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ABSTRACT

INDUCED ELECTROMAGNETIC FIELDS IN CONDUCTING
BODIES IRRADIATED BY MAGNETIC FIELDS
AND MICROWAVES
By

Jen-Hwang Lee

A new theoretical method for determining the eddy
current induced by a uniform RF magnetic field or a beam of
RF magnetic field in a biological body is developed in this
research. This study was motivated by the fact that more
biological research and medical applications utilize the
irradiation of RF magnetic fields, and by the need for an
efficient method of determining the magnetic mode of the
induced electric field in a thick biological body irradi-

ated by HF-VHF EM waves. The body of rotational symmetry

is subdivided into a number of circular rings with various

radii and cross-sectional areas. The eddy current induced

by the impressed magnetic field can be considered, physic-
ally, as induced by a circulatory impressed electric field
associated with the uniform impressed magnetic field.

Induced eddy currents in all the rings maintain a scattered
electric field which can be added to the impressed electric

field to yield the total induced electric field in the body.
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At the same time, the eddy current is the product of the
complex conductivity and the induced electric field. Using
these relations and the point-matching method, a set of
simultaneous equations for the induced electric fields can
be obtained, and they are subsequently solved numerically.
With the present method, the eddy currents induced by
magnetic fields of 1 to 200 MHz in various biological

bodies have been obtained. It was found that the conven-
tionally used, quasi-static solution for the eddy current
fails to yield accurate results for frequencies higher than
20 MHz, while the present method can be used to determine
accurately and efficiently the induced eddy currents in
biological bodies for frequencies higher than 20 MHz.

Also included in this thesis is a numerical method for
quantifying the induced EM field on the surface of an
irradiated biological body based on two coupled, surface
integral equations. In the field of theoretical dosimetry,
the quantification of the induced EM field inside an irra-
diated body has been performed mainly by volume integral
equation methods. When a large biological body such as
the human body is irradiated by an EM wave of microwave
range, the body becomes electrically large and the induced
EM field concentrates mainly in a thin layer of the body
surface. A volume integral equation method then becomes
inadequate or inefficient to handle this problem, and it

is more efficient to quantify the induced EM field on the
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body surface based on a surface integral equation method
for this case. After the tangential components of the
induced electric and magnetic fields on the body surface
are determined, the internal EM field can be calculated.
To check the accuracy of this method, electrically small
bodies are considered first, and results obtained from the
surface integral equation method are compared with that
obtained from the tensor integral equation method, a volume
integral equation method. It was learned that, in some
cases, the surface integral equation method showed advan-
tages in accuracy and computational cost over the volume

integral equation method.
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CHAPTER I

INTRODUCTION

Since electromagnetic radiation and propagation were
discovered more than a century ago, electromagnetic waves
of various frequencies have been utilized in many ways
to benefit the human society. Especially, due to the
ingenious contributions of engineers and scientists, such
incredible dreams as satellite communications, long-range
radar detection, high power-rating microwave ovens, and
many other products related to EM technology have been
realized. Moreover, high-level beamed microwave power is
proposed as a new scheme for transporting energy in the
future, and the use of electromagnetically induced hyper-
thermia as an adjunct in cancer treatment is receiving
increased attention from many medical researchers. Indeed,
these highly advanced techniques of utilizing energy in
EM form do benefit us in many respects; unfortunately,
they also bring us certain unwanted potential hazards.

Over a decade ago, medical personnel and public health
officials began to suspect that low-level, long-term ioniz-
ing radiation could be one of the major causes for several

different cancers. Even more astonishingly, it is found
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impossible to completely avoid this low-level radiation
since it exists everywhere in space,‘originating from
either man-made or natural sources. Besides the above
possible hazards due to low-level radiation, EM radiation
in high intensities, under an uncontrolled condition, can
be harmful to living systems. The thermal effects asso-
ciated with such high-intensity radiation can produce
burns, cataracts, and chemical changes, etc. All these
effects have become the major concerns of the public,
especially for those who are subject to possible long-
term or high-intensity radiation exposure. As a result,
there is strong demand for a more thorough understanding
of the biological effects of EM radiation. There is
therefore a demonstrated need to determine, for example,
the safe power density for long-term human exposure, the
correct applications methodology and techniques in utiliz-
ing high-intensity EM radiation for medical treatment, etc.
However, based on the present state of knowledge in this
area, many questions still remain unanswered. As a matter
of fact, there exist strong arguments between involved
groups about where realistic safety levels for microwave
exposure should lie. It is surprising to observe that the
maximum allowable safe power density for long-term human
exposure varies from 10 mw/cm2 in this country to as low

as 0.01 mw/cm2 in the USSR.
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To clarify these uncertainties, electromagnetic engi-
neers should assume the responsibility for providing more
complete, accurate, quantitative data on biological effects
of EM radiation; they belong to the professional groups
having adequate knowledge and ability to analyze this prob-
lem both theoretically and experimentally.

Under these circumstances, we complete the present
research for the purpose of seeking for a better under-
standing of EM interactions with biological bodies. We
study tne eddy currents induced by RF magnetic fields
inside biological bodies in Chapter II. The RF magnetic
field has received increased attention due to its poten-
tial usefulness for local heating in cancer treatment.
Based on our research, we obtain a better understanding
about the mechanism exciting induced currents inside the
bodies; furthermore, we are able to predict accurately
the current distributions inside the bodies, which has not
been accomplished by previous methods. In Chapter III,
we study the microwave interactions with biological bodies
through the solutions of two coupled, surface integral
equations. This numerical technique can be applied to
quantify the EM fields induced on the surfaces of arbi-
trarily shaped biological bodies. Through this study, we
expect to obtain a more complete, accurate, quantitative

evaluation of microwave interactions. Chapter IV describes







in detail the computer programs used for the above two

problems. Then, Chapter V summarizes this research.

-
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CHAPTER II

EDDY CURRENTS INDUCED BY RF MAGNETIC FIELDS
INSIDE A FINITE CONDUCTING BODY

WITH ROTATIONAL SYMMETRY

In this chapter, we will present a new theoretical
method for determining the electric field or the eddy
current induced by a uniform RF magnetic field or a beam
of RF magnetic field in a finite conducting body with
rotational symmetry.

The body being considered is divided into a number
of circular rings with various radii and cross-sectional
areas. The induced electric field in each ring is then
numerically determined based on the theory of vector poten-
tial and the moment method. Numerical examples are given
and the results based on the present theory are found to
deviate significantly from the often-used quasi-static
solutions. An experiment was conducted to measure the
electric fields induced by a UHF magnetic field in finite
conducting phantom models. Experimental results were
found to be in a good agreement with the theory. The

accuracy of the present theory was also verified by the
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existing theoretical results on the induced eddy current

in a conducting sphere.

2.1. Introduction

Due to its increasing applications in the biomedical
area, the radiation of RF magnetic field is becoming an
important new technique which has drawn a large amount of
attention from many investigators. Conventionally, the
electric field or the eddy current induced by a magnetic
field inside a finite conducting body is estimated by the
quasi-static solution. Unfortunately, the quasi-static
approximation can give accurate results only when the body
is relatively small or when the frequency of the applied
magnetic field is lower than about 20 MHz. If an elec-
trically large body such as human body is exposed to a
RF magnetic field with a frequency higher than 20 MHz, the
quasi-static approximation becomes inadequate. It is
desirable to solve this practical problem accurately and
effectively.

Based on Mie theory, Lin et al. [1] have obtained a
quasi-static solution for the magnetic mode of the electric
field induced by a HF EM wave inside a spherical model of
man. Their theory is valid up to 20 MHz and restricted
to a spherical body. Spiegel [2] has used the same quasi-
static solution to estimate the electric field induced by

the magnetic field of an EHV power line inside a simplified
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model of man. His solution is valid only for the very
low frequency range. A theory on the eddy current induced
by an ac uniform magnetic field in a conducting sphere

was presented by Van Bladel [3]. This theory imposes less
approximations but only applies to a spherical geometry
(see Section 2.5). There is a need for a new theoretical
nmethod which can be used to quantify the electric fields

or the eddy currents induced by RF magnetic fields of up

to VHF range in finite conducting bodies with geometries
more complex than a sphere.

Another motivation of the present study is the need
for improving the efficiency of a recent numerical method
[4] developed by our group for quantifying the internal
electric field induced by an EM wave in a human body.

When a thick biological body is exposed to an EM wave of
HF-VHF range, the induced electric field or current can

be divided into the electric and magnetic modes. The
electric mode being linear and relatively independent of
the body shape is easily determined by the numerical
method. However, the magnetic mode is circulatory and
strongly dependent on the body shape. The determination
of this magnetic mode with a numerical method often encoun-
ters the difficulty of numerical convergence. Thus, a new
theoretical method which can efficiently determine the
magnetic mode of the induced current in an irradiated

biological body is desired.
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The theoretical method presented in this chapter is
capable of predicting the electric field or the eddy cur-
rent induced by a uniform RF magnetic field or a beam of
RF magnetic field in a finite conducting body with rota-
tional symmetry. The development of the theory is pre-
sented in Section 2.2. Some numerical examples are given
in Section 2.3. The convergence of numerical results is
discussed in Section 2.4. The comparison of the present
solution with a closed form solution for a sphere is made
in Section 2.5. The experimental setup is described in Sec-
tion 2.6, and experimental results are compared with

theoretical results in Section 2.7.

2.2. CTheory

When a finite conducting body with rotational sym-
metry is exposed to a uniformly impressed, RF magnetic
field ﬁl, the induced electric field E inside the body

is conventionally estimated by Maxwell equation of

§& -db = —jwuofﬁi . ds ., (2.1)
The induced electric field B determined from the above
equation is circulatory and its amplitude increases
linearly with the radial distance from the central axis
of the body and its phase is 90° out of that of impressed
magnetic field ﬁi‘ In this guasi-static solution, the

interaction between the induced currents at different







locations is completely ignored. However, to obtain accu-
rate results, the scattered magnetic field produced by
the induced current must be taken into consideration. The
quasi-static approximation can predict good results only
for frequencies lower than 20 MHz. A theoretical method
which can be used to quantify the electric field in a
finite conducting body with a rotational symmetry induced
by a RF magnetic field with a frequency higher than 20 MHz
is developed below.

We consider two different cases separately: (1) a
finite conducting body immersed in an impressed, uniform
RF magnetic field, and (2) the body irradiated by a cylin-
drical beam of RF magnetic field.

Physically, we may consider that the electric field
in the body is induced by an impressed electric field which
is associated with the impressed RF magnetic field.

For the case of an impressed, uniform RF magnetic
fiela ﬁi as shown in Figure 2.1, the associated, impressed

electric field B’ can be obtained from
R R
as
Y = -dou_ w'r (2.2)

where r is the radial distance from the central axis of

the body.
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Figure 2.1,

A biological body is exposed to a
uniformly impressed RF magnetic
field.
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M radius of "pn as shown in

Figure 2.2, the associateq, impresseq electric field can

be found to be

i

o "
R, H e g for 0 < r <p

) (2.3)

i 02
-] ol S <
Ew“o H = ¢ for b < r .

These impresseq electric fields ﬁi associated with the
impressed hmagnetic fields ﬁi are in the azimuthal direc-
tion ang they induce circulatory electric fields inside
the finite conducting body.

If the rotational Symmetry is assumed for the body
geometry and the electrical bProperties of the body, the
body can be subdivided into a number (N) of circular rings
of various radii ang Cross-sectional areas as shown in
Figure 2.3, We further assume that the induced electric
fielq within each ring is uniform, but it can vary from
ring to ring. Let's consider two sample rings shown in
Figure 2.3; namely, the nth ring with radius T, cross-
Seéctional area Sn and a reference point (rn, Q. zn), and
the mth ring with radius I’ Cross-sectional area S, and
a reference point (rm’ o, Zm)' The geometries of these two
rings are depicted in Figure 2.4, where the reference

pPoints of the rings, ;n and ?m’ the source point in the

nth ring, E; and the distance between the source point



Figure 2.2
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L\ magnetic
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body

Figure 2.2. A biological body is irradiated by
a beam of RF magnetic field.
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m””wg

n#'ring

Figure 2.3,

A biological body of rotational syrmetry
irradiated by a uniform RF magnetic fielgd
is subdivided into a number of rings of

various radii.
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- : (] s
5 (rn. o, z ) = reference point of the n  ring

a0
T
T . th
Te s 05 3 e reference point of the m ring
e m m

r

. a th .
A (rn’ ¢, z ) = source point in the n ring

4 2 2 2.5
= [rm + L Zrmrncos¢ + (zm = zn) ]

R =';m_;n

. : 2 th .
= distance between the sourge point in the n~ ring and the
reference point of the m ring.

Figure 2.4, Geometries of two rings in the subdivided
biological body.



in the nth 1




R+ are shown.

If the volume density of the induceq current in the

nth ring is denoted as 3n' the vector Potential at ;m of

the mth ring maintained by 3n of the nth ring, X

mn s €an
be determined as

s " ehjkoRmn

Amn=—°/ J e Nt 4 (2.4)

4T nth ring A

h R = e + 2 -2 b Cos¢ + (z_ - 2 )2]é
Wicte mn = [ tn m Tn ¢ m n

kO = m/poeo

Using dv = Sn T, d¢ and because of the rotational Symmetry,

€q. (2.4) can be evaluated as

T T 6 bl g (2.5)
App = ¢ T O N
m e-JkoRmn e
where Kmn = d¢ cos¢ R .
o mn .

To determine the vector potential Xmm at ;m of the
mth ring maintained by 3m' the induced current in the mth
ring, we consider the geometry of the mth ring shown in
Figure 2.5, pote that we approximate the square ring
Cross-section by a circle with the same area. This leads

to the following relationship:



Side vig,
o

-

Hgurg 5.
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Figure 2.5. Geometries of a single ring inside
the subdivided biological body.
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2a
v

where 2a is the dimension of the square cross- —section,
while o is the radius of the circular cross- -section.
The distance between the source point inside the

mth ring and the reference point ;m’ Rmm' can be expressed

as

2
- = P 3
Rmm (p) = rm[z (l-cos¢) + ;51 ’
m

The vector potential X%m can be written in terms of Rmm as

+
lo

N

-jk R__(p)
A = U" ./” J g_i_-T_j_—_— av |
o " Jmth M mm ' °

ring

After substituting the expression of Rmm and some straight-

forwara manipulations, we have the following form for the

above equation:

=

Y _A_o (2.7)
An=29 s K

m
E
E]
=}
g

-jkoRmm(O)
where K= é—n: Ry (o) - R (o)]/Z cos¢ e e,

(2.8)

& : .
The total vector potential at r, Maintained by the

* :
induced currents in all the rings, A , can then be obtained

as u

=5 R a5 L0 J (2.9)
Xm =1z i E 77 Sn Tn Xan g
n
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At the same time, the induced current 3n in the nth
ring can be related to the total induced electric field

in the nth ring, En’ as

= i > —
Jn = {Gn + 3w (En - EO)] En Tty En, (2.10)

. >
Equation (2.10) expresses Jn as the sum of the conduction
current and the polarization current, and Tn can be con-
sidered as the complex conductivity of the nth ring.

With eq. (2.10), Xm can be rewritten as

G E 2
L— L 77 5n Tn X¥an Tn . (2.11)
B R ; 1 250,
This Am is related to the scattered electric field Em in

the mth ring which is maintained by the induced currents
in all the rings:

>
ES

m=-jwim=—¢§jfu S r K _ 1 E (2.12)

O n n mn n n

where f is the frequency. It should be emphasized that
since the induced current in each ring is rotationally
symmetrical, no electric charge is induced and, conse-
quently, no scalar potential is maintained.

The total induced electric field Em in the mth ring
is the sum of the impressed electric field E; at the mth
ring ahd the scattered electric field E; obtained in

eq. (2.12):

E =B + & (2.13)
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With eq. (2.12), eg. (2.13) can be rearranged as

B, Y EGEu,. B ¥ K O I (2.14)

Equation (2.14) can be point-matched at N reference points
of the N rings to yield N simultaneous equations in a

matrix form as

i
Mll' MlZ,""""' MlN El El
i
MZl, M221........, M2N E2 EZ
et St o dvlisrerers e % ¢ B el [ (2.15)
R ORI AR WL § ; E. Ei
Mypr Mypreeeenens Moo N N
where
Mnn L B e | [ Sn T Knn T (2.16)
an =VHE o Sn e Kmn T, (2.17)

The total induced electric fields, E; to E, in all the
rings can be determined from eg. (2.15) by the matrix
inversion technique. Note that if the induced eddy cur-
rent is needed, it can be obtained readily from eq.
(2.10) .

A computer program has been developed based on this
method to calculate induced electric fields in various
finite conducting bodies. Some numerical results are dis-

cussed in the next section.
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2.3. Numerical Results

The first numerical example deals with a cylindrical
biological body with a diameter of 15 cm and a height of
30 cm being exposed to a uniform magnetic field of 100
MHz with an intensity of 1 Amp/m. The body is assumed to
have a conductivity (o) of 0.889 S/m and a dielectric con-
stant (€r) of 71.7. In the numerical calculation, the
body is subdivided into 100 rings of various radii and
with a square cross-sectional area of 1.5 cm x 1.5 cm.
The amplitude and phase angle of the induced electric
field E in each ring were calculated, and the distribu-
tions of these quantities are plotted as functions of the
radial distance from the cylindrical axis r for 10 dif-
ferent sections of the body as shown in Figure 2.6. It
is observed in Figure 2.6 that the amplitude of the
induced electric field [E] increases linearly with the
radial distance; this result is close to the quasi-static
solution as can be obtained from eq. (2.1). The phase
angle of the induced electric field varies between around
-110° and -150° (with respect to the impressed magnetic
field ﬁi) while the quasi-static solution predicts it to
be -90° at any point in the body. For this cylindrical
body, the often-used guasi-static solution can be used to
estimate the amplitude of the induced electric field but
not its phase angle. However, as the size of the cylin-

drical body is increased, the quasi-static solution is



Yowe 2,6,
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Figure 2.6. Distributions of amplitudes and phase angles
of electric fields induced by a 100 MHZ mag-
netic field of 1 A/m in a cylindrical biologi-
cal body with a diameter of 15 cm and a height
of 30 cm.
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found to be completely inadequate, as can be observed in
the next example.

In the second example, we consider a cylindrical
biological body with the same electric properties
(0 = 0.889 S/m and e, = 71.7) as the first example, but
with a diameter of 36 cm and a height of 90 cm as shown
in Figure 2.7. The same magnetic field of 100 MHz with
an intensity of 1 Amp/m is impressed on the body. The
distributions of the amplitudes and phase angles of the
induced electric fields in Figure 2.7 show that the
present results deviate greatly from the quasi-static
solutions: the amplitude of the induced electric field
is two or three times lower than the quasi-static solution,
while the phase angles vary between -120° and -290° against
the quasi-static solution of -90°. It is clear, from this
example, that when a human body is exposed to a magnetic
field of VHF range, the often-used, quasi-static solution
becomes completely invalid.

The next example as shown in Figure 2.8 deals with
the electric fields induced by magnetic fields of unit
intensity (1 Amp/m) and of various freguencies (10, 40,

100 and 200 MHz) in a muscle disk with a diameter of 30 cm
and a thickness of 1 cm. The electrical properties of
the disk are assumed to have 0 = 0.625 to 1.28 S/m and
EpS 160 to 56.5 for the frequency range of 10 to 200 MHz.

The amplitudes of the induced electric fields are found to






Hi =1A/m

f = 100MHZz

o =0.889 S/m
ESyS 7.7

Figure 2.7.
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increase linearly with the frequency and with the radial
distance from the cylindrical axis; these results deviate
slightly from the quasi-static solutions. The present
results for the phase angles of the induced electric
fields, however, deviate significantly from the quasi-
static solutions, especially, for the high frequency cases.
In the example shown in Figure 2.9, we study the
effect of the cylindrical height on the induced electric
field at the central section of the cylinder. The cylin-
drical body has a diameter of 36 cm, but its height varies
from 6 cm to 90 cm. The impressed magnetic field at 100
MHz has an intensity of 1 Amp/m. The electrical proper-
ties of the body at this frequency are assumed to have
¢ = 0.889 S/m and B = 71.7. The induced electric fields
at the central section of the cylinder are determined and
the distributions of their amplitudes and phase angles
are plotted for the cases of cylindrical heights; H = 6,
12, 18, 30 and 90 cm. It is observed in Figure 2.9 that
as the cylindrical height is increased, the amplitude of
the induced electric field at the central section of the
cylinder decreases greatly, and its phase angle varies
drastically from the quasi-static solution of -90°. This
example indicates that the eddy current induced by a RF
magnetic field in a cylindrical biological body is strongly

dependent on the cylindrical height.
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The case of the eddy current induced by a beam of
magnetic field in a biological body is studied next.
Figure 2.10 shows the distributions of the amplitudes and
phase angles of electric fields induced in a cylindrical
body with a diameter of 32 cm and a height of 20 cm, by
a beam of 100 MHz magnetic field with a beam diameter of
8 cm and an intensity of 1 Amp/m. The electrical proper-
ties of 0 = 0.889 S/m and egr= 71.7 are assumed for the
body. The impressed electric field for this case is cal-
culated from eq. (2.3). The amplitudes and phase angles
of the induced electric fields in five different sections
of the cylinder are plotted in Figure 2.10. It is observed
that the induced electric field or the induced eddy cur-
rent is zero at the center of the magnetic beam and it
increases linearly to a maximum value at the edge of the
beam, and then decays down toward the edge of the body.
The deviations between the present results and the quasi-
static solutions are indicated in Figure 2.10. The appli-
cation of a beam of RF magnetic field for the purpose of
locally heating a biological body in a hyperthermia cancer
therapy is feasible if the low heating at the beam center
can be compensated by other means of EM heating.

The last numerical example is the quantification of
the electric fields induced by a 100 MHz magnetic field
with an intensity of 1 Amp/m in a cylindrical model of

man with a height of 168 cm and a maximum diameter of
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Figure 2.10. Distributions of amplitudes and phase angles
of electric fields induced in a cylindrical
biological body with a diameter of 32 cm and
a height of 20 cm by a beam of 100 MHZ mag-
netic field with a diameter of 8 cm and an
intensity of 1 A/m.
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36 cm as shown in Figure 2.13. Again, 4 = 0.889 s/m

and €, = 71.7 are assumed for the body. In the numeri-
cal calculation, the body was subdivided into 66 rings
of various radii and with a Square Cross-sectional area
of 6 cm x 6 cm. The amplitudes and phase angles of the
induceqd electric fields inside the body are indicated in
Figure 2.11. 71t is noted that these results deviate
greatly from the quasi-static solutions. For example,
the induceg electric fielg in the head can be greater than
that in the middle section of the body even though the
radius of the latter is greater than that of the former.
The phase angles of the induced electric fields are very
different from =-90° and they vary widely throughout the

body.

2.4, Convergence of Numerical Results

The accuracy and validity of numerical results pre-
sented in this chapter depend greatly on the convergence
of numerical results as the number of subdivided rings is
increased. Fortunately, the present theory gives an
excellent convergence of numerical results. This fact is
demonstrated in an example shown in Figure 2.12, in which
a cylindrical body with a diameter of 36 cm and a height
of 18 cm is exposed to a uniform magnetic field of 100 MHz
with an intensity of 1 Amp/m. The electrical properties

of 0 = 0.889 S/m and €, = 71.7 are assumed for the body.




Jure 2.11

Mg
Rt



HEHERE
ST re ey e
rn._.w_w_mh_.m;w":n."n.
STRTETITaTE T
SRALARIR S RAKIL
HHENE -
i e e e R R St S i
4 L_ I _.ML_ I “
TR S Rl e e e el
I S T
£
5
°
:
RN 1
MCIREEREIE
IR
$i8)817
SerebsTeretereiLLe
o!o1 013818, 818!'3 Y
S Agam o at 2 2y
GRS R e
B T SO i skl otk SE SR S SO S S S S S !
[T T T 2t i st e _.w.“l._...._.lrrlnl...
ILIJIITIWI+|+|+IL|¢|LI_IL IS O T (O “ HEEH
1 L. -l !
1 1 1 1 1 1 1 1 1 ﬁ RAU
RSP
. &
549

model of man

mplitudes and phase angles
induced by a uniform mag-
71.7) .

Er

0.889 S/m,

netic field of 100 MHZ in a

of electric fields

Distributions of a

(o

Figure 2.11.



In the fi;
divided i
Cross-sec
nmerical
81 rings
sectional

the induce

the agreen
18 excelle
Stbdivisig
first syng
el resylt
fesults op
Induceq by

Wthout g

Mlyticy
ducting sl

forg ting.)



31

In the first numerical calculation, the body was sub-
divided into 9 rings of various radii and with a square
Cross-sectional area of ¢ CM X 6 cm. In the second
numerical calculation, the same body was subdivided into
8l rings of various radii and with a square cross-
sectional area of 2 cm x 2 cm. The numerical results on
the induced electric fields based on these two ring sub-
divisions are compared in Figure 2.12. Tt is observed that
the agreement between these two sets of numerical results
is excellent even though the number of rings in the second
subdivision increases by a factor of 9 from that of the
first subdivision. This excellent convergence of numeri-
cal results implies that it is possible to obtain accurate
results on the electric fields or the eddy currents
induced by a RF magnetic field in most biological bodies
without subdividing the body into too many rings. This
advantage provided by the present method can lead to a
great saving in computer time and cost.

2.5. Closed Form Solution for Sphere and Comparison
With Present Numerical Results

To compare our numerical results with the existing
analytical solution [3], we consider the case of a con-
ducting sphere with radius R which is immersed in a uni-

form time-harmonic magnetic field,

ﬁi =92 Hi = ¢ ' coso - & mt sin®@
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where £ and § are unit vectors in spherical coordinates,
as shown in Figure 2.13. The vector potentials main-
tained by the induced currents and the sources for the

regions inside and outside the sphere can be written as

z C N

R, = (1/2) ot sing X I [ (jwu c)% r] ¢

in L /T "3/2 J o
when r < R (2.18)
> & Cyon
Agut= (1/2) v, H sin® (r + —2—)¢ when r > R (2.19)
r
where I is the spherical Bessel function, and o0 is

3/2
the conductivity of the sphere. The constants C; and C2

can be determined by use of the following boundary condi-

tions at r = R,

1) A, =2

in out
P 5
2) gr (£ Boue) =5y (r Az,

After some manipulations and utilizing some identities of

spherical Bessel functions we have

3/2
c R - (2.20)
1 w Il/z(w)

3w I, - (34wd) I, (W)
c. =" 11/2 1/2 3 (2.21)
%

2
w Il/Z(W)

)é is the skin depth of

wherew=»/2j§, and § = (onC'

the sphere. Combining egs. (2.18) and (2.20), we obtain
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O]

Figure 2.13.

A finite conducting sphere with
radius R is immersed in a uniform
magnetic field polarized in the
+z direction.
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the complete éxXpression for Kin’

JRE I3/2(wr/R) 2
wET e 0

K= (3/2) s
in = (3/ My H” sing

Then the electric fielg induceq inside the sphere is

given by
g I (wr/R)
R J Lo g b R 73/2
E JmAin (3/2) Jwu, H™ sing vRr o _—TI;;TWT_ ¢

(2.22)

To compare €q. (2.22) with our numerical results, we assume
that the sphere has a radius of 2 cm, a conductivity of g.g
S/m, and a dielectric constant of 50, which is immersed in

a uniform Oscillating magnetic field with a frequency of

300 MHz. Under these assumptions the skin depth and the
radius of the sphere are in the same order of magnitude.
Now for the case of numerical evaluation, the sphere is
simulated by a "ring sphere" which is constructed with 30
different rings, as shown in Figure 2.14. The numerically
evaluated results of the induced electric fields in these
circular rings are then compared with those values obtained
from eq. (2.22) at corresponding points inside the sphere.
The comparison is made in Table 2.1. Also listed in
Table 2.1 are the results obtained by the quasi-static
approximation.

It is apparent that the agreement between our numeri-

cal solution and the existing closed form solution is
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Figure 2.14.

A finite conducting sphere with a
radius of 2 cm is simulated by a
"ring sphere" constructed with 30
circular rings of two different
cross-sectional areas. The sphere
is assumed to have a conductivity
of 8.0 S/m and a dielectric constant
of 50, and is immersed in a 300 MH2Z
oscillating magnetic field with an
intensity of 1 A/m.
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excellent for both the magnitude and the phase distribu-
tions throughout the interior of the sphere. This excel-
lent agreement confirms the accuracy of our numerical
technique. Furthermore, the deviation of the quasi-
static solution from the other two sets of solutions indi-
cates that the conventional guasi-static solution is

usually inadequate.

2.6. Experimental Setup

A series of experiments has been conducted to measure
the electric fields induced by UHF magnetic fields inside
some experimental models constructed with plexiglass and
filled with phantom biological materials for the purpose
of substantiating the accuracy of theoretical results
presented in this chapter.

The experimental setup is depicted schematically in
Figure 2.15. The experiment was conducted inside a large
microwave anechoic chamber in which a standing EM wave
was created by radiating an EM wave upon a metallic
reflector. The electric field of the wave was polarized
horizontally and the magnetic field was vertically polar-
ized. The experiment was conducted in the frequency range
of 500 to 750 MHz. The phantom body was placed at the
location of a maximum magnetic field or a minimum electric
field. 1If the body dimension in the direction of wave

propagation is small compared with the wavelength, the
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impressed magnetic field at any point inside the phantom
body can be assumed to be uniform. The induced electric
field inside the phantom body was measured by an implant-
able electric field probe with an interference-free lead-
wire system. This probe was described elsewhere [5].

The output of the probe was connected to a detecting sys-
tem outside the anechoic chamber.

2.7. Experimental Results and Comparison With
Theoretical Results

The first experiment was conducted on a cylindrical
phantom body with a diameter of 4 cm and a variable height.
The electric properties of the phantom body were estimated
to be approximately ¢ = 5.0 S/m and € = 50. The experi-
ment was conducted at 750 MHz and the cylinder was placed
at the location of a maximum magnetic field, one wave-
length (40 cm) in front of the metallic reflector. The
direction of the magnetic field was in parallel with the
cylindrical axis. The induced electric field in the cen-
tral section of the cylinder was probed for three cases of
cylindrical heights; H = 2, 4 and 8 cm. The measured
amplitudes of the induced electric fields are plotted in
Figure 2.16 with dashed lines, in comparison with corres-
ponding theoretical results which are indicated with solid
lines. It is noted that with an implantable electric
field probe loaded with a microwave diode, only the ampli-

tude of the induced electric field could be measured. In
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Figure 2.16. Comparison of theoretical and experimental
results for the amplitudes of electric fields
induced in a phantom biological cylinder of
4 cm diameter with various heights by a 750
MHz magnetic field.
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Figure 2.16, the agreement between experimental and
theoretical results is very good except in the region
near the cylindrical axis where the perturbation of the
probe (about 1 cm in size) on the induced current becomes
significant. Another cause of discrepancy between the
theory and the experiment can be attributed to the image
effect of the metallic reflector; this effect is not
severe if the distance between the body and the reflector
is about one wavelength or greater. The important finding
in Figure 2.16 is that it was observed experimentally and
predicted theoretically that as the cylindrical height
was increased, the induced electric field in the central
section of the cylinder decreased. These results were
also found to be significantly different from the quasi-
static solutions.

The second experiment was conducted on a phantom
cylinder with a diameter of 3.8 cm and a height of 3.8 cm
to study the effect of body conductivity on the induced
electric field. Three kinds of phantom materials with
conductivities of ¢ = 2.2, 4.5 and 6.0 S/m were used.

The experiment was conducted at 750 MHz, and the cylinder
was placed at the location of a maximum magnetic field as
in the previous experiment. The induced electric fields
at the central section of the cylinder were probed, and
the distributions of their amplitudes are plotted in

Figure 2.17 in comparison with corresponding theoretical
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Comparison of theoretical and experimental
results for the amplitudes of electric fields
induced in a phantom biological cylinder
with a diameter of 3.8 cm, a height of 3.8 cm
and various conductivities by a 750 MHz mag-
netic field.
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results. It was observed that as the body conductivity
is increased, the induced electric field decreases. This
effect was accurately predicted by theory and confirmed
by experiment. It is also noted that both theoretical
and experimental results deviate significantly from the
quasi-static solutions. The agreement between theory and
experiment as shown in Figure 2.17 is very good.

The third experiment was conducted to measure the
induced electric fields inside a phantom model of man.
The phantom model of man was constructed with plexiglass
and filled with phantom material, and has a height of
22.2 cm and a maximum diameter of 3.8 cm as shown in
Figure 2.18. The experiment was conducted at 750 MHz,
and electrical properties of the model at this frequency
are approximately ¢ = 5.0 S/m and ey = 50. The model was
placed upright at the location of a maximum magnetic
field with the impressed magnetic field in parallel with
the long dimension of the body. The induced electric
fields at 32 locations of the body were probed. The
measured amplitudes of the induced electric fields are
indicated in Figure 2.18 in comparison with the corres-
ponding theoretical results. The agreement between theory
and experiment is considered to be very good in this
rather complicated body. It is to be noted that experi-
mental and theoretical results shown in Figure 2.18 are

very different from the quasi-static solutions.
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Comparison of theoretical and experimental
results for the amplitudes of electric fields
induced in a phantom model of man (height =
22.2 cm, max. diameter = 3.8 cm) by a 750 MHz
magnetic field.
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A very good agreement between theory and experiment
as demonstrated in Figures 2.16, 2.17 and 2.18 confirms
the validity and accuracy of the theoretical method pre-

sented in this chapter.

2.8. Discussion

In the experiment, the body was placed at the loca-
tion of a maximum magnetic field in a standing EM wave.
Since the body dimension in the direction of wave propa-
gation was small compared with the wavelength, the
impressed magnetic field inside the body was assumed to
be uniform. Under this approximation, the impressed
electric field associated with the impressed magnetic

field was

B = - 2oy, m'rd (2.2)

as has been given before. This Ei was used in the numeri-
cal calculation of the induced electric field inside the
body.

From a different point of view, the body in the
exXperiment was located at a minimum electric field of a
Standing EM wave, and the actual impressed electric field

was

=X juu, wy (2.23)

where y = o corresponds to the center of the body.
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Ei given in eq. (2.2) is circulatory and that given
in eq. (2.23) is linear ang antisymmetrical. Also the
amplitude of the latter is twice that of the former along
the y axis.

It is important to ask whether these two different
Ei's can yield the same theoretical values for the induced
electric fields in the body? We have numerically Proved
that, indeed, these two Ei's give very similar numerical
results on the induced electric fields in the same body.
This phenomenon resulted in a very good agreement between
experimental andg theoretical results reported in this

chapter.
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CHAPTER III

SURFACE INTEGRAL EQUATION METHOD FOR
INTERACTION OF MICROWAVE WITH

BIOLOGICAL BODY

Only in recent years has beamed microwave power been
proposed as a new technique in transporting high-level
energy between two remote transmitting-receiving stations,
and has microwave heating been considered as an effective
method in hyperthermia cancer therapy. Although EM trans-
mission and scattering phenomena have been major and clas-
sical topics in electrodynamics since the end of the last
century, uncertainties about the potential hazards of these
high-power microwave radiations are still major concerns
relating to the acceptability of these newly developed
technologies. 1In order to fully understand the biological
effects of microwave radiation, it is necessary to quantify
the electric fields induced in the biological bodies when
they are irradiated by the incident EM waves.

Existing methods of quantifying the electric fields
induced by EM waves are mostly based on the solutions of
volume integral equations. Unfortunately, when the body

is large compared with the wavelength of the incident

48
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wave, the volume integral equation method becomes inef-
ficient. Since for this case, the induced electric field is
mainly concentrated in the region near the body surface,
it is believed that the surface integral equation tech-
nique is potentially more efficient.

In this chapter, we develop a new technique based on
two coupled surface integral equations. A good agreement
between our solutions and the existing results obtained by

volume integral equation method has been verified.

3.1. Introduction

High-level, beamed-power microwave transmission
between satellites and earth has been proposed as an alter-
nate scheme for providing energy in the future. However,
the potential hazards which exist in the interface between
the beamed-power microwave and personnel should be care-
fully considered by the microwave systems design engineers.
Also, the thermal-heating effects of intense microwaves
are becoming well known, and have been demonstrated effec-
tive in hyperthermia cancer therapy. But the allowable
field intensity and the permissible level of absorbed power
for the human body still remain unknown. It is desirable
to obtain some quantitative information about microwave
interéctions with human or other biological bodies.

Johnson and Durney [6] have investigated the plane

wave irradiation of a prolate-spheroid model of man based
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on the perturbation theory described by Van Bladel [7].
Their theory is valid only when the wavelength is long
compared to the dimensions of the spheroid. The same
approach has been adopted by Massoudi [8] to solve for
the internal electric field induced by a plane wave inside
an ellipsoidal model of man. Livesay and Chen [9] have
developed a theoretical method based on a volume integral
equation, the socalled Tensor Integral Equation, which can
be used to quantify the electric field induced inside an
arbitrarily shaped biological body by an incident EM wave.
This volume integral equation method removes the restric-
tions that the irradiated bodies have simple shapes and
small electrical dimensions. However, when the body is
electrically large, the EM waves cannot penetrate deeply
inside the body, and will concentrate near the body sur-
face. Consequently, the volume integral equation method
becomes inefficient. For this case, the surface integral
equation method seems to be a reasonable alternative
approach. A surface integral equation method has been
employed by Wu et al. [10] to solve for the EM fields
induced inside arbitrary cylinders of biological tissue;
only infinitely long cylinders were considered. Another
surface integral formulation has been developed by Poggio
and Miller [11]; however, in their formulation the deriva-
tives of the surface unknowns are involved in the inte-

grands of the surface integrals. This makes the numerical
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solutions difficult, if not impossible, to implement.

Wang [12] has determined the scattering characteristics of
conducting bodies by use of the moment-method, which
divides the surface of the body into trilateral surface
cells, but only results for sphere have been reported.

It is desirable to obtain more complete information about
the fields induced by EM waves, based on the surface inte-
gral equations, for finite conducting bodies with geome-
tries more complicated than that of the sphere.

In this chapter, we will develop a new surface
integral equation technigue to quantify the induced EM
field on the surface of an arbitrarily shaped, finite
conducting body. It should be emphasized that the internal
field can be readily determined in terms of the surface
field, once it is found.

Before the surface integral equations are derived in
Section 3.4, two preliminary theorems and a general solu-
tion of Maxwell's equations are described in Sections 3.2
and 3.3, respectively. The applicationof the coupled, surface
integral equations to the special case of an infinite

| interface is considered in Section 3.5. The moment-method
of solution of these integral equations is briefly reviewed
in Section 3.6. The development of the numerical technique
for the solutions of the surface integral equations is
presented in Section 3.7. Finally, some numerical examples

are given in Section 3.8.
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3.2. The Preliminary Theorems

Before the coupled, surface integral equations are
derived, we must introduce two preliminary theorems which
consist of several vector integral identities. These
theorems are necessary for the derivation, and will be
described without proof. The related proof can be found
elsewhere [13].

Theorem 1.

Let $, Vo-z be continuous on the closed surface F,

and U be a differentiable function. Then
.-) ' = - —’. '
JpUY, - varF JgV-V UdF

with the surface divergence Vo-z defined as
lim 1

> A >
Vo sviE |s|+0 Ts Ling-vial

where |S| is the area of a small surface element S enclosed
by contour C, and ﬁo is a unit normal vector on C directed
exterior to S. It can be shown that V = V-ﬁg%, where V
represents the conventional three-dimensional differential
del-operator.

Theorem 2.

If the surface field 5(;') is continuous on F, then

A x rp (3E) x e EN] aF' = 23 (@) +
31

8@ x ;p3ED x Ve, E] ar'.
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The sign fgi implies that z is the fielgd point in the inte-
gration, and lying in the interior side of the surface %
Also

A€ x 7 B@EY x VO EN] APt = 203(2) 4
Le

a@) x s (3

P3G X 700,20 ar

The sign fEe implies that 7 is the field point in the inte-

gration, and lying in the exterior side of the surface F.
The eventual field point Z and the source point z'

are both on the surface F. We denote with /Ei and fEe the

limits which we obtain if ; approaches the point E of the

surface F from the interior or exterior, respectively,

3.3. The General Solution of Maxwell's E uations
ET75TﬁEB6GEEEE_ﬁEEEEEEEEGETTEEE'JlV_“_“
——————————=C Tomogeneous Space

Let us consider the problem where a finite source
region Gs' consisting of electric and magnetic sources
with volume current densities of je and jm' respectively,
radiates into a lossless, unbounded, homogeneous, linear,
and isotropic medium with permeability u and permittivity
€, as shown in Figure 3.1 where we assume that the source
region Gy is enclosed by surface Fg-

Based on the continuity equation, the volume charge

densities are given as

=31 y.3
Qe w i Je
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where a time variation of ejwt has been assumed, and w is
the angular frequency of the sources.

From the general solution of Maxwell's equations [14],
the electromagnetic field at any point ¥ maintained by

4

p >
the above sources can be expressed in terms of Je’ Jm'

Q_, and Q, as

{
B =2 /. (-3 xve+ e 7.0l a6’ (3.1)
= GS m 5 Jupdy i
HE) = 2 /o 13 x v Q’“v-w jued o] 4G’ 3.2
r) = 4 e e e - Jwed o (3.2)
. oS g
-jk|r-r'

with ¢ = __T?:?TT_l where r' is the position vector locat-
ing the source point inside the source region GS, and k =
w/UE is the wavenumber in unbounded space.

Now let's define the following source densities of
the equivalent surface currents and charges on the closed

surface Fy

g
"
=
kg
=12

Q
-]

]
g9
<1

o
[
8

where fi' is the outward unit normal vector on Fs, and

No = VM 7¢_ is the intrinsic wave impedance in free space.
o" "o
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The above electromagnetic field (E, ﬁ) at position ;

. +
can also be expressed in terms of Jer Ipr 9er and g_ as
m

m
[14]
Fyrrs Sl z 9e S
E(r) = 5+ IFS [=ng 3, Xe Vio-# —=V'® - juuj 0] dF' (3.3)
> 1 + 4 ) +
H(r) = 4= fF [ Jg X Ve + T‘“vu» - jwen J o] dF' (3.4)

s

where ¢ has the same form as that of egs. (3.1) and (3.2).
The last two equations are very important, and will serve

as the basic tool in the following derivation.

3.4. Derivation of the Coupled Surface Integral Equations

To derive the coupled, surface integral equations, we
first consider the geometry shown in Figure 3.2. We assume
that a finite conducting body G enclosed by surface F is
irradiated by the electromagnetic wave from the source
region Gs' The medium in the region external to F is
assumed to be free space with permeability Uo and per-
mittivity €o- The finite conducting body is constructed
with a homogeneous material characterized by permeability
U, and complex permittivity €4. The complex permittivity

€3 is defined by

€y = € (e - j—g—)
i wey
where € is the dielectric constant, and o is the con-

ductivity of the body. The source region Gg is
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characterized by the equivalent surface current densities
T 1
(Je, Jm) on surface B

Let us denote the incident field which is radiated

by the sources in the absence of the finite conducting
ok .
body by (El, ﬁl). With the body present, we denote the

s

fields scattered from and induced in it as (E°, #%) ana

Ed

>
(BT Hd), respectively. Now we are in a position to con-

sider these three sets of EM fields separately.

I) The Scattered Field (E°, H®

)
To begin with, let's consider Maxwell's eguations in

the region internal to F. They are

!

£ =d . 1
VX H = JueE" + jm(ed = so) E (31.:5)
vxid= —jmuoﬁd. (3.6)

Defining the last term of eg. (3.5) as an equivalent volume

current density, then eg. (3.5) becomes

>d _ . =2d . 3eq (35751
VXH = waOE + Je

where

d
32q = jm(gd = eo) B (3.7)

After substituting the eXpression for €q into eq. (3.7),
we mayrsee that 3Zq consists of two components: the con-
duction current and the polarization current. We may think

of 39 as a current existing in free space as shown in
e







59

“3jusIaIno uo

Tiezraerod ay3 pue juex

—X02 UOoT3onpuod sy3y ‘sjusuodwoo OM3 JO S3ISTSUOD 20IN0S Fusdiino
jusTeAaTnbe styg -ooeds 9213 Aq peoerdax ussq sey yorym uotbax
4poq sy3 eprsut butystxa mwm ®2IN0S Jus1INd JusTeatnbs ue woxy

P93RUTHTIO se paisprsuon Sq ued (.p ¢

sd) PI®T3I paxs3jeos ey,

“€°¢ Lanbrg

Se

f\ (LR




Figure

and (3




60

Figure 3.3, since only Hy and €, @ppear in egs. (3.5')
and (3.6).

It is to be noted that the source region Gs is not
included in Figure 3.3, because 32q is the only source of
the scattered field (fs, ﬁs). Furthermore, the equivalent
current qu radiates into an unbounded, homogeneous space.
Hence, based on egs. (3.1) and (3.2), ES and T can be
written as

€q

1 e =, 2 eq
- IG[T:;V'®f Jun %1 acr

AL 3eq e '
T fG[Je X V'e.] dG

where Q:q = % V~3:q is the equivalent volume charge density,

-jk_|7-7| :
®f = E—ngsTT——— is the Green's function for free space,
t-r
and kO = w/uoso is the wavenumber in free space.
Now let's define the equivalent surface current den-

. s S
sities in terms of the scattered field (£, H ) on the sur-

face F as

ES = fAx B

e

A8 = s

I 2 fi X B /no
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where fi is the outward unit normal vector on F.

From the equivalence theorem [15], [16], we know that
the equivalent surface currents (32, 3;) on F can support
(Es, ﬁs) external to F and zero field internal to F as
shown in Figure 3.4. Since the surface currents (3:,

;;) radiate in an unbounded homogeneous space (free space),
we can evaluate the EM fields supported by them with egs.
(3.3) and (3.4). From the uniqueness theorem, we know that

the EM fields so calculated will be those postulated by the

equivalence theorem. Hence we have

s
2s _ 1 s Goutes «ar dt B RS ,
E° = i fF[—nO]m X V'®f + E;V ¢c jwuoje®f] dar (3.8)
external
s EoF
s _ 1 s . mo = s aF’
H = ar /F[ Iz X Vo, + ﬁ;V ©f ]weonojm¢f] (3.9)

as the scattered field at any point in the region external
to F. In the region internal to F, the above two integrals

vanish, i.e.,

s
q

-1 3s Zegre, - juwu_3o0.] 4F! (3.10)
0= g7 Jplngdy X V'og * sov 0p - Jeugde £!

internal

z to F
! s,

S 1S ' Myio_ - jwe n Jj 0.1 dF' (3.11

0=g7 IF 5 S [N £ JeeNIn’E

because there is a null field internal to F.
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II) The Induced Fiela (89, #9):

d

To investigate the induced field (ﬁd, i ), let us

consider Figure 3.2 again. This time we treat the interior
region of G as source free with the induced field (Ed, ﬁd)
maintained by the sources existing in the exterior region

of G. As for the case of scattered field, we may define a

set of equivalent surface current densities (32, 32) in

terms of the surface value of (fd, ﬁd):
E: =axnd
Ei = - X Ed/no
Q-
ERELR -

Again, from the equivalence theorem [15], [16], we know
that, with the exterior region of G being replaced by a
homogeneous source free region with permeability s and

complex permittivity €qr the negative of the equivalent
surface currents (52, 3:) will support the total induced

field (gd’ ﬁd) in the region internal to F and a null field
in the region external to F, as shown in Figure 3.5. Equa-

tions " (3.3) and (3.4) can be applied to determine these
3 : +d  =2d
fields; a sign change is necessary since we define (3o I

)
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the source region. Hence we have

{5 S | +d i g s s C
B i IF [“ojm XV o5 - iv'qad + JOH, T 04] aF! (3.12)
internal
qd to F
sd._ 4 +d i e, ) +d
H = VTS IF [—Je X V'tpd - Ev.@d + Jmsdnojmq)d] dar’ (3%13).

as the induced field at any point in the region internal
e~Jkg -
to the surface F, yhere oy = ‘P—ELTI-—\ is the Green's func-
=
tion for the conducting body region, ang kd = w/uoed is
the complex wavenumber in the body. 1In the region exter-

nal to F, the above two integrals vanish, i.e.,

d
0 zd PR .,y 3 :
0= e '/F [no]m XV <I>d iV oy + quojeq)d] dr (3.14)
external
o2 o to F
o B =+d b SR J 2+ 3
0= = jF [-]e X V'@d ro @d + wadnojmde] dF (3.15)

because there is a null field external to F.

o
III) The Incident Field (1, #l).

. : 21 =i .

To investigate the incident field (E , H), let's
consider the geometry shown in Figure 3.2 again. Based on
=l

’

(E ﬁi), we define the following eguivalent surface cur-

rents on the body surface F:
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g LS

Im = -hx B,
B ot
97 & e Je
sk ) a

9 0 VO Jm-

From the induction theorem [157, [16], we know that
the negative of these equivalent surface currents, radiat-
ing in the Presence of the conducting body, will Support
the total induced fielg (Ed, ﬁd) in the region internal to
surface F, ang the scattereq fielq (ES, &%) €Xternal to p,
This is illustrateq in Figure 3.6.

Suppose that we are considering an extreme case with
the complex permittivity of the body €4 being replacedq by
the free space permittivity €or then the negative of the

Surface currents (?é, 3;) Will support the incident fielg

(Ei, ﬁi) in the region internal to F, and a nul1 field in
the region external to F. Because the entire space becomes
homogeneous (free space), there exists no real Scattering
Obstacle—the conducting body, so there is no scattered
field. rThis situation is shown in Figure 3.7,

Again, egs. (3.3) and (3.4) can be used to express

the EM fielgs shown in Figure 3.7. We have

i
i i ! =
Bt k) "or - =vre_ + g 35 1 gpo (3.16)
d 4n fF [nojm R ®f € £ J olefs

internal
to F
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i internal

e R i >3 I S i o
S T T vro, - Kvnpf + jmsonoj;fpf] dr' (3.17)

as the incident fielg at any point in the region internal
to F. However, the above two integrals vanish in the
exterior region of the body, i.e.,

ki

R i e 9e . zi
0 = i IF [hojm X 7'@f - E;V'Qf + quogeof] dr' (3.18)
external
bl to F
e L g 2 SMS s 2 +i
0 = e fF [ g XV oe E;V b+ Jwen 3 0.1 GF' (3.19)

Up to this point, we have considered the incident

field (E%, &), the induced fiela &9, &%), ana the scat-

s, ﬁs) individually. Now we are ready to

tered field (B
derive the coupled surface integral equations based on the
results we just obtained.

Since eq. (3.16) is true at any point r in the inte-
rior region of G, if we let the field point ¥ approach a
point 3 on the surface F along the interior normal, then
the limiting value of eq. (3.16) will be the incident
electric field at the point £ on the surface F. Hence we
may write

i :

@ =L [noﬁ! X Vo, - S—ev'¢f + Juug3le ] ar
>1 ]
where fgi has the same meaning as that described in

theorem 2. After taking the cross-product of the above




equat:
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°°m90nen
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equation with the unit normal vector ﬁ(E), we will arrive
at the following eqguation

i

A 1 >i ; e 8 2i
A X 55 fgi [ngdy X Vo, - E;V'°f + juu 3 e lar"
= 21
e 1 (3.20)

Applying the same arguments to eqg. (3.17), we have

i
_a o st . _ ‘mg, , +i
A X 5= fgi [ ig X v @f 7 v ¢f + ]maonojm¢f] ar’
o
(g st
-3, (3.21)

Also, from egs. (3.10) and (3.11), it is straightfor-

ward to obtain

s
q
A 1 s ey, S s i
n X i fg. [—no]m X V'be h E_V Of jmuojeQSf] dr 0
A o
(3.22)
and
s
£ 1 xS o m o is sl
-A X fEi [je X v'¢f + E;v'¢f Jmeonojm¢f] dr 0,
(3.23)

Before going any further, we should introduce the
boundary conditions which must be satisfied at the surface
F. The boundary conditions require that the tangential
components of the electric and magnetic field must be con-

tinuous across F, or equivalently we may write
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*s i _ =24
Je T de T 3¢
+s 1 . =d
In * 3 T I

Now, take the difference between egs. (3.20) and
(3.22), and apply the above boundary conditions. We have

d
PN 2 2d e y zd 5
nX g fgi Ngdp X 7'op - %V"Df *JwHglele] aF

+i
= Sl (3.24)

o

Similarly, subtracting eqg. (3.23) from eqg. (3.21), we

obtain

2 m, 5T _=d o o Ime i 2d
A X e fF. [ DiE XV ¢f E—V of + jweono]m¢f] drF'
=1 ]
= _32 (3.25)

On the other hand, we may derive the following two equa-
tions from egs. (3.14) and (3.15):
a
a 1 +d _ ‘epy i +d -
i X o fE [nojm X V'¢d = v Qd + quoje¢d] darF 0 (3.26)
e d
d
: g VR : z2d 0
X V’¢d - E;V‘¢d + jwsdnojm¢d] dr' = 0
(3:27)

2d

A X g l=%

It can be shown that equalities exist between the fol-
lowing limiting surface integrals and their corresponding

regular surface integrals
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Aty " d
L V', dF' = g x I qz V'¢f dar'

=34
>
g

4 '
g, % V'es ar'

" i
nx fF de v @d dF’',

Subtracting the Second equation from the first equation,

we find that

22 a., . a2y _
A x /Ei 9. v ¢f dr i x fge q9zi Y @d dF' =
BB T ik g e g reate, - o) ap
F He f. d Ll A d &
However, since q l V‘ ] the integral on the right-

hand side of the above equation can be rewritten as
d 2 v .2d = '
/e 9o (9p - ¢,) aF' = olr Jg) (9 9q) aF'.

Applying theorem 1 to the right-hand side of the above

equation, we can rewrite it as

a ) EL = '
Ipa @ e ¢q) dr' = o TF Je Vo (e, ¢q) @F
= i 2d ' = '

=230 e -0y ar.

It should be mentioned that the last equality is true,

because 7' = yr - g1 an' and f: has no normal component.
o

Then finally, we have




Based

or
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d d
nx/ V'e_ aF' - @ o
E; de £ A X fge 9e V’wd dr’
S s - B _
XV [ = /F je v (®f @d) dr']

&3 & d |
S n=X IF V[]e V'(¢f - ¢d)] arr,

Based on the following vector identity
> >
VA B =R -nB+@-nE+Xx (vxB) +Bx (vxA),

it is easy to show that

da g, Vel o d g,
p, % V'e, dF A X fge qg V'o4 aF

S ECI . -
= Ax fp[Gg - v ve - elaFt. (3.28)

w

Now, subtracting eg. (3.26) from eq. (3.24) with the latter

multiplied by €o and the former multiplied by €q’ the
result is
d
o dl zd A _ Tegs . +d v o
g, X e fF. [nojm XV ®f = v @E + jwuoje¢f] dF
>i o
da
o +d B aitess . xd e
adﬁ X 7= IE (ngdp X V'ey Edv oy * Jmuoje®d] a
e
4 s o
= &0

or
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I v +d
N ol G I X vr L 3d
ar U E, “o"oln o dF A x jge €alodp X V'8 aF')

i d d
= WX g, V'e_ dF' - A x 7 V'é_ dF'] +
gi e £ Ee 9e d ]

A ; 2d & x +d
[A X /S Jwp e J_¢_ dF' - A X s Jwp_€.3 . dF']}
Ei o o"e’ f Ee o d’e"d
i

= "%%n -

Based on eq. (3.28) and theorem 2, the above equation

becomes

AT 3D S _ 1 & Yizrtd D
5 nx fF [jkoje(K ¢d ¢f) +

= 3
Tk M +1)

+d F22Rt, Siard | st 2 3
In X V' (k ¢d ¢f) + ko(]e VY (@d ¢f)] ar.'s
Similarly, the other surface integral equation can be

derived from egs. (3.25) and (3.27),

X V’(<i>d - ¢f) +

L s 2 a Lod
tgp A X IF [Jkojm(K ®q o) Je

i 2d 4 s &
]-%(Jm T V) V(eg - 0.)] aF

where k = /55752 is the refractive index of the body. If
We normalize all the quantities concerning the dimension
of length by 1/ko, the above two coupled surface integral
equations become (these two equations in similar forms
have also been given by Miller [13] and Morita [19]

through different derivations)




xd
‘n
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d _ 2 =i 1 x 2 +d
iy R AX S [F(c%e, - ¢.)39 +
m = 2n T ety r 3 a £
=d 2 . 2d
In X V' (x ¢d - %)+ ](Je W) V'(<I>d - ®.)] aF!
(3.29)
and
»d & I 32 > >
Se=Jo+tdEaxr b @d-¢f)§§-32xv-(¢d-¢f) +
i d :
](jm - V) V'(®d =) Qf)] ar' . (3.30)
: % >d =2d
The induced equivalent surface currents (]e, Jm) (or

the induced surface field (Ed, ﬁd))can be calculated based

on the above two coupled, surface integral equations. In
these two equations, due to normalization with respect to
l/ko’ the Green's functions ¢d and Qf have the forms of
S T
e-]K[r-r'l e‘J]r‘r'

Qd = TTEET and ¢f —T§:§TT——

3.5. The Special Case of an Infinite Plane Interface

In this section, we apply the surface integral equa-
tions to the special case of an infinite plane interface
between two half spaces, a free-space in the region z < 0
with permeability Yo and permittivity €5 and a finite
conduéting medium in the region z > 0 with permeability [
and complex permittivity €qr as shown in Figure 3.8. We

assume that the incident plane wave, which propagates in
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the +z direction with its electric field Ei polarized in
the +x direction and its magnetic field ﬁi polarized in

the +y direction, is normally impinging on the interface,
and produces a reflected field (ES, ﬁs) and a transmitted
field (-ﬁd, ﬁd) in the free space region and the conduct-

ing medium region, respectively. Intuitively, these fields

can be expressed as

Bt =g Y e_JkOZ
2 i -3kz _ . EY -3k z,
H =9 H e R (o)
i in the region z <0

ES = -2 E° e]koZ

s ?
ﬁs =9 E” ejkoz

"o

and

Ed = % e e_Jkdz

in the region z >0

i N Hd e-jkdz

9 %E e—jkdz

d
where ng = /We_d' is the complex wave impedance in the
conducting medium. By solving a simple boundary value
problem, it is easy to show that, on the interface, the

transmitted field (%, BY) is related to the incident

fielda (E*, ') by

d 2 i
B S Taw o
a 2k gt (3.31)
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It would be interesting to show that the results of
eq. (3.31) can be deduced from the rather complicated sur-
face integral equations which have been derived in the
previous section. To do that, let's start from the fol-
lowing definitions of the various equivalent surface cur-

rent densities.

Freaxfl=-2x9nrt-gE
e s
; =i i i

ElE—ﬁXE~="X§§E_=§-E_
i o o o

at z =0
also
zd _ >d A ed
Jg = i XH =% Js
=d
it - oA B Y nd
g £ -0 X ﬁ; G 5

where fi is the unit normal vector on the interface pointing
in the -z direction.

Now, substituting the above expressions of surface
current densities into eq. (3.29), we may show that the
last two terms of the surface integration contribute noth-
ing to the total surface integral. We should consider

these two terms one by one as below.

N +d 2, _ ;
I) Let us consider the term A X IF J5 X V' (k wd ¢f)dF

first.
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It is easy to show that

~ >d
nx J o

V2 ” d
F X V' (k @d - ¢f) dr' = (-2) X fF 9 p et

X v (%o, - o) aF' = 0 (3.32)

is true, since the term V'(K2¢d - ¢f) has only two com-
ponents, x and y components but not z component (nothing
is z-dependent in this problem), both of which vanish
after cross-producting with unit vectors § and 2 consecu-
tively.

II) Secondly, consider the term of A X IF (32 CEAAD)
V'(@d = ¢f) arevs

Since the surface current ;: is x-directed, we may

express the first part of the integrand as

»d 3
(g e v'y =3 =T
Because everything is z-independent, we may write

the second part of the integrand as

VI(og = 0g) = % X

Combining the above two equations, we have the following

expression for the integrand:
a - a _a°
> e -
(3 = v LERE T o) = X Joy 5;77(¢d og) +

2
L .d D 2
9 Jox oy Pa T %)
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Hence, the integral considered can be rewritten as

2

s 2 o o & .

n X fF (]e vh) v (@d ®f) dF' = £ x fF % Jox 5572
a 32

(@d = ¢f) dF' + A X [ 9 3

- (g = o) aF'.

ex 3x'ay
(3:33)

If we choose the field point to be at origin; i.e., T = o,

we may write the Green's functions ¢4 and o as
e aRE" e-jr'
¢d i and EaT s
where r' = j;'f = Vx'24y'2,  With some straightforward

algebraic manipulations, it can be shown that

2 -jr’ -jkr!' o - AN 7
3 . e -ke e e
§§Tf(®d ee) = 03 212 2 =3 1+
=JEE 29 sdryic =jr® =JKxr?
2 eI e A e FE -K e
cos“ 6 [ Y 33 )

r'3

where 6 is the angle between the source-point position
vector ¥' and the x axis, as shown in Figure 3.9. Simi-
larly, it can be shown that

-9r! -j '
23 i 2 o jkr

: e -k
f) = sinb cosH [ ral

tl
Frar Tl GO

9x'3y
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>

y o
< - > >
Figure 3.9. The coordinate system utilized in

the infinite interface problem.
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gt LS e‘jKr' _3 e_jr‘-e-jKr'
J T2 =e3 X

In the above derivation, the field point has been arbi-
trarily chosen at the origin. This assumption doesn't
destroy the generality of this treatment, since the inter-
face is infinitely large, and the field induced on it is
uniformly distributed over it.

Now, we must show that both of the integrals on the
right-hand side of eq. (3.33) vanish. Let us consider the

last term of that equation first.

42 2m /‘» —irt
3 N . ) N
Ie §§T§§T(¢d - ¢g) aF' =J | sind cosb de ole

o =Jrt -jkr!' =gEd - osjRrt
K2e % L 35 e f e - 38 e

= T2 1 drt

It is clear that the first integral on the right-hand
side of the above equation is equal to zero. Hence we

have

J = éf) dr' = 0. (3.34)

el
F 3oy
For the first term on the right-hand side of eq.

(3.33), we may write that
'

BS 2 Chaeido
Ir T2lig = g) aF' = 2m 3 B
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i
ol ?2 1. dr*
-jr* -jKkr?' e aa
=~fe]%dr._w 3 L
o x! o r'2 L

Lo -t '  §
: . d JLS =Jkr
+ Jkm - JﬂvaF (§+) ar' + jkm - g7

S ot
lim g IKr'_ =ir ;
B e (3.35)

Note that for the last step in the above derivation, the

radiation condition is applied.
After substitution of €gs. (3.34) and (3.35) into

eq. (3.33), the result is

2 +d : 2 i
BX7p Gg - v vy 9.) dF' = 0. (3.36)

Then, substituting egs. (3.32) and (3.36) into eq. (3.29),
we obtain
a LN RS S 2 . ;
= I [ J . 5
al (EQII) e + 2ﬂ(K2+l) s IF (k %4 @f) dF (3=37)
The integral term is easy to evaluate. We write down
the result directly.

2 Fal :
Tp (T 9,-0 ar' = j 21 (1 - x)

Hence, egq. (3.37) becomes
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s 1o 2 gl k1
In = G2 WY AT e 13238)

Following a similar procedure, we can obtain another equa-
tion from eg. (3.30), which is

s
1ie k=1 .d

. R (3439)

o
o

|

.
o
b=

Equations (3.29) and (3.30) have been simplified to
become two linear equations with unknowns je and ji. The
solutions of these two unknowns are

,d_(2<)§
Je T YT 7
o

and

o

sl b
b (e ) Sl

dbn. K2 i

S ) B
and

a . 2k i

55 e

which are exactly the same as eg. (3.31).

We have shown that the coupled, surface integral
equations can predict correct results for the simplified
special case of an infinite two-dimensional interface

between a finite conducting medium and free space. This
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example analytically proves the validity of the surface
integral equations. In the following sections, we will
develop a numerical technique for solving these surface
integral equations for the cases of arbitrarily shaped,
finite conducting bodies; after that, some numerical
examples will be presented to discuss the accuracy of this

numerical technique.

3.6. Review of Moment-Method

Before actually solving the surface integral equa-
tions, we should briefly review the basic steps involved
in numerical implementation of such solutions, or the
so-called Method of Moments (MOM) [17]. The idea of
moment-method solutions is that the linear operator

equation
L(f) =g (3.40)

where L is a linear operator, g is some known driving func-
tion, and f is to be determined, may be solved by first
expanding f in a series of basis functions £ with unknown

weighting coefficients O

f = i oy fn (3.41)

Next, .a set of weighting or testing functions X is chosen
and an inner product (denoted by symbol < >) taken in
eq. (3.40). After substitution of eg. (3.41) into eq.

(3.40), the result is







rE] op < woo LE>=<w, g> (3.42)

which may be written in matrix form as

(1,0 [a,] = [g,]-

mn

As illustrated in Figure 3.10, the idea when applied
to the cubic box assumes that the box surface may be
divided into square patches over each of which both com-
ponents of surface current are assumed constant with
unknown amplitudes (subdomain flat-top pulse-expansion
functions). The testing functions chosen in this problem
are § functions at the patch centers (collocation or point
matching). Thus, by successively enforcing the surface
integral equations to be satisfied at these match points,
a system of linear algebraic equations is generated.
Matrix inversion then yields the solution for the unknown

coefficients of the current samples.

3.7. The Numerical Technique

The validity of egs. (3.29) and (3.30) has been
checked in Section 3.5 through the consideration of a
special case of a two-dimensional, infinite-plane inter-
face between a finite conducting medium and free space.
Since it is our goal to quantify the EM fields induced on
the surfaces of arbitrarily shaped, finite conducting
bodies, such as human bodies, it seems more realistic to

consider a simulated human body with shape as shown in
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Figure 3.10.

Division of the surface of a cubic
body into square surface cells for
moment-method solution using two-
dimensional flat pulses as expan-
sion functions and § functions as
testing functions.
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Figure 3.11. We assume that the body region G, being
characterized by permeability Mo and complex permittivity
€q and enclosed by surface F, is illuminated by an incident
plane wave which is propagating in the +z direction with

its electric field Ei polarized in the +x direction. The
body is immersed in free space as shown in Figure 3.11.

It is easy to see from Figure 3.11 that, for a simu-
lated body, the body surface F consists of a number of
plane surface elements. If the body is described in a
rectangular coordinate system, which is the one used in
Figure 3.11, the problem can be simplified by constructing
the body surface with surface elements having normal vec-
tors pointing in one of the six possible along-axis direc-
tions, i.e., the :R&, the *§, and the *2 directions. For
the purpose of clarity, we will name these surface elements
according to the directions of their unit normal vectors.
For example, the top surface element of the body head shown
in Figure 3.11 will be considered as one of the +x surface
elements, since its unit normal vector is pointing in the
+x direction. It should be emphasized that a closed sur-
face can consist of several surface elements with unit
normal vectors pointing in the same direction, as can be
seen from Figure 3.11.

Before going any further, we should mention that we
choose a plane wave as the incident wave, because it is a

realistic approximation when the body is distant from a







Figure 3.11.
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A simulated human body is irradiated by an
incident plane wave propagating in the +z
direction with a x-polarized electric field.
The body is characterized by complex permit-
tivity eg, and its surface is subdivided into
a number of square surface cells. The induced
equivalent surface currents (Je, fm) at dif-
ferent locations on the surface can be
obtained by solving two coupled, surface
integral egquations.
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radiating source, and it facilitates the analysis. Also,
we choose the rectangular coordinate system since it is
the most adaptable to arbitrarily shaped bodies. However,
it is to be noted that the surface integral equations
derived previously are so general that they can be applied
to any form of incident field, as well as any orthogcnal
coordinate system.

Now, let us consider Figure 3.11 again, where each
surface element of F has been subdivided into several
square subareas named surface cells. Each surface cell
can have any arbitrary dimension which depends on the accu-
racy desired. Furthermore, the center point of each sur-
face cell is considered as a reference point which could
be either a field point or a source point or both. The
EM field induced inside each surface cell is assumed to
be uniform. We will use the notation e to represent the
combined surface of all the +x surface elements, and use
the symbol N, to denote the total number of surface cells
included in Fx. Similar definitions will be applied to
the notations, F., N ; F_, N ; F_ , N__; F__s N_y; and

y y z z -x' T-x -y

i N-z’ etc. 1In other words, we may say that the body

surface F has been divided into totally Ncell surface

3

PN N N

cells; where N_,,; is the sum of N, Ny 2t Ny Ny

and N__.
-z

To solve the surface integral equations numerically

by use of the moment-method, we must decompose the integral
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equations first and then point-match them at the reference
point of each surface cell. By doing this, a system of
simultaneous, scalar, linear algebraic equations will be
obtained. After transforming these linear equations into
a matrix form, it can be solved by conventional matrix
inversion techniques. To describe the procedures in more
detail, let's start with the following definitions:

m: the numbering index of the surface cells in each

A )

subsurface (Fx, F 3

y 2y F—y’ F_z), when center points
of the surface cells are considered as field points.

n: the numbering index of the surface cells in each
subsurface, when center points of the surface cells are
considered as source points.

A": the area of the nth surface cell.

;m: the position vector locating the mth field point,

>m
wherer = (X , ¥, 2 ).

;n: the position vector locating the nth source

5 +n n .n n
point, where r = (X , ¥ + 2 ).
Also,
> -m nm _ _n m _nm n_ .m
I T A ¢ Yy o,
nm n m
z =z -2z.
and

a" = /ﬁm/n: the equivalent radius of the mth surface

cell.
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We also like to introduce the following associated Green's
functions; the reasons behind these definitions will be

clear when the surface integral equations are decomposed:

;I ey T . nm . T
Gnm_.e]r -k e JKr i eir _ e dkr
I e R e
nm m
r r
. nm . mm . nm . _;. m _s . mm
Gnm_e_jr _KZe—JKr —3jejr R < 2 _3ejr ATk
e e o e
o o ety
= = = P =
Gnm=je:'r —n<3eJKr & e -»<3ej'<r
3 TS e
£ P
. nm . nm (3.43)
o e7ir _K2 e Jkr
S e AR B T
4 m
..m . m
) . m -ja =Jjka
= Bt S e -e
l{f=ﬂ(je]a—jxe3'<a e
a
and
~jka™ —jam 3 x
Hm=27'((j»<eJ - Jje = 9k '# 3)e

2

Now, we are in a position to decompose the coupled,
surface integral equations, i.e., egs. (3.29) and (3.30).

For convenience, we repeat them here,

: i 2 5
In = 52 Tt 0 X sl - e 3, + 3, x
e T

:
T cPog = 0g) 433, 1 0 Viley - el APt (3.297)
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s ST o il A ey > =+
I IS PN /F[j(K oq - oe) I T Jg X V'(@d - o)
| 2 v' 1  §
J(]m * ) v (@d = ®f)] drt;, (3.30")

Note that, without any ambiguity, the superscript "d" for
the induced equivalent surface current densities has been
omitted in the above equations.

Let us consider eq. (3.29') first. To numerically
implement the various surface integrals of this equation,
we have to consider each possible case about the field
point locations.

I) First of all, we consider the situation when the
field point is located in one of the +x surface elements.
Which means that the unit normal vector at field point, fi,
is the same as the x-direction unit vector R. For this
case, we know that 1 S m £ Nx' Based on the previous defi-
nitions, it is easy to see that the last integral of
eg. (3.29') can be written as

nix IF(je pAL) V'(@d - %) dF' =R X {[fFX + ny + sz +

.V V'(@d o ®f) dar'} (3.44)

e e R T

-x -y -z

where we have decomposed the total surface integral JF into

six different subintegrals, one for each subsurface. For

example, jF represents the integration of the integrand
x

over all the surface elements having & as the unit normal
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vector. The remaining five subintegrals in eq. (3.44) have
similar meanings. Now, as an example, let's carry out the

first subintegral of eq. (3.44).

5 =+ Yoo, - i . j T
::X,/'l:,x(]e sy B) -V (@d @E) ar —foFx[(jey9+]ez 2) - (X =t

Bt e 2
g e 2 G grt I qrt g G- o)1

oy'
2: 2 2 2
SR X 1, RO, st * Iay Toms? * 900y 27 * Jep 5o *
e F, * ]ey x93y’ ]ez Bx‘az ¥ Jey 3y,2 Jez 3y'oz’
82 82
B : o '
Z(Jey Syez" g 32'2)] (03 = &) a&F

2
a2 2

2
B2 £l . o4 ) s 9
=X =0 somag T FoT5g7 T )]
xX fFX[y(Jey ay,2 * dez ay'Bz') Z(Jey Jy'az' Jez 82'2
S '
(%4 Qf) daF
o~ Jkx aTIE y
Since ®d= T and <I>f= T where r = |r - r'|, we
may show that
2 ; 2 -
a——‘—zwd—@f):Gl*— (y' - y) P
Y
@ 2
3 - = ' -z G
s Ntk <t & 85
and
2

3 = = L '-12) G
T A G L 2
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where Gl and G2 have the same expressions as that of G?m
nm 3 2
and G2 defined in eqg. (3.43) except e being replaced

by r. Hence we have

XX /Fx(je T V) V(eg - o) aF! =-9 fo{jey(y' -V (2 -2) G+

. ke (52 e . i 2
JeZ[Gl + (z z) GZ]} aF' + 2 fo{Jey[Gl + (y' -y Gz] +

Jez W' =W (2" - 2) G2} ar'.

The integrals on the right-hand side of the above equation
can be numerically implemented by summing up the products
of integrands and areas of the corresponding surface cells
with a special consideration being paid to the singular
terms which occur when the source point coincides with the
field point. This process is completely based on the
moment-method technique with two-dimensional pulse func-
tions as the basis functions, and ¢ functions as the test-
ing functions. So we may rewrite the above equation as

> ~ Ny .n ,n _nm nm
RX S, (5, - V") V’(d>d = ¢f) aF' =-9 1L [Jey Ay oz Ggm i

Fx e n=1

n#m

NX nm
nooon nm__nm nan . oy
JZA(G’l“+z z G‘Z")]+2n§1[JeyA(l y 'y Gy

e!
n#m
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N .n nm _mm 2 .m
S Ay ngﬁ - yfAm {jey(y‘ -y)(z" - z)G2 + j:z[Gl +
i 2 A .m 2
(z' - 2) G2]) ar' + zfAm (]ey[Gl + (y' -y Gzl +
(3.45)

pal
Jez W' = ¥)(2' - 2)G) }dF', 1 <m< N

n .
ey’

coefficients of the equivalent surface current densities.

5 . n .m .m
where jJ e ]ey’ and Jg, are the unknown expansion

Note that the above eguation is satisfied at every field
Ny
point location on the subsurface FX. The notation _I

n=l
implies a summation with respect to all the source "

points on FX excluding the one coinciding with the field
point where the singularities of Green's functions occur.
The contributions of the singular terms are accounted for
by the last two terms in eg. (3.45), where the notation fAm
means the integration of integrand over a circle centered

at the field point with area A Now, let's investigate

these singular terms more specifically. It can be shown

that
Al o !
Imly' = y)(z' - 2)G, &' = J5 Jg z”cosd sing G, de r dr
T
=" i 3 = (3.46)
—ficosesmede/i I G, dr 0,
0

also,

2 o at 2 2
ale + v - nlel &' =] £ 16 +r” cos"6 Gy) rdrds
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and

2 21 al PRI
fAm[Gl + (2' - 2) Gyl aF' = s fo [Gl +r sin®6 G,] r ar de.

After substituting the expressions of Gl and G, into the

2

above equations, we have

Smley + ' - 6 @ = Smie) + ' - 26,1 @ = o,

(3.47)
where HT is defined in eg. (3.43). Then, substituting
eqs. (3.46) and (3.47) into eq. (3.45), finally we obtain
5 P

5
F e

Nx
2 TV ey - o) o =-g{r A, Y 2z G

X nm nm _nm .m
@™+ M Grzm)]+Jezkff)+

ez "1
5 Nx g o m nm nm nm
2Ll Bl 6 +y ey G, )+
n#m
; 8 nn Rl ,
]ZZ ynn anGZl] +]eyH’f}, where 1< mg Ny . (3.48)

This concludes the evaluation of the first subintegral in
eg. (3.44). The remaining five subintegrals in that equa-

tion can be carried out similarly. Combining these results

with eqg. (3.44), the latter will become

Ny N nn m_m _m
) A, YT AT a

X fFGe TV Ve - e &' ==L+ T
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jZZ(le‘"+z“'“ anm“)]+(l}]+ Z)A[ | “"‘c‘z““+
jZZ(G’l‘“‘+““‘"’“ ““‘)]+(2+):)A[ mz"m2
j;lyynl'ﬂ nm nm]+]r }P}+
z {( Z + z) At [J (Gmn+ y oy Gmm +

nfm
o™ e <:=z’; +:§ VR R
R ;"“H(z * zm[; Ky

n nm__nm _nm .m
Jey(G‘i1m+y Y GIZ“-”+Jey

This concludes the investigation of
the right-hand side of eq. (3.29').

If we repeat the whole process
integration of eqg. (3.29'), we will

decomposed into the following form:

HT }, where 1 < m < N_.
X

(3.49)

the last integral on

for the second surface

find that it can be

N; N-x
I B3 2 S i3 n nm nm_.n _
RX SR 3 XV ¢d-<l>f)dF'_y{(n;=E&]ﬂ+ z)Ax cgnjmy
n;
(2 “““‘G‘B”““—(z+2)A[J yr et -

+ E A
n=l n=. ) N
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: Nk Nex

S, X GN B UL 4 T A MM g0
n=l n=1

3 I *
nAR

I\hy N.

-y ,
GZ D) I L L &M -
=

n=1 Tz 3 mx
Nzt s n mm nm .n
Y. F 3 1
(n=l nil) Az Gy 3}, where 1< m < N, (3.50)

and 6’3““ is defined in eg. (3.43). It is noted that the sin-

gular terms have no contribution to eq. (3.50).

Similarly, the first integral term on the right-hang

side of eg. (3.29') can be transformed to become

) Roey <Moo o n
$x /3 (<% -0 ¥t td b z 2
A Fje( “d f}dF j{(n=l+n=1)A G4 Jez+
n#m
Ny Ny Ny Ny
(\,y+ At 4 e a (S s D) ANE N
n=l n=1 4 ‘ez “ez 2 n=l n=l 4 ey
N. N
z 2 n_mm.n m
j j Q N_,
(n£l+n£l)A Gy Jey+]eyH§])’ where 1 < m < 5
(3::51)

and Gim, Hg are defined in egq. (3.43).

If we enforce satisfaction of eq. (3.29') at each ref-
erence point on the subsurface Fx’ with the help of egs.
(3.49), (3.50), and (3.51), we can obtain totally Nx vector
equatiéns, i.e., one equation for each matching point.
Furthermore, it is possible to decompose these NX vector

equations into 2Nx scalar, linear algebraic equations since
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each surface current possesses two tangential components.

Based on egs. (3.29'), (3.49), (3.50), and (3.51), it can

be shown that the following are those 2Nx linear equations:

Ny Nex
e § = )
{ (n;l + E ) [= Jey Y w3, ‘l’ZZ (n,m) + Iy ‘P3x(n,m)] =
n#m
Jop H + 37 C1- {(V? + z ) Uy Yy m) + 33, Yo, (0m) +

5 N, N
- - = + \P] +
7 ‘}‘3y (n,m)1} {(nzl + nzl) [jex Iy (n,m) ] i (n,m)

n _.n = 4p o1 3.52
i \V3y(n,m) Iy ¥y, (nm] } =d4n Iy ( )

also,

Ny Nox n n n
NE j +3° ¥, (nm] +
COE + 1) gy Ypyim) + Jgp ¥y M) + 3 35 ]

nFm

b Ny o .n
P 3, €+ (T + Eelig, ¥ lum + 3, Yy ) -

n n L Y. (nm) +
Iy Y3z e+ 3 Y3y (mm)] L S | (nﬁl + ngl) [Gex ¥1,0m

B R e (3.53)
ey Zy(n,m) I ¥, 0 ML= AT 3y,

where 1< ms< N_, and the various ¥ functions are defined as
5 X
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= A
J Y G2

le(n,m)

le(n,m) =3

45 Lm) =3 A% x g g

& 2
Yo mim) =3 An(G;_)m + xIM Ggm + G?m)
Wzy(n,m) =3 An(G§m + yhm. o 2m " sz)
Yoy (mim) = 3 AT (6] 2" &+ a™
v, (n,m) = Al o Ggm

y =
3y(n,m) ATy " Gy

¥y,(nym) = 2" 2z Gy

= S ) m
H(m) = j(ﬂ1 + Hz)

Cc = 2W(K2 )
This completes the whole analysis for the case of A = R.

II) If the field point is located in one of the

+y-surface elements, i.e., when i = §, other 2Ny linear

equations can be obtained by following a similar procedure

as that described in case I). We will present these equa-

tions without repeating the details of the derivations:
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{(Z +z)[j

(1 oy Y13 M) + 3 ¥, m) - j:ly Y aml} +

{(I\? +N§y) 3w n
. 3 e}
R;x% =1’ "Hex lY(n,m) + i 450 \Pzz(n,m) + i w3y(n,m)] i

N, N-.
m m Z Z
Hm) + 5. C} + 3 o[sR
Jez Il (L + oI By Yy tm) + P (n,m) +

ey 1x

I Yy o) - Sy Yoy} =angti (3.54)

also,

{(z+z>1; (n,m - 7

ez

.n
oy lz le(n,m) = me WSz(n,m) +

Ne
e AR .n
ij(n,m)] } - { (2':%1;1 + ngl) [J@( ‘4’2x(n,m) o bRl ‘Yly(n,m) -

N, N-
m JIn r4 4 .n
an Y3, (0 m)l = o, Hm + j C)= { (n£l + ngl)'[J Yo (M) +

.n
J

N mi
i \ylz (n,m) + ]my W3Z (nm)] } =4n szl (3:.55)

where 1 < m < N

< < Ng.
III) Next, let's consider the case where the field

point is located in one of the +z-surface elements. As in

the previous two cases, by use of the point-matching tech-

nigque, we may obtain the following 2Nz scalar, linear equa-

tions:
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{< Z + Z ) [Jey 2Y(nm) = Jez ¥y, (am - sz Y3, (0m]} -
{(nl\iyl+ E) [J@( lz(nm) + j 1 @m) = me ¥y, (nm) +
sz Yo tnm] ) - {( Zl+ Z )'[jex ¥y, mm + 5 Y‘sz(n,m) =
#n
T Yoy ] = j:y Hm + 3 Cj= an 503 (3.56)

also,

{( z + z i1 52 (n,m) +3 ¥, 0m + j"my ¥y, (m) -

ey lz

.n
23 Zx(nrm) + afi le(n,m) -

7
g Y3y meml} o+ {(nl+ Z) Gy

Nz
(n,m)]} + {( E+Z)-[]

.n
Inz w3y ex 2x(n s Jey lz(n ) o
.n .m

me !’3Z(n,m)] + H(m) + j C}= 4m jy (:3%57)

where 1 < m < Nz'
Similarly, we can obtain 2N_ ., 2N_y, and 2N__ linear

equations by enforcing eq. (3.29') at various reference

points on the subsurfaces F_X, F—y’ and F—z’ respectively.

We list all these equations as follows:
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IV) A = -x:

((z + 2) Sy Ypsmom) = 52 ¥
n#m

c} {([}’+ 2)[3

ox 1(nm)+j

) o3
pi: ‘!‘3y(n,m)] Y- {«( Zl + E ). [Jex 1y

3 (nm)—J

- mi
mx Y3y Yo mm]} =-4n i

also,

Ny
.n
{( E + Z 0 [Jey Yoy em) + Je Yo, (m) o+ 5

moc)+ {(zy+ D0, vyt + 50

J

X 32(nm) +J

NZ
mz Yax @1} + “n£1 +

Re)
J

ey ‘{/zy(n ,m) -

3 3z(n m]} =-4n 3 iy

where 1 < m < N-x’

V) A =-%:

Ny
{(ng + E) l5g.

(n,m) + m - 35
ey lxnm ;| 22 ’ me

.n
22 (n,m) + me

Nz o
ngll slgzes

¥,, m) +

( +
n,m) jy

(nm)] +]

WJX (n,m) -

Ya (m]1} +

m
‘Y3x (n,m)] - Je

5 H(m) -

L (n,m) +

(3.58)

H(m) -

¥y, mm +

(3.59)
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N, N,
Y
{(ng_ +nfl) []

ex ly(n ,m) +

.m m
Joy HM) - s

.n .n
s ‘Y3y(n,m) = Iy ¥y (m)]

also,

{(Z + Z) []ey ¥, m -

5 3y(nm)]) - {(l\éldf z

i) m
e W3y(n,m)] Seas

B ST .n
Jey Y1 m) + Iy Y3z (n,m)]}

where 1 <m < N

-y

VI) A = -2:

{(Z+Z)[j (n,m) -

ey 2y

N,
(T D 2)[3

(n,m) + 3
n=1

exlz

Jrnz 3x

N_
C}+{(z+£)[3

wly (n,m) - jnmy

)[]
7é'n

Hn) - 3p

ezlx

(nm)])-{(E +;) 152

Jez Yo (um) + me 3y (n

ox ly(n M) + 3

o B i
} =-arm Joes

‘?32 (n,m)

.n
e 2x(n,rn) + 25

Nz Np
c-{(z +2)[5
} n=l n=1 Jex

=-4m j:zl

1) - sz Yy m] ) -

(n,m) - j;:x ¥y, (nm

(nm)+]

ex lz ey 2y

le

m)] +

(n,m) +

(3.60)

le (n,m) -

‘1‘2x(n,m) +

(3.61)

) +

(n,m) -
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J (n,m)] -J H(m) —3 Cl=-un j::xi (3.62)

mx 32

also,

{( Z + E ) [ (n,m) + 3 ¥y + j;‘y ¥y, (n,m) -

ey 12

(nm)])+{(l§'+ 2)[3

“mz 3Y ex ¥ox M) + J ly(n’m) -
pe ¥
]nz 3y(n m]} o+ {( Z +n>:l) [Jex ¥ mm + ]ey ¥y, m) +
n#m
my ¥, m] + J H(m) - ] Ch=-4n jmyl (3.63)

where 1 < m < N—z'

Up to this point, we have obtained totally 2Ncell
(Ncell = Nx + Ny + Nz + N_x + N_y + N—z) scalar, linear
algebraic equations based on eq. (3.29'). Repeating the
same procedure for eg. (3.30'), we can obtain another 2Ncell
linear equations. We therefore have totally 4Ncell equa-
tions, which are adequate to solve for the surface unknowns.
For the purpose of saving space, we will not list the other
2Ncell equations; however, since egs. (3.29') and (3.30')
have very similar forms, they can be carefully deduced from
egs. (3.52)-(3.63). The combination of these 4Ncell linear

equations can be transformed into a matrix form as shown in

eq. (3.64), which then can be solved by a conventional
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matrix inversion technique. The matrix elements in eq.
(3.64) may be obtained from the above linear equations.

It should be mentioned that the matrix [M] shown in
eq. (3.64) possesses a four-fold symmetry, which is easy to
see from the coefficients of the linear equations. These
symmetry properties of the eguations have been found very
useful for the computer implementation of the numerical
method. The initial version of the computer program is
implemented directly based on eq. (3.64). Unfortunately,
this program has only limited usefulness due to the pro-
hibitive requirement of the matrix size needed to ade-
quately sample current variations. However, if the
incident plane wave is decomposed into four basic modes
(cosine and sine variations of E and H fields), an eight-
fold symmetrical property can be found for each type of
surface current. These symmetrical properties are shown
in Figure 3.12. A final version of the computer program,
with the above symmetry conditions imposed, is then
developed. By use of this computer program, it is possible
to reduce the matrix size by a factor of 8 when an eight-
fold symmetrical body is considered since it is sufficient
to solve for the surface currents induced in only 1/8 of
the biological body. The induced surface currents for
the rest of the body can be readily obtained by intuition.

Of course, since the original incident plane wave has been







3 of cosE
e mode

3 of smw

Figure 3.12. The symmetrical properties of various modes
of the induced equivalent surface currents
(Jer ﬁm) on the surface of a cubic body.
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separated into four different modes, the final solutions
must be the combinations of results obtained for each
basic mode. More details about the computer programs will

be discussed in Chapter IV.

3.8. Numerical Results

The numerical technique developed in the previous sec-
tion has been applied to solve for the EM fields induced
on the surfaces of several finite conducting bodies.
These results of induced surface fields obtained by the
surface integral equation method (SIEM), accompanied with
the results of internal fields induced in the same bodies
obtained by the volume integral equation method (VIEM)
[18], will be presented in this section. It should be
mentioned that although SIEM gives solutions for both the
induced electric field and induced magnetic field, for the
purpose of simplifying the presentation we will only empha-
size the induced electric fields, especially the component
which predominates.

Figure 3.13 shows the vertical component of the
induced electric field, Ex’ in a muscle layer of
6cm x 6cm x 1 cm irradiated by an EM wave of 100 MH, with
a vertical incident electric field of 1 V/m at side-on
incidence. The conductivity and dielectric constant of
the body are assumed to be 0.889 S/m and 71.7. The top

figure of Figure 3.13 shows the results for EX (magnitude
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The x-components of the induced electric

fields determined based on the surface inte-
gral equation method and the volume integral

equation method.
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and phase angle) on the surface of the body obtained with
the surface integral equation method. In this numerical
calculation, 1/8 of the body surface is divided into 21
subareas of two different sizes. The bottom figure of
Figure 3.13 shows the results for Ey (magnitude and phase
angle) at the centers of the first layer cells, or at

y = 0.25 cm plane, obtained with the tensor integral egua-
tion method. In this numerical calculation, 1/8 of the
body is divided into 36 volume cells. Comparison of these
two sets of results, obtained with a surface integral
equation method and a volume integral equation method,
shows a qualitatively good agreement. This comparison

is possible because the body is electrically thin in the
y-direction, and the induced EM field should remain quite
uniform in that direction. The disagreement between the
two sets of results occurs mainly over the vertical edges
of the body where the circulatory magnetic mode of the
induced electric field has a significant contribution; the
volume integral equation method usually gives poor results
for that circulatory magnetic mode of the induced electric
field.

Figure 3.14 shows the horizontal component of the
induced electric field, EZ, in the same body under the
same irradiation as the case of Figure 3.13. Ez near the
central portion of the body, or the region near the

x-axis, can be considered as mainly consisting of the
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circulatory magnetic mode of the induced electric field.
For this component of induced electric field, only a fair
agreement was obtained between the two sets of results
obtained with the surface integral equation method and
the volume integral equation method. The main reason

for discrepancy is the inefficiency of a volume integral
equation method in gquantifying the circulatory magnetic
mode of the induced electric field. The results obtained
with the surface integral equation method appear to be
more accurate for this case, because this set of results
agrees with the results calculated by a method of quanti-
fying the eddy current induced by a RF magnetic field as
discussed in Chapter II.

As the second numerical example, we consider a
rectangular body with a height of 180 cm, a width of 30 cm,
and a thickness of 7.5 cm illuminated by a plane wave as
shown in Figure 3.15. The incident wave is assumed to be
X-polarized with a frequency of 10 MH2 and an electric
field intensity of 1 V/m, and the body is assumed to have
a conductivity (o) of 0.625 S/m and a dielectric constant
(Er) of 160. For the purpose of comparison, we plot the
amplitude and phase distributions of the x-component of
induced electric field in the top and bottom figures of
Figure 3.15, where the results of both SIEM and VIEM are
included. 1In the calculation by SIEM, 1/8 of the body

surface is divided into 52 surface cells of two different
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sizes. The EM fields induced at center points of the sur-
face cells are numerically evaluated. In the top figure of
Figure 3.15, we plot, in solid lines, the amplitude dis-
tributions of the x-component of electric field, Ex'
induced at y = 3.75 cm on the front surface and the back
surface as functions of the x-coordinate. The correspond-
ing phase distributions are plotted in the bottom figure
For the numerical calculation by VIEM,

The

of Figure 3.15.

1/4 of the body is divided into 24 volume cells.

internal electric fields induced at center points of the

volume cells are then numerically calculated. In Figure

3.15, we plot, in dashed lines, the amplitude and phase

distributions of the x-component of internal electric

field induced at y = 3.75 cm and z = 0.0 cm as functions

of the x-coordinate. The comparison between these two
sets of results, the results from SIEM and that from VIEM,
shows a reasonably good agreement. However, we observe
that the amplitude of the surface field induced on the
front surface is almost 25% larger than that induced on

the back surface, while the latter is very close to the

results of VIEM as shown in Figure 3.15. Based on this

observation, we would tend to conclude that the SIEM
doesn't predict accurate results for the field induced on

the front surface since we expect that the induced field

is quite uniform along the z-direction. But, if we con-

sider an extreme case with the assumption that the body







is extended to infinity in both transverse directions, we
find that the surface field induced on the front surface
of this infinite plane slab is about 40% larger than that
induced on the back surface (based on solution of plane-
wave reflection and transmission in multiple-layer region).
This special case gives some qualitative explanations

regarding the difference between the surface fields of the

front surface and the back surface. Finally, we should

emphasize that the comparison of the phase distributions
obtained by SIEM and VIEM shows a very good agreement,
especially in the central portion of the body.

Figure 3.16 shows the amplitude and phase distribu-
tions of the x-component of induced electric field along
the x-direction in various layers at y = 11.25 cm for the
same body illuminated by the same incident wave. The
results shown in Figure 3.16 are very similar to those of

Figure 3.15. This is understandable since for this case,

the x-component of the induced electric field should be
rather insensitive to the location along the y-direction.

In Figure 3.16, the results obtained by SIEM are plotted

in solid lines, while those obtained by VIEM are plotted

in dashed lines. As we can see from the top figure of

Figure 3.16, the amplitude distributions of the x-component
of induced electric field decrease monotonically along the

x-direction. On the other hand, we observe from the bot-

tom figure of Figure 3.16 that the phase distributions are
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nearly constant along the x-direction. Again, as in the

case of Figure 3.15, the comparison between SIEM and VIEM

shows reasonably good agreement, especially for the phase

distributions.
The amplitude and phase distributions of the

y-component of induced electric field along the x-direction

= 11.25 cm and y = 3.75 cm are

in various layers at y

plotted in Figure 3.17. It is shown in Figure 3.17 that

the field distributions at y = 11.25 cm (top figure) are

very similar to those at y = 3.75 cm (bottom figure),

except that the amplitude distributions of the former are
three times as large as that of the latter. This is
reasonable since the y-component of induced electric field
must depend strongly on the locations along the y-direction.
Figure 3.17 shows that the amplitude distributions of the
y-component of induced electric field increase monotonic-
ally along the x-direction, while the phase distributions

are nearly constant along the x-direction. It is to be

noted that the y-component of induced electric field on
the front surface and that on the back surface are exactly
the same. This is quite different from what was observed
in the previous two figures. Finally, it is clear from
Figure 3.17 that the comparison between SIEM and VIEM
demonstrates very good agreement for this case.

As the last example, we consider a more complicated

geometry as shown in Figures 3.18 and 3.19. The body
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considered has a shape similar to that of a human body

with the following dimensions: 70 cm in height, 20 cm in

maximum width, and 10 cm in thickness. This situation

can be considered as a simulation to the case of a two-
year-old child innocently exposed to a high-intensity EM

wave. For the purpose of reducing the number of unknowns

to keep the computational cost low, we still assume that

the frequency is as low as 10 MHz' The electrical proper-

ties of the body are assumed to be o = 0.625 S/m and

By T 160. In the calculation by SIEM, 1/4 of the body
surface is divided into 29 surface cells of two different

sizes. The amplitude distribution of the x-component of

induced electric field is shown in Figure 3.18 for both
the front surface and the back surface of the body. It
is observed from Figure 3.18 that the electric field

induced on the front surface is larger than that induced

on the back surface. In Figure 3.19, the phase distribu-
tion of the x-component of induced electric field is shown.
Unlike the amplitude distribution, the phase distribution

is quite uniform over the entire body surface.
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Amplitude distribution of the x-component of

Figure 3.18.

induced electric field on the surface of a

simulated human body.
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CHAPTER IV

PART 1
A USER'S GUIDE TO COMPUTER PROGRAM FOR INDUCED
EDDY CURRENT INSIDE A FINITE CONDUCTING BODY

WITH ROTATIONAL SYMMETRY

The first part of Chapter IV explains the computer
program used to evaluate the eddy current induced at vari-
ous locations within a finite conducting body with rota-

The theory behind this numerical technique

tional symmetry.
has been presented in Chapter II. In addition to the list-
ing of the program, an example will be worked out to help

readers understand the sequential order of data files and

the sample print out.

4.1. Formulation of the Problem

The program "EDDY" can handle two different cases:
(1) the case of a body immersed in a uniform magnetic field
and (2) the case of a body irradiated by a uniform magnetic
beam. The first step in utilizing this program is to
divide a body with rotational symmetry into N circular
rings with various dimensions and radii. Inside each cir-
cular ring the induced electric field (induced electric

field and induced eddy current are interchangeable, since
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they are only related by the conductivity) and the elec-
trical properties are assumed to be uniformly distributed;

however, they may be changed from ring to ring.

For the first case considered, the impressed magnetic
field can be written as
i (r) = 2nt.
Similarly, for the second case, it can be expressed as
ity = 2 for 0 £r<b

=0 for b = r.

Here the time-varying factor exp(jwt) has been suppressed.

Usually, we assume that the impressed magnetic field has

unit intensity, =1 A/m. The body considered has a
symmetrical axis in the +z direction, as shown in Figure

4.1. For convenience, we also assume that the cross-

section of each ring is a sgaure which is then approxi-

mated by a circle in the integration. Since the induced

electric fields have only one component (in the +¢ direc-
tion), we have N unknowns in total.
The second step in the numerical formulation of the

problem is the specification of the location of each ring,

its physical dimensions and its electrical parameters. As

mentioned earlier, this program has been written for the

case of uniformly impressed magnetic field or for the case

of uniform magnetic beam. However, other types of
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Figure 4.1. A rotationally symmetrical body with the
symmetrical axis in the +z direction is
irradiated by a magnetic field with unit
intensity. The body is subdivided into a
number of circular rings of various radii.
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impressed magnetic fields may be used with few changes in

the main program.

4.2. Description of Computer Program

The program "EDDY" is coded in FORTRAN. It used the

following complex functions and subroutines:
"LEEMAT"--is a subprogram which calculates the ele-
ments of [M] matrix based on egs. (2.16)
and (2.17).

"FMM C " "FMMS," "FMNC," "FMNS"--are function subpro-
grams which determine the integrands of
integrals Kmn, and Kmm as expressed in
egs. (2.6) and (2.8). Note that we decom-

pose each integrand into real and imaginary

parts. Since these four functions are used
as calling arguments for function subprogram
"DCADRE," they must be declared external in
subroutine "LEEMAT" which calls subprogram
"DCADRE" for numerical integration.

"DCADRE"--is an IMSL routine which integrates a func-
tion by using technique of Cautious Adaptive
Romberg Extrapolation.

"CMATP"--is a subprogram which calculates the induced

electric field in each ring by solving N x N

matrix. It is actually a Gauss-Seidel
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method for solving a System of N equations
in N unknowns.

"MAGPHA"--thig subprogram, as the name suggests,
determines magnitude and phase of the
induced electric field in each ring.

"MCURVE, " "PCURVE"--these two subroutines plot the
magnitude and phase distributions of the
induced electric fields as functions of
radial distance.

A listing of the program "EDDY" is given at the end

of this chapter.

4.3. Data Structure and Input Variables

Figure 4.2 shows a typical example of a body with
rotational symmetry we refer to from time to time. This
body is divided into six circular rings. The origin of
the coordinate system can be arbitrarily chosen at any
point along the central axis of the body; then the loca-
tion of each ring is determined with respect to this ori-
gin. 1In this example, it is assumed that all the rings
have the same cross-sectional area and electrical parame-
ters.

The sequential structure of the input data files,
the format specifications and the symbolic names of the
variables appearing on each file are outlined in Table 4.1.

There are totally three input files; each of them consists
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Figure 4.2.

A cylindrical biological body with a
diameter of 6 cm and a height of 2 cm
is subdivided into 6 circular rings
with a cross-section of 1 cm x 1 cm
for each ring. The body is assumed
to have a conductivity of 0.889 S/m
and a dielectric constant of 71.7,
and is immersed in a 100 MHz uniform
magnetic field with an intensity of

1 A/m.
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The symbolic names of input variables and

Table 4.1.
corresponding specifications for the data
files used in data structure for the program
"EDDY."

File No. Card No. Symbolic Name Columns Format

1 1 N 1=5 I5
FREINM 6-15 F10.5

NX 16-20 15

NXB 21-25 15

2 1 NPAR 1=5 IS5
AERR 6-15 F10.5
RERR 16-25 F10.5
3 1-N XEND 1-12 F125,
ZEND 13-24 F12.5
XAA 25-36 B1255
ZBB 37-48 F12.5
REP 49-60 Fl2.5
61-73 E13.6

SIG







131

of at least one data card. Specifically, the first two

data files consist of only one data card each, while the

third file consists of N data cards. The information on

each data file is explained as below:

First Data File

This data file defines four variables with symbolic
names N, FREINM, NX, and NXB. Where N is the total
number of circular rings inside the body. NX is the

number of rings per layer, and NXB is the number of
rings per layer within the range of the magnetic

beam. Finally FREINM is simply the frequency of the

impressed magnetic field in MHz.

Second Data File
This file consists of only one data card and deter-

mines the following variables:
"NPAR"--for the integrals Kmn and Kmm, the integration
"NPAR"

limits 0° and 180° will be divided into

equal-size subintervals. The purpose of this par-
titioning is to save the computational cost.

"AERR"--desired minimum absolute error for the numerical
integration.

"RERR"--desired minimum relative error for the numerical

integration.
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Third Data File
This data file consists of N data cards, one for each

circular ring. This set of data cards helps simu-

late the finite conducting body being considered.
Each data card contains the following information:

"XEND," and "ZEND"--these codes correspond to the maximum
boundaries of a ring cross-section in the x-, and the

z-directions with reference to the origin. This

information is supplied by the user in centimeters.

"XAA," and "ZBB"--are the symbolic names for the dimensions
of the ring cross-section in the x-, and the z-
directions. Since each ring cross-section is a

the column for "XAA," and "ZBB" will contain

square,

the same information.

"REP," and "SIG"--are the codes for dielectric constant

and conductivity (S/m) of each circular ring.

This completes the structure of the input data files
needed to specify all the necessary information for the
quantification of induced electric fields inside a finite
An example is

conducting body with rotational symmetry.

worked out in the next section.

4.4. An Example to Use the Program

As an example, let us try to determine the electric

field induced inside a circular cylinder, as shown in

Figure 4.2. We assume that the body has radius 3 cm and
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height 2 cm, and is immersed in a uniform magnetic field

with an intensity of 1 A/m. Let us further assume that

the frequency of the impressed magnetic field is 100 MHz,

and the electrical parameters of the conducting body are

Efss TAVZT 05

0.889 S/m, and with a ring cross-section of

1l cm x 1 cm. With the aids of Section 4.3 and Table 4.1,

the sequential order of the input data files is as fol-

lows:
Information on the File

File No.

1 6 100.0 3 3!

2 18 0.0 0.01

3.1 1.0 1.0 1.0 1.0 71.7 0.88900E+00
3.2 2.0 1.0 1.0 1.0 71.7 0.88900E+00
3.3 3.0 1.0 150 1.0 J LT 0.88900E+00
3.4 1.0 2.0 1.0 1.0 71.7 0.88900E+00
3.5 2.0 2.0 1.0 1.0 71.7 0.88900E+00
3.6 3.0 2.0 1.0 1.0 71.7 0.88900E+00

Now suppose that the program "EDDY" and the input data

files are both stored on the magnetic disc under the per-
manent file names of "EDDYCURRENTEW" and "EDDYCURRENTDATA,"

respectively. In this case, the list of the commands

needed for the execution of the program when submitted

through a terminal interactively is as follows:
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Statement Information in the
Statement

No. Its Purpose
14 Job request *JOBCARD*,CM170000,
RG1,T600,JC1000.
24 Dispose to engi- DISPOSE, **,V.
neering terminal
3% Identification HAL, BANNER, LEE,
name EDDY, CURRENT
4. Calling subroutine HAL,LGO=DCADRE,
DCADRE UERTST.
5% Calling the PF ATTACH,EWFILE,
EDDYCURRENTEW.
(575 Calling the EDITOR EDITOR.
7. Compile the program FTN,I=Z,R,T.
8. Return the EWFILE RETURN,EWFILE .
95 Calling the data ATTACH,EWFILE,
EDDYCURRENTDATA .
10. Calling the EDITOR EDITOR.
115 Execute the program LGO,W.
12 End of Record *EOR
13. Change EWFILE to
scope coded format SAVE, Z
14. End of Record *EOR
15. Change EWFILE to SAVE, W,NS.
scope coded format
16. End of file *EOF

4.5. Printed Output

Now we would like to explain briefly the various sec-

tions of the output data files.
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the coordinates of the maximum boundary limits
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First,

on the x-z plane for each ring cross-section are listed,

accompanied with the dimension and the cross-sectional

area for each ring.

Then, the second output file contains the internally

calculated coordinates for the central location of each
ring cross-section, as well as the dielectric constant and
the conductivity.

The third output file includes the information of the

associated impressed electric field due to the impressed

magnetic field of unit intensity. Also printed out is

type of magnetic field applied.

The fourth output file has the information of the real
and imaginary parts of the induced electric field inside
each ring. Also included are the parameters used for
numerical integrations, and the frequency of the impressed

magnetic field.
The last output file is the induced electric field in

magnitude and phase form, where the phase angles are in

degrees.
An example print out of this program is shown in

Table 4.2.

4.6. Listing of the Program
A FORTRAN listing of the program "EDDY" begins on page

175" Generally speaking, when compiled, the program "EDDY"

requires about 46500B storage units of core memory.
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PART 2
A USER'S GUIDE TO COMPUTER PROGRAM FOR INDUCED
EM FIELD ON THE SURFACE OF A FINITE CONDUCTING

BODY WITH ARBITRARY SHAPE

The purpose of Part 2 is to explain the computer pro-
gram used for quantifying the EM field induced on the sur-
face of a finite conducting body when illuminated by an
incident plane wave. The theoretical derivation and the
development of this numerical technique have been discussed
in Chapter III. Besides explaining the usage of this pro-
gram, we will also present an example accompanied with a

sample print out for the purpose of better understanding.

4.7. Formulation of the Problem

We are considering a finite conducting body illumi-
nated by an incident wave which, for the purpose of sim-
plicity, has been assumed to be a plane wave. Mathe-
matically, the incident plane wave can be expressed in the

following form:

21 (2) = %732 = % [cos(z)-j sin(z)]
(4.1)
ﬁi(z) = §—£e-jz = §—£4cos(z)—j sin(z)]
nO no

We like to mention a few points concerning the above

expressions:
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1

The wave is propagating in the +z direction, and

has a time factor exp(jwt) which is suppressed.

2) All quantities with the dimension of length are
normalized by l/ko.

3) The incident electric field has unit intensity,

1 V/m.

LB T is the intrinsic wave impedance of free space.

The first step in utilizing this program is the
numerical formulation of the problem; hence, the first
thing to do is to visualize the shape, dimensions and the
orientation of the conducting body with respect to the
incident electromagnetic wave. The incident wave may
illuminate the body either at normal incidence or at end-
on incidence. To begin with, the body surface is divided
into NCELL surface cells with NX, NY, NZ, NNX, NNY, and
NNZ cells facing the positive-x, positive-y, positive-z,
negative-x, negative-y, and negative-z directions, respec-
tively. Each surface cell is a square with suitable dimen-
sion in order to obtain optimum results.

The maximum number of unknowns that can be handled
is about 150. Since there are four unknowns for each sur-
face cell, the maximum number of surface cells, without
any simplifications, can not be greater than 40. This
imposes a restraint on the physical size of the body.

But, due to the symmetrical properties which exist in most

of the bodies we are considering, it seems adequate to
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apply these properties and reduce the number of unknowns
by a factor of 4 or 8. It must be mentioned here that

in order to apply symmetrical conditions the incident wave
has to be decomposed into four different modes named

COSE, COSH, SINE, and SINH, respectively, as can be under-
stood from eqg. (4.1). The above-mentioned symmetry condi-
tions are justifiable since most of the bodies considered
(either biological bodies or other finite conducting mate-
rials encountered in engineering) possess four or eight
similar-looking segments and hereafter called quadrants,
such that it is sufficient merely to calculate the induced
electromagnetic field at each surface cell of the first
quadrant and then convert them into the induced field

for the rest of the body.

After determining the symmetry conditions, the next
step in the numerical formulation of the problem is the
specification of the location of each surface cell, its
physical dimensions, and the electrical parameters of the
body. The size of each cell can vary but the electrical
properties are assumed to be uniform throughout the body.
Note that the central location of each surface cell is
predetermined by the user; then the incident field inten-

sities are automatically evaluated for each cell.
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4.8. Description of Computer Program

This program is also coded in standard FORTRAN and
can be compiled on either FTN or MNF compilers. The pro-
gram is symbolically named as "SURFLDS" with input and
output formats on any undefined logic units in conjunction
with four magnetic tapes, "TAPEl," TAPE2," "TAPE3," and
"TAPE4." "TAPE1"-"TAPE4" are the names of the local files
which are used to temporarily store the computed results
due to COSE, COSH, SINE, and SINH components of incident
field.

Program "SURFLDS" makes use of the following sub-
programs:

"MNSB"--is a subroutine mainly used to print out the

echo information which includes all the mes-
sages just read in from the input data files
by the main program.

"MATRI," "LEE"--are subroutines which generate the
matrix of the linear equations set. The
matrix elements are related to the associated
Green's functions evaluated at various loca-
tions.

"ELEMX," "ELEMY," and "ELEMZ"--are subroutines which
evaluate the matrix elements when source
points are in the #x-, the *y-, and the *z-

directed surfaces, respectively. In these
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subroutines, the symmetry conditions have
been imposed.

"EXIM," "CEIM," "CHIM," "SEIM," and "SHIM"--are sub-
routines which calculate the incident electric
and magnetic fields for EXPZ, COSE, COSH,
SINE, and SINH modes, respectively. In these
subroutines, the incident electric field is
polarized in the +x direction and has unit
intensity, 1 V/m.

"T"--is a subroutine which converts the equivalent

surface currents to surface field quantities.
"PRNT"--this subroutine, as the name suggests, is a
program used to generate the print out.
“COEFX," "COEFY," "COEFZ," "FCNXX"-"FCNZZ," and
"CEFXX,"-"CEF22Z," etc.--are subprograms which evaluate
the elements of the Tensor Green's function.
"CMATP"--is the program being used to solve a system
of N equations in N unknowns. It is actually

a Gauss-Seidel method of numerical technique.

A listing of the program "SURFLDS," including all the
subprograms called, is given at the end of this chapter.
In the next section, the structure of the input data files
as well as the associated input variables are explained in

detail.
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4.9. Data Structure and Input Variables

Figure 4.3 shows a sample body with finite conduc-
tivity. With origin of the coordinate system being chosen
at the center of the body, we divide it into eight differ-
ent sections which are called quadrants. The numbering
system used is also shown in Figure 4.3. Note that the
symmetry conditions exist if the physical dimensions of
each surface cell in the first quadrant are the same as
their counterparts in other quadrants, which is the case
for this sample body because we assume that all the sur-
face cells have the same physical dimensions. Based on
these existing symmetry conditions, we only intend to solve
for the induced electromagnetic fields at various surface
cells of the first quadrant and then convert them into the
fields induced at the surface cells on the rest of the
body. Now we like to introduce the input data files
before we go any further in determining the induced sur-
face field. First of all, the sequential structure of the
data files, the format specifications and the symbolic
names of the variables appearing on each file are outlined
in Table 4.3.

There are totally five input data files. Only the
fourth data file contains NCELL data cards, while the rest

of the data files contain one data card each. The input

variables associated with these input data files are dis-

cussed in detail as below:
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8th quadrant

f= 2450 MHz
.21 S/m
€ =47

r

Figure 4.3.

A cubic biological body (o0 = 2.21 S/m,
€r = 47) with dimensions of 2 cm x

2 cm x 2 cm is irradiated by an inci-
dent plane wave which has a frequency
of 2.45 GHz and a unit intensity,
x-polarized electric field. The body
surface is subdivided into 95 surface
cells with dimensions of 0.5 cm x

0.5 cm.
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Table 4.3. The symbolic names of input variables and
corresponding specifications for the data
files used in data structure for the program
"SURFLDS."

File No. Card No. Symbolic Name Columns Format

1 1 NDIV 1-2 12

2 1 10 1-4 14

3 1 NX 1-3 13
NY 4-6 13
Nz 7-9 I3
NNX 10-12 13
NNY 13-15 I8
NNZ 16-18 33

4 1-NCELL X 1-10 F10.5
Y. 11-20 F10.5
2 21-30 F10.5
DCELL 31-40 F10.5

5) it RLEP 1-13 E13.6
SIG 14-26 E13.6
FMEG 27-39 E13.6
MODE 40-43 A4
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First Data File
This file has only one data card with only one vari-
able on it; namely, NDIV. NDIV is the number of sub-
divisions each side of the square surface cell will
be divided into when the numerical integration over
the surface cell is performed. The purpose of sub-
dividing the surface cell is to improve the accuracy
of the results. But the computational cost increases
substantially when the value of NDIV goes up.
Usually, we find that NDIV with value 3 gives excel-
lent results and still keeps the required CPU time
reasonably low. For the case of NDIV=3, each surface
cell is subdivided into nine subsurface cells when

numerical integration is carried out by the computer.

Second Data File
This data file has only one data card which defines
a variable with symbolic name IQ. IQ is a four-digit
code of the symmetrical property used. There are
four different types of symmetrical property that can
be handled by this program, as described in the fol-

lowing:

IQ = 0008 This is for the case of an eight-quadrants
symmetrical body.
IQ = 1234 This is used when the body has symmetry with

respect to the y-z plane and the x-z plane.
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IQ = 1458 This is used when the body considered has
symmetry with respect to the x-y plane and
the x-z plane.

IQ = 1256 This is used when symmetry properties with
respect to the x-y plane and the y-z plane

exist.

Third Data File

This file has only one data card which defines six
integer variables, NX, NY, NZ, NNX, NNY, and NNZ.
These six integers are the numbers of surface cells
on the +x, the +y, the +z, the -x, the -y, and the
-z-directed surfaces of the first quadrant, respec-
tively. The total number of surface cells of the
first quadrant, NCELL, is obtained by summing up all

these six integers.

Fourth Data File
This data file consists of NCELL data cards; i.e.,
one data card for each surface cell. On each data

card, it defines four real variables, X, Y, Z, and

DCELL. Where X, Y, Z are the coordinates of the cen-

tral location for each corresponding surface cell
with reference to the origin, while DCELL is the
dimension of the corresponding surface cell. Note

that these quantities are in centimeters.
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Fifth Data File
This data file consists of one data card with four
variables defined on it. The first three variables,
RLEP, SIG, and FMEG, are specified under E13.6 for-
mat. RLEP is the symbolic name for dielectric con-
stant, and SIG is that for conductivity in S/m, while
FMEG stands for frequency in terms of MHz. Finally,
the last variable of this last data file is sym-
bolically named MODE, which is read in under format
A4 and may have one of the following values:

"EXPZ"--is a four-letter code for plane wave which has
complex exponential variation in z direction.

"COSE"--is the code for incident field which has only the
x-component of E field with cosine variation in
the z direction.

"COSH"--is the code for incident field which has only the
y-component of H field with cosine variation in
the z direction.

Similarly, "SINE" ("SINH")--is the code for incident field
which has only the x-component (the y-component)
of E (H) field with sine variation in the z direc-

tion.

Obviously, the effect of EXPZ is equivalent to the
combined results due to COSE, COSH, SINE, and SINH. As we

have mentioned, the reason of dividing a plane wave into
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four different modes is for the purpose of applying sym-
metry conditions to a symmetrical body.

We have explained all the details about the input data
files in this section. Now we are ready to use "SURFLDS"
to solve for the EM field induced on the surface of an
arbitrary body. An example is worked out in the next

section.

4.10. An Example to Use the Program

As an example about the usage of the program
"SURFLDS," let us again consider the case of a cube illu-
minated by a plane wave as shown in Figure 4.3. We assume
that the cube has dimensions 2 cm x 2 cm x 2 cm, and is
constructed with a material with the following electrical
parameters at the frequency of 2.45 GHz: o0 = 2.21 S/m,
€y = 47. The cube has eight-fold symmetry, such that it
can be divided into eight different quadrants. Although
the same problem can be solved by dividing the body into
four quadrants, for the purpose of demonstrating the logic
of decomposing the plane wave into four separate modes,
we apply eight-quadrant symmetry conditions to this body.
We further divide each surface of the first gquadrant into
four surface cells, such that there are totally 12 surface
cells'(or totally 48 surface unknowns) to be considered,
where each of these surface cells has dimensions of

0.5 cm x 0.5 cm.
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As mentioned previously, since the incident plane
wave is decomposed into COSE, COSH, SINE, and SINH modes,
we have to run the program in four parts--one for each
constituting mode of the incident wave. The results due
to each incident mode will be buffered into a logical unit
with one of the following logical names, "TAPEl," "TAPE2,"
"TAPE3," and "TAPE4." And then the results contained
within these units will be appropriately combined in order
to obtain the true EM fields induced on the surfaces of
the first and the fifth quadrants.

With the help of Section 4.9 and Table 4.3, we can
easily list the input data files for the case of COSE

incident mode as follows:

File No. Information on the File
ik 03
2 0008
3 004 004 004 000 000 000
4.1 1.0 0.75 0.75 0.5
4.2 1.0 0.75 0.25 0.5
4.3 1.0 0.25 0.75 0.5
4.4 1.0 0.25 0.25 0.5
4.5 0.75 1.0 0.75 0.5
4.6 0.25 1.0 0.75 0.5
4.7 0.75 10 0.25 0.5
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0.75 1.0 0.5
0.75 1.0 0.5
0.25 1.0 0.5
0.25 1.0 0.5

47.000000E+00 2.210000E+00 2.450000E+03 COSE

Now we assume that both the program "SURLDS" and the

input data files are already stored in different permanent

files with "SURFACEEW" and "SURFACEDATACOSE" as permanent

file names, respectively. In this case, the commands

needed in order to submit the job through the interactive

terminals should be as follows:

Statement No.

dind

13.

Information in the Statement

*JOBCARD*,RG1,JC1000,T600,CM170000.
DISPOSE, **,V.

HAL, BANNER, LEE, SURFLDS, 8 SYMM, COSE .
ATTACH,EWFILE, SURFACEEW.

EDITOR.

ATTACH,A, SURFACEB.

FTN,I=Z,R,T.

COPYL,A,LGO,B.

PURGE,A.

CATALOG, B, SURFACEB, RP=999

RETURN, EWFILE.

ATTACH, EWFILE, SURFACEDATACOSE.

EDITOR.
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14. B,W.

L5 CATALOG,TAPEI,SURFACEDUETOCOSE.
163 *EOR

17. SAVE,Z,100-780.

18. *EOR

1975 SAVE,W,NS.

20i% *EOF

There are several points we like to mention about

the above job:

1) We assume that the program "SURFLDS" has been
compiled, and the compiled binary codes are
already stored in a file with permanent file name
"SURFACEB."

2) We don't have to recompile the whole program each

time we use it. If the array dimensions have been
changed, the only section that needs to be recom-
piled is the main program.

3) The computed induced surface fields are buffered

out to TAPEl, and then cataloged as a permanent
file named "SURFACEDUETOCOSE."

So the results due to COSE mode of incident field
have been obtained and stored into "SURFACEDUETOCOSE." To
obtain the results due to the other three incident modes,
the same program has to be rerun three more times with the

only change in the last data file where the correct code
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for the incident mode must be used. For example, when
COSH mode is considered, the program can be executed with-

out any recompilation by the use of the following commands:

Statement No. Information in the Statement

i B *JOBCARD*,RGI,JClOOO,T600,CMl70000
2 DIPOSE, **,v,
3 HAL, BANNER, LEE »SURFLDS, 8SYMM, COSH .
4. ATTACH, A, SURFACEB.
Dis ATTACH,EWFILE, SURFACEDATACOSH,
6. EDITOR.
74 A,W.
8. CATALOG, TAPE2, SURFACEDUETOCOSH .
CIE *EOR

10. SAVE,W,NS.

135 *EOF

After obtaining results for all four different modes
and creating four different permanent files for them sep-
arately, we are now in a position to combine these results
in such a way so as to yield the total induced surface
fields on the body surfaces. Another program called
"COMBINE" has been written for this purpose. Program
"COMBINE" has output including the magnitude and phase
information of the total surface fields in quadrants 1

and 5. The surface fields on the rest of the body, either
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magnitude or phase, can be deduced from the information of
the first or the fifth quadrant by intuition.

The data files for "COMBINE" are the same as those
for program "SURFLDS," except that the variable MODE of
the last data file for "SURFLDS" is redundant here. Hence
the input data files for "SURFLDS" can be used for
"COMBINE" without any modifications.

The commands needed in order to submit the program

"COMBINE" interactively, assuming that both the program and

the data files have been cataloged into permanent files,

will be as follows:

Statement No. Information in the Statement

IR *JOBCARD*,RG1,JC500,T100

2. DISPOSE, **,V.

3i HAL, BANNER, LEE, SURFLDS, 8SYMM, COMBINE .
4. ATTACH,EWFILE,COMBINEEW.

5. EDITOR.

6. ATTACH,A,COMBINEB.

% FTN,I=Z,R,T.

8. COPYL,A,LGO,B

9. PURGE, A.
10. CATALOG, B, COMBINEB, RP=999
1735 RETURN, EWFILE.
12 ATTACH, TAPE1, SURFACEDUETOCOSE

I35 ATTACH, TAPE2, SURFACEDUETOCOSH.
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14. ATTACH, TAPE3, SURFACEDUETOSINE.
15 ATTACH, TAPE4, SURFACEDUETOSINH
16. ATTACH, EWFILE, SURFACEDATACOSE
17 EDITOR.
18. B,W.
295 RETURN, EWFILE.
20. PURGE, TAPEL.
214 PURGE, TAPE2,
22. PURGE, TAPE3.
23 PURGE, TAPE4.
24. *EOR
25. SAVE, Z,100-1820.
26. *EOR
27. SAVE, W, NS
28. *EOF

Note that in the above job, we has assumed that pro-
gram "COMBINE" has been cataloged as permanent file
"COMBINEEW, " and that the compiled program has been stored
in permanent file named "COMBINEB." Furthermore, insteadof
"SURFACEDATACOSE"

creating a new input data file, the file

has been used.

4.11. Printed Output
The first output file of program "SURFLDS" mainly

performs the echo checking of the input data. The location

and dimension of each surface cell are listed first, then






159

the number of surface cells on surfaces of the first quad-
rant, the electrical parameters of the body, as well as
the frequency and the type of mode of the incident field
are all printed out as shown in Table 4.4.

The second output file is the listing of the real and
imaginary parts of the incident equivalent surface currents
which are internally determined for each surface cell.

This file is shown in Table 4.5.

Then the computed induced surface currents at various
surface locations are listed in the third output file where
all the surface currents are expressed in terms of Amp/meter,
as shown in Table 4.6.

The last output file consists of the information of
the induced surface fields at various locations on the body
surface as shown in Table 4.7. It is this file which will
be buffered out to a magnetic tape with one of the follow-
ing local file names, TAPEl, TAPE2, TAPE3, and TAPE4. Then
this magnetic tape will be cataloged as a permanent file
which has one of the following PFN's, "SURFACEDUETOCOSE,"
"SURFACEDUETOCOSH, " "SURFACEDUETOSINE," and "SURFACE-
DUETOSINH."

Now we briefly discuss the output files of the program
"COMBINE." The first file is the echo messages of the
input variables. The next four files contain the values

of the induced surface fields which are buffered in from

TAPEl, TAPE2, TAPE3, TAPE4, respectively.






45000403 0ISTIaAME 40 Lakd

20 caaMv e

tuseze =AININ0IW4

[ETs

L1AT1300N0)

IR ILTER ITY

STUID 30V Iuns-uns & Au

IMVEGUAD USMI4 JHL 20 S4uvidnS KG STIID . SZNK GYS 0 ikt 4 SXNAS v =2 b g

S e e
s wnou 1 uiuser Gonsze o
awoue scoouy ssuuer ¢ s "
avsusr eavuet st ‘
s e Couss .

& e o060 verort ke f

2 P sases e oo .
Gonass e Joweurt aosee )
e e vanun o
e woser s wiewert .
R s o Caun
e wiaser o Coraier s
s sose duvste oy )

w3 W g oy @3 un "

MUY GMSIT MY 1110 109 guns

URTYIVETY R

Fldoetau 13070 ARnILauy KaIn KUY |aWidS Sl

W w0 S s A0 LalanT0s ST st

«"SQT4¥NS, wexboid yo oTTF 3ndino 3saTd ‘p'y oTqer







161

‘ L T
« v eledueages )
. CU demasesitens )

‘ "0 ceea9valgets )

‘ - L) “ [
‘ . L i
‘ o e " CHED
‘ “ O] u o

‘ :. a2y
« . oo
‘ . e
« 0 4. e

A3 a0 amr

L7 TRy

SAUTIGH T s T

An- w0 xup

V48NS WM Nk No

‘ Y Guslesuze )0 : e “ R w o
‘ S dseuugues ) o " e “ e o oo
. o tumiveusees 0 4 n LR .~ [ - CO—
‘ 4 eedeiwines o o “ e 0 e 0 s

PIIVRTIE

WRsLI- W ke T

VWA L dAve 3n

¥ xie

4203808 WOTW aHL N

« -~ v . LSO . W CH R
‘ ~ LRI ~ o u o 0 RO
« -~ O | " T ] ‘o o “ a2
« “ [P o T | 0 e 0 LAY
anszs we awe moeeze 20 w0 aup
SMITIS L JAVH 31 Dvans gl lak wo
sl RN a1 RIEY semi Wy vl wa »

T3 M WI A SSGVINA M NG SINNND Wua Wd1

WAYD SRS SY IISTY v dned

u " SATHNS, weaboad jo oTTy and3ano puooeg

‘Sty °1qer






162

YR

(LT

“w

Wemive cnie

o

R SEFPRCOPES

Stmivinue,te

b odwr

RETTRTEAS

)

BT S O B

ST Lue -

e Laew

IOt P7EE
L e [ 11T o

[

T T LT

T VR

(Ga-Iverect= v =almwsut )
L T P A

L T L LA

WAZAs W Eee

S-duugsine

»

V0-Ip2un it bussENeeuEt

Ku=18

covuBze- v oInGII )

L R L L A I 1}

LACGEE 50-3sTensge
SOI520LG0 ) (Mu-U3NS6Z0  MG-SONSLSST ) (FUSISTCREITS Wualeakiet )

[ TOTTERT s
EOALES SUSIYUSUEET ) (SU-IeNLTI® aU-a9BIERST ) (Su-UCLBELEts ho10GSuET )

NERTE unsei- wa xur e e L0
SO0 SNL JAYH 38
eas o

LX L TN PRV IR P T T T T e B e TR L T L L

(ORI
Bussvesinn

e

N0-de izt
[LEpr

st

T P LR SR (Y A
(RC-1905809% = SumIUsNLOT -

R Ty A

(56-26u00p10 ausdoul

(o -ameTeutt LSRR

(v - 1zugbLs- b - TRISS

troas

sl

80 zne

YA/L3 v AN

P W

PRI

Wo LINNED B3 W

RTR
ShuTIvS WL JAVH Jn

et s

*SATAENSw

PRI AT

PISTIITE I

(5 1=aLrsy el te EumaTusIEEe )

(o -desgee 29mhachistt

0su6u’ ¢

(u=daessuds S9-

(u-TENGes

(ru-aa9uE fe0e EimdETEUNET

(5u-dn90uLus  Z1= SIINET

Gro-duewyye  Zu=IEAEI0LT 0

IR

1Ivauns WaTY KL NO

(1.-2zuvs9te §=0

(ol-dubtanss SG=IZHLENETT )

\SO-TLI9CuTe  SuUmlenTLOStT y

Cvamduaueyte Sa-dvIGeSEes Y
H- w0 A0
Dvasns el dWE 00
svml o

Dl ay N RGN

wexboxd jJo °TTF 3nd3no pATUL

*9p °Tq®l







163

R L T N TR
300t hestase
L Y TAT PR
L LT LTS NOTEPTIN

T PR TY o

[LIATTTIYTES

ZaukLets
R Pay (YCIX Y L)

G- hecuerets Lusdluaseee- )

[Ty

«

IWeciuze &

[T DT ST Y

Guese Gueazutyize )
LIRS aueiseverr )

SALTIGA M IAYH 48

€2 -aTrefaat 15-39T06

[LEETOY ST CoN RN M PEE
LIV L TR R E

s dubcugess lu-2euvzeet= )

INaeagewnZis b = dLTessEte )

I T P LI VAL

(5u-IETZUZVS wumaluLlnTs )

(§-2etuctis ae-iedneuEt= )

G- esgne

cealat e

L L A P T T

(LTSS TR

=392euive

)
AG-3a6e st dusieyTeuet- )

¥

P R

an
SAOTI04 IHL JAVK A

(LR P Y

Cho-1b0usyt - £1-296086

CTu-abuzesees 123299

Clussacuveuss (o= I83SN6

@

P s

AV MNA SSANIED N n

FIIES TTETTS GRS P T ELT ]
(Fu-ISATALT  Su-sRuvIEETs )

T TR T T T T A

J2066EST 3 < IET6ISES )

Lhadics W A e

»

P

wSATAENSw

wexpboxd jo °TT3F 3nd3no yzxanod

Stnuud d0s W31desda¥) SPUII0E LY

PR I TR O AN T P T L ]
(§a-aaesele Zi-1ZenmusEts o 4
(5= 1essent- En-suctisis= ) 08
(Su-1eEeay - Sa- UsYebLts ) L
an
AIVun Wy 0w dnd WO
(Romdeseuse= Zu-iakoasit o W
edusbilets Clmdeta S10 ) 4
Lar cimagatesit )9
P e e LT UL
m
.
o=t yos
(50-2MT3EUET= 40 ) o2
(v1-162yver”  50° v v
m
Pesuns dul ML KO
Jvel A .
Lsi1 duv 5041 UKD dnL

y oTdel







164

The sixth and the eighth output files list the total
surface fields induced by plane wave on the surfaces of
the first quadrant in real-imaginary and magnitude-phase
forms, respectively.

Finally, the seventh and the last output files list
the total surface fields for the fifth quadrant in real-
imaginary and magnitude-phase forms, respectively. The

above output files of the program "COMBINE" are shown in
Table 4.8.

4.12. Listing of the Program

For the purpose of reference, the programs "SURFLDS"
and "COMBINE" are listed on pagesl83 =229 . For about 150

surface unknowns, "SURFLDS" requires approximately 170000B

words memory, while "COMBINE" requires about 30000B words.
When the number of unknowns is more than 150, the memory
required for "SURFLDS" exceeds that obtainable from

CDC 6500 at MSU. To overcome this difficulty, the job may
be submitted through Merit Network System for execution at
other computing facilities. 1In this case, due to differ-
ent operating systems involved, apparently different con-
trol commands must be employed. Nevertheless, since the
program itself has been coded in standard FORTRAN, there
is no modification needed except a subroutine named "BLOCK

DATA" must be added into program “"SURFLDS." The function
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of "BLOCK DATA" can be found in most of the computer

user's manuals.
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CHAPTER V

SUMMARY

A new theoretical method for determining the eddy cur-
rent induced by an oscillating magnetic field in a finite
conducting body with rotational symmetry was presented in
Chapter II. This study was motivated mainly by two reasons:
(1) More biological research and medical applications uti-
lize the irradiation of RF magnetic fields. (2) When a
thick biological body is irradiated by a HF-VHF EM wave, the
induced current can be divided into the electric and mag-
netic modes. The magnetic mode of induced current, also
called the eddy current, is predominant and is difficult to
determine with a numerical method. The new theoretical
method was derived by utilizing the theory of vector poten-
tial, and the numerical results were obtained by using the
point-matching and matrix inversion techniques. Two differ-
ent forms of magnetic fields were considered in Chapter II,
namely, a uniformly impressed magnetic field and a beam of
uniform magnetic field. For both cases, the results
obtained by the new method were found to deviate signifi-
cantly from the conventionally used, quasi-static solution.

An experiment for measuring the magnitudes of the induced
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electric fields inside rotationally symmetrical bodies was
conducted, and some experimental results were presented.
Also, a closed form solution for the induced electric field
inside a finite conducting sphere was given in that chapter.
The accuracy of the new method was verified by comparing
the present solution with the experimental measurements as
well as the closed form solution for a finite conducting
sphere.

In the quantification of the magnetic mode of the
induced current in an irradiated biological body, one often
encounters the difficulty of numerical convergence. The
new method presented in Chapter II shows an excellent
numerical convergence and accuracy, and should help solve
this problem. It is noted that the applicability of this
new method is restricted to the cases of rotationally sym-
metrical bodies which are constructed with nonmagnetic
materials. For the cases of magnetic materials without
rotational symmetry, a different technique should be devel-
oped.

In Chapter III, the microwave interactions with finite
conducting, biological bodies were studied. As the first
step, we derived two coupled, surface integral equations
which relate the induced fields to the incident fields.

The validity of these equations was then verified by con-
sidering the special case of a two-dimensional, infinite

interface between free space and a finite conducting medium.
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These two surface integral equations were solved numerically
by use of moment-method. The results so obtained agree
quite well with the solutions obtained by a volume integral
equation method--Tensor Integral Egquation Method. For the
purpose of reducing the number of unknowns, only the cases
involved with electrically small bodies were demonstrated
in Chapter III. It is believed that this surface integral
equation method is potentially more efficient than the
volume integral equation method since when an electrically
large body is irradiated by EM waves, the fields induced
inside the body mainly concentrate in the region near the
body surface. Under this condition, solving the internal
fields through the volume integral equation becomes imprac-
tical.

Moreover, with a finer subdivision of the body for the
method of moment, the number of unknowns encountered in
solving the surface integral equations is usually less than
that encountered for the volume integral equation, if the
number of unknowns exceeds a certain number as in an elec-
trically large body. It is pointed out that the validity
of the surface integral equation method is limited to the
cases of homogeneous bodies due to the nature of deriving

the equations.
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