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ABSTRACT
THE EFFECTS OF SELECTED SODIUM BICARBONATE SUPPLEMENTATION
AND DIETARY REGIMENS UPON ACID-BASE STATUS AND
PERFORMANCE CAPACITY DURING HEAVY
INTERMITTENT MULTI-STAGE WORK

By
Asghar Khaledan

The purpose of this study was to determine the effects of
the ingestion of NaHCO3 (.065 gm/kg) under high CHO and fat-protein
dietary conditions upon acid-base balance and performance time in
trained long distance runners during an intermittent multi-stage
treadmill run to exhaustion. Eight healthy male distance runners
20-40 years of age were volunteer subjects in this study. The
subjects were stress tested, informed of the aim of the study and
randomly assigned to four different conditions. The conditions,
measured in four successive weeks, included: (a) NaHCO3 plus CHO
(sc), (b) NaHCO3 plus fat-protein (SFP), (c) placebo plus CHO (PC),
and (d) placebo plus fat-protein (PFP). Each condition was preceded
by three days of the relevant dietary regimen.

Each subject received a list of standard American foods con-
tained in the high carbohydrate or high fat-protein diets. Prior to
each test a dietary recall was conducted to determine the percentage
of carbohydrate, fat and protein that were consumed. Two hours

before the exercise test the supplement was taken orally.
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The exercise consisted of six different levels with speeds
~of 6, 7, 8, 9, 10 and 10 mph and 5, 6, 7, 8, 9 and 12% grade, respec-
tively. Each level consisted of 3 minutes of exercise followed by 3
minutes of rest. On each test the subject ran to exhaustion. Recovery
was standardized at 15 minutes. Heart rate, respiratory rate, and
energy metabolism measurements (Douglas bag method) were measured
throughout the work and rest intervals and the recovery period. Blood
gases (Astrup method), varjous acid-base parameters, and blood lactic
acid (Enzymatic method) were obtained from blood samples taken pre-work,
following each work load, and at 5, 10 and 15 minutes of recovery.
The maximum time the subject could continue to work was recorded.
Data were analyzed using a repeated measures ANOVA and the sign test
was used in instances where there were continuous curvilinear measures.
No statistically significant differences were observed in
performance time, V02 max, gross 02 debt or oxygen uptake among the
four treatment conditions. Ventilation values were highest under
the fat-protein condition. Significant bicarbonate effects were
observed in the pre-run pH values (P = .09) and in the differences
between the pH values at the end of exercise and at five minutes of
recovery (AL5-R1, P = .03). The pH values were consistently higher
following NaHCO3 supplementation under both dietary conditions
(P = .01). With supplementation of NaHC03, the PCO2 values were
significantly lower under both dietary treatments. The PO2 measure-
ments were consistently higher under the CHO (P = .002) and SC condi-
tions (P = .002). The HCO% and base excess values showed a supple-

ment effect from the termination of exercise to the first five
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minutes of recovery (AL5-R1) (P = .07 and .01). HCO% and base

excess values were lower under the CHO dietary condition (P = .02 and
P = .09). Only the supplement differences in lactate between levels
5 and 15 minutes of recovery (AL5-R3) were significant (P = .09).

the lactate differences were highest following bicarbonate supple-
mentation.

The following conclusions were drawn:

1. The oral ingestion of sodium bicarbonate, in the dosage
of .065 gms/kg of body weight, alters the acid-base status of the
blood of trained distance runners toward greater alkalinity.

2. In the absence of supplementary sodium bicarbonate
intake, a high carbohydrate diet changes the acid-base status of the
blood of the trained distance runners toward greater alkalinity.

3. The oral ingestion of sodium bicarbonate two hours
before work does not significantly increase the maximum performance
time of trained distance runners.

4. A high carbohydrate diet does not significantly increase
the maximum performance time of trained distance runners.

5. The effects of sodium bicarbonate supplementation and
a high carbohydrate diet are not synergestic in trained distance
runners.

6. There are no significant improvements in maximum
oxygen intake or oxygen debt following either NaHCO3 or carbohydrate
diet treatments, and there are no interactions between the two

treatments.
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CHAPTER 1
THE PROBLEM

Methods of increasing an athlete's performance have long been
of research interest. Maximum performance involves intricate and
complex adjustments of the body systems. Biomechanics, psychological
factors and physiological adaptations are all involved. Since the
entire spectrum of performance-related factors is too broad for in-
depth study, it is necessary to narrow the scope. In the present
study, emphasis has been placed upon the effects of manipulation of
acid-base status upon performance.

Changes in blood gases, acid-base balance, and lactic acid
Tevel during exercise and recovery have been studied extensively
since the classic work of Hill et al. (118), Margaria et al. (190),
and Fletcher and Hopkins (84). The accumulation of blood lactate
has been considered to be an indication of anaerobic metabolism
during muscular effort with a high Tevel being associated with
exhaustion (94, 104, 155). This interpretation is not applicable
to continued low-intensity work in which other factors, such as
depletion of energy stores, are more closely related to the end
point of exercise (12, 14, 26, 49, 95, 121, 136, 229, 231).

The highest levels of lactic acid are found in young

individuals who are highly trained for high intensity work of



durations between one and five minutes (261). Hill et al. (118) and
Margaria et al. (190) demonstrated that there is a positive correla-
tion between the blood lactate level and the amount of O2 debt at
the end of exercise. The higher the blood lactate at the end of
work, in general, the higher the oxygen debt in the same individual
(115, 190). Between individuals, however, this correlation is not
high. Since it has long been observed that there may be little
lactate in the blood with four- to six-liter oxygen debts (15, 189),
the debt was divided by Margaria into alactacid and lactacid
components (189, 190).

The blood lactate level is dependent on the rate of lactic
acid formation in the working muscles, the rate of its intracellular
reconversion to glucose, the rate of its diffusion into the blood
and adjacent tissues (255), the rate of its utilization by
skeletal and cardiac muscle (39, 149, 150, 174, 176), and the rate
of its removal by the 1iver (21, 66, 222). The intracellular pro-
duction of lactic acid is related to the intensity and duration of
muscular work (69, 109, 206).

During anaerobic work, in which glycogen is metabolized,
lactic acid is the end product. Since the pK of lactic acid is
3.86, it dissociates into lactic and HF rapidly, resulting in the
accumulation of the H' jons. The accumulation of H' jons will
cause the tissue pH to fall (106, 115). An almost direct Tinear
relationship has been shown between the blood pH and muscle pH

- (155, 206). Intra-muscular pH has been proposed as the main limiting

factor in anaerobic exercise (70, 87, 113, 117, 207). This low pH



alters both the intracellular and blood acid-base status which may
affect a series of biochemical reactions (3, 4, 54, 87, 99, 113, 213,
227, 269).

Katz (163) suggested that defects in cardiac contractility and
the occurrence of myocardial ischemia may result from intracellular H'
accumulation. It is believed that elevated H' concentrations reduce
the binding capacity of Ca++ to troponin and therefore inhibit acto-
myosin formation in muscular contraction (87, 233). Also, the activity
of phosphofructokinase (PFK), one of the regulatory enzymes in the
glycolytic pathway (64, 101, 178, 180, 256, 260), is inhibited by
high concentrations of ATP (180, 208, 256), citrate, isocitrate (180,
208, 216) and by a low pH (64, 116, 185, 260, 262).

It has been reported that lactate concentrations up to 32
mM/1 will cause severe metabolic acidosis in the blood as indicated
by a low blood pH of 6.80 and a low plasma bicarbonate concentration
of 2.6 mEq/1 (54, 206, 269). The H' ion can be buffered by the
HCOQ jon to form carbonic acid which then dissociates into carbon
dioxide and water. There are other buffers, including hemoglobin
and phosphate, in addition to bicarbonate. The linear relationship
between the plasma bicarbonate level and the buffering capacity of
the body indicates that the blood base excess (BE) is a good estima-
tion of the total body buffering capacity (32, 94, 206, 267). Since
the increased H+ ions associated with lactate can be buffered by
bicarbonate, it is reasonable to hypothesize that ingestion of
alkalyzing agents such as sodium bicarbonate could result in

increased buffering capacity and, therefore, enhanced performance.



The effect of the ingestion of alkalyzing agents has been
the subject of numerous studies. The results are controversial.
Some show enhanced performance (71, 72, 147, 148, 245, 257), others
no change (145, 162, 187). There also is evidence of negative
effects (67).

Supplementation with different doses of bicarbonate to
increase the alkaline reserve has been used during heavy work (18,
19, 71, 72, 137, 147, 148, 245, 257). Dennig et al. (72) claimed
that 02 debt is Tower for standard work under alkalotic conditions
induced by ingestion of bicarbonate. A statistically nonsignificant
(about 23 percent) but directional increase in total work output
was observed by increasing bicarbonate to .13 gm/kg body weight and
the base excess to 4.1 mEq/1 before the start of high intensity
anaerobic work (18, 19). These studies suggested that anaerobic
glycolysis and performance might be facilitated by a slightly
alkalotic extracellular medium in the body. In fact, under con-
trolled conditions, the conversion of glucose to lactate is enhanced
in a relative alkaline state (18, 19). Transformation of inactive
phosphorylase b to active phosphorylase a may be facilitated by an
increase of cellular pH (56).

By giving oral doses of sodium bicarbonate or ammonium
chloride, Jones et al. (147) and Sutton et al. (257) produced either
alkalotic or acidotic conditions in their subjects before work on a
cycle ergometer. They found that the acidotic subjects had low
venous blood lactate levels and short performance times while the

alkalotic subjects had high venous blood lactate concentrations and



long performance times. Muscle biopsy samples taken at rest and at
70% of VOZ max also were obtained by these investigators to assess
the effects of intracellular pH on lactate production in the muscle
cells and lactate transportation into the extracellular fluid.
Since the lactate changes in muscle and blood were parallel, they
hypothesized that decreases in intracellular pH may reduce lactate
production in the muscles as a result of the inhibition of anaerobic
glycolysis at the level of glycogen phosphorylase.

The ventilatory response to simultaneous hypercapnia and
moderate to severe hypoxia exceeds the sum of the responses to
each stimulus applied alone (82). This interaction of hypoxic and
hypercapnic stimulation was absent following both CO2 exposure and
bicarbonate ingestion. An increase of buffering capacity under
metabolic alkalosis is believed to be the reason. Furthermore,
intravenous infusion of sodium bicarbonate stimulates ventilation
in spite of a fall in interstitial H* concentration (195).

The early experiments of Christensen and Hansen (50) and
Krogh and Lindhard (177) showed endurance performance capacity to be
significantly greater when the subjects ate a high carbohydrate diet.
As a result of the original work of Bergstrom and Hultman (27), it is
believed that loading the body with carbohydrate for some days before
strenuous exercise results in an accumulation of muscle glycogen
which is of real benefit to the endurance athlete (112, 134, 164, 231).
However, in addition to glycogen super-compensation following "carbo-

hydrate loading" there is evidence of myoglobinuria (22, 237),



heaviness and stiffness in the muscle (27), angina-like pain, and
electrocardiographic abnormalities in the hearts of marathon runners

(193).

Recently the diet has been shown to be related to acid-base
levels with higher pH, bicarbonate, base excess and lactate values
under high-carbohydrate dietary conditions (26, 28, 29, 30, 112, 133,
134, 137, 192). Preliminary data for the present study has also
shown that performance time may be increased using bicarbonate sup-
plementation with no change in a timed recovery. The differences in
results observed may be due to the type of subjects studied (i.e.,
trained vs. untrained), the type of fitness the subjects possess
(i.e., power or endurance), and the type of diet the subjects are eat-
ing. The present study was designed to control for training level

and type of fitness as diet and bicarbonate ingestion are manipulated.

Statement of the Problem

The purpose of this investigation was to determine the
effects of oral ingestion of sodium bicarbonate (.065 gm/kg) under
different dietary conditions (carbohydrate and fat-protein) upon
acid-base equilibrium and performance time in healthy, fit, long-
distance runners during an intensive intermittent multi-stage

treadmill run to exhaustion.

Significance of the Study

This investigation is the initial effort in which diet and
bicarbonate ingestion have been manipulated in endurance athletes.

The resulting data are unique. The significance of the study rests



in obtaining new information regarding diet-related alterations in
performance and acid-base parameters in a carefully described study

population.

Research Hypotheses

1. The oral ingestion of sodium bicarbonate in the dosage
of 0.065 gms/kg body weight will alter the acid-base status of the
blood toward greater alkalinity.

2. The ingestion of a high carbohydrate diet will alter
the acid-base status of the blood toward greater alkalinity.

3. The ingestion of sodium bicarbonate two hours before
work will increase maximum performance time.

4. The ingestion of a high carbohydrate diet will increase
maximum performance time.

5. The effects of sodium bicarbonate supplementation and
a high carbohydrate diet will be synergistic.

6. Enhanced performance times will be achieved with little

or no differences in the maximum oxygen intake or oxygen debt.

Limitations
1. It was not possible to supervise the supplement and diet
programs of the subjects. Reliance was placed on the word of the
subjects.
2. The results of this study can be applied only to male
long-distance and marathon runners, between 20 and 40 years of age,

under similar supplement and diet conditions.



3. There is no way to know with certainty that each subject

ran to exhaustion on each run.

Definitions
Acidosis. The condition in which excess H s present in
the body. An increase in H* concentration decreases the pH of the
blood, which in turn tends to deplete the body's alkali reserve and

alters the acid-base balance.

Alactacid Oxygen Debt. That portion of the recovery oxygen

used to resynthesize and restore phosphagen (ATP + CP) in muscle

following exercise.

Alkaline Reserve. The amount of alkalizing salts and

protein buffers that are available in the body for buffering H+ jons.

Alkalosis. The condition in which the concentration of H*
is reduced in the body. The decrease in H' increases the pH and

alters the acid-base balance.

Base Excess (BE). The titratable base minus the titratable

acid, when titrating the extracellular fluid (Ecf = blood plus

interstitial fluid) to an arterial blood plasma pH of 7.40 at a
PCO2 of 40 mg Hg at 379 €. It is expressed in terms of + meq/L,
indicating the accumulation of non-volatile acid or base in the

blood (17).



Bicarbonate-carbon Dioxide System (HCO,/CO,). Bicarbonate

is the most important buffer in the blood. It acts as a buffer to
decrease H+ via the following reaction:
+

H + HCO, < H2C0

3 < (€O, + H

3 ) 20

Only a very small amount of combined H + HCO§ remains as H2CO3.
Most of the H2C03 is converted to CO2 and water at equilibrium.
Increased lung ventilation removes carbon dioxide and causes the
reaction to move to the right. This allows increased amounts of
hydrogen ion to be excreted. Decreased lung ventilation does the

reverse. Carbon dioxide is elevated causing an indirect increase

in hydrogen ion concentration.

Buffer. A chemical substance which, when present in a
solution, causes resistance to pH change. In blood, buffers consist

of weak acids and their conjugate bases (180, 256).

Buffer Base. The cation equivalent of the sum total of
buffer anions. It is expressed in terms of meq/L of whole blood

(17).

Carbonic Anhydrase. The enzyme that speeds up the reaction

of carbon dioxide (C02) with water (H,0) to produce HC03.

2

Glycogen Super Compensation. Above normal deposition of

glycogen in muscle following exhaustive work and a high carbohydrate

intake.
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Gross Oxygen Debt. The total amount of oxygen utilized

during recovery from work. For practical purposes constant timed

recovery periods are frequently used.

Intermittent Work. In the present study this is the tread-

mill exercise of varied workloads carried out with alternate work

and rest intervals of three-minutes duration.

Lactacid Oxygen Debt. That portion of the recovery oxygen

used to remove accumulated lactic acid from the blood following

exercise.

Lactate. The salt of lactic acid (CH3CHOHC00H).

Maximum Oxygen Uptake (\702 max). The maximal rate at which

oxygen can be consumed per minute, or maximal aerobic power.

PC. The experimental condition in which a placebo

(dextrose) was ingested following a high carbohydrate diet.

Performance Time. The total period of time, in seconds,

which each individual performed on the treadmill. The subjects were

expected to run to exhaustion under each condition.

PFK. Phosphofructokinase, the rate-limiting allosteric
enzyme which catalyzes the reaction between fructose 6-phosphate

and fructose 1,6-diphosphate in the glycolytic pathway.

PFP. The experimental condition in which a placebo

(dextrose) was ingested following a high fat-protein diet.
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Phosphagen (PG). Collectively refers to adenosine tri-

phosphate (ATP) and creatin phosphate (CP) (186).
Pi. Inorganic phosphate.

Plasma Bicarbonate (HCO}I. The bicarbonate ion concentra-

tion in the plasma of fully oxgenated whole blood which has been

equilibrated to a PCO2 of 40 mm Hg at 37°C (17).

SC. The experimental condition in which sodium bicarbonate

(NaHC03) was ingested following a high carbohydrate diet.

SFP. The experimental condition in which sodium bicarbonate

(NaHCO3) was ingested following a high fat-protein diet.

Total CO2 (TCOZl. The sum of actual bicarbonate plus

carbonic acid. Since the latter is equal to 0.03 x PCO2 (where
0.03 is a constant which relates the partial pressure of CO2 to

the sum of dissolved CO2 and H2C03 in plasma), total 002 = (HCO%) +
(0.03 x PCOZ) expressed in terms of mM/L of plasma (17).



CHAPTER 11

REVIEW OF RELATED LITERATURE

The related literature pertinent to this investigation has
been categorized in ten sections: (a) anaerobic energy metabolism,
(b) aerobic energy metabolism, (c) energy metabolism during
recovery, (d) limiting factors in anaerobic and aerobic work,

(e) measurement of aerobic and anaerobic capacity, (f) acid-base
balance and anaerobic metabolism, (g) acid-base balance and aerobic
metabolism, (h) acid-base balance and performance, (i) effects of
diet on muscular performance, and (j) effects of diet on acid-base

balance.

(a) Anaerobic Energy Metabolism

The contraction of skeletal muscle represents the trans-
formation of chemically-bound energy to mechanical energy. That is,
body movement is dependent upon the breakdown of adenosine tri-
phosphate (ATP). For muscular contraction to continue for more than
a few seconds, the level of ATP in the muscle must continually be
replenished via the anaerobic and/or aerobic pathways (Figure 2.1).

The immediate source of energy for muscular work is provided
by the splitting of high-energy phosphate bonds--adenosine tri-
phosphate (ATP) and creatinephosphate (CP) or, in general, high-
energy phosphate (Figure 2.1a and b). Collectively, ATP and CP are

12
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(AT Pase) Wotrk
A. ATP ADP +P; +En
[aTP];
(CPK) /7
B. CP C+Pn,+EnN
\
|
oxid. ‘\\ |
C. Food+ O, CO2 + HO + En
phosph,
anaer.
D. Glycogen LA + En
(or glucose) )
glycolysis

Figure 2.1. Schematic representation of the various energy sources
for muscular work. A, B, C and D correspond to the
different reactions as indicated in the modified Lohman
scheme (44).

called phosphagen (PG) (186). These primary energy-rich compounds
are found in varying concentrations in all living cells, particu-
larly in muscle cells. The average concentrations of ATP and CP in
human skeletal muscle are about 4 and 16 moles Kg'] of wet muscle,
respectively (135, 156, 159, 175). Although the total amount of
muscular stores of PG is negligible--only about 0.3 moles in females
and 0.6 moles in males (85), when PG is broken down (i.e., when the
phosphate group is removed) a large amount of energy is produced.

At rest the ATP concentration is at its highest, but with the

initiation of contraction ATP is split to form ADP and Pi. Since
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there are limited amounts of ATP in the muscle cells, its supply
would be exhausted after a few contractions, and longer work would
be impossible, if ATP was not resynthesized continuously at nearly
the same rate that it is split. Several investigators have reported
a linear relationship between work intensity and the reduction in
muscular PG. They showed that PG is approximately 80% depleted

after working at 75% of VO, max with only a slight additional decline

2
occurring at the highest work load. Karlsson and Saltin (159)
reported that oxygen deficit is closely related to the PG depletion.

In muscular work lasting longer than a few seconds at an
intensity highér than 80% of VOZ max, ATP is resynthesized via
anaerobic glycolysis, the end product of which is lactic acid (44,
94, 108) (Figures 2.1d and 2.2). This mechanism can adequately
maintain the ATP and CP levels in the working muscles for several
minutes during heavy exercise. The rate and magnitude of degredation
of muscle glycogen for anaerobic metabolism are governed by the
intensity of exercise (94).

During heavy exercise, when the work load is higher than 100%

of V0, max, glycogen depletion takes place rapidly and the muscle

2
lactate levels may be high. Under these conditions the degradation
of glycogen represents a significant source of energy for muscular
activity. However, exercise of this intensity produces exhaustion
before the glycogen stores of the muscles are completely depleted.

Factors other than the glycogen supplies of the muscle appear to

1imit work capacity at these intensities (94).
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The importance of the liver in the removal of lactate
during work has been postulated by several investigators (21, 66,
222). According to Rowell et al. (223, 224, 225) approximately 50%
of the total amount of lactate eliminated is metabolized by the
liver during exercise. Furthermore, it has been shown that skeletal
muscle fibers have the capacity to metabolize lactate during the
course of muscular work (114, 139, 149). A negligible amount of
lactate also is eliminated in sweat and urine (174) or is metabolized
by the myocardium and resting skeletal muscles (39, 150), as well as

by other tissues (174, 176, 255).

(b) Aerobic Energy Metabolism

At relatively low work intensities (less than 70% of \702
max) energy needs for the regeneration of ATP and CP may be provided
by oxidative metabolism via the tricarboxylic acid or Krebs cycle
(Figures 2.1c and 2.3). The longer the exercise duration, the more
oxidative phosphorylation reactions are utilized to meet energy
demands and the less anaerobic glycolysis is involved (77, 164).

The most important substrates for aerobic energy production are
carbohydrates and the fatty acids, including their intermediate
degradation products such as pyruvate and ketone bodies. To a lesser
extent, amino acids also can be oxidized. The relative contribution
of these substrates to the total energy-delivery is dependent upon
the intensity, duration and type of exercise as well as upon the

diet and the conditioning of the subjects (15, 26, 165, 166, 167,169).

The efficiency of these processes is relatively high. For example,
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glucose can generate approximately 13 times more ATP per gram mole
aerobically than anaerobically (180, 256). In submaximal exercise,
if the rate of ATP formation via oxidative phosphorylation is
sufficient to cope with the amount of ATP and CP split, the indi-
vidual will reach a so-called "steady state" in which the 02 uptake
and the 02 requirement are equal.

The application of a training program can alter the indi-
vidual's oxygen uptake and modify the energy turnover (164).
Usually, the oxygen consumption is slightly lower at the same
absolute work Tevel following training (80, 146). In both animal
and human studies, it has been shown that the quantity and activity
of aerobic enzymes are increased after endurance training (20, 23,
94, 125, 197, 263). A good correlation has been found between the
aerobic function of a muscle and its content of mitochondria (20,
88, 125, 126, 142, 179, 197, 199, 205). An increase in the number
of mitochondria in skeletal muscle is associated with an increase
in the ability of the muscle to generate ATP (124, 125). Within
the same individual, the most active muscles have the highest
respiratory capacity (125, 142, 179).

Endurance training has been shown to increase \'IO2 max
capacity which is the maximal amount of oxygen capable of being
transported to and consumed by the working muscles (79, 80, 146,
230). The magnitude of the increase depends upon the individual's
initial level of training and the intensity as well as the duration
of the exercise program. This increase is in the range of 10 to 20%

for programs of 6 to 12 weeks duration (15). Larger increases have
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been reported for programs of 2 to 3 years (79). The improvement in
\'/O2 max is accompanied by increases in cardiac output, stroke volume
and in the arteriovenous oxygen difference (79, 80, 230).

Although the maximum oxygen intake has been recognized for
its importance in endurance exercise, it is likely that the maximum
work level at which the individual can maintain steady state is more
important. This maximal percentage level of VOZ max would represent
the rate at which the lactic acid accumulation is at its highest
level without causing cessation of work. In terms of endurance
work the maximum level of steady state that can be achieved may be

the most critical.

(c) Energy Metabolism During Recovery

Margaria et al. (189, 190) divided the 0, debt into
alactacid and lactacid portions. The alactacid portion is believed
to correspond to the amount of oxygen required to rebuild the PG
stores depleted during exercise (Figure 2.1a and b). Thus, the
restoration of muscle PG by an increased oxygen consumption during
the early portion of the recovery period following exercise is called
the alactacid oxygen debt (46, 75, 76, 107, 189, 190, 191, 270).

The maximal depltion of ATP in skeletal muscle following
muscular work is about 40% that of the resting level (94). In con-
trast, the CP supplies can be depleted during exercise. The
restoration of ATP and CP stores in the muscles during recovery

costs energy which is derived from complete oxidation of carbo-

hydrates and fats. The replenishment of the phosphagen stores has
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been shown to be a rapid process. Based on the muscle biopsy tech-
nique, after continuous submaximal work for twn minutes the half-
time for PG replenishment ranges between 20 and 30 seconds (85).

Lactacid 02 debt is believed to reflect the oxygen used to
remove accunulated lactic acid from the blood and muscle during
recovery following exercise (74, 75, 189, 190). The maximal
capacity of the lactacid O2 debt of the young male and female has
been reported to be 220-250 cal/Kg body weight (45). This value,
however, decreases with age (45) and with changing environmental
conditions, particularly in chronic hypoxia (43).

(d) Limiting Factors in Anaerobic
and Aerobic Work

One of the classical questions within the field of work
physiology is to postulate the factors which limit \702 max and per-
formance. The traditional concept presented by Hill et al. (119,
120), Christensen (48), Margaria et al. (190), Nielsen and Hansen
(204) and included even in recent reviews on circulatory adaptations
to severe exercise is that a given VOZ max requires a fixed heart
rate, stroke volume and cardiac output (79, 228, 253). This whole
idea, however, was challenged recently partly due to new knowledge
of the adaptive modification in skeletal muscle and the cardio-
vascular system (127) and partly due to the failure of skeletal
muscle to exhibit better performance following oxygen administration

(150).
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Evidence suggests that lactic acid production, not oxygen
consumption, may be the rate-limiting factor during muscle contrac-
tion (217). The assumption that the muscles produce lactate because
of insufficient oxygen to maintain electron transport in the mito-
chondria is invalid since mitochondrial NAD/NADH has been shown to
go toward the oxidized state with both twitch and tetanic contrac-
tions of isolated frog and toad muscle and in situ mammalian muscle
(143, 144, 250, 251). This suggests that the electron transport
system is blocked somewhere between the cytoplasm and the mitochon-
drial NAD. There is electron accumulation in the cytoplasm which
contributes to lactate production, but oxygen does not appear to be
the rate-limiting factor. However, the fact that the oxygen supply
does not appear to be the rate-limiting process in muscles does not
indicate that 02 transport may not play a critical role in deter-
mining maximal performance (251). The oxygen supply can be shown to
be critical if insufficient oxygen results in impaired tissue mito-
chondrial capacity (150, 154).

Several studies have reported a relationship between lactic
acid accumulation and fatigue (10, 25, 84, 155). Recent studies on
cardiac muscle (163) and skeletal muscle (87) also have provided
evidence indicating that an elevated H+ ion concentration might
affect the myosin-actin interaction during the process of muscular
contraction. This could be a limiting factor during overall heavy
work (87, 233). On the other hand, pH values of circulating blood
below 7.1 may affect the neuromuscular transmission and the reaction

of skeletal muscle to acetylcholine (70), and cause an increased
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tension in solutions containing high lactate and low HCOQ levels
(207). The possibility was considered that there is an increased
mobilization of intracellular Ca++ at Tow pH. These observations
suggested that blood pH might be the 1imiting factor in work to
exhaustion.

Various investigators have shown that the glycogen content
of muscle decreases in relation to the duration and intensity of
exercise and may finally become a limiting factor in endurance work
(112, 134, 164, 231). It was reported that the concentration of
hexose monophosphates were very low during heavy exercise indicating
that either a lack of glycogen (24, 172) or the inability to utilize
the glycogen in glycogen-filled fibers (172) was a limiting factor
for work performance.

(e) Measurement of Aerobic
and Anaerobic Capacity

The energy needs for muscular work are derived from both
anaerobic and aerobic sources. The relative contribution of these
two energy-liberating processes depends upon the type of work, the
intensity of work, and the duration of work. During prolonged
exercise of relatively low intensity, most of the energy is derived
from oxidation of carbohydrates and fat; whereas, during short
exhaustive exercise, the energy needed is derived mostly from
anaerobic processes (PG and anaerobic glycolysis). According to the
relationship between energy metabolism and 02 consumption, an indi-
vidual's capacity for aerobic work may be measured in terms of O2

uptake.
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Holmgren (128) suggested that VOZ max depends on the func-
tions of the pulmonary and cardiovascular systems which include the
diffusion capability of the lungs and the O2 transport by the blood
to the active tissues. Considering only the cardiovascular system
in 02 transport, its contribution is shown in the Fick equation

(228):
VOZ = heart rate x stroke volume x arteriovenous O2 difference

To measure the maximal oxygen uptake the subject need not be
involved in an all-out test to the point of exhaustion. Following
warm up of at least five minutes duration, the VOZ max may be
obtained in high-intensity work of less than two minutes duration
or in extended work in which the load is gradually increased (15).
Astrand (15) found a linear increase in O2 uptake with
increased work loads up to the level of the maximum oxygen uptake
which he called the "maximal aerobic power." Two main criteria were
used to identify the \702 max: (a) the 02 uptake level does not
change in spite of increasing work loads, and (b) the concentration
of blood lactate is above 70 to 80 mg/100 ml1 of blood with a signi-
ficant increase of the hydrogen ion (H+) concentration. Both
trained and untrained individuals usually can perform continuous
work at 60 to 70 percent of their \702 max (168). Surprisingly, in
the same people, the values obtained at different intensities and
durations for the same type of work (i.e., running, swimming, etc.)

vary little (13, 16). However, different 002 max values can be
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obtained when using exercises in which more or Tless muscle mass is
involved (246, 254), the work posture is changed (230), the type of
apparatus is altered (83, 111), or the physical condition of the
subject is changed (230). In general, among athletes the highest
002 max values are obtained in their chosen sport. That is,
swimmers obtain higher V02 max values while swimming than when on a
treadmill or a bicycle ergometer, and distance runners' 002 max
values are higher on a treadmill than when swimming or riding a
bicycle (13, 16).

On the other hand, there are no generally accepted methods
by which the anaerobic energy release can be calculated quantita-
tively. The relative contributions of these two important energy
systems, therefore, cannot be determined exactly. However, it is
possible to estimate the amount of energy released through anaerobic
processes by measuring the changes in concentration of ATP, CP, and
lactate in the muscles during and after work. According to Karlsson
(155) it is reasonable to assume a total maximal energy output of
about 30 K cal by anaerobic sources. Based on the results from this
study and others (25, 108, 135, 159), the relative contribution of
the anaerobic and aerobic systems to total energy liberated during
exhaustive work of various durations can be estimated as shown in
Table 2.1.

Asmussen (9) reported the efficiency of anaerobic work to be
between 40 and 50 percent that of aerobic work. Christensen and

Hogberg (51) found this value to be around 40 percent.
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TABLE 2.1.--Relative Contribution of Anaerobic and Aerobic
Energy Metabolism to Total Energy Output During
Maximal Exercise of Different Durations.

Energy Output Relative Contribution
(K cal) (%)
Work Time,
Maximal Anaerobic Aerobic Anaerobic Aerobic
Exercise Processes Processes Total Processes Processes
10 sec. 20 4 24 83 17
1 min. 30 20 50 60 40
2 min. 30 45 75 40 60
5 min. 30 120 150 20 80
10 min. 25 245 270 9 91
30 min. 20 675 695 3 97
60 min. 15 1200 1215 1 99

Based on the enzymatic reactions of lactic acid production
LDH
(pyruvic acid + NADH+ <> lactic acid + NAD+) and the concept of

"excess lactate" (LX), Huckabee (130, 131) reports that it is
unwarranted to use lactate change as an indication of inadequate
oxygen in the tissues. Since a change in the pyruvate concentration
may affect lactate production as much as oxygen deficiency, he notes
that pyruvate concentration should be considered in evaluating the
XL concentration which he believes is a better measure of anaerobic
metabolism than is lactate. However, according to the concept of

alactacid and lactacic 02 debt, Margaria (190) proposes that venous
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or arterial blood lactate concentration are good estimators of
anaerobic metabolism in short-duration high-intensity exercise.

It should be noted that a high correlation has been found
between oxygen debt and arterial lactate (5, 68). Furthermore,
several studies have reported high relationships between the
arterial lactate level and the work load (38, 68, 210). Karlsson
(155) also reported that a close linear relationship exists between
the arterial blood lactate level during recovery and the muscle
lactate concentration immediately after work. The arterial blood
lactate concentration ranges between 11 and 14 mM/1 for young,
moderately trained subjects; whereas, it may be as high as 30 mM/1
in highly trained, motivated, middle-distance runners (15).

Several investigators (37, 129, 190, 272) recommended the
use of arterial blood rather than venous blood in studies of acid-
base change since it is difficult to evaluate any modification of
the blood after it has passed through the capillaries of non-
exercising muscles. Furthermore, there is a marked arterial-venous
difference when a part of the lactate produced is metabolized in
skeletal muscles. If lactate is metabolized by non-exercising
muscles, the alkalinity of the venous blood could be increased since
it would decrease the H' concentration.

Osnes and Hermansen (206) and Bouhuys et al. (32) observed
a linear relationship between arterialized capillary blood lactate
and the arterialized capillary blood HF level in muscle biopsies

taken during exercise. A very high relationship also was reported
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between arterialized capillary blood and muscle pH in exercising
human muscles (32, 108, 110).

There is a negative relationship between base excess and
lactate concentration in arterial blood (32, 206). Bouhuys et al.
(32) found a BE value of -14 mEq/1 in a group of twenty-seven male
subjects aged 22 to 30. The change in BE (pre-work to post-work)
was 15.6 mEq/1. The same relationship existed between plasma
bicarbonate and the concentration of lactate in the blood (72, 94,
267). The plasma bicarbonate was shown to be zero with an elevation
of lactate of about 30 mM (94).

In aerobic work the net alactacid O2 debt appears to be
linearly related to the 02 consumption at steady state (157, 190,
212) which is about 20 ml/kg/min during maximal aerobic exercise in
young fit non-athletic subjects (74, 75). This has been judged to
correspond to the splitting of about half of the total phosphagen
content of the resting muscle (155). About two minutes following
exercise, the phosphagen resyntheses has been found to be complete
(135, 212).

Other investigators have reported different magnitudes of

the 0, debt varying from 4 to 5 Titers up to 20 to 22 liters of 02

2
(108, 118, 188, 202, 226). This variation is due to (1) duration
of measurement time, (2) determination of the metabolic baseline,
(3) elevation of body temperature after exercise, and (4) elevated
O2 demands of respiratory muscles and the heart (15, 150, 173, 268).

Several recent studies have attempted to determine if the

oxygen intake during recovery can be attributed to chemical
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repayment of energy sources that were "borrowed" during work.
Stainsby and Barclay (252) determined that an oxygen debt of 5
liters in an 80 kg man could be accounted for as follows: 10 per-
cent to replenish blood oxygen stores; 2-5 percent for repayment of
tissue 02, dissolved 02, and full saturation of muscle myoglobin;
and 70 percent for the reconversion of ATP from high energy
phosphate bonds. About 15 percent of the recovery oxygen intake
was unexplained.

(f) Acid-Base Balance and
Anaerobic Metabolism

Maximal exercise of 2-4 minutes duration results in the
formation of Tactic acid in the muscle cells. This intracellular
lactic acid diffuses into the blood where it Towers the extracellular
pH and is associated with changes in the acid-base status of the
blood (165, 227).

Elevation of lactic acid production in an alkaline environ-
ment and a decrease of the lactic acid level in an acidotic environ-
ment have been demonstrated (90, 91, 260). In addition, increased
02 debt capacity and changes of blood parameters in alkalotic con-
ditions have been reported (71, 72, 147, 148, 257) (Table 2.2).
However, a uniform relationship between acid-base changes and the
blood lactate level has not been found (100). This lack of a uniform
relationship between acid-base changes and blood lactate has made
some investigators look for reasons other than changes in H" ion
levels to account for increases in blood lactate. It was suggested

that these acid-base changes are related to an increase or decrease
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in the level of glycolytic metabolism (90, 91, 260) due to the pH
dependence of some of the enzymes in the glycolytic pathway (178,
218, 235, 260) (Figure 2.2). The most familiar of these enzymes
are: phosphofructokinase (PFK), glyceraldehyde-3P dehyrdogenase and
phosphorylase. The activities of these enzymes have been shown to
be inhibited by a high concentration of H* in the extracellular
fluid (178, 218, 260). It has been suggested that PFK is one of
the most important regulatory enzymes in the glycolytic pathway
(Figure 2.2) (64, 101, 178, 180, 256, 260). The activity of this
enzyme has been shown to be inhibited by ATP (180, 208, 256),
citrate, isocitrate, the intermediate productions of Krebs cycle
(180, 208, 216), and a decreased pH (64, 116, 185, 260, 262).

The cell seems to be affected by an increase in the extra-
- across the cell

3
membrane. This increased diffusion of HCO§ will elevate the buffer

cellular pH which results from the diffusion of HCO

base and increase the permeability of the cell membrane to lactic
acid. It was shown that bicarbonate freely diffuses between the
blood and the interstitial fluid with equilibrium being reached

within fifteen minutes after NaHCO, has been injected in the blood

3
(34, 236). It also has been suggested that the increased concentra-

tion of HCO§

in an increased capacity to buffer lactate ions which have migrated

jons in the blood after bicarbonate injection results

from muscle cells (90).
Permeability of the muscle cell membrane to lactic acid
seems to be elevated in the alkaline state (90, 123). Several

investigators have demonstrated that the ratio of blood-muscle
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lactate is higher when the interstitial fluid HCO3 is increased (90,
123). The intracellular lactate formation, however, was not signifi-
cantly increased in these studies. Whether lactic acid diffuses out
of the cells as lactic acid or lactate ion is not clear (90, 122).
Since the pK of lactic acid is about 3.86, it dissociates to lactate
and H very rapidly in an alkaline pH (lactic acid & lactate + H+).
Excretion in either form would tend to reduce the cellular H' Tevel
and, therefore, insure glycolytic metabolism.

(g) Acid-Base Balance and
Aerobic Metabolism

The concentration of pyruvate in the cytoplasm is in equi-
librium with lactate via the lactic dehydrogenase (LDH) reaction.
This equilibrium is determined not only by the rate of production
of pyruvate through the Embden-Meyerhof pathway but also by the rate
at which pyruvate is utilized in the Krebs cycle or the other path-
ways that lead to gluconeogenesis. Based on available evidence it
was suggested that alkalosis not only produces a relative block in
oxidation of Krebs cycle intermediates but also seems to inhibit the
flow of substrates from pyruvate and Krebs cycle into the gluco-
neogenic pathways (218).

The activity of citrate synthase and so the concentration of
citrate in various tissues (2, 61, 132, 247), including beef heart
and liver (140), have been shown to rise rapidly with a pH in the
range of 6.5 to 7.5 in vivo. Likewise, the levels of most other
intermediates of Krebs cycle in liver and renal tissues have been

reported to increase and decrease in alkalosis and acidosis,
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respectively (6, 7, 200, 201, 218). It was shown in isolated organs,
whole tissues, and mitochondria that pH has 1little or no influence
on oxygen consumption in the steady state (36, 60, 91, 259).

There is evidence to suggest that alkalosis blocks mito-
chondrial oxidation and inhibits the rate at which the Krebs cycle
turns over (218). Small increases in alkalinity within the range of
pH 6.5 to 7.5 cause a marked reduction in the state of oxidation and
a buildup of NADH concentration in respiring pigeon heart mito-
chondria (183), and in the kidneys of rats (215, 216). Conversely,
acidosis increases oxygen consumption and reduced NADH concentration
(183). Mitchelson and Hird (194) and Tobin et al. (258) have shown
that oxidative phosphorylation is rather unaffected by the extra-
mitochondrial pH in the range of 6.5 to 7.0, whereas severe inhibi-
tion was observed at a pH of 6.0.

The site and molecular mechanism of these effects are not
yet clearly defined, but the available findings suggest that an
interaction of H+ with one or more of the cytochromes may affect
their oxidation reduction potential and thereby change the redox
state of the mitochondria (33, 98, 140, 221). It has been demon-
strated that the oxidation-reduction reaction of cytochrome C
declines sharply with increasing pH (221). Brandt et al. (33) sug-
gested that this decrease is apparently due to a pH-dependent change
in the conformation of the cytochrome protein. A partial block of
oxidation via the electron transport system results in an increase

of intermediates of the citric acid cycle (1, 2, 218, 248).
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It was reported that the pyruvate carboxylase activity (151,
235) and thus gluconeogenesis may be facilitated, in vitro, in the
Tiver and kidney (8, 153, 235) as well as in skeletal and cardiac
muscle (78, 152) under alkalotic conditions. Several studies, on
the other hand, have indicated that acidosis in vitro or in vivo
elevates the gluconeogenesis in kidney and liver of rats and dogs
via the increased activity of phosphoenol pyruvate carboxykinase
(PEPCK) in this pathway (6, 7, 8, 96, 97, 140, 153, 201, 259).
Therefore, a blockage of the pathway could Timit the oxidation of
lactate to glucose (218). These studies supported the hypothesis
that increased PEPCK activity is the controlling factor of increased

gluconeogenesis under acidosis (6, 8).

(h) Acid-Base Balance and Performance

Based on the physiological law of pH stability, the changes
in pH of the blood and most compartments of the body are negligible.
If the concentration of H+ jons is elevated in a biological system,
as for example during maximal work in man, the combination of four
buffer systems (i.e., bicarbonate, protein, lungs and kidneys) are
involved to absorb the shock and to maintain the organism in homeo-
stasis. Thus, if the increase in lactate concentration in plasma
is the same as that for whole blood, almost all Tactate which
diffuses into the blood is buffered by the COZ/HC0§ system. How-
ever, with higher levels of lactate, other buffer systems start to

play a critical role. Numerous studies have indicated that there
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js a wide spontaneous variation in plasma bicarbonate with the high
blood lactate concentration which follows heavy exercise (90, 94,
267).

Several investigators have shown that an improved capacity
to buffer lactic acid following alkalosis can be achieved by
increasing the concentration of HCO% in the blood of athletes (18,
19, 71, 72, 147, 148, 245, 257). Based on this evidence, and
following the logic that if the quantity of bicarbonate ions is
increased the buffer base will be increased and the cellular environ-
ment can be maintained in a more alkalotic state, the effects of the
ingestion of sodium bicarbonate or other alkalizers upon work per-
formance have been studied quite extensively. These studies are
summarized in Table 2.2.

Dennig et al. (71, 72), Jones et al. (147, 148), Atterbom
(18, 19) and Simmons and Hardt (245) found that when untrained
subjects were alkalotic the performance times were longer than when
the subjects were acidotic. On the other hand, Margaria et al.
(187), and Johnson and Black (145) found no differences in
the performance times of trained distance runners following
the ingestion of alkalizers. The response of untrained subjects
appears, in general, to be greater than that observed in trained
subjects. The variability in responses appears in both high-
intensity, short-duration exercise and low-intensity, long-duration
exercise.

In the alkaline state, increased maximum oxygen debts (71,

73) and increased lactic acid levels (71, 72, 147, 148, 257) have
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been observed. Not all studies, however, are supportive of these
results. In particular, Margaria et al. (187) found non-significant

increases in lactic acid in the alkaline state.

(i) Effects of Diet on Muscular Performance

The effect of nutrition on physical performance capacity has
long been of interest. It is well established that protein is not a
major fuel for muscular work under normal conditions (47, 177, 211).
Even after the exhaustion of glycogen, continued exercise does not
elevate nitrogen excretion significantly (40, 41, 62, 105). Thus
the fuel for muscular work, for all practical purposes, is limited
to fats and carbohydrates.

Fats are the major energy source for skeletal muscle during
prolonged work (49, 50, 86, 112, 158, 273). The relative contribu-
tions of the fats and carbohydrates utilized during submaximal
exercise vary with the level of endurance training. That is,
endurance trained individuals metabolize relatively more fat and
less carbohydrate than untrained individuals during submaximal work
(50, 112, 125, 127, 232).

With more intensive work, relatively more carbohydrate is
used. In very strenuous work, at 80-90% 002 max and in anaerobic
metabolism, carbohydrate is the predominant fuel (50, 57, 58, 106,
112, 160, 161, 177, 273, 274).

The early experiments of Christensen and Hansen (50) and
Krogh and Lindhard (177) showed that endurance performance capacity

is significantly increased when subjects are placed on a high
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carbohydrate diet. They found that their subjects could continue
work roughly three times as long when on a high carbohydrate diet
than when on a high fat diet. The diets were quite extreme.

More recently there has been interest in the relation of
muscle glycogen levels to performance capacity. The muscle biopsy
technique of Bergstrom has permitted study of this relationship (26).
Saltin and others have shown that the ability to perform endurance
activity is directly related to the initial glycogen stores of the
exercising muscle (112, 134, 164, 231). The fact that the amount of
glycogen stored in the muscle can be altered by working the muscle
to exhaustion and by the dietary availability of carbohydrate (in
untrained men) is the basis for the practice of '"carbohydrate
loading." It is not clear whether performance is enhanced due to
the greater quantity of glycogen present, to the additional quantity
of intracellular water present (1.8 gms), or to the fact that the
alkalinity of the blood is increased under a high carbohydrate diet
(29, 30, 137, 192). It would appear that the response to an
increased carbohydrate intake has been over simplified. However,
the preponderance of the evidence suggests that endurance performance

is enhanced by a high carbohydrate diet.

(j) Effects of Diet on Acid-Base Balance

Dietary alterations of the acid-base equilibrium of the
blood have been reported by several investigators (181, 219). The
accumulation of blood lactate during anaerobic exercise has been

shown to be dependent on pH which, in turn, is related to dietary



37

factors (266). The production of lactate is higher under a high
carbohydrate diet than a high fat-protein diet or after a glycogen

enhancing regimen when standard work of 70-75% of VO, is imposed (26,

2
28, 112, 133, 134). This increase probably is due to greater
reliance of the activated muscles on enhanced glycogen stores and the
elevation of an anaerobic energy release (11, 26, 28, 134) which also
causes depression of lipolysis and an increase in the rate of re-
estrification of fatty acids (86, 138). These modifications might
result in the storage of lipids until a late stage in endurance work
by trained subjects (86).

The blood glucose concentration increases during exercise
following a carbohydrate diet. This probably is due to a greater
production of glucose from liver glycogen or to a decreased uptake
of glucose by muscle during exercise (220, 265). In anaerobic work,
however, the elevated utilization of glucose results in a higher
accumulation of lactic acid which tends to shift the metabolism
from FFA towards carbohydrates (138).

Several studies have reported an increased pH of the blood
after a meal (141), whereas others did not show any consistent
changes in pH after food consumption (63, 238). Based on evidence
of blood and urine analyses, several researchers have reported that
fruits and vegetables are base-forming and yield an alkaline urine
(29, 30) while meat-based diets produce a more acid urine (29, 192).
Lennon et al. (182) suggested that this acid production is asso-
ciated with the metabolism of foods containing organic phosphorus.

The concept is supported by the work of Hunter (137) who found more
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alkalotic blood following a high carbohydrate diet (>60%) and more
acidic blood following a high fat-protein diet (about 50% fat and
30% protein).

Ingestion of a high-carbohydrate or vegetable-based diet
also has been shown to increase the PCO2 value of the blood about
2 to 3 mm Hg (102, 103, 184, 198, 242). Bischoff et al. (29) and
Moller (198), respectively, found lower and higher bicarbonate of
the blood following a high protein diet. Siggaard-Andersen (242)
have reported an elevation of base excess (BE) of about 3 to 4

mEq/L following a heavy meal.



CHAPTER 111

RESEARCH METHODS

This study was designed to investigate the effects of oral
ingestion of sodium bicarbonate (NaHCO3) administered, under high
carbohydrate and high fat-protein dietary conditions, prior to an
intermittent multi-stage treadmill run upon: (a) performance time,
(b) maximum oxygen uptake, (c) gross oxygen debt, and (d) acid-base

parameters.

Experimental Design

A Latin square design with eight subjects exposed to four
different treatment conditions was used in this study (Tables 3.1,
3.2 and 3.3). The four treatments consisted of oral doses of sodium
bicarbonate or a placebo (dextrose) taken under high carbohydrate or
high fat-protein dietary conditions. Supplements were administered

in a single-blind method two hours before the exercise test.

TABLE 3.1.--Supplement and Diet Conditions.

Treatment gm/kg. of

Conditions Supplement Body Weight Diet
1 Sodium bicarbonate 0.065 Carbohydrate
2 Sodium bicarbonate 0.065 Fat-protein
3 Placebo (dextrose) 0.05 Carbohydrate
4 Placebo (dextrose) 0.05 Fat-protein

39
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TABLE 3.2.--Treatment Conditions.

1
Placebo

SUPPLEMENT

|
Sodium
Bicarbonate

DIET

I
High Fat Protein

High Carbohydrate

Condition Condition
q 3
(PFP) (PC)
Condition Condition
2 |
(SFP) (sC)

TABLE 3.3.--Test Sequence of Latin Square Design.

Subjects

SF
BR
DA
DS
GC
8M
BK
GS

Treatment Order

3 q I 2
2 3 4q I
I 2 3 q
q I 2 3
! q 3 2
q 3 2 I
3 2 | q
2 I 4q
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The subjects were randomly assigned to two equal groups, A
and B, consisting of 4 individuals each. The subjects in Group A
were asked to adhere to a given diet on Mondays, Tuesdays, and
Wednesdays, and were tested on Thursday each week for four weeks.
The subjects in Group B were scheduled to diet on Tuesdays,

Wednesdays, and Thursdays and were tested on Fridays.

Subjects

The subjects were eight physically-fit, male, long-distance
runners, ages 20 to 40, engaged in endurance training (Table 3.4).

A personal medical history and informed consent were obtained from
each subject.

Prior to initiation of the study, each subject was stress
tested utilizing a modified Bruce protocol (81) in which the treadmill
speed and grade were progressively increased every three minutes
(Appendix C). Heart rate (HR), blood pressure (BP) and an electro-
cardiogram record (ECG), were monitored after each level (Table 3.4).
In addition, the economy of endurance performance was evaluated from
the HR responses of each subject while running on the treadmill at
six miles per hour, zero grade, for five minutes (Table 3.4 and

Appendix C).

Exercise Test

The exercise test consisted of a multi-stage (level), inter-
mittent, treadmill run with a rest interval between each work interval

and a standardized, 15-minute recovery period at the end. A maximum
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of six levels was possible. The durations of the work and rest
periods were held constant at three minutes. The treadmill speed
and grade were increased progressively as shown in Table 3.5. On
each test day the subject ran to exhaustion.

The test was carried out on all the subjects under the same
conditions. With a few exceptions, scheduling was maintained whereby
each subject was tested at the same time and on the same day each
week. The subjects were tested between 1:00 p.m. and 6:00 p.m. A
light-weight safety harness was worn by the subjects to enable them
to run to exhaustion without the threat of falling. The environment
of the treadmill room was maintained relatively constant. The
temperature varied between 22-25° C and the relative humidity

fluctuated between 45% and 52%.

Measurement Procedures

Respiratory Frequency

The respiratory frequency was detected utilizing a Sanborn
pressure transducer (Model 268A) which was connected into an Otis-
McKerrow respiratory va]ve] by a flexible plastic tube. The cycle
from the transducer was recorded on a Sanborn Twin-Viso Recorder2 as
follows:

a. During the middle 10 seconds of each minute of work.

b. During the middle 10 seconds of each minute of rest.

]0tis-McKerrow, Warren Collins Company, Braintree, Mass.

2Sanborn Company, Twin Viso Recorder, Cambridge, Mass.
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The recorded pressure differences per respiration were

counted and converted to minute values.

Heart Rate

Disposable e]ectrodes3 were placed on the subject in a single
bipolar V5 electrocardiographic configureation (81) (Figure 3.1).
The results were recorded on a Cambridge 3030 ECG um't.4 The heart

rate was recorded as follows:

a. During the first three levels of run, HR was recorded
during the last 10 seconds of every minute.

b. During the last three levels of run, HR was recorded
during the last 10 seconds of every 30-second period.

c. During the rest interval after each level of run,
HR was recorded at the end of the first and third
minutes.

d. During recovery, HR was recorded during the last 10
seconds of each minute for the first three minutes,
then at the end of every two minutes from minute
four to minute nine, and at the end of every three
minutes from minute 10 to minute 15.

Blood Sampling

Two hundred and twenty microliters (ul) of arterialized
capillary blood were collected anaerobically in two capillary tubes
(120 u1 heparinized, 100 ul unheparinized) from a prewarmed, clean,
dry finger tip (17, 240-244) (Appendix D). The finger was prewarmed
for a minimum of three minutes in 45° C water in a rubber bag pulled

on over the hand. Blood samples were taken at the following times:

33M Red Dot Electrodes, Minnesota Mining & Manufacturing
Company, St. Paul, Minn.

4
New York.

Cambridge Instrument Co., Inc., 73 Spring St., Ossining,
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Figure 3.1.--Single Bipolar V5 Electrocardiograph
Configureation
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a. Prior to exercise.

b. Immediately after the completion of each work level
during the rest interval.

c. Immediately following the termination of the exhaustion
work level and at 5, 10, and 15 minutes during the
standard recovery period.

The two blood samples were collected to determine blood

lactate and the acid-base parameters.

Lactate Analysis

The 100-ul1 blood sample that was collected in the unheparin-
ized capillary tube was mixed with 200 ul of cold 8% perchloric acid
and centrifuged at approximately 32 gs. The mixture of plasma and per-
chloric acid was drawn in labeled disposable syringes5 and stored at
0-3°C for 3-6 days before analysis for the determination of lactate by
the enzymatic method (196). A Sigma lactic acid chemical kit6 was used
for the enzymatic reaction and a Gilford Stasar II Spectro-photometer‘7

was used for the analysis of NADH at 340 nm (Appendix D).

Acid-Base Parameters
The 120-u1 blood sample that was obtained in the heparinized

capillary tube was used for direct determination of pH, PCO2 and PO2

using the Radiometer blood micro system.8 The HCOQ, TCO2 and BE were

5
6
7

8Radiometer PHM75, MK2 and BM53, EMDRVPVEJ, Copenhagen,
N.V., Denmark.

Becton-Dickinson Co., Rutherford, N.J.
Sigma Chemical Co., Box 14508, St. Louis, Mo.

Gilford Instruments, Oberlin, Ohio.
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determined indirectly by the Astrup Equilibration Method for acid-
base variables (17, 240 - 244) using the Siggaard-Andersen Alignment
Nomogram (Appendix D, Figure D.1). Blood samples used in these
determinations were stored at 0-3° C and were analyzed within two

hours following collection (240).

Energy Metabolism Measures

The expired gas was collected by the standard Douglas bag
method (55) using neoprene weather balloons (89). The remainder of
the circuit, which had a total resistance of less than 20 mm H20 at
227 1/min. flow, consisted of an Otis-McKerrow respiratory valve
connected to 18 inches of corrugated hose (1% inch I.D.) attached
to a five-way, automated switching va]ve.9 Continuous serial
collection of the respiratory gas bags was made from the start of
the first work level according to the following plan:

a. During the first three levels of work, bags were
changed every minute (one-minute bags).

b. During the last three levels of work, bags were
changed every 30 seconds (30-second bags).

c. During the rest interval between work levels, bags
were changed after the first minute (one-minute bags)
and the third minute (two-minute bags).

d. During recovery, bags were changed following each
minute for the first three minutes (one-minute
bags), then every two minutes from minute four
through minute nine (two-minute bags), and finally
every three minutes from minute 10 through minute
15 (three-minute bags).

9an Huss-Wells Automated Switching Valve.
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The filled, labeled bags were transferred from the treadmill
room for the immediate determination (<5 min) of volume and content
of the expired gas in the bags. The percentages of CO2 and 02 were
determined simultaneously using the Beckman LB-2 and OM-11 analyzers
respective]y.lo Bags were evacuated and pumped through a dry DTM-11
gas meter]] at a rate of 50 1/min. Al1 energy metabolism measures
were calculated as described by Consolazio, Johnson and Pecora (55).
(Appendix E).

Helium was used to set the zero points of the analyzers.
Room air and a known standard gas sample were used to calibrate the
analyzers. Oxygen and carbon dioxide concentrations of the standard
gas sample were verified using a Haldane Chemical Ana]yzer.]2

The energy metabolism variables consisted of the following:
ventilation (VE), oxygen uptake (002), maximum oxygen uptake

(\702 max), oxygen debt (02 debt) and respiratory quotient (R.Q.).

Dietary Measures

The individual subjects received instructions prior to each
week. They were given lists of standard American foods (Appendix A)
to be eaten during that week. The foods were those contained in
either high fat-protein (HF) or high carbohydrate (HC) diets.

Subjects were asked to keep the total caloric intake relatively

]OBeckman Instruments Inc., 3900 River Road, Schiller Park,
I11inois.

]]American Meter Co. (Singer).

12

Arthur H. Thomas Company, Philadelphia, Penn.
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constant week-to-week and likewise to maintain any physical activity
at a relatively constant level.

On the test day a dietary recall was conducted for each
subject. The form shown in Appendix A was completed according to
the technique of Church and Church (52), and the percentages of
carbohydrates, fats, and proteins were calculated. These calculations
were utilized to determine if the subject had restricted himself to
the high fat-protein diet (>42% fat, >21% protein, <34% carbohydrate)
or the high carbohydrate diet (<34% fat, <15% protein, >53% carbo-
hydrate) (Table 3-6).

Test Protocol

Immediately prior to initiation of work, the subject stood
over the treadmill in the straddle position. The ECG was checked to
determine if the electrode application was adequate. A ceiling
mounted safety harness was adjusted to prevent the subject from
falling, while allowing freedom of movement for the run. A rubber
bag and covering bag, containing water at temperatures slightly
higher than 45° C, were placed on the hand not used for the pre-work
blood sample. A mouthpiece and a noseclip were attached. The
expired gas during this time was vented to the room through the 5-way
valve. When the subject was ready, the treadmill was started
(6 mi/hr, 5% grade). Simultaneously, an automated gas-bag switch
was pushed to initiate collection of the expired gas and the first
13 was started.

13

timer

Universal Timer, Model 172, Dimco-Gray Co., Dayton, Ohio.
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During the work interval the gas bags were changed at one-
minute or 30-second intervals (depending on the work level) and were
removed for immediate analysis. Time was called out during the run,
and at 15 seconds prior to the end of each work level the subject was
informed that the treadmill would stop. For better control, about
five seconds before work termination the subject grasped the safety
railings of the treadmill. At the time of work termination the
subject would hop to a straddle position over the belt until it came
to a complete stop (following treadmill adjustment to the next level).
Also at the end of the work time, a second timer was started auto-
matically for the rest interval.

During the rest interval the subject sat on a high stool over
the treadmill. Gas collection continued during the three-minute rest
interval in one- and two-minute collections. During this period the
rubber water bag was removed from the hand, the finger was dried and
sterilized with alcohol, and the blood samples were taken using a
lancet. The blood samples were immediately removed and prepared for
analysis. The finger was wiped with alcohol and taped. The rubber
water bag was filled with water slightly about 45° C and placed on
the other hand. Heart rate and respiratory rate were monitored
throughout. About 30 seconds before the end of the rest interval
the stool was removed, the subject straddled the treadmill, and the
first timer was reset.

Identical procedures were used at each work level to the

point of exhaustion when the treadmill was stopped. The subject
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then sat on the stool for 15 minutes with continuous gas collection
and monitoring of heart and respiration rates. Blood samples were
taken from alternate hands using the procedures described at 0, 5,
10, and 15 minutes of recovery. At the end of recovery all equipment
was removed and the fingers were carefully cleaned. The subject then

was oriented for the following week's test.

Statistical Analysis

A two-way repeated measures analysis of variance (ANOVA)
was run with supplement and diet as independent variables (35, 59,
92, 249, 271). Separate analyses were employed for each of the
independent variables. The Statistical Package for the Social
Sciences (SPSS) system (203) was used on a Control Data 405
computer. In selected instances with continuous data of a curvi-

linear nature, as in exercise responses across time, the sign test

was used (239).






CHAPTER IV

RESULTS AND DISCUSSION

The results of this investigation are presented initially in
this chapter. The presentation of results is followed by a discussion.
The order of presentation is as follows: (a) performance time,

(b) maximum oxygen uptake, (c) gross oxygen debt, (d) oxygen uptake,
(e) ventilation, (f) heart rate, (g) respiratory rate, (h) respiratory
quotient, (i) pH, (Jj) PCO,, (k) PO, , (1) 7C0,, (m) Hcog, (n) base

excess, and (o) lactate.

(a) Performance Time

The performance time under various dietary and supplementary
conditions is shown in Figure 4.1a, Table 4.1a, and Appendix F.1.
No statistically significant differences in performance times were
observed under any of the treatment conditions. Although the best
scores were observed under the SC condition, no conclusions are

warranted.

(b) Maximum Oxygen Uptake (\702 max )
The maximum oxygen uptake values for the different conditions
are presented in Figure 4.1b, Table 4.1b and Appendix F.1. There

were no statistically significant differences observed. Again, the
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highest values were observed under the SC condition but no conclu-

sions may be drawn.

(c) Gross Oxygen Debt

Figure 4.1c, Table 4.1c and Appendix F.lc show the gross
oxygen debt (02 debt) results. No main effects or interactions were
statistically significant. Although the debt was noticeably higher
under the SC condition than under the placebo and fat-protein

condition, no conclusions are warranted.

(d) Oxygen Uptake (VOZ)

The oxygen uptake results are presented in Figure 4.2a-f,
Table 4.2 and Appendix F.2. No statistically significant differences
were observed. The linear increase in oxygen uptake with greater
levels of work up to a peak value (level 4) followed by a decrease
(1evel 5) is well known (Figure 4.2a-f). The maximum oxygen uptake
capacity was exceeded at level 5 and as a result the subjects' work

became relatively more anaerobic (Figure 4.2a-f).

(e) Ventilation (VE)
The ventilation results are presented in Figure 4.3a-f,
Table 4.3 and Appendix F.3. Only the ventilation values for the
third minute of work at each level, the rest intervals and the
recovery have been analyzed. The single ventilation values did not
differ significantly between conditions. However, when the sign
test was applied, permitting consideration of multiple values, the

ventilation means were higher under the fat-protein condition than
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Figure 4.2. Diet and Supplement Effect on Oxygen Uptake.
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TABLE 4.2.--Statistical Results, Oxygen Uptake (Liter/min).

Conditions ANOVA
NaHCo NaHCO Placebo Placebo
+ 3 + 3 + +
_ CHO Fat-Pro CHO Fat-Pro S D
variables Min X SD (sc) (SFP) (PC) (PFP) P P P
Level 1 1 X = 2.26 = 0.26 2.35 = 0.46 2.29 = 0.3 2.31 = 0.22 0.47 0.89 0.92
= 2 X-= 3.18 - 0.44 3,11 = 0.74  3.41 = 0.51 3.42 = 0.42
3 X = 3.40 = 0.45 3.39 = 0.50 3.42 - 0.48 3.48 - 0.4
1 X = 1.72 = 0.28 1.68 = 0.36 1.62 = 0.36 1.63 = 0.41 0.56 0.81 0.92
= 2-3 X = 0.77 = 0.08 0.76 = 0.1 0.77 = 0.15 0.74 = 0.15
Level 2 1 X = 2.73 = 0.40 2.76 = 0.7 2.78 = 0.30 2.82 = 0.36 0.62 1.00 0.57
= 2 X=z 4.02 = 0.55 3.85 - 0.48 3.95 = 0.49 4.03 = 0.46
3 X = 4.09 = 0.44 3.97 = 0.56 4.08 = 0.67 4.23 = 0.58
_ 1 X = 2.06 = 0.33 2.03 = 0.36 2.04 = 0.48 2.03 = 0.41 0.82 0.90 0.97
- 2-3 X = 0.83 - 0.1 0.83 = 0.14 0.80 = 0.20 0.80 = 0.14
Level 3 1 X = 3.2 2 0.37 3.22 = 0.37 3.16 - 0.42 3.25 = 0.37 0.69 0.43 0.42
= 2 X-= 4.86 - 0.81 4.53 = 0.54 4.23 - 0.83 4.65 = 0.53
3 Xz 4.46 = 0.83 4.76 = 0.52 4.44 - .80 4.79 - 0.7
1 X: 2.54 = 3.58 2.64 - 0.48 2.62 = 0.52 2.70 = 0.5 0.35 0.90 0.61
=l 2-3 7 - 1.0C = £.22 1.00 = 0.23 1.33 = 0.89 1.07 = 0.21
Level 4 1 X - 3.5€ = (.58 3.81 = 0.61 3.80 = 0.50 3.75 = 0.48 0.76 0.77 0.80
= 2 X-= 4.54 = 0.54 4.88 - 0.65 4.82 = 0.65 4.73 = 0.84
300X = 5.23 = 0.37 4.66 = 0.75 4.78 = 1.17 4.78 = 1.07
10X = 2.94 - 0.60 3.04 = 0.47 2.71 = 1.00 3.03 = 0.44 0.83 0.93 0.41
= 2-3 X = 1.32 = 0.25 1.26 = 0.20 1.70 = 1.00 1.46 = 0.31
Level 5= 1 X = 4,08 - 0.3 4.09 = 0.48 4.29 = 0.5 3.77 = 0.86 C.TTOL3Y clad
Recovery 1 X = 3.6 = 0.75 3.40 - 0.84 3.25 = 0.69 3.00 = 0.9 0.71 0.92 0.48
2 X : 1.71 = 0.48 1.49 = 0.36 1.50 = 0.29 1.50 = 0.48
3 X = 1.25 = 0.36 1.24 - 0.22 1.15 = 0.22 1.08 = 0.0
4-5 X = 0.95 = 0.13 0.92 = 0.M 0.93 - 0.21 0.95 = 0.29 0.59 0.79 0.93
6-7 X = 0.77 = 0.13 0.8 = 0.05 0.85 = 0.27 0.81 = 0.15
8-9 X = 0.75 = .1 .72 - 0.07 C.7C - o.M 0.76 = 0.28
10-10 X = 0.63 = 0.07 0.66 = 0.07 0.65 = 0.10 0.61 = C.i5 0.35 0.91 0.60
13-15 X = 0.63 = 0.06 0.61 = 0.07 0.64 - 0.18 0.62 = 0.M
w = Work, 7. = Rest Interval; S = Supplement; D = Diet; I = Interaction
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Figure 4.3. Diet and Supplement Effect on Ventilation.
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TABLE 4.3.--Statistical Results, Ventilation 'liter,.

Variables

== s s s = sm == sssszssssmss. sisare—ooT

TiTTorEs e smsm sscewm— oo T

><|

Conditions ANOVA
NaHCO, Placebo lacebo
+ + +
Fat-Fre CHO Fat-Pro S o] .
(SFP) PC) (pep) 3 3 3

Level 1 =

Ll

Level 2 =

Rl

Level 2 =

Rl

Level 5 =

Recovery

x|

><|

><|

|

x|

><|

>

>|

><|

><|

><|

|

>

>| x|

|

62.6°

36.

47.

74.

43.

52.

87.

55.
59.

60.

Sé.

60.

4.7

o

"
wr

w

~t

rterval;

62.05 - 12.2 62.53 - B.8 64.1€ = 7.5 0.77 0.e8 3.74
34.91 = 9.1 33.14 - 7.7 3518 : 9.4 .62 0.71 0.43
4z.52 = 9.9 43.56 = 1.4 43.00 = 7.1
77.28 = 18.0 76.59 - 14.3 83.1Z - 13.7 0.47 0G.29 0.7
43,69 - 9.6 43.04 - 10.8 44.82 - 6.4 .77 0.97 0.65
48.70 = 10.3  47.59 - 16.7 48.73 = E£.4
9€.77 = 19.1  92.07 = 18.&£ 100.2€ = 22.1 0.67 .19 0.8z
€1.20 = 1£.1  59.32 - 14.Z 64.99 - 12.3 .83 0.35 0.74
59.08 = 13.2  60.21 = 19.2 66.:8 = 1.9
56.08 = 10.5 55.07 - 11.1 55.20 = 9.2 J0.85 2.93 0.97
76.00 = 16.1 71.50 = 17.3 78.77 = 11.5 0.82 0.75 02.2¢
80.70 - 18.7 81.80 - 22.4 95.76 = 21.1
56.50 = 14.7 60.0C = 8.8 55.29 = 9.5 0.83 0.28 0.93
94.53 - 25.2 89.80 - 26.5 83.41 - 22.7 0.37 0.23 0.28
52.99 = 13.9 53.29 = 3.4 35.51 = 19.3
44,12 - E.3 42.03 - E.9 44,30 - 1.2
62.97 = 10.5 63.02 = 12.¢/ 67.89 = 2C.7 .69 0.61 O.€€
57.43 = 4.6 56.63 = 17.9 57.96 = 12.1
47.99 = .0 47.33 = 9.5 54.z8 - 25.0
€7.94 = 8.1 61.70 = 11.5 64.39 = 9.€ 0.39 050.27 I.3C
54.4€ = 9.5 29.40 = 21.6 €0.82 - 16.C
uwoolemert, 2 o= Zisti I = Irteraction
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under the carbohydrate dietary condition (Figure 4.3b, P = .001).
The supplementation of NaHCO3 under the carbohydrate diet (SC)
resulted in consistently higher ventilation values than when no
supplement was given (Figure 4.3c, P = .02); whereas, when supple-
mentation was combined with the fat-protein (SFP) diet, the ventila-
tion values were lower than when no supplement was given (Figure 4.3d,
P = .001). It can be concluded that NaHCO3 supplementation in con-
junction with the carbohydrate diet (SC) results in slightly
increased ventilation values. This effect was expected. With a
greater quantity of bicarbonate ions available a greater stimulus
to respiration from carbon dioxide levels should result. However,
under the fat-protein dietary conditions with supplementation the

ventilation values were lTower not higher. This result was unexpected.

(f) Heart Rate
In Figure 4.4a-f, Table 4.4 and Appendix F.4 the heart rate
results are presented. In the ANOVA analysis a statistically sig-
nificant interaction effect was observed for the ten to fifteen-
minute recovery data (P = .07). Since no other significant values
were obtained and no clear trends are evident from the data, the
significant interaction is 1ikely due to chance. No conclusions

appear warranted from these data.

(g) Respiratory Rate

The respiratory rate results under different supplementary
and dietary conditions are shown in Figure 4.5a-f, Table 4.5 and

Appendix F.5. A statistically significant NaHCO3 supplement effect
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Figure 4.4. Diet and Supplement Effect on Heart Rate.
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TABLE 4.4.--Statistical Results, Heart Rate (min).

== — T T LTI TPy e

Conditions ANOVA
NaHCO3 NaHC03 Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro S D )
Variables Min X SD (SC) (SFP) (PC) (PFP) P P P
Level 1 ' 10X+ 136.5 + 7.9 137.1 + 8.0 136.5:* 5.5 137.9 * 10.3 0.35 0.38 0.32
= 2 X: 139.7 =+ 8.4 141.9:- 7.5 139.4 + 5.1 140.2 + 10.5
1 3 X= 139.0 - 8.2 143.0 =+ 10.8 140.4 *+ 7.1 140.9 = 10.6
1 X = 080.0 + 9.2 088.0 : 15.2 079.0 = 15.6 073.1 * 13.9 0.23 1.00 0.95
-l
xi 2-3 X = 089.4 + 11.3 085.4 : 15.1 079.9 + 24.1 080.9 * 20.4
Level 2 | 1 X = 151.4 = 6.8 152.2 = 6.3 150.7 + 7.7 149.1 = 7.6 0.97 0.84 0.82
= 2 ¥-= 155.1 = 7.8 154.7+ 8.5 155.2: 8.0 157.4 = 9.0
’ 3 X: 155.6 = 8.4 158.5: 8.0 157.6 + 7.9 157.0=* 7.0
‘ 1 X= 093.2 + 12.3 099.5 = 15.8 093.7 = 15.8 095.0 = 17.3 0.65 0.84 0.68
3 2-3 X = 095.5 = 12.7 094.7 + 14.6 102.7 + 18.6 099.6 + 7.8
Level 3 | 1 X = 160.6 = 9.3 165.0 - 7.3 162.9 - 8.8 161.1 =+ 8.9 0.32 0.34 0.35
3’ 2 X = 166.9 + 9.9 168.7 = 8.4 168.5:* 9.5 168.4 + 1.0
3 X = 168.9 = 13.0 172.2 + 7.6 171.1 = 9.0 169.4 + 11.7
i 1 X = 105.0 = 10.5 110.7 = 16.6 107.0 * 10.4 106.1 + 14.4 0.31 0.34 0.35
l2-3 X = 106.3 = 7.0 107.2 £10.9 105.7 + 9.3 104.5 - 12.4
Level 4 ; 1 X = 168.0 = 12.4 170.5 + 8.5 169.2 #11.0 168.9* 9.0 0.56 0.55 0.24
3} 2 X : 173.0 = 10,1 173.0 2 14.9 176.7 + 8.8 175.3+ 7.5
3 X 176.3 + 9.3 177.3 + 10.1 178.0 = 9.6 179.0 =+ 9.0
= 1 X - 137.0 = 27.4 135.8 = 29.3 135.2 + 28.5 131.3 :19.3 0.65 0.69 0.15
2-3 X : 111.0 = 19.1 122.7 =+ 15.9 113.7 = 10.1 115.9 = 22.2
Level § zi 1 X = 163.0 + 21.0 167.3 + 22.0 172.0 + 7.0 169.7 *+17.5 0.43 0.95 0.64
Recovery 1 X = 131.3 £ 12.2 131.2 +13.1 131.2 £+ 16.0 127.2 = 18.2 0.15 0.16 0.17
2 X 109.0 = 10.6 110.9 = 7 110.4 = 12.3 106.7 + 18.5
3 X = 103.6 « 10.2 104.0 =+ 9.7 102.7 + 8.0 101.5 : 10.8
4-5 X = 100.8 + 10.9 99.5 + 7.6 97.6 + 7.9 98.0 =+ 9.1 0.14 0.13 0.13
6-7 X = 100.0 + 8.4 993.0 + 9.9 99.4 + 7.5 99.1 = 11.6
8-9 X = 99.2 + 8.0 97.1 + 9.9 100.0 + 8.0 98.5 + 6.5
10-12 X = 101.7 + 6.9 96.2 + 9.3 100.0 + 7.2 97.7 £+ 11.8 0.57 0.51 0.07*
13-15 X = 100.2 = 6.0 100.0 + 8.0 99.4 + 7.0 99.0 =+ 7.1

W = Work; Rl = Rest Interval; S = Supplement; D = Diet; I = Interaction; * = Statistical significance.
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Figure 4.5. Diet and Supplement Effect on Respiratory Rate.
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TABLE 4.5.--Statistical Results, Respiratory Rate (min).

Conditions ANOVA

NaHCO, NaHCO, Placebo Placeno
" - + +
- CHO Fat-Pro CHO Fat-Pro H ] 1
Variables Min X SD (s¢) (5FP) (PC) (pFP) B
tevell |1 X = 27:7.0 2725 2%:5.2 2 :5.0 0.06* 0.15 0.52
=2 Xod 33:7.0 29237 30 5.2 27 £ 40
e B 3254 2:7.0 0=47 3057
[ s 29 - 4.7 % :7.0 2:4.8 27:5.4 0.60 0.95 0.38
R 80 22 = 3.0 2270 2 :4.3 23:7.0
|
r 3 o 21227 21:47 23 =254 28 :5.4
1 = 32:9.0 32:6.6 N =66 29:5.5 0.57 0.37 0.38
a2, X 33:6.3 3:43 33:5.6 33:6.0
D435 X 37 :4.7 6 + 4.3 36 :5.7 %:7.
1R s 6.4 3 :6.3 %:3.7 2 :3.0 0.10 0.39 0.28
iz X % :4.8 2257 2 :5.6 23:5.4
§g 23:4.0 23:7.0 23:4.0 223
1R - 3= 5.1 35 : 8.0 N4 33:9.5 0.48 0.33 0.99
=22 % 39:5.4 =37 37 :4.2 40 7.7
13 2 4 4.2 44 = 5.0 Q=72 44 : 8.0
[ T 32:3.3 357 3N 4 30 : 6.0 0.92 0.7 0.7
Z|2 Ka %28 2% :8.2 29:5.6 27:80
B 27240 2% :5.6 2%:7.7 29:9.7
e & 38242 42 =57 39:6.2 40:9.2 0.65 0.39 0.98
=2 T 45: 4.0 46 - 8.3 43:6.0 45:6.9
|
| S 47 : 6.7 47270 472 50 2 7.6
kAl xid 35 6.0 40:5.8 3253 40:2.8 0.88 0.33 0.67
:‘ 2 R 30+ 2 28243 32:4.6 32:3.3
I3 B 292 4.4 29: 5.6 N5 30 : 6.1
‘ b S 46 :8.0 49:4.6 47:5.3 49:7.6 0.50 0.45 0.55
3 i 50+ 6.1 52:7.0 492 6.3 522 00
‘3 % - 56 + 00 54:8.5 48 2 00 48 = 00

W = Work; RI = Rest Intervali S = Supplement; D = Diet; I = 5% significance.
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was evident in the first level of exercise (P = .06). This did not
extend into the higher levels of exercise. The physiological

mechanism operating is not clear.

(h) Respiratory Quotient (R.Q.)

In Figure 4.6a-f, Table 4.6 and Appendix F.6, the R.Q. values
are presented for the various conditions. In neither the ANOVA nor
the sign test analyses were any significant differences observed.

No conclusions can be drawn concerning the R.Q. data presented in

this study.

(i) pH

The blood pH results are shown in Figures 4.7a-f, 4.8,
Tables 4.7a-i, 4.14a and Appendix F.7. In the ANOVA analysis sig-
nificant NaHCO3 supplement effects were observed (i.e., higher pH
values) in the pre-run measure (P = .09) (Table 4.7a) and in the
difference between the measures taken at the end of exercise and at
five minutes of recovery (AL5-R1) (P = .03) (Table 4.14a). None of
the other ANOVA results were significant. In Figure 4.7c, d and e,
it should be noted that all of the pH values under the bicarbonate
conditions are higher than those under the placebo condition.
Utilizing the sign test for each graphical comparison it can be
concluded that a significant bicarbonate effect (P = .01) upon pH
is evident under both dietary conditions. The pH was higher at all
collection points when bicarbonate was ingested. It also is
evident from the ANOVA results and from Figure 4.7a, b and f that

diet did not affect the pH in these subjects.
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Figure 4.6.

Diet and Supplement Effect on Respiratory Quotient.
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Conditions

NaHCO3 NaHCO Placebo Placebo
+ + +
CHO Fat-Pro CHO Fat-Pro S D 1
Variables Min (sC) (SFP) (PC) (PFP) P P
Level 1 10X .70 = 0.06 0.66 - 0.08 0.70 = 0.06 .64 - 0.07
= 2 X 0.74 = 0.05 0.71 = 0.07 0.74 = 0.06 .74 - 0.05
30X .77 - 0.0  0.75 -0.05 0.80 - 0.05 .76 = 0.03 0.85 0.30 0.84
o X .75 = 0.08 0.75 = 0.06 0.80 = 0.05 0.74 .06
= 2.3 % €2 - 0.1 0.82 - 0.06 0.83 - 0.06  0.82 .09
Level 2 10X .76 = 0.03  0.73 -0.05 0.77 = 0.09 0.73 = 0.03
= 2 X 0.76 = 0.05 0.76 = 0.06  0.77 = 0.05  0.77 = 0.03
: 30X .81 = 0.05 0.80 - 0.07 0.80 - 0.04 0.80 .0 0.90 0.97 0.77
10X - 0.82 - 0.04 .80 = 0.04  0.81 : 0.03 .81 - 0.02
T X 0.67 = 0.07 .87 = 0.05 0.8 - 0.05 .86 = 0.10
Level 3 1X 0.71 = 0.10  0.77 07  0.76 = 0.07 .76 = 0.02
= 2 X 0.81 - 0.04  0.81 .07 0.81 - 0.05 .81 - 0.03
30X 0.85 - 0.05  0.85 06  0.85 : 0.05 .85 - 0.04 0.84 0.84 0.89
X .87 = 0.04 .67 = 0.08 .90 = 0.05  0.87 = 0.04
IR .90 = 0.05 .89 = 0.05 0.90 - 0.06  0.87 = 0.08
Level 4 . 1 X .80 - 0.06 0.80 = 0.07 0.80 - 0.07 0.78 = 0.05
= 2 X 0.87 = 0.05  0.85 = 0.05 0.83 = 0.07 0.86 = 0.04
3 X 0.93 = 0.07 0.92 =0.05 0.9 - 0.06 0.93 = 0.06 0.66 0.82 0.9
1X .98 = 0.07 0.95=0.05 0.94 = 0.12 58 = 0.10
s X .01 = 0.07  0.98 = 0.06 1.00 = 0.10 .00 .13
Recovery ] .96 = 0.07 .99 - 0.04  0.98 = 0.04 .92 = 0.09 0.28 0.31 0.36
2 1.05 = 0.07 .06 = 0.04 1.04 - 0.05 1.01 = 0.10
3 0.96 = 0.08 .00 = 0.05 0.96 = 0.06 0.92 = 0.13
4-5 0.9 - 0.07  0.94 - 0.05 0.94 - 0.20  0.89 = 0.1 0.31 0.35 0.39
6-7 0.89 - 0.16  0.89 - 0.03  0.84 = 0.06  0.85 = 0.07
8-9 0.82 = 0.07 0.83 = .07  0.81 = 0.04 0.8 .07
10-12 0.77 = 0.09 0.78 = 0.06 0.74 = 0.06  0.75 = 0.08 0.31 0.32 0.32
13-15 X - .71 = 0.07  0.70 - 0.03  0.69 = G.C7  0.69 = 0.07
W = Work; R} = Rest Interval; S = Supplement; D = Diet: = Interaction
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Diet Effect By Supplement
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Figure 4.7. Diet and Supplement Effect on pH.
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TABLE 4.7.--Statistical Results, pH.

Conditions ANOVA
NaHCO3 NaHCO3 Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro S D I
Variables (sC) (SFP) (PC) (PFP) P P P
(a) PW
X 7.43 7.44 7.42 7.41 .09* 0.90 0.19
SD 0.02 0.03 0.03 0.02
(b) L1
X 7.41 7.42 7.40 7.38 12 0.71 0.57
SD 0.04 0.03 0.03 0.06
(c) L2
X 7.42 7.41 7.40 7.39 .15 0.55 0.93
SD 0.04 0.04 0.04 0.06
(d) L3
X 7.39 7.38 7.35 7.36 .17 0.88 0.73
SD 0.04 0.07 0.06 0.06
e) L4
X 7.30 7.31 7.28 7.26 .25 0.73 0.63
SD 0.07 0.09 0.08 0.09
f) L5
X 7.23 7.24 7.23 7.18 .28 0.48 0.30
SD 0.07 0.07 0.05 0.07
(g) R
X 7.19 7.21 7.18 7.20 .71 0.38 0.84
SD 0.06 0.05 0.09 0.09
(h) R2
X 7.26 7.25 7.26 7.23 .60 0.33 0.72
SD 0.05 0.06 0.07 0.08
i) R3
X 7.31 7.29 7.29 7.26 0.37 0.39 0.75
SD 0.05 0.07 0.07 0.11
PW = Pre-work; L1 - L5 = Level 1-5 of work.
R1 - R3 = Five, ten and fifteen minutes of recovery.
* = Statistical Significance
S = Supplement; D = Diet; I = Interaction
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() PCo,
The PCO2 results are shown in Figures 4.9a-f, 4.10, Tables
4.8a-i, 4.14b and Appendix F.8. The ANOVA analyses across treatments
at selected levels of work and recovery indicate significant dietary
effects (i.e., lower PCO2 values under the CHO diet) at levels 2 and
3 during exercise (Figure 4.9a, b and f; P = .02, P = .09).
When it was possible to consider all points simultaneously,
as in the sign test, a clearly significant pattern emerged. The PCO2
was significantly lower following the carbohydrate diet than it was
when the fat-protein diet was used (Figure 4.9a, P = .09; Figure 4.9b,
P = .002; Figure 4.9f, P = .02). With supplementation of bicarbonate,
the PCO2 was significantly lower under both dietary conditions and
obviously when the data were pooled (Figure 4.9c, P = .002;
Figure 4.9d, P = .002; Figure 4.9e, P = .002). From these results
it can be concluded that the PCO2 values are lowered by a high

carbohydrate diet and by a pre-exercise bicarbonate supplement.

(k) PO,

The PO2 results are presented in Figures 4.11a-f, 4.12,
Tables 4.9a-i, 4.14c and Appendix F.9. The PO2 increased with the
intensity of exercise up through level 3. In most instances, it
dropped slightly during level 4 and then started to rise again during
level 5 of exercise. During recovery, the PO2 decreased but never
returned to the base line. Utilizing ANOVA, there were no statisti-
cally significant supplement, diet or interaction effects. Figure

4.11a, however, shows that the PO2 measurements were consistently
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Figure 4.9. Diet and Supplement Effect on PCOZ.
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TABLE 4.8.--Statistical Results, PCO2 (mmHg) .

Conditions ANOVA
NaHCO3 NaHCO3 Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro S D I
Variables (sC) (SFP) (PC) (PFP) P P P
(a) PW
X 37.52 39.11 39.49 39.88 0.46 0.61 0.75
SD 6.3 5.7 5.0 2.8
(b) L1
X 34.52 35.94 36.87 37.06 0.32 0.65 0.72
SD 2.5 5.1 5.6 5.6
(c) L2
X 31.13 36.33 34.07 37.57 0.26 0.02* 0.65
SD 4.9 4.0 6.3 4.8
(d) L3
X 31.26 33.46 32.35 36.61 0.26 0.09* 0.58
SD 5.4 4.6 5.0 5.9
§e2 L4
X 29.72 29.95 30.11 32.07 0.37 0.42 0.76
SD 4.8 7.0 2.8 4.8
(f) L5
X 27.91 29.50 29.22 30.17 0.63 0.55 0.88
SD 5.5 4.3 4.6 5.7
(g) RI
X 26.25 26.00 27.00 27.07 0.54 0.95 0.91
SD 2.8 1.7 5.4 5.1
h) R2
X 26.32 26.12 26.82 27.31 0.49 0.91 0.77
SD 2.9 2.9 4.5 2.5
i) R3
X 26.33 27.37 26.86 27.90 0.74 0.52 0.99
SD 4.9 5.2 4.4 3.2
PW = Pre-work; L1 - L5 = Level 1-5 of work.
R1 - R3 = Five, ten and fifteen minutes of recovery.

*
nwarn

Statistical Significance
Supplement;

D = Diet;

I = Interaction
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Diet Effect By Supplement
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Figure 4.11. Diet and Supplement Effect on P02.
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TABLE 4.9.--Statistical Results, PO2 (mmHg) .*

Conditions ANOVA
NaHCO NaHCO Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro S D I
Variables (SC) (SFP) (PC) (PFP) P P P
(a) PW
X 80.57 77.60 77.46 80.47 0.94 0.91 0.16
SD 5.8 3.7 7.5 4.7
(b) L1
X 85.50 79.15 85.06 84.70 0.48 0.35 0.40
SD 12.5 6.0 12.4 7.5
(c) L2
X 92.77 82.66 91.78 87.48 0.73 0.19 0.59
SD 19.4 5.8 20.0 12.0
(d) L3
X 94.80 85.85 88.56 95.78 0.74 0.88 0.16
SD 21.2 10.8 15.0 15.0
(e) L4
X 91.02 84.72 87.37 90.18 0.84 0.61 0.22
SD 6.5 12.0 8.1 13.2
(f) L5
X 93.23 88.62 90.08 92.22 0.99 0.80 0.49
SD 13.5 10.1 14.6 6.0
(g) R1
X 101.00 95.00 99,34 100.02 0.81 0.45 0.43
SD 9.0 7.5 16.1 15.6
h) R2
X 99.33 94.21 90.54 9.57 0.31 0.89 0.12
SD 10.0 9.2 8.8 10.3
i) R3
X 97.29 88.28 92.86 94.62 0.90 0.58 0.40
SD 19.3 13.5 20.0 14.8
PW = Pre-work; L1 - L5 = Level 1-5 of work
RT - R3 = Five, ten and fifteen minutes of recovery
S = Supplement; D = Diet; I = Interaction

The low values of PO2 cannot be explained.
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high under the carbohydrate condition (sign test, P = 0.002). The
pooled results in Figure 4.11f also show that the carbohydrate values
were higher than the fat-protein values at most of the levels during
both work and recovery (sign test, P = 0.09). In general, the PO2
values are lower than expected. The reasons for this are not clear.
The PO2 was consistently highest under the SC condition
(Figure 4.11a and c; sign test, P = 0.002). The pooled results show
that the PO2 was lowered by bicarbonate supplementation during work
and post-exercise recovery (sign test, P = 0.09; Figure 4.11e).
According to Figure 4.12, the most noticeable changes occur follow-
ing a carbohydrate diet. On the basis of these data, it could be
concluded the PO2 is decreased by bicarbonate and is increased by a

carbohydrate diet.

(1) Total CO

2
The total CO2 (TCOZ) results are shown in Figures 4.13a-f,
4.14, Tables 4.10a-i, 4.14d and Appendix F.10. The TCO2 is the sum

of the actual bicarbonate plus the carbonic acid (TCO2 = (HCOQ) +
(0.03 x PCOZ) expressed in mMol/L of plasma. The ANOVA program
showed significant dietary effects at level 2 of exercise (P = .07).
In addition, the supplement difference between the end of level 5 and
five minutes of recovery (AL5-R1) was statistically significant
(P = .06; Table 4.14d). The greatest decrease was evident with
bicarbonate supplementation (Figure 4.14).

When all measurement points were compared in Figure 4.13a,
the TCO2 was significantly lower with NaHCO3 ingestion following a

carbohydrate diet than following a fat-protein diet (sign test,
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Figure 4.13.

Diet and Supplement Effect on TC02.
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TABLE 4.10.--Statistical Results, TCO2 (mMo1/L Plasma).

Conditions ANOVA
NaHCO3 NaHCO Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro S D I
Variables (SC) (SFP) (PC) (PFP) P P P
(a) PwW
X 27.00 27.40 26.94 26.40 0.67 0.93 0.71
SD 3.7 3.4 4.2 2.2
b) L1
X 22.25 24.01 22.47 23.27 0.87 0.43 0.76
SD 3.9 2.5 5.9 5.0
(c) L2
X 21.70 24.57 20.80 24 .01 0.65 0.07* 0.92
SD 3.7 3.1 6.4 4.0
(d) L3
X 19.65 20.82 18.91 22.16 0.87 0.23 0.57
SD 4.6 3.7 5.4 6.4
(e) L4
X 15.20 16.67 15.29 15.60 0.77 0.60 0.73
SD 3.1 6.7 4.1 4.5
(f) L5
X 12.71 13.38 12.87 12.23 0.69 0.98 0.58
SD 2.6 2.6 2.4 3.7
(g) R1
X 10.80 11.30 11.09 11.83 0.65 0.50 0.90
SD 2.1 1.3 3.0 3.5
(h) R2
X 12.66 12.19 12.90 12.05 0.96 0.41 0.82
SD 1.9 1.3 2.4 3.0
i) R3
X 13.90 14.77 13.56 14.53 0.84 0.51 0.97
SD 2.87 5.53 2.34 3.82
PW = Pre-work; L1 - L5 = Level 1-5 of work.
R1 - R3 = Five, ten and fifteen minutes of recovery.

* = Statistical Significance
= Supplement;

D = Diet;

I = Interaction
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P =.02). No differences were evident when supplement effects were
compared under the two diet conditions (Figure 4.13c and d). The
pooled results show that the TCO2 was significantly lower with a
carbohydrate diet than with a fat-protein diet (Figure 4.13f,
P = .02). The pooled supplement results were not significant
(Figure 4.13e). Following study of all of the data, particularly
the graphs, it was determined that the significant P value obtained
for AL5-R1 was likely due to chance.

It would appear that a carbohydrate diet may lower the TC02.
The data presented herein, however, do not appear to be sufficiently

clear to warrant such a conclusion.

(m) Bicarbonate
The values for bicarbonate (HCO&) are given in Figures

4.15a-f, 4.16, Tables 4.17a-1, 4.14e, and Appendix F.11. During
exercise the HCOé level declined. It started rising at the termina-
tion of the work but had not returned to the base line after fifteen
minutes of recovery. The ANOVA results show a supplement effect

(P = 0.07) from the termination of exercise to the first five minutes
of recovery (AL5-R1; Table 4.14e). The greatest differences occurred

under the supplement condition. Figure 4.15a shows that the concen-

3
fat-protein diet both before and during exercise (sign test, P = 0.02).

tration of HCO, was lower after the carbohydrate diet than after the

This result was not expected due to the higher pH values observed by
Hunter (137) under high carbohydrate diet conditions. The supplement

results are less clear.
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Figure 4.15.

Diet and Supplement Effect on HCO3.
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TABLE 4.11.--Statistical Results, Bicarbonate (mEq/L plasma).

Conditions ANOVA
NaHCO3 NaHCO Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro D I
Variables (sC) (SFP) (PC) (PFP) P P
(a) PW
X 25.81 26.21 25.78 25.20 .67 0.92 0.69
SD 3.6 3.2 4.0 2.12
(b) L1
X 21.25 23.07 21.44 22.15 .81 0.42 0.72
SD 3.8 2.5 5.7 4.9
(c) L2
X 20.83 23.50 19.81 22.15 .63 0.07* 0.87
SD 3.6 3.1 6.2 4.9
(d) L3
X 18.68 19.86 18.1 21.01 .88 0.25 0.62
SD 4.5 3.6 5.2 6.18
(e) L4
X 14.22 15.64 14.29 14.50 .74 0.62 0.73
SD 3.1 6.6 4.1 4.4
(f) L5
X 11.71 12.40 11.90 11.17 .68 0.95 0.55
SD 2.5 2.6 2.4 3.6
(g) RI
X 9.81 10.29 10.70 10.76 .70 0.56 0.92
SD 2.1 1.3 3.0 3.8
h) R2
X 11.7 11.21 12.33 11.50 .56 0.40 0.82
SD 1.9 1.3 2.6 2.8
(i) R3
X 12.97 13.84 12.62 12.91 .65 0.67 0.83
SD 2.8 5.5 2.3 3.8
PW = Pre-work; L1 - L5 = Level 1-5 of work
R1 - R3 = Five, ten and fifteen minutes of recovery,
* = Statistical Significance
S = Supplement; D = Diet; I = Interaction
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(n) Base Excess

The base excess (B.E.) results are presented in Figures
4.17a-f, 4.18, Tables 4.12a-i, 4.14f, and Appendix F.12. In the
ANOVA statistical comparisons, only the difference from the termina-
tion of exercise to the first five minutes of recovery (AL5-R1) for
the supplement was statistically significant (P = 0.01: Table 4.14f).

In Figure 4.17a, b, and f, the base excess values were con-
sistently Tower during work following a carbohydrate diet than
following a fat-protein diet. The differences, using the sign test,
were significant (P = .09). On the basis of these data, although
not highly conclusive, the results indicate that the B.E. tends to
be lowered by a carbohydrate diet.

Figure 4.17e shows that, when the supplementary data were
nooled, the base excess values were significantly increased (sign
test, P = .02) at the various levels of work and at 10 and 15

minutes of recovery by sodium bicarbonate supplementation.

(o) Lactic Acid

The lactic acid results are presented in Figures 4.19a-f,
4.20, Tables 4.13a-i, 4.14g, and Appendix F.13. In the ANOVA
analyses only the supplement differences between those taken after
level 5 and those taken at the 15th minute of recovery (AL5-R3) were
statistically significant (Figure 4.20 and Table 4.14g; P = .09).
This was one of ten‘ana]yses and no other comparisons approached
significance. In the AL5-R3 comparison the lactate differences were

greatest with bicarbonate supplementation.
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TABLE 4.12.--Statistical Results, Base Excess (mEq/L Blood or Plasma).

Conditions ANOVA
NaHCO3 NaHCO3 Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro S D I

Variables (SC) (SFP) (PC) (PFP) P p p

(a) PW
X +1.60  +2.18 +1.46 +0.72 0.49 0.92 0.56
SD 3.8 2.6 3.6 2.0

(b) L1
X -2.24 -0.79 -2.68 -2.31 0.50 0.54 0.72
SD 3.6 2.1 5.2 4.8

(c) L2
X -2.20 -0.34 -3.74 -1.37 0.41 0.18 0.87
SD 3.8 3.2 5.7 3.7

(d) L3
X -5.15 -4.09 -6.44 -3.82 0.78 0.32 0.68
SD 4.4 4.1 5.6 6.2

(e) L4
X -10.9 -9.59 -11.25 -11.14 0.64 0.73 0.77
SD 4.3 7.8 5.3 6.8

f) L5
X -14.63 -13.70 -14.58 -16.3 0.44 0.77 0.40
SD 3.4 3.5 3.0 4.8

(g) R1
X -17.41 -16.30 -17.10 -16.17 0.89 0.50 0.9
SD 3.4 2.3 5.0 5.7

(h) R2
X -13.61 -14.52 -13.49 -14.91 0.91 0.32 0.82
SD 2.5 2.4 3.0 4.5

(i) R3
X -11.69 -12.16 -12.42 -13.23 0.61 0.72 0.92
SD 3.3 5.6 3.1 6.5

PW = Pre-work; L1 - L5 = Level 1-5 of work;

R1 - R3 = Five, ten and fifteen minutes of recovery

S = Supplement; D = Diet; I = Interaction
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TABLE 4.12.--Statistical Results, Lactate (mMoL/L).

Conditions ANOVA
NaHCO3 NaHCO3 Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro S D I
Variables (sc) (SFP) (PC) (PFP) P 3 P
(a) PW
X 1.07 1.04 1.04 1.24 0.74 0.76 0.69
SD 0.9 0.7 0.7 0.5
(b) L1
X 2.23 1.41 1.57 1.61 0.65 0.44 0.40
SD 2.4 0.4 0.6 0.8
(c) L2
X 1.88 1.71 2.33 1.80 0.45 0.32 0.60
SD 1.3 0.4 0.7 0.9
d) L3
X 3.08 3.36 4.76 3.12 0.37 0.40 0.23
SD 2.3 1.3 2.4 1.8
(e) L4
X 6.45 6.62 6.20 5.50 0.56 0.82 0.71
SD 4.5 2.7 1.6 3.0
(f) L5
X 10.19 10.37 7.00 8.52 0.34 0.76 0.80
SD 4.7 7.4 4.6 5.5
(g) R1
X 10.84 11.41 10.02 8.48 0.26 0.77 0.53
SD 4.1 4.4 2.7 5.3
(h) R2
X 9.92 9.42 7.66 9.25 0.37 0.69 0.44
SD 2.5 4.0 2.0 4.6
i) R3
X 7.92 7.66 6.53 7.28 0.48 0.80 0.67
SD 2.6 1.7 2.8 2.3
PW = Pre-work; L1 - L5 = Level 15 of work.
R1 - R3 = Five, ten and fifteen minutes of recovery
S = Supplement; D = Diet; I = Interaction
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TABLE 4.14.--Changes and Statistical Results of Blood Parameters.

Conditions ANOVA
NaHCO3 NaHC03 Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro S D 1

Variables (sC) (SFP) (PC) (PFP) P P P
{a)L pH

PW - L5 0.20 0.20 0.19 0.23 0.41 0.55 0.39

PW - Rl 0.24 0.22 0.24 0.21 0.9 0.30 0.89

PW - R3 0.12 0.14 0.12 0.15 0.58 0.29 0.94

L5 - Rl 0.04 0.03 0.05 0.02 0.03* 0.3 0.96

L5 - R3 7.08 0.06 0.07 0.08 0.77 0.81 0.95
{b) 4PCO,

PW - L5 9.69 9.61 10.28 9.71 0.51 0.75 0.65

PW - R] 11.35 13.11 12.50 12.83 0.84 0.73 0.69

PW - R3 11.27 11.74 12.64 12.00 0.85 0.80 0.48

L5 - Rl 1.66 3.50 2.22 3.13 0.99 0.50 0.89

L5 - R3 1.58 2.13 2.36 2.30 0.25 0.99 0.69
C APO2

PW - L5 12.66 11.02 12.62 11.75 0.90 0.72 0.55

PW - R1 20.43 17.40 21.88 19.55 0.66 0.55 0.80

PW - R3 16.72 10.63 15.40 14.15 0.61 0.81 0.96

L5 - Rl 7.77 6.38 9.26 7.80 0.62 0.98 0.95

L5 - R3 4.06 0.34 2.78 2.40 0.93 0.90 0.83
(d) STCO2

PW - L5 14.29 14.02 14.07 14.17 0.88 0.96 0.87

PW - R 16.20 16.10 15.85 14.56 0.33 0.32 0.74

PW - R3 13.10 12.63 13.38 11.87 0.96 0.50 0.57

L5 - Rl 1.91 2.08 1.78 0.39 0.06* 0.68 0.76

L5 - R3 1.19 1.39 0.69 2.30 0.79 0.45 0.57
{e) ZHCO,

PW - L5 14.10 13.81 13.88 14.03 0.99 0.9 0.82

PW - Rl 16.00 15.92 15.68 14.42 0.30 0.28 0.64

PW - R3 12.84 12.37 13.16 12.29 0.75 0.75 0.86

L5 - Rl 1.90 2.1 1.80 0.41 0.07* 0.74 0.69

L5 - R3 1.26 1.44 0.72 1.74 0.62 0.61 0.75
(f) ABE

PW - L5 -13.07 -11.50 -13.12 -15.58 0.81 0.81 0.65

PW - R1 -15.80 -14.10 -15.60 -15.45 0.40 0.29 0.82

PW - R3 -10.10 -09.96 -10.93 -12.51 0.77 0.68 0.87

Ls - R1 -2.78 -2.60 -2.50 - 0.13 0.01* 0.51 0.74

L5 - R3 -2.93 -1.54 -2.17 -3.07 0.54 0.77 0.94
(g) tlactate

PW - L5 9.12 9.33 5.96 7.28 0.32 0.74 0.83

PW - R1 9.77 10.37 8.98 7.24 0.16 0.93 0.64

PW - R3 6.85 6.62 5.49 6.04 0.66 0.97 0.99

L5 - Rl 0.65 1.04 3.02 0.04 0.80 0.76 0.12

L5 - R3 2.27 2.1 0.47 1.24 0.09* 0.55 0.46
PW = Pre Work
L5 = Level 5 of Work

R1 - R3 = Five, ten and fifteen minutes of recovery

S = Supplement; D = Diet; I = Interaction; * = Statistical significance.
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In Figure 4.19a-f, when all points were considered, no sig-
nificant differences were observed using the sign test. In Figure
4.19a, b, and f, in which the dietary conditions are compared, no
observable differences are evident. In Figure 4.19c, d, and e, in
which sodium bicarbonate and placebo supplements are compared,
there appears to be several trends. The lactate change point
appears most distinct at level 2 under the placebo condition,
whereas under sodium bicarbonate supplementation there were change
points at both levels 2 and 3. Further, under NaHCO3 supplementa-
tion, after level 3 the lactate values were higher both at levels 4
and 5 as well as during recovery. Although the statistical analyses
used were not adequate to test the differences between the lactate
curves for the supplement data (Figure 4.19c, d, and e), it is
evident that the curves appear different. No decision as to
statistical significance can be drawn from these graphs. However,
when considered with the AL5-R3 ANOVA difference, one can conclude
that high lactate values are obtained following sodium bicarbonate
supplementation and that this lactate is reduced quite rapidly.

Figure 4.19e, in particular, reflects these differences.

Discussion
The purpose of the present study was to investigate the
effects of oral ingestion of NaHCO3 administered prior to an inter-
mittent multi-stage treadmill run, under high carbohydrate and high

fat-protein dietary conditions, upon performance and acid-base

parameters. The experimental design insured that each subject
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carried out an identical exercise protocol under the four different
conditions.

It is proper at this point to review the six related research
hypotheses that were formulated prior to this study:

1. The oral ingestion of sodium bicarbonate, in the dosage
of 0.065 gms/kg. of body weight, will alter the acid-base status of
the blood toward greater alkalinity.

The data support this hypothesis. The pH values were con-
sistently higher following NaHCO3 administration (Figure 4.7c, d,
and e) at all collection times. Also, base excess values were
consistently higher following NaHCO3 supplementation (Figure 4.17,
c, d, e and 4.18). The serum bicarbonate values were less inter-
pretable (Figures 4.15a-f, 4.16). In this study the PCO2 levels
were not increased by an alkalizing agent as was observed by Jones
and Sutton (147, 148) and Dennig (71, 72). Nevertheless, on the
overall basis of the data collected, it can be concluded that the
oral ingestion of sodium bicarbonate in the dosages of 0.065 gms/kg.
alters the acid-base status of the blood of marathon runners toward
greater alkalinity.

2. A high carbohydrate diet will change the acid-base status
of the blood toward greater alkalinity.

The data collected in the present study do not support this
hypothesis in its entirety. The pH values appear to be slightly
elevated under the high carbohydrate diet (Figure 4.7b and f,

P = .09) when no bicarbonate supplement was given or when the diet
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data were pooled. If the supplement was given, however, the diet
effect was not evident (Figure 4.7a). Under this condition the carbo-
hydrate and fat-protein diets yielded similar results. Thus it can

be concluded that, in the absence of supplementary sodium bicarbonate
intake, a high carbohydrate diet changes the acid-base status of the
blood of marathoners toward greater alkalinity. In the presence of
supplementary sodium bicarbonate intake (0.065 gm/kg), the diet

effect is not evident.

3. The ingestion of sodium bicarbonate two hours before
work will increase maximum performance time.

The data from the present study neither support nor refute
this hypothesis (Figure 4.1a and Table 4.1a). The present data are
in agreement with the results of Johnson and Black (145), Margaria
et al. (187), and Karpovich and Sinning (162) who also were unable
to demonstrate significantly increased performance times in their
endurance athletes following oral ingestion of alkalizing agents.

The present results are in disagreement with the results of
Dennig (71, 72), Jones et al. (147, 148), and Simmon and Hardt (245).
These investigators all found definite increases in performance times
following oral ingestion of NaHC03. The present results are in the
same direction, but the magnitude of the difference in time is con-
siderably less. Thus, the hypothesis is not supported but also cannot
be refuted.

It would appear from the data that the acid-base status of

marathon runners may be more stable than that of less trained subjects.
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This could account for the differences in results obtained by various
investigators. Other data obtained in this laboratory tend to con-
firmm this position as the subjects of both Hunter (137) and
Boosharya (31) were untrained. The differences obtained by these
earlier investigators were much greater than the performance dif-
ferences observed in the present study.

4. The ingestion of a high carbohydrate diet will increase
maximum performance time.

The findings of the present investigation do not support
this hypothesis. Inspection of Figure 4.1a, however, shows that the
subjects did work slightly longer when eating a carbohydrate diet
than when eating a fat-protein diet. Therefore, due to the direction
of the means and the small number of cases, the hypothesis cannot be
refuted.

The magnitude of difference attributable to the high carbo-
hydrate diet in the present study is small compared with the
results of Christensen and Hansen (50), Bergstrom et al. (26, 27,
28), Hultman (133) and Saltin and Hermansen (231). The difference
in results could be due to the fact that the subjects in the present
study were highly trained marathoners or that it was not possible to
induce the marathoners to actually partake of a truly high fat-
protein diet. Finally, it may be the differences in diet were not
sufficiently great to obtain the expected difference.

5. The effects of sodium bicarbonate supplementation and a

high carbohydrate diet are expected to be synergistic.
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There are not data to support this hypothesis. In fact, it
may be refuted as the effects of the NaHCO3 supplement and the high
carbohydrate diet were not even additive in action.

6. Enhanced performance times are expected with little or
not differences in the maximum oxygen uptake or oxygen debt.

The lack of significant improvement in performance time
under either sodium bicarbonate or carbohydrate conditions, and the
lack of any interaction between the two treatments, resulted in no
significnat increases in the values of both maximum oxygen intake
or oxygen debt in the present study. Therefore, this hypothesis
cannot be accepted.

The preceding discussion makes it obvious that exercise
metabolism in general provides a constant acidifying influence.
When the metabolic rate is raised to seven or eight times that of
the resting level, the increase in 002 is proportional, but ventila-
tion can usually keep pace to maintain acid-base equilibrium.
However, when the work load goes beyond aerobic capacity, lactic
acid becomes the end product of metabolism, instead of C02. This
cannot be removed quickly by respiration as is the case with C02.
It has already been pointed out that under conditions of heavy
anaerobic exercise the pH can drop as low as 6.80 (207).

The combination of two different buffer systems, that is
carbonic acid-bicarbonate and blood protein, absorbed the shock to
prevent the sudden changes in pH. Ultimately, however, physiological

changes have to be brought about to maintain the organism in
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homeostasis over a longer period of time, and these changes mainly
involve the lungs and the kidneys.

Permeability of the muscle cell membrane and the ratio of
blood-muscle lactate both seem to be elevated in the alkaline state.
It also has been suggested that the increased concentration of HCO%
ions in the blood after sodium bicarbonate injection results in an
increase of buffering capacity to lactate ions which migrate from
muscle cells (90). This migration of lactate is believed to post-
pone fatigue and improve performance during exercise.

The alkaline reserve (bicarbonate and base excess), which
may be defined as the buffering capacity of blood, is influenced
almost exclusively by changes in non-volatile acids. The most
important of these are lactate and pyruvate. Both Figures 4.15 and
4.17 indicated that the lowest values of bicarbonate and base excess
were reached either at the termination of exercise or during the
first five minutes of recovery. The AL5-R1 changes were from 12.40
to 10.29 units of HCO% and from -14.63 to -17.41 units of BE. This
could be explained by the fact that the maximal value of blood
Tactate (11.41 mML/L) was reached at five minutes of recovery
(Figure 4.19%). In agreement with the results of this study,
several investigators have shown a large decrease in the alkaline
reserve of the body following maximal exercise (90, 94, 170, 264,
268).

It is well documented that regularly performed endurance
exercise, such as long distance running, results in major bio-

chemical adaptations in skeletal muscle (20, 23, 94, 125, 197, 205,
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263). Numerous investigators have shown an increased ability to
tolerate acid metabolites (mainly lactic acid) after a period of
training. Thus they have proposed that this increased tolerance
might be due to an increase in the buffering ability (alkaline
reserve) of the blood. In addition, physical training has been
found to result in increased blood volume and total hemoglobin
content. Most of the increase in blood volume reflects an increase
in the amount of plasma and total hemoglobin (65, 171, 234) rather
than an actual rise in the red blood cell volume. The blood's hemo-
globin concentration is therefore usually unchanged or slightly
decreased after training. The total proteins contained in the
plasma and the red blood cells are active in the buffer action and
constitute a mobile reserve of amino acids.

Several previous studies (Dennig, Jones, Jones and Sutton,
Simmons and Hardt) furnish strong evidence for the value of alkaline
salts in the improvement of performance times in subjects who were
untrained or only moderately trained. However, the present study
is in agreement with the results of Johnson and Black (145),
Margaria (187), and Karpovich and Sinning (162) who were unable to
show improved performance times in endurance athletes following oral
ingestion of alkalizing agents. It appears that highly trained
athletes may be less sensitive in that they may have already
improved the buffer capacity of their blood through training. The
relevant literature and the present study both tend to support this

view.






CHAPTER V

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary

The purpose of this study was to investigate the effects of
the oral ingestion of sodium bicarbonate under different dietary
conditions (i.e., high carbohydrate and fat-protein) upon acid-base
equilibrium and performance time in long-distance runners during an
intermittent multi-stage treadmill run to exhaustion. Eight fit male
distance runners, 20-40 years of age from the central Michigan area,
volunteered to be subjects in this study.

The subjects were stress tested and were fully informed of
the aims of the study. The subjects then were tested on a treadmill
under four treatment conditions, which were administered in random
order, during a four-week period. The conditions included: (a) the
ingestion of sodium bicarbonate following a three day high carbo-
hydrate diet (SC), (b) the ingestion of sodium bicarbonate following
a three-day high fat-protein diet (SFP), (c) the ingestion of a
placebo following a three-day high carbohydrate diet (PC), and (d)
the ingestion of a placebo following a three-day high fat-protein
diet (PFP). The supplements were given orally, two hours before the
treadmill tests, in capsules containing either sodium bicarbonate as
an alkalizer or dextrose as a placebo and were administered in
amounts of .065 and .05 gm/kg of body weight, respectively.

103
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Each subject received a list of standard American foods con-
tained in the high carbohydrate or high fat-protein diets. Prior to
each exercise test a dietary recall was conducted to determine the
percentages of carbohydrate, fat, and protein that were consumed.

The exercise test consisted of six progressively higher work
levels at defined speeds and grades. Three-minute rest intervals
were alternated with a three-minute work interval at each level. On
each test after the subject ran to exhaustion the recovery was
followed for fifteen minutes. Heart rate was measured during each
work interval, each rest interval, and the recovery period.
Respiratory rate was monitored only during the work and rest inter-
vals. Energy metabolism measurements were conducted during all
levels of exercise, the rest intervals, and the recovery period.

The standard Douglas bag method was used.

Arterialized capillary blood was sampled prior to exercise,
immediately following each work level, and after five, ten and
fifteen minutes of recovery. The blood samples were analyzed for
lactic acid using the enzymatic method and for pH, PCOZ, P02, TC02,
HCO%, and BE using the Astrup method.

A repeated measures analysis of variance (ANOVA) was employed,
with diet and supplement as the independent variables, to determine
if there were any significant differences among the four treatment
conditions. The sign test was used in selected instances to analyze

continuous curvilinear data.

No statistically significant differences were observed in

performance time, maximum oxygen intake, or gross oxygen debt under
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any of the treatment conditions. The oxygen uptake results also
showed no significant differences. Utilizing the sign test, the
ventilation measures were higher following the fat-protein diet.
The SC condition resulted in consistently higher ventilation values
than did the PC condition; whereas, under the SFP treatment the
ventilation values were consistently lower than under the PFP
treatment.

The ANOVA analysis of the heart rate data revealed a signifi-
cant interaction between ten and fifteen minutes of recovery. In
respiratory rate, a statistically significant sodium bicarbonate
effect was evident during the first level of exercise.

Significant sodium bicarbonate effects on blood pH were
detected in the pre-run data (P = .09) and in the difference between
the values at the end of exercise and at five minutes of recovery
(AL5-R1) (P = .03). The pH values were consistently high with sodium
bicarbonate supplementation under both dietary conditions (sign test,
P =.01).

The PCO2 analysis across treatments revealed there were
decreased values following the carbohydrate diet at levels two and
three of work (P = .02 and P = .09). Application of the sign test
showed that the PCO2 values were significantly lower following a
carbohydrate diet than when a fat-protein diet was used. With
supplementation of sodium bicarbonate, the PCO2 was significantly

decreased under both dietary treatments (P = .002).

The PO, measurements were consistently high following the

2
carbohydrate diet (sign test, P = .002). The PO2 values were also
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consistently higher under the condition SC than they were under the
SFP condition (sign test, P = .002).

The ANOVA program showed there was a significant dietary
effect on total carbon dioxide (TCOZ) at level 2 of exercise. In
addition, the supplement difference between the end of level 5 and
five minutes of recovery (AL5-R1) was statistically significant.
Application of the sign test showed the TCO2 values to be signifi-
cantly depressed under both the SC and the pooled carbohydrate diet
treatments.

There was a significant supplement effect on serum bicarbo-
nate from the termination of exercise to the first five minutes of
recovery (AL5-R1) (P = .07). The comparison of different measures
indicated that there were consistently low serum bicarbonate values
following the carbohydrate diet both before and during exercise (sign
test, P = .02).

The base excess (BE) results showed that the only supplement
effect occurred during the first five minutes of recovery (AL5-R1)
(P = .01). The BE values were consistently low during work follow-
ing the carbohydrate diet (sign test, P = .09). When the sodium
bicarbonate supplementation data were pooled, the BE values were
significantly increased (sign test, P = .02) at the various levels
of work and at 10 and 15 minutes of recovery.

The ANOVA analysis of the lactate data showed that the only
significant effect occurred between level 5 and fifteen minutes of
recovery (AL5 - R3) (P = .09). 1In this comparison, the lactate

differences were highest under bicarbonate supplementation.
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Conclusions

1. The oral ingestion of sodium bicarbonate, in the dosage
of .065 gms/kg of body weight, alters the acid-base status of the
blood of trained distance runners toward greater alkalinity.

2. In the absence of supplementary sodium bicarbonate intake,
a high carbohydrate diet changes the acid-base status of the blood of
the trained distance runners toward greater alkalinity.

3. The oral ingestion of sodium bicarbonate two hours before
work did not significantly increase the maximum performance time of
trained distance runners.

4. A high carbohydrate diet did not significantly increase
the maximum performance time of trained distance runners.

5. The effects of sodium bicarbonate supplementation and a
high carbohydrate diet are not synergistic in trained distance
runners.

6. There were no significant improvements in the maximum
oxygen intake or oxygen debt under either the NaHCO3 or the carbo-

hydrate diet treatments, and no interaction of two was observed.

Recommendations

1. In further studies of this nature, the dietary regimens,
supplementation time, physical activities and other related factors
should be controlled by feeding.

2. In further studies of this nature, an acidotic condition

should be incorporated.
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TABLE A-1.--High Carbohydrate Diet.

DIET: HIGH CARBOHYDRATE

Foods that can be consumed
in any amounts:

Fruit (except cranberries, plums, prunes)
Vegetables (except corn and lentils)
Bread

Cereal

Potatoes, Rice, Macaroni

Margarine

Sugar

Skim Milk (no more than 3 servings of whole milk)
Cottage Cheese

Lettuce

Pancakes

No more than one serving of any
combination of the following
can be consumed each day:

Meat

Egg

Fish

Nuts (including peanut butter)
Corn, Lentils

Cranberries, Plums, Prunes
Cakes and Cookies, plain
Butter

AN EFFORT MUST BE MADE TO KEEP YOUR TOTAL CALORIC INTAKE RELATIVELY
CONSTANT. A BODY WEIGHT LOSS OR GAIN DURING THE CONTROLLED DIET
PERIOD COULD EFFECT THE EXPERIMENTAL RESULTS.
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TABLE A-2.--High Fat - Protein Diet.

DIET: HIGH FAT - PROTEIN

Foods that can be consumed
in any amounts:

Meat

Fish

Fowl

Eggs

Nuts

Peanut Butter
Bacon
Butter

Corn
Lentils
Cranberries
Lettuce
Margarine

AT LEAST 3 SERVINGS OF ANY COMBINATION OF MEAT, FISH, AND FOWL MUST
BE CONSUMED EACH DAY.

No more than three servings of any
combination of the following can
be consumed each day:

Fruit

Vegetables

Bread

Cereal

Potatoes, Rice, Macaroni
Margarine

Sugar

Milk

Cakes and Cookies, plain
Pancakes

AN EFFORT MUST BE MADE TO KEEP YOUR TOTAL CALORIC INTAKE RELATIVELY
CONSTANT. A BODY WEIGHT LOSS OR GAIN DURING THE CONTROLLED DIET
PERIOD COULD EFFECT THE EXPERIMENTAL RESULTS.
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TIMING OF SUPPLEMENTATION

It was not evident from the literature how long prior to
exercise NaHCO3 ingestion would produce maximum alterations in
blood acid-base balance. An oral dose of .065 gram NaHCO3 per
kilogram body weight produced maximum changes in blood pH and BE
after two to four hours with the pH and BE gradually decreasing
after reaching its maximum value until only half of the increase
was evident at twelve hours (Figure B.1). If another equal dose
was given about twelve hours following the first dose a slightly

greater increase in alkalinity was achieved (Figure B.2).
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EXERCISE STRESS TEST

Certain individuals exhibit abnormalities in electro-
cardiogram (ECG) and blood pressure (BP) under the stress of
exercise even though these abnormalities are not evident in a
resting state. By using a graded exercise stress test where the
intensity of the exercise increases gradually while the ECG and
BP are monitored a subject's ECG and BP response to exercise can
be obtained in relative safety.

Adaptations in the Bruce protocol (81) for graded exercise
stress testing were made so that the test would stress the subjects
adequately to insure a valid ECG and BP response at the high

intensity of the experimental exercise.

Equipment and Materials

1. Disposable 3M Red Dot Monitoring Electrodes,

Minnesota Mining Co., 3M Center, St. Paul, Minn. 55101.
2. Cambridge 3030 EKG Unit, Cambridge Inst. Co., Inc.,

73 Spring St., Ossining, New York 10562.

Procedure
Electrodes were placed on the subject in a single bipolar V5

electrocardiograph configuration (Figure 3.1), a resting BP was
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taken, and a resting ECG was recorded. The subject then was
exercised under the following conditions:
1. Level 1 - 3.5 miles/hour, 8% grade, 3 minutes
duration.

2. Level 2 - 4.2 miles/hour, 12% grade, 3 minutes
duration.

3. Level 3 - 6.0 miles/hour, 12% grade, 3 minutes
duration.

4. Level 4 - 8.0 miles/hour, 12% grade, 1.5 minutes

duration.

Blood pressure was measured immediately following the
exercise at each level. The electrocardiogram was monitored
throughout the test, and an ECG was recorded between exercise
levels. The test was continued as soon as the BP and ECG were
recorded.

The following criteria were used for terminating the

stress test before all four levels were completed.

1. Systolic blood pressure over 220 mmHg.
Diastolic blood pressure over 110 mmHg.

Depression over 2 mm of the ST segment of the ECG.

Hw N

Premature ventricular contractions (PVCs) in pairs
or with increasing frequency.

None of the individuals used as subjects exhibited PVCs,

any ST segment depression, or abnormal blood pressures.
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BLOOD SAMPLING

Principle
It has been shown that arterialized capillary blood very
closely approximates arterial blood gas composition. The finger
or ear lobe must be warmed (in about 45°C water) to insure rapid
flow of blood, and the blood must be taken from the middle of
rapidly forming blood drops so that the sampled blood does not
make contact with atmospheric air. Heparinized capillary tubes

must be used to keep the blood from clotting.

Procedure

1. The finger was prewarmed for about three minutes
in water (approximately 45°C).

2. The finger was cleaned with alcohol and wiped
dry with a sterile gauze pad.

3. The finger was lanced with a long point microlance.

4. The first drop of blood formed was wiped away and
then a large pool of blood was allowed to form.

5. The capillary tube was placed in the center of the
blood pool and allowed to fill via capillary
action insuring that the capillary tube did not
take blood from the surface of the pool.
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ACID-BASE MEASURES

The 120-ul blood sample that was obtained in the
heparinized capillary tube was used for direct measurement of pH,
PCO2 and PO2 using a PHM75 MK2 Digital Acid-Base Analyzer and a
BM53 MK2 blood micro system. The blood was injected directly from
the sample capillary tube into the measuring well of the blood micro
system. Measurements were then obtained across the membrane compo-
and PO

nents of the PCO measuring electrodes. A second capillary

2 2
was used to measure blood pH. This sample was aspirated directly
into blood pH electrode for direct measurement. The HCOQ, TCO2 and
BE were determined indirectly by the Astrup Equilibration Method
for acid-base variables, using the Siggaard-Andersen Alignment

Nomogram (Figure D.1).
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LACTATE DETERMINATIONS

Principle
NADH is formed when lactate is oxidized to pyruvate.
_ LDH _
Lactate + NAD . ~> Pyruvate + NADH
By incubating the reaction in an alkaline environment and by trap-
ping pyruvate with hydrazine, lactate can be completely oxidized.
The equimolar formation of NADH then is measured at 340 nanometers

(nm) to determine the lactate concentration.

Reagents
1. Lactic dehydrogenase enzyme (LDH) stock no. 826-6.

2. Glycine buffer (contains glycine and hydrazine pH 9.2)
stock no. 826-3.

3. NAD preweighed vial stock no. 260-110.

4. Lactic acid standard solution, stock no. 826-10.

5. Sigma metabolite control, product no. s-3005.
The above reagents are from Sigma Chemical Company, P.0. Box 14508,
St. Louis, Missouri 63178.

6. Perchloric acid, 70%.

Solutions

Perchloric Acid

7 ml of 70% perchloric was diluted with 100 ml distilled

water.
124
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Lactic Acid Diluted Standard

1.0 ml of lactic acid standard solution was diluted with

5.0 ml distilled water.

Specimen Collection and Preparation

1. One hundred microliters of blood was pipetted into
centrifuge tube containing 200 ul of cold perchloric
acid.

2. The mixture was centrifuged five to ten minutes at
approximately 32 gs (International Chemical Centrifuge,
Fisher Scientific Co.).

3. The protein free supernatant which was ready for use in
the lactate determination was stored for up to six days
at 0-3°C before analysis took place.

4. Sigma metabolite control was mixed with 5 ml distilled
water. The metabolite control was treated the same
as a pre-exercise sample (2.2 mM/1) and was used with
each analysis batch.

Test Procedures

1. The number of NAD vials needed was determined.

number of NAD vials = number of Zamgjes + 2

2. Into each NAD vial the following was pipetted:
2.0 ml glycine buffer
4.0 ml distilled water
0.1 ml lactic dehydrogenase enzyme
The vials were inverted several times to dissolve the NAD.
3. The solution from all the vials was mixed.
4. Into each test rube 1.4 ml solution from step 3 was
pipetted and the test tubes were labeled blank through
appropriate sample number.

5. To blank, .1 ml of perchloric acid was added.
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To all samples taken before exercise, .1 ml of
protein-free supernatant was added.

To all samples taken after exercise, .05 ml of
protein-free supernatant and .05 ml of perchloric
acid was added. Since the above solution is only
accurate for lactate values of up to about 7 mM/L
and postexercise values were expected to be over

10 mM/L, only 1/2 of the protein-free supernatant in
the postexercise samples was used.

The test tubes were incubated at least 45 minutes at
25°C.

The absorbance was read directly at 340 nm on the
Gilford Stasar II Spectrophotometer.
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ENERGY METABOLISM DETERMINATIONS
Principle
The volume of expired gases must be corrected to standard
temperature pressure dry (STPD) conditions. This can be accomplished

using the following STPD correction factor:

STPD Pg - P H,0
correction =
factor 760 (1 + .00367 T)

where: PB = ambient barometric pressure.

PH 0= the water vapor tension in mm Hg at the
2 temperature of the gasometer.

T = the temperature of the gasometer in degrees
Centigrade,

.00367 = 1 divided by 273 (273 is the conversion

factor for converting temperature in

Centigrade to Kelvin).
This computation can be greatly simplified by using the line chart
devised by Darling (55). The correction factor is then multiplied
by the VE ambient temperature pressure saturated (ATPS) in order
to obtain VE (STPD). The volume of oxygen consumed can be found
by obtaining the number of ml of oxygen consumed for every 100 mi
of expired gas (true 02) and multiplying the true 02 by Ve (STPD).
Expired gas volume does not equal inspired gas volume unless the
respiratory quotient (RQ) is equal to 1.00. The following formula

for ture 02 corrects for this difference in the inspired and expired

gas volume.
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TRUE 02 = %N2 in expired air x .265 - %O2 in expired air

%02 in ambient air
Where: .26

5 = %N2 in ambient air

The same correction must be made in calculating RQ.

%CO2 in expired air - .03
RQ = - %O2 in ambient air
%N2 in ambient air x .265

Where: .03 = solubility coefficient for CO2 in human blood

%02 in ambient air
.265 =

%N2 in ambient air

Both the above computations can be simplified by using the line

chart developed at the Harvard Fatigue Laboratory (55).

Procedure

1. An STPD correction factor was obtained for each gas
collection bag using the nomogram developed by Darling.

2. The STPD correction factor was multiplied by the total
gas volume for the appropriate gas collection bag.

3. True 0, and RQ were obtained from the Harvard Fatigue
Labora%ory line chart.

4. True 02 was multiplied by corrected V. (STPD) and
divided by 100 to get the volume of 02 consumed in each
gas collection bag.

5. Oxygen uptake per minute (V0,) was obtained by dividing
the 02 consumed by the amoun% of time spent in collec-
tion of gas for that bag (in fractions of a whole minute).
The maximum 02 uptake (VOomax) was considered to the
maximum value~for 0 uptaEe found in two last 30-second
bags during the run“(holding about 1 minute).
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Oxygen uptake curves were constructed using the 0
consumed from each gas collection bag during exergise,
rest intervals and recovery period.

Gross 0, debt was considered the sum of the oxygen
uptake ea]ues for all of the recovery bags.
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TABLE F.1.--Performance Time (secs), VOzmax (m1/kg) and Gross
Oxygen Debt (liter).

Treatments
NaHCO, NaHCO3 Placebo Placebo
+ + + +
CHO Fat-Pro CHO Fat-Pro

Subjects (SC) (SFP) (PC) (PFP)
(a) Performance Time

SF 0990 1023 0997 0967

BM 0616 0640 0639 0627

DS 0856 0858 0825 0767

BR 0814 0816 0792 0810

DA 0840 0799 0810 0805

GC 0780 0800 0787 0769

BK 0830 0788 0780 0831

GS 0764 0656 0660 0750

X 811.25 797.50 786.25 790.75

SD 104.0 119.0 110.0 95.0
(b) vo2max

SF 090.30 098.50 100.03 089.20

BM 075.20 074.47 075.64 078.50

DS 090.47 073.42 090.38 071.54

BR 082.11 082.45 083.00 080.55

DA 080.86 076.08 074.54 075.74

GC 083.71 083.15 078.98 087.09

BK 076.05 077.59 073.09 076.53

GS 066.44 068.37 061.77 067.80

X 80.64 79.25 79.68 78.37

SD 8.05 9.13 11.63 7.24
(c) Gross Oxygen Debt

SF 14.64 16.53 20.58 16.62

BM 16.04 15.34 14.39 15.76

DS 13.07 10.72 11.31 07.85

BR 15.82 17.16 17.28 16.51

DA 15.23 15.02 12.93 14.61

GC 12.61 12.97 11.95 11.11

BK 15.55 15.53 14.95 15.59

GS 18.07 15.38 14.48 17.17

X 15.13 14.83 14.73 14.40

SD 1.73 2.06 3.01 3.26
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