example, reported a strong correlation between the abilities of various tissues to metabolize N-nitrosamine derivatives to reactive products and the sensitivities of the various tissues to nitrosamine injury. That is, N-nitrosamines appear to be metabolized to proximate toxicants and tissues most active in this biotransformation reaction are. accordingly, most susceptible to nitrosamine injury, implying that a cause and effect relationship exists between metabolic activation and tissue injury. Toxic metabolites with greater chemical stability, nowever, may produce injury in tissues distant from the site of

plite formation, especially if distant tissues are more sensitive proximate tissues to the molecular effects of the toxic metabo-

The neurotropic carcinogen 3,3-dimethyl-1-phenyltriazene, for le, is metabolized in the liver to a weak alkylating agent, 3-1-1-phenyltriazene, but produces brain tumors rather than hepatic s (Preussmann et al., 1969a,b). Brain tissue does not appear to ate (demethylate) 3,3-dimethyl-1-phenyltriazene (Preussmann, ,b), but exhibits a relative inability, in comparison to the , to excise 0⁶-methylguanine, a methylated DNA base produced by hyl-l-phenyltriazene in brain and liver DNA that is likely to base mispairing during nucleotide synthesis. The estimated life of 3-methyl-1-phenyltriazene, the toxic metabolite, in us medium (pH 7.40, 37°C) is slightly greater than one minute. time appears sufficient to allow for transport from the in vivo of formation (liver) to the target site (brain) since 3-methylmyltriazene injected i.p. methylated DNA bases in both liver rain (Bartsch et al., 1977). For relatively stable toxic olites such as 3-methyl-1-phenyltriazene there may be little lation between organ-specific biotransformation and organfic injury. That is, damage appears to be dependent largely on esponse of the tissue to the molecular lesion.

Biotransformation Capacity of the Kidney

L. Characteristics

DMEs, including P-450-dependent MFOs, are present in kidney ther extrahepatic organs. Many substrates for hepatic microsomal

lation appear to undergo the same types of reactions when incubated a renal microsomes, though the specific activities of the enzymes olved are generally much lower in the kidney than in the liver sterst <u>et al.</u>, 1975, 1977; Fry <u>et al</u>., 1978). The subcellular stions and actions of renal DMEs are generally similar to those wribed for the liver.

The renal P-450-dependent MFO system in the rat has been acterized by Jakobsson et al. (1970) and Orrenius et al. (1973). greement with earlier investigations (Kato, 1966; Ichihara et al.,), they reported that renal MFOs, like hepatic MFOs, required ced pyridine nucleotides as cofactors, molecular oxygen, and a rane-bound hemoprotein. The hemoprotein has been variously red to as cytochrome P-450, cytochrome P-450K, and cytochrome (henceforth referred to as P-450) because of the absorption uum at 454 nm in the reduced CO:hemoprotein difference spectrum. ost apparent difference between renal and hepatic MFOs is that pecific activities of most substrate oxidations and the concenons of P-450 in renal microsomes appear to be only 10-30% of in hepatic microsomes (Jakobsson et al., 1970; Orrenius et al., Litterst et al., 1975, 1977; Fry et al., 1978). In contrast, ecific activities of w and w-1 hydroxylations of fatty acids arly equal in renal and hepatic microsomes, prompting speculahat renal MFOs may primarily oxidize endogenous fatty acids than lipophilic xenobiotic chemicals (Jakobsson et al., 1970; et al., 1972; Jakobsson and Cinti, 1973). The current methofor assessing renal microsomal MFO activities in vitro is

sically that methodology developed to maximize the specific activites of hepatic microsomal MFOs. Relatively little has been reported meerning the optimization of renal MFO activities <u>in vitro</u> (e.g., 4, temperature, substrates, cofactor concentrations, antioxidant meentrations). Thus, renal MFO activities, as currently measured <u>vitro</u>, may underestimate the biotransformation capacity of the dney.

Additional differences between renal and hepatic MFOs in dents (largely mice and rats) include dichotomies in sex-related fferences in enzyme activities, differential responses to stress .g., fasting, altered diet), and a resistance of renal MFOs to the ductive effects of phenobarbital (Litterst <u>et al.</u>, 1975, 1977; mabra and Fouts, 1974). Such differences suggest that control of activities is organ specific; for example, renal MFO activities intrarenally controlled.

An alternate explanation for the low activities of MFOs in al microsomal preparations in vitro may be that such enzymes are fined to a relatively small population of renal cells. MFOs ear to be components of the membrane of the smooth ER, an organelle ad in highest renal concentrations in the S_3 cells of the proximal les. The concentration of S_3 cells is greatest in the pars recta katachalam <u>et al</u>., 1978), that portion of the proximal tubule with greatest apparent susceptibility to toxicant damage and the est activity of active organic ion transport. If P-450-dependent are largely confined to this renal cell type, then homogenates of kidney or kidney cortex, either of which contain greatly diluted

ncentrations of the contents of S₂ cells, understandably exhibit low tivities toward most substrates for hepatic microsomal oxidation. support of the localization of high concentrations of P-450pendent MFOs in S3 cells, Fowler et al. (1977) have demonstrated at the anatomical distribution of MFO activities within the kidney ossly corresponds to the intrarenal distribution of S_3 cells. In lition, Zenser and Davis (1978) reported that renal MFO activities P-450 concentration exhibited a cortical-papillary gradient ighest in the cortex and outer medulla and lowest in the papilla), pattern similar to the distribution of S_3 cells in the kidney. ler et al. (1977) also reported that treatment of rats with ,7,8-tetrachlorodibenzo-p-dioxin greatly increased renal MFO actiies and increased the amount of smooth ER in S2 cells, though tomically adjacent S, cells and distal tubular cells were not ected. These studies suggest that P-450-dependent microsomal MFO ivities in S_{γ} cells may be quantitatively similar to those in atic parenchymal cells. Fractionation of microsomes from whole ney homogenates, however, results in a dilution of microsomes from cells and may be responsible for low specific activities of renal .

2. <u>Physiological and toxicological significance of renal</u> biotransformation

The urinary excretion of lipophilic agents is known to be need by conjugation reactions that increase the polarity of genous and exogenous compounds and retard their passive reabsorp-(Goldstein et al., 1974). The activities of many conjugating

enzymes, as measured by in vitro techniques, are nearly as high in the kidney as in the liver (Chhabra and Fouts, 1974; Litterst et al., 1975; Fry et al., 1978), suggesting that renal enzymes may be important in the excretion of some lipophilic substances. For example, renal biotransformation has been demonstrated to increase the urinary excretion of certain chemicals (Quebbeman and Anders, 1973; Acara et al., 1977) and to alter the activities of some hormonal agents (Blackwell et al., 1975). In addition, the oxidation of 25-hydroxycholecalciferol to 1,25-dihydroxycholecalciferol, the form of vitamin D most active in promoting intestinal absorption of calcium and bone mineral mobilization (Omdahl and DeLuca, 1971; Tanaka and DeLuca, 1971), appears to occur primarily in the kidney and is mediated by a P-450-dependent mitochondrial MFO (Omdahl and DeLuca, 1973; Ghazarian and DeLuca, 1974, 1977). Thus, renal MFOs may be important in maintaining mineral homeostasis. The kidney also appears to be very active in synthesizing and degrading prostaglandins (Blackwell et al., 1975; Zenser et al., 1977), derivatives of arachidonic acid believed to participate in control of renal function. Thus, renal drug metabolism may be important in maintaining renal function.

The overwhelming capacity of the liver for xenobiotic metabolism clearly makes it the dominant organ in the quantitative biotransformation of toxicants. For reasons specified earlier, however, the kidney may largely be responsible for the generation of chemically eactive metabolites that produce renal injury. Hill <u>et al</u>. (1975), or example, have reported great strain differences in the nephrooxicity of CHCl_a in male mice, an apparent genetic phenomenon,

though strain differences in the hepatotoxicity of CHCl, were slight. Similarly, male mice were markedly more sensitive to the nephrotoxicity of CHCl₃ than were female mice, though sex differences in the hepatotoxicity of CHC1, were not apparent (Klaassen and Plaa, 1967). These results may be due to inherent differences in the response of the kidneys in male and female mice and various strains of mice to CHCl3 or to sex-related and strain-related differences in renal biotransformation of CHCl₃. Reports indicating that treatment with testosterone, a hormone that alters xenobiotic metabolism, enhanced the susceptibility of female mice to CHCl₃ nephrotoxicity without producing morphological changes in the kidney and that castration reduced the sensitivity of male mice to CHCl₃ nephrotoxicity suggest that the latter possibility, sex-related differences in renal biotransformation of CHCl₃, is the more likely reason for the insensitivity of female mice to CHCl₂ nephrotoxicity (Krus et al., 1974). In addition, Ilett et al. (1973) reported that more CHCl₃ metabolites were bound in kidneys of male mice than in kidneys of females following i.p. injection of CHCl, but no sex difference was observed in binding to liver. Thus, renal metabolism may be important in the activation of $CHCl_3$ to a reactive metabolite. Weekes (1975) has reported that a strong correlation exists between the abilities of renal microsomes from several strains of mice to metabolize dimethylnitrosamine to mutagenic products in vitro and the sensitivities of these same strains of mice to dimethylnitrosamine-induced renal tumorigenesis. Thus, renal MFO activities, though low when measured in whole kidney homogenates, may be of toxicological significance.

D. Nephrotoxicity of Halogenated Aliphatic Hydrocarbons

1. Incidence

The chemical and physical characteristics of nephrotoxic compounds are many and varied, as mentioned previously. One commonly used group of chemicals that has consistently proven to be nephrotoxic across a wide spectrum of mammalian species is the halogenated aliphatic hydrocarbons. A partial list of widely-used halogenated aliphatic hydrocarbons reported to be nephrotoxic in experimental animals is contained in Table 1. Although significant incidences of human intoxications resulting in renal failure have been reported for only 3 of these compounds (CHCl₃ and CCl₄, Von Oettingen, 1964; methoxyflurane, Mazze, 1976), the lack of extensive documentation of human renal damage produced by the other halogenated aliphatics should not be taken as an indication of their safety. Rather, human exposure to the rest of the compounds in Table 1 may currently be insufficient for the development of human nephropathies or for their detection by insensitive, non-invasive techniques.

Of recent concern is the increasing presence of halogenated aliphatic hydrocarbons, principally halomethanes and haloethanes, in murface waters used for municipal water supplies (Deinzer <u>et al.</u>, 978) and the potential consequences to human and environmental ealth of such pollution (Kuzma <u>et al.</u>, 1977; Cantor <u>et al.</u>, 1978; raybill, 1978). Sources of halogenated aliphatic hydrocarbon conmination of the general environment include agricultural runoff d industrial effluents. Additionally, haloalkanes may be produced unintentional chlorination of organic materials during sewage

TABLE 1

Nephrotoxic Halogenated Aliphatic Chemicals

Chemical	Reference
allyl chloride	Ross et al., 1978
carbon tetrachloride	Ross et al., 1978
chloroform	Ross et al., 1978
dibromochloropropane	Torkelson et al., 1961
1,1-dichloroacetylene	Reichert et al., 1978
1,1-dichloroethylene	Jenkins and Andersen, 1978
1,3-dichloropropene	Torkelson and Oyen, 1977
ethylene dibromide	Ross et al., 1978
hexachlorobutadiene	Ross et al., 1978
methoxyflurane	Mazze, 1976
1,1,2-trichloroethane	Klaassen and Plaa, 1966
trichloroethylene	Klaassen and Plaa, 1966
tris(2,3-dibromopropy1)	
phosphate	Osterberg et al., 1977
trihalomethanes (most)	Von Oettingen, 1964

sterilization (Deinzer <u>et al</u>., 1978). Contamination of surface waters with trace quantities of chlorinated aliphatic hydrocarbons is of concern, in part, because at least three halogenated aliphatic chemicals of industrial importance, CCl_4 , $CHCl_3$ and hexachlorobutadiene, have been reported to produce tumors in rodents ($CHCl_3$ and hexachlorobutadiene produced renal tumors, Kociba <u>et al</u>., 1977; Ross <u>et al</u>., 1978). Furthermore, a positive correlation has been found between the presence of $CHCl_3$ in drinking water and the incidence of renal tumors in males in certain industrialized regions of the United States (Cantor et al., 1978).

Very little, however, is known about the potential risk of meoplastic and non-neoplastic renal injury from long-term exposure to now concentrations of halogenated aliphatic hydrocarbons. Many of the compounds listed in Table 1 are used in chemical manufacturing rocesses and may be of special toxicological significance to occupational health. Although occupationally associated nephropathies do not appear to be common, two factors may obscure the relationship etween occupation and kidney disease. First, there is an inability of detect renal damage with common clinical tests until functional eserve capacity has been overwhelmed (and the victim is near death). scood, there is frequently a lengthy latency period between chemical posure and recognition of nephrotoxicity. Thus, the actual incince of chemical nephropathy may be greater than is currently recogzed.

In a recently published list, the National Science Foundation ranked organic chemicals according to their potential for producing harm to humans and the environment, based on parameters such as potencies as toxicants, yearly production volumes, rates of release into the environment, and biodegradation (Stephenson, 1977). Of the ten compounds perceived most hazardous, six were halogenated aliphatic hydrocarbons known to be nephrotoxic. Thus, it would seem that there should be concern for the possibility of renal injury resulting from industrial and occupational exposure to halogenated aliphatic hydrocarbons even though the incidence of recognized chemical nephropathy is currently low.

2. Toxicological manifestations

The nephrotoxic effects of CCl_4 were recognized as early as the turn of the century (cited in Smetana, 1939) and clinical descriptions of CCl_4 nephropathy from that time until the present abound in the literature (see Ross <u>et al.</u>, 1978). In brief, human ingestion or inhalation of large quantities of CCl_4 (20-400 ml) is generally followed by the rapid onset of nonspecific symptoms such as gastrointestinal disturbances and intense abdominal pain (Smetana, 1939; Schreiner and Maher, 1965). Oliguria or anuria, depending on the severity of the intoxication, develops over the ensuing 3-9 day period. Should the patient survive this period, the anuria progresses to oliguria (which may last for as long as 60 days), then to a transient state of diuresis and finally to normal renal function. Renal biopsies from survivors of CCl_4 intoxications exhibited tubular swelling and nonspecific degenerative cellular changes that were most severe in the

area of the proximal tubules. Microscopic lesions were similar in appearance, but more severe, in renal tissue from CCl_4 -induced fatalities examined at the time of autopsy. Frank renal cellular necrosis does not appear to be produced by even fatal amounts of CCl_4 (Smetana, 1939; Von Oettingen, 1964; Schreiner and Maher, 1965). The pathophysiology of CCl_4 intoxication in experimental animals (primarily rats, mice and rabbits) appears to be quite similar to that reported in humans except that the time sequence is shorter. That is, CCl_4 -induced renal dysfunction occurs long after elimination of the parent CCl_4 from the body (2-3 days), damage is most severe in the area of the proximal tubules and either the animal dies or renal function slowly returns to normal (Striker <u>et al.</u>, 1968).

The clinical manifestations of intoxication with CHCl₃ and other halogenated aliphatic hydrocarbons have not been characterized as well as those of CCl₄. Studies with experimental animals, however, suggest that most halogenated aliphatic compounds specifically damage the proximal tubules of the kidney (see references in Table 1). The lesion is evident histologically as a swelling of tubular epithelial cells that progresses, with increasing severity of intoxication, to necrosis and sloughing of tubular cells followed by tubular regeneration and a return to normal renal function or by tissue calcification and terminal renal failure. In contrast to the liver, where signs of intoxication are maximal within 24 hr, renal damage appears to be nost severe within 2-7 days after exposure (see references in Table 1). The functional manifestations of halogenated aliphatic hydrocarbon

intoxication are basically those expected following damage to the proximal tubule; proteinuria, glucosuria, increased fractional excretion of sodium and decreased clearance of p-aminohippuric acid (Sirota, 1949; Von Oettingen, 1964; Striker <u>et al</u>., 1968). Although the renal sequelae of intoxication with a great number of halogenated aliphatic compounds appear to be qualitatively similar, it is not known if halogenated aliphatic hydrocarbons produce renal injury by a common mechanism.

3. Mechanisms of toxicity

The strength of the carbon-halogen bond was originally believed sufficient to prevent substantial metabolic degradation of halogenated aliphatic hydrocarbons within mammalian cells. Early references to the pharmacokinetics of halogenated anesthetic gases, for example, implied that such compounds were excreted from the body wholly in an unchanged form. Zeller, however, had reported in 1883 (cited in Rubenstein and Kanics, 1964) that serum chloride concentrations in dogs chronically depleted of chloride were significantly elevated by anesthesia with CHCl2, suggesting that extensive dechlorination had occurred in vivo. Subsequent investigations have clearly demonstrated that substantial dehalogenation of organic compounds can occur in humans and experimental animals and, in fact, indicate that the primary method of excretion of some chlorinated hydrocarbons involves hepatic oxidative dehalogenation (Rubinstein and Kanics, 1964; Leibman, 1965; Brown et al., 1974a). The nephrotoxicity of at least one volatile anesthetic, methoxyflurane, has been attributed to hepatic defluorination and the resulting increase in

erum concentrations of fluoride ion, a nephrotoxic agent (Mazze, 976). The relationships between metabolism of halogenated aliphatic ydrocarbons and their nephrotoxicity, however, have not been ddressed extensively. In contrast, considerable efforts have been evoted to studying the relationship of metabolism to the hepatooxicity of halogenated aliphatic chemicals. It appears, in many ases, that these compounds are metabolically activated to hepatotoxiants. That is, the parent compound, which is relatively innocuous o the liver, is metabolized by hepatic enzymes to toxic products that roduce hepatocellular necrosis (Mitchell and Jollow, 1975). Sensiivity of the liver to the damaging effects of many halogenated alihatic hydrocarbons can be greatly altered by modulation of the enzyme ystems involved in xenobiotic metabolism (Suarez <u>et al.</u>, 1972; arlson, 1975).

Further support for the involvement of metabolites in haloenated aliphatic hydrocarbon hepatotoxicity is provided by correlaions between the chemical reactivity of such compounds and their politities to produce liver damage. The hepatotoxicities of equimolar nounts of a series of trihalomethanes (CHBr₃ > CHCl₃ > CHI₃), for cample, is inversely proportional to the carbon-halogen bond energy >-I > C-Cl > C-Br), suggesting that metabolic activation occurs st readily on molecules with labile bonds. Accordingly, increased logenation destabilizes the molecular structures of haloalkanes d increases their hepatotoxicity, but stabilizes the molecular ructures of haloalkenes and decreases their hepatotoxicity (Bonse 4 Henschler, 1976). The reactive, hepatotoxic metabolites

generally appear to be strong electrophiles that react with nucleophilic sites on cellular macromolecules in a nonspecific manner and may thereby produce cellular dysfunction, as discussed previously.

Relatively little is known about the role of biotransformation in the development of halogenated aliphatic hydrocarbon nephrotoxicity. Ilett et al. (1973) and Reid (1973), however, reported that metabolites of chlorobenzene, bromobenzene and CHC1, became covalently bound to renal proteins upon i.p. injection of the parent chemicals into mice. Renal binding in intact mice was greatest in the area of the proximal tubules, the site of halobenzene and CHC12induced renal damage. It seemed possible, therefore, that renal MFOs, whose activities are greatest in the proximal tubule, may have transormed the parent compounds into reactive, nephrotoxic products in a anner similar to that postulated to occur in the liver. Renal icrosomal protein, however, exhibited little or no capacity to enerate reactive metabolites in vitro (Ilett et al., 1973; Reid, 973). The authors speculated that reactive metabolites formed in ne liver might have travelled to the kidney as plasma protein-bound mplexes where they were released again as reactive, toxic interdiates (Ilett et al., 1973; Reid, 1973). As discussed previously, wever, quantitative, in vitro measurement of renal microsomal zyme activities may underestimate the biotransformation capacities segregated renal cell types (e.g., S3 cells). In addition, the hniques of in vitro covalent binding used by Ilett et al. (1973) Reid (1973) may be of questionable worth (when renal microsomes used) since Sipes et al. (1977) using the same technique, was

nable to demonstrate a dependency of covalent binding of CHCl₃ to enal microsomal protein on the presence of molceular oxygen and -450 and inhibition of covalent binding by CO.

. Purpose

The primary purpose of this investigation was to elucidate the echanisms by which halogenated aliphatic hydrocarbons produce acute cenal injury. For this reason the roles of hepatic and renal biotransormation and covalent binding in the development of halogenated alihatic hydrocarbon nephrotoxicity were evaluated. This required, to certain extent, characterization of the biochemical and physioloical responses of the liver and kidney to toxic halogenated aliphatic ompounds and determination of the capacities of kidney and liver for enobiotic metabolism, their relative responses to enzyme induction nd inhibition, and the manner in which such responses affected the ephrotoxicities and hepatotoxicities of selected chlorinated alinatic compounds. Attempts were also made to relate pharmacokinetics -sorption, distribution, excretion, and metabolism--to organ-specific xicities in intact animals and to determine the role of changes in armacokinetic behavior in the potentiation and inhibition of halocane toxicity. In addition, the roles of reactive and electrophilic ermediates in CHC1, nephrotoxicity were investigated.

Insights into the mechanisms of halogenated aliphatic hydrocarbon protoxicity in rodents may aid in the development of experimental alls with which to study human response to such toxicants. Approte experimental models are vital for extrapolation of toxicity

data from experimental animals to man. Such knowledge may also aid in predicting the toxicological consequences of chronic exposure to low concentrations of halogenated aliphatic chemicals, the potential for synergistic effects between organohalides, and the potential toxicity of newly-synthesized halogenated aliphatic compounds.

It is hoped that the results of this investigation will aid in understanding the roles of hepatic and renal biotransformation, reactive metabolites, and covalent binding of reactive metabolites in the development of halogenated aliphatic hydrocarbon nephrotoxicity. Additionally, it is hoped that these results can be applied to the assessment of such parameters in human response to nephrotoxicants.

Objectives

The specific objectives of this investigation are listed below.

 To determine the time-dependency and dietary concentrationlependency of induction of drug-metabolizing enzyme systems by letary ingestion of polybrominated biphenyls and polychlorinated iphenyls.

2. To determine the effects of treatment with sodium phenoarbital, 3-methylcholanthrene, polychlorinated biphenyls and 2,3,7,8etrachlorodibenzo-p-dioxin on renal and hepatic drug-metabolizing azyme systems. These compounds were used to modify chlorinated liphatic hydrocarbon toxicities.

 To examine the types of cytochrome P-450 induced in the dney by polybrominated biphenyls, polychlorinated biphenyls, 3thylcholanthrene and sodium phenobarbital.

4. To determine the effects of treatment with SKF 525-A and iperonyl butoxide on renal drug-metabolizing enzyme systems. These ompounds were used to modify chloroform toxicity.

5. To evaluate the effects of several inducers of drugetabolizing enzyme systems (polybrominated biphenyls, polychlorinated iphenyls, hexachlorobenzene) on carbon tetrachloride toxicity.

6. To determine the effects of inhibitors of drug-metabolizing nzyme systems (SKF 525-A, piperonyl butoxide) on chlorform toxicity.

7. To elucidate the relationship between glutathione concenrations in target tissues and chloroform toxicity.

8. To examine the dependency of organ-specific chloroform oxicity on covalent binding of chloroform metabolites to kidney and iver.

MATERIALS AND METHODS

A. Animals and Experimental Diets

ICR mice and Sprague-Dawley rats were purchased from Spartan Research Animals (Haslett, MI) and Fischer 344 rats from Harlan Industries (Indianapolis, IN). All animals were maintained in sanitary, ventilated animal rooms under controlled humidity, temperature and light-cycle for the duration of the experiments. Unless indicated otherwise, all animals were young adults at the time of use.

Experimental diets were prepared by mixing polybrominated biphenyls (PBB, Firemaster BP-6, Velsicol Chemical Co., St. Louis, MI) or polychlorinated biphenyls (PCB, Aroclor 1254, Monsanto Chemical Co., St. Louis, MO) in acetone slowly and evenly into finely-ground rodent pellets (Wayne Lab Blox, Chicago, IL). Analyses showed that the actual concentrations of PBB and PCB in diets prepared in this manner were within 8% of calculated concentrations. Control diet was formulated by mixing an equivalent amount of acetone into the ground diet.

3. Toxicity Tests

1. Serum analyses

Freshly-drawn whole blood was allowed to clot for 90-120 min t room temperature then carefully centrifuged and the serum fraction ithdrawn. Glutamic oxaloacetic transaminase (GOT) and glutamic

pyruvic transaminase (GPT) activities were determined in aliquots of serum (S) using Sigma reagent kits (Sigma Chemical Co., St. Louis, MO) and quantified as Sigma-Frankel units per ml serum. Urea nitrogen concentrations (BUN) were determined in aliquots of serum using a Sigma reagent kit.

2. Renal cortical slice accumulation of PAH and TEA

The abilities of renal cortical slices to accumulate the organic anion para-aminohippurate (PAH) and the organic cation tetrathylammonium (TEA) were determined in the following manner. The nimals (rats or mice) were weighed, killed by cervical dislocation r by decapitation and the kidneys removed, decapsulated, weighed nd placed in ice-cold saline (0.9% NaCl). Thin slices (approxiately 0.5 mm) of renal cortex were cut with a razor blade and 100-150 g of tissue (wet weight) incubated in 2.0 ml of a phosphate-buffered edium (Cross and Taggart, 1950) containing 1×10^{-3} Macetate, 1×10^{-4} M BA (Eastman Organic Chemicals, Rochester, NY), 5.8x10⁻⁶M PAH (Sigma) ad trace quantities of $({}^{3}$ H)-PAH and $({}^{14}$ C)-TEA (New England Nuclear, oston, MA). The slices were allowed to incubate for 90 min (to each equilibrium) at 25°C under an atmosphere of 100% 02. They re then removed, blotted, weighed and homogenized in 1.5 ml of 10% ichloroacetic acid (TCA), brought to a final volume of 5.0 ml with stilled water and mixed thoroughly. A 1.0 ml aliquot of medium was xed with 1.5 ml of 10% TCA and 2.5 ml of distilled water (total lume of 5.0 ml). The TCA solutions were then centrifuged to parate the precipitated protein and 1.0 ml aliquots of the supertant fraction added to 10.0 ml of Aqueous Counting Scintillant (ACS,

Amersham Corp., Arlington Heights, IL) and radioactivity determined by liquid scintillation spectrometry. Disintegrations per min (dpm) were determined using $({}^{14}C)$ -toluene and $({}^{3}H)$ -H₂0 (New England Nuclear) as internal standards. The slice-to-medium ratios, or S/M, of PAH and TEA were calculated as dpm/g tissue (wet weight) divided by dpm/ml incubation medium.

3. LD determinations

 LD_{50} values for chloroform (CHCl₃) and carbon tetrachloride (CCl₄) were determined in male mice by injecting solutions of CHCl₃ or CCl₄ in corn oil (total injection volume of 5 ml/kg) into the periioneal cavity and determining the cumulative number of deaths every 24 or thereafter. At least 10 animals were used at each dose. All urviving animals were observed for an additional 18 days after njection of CHCl₃ and CCl₄. LD₅₀ values, 95% confidence intervals and potency ratios were calculated by the method of Litchfield and ilcoxin (1949).

Histology

Samples of liver and kidney were fixed in buffered formalin 3.7% formaldehyde in 0.3 M sodium phosphate buffer, pH 7.2), abedded in paraffin blocks, sectioned at 5 microns, mounted on glass ides and stained with hematoxylin and eosin under the direction of 5. V.L. Sanger, Michigan State University, Department of Pathology, st Lansing, Michigan. Black and white photographs were taken at X magnification using Ektapan film (Eastman-Kodak Co., Rochester,). Histopathological examination was performed by Dr. V.L. Sanger.

For specific experiments, samples of liver and kidney were lso stained with periodic acid-Schiff (PAS), with and without prior lastase digestion, and evaluated for epithelial changes by Dr. J. ernstein, William Beaumont Hospital, Department of Anatomic thology, Royal Oak, MI, 48072. Formalin-fixed samples of liver were so stained with Gomori's trichrome, Wilders reticulin, Perl's rrocyanide for iron, and rubeanic acid for copper. Sections were aluated for cellular necrosis and vacuolization, nuclear enlargement olyploidy), inflammatory cell infiltration, and fibrosis or septaon on an arbitrary scale of 0-3+ (negative, mild, moderate, severe) Dr. J. Bernstein. Regenerative activity was estimated by counting totic figures per 40 random high-power fields.

5. Definitions of toxicity

Elevations of SGPT and SGOT activities were used as indicars of CCl₄ and CHCl₃ hepatotoxicity. The hepatotoxic effects of r₄ were also defined histologically, in selected experiments, as atocellular necrosis.

Decreases in PAH and TEA S/Ms were used as indicators of 4 and CHCl₃ nephrotoxicity. Intoxication with CHCl₃ also inased BUN concentrations and total kidney weight. Kidneys from 4-intoxicated rats were examined by light microscopy but histoloal evidence of cellular injury was not detected.

Losses of body weight and death were also used as indicators toxicity though the mechanism of such effects is unknown.

Analyses o С.

l. <u>Tiss</u>u

Samp]

several times a

KCl buffer, pH

grinder (0.10-0

were punctured

Tris-KC1 buffer

were then centr

and unbroken ce

14,000 x g for

the 14,000 x g :

the rest of the

60 min at 2°C.

resuspended in t

(or 20 mM Tris-]

stored for later

^{again} at 100,000

^{resuspended} in T

for 2-3 days unt

2. <u>p-Chlo</u>

PCNMA

^{fraction} of rena

Kupfer and Brugg

^{mixtures} were as

4 mM semicarbazi
C. Analyses of Components of the Drug-metabolizing Enzyme Systems

1. Tissue preparation

Samples of liver and kidney were weighed, minced, washed several times and homogenized in 3 volumes of ice-cold 20 mM Tris-1.15% C1 buffer, pH 7.40, using a motor-driven Potter-Elvehjem tissue rinder (0.10-0.15 mm clearance). The tunica albuginea of the testes vere punctured and the extruded contents homogenized in 3 volumes of ris-KCI buffer as described for livers and kidneys. The homogenates ere then centrifuged at 600 x g for 5 min at 2°C to separate nuclei nd unbroken cells, and the supernatant fractions centrifuged at 4,000 x g for 25 min at 2°C to separate mitochondria. An aliquot of he 14,000 x g supernatant fraction was removed and refrigerated and he rest of the supernate decanted and centrifuged at 100,000 x g for) min at 2°C. The resulting pellets (microsomal fraction) were esuspended in the original volume of 20 mM Tris-1.15% KCl buffer or 20 mM Tris-1.15% KCl-1 mM EDTA, pH 7.40, if the pellet was to be ored for later determination of cytochrome P-450) and centrifuged ain at 100,000 x g for 30 min at 2°C. The final pellet was then suspended in Tris-KC1 buffer for enzyme assays or stored at -70°C r 2-3 days until assayed for cytochrome P-450 content.

2. p-Chloro-N-methylaniline N-demethylase (PCNMA) assay

PCNMA activity was determined in the 14,000 x g supernatant action of renal, hepatic and testicular homogenates as described by pfer and Bruggeman (1966). Final concentrations in the incubation xtures were as follows: 0.4 mM NADP, 15 mM MgCl₂, 10 mM nicotinamide, mM semicarbazide, 8 mM glucose-6-phosphate, 1 U/ml glucose-6-phosphate

dehydrogenase CA). Protein et al. (1951), 8-10 mg/ml (te 3. Aryl AHH a fraction or the hepatic and ter (1968) and Oeso mixtures were a Tris, 5.8 mM gl genase and 1.0 were 0.25-0.65 (testis) when t 0.3 mg/ml (live x g pellet frac fluorometricall l cn light path relative fluore tion of quinine fluorescence un: length, 460 nm) The ir Corp., Philadelp Westchester, PA) Nutley, NJ), met ehydrogenase and 3 mM p-chloro-N-methylaniline (Calbiochem, La Jolla, A). Protein concentrations, as determined by the method of Lowry <u>t al</u>. (1951), were 2.0-2.5 mg/ml (liver), 4-5 mg/ml (kidney) and -10 mg/ml (testis).

3. Aryl hydrocarbon hydroxylase (AHH) assay

AHH activity was determined in the 14,000 x g supernatant raction or the resuspended 100,000 x g pellet fraction of renal, epatic and testicular homogenates as described by Nebert and Gelboin 1968) and Oesch (1976). Final concentrations in the incubation ixtures were as follows: 0.4 mM NADP, 0.25 mM NAD, 3 mM MgCl₂, 60 mM ris, 5.8 mM glucose-6-phosphate, 1 U/ml glucose-6-phosphate dehydroenase and 1.0 mM 3,4-benzo(a)pyrene (Sigma). Protein concentrations ere 0.25-0.65 mg/ml (liver), 1-4 mg/ml (kidney) and 3-4 mg/ml testis) when the 14,000 x g supernatant fraction was used, and 0.1-.3 mg/ml (liver) and 1-2 mg/ml (kidney and testis) when the 100,000 g pellet fraction was used. Product formation was estimated luorometrically using an Aminco spectrofluorimeter (quartz cuvettes, cm light path) and activity (formation of product) expressed as elative fluorescence units per mg protein per min. A 10 µM soluon of quinine sulfate in 0.05 M H_2SO_4 produced $2x10^3$ relative uorescence units (excitation wavelength, 365 nm; emission wavength, 460 nm).

The inhibitory effects of SKF 525-A (Smith, Kline and French Cp., Philadelphia, PA), piperonyl butoxide (PB, Chem Service, Stchester, PA), allyl-isopropylacetamide (AIA, Hoffman-LaRoche, ley, NJ), metyrapone (MET, Aldrich Chemical Co., Milwaukee, WI)

and *a*-napthof1 in vitro were except that the mixture was 1x added to achiev 1x10⁻³M. Stock distilled water sorbitan mono-c acetone. The v incubation mixt comprised 1% (v tions (no addit conducted. 4. <u>Bipher</u> (BP-4-BP-2-C x g supernatant to the method of incubation mixtu

™ glucose-6-pho

and 10.0 mM biph

^{0,2-0,4} mg/ml (1

5. <u>Cytoch</u>

Cytoch

^{(100,000} x g pel]

^{homogenates} were

^{photometer} (Beckm

 α -napthoflavone (ANF, Aldrich) on renal and hepatic AHH activities <u>vitro</u> were determined using the procedure outlined above for AHH ept that the concentration of 3,4-benzo(a)pyrene in the incubation ture was 1×10^{-4} M. Stock solutions of the various inhibitors were ed to achieve concentrations of 0 M, 1×10^{-6} M, 1×10^{-5} M, 1×10^{-4} M or 0^{-3} M. Stock solutions of 5KF 525-A and MET were formulated in tilled water, stock solutions of AIA and PB in 1% poloxyethylene bitan mono-oleate (Tween 80, Sigma) and stock solutions of ANF in tone. The various stock solutions of inhibitors were added to the ubation mixtures in such a manner that the stock solution vehicle prised 1% (v/v) of the total incubation mixture. Control incubans (no additions of inhibitors or inhibitor vehicles) were also hucted.

4. <u>Biphenyl-2-hydroxylase (BP-2-OH) and biphenyl-4-hydroxylase</u> (BP-4-OH) assays

BP-2-OH and BP-4-OH activities were determined in the 14,000 supernatant fraction of renal and hepatic homogenates according he method of Creaven <u>et al</u>. (1965). Final concentrations in the bation mixtures were as follows: 0.3 mM NADP, 2.5 mM MgCl₂, 3.8 lucose-6-phosphate, 0.5 U/ml glucose-6-phosphate dehydrogenase 10.0 mM biphenyl (Eastman Organic). Protein concentrations were 0.4 mg/ml (liver) and 0.8-1.2 mg/ml (kidney).

5. Cytochrome P-450 assays

Cytochrome P-450 concentrations in the microsomal pellets 000 x g pellet fraction) of hepatic, renal and testicular enates were determined spectrally using a dual-beam spectrometer (Beckman UV5260). The microsomal pellets were suspended in

100 mM sodium of 91 mmole⁻¹cr P-450 from the baselines of the difference spec D. Individual l. <u>Time-</u> inhib syste a. taining 25, 100 days. Another g or 200 ppm of P(with an equivale livers and kidne x g supernatant b. E Ι ^{taining 0} or 200 ^{injection} of TCD ^{20:1}, 0 or 16 µg/ ^{sacrif}ice. A sep ^(Sigma), 50 mg/kg 0 mM sodium phosphate buffer, pH 7.20, and an extinction coefficient 91 mmole $^{-1}$ cm $^{-1}$ used to calculate the concentrations of cytochrome 450 from the differences in soret maxima near 450 nm and the 490 nm selines of the sodium dithionite-reduced CO:hemoprotein-complex fference spectra (Omura and Sato, 1964).

Individual Experiments

- <u>Time-dependency and organ-specificity of induction and</u> inhibition of renal and hepatic drug-metabolizing enzyme systems
 - a. Effects of length of exposure and dietary concentrations of polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) on renal and hepatic AHH activities:

ICR, male mice (15-20 g) were maintained on diets conning 25, 100, or 200 ppm of PBB or 25, 200 or 400 ppm of PCB for 14 s. Another group of mice received diets containing 100 ppm of PBB 200 ppm of PCB for 21 days. Control mice received diet formulated an an equivalent amount of acetone. The mice were sacrificed, the ers and kidneys removed and AHH activities determined in the 14,000 supernatant fraction of renal and hepatic homogenates.

b. Effects of sodium phenobarbital (NaPb), 3-methylcholanthrene (3MC), PCB and 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD) on enzyme activities in kidney and liver in mice

ICR, male mice (15-20 g) were maintained on diets coning 0 or 200 ppm of PCB for 28 days or were given a single i.p. ction of TCDD (Dow Chemical Co., Midland, MI) in corn oil:acetone, , 0 or 16 µg/kg (total injection volume of 5 ml/kg), 72 hr before lifice. A separate set of mice received i.p. injections of NaPb ma), 50 mg/kg in distilled water, once daily for 4 consecutive days.

or 3MC (Eastma secutive days. 5 ml/kg and th The mice were of AHH, PCNMA, supernatant fra с. concentrations in distilled war sure studies ma. dose of PBB (90 or a single i.p. 24, 72, or 216 b of corn oil. Fo ceived successiv hr before sacrif 72 and 96 hr bef volumes of corn of Were killed at 8 sacrifice and AHF tions determined. hepatic AHH to in or 3MC (Eastman Organic), 25 mg/kg in corn oil, once daily for 3 consecutive days. The total injection volumes for NaPb and 3MC were 5 ml/kg and the final doses were administered 24 hr before sacrifice. The mice were killed, livers and kidneys removed, and the activities of AHH, PCNMA, BP-2-OH and BP-4-OH determined in the 14,000 x g supernatant fraction of renal and hepatic homogenates.

c. Effects of single and multiple doses of PBB, PCB, NaPb, and 3MC on renal, hepatic and testicular enzymes and cytochrome P-450 in rats

PBB, PCB and 3MC were dissolved in corn oil to achieve oncentrations of 18, 18, and 8 mg/ml, respectively. NaPb was dissolved n distilled water at a concentration of 33.5 mg/ml. For single expoure studies male, Fischer 344 rats (125-150 g) received a single oral ose of PBB (90 mg/kg), PCB (90 mg/kg) or 3MC (40 mg/kg) by gavage, r a single i.p. injection of NaPb (75 mg/kg) and were sacrificed 9. 4, 72, or 216 hr later. Control rats received an appropriate volume corn oil. For multiple-dose studies male, Fischer 344 rats reived successive oral doses of PBB or PCB (90 mg/kg) 24, 48, and 72 before sacrifice, or i.p. injections of NaPb (75 mg/kg) 24, 48, and 96 hr before sacrifice. Control rats received appropriate lumes of corn oil. Administrations were timed so that all animals re killed at 8 a.m. Kidneys, livers and testes were removed upon crifice and AHH and PCNMA activities and cytochrome P-450 concentraons determined. In selected cases, the sensitivities of renal and patic AHH to inhibition by MET and ANF were evaluated in vitro.

d. (125-150 g) re Pharmaceutical 75 mg/kg in wa were killed 1, PCNMA determin and hepatic hor 2. Effec druga. taining 100 ppm received diet f nice were then 0.005, 0.025, 0 volume of 5 ml Blood was colle and BUN determi abilities of remined. taining 0, 20, a ^{a single} i.p. in total injection nined in all thr

d. <u>Time-dependent effects of single doses of SKF 525-A</u> and piperonyl butoxide (PB) on renal and hepatic enzyme activities in mice and rats

ICR, male mice (15-20 g) and Fischer 344, male rats 25-150 g) received single i.p. injections of PB (80% pure, ICN armaceuticals, Plainview, NY), 600 mg/kg in corn oil, or SKF 525-A, mg/kg in water (total injection volumes of 5 ml/kg). The animals re killed 1, 2, 4, or 12 hr later and the activities of AHH and MA determined in the 14,000 x g supernatant fractions of renal hepatic homogenates.

Effects of stimulation and inhibition of renal and hepatic drug-metabolizing enzyme systems on CHCl, and CCl, toxicity

a. Effects of PBB and PCB on CC1, toxicity in mice

ICR, male mice (15-20 g) were maintained on diets conning 100 ppm of PBB or 200 ppm of PCB for 28 days. Control mice eived diet formulated with an equivalent amount of acetone. The e were then challenged with a single i.p. injection of CCl₄, 0.000, 05, 0.025, 0.125, or 0.625 ml/kg in corn oil, total injection me of 5 ml/kg, and sacrificed 48 hr later by decapitation. ed was collected, the serum fractions separated, and SGOT, SGPT BUN determined. Livers and kidneys were removed, weighed and the ities of renal cortical slices to accumulate PAH and TEA deterd.

Another group of mice was maintained on diets coning 0, 20, or 100 ppm of PBB for 20 days and then challenged with agle i.p. injection of one of several doses of CCl_4 in corn oil, I injection volume of 5 ml/kg. LD_{50} values for CCl_4 were deterin all three groups.

b.

on diets conta
third group of
corn oil, by g
doses). A fou
with an equival
every 72 hr fo:
21) with a sing
or 2.00 m1/kg,
hr later by a b
ties of SGOT, S
directly from t
trations and fo
Elkhart, IN).
abilities of re
mined. Thin sl
incubated in a
^{saturated} with (
receptacle and f
^{an oxy} gen-sensi
Yellow Springs,
of 0 ₂ consumed r
^{from} samples of
The residues wer
pressed as mg 1;
0 41

b. Effects of PBB, PCB and hexachlorobenzene (HCB) on CCl₄ toxicity in rats

Sprague-Dawley, male rats (125-150 g) were maintained n diets containing 100 ppm of PBB or 200 ppm of PCB for 20 days. A nird group of rats received HCB (98% purity, Aldrich), 30 mg/kg in orn oil, by gavage every 72 hr for a period of 20 days (total of 7 oses). A fourth group (controls) was maintained on diet formulated th an equivalent amount of acetone and received corn oil by gavage ery 72 hr for a 20 day period. All rats were then challenged (day) with a single i.p. injection of $ext{CC1}_4$ in corn oil, 0.00, 0.03, 0.25 2.00 ml/kg, total injection volume of 5 ml/kg, and were killed 48 later by a blow to the head. Blood was collected and the activies of SGOT, SGPT, and BUN determined. Urine samples were collected rectly from the bladder and analyzed for protein and glucose concenations and for pH with reagent sticks (Hema-Combistix, Miles Labs., chart, IN). Kidneys and livers were removed, weighed and the lities of renal cortical slices to accumulate PAH and TEA detered. Thin slices (approximately 0.5 mm thick) of renal cortex were ubated in a phosphate-buffered medium (Cross and Taggart, 1950) urated with 0, at 30°C in an air-tight, magnetically-stirred eptacle and the rate of oxygen consumption (QO₂) determined using oxygen-sensitive electrode (Yellow Springs Instrument Co., low Springs, OH). Renal QO₂ values were expressed as microliters D_{2} consumed per g tissue per minute. Total lipids were extracted n samples of liver and kidney by the method of Folch et al. (1957). residues were dried to a constant weight and lipid content exsed as mg lipid (dry weight) per g of tissue (wet weight).

on diets conta Control rats r

с.

acetone. The

samples of liv

20 mM Tris-1.1

of Tris-KC1 bu

earlier. The 1

2°C to separate

centrifuged at

The resulting s

100,000 x g for

measured in the

kits. Protein

solic) fraction

GOT and GPT act

of 100,000 x g s

and per 100 g of

d.

3

diets containing

were normalized

^{from} the dams at

^{randomized}, sepa

c. Effects of PBB and PCB on hepatocellular GPT and GOT activities

Sprague-Dawley, male rats (125-150 g) were maintained diets containing 100 ppm of PBB or 200 ppm of PCB for 20 days. ntrol rats received diet formulated with an equivalent amount of etone. The rats were killed on day 21 by a blow to the head and mples of liver removed, weighed, washed several times in ice-cold mM Tris-1.15% KCl buffer (pH 7.40) and homogenized in 3 volumes Tris-KC1 buffer in a Potter-Elvehjem tissue grinder, as described rlier. The homogenates were then centrifuged at 600 x g for 5 min at C to separate nuclei and unbroken cells and the supernatant fraction trifuged at 14,000 x g for 25 min at 2°C to separate mitochondria. e resulting supernatant fraction was decanted and centrifuged at ,000 x g for 60 min at 2°C and the activities of GOT and GPT sured in the 100,000 x g supernatant fraction using Sigma reagent s. Protein concentrations in the 100,000 x g supernatant (cytoic) fractions were determined by the method of Lowry et al. (1951). and GPT activities were expressed as Sigma-Frankel units per ml 100,000 x g supernate, per mg of 100,000 x g supernatant protein, per 100 g of total body weight.

d. Effects of maternal consumption of PBB on the toxicities of CHCl, and CCl, in developing male rats

Timed-pregnant, Sprague-Dawley rats were placed on s containing 0 or 100 ppm of PBB on day 8 of gestation. Litters normalized to 10 pups each at birth. The pups were separated the dams at 26 days of age (the approximate time of weaning), omized, separated by sex and placed on diets containing either 0

ppm of PBB (a) and half of th 100 ppm of PBH PBB diet). On Body weights w challenged wit 0.00, 0.03, 0. The rats were of SGOT and SG kidneys and liv renal cortical e. taining 0, 1, 2 with a single i 50.0 µ1/kg in co were sacrificed livers and kidne and the abilitie were determined. f. <u>E</u> Ι ^{3MC} or NaPb as d ^{™ice} were challe ^{0.25} or 0.75 ml/1 pm of PBB (all of the male pups from dams consuming 0 ppm PBB diet nd half of the male pups from dams consuming 100 ppm PBB diet) or 00 ppm of PBB (half of the male pups from dams consuming 100 ppm 8B diet). Only male pups were used for the remainder of this study. Ndy weights were determined at 52 days of age and the rats then allenged with a single i.p. injection of CHCl₃ or CCl₄ in corn oil, 00, 0.03, 0.25, or 2.00 ml/kg, total injection volume of 5 ml/kg. e rats were killed 48 hr later, blood collected and the activities SGOT and SGPT and the concentrations of BUN determined. The dneys and livers were removed and weighed and the abilities of hal cortical slices to accumulate PAH and TEA determined.

e. Effects of dietary PBB on CHC1, toxicity in mice

ICR, male mice (15-20 g) were maintained on diets conning 0, 1, 25, or 100 ppm of PBB for 14 days and then challenged h a single i.p. injection of $CHCl_3$, 0.0, 0.5, 2.5, 5.0, 25.0, or 0 μ l/kg in corn oil, total injection volume of 5 ml/kg. The mice e sacrificed 24 hr later by decapitation, blood collected and ers and kidneys removed and weighed. SGPT, SGOT and BUN values the abilities of renal cortical slices to accumulate PAH and TEA e determined.

f. Effects of NaPb, 3MC, PCB and TCDD on CHCl₃ toxicity in mice

ICR, male mice (15-20 g) were treated with PCB, TCDD, or NaPb as described previously (Methods, Section DIb). The were challenged with a single i.p. injection of CHCl₃, 0.00, 0.05, or 0.75 ml/kg in corn oil, total injection volume of 5 ml/kg, 24

hr after the f TCDD, or after animals were s

and BUN and th

and TEA determ

g.

PB, 600 mg/kg,

min after a sin

in corn oil, in

killed 24 hr at

SGOT and BUN ar

PAH and TEA det

3. <u>Inter</u> (GSH)

a.

taining 100 ppm lated with an e then challenged 0.00, 0.05, 0.22 and sacrificed 2 kidneys were hor for reduced non-1959). Selected after the final dose of NaPb or 3MC, 72 hr after a single dose of DD, or after 28 days on diet containing 200 ppm of PCB. The simals were sacrificed 24 hr later, blood collected, and SGPT, SGOT d BUN and the abilities of renal cortical slices to accumulate PAH d TEA determined.

g. Effects of SKF 525-A and PB on CHC1, toxicity in mice

ICR, male mice (15-20 g) received i.p. injections of , 600 mg/kg, or SKF 525-A, 75 mg/kg, either 120 min before or 60 h after a single i.p. injection of CHCl₃, 0.00, 0.25, or 0.75 ml/kg corn oil, in a total injection volume of 5 ml/kg. The mice were led 24 hr after CHCl₃ administration, blood collected and SGPT, VT and BUN and the abilities of renal cortical slices to accumulate and TEA determined.

Interactions of CHCl₃ with renal and hepatic glutathione (GSH)

a. Effects of PBB and PCB on CHCl3-induced GSH depletion in mice

ICR, male mice (15-20 g) were maintained on diets conning 100 ppm of PBB or 200 ppm of PCB or on a control diet formued with an equivalent amount of acetone for 20 days. The mice were in challenged with a single i.p. injection of CHCl₃ in corn oil, 0, 0.05, 0.25, or 0.75 ml/kg, total injection volume of 5 ml/kg, sacrificed 2 hr later by cervical dislocation. Livers and eys were homogenized in 20 volumes of ice-cold 6% TCA and analyzed reduced non-protein thiol content using Ellman's reagent (Ellman,). Selected samples (from naive and treated animals) were also

- analyzed spec
- Cohn and Lyle
- reduced non-pr
- kidney homoger
- the kidneys an
- an analytical
 - Ъ.
- tion of diethy
- oil, total inje
- by cervical dis
- cortical, medul
- liver and the v
- volumes of ice-
- separate TCA-de
- ^{non-protein} thi
- Ellman's reagen
- assay specific
- ^{that} at least 90
- natant fraction
- liver and the va
- ^{described} previc
 - с. <u>Е</u>
 - Ι
- ^{injection} of die

halyzed specifically for reduced GSH content using the method of ohn and Lyle (1966) and it was determined that at least 90% of the duced non-protein thiols in the supernatant fractions of liver and dney homogenates were reduced GSH. The concentrations of GSH in e kidneys and livers were calculated using reduced GSH (Sigma) as analytical standard and expressed as µg GSH/g tissue (wet weight).

b. Depletion of renal and hepatic GSH by diethyl maleate

ICR, male mice (15-20 g) received a single i.p. injecon of diethyl maleate (80% pure, Aldrich), 0 or 600 mg/kg in corn , total injection volume of 5 ml/kg, and were sacrificed 2 hr later cervical dislocation. Kidneys were removed, cut lengthwise and tical, medullary and papillary sections dissected. Samples of er and the various sections of the kidney were homogenized in 20 umes of ice-cold 6% TCA. The homogenates were centrifuged to arate TCA-denatured protein and the concentrations of reduced, -protein thiols in the supernatant fractions determined using man's reagent. Analyses of random samples using a fluorimetric ay specific for reduced GSH (Cohn and Lyle, 1966) demonstrated the least 90% of the reduced, non-protein thiol in the superunt fraction was reduced GSH. The concentrations of GSH in the r and the various sections of the kidney were calculated as ribed previously.

c. Effects of diethyl maleate on GSH concentrations and CHCl, toxicity in mice

ICR, male mice (15-20 g) were given a single i.p.

a single i.p. : The mice were l collected. SG

slices to accur

4. <u>Cova</u>

a.

taining 100 ppm an equivalent a killed by cervi

genized in 3 vc

and renal and h

(Methods, Secti

with (¹⁴C)-CHC1

in tightly-stop

<u>et al</u>. (1973).

as follows: 0.

glucose-6-phosp

0.020 mM CHC1₃

^{buffer}, pH 7.40

of Lowry et al.

¹4.9 mCi/m Purchased from 1 mide to achieve activity in the to correct for 1 single i.p. injection of CHCl₃, 0.000, 0.033, 0.100 or 0.300 ml/kg. e mice were killed 24 hr after CHCl₃ administration and blood was Llected. SGPT, SGOT and BUN and the abilities of renal cortical Lecs to accumulate PAH and TEA were determined.

4. Covalent binding of CHC1, metabolites in mice

a. <u>Covalent binding of CHCl₃ metabolites to renal and</u> hepatic microsomal protein in vitro

ICR, male mice (15-20 g) were maintained on diets conning 100 ppm of PBB or 200 ppm of PCB or on a diet formulated with equivalent amount of acetone for 20 days. The mice were then led by cervical dislocation and kidneys and livers removed, homoized in 3 volumes of ice-cold 20 mM Tris-1.15% KCl buffer (pH 7.40) renal and hepatic microsomes isolated as described previously thods, Section C). Renal and hepatic microsomes were incubated in $\binom{14}{}$ C)-CHCl₃¹ (New England Nuclear) and a regenerating system tightly-stoppered 25 ml Erlenmeyer flasks as described by Ilett L1. (1973). Final concentrations in the incubation mixtures were follows: 0.12 mM NADH, 0.20 mM NADPH, 2.0 mM nicotinamide, 2.0 mM ose-6-phosphate, 1 U/ml glucose-6-phosphate dehydrogenase and 0 mM CHCl₃ (1 µCi/m1), all dissolved in 20 mM Tris-1.15% KCl er, pH 7.40. Protein concnentrations, as determined by the method powry <u>et al</u>. (1951), were 1.0 mg/m1 (liver) and 2.0 mg/m1 (kidney).

¹4.9 mCi/mmole, radiochemical purity, 99%. The material, as mased from New England Nuclear, was dissolved in dimethylformato achieve a concentration of 20 mM and stored at -70°C. Radiovity in the stock solution was determined each time it was used prrect for loss due to volatilization during handling.

The reactions 10% TCA. The extracted seve as described by radioactivity. protein sample determination internal stand b. taining 100 ppr equivalent amou single i.p. in llO µCi/kg. Sa from the retro-15, 30, 45, 60, CHCl₃. Blood s ment Co., Downe scintillation s The mice were s ^{CHC1}3 administr ^{genized} in 3 vc homogenates wer ^{mixtures} centri ^{resulting} pelle he reactions were stopped after 5 min by the addition of ice-cold 0% TCA. The denatured protein was separated by centrifugation and xtracted several times with hot (50°C) chloroform:methanol (2:1), s described by Ilett <u>et al</u>. (1973), to remove non-covalently bound adioactivity. (The final extracts contained no radioactivity.) The rotein samples were then dissolved in 1 N NaOH and aliquots used for etermination of protein and radioactivity using (14 C)-toluene as an iternal standard.

b. <u>Clearance of CHCl</u>, and metabolites from blood and covalent binding to total renal and hepatic protein

ICR, male mice (15-20 g) were maintained on diets conining 100 ppm of PBB, 200 ppm of PCB or on diet formulated with an uivalent amount of acetone for 14 days and then challenged with a .ngle i.p. injection of (^{14}C) -CHCl₃, 1.75 mmoles/kg (0.10 ml/kg), .0 μ Ci/kg. Samples of whole venous blood (10 μ 1) were withdrawn om the retro-orbital sinus into heparinized glass capillary tubes , 30, 45, 60, 90, 120 and 180 min after administration of (^{14}C) -Cl₂. Blood samples were dissolved in Soluene-350 (Packard Instrunt Co., Downer's Grove, IL) and radioactivity determined by liquid intillation spectrometry using $({}^{14}C)$ -toluene as an internal standard. e mice were sacrificed by cervical dislocation 3, 6 or 12 hr after 21, administration. Livers and kidneys were removed and homoized in 3 volumes of ice-cold distilled water. Aliquots of the ogenates were mixed with an equal volume of ice-cold 10% TCA, the tures centrifuged to separate the denatured proteins, and the ulting pellets extracted 5 times with hot (50°C) chloroform:

methanol, 2:1 quots of resus quots of whole was determined c.

(¹⁴c)-CHC1₃ (1 excised, minced 0.005 M Hepes Sigma) buffer, volumes of 0.3 tissue grinder for 10 min at 2 saved, the pell sucrose-0.005 M fuged again at were extracted (1972). RNA co at 260 nm, pH 1 mined by the me

x g centrifugat: the supernatant suspended in 0.2 before. This pr hanol, 2:1 (the final extracts contained no radioactivity). Alits of resuspended protein were then dissolved in 1 N NaOH and alits of whole homogenates dissolved in Soluene-350. Radioactivity determined by liquid scintillation spectrometry.

c. <u>Covalent binding of CHCl₃ metabolites to subcellular</u> fractions in vivo

Mice were sacrificed 3 hr after an i.p. injection of C)-CHCl₃ (1.75 mmoles/kg, 110 µCi/kg). Kidneys and livers were ised, minced, washed several times with ice-cold 0.3 M sucrose-05 M Hepes (N-2-hydroxyethylpiperazine-N'-2-ethane sulfonic acid, ma) buffer, pH 7.40. The tissues were then homogenized in 5 umes of 0.3 M sucrose-0.005 M Hepes buffer with a Potter-Elvehjem sue grinder (0.10-0.15 mm clearance) and centrifuged at 1,000 x g 10 min at 2°C. The supernatant fractions were decanted and ed, the pellets rehomogenized in the original volume of 0.3 M rose-0.005 M Hepes-0.2% Triton X-100 buffer, pH 7.40, and centried again at 1,000 x g for 10 min at 2°C. Nucleotides (RNA and DNA) s extracted from this pellet by the method of Goodman and Potter '2). RNA concentrations were determined spectrophotometrically '60 nm, pH 1.0 (Pomerai <u>et al</u>., 1974) and DNA concentrations deterd by the method of Ceriotti (1958).

The supernatant fractions saved from the initial 1,000 centrifugation were centrifuged at 8,000 x g for 10 min at 2° C, supernatant fractions decanted and saved, and the pellets reended in 0.3 M sucrose-0.005 M Hepes buffer and centrifuged as re. This process was repeated again (total of 3 centrifugations

at 8,000 x g) homogenized in centrifugation the supernatar 60 min at 2°C. sucrose-0.005 min at 2°C, an reticulum frac fractions were protein separa times with hot was then disso. aliquots of mic Folch <u>et al</u>. (1 stream of N₂, a to dry under N2 Radioactivity i tide solutions ^{using} (¹⁴C)-tol E. <u>Statistics</u> Unless sta ^{variance} (compl ment means were : 8,000 x g) and the final pellet, termed the mitochondrial fraction, mogenized in 2 ml of distilled water.

The supernatant fractions from the initial 8,000 x g antrifugation were centrifuged at 14,000 x g for 25 min at 2°C and e supernatant fractions decanted and centrifuged at 100,000 x g for min at 2°C. The resulting pellets were resuspended in 0.3 M crose-0.005 M Hepes buffer, centrifuged again at 100,000 x g for 60 at 2°C, and the final pellet, termed the microsomal or endoplasmic ticulum fraction, homogenized in 2 ml of distilled water.

One ml aliquots of the microsomal and mitochondrial actions were mixed with 1 ml of ice-cold 10% TCA, the denatured btein separated by centrifugation, and the pellets extracted 5 area with hot (50°C) chloroform:methanol, 2:1. The protein pellet is then dissolved in 1 N NaOH. Lipids were extracted from 1 ml quots of microsomal and mitochondrial fractions by the method of ch <u>et al</u>. (1957), the extracts allowed to dry under a gentle eam of N₂, and the residues dissolved in 1.5 ml CHCl₃ and allowed dry under N₂, twice, to remove non-bound, residual radioactivity. dioactivity in the lipid residues, protein solutions and nucleoe solutions was determined by liquid scintillation spectrometry ng (¹⁴C)-toluene as an internal standard.

Statistics

Unless stated otherwise, all data were analyzed by analysis of ance (completely randomized design or blocked design) and treatmeans were compared using the Least Significant Difference or

the Student-Ne

of significan

The lines

¹⁴C-activity i

CHC1₃ was conf

curves (contro

variance and t

as the criteri

the Student-Newman-Keuls tests (Sokal and Rohlf, 1969). The criterion of significance in all cases was p<0.05.

The linearity of the curves relating the log concentrations of 14 C-activity in the blood to the time after administration of $(^{14}$ C)-CHCl₃ was confirmed by regression analysis. Data from the three curves (control, PBB and PCB) were then analyzed by analysis of co-variance and the slopes compared using Student's <u>t</u>-test with p<0.05 as the criterion of significance (Sokal and Rohlf, 1969).

A. Enzyme Ir

1. Effe PBB

The

vities was pro

diet when ICR,

of PBB or 25, 3

and hepatic AH

containing 25 p

cient to produc

appeared to be

activities than

than renal AHH

creasing the le

to 21 days did

activities of r

Table 3). The

slightly greate

the same diets :

PBB and PCB may

(data not shown)

RESULTS

A. Enzyme Induction and Inhibition

1. Effects of length of exposure and dietary concentration of PBB and PCB on renal and hepatic AHH activities

The magnitude of increase in renal and hepatic AHH activities was proportional to the concentration of PBB and PCB in the diet when ICR. male mice were fed diets containing 25, 100 or 200 ppm of PBB or 25, 200 or 400 ppm of PCB for 14 days (Table 2). Both renal and hepatic AHH activities were increased in mice consuming diets containing 25 ppm of PBB for 14 days, though 25 ppm of PCB was insuffiient to produce an increase in AHH activities. In general, PBB appeared to be a more potent inducer of both renal and hepatic AHH ctivities than was PCB, and hepatic AHH appeared to be more sensitive han renal AHH to the inductive effects of dietary PBB and PCB. Inreasing the length of dietary exposure to PBB and PCB from 14 days o 21 days did not change the magnitudes of the increases in specific ctivities of renal and hepatic AHH (activities per mg of protein. able 3). The liver weight-to-body weight ratio, however, was lightly greater in mice fed PBB and PCB for 21 days than in mice fed ne same diets for 14 days, suggesting that continued ingestion of BB and PCB may increase total hepatic biotransformation capacity lata not shown).

Dietary Co Hydroxyl (

Treat

PB: PB: PB:

PCI PCI PCI

^aRelative f ± 1 S.E., 0.08±0.01

^bSignificar

^CSignifican ^dSignificar P<0.05.

ΤA	BL	Æ	2

Dietary Concentration-Dependent Induction of Aryl Hydrocarbon Hydroxylase (AHH) Activities by Polybrominated Biphenyls (PBBs) and Polychlorinated Biphenyls (PCBs)

Treatmont	ppm	AHH Activities ^a	
rreatment		Liver	Kidney
PBB	25	216+19 ^b	150+14 ^b
PBB	100	438±37, c	310±13,0°,°
PBB	200	942±41 ^D , C, A	466±26 ^{D, C, d}
PCB	25	139±14,	85± 61
PCB	200	339±47 ^D , C	292±12 ^{D,G}
PCB	400	598±56 ^D , C, a	478±13 ^{0,0,0}

^aRelative fluorescence units/mg protein/min, mean % of control ± 1 S.E., N=6 animals. Control values: 12.10±2.10 (liver), 0.08±0.01 (kidney).

 $^b {\rm Significantly}$ greater than control, p<0.05.

 $^{\mathcal{O}}\textsc{Significantly greater than 25 ppm, p<0.05.}$

 $\overset{\vec{d}}{}_{\rm Significantly greater than 100 ppm (PBB) or 200 ppm (PCB), p<0.05.$

Time-Dep (AHH) A

Т

-

PBB PBB

PCB PCB

a Rela % o: Valu

b_{Numb}
Time-Dependent Induction of Aryl Hydrocarbon Hydroxylase (AHH) Activities by Polybrominated Biphenyls (PBB) and Polychlorinated Biphenyls (PCB)

Treatment	\mathtt{Time}^b	AHH Act: Liver	ivities ^a Kidney
PBB, 100 ppm	14 d	438±37	310±13
PBB, 100 ppm	21 d	413±26	302±21
PCB, 200 ppm	14 d	339±47	292±12
PCB, 200 ppm	21 d	267±17	300±15

^aRelative fluorescence units/mg protein/min, mean % of control ± 1 S.E., N=6 animals. Control values: 12.10±2.10 (liver), 0.08±0.01 (kidney).

^bNumber of days (d) on designated diet.

2. Effects of NaPb, 3MC, PCB and TCDD on renal and hepatic enzymes in mice

The effects of multiple i.p. injections of NaPb and 3MC, a ingle i.p. injection of TCDD and dietary consumption of PCB on renal ad hepatic MFO activities are summarized in Table 4. In general, ceatment with 3MC, TCDD and PCB increased the activities of both enal and hepatic MFOs while treatment with NaPb increased hepatic TO activities, only.

Effects of single and multiple administrations of PBB, PCB, NaPb and 3MC on renal, hepatic and testicular enzyme activities and cytochrome P-450 concentrations in rats

Cytochrome P-450 (P-450) concentrations and AHH and PCNMA tivities in kidney, liver and testis from naive rats are summarized Table 5. Enzyme activities and P-450 concentrations, in general, re greater in liver than in kidney, and greater in kidney than in stis.

Hepatic P-450 content was increased by single oral doses of and PCB but not by single doses of NaPb or 3MC (Figure 2). Renal testicular P-450 contents were not affected by single doses of PBB, , NaPb or 3MC. Multiple doses of PBB, PCB and 3MC increased both atic and renal P-450 contents. The magnitude of this effect, ever, was greater in the liver than it was in the kidney after attent with PBB and PCB (Figure 2). Multiple doses of NaPb inused P-450 content in the liver but not in the kidney. Testicular io content was not increased by any of the inducing chemicals used.

The induced P-450, in many cases, exhibited soret maxima soret maximum is the absorbance peak near 450 nm in the differspectrum of the dithionite-reduced CO:hemoprotein complex. See

	Induction of
	Organ C
	Liver Kidney
	Liver Kidney
	Liver Kidney
	Liver Kidney
	PCNMA, AHH, BP x g supernatan treated with N percentage of
	*Significant i ^C N=4 animals (
	Activities in Liver: AHH, PCNMA, 0. 0.11±0.01 min; BP-4 of protein
	Kidney: AHH, PCNMA, 0. 0.01±0.01 per min; 1 mg of pro:
	Abbreviations: 2,3, biph (PCN hydro

Induction of Mixed-Function Oxidases (MFOs) in Liver and Kidney

Omagan	Inducing	Enzyme Activities					
organ	Chemical	Анн	PCNMA	BP-2-OH	BP-4-OH		
		mea	in % contro	1 ± 1 S.E.			
Liver	NaPb^a_a	125±22	201±14*	137±42	331±56*		
Kidney	NaPb	93±14	106±11	100±20	100±30		
Liver	${}^{\operatorname{3MC}^{\operatorname{\mathcal{D}}}}_{\operatorname{3MC}\nolimits^{\operatorname{\mathcal{D}}}}$	346±53*	87±21	n.d.	n.d.		
Kidney		286±21*	113±19	n.d.	n.d.		
Liver	${{{\operatorname{TCDD}}}^{\mathcal{C}}}$	945±186*	n.d.	118±10	141±20		
Kidney		5560±1200*	n.d.	200±100	200±50		
Liver	PCB^{a} PCB^{a}	356±49 *	217±36*	n.d.	n.d.		
Kidney		211±36*	165±18*	n.d.	n.d.		

PCNMA, AHH, BP-2-OH and BP-4-OH activities were measured in the 14,000 x g supernatant fraction of homogenates of livers and kidneys of mice treated with NaPb, 3MC, TCDD or PCB. Activities are presented as a percentage of control \pm 1 S.E. n.d. = Not determined.

*Significant increase (p<0.05). a N=6 animals. b N=5 animals

 C N=4 animals (data from Hook <u>et</u> <u>al</u>., 1978b).

Activities in control mice were as follows:

- Liver: AHH, 11.20±1.50 fluorescence units per mg of protein per min; PCNMA, 0.139±0.012 0.D. units per mg of protein per hr; BP-2-OH, 0.11±0.01 nmol of 2-hydroxybiphenyl produced per mg of protein per min; BP-4-OH, 2.08±0.28 nmol of 4-hydroxybiphenyl produced per mg of protein per min.
- Kidney: AHH, 0.05±0.01 fluorescence units per mg of protein per min; PCNMA, 0.080±0.009 0.D. units per mg of protein per hr; BP-2-OH, 0.01±0.01 nmole of 2-hydroxybiphenyl produced per mg of protein per min; BP-4-OH, 0.02±0.01 nmol of 4-hydroxybiphenyl produced per mg of protein per min.
- bbreviations: sodium phenobarbital (NaPb), 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polychlorinated biphenyls (PCB), p-chloro-N-methylaniline N-demethylase (PCNMA), aryl hydrocarbon hydroxylase (AHH), biphenyl-2hydroxylase (BP-2-OH), biphenyl-4-hydroxylase (BP-4-OH)

Measurements of Aryl Hydrocarbon Hydroxlyase (AHH) Activities, p-Chloro-N-methylaniline N-demethylase (PCNMA) Activities and Cytochrome P-450 Concentrations in Liver, Kidney and Testis of Naive Rats

Parameter	r Orga	an: Liver	Kidney	Testis
ytochrome	P-450 ^a	0.571±0.061	0.110±0.019	0.059±0.016
нн ^b		331±16	6.20 ±0.66	1.83 ±0.37
CNMA		0.457±0.023	0.229±0.012	0.105±0.011

AHH and PCNMA activities were measured in the 14,000 x g supernatant fractions of hepatic, renal and testicular homogenates. Values are represented as the mean \pm 1 S.E. of 6 animals.

 $^{\alpha}$ nmoles per mg microsomal protein.

^bRelative fluorescence units per mg protein per min.

^Gnmoles product (p-chloro-N-methylaniline) formed per mg protein per min.

(PBB), polychlorinated biphenyls (PCB), sodium phenobarbital (NaPb) or 3-methylcholanthrene gruce 2. Time-dependent induction of cytochrome P-450 in liver, kidney and testis. Symbols represent the means ± 1 S.R. (N=4 ratio) 6 the nutrosomal proportione P-450 content in solutions sortified by 2.4, 75 or 216 hr after a single dose of polybroninated biphenyls. concly greater that is ontrol rates, closed symbols or bars, not significantly greater than in control rates, closed symbols or bars, not significantly greater and bars. The second rates proves and bars. Bars represent the means ± 1 S.E. (N=4 rats) of the microsomal cytochrome P-450 PBB, PCB, NaPb or 3MC. T, testis; K, kidney; L, liver. Open symbols or bars, significontent in animals sacrificed 24 hr after the final dose of a multiple-dose regimen of and kidney, p<0.05. (JMC).

Methods, Section C5) of shorter wavelengths than P-450 from naive rats. After multiple doses of PBB, PCB or 3MC, hepatic soret maxima were shifted from 450 nm to 448 nm, and renal soret maxima were shifted from 454 nm to 453 or 452 nm (Table 6). Treatment with NaPb did not produce shifts in soret maxima of renal or hepatic P-450. Though a single oral dose of PBB, PCB and 3MC produced shifts in hepatic soret maxima within 9 hr, maximum shifts appeared to occur 72 hr after a single dose and were still apparent at 216 hr (except for 3MC)(Table 6). Effects of PBB, PCB and 3MC on soret maxima of renal P-450 were similar to those on hepatic P-450 except that maximum shifts appeared to occur at 9-24 hr and had disappeared by 216 hr (72 hr for 3MC).

Multiple doses of PBB, PCB and 3MC greatly increased both hepatic and renal AHH activities while multiple doses of NaPb produced a relatively modest increase in hepatic AHH only (Figure 3). Induction of hepatic AHH activity, in general, was first evident at 24 hr and peaked at 72 hr after single doses of PBB, PCB and 3MC. Renal AHH activities, however, were greatly increased at 9 hr, maximally increased at 24 hr and had fallen considerably by 72 hr after single doses of PBB, PCB and 3MC (Figure 3). Testicular AHH activities were not increased by single or multiple doses of the inducing chemicals.

PCNMA activity in liver was increased (approximately 2X) by multiple doses of PBB, PCB and NaPb (data not shown). Renal and testicular PCNMA activities in rats, however, were not significantly increased by PBB, PCB, NaPb or 3MC (data not shown).

		Time-Der Polychlori and 3-Methy of Treatment C Control I PSB I PCB I
		NaPb L SMC L Gatrol K P88 K NaPb K NaPb K NaPb K NaC K Aats were sacr PC3, NaPb or 3 regimen. Oyroo ad the sorrer merser vavelei merser vavelei merser vavelei merser vavelei

Time-Dependent Effects of Polybrominated Biphenyls (PBB), Polychlorinated Biphenyls (PCB), Sodium Phenobarbital (NaPb), and 3-Methylcholanthrene (3MC) on the Location of Soret Maxima of Reduced Cytochrome P-450 Difference Spectra

Treatment	Organ	Time	(hr):	Wave: 9	length 24	(nm) 72	of	the 216	soret maximum Multi-dose
Control PBB PCB NaPb 3MC	Liver Liver Liver Liver Liver			450 449 449 450 449	450 449 449 450 449	450 449 448 450 449		450 449 449 450 450	450 448 448 450 448
Control PBB PCB NaPb 3MC	Kidney Kidney Kidney Kidney Kidney			454 453 453 454 454	454 453 453 454 453	454 453 453 454 454		454 454 454 454 454	454 452 453 454 452

Rats were sacrificed 9, 24, 72 or 216 hr after a single dose of PBB, PCB, NaPb or 3MC, or 24 hr after the final dose of a multiple-dose regimen. Cytochrome P-450 was determined in the microsomal pellets and the soret maximum in the vicinity of 450 nm recorded to the nearest wavelength. Values are represented as the means of 4 mimals rounded off to the nearest integer.

.

Figure 3. Time-dependent induction of aryl hydrocarbon hydroxylase (AHH) activity in liver, kidney and testis. Symbols represent the means \pm 1 S.E. (N=4 rats) of the activities of AHH in animals sacrificed 9, 24, 72 or 216 hr after a single dose of polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB), sodium phenobarbital (NaPb) or 3-methylcholanthrene (3MC). Bars represent the means \pm 1 S.E. (N=4 rats) of the activities of AHH in animals sacrificed 24 hr after the final dose of a multiple-dose regimen of PBB, PCB, NaPb or 3MC. T, testis; K, kidney; L, liver. Open symbols or bars, significantly greater than in control rats; p<0.05. *Significant difference between percent increases in liver and kidney, p<0.05.

1000 -10

The

AHH activitie

hepatic homog

using MET and

P-450-depende

Gelboin, 1975

hepatic AHH a

hepatic AHH a

testicular AH

values) while

nearly 30%, a

(testicular d

appeared to i

slight extent

concomitantly

inhibitory ef

opposite effe

comparison to

ANF but hepat

of MET (Figur

of PBB and PC

to the inhibi

^{rats}, however

^{to that of rem}

AHH from PBB ;

to the inhibin

The inhibitory effects of ANF and MET $(1x10^{-4}M)$ in vitro on AHH activities in the 14,000 x g supernatant fractions of renal and hepatic homogenates are illustrated in Figure 4. Inhibition studies using MET and ANF have previously been used to classify the type of P-450-dependent AHH activity induced by various agents (Wiebel and Gelboin, 1975; Goujon et al., 1972). MET preferentially inhibits hepatic AHH activity induced by NaPb while ANF preferentially inhibits hepatic AHH activity induced by 3MC. ANF reduced hepatic, renal and testicular AHH activities to approximately 30% of normal (uninhibited values) while MET reduced hepatic and testicular AHH activities to nearly 30%, and renal AHH activities to nearly 60% of normal values (testicular data not shown). Treatment with multiple doses of NaPb appeared to increase the susceptibility of hepatic AHH (and, to a slight extent, renal AHH) to the inhibitory effects of MET while concomitantly reducing the susceptibility of hepatic AHH to the inhibitory effects of ANF (Figure 4). Treatment with 3MC had the opposite effect; renal and hepatic AHH became more susceptible (in comparison to AHH from control animals) to the inhibitory effects of ANF but hepatic AHH became less susceptible to the inhibitory effects of MET (Figure 4). Hepatic AHH from rats receiving multiple doses of PBB and PCB did not exhibit net alterations in susceptibilities to the inhibitory effects of ANF and MET. Renal AHH from these same rats, however, responded to ANF and MET in a manner quite similar to that of renal AHH from rats treated with 3MC. That is, renal \HH from PBB and PCB-treated rats exhibited increased sensitivity to the inhibitory effects of ANF (Figure 4). Inhibition of

Figure 4. α -Napthoflavone (ANF) and metyrapone (MET) inhibition of aryl hydrocarbon hydroxylase (AHH) activities <u>in vitro</u> after multiple doses of polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB), sodium phenobarbital (NaPb) or 3-methylcholanthrene (3MC). Bars represent the means ± 1 S.E. (N=4 rats) of the activities of AHH, in the presence of ANF (1x10⁻⁴M) or MET (1x10⁻⁴M), from rats sacrificed 24 hours after the final dose of a multiple-dose regimen of PBB, PCB, NaPb or 3MC. The data are expressed as percentages of normal (no inhibitor present) values. *Significantly different from control (C), p<0.05.

Figure 4

testicular AHH by ANF and MET was unaltered by the administration of multiple doses of PBB, PCB, NaPb and 3MC (data not shown).

Table 7 illustrates the time-dependencies of PBB and PCBinduced alterations in susceptibility of renal AHH to the inhibitory effects of ANF. Of the times evaluated (9, 72 and 216 hr after a single dose of PBB or PCB), increased susceptibility to the inhibitory effects of ANF appeared to be maximal at 9 hr. Although still more susceptible to ANF than renal AHH from control animals, renal AHH from PBB and PCB-treated rats was less susceptible to the inhibitory effects of ANF at 216 hr (72 hr for PCB-treated rats) than at 9 hr (Table 7). Thus, the time courses of the PBB and PCB-induced increases in the susceptibility of renal AHH to the inhibitory effects of ANF paralleled the time courses of the PBB and PCB-induced increases in renal AHH activity (Figure 3).

4. Inhibition of renal and hepatic AHH activity in vitro

The effects of several inhibitors of MFO activities on renal and hepatic microsomal AHH activities <u>in vitro</u> are illustrated in Figure 5. Tween 80, the detergent used for dissolution of AIA and PB, produced significant inhibition of microsomal AHH activity when present in the medium at a concentration of 0.01% (v/v). Hepatic AHH activity appeared more sensitive to inhibition by Tween 80 (activity reduced to 45% of control values) than did renal AHH activity (reduced to 65% of control values) (Figure 5). Renal and hepatic microsomal AHH activities, however, were not further reduced by the presence of AIA in the incubation mixtures (Figure 5). PB, on the other hand, decreased the activities of renal and hepatic AHH, and renal and

ь.

· · · · · ·

a-Napthoflavone (ANF) Inhibition of Renal Aryl Hydrocarbon Hydroxylase (AHH) Activities In Vitro at Various Times After a Single Dose of Polybrominated Biphenyls (PBB) or Polychlorinated Biphenyls (PCB)

Trostmont	AHH Activity	(% of no	ormal valu	es) ± 1 S.E.
	Time (hr):	9	72	216
Control		33±1	30±4	33±3
PBB		9 ± 1^{a}	12 ± 1^{a}	20±2 ^{<i>a</i>,<i>b</i>}
PCB		6 ± 1^{a}	20±1 ^{a,b}	17±3 ^{<i>a</i>, <i>b</i>}

Rats were sacrificed 9, 72 or 216 hr after a single dose of PBB or PCB. AHH activity in the 14,000 x g supernatant fraction of renal homogenates was determined in the presence of ANF ($1x10^{-4}M$). Values represent the means ± 1 S.E. of 4 animals. The data are expressed as percentages of normal (no inhibitor present) values.

^{*a*}Significantly different from control, p<0.05.

^bSignificantly different from 9 hr, same treatment, p<0.05.

Figure 5. Inhibition of renal and hepatic microsomal aryl hydrocarbon hydroxylase (AHH) activities in vitro by allyl-isopropylacetamide (AIA), SKF 525-A, metyrapone (MET), piperonyl butoxide (PB) and α -napthoflavone (ANF). AHH activities were determined in the presence of AIA, SKF 525-A, MET, PB or ANF; 0, 1×10^{-6} , 1×10^{-5} , 1×10^{-4} , or 1×10^{-3} M, and with no inhibitors or vehicles present (control). Activities are expressed as percentages of control, mean ± 1 S.E. Circles represent renal microsomal activities and squares represent hepatic microsomal activities. Open symbols, significantly different from control (no inhibitor). *Significant difference between percent inhibition in renal and hepatic AHH even though both were significantly inhibited. N=5 independent experiments, p<0.05.

Log Inhibitor Concentration (M)

Figure 5

patic AHH appeared to be equally susceptible to inhibition by ineasing concentrations of PB in the incubation mixture. The presence SKF 525-A and MET in the incubation mixtures produced concentrationpendent decreases in the activity of hepatic AHH but increases, at v concentrations, in the activity of renal AHH (Figure 5). Addition ANF to the incubation mixtures produced large increases in hepatic 4 activity that were maximal at a concentration of $1x10^{-5}M$ and clined as the concentration of ANF was increased. In contrast, ANF concentrations of $1x10^{-5}M$ and greater inhibited renal AHH actity (Figure 5).

Time-dependent effects of single doses of SKF 525-A and PB on renal and hepatic PCNMA and AHH activities in rats and mice

Administration of a single i.p. injection of SKF 525-A, 75 kg, to Fischer 344 rats produced a transient decrease in hepatic MA activity, an effect that was maximal 2 hr after dosing, and a longed reduction in hepatic AHH activity (Figure 6). Renal PCNMA ivity was not reduced by a single treatment with SKF 525-A; renal activity was reduced by SKF 525-A, but not to the extent that atic AHH activity was reduced. Administration of PB, 600 mg/kg, rats produced only a slight reduction in hepatic PCNMA activity a prolonged reduction in hepatic AHH activity (Figure 6). Renal activity was also reduced by treatment with PB, though not to extent that hepatic AHH activity was reduced. Treatment with PB not affect the activity of renal PCNMA. Qualitatively similar ilts were obtained when these experiments were conducted on ICR, mice (W.M. Kluwe and J.B. Hook, unpublished observations).

(600 mg/Kg) or vehicle. Enymme activities were measured in the 14,000 x g supernatant fraction of renal and hepatic homogenates and expressed as percentages of control (vehicle-treated). The data are represented as the mean ± 1 S.E. of 6 animals. *Significant Figure 6. Time-dependent inhibition of p-chloro-N-methylaniline N-demethylase (PCNNA) and aryl hydrocarbon hydroxylase (AHH) activities by SKF 525-A and piperonyl butoxide (PB). Rats were sacrificed 1, 2, 4 or 12 hr after administration of SKF 525-A ($75 m_{\rm S}/k_{\rm S}$), PB difference between percent inhibition in kidney and liver, p<0.05.

B. Enzyme Modulation and CCl₄ and CHCl₃ Toxicity

1. Effects of dietary PBB and PCB on CC1, toxicity in mice

Maintenance of ICR, male mice on diets containing 100 ppm of PBB or 200 ppm of PCB for 28 days markedly increased liver weightto-body weight ratios (Table 8) without significantly affecting total body weight. The effect of PBB on liver weight was greater than that of PCB, even though PCB was present in the diet at a greater concentration than was PBB. Kidney weight-to-body weight ratios were not affected by ingestion of PBB or PCB (Table 8).

Ingestion of PBB and, to a lesser extent PCB, appeared to enhance the susceptibility of mice to the toxic effects of CCl_4 . The CCl_4 -induced rise in SGOT activity in PBB-treated mice was greater than that in control mice 24 hr after administration of 0.125 m1/kg CCl_4 , and greater in PCB-treated mice than in control mice after administration of 0.625 m1/kg CCl_4 (Figure 7). The CCl_4 -induced increases in SGPT activities were affected by PBB and PCB in manners similar to those of SGOT (data not shown). PBB appeared to increase the susceptibility of mice to CCl_4 nephrotoxicity. Although administration of up to 0.625 m1/kg CCl_4 to control and to PCB-treated mice failed to produce a decrease in the abilities of renal cortical slices to accumulate PAH and TEA (PAH and TEA S/Ms), as little as 0.125 m1/kg CCl_4 produced significant decreases in PAH and TEA S/Ms in PBB-treated mice (Figure 7, TEA data not shown).

The LD_{50} values for CCl_4 in mice were inversely related to the concentrations of PBB in the diet (Table 9). Ingestion of 20 ppm of PBB in the diet for 20 days increased the susceptibility of mice

а 3-

.

. ·

ter de la sector de la sector

Effects of Dietary Polybrominated Biphenyls (PBB) and Polychlorinaed Biphenyls (PCB) on Liver Weight/Body Weight (LW/BW) and Kidney Weight/Body Weight (KW/BW)

Diet	LW/BW ± 1 S.E. (x 100)	KW/BW ± 1 S.E. (x 100)
C	5.93 ± 0.09	1.51±0.03
PCB	8.29 ± 0.20^{a}	1.42±0.04
PBB	13.62 ± 0.35^{a}	1.42±0.04

Mice were maintained on control diet (C) or the same diet formulated to contain 100 ppm of PBB or 200 ppm of PCB for 28 days.

^aSignificantly greater than control (C), p<0.05.

Figure 7. Effects of polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) and CCl₄ on SGOT and PAH S/M. Mice were maintained on control diet (C) or the same diet formulated to contain 100 ppm of PBB or 200 ppm of PCB for 28 days prior to a single i.p. injection of one of several doses of CCl₄. Mice were killed 48 hr later and SGOT and PAH S/Ms determined. *Significant difference in comparison to mice receiving the same dose of CCl₄ but ingesting control diet (C), p<0.05.

Figure 7

ΤA	BL	E 9
----	----	-----

Effects of Polybrominated Biphenyls (PBB) on the Acute LD 50 of CC1,

Dietary PBB(ppm)	96-hour LD ₅₀ (m1/kg)	Potency Ratio
0	1.84 (1.55-2.18)	
20	1.00 (0.82-1.22) ^a	1.84 (1.46-2.32) ^a
100	0.28 (0.25-0.31) ^{<i>a</i>,<i>b</i>}	6.57 (5.48-7.88) ^{<i>a</i>,<i>b</i>}

Mice were fed diets formulated to contain 0, 20, or 100 ppm polybrominated biphenyls (PBB) for 20 days prior to a single injection of CCl₄, in corn oil, in a total volume of 5 ml/kg. Each dose of CCl₄ was administered to 10 animals. Deaths occurring within 96 hr after CCl₄ administration were recorded. The 95% confidence limits are in parentheses following LD₅₀ and potency ratio values.

Potency ratio is defined as the LD_{50} in mice ingesting 0 ppm PBB divided by the LD_{50} in mice ingesting 20 or 100 ppm PBB.

 $^{\alpha}$ Significant decrease/increase in comparison to 0 ppm PBB.

^bSignificant decrease/increase in comparison to 20 ppm PBB.

a fac

to the lethal effect of CCl_4 by nearly a factor of 2 while ingestion of 100 ppm of PBB in the diet for 20 days increased susceptibility to the lethal effect of CCl_4 by a factor of more than 6. The maximum cumulative number of deaths produced by CCl_4 in both control mice and PBB-treated mice occurred 96 hr after administration of CCl_4 . Mice surviving the initial 4 days after CCl_4 administration were observed for an additional 2 weeks during which time no deaths occurred. In addition, the dose-response (cumulative death) curves (plotted on log vs. probit scales) were parallel, suggesting that the mechanism of CCl_4 -induced death was the same in the control and the PBB-treated mice.

2. Effects of PBB, PCB and HCB on CC1, toxicity in rats

Ingestion of the aromatic organohalides, HCB, PBB and PCB, by male, Sprague-Dawley rats over a 20 day period produced hepatomegaly; liver weight-to-body weight ratios were increased (Table 10) but total body weights were not affected by the aromatic organohalides (data not shown). Kidney weight-to-body weight ratios, in contrast, were unaffected by aromatic organohalide treatment. The increase in relative liver size was accompanied by an increase in hepatic lipid content, though renal lipid content was not affected (Table 11). Treatment of rats with single injections of CCl_4 (0.25 or 2.00 ml/kg) also increased hepatic lipid content, an effect that was not additive to that of PBB, PCB or HCB on hepatic lipid content (Table 11). Renal lipid content was not increased by treatment with CCl_4 nor by any combination of CCl_4 and aromatic organohalides.

TABLE 10

Effects of Aromatic Organohalides on Liver Weight/Body Weight (LW/BW) and Kidney Weight/Body Weight (KW/BW)

Treatment ^a	LW/BW ± 1 S.E. (x 100)	KW/BW ± 1 S.E. (x 100)
Control	4.54±0.08	0.745±0.011
HCB	6.08±0.06	0.776±0.013
PBB	7.06±0.15	0.753±0.013
PCB	5.77±0.06	0.766±0.053

^aSprague-Dawley, male rats were treated over a 20 day period with hexachlorobenzene (HCB), polybrominated biphenyls (PBB) or polychlorinated biphenyls (PCB). Control rats received the appropriate vehicles.

^bSignificantly greater than control, p<0.05.

 c Significantly greater than HCB or PCB, p<0.05.

N=6 except HCB, 2.00 ml/kg CCl_4 , where N=4.

TABLE 11

Effects of Aromatic Organohalides and CCl_4 on Lipid Content of Liver (L) and Kidney (K)

ng/gram) ± 1 S.E. PBB PCB	59.24 \pm 3.15 ^b 64.80 \pm 3.07 ^b 60.10 \pm 10.56 72.40 \pm 11.53 ^b 61.80 \pm 3.06 68.28 \pm 10.76	41.57± 4.01 47.65± 9.96 35.11± 5.04 41.48± 9.60
Lipid Content () HCB	55.30± 4.50 ^b 57.40± 3.11 50.18± 1.30 83.91±20.37	38.75± 1.21 40.98± 4.24 38.96+ 7.02
Control	$\begin{array}{c} 39.11 \pm 2.00 \\ 43.37 \pm 3.33 \\ 62.08 \pm 2.16 \\ 64.28 \pm 2.94 \end{array}$	39.20±1.85 33.53±3.03 37.78+2.44
Pretreatment lpha : CC1_4 (m1/kg)	0.00 (vehicle) 0.03 0.25 2.00	0.00 (vehicle) 0.25 2.00
Organ	чччч	メメメ

^aSprague-Dawley, male rats were pretreated over a 20 day period with hexachlorobenzene (HCB), polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB) or the appropriate vehicles (Control) and then challenged with one of several doses of CC14 (0.00-2.00 m1/kg).

 D Significant increase in comparison to control, same amount of CCl $_{4},$ p<0.05.

 $^{\mathcal{C}}$ Significant increase in comparison to animals receiving the same pretreatment but 0.00 ml/kg CC14 (vehicle), p<0.05.

N=3 animals.

Ingestion of PBB, PCB and HCB increased the susceptibility of rats to the lethal effects of i.p.-administered CC1₄ (Table 12). Accordingly, losses in body weight induced by CC1₄ occurred following lower doses of CC1₄ in PBB, PCB and HCB-treated rats than in control rats (Table 13).

Treatment with HCB, PBB and PCB, alone, did not significantly affect the abilities of renal cortical slices to accumulate PAH and TEA (Figure 8, TEA data not shown). Rats treated with HCB, PBB and PCB, however, exhibited significant decreases in PAH and TEA S/Ms after receiving as little as 0.25 ml/kg CCl_4 , though a decrease was not apparent in control rats until the dose of CCl₄ was increased to 2.00 ml/kg (Figure 8). The combined effects of CCl₄ and the aromatic organohalides on renal cortical slice respiration paralleled their effects on PAH and TEA S/Ms, though in an inverse manner. Increases in renal cortical slice QO₂ were evident in renal tissue from control rats only after administration of 2.00 ml/kg CCl₄ while QO₂ from PBB and PCB-treated rats was increased after as little as 0.25 ml/kg CCl₄ (Figure 8).

Treatment with HCB, PBB and PCB similarly increased the susceptibility of the liver to the toxic effects of CCl_4 . Increases in SGPT activities were detected in PCB-treated rats after as little as 0.03 ml/kg CCl_4 (Figure 9). Furthermore, increased SGPT activities were detected in HCB, PBB and PCB-treated rats, but not in control rats, following administration of 0.25 ml/kg CCl_4 . Control rats exhibited increased SGPT activities after receiving 2.00 ml/kg CCl_4 (Figure 9).

	ΤA	BLE	12
--	----	-----	----

Effects of Aromatic Organohalides and CC1_4 on 48-hour Survival $\overset{\alpha}{\sim}$

Number of	Survivors/Number 7	reated	2.00
Pretreatment ^D	CCl ₄ (m1/kg):	0.25	
Control		6/6	6/6
HCB		6/6	4/8
PBB		6/6	0/6
PCB		6/9	0/6

^{α}48-hour survival refers to the ability of HCB, PBB and PCBpretreated rats or control rats to survive for 48 hr after a single injection of CC1₄.

^bSprague-Dawley, male rats were pretreated over a 20 day period with hexachlorobenzene (HCB), polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB) or the appropriate vehicles and then challenged with one of several doses of CCl₄ (0.00-2.00 ml/kg).

æ

TABLE 1	13	
---------	----	--

Effects	of	Aromatic	Organohalides	and	CC1,	on	48-hour	Body
			Weight Ga	in	4			

Percent Control	of Original HCB	Body Weight ^a PBB	± 1 S.E. PCB
107±2	108±1	111±2	111±2
106±1	104 ± 1^d	$102\pm 1^{c,d}$	100±2 ^{°,d}
100 ± 1^d	94±1°,d	86 $\pm 1^{c,d}$	$84\pm 2^{c_{j}d}$
87 ± 2^d	88 $\pm 2^d$		
	Percent Control 107 ± 2 106 ± 1 100 ± 1^d 87 ± 2^d	Percent Controlof HCB 107 ± 2 108 ± 1 106 ± 1 104 ± 1^d 100 ± 1^d $94\pm1^{c,d}$ 87 ± 2^d 88 ± 2^d	Percent of Original Body Weight ControlHCBPBB 107 ± 2 108 ± 1 111 ± 2 106 ± 1 104 ± 1^d $102\pm 1^{c,d}$ 100 ± 1^d $94\pm 1^{c,d}$ $86\pm 1^{c,d}$ 87 ± 2^d 88 ± 2^d

^{α}Determined as body weight at time of sacrifice \div body weight 48 hr prior to sacrifice (time of CCl₄ administration) x 100.

^bSprague-Dawley, male rats were pretreated over a 20 day period with hexachlorobenzene (HCB), polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB) or the appropriate vehicles and then challenged with one of several doses of CCl₄ (0.00-2.00 ml/kg).

^cSignificantly lower than in control animals receiving the same amount of CCl₄, p<0.05.

^dSignificantly lower than in animals receiving the same pretreatment but 0.00 ml/kg CC1₄ (vehicle), p<0.05.

N=6 except HCB, 2.00 m1/kg CCl_4 , where N=4.

Figure 8. Effects of aromatic organohalides and CCl₄ on renal QO₂ and PAH S/Ms. Rats treated subacutely (20 days) with hexachloro-benzene (EGB), polychlorinated biphenyls (PCB), polybrominated biphenyls (PCB) and PAH S/Ms determined. QO₂ values are depicted as μ 1 O₂ consumed/g tissue/min. Control values for PAH S/M and QO₂ are illustrated on the right portion of the figure. N=6 animals except HCB, 2.00 ml/kg, where N=4 animals. †Significant difference in comparison to CCl₄, p<0.05. *Significant difference in comparison to (CCl₄, p<0.05. *Significant difference in comparison to (ccl₄, p<0.05. *Significant difference in companies on the same dose of CCl₄ but no aromatic organohalide (vehicle), p<0.05.

comparison to animals receiving the same dose of ${\rm CG1}_4$ but no aromatic organohalide (vehicle), subacutely with hexachlorobenzene (HCS), polybrominated biphenyls (FBB), polychlorinated biphenyls (PCB) or vehicle were sacrificed 48 hr after 1.p. injection of CC14 (0.00 0.03, 0.25, or 2.00 mL/kg) and SCPT activities determined. W=6 animals except for HCB, 2.00 ml/kg, where N=4 arimals. †Stgnificant difference in comparison to animals receiving the same aromatic organohalide but 0.00 ml/kg CCl4, p<0.05. *Significant difference in Rats treated Figure 9. Effects of aromatic organohalides and CCl_4 on SGPT activities.

Sections of livers from control, HCB, PBB and PCB-treated rats injected with 0.00 (vehicle), 0.03, 0.25 or 2.00 ml/kg CCl_4 are illustrated in Figures 10, 11, 12 and 13, respectively. Normal liver histology was exhibited by tissue from control rats receiving no CCl_4 (Figure 10). Tissue from PBB, PCB and HCB-treated rats receiving no CCl_4 exhibited dilation of the hepatic vein, hepatocellular swelling and early degenerative changes (e.g., vacuolation) at the periphery of the lobules (Figure 10). With increasing doses of CCl_4 centrilobular necrosis (swelling and degeneration of the cells closest to the central vein) encompassed an increasing percentage of the liver in samples from control rats (Figures 11-13). Livers from PBB, PCB and HCB-treated rats exhibited similar progressions of centrilobular necrosis but the extent of necrosis in aromatic organohalide-treated rats appeared to be greater than that in control rats after doses of 0.03, and 0.25 ml/kg CCl_4 (Figures 11 and 12).

3. Effects of PBB and PCB on hepatocellular GPT and GOT activities in rats

The effects of dietary PBB and PCB, potent inducers of microsomal enzyme activities, on the activities of GPT and GOT within the liver were investigated to determine if PBB and PCB induced hepatic GPT and GOT activities and to determine if such effects might be responsible for potentiation of CCl_4 -induced elevation of SGPT and SGOT activities. As shown in Table 14, the activities of hepato-cellular GPT, per ml of 100,000 x g supernatant fraction or per mg of 100,000 x g supernatant protein, were not greater in PBB and PCB rats than in control rats. Relative liver weights, however, were significantly increased by ingestion of PBB and PCB (Table 11). If the

Figure 10. Sections of livers from rats receiving 0.00 m1/kg CCl₄. Hematoxylin and eosin stain, X40. A) No aromatic organohalide pretreatment. Parts of several lobules can be seen. Central veins are small, sinusoids are visible and hepatic cords present an orderly arrangement. Interlobular spaces are scarcely visible and all liver cells throughout the lobule present an identical appearance. B) Pretreated with hexachlorobenzene. Central veins are slightly dilated and hepatic cells at the periphery of the lobule are vacuolated. Swelling of cells has obliterated sinusoids at the periphery of the lobules. Hepatic cords remain regular in arrangement. C) Pretreated with polybrominated biphenyls. Appearance of the liver tissue is very similar to that described in 4B. D) Pretreated with polychlorinated biphenyls. The central vein is dilated, sinusoids are nearly obliterated by cellular swelling and light vacuolation of hepatic cells can be seen at the periphery of the lobule.

Figure 10

Figure 11. Hepatic tissue from rats receiving 0.03 ml/kg CCl₄. Hematoxylin and eosin stain, X40. A) No aromatic organohalide pretreatment. Hepatic cells are swollen; sinusoids are obliterated except those adjacent to the central vein and cells show vacuolation throughout the lobule. B) Pretreated with hexachlorobenzene. The central vein is symmetrical in outline, sinusoids are slightly visible and cellular vacuolation can be seen at the periphery of the lobule. C) Pretreated with polybrominated biphenyls. The central vein is dilated, adjacent sinusoids are open but peripheral hepatic cells are vacuolated. D) Pretreated with polychlorinated biphenyls. The central vein is markedly dilated and irregular in shape. Sinusoids are completely obliterated because of swelling of hepatic cells, many cells are necrotic and others are vacuolated.

Figure 11

Figure 12. Hepatic tissue from rats receiving 0.25 m1/kg CC14. Hematoxylin and eosin stain, X40. A) No aromatic organohalide pretreatment. The larger dose of CC14 caused a remarkable vacuolation of hepatic cells extending from the periphery to midway of the lobule. B) Pretreatment with hexachlorobenzene. Swollen hepatic cells throughout the lobule obliterate the sinusoids although the central vein remains readily visible. There is remarkable vacuolation of a few hepatic cells at the periphery of the lobule. C) Pretreatment with polybrominated biphenyls. The central vein is markedly dilated, hepatic cells are swollen and necrotic or vacuolated. Many nuclei are pyknotic. D) Pretreatment with polychlorinated biphenyls. Hepatic tissue is in a state of degeneration. Much necrosis has occurred, living cells are swollen, sinusoids are irregular, central veins are obliterated and hepatic architecture is deranged.

Figure 12

Figure 13. Hepatic tissue from rats receiving 2.00 ml/kg CCl₄. Hematoxylin and eosin stain, X40. A) No aromatic organohalide pretreatment. Liver cells are vacuolated and in the region of the central vein, cells have undergone necrosis with subsequent disruption of hepatic cords and sinusoids. The cells at the periphery of the lobule are less severely affected. B) Pretreatment with hexachlorobenzene. Some vacuolation of cells can be seen. Necrosis of cells extends from the central vein nearly to the periphery of the lobule. Sinusoids and liver cords are visible only near the periphery of the lobules.

2.00

Figure 13

TABLE	14
-------	----

Effects of Dietary Polybrominated Biphenyls (PBB) and Polychlorinated Biphenyls (PCB) on Hepatic GPT Activity

Tractmont	Mean GPT activity \pm 1 S.E. (% of control)			
ireatment	U/ml x 10 ^{3a}	U/mg ^b	$U/100g \ge 10^{3c}$	
Control	4.72±0.32	442±36	86±6	
PBB	4.17±0.12 (87)	361±15 (82)	118±34 (138) ^d	
РСВ	5.34±0.48 (113)	423±42 (95)	123±11 (144) ^d	

GPT activities were measured in the 100,000 x g supernatant fraction of hepatic homogenates from rats maintained for 20 days on diets containing 100 ppm of PBB or 200 ppm of PCB or diet formulated with an equivalent amount of acetone (control). Activities were expressed per ml of 100,000 x g supernatant fraction (α), per mg of 100,000 x g supernatant protein (b), and per 100 g of body weight (c).

 $^d{\rm Significantly}$ greater than control, p<0.05. N=5 rats.

increases in liver weight are taken into account, then GPT activities, per 100 g body weight, were increased by treatment with PBB and PCB (Table 14). Quantitatively similar effects were produced by PBB and PCB on hepatic GOT activities (data not shown).

4. Effects of maternal consumption of PBB on the toxicities of <u>CCl₄ and CHCl₃ in developing male rats</u>

Sprague-Dawley, male rats were exposed to PBB preweaning by the inclusion of 100 ppm of PBB in the dam's diet from day 8 of gestation, and to PBB postweaning by the inclusion of 100 ppm of PBB in the diet consumed by the pups postweaning. At 52 days of age rats exposed to PBB continuously (100-100) had lower body weights than rats exposed to PBB during preweaning only (100-0), and rats exposed to PBB preweaning had lower body weights that control rats (0-0) (Figure 14). Ingestion of PBB greatly increased the susceptibility of rats to the hepatotoxic and nephrotoxic effects of CC14. SGPT activities were elevated by as low a dose of CC1_4 as 0.03 ml/kg in rats exposed to PBB preweaning or continuously, but were increased in control rats only by a much larger dose of CCl_4 (2.00 ml/kg) (Figure 15). Similarly, PAH and TEA S/Ms were reduced in control rats by administration of 2.00 ml/kg CCl_{Λ} , but not lower doses, while as low a dose as 0.03 ml/kg CC1, reduced PAH and TEA S/Ms in rats exposed to PBB preweaning or continuously (Figure 15, TEA data not shown).

5. Effects of dietary PBB on CHC1, toxicity in mice

Ingestion of PBB by ICR, male mice produced dietary concentration-dependent increases in liver weight-to-body weight ratios (Table 15). Since body weights were not significantly affected by

Figure 14. Effects of exposure to polybrominated biphenyls (PBB) during development on body weight at 52 days of age. Control diet (0-0); 100 ppm PBB fed to dam, pups weaned onto control diet (100-0); 100 ppm PBB fed to dams, pups weaned onto 100 ppm PBB diet (100-100), N=16. *Significantly less than 0-0, p<0.05. +Significantly less than 100-0, p<0.05.

Figure 14

Figure 15. Effects of polybrominated biphenyls (PBB) and CCl₄ on SGPT and PAH S/M. Rats were sacrificed 48 hr after a single i.p. injection of CCl₄ (0.00, 0.03, 0.25 or 2.00 ml/kg) and SGPT and PAH S/Ms determined. Control diet (0-0); 100 ppm PBB fed to dam, pups weaned onto control diet (100-0); 100 ppm PBB fed to dams, pups weaned onto 100 ppm PBB diet (100-100). N=4 rats except 100-0, 0.25 ml/kg CCl₄, where N=2 rats. *Significantly different from 0-0 receiving the same amount of CCl₄, p<0.05. +Significantly different from 0-0 receiving 0.00 ml/kg CCl₄, p<0.05.

Figure 15

Effe	cts of Die Weight/Bo	tary Poly dy Weight W	vbrominat : (LW/BW) Neight (K	ed Biphe and Kid W/BW)	nyls (PBB ney Weigh) on Live t/Body	r
	<i>a</i>		· · · · · ·	-	· · · · · · · · · · · · · · · · · · ·		

TABLE 15

PBB Diet"	LW/BW ± 1 S.E. (x 100)	KW/BW ± 1 S.E. (x 100)
Control	5.97 \pm 0.23	1.54 ± 0.05
1 ppm	6.10 \pm 0.19	1.49 ± 0.04
25 ppm	6.91 \pm 0.31	1.47 ± 0.03
100 ppm	9.68 \pm 0.38	1.58 ± 0.04

^{α}Animals were maintained on diets containing 0 (control), 1, 25 or 100 ppm of PBB for 14 days. Each value represents the mean ± 1 S.E. of 6 animals.

 b Significantly greater than control, p<0.05.

an g

÷

dietary PBB the increases in liver weight-to-body weight ratios are indicative of PBB-induced increases in liver size. Kidney weight-tobody weight ratios, in contrast, were not affected by consumption of PBB (Table 15). The hepatotoxicity and nephrotoxicity of CHC13 were increased by ingestion of PBB. SGOT activities, already slightly elevated in mice ingesting 100 ppm of PBB for 14 days, were further increased by 25 $\mu 1/kg\ \text{CHCl}_3$ in mice ingesting 100 ppm PBB diet but not in mice receiving lower dietary concentrations of PBB (Figure 16). PBB produced similar effects on CHCl3-induced elevations of SGPT activities (data not shown). CHCl3-induced increases in BUN and decreases in PAH and TEA S/Ms were also potentiated by PBB in a dietary concentrationdependent manner (Figure 17, TEA data not shown). Increases in BUN and decreases in PAH and TEA S/Ms were evident in control mice only after a dose of 50 $\mu 1/kg\ \text{CHCl}_3.$ Increases in BUN, however, were produced by 25 $\mu 1/kg$ of CHCl $_3$ in mice ingesting 25 and 100 ppm of PBB, and decreases in PAH and TEA S/Ms were produced by 25 μ 1/kg of CHCl₃ in mice ingesting 1 and 25 ppm of PBB and by 2.5 μ 1/kg of CHCl₃ in mice ingesting 100 ppm of PBB (Figure 17).

6. Effects of NaPb, 3MC, PCB and TCDD on CHC1₃ toxicity in mice

Treatment with NaPb appeared to increase the susceptibility of mice to the hepatotoxic effects of $CHCl_3$; 0.25 ml/kg of $CHCl_3$ increased SGPT activity in NaPb-treated mice but not in control mice (Figure 18). Though 3MC and PCB treatment had no marked effects on hepatic response to $CHCl_3$, treatment with TCDD may have protected the liver from the toxic effects of $CHCl_3$; 0.75 ml/kg of $CHCl_3$ increased SGPT activity in both control and TCDD-treated mice, but the magnitude Figure 16. Effects of dietary polybrominated biphenyls (PBB) and i.p. CHCl₃ on SGOT activity. Animals were maintained on diets containing 0 (control), 1, 25 or 100 ppm of PBB for 14 days prior to a single administration of CHCl₃. SGOT was determined 24 hr after CHCl₃ administration. Each value represents the mean ± 1 S.E. of 6 animals. *Significant increase in comparison to C.

Figure 16

Figure 17. Effects of dietary polybrominated biphenyls (PBB) and i.p. CHCl₃ on BUN concentration and PAH S/M. Animals were maintained on diets containing 0 (control), 1, 25 or 100 ppm of PBB for 14 days prior to a single administration of CHCl₃. BUN and PAH S/Ms were determined 24 hr after CHCl₃ administration. Each value represents the mean \pm 1 S.E. of 6 animals.

Figure 17

Figure 18. Effects of chloroform and inducers of mixed-function oxidases (MFOs) on SGPT activity. Control mice or mice pretreated with phenobarbital (PB), 3-methylcholanthrene (3MC), 2,3,7,8tetrachlorodibenzo-p-dioxin (TCDD) or polychlorinated biphenyls (PCB) were challenged with single i.p. injections of CHCl₃. Mice were sacrificed 24 hr later and SGPT determined. Each bar represents the mean ± 1 S.E. of 6 animals. *Significant difference in comparison to control mice receiving the same dose of CHCl₃ (p<0.05). \pm Significant increase in comparison to mice receiving the same pretreatment and 0.00 ml/kg of CHCl₃ (vehicle) (p<0.05).

Figure 18

of the increase was significantly greater in control mice than in TCDDtreated mice (Figure 18). Treatment with 3MC, TCDD, and PCB prevented or reduced the magnitude of the CHCl₃-induced decrease in PAH and TEA S/Ms (Figure 19, TEA data not shown). NaPb, however, did not alter the sensitivity of mice to the nephrotoxic effects of CHCl₃.

7. Effects of SKF 525-A and PB on CHCl₃ toxicity in mice

Mice treated with PB, 600 mg/kg, 2 hr before $CHCl_3$ administration exhibited no increase in SGPT activity following administration of 0.25 ml/kg $CHCl_3$, though this dose of $CHCl_3$ increased SGPT activity in control mice (Figure 20). Similarly, 0.75 ml/kg $CHCl_3$ produced less of an increase in SGPT activity in PB-pretreated mice than in control mice. Administration of PB 1 hr after $CHCl_3$ potentiated the $CHCl_3$ -induced elevation of SGPT activity, as did administration of SKF 525-A, 75 mg/kg, either 2 hr before or 1 hr after $CHCl_3$. Treatments with SKF 525-A and PB had qualitatively similar effects on renal response to $CHCl_3$ -induced decreases in PAH and TEA S/Ms (TEA data not shown), but administration of PB after $CHCl_3$, or SKF 525-A either before or after $CHCl_3$, lacked this effect (Figure 20).

C. Interactions of CHCl₂ with GSH

1. Effects of PBB and PCB on CHCl₂-induced depletion of GSH

Intraperitoneal injection of CHC1₃ reduced the concentrations of hepatic and renal reduced, non-protein thiols (mostly reduced GSH; see Methods, Section D3) in a dose-dependent manner (Figure 21). Control mice exhibited a significant reduction of renal and hepatic

Figure 19. Effects of chloroform and inducers of mixed-function oxidases (MFOs) on PAH S/M. Control mice or mice pretreated with phenobarbital (PB), 3-methylcholanthrene (3MC), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or polychlorinated biphenyls (PCB) for varying periods of time were challenged with single i.p. injections of CHCl₃. Mice were sacrificed 24 hr later and PAH S/M was determined. Each bar represents mean ± 1 S.E. of 6 animals. *Significant difference in comparison to control mice receiving the same dose of CHCl₃ (p<0.05). \pm Significant decrease in comparison to mice receiving the same pretreatment and 0.00 ml/kg of CHCl₂ (vehicle) (p<0.05).

Figure 20. Effects of CHCl₃ and piperonyl butoxide (PB) or SKF 525-A (SKF) on SGPT and PAH S/M. Mice received a single 1.p. injection of PB or SKF 525-A 120 min before (pre) or 60 min after (post) a single i.p. injection of CHCl₃. Bars represent the mean \pm 1 S.E. of 6 animals. *Significantly different than in control mice (C) receiving the same amount of CHCl₄, p<0.05.

Figure 20

Figure 21. Reduction of renal and hepatic reduced glutathione (GSH) content by CHCl3: Effects of pretreatment with polybrominated biphenyls (PEB) and polychlorinated biphenyls (PCB). Mice were fed control diet or a similar diet formulated to contain 200 ppm of PCB or 100 ppm of PEB for 20 days prior to a single i.p. injection of GCCl3. Bars represent the mean ± 1 S.E. of 6 animals. *Significantly different than in control mice receiving the same amount of CHCl3, p:0.05. †Significantly different than in mice receiving the same diet but 0.00 ml/kg CHCl₄, p:0.05.

reduced GSH content following administration of 0.25 ml/kg CHCl₃. As little as 0.05 ml/kg, however, produced decreases in renal and hepatic GSH contents in mice treated with PBB. Mice treated with PCB, in contrast to control mice, failed to exhibit decreases in renal GSH content following administration of 0.25 ml/kg and 1.00 ml/kg of CHCl₃ (Figure 21). Treatment with PCB did not alter the susceptibility of liver to CHCl₃-induced depletion of GSH except at the highest dose of CHCl₃ employed, 0.75 ml/kg, where depletion of hepatic GSH was slightly greater in PCB-treated mice than in control mice.

2. Effects of diethyl maleate on GSH depletion and CHCl₃ toxicity in mice

The concentrations of reduced non-protein thiols in liver and kidney (primarily reduced GSH) are shown in Figure 22. The concentration of GSH in renal cortex was approximately half of that in liver. Medullary GSH content was slightly less than that in cortex and papillary GSH content was approximately half that of cortex. Treatment with diethyl maleate, 600 mg/kg, decreased renal and hepatic GSH content. Maximum depletion occurred 2 hr after administration of diethyl maleate. As shown in Figure 22, the concentrations of GSH in both kidney and liver were reduced to approximately 15% of control values by diethyl maleate. Treatment of mice with diethyl maleate, 600 mg/kg, 90 min prior to CHCl₃ administration increased the susceptibility of mice to the toxic effects of CHCl₃. As illustrated in Figure 23, 0.033 and 0.100 ml/kg CHCl₃ increased SGPT activity in diethyl maleate-treated mice but not in control mice. 0.100 ml/kg CHCl₃ also decreased PAH and TEA S/Ms (TEA data not shown) in diethyl

Figure 22. Depletion of renal and hepatic reduced glutathione (GSH) by diathyl maleate. Mice were sacrificed 120 min after administration of diathyl maleate, 600 mg/kg. Bars represent the mean ± 1 S.E. of 5 animals. *Significantly lower than in control mice,

Figure 23. Effects of diethyl maleate and CHCl₃ on SGPT and PAH S/M. Mice received a single i.p. injection of diethyl maleate, 600 mg/kg, 90 min prior to CHCl₃ and were sacrificed 24 hr later. Bars represent the mean \pm 1 S.E. of 6 animals. *Significantly different than in control mice receiving the same amount of CHCl₃, p<0.05.

maleate-treated mice though control mice were not affected at this dose (Figure 23). Although 0.300 ml/kg CHCl₃ increased SGPT activity and decreased PAH and TEA S/Ms in both control and diethyl maleatetreated mice, the magnitudes of the CHCl₃ effects were greater in diethyl maleate-treated mice than in control mice (Figure 23). The effects of treatments with CHCl₃ and diethyl maleate on SGOT activity were similar to their effects on SGPT activities (data not shown).

D. <u>Covalent Binding of CHCl, Metabolites in Mice</u>

1. <u>Covalent binding of CHC1₃ metabolites to renal and hepatic</u> microsomal protein in vitro

Incubation of $({}^{14}C)$ -CHCl₃ with renal and hepatic microsomes <u>in vitro</u> resulted in the covalent binding of radioactivity to microsomal protein (Figure 24). The amount of radioactivity covalently bound per mg of protein per 5 min was nearly 15 times greater when hepatic microsomes were used than when renal microsomes were used. Hepatic microsomes from PBB and PCB-treated mice, furthermore, bound more radioactivity than hepatic microsomes from control mice. Covalent binding to renal microsomes from PCB-treated mice was quantitatively greater than covalent binding to renal microsomes from control mice (Figure 24). Covalent binding to renal microsomes from PBB-treated mice, however, was indistinguishable from that to renal microsomes from control mice.

2. <u>Clearance of CHCl₃ and metabolites from blood and covalent</u> binding to total renal and hepatic protein in vivo

Administration of $({}^{14}C)$ -CHCl₃ to intact mice (1.75 mmoles/kg) resulted in the covalent binding of radioactivity to renal and hepatic proteins (Figure 25). The amount of radioactivity bound, per mg of

Figure 24. Covalent binding of CHCl₃ metabolites to microsomal protein $\underline{in}, \underline{virco}$. (1^{4} C)-OHCl₃ was incubated with renal or hepatic microsomal protein for 5 min and covalent binding of radioactivity to protein determined. Data are represented as the mean ± 1 S.E. of 6 independent experiments. *Significantly different than control, p<0.05.

Figure 24

Figure 25. Covalent binding of CHC13 metabolites to renal and hepatic protein in vivo and scalual radioactivity in kidney and liver. Mice were sacrificed 3, 6 or 12 hr after i.p. administration of (1/6-CHC13, (1/5 mules/kg and radioactivity and protein-bound radioactivity determined in the kidneys and livers. Data are represented as the mean \pm 1 S.R. of 4 animals. "Significantly different from control, pe0.05.

protein, appeared maximal in control mice 3 hr after CHCl₃ administration and was quantitatively greater in the kidney than in the liver. The patterns of total residual radioactivity in the liver and kidney 3, 6 and 12 hr after CHCl₃ administration closely resembled the patterns of covalent binding to renal and hepatic proteins (Figure 25). Mice pretreated with PBB and PCB bound more radioactivity to hepatic proteins and less radioactivity to renal proteins than did control mice (Figure 25). Residual radioactivity in the liver and kidney was affected by PBB and PCB in a similar manner.

The percentages of the total administered dose of $(^{14})$ -CHCl₃ remaining in the liver and kidney and covalently bound to renal and hepatic protein 3, 6 and 12 hr after CHCl₃ administration are summarized in Table 16. Pretreatment with PBB and PCB led to increases (by a factor of approximately 2-4X) in the percentage of the administered dose covalently bound to hepatic protein and the percentage of the dose remaining in the liver, but decreases (by a factor of nearly 2) in the percentage of the administered dose covalently bound to renal protein and the percentage of the dose remaining in the kidney 3, 6 and 12 hr after CHCl₃ administration (Table 16).

The concentrations of total radioactivity $(CHCl_3 \text{ and metabo-} lites)$ in blood from control, PBB and PCB-treated mice appeared maximal 30 min after i.p. injection of $({}^{14}\text{C})$ -CHCl₃, 1.75 mmoles/kg (Figure 26A). Maximum blood concentrations were lower in PBB and PCB-treated mice than in control mice and remained lower at each collection time thereafter. Plots of the log concentrations of blood radioactivity

TABLE 16

Percent of Administered Dose of CHCL3 Remaining in Liver and Kidney 3, 6 and 12 hr After i.p. Administration

Timo	Dadforentint			Liver			Kidney	
7	MAULOACCIVIEY	Treatment:	υ	PBB	PCB	U	PBB	PCB
3 hr	$\mathtt{Total}^{lpha}_{k}$		2.3	6.2	5.8	1.0	0.5	0.8
3 hr	Bound		0.8	2.7	2.3	0.32	0.14	0.21
6 hr	Total		1.2	4.4	3.8	0.7	0.5	0.6
6 hr	Bound		0.7	3.0	2.4	0.25	0.15	0.16
12 hr	Total		0.9	3.3	2.7	0.4	0.2	0.3
12 hr	Bound		0.4	1.6	1.2	0.14	0.07	0.08

The total dose of GHCl₃ was 1.75 mmoles/kg (110 μ Gi/kg). Values were calculated using data from Figure 24, and mean liver weight-to-body weight ratios, mean kidney weight-to-body weight ratios, and mean protein concentrations determined for each treatment group at the time of sacrifice. The data are presented as means of 4 animals.

 $\ensuremath{^{\alpha}}\xspace{\ensuremath{\text{Total}}\xspace}$ reactivity remaining in the tissue.

 $\boldsymbol{b}_{\text{Radioactivity covalently bound to protein.}}$

polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB), control (C). Abbreviations:

Figure 26. A) Blood concentrations of radioactivity versus time. B) Log blood concentrations of radioactivity versus time. Venous blood was withhrawn from the retro-orbital plexus 15, 03, 45, 60, 90, 120 and 180 min after an 1.p. injection of (^{14}O) -CHG13 (1.75 mmoles/kg, 110 pC1/kg). The data are plotted as means \pm 1 S.E. of 4 animals. The curves in B are linear and the slopes of the lines (upper right hand corner) are significantly different in PBB and PCB-treated mice from that in control mice (*), p<0.05.

Abbreviations: polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB), control (C).

versus time after administration of CHCl₃ produced straight lines, indicating that the disappearance of radioactivity from blood was a first-order process (Figure 26B). By analysis of co-variance it was determined that the slopes of the lines relating log blood concentrations of radioactivity to time after CHCl₃ administration from PBB and PCB-treated mice were significantly different from that of control mice. That is, mice pretreated with PBB and PCB removed CHCl₃ from the blood more rapidly than did control mice.

3. Covalent binding to subcellular fractions in vivo

Subcellular fractionation of samples of kidney and liver removed 3 hr after i.p. injection of (¹⁴C)-CHCl₃ (1.75 mmoles/kg) to control, PBB and PCB-treated mice revealed that covalent binding of radioactivity had occurred to proteins and lipids in mitochondria (mitochondrial fraction), endoplasmic reticulum (microsomal fraction) and to cytosolic proteins (100,000 x g supernatant protein) (Table 17). The magnitude of covalent binding in control mice, per mg of protein or lipid, was nearly equal in renal and hepatic mitochondria and endoplasmic reticulum. In contrast, the magnitude of covalent binding to hepatic cytosolic protein was much greater than that to renal cytosolic protein. Mice treated with PBB and PCB bound more radioactivity (per mg of protein or lipid) than did control mice to hepatic mitochondria and cytosolic protein but not to hepatic endoplasmic reticulum. In contrast, less radioactivity was bound to renal endoplasmic reticulum, mitochondria and cytosolic protein in PBB and PCB-treated mice than in control mice (Table 17).

3

a.

17	
ABLE	
T/	

Covalent Binding of CHCl₃ Metabolites to Subcellular Fractions In Vivo

			ſ				
	Subcellular		Protein			Lipid	
Urgan	Fraction	Treatment: C	PBB	PCB	υ	PBB	PCB
Liver Kídney	Microsomal Microsomal	730± 70 846± 87	720 ± 40 400 ± 20^{a}	$670\pm 40_{330\pm 30^{a}}$	933± 50 1530±180	1210±80 817±50 ^a	$1030\pm 60\\926\pm 140^{a}$
Liver Kidney	Mitochondrial Mitochondrial	832± 60 1380± 80	1300 ± 70^{a} 610 ± 20^{a}	1260 ± 72^{a} 610 ± 72^{a}	1110± 20 1190± 20	1360 ± 40^{a} 600 ± 30^{a}	1450 ± 94^{a} 570± 40^{a}
Liver Kidney	Cytosolic Cytosolic	1690±110 540± 60	2910 ± 200^{a} 330 ± 10^{a}	3270 ± 260^{a} 370 ± 30^{a}			
Mice	: were sacrificed	d 3 hr after i.p. adm	inistration d	of [¹⁴ c1-cHc1.	(1 75 mmc1e	- 1.c) and -	

vity covalently bound to protein and lipid determined. Data are presented as pmoles bound per mg of protein or lipid $(X \pm 1 \text{ S.E.}, \text{ N=4 animals})$.

^{α}Significantly different from control, p<0.05.

Abbreviations: polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB), control (C).

Ĉ.

Radioactivity was also bound to renal and hepatic RNA and DNA following i.p. injection of $({}^{14}C)$ -CHCl₃ (Table 18). In general, covalent binding (per mg of RNA or DNA) was greater to RNA than to DNA, and greater to renal nucleotides than to hepatic nucleotides. Treatments with PBB and PCB did not alter the amount of radioactivity bound (per mg of nucleotide) to hepatic RNA and DNA but covalent binding to renal nucleotides was reduced by treatments with PBB and PCB (Table 18).

TABLE	18
-------	----

Covalent Binding of CHCl₃ Metabolites to RNA and DNA In Vivo

Organ	Nucleotides	Treatment: C	РВВ	PCB
Liver	RNA	260±30	$310\pm20 \\ 540\pm20^{a}$	290±30
Kidney	RNA	1050±70		470±30 ^{<i>a</i>}
Liver	DNA	16± 1	$\begin{array}{c} 20 \pm & 3 \\ 20 \pm & 1^{\alpha} \end{array}$	17 ± 3
Kidney	DNA	33± 2		20 $\pm 1^{a}$

Mice were sacrificed 3 hr after i.p. administration of $[{}^{14}C]$ -CHCl₃ (1.75 mmoles/kg) and radioactivity covalently bound to nuclear RNA and DNA determined. Data are represented as nmoles bound per mg of RNA or DNA (X ± 1 S.E., N=4 animals).

^aSignificantly different from control, p<0.05.

Abbreviations: polybrominated biphenyls (PBB), polychlorinated biphenyls (PCB), control (C).

.

÷.

.

DISCUSSION

A. Chemical Modulation of Renal Drug Metabolism

Several chemicals are known to modulate hepatic MFO activities and, thereby, the metabolism and excretion of many endogenous and exogenous compounds. It is now apparent that MFO activities in several non-hepatic tissues can also be modified by administration of certain chemicals. Although such non-hepatic effects may not greatly alter the distribution or half-lives of xenobiotic compounds, they may alter the response of the affected tissues to the presence of chemicals enzymatically transformed to proximate toxicants. Alterations in extrahepatic biotransformation, therefore, may alter the toxicities of specific compounds.

The mechanisms by which chemicals induce microsomal MFO activities have been studied in the liver but not in the kidney (Gelboin, 1971; Venkatesan <u>et al.</u>, 1971). However, since the molecular mechanisms of enzyme induction in these two organs are probably similar, the following discussion, though based on data obtained in the liver, is probably valid also for the kidney.

Theoretically, a change in enzyme activity may result from changes in the kinetic characteristics (Km, Vmax) of an enzyme reaction, or from an actual alteration in the amount of enzyme present. Gurtoo et al. (1968) have reported that some inducing agents appear to

alter the apparent affinity of hepatic AHH for selected substrates. Other investigators, however, believe that the common inducers of hepatic MFO activities increase enzyme activity primarily by increasing the actual amount of enzyme present (Venkatesan et al., 1971; Gelboin, 1971). Increased enzyme content could result from an increase in enzyme synthesis or from a decrease in active enzyme degradation. The former possibility appears to be the more likely possibility with most hepatic inducers because enzyme induction is blocked by concomitant and subsequent administration of cycloheximide, an inhibitor of protein synthesis, and because the half-lives of the enzymes involved do not appear to be significantly prolonged by inducer treatments (Gelboin, 1971; Schimke et al., 1968). A point of considerable controversy, however, is whether the initiating event leading to increased enzyme synthesis occurs at the level of transcription (RNA synthesis) or translation (protein synthesis). Nebert and Gelboin (1968, 1970), using cultured hamster fetal cells, reported that $benz(\alpha)$ anthraceneinduced AHH activity was initially sensitive to inhibition by actinomycin D, an inhibitor of RNA synthesis. This suggests that $benz(\alpha)$ anthracene increased AHH activity by an effect at the transcriptional level. Indeed, after 3 hr of incubation in the presence of inducer, the cells could be washed free of $benz(\alpha)$ anthracene and enzyme synthesis proceeded in the presence as well as the absence of actinomycin D, indicating that the protein synthetic phase, which was sensitive to inhibition by cycloheximide, was dependent on the effect of $benz(\alpha)$ anthracene on RNA synthesis. Many other compounds (e.g., phenobarbital, 3-methylcholanthrene) also appear to exert their effects on enzyme

synthesis at the level of transcription; hepatic chromatin from rats treated with either of these two agents appeared to be better templates for DNA-dependent RNA synthesis <u>in vitro</u> (Madix and Bresnick, 1967; Piper and Bousquet, 1968) and hepatic microsomes isolated from phenobarbital-treated rats appeared to have greater amounts of mRNA bound than did hepatic microsomes isolated from control rats (Gelboin, 1971). In addition, the number of mRNA binding sites per mg of hepatic microsomes was increased by treatment with phenobarbital (Gelboin, 1971).

Other inducing agents may act at the level of translation. Conaway <u>et al</u>. (1977), for example, reported that induction of hepatic microsomal MFOs by p,p'-DDT was not dependent on RNA synthesis (not inhibited by actinomycin D). Rather, increased enzyme synthesis appeared to result from an effect of DDT on the initiation and elongation phases of polypeptide synthesis. That is, DDT appeared to affect the activities of cytosolic factors that modulate polypeptide synthesis within cells (Conaway et al., 1977).

In summary, the molecular mechanisms by which specific chemicals induce hepatic MFO activities are not precisely known but appear to involve interactions between the inducing agents and discrete portions of the protein synthetic machinery. The end result is a selective increase in enzyme synthesis within the affected cells. Although enzyme synthesis in kidney and liver are probably regulated by similar mechanisms it remains to be determined whether induction of renal MFOs occurs by the same or dissimilar mechanisms as induction of hepatic MFOs.

ж. К

eženijim botojim

 \mathcal{L}^{*} \mathcal{L}^{*} \mathcal{L}^{*} \mathcal{L}^{*} \mathcal{L}^{*} \mathcal{L}^{*} \mathcal{L}^{*}

E.

Differences in renal and hepatic response to exposure to inducing agents may also be a function of inducer distribution. That is, differences may exist between renal and hepatic cells in the intracellular concentrations of the inducing agents achieved. Access of the inducer to the effector site may be affected by the presence of endogenous regulators, assuming that the inducer acts on a normal effector site, which may differ in form and content between kidney and liver. In addition, the actual enzymes involved in specific MFO reactions in kidney and liver have not, for the most part, been isolated, characterized and compared. The possibility exists, therefore, that the enzymes may actually be different molecular species that respond to the presence of specific enzyme inducers in dissimilar manners.

The commercial brands of PBB and PCB used in these experiments were complex mixtures of non-polar, lipophilic compounds (mostly halobiphenyls) that would be expected to encounter little difficulty in passage from the gastrointestinal tract into the body. Matthews <u>et</u> <u>al</u>. (1977), for example, have reported that the absorption of 2,4,5, 2',4',5'-hexabromobiphenyl, the major component of PBB, was 90-100% complete following successive oral doses in rodents. Thus, the amounts of PBB and PCB absorbed by animals ingesting diets containing various concentrations of PBB or PCB would be expected to be proportional to the concentrations of PBB or PCB in the diet (25 ppm \approx 3 mg/kg/day, 100 ppm \approx 12 mg/kg/day, 200 ppm \approx 24 mg/kg/day, 400 ppm \approx 48 mg/kg/day). Data in Table 2 demonstrate that increases in renal and hepatic AHH activities in mice were directly proportional to the concentrations of PBB and PCB in the diet. This suggests that enzyme

activities were increased in proportion to the amount of PBB or PCB absorbed or, possibly, in proportion to the amount of PBB and PCB which came into contact with renal and hepatic cells.

In general, renal AHH appeared less sensitive to induction by PBB and PCB than did hepatic AHH, a phenomenon that may reflect differences in the rates of delivery of PBB and PCB to kidney and liver. Being highly lipophilic, PBB and PCB would be expected to equilibrate rapidly across cell membranes (e.g., intestinal lumen to blood, blood to parenchymal cells) and achieve initial intracellular concentrations in proportion to the concentrations of PBB and PCB in blood perfusing the cells and the rate of organ perfusion. If hepatic extraction of PBB and PCB from hepatic, venous, portal blood significantly reduced the arterial blood concentrations of PBB and PCB (i.e., a "first-pass" effect as has been described for many drugs), then the rate of delivery of PBB and PCB to renal cells would be less than that to hepatic cells and the magnitude of enzyme induction would be correspondingly lower in kidney than in liver. In support of this theory, McCormack et al. (1979) have reported that the accumulation of PBB in rodent liver was greater than that in rodent kidney following chronic oral ingestion of dietary PBB. This effect, however, appears to be dose-related; the ratio of hepatic to renal PBB content declined as the daily intake of PBB increased (Robl et al., 1978). Intracellular concentrations after prolonged exposure to PBB and PCB may be proportional to the lipid content of the cell. Thus, the increase in hepatic lipid content produced by PBB and PCB (Table 11) may promote hepatic accumulation of these compounds.

Renal and hepatic AHH activities from mice ingesting PBB or PCB for 21 days were not significantly greater than AHH activities from mice ingesting PBB or PCB for 14 days (Table 3). This suggests that the magnitude of enhancement of AHH activities had plateaued within 14 days of dietary exposure to PBB and PCB. Although the actual tissue concentrations of PBB and PCB were not determined in this study, Fries <u>et al.</u> (1978) have reported that concentrations of hexa- and heptabromobiphenyl in bovine milk fat reached equilibrium levels within 15-20 days of daily treatment with 10 mg/animal of PBB. These data indicate that intracellular accumulation of PBB may plateau at a given daily dose of PBB and that enhancement of AHH activities may reflect the equilibrium concentrations of the inducing agents within the cell.

If the effects of PBB and PCB on renal AHH are indicative of the propensities of PBB and PCB to stimulate the activities of renal enzymes involved in toxification processes, then the effects of dietary PBB and PCB on the susceptibility of the kidney to the toxic effects of chemicals enzymatically activated within the kidney to proximate nephrotoxicants should be proportional to the concentration of PBB and PCB in the diet. The data in Figures 16 and 17, for example, suggest that the nephrotoxicity (and the hepatotoxicity) of CHCl₃ was directly proportional to the concentration of PBB in the diet. In contrast, there was an inverse correlation between induction of renal AHH activity and susceptibility to CHCl₃ nephrotoxicity by PCB (Figure 19). Thus, renal AHH activity alone is not a good indicator of susceptibility to CHCl₃ nephrotoxicity.

The data in Table 4 and Figures 2-4 clearly demonstrate that differences exist in the response of rodent kidney and liver to the inductive effects of PBB, PCB, NaPb and 3MC. These differences suggest that quantitative regulation of xenobiotic chemical metabolism is a local phenomenon, i.e., a process occurring directly within the individual tissues. The existence of multiple forms of P-450, with different affinities for various inducing substrates, may be the biochemical basis of local regulation (Ullrich and Kremers, 1977).

Of the 5 chemicals used as inducing agents (PBB, PCB, NaPb, 3MC, TCDD) only NaPb failed to induce renal P-450 and renal MFO activities. The insensitivity of rodent kidney (and some other extrahepatic tissues, as well) to the inductive effects of NaPb has been reported previously (Uehleke and Greim, 1968; Litterst et al., 1977) and may suggest that NaPb does not gain access to cells of the rodent kidney or that NaPb does not interact with the processes of enzyme synthesis in renal cells in the same manner as it does in hepatic cells. NaPb is freely filtered at the glomerulus and is avidly reabsorbed across renal tubular cells, though urinary excretion of unchanged NaPb is a major route of excretion in humans (Waddel and Butler, 1957; Whyte and Dekaban, 1977). In addition, Kuo and Hook (C.H. Kuo and J.B. Hook, personal communication) have determined that NaPb is actively accumulated by rat renal cortical slices. Thus, it would appear that NaPb gains access to the interior of renal as well as hepatic cells. The insensitivity of rodent kidney to NaPb, therefore, may indicate that the specific form(s) of P-450 or types of enzymes induced by NaPb in the liver are not inducible by NaPb, or are not present, in

the rodent kidney. NaPb does, however, induce MFO activities in rabbit kidney (Uehleke and Greim, 1968; Kluwe <u>et al.</u>, 1978). Comparative studies of the interactions of NaPb and enzyme systems in lapine and rodent kidney may help to explain why rodent kidney is resistant to NaPb.

Single and multiple exposures to PBB, PCB and 3MC increased both renal and hepatic AHH activities (Figure 3). Renal AHH activity, however, was stimulated much more rapidly than was hepatic AHH activity following a single oral administration. The reason for the rapid change in renal AHH activity is not known. Since AHH activities, and presumably the concentration of the enzyme involved, however, are much lower in the kidney than in the liver one possible explanation for this difference in the time-sequence of AHH induction might be that a higher inducer-to-receptor ratio was initially achieved in the kidney than in the liver (assuming that the inducing agent must interact with a receptor to cause enzyme induction). Another might be that the rate of AHH turnover in the kidney is more rapid than that in the liver; renal AHH activities returned to non-induced levels more rapidly than did hepatic AHH activities (Figure 3). The unknown kinetics of distribution of the inducers within the body, organs and individual cells greatly complicate interpretation of these data. Whether rapid induction is a characteristic of renal MFOs in general or simply a characteristic of AHH in the rodent kidney remains to be determined.

PBB, PCB and 3MC-induced changes in the sensitivity of renal AHH to inhibition by ANF were also rapid (Table 7). Goujon <u>et al</u>. (1972) and Wiebel et al. (1971) have reported that the NaPb and 3MC-induced

alterations in sensitivity of hepatic AHH to inhibition by ANF are due to changes in the relative proportions of ANF-sensitive and ANFresistant AHH and that such changes result from synthesis of new enzyme (AHH) and not from 3MC or NaPb-induced changes in cofactor requirements or the microenvironment of P-450. Thus, it would appear that the early increase in renal AHH activity and alterations in sensitivity to inhibition by ANF result from synthesis of new AHH. The lack of a stimulatory effect of NaPb on renal AHH activity, therefore, suggests that NaPb failed to increase the synthesis of renal AHH.

PBB and PCB have been referred to as "mixed inducers" because the spectrum of hepatic enzymes and the characteristics of P-450 induced by PBB and PCB bear resemblance both to those induced by NaPb and to those induced by 3MC. The effects of such mixed inducers on extrahepatic metabolism, however, have not been clearly defined. Goujon et al. (1972) and Wiebel and Gelboin (1975) have reported that the form of AHH induced by 3MC in several strains of mice is more sensitive to inhibition by ANF in vitro (and less sensitive to inhibition by MET) than is AHH from naive animals. Hepatic AHH induced by NaPb exhibits the opposite characteristics; increased sensitivity to inhibition by MET in vitro and decreased sensitivity to inhibition by ANF. The data in Figure 4 confirm that NaPb and 3MC have the same effects on hepatic AHH from Fischer 344 rats as those reported on hepatic AHH from mice (Goujon et al., 1972; Wiebel and Gelboin, 1975). PBB and PCB-induced hepatic AHH, however, exhibited no net alterations in sensitivities to inhibition by ANF or MET. Thus, the hepatic AHH induced by PBB and PCB appeared to be an equal mixture of both NaPb-inducible and

·

3MC-inducible forms of AHH. Dent <u>et al</u>. (1978) reported similar effects of PBB on hepatic MFOs in female Sprague-Dawley rats. Since the commercial brands of PBB and PCB used in these experiments were mixtures of several different congeners of polyhalogenated biphenyls it is possible that specific congeners induced only NaPb or 3MC-like effects in the liver.

Renal AHH induced by PBB and PCB, in contrast to that induced in the liver, exhibited marked increases in susceptibility to the inhibitory effects of ANF. Increased susceptibility to ANF inhibition was exhibited also by renal AHH induced by 3MC, but not by renal AHH from NaPb-treated animals (Figure 4). PBB and PCB, therefore, do not appear to be mixed inducers in the kidney, a phenomenon which may indicate the nonresponsiveness (or absence) in the rodent kidney of drug-metabolizing enzyme components affected in the liver by NaPb. These results, however, should not be interpreted as indicating that the net inductive effects of PBB, PCB and 3MC on the rodent kidney are the same. Although the effects of these agents on renal AHH were indistinguishable the data in Figures 17 and 19 demonstrate that PBB and PCB affected the nephrotoxicity of CHCl₃ in dissimilar manners and suggest that subtle differences may exist in modification of renal enzymes by PBB and PCB.

Quantitative differences in the response of renal and hepatic microsomal AHH activities to inhibition by SKF 525-A, MET and ANF <u>in</u> <u>vitro</u> were apparent but differences to inhibition by PB and AIA were not (Figure 5). The detergent used for dissolution of AIA and PB, Tween 80, present at a concentration of only 0.01%, probably inhibited

both renal and hepatic AHH activities by disrupting the integrity of the microsomal membrane. The relatively greater resistance of renal than hepatic AHH to inhibition by Tween 80 may be related to the higher concentration of microsomes in the renal incubation mixture than in the hepatic incubation mixture. That is, the ratio of detergent molecules to membrane molecules was greater in the hepatic incubation mixtures than it was in the renal incubation mixtures.

AIA was employed as a negative control. DeMatteis (1971) reported that AIA appeared to inhibit microsomal enzyme activity by destroying P-450 and that a finite period of time accrued between exposure of the animal to AIA and a decrease in hepatic P-450 concentration. Consistent with this theory, AIA alone did not inhibit AHH activities in vitro (Figure 5).

PB, SKF 525-A and MET are believed to inhibit microsomal AHH activities in a biphasic manner, initially by competitive inhibition and later by non-competitive inhibition (Franklin, 1977). These compounds appear to be substrates for P-450-dependent MFO oxidations (source of competitive inhibition) and the product or an intermediate of oxidative metabolism appears to bind tightly to the cytochrome and prevent subsequent involvement of the cytochrome in oxidative metabolism (source of non-competitive inhibition). Inhibition <u>in vitro</u> probably occurred initially in a competitive manner and later in both competitive and non-competitive manners (Figure 5). Although renal and hepatic microsomal AHH activities appeared to be equally sensitive to inhibition by PB <u>in vitro</u>, renal AHH appeared to be more resistant than hepatic AHH to inhibition by SKF 525-A and MET in vitro (Figure 5).

One explanation for the organ-related differences in sensitivity to inhibition by SKF 525-A and MET in vitro might be that the ratio of cytochrome to non-cytochrome protein, which was lower in renal homogenates than in hepatic homogenates, resulted in greater non-specific binding of SKF 525-A and MET to noncatalytic proteins and, therefore, less inhibition of renal AHH. The high concentration of inhibitor $(1 \times 10^{-3} M)$ in the incubation mixture, however, makes this unlikely. An alternate explanation might be that the population of the various forms of P-450 (Ryan et al., 1975; Guengerich, 1977; Ullrich and Kremers, 1977) present in the kidney had a lower composite affinity for SKF 525-A and MET than did the population of the various forms of P-450 in the liver. Hepatic cytochromes induced by NaPb, for example, appear to have greater affinities for SKF 525-A and MET than do the native forms of P-450 (Sladek and Mannering, 1969; Goujon et al., 1972; Grasdalen et al., 1975; Franklin, 1977). This suggests that the sensitivity of AHH to inhibition by SKF 525-A and MET in vitro may be proportional to the relative percentages of total P-450 that are cytochromes with high affinity for these inhibitors. That is, renal AHH activities may be more resistant than hepatic AHH activities to SKF 525-A and MET because cytochromes with high affinities for these inhibitors are present in only small proportions, if at all, in the kidney.

Low concentrations of ANF stimulated hepatic AHH activity <u>in</u> <u>vitro</u> (Figure 5), an effect reported previously by Goujon <u>et al</u>. (1972) and Wiebel and Gelboin (1975). Renal AHH activity, in contrast, was inhibited by ANF <u>in vitro</u> in a concentration-dependent manner (Figure

5). Wiebel <u>et al</u>. (1971) reported that ANF was a potent inhibitor of hepatic microsomal AHH from 3MC-treated rats but not of hepatic microsomal AHH from NaPb-treated rats and hypothesized that two forms of AHH existed in the liver; the activity of the form sensitive to induction by 3MC was inhibited by ANF <u>in vitro</u>, and the activity of the form sensitive to induction by NaPb was increased by low concentrations of ANF <u>in vitro</u> (Wiebel <u>et al</u>., 1971; Wiebel and Gelboin, 1975). In light of this information the data in Figure 5 may indicate that the predominant form of AHH present in rat kidney was the 3MC-inducible type. Furthermore, the data in Figure 4 indicate that "mixed inducers" such as PBB and PCB increase the activities of both forms of AHH in rat liver but increase only the activity of the 3MC-inducible form of AHH in rat kidney, perhaps because the NaPb-inducible form of the enzyme does not exist in rodent kidney.

Intraperitoneal administration of SKF 525-A and PB reduced renal and hepatic AHH activity and, to a lesser extent, hepatic PCNMA activity as measured <u>in vitro</u> (Figure 6). Inhibition of MFO activities by SKF 525-A and PB, as discussed previously, is biphasic. Based on the studies of Philpot and Hodgson (1971a), Buening and Franklin (1976) and Schenkman <u>et al</u>. (1972) it would appear that the reduction of AHH activity observed <u>in vitro</u> after i.p. injection of SKF 525-A and PB was due primarily to non-competitive inhibition. Spectral evidence indicates that non-competitive inhibition by SKF 525-A and PB is the result of a ligand interaction between the metabolic intermediate of the oxidation of SKF 525-A or PB and the heme moiety of P-450, perhaps at the CO/O₂ binding site (Franklin, 1971;

Philpot and Hodgson, 1971b; Beuning and Franklin, 1976). Non-competitive inhibitor P-450 complexes formed <u>in vivo</u>, furthermore, are stable to cell membrane disruption and microsomal isolation (Franklin, 1977). Thus, the activities of AHH and PCNMA, as determined <u>in vitro</u> after injection of SKF 525-A and PB into intact animals, should be indicative of relative AHH and PCNMA activities in kidney and liver at the time of sacrifice.

In general, hepatic MFO activities appeared more sensitive than renal MFO activities to reduction by i.p. injections of SKF 525-A and PB. The differences may be related to pharmacokinetics; compounds administered i.p. are largely absorbed into veins draining the peritoneal cavity that flow into the hepatic portal vein and the liver. If significant fractions of SKF 525-A and PB are extracted by the liver in a "first-pass" effect, then the concentration of inhibitor in blood perfusing the kidney would be much lower than that in blood perfusing the liver and the magnitude of effect of SKF 525-A and PB on the kidney might be less than that on the liver. Alternatively, active accumulation of SKF 525-A and PB by hepatocytes, but not by renal cells, could result in higher intracellular concentrations of SKF 525-A and PB in liver than in kidney and, therefore, a greater inhibitory effect. In addition, the possible presence in kidney of endogenous or dietary substances that compete with SKF 525-A and PB for interaction with P-450, and the possibility of non-specific (e.g., hydrophobic) binding of the inhibitors to noncatalytic proteins (the ratio of noncatalytic proteins to P-450 was greater in kidney than in liver) are examples of phenomena which may be responsible for the greater

sensitivity of liver than kidney to SKF 525-A and PB. Finally, the composite affinity of renal P-450 for SKF 525-A may be less than that of hepatic P-450 for SKF 525-A, as suggested earlier.

It is apparent that differences exist in renal and hepatic response to chemicals that stimulate and inhibit P-450-dependent microsomal MFO activities. The biochemical basis of such differences may be organ-specific differences in the subpopulations of the various forms of P-450. It may be possible to exploit the qualitative and quantitative differences in organ response to inducers and inhibitors as tools with which to study the interrelationships between renal and hepatic metabolism of nephrotoxicants and to study how these events may modulate chemical injury to the kidney. The in vitro methodology currently used to study renal biotransformation processes frequently focuses upon singular aspects of the interactions of chemicals with the kidney and tends to underestimate the importance of the rate and chemical form in which the potential toxicant is delivered to the kidney. The perfused, isolated kidney preparation is useful for the study of renal biotransformation but suffers from a lack of integration with other organ systems. Evaluation of renal biotransformation in the intact animal, on the other hand, is complicated by the inaccessibility of the kidney in non-anesthetized animals and by the apparent dominance of the liver in the formation of stable metabolites appearing in easily-collected excreta (urine, feces, bile, expired air). With judicious use of organ-specific modulators of microsomal MFO activities, however, it may be possible to discern the roles of hepatic and

renal biotransformation processes in renal chemical injury in intact animals.

In summary, there is currently much interest in organ-specific P-450-dependent MFO systems and their relationships to metabolic activation of toxicants. So-called "toxification" enzymes, primarily P-450-dependent MFOs, appear to be present in the kidney in only small amounts though so-called "detoxification" enzymes, catalyzing primarily synthetic reactions, appear to be more equally distributed in kidney and liver (Litterst et al., 1975, 1977; Fry et al., 1978). The low renal MFO activities measured in vitro, however, may be artifacts of current methodology; the distribution of cell types in the liver is relatively homogenous but the anatomical separations of cell types in the kidney are distinct (though complex). In general, the distribution of MFO activities (renal MFO activities determined in vitro with known hepatic MFO substrates) in the kidney appears to be similar to that of proximal tubular cells (Fowler et al., 1977; Zenser et al., 1978; K. Hilliker, W.M. Kluwe and J.B. Hook, unpublished observations). Proximal tubular cells, accordingly, are the renal cells most sensitive to the toxicities of chemicals believed to be enzymatically activated to toxicants (Schreiner and Maher, 1965). In addition, there is evidence to indicate that some inducers of MFO activities may selectively stimulate MFO activities in one particular renal cell type, the S₃ cell, that is located primarily in the straight portion of the proximal tubules (Fowler et al., 1977) and that the specific activities of MFOs in S_3 cells may approach those

in hepatocytes. Thus, measurements of MFO activities in whole kidney preparations may underestimate the biotransformation capacities of specific renal cell types. The methodology to mechanically separate S_3 cells from other renal cell types, unfortunately, is not currently available.

The effects of CHCl_3 and similar compounds on renal morphology and function closely resemble the effects of temporary renal anoxia on these same parameters. Berndt (1976) and Venkatachalam <u>et al</u>. (1978) have demonstrated that S_3 cells are more sensitive than other renal cell types to anoxic ischemia. These results suggest that the syndrome of nephrotoxic renal failure may originate from selective damage to S_3 cells. Activation of chemicals to toxicants within the S_3 cell, therefore, may be an important factor in chemical nephrotoxicity.

The effects of known inducers and inhibitors of hepatic MFO activities on renal MFO activities and the effects of PBB and PCB on the soret maxima of renal and hepatic P-450 suggest that the types of enzyme activities and cytochromes affected by these agents in the kidney may not be the same as those affected in the liver. Furthermore, the relative concentrations of the various cytochromes in the kidney may be different than in the liver and the metabolism of xenobiotic compounds in the kidney may therefore differ, qualitatively as well as quantitatively, from that in the liver. These differences, however, may be useful in evaluating renal metabolism of xenobiotic chemicals and the relationship of this function to chemical nephropathy.

B. Renal Drug Metabolism and CC1, Nephrotoxicity

Several investigators have demonstrated that the hepatotoxicity of CC1, can be greatly modified by induction and inhibition of hepatic microsomal drug metabolism. Their results suggest that $CC1_{\Lambda}$ is metabolically activated to a proximate hepatotoxicant (Cignola and Castro, 1971; Pitchumoni et al., 1972; Suarez et al., 1972; Reynolds and Moslen, 1974; Carlson, 1975; Suriyachan and Thithipandha, 1977). Recknagel and co-workers have proposed that CCl_4 is homolytically cleaved to free radical products, CCl₃ and Cl., that can abstract H. from methylene carbons on unsaturated membrane lipids to form CHCl₃, HCL and lipid free radicals. The resulting lipid free radicals can attack molecular oxygen and form lipid peroxide free radicals which abstract H. from adjacent methylene carbons on unsaturated membrane lipids, thus perpetuating the process (Recknagel, 1967; Recknagel and Glende, 1973). The result is trichloromethyl free radical-initiated autocatalytic, peroxidative destruction of membranes and, presumably, hepatocellular necrosis. Many compounds that alter CC14 hepatotoxicity affect CC14-induced lipid peroxidation in a similar manner. The ability of liver to homolytically cleave CCl_{L} to free radicals is indicated indirectly by the presence of $CHCl_3$ (the product of condensation of H. and CCl_3 .) and C_2Cl_6 (hexachloroethane, the product of condensation of $CC1_3$ and $CC1_3$) in tissues of mammals exposed to $CC1_4$ (Butler, 1961; Fowler, 1969). In addition, Poyer et al. (1978) have recently isolated CCl₃. (by spin trapping with phenyl-t-butyl nitrone) from livers of rats treated with CC14. Generation of CC13. by rat liver homogenates was found to be an enzyme-catalyzed process that was

dependent on the presence of NADPH, suggesting that homolytic cleavage of CC1, may be a P-450-dependent process (Poyer <u>et al.</u>, 1978).

Although the correlation between homolytic cleavage of CCl_4 and hepatic lipid peroxidation appears strong, considerable doubt that lipid peroxidation is the ultimate cause of CCl_4 toxicity exists. Cignalo and Castro (1971), for example, were able to block CCl_4 induced hepatic necrosis by prior treatment of rats with chemicals that failed to block CCl_4 -induced lipid peroxidation, and Diaz Gomez <u>et al</u>. (1975) and Villarruel <u>et al</u>. (1977) reported a poor correlation between the susceptibilities of several species of mammals and birds to CCl_4 -induced hepatic necrosis and CCl_4 -initiated lipid peroxidation. Furthermore, CCl_4 does not appear to cause lipid peroxidation in the rodent kidney, though this organ is a primary target of CCl_4 toxicity (Villarruel <u>et al</u>., 1977).

Reynolds (1967) reported that administration of $({}^{14}C)-CC1_4$ and $({}^{36}C1)-CC1_4$ to rats resulted in covalent binding of radioactivity to hepatic proteins and lipids and, furthermore, that the relative distributions of binding within liver cells was similar for ${}^{14}C$ and ${}^{36}C1$ radioactivity. These findings suggest that homolytic cleavage of CC1₄ to free radical metabolites may result in covalent binding to lipids and proteins. A good correlation appears to exist between the effects of MFO inducers and inhibitors and alcohols on covalent binding of CC1₄ metabolites and the hepatotoxicity of CC1₄ (Diaz Gomez et al., 1973; Sipes et al., 1973; Maling et al., 1975). Sipes et al., (1977) have reported that covalent binding of CC1₄ metabolites to microsomal protein in vitro was dependent on P-450 and was inhibited by CO,

but was enhanced by the absence of 0_2 (100% N₂ atmosphere), suggesting that the reactive CCl₄ metabolite was generated by reductive, microsomal metabolism (presence of 0_2 would tend to increase competition for reducing equivalents via oxidative metabolism and thereby reduce NADPHdependent reductive metabolism <u>in vitro</u>). Castro and Diaz Gomez (1972) have also reported that metabolites of CCl₄ were covalently bound to renal proteins and lipids following i.p. injection, though to a lesser extent than to hepatic components. Since free radicals are not readily transported from tissue to tissue (Jollow and Smith, 1977), the data of Castro and Diaz Gomez (1972) may indicate that CCl₄ is metabolized to reactive intermediates directly within the kidney.

Treatment of rats with PBB, PCB and HCB, potent inducers of renal and hepatic MFOs, greatly increased CCl_4 toxicity (Tables 12 and 13, Figures 8-13). Indeed, all aspects of CCl_4 toxicity in male rats were potentiated by organohalide treatment. Thus, it does not appear that the mechanism of CCl_4 toxicity was altered by treatment with the aromatic organohalides. Rather, the aromatic organohalides appeared to magnify the biochemical mechanism of Ccl_4 toxicity. That is, PBB, PCB and HCB treatments may have increased the rate or extent of metabolism of Ccl_4 to toxic metabolites in both kidney and liver. The effects of PBB, PCB and HCB on Ccl_4 metabolism, however, were not determined. Suarez <u>et al</u>. (1972) have reported that NaPb and 3MC, both inducers of hepatic MFOs, enhanced and inhibited, respectively, Ccl_4 hepatotoxicity in rats. Thus, Ccl_4 may be a substrate for competing pathways of hepatic biotransformation, one pathway generating a toxic metabolite and another generating a non-toxic metabolite, as ລ້ອວດແຜ່ນອີ-ຫຍັງ

edd guing

illustrated in Figure 1. In addition, Carlson (1975) has shown that PCB, a "mixed" hepatic inducer, potentiated CCl_4 hepatotoxicity, presumably by stimulating the activity of an enzyme system(s) responsible for CCl_4 toxification. The data in Figures 9-13 indicate that PBB and HCB, as well as PCB, potentiated CCl_4 hepatotoxicity. Similar potentiating effects were produced when developing rats were exposed to PBB <u>in utero</u> and via maternal milk (Figure 15). Thus, these mixed inducers appear to affect hepatic response to CCl_4 in a manner more similar to that of NaPb than to that of 3MC.

The data in Table 14 indicate that PBB and PCB did not stimulate the activities of hepatic GOT and GPT. Since liver size was increased relative to body size, however, hepatic GOT and GPT activities per 100 g of body weight were slightly elevated. Assuming that total blood volume per 100 g of body weight was not altered by PBB and PCB the background activities of GPT and GOT in serum (from leakage across hepatocyte membranes) might be expected to be slightly elevated by PBB and PCB. Although increases in background activities of SGPT and SGOT in PBB, PCB and HCB-treated rats were not apparent (Figures 9 and 15), ingestion of 100 ppm of PBB by mice for 14 days increased GOT activities in the serum (Figure 16). The PBB-related increase in SGOT activity in mice, therefore, may be a result of increased liver size rather than of liver damage. The slight increase in hepatic GOT and GPT activities per 100 g body weight appeared too small to contribute greatly to aromatic organohalide potentiation of CC1, hepatotoxicity.

Histological examination of liver sections revealed that CCl_4 produced centrilobular necrosis (necrosis extending radially from central veins) while the aromatic organohalides produced degenerative changes (vacuolation, cell swelling) that were most intense in the periphery of the hepatic lobules (Figures 10-13). Aromatic organohalide-treatment appeared to increase the extent of centrilobular necrosis at each dose of CCl_4 . Thus, the hepatic lesion produced by CCl_4 in aromatic organohalide-treated rats resembled that produced by CCl_4 in naive rats but occurred at lower doses of CCl_4 . These data support the hypothesis that the mechanism of aromatic organohalide potentiation of CCl_4 hepatotoxicity was increased enzymatic conversion of CCl_4 to a proximate hepatotoxicant. That is, PBB, PCB and HCB magnified, rather than altered, the mechanism of CCl_4 hepatotoxicity.

The renal lesion produced by CCl_4 is more subtle than that produced by CCl_4 in the liver. Histological examination by light microscopy of renal sections removed 48 hr after injection of CCl_4 (the time when CCl_4 -induced renal dysfunction was most severe) failed to reveal signs of morphological injury. Striker <u>et al</u>. (1968) reported similar finding when kidneys were removed and examined 3, 6, 12, 24, 48 and 96 hr after CCl_4 administration, though transient alterations in the structure of renal mitochondria were evident by electron microscopy shortly after CCl_4 administration. In addition, CCl_4 failed to alter consistently urinary pH, protein and glucose concentrations or BUN concentration. Thus, CCl_4 -induced reduction in the abilities of renal cortical slices to accumulate organic ions (PAH and TEA) suggests that CCl_4 selectively injures proximal tubular cells. Frank renal

necrosis is similarly absent in biopsies of kidneys from human intoxications with CCl_4 , but Sirota (1949) has reported that CCl_4 intoxication produced loss of selected proximal tubular functions in humans.

The increase in renal cellular respiration (QO_2) in tissue from $CC1_4$ -intoxicated rats may indicate that $CC1_4$ uncoupled renal mitochondrial oxidative phosphorylation. Uncoupled mitochondrial respiration was reported previously in liver preparations from $CC1_4$ -intoxicated rats (Reynolds <u>et al.</u>, 1962; Reynolds, 1965) but was attributed by at least one investigator to the presence in the liver of large amounts of calcium from calcified, necrotic cells (Smuckler, 1976). The preparations used to generate the data in Figure 8, however, contained intact, non-necrotic cells. The increase in renal QO_2 , therefore, may have been the result of direct $CC1_4$ -induced mitochondrial damage. It is unlikely that the increase in QO_2 was due to lipid peroxidation since Villarruel <u>et al</u>. (1977) have reported that $CC1_4$ intoxication does not initiate lipid peroxidation in rat kidney.

Whether the proposed nephrotoxic metabolite of CCl_4 was formed in the kidney or the liver is unknown. If, as has been suggested for the liver, the nephrotoxic product of CCl_4 metabolism is a highlyreactive chemical species, then it is likely generated in close proximity to the site of injury. That is, a reactive metabolite that produces damage to the kidney is likely to be generated directly within the kidney. There is little direct evidence that CCl_4 nephrotoxicity is mediated by a reactive metabolite. Castro and Diaz Gomez (1972), however, have reported covalent binding <u>in vivo</u> of CCl_4 metabolites to renal macromolecules in the rat, suggesting that activation

(i) 4.

to a reactive species may occur directly in the kidney. In addition, Cawthorne <u>et al</u>. (1971) reported that CCl_4 intoxication reduced glucose-6-phosphatase activity in rat kidney. CCl_4 -induced loss of glucose-6-phosphatase activity is thought to result from the generation of a reactive CCl_4 metabolite that destroys ER membranes (Recknagel and Glende, 1973). Since CCl_4 reduced glucose-6-phosphatase activities in livers of male and female rats but in kidneys only of male rats (Cawthorne <u>et al</u>., 1971) and CCl_4 intoxication produced toxic effects in livers of male and female rats but in kidneys only of male rats (Ross <u>et al</u>., 1978; W.M. Kluwe and J.B. Hook, unpublished observations) a correlation between CCl_4 nephrotoxicity and renal generation of reactive CCl_4 metabolites may exist.

In summary, treatment with several inducers of renal and hepatic MFOs potentiated the nephrotoxicity and hepatotoxicity of CCl_4 in male rats. The mechanism of potentiation appears to be stimulation of the metabolism of CCl_4 to a proximate toxicant. The effects of PBB, PCB and HCB on CCl_4 metabolism, however, were not directly determined.

The hypothesis that a toxic CCl_4 metabolite that produces renal injury is formed directly in the kidney rather than in the liver is consistent with the reports that sex differences exist in the susceptibility of rats to CCl_4 nephrotoxicity but not to CCl_4 hepatotoxicity. Since the renal lesion produced by CCl_4 does not resemble the hepatic lesion induced by CCl_4 , however, the possibility exists that the nephrotoxic and hepatotoxic metabolites of CCl_4 are different compounds and that both may be formed primarily in the liver. Further studies will be needed to determine the roles of renal and hepatic CCl_4 metabolism in CCl_4 nephrotoxicity.

C. <u>Renal Drug Metabolism and CHCl₃ Nephrotoxicity</u>

 $\rm CHCl_3$ produces centralobular necrosis in the liver and proximal tubular necrosis in the kidney. The hepatic lesion appears to be dependent on metabolism of $\rm CHCl_3$ to a toxic, reactive intermediate (Brown <u>et al.</u>, 1974b; Docks and Krishna, 1976). Renal necrosis may also be dependent on the generation of a toxic, reactive intermediate; renal injury occurs specifically in that portion of the nephron (proximal tubule) where cells containing the highest activities of P-450-dependent MFOs are found (Deringer, 1953; Fowler <u>et al.</u>, 1977; Venkatachalam <u>et al.</u>, 1978) and $\rm CHCl_3$ metabolites are covalently bound to proximal tubules after intoxication with $\rm CHCl_3$ (Ilett <u>et al.</u>, 1973).

Experimental $CHCl_2$ nephrotoxicity in male mice was characterized by an increase in kidney weight, an increase in BUN concentration and a decrease in the ability of renal cortical slices to accumulate organic ions. These three parameters appeared to be reliable and sensitive indices of CHC13 nephrotoxicity. The increase in kidney weight was probably due to tissue edema since the dry weight of the kidney was not affected by CHC1, intoxication (W.M. Kluwe and J.B. Hook, unpublished observations). The increase in BUN, which occurred in the absence of detectable hepatic damage in some cases, was likely due to a decrease in glomerular filtration. While BUN and kidney weight are relatively non-specific tests, in vitro accumulation of organic ions (S/M) appears to be a sensitive test for specific effects of toxicants on proximal tubular cells (Plaa and Larson, 1965; W.M. Kluwe and J.B. Hook, unpublished observations). The CHCl₂-induced decreases in PAH and TEA S/Ms, therefore, are probably indicative of proximal tubular injury.

at a land

The data in Figure 17 indicate that PBB greatly potentiated CHCl₃ nephrotoxicity. The degree of potentiation appeared to be directly proportional to the concentration of PBB in the diet, as was the magnitude of induction of renal and hepatic AHH activities (Table 2). These results suggest that PBB may have increased the rate or extent of renal (and hepatic) metabolism of CHCl₃ to a toxic product and, thereby, increased the relative nephrotoxicity of CHCl₃ in mice. The effects of NaPb, 3MC, TCDD and PCB on renal and hepatic enzyme induction and the nephrotoxicity and hepatotoxicity of CHCl₃ are shown in Table 4 and Figures 18 and 19. NaPb had no effect on renal drug metabolism but greatly increased the metabolic capacity of the liver. Accordingly, NaPb enhanced CHCl₃ hepatotoxicity but not CHCl₃ nephrotoxicity. These results suggest that the nephrotoxic metabolite was generated in the kidney and not in the liver. That is, if the nephrotoxic metabolite was generated in the liver then NaPb would likely have enhanced the nephrotoxicity as well as the hepatotoxicity of CHCl₃. 3MC, TCDD and PCB increased renal and hepatic MFO activities but sharply reduced the nephrotoxicity of CHCl₃ in mice, suggesting that renal biotransformation of CHCl₃ was altered by treatment with these agents in such a manner that relatively less CHCl3 was converted to nephrotoxic metabolites. The hepatotoxicity of CHCl₂, however, was not markedly affected by 3MC, TCDD or PCB (though PCB appeared to enhance hepatotoxicity slightly and TCDD appeared to decrease hepatotoxicity slightly) suggesting that the net conversion of CHCl₃ to a hepatotoxicant was not greatly altered by treatment with these agents. If nephrotoxic metabolites were generated in the liver,

then modulators of MFO activities that reduced CHCl_3 nephrotoxicity would have been expected to have a similar effect on CHCl_3 hepatotoxicity. Since this was not the case it appears that the liver is not responsible for the generation of the nephrotoxic metabolite. An alternate explanation of these data, however, might be that nephrotoxic and hepatotoxic metabolites of CHCl_3 are generated in the liver but by different metabolic pathways. That is, the nephrotoxic and hepatotoxic metabolites of CHCl_3 may be different molecular species and their enzymatic formation might be affected by PCB, 3MC, TCDD and NaPb in different manners.

It is apparent from the effects of PBB, PCB, 3MC and TCDD on CHCl_3 nephrotoxicity that induction of MFO activities <u>per se</u> does not have a predictable effect on the metabolism of CHCl_3 to nephrotoxic products. Rather, the net effects of such compounds on CHCl_3 nephrotoxicity may be the result of quantitative changes in the balance between toxification and detoxification pathways of CHCl_3 metabolism. Nearly 80% of CHCl_3 is converted to CO_2 and exhaled as such in the mouse (Brown <u>et al.</u>, 1974a), indicating substantial degradation via this pathway. CO and unidentified non-volatile urinary metabolites have also been reported, however (Ahmed <u>et al.</u>, 1977; Brown <u>et al.</u>, 1974a), suggesting that alternate pathways of CHCl_3 biotransformation exist in mammals and that selective stimulation or inhibition of one or more pathways of metabolism may alter the amount or rate of CHCl_3 metabolized to a proximate toxicant, as indicated in Figure 1.

The existence of competing pathways of CHC1 $_3$ metabolism is supported by differential effects of SKF 525-A and PB on CHC1 $_3$ toxicity

(Figure 20). The failure of pretreatment with SKF 525-A to prevent or reduce CHCl, injury to the kidney and liver was not unexpected since Lavigne and Marchand (1974) had reported that SKF 525-A did not reduce the hepatotoxicity of CHCl₃ in rats. Inhibition of P-450-dependent MFOs by SKF 525-A is selective (Mannering, 1971), perhaps because the various forms of P-450 identified in rodent tissues exhibit different affinities for various substrates, including SKF 525-A. Since SKF 525-A does not block CHCl₃ toxicity, metabolism of CHCl₃ to a proximate toxicant may occur via a cytochrome with low affinity for SKF 525-A. Lavigne and Marchand (1974) have reported that SKF 525-A inhibited the metabolism of $CHCl_3$ to CO_2 in intact rats. Thus, there may exist one pathway of CHCl₃ metabolism that converts CHCl₃ to CO₂ and another pathway that converts CHCl₂ to a proximate toxicant. SKF 525-A may have enhanced the nephrotoxicity and hepatotoxicity of CHC13 by directly inhibiting a pathway forming non-toxic metabolites (perhaps CO_2), thereby increasing the availability of substrate $(CHCl_3)$ for the toxification reaction and indirectly increasing the amount of CHCl₃ metabolized to a proximate toxicant (see Figure 1).

Preadministration of PB greatly reduced the nephrotoxicity and hepatotoxicity of CHCl_3 , suggesting that PB may have directly inhibited an enzymatic pathway forming toxic CHCl_3 metabolites in both kidney and liver. The inability of PB to reduce CHCl_3 toxicity when administered 1 hr after CHCl_3 may be an indication that conversion to a toxic product occurs very rapidly after CHCl_3 administration. An explanation for the enhancement of CHCl_3 toxicity when PB was administered 1 hr after CHCl_3 is not immediately apparent. After receiving the same dose of CHCl_3 , however, mice treated with SKF 525-A before CHCl_3 and mice treated with SKF 525-A or PB after CHCl_3 remained unconscious for longer periods of time than did control mice or those pretreated with PB. These results indicate that post-administration of SKF 525-A and PB, as well as preadministration of SKF 525-A, may have greatly altered the pharmacokinetics of CHCl_3 in the mice.

Pohl et al. (1977) and Mansuy et al. (1977) have demonstrated that CHCl₃ can be metabolized by rat microsomal protein in vitro to an electrophilic species that readily combines with reduced, non-protein thiols. In addition, Brown et al. (1974b) and Docks and Krishna (1976) have reported that administration of CHCl₃ to intact rodents resulted in a rapid depletion of hepatic glutathione (GSH), a cytosolic tripeptide thiol believed to protect hepatocytes from electrophile injury by combining covalently, enzymatically or non-enzymatically, with potentially-toxic electrophiles (Mitchell et al., 1973; Brown et al., 1974b). Intraperitoneal administration of CHC13 produced dosedependent decreases in the concentrations of reduced GSH in kidney as well as in liver (Figure 21). Maximum CHC13-induced depletion of GSH occurred 2 hr after $CHCl_3$ administration in control and in PBB and PCB-treated mice. If, in fact, the product of CHCl₃ metabolism via the toxic pathway is a strong electrophile that is detoxified by conjugation with GSH, then the amount of electrophile formed, as estimated by the degree of depletion of tissue GSH, should reflect the relative activity of the toxification reaction. Similarly, treatments which enhance or reduce organ-specific CHCl₃ toxicity should accordingly enhance or reduce CHCl3-induced depletion of tissue GSH. In

agreement with this hypothesis treatment of mice with PBB enhanced the hepatotoxicity of CHCl₃ (Figure 16) and greatly increased CHCl₃dependent depletion of hepatic GSH (Figure 21) while treatment with PCB did not alter the hepatotoxicity of CHCl₃ (Figure 18) and failed to consistently alter CHCl₃-dependent depletion of hepatic GSH (Figure 21). Similarly, treatment of mice with PBB enhanced CHCl₃ nephrotoxicity (Figure 17) and increased CHCl₃-dependent depletion of renal GSH (Figure 21) while treatment with PCB greatly reduced CHCl₃ nephrotoxicity (Figure 18) and blocked CHCl₃-dependent depletion of renal GSH (Figure 18).

These strong correlations between the susceptibilities of kidney and liver to CHCl, toxicity and the susceptibilities of kidney and liver to CHCl3-dependent depletion of GSH support the hypothesis that a GSH-depleting metabolite of CHCl, may be a proximate toxicant and that conjugation with GSH may be a detoxification reaction. Stoichiometric evaluations, however, revealed that several moles of GSH (up to 15) were consumed for each mole of CHCl₃ injected into the mice. Therefore, interactions other than, or in addition to, conjugation of GSH with an electrophilic CHCl₃ metabolite appear to be responsible for CHCl3-dependent depletion of GSH. Further support for the involvement of GSH in protection against CHCl₃ nephrotoxicity (and hepatotoxicity) is provided by experiments demonstrating that diethyl maleate, a depletor of renal GSH, increased the susceptibility of the kidney and liver to CHCl, injury (Figures 22 and 23). The degree of increase in susceptibility to CHCl₃ toxicity did not appear to be as great as might be expected in view of the dramatic recuction of

tissue GSH produced by diethyl maleate. Anders (1978) and Chuang <u>et</u> <u>al</u>. (1978), however, have reported that diethyl maleate inhibited the activities of some microsomal MFOs. The effects of diethyl maleate on CHCl₃ toxicity, therefore, may have been the net result of concomitant depletion of GSH and inhibition of enzymatic transformation of CHCl₃ to a toxic metabolite.

Several investigators have proposed that covalent binding of halogenated aliphatic hydrocarbon metabolites to critical cellular macromolecules may be the mechanism by which these agents initiate tissue injury (Reynolds, 1967; Reid, 1973; Gillette et al., 1974; Uehleke, 1977). Non-specific alkylation of macromolecules (both critical and non-critical macromolecules) by reactive metabolites could conceivably lead to cell dysfunction, cell death and tissue necrosis. Brown et al. (1974b) and Docks and Krishna (1976) have proposed that CHCl₃ is metabolized in the liver to a strong electrophile that is detoxified by preferential conjugation to hepatic GSH. When hepatic GSH content is depleted, however, the reactive metabolite more readily combines with nucleophilic sites on other hepatic molecules. Accordingly, the threshold of CHCl₃ hepatotoxicity appears to coincide with depletion of hepatic GSH (Brown et al., 1974b; Docks and Krishna, 1976). Ilett et al. (1973) reported that CHCl, metabolites are covalently bound in the renal proximal tubules as well as in the liver and that covalent binding of CHC1, metabolites in the kidney appeared to correlate with susceptibility to CHCl₃ nephrotoxicity; male and female mice were equally susceptible to the hepatotoxic effects of CHCl₃ and bound equal amounts of CHCl₃ metabolites to hepatic

proteins, but female mice were markedly less susceptible to CHCl₃ nephrotoxicity than were male mice and bound much less CHCl₃ metabolites to renal proteins. Thus, it appeared that CHCl₃ nephrotoxicity, as well as CHCl₃ hepatotoxicity, may have resulted from alkylation of cellular macromolecules by reactive CHCl₃ metabolites.

Figure 25 indicates that maximum binding in male mice of radioactivity from (^{14}C) -CHCl₃ occurred within 3 hr after CHCl₃ administration in both the kidney and the liver. The time sequence of covalent binding was similar to that reported previously (Ilett et al., 1973). As discussed earlier, highly-reactive metabolites that non-specifically alkylate cellular macromolecules probably possess little mobility; their movements are likely to be severely restricted by biological membranes. For this reason the relatively large amount of covalent binding in the kidney is consistent with activation of CHCl₃ to a reactive metabolite in kidney as well as in liver. A comparison of Figure 25 with Figures 16-19, however, indicates that discrepancies exist between the effects of PBB and PCB on organspecific CHCl₃ toxicity and the effects of these agents on organspecific binding of reactive CHCl₃ metabolites. Ingestion of PCB appeared to enhance the hepatic biotransformation of CHC1, to alkylating metabolites but did not greatly alter CHC1, hepatotoxicity. In addition, PBB markedly potentiated CHCl₃ nephrotoxicity despite a decrease in alkylation of renal proteins by reactive CHCl, metabolites. These results suggest that reactive CHCl₃ metabolites that bind to renal and hepatic proteins may not be the CHC1, metabolites responsible for acute tissue injury. That is, reactive CHCl₂

metabolites may be formed by a different pathway of metabolism than toxic CHCl₃ metabolites.

An alternate explanation for the lack of correlation between binding and toxicity might be that PBB and PCB altered the mechanism of CHCl₃ toxicity (Gillette, 1974) and, therefore, expression of CHCl₃ injury. This, however, appears unlikely since the symptomatologies of $CHCl_3$ intoxication were the same in PBB and PCB-treated mice as in control mice, and the effects of PBB and PCB on CHCl3-dependent depletion of GSH were the same as their effects on organ-specific CHCl, toxicity (Figure 21). PBB and PCB probably increased hepatic binding of CHCl₃ metabolites by increasing the rate of hepatic CHCl₃ biotransformation to a reactive product and also be increasing hepatic extraction of CHCl₂ from the blood (since total radioactivity in the liver appeared to be increased by nearly as great a factor as that covalently bound to protein, Table 16). Covalent binding in the kidney may have been reduced by treatment with PBB and PCB, therefore, because relatively less CHCl₃ was being delivered to the kidney rather than because PBB and PCB reduced the conversion of CHCl₃ to a reactive metabolite in the kidney. Total radioactivity in the kidney, for example, was reduced by the same factor as that covalently bound to protein (Table 16). CHCl, injected into the peritoneal cavity would be largely absorbed by local venous systems and initially enter the hepatic portal vein and the liver. Thus, most of the CHCl₃ supplied to the kidney via the blood would be that which escaped hepatic biotransformation despite passage through the liver. Figure 26 indicates that the clearance of radioactivity (CHC1, and metabolites)

from the blood occurred rapidly and that the rate of clearance was increased by PBB and PCB-treatment by nearly a factor of 2. Assuming that most radioactivity disappeared from the blood as a result of exhalation of CO₂ (nearly 80% of CHCl₃ is exhaled as CO₂ in the mouse, only 10% as CHCl₃, Brown et al., 1974a) and that clearance from the blood is proportional to the rate of hepatic metabolism of $CHCl_3$ to $\mathrm{CO}_2,$ then it would appear that PBB and PCB enhanced hepatic metabolism of CHCl₃ and that the rate of delivery of CHCl₃ to the kidney may subsequently have been reduced. Studies were not specifically conducted to determine whether or not a decrease in rate of delivery of CHCl₃ to the kidney could affect the rate of renal metabolism of CHCl₃. That is, that CHCl₃ metabolism in the kidney was not saturated at the dose of CHCl, used in these experiments (1.75 mmole/kg). Treatment with PBB and PCB also reduced total radioactivity present in the kidney, suggesting that PBB and PCB did not reduce renal binding solely by shifting the major pathway of renal CHCl₃ metabolism from one that produced a reactive metabolite to one that produced non-reactive metabolites nor by inhibiting renal CHCl3 metabolism in general. The covalent binding of CHCl₃ metabolites in these experiments, therefore, may have been a function of the rate of delivery of CHCl, to the target organs as well as the relative activity of the enzyme systems generating the reactive metabolites. That is, the enzyme system responsible for metabolism of CHCl₃ to a reactive, alkylating intermediate in both liver and kidney was not saturated under the conditions of the experiment and formation of product (reactive metabolite) was proportional to the rate of delivery of substrate $(CHCl_3)$.

The homogeneity of binding to renal and hepatic endoplasmic reticulum (ER), mitcochondria (M), and cytosolic protein (CP) suggests that the direct alkylating species, if in fact generated at the ER membrane, possessed sufficient stability to be distributed throughout much of the cell (Table 17). Generation of the reactive, alkylating metabolite at the ER is supported by data in Table 17 showing that covalent binding to hepatic M and CP was 2-3 times greater in PBB and PCB-treated mice than in control mice, an increase equivalent to the increase in liver microsomes (largely ER membrane fragments) produced by treatment with PBB and PCB (data not shown). The magnitude of covalent binding to microsomal proteins and lipids in vivo was not increased by PBB or PCB when expressed as pmoles bound/mg protein or lipid, suggesting that PBB and PCB enhanced hepatic activation of CHC1, primarily by increasing the amount of ER present in the liver cells. PBB and PCB did not alter the amount of microsomes (ER) isolated per g of kidney (data not shown). Due to the non-homogenous anatomical distribution of renal cell types, however, it is possible that PBB and PCB increased ER concentrations in a particular renal cell type. Covalent binding of CHCl, metabolites to renal ER, as well as binding to M and CP were reduced by a factor of 2 in mice treated with PBB and PCB. This suggests that less CHC1, was metaboreactive, alkylating intermediates at the ER in PBB and lized to PCB-treated mice than in control mice. Such an effect could result from a decreased delivery of CHCl₂ to the kidney, as discussed previously.

PBB and PCB-treatment had no effect on the binding of $CHCl_3$ metabolites to hepatic nucleotides (Table 18). Since it is unlikely that a reactive metabolite would be able to cross the nuclear membrane, and since nuclear MFO activity has been described (Kashnig and Kasper, 1969; Khandivala and Kasper, 1973), $CHCl_3$ metabolites binding to nuclear RNA and DNA may have been formed directly on or in the nuclear envelope. Failure of PBB and PCB to alter hepatic nuclear binding of $CHCl_3$ metabolites may indicate that the proposed nuclear metabolism of $CHCl_3$ was not affected by PBB and PCB. Covalent binding of reactive $CHCl_3$ metabolites to renal nucleotides, in contrast, was reduced by treatment with PBB and PCB, providing further support for the theory that PBB and PCB indirectly reduced delivery of $CHCl_3$ to the kidney.

Ilett <u>et al</u>. (1973) reported that $CHCl_3$ metabolites are covalently bound to hepatic and renal microsomal protein following incubation of microsomes with (¹⁴C)-CHCl_3 <u>in vitro</u>. Binding to hepatic protein <u>in vitro</u> was dependent on P-450, O_2 and NADPH and was inhibited by CO and 100% N₂. These results suggest that the reactive, alkylating metabolite was generated by microsomal oxidation of CHCl₃. The specific activity of covalent binding to renal microsomal protein, however, was less than 10% of that to hepatic microsomal protein, despite nearly equal amounts of binding <u>in vivo</u>, and the effects of P-450, O_2 , N₂, NADPH and CO on renal binding <u>in vitro</u> were equivocal (Ilett <u>et al</u>., 1973; Sipes <u>et al</u>., 1977). Thus, renal microsomal binding of CHCl₃ metabolites <u>in vitro</u> has not been demonstrated to be a consequence of renal P-450-dependent microsomal oxidation of CHCl₂. in i

and the second second

.

The data in Figure 24 suggest that PBB and PCB increased the rate of metabolism of CHCl_3 by hepatic MFOs to reactive products. These results are consistent with the effects of PBB and PCB on covalent binding of CHCl_3 metabolites to hepatic components <u>in vivo</u>. PCBtreatment did not increase CHCl_3 hepatotoxicity, however, suggesting that non-specific covalent binding of reactive CHCl_3 metabolites to hepatic components may not be the mechanism of CHCl_3 hepatotoxicity. Similarly, the effects of PBB and PCB on covalent binding to renal microsomal protein <u>in vitro</u> (Figure 24) are inconsistent with the effects of PBB and PCB on CHCl_3 nephrotoxicity. Since the dependency of covalent binding to renal microsomal protein <u>in vitro</u> on oxidative metabolism has not been shown, however, these results are difficult to interpret.

A further complication of the <u>in vitro</u> $CHCl_3$ binding studies, both those illustrated in Figure 24 and those reported by $Ilett \underline{et}$ <u>al</u>. (1973) is that the percentage of total radioactivity $[(^{14}C)-CHCl_3]$ added to the incubation mixture that is converted to a quantitatable alkylating metabolite ($\simeq 0.1\%$ with hepatic microsomes, $\simeq 0.005\%$ with renal microsomes) is less than the estimated concentration of impurities ($\simeq 1\%$) in the radiolabelled $CHCl_3$ used in these studies. Thus, much of the material bound may actually have been derived from non- $CHCl_3$ contaminants.

In summary, several inducers and inhibitors of renal and hepatic drug metabolism alter organ-specific CHCl₃ toxicity, perhaps by altering the relative proportions of CHCl₃ metabolized to proximate toxicants in the kidney and liver. The effects of specific inducers

on organ-specific CHCl_3 toxicity are consistent with the theory that the nephrotoxic CHCl_3 metabolite is formed directly in the kidney. CHCl_3 toxicity in both kidney and liver is associated with a loss of GSH and toxicity is enhanced when GSH is depleted by diethyl maleate treatment. GSH depletion following CHCl_3 exposure, however, does not appear to result solely from conjugation with electrophilic CHCl_3 metabolites. Finally, a correlation was not shown between alkylation of renal and hepatic proteins and lipids <u>in vivo</u> or <u>in</u> <u>vitro</u> and CHCl_3 toxicity.

SPECULATION

A. Phosgene and CHC1, Toxicity

Pohl <u>et al</u>. (1977) and Mansuy <u>et al</u>. (1977) were able to trap phosgene (COCl₂) as a metabolite of CHCl₃ by the addition of high concentrations of cysteine to <u>in vitro</u> incubations of CHCl₃ and rat liver microsomes. The product of non-enzymatic condensation of phosgene with cysteine, 2-oxathiazolidine-4-carboxylic acid, was isolated from the <u>in vitro</u> incubation mixture and identified by mass spectroscopy. Pohl <u>et al</u>. (1977), furthermore, determined that molecular oxygen was the source of the oxygen atom in the phosgene molecule and proposed that CHCl₃ is metabolized to phosgene by P-450-dependent MFOs as shown below:

2-Oxathiazolidine-4-carboxylic acid has also been isolated from the livers of rats injected with cysteine and CHCl₃ (separate injection sites), leading to speculation that phosgene may be the toxic CHCl₃ metabolite (Pohl and Krishna, 1978). The effects of PBB and PCB on CHCl₃ toxicity and the generation of alkylating metabolites, however,

are dissimilar in some cases, suggesting that the alkylating metabolite, very likely phosgene, may not be responsible for acute CHCl₃ toxicity. Pohl and Krishna (1978) have reported that the formation of phosgene in vitro is inhibited by SKF 525-A, as is the covalent binding of a CHCl₃ metabolite to microsomal protein in vitro (Sipes et al., 1977). In contrast, SKF 525-A does not reduce CHC1, toxicity in rats (Lavigne and Marchand, 1974) and potentiates CHCl₃ toxicity in mice (Figure 20). Thus, phosgene is very likely the source of tissue alkylation in vivo and in vitro but does not appear to be the acutely toxic metabolite of $CHCl_3$. Rodents and humans metabolize a significant portion (40-80%) of absorbed CHCl₃ to $\rm CO_2$, a process also inhibited by SKF 525-A (Lavigne and Marchand, 1974). Thus, microsomal oxidation of CHCl₂ appears to be a major pathway of CHC1, metabolism but not necessarily a toxification reaction. The effects of inhibitors and inducers of renal drug metabolism on CHCl₃ nephrotoxicity are consistent with the existence of at least two competing pathways of CHCl₃ metabolism, as illustrated below; one pathway generating an unidentified, toxic metabolite (reaction 1, induced by PBB and inhibited by PB) and another generating a non-toxic metabolite (reaction 2, induced in the kidney by 3MC and PCB, inhibited by SKF 525-A), possibly phosgene, that is ultimately responsible for the generation of CO_2 and the alkylating metabolite.

Additional studies would be needed to test the validity of the model proposed. It is, however, consistent with the data of Pohl and coworkers as well as with the results of this dissertation.

SUMMARY

The experiments in this dissertation were designed to elucidate potential roles of renal biotransformation in the development of halogenated aliphatic hydrocarbon nephropathy. Summarized below are the major findings of this study and their relevance to chloroform and carbon tetrachloride nephrotoxicity.

Induction of renal and hepatic AHH activities in male, ICR mice by continued dietary ingestion of PBB and PCB appeared to be maximal within 14 days. The magnitude of increase in renal and hepatic AHH activities was proportional to the concentration of the inducing agent in the diet over a concentration range of 25-200 ppm for PBB and 25-400 ppm for PCB. Additional studies demonstrated that dietary PBB potentiated CHCl₃ and CCl₄ toxicities in mice and that the degrees of potentiation of CHCl₃ and CCl₄ toxicities were proportional to the concentrations of PBB in the diets.

3MC and TCDD, as well as PBB and PCB, induced P-450-dependent MFO activities and cytochrome P-450 concentration in rodent kidney and liver. NaPb, however, increased hepatic but not renal enzyme activities and cytochrome P-450 content. The non-inducibility of renal drug metabolism by NaPb was consistent with the lack of effects of NaPb on CHCl₂ nephrotoxicity.

As has been demonstrated previously in the liver, 3MC induced forms of cytochrome P-450 and AHH in kidney and liver that were distinct from

20

ι. · those induced in liver by NaPb. NaPb did not alter the spectral characteristics of renal cytochrome P-450 nor the forms of AHH present in the kidney. The forms of cytochrome P-450 and AHH induced in the liver by PBB and PCB appeared to be mixtures of the forms normally induced by NaPb and by 3MC. In the kidney, however, cytochrome P-450 and AHH induced by PBB and PCB closely resembled that induced by 3MC. Thus, agents that have mixed inductive effects on liver cytochrome P-450 and MFO activities may not have such effects on kidney cytochrome P-450 and MFO activities.

Reduction of renal and hepatic P-450-dependent MFO activities by SKF 525-A and piperonyl butoxide were demonstrated <u>in vivo</u> and <u>in</u> <u>vitro</u>. Liver P-450-dependent MFOs appeared more sensitive than kidney P-450-dependent MFOs to reductions in activities by intraperitoneal injection of SKF 525-A and piperonyl butoxide. The differential susceptibilities of renal and hepatic AHH activities to inhibition by several compounds <u>in vitro</u> indicate that renal cytochromes may respond differently than hepatic cytochromes to the presence of inhibitors of P-450-dependent MFO activities.

Several inducers (PBB, PCB, HCB) of renal and hepatic P-450dependent MFOs increased the susceptibilities of male, Sprague-Dawley rats to the nephrotoxic and hepatotoxic effects of CCl_4 . These agents did not appear to alter the mechanism of CCl_4 toxicity and may have potentiated CCl_4 toxicity by increasing the rate of extent of metabolism of CCl_4 to a proximate toxicant.

Treatment with PBB potentiated CHC1₃ toxicity in ICR, male mice while treatment with PCB, 3MC and TCDD inhibited CHCl₃ toxicity. In

some instances the effects of inducing agents (PCB, 3MC, NaPb) on the renal and hepatic toxicities of CHCl₃ were dissimilar. If it is assumed that a single molecular species produces both renal and hepatic injury, then these results suggest that organ-specific CHCl₃ toxicity may be a consequence of organ-specific CHCl₃ metabolism. Alternatively, the nephrotoxic and hepatotoxic metabolites of CHCl₃ may be different molecular species and both may be formed primarily in liver. Enzymatic formation of the nephrotoxic and hepatotoxic CHC1, metabolites, however, may be affected differently by treatment with inducers such as PCB, 3MC and NaPb. Pretreatment with SKF 525-A potentiated while pretreatment with piperonyl butoxide inhibited CHC13 toxicity in mice. The different effects of these inducers and inhibitors of drug metabolism on CHCl₃ toxicity are consistent with the existence of competing enzymatic pathways of CHCl, metabolism; one pathway leading to a toxic metabolite and another pathway leading to a nontoxic metabolite.

Renal and hepatic GSH concentrations in intact mice were depleted by CHCl₃ in a dose-dependent manner and correlations were demonstrated between CHCl₃-induced tissue injury and CHCl₃-induced depletion of GSH. Loss of GSH, however, did not appear to occur solely through conjugation with electrophilic CHCl₃ metabolites.

Alkylations of renal and hepatic components by CHCl_3 metabolites <u>in vivo</u> appeared to be proportional to the rate of delivery of CHCl_3 to the liver and kidney and to the rate of metabolism within the liver or kidney to reactive intermediates. A consistent correlation between covalent binding of CHCl_3 metabolites to liver and kidney and susceptibility to CHCl_3 injury was not demonstrated. These results do not

21.0

support the hypothesis that nonspecific alkylation of renal and hepatic macromolecules by reactive CHCl_3 metabolites is the mechanism by which CHCl_3 produces acute renal and hepatic injury. The reactive CHCl_3 metabolite (possibly phosgene) that binds to cell constituents may be an intermediate in the metabolism of CHCl_3 to CO_2 . Another CHCl_3 metabolite, possibly formed in the kidney, may be responsible for the acute nephrotoxic effects of CHCl_3 . BIBLIOGRAPHY

BIBLIOGRAPHY

- Acara, M., Camiolo, S. and Rennick, B.: Renal N-oxidation of trimethylamine in the chicken during tubular excretion. Drug Metab. Disp. 5: 82-90, 1977.
- Ahmed, A.E., Kubic, V.L. and Anders, M.W.: Metabolism of haloforms to carbon monoxide. I. In vitro studies. Drug Metab. Disp. 5: 198-204, 1977.
- Ames, B.N., Durston, W.E., Yamasaki, E. and Lee, F.D.: Carcinogens as mutagens: A simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. (USA) 78: 2281-2285, 1973.
- Anders, M.W.: Inhibition and enhancement of microsomal drug metabolism by diethyl maleate. Biochem. Pharmacol. 27: 1098-1101, 1978.
- Appel, G.B. and Neu, H.C.: The nephrotoxicity of antimicrobial agents. Parts 1, 2 and 3. New Engl. J. Med. 296: 663-670, 722-728, 784-787, 1977.
- Bartsch, H., Malaveille, C. and Montesano, R.: In vitro metabolism and microsome-mediated mutagenicity of dialkylnitrosamines in rat, hamster and mouse tissues. Cancer Res. 35: 644-651, 1975.
- Bartsch, H., Margison, G.P., Malaveille, C., Camus, A.M., Brun, G., Margison, J.M., Kolar, G.F. and Wiessler, M.: Some aspects of metabolic activation of chemical carcinogens in relationship to their organ specificity. Arch. Toxicol. 39: 51-63, 1977.
- Berndt, W.O.: Effects of acute anoxia on renal transport processes. J. Toxicol. Environ. Hlth. 2: 1-11, 1976.
- Berndt, W.O. and Hayes, A.W.: Effects of citrinin on renal tubular transport functions in the rat. J. Environ. Pathol. Toxicol. 1: 93-103, 1977.
- Biber, T.U.L., Mylle, M., Barnes, A.D., Gottschalk, L.W., Oliver, J.R. and MacDowell, M.C.: A study by micropuncture and microdissection of acute renal damage in rats. Am. J. Med. 44: 664-705, 1968.

- Blackwell, G.J., Flower, R.J. and Vane, J.R.: Some characteristics of the prostaglandin synthesizing system in rabbit kidney microsomes. Biochem. Biophys. Acta 398: 178-190, 1975.
- Bonse, G. and Henschler, D.: Chemical reactivity, biotransformation and the toxicity of polychlorinated aliphatic compounds. CRC Crit. Rev. Toxicol. 4: 395-409, 1976.
- Borgen, A., Darvey, H., Castagnoli, N., Crocker, T.T., Rasmussen, R.E. and Wang, I.Y.: Metabolic conversion of benzo(a)pyrene by Syrian hamster liver microsomes and binding of metabolites to DNA. J. Med. Chem. 16: 502-504, 1973.
- Brodie, B.B.: Idiosyncracy and tolerance. In "Drug Response in Man". Little-Brown, Boston, pp. 188-213, 1967.
- Brooks, G.T.: Epoxide hydratase as a modifier of biotransformation and biological activity. Gen. Pharmac. 8: 221-226, 1977.
- Brown, D.M., Langley, P.F., Smith, D. and Taylor, D.C.: Metabolism of chloroform. I. The metabolism of [¹⁴C]-chloroform by different species. Xenobiotica 4: 151-163, 1974a.
- Brown, B.R., Sipes, I.G. and Sagalyn, A.M.: Mechanisms of acute hepatic toxicity: Chloroform, halothane and glutathione. Anesthesiology 41: 554-561, 1974b.
- Buening, M.K. and Franklin, M.R.: SKF 525-A inhibition, induction and 452 nm complex formation. Drug Metab. Disp. 4: 244-255, 1976.
- Butler, T.C.: Reduction of carbon tetrachloride in vitro and reduction of carbon tetrachloride and chloroform in vivo by tissues and tissue constituents. J. Pharmacol. Exp. Ther. 134: 311-319, 1961.
- Cantor, K.P., Hoover, R., Mason, T.J. and McCabe, L.J.: Associations of cancer mortality with halomethanes in drinking water. J. Natl. Cancer Inst. 61: 979-985, 1978.
- Carlson, G.P.: Potentiation of carbon tetrachloride hepatotoxicity in rats by pretreatment with polychlorinated biphenyls. Toxicology 5: 69-77, 1975.
- Castro, J.A. and Diaz Gomez, M.I.: Studies on the irreversible binding of (14C)-CC1₄ to microsomal lipids in rats under varying experimental conditions. Toxicol. Appl. Pharmacol. 23: 541-552, 1972.
- Cavalieri, E., Roth, R., Rogan, E., Grandjean, C. and Althoff, J.: Mechanisms of tumor initiation by polycyclic aromatic hydrocarbons In "Carcinogenesis, Vol. 3: Polynuclear Aromatic Hydrocarbons". P.W. Jones and R.I. Freudenthal (eds.), Raven Press, New York, pp. 273-284, 1978.

- Cawthorne, M.A., Palmer, E.D., Bunyan, J. and Green, J.: In vivo effects of carbon tetrachloride and chloroform on liver and kidney glucose-6-phosphatase in mice. Biochem. Pharmacol. 20: 494-496, 1971.
- Ceriotti, G.: A histochemical determination of DNA. J. Biol. Chem. 198: 297-303, 1958.
- Chhabra, R.S. and Fouts, J.R.: Sex differences in the metabolism of xenobiotics by extrahepatic tissues in rats. Drug Metab. Disp. 2: 375-379, 1974.
- Chuang, A.H.L., Mukhtar, H. and Bresnick, E.: Effects of diethyl maleate on aryl hydrocarbon hydroxylase and on 3-methylcholanthrene-induced skin tumorigenesis in rats and mice. J. Natl. Cancer Inst. 60: 321-325, 1978.
- Cignola, E.V. and Castro, J.A.: Effects of inhibitors of drug metabolizing enzymes on carbon tetrachloride hepatotoxicity. Toxicol. Appl. Pharmacol. 18: 625-637, 1971.
- Cohn, H.V. and Lyle, J.: A fluorometric assay for glutathione. Anal. Biochem. 14: 434-440, 1966.
- Conaway, C.C., Madhukar, B.V. and Matsamura, F.: p,p'-DDT: Studies on induction mechanisms of microsomal enzymes in rat liver systems. Environ. Res. 14: 305-321, 1977.
- Conney, A.H., Wood, A.W., Levin, W., Lu, A.Y.H., Chang, R.L., Wislocki, P.G., Goode, R.L., Holder, D.M., Dansette, P.M., Yagi, H. and Jerina, D.M.: Metabolism and biological activity of benzo(a)pyrene and its metabolic products. In "Biological Reactive Intermediates". D.J. Jollow, J.J. Kocsis, R. Snyder and H. Vainio, (eds.), Plenum Press, New York, pp. 335-356, 1977.
- Creaven, P.J., Parke, D.V. and Williams, R.T.: A fluorometric study of the hydroxylation of biphenyl in vitro by liver preparations of various species. Biochem. J. 96: 879-886, 1965.
- Cross, R.J. and Taggart, J.V.: Renal tubular transport: Accumulation
 of p-aminohippurate by rabbit kidney slices. Am. J. Physiol.
 161: 181-190, 1950.
- Dach, B.S. and Kurtzman, N.A.: A scanning electron microscope study of the glycerol model of acute renal failure. Lab. Invest. 34: 406-414, 1976.
- Deinzer, M., Schaumburg, F. and Klein, E.: Environmental Health Sciences Center Task Force review on halogenated organics in drinking water. Environ. H1th. Perspec. 24: 209-239, 1978.

- Dent, J.G., Elcombe, C.R., Netter, K.J. and Gibson, J.E.: Rat hepatic microsomal cytochrome(s) P-450 induced by polybrominated biphenyls. Drug Metab. Disp. 6: 96-101, 1978.
- Deringer, M.K., Dunn, T.B. and Heston, W.E.: Results of exposure of strain C₃H mice to chloroform. Proc. Soc. Exp. Biol. Med. 83: 474-479, 1953.
- DHEW-NIH: Research needs in nephrology and urology. Vol. I. Report of the Coordinating Committee. U.S. Department of Health, Education and Welfare Publication No. (NIH) 78-1481, 1978.
- Diaz Gomez, M.I., Castro, J.A., De Ferreyra, E.C., D'Acosta, N. and De Castro, C.R.: Irreversible binding of ¹⁴C from ¹⁴CCl₄ to liver microsomal lipids and proteins from rats pretreated with compounds altering microsomal mixed-function oxygenase activity. Toxicol. Appl. Pharmacol. 25: 534-541, 1973.
- Diaz Gomez, M.I., De Castro, C.R., D'Acosta, N., De Ferreyra, E.C. and Castro, J.A.: Species differences in carbon tetrachloride-induced hepatotoxicity: The role of CCl₄ activation and of lipid peroxidation. Toxicol. Appl. Pharmacol. 34: 102-114, 1975.
- De Matteis, F.: Loss of haem in rat liver caused by the porphyrogenic agent 2-ally1-2-isopropylacetamide. Biochem. J. 124: 767-772, 1971.
- Docks, E.L. and Krishna, G.: The role of glutathione in chloroforminduced hepatotoxicity. Exp. Mol. Pathol. 24: 13-22, 1976.
- Ellin, A., Jakobsson, S.V., Schenkman, J.B. and Orrenius, S.: Cytochrome P-450K of rat kidney cortex microsomes: Its involvement in fatty acid ω- and ω-1 hydroxylation. Arch. Biochem. Biophys. 150: 64-71, 1972.
- Ellman, G.: Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70-77, 1959.
- Folch, J., Lee, M. and Sloane-Stanley, G.H.: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 266: 497-509, 1957.
- Foulkes, E.C. and Hammond, P.B.: Toxicology of the kidney. In "Toxicology, the Basic Science of Poisons". L.S. Cassarett and J. Doull (eds.), Macmillan, New York, pp. 190-200, 1975.
- Fowler, J.S.L.: Carbon tetrachloride metabolism in the rabbit. Brit. J. Pharmacol. 37: 733-737, 1969.

- Fowler, B.A., Hook, G.E.R. and Lucier, G.W.: Tetrachlorodibenzo-pdioxin induction of renal microsomal enzyme systems: Ultrastructural effects on pars recta (S₃) proximal tubule cells of the rat kidney. J. Pharmacol. Exp. Ther. 203: 712-721, 1977.
- Franklin, M.R.: The enzymic formation of a methylenedioxyphenyl derivative exhibiting an isocyanide-like spectrum with reduced cytochrome P-450 in hepatic microsomes. Xenobiotica 1: 581-591, 1971.
- Franklin, M.R.: Inhibition of mixed-function oxidation by substrates forming reduced cytochrome P-450 metabolic intermediate complexes. Pharmac. Ther. A. 2: 227-245, 1977.
- Fries, G.F., Marrow, G.S. and Cook, R.M.: Distribution and kinetics of PBB residues in cattle. Environ. Hlth. Perspec. 23: 43-50, 1978.
- Fry, J.R., Wiebkin, P., Kao, J., Jones, C.A., Gwynn, J. and Bridges, J.W.: A comparison of drug-metabolizing capability in isolated, viable rat hepatocytes and renal tubule fragments. Xenobiotica 8: 113-120, 1978.
- Gelboin, H.V.: Mechanisms of induction of drug metabolizing enzymes. In "Handbook of Experimental Pharmacology", Vol. 28, Part 2. B.B. Brodie and J.R. Gillette (eds.), Springer-Verlag, New York, pp. 431-451, 1971.
- Ghazarian, J.G. and De Luca, H.F.: 25-Hydroxycholecalciferol-1hydroxylase: A specific requirement for NADPH and a hemoprotein component in chick kidney mitochondria. Arch. Biochem. Biophys. 160: 63-72, 1974.
- Ghazarian, J.G. and De Luca, H.F.: Kidney microsomal metabolism of 25-hydroxy-vitamin D₃. Biochem. Biophys. Res. Comm. 3: 550-554, 1977.
- Gibson, J.E.: Perinatal nephropathies. Environ. Hlth. Perspec. 15: 121-130, 1976.
- Gillette, J.R.: A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity. I. Correlation of change in covalent binding of reactive metabolites with change in the incidence and severity of toxicity. Biochem. Pharmacol. 23: 2785-2794, 1974.
- Gillette, J.R., Mitchell, J.R. and Brodie, B.B.: Biochemical mechanisms of drug toxicity. Ann. Rev. Pharmacol. 14: 271-289, 1974.

- Gillette, J.R.: Kinetics of reactive metabolites and covalent binding in vivo and in vitro. In "Biological Reactive Intermediates". D.J. Jollow, J.J. Kocsis, R. Snyder and H. Vainio (eds.), Plenum Press, New York, pp. 25-41, 1977.
- Goldstein, A., Aronow, L. and Kalman, S.M.: Principles of Drug Action, Wiley, New York, pp. 242-267, 1974.
- Goodman, J.I. and Potter, V.R.: Evidence for DNA repair synthesis and turnover in rat liver following ingestion of 3'-methyl-4dimethylaminoazobenzene. Cancer Res. 32: 766-775, 1972.
- Goujon, F.M., Nebert, D.W. and Gielen, J.E.: Genetic expression of aryl hydrocarbon hydroxylase induction. I. Interactions of various compounds with different forms of cytochrome P-450 and the effect on benzo(a)pyrene metabolism in vitro. Mol. Pharmacol. 8: 667-680, 1972.
- Grasdalen, H., Backstrom, D., Eriksson, L.E.G., Ehrenberg, A., Moldeus, P., Von Bahr, C. and Orrenius, S.: Heterogeneity of cytochrome P-450 in rat liver microsomes. Selective interaction of metyrapone and SKF 525-A with different fractions of microsomal cytochrome P-450. FEBS Letters 60: 294-299, 1975.
- Guengerich, F.P.: Separation and purification of multiple forms of microsomal cytochrome P-450. Activities of different forms of cytochrome P-450 towards several compounds of environmental interest. J. Biol. Chem. 252: 3970-3979, 1977.
- Gurtoo, H.L., Campbell, T.C., Webb, R.E. and Plowman, K.M.: Effect of aflatoxin and benzpyrene pretreatment upon the kinetics of benzpyrene hydroxylase. Biochem. Biphys. Res. Comm. 31: 588-595, 1968.
- Hill, R.M., Clemens, T.L., Liu, D.K. and Vesell, E.S.: Genetic control of chloroform toxicity in mice. Science 190: 159-161, 1975.
- Hook, J.B., McCormack, K.M. and Kluwe, W.M.: Biochemical mechanisms of nephrotoxicity. In "Reviews in Biochemical Toxicology", Vol. I.
 E. Hodgson, J. Bend, J.R. Philpot (eds.), Elsevier-North Holland, New York, pp. 53-78, 1978a.
- Hook, J.B., McCormack, K.M. and Kluwe, W.M.: Renal effects of 2,3,7,8tetradichlorodibenzo-p-dioxin. In "Pentachlorophenol". K.R. Rao (ed.), Plenum Press, New York, pp. 384-390, 1978b.
- Ichihara, K., Kusnose, E. and Kusnose, M.: Reconstitution of a fatty acid ω-hydroxylation system by a solubilized kidney microsomal preparation, ferredoxin and ferredoxin-NADP reductase. Biochem. Biophys. Acta 202: 560-562, 1970.

- Jakobsson, S.V., Thor, H. and Orrenius, S.: Fatty acid inducible cytochrome P-454 of rat kidney cortex microsomes. Biochem. Biophys. Res. Comm. 39: 1073-1080, 1970.
- Jakobsson, S.V. and Cinti, D.L.: Studies on the cytochrome P-450containing mono-oxygenase system in human kidney cortex microsomes. J. Pharmacol. Exp. Ther. 185: 226-234, 1973.
- Jenkins, L.J. Jr. and Anderson, M.E.: 1,1-Dichloroethylene nephrotoxicity in the rat. Toxicol. Appl. Pharmacol. 46: 131-141, 1978.
- Jerina, D.M. and Bend, J.R.: Glutathione-S-transferases. In "Biological Reactive Intermediates". D.J. Jollow, J.J. Kocsis, R. Snyder and H. Vainio (eds.), Plenum Press, New York, pp. 207-236, 1977.
- Jollow, D.J. and Smith, C.J.: Biochemical aspects of toxic metabolites: Formation, detoxication and covalent binding. In "Biological Reactive Intermediates". D.J. Jollow, J.J. Kocsis, R. Snyder and H. Vainio (eds.), Plenum Press, New York, pp. 42-59, 1977.
- Kashnig, D.M. and Kasper, C.E.: Isolation, morphology and composition of the nuclear membrane from rat liver. J. Biol. Chem. 244: 3786-3792, 1969.
- Kato, R.: Possible role of P-450 in the oxidation of drugs in liver microsomes. J. Biochem. (Tokyo) 59: 574-589, 1966.
- Khandivala, A.S. and Kasper, C.E.: Preferential induction of aryl hydrocarbon hydroxylase activity in rat liver nuclear envelope by 3-methylcholanthrene. Biochem. Biophys. Res. Comm. 54: 1241-1246, 1973.
- Klaassen, C.D. and Plaa, G.L.: Relative effects of various chlorinated hydrocarbons on liver and kidney function in mice. Toxicol. Appl. Pharmacol. 9: 139-151, 1966.
- Klaassen, C.D. and Plaa, G.L.: Susceptibility of male and female mice to the nephrotoxic and hepatotoxic properties of chlorinated hydrocarbons. Proc. Soc. Exp. Biol. Med. 124: 1163-1166, 1967.
- Kluwe, W.M., McCormack, K.M. and Hook, J.B.: Chemical induction of paminohippuric acid transport in renal cortical slices from adult and immature rabbits. J. Pharmacol. Exp. Ther. 205: 743-750, 1978.
- Kociba, R.J., Keyes, D.G., Jersey, G.C., Ballard, J.J., Dittenber, D.A., Quast, J.F., Wade, C.E., Humiston, L.G. and Schwetz, B.A.: Results of a two year chronic toxicity study of hexachlorobutadiene in rats. Am. Ind. Hyg. Assoc. J. 38: 589-602, 1977.
- Kraybill, H.F.: Carcinogenesis induced by trace contaminants in potable water. Bull. N.Y. Acad. Med. 54: 413-427, 1978.

- Krogh, P., Elling, F., Gyrd-Hansen, N., Hald, B., Larsen, A.E., Lillehoj, E.B., Madsen, A., Mortensen, H.P. and Ravenskov, U.: Experimental porcine nephropathy: Changes of renal function and structure perorally induced by crystalline ochratoxin A. Acta Pathol. Microbiol. Scand. Sect. A 84: 429-434, 1976.
- Krus, S., Starzynski, S., Zaleska-Rutczynska, Z. and Naciazek-Wieniawska, A.: The role of testosterone in developing chloroform-induced renal tubular necrosis in mice. Nephron 12: 275-280, 1974.
- Kupfer, D. and Bruggeman, C.C.: Determination of enzymatic demethylation of p-chloro-N-methylaniline. Assay of aniline and p-chloroaniline. Anal. Biochem. 17: 502-512, 1966.
- Kuzma, R.J., Kuzma, C.M. and Buncher, C.R.: Ohio drinking water source and cancer rates. Am. J. Publ. H1th. 67: 725-729, 1977.
- Lavigne, J. and Marchand, C.: The role of metabolism in chloroform hepatotoxicity. Toxicol. Appl. Pharmacol. 29: 312-326, 1974.
- Leibman, K.C.: Metabolism of trichloroethylene in liver microsomes. I. Characteristics of the reactions. Mol. Pharmacol. 1: 239-246, 1965.
- Levinsky, N.G.: Pathophysiology of acute renal failure. New Engl. J. Med. 296: 1453-1458, 1977.
- Litchfield, J.T. and Wilcoxin, F.: A simplified method for evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 96: 99-113, 1949.
- Litterst, C.L., Mimnaugh, E.G., Reagan, R.L. and Gram, T.E.: Comparison of in vitro drug metabolism by lung, liver and kidney of several common laboratory species. Drug Metab. Disp. 3: 259-265, 1975.
- Litterst, C.L., Mimnaugh, E.G. and Gram, T.E.: Comparative alterations in extrahepatic drug metabolism by factors known to affect hepatic activity. Biochem. Pharmacol. 26: 749-755, 1977.
- Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275, 1951.
- Madix, J.C. and Bresnick, E.: Increased efficacy of liver chromatin as a template for RNA synthesis after administration of 3-methylcholanthrene. Biochem. Biophys. Res. Comm. 28: 445-452, 1967.
- Mailman, R.B., Edmundson, W., Muse, K. and Hodgson, E.: Multiplicity of hepatic cytochrome P-450 in intact microsomes: Effect of 3methylcholanthrene induction. Gen. Pharmac. 8: 281-284, 1977.

- Maling, H.M., Stripp, B., Sipes, I.G., Highman, B., Saul, W. and Williams, M.A.: Enhanced hepatotoxicity of carbon tetrachloride, thioacetamide and dimethylnitrosamine by pretreatment of rats with ethanol and some comparisons with potentiation by isopropanol. Toxicol. Appl. Pharmacol. 33: 291-308, 1975.
- Mannering, G.J.: Inhibition of N-demethylation of ethylmorphine by 2-diethylaminoethyl-2,2-diphenylvalerate HCl (SKF 525-A). In "Fundamentals of Drug Metabolism and Disposition". B.N. LaDu, H.G. Mandel and E.L. Way (eds.), Williams and Wilkins, Baltimore, pp. 563-565, 1971.
- Mansuy, D., Beaune, P., Cresteil, T., Lange, M. and Leroux, J.P.: Evidence for phosgene formation during liver microsomal oxidation of chloroform. Biochem. Biophys. Res. Comm. 79: 513-517, 1977.
- Matthews, H.B., Kato, S., Morales, N.M. and Tuey, D.B.: Distribution and excretion of 2,4,5,2',4',5'-hexabromobiphenyl, the major component of Firemaster BP-6. J. Toxicol. Environ. Hlth. 3: 599-605, 1977.
- Mazze, R.I.: Methoxyflurane nephropathy. Environ. Hlth. Perspec. 15: 111-119, 1976.
- McCormack, K.M., Melrose, P., Rickert, D.E., Dent, J.G., Gibson, J.E. and Hook, J.B.: Concomitant dietary exposure to polychlorinated biphenyls and polybrominated biphenyls: Tissue distribution and aryl hydrocarbon hydroxylase activity in lactating rats. Toxicol. Appl. Pharmacol. 47: 95-104, 1979.
- McDowell, E.M., Nagle, R.B., Zalme, R.C., McNeil, J.S., Flamenbaum, W. and Trump, B.F.: Studies on the pathophysiology of acute renal failure. I. Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride. Virch. Arch. B. Cell. Pathol. 22: 173-196, 1976.
- Miller, E.C. and Miller, J.A.: The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene. Cancer Res. 7: 468-480, 1947.

Miller, J.A.: Carcinogenesis by chemicals: An overview. Cancer Res. 30: 559-576, 1970.

- Miller, E.C. and Miller, J.A.: Biochemical mechanisms of chemical carcinogenesis. In "Molecular Biology of Cancer". H. Busch (ed.), Academic Press, New York, pp. 337-402, 1974.
- Miller, J.A. and Miller, E.C.: Reactive electrophilic metabolites in chemical carcinogenesis. In "Biological Reactive Intermediates". D.J. Jollow, J.J. Kocsis, R. Snyder and H. Vainio (eds.), Plenum Press, New York, pp. 6-24, 1977.

- Mitchell, J.R., Jollow, D.J., Potter, W.Z., Gillette, J.R. and Brodie, B.B.: Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 187: 211-217, 1973.
- Mitchell, J.R. and Jollow, D.J.: Metabolic activation of drugs to toxic substances. Gastroenterology 68: 392-410, 1975.
- Mitchell, J.R., McMurty, R.J., Statham, C.N. and Nelson, S.D.: Molecular basis for several drug-induced nephropathies. Am. J. Med. 62: 518-526, 1977.
- Nebert, D.W. and Gelboin, H.V.: Substrate inducible microsomal aryl hydrocarbon hydroxylase in mammalian cell culture. I. Assay and properties of induced enzyme. J. Biol. Chem. 243: 6242-6249, 1968.
- Nebert, D.W. and Gelboin, H.V.: The role of ribonucleic acid and protein synthesis in microsomal aryl hydrocarbon hydroxylase induction in cell culture. J. Biol. Chem. 245: 160-168, 1970.
- Oesch, F.: Differential control of rat microsomal "aryl hydrocarbon" monooxygenase and epoxide hydratase. J. Biol. Chem. 251: 79-87, 1976.
- Oesch, F., Bentley, P. and Glatt, H.R.: Epoxide hydratase: Purification to apparent homogeneity as a specific probe for the relative importance of epoxides among other reactive metabolites. In "Biological Reactive Intermediates". D.J. Jollow, J.J. Kocsis, R. Snyder and H. Vainio (eds.), Plenum Press, New York, pp. 181-206, 1977.
- Omdahl, J.L., Holick, M., Suda, T., Tanaka, Y. and De Luca, H.F.: Biological activity of 1,25-dihydroxycholecalciferol. Biochem. 10: 2935-2940, 1971.
- Omdahl, J.L. and De Luca, H.F.: Regulation of vitamin D metabolism and function. Physiol. Rev. 53: 327-372, 1973.
- Omura, T. and Sato, R.: The carbon-monoxide binding pigment of liver microsomes. II. Solubilization, purification and properties. J. Biol. Chem. 239: 2379-2385, 1964.
- Orrenius, S., Ellin, A., Jakobsson, S.V., Thor, H., Cinti, D.L., Schenkman, B. and Estabrook, R.W.: The cytochrome P-450-containing monooxygenase system of rat kidney cortex microsomes. Drug Metab. Disp. 1: 350-357, 1973.
- Osterberg, R.E., Bierbower, G.W. and Hehir, R.M.: Renal and testicular damage following dermal application of the flame retardant tris (2,3-dibromopropyl)phosphate. J. Toxicol. Environ. Hlth. 3: 979-987, 1977.

- Philpot. R.M. and Hodgson, E.: The production and modification of cytochrome P-450 difference spectra by in vivo administration of methylenedioxyphenyl compounds. Chem. Biol. Interac. 4: 185-194, 1971a.
- Philpot, R.M. and Hodgson, E.: A cytochrome P-450 piperonyl butoxide spectrum similar to that produced by ethylisocyanide. Life Sci. 10: 503-512, 1971b.
- Piper, W.N. and Bousquet, W.F.: Phenobarbital and methylcholanthrene stimulation of rat liver chromatin template activity. Biochem. Biophys. Res. Comm. 33: 602-605, 1968.
- Pitchumoni, C.S., Stenger, R.J., Rosenthal, W.S. and Johnson, E.A.: Effects of 3,4-benzpyrene pretreatment on the hepatotoxicity of carbon tetrachloride in rats. J. Pharmacol. Exp. Ther. 81: 227-233, 1972.
- Plaa, G.L. and Larson, R.E.: Relative nephrotoxic properties of chlorinated methane, ethane and ethylene derivatives in mice. Toxicol. Appl. Pharmacol. 7: 37-44, 1965.
- Pohl, L.F., Bhooshan, B., Whittaker, N.F. and Krishna, G.: Phosgene: A metabolite of chloroform. Biochem. Biophys. Res. Comm. 79: 684-691, 1977.
- Pomerai, D.I., Chesterton, C.J. and Butterworth, P.H.W.: Preparation of chromatin. Europ. J. Biochem. 46: 461-471, 1974.
- Poyer, J.L., Floyd, R.A., McCay, P.B., Janzen, E.G. and Davis, E.R.: Spin trapping of the trichloromethyl free radical produced during enzymic NADPH oxidation in the presence of carbon tetrachloride or bromotrichloromethane. Biochem. Biophys. Acta 539: 402-409, 1978.
- Preussman, R., Druckrey, H., Ivankovic, S. and von Hodenberg, A.: Chemical structure and carcinogenicity of aliphatic hydrazo, azo, and azoxy compounds and of triazenes, potential in vivo alkylating agents. Ann. N.Y. Acad. Sci. 81: 285-310, 1969a.
- Preussman, R., von Hodenberg, A. and Hengy, H.: Mechanism of carcinogenesis with 1-ary1-3,3-dialkyltriazenes. Enzymatic dealkylation by rat liver microsomal fractions in vitro. Biochem. Pharmacol. 18: 1-13, 1969b.
- Quebbeman, A.J. and Anders, M.W.: Renal tubular conjugation and excretion of phenol and p-nitrophenol in the chicken: Differing mechanisms of renal transfer. J. Pharmacol. Exp. Ther. 184: 695-708, 1973.

Recknagel, R.O.: Carbon tetrachloride hepatotoxicity. Pharmacol. Rev. 19: 145-208, 1967.

- Recknagel, R.O. and Glende, E.A. Jr.: Carbon tetrachloride hepatotoxicity: An example of lethal cleavage. CRC Crit. Rev. Toxicol. 2: 263-297, 1973.
- Reichert, D., Henschler, D. and Bannasch, P.: Nephrotoxic and hepatotoxic effects of dichloroethylene. Fd. Cosmet. Toxicol. 16: 227-235, 1978.
- Reid, W.D.: Mechanism of renal necrosis induced by bromobenzene or chlorobenzene. Exp. Mol. Pathol. 19: 197-214, 1973.
- Reynolds, E.S., Thiers, R.E. and Vallee, B.L.: Mitochondrial function and metal content in carbon tetrachloride poisoning. J. Biol. Chem. 237: 3546-3551, 1962.
- Reynolds, E.S.: Liver parenchymal cell injury. III. The nature of calcium-associated electron-opaque masses in rat liver mitochondria following poisoning with carbon tetrachloride. J. Cell Biol. 25: 53-75, 1965.
- Reynolds, E.S.: Liver parenchymal cell injury. IV. Pattern of incorporation of carbon and chlorine from carbon tetrachloride into chemical constituents of liver in vivo. J. Pharmacol. Exp. Ther. 155: 117-126, 1967.
- Reynolds, E.S. and Moslen, M.T.: Chemical modulation of early carbon tetrachloride liver injury. Toxicol. Appl. Pharmacol. 29: 377-388, 1974.
- Robl, M.G., Jenkins, D.H., Wingender, R.J., Gordon, D.E. and Keplinger, M.L.: Toxicity and residue studies in dairy animals with Firemaster FF1 (polybrominated biphenyls). Environ. Hlth. Perspec. 23: 91-98, 1978.
- Ross, R.H., Yeatts, L.B. Jr., Lewis, E.B., Dailey, G.A., Harnden, D.C., Michelson, D.C. and Frogge, L.M.: Environmental and health aspects of selected organohalide compounds. An information review. Oak Ridge National Laboratory, ORNL/EIS-105, National Technical Information Service, U.S. Department of Commerce, Springfield, VA, 1978.
- Rubinstein, D. and Kanics, L.: The conversion of carbon tetrachloride to carbon dioxide by rat liver homogenates. Can. J. Biochem. 42: 1577-1585, 1964.
- Ryan, D., Lu, A.Y.H., West, S. and Levin, W.: Multiple forms of cytochrome P-450 in phenobarbital and 3-methylcholanthrene-treated rats. Separation and spectral properties. J. Biol. Chem. 250: 2157-2163, 1975.

- Schenkman, J.B., Wilson, B.J. and Cinti, D.L.: Diethylaminoethyl-2,2diphenyl valerate HCl (SKF 525-A)-in vivo and in vitro effects on metabolism by rat liver microsomes-formation of an oxygenated complex. Biochem. Pharmacol. 21: 2373-2383, 1972.
- Schimke, R.T., Gangschow, R., Doyle, D. and Arias, A.M.: Regulation of protein turnover in mammalian tissues. Fed. Proc. 27: 1223-1230, 1968.
- Schreiner, G.E. and Maher, J.F.: Toxic nephropathy. Am. J. Med. 38: 409-449, 1965.
- Sims, P., Grover, P.L., Swaisland, A., Pal, K. and Hewer, A.: Metabolic activation of benzo(a)pyrene proceeds by a diol-epoxide. Nature (London) 252: 326-328, 1974.
- Sipes, I.G., Stripp, B., Krishna, G., Maling, H.M. and Gillette, J.R.: Enhanced hepatic microsomal activity by pretreatment of rats with acetone or isopropanol. Proc. Soc. Exp. Biol. Med. 142: 237-240, 1973.
- Sipes, I.G., Krishna, G. and Gillette, J.R.: Bioactivation of carbon tetrachloride, chloroform and bromotrichloromethane: Role of cytochrome P-450. Life Sci. 20: 1541-1548, 1977.
- Sirota, J.H.: Carbon tetrachloride poisoning in man. I. The mechanisms of renal failure and recovery. J. Clin. Invest. 28: 1412-1422, 1949.
- Sladek, N.E. and Mannering, G.J.: Induction of drug metabolism. II. Qualitative differences in the microsomal N-demethylating systems stimulated by polycyclic hydrocarbons and by phenobarbital. Mol. Pharmacol. 5: 186-199, 1969.
- Smetana, H.: Nephrosis due to carbon tetrachloride. Arch. Int. Med. 63: 760-777, 1939.
- Smuckler, E.A.: Structural and functional changes in acute liver injury. Environ. Hlth. Perspec. 15: 13-25, 1976.
- Sokal, R.R. and Rohlf, F.J.: "Biometry. The Principles and Practices of Statistics in Biological Research". Freeman and Co., San Francisco, pp. 226-246, 1969.
- Stein, J.H., Lifschitz, M.D. and Barnes, L.D.: Current concepts on the pathophysiology of acute renal failure. Am. J. Physiol. 243: F171-181, 1978.
- Stephenson, M.E.: An approach to the identification of organic compounds hazardous to the environment and human health. Ecotoxicol. Environ. Safety 1: 39-48, 1977.

- Striker, G.E., Smuckler, E.A., Kohnen, P.W. and Nagle, R.B.: Structural and functional changes in rat kidney during CCl₄ intoxication. Am. J. Pathol. 53: 769-778, 1968.
- Suarez, K.A., Carlson, G.P., Fuller, G.C. and Fausto, N.: Differential acute effects of phenobarbital and 3-methylcholanthrene pretreatment on CCl₄-induced hepatotoxicity in rats. Toxicol. Appl. Pharmacol. 23: 171-177, 1972.
- Suriyachan, D. and Thithipandha, A.: Modification of carbon tetrachloride hepatotoxicity by chemicals. Toxicol. Appl. Pharmacol. 41: 369-376, 1977.
- Suzuki, S., Kozuka, Y., Satoh, T. and Yamazaki, M.: Studies on the nephrotoxicity of ochratoxin A in rats. Toxicol. Appl. Pharmacol. 34: 479-490, 1975.
- Tanaka, Y. and DeLuca, H.F.: Bone mineral mobilization activity of 1,25-dihydroxycholecalciferol, a metabolite of vitamin D. Arch. Biochem. Biophys. 146: 574-578, 1971.
- Thacker, H.L. and Carlton, W.W.: Ochratoxin A mycotoxicosis in the guinea pig. Fd. Cosmet. Toxicol. 15: 563-574, 1977.
- Thorgeirsson, S.S. and Wirth, P.J.: Covalent binding of foreign chemicals to tissue macromolecules. J. Toxicol. Environ. Hlth. 2: 873-881, 1977.
- Tischer, C.C.: Anatomy of the kidney. In "The Kidney". B.M. Brenner and F.C. Rector (eds.), W.B. Saunders, Philadelphia, pp. 3-64, 1976.
- Torkelson, T.R., Sadek, S.E., Rowe, V.K., Kodama, J.K., Anderson, H.H., Loquvam, G.S. and Hine, C.H.: Toxicological investigations of 1,2-dibromo-3-chloropropane. Toxicol. Appl. Pharmacol. 3: 545-559, 1961.
- Torkelson, T.R. and Oyen, F.: The toxicity of 1,3-dichloropropene as determined by repeated exposure of laboratory animals. Am. Ind. Hyg. Assoc. J. 38: 217-223, 1977.
- Uehleke, H. and Greim, H.: Stimulation of kidney microsomal drug metabolism by phenobarbital. Naunyn-Schmiedeberg's Arch. Pharmacol. 259: 199-206, 1968.
- Uehleke, H. and Werner, T.: A comparative study on the irreversible binding of lablled halothane, trichlorofluoromethane and carbon tetrachloride to hepatic proteins and lipids in vitro and in vivo. Arch. Toxicol. 34: 289-308, 1975.

- Uehleke, H.: Binding of haloalkanes to liver microsomes. In "Biological Reactive Intermediates". D.J. Jollow, J.J. Kocsis, R. Snyder and H. Vainio (eds.), Plenum Press, New York, pp. 430-445, 1977.
- Ullrich, V. and Kremers, P.: Multiple forms of cytochrome P-450 in the microsomal monooxygenase system. Arch. Toxicol. 39: 41-50, 1977.
- Venkatachalam, M.A., Bernard, D.B., Donohoe, J.F. and Levinsky, N.G.: Ischemic damage and repair in the rat proximal tubule: Differences among the S₁, S₂ and S₃ segments. Kidney Intl. 14: 31-49, 1978.
- Venkatesan, N., Arcos, J.C. and Argus, M.F.: Induction and repression of microsomal drug metabolizing enzyme systems by polycyclic hydrocarbons and phenobarbital: Theoretical models. J. Theoret. Biol. 33: 517-537, 1971.
- Villarruel, M.D.C., De Toranzo, E.G.D. and Castro, J.A.: Carbon tetrachloride activation, lipid peroxidation and the mixed-function oxygenase activity of various rat tissues. Toxicol. Appl. Pharmacol. 41: 337-344, 1977.
- Von Oettingen, W.F.: Halogenated hydrocarbons of industrial and toxicological importance. Elsevier, Amsterdam, 1964.
- Waddel, W.J. and Butler, T.C.: The distribution and excretion of phenobarbital. J. Clin. Invest. 36: 1217-1226, 1957.
- Weekes, U.Y.: Metabolism of dimethylnitrosamine to mutagenic intermediates by microsomal enzymes and correlation with reported hostsusceptibility to kidney tumors. J. Natl. Cancer. Inst. 55: 1199-1201, 1975.
- Wheeler, G.P. and Skipper, H.E.: Studies with mustards. III. In vivo fixation of C^{14} from nitrogen mustard $C^{14}H_3$ in nucleic acid fractions of animal tissues. Arch. Biochem. Biophys. 72: 465-475, 1957.
- Whyte, M.P. and Dekeban, A.S.: Metabolic fate of phenobarbital. A quantitative study of p-hydroxyphenobarbital elimination in man. Drug Metab. Disp. 5: 63-70, 1977.
- Wiebel, F.J., Leutz, J.C., Diamond, L. and Gelboin, H.V.: Aryl hydrocarbon (benzo[a]pyrene) hydroxylase in microsomes from rat tissues: Differential inhibition and stimulation by benzoflavone and organic solvents. Arch. Biochem. Biophys. 144: 78-86, 1971.

- Wiebel, F.J. and Gelboin, H.V.: Aryl hydrocarbon (benzo[a]pyrene) hydroxylases in liver from rats of different age, sex and nutritional status. Distinction of two types by 7,8-benzoflavone. Biochem. Pharmacol. 24: 1511-1515, 1975.
- Zampaglione, N.R. and Mannering, G.J.: Properties of benzpyrene hydroxylase in the liver, intestinal mucosa and adrenal of untreated and 3-methylcholanthrene-treated rats. J. Pharmacol. Exp. Ther. 185: 676-685, 1973.
- Zenser, T.V., Herman, C.A., Gorman, R. and Davis, B.B.: Metabolism and action of the prostaglandin endoperoxide PGH, in rat kidney. Biochem. Biophys. Res. Comm. 79: 357-363, 1977.
- Zenser, T.V., Mattammal, M.B. and Davis, B.B.: Differential distribution of the mixed-function oxidase activities in rabbit kidney. J. Pharmacol. Exp. Ther. 207: 719-725, 1978.

20

by By Board of States or States benetic motoritie

11

.

