


lg

This is to certify that the

thesis entitled

SYSTEMS MODELLING, ANALYSIS

AND SIMULATION OF

TYPE A INFLUENZA EPIDEMICS

presented by

Roy Gardner

has been accepted towards fulfillment

of the requirements for

Ph. D. degreein Systems Science

$10[Jag/Q
Major professor

Date February 19, 1980
 

0-7639

__ __ , _ 7 .     



 

OVERDUE FINES ARE 25¢ PER DAY

PER ITEM

Return to book drop to remove

this checkout from your record.

  
 



SYSTEMS MODELLING, ANALYSIS AND SIMULATION OF

TYPE A INFLUENZA EPIDEMICS

By

Roy Gardner

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

and Systems Science

1980



ABSTRACT

SYSTEMS MODELLING, ANALYSIS AND SIMULATION OF

TYPE A INFLUENZA EPIDEMICS

By

Roy Gardner

A pandemic results from the emergence of a new subtype

of type A influenza virus. Following the pandemic, epidemics

occur in two to three year cycles due to the structural

change of the same subtype virus. The graphic representa-

tion of disease incidence from one pandemic to the next

resembles underdamped oscillation. A review of the liter-

ture reveals no existing dynamic model of influenza epi-

demics which depicts the behavior of the virus and its

interaction with the pOpulation. This paper develops a model

for such a system using systems theory and application.

As a basis for describing the dynamic behavior, three

epidemic models are analyzed in the context of systems

analysis and simulated. All simulations in this research are

performed using DYNAMO. Variables which are of interest to

epidemiologists, such as the peaks and the durations of

epidemics, are defined, and the formulas for computing these

variables are derived. The numerical values obtained from

analysis are compared with the simulation results.

The influenza epidemic model develOped using the basic



epidemic models is a nonlinear system with four state variables,

one of which is the structural state of the virus. _The virus

was modelled using the idea of a logistic curve, the asymptote

of which is the immunity level of the pOpulation. VThe line-

arized model was used to analyze system behavior. With a

proper choice of the parameter associated with the-virus,

the system provides an epidemic curve which resembles under-

damped oscillation. A range of the parameter required for

this underdamped oscillation was computed using a sufficient

condition, expressed in terms of the coefficients of the

characteristic equation, for the third order linear system to

be stable, oscillatory, and underdamped. This sufficient

condition was derived based on the relationship between the

roots location and the coefficients of a cubic equation.

Simulation results of the system for four test cases

are presented and compared. With this model three epidemics

can be shown. The attempt to fit the model outputs with

the historical data on the mortality rate of three selected

epidemics of recent times was carried out as model vali-

dation. The model was modified to include the population

growth and the seasonal variation of influenza outbreaks.

Simulation results show a reasonable fit, considering the

complexity of the real world system.

To minimize the severity of the epidemic, an immunization

model was developed as a subsystem of a control system. This

model consists of the vaccinated pOpulation as the state



variable. The state equation was constructed using the idea

of a goal seeking curve. A comparison of simulation outputs

of the system without immunization and with immunization is

given. Simulation shows that, with this control system, in-

stead of the expected epidemic, an endemic state results.

This control system, however, is an idealized system where

only individuals in the susceptible pOpulation are immunized,

and it does not consider the efficacy of the vaccine. To

interpret the simulation results more realistically, a simple

formula is given to compute the percentage of the total

pOpulation that requires immunization to prevent the epidemic.

This percentage varies depending on the efficacy of the

vaccine.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

In 1979 smallpox was declared eradicated from the face

of the earth. Once—devastating infectious diseases such as

cholera, typhoid fever, and yellow fever are now under con-

trol through improved sanitation, vaccination, and quaran-

tine. Yet, control of influenza epidemics and pandemics

(world wide epidemics) is not in sight. This is because the

infectious agent, a virus, is constantly changing with the

resultant consequence of invading a pOpulation which has

little or no immunity for the changed agent. This disser-

tation concerns the deve10pment, analysis, and simulation

of models of influenza epidemics.

Influenza can be just as devastating as cholera. It

is estimated that the pandemic of 1918 killed 20 million

peopb world wide and over 500,000 in the United States in

a period of just a few weeks. The occurrence of pandemics

and major epidemics in recent times (Kilbourne, 1975, p.h9h)

is as given in Table 1.1.



Table 1.1. Major epidemic and pandemic years and

their intervals.

Pandemic Major Epidemic

Pandemic Interval Interval

1889 +

1900 11

1918 + 29 18

1929 11

19h6 + 28 17

1957 + 11 11

1968 + 11 11

+ indicates occurrence of an unquestioned pandemic.

It is interesting to note the recurrence of the 11 year

intervals in the above table. The exact reasons for the

cyclical prOperties of the epidemics are not known, but the

relationship between the immunity level of the population

and the occurrence of an epidemic is an important factor to

be considered.

Another interesting theory of the cyclical nature of

pandemics is the return of the same virus subtype every

sixty years. The pandemic of 1918 is believed to have been

caused by the "swine flu" virus. Isolation of the swine

flu virus from soldiers at Fort Dix, New Jersey, in 1976

prompted a national immunization program in anticipation

of another pandemic. The fact that the pandemic did not

materialize points out the need for a model to more accu-

rately forecast future influenza epidemics. Such a model

requires an extensive knowledge of the basic three elements

in the system -- the virus, the host, and the environment --

and the complex interactions among them. In many socio-

economic and ecological systems, the degree of
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uncertainty, in essence, determines the validity and

hence the usefulness of the model. In the case of the

influenza epidemic system, this uncertainty is compounded

by the limited knowledge of the virus itself. As the

secrets of the virus are unraveled, prediction and con-

trol of epidemics may become reality.

1.2 Description of the Influenza Epidemic System

To build a realistic system dynamics model of any

phenomena, it is fundamental to have a good understanding

of the real world system the model is to represent. The

following is a brief but essential description of the

various elements and interactions involved in influenza

epidemics as they are understood today.

Influenza is an infectious disease caused by a class

of viruses called myxoviruses, or interchageably known as

influenza viruses. There are three types of influenza

viruses, types A, B, C, which are classified according to

the immunity each produces by infection. Type A has sub-

types, and each subtype has variants. Type B has no sub-

type, but has variants. Type C virus is uncommon and does

not cause epidemics. Type A is the only type found in

animals and birds as well as humans. Epidemics of type

A occur every two to three years, and epidemics of type B

occur every four to six years.

Appearance of a new subtype of type A can result in a

pandemic. In fact, one author defines an influenza
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pandemic as an emergence of a new subtype (Beveridge,

1977). A remarkable fact about the subtypes of type A

virus is that when a new subtype appears, the old sub-

type rapidly disappears. Hence, only one subtype of type

A predominates at any given time. However, the type B

virus can coexist with type A virus. The table below

(Volk, 1978, p. 5h2) lists the subtypes of human viruses

isolated up to the present time:

Table 1.2. Subtypes of human influenza A viruses and

the year isolated.

Year Isolated Subtype

193a HONl

1947 HlN1

1957 H2N2

1968 HBNZ

In immunological terms, the change in subtype is

called antigenic shift. In simple terms, antigenic shift

is a major change in the type A virus which may lead to a

pandemic, while antigenic drift reflects minor changes in

the type A or B virus which may cause more localized epi-

demics.

Understanding the structure of the virus makes it

possible to understand shifts and drifts: The virus is

80-100nm in diameter and is roughly spherical in shape.

It consists of a helical symmetric core which contains the

genetic material of the virus called ribonucleic acid

(RNA) and two types of spikes, hemagglutinin and



neuraminidase; The RNA is in eight separate pieces, each

being a single genetic unit. The Spikes are attached to

the membrane which encloses the core (Beveridge, 1977,

p. 69).

 
N = Neuraminidase

H = Hemagglutinin

C = Core

M = Membrane

Figure 1.1. Diagram of influenza virus section.

When the virus attacks a person, it first must

attach to host cells. This attachment is facilitated by

the H and N spikes and is necessary for the virus to pene-

‘trate the host cells. Once inside the cell, multiplica-

‘tion.of the virus takes place through the process of

translation and transcription of the genetic codes.

An antigen is defined to be any substance which

causes the body to produce antibodies. There are four

antigens in the influenza virus: the two spikes H and N,



the core, and the membrane. Antibodies produced in reSponse

to the core antigen and the membrane antigen are not pro-

tective and do not prevent infection. The core antigen is

significant, however, because the types A, B, and C are

classified according to the differences in the antibodies

induced by the core antigen. Antibodies induced by the N

spike are not protective, either, but they may play some

role in reducing the spread of infection, since they inter-

fere with the release of the virus from the infected cell.

Antibodies induced by the H spike are protective and

neutralize infectivity of the virus by coating the surface

of the cell so that the H spikes cannot be attached

(Volk, 1978, p. 5&0).

Basically, the coating of the surface of the cell by

the antibodies results in immunity to the specific virus.

However, if the chemical composition, and hence the anti-

genicity, of the H or N spikes change, the body does not

recognize the change, and the person can be infected

again. Slight changes may occur by mutation during the

multiplication process, and these changes in the spikes

are called antigenic drift. If there is a major change

so that there is negligible immunity in the pOpulation,

then the change is called antigenic shift.

Antigenic shifts are believed to result from the

creation of a hybrid between human and animal influenza

viruses. This is the recombination theory which states

that a human influenza virus may infect lower animals or
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birds and then be recombined with an animal virus present

in the animal host to produce a new subtype of the human

influenza (Laver, 1979).

The recombination theory plays a significant role in

the control of influenza epidemics. First, it implies

that future pandemics will be difficult to control since

vaccines cannot be prepared by simply manipulating the

human influenza viruses. Second, it widens the whole

dimension of the influenza epidemic system by involving

the ecology of animals and birds.

Early identification of a new variant or subtype is

crucial for the preparation of a prOper vaccine to immunize

against a possible epidemic. The World Health Organization

maintains a world-wide network for surveillance of in-

fluenza viruses. At present, early detection and vaccin-

ation seem to be the only effective tools against influenza

epidemics.

1.3 Purpose, Background and Methodology of Research

The purpose of this research is to build a large-

scale or aggregated,model of an influenza epidemic system

using systems theoretic concepts which shows the relation-

ship between the dynamics of the epidemic and the changing

structural state of the influenza virus. In the systems

approach, the identification of the virus and vaccination

are controllable inputs to the influenza epidemic, while

shifts and drifts are uncontrollable inputs. Exogeneous



inputs include seasons, susceptibility due to genetic fac-

tors and standard of living, and general health and ages

which affect morbidity and mortality rates. POpulations

with different immunity levels and the number of suscep-

tibles and the number of immunes may be considered design

parameters. Desirable outputs are a high level of immunity

in populations and low morbidity and mortality rates.

Complications such as Guillain-Barre syndrome and high

economic costs are undesirable outputs.

In reality many of the variables identified above are

probabilistic or stochastic in nature. For instance, not

all individuals who have contact with an infective person

come down with the disease. The complexity of the human

body and its interaction with the invading virus can never

be adequately described by mathematical expressions. In a

stochastic approach, disease incidence at any given time

period is associated with a probability. Stochastic models

are more apprOpriate if one is investigating the system

behavior in which the statistical fluctuation is significant,

such as in infectious outbreaks involving a few individuals.

In a large-scale model this statistical fluctuation averages

out and becomes less significant. Deterministic models are

adequate for describing epidemics involving a large number

of pe0ple and will be used in this research.

Epidemic models using “system dynamics" techniques

have been found only as examples and illustrations in the

texts of Goodman (197A, pp. 85-88, 365-375) and Sage (1977,



pp. 212-213). No influenza epidemic models were found in

any of the systems and simulations literature. Bailey

(1975) presents an extensive literature review of mathe-

matical models of epidemics from the beginnings of research

in that area up to and including recent develOpments.

Elveback, Fox, Ackerman (1975) use a stochastic

discrete time model to simulate an influenza epidemic in

a community of one thousand peOple and deduce an Optimal

strategy for vaccination. .

Several Russian researchers (Baroyan, 1971) constructed

a computer simulation model to forecast the outbreak of

influenza epidemics in forty-three cities in the U.S.S.R.

This model is based on a migration model and uses trans-

portation data as one of the parameters.

Using the parameter estimation technique developed by

the above Russian researchers, Spicer (1979) shows that a

stochastic discrete time model conforms to the historical

data on influenza deaths in the United Kingdom from the

years 1952 to 1973.

Kilbourne (1975, p. A96) gives a graphic representa-

tion of the pattern of pandemics in recent years, depicting

the relationship between the immunity level of the popu-

lation and the drifts and the shifts of the virus as shown

in Figure 1.2. This graph resembles underdamped oscillation

and gives some insight into the structure of the influenza

epidemic model which is the subject of this research.

Three basic models of epidemics described in Bailey
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(1975) will be discussed in Chapter 2. These models lead

to an influenza epidemic model develOped in Chapter 3 which

includes the structural state of the virus as one of the state

variables. The model will be simulated, and the results

compared to historical data provided by the Center for Disease

Control in Chapter A. Finally, in Chapter 5, an immunization

model will be developed as a subsystem of a control system,

and the percentage of the pOpulation required to be immunized

to prevent epidemics will be determined.

All models will be discussed in the context of systems

analysis, focussing on such t0pics as stability, lineariza-

tion, phase portrait, and transient response. A qualitative

modeling approach, namely causal 100p diagrams, will show

the relationship among the various variables. Normally,

the causal 100p diagram does not show the mathematical

processes relating variables. However, to make the descrip-

tion more precise, in the simple models such definitions taken

from the state model will be included alongside each variable

defined.

Block diagrams as well as DYNAMO flow diagrams will

be used to show the parameters, the flow of quantities,

and the rate and level variables. All simulations will be

done by DYNAMO, a well-accepted dynamic systems simulation

program. DYNAMO was chosen because of its versatile capa-

bilities of plotting and its ease of programming.



CHAPTER 2

BASIC EPIDEMIC MODELS

Before one attempts to build a large-scale socio-

economic or biological model, it is useful to learn the in-

depth behavior of the simple model which may be used as'a

basis of a more complex one. The dynamic model of the

basic system should contain a minimum number of the state

variables, or levels, which provide outputs that represent

a reasonable similarity to the real world situation. In the

case of epidemic models, the system usually consists of

three state variables: (1) the size of the susceptible

pOpulation (population capable of contracting the disease);

(2) the size of the infective pepulation (population.

capable of transmitting the disease); and (3) the size of

the removed p0pulation (either immune, recovered, or dead,

and hence no longer infectious).

In this chapter, three basic epidemic models which

were presented by Bailey (1975) have been arranged from

simplistic to more realistic and will be discussed in the

context of systems analysis and the system dynamics approach.

Discussion of each model will be organized as follows:

First, the state model (a set of differential equations)

and the assumptions made in formulating the model will be

12
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presented. From these assumptions the causal 100p diagram

will be constructed. A brief interpretation of feedback

loops will be given. Next, the block diagrams, DYNAMO

flow diagrams and typical DYNAMO simulation outputs will be

shown. Analysis will follow. The variables which are of

particular interest to epidemiologists will be examined.

These variables are defined as follows:

(1) Epidemic curve E(t) = the curve representing

disease incidence versus time.

(2) The peak of the epidemic Emax = the maximum disease

incidence.

(3) The peak time tmax = the time at which the disease

incidence is maximum.

(A) The duration of the epidemic td = the time at

which the epidemic curve falls below the initial

value in the first two models discussed; in the

third model, which is oscillatory, td is taken

as the two percent settling time.

We will make one assumption common to all three

models. This assumption is that the total population, the

sum of the susceptible, the infective, and the removed

pOpulations, is constant.

2.1 Simple Epidemics Model

The first epidemic model, called the simple epidemics

model, consists only of the size of the susceptible pOpu-

lation and the size of the infective pOpulation as the state
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variables. Yet, the model provides interesting results

about the epidemic curve which are similar to the real world

behavior of epidemics in general.

Basically, we assume that the disease is transmitted

through contact between an infective and a susceptible

individual. No allowance for incubation period is made in

the model. The rate of infection is then assumed to be

proportional to the product of the susceptible and the in-

fective pOpulations. Once infected, the infected indivi-

dual remains infective until all the susceptible individuals

are exhausted. We further assume that the susceptible

pOpulation is homogeneous in the sense that every one has

an equal chance of contracting the disease from the infec-

tive population.

We let

x1 = size of susceptible pOpulation,

x2 = size of infective population,

b = infective (or contact) rate,

N = total pOpulation.

Then, these assumptions may be formulated into the state

model:

x
.
-

H

II -b x x

1 2 (2.1)

x2 = b x1 x2

with the initial conditions xl(0) = Cl’ x2(O) = c2,

and the boundary conditions x1 + x2 = N, O 5 x1, 0 5 x2.

The causal 100p diagram is shown in Figure 2.1.
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+

_ _ Susceptible - -._______Total

(x1 I N x2) POpulation POpulation (N)

(-)

+

(£2 = b x1 x2) Rate of Infection

4.

(+)

+ .

(x ) Infective

2 POpulation

Figure 2.1. Causal 100p diagram of simple epidemics.

An epidemic curve is a graphic representation of

disease incidence (the rate of disease occurrence per unit

of time). In this case we will assume disease incidence;

that is, the epidemic curve, to be the rate of infection.

E(t) = 12(t)

In the causal loop diagram, the rise of the epidemic curve

is represented as the positive feedback 100p imbedded in the)

negative feedback 100p, which is the fall of the epidemic

curve.

The block diagram and the flow diagram are shown in

Figure 2.2 and Figure 2.3. DYNAMO simulation output for the

following test case is given in Figure 2.h:

N = 1000

C1 = 950 b = .002

c2 = 50

Goodman (197h. pp.‘85-88), in the discussion of an epidemic

growth model, gives DYNAMO simulation output similar to
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4;“ SPOP Tr r'jdt IPOP

     

    
Jir

SPOP = Susceptible POpulation (xi)

IPOP = Infective POpulation (x?)

b = Infective Rate (Contact Rate)

Figure 2.2. Block diagram of simple epidemics.

  

 

      

SPOP : '- IPOP

\ f

\\ I

\ /

IPOPR /

I”I

_nf.

BETA

SPOP = Susceptible Population

IPOP = Infective Population

IPOPR = Disease Incidence

BETA = Infective Rate (Contact Rate)

Figure 2.3. Flow diagram of simple epidemics.
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Figure 2.L.

DYNAMO uses the Euler integration method to approximate

numerical solutions of differential equations. The choice of

the size of DT, the time increment, is an important step in

simulation. The wrong choice of DT may cause instability of

the system arising from the simulation, rather than the

model. Also the size of DT must be small enough to maintain

the bounds of each variable; in this case 0 s xl(t) s.N,

O s x2(t) s N.

There is no precise formula for determining DT other

than the rule of thumb given in the DYNAMO User's Manual

(Pugh, 1976, p. LA), which is to take one half the smallest

first order delay in the model. In the test case cited

above, when DT was set equal to .l and again set equal to

.01, the graphs produced by simulation were close to the one

plotted from the analytical solution; however, the tabulated

results showed inaccuracies between the peak and the end of

the epidemic curve. When DT = .001, the tabulated result

was almost exactly the analytical solution.

Since the simple epidemics model is a conservative

system; that is, no quantities are lost through dissipation,

and the sum of the state variables is constant, the dimension

of the system can be reduced by one by writing one variable

as a function of the other. Hence, consider the single

state model reduced from the state model (2.1) by eliminating

x1.

x2 = b(N - x2)x2
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with the initial condition x2(0) = c2.

Separating variables and integrating, we have

Jr dx2 _ jf dt

b(N - x57x2 - °

The left hand side of the equation can be integrated using

 

the partial fraction decomposition.

l l (1. 1
T———)— = - -—+—---—-).

Integration yields

t = 6N [log x2 - log (N - x2)] + constant.

Applying the initial condition and noting N - c2 = c1 we

obtain the solution

x2(t) = c N .

1 +‘—l e"bNt

c2

From the relation xl N - x2 we have

xl(t) = c N .

1 + 3% ebNt

1

The epidemic curve E(t) which we defined to be the rate of

infection is given by

 

E(t) = b x1(t) x2(t)

= bNZ

c1 -bNt c2 bNt °
(1 +-E— e ) (1 + E_ e )

2 1

This symmetric prOperty of the epidemic curve can be shown

by verifying the equality

E(tmax + t) = E(tmax - t).
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We now calculate the peak of the epidemic Emax’ the

peak time tmax’ and the duration of the epidemic td. The

initial value of the epidemic curve is given by

 

2

E(O) = CEN c2
(1 4- 3'2") (1 + F1.)

= b c1 c2 (since C1 + c2 = N).

Computation of E(t) is easier if we use the substitution

C

x = 3g ebNt

1

then

bN2
E(t) = 1

(1 +‘;) (1 + x)

Differentiating the above expression with respect to t

using the chain rule, we obtain

E(t) =W bNZ,

(1 + x)3

Setting E(t) = 0 gives the solution x = 1, and hence

c

log —;

°2
t = ——
max bN ’

and

2

_ - EN.

Emax “ E(tmax) I h °

Using the symmetric prOperty of the epidemic curve, the

duration of the epidemic is given by

td = 2 tmax

c

2 log El

2
- bN 0
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From the equations for th and Emax’ we note that the
ax

larger the infective rate, the shorter the peak time and

the higher the peak. Therefore, we can say the epidemic is

more intense and of shorter duration if the infective (or

contact) rate is large. We also note that the peak of the

epidemic is independent of the initial conditions c1 and c2,

which is somewhat unrealistic. However, the peak time

depends on the initial conditions as well as the infective

rate and the total pOpulation. If the ratio of the initial

susceptible p0pulation to the initial infective population

is large, the peak time is longer and hence the duration of

the epidemic is longer.

The comparison of the analytical calculation and the

DYNAMO output for the peak of the epidemic, the peak time,

and the duration of the epidemic for the test case is as

follows:

Analytic DYNAMO

Emax 500.00 L99.6L

tmax 1.h722 1.5

td 2.9hhh 3.0

2.2 General Epidemics Model

The second model takes the more realistic view that

after a certain period of time, the infective pOpulation

are removed from circulation and become inactive throughout

the rest of the epidemic period. In the case of influenza,
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most of the infected peOple will recover and become immune

hence the term immune will be used in place of removed as

usually denoted in the literature. Let x3 be the third

state variable, namely, the size of the immune population.

Then we have the following state model:

b x1 x2 - rx2 (2.2)

N

u

II I'X2

with the initial conditions

x1 (0) = c1, x2 (0) = c2, x3 (0) = c3,

and the boundary conditions

x1 + x2 + x3 =IV, 0 5 x1, 0 5 x2, 0 5 x3.

An additional assumption made in this model is that

the infective pOpulation decreases at the rate of r, which

is called the removal rate. We note that the infective

population increases only when x2 > 0; that is,

x2 = (bx1 - r)x2 > O

equivalently,

x1 > B = p.

p is called the relative removal rate. This means

that the epidemic occurs only when the initial size of the

susceptible papulation is greater than p. This phenomenon

is referred to as the threshold phenomenon. Thus, if we

know the threshold of a particular epidemic disease to

which everyone is susceptible, we only need to vaccinate

up to the threshold level to prevent an outbreak of the
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epidemic.

In the simple epidemic model we considered x2 to be the

epidemic curve. However, in reality, it is difficult to

know the instant when an individual becomes infected. It

is more_convenient to equate the rate of immunity *3‘With

the disease incidence, because the disease incidence is

normally associated with the number of individuals entering

a hospital or seeing a doctor in a given time period, and

that quantity is more readily observable. Hence, we define

the epidemic curve to be

E(t) = x3 = rxz.

The causal loop diagram is shown in Figure 2.5.

‘ +

(x = N - x - x ) Susceptible " - “~Total

l 2 3 POpulation - POpulation (N)

    
  

4.

(bx x ) Rate of Infection
1 2

+

(+) (-)
+

(x2) Infective

Pepulation

4.

(x3 = rxz) Rate of Immunity

4.

(X3) Immune

Population

Figure 2.5. Causal 100p diagram of general epidemics.
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In this model the positive feedback of the infectious cycle

is now imbedded in two negative feedback loops; hence, the

epidemic is slowed down by the removal rate r.

The block diagram and the flow diagram are shown in

Figure 2.6 and Figure 2.7. The output from the simula-

tion for the following test case is given in Figure 2.8(a):

N = 1000 b = .002

C1 = 950 r = .8

c2 = 50 p = LOO

c3 - O

In the case where the initial susceptible pOpulation is

below the threshold level p, the initial infective p0pula-

tion steadily decreases to zero; hence, the epidemic does

not occur. The output from the simulation of this case is

shown in Figure 2.3(b).

We now consider the reduced state model by eliminating

x3 from the state model (2.2).

x1 = -b x1 x2

22 = b x1 x2 - rx2

with the initial conditions xl(0) = Cl, x2(0) = c2. We

will analyze this system by the isocline and the phase

portrait technique (Olinick, 1978).

The isocline is

x2 - bxl x2 - rx2

s=§;- 'bxixz
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Susceptible Population

Infective Pepulation

Immune POpulation

Infective Rate (Contact Rate)

Removal Rate

Block diagram of general epidemics.

  

  

  

 

      

   

SPOP ‘37 IPOP ‘37 RPOP

\ ///f /* \~ ///fi\\\

\\\ // \\\~
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,(

I /

/ /
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BETA GAMMA

SPOP = Susceptible POpulation

IPOP = Infective POpulation

IPOPR = Rate of Infection

RPOP = Immune POpulation

RPOPR = Rate of Immune (Disease Incidence)

BETA = Infective Rate (Contact Rate)

GAMMA = Removal Rate

Figure 2.7. Flow diagram of general epidemics.
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In this case, by separating variables, we can integrate and

solve for x2 in terms of xi:

.. ._ .1.fdxz— f(1+pxl)dx1

which gives

x2 = -x1 + p log x1 + constant.

From the initial conditions, we obtain

x2 = el + c2 - x1 + p log :i. (2.3)

The trajectory of the test case, cl = 950, c2 = 50,

c3 = 0, p = #00, is shown in Figure 2.9. Note that the

trajectory moves in the plane bounded by x1 + x2 = N,

x1 = O and x2 = 0. When x1 = p, x2 attains maximum since

the isocline at that point is horizontal.

1000+

   

750

X2 500

0"254)

(950,50)

+

250 P500 750 1000 x

250 -

   
I

I

(100,0)\0 !
 
f

1

Figure 2.9. Phase portrait of general epidemics model.

The steady state for x1, denoted by S, can be found

by setting x2 = 0 in Equation (2.3) and solving for x1:
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x1
0 = c1 + c2 - x1 + p log 3; .

Equivalently, S.is the root of the equation

1
- - (c + c - x)

cl e p 1 2 - x = O. (2.h)

The root can be approximated by Newton's method. From the

relation x1 + x2 + x3 = N, the steady state for x3, denoted

by R, is then ‘

R = N - S.

A non-zero steady state for xl means that there is always a

portion of the susceptible p0pulation which escapes being

infected during the epidemic.

We define the immunity level of the population A(t)

to be the ratio of the immune pepulation to the total pepu-

lation:

A(t) =3??- .

The steady state of the immunity level, denoted by I, is

then

-3

I - N .

This ratio can also be considered the attack rate of the

epidemic referred to in the literature. Hence, if we are

given the attack rate, we can calculate the steady state for

x3 and consequently the steady state for x1. From this

information, together with the initial conditions, the

relative removal rate p can be computed from Equation (2.4)

and the general epidemics model which satisfies the steady
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state can be constructed.

The explicit time solution for the epidemic curve E(t)

cannot be obtained, although the parametric form of the

exact solution was worked out by Kendall (1956). An approx-

imate form of the epidemic curve, in the case c3 = O, is

given by Bailey (1975). To show this, we need to express

x1 in terms of x3. This expression can be obtained from

Equation (2.3). We rewrite Equation (2.3) as

x1
x1 + x2 = C1 + c2 + p log-E— .

Since x3 = N - (x1 + x2) and c3 = N - (c1 + c2), we have

x1
x3 = c3 - p log 3; .

Therefore, we can write X1 in terms of X}:

1

X1 = C1 9 Ip(XB CB).

If we assume the initial condition c3 = 0, then

1
-‘- x

_ p 3
x1 - cl e .

The epidemic curve, then, can be written as

E(t) = x3 = rx2

r(N - xl - x3) 1

P x3)
r(N - x3 - c1 e

We now approximate the exponential term by Taylor expansion

to the third term:
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e px3=1-fl+fl_,
p 2

Hence, we obtain the state equation for x3 in terms of the

quadratic expression of x3 given by

°1 cl 2
x3 = r[N - c1 + (if - l)x3 - 5;: x3 ].

Separating variables and integrating, we have

1‘ cl 2
x3 ]

C

1 p 3 2p?

 

The left hand side of the equation can be integrated using a

table of integrals.. Because the algebraic manipulation is

tedious, we give the final expression without stating the

intermediate steps.

2 c

x3(t)=L {4-1. a tanh(% art-¢ )}
c1 p

where

c 2c c .
_ 1 _ 2 1 2 a

C

¢ = tranh-l l'-(-p:-L-----1).
O.

Differentiating x3(t) with respect to time, we obtain the

epidemic curve

2 2

E(t) a Egg—1L sechz (éart -¢ ). (2.5)

tmax’ Emax’ td can be calculated from Equation (2.5).

The curve y = sechzx is symmetric with respect to the Y



32

axis and attains maximum at the origin, and y = y(0) = 1.
max

Hence, setting icirt - ¢ = O in Equation (2.5) and solving

for t, we obtain

N e
-

tmax = 'p *
3

And, therefore,

rel2 2

Emax = E(I'max) = 2cl '

I and

td = 2 tmax“

However, the exact value of Emax can be obtained from

Equation (2.3).

_ _ - IL
Emax - ermax - r(c1 + c2 p + p log (:1).

Another approximate time solution, t in terms of xi,

can be derived by the use of the quadratic approximation of

Equation (2.3). We take three points on the curve in the

phase portrait, (c1, c2), (p, ), (S, O), and determine
x2max

. 2
the coefficients of the parabola x2 = a2 x1 + a1 x1 + a0 by

solving three simultaneous linear equations. We,.then,

substitute the parabolic equation into the state equation

and obtain

_ _ 2
x1 - b x1(a2 x1 + a1 x1 + a0).

Separating variables and integrating, we have

1] dx1 j.d

con-b- 2 = to

xl(a2 x1 + a1 x1 + a0)
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The left hand side of the equation can be integrated using a

table of integrals. Integration yields

-2
x a 2a x + a

t = - % [—l— log —l- + ————— tanh 1( 2 l 1)] + C, (2.6)
1

2
80 x2 aO ’q (’q

2
where q = a1 - haz a0.

 

From the initial condition t = 0, x1 = c1 we determine the

constant C.

c a 2a c + a

C = % [—1— log -l- + .tanh 1( 2 l 1)]
1

‘CZ aoJ—a ‘ V3

At the peak time, t

 

max’ the infective population x2 is

maximum and the susceptible pOpulation x1 is p, and at the

duration time td, by definition the infective population is

equal to its initial value. To compute tmax' we substitute

x2max and p into x2 and x1, respectively, in Equation (2.6).

To compute td, we substitute c2 and h, which is the sus-

ceptible pOpulation corresponding to c2, into x2 and x1,

 
 

respectively.

Then,

2 a 2a p + a
_ _ 1 1 p 1 -1 2 1

tmax - b [-3- log + tanh ( )] + C
2 x

O 2max aO / q (I q

2
1 h

-——— log —— +
2aO c2

  

a 2a h + a

l tanh-l( 2 r 1)] + C
- - 1

b 30,]?!- «C,—
td-

where h is the smaller root of the equation

2 -
azx + alx + a0 — c2.
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The comparison of the two analytical approximations and

the results obtained from the simulation for the test case

shown in Figure 2.8 with respect to the peak of the epidemic,

the peak time, and the duration of the epidemic is as

   
 

follows:

Taylor Expansion Quadratic Simulation

Emax 167.37 203.20 203.18

tmax 2.1299 2.0872 2.7

td A.2578 6.3177 6.3

The quadradic approximation and the simulation reflect

the skewness of the epidemic curve with reSpect to peak

time, which is descriptive of many actual epidemic curves.

2.3 Endemic Model

In the first two models discussed, the epidemic curve

asymptotically approaches zero. The third model, which is

more reflective of influenza epidemics, results in an endemic

state (the state at which the disease incidence is constant)

after an epidemic.

Suppose we consider that a certain portion of the immune

population is put back into the susceptible pool at a con?

stant rate e. The cause of such a transfer is not specified

in this model. One example for this transfer to take place

is the loss of immunity in infants. A newborn baby has

acquired from her mother immunity against many diseases

(this type of immunity is referred to as passive immunity)
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and loses it within six months to a year. Another example

which gives the same effect as the transfer is the migration

of the susceptible individuals into the system and at the

same time the migration of immune individuals out of the

system in such a way that the total pOpulation remains con-

stant. A specific cause of the transfer; that is, once

immune individuals becoming susceptible because of the changes

in the virus, will be discussed in the next chapter.

Using the above assumption of the constant transfer from

the immune population to the susceptible pOpulation, we

formulate the following state model:

x1 = -b x1 x2 + e

22 = b x1 x2 - rx2 (2.7)

x3 = rx2 - e

with the initial conditions

X1(O) = Cl: X2(O) = C2: X3(O) = C3,

and the boundary conditions

xl+x2+x3=N, 05x1, 05x2, 05x3.
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/
\

Immune

POpulation

(x3)

Figure 2.10. Causal loop diagram of endemic model.

The causal loop diagram, Figure 2.10, is the same as

that of the general epidemics model with the addition of the

susceptible rate e. The increase in the susceptible rate

causes the susceptible pOpulation to build up through the

decrease of the immune population. When the susceptible

population crosses the threshold, we can expect another

epidemic to occur. Hence, this causal 100p diagram suggests

that oscillation may occur.

The block diagram and the flow diagram are shown in

Figure 2.11 and Figure 2.12. The DYNAMO output for the test
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case:

N = 1000 b = .001 pl = 800

C1 - 900 r = .8 p2 = 62.5

c2 = 50 e = 50

c3 = 50

is given in Figure 2.13, and for the test case:

N = 1000 b = .002 p1 = #00

c1 = 950 r = .8 p2 = 12.5

c2 = 50 e = 10

c3 = O

is given in Figure 2.1L.

We now consider the nonlinear autonomous state model

I = F(X) reduced from the state model (2.7) by eliminating

x3:

x1 = -b x1 x2 + e

22 = b x1 x2 - rx2

with the initial conditions

x1(0) 2 c1, x2(O) = c2.

This model has a unique equilibrium point given by

'
1
I
‘
D

0
1
"
!

We will analyze this system using the linearization tech-

nique. If the system is structurally stable, then the

behavior of the nonlinear system in the vicinity of the

equilibrium point is similar to that of the linearized

system (Aggarway, 1972) .
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Figure 2.11. Block diagram of endemic model.
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Figure 2.12. Flow diagram of the endemic model.
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Matrix A of the linearized system X = AX is the Jacobian

matrix evaluated at Xe:

 

F293. _r

A = ‘31— - r 0

3x1 9.9. 0

Xe L r

The characteristic equation and the eigenvalues are

2+2;
r‘ s + be = OS

 

-be be 2

—- + (—) - Abe
 

S1,2

Since parameters b, r, e are positive, the real part of the

eigenvalues are negative in all cases, and, hence, the

linearized system is stable in the sense of Liapunov. Oscil-

lation occurs when the eigenvalues are complex; that is, when

the discriminant of the characteristic equation is negative:

(pf-)2 - l+be < O,

or equivalently,

e z.
-<Lbbo

If as before, we let p1 =‘% be the relative removal rate, and

define p2 = g to be the relative immune rate, the result

shows that oscillation occurs when the relative immune rate

is less than four times the relative removal rate:

p2 <: 4 p1.

An interesting oscillation occurs when the susceptible

rate e is small. The epidemic curve E(t) dies down and stays

close to zero until the pool of susceptibles is built up to
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a point above the threshold. It takes a long time to build

up the susceptible population; hence, the curve does not

resemble damped oscillation. By adjusting the susceptible

rate e, one can obtain damped oscillation, or recurrences

of epidemics that follow periods relatively free from the

incidence of disease, as illustrated in Figure 2.13 and

Figure 2.1L.

We will derive Em x’ td by first finding the
ax’ tma

time solution for the linearized system X = AX. This

solution is given by

xm = e“ x(0)

At is the fundamental matrix. If the eigenvalueswhere e

are complex,

51,2 = u i 3v,

then it can be shown (see Appendix A) that the fundamental

matrix is given by

eAt = eut [(cos vt)I + (% sin vt)(A - uI)] (219)

where I is the identity matrix.

If the eigenvalues given by Equation (2.8) are complex,

the real part u and the imaginary part v are

 

u=-!2)-1-:, V:%Jhb€'(%§')2 0

Then, the A matrix can be written as

2u -r

-2u O

From Equation (2.9), we obtain the fundamental matrix for

A

this system:



Ah

u . r
+ — n vt - -At ut cos vt v 31 v sin vt

e = e

2u . .

- 1; Sin vt cos vt -‘% Sin vt

In particular, we can find the explicit time solution

for the epidemic curve E(t) = rxz:

E(t) reut [c2 cos vt - (2cl + c2)% sin vt]

= keut sin (vt + ¢)

/ 2 u 2

where k = r c2 + [(201 + 02);] ,

 

 

-1 °2v
and ¢ = tan - (2c1 + CZYu .

tmax is obtained by setting E(t) = O and solving for t, and

Emax is obtained by evaluating the epidemic curve E(t) at

tmax’

E(t) = KHeut’ sin (vt + 4> + I?)

 

where H = u2 + v2 , and y! = tan-1 % .

Therefore,

t _ - (‘¢ + V’)

max ' v ’

and,

Emax = E(t'max)

ut .

= Ke max s1n (-‘? ).

td is the 2 percent settling time in this model, as defined

earlier, and is given by

L

td = IuI .



To apply the linearized system for computation of E
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max’

t and td, one must first transfer the coordinate of xi,
max

x2 plane so that the origin (the equilibrium point of the

linearized system) corresponds to the equilibrium point of

the nonlinear system; in this case (%,

new coordinate

X1—

In particular,

2).
Hence, for the

1"

system

1" e

x1 ‘ B ' x2 ‘ x2 ‘ F °

2 ' _ _ 2

C1 ‘ b ' C2 ‘ c2 r

e

= 1'(x2 ‘ F)

Comparison of the computation from the analytical re-

sults of the linearized system and the tabulated results

from the simulation in the first test case (Figure 2.13)

is as follows:

max

max

  

Linearized Model Simulation

67.8013 70.3h

8-h5h2 8.00

128 129



CHAPTER 3

INFLUENZA EPIDEMIC MODEL

The underdamped oscillation exhibited by the endemic

model in Chapter 2 can be used to illustrate Kilbourne's

concept of the cyclical nature of influenza epidemics

(Figure 1.2) when that model includes the agent; that is, the

virus, and its interactions with the population dynamics.

Using the endemic model as a basis, we will now develop an

influenza epidemic model and analyze it as in Chapter 2.

3.1 Formulation of the State Model

In the endemic model discussed in Chapter 2, the oscilla-

tion and the endemic state result from the fact that some

individuals are transferred from the immune population into the

pool of the susceptible population. The influenza epidemic

model described in this chapter specifies the cause of that

transfer to be the structural change of the virus. Indivi-

duals who have been infected by the virus have gained immunity

against that specific strain. As the virus changes due to

mutation (drift), a certain percentage of the immune popula-

tion becomes susceptible to that changed virus.

To construct a state equation for the virus strain, we

consider the relationship between the immunity level of the

A6
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pOpulation and the virus strain. Kilbourne (1979, p. L96)

and more recently Pereira (1979, p. 10) state that antigenic

drift is the result of the selection process in which the

virus mutates in order to overcome a high immunity level of the

population built up through a series of epidemics. Pereira

further reports that the occurrence of antigenic drift has

been demonstrated in the laboratory by growing the virus in

the presence of a specific antibody.

In addition to the three state variables in the endemic

model we now introduce the fourth state variable and let

xh = the virus strain.

The virus strain x," is defined to be a qualitative measurement

of the structural state of the virus. A numerical value of

xh may be a measurement of a chemical composition of the

virus structure which indicates a degree of mutation; that is,

the higher the number, the greater the degree of mutation

resulting in a higher susceptibility level, or equivalently,

a lower immunity level of the pOpulation.

The above description of drift suggests that the immunity

level is the constraint (or the boundary) toward which the

virus structure changes to overcome that constraint. We

therefore assume that the numerical value of the structural

state of the virus xh changes in such a way as to approach

asymptotically to the immunity level. Such a process may be

described by a state equation which produces a logistic curve.

In Chapter 2 we defined the immunity level of the pOpulation:

"3

A(t) = T .
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If the immunity level is constant, A(t) = A, then the state

equation

in = d(A - Xh)xh (3.1)

with the initial condition xh(0) = Ch gives a solution

A
x =

4 A - c _
1 + h e Adt

C1.

The graph of the solution is a logistic curve where XL is

asymptotically approaching A as shown in Figure 3.1. Based

on equation (3.1), we construct the state equation for the

virus strain to be

in d(A(t) - xh)xh

x

d(j? - xh)xh,

where the constant d is called the drift rate.

 

ct.   
t

Figure 3.1. Logistic curve of the virus strain.

We also assume that the rate of the transfer of
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individuals from the immune to the susceptible pOpulation is

prOportional to the product of the immune pOpulation and the

virus strain. That is, infection resulting from contact

between an individual in the immune p0pulation and the new

strain of virus indicates susceptibility to that virus as well

as the occurrence of drift. Hence, the state equation for

the immune pOpulation is given by

x3 = rx2 - ex3 xh.

The constant e is called the susceptible rate.

The transfer of a certain portion of the immune pOpula-

tion to the susceptible population now takes place with the

introduction of the drift rate d. Individuals who are now

susceptible to the changed virus are still immune to the

original strain. Therefore, the susceptible pOpulation is now

a mixture of those who are susceptible to a new strain of the

virus as well as those who are susceptible to both new and old

strains. Thus, we can speak of the susceptible population

collectively as having different levels of susceptibility at

different times. A

Let S(t) be the susceptible level of the population and

define

S(t) = 1 — A(t).

We then assume that the infective rate x2 is proportional to

the product of the susceptible and the infective populations

and the susceptible level. In effect we have replaced the

constant infective rate b in the endemic model with the time

varying infective rate bS(t). Then the state equations for
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the susceptible pOpulation and the infective population are

given by

x1 = -bS(t) x1 x2 + ex3 xh

x

= -b(l - 3%) x1 x2 + ex3 xh

- _ 1‘}. -
22 — b(l N) x1 x2 rx2.

Now we write the state model of the influenza epidemic

system:

x

x1 - -b(l - 3%) x1 x2 + ex3 x1+

x

:2 = b(l - 3%) x1 x2 - rx2

x3 = rx2 - ex3 XL

x

in = d(1% - xh)xh (3.2)

with the initial conditions

X1(O) = cl’ X2(O) = C2: X3(O) = 03: xh(0) = CL,

and the boundary conditions

x1 + x2 + x3 = N, 0 5 x1, 0 5 x2, 0 5 x3.

3.2 Causal Loop Analysis

The detailed causal loop diagram is shown in Figure 3.2.

To show more clearly the relationship between the virus strain

and the pOpulation, a simplified causal loop diagram, Figure

3.3, is obtained by leaving only the level variables and the

two auxiliary variables, the immunity level A(t) and the
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susceptibility level S(t). This diagram shows that the virus

strain is the direct cause of the changes in the immune

population. The appearance of a drift reduces the size of

the immune population which in turn increases the size of the

susceptible pOpulation. When the size of the susceptible

pOpulation exceeds the threshold, an epidemic occurs. The

size of the epidemic is now dependent not only on the con-

tact rate b, but also on the susceptibility level S(t) which

is a function of the virus strain as seen in the causal loOp

diagram. The increase in the size of the immune pOpulation,

as a consequence of the epidemic, causes the higher immunity

level of the population. In order for the virus to survive,

the structure of the virus changes in response to the high

level of immunity in the pOpulation, which causes another

drift, and the epidemic cycle begins again.

3.3 System Analysis

The influenza epidemic system described by the state

model (3.2) is classified as a nonlinear autonomous system

A = F(X) with the dimension 4. This system can be analyzed

by linearization about its equilibrium point provided the

linearized system is stable in the sense of Liapunov. With

the prOper choice of the drift rate d, the linearized system

of the influenza epidemic model satisfies the stability

condition; therefore, the linearized technique will be used

for this analysis.
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Figure 3.3. Simplified causal loop diagram of the

influenza epidemic model.
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Figure 3.5. Flow diagram of influenza epidemic model.
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3.3.1 Equilibrium Points Analysis

The equilibrium points for the system are solved by

setting each state equation in the state model (3.2) equal to

zero; that is, F(X) = 0. They are given by

    

F r 7 r

b l-c N-CW

% ch O

X: = . X: = (3.3)
Nc c

k c .J L O ,

where c is some constant. Since we are concerned with a

system which produces an endemic state; that is, the steady

state of the infective pOpulation is non zero, this analysis

considers the linearization about the first equilibrium point

Xi. Moreover, the second equilibrium point x: can be shown

to be structurally unstable for all values of c.

The constant c must be such that the boundary conditions

are met; that is:

xe1 + xe2 + xe3 = N

and

O s < N, O s s N.xe1 - s N, O s
Xe2 xe3

Hence we have the relations:

m+chz+Nc=N

and

O < c < 1.

”
S
i
m

As before, let p1 = % be the relative removal rate and p2 =

be the relative immune rate. Then we have



P1 2
FE-i-pZNC +NC=N.

The above expression can be written as

- 1 N - p

3 _ E£____ 2 _ 2L _____l = oc p2 c p2 c + p2N . (3.4)

Therefore, c is the real root of the cubic equation which

lies between 0 and 1. The existence of such c is shown by

the intermediate value theorem of calculus. We let

p - 1 N - p

f(x)=x3--£-—-x2--2-x+-———l.

92 P2 p2N

Then,

N ‘ P1 .
f(0) = _P;N__ > 0 (Since N > pl),

and

2N + p
l

f(l)=--—--—- <0.

P2N

Since the sign of f(x) at x = 0 and x = l are opposite, and

f(x) is a continuous function, the graph of f(x) must cross

the X axis between x = 0 and x = 1.

From the above analysis, given p1, p2, there exists an

equilibrium point given by (3.3) where the constant c is the

real root of the cubic equation (3.h). In most cases this

equilibrium point is unique because a chance of having three

real roots being in the interval x = 0 to x = 1 is relatively

small.

Since the virus strain is bounded by O and l, the struc-

tural change of the virus (drift) resulting from one epidemic
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to the next may be measured in terms of percentage differences.

Suppose that the state of the virus strain causing the ini-

tial epidemic were .1 and at the beginning of the next

epidemic had changed to .3. Then we would say that the drift

was 20 percent, the quantitative measurement of the struc-

tural change of the virus. (A more precise definition of

drift will be given in Chapter A.) As a series of epidemics

occurs, the virus strain changes in such a way as to approach

the immunity level of the pOpulation A(t) provided the system

is stable. Let I be the steady state of the immunity level

of the pOpulation as defined before. Then

I = lim A(t) = lim 51(1—‘1
t9” t-yoo

= Nfic- = C.

Hence, the steady state of the virus strain is equal to the

steady state of the immunity level, and the reciprocal of

the drift rate d is analogous to a delay constant in an

exponential growth curve.

3.3.2 .Linearized Model

The relations x1 + x2 + x3 = N enables one to reduce

the dimension of the state model (3.2) by one because any one

of the variables can be expressed as a function of the other.

We let x3 = f(xl x2). Then, we can eliminate the state

equation for x3 from the state model (3.2) and obtain the

following reduced state model X = F(X):
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X

x

X

in = d (-Nl -- x1.) x, (3.5)

with the initial conditions

xl(0) = cl, x2(0) = c2, xh(0) = Ch'

Note x3 is now a function of x1 and x2. The Jacobian matrix

Eg— for the state model (3.5) is given by

 

  

axi

r-b[(1-%l>x2+x1Nx2]—exh -b[(l-%}')xl+:]§:gJ-exh ext:

b[(l—§%)x2+f%;g] b[(l-§%)xl+f%;g]-r 0

k “F Xe "% x4 ’2dxu)

The A matrix of the linearized model i = AX is obtained by

evaluating the Jacobian matrix at the equilibrium point

zplj

l-c

p2Nc2

  
and has the form

(U - ec V - ec Nec

A = -U -(V+r) o (3.6)

  
where
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Pipz
U = -bc2 [(1 -C) p2N + 7:;- J

p p 02

v = -b (p1 + J-i-EF—L (3.7)

We now derive a formula which directly gives the coef-

ficients of the characteristic equation of the A matrix

without having to compute det(sI - A) = 0 each time as is the

normal procedure for obtaining the characteristic equation.

The computational advantage of using such a formula becomes

quite clear when one is comparing the behavior of the

linearized system for a number of different sets of para-

meters.

The inverse of the matrix A (3.6) is calculated as

 

  

A": Ad j A

det A

F 2dc(V+r) dc(2V-3ec) Nec(V+r) ‘

= de% A ~2ch -dc(2U-3ec) -Nch

d d

AficEU—(V+r)] fic(U-V) U(V-ec)-(V+r)(U-ecy

where

det A = -dc[U(2V - 3ec) - (V + r)(2U - 3ec)].

In the case of a three by three matrix A, it can be shown

that the characteristic equation is given by (Wilkinson, 1965)

s3 - (tr A)s2 + (tr Adj A)s - det A = o (3.8)

where

tr A = trace of matrix A

tr Adj A = trace of the adjoint matrix A.

From the equation (3.8) we obtain the coefficients of

the characteristic equation of the matrix A (3.6),
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s3 + a2 52 + a1 5 + a0 = 0,

given by

a2 = 2dc - (U - ec) + (V + r)

a1 = dc [2(V + r) - (2U - 3ec)] + U(V - ec) - (V+r)(U-ec)

a0 = dc [U(2v - 3ec) - (v + r)(2U - 3ec)]. (3.9)

Note that if we are given p1, p2, then the coefficients of

the characteristic equation are expressed as functions of d:

s3+f(d)sz+f(d)s+f(d)-0
1 2 3 ‘ °

In a linear system, the location of the roots of the

characteristic equation determines the system response.

Kilbourne's observation of the influenza epidemic cycles

(see Figure 1.2.) suggests that the system response for the

type A virus epidemic system is stable and underdamped oscil-

lation. The drift rate constant d can be chosen in such a

way as to determine the desired response described above.

We will consider first the choice of d required for

stability, then for oscillation, and finally, for underdamped

oscillation. A linear system is stable in the sense of

Liapunov if all the roots of the characteristic equation lie

in the left half plane. The Routh stability criterion gives

the condition for which the linear system is stable (Saucedo,

1968). The Routh array for the characteristic equation is

formed as follows:
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3
s 1 a1

2

5 a2 a0

1 30

1 a2

0

3 a0 0     
The Routh criterion states that the number of roots

with positive real parts is equal to the number of sign

changes in the first column of the Routh array. In this case

each element of the first column must be positive for all

three roots to lie in the left half plane. Also, from the

theory of equations, all coefficients must be positive.

Hence, the system is stable if the coefficients of the charac-

teristic equation satisfy the inequalities

a

a. > 0, i = 0,1,2; and a1>

'55

In an oscillatory system one of the roots of the

characteristic equation has to be real and the other two

complex. From the theory of equations, the necessary and

sufficient condition for the cubic equation

3 2
x + a2 x + a1 x + a0 = O

to have one real root and two complex roots is that the

discriminant
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_ _ 3 2 2 _ 3 _ 2

A - 18 azalaO A a2 a0 + a2 al A al 27 a0

is negative. Here we have the characteristic equation whose

coefficients are functions of the drift rate d. To find the

range of d which gives a set of coefficients satisfying the

above condition is computationally impractical. Therefore,

we now seek a simpler sufficient condition for the system to

be oscillatory.

Consider the characteristic polynomial

f(s) = 53 + azs2 + als + a0.

The graph of the cubic polynomial crosses the real axis only

once if there is no relative minimum or relative maximum, or

if the critical point is the point of inflection. The

critical points of f(s) are solved by taking the derivative

and setting f’(s) = 0. Hence, the critical points are the

roots of the quadratic equation 352 + 2a2s + a1 = 0 and

are given by

 

2
_ -2a2.: VAhaz - 12al (3 10)

51,2 "’ 6 ° °
 

If the discriminant is non positive; i.e.,

La 2 - 12a < 0
2 1 “

or equivalently

a1 2 -§- , (3-11)

then the roots are either complex or multiple roots. If the

roots are complex, the cubic polynomial has no critical point;

and if the roots are multiple, the critical point is the
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point of inflection. Therefore, a sufficient condition for

the system to be oscillatory is that the coefficients of the

characteristic polynomial satisfy inequality (3.11).

The system is both stable and oscillatory if the coef-

ficients of the characteristic equation satisfy the inequal-

ity

2

a1 a» max 2% , 'i§- . (3.12)

Although such a choice of coefficients guarantees the

oscillatory, stable system, the real root of the character—

istic equation may lie to the right of the real part of the

complex roots. In order to have underdamped oscillation, we

require that the real root be on the left side of the real

part of the complex roots, preferably as far to the left as

possible. (The influence of the real root is negligible if

it lies six times as far to the left as the real part of the

complex roots.) Figure 3.1 shows the location of the roots

and the system response for the third order linear system.

We now derive a sufficient condition for the system to

be underdamped. This condition will be such that the widest

range of d can be easily obtained. The coefficients of the

characteristic equation

3 2 ..
s + azs + als + a0 — 0

with the roots $1, 52 3 = u i jv have the following relation-

9

ships:
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Figure 3.6. System response of a third order linear system.



66

- -(sl + $2 + 83)S
D

N

I

a1 - 8182 + $183 + 8283

n
:

O

I

Assume all roots lie in the left half plane; i.e., 51 < 0,

u <:0. Then all coefficients are positive. Since a2 is

equal to the negative of the sum of the three roots, the

magnitude of the real root is greater than one third of a2

whenever the real root lies to the left of the real part of

the complex roots. That is, $1.< - :5 if and only if sl‘< u.

Note that the real part of the critical points given in

Equation (3.10) is - é; . Hence, if the coefficients of the

characteristic polynomial f(s) satisfy Inequality (3.11) and

if 51“ u, then we must have f(- 2%) > 0. (See Figure

3.7 (a).) This inequality can be simplified to yield the

relation

a 2
2 I

\
O
I
N

a < 3 -— +
1 a2

Combining the above inequality with inequality (3.12), we

obtain a sufficient condition for the system to be stable,

oscillatory and underdamped. This condition is given by

2
a a a

max{ -9- , £- < a1 < 3 ~- + 5' 322. (3-13)
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f(s f(s)

f(s)=sB+a $2+a s+a
2 l O

":10

a
O 2 2

3 -— +‘— a -

l

I

I

l

|

I s

51 :2.
3

 

  (a) (b)

Figure 3. 7. Curves of cubic polynomials having one

real root and two complex roots, (a) with no relative

maximum or relative minimum, (b) with a relative max—

imum and a relative minimum.

So far we have dealt only with the case where the

characteristic polynomial has no relative maximum or relative

minimum. We now relax this condition and allow it to have a

relative maximum and a relative minimum (Figure 3.7 (b)).

We note from Equation (3.10) that the point of inflection sp

a

is equal to - —g Hence, if 31 < u, then the relative3 I

minimum must be positive.

To obtain a simple relationship among the coefficients

of the characteristic polynomial which satisfy the above

condition, we draw two lines, one tangent at the point
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a - a

(- 7&3 f(- ?§)) and the other tangent at the point (0, a0).

The point of intersection of the two tangent lines is given

a a

by (- ig’ 9 3% - a1). Thus, a sufficient condition for the

relative minimum to be positive is given by

a0
9-55-a1>0

or equivalently,

Since the existence of the relative maximum and the relative

2

minimum implies that al < a2 , the sufficient condition for

the system to be stable, oscillatory and _underdamped is

given by

2

a a a

O . 2 O

33<al<m1n 739-5- .

The sufficient condition which satisfies both cases is

obtained by combining inequality (3.13) and inequality (3.1A)

and is given by

a a
2

;Q_< a1<< max 3 :9 +.§ a22, 9 59 . (3.15)

2 2 2

3.3.3 Computation for Range of Drift Rate

The following example shows the computational procedure

for obtaining the range of d.

Consider the test case in which the following parameters

are given:
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b = .002 (infective rate)

r = .8 (removal rate)

e = .5 (susceptible rate)

N = 1000 (total pOpulation)

Then pl - {:- = 1.00 and p2 = f,- = .625. From Equation (3.1.),

we can compute the steady state of the virus strain c which

is the root of

c3 + .6c2 - 3.2c + .96 = O

satisfying the boundary condition 0 < c < 1. The root is

c = .3321. Then the equilibrium point Xe given by Equation

(3.3) is

r 599 ‘

69

e 332

~.3321‘

The coefficients of the characteristic equation of the

  

linearized system are computed using Equations (3.7) and

(3.9) and are as follows:

- .66h2 d + .2581(
D

N

I

W

H

I

a0 = .1080 do

We solve the Inequality (3.15) to obtain the range of

a

d which gives a stable underdamped oscillation: 3% < a1

yields

.1505 d2 + .0534 d + .01. > o.

The graph of the above parabola does not cross the real

axis; i.e., the roots of the quadratic equation are complex
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(d1,2 = -.1775 i J .LBA). Hence, the solution is

d >00 (3’16)

- a
0 2 2 .

a1 <-3 -— +.§ a2 yields
a

2

.0525 d2 - .2388 d + .0252 < 0.

The parabola crosses at d1 = .1080 and d2 A.hh20. Hence,

the solution is ,

.1081 < d <1h.h420. (3.17)

a0
a1 < 9-—— yields

a2

.1505 d2 - .8106 d + .04 < 0.

5-3357. -Hence,The parabola crosses at d1 = .Oh98 and d2

the solution is

.0498 < d < 5.3357. (3.18)

Taking the union of the solutions (3.17) and (3.18) and

then taking the intersection of the union and the solution

(3.16) we obtain the range of d:

1.081 < d < 5.3357.



CHAPTER A

SYSTEM SIMULATION AND MODEL VALIDATION

A number of simulation outputs for the influenza epidemic

model developed in Chapter 3 will be presented here, and the

relationship between each parameter and its corresponding

system behavior will be analyzed. In particular, the peaks

and the thresholds of the epidemics, the intervals between

epidemics, and the drift of the virus will be discussed.

Then the system output will be compared with historical data

on influenza epidemics.

We have computed the equilibrium point and the range

of drift rate d for underdamped oscillation for the test

case in Chapter 3. The range of d is between .1080 and

5.3357. Figures n.1, h-Z. 4.3, and A.h show the DYNAMO out-

puts for d = 1, d = .5, d = .3, d = . 1 respectively, with

the initial conditions:

01 = 900 (susceptible p0pulation)

02 = 50 (infective p0pulation)

c3 = 50 (immune p0pulation)

CL = .001 (virus strain)
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h.1 Analysis of Drift

In the case of oscillation (Figures L.1, h.2, and h.3)

there are three distinct epidemics before the system reaches

its steady state. Also, the virus strain peaks twice, each

peak occuring between the epidemics. We note that the time

intervals between epidemics (measured from one peak time to

the next peak time) is longer as the reciprocal of d is

larger. Hence, we can consider T =.% as a delay constant

similar to the time constant of the exponential growth as

mentioned in the discussion of the equilibrium point analysis

in Chapter 3. Using the basic unit of time as one month,

we find that the time intervals between the epidemics for

T = 1 month are 2A and 16 months; and for T = 2 months, 38

and 17 months; and for T = 3 1/3 months, 56 and 19 months.

Likewise, the virus strain reaches its peak in longer

time when T is larger. In this model, drift is not only the

measurement of the difference in the virus strain, but also

a function of the time interval between the two virus strains.

As the virus strain grows, a continuous transfer of indivi-

duals from the immune p0pulation to the susceptible popula-

tion takes place. Hence, even though the difference of the

virus strain from time tl to time t2 may be small, if the

interval t2 - t1 is large, the total transfer of individuals

from the immune to the susceptible population is large, thus

causing a severe epidemic. As the size of the immune

p0pulation becomes smaller through this transfer, the immunity

level of the p0pulation decreases which causes the growth of
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the virus strain to slow down or even decrease. The

occurrence of another epidemic builds up the immune p0pula-

tion which in turn causes the virus strain to grow again.

From this causal description of the virus and the epi-

demics, we define the drift D to be

D = 21-1— (vmax — v ). (m1)
min

where Vma is a peak of the virus strain and Vmi is the
X n

minimum value of the virus strain preceding V (I.e.,
max'

the difference of the virus strain is measured from one valley

to the next peak. See Figure 4.5.) The time of the occur-

rence of drift TD is defined to be the time at which the

virus strain attains its peak.

Virus

<

P

A
Epidemic Curve
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_
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.
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.
.
.
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Figure A.5. Drift and epidemic curve.
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Table A.1 shows the numerical values of the epidemic

peaks and the drifts for the oscillatory cases (Figures A.1,

4.2, and 4.3). The relationship between the drift calculated

using the above definition and the following peak of the

epidemic curve confirms the reasonableness of the definition;

that is, the higher the drift, the more severe the subsequent

epidemic.

A.2 Threshold of Epidemics

In the general epidemics model the threshold level of

the epidemic is equal to the relative removal rate p. When-

ever the size of the susceptible population exceeds that

level, the size of the infective p0pu1ation increases, thus

causing the epidemic. The difference between the initial

susceptible p0pulation and the threshold is the measurement

for the severity of the epidemic. If the initial susceptible

population is very large compared to the threshold, the peak

of the epidemic is high. 0n the other hand, if the initial

susceptible population is smaller than the threshold, the

infective p0pulation decreases asymptotically to zero as

shown in Figure 2.8 (b).

In the case of the influenza epidemic model, the threshold

is a time varying one. Setting 22 = 0 in the state model

(3.2) we obtain the threshold H(t) as
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“(‘5’ = 8m

 

N _ x - (4.2)

The threshold is inversely proportional to the susceptible

level. Even if the composition of the initial population is

such that the susceptible p0pulation is below the threshold,

it will not necessarily prevent epidemics because the sus-

ceptible p0pulation may cross the threshold and stay above

it. If we consider the infective p0pulation negligible, the

size of the susceptible population required to be equal to

the threshold level can be calculated from Equation (A.2)

and is given by

x1 = J Npl .

Figure A.6 shows the simulation output for the test

case with the initial conditions:

cl = 600 (susceptible population)

c2 = 50 (infective population)

c3 = 350 (immune p0pulation)

CA = .001 (virus strain).

The initial threshold is

H(O) = 615.

An Optimal immunization strategy to minimize the peak

of the epidemic will be treated in the next chapter.
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h.3 Causal Loop-Diagram of Parameters

Simulations are performed more efficiently in terms of

the number of runs if the causal effects of the parameters

on the system outputs are known. A desired response may be

obtained fairly quickly by adjusting one appropriate para-

meter rather than making adjustments on all of them. Such

effects are observed from the results of the simulation of a

test case obtained by varying one parameter and fixing all

others. The causal effects on the peaks and the intervals

of epidemics by each parameter is demonstrated in the causal

loop diagram Figure A.6. This causal relationship was used

to generate the system outputs for the model validation.

h.h Model Validation

The Center for Disease Control (CDC) in Atlanta, Georgia

maintains the weekly statistics on the number of deaths

resulting from influenza pneumonia. These data are collected

from 121 cities with a p0pulation in excess of 100,000.

This mortality chart is also broken down into nine geographi-

cal regions. Figure h.7 shows the mortality data from

September 1968 to September 1977. The expected curve is

taken from the least square method of fitting the curve to

the data for the previous five years excluding epidemic

periods (periods in which the number of deaths exceed the

threshold).
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1
Weekly mortality rate of influenza-pneumonia.

1 From the Annual Summary 1977 of Morbidity and

Mortality Weekly Report.

Figure 4.7.
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From numerous simulation results of the model, it be-

came apparent that the oscillation dies down quickly after

the third epidemic. Hence, with this model we can generate

three distinct epidemics and two drifts. There were six

epidemics from the onset of the 1968 Hong Kong influenza (an

occurrence of the virus shift) up to 1977 excluding the

small epidemic in July 1972. Of these six epidemics, we will

attempt to produce the system outputs of the model to fit

the data for three epidemics and compare the results with

the actual figures. The three epidemics we will consider

are: the outbreak of November 1968 - March 1969, that of

January 1972 - March 1973. and that of January - March 1975.

The difficulty in validating the model by fitting the his-

torical curve is that data for the initial values and the

parameters are not available. Nevertheless, we will estimate

these values in order to generate the historical curve.

The model will be modified to accomodate the population

growth and the seasonal variation of influenza. We let

POP = total p0pulation

SPOP = susceptible p0pulation

IPOP = infective p0pulation

BRTH = birth rate (peOple/month)

DTH a death rate (peOple/month).

Assuming the exponential growth of the p0pulation, we have

3%- P0? = (BRTH - DTH) * P0?

and

POP = SPOP + IPOP + RPOP.
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The newborns are put into the susceptible p0pulation,and

the death rate is equally applied to the three groups of

population. Table h.2 gives the annual birth and death rates

of the United States from 1968 to 1976. The birth rate BRTH

and death rate DTH for the simulation is calculated to be the

average of the actual death and birth rates of the eight year

period, and this figure is converted into the monthly rate.

These rates are

BRTH 1.36 x 10‘3

DTH .775 x 10‘3.

The seasonal variation of influenza is considered by

making the infective rate sinosoidal, a sine curve which

starts at the initial time equal to September. The sine

curve represents the fact that influenza occurs most fre-

quently during the fall and the winter and least frequently

during the summer. We let

INF infective rate (fraction/peOple month)

CR = contact rate (fraction/peOple month)

PRD = period = 12 months

H = height of the sine curve (dimensionless).

Then we can form the infective rate as

INF = CR * (1+H + SIN((6.25/PRD) * TIME)).

Integrating the above changes to the influenza epidemic model

and simulating by varying parameters, we obtain a reasonable

fit with the historical data.

The comparison of simulation output and the actual

figures for the three epidemics are given in Table h.3 and
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Table h.3. Monthly mortality rates in the three epidemics

(used in model validation.

 
 

 

  

Epidemic 1 Actuali Simulation

Nov 68 159 ' 919

DEC 1068 ll8h

JAN 69 1359 _ 130A

FEB 677 1236

MAR 673 ' 1037

APR 695 759

MAY 545 574

ggidemic 2 Actual1 Simulation

DEC 72 508 966

JAN 73 830 1029

FEB 90h 1006

MAR 701 917

APR 398 796

Epidemic 3, Actugll Simulation

DEC 75 A79 691

JAN 76 819 710

FEB 82h 71h

MAR 606 702

APR #67 678

 

1 From Monthly Vital Statistics Report.
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plotted in Figure h.8. The values of the parameters and

initial conditions used to obtain these results are as,

follows: .

Parameters

b = .07 x 10-6(1 + .03 sin .52t) (infective rate)

r = .8 (removal rate)

e = .5 (susceptible rate)

d = .6 (drift rate)

Initial conditions

cl = 19.19 x 106 (susceptible population)

c2 = .5 x 106 (infective p0pu1ation)

c3 = .5 x 106 (immune p0pulation)

ch = .001 (virus strain).

The composition of the initial populations is 80 percent

susceptible, 10 percent infective, and 10 percent immune.

Since the monthly mortality data is from the 10 percent

sample of the total U.S. p0pulation, the simulations were

performed using that figure as the initial total p0pu1ation.

Figure b.8 shows that the simulation results in terms of

the epidemic peaks and the peak times are reasonably close

to the actual data. This demonstrates a possible use of the

model for prediction provided that the initial conditions

and the values of the parameters can be measured.
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CHAPTER 5

IMMUNIZATION MODEL AND CONTROL SYSTEM

In the influenza epidemic model developed in Chapter 3,

the cycle of epidemics begins as a result of a virus shift.

The size of the susceptible p0pu1ation in relation to the

threshold determines the severity of the initial epidemic;

that is, if the difference between the initial susceptible

p0pu1ation and the threshold is large, the peak of the

epidemic curve is high. Subsequent epidemics are caused by

drifts. The peaks of these epidemics are also determined by

the difference between the susceptible p0pulation and the

threshold. We now construct an immuniZation system to pro-

vide the control input to the influenza epidemic system.

Figure 5.1 shows the block diagram of this control system.

 

INFLUENZA

‘9 EPIDEMIC :-

SYSTEM

 
 

   

. IMMUNIZATION

SYSTEM

Figure 5.1. Block diagram of the control system.
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The goal of the control system is to minimize the severity

of the second epidemic caused by drift. One method of pre-

venting the occurrence of the second epidemic is to remove a

sufficient number of individuals from the susceptible p0pu-

lation so that the size of the susceptible p0pulation is

always below the threshold level. This method could be costly

in terms of a percentage of the total p0pulation required to

be immunized. We, therefore, developed an immunization system

which accomplishes the goal of the control system by immuniz-

ing as few individuals as possible.

First we will examine the relationships among the

variables which determine the size of the epidemic peak; then

construct the state model for the immunization system; and

finally, present the results of simulation.

5.1 Causal Analysis

After the initial epidemic, the susceptible population

starts building up through the transfer of individuals from

the immune population due to the structural change of the

virus. The decrease of the immune population causes the

immunity level to fall, thus increasing the susceptible level.

As the susceptible level increases the threshold decreases

and the difference between the susceptible population and the

threshold becomes larger causing the higher peak of the next

epidemic. To remedy this situation, we add the vaccinated

p0pulation in the causal 100p diagram (Figure 5.2). We now

decrease the susceptible population and follow through the
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dotted lines. The causality indicates that the difference

between the susceptible p0pulation and the threshold becomes

smaller, causing a smaller epidemic peak.

Epidemic (E )

Peak max

4.

(x1) Susceptible Difference (xl-H)

P0pulation _

._ \

|

I

I
I -

7 (V) p1

(x3) Immune Vaccinated Threshold (H: 3—)

POpulation Population Level

I, -
I

/
/

x +v - //

(A: —%—d Immunity’ + Susceptible (3:1-A)

Level ~\\\\\‘-—_—fl’gsvel

Figure 5.2. Causal loop diagram of the control system.

5.2 State Model of the Immunization System

We construct the state model in such a way that the

vaccinated population behaves like a goal seeking curve. This

goal is the number equal to the difference between the

susceptible p0pulation and the threshold level. We let

v vaccinated p0pulation

G = goal.

Then
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S(t) = x1(t) - H(t)

where

x1(t)

H(t) = threshold level.

susceptible p0pulation

If the goal is constant; i.e. C(t) = G, then the state equa-

tion for the goal seeking curve is given by

v = k (c - v) (5.1)

with the initial conditidn v(0) = 0. The constant k is the

vaccination rate. The solution for the state equation (5.1)

is

v = G (1 ~ e-kt)

The graph of the vaccinated p0pulation is shown in Figure

5.3.

 

 
 

t

Figure 5.3. The goal seeking curve of the vaccinated p0pu-

lation.

Using the time varying goal C(t), the state model for

the immunization system is then obtained as

v = k (S(t) - V) (5.2)
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with the initial condition v(0) = 0.

The rate of immunization must be positive; hence, we

consider applying the model only when the susceptible p0pu-

lation exceeds the threshold. After the initial epidemic

the susceptible p0pulation crOSses over the threshold just

before the drift time TD.and the next epidemic begins just

after the virus strain reaches the relative minimum. There-

fore, the immunization system will be initiated at the drift

time TD and continue up to the time the virus strain attains

relative minimum Tmin (see Figure 5.h). This procedure can

be accomplished by using a rectangular function (the

difference of two step functions) to simulate the model. The

state model (5.2) becomes

v = k (G(t) - v)Tr

where TT is the rectangular function with the height equal to

1 and the length equal to the period of the immunization.

The immunity level A(t) is now the sum of the immune

population and the vaccinated population divided by the total

p0pulation:

X + V

A(t) = “l—N—n

As before, the susceptible level S(t) is defined to be

S(t) = 1 - A(t).

Since the susceptible p0pulation decreases at the rate of

immunization, the state equation for the susceptible p0pu-

lation in the state model (3.2) is changed to

x1 = -b S(t) x1 x2 + ex3 x4 - v.
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Figure 5.h. Immunization period.
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5.3 Simulation Results

The control system is simulated using the three test

cases given in Chapter 4, Figures h.1, A.2, and h.3. In all

cases, the total vaccinated p0pulation becomes larger as the

vaccination rate k is set larger. However, the vaccinated

p0pulation stabilized at k = 1; that is, there is very

little difference in the number of the vaccinated population

beyond that range of k. The simulation outputs for un-

vaccinated cases with the drift rate d = .5 are shown in

Figure 5.5. (The epidemic curve is identical to that in

Figure A.2.) The rate of immunization v and the vaccinated

population v with the vaccination rate k = 1 and the period

of immunization from TD = 27 to T = 39 are given in
min

Figure 5.6. The epidemic curve produced after immunization

is shown in Figure 5.7.

The total vaccinated p0pulation for each case and the

drift calculated from Equation (h.1) are compared in

Table 5.1. Note that the higher the drift, the larger the

number of individuals in the susceptible p0pulation must be

vaccinated to reduce the next epidemic peak to an endemic

level. This observation agrees with reality.

The control system takes no consideration of the efficacy

of the vaccine. According to Pereira (1979), the efficacy of

vaccine ranges from 40 to 80 percent. Also, only individuals

in the susceptible p0pulation are immunized in this model.

In reality, individuals in the immune p0pulation are

immunized as well as those in the susceptible p0pulation.
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Therefore, to compute the percentage of the total p0pulation

required to be immunized, taking into consideration the effi-

cacy of the vaccine and assuming that the immune p0pulation

and the susceptible population are vaccinated proportionally,

we use the formula:

1 VPOP
 % POP = EFF x SPOP x 100

where

% POP = percentage of total population required to be

immunized

EFF = efficacy of the vaccine (expressed in decimal)

VPOP = vaccinated p0pulation from the simulation

SPOP = the size of the susceptible p0pulation at the

beginning of the immunization period.

The percentage of the total p0pulation required to be immunized

are calculated for each test case using the efficacy of the

vaccine to be #0 and 80 percent. The results are given in

Table 5.1.

Table 5.1. Percentage of total population required

to be immunized.

 

 

d D VPOP SPOP EFF % POP EFF % POP

1.0 .338 178 682 .4 65 .8 33

.5 .L96 205 763 .4 67 .8 34

.3 .650 215 795 .h 68 .8 3a

d drift rate

D ; drift



CHAPTER 6

SUMMARY AND CONCLUSIONS

The influenza epidemic model was systematically built

from the basic three epidemic models described by Bailey

(1975). In the basic epidemic models, the variables which

are of particular interest to epidemiologists, such as the

peaks and durations of epidemics, were defined and analyzed.

The numerical values of these variables computed from analy-

sis were compared with those obtained from simulation. The

results show that the Euler integration method used in DYNAMO

was reasonably accurate for simulating these nonlinear models.

The influenza epidemic model is an aggregated system with

four state variables which includes the structural state of

the virus as one of the state variables. The state equation

for the virus strain was constructed using the idea of a

logistic curve, the asymptote of which is the immunity level

of the p0pulation. With a prOper choice of the drift rate,

the system provides an epidemic curve which resembles under-

damped oscillation. Linearization was used to analyze the

system behavior and to compute the range of the drift rate

required for this underdamped oscillation. The computational

procedure for finding this range is based on a sufficient

condition, expressed in terms of the coefficients of the

102
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characteristic equation, for the third order linear system

to be stable oscillatory and underdamped.

With this model three epidemic cycles can be shown. The

initial epidemic results from virus shift which is represented

by the presence of low immunity level in the p0pulation. The

following two epidemics result from drifts which cause the

susceptible p0pulation to build up above the threshold level.

For the first three epidemics, the dynamic behavior of the,

virus, the immunity level, and the epidemic curve are similar

to those graphically represented by Kilbourne.

Model validation was performed using the data taken from

the Vital Statistics Report of the United States. The model

was modified to accomodate p0pulation growth and the seasonal

variation of the infective rate. The attempt to fit the

historical data on the mortality rate of the three selected

epidemics in recent time to the simulation results was

reasonably successful, considering the complexity of the

real world system.

The model analysis and simulation of the aggregated sys-

tem provide a good insight into the behavior of the essential

variables. In particular the threshold is one such variable

whose behavior may not have been so obvious. The threshold

is a time varying quantity which is inversely prOportional

to the susceptible level of the p0pulation. The size of the

differencebetween the susceptible population and the threshold

prior to an epidemic determines the severity of that epidemic.

A formula used to calculate the numerical value of
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drifts was developed. It was shown from simulation results

that the value of the drift is an indication of the severity

of the following epidemic, measured in terms of the peak of

the epidemic curve. The drift time, the time at which a

drift occurs, was also defined. Knowing the drift time, the

beginning of the next epidemic could be estimated.

In this model the second epidemic occurs if the sus-

ceptible population exceeds the threshold. To control this

epidemic, an immunization system was develOped as a sub-

system of a control system. The immunization model consists

of the vaccinated population as a state variable. The state

equation was constructed using the idea of a goal seeking

curve, the goal of which is the difference between the sus-

ceptible p0pulation and the threshold. The immunization

period begins with the drift time and ends at the time the

virus reaches relative minimum.

The control system is an idealized model. It takes no

consideration of the efficacy of the vaccine, and only the

susceptible p0pulation is immunized. To translate the total

vaccinated population obtained from simulation into more

realistic figures, a simple formula was used to estimate the

percentage of the total p0pulation required to be immunized.

The following are suggestions for building a more complex

model from this aggregated model:

(1) The susceptible level of the population may be made

more precise by defining it to be a function of general

health and age as well as antibody level.
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(2) The infective rate may be a function of season,

mobility, the density of the p0pulation and the effective

contact rate.

(3) Geographical Spread of infection may be modelled

using partial differential equations.

(A) Population may be divided into three or four age

brackets with each group having different infective removal

and immune rates.

(5) Subclinical cases may be considered by having a

separate immune p0pulation for those cases.

(6) Surveillance systems may be established to identify

drifts and shifts of the virus.

(7) Immunization systems may include the efficacy of

the vaccine which is a function of the virus and the effect-

iveness of surveillance. They may also include economic

factors such as production, distribution and manpower costs.

(8) A more precise mathematical representation of the

virus may be developed as research in this area progresses.
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APPENDIX A

DERIVATION OF THE FORMULA FOR THE FUNDAMENTAL MATRIX

OF THE 2X2 MATRIX A IN WHICH THE EIGENVALUES ARE COMPLEX

Let s1 = u + jv, 32 = u - jv be the eigenvalues. Then,

from the theory of the function of matrices,

s t s t

eAt = Z1 e l + 22 e 2 ,

where 21’ 22 are the constituent matrices given by

_ A - $2 I

Zl ’ s - s
l 2

Writing 21’ 22 in terms of the real and the complex parts,

we obtain

Zl=é[I-j%’-(A-u1)] (A.l)

and Z2 = 71 (conjugate of Zl)'

Hence,

2 Re 2
1

Now, using the Euler Formula we can write
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= e(u + jv)t

eut ert

= eut (cos vt + j sin vt). (A.2)

Multiplying Equations (A.l) and (A.2) and taking twice the

real part, we obtain the formula

eAt = eut [(cos vt) I + (% sin vt) (A - uI)].



APPENDIX B

DYNAMO LISTINGS

Table 8.1. Simple epidemics model.

* SIMPLE EFIQZHICS NSDEL

NOTE '

NOTE 2‘WE! (1

L SPOP. V‘"“"’ . -.."‘-'D*3? DP”. \JH. SUSCEPTIB

L IPOP. 3"."- -‘z3):: g."QT:IEDO'J' JK INFECTIVE

TIB

IVE

P

..:.=-fi:¥}23PoP KPIPDP.K SUSCEP LE

R IP0PP.P;.us:: ...:0P KPIPOP.K INFECT '

NOTé H :NITlnLIZATION

LE POPULATION
OPULATION

C S=950

C 1300

NOTE .

NOTE P3:33.135?"

C BETA=.OOP INFECTIVE RATE

PRINT SPOP t.'.,F’OHH

PLOT SPGP—“.{%h”~i,iku.flN

SPEC DT=.C01/:L Ln../LENGTH=5/PRFPE?-.l

RUN BASE

*EOF
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Table B.2. General epidemics model.

* GENERAL EPIDEMICS MODE

NOTE

NOTE LEVE1.?

L SPOP K=SP P U+bIAEPOPR.UR SUSCEPTIBLE POPULATION.
L IPOP VPIPOP.J+DTPIPQPR.JK INFECTIVE POPULATION

hOREOP K=RPOP.U+OTARPOPR.UK IMMUNE POPULATION

NOTE RAT.- :5

R SPOP..RLa-BETA-sPnP. RAIPOP K

R IPOPR RL=PETAAEPOP RaszOP. R-—GANNAAIPOP K

R RPOPR.RL=OAMNAA1POP K

NOTE
NOTE INITIALIZATION

N SPOPAE
N IPOPAI

N RPOP=R
c 5:950

G 1:50
c R=o

NOTE
NOTE PARAMETERS

c BETA=.OOR INFECTIVE RATE
c GAMMA=.8 REMOVAL RATE

PRINT SPOP.IPOP,RPOP,RPOPR

PLOT SPOPAE.TPOP=I.TMPOP-R/RPOPR=N

SPEC DT=”001/PLTPE.=.1/LENGTH=10/PRTPER=.1

BET‘I‘FP.("(11
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Table 8.3. Endemic model.

* ENDEHIC MOIEL

NOTE

NOTE I-’WEI. 13

L SPOP K:EFOF I+DT’"~PPR UK SUSCEPTIBLE POPULATION

L IPO..nnIPCI U+DT¢IPLW .OH INFECTIVE POPULATION

L RPOP.M=RPOP.J+DIH'PP? um IMMUNE POPULATION

NOTE

NOTE Rfifffi

R SPOPE.RL=—BETP.IZPOP.KAI POP. HIEPSLfi

R IPOPR.EL?EETA%SPOP KEEPOP. Km.»AAMAAIP .K

R RPOPR.KL=(A'MIIIPb‘.&-EP5LN

NOTE

NOTE DISEASE INCIDENCE

RAEAMNAAIPOP.R

I\IIFIDIIZATIDN

F’ARAI”IE

C BETA=.OQI

C GAMMA=.S

C EPSLNmSO

TERS

PRIN] Sr I32: 1.95:3; RP “3’ INCI

PLOTSPOP-5.1POP=
I,RPOP=A/1

SPEC DT-= 1/PLTPEH21/LENGT
H2

RUN BASE .

*EUR

0 8:950
C R=O

C BETA=.CC:

C EPSLI‘E‘ l '5‘: _ -

SPEC HLTPERaE/LENEIH=EDO

RUN CH1

*EOF

INFECTIVE RATE

REMOVAL RATE

SUSCEPTIBLE RATE

7PRTPER=I
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Table 3.4. Influenza epidemic model.

* INFLUENZA EP1DEHIC EEDUEL

NOTE

NOTE LL:“SLR '

L SPOP. “.3SFE'S. JJUT’SFOPR.JK SUSCEPTIBLE POPULATION

L IPCIU. K32PQ:) J‘DT*IPLPR JK INFECTIVE POPULATION

L RPUP. {QnPPEZ‘EP' J"I“:r5FEVDPR. 4'34. IMMUNE POPULATION

L V]. K=VL ‘HEV‘IW -JE\ VIRUS STRAIN

NUTF.

NOTE. PAT"I‘:

R SPUPR.KL=-PEE

R IPOPR E‘SETI

R RPUPP.EE~< EE

H LVL. K.*SP3P. h*IPCP. K+EPSLN*VI. K*RPOP.K

TSESVL. KKSPOP. K%IPDP. K“GAMMA*IPDP. K

«IFUP. P”EPSLN*VI. K*RPOP. K

§D¥&R.PL~uFIE JMEEVL KVI. K)§VI. K

NOTE AUX/SUPPL VARIABLES

A IMLVL.K*RPCP H/IOOO IMMUNITY LEVEL

A SLVL. ' '=-E.-'13‘-EL./E. . SUSCEPTIBLE LEVEL

S TH. K=EIUOU*(bwhnA/BTA))/(IOOO-RPDP K) THRESHOLD

S INCI.h~”AVHHKIPU“ K DISEASE INCIDENCE

NOTE INITIALIZATIDN

C BETA=.OCE INFECTIVE RATE

C GAMMA? r': RENOmm PM"aE

C EPSLN”.3 SUBC‘ZPTI3'.E RATE

C DELTA£=. DPIFK RniE

PRINT SP”: 1FSP-PPOP,TH.IHCI VI IMLVL

PLOT ]'( rM/ WLJi=n/VI=V

SPEC D72 LJFL.‘LH~1/LENUTH loo/PRTPER-=1

RUN BfSE

*EDR

C DELTF? {'7

RUN CH1

C DELTA$.3

RUN CH2

C DELTéa.1

RUN CH3

C =6OO

C 19:93.53;

\
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Table 8.5. Model validation.

* MODEL VALIDATTDH

NOTE

NOTE . LC’i'fl {'3'

L SPOP.K=SP§P.J+DTPSPOPR.JK SUSCEPTIBLE POPULATION

L IPOP.K=IPOP.\'+DT*IPOR.JK INFECTIVE POPULATION

L RPOP K=PPOP J+D'%RPCPR.JK IMMUNE POPULATION

L VI.K=“1.Ur~l“V R. uK VIRUS STRAIN

NOTE

NOTE udiLS

R SPOPR.AL=-IPF.H%SLVL.K%SPOP.KfilPOP.K+EPSLN*VI.K*RPOP.K

X +BR‘H-4-é-P23-i-D. E'x-"Q'e‘i-éi-T .=’.-S.-‘{2P. K

R IPOPP.AL=IAP h~fLVL.HhEisOP.K*IPOP. K-GAMMA*IPOP. K-DTHI*IPOP.K

R RPU~~.PLnCAm:,»:Ku. K-EPSLN¥VI. K*RPOP. -DTHR*RPOP. K

R VIR.KLrDELTAa : .K-VI. K)*VI. K

NOTE

NOTE AU>;/313”PL VARIABLES

A INP.K%CPP(1+H*SIN€(5. QS/PRD)#TIME. K)) INFECTIVITY

S MORT.~—¢7HZ&IP" !& MORTALITY RATE

A POP.K=SP3P. Hfi IP OP."+RPOP. V TOTAL POPULATION

S INCI.P~~AH.A:1POP h. DISEASE INCIDENCE

A IMLVL. H:TF-DP. K/POP V IMMUNITY LEVEL

NOTEVL' K=L*INLVL.K SUSCEPTIBLE LEVEL

NOTE SEASONAL VARIATION

C CT=.O?E~A CONTACT RATE

C =.03' HIGHT STEP FUNC

C PROP 2 PERIOD SINE

NOTE -

NOTE INITIALIZATION

N SPUP=S

N IPOP=I

N RPOP=P

N VI=

C 831?.1“L

C I=.5Eb

C R=.5Eé

C V=.OOJ

NOTE .

NOTE TAP~W’¢L}S

C GAMNA=.B REMOVAL RATE

C EPSLN2.5 SUSCEPTIBLE RATE

C DELTA= é DRIFT RATE

C BRTH=1.3u-—3 BIRTH RATE

C DTHS=7.731 A DEATH RATE

C DTHI=7.7E "4

C DTHR==7. '7‘.‘w.‘---~’!.

PRINT POP.BPOP.IPOP’RPOP.INF,VI,IMLVL;MORT.INCI

PLOT PCP=P,EPOPnS,RPOP=R.IPOP=I/VI=J/IMLVL=A/MORT=M/INCI=N

SPEC DT:.1ffiLTFERxlfLEMGTH=120/PRTPER=1

RUN .BAEL
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Table 8.6. Immunization model.

* IMMUNIZATION MODEL AND CONTROL SYSTEM

NOTE

NOTE LEVELS

L SPOP.K=SPOP. J+DT*SPOPR.JK SUSCEPTIBLE POPULATION

L IPOP.V.= IPOP. J+DTAIPOPR.JK INFECTIVE POPULATION

L RPOP.K=RPOP.J+DT£RPOPR.JK IMMUNE POPULATION

L V1. K=VI. J+DT*V1R.UK VIRUS STRAIN

NOTEbP' K:VPOP.xJ+DT*VPOPR.JK VACCINATED POPULATION

NOTE RATES

SPOPR.‘ =A. V-wW‘R" J34

IPOPR. #3:=3-TA '53!...VL KKSPOP. K*IPOP. K-GAMMA‘H'IPOP. K

RPOPR. 31.3 AG A.“’33’3.-‘ "IPOP. KmEPSLNfi-‘I'I. Kit-RPOP. K

VPO'JR 3.4 _‘SKEAI‘KWDIFF. K~VPOP. KHi'VAC. K

VIR. KL. =1C~EZI-"2".-‘\3':( INLVL. KNVI. K)*VI. K

:TJX/SUPPL. ‘PVQIABLES

A. K=-BET‘A;: VL. 3i*SPOP K*IPOP. K+EPSLN*VI. K*RPOP.K

D
D

4
.
;

m
m

XSET?=:T:P(HGHT1 STTM1)-STEP(HGHT1 STTNE) VACCIN PERIOD

1 =.-

STTM3=27

STTN2=LR

IMLVL. K=€RPOP. K+VPOP.K)/1000 IMMUNITY LEVEL

SLVL. V.=1-IPHLVL. SUSCEPTIBLE LEVEL"

TH. K=RHO3/E:3”!_ THRESHOLD

DIFF V=SPOP.n-TH K SUSCEP-THRESH

INCI.H=GANMA%IPOP.K DISEASE INCIDENCE

IN i '3' I Al- I ZAT I OH

OTE P AR A3-33'STE P. S

RHOI=40§ ELATIVE REMOVAL RATE

c
o
c
o
o
n
z
z
o
o
o
o
o
z
z
z
z
z
g
g
b
b
b
b
b
o
o
o
p
b
z
z
m
m
m
m
m

‘
4
4

m
m

KSAIO=I'. “ " VACCIN RATE

PLOT SP‘sz. *---- W/LMCI—i!

SPEC DT-= 1/PLTPER=I/LEi"GTH=IOO/PRTPER=1

RUN BASE

*EOR

PLOT VP: — 3:: ‘13"43’ 3

RUN CHI”
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