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ABSTRACT

SYSTEMS MODELLING, ANALYSIS AND SIMULATION OF
TYPE A INFLUENZA EPIDEMICS

By

Roy Gardner

A pandemic results from the emergence of a new subtype
of type A influenza virus. Following the pandemic, epidemics
occur in two to three year cycles due to the structural
change of the same subtype virus. The graphic representa-
tion of disease incidence from one pandemic to the next
resembles underdamped oscillation. A review of the liter-
ture reveals no existing dynamic model of influenza epi-
demics which depicts the behavior of the virus and its
interaction with the population. This paper develops a model
for such a system using systems theory and application.

As a basis for describing the dynamic behavior, three
epidemic models are analyzed in the context of systems
analysis and simulated. All simulations in this research are
performed using DYNAMO. Variables which are of interest to
epidemiologists, such as the peaks and the durations of
epidemics, are defined, and the formulas for computing these
variables are derived. The numerical values obtained from
analysis are compared with the simulation results.

The influenza epidemic model developed using the basic



epidemic models is a nonlinear system with four state variables,
one of which is the structural state of the virus. The virus
was modelled using the idea of a logistic curve, the asymptote
of which is the immunity level of the population. The line-
arized model was used to analyze system behavior. With a
proper choice of the parameter associated with the virus,
the system provides an epidemic curve which resembles under-
damped oscillation. A range of the parameter required for
this underdamped oscillation was computed using a sufficient
condition, expressed in terms of the coefficients of the
characteristic equation, for the third order linear system to
be stable, oscillatory, and underdamped. This sufficient
condition was derived based on the relationship between the
roots location and the coefficients of a cubic equation.

Simulation results of the system for four test cases
are presented and compared. With this model three epidemics
can be shown. The attempt to fit the model outputs with
the historical data on the mortality rate of three selected
epidemics of recent times was carried out as model vali-
dation. The model was modified to include the population
growth and the seasonal variation of influenza outbreaks.
Simulation results show a reasonable fit, considering the
complexity of the real world system.

To minimize the severity of the epidemic, an immunization
model was developed as a subsystem of a control system. This

model consists of the vaccinated population as the state



variable. The state equation was constructed using the idea
of a goal seeking curve. A comparison of simulation outputs
of the system without immunization and with immunization is
given. Simulation shows that, with this control system, in-
stead of the expected epidemic, an endemic state results.
This control system, however, is an idealized system where
only individuals in the susceptible population are immunized,
and it does not consider the efficacy of the vaccine. To
interpret the simulation results more realistically, a simple
formula is given to compute the percentage of the total
population that requires immunization to prevent the epidemic.
This percentage varies depending on the efficacy of the

vaccine.
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CHAPTER 1
INTRODUCTION

1.1 Statement of the Problem

In 1979 smallpox was declared eradicated from the face
of the earth. Once-devastating infectious diseases such as
cholera, typhoid fever, and yellow fever are now under con-
trol through improved sanitation, vaccination, and quaran-
tine. Yet, control of influenza epidemics and pandemics
(world wide epidemics) is not in sight. This is because the
infectious agent, a virus, is constantly changing ﬁith the
resultant consequence of invading a population which has
little or no immunity for the changed agent. This disser-
tation concerns the development, analysis, ané simulation
of models of influenza epidemics.

Influenza can be just as devastating as cholera. It
is estimated that the pandemic of 1918 killed 20 million
peope world wide and over 500,000 in the United States in
a period of just a few weeks. The occurrence of pandemics
and major epidemics in recent times (Kilbourne, 1975, p.49.4)

is as given in Table 1.1.



Table 1.1. Major epidemic and pandemic years and
their intervals.

Pandemic Major Epidemic
Pandemic Interval Interval

1889 +

1900 11
1918 + 29 18
1929 11
1946 + 28 17
1957 + 11 11
1968 + 11 11

+ indicates occurrence of an unquestioned pandemic.

It is interesting to note the recurrence of the 11 year
intervals in the above table. The exact reasons for the
cyclical properties of the épidemics are not known, but the
relationship between the immunity level of the population
and the occurrence of an epidemic is an important factor to
be considered.

Another interesting theory of the cyclical nature of
pandemics is the return of the same virus subtype every
sixty years. The pandemic of 1918 is believed to have been
caused by the "swine flu" virus. Isolation of the swine
flu virus from soldiers at Fort Dix, New Jersey, in 1976
prompted a national immunization program in anticipation
of another pandemic. The fact that the pandemic did not
materialize points out the need for a model to more accu-
rately forecast future influenza epidemics. Such a model
requires an extensive knowledge of the basic three elements
in the system -- the virus, the host, and the environment --
and the complex interactions among them. In many socio-

economic and ecological systems, the degree of
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uncertainty, in essence, determines the validity and
hence the usefulness of the model. In the case of the
influenza epidemic system, this uncertainty is compounded
by the limited knowledge of the virus itself. As the
secrets of the virus are unraveled, prediction and con-

trol of epidemics may become reality.

1.2 Description of the Influenza Epidemic System

To build a realistic system dynamics model of any
phenomena, it is fundamental to have a good understanding
of the real world system the model is to represent. The
following is a brief but essential description of the
various elements and interactions involved in influenza
epidemics as they are understood today.

Influenza is an infectious disease caused by a class
of viruses called myxoviruses, or interchageably known as
influenza viruses. There are three types of influenza
viruses, types A, B, C, which are classified according to
the immunity each produces by infection. Type A has sub-
types, and each subtype has variants. Type B has no sub-
type, but has variants. Type C virus is uncommon and does
not cause epidemics. Type A is the only type found in
animals and birds as well as humans. Epidemics of type
A occur every two to three years, and epidemics of type B
occur every four to six years.

Appearance of a new subtype of type A can result in a

pandemic. In fact, one author defines an influenza



pandemic as an emergence of a new subtype (Beveridge,
1977). A remarkable fact about the subtypes of type A
virus is that when a new subtype appears, the old sub-
type rapidly disappears. Hence, only one subtype of type
A predominates at any given time. However, the type B
virus can coexist with type A virus. The table below
(Volk, 1978, p. 542) lists the subtypes of human viruses
isolated up to the present time:

Table 1.2. Subtypes of human influenza A viruses and
the year isolated.

Year Isolated Subtype
1934 HoNl
1957 HoN,
1968 HyN,

In immunological terms, the change in subtype is
called antigenic shift. In simple terms, antigenic shift
is a major change in the type A virus which may lead to a
pandemic, while antigenic drift reflects minor changes in
the type A or B virus which may cause more localized epi-
demics.

Understanding the structure of the virus makes it
possible to understand shifts and drifts: The virus is
80-100nm in diameter and is roughly spherical in shape.
It consists of a helical symmetric core which contains the
genetic material of the virus called ribonucleic acid

(RNA) and two types of spikes, hemagglutinin and



neuraminidase. The RNA is in eight separate pieces, each
being a single genetic unit. The spikes are attached to

the membrane which encloses the core (Beveridge, 1977,

p. 69).

N = Neuraminidase
H = Hemagglutinin
C = Core

M = Membrane

Figure 1.1. Diagram of influenza virus section.

When the virus attacks a person, it first must
attach to host cells. This attachment is facilitated by
the H and N spikes and is necessary for the virus to pene-
trate the host cells. Once inside the cell, multiplica-
tion of the virus takes place through the process of
translation and transcription of the genetic codes.

An antigen is defined to be any substance which
causes the body to produce antibodies. There are four

antigens in the influenza virus: the two spikes H and N,



the core, and the membrane. Antibodies produced in response
to the core antigen and the membrane antigen are not pro-
tective and do not prevent infection. The core antigen is
significant, however, because the types A, B, and C are
classified according to the differences in the antibodies
induced by the core antigen. Antibodies induced by the N
spike are not protective, either, but they may play some
role in reducing the spread of infection, since they inter-
fere with the release of the virus from the infected cell.
Antibodies induced by the H spike are protective and
neutralize infectivity of the virus by coating the surface
of the cell so that the H spikes cannot be attached

(Volk, 1978, p. 540).

Basically, the coating of the surface of the cell by
the antibodies results in immunity to the specific virus.
Howéver, if the chemical composition, and hence the anti-
genicity, of the H or N spikes change, the body does not
recognize the change, and the person can be infected
again. Slight changes may occur by mutation during the
multiplication process, aqd these changes in the spikes
are called antigenic drift. If there is a major change
so that there is negligible immunity in the population,
then the change is called antigenic shift.

Antigenic shifts are believed to result from the
creation of a hybrid between human and animal influenza
viruses. This is the recombination theory which states

that a human influenza virus may infect lower animals or
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birds and then Se recombined with an animal virus present
in the animal host to produce a new subtype of the human
influenza (Laver, 1979).

The recombination theory plays a significant role in
the control of influenza epidemics. First, it implies
that future pandemics will be difficult to control since
vaccines cannot be prepared by simply manipulating the
human influenza viruses. Second, it widens the whole
dimension of ﬁhe influenza epidemic system by involving
the ecology of animals and birds.

Early identification of a new variant or subtype is
crucial for the preparation of a proper vaccine to immunize
against a possible epidemic. The World Health Organization
maintains a world-wide network for surveillance of in-
fluenza viruses. At present, early detection and vaccin-
ation seem to be the only effective tools against influenza

epidemics.

1.3 Purpose, Background and Methodology of Research

The purpose of this research is to build a large-
scale, or aggregated, model of an influenza epidemic system
using systems theoretic concepts which shows the relation-
ship between the dynamics of the epidemic and the changing
structural state of the influenza virus. In the systems
approach, the identification of the virus and vaccination
are controllable inputs to the influenza epidemic, while

shifts and drifts are uncontrollable inputs. Exogeneous



inputs include seasons, susceptibility due to genetic fac-
tors and standard of living, and general health and ages
which affect morbidity and mortality rates. Populations
with different immunity levels and the number of suscep-
tibles and the number of immunes may be considered design
parameters. Desirable outputs are a high level of immunity
in populations and low morbidity and mortality rates.
Complications such as Guillain-Barre syndrome and high
economic costs are undesirable outputs.

In reality many of the variables identified above are
probabilistic or stochastic in nature. For instance, not
all individuals who have contact with an infective person
come down with the disease. The complexity of the human
body and its interaction with the invading virus can never
be adequately described by mathematical expressions. In a
stochastic approach, disease incidence at any given time
period is associated with a probability. Stochastic models
are more appropriate if one is investigating the system
behavior in which the statistical fluctuation is significant,
such as in infectious outbreaks involving a few individuals.
In a large-scale model this statistical fluctuation averages
out and becomes less significant. Deterministic models are
adequate for describing epidemics involving a large number
of people and will be used in this research.

Epidemic models using "system dynamics" techniques
have been found only as examples and illustrations in the

texts of Goodman (1974, pp. 85-88, 365-375) and Sage (1977,



pp. 212-213). No influenza epidemic models were found in
any of the systems and simulations literature. Bailey
(1975) presents an extensive literature review of mathe-
matical models of epidemics from the beginnings of research
in that area up to and including recent developments.

Elveback, Fox, Ackerman (1975) use a stochastic
discrete time model to simulate an influenza epidemic in
a community of one thousand people and deduce an optimal
strategy for vaccination. .

Several Russian researchers (Baroyan, 1971)‘constructed
a computer simulation model to forecast the outbreak of
influenza epidemics in forty-three cities in the U.S.S.R.
This model is based on a migration model and uses trans-
portation data as one of the parameters.

Using the parameter estimation technique developed by
the above Russian researchers, Spicer (1979) shows that a
stochastic discrete time model conforms to the historical
data on influenza deaths in the United Kingdom from the
years 1952 to 1973.

Kilbourne (1975, p. 496) gives a graphic representa-
tion of the pattern of pandemics in recent years, depicting
the relationship between the immunity level of the popu-
lation and the drifts and the shifts of the virus as shown
in Figure 1.2. This grarh resembles underdamped oscillation
and gives some insight into the structure of the influenza
epidemic model which is the subject of this research.

Three basic models of epidemics described in Bailey
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(1975) will be discussed in Chapter 2. These models lead

to an influenza epidemic model developed in Chapter 3 which
includes the structural state of the virus as one of the state
variables. The model will be simulated, and the results
compared to historical data provided by the Center for Disease
Control in Chapter 4. Finally, in Chapter 5, an immunization
model will be developed as a subsystem of a control system,
and the percentage of the population required to be immunized
to prevent epidemics will be determined.

All models will be discussed in the context of systems
analysis, focussing on such topics as stability, lineariza-
tion, phase portrait, and transient response. A qualitative
modeling approach, namely causal loop diagrams, will show
the relationship among the various variables. Normally,
the causal loop diagram does not show the mathematical
processes relating variables. However, to make the descrip-
tion more precise, in the simple models such definitions taken
from the state model will be included alongside each variable
defined.

Block diagrams as well as DYNAMO flow diagrams will
be used to show the parameters, the flow of quantities,
and the rate and level variables. All simulations will be
done by DYNAMO, a well-accepted dynamic systems simulation
program. DYNAMO was chosen because of its versatile capa-

bilities of plotting and its ease of programming.



CHAPTER 2
BASIC EPIDEMIC MODELS

Before one attempts to build a large-scale socio-
economic or biological model, it is useful to learn the in-
depth behavior of the simple model which may be used as a
basis of a more complex one. The dynamic model of the
basic system should contain a minimum number of the state
variables, or levels, which provide outputs that represent
a reasonable similarity to the real world situation. In the
case of epidemic models, the system usually consists of
three state variables: (1) the size of the susceptible
population (population capable of contracting the disease);
(2) the size of the infective population (population
capable of transmitting the disease); and (3) the size of
the removed population (either immune, recovered, or dead,
and hence no longer infectious).

In this chapter, three basic epidemic models which
were presented by Bailey (1975) have been arranged from
simplistic to more realistic and will be discussed in the
context of systems analysis and the system dynamics approach.
Discussion of each model will be organized as follows:
First, the state model (a set of differential equations)

and the assumptions made in formulating the model will be

12
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presented. From these assumptions the causal loop diagram
will be constructed. A brief interpretation of feedback
loops will be given. Next, the block diagrams, DYNAMO
flow diagrams and typical DYNAMO simulation outputs will be
shown. Analysis will follow. The variables which are of
particular interest to epidemiologists will be examined.
These variables are defined as follows:

(1) Epidemic curve E(t) = the curve representing
disease incidence versus time.

(2) The peak of the epidemic Epax = the maximum disease
incidence.

(3) The peak time thax = the time at which the disease
incidence is maximum.

(4) The duration of the epidemic tj = the time at
which the epidemic curve falls below the initial
value in the first two models discussed; in the
third model, which is oscillatory, td is taken
as the two percent settling time.

We will make one assumption common to all three

models. This assumption is that the total population, the
sum of the susceptible, the infective, and the removed

populations, is constant.

2.1 Simple Epidemics Model

The first epidemic model, called the simple epidemics
model, consists only of the size of the susceptible popu-

lation and the size of the infective population as the state
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variables. Yet, the model provides interesting results
about the epidemic curve which are similar to the real world
behavior of epidemics in general.

Basically, we assume that the disease is transmitted
through contact between an iﬂfective and a susceptible
individual. No allowance for incubation period is made in
the model. The rate of infection is then assumed to be
proportional to the product of the susceptible and the in-
fective populations. Once infected, the infected indivi-
dual remains infective until all the susceptible individuals
are exhausted. We further assume that the susceptible
population is homogeneous in the sense that every one has
an equal chance of contracting the disease from the infec-

tive population.

We let
x, = size of susceptible population,
x, = size of infective population,
b = infective (or contact) rate,

N = total population.
Then, these assumptions may be formulated into the state

model:

X
H
"

-b x, x
172 (2.1)
X, = b x

1 X2
with the initial conditions xl(O) = cqy x5(0) = ¢,,
and the boundary conditions X, + X, = N, O = Xy 0 = X

The causal loop diagram is shown in Figure 2.1.
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+

- N - Susceptible - ~—  Total
(xl =N xz) Population Population (N)
(-)
FS
(iz =b x; x5) Rate of Infection
+
(+)
+
(x,) Infective
2 Population

Figure 2.1. Causal loop diagram of simple epidemics.

An epidemic curve is a graphic representation of
disease incidence (the rate of disease occurrence per unit
of time). 1In this case‘we will assume disease incidence;
that is, the epidemic curve, to be the rate of infection.

E(t) = %,(t)
In the causal loop diagram, the rise of the epidemic curve
is represented as the positive feedback loop imbedded in the
negative feedback loop, which is the fall of the epidemic
curve.

The block diagram and the flow diagram are shown in
Figure 2.2 and Figure 2.3. DYNAMO simulation output for the

following test case is given in Figure 2.4:

N = 1000
c1 = 950 b = .002
cy, = 50

Goodman (1974, pp. 85-88), in the discussion of an epidemic

growth model, gives DYNAMO simulation output similar to



16

Gat]—SPoP J'T'F‘ §at | LPOP

ilig
SPOP

Susceptible Population (xl)
IPOP
b

Infective Population (xz)

Infective Rate (Contact Rate)

Figure 2.2. Block diagram of simple epidemics.

SPOP AV IPOP
3 /
\
\ ,/
IPOPR |»”
//”
o
BETA
SPOP = Susceptible Population
IPOP = Infective Population
IPOPR = Disease Incidence
BETA = Infective Rate (Contact Rate)

Figure 2.3. Flow diagram of simple epidemics.
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Figure 2.4.

DYNAMO uses the Euler integration method to approximate
numerical solutions of differential equations. The choice of
the size of DT, the time increment, is an important step in
simulation. The wrong choice of DT may cause instability of
the system arising from the simulation, rather than the
model. Also the size of DT must be small enough to maintain
the bounds of each variable; in this case O = xl(t) <.N,

0 = x,(t) = N.

There is no precise formula for determining DT other
than the rule of thumb given in the DYNAMO User's Manual
(Pugh, 1976, p. 4L4), which is to take one half the smallest
first order delay in the model. In the test case cited
above, when DT was set equal to .1 and again set equal to
.01, the graphs produced by simulation were close to the one
plotted from the analytical solution; however, the tabulated
results showed inaccuracies between the peak and the end of
the epidemic curve. When DT = .001, the tabulated result
was almost exactly the analytical solution.

Since the simple epidemics model is a conservative
system; that is, no quantities are lost through dissipation,
and the sum of the state variables is constant, the dimension
of the system can be reduced by one by writing one variable
as a function of the other. Hence, consider the single
state model reduced from the state model (2.1) by eliminating
X

iz = b(N - xz)x2
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with the initial condition x2(0) = Cye.

Separating variables and integrating, we have

f dx, _ f .
b(N - x27x2 - °

The left hand side of the equation can be integrated using

the partial fraction decomposition.

1 = (L, 1

Integration yields
t = éﬁ [log x, = log (N - x2)] + constant.

Applying the initial condition and noting N - C, = cq we
obtain the solution

xz(t) = = N .
1 + —L ¢7PNE

)

From the relation X1 N - X, we have

N

c

Eg ebNt
1

L]

xl(t) =
1+

The epidemic curve E(t) which we defined to be the rate of

infection is given by

E(t) = b xl(t) xz(t)
) bN?
©1 -bNt €2 BNty
(1 + = e ) (1 + o )
2

This symmetric property of the epidemic curve can be shown
by verifying the equality

E(t +t) = E(tmax -t).

max
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We now calculate the peak of the epidemic Emax’ the
peak time tmax? and the duration of the epidemic tye The

initial value of the epidemic curve is given by

2
B(0) = °:N €2
(1 + E;) (1 + Ei-)

=bc; ¢, (since c; + ¢, = N).
Computation of E(t) is easier if we use the substitution

c

X = Eg ebNt.
1

then

bN?

E(t) = T
(1 + ;) (1 + x)

Differentiating the above expression with respect to t

using the chain rule, we obtain

(A - x) % %,

B
(t) PRy

Setting é(t) = 0 gives the solution x = 1, and hence

c
log i
c
A R —
max bN ’
and
2
_ bN
Emax - E(tmax) oL

Using the symmetric property of the epidemic curve, the

duration of the epidemic is given by

tg = 2 Yooy

c
1
2 log —
2

-— bN L]
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From the equations for th and Emax’ we note that the

ax
larger the infective rate, the shorter the peak time and
the higher the peak. Therefore, we can say the epidemic is
more intense and of shorter duration if the infective (or
contact) rate is large. We also note that the peak of the
epidemic is independent of the initial conditions ¢4 and Co
which is somewhat unrealistic. However, the peak time
depends on the initial conditions as well as the infective
rate and the total population. If the ratio of the initial
susceptible population to the initial infective population
is large, the peak time is longer and hence the duration of
the epidemic is longer.

The comparison of the analytical calculation and the

DYNAMO output for the peak of the epidemic, the peak time,

and the duration of the epidemic for the test case is as

follows:
Analytic DYNAMO
Emax 500.00 499.64
tmax 1.4722 1.5
td 2.944L4 3.0

2.2 General Epidemics Model

The second model takes the more realistic view that
after a certain period of time, the infective population
are removed from circulation and become inactive throughout

the rest of the epidemic period. In the case of influenza,
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most of the infected people will recover and become immune
hence the term immune will be used in place of removed as
usually denoted in the literature. Let X3 be the third
state variable, namely, the size of the immune population.
Then we have the following state model:

with the initial conditions
X1 (0) = Cl1r Xy (0) = Cor X4 (0) = Y

and the boundary conditions

X, + x5 + Xy = N, O s Xy 0 = X 0 = x3.

An additional assumption made in this model is that
the infective population decreases at the rate of r, which
is called the removal rate. We note that the infective
population increases only when iz > 0; that is,

X, = (bx1 - r)x2 >0

equivalently,

r—
X1>B‘—p.

p is called the relative removal rate. This means
that the epidemic occurs only when the initial size of the
susceptible population is greater than p. This phenomenon
is referred to as the threshold phenomenon. Thus, if we
know the threshold of a particular epidemic disease to
which everyone -is susceptible, we only need to vaccinate

up to the threshold level to prevent an outbreak of the
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epidemic.

In the simple epidemic model we considered %, to be the
epidemic curve. However, in reality, it is difficult to
know the instant when an individual becomes infected. It
is more convenient to equate the rate of immunity %; with
the disease incidence, because the disease incidence is
normally associated with the number of,indivi&uals entering
a hospital or seeing a doctor in a given time period, and
that quantity is more readily observable. Hence, we define
the epidemic curve to be

The causal loop diagram is shown in Figure 2.5.

: +
(x, = N - x, - x,) Susceptible “_- —~~Total
1 2 3 Population - Population (N)

+
(bx, x,) Rate of Infection
1 72
+
(+) (=)
+
(xz) Infective
Population
+
(iB = rx,) Rate of Immunity
+
(x3) Immune
Population

Figure 2.5. Causal loop diagram of general epidemics.



24

In this model the positive feedback of the infectious cycle
is now imbedded in two negative feedback loops; hence, the
epidemic is slowed down by the removal rate r.

The block diagram and the flow diagram are shown in
Figure 2.6 and Figure 2.7. The output from the simula-

tion for the following test case is given in Figure 2.8%(a):

N = 1000 b = .002
c, = 950 r = .8
c, = 50 p = 400
c3 = 0

In the case where the initial susceptible population is
below the threshold level p, the initial infective popula-
tion steadily decreases to zero; hence, the epidemic does
not occur. The output from the simulation of this case is
shown in Figure 2.3(b).

We now consider the reduced state model by eliminating
X5 from the state model (2.2).
X, = -b Xy X,

iz = b X{ X, = X,

with the initial conditions xl(O) = Cq» x2(O) = cy. We
will analyze this system by the isocline and the phase
portrait technique (Olinick, 1978).
The isocline is

STER T Thx x
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IPOP

SPOP
IPOP
RPOP
b
r

Figure 2.6.

Susceptible Population
Infective Population

Immune Population

Infective Rate (Contact Rate)
Removal Rate

Block diagram of general epidemics.

RPOP

SPOP AV IPOP SE—{ rrop
\ / /N /\
\\ / \\
NG e N
~=t IPOPR RPOPR
f /
/ /
/ /
e 7/
I o S o
BETA GAMMA
SPOP = Susceptible Population
IPOP = Infective Population
IPOPR = Rate of Infection
RPOP = Immune Population
RPOPR = Rate of Immune (Disease Incidence)
BETA = Infective Rate (Contact Rate)
GAMMA = Removal Rate

Figure 2.7.

Flow diagram of general epidemics.
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In this case, by separating variables, we can integrate and

solve for X, in terms of Xy 3

- - 1
fdxz- f(1+pxl)dx1

which gives

X, = =X; + P log X, + constant.
From the initial conditions, we obtain

Xy, =€) +Cy = X, + p log ;%. (2.3)

The trajectory of the test case, cq = 950, Chr = 50,
¢y = O, p = 400, is shown in Figure 2.9. Note that the
trajectory moves in the plane bounded by Xy + X, = N,

Xy = O and x, = 0. When X, = Py X, attains maximum since
the isocline at that point is horizontal,

1000*

750

x; 500

(400,254)

250

(950,50)
.l
250 P500 750 1000 X

(100’0)—7ﬁ

1

Figure 2.9. Phase portrait of general epidemics model.

The steady state for X1 denoted by S, can be found

by setting x, = O in Equation (2.3) and solving for Xqt



29

X

0= Cq + Cp = X{ +7P log EI .

Equivalently, S is the root of the equation
L
- = (cqy + ¢, = x)

c, e p 1 2 - x = 0. (2.4)
The root can be approximated by Newton's method. From the
relation X+ X, + Xq = N, the steady state for Xqy denoted
by R, is then

R=N_So
A non-zero steady state for X, means that there is always a
portion of the susceptible population which escapes being
infected during the epidemic.

We define the immunity level of the population A(t)

to be the ratio of the immune population to the total popu-

lation:

A(t) =-)-;3- .

The steady state of the immunity level, denoted by I, is

then
_ R
I - N [ ]

This ratio can also be considered the attack rate of the
epidemic referred to in the literature. Hence, if we are
given the attack rate, we can calculate the steady state for
x3 and consequently the steady state for Xqe From this
information, together with the initial conditions, the
relative removal rate p can be computed from Equation (2.4)

and the general epidemics model which satisfies the steady
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state can be constructed.

The explicit time solution for the epidemic curve E(t)
cannot be obtained, although the parametric form of the
exact solution was wofked~out by Kendall (1956). An approx-
imate form of the epidemic curve, in the case c3 =0, is
given by Bailey (1975). To show this, we need to express
Xy in terms of Xqe This expression can be obtained from
Equation (2.3). We rewrite Equation (2.3) as

ol
X; + X5, =Cy +Cy + P log E; .

Since Xy = N - (xl + x2) and cqy = N - (cl + 02), we have

X1
X3 = C3 =P log EI .

Therefore, we can write Xq in terms of x3:

= P
Xy =¢c e .

If we assume the initial condition cy = 0, then

1
-—x
= p 3

The epidemic curve, then, can be written as

E(t) = 13 = Irx,
= r(N - X; = x3) L
= r(N - Xy = ¢y e P 2y,

We now approximate the exponential term by Taylor expansion

to the third term:
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1 2
2
P 2p

Hence, we obtain the state equation for Xq in terms of the
quadratic expression of x3_given by
c c
- 1 _ _ 1 2

Separating variables and integrating, we have

lf de = fdt.
r €1 2y
3

c
(N =-c, + (-l -1)x, - x
1 P 37 2p°

The left hand side of the equation can be integrated using a
table of integrals. Because the algebraic manipulation is
tedious, we give the final expression without stating the

intermediate steps.

2 c
- -1 _ - -
xy(8) = B {3 -1+ o com(d are -9}
where
c 2¢c, ¢ '
- 1 _ 42 1 -2 ]
a = {(p 1) +—;§— }

=1 1 ,©G
¢ = tanh -0' (_p"'"l)o

Differentiating x3(t) with respect to time, we obtain the

epidemic curve

2 2
E(t) = B2~ sech® (dart -¢). (2.5)
1l
thax’ Emax’ ty can be calculated from Equation (2.5).

The curve y = sechzx is symmetric with respect to the Y
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axis and attains maximum at the origin, and y = y(0) = 1.

max
Hence, setting 2 art - ¢ = O in Equation (2.5) and solving

for t, we obtain

= 2
thax = ar°
And, therefore,
2 2
= =Ie _Dp_
Emax - E(tmax) - 201 ’
and
However, the exact value of Emax can be obtained from
Equation (2.3).
= = - i <
Enax IXpmax r(c1 + ¢, - p+p log cl).

Another approximate time solution, t in terms of Xq
can be derived by the use of the quadratic approximation of
Equation (2.3). We take three points on the curve in the

phase portrait, (c,, cz), (p,y ), (S, 0), and determine

X2max
2
the coefficients of the parabola Xy = a; X937 + a8y Xy + ag by
solving three simultaneous linear equations. We, then,
substitute the parabolic equation into the state equation
and obtain
o 2
%X, = -b xl(a2 X7+ a; x; + ao).

Separating variables and integrating, we have

1 Jr dxl ./.d
—‘S 2 = t-
xl(a2 X7+ a) xq + ao)
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The left hand side of the equation can be integrated using a
table of integrals. Integration yields

.2
X 2a + a
t = - % [fl— log 1 *anh 1 2 1 1)] +C, (2.6)

+
40 X2 ag J— va

2
where q = a;” - haz ag.

From the initial condition t = O, x, = ¢q we determine the

constant C.

2a, ¢4 + a
C = % (55— log & + 1 tanh™1(—2—2 1]
~2 aoqra . \[a

At the peak time, t <! the infective population x, is

ma
maximum and the susceptible population x, is p, and at the
duration time t,, by definition the infective population is
equal to its initial value. To compute thax® We substitute
Xomax 2nd P into x, and x,, respectively, in Equation (2.6).
To compute td' we substitute Cs and h, which is the sus-

ceptible population corresponding to Coy into x, and xy,

respectively.
Then,
2 a _41 2a, p + a
‘max =~ % [2; log % e, 4 tanh™1(—2 L)l +c
0 2max ag ,q 'Vq
2 a 2a, h + a
ty = - % [2; log %— s L tanh™ (—2— Lylsc
0 2 ag ’q \/q

where h is the smaller root of the equation

2
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The comparison of the two analytical approximations and
the results obtained from the simulation for the test case
shown in Figure 2.8 with respect to the peak of the epidemic,

the peak time, and the duration of the epidemic is as

follows:

Taylor Expansion Quadratic Simulation
Emax 167.37 203.20 203.18
tmax 2.1299 2.0872 2.7
td 4.2578 6.3177 6.3

The quadradic approximation and the simulation reflect
the skewness of the epidemic curve with respect to peak

time, which is descriptive of many actual epidemic curves.

2.3 Endemic Model

In the first two models discussed, the epidemic curve
asymptotically approaches zero. The third model, which is
more reflective of influenza epidemics, results in an endemic
state (the state at which the disease incidence is constant)
after an epidemic.

Suppose we consider that a certain portion of the immune
population is put back into the susceptible pool at a con-
stant rate e. The cause of such a transfer is not specified
in this model. One example for this transfer to take place
is the loss of immunity in infants. A newborn baby has
acquired from her mother immunity against many diseases

(this type of immunity is referred to as passive immunity)
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and loses it within six months to a year. Another example
which gives the same effect as the transfer is the migration
of the susceptible individuals into the system and at the
same time the migration of immune individuals out of the
system in such a way that the total population remains con-
stant. A specific cause of the transfer; that is, once
immune individuals becoming susceptible because of the changes
in the virus, will be discussed in the next chapter.

Using the above assumption of the constant transfer from
the immune population to the susceptible population, we

formulate the following state model:

il = -b X; X, + €
X, = b Xy X, - Ix, (2.7)

with the initial conditions
xl(O) = Cq» x2(0) = ¢y x3(0) = Cq,
and the boundary conditions

X] + Xy + X3 = N, O = X1 0 = X5 0 = X3.
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+
(x1 =N-x, - x3) Susceptible ~ Total (V)
Population Population

+ (=)

(bx1 x2) Rate of Infection
+
(+)
+
(x2) Infective
Population
(=)
+
(rxz) Disease Susceptible (e)

Incidence Rate

+

(x5) Immune
Population

Figure 2.10. Causal loop diagram of endemic model.

The causal loop diagram, Figure 2.10, is the same as
that of the generai epidemics model with the addition of the
susceptible rate e. The increase in the susceptible rate
causes the susceptible population to build up through the
decrease of the immune population. When the susceptible
population crosses the threshold, we can expect another
epidemic to occur. Hence, this causal loop diagram suggests
that oscillation may occur.

The block diagram and the flow diagram are shown in

Figure 2.11 and Figure 2.12. The DYNAMO output for the test
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case:
N = 1000 b = .001 Py = 800
c; = 900 r = .8 py, = 62.5
c, = 50 e = 50
cy = 50

is given in Figure 2.13, and for the test case:
N = 1000 b = .002 p; = 400
c, = 950 r = .8 Py, = 12.5
c, = 350 e =10
cy = 0

is given in Figure 2.14.
We now consider the nonlinear autonomous state model

X = F(X) reduced from the state model (2.7) by eliminating

Xy
X = -b x; x, +e
X, = b X%y x, = rx,

with the initial conditions

xl(O) = Cq, x2(0) = cye.

This model has a unique equilibrium point given by

S0 on

We will analyze this system using the linearization tech-
nique. If the system is structurally stable, then the
behavior of the nonlinear system in the vicinity of the
equilibrium point is similar to that of the linearized

system ( Aggarway, 1972).
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e
IPOP
spopre___* +
¢ dt T $dt T £
-1
r
T
SPOP = Susceptible Population
IPOP = Infective Population
RPOP = Immune Population
b = Infective Rate (Contact Rate)
r = Removal Rate
e = Susceptible Rate

Figure 2.11.

Block diagram of endemic model.

RPOP

$dt
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/ ~
/ -0
EPSLN
SPOPR
PAN
SPOP SE—{ 1POP SE—— rpop
Y I\
\ /  \
N L/ e
S<al IPOPR - S<~of RPOPR
/ /
/ /
7/ 7
—_— —
BETA GAMMA -
SPOP = Susceptible Population
IPOP = Infective Population
RPOP = Immune Population
SPOPR = Rate of Transfer
IPOPR = Rate of Infection
RPOPR = Disease Incidence
BETA = Infective Rate (Contact Rate)
GAMMA = Removal Rate
EPSLN = Susceptible Rate

Figure 2.12.

Flow diagram of the endemic model.
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Matrix A of the linearized system i = AX is the Jacobian

matrix evaluated at Xe:

The characteristic equation and the eigenvalues are

2 , be

T S + be = 0

]

(2.8)

=be +\/(b—e)2 - Lbe
s = r = r
1,2 2 .

Since parameters b, r, e are positive, the real part of the
eigenvalues are negative in all cases, and, hence, the
linearized system is stable in the sense of Liapunov. Oscil-
lation occurs when the eigenvalues are complex; that is, when

the discriminant of the characteristic equation is negative:
(22)2 - 4oe < o,

or equivalently,

% < 4 % .

If as before, we let P = % be the relative removal rate, and
define Py = % to be the relative immune rate, the result
shows that oscillation occurs when the relative immune rate

is less than four times the relative removal rate:
P, < 4 pqe
An interesting oscillation occurs when the susceptible

rate e is small. The epidemic curve E(t) dies down and stays

close to zero until the pool of susceptibles is built up to
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a pqint above the threshold. It takes a long time to build
up“the susceptible population; hence, the curve does not
resemble damped oscillation. By adjusting the susceptible
réte e, one can obtain damped oscillation, or recurrences
of epidemics that follow periods relatively free from the
incidence of disease, as illustrated in Figure 2.13 and
Figure 2.14.

We will derive E by first finding the

max’ ‘max’ %d
time solution for the linearized system X = AX. This
solution is given by

X(t) = et x(0)

At is the fundamental matrix. If the eigenvalues

where e
are complex,

S),2 = U v,

then it can be shown (see Appendix A) that the fundamental
matrix is given by

et - eut [(cos vt)I + (% sin vt)(A - ul)] (29)

where 1 is the identity matrix.
If the eigenvalues given by Equation (2.8) are complex,

the real part u and the imaginary part v are

= - be = - (key2
u=-355 V-%\/hbe (° .
Then, the A matrix can be written as
A = 2u -r|.
-2u 0
From Equation (2.9), we obtain the fundamental matrix for

this system:



L4

u r

At ut cos vt + v sin vt -3 sin vt
e = e
2 . .
- 7% sin vt cos vt - % sin vt

In particular, we can find the explicit time solution

for the epidemic curve E(t) = rx,:

E(t) re4t [02 cos vt - (2c1 + 02)% sin vt]

= keut sin (vt + ¢)

where k = r'v/022 + [(201 + cz)%]z ’

-1 coV
and é = tan - (201 m c2)u .

nax is obtained by setting E(t) = O and solving for t, and

Emax is obtained by evaluating the epidemic curve E(t) at

tmax'

E(t) = KHe' sin (vt + ¢ + ¢)

where H= ul+ve , and ¥ = tan"1 % .
Therefore,

t _-(®+v) ,

max v
and,

Bpax = E(tmax)

ut .
= Ke "max sin (- ¥ ).

tyq is the 2 percent settling time in this model, as defined

earlier, and is given by

= b
t4 = TuT



To apply the linearized system for computation of E,

L5

ax’

t and td, one must first transfer the coordinate of X1

max

X, plane so that the origin (the equilibrium point of the

linearized system) corresponds to the equilibrium point of

the nonlinear system; in this case (%, £

new coordinate system

X1-'

In particular,

Hence, for the

Comparison of the computation from the analytical re-

sults of the linearized system and the tabulated results

from the simulation in the first test case (Figure 2.13)

is as follows:

max

max

Linearized Model
67.8013
8.4542
128

Simulation

70.34
8.00
129



CHAPTER 3
INFLUENZA EPIDEMIC MODEL

The underdamped oscillation exhibited by the endemic
model in Chapter 2 can be used to illustrate Kilbourhe's
concept of the cyclical nature of influenza epidemics
(Figure 1.2) when that model includes the agent; that is, the
virus, and its interactions with the population dynamics.
Using the endemic model as a basis, we will now develop an

influenza epidemic model and analyze it as in Chapter 2.

3.1 Formulation of the State Model

In the endemic model discussed in Chapter 2, the oscilla-
tion and the endemic state result from the fact that some
individuals are transferred from the immune population into the
pool of the susceptible population. The influenza epidemic
model described in this chapter specifies the cause of that
transfer to be the structural change of the virus. Indivi-
duals who have been infected by the virus have gained immunity
against that specific strain. As the virus changes due to
mutation (drift), a certain percentage of the immune popula-
tion becomes susceptible to that changed virus.

To construct a state equation for the virus strain, we

consider the relationship between the immunity level of the

46
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population and the virus strain. Kilbourne (1979, p. 496)
and more recently Pereira (1979, p. 10) state that antigenic
drift is the result of the selection process in which the
virus mutates in order to overcome a high immunity level of the
population built up through a series of epidemics. Pereira
further reports that the occurrence of antigenic drift has
been demonstrated in the laboratory by growing the virus in
the presence of a specific antibody.

In addition to the three state variables in the endemic
model we now introduce the fourth state variable and let

X, = the virus strain.
The virus strain X, is defined to be a qualitative measurement
of the structural state of the virus. A numerical value of
x, may be a measurement of a chemical composition of the
virus structure which indicates a degree of mutation; that is,
the higher the number, the greater the degree of mutation
resulting in a higher susceptibility level, or equivalently,
a lower immunity level of the population.

The above description of drift suggests that the immunity
level is the constraint (or the boundary) toward which the
virus structure changes to overcome that constraint. We
therefore assume that the numerical value of the structural
state of the virus X, changes in such a way as to approach
- asymptotically to the immunity level. Such a process may be
described by a state equation which produces a logistic curve.

In Chapter 2 we defined the immunity level of the population:

X3
A(t) = S
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If the immunity level is constant, A(t) = A, then the state
equation
with the initial condition xL(O) = c, gives a solution

A

X = .
L A-c
1+ L e-Adt
R

The graph of the solution is a logistic curve where X, is
asymptotically approaching A as shown in Figure 3.1. Based
on equation (3.1), we construct the state equation for the

virus strain to be

X, d(A(t) - xh)xb
o2

- xh)xh,

where the constant d is called the drift rate.

€y

t

Figure 3.1. Logistic curve of the virus strain.

We also assume that the rate of the transfer of
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individuals from the immune to the susceptible population is
proportional to the product of the immune population and the
virus strain. That is, infection resulting from contact
between an individual in the immune population and the new
strain of virus indicates susceptibility to that virus as well
as the occurrence of drift. Hence, the state equation for
the immune population is given by

i3 =rx; - exy X,.
The constant e is called the susceptible rate.

The transfer of a certain portion of the immune popula-
tion to the susceptible population now takes place with the
introduction of the drift rate d. Individuals who are now
susceptible to the changed virus are still immune to the
original strain. Therefore, the susceptible population is now
a mixture of those who are susceptible to a new strain of the
virus as well as those who are susceptible to both new and old
strains. Thus, we can speak of the susceptible population
collectively as having different levels of susceptibility at
different times.

Let S(t) be the susceptible level of the population and

define

S(t) =1 - A(t).

We then assume that the infective rate iz is proportional to
the product of the susceptible and the infective populations
and the susceptible level. In effect we have replaced the
constant infective rate b in the endemic model with the time

varying infective rate bS(t). Then the state equations for



50

the susceptible population and the infective population are

given by
il = -bS(t) X) X, + exy X,
x
= -b(1 - T%) X) Xp + X3 X,
_ ) -
iz = b(1 i ) X{ X = TXg.

Now we write the state model of the influenza epidemic

system:
%X, = -b(1 - %%) X] X, + X3 X,
X, = b(1 - %%) Xy Xy = IX,
k3 = TXp = X3 X,
X, = d(%% - xh)xh (3.2)

with the initial conditions
xl(o) = cl' XZ(O) = 029 XB(O) = 33) xh(o) = CL’
and the boundary conditions

X, + X, + Xy = N, O s X1 0 s X9 0 =< x3.

3.2 Causal Loop Analysis

The detailed causal loop diagram is shown in Figure 3.2.
To show more clearly the relationship between the virus strain
and the population, a simplified causal loop diagram, Figure
3.3, is obtained by leaving only the level variables and the

two auxiliary variables, the immunity level A(t) and the
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susceptibility level S(t). This diagram shows that the virus
strain is the direct cause of the changes in the immune
population. The appearance of a drift reduces the size of
the immune population which in turn increases the size of the
susceptible population. When the size of the susceptible
population exceeds the threshold, an epidemic occurs. The
size of the epidemic is now dependent not only on the con-
tact rate b, but also on the susceptibility level S(t) which
is a function of the virus strain as seen in the causal loop
diagram. The increase in the size of the immune population,
as a consequence of the epidemic, causes the higher immunity
level of the population. In order for the virus to survive,
the structure of the virus changes in response to the high
level of immunity in the population, which causes another

drift, and the epidemic cycle begins again.

3.3 System Analysis

The influenza epidemic system described by the state
model (3.2) is classified as a nonlinear autonomous system
i = F(X) with the dimension 4. This system can be analyzed
by linearization about its equilibrium point provided the
linearized system is stable in the sense of Liapunov. With
the proper choice of the drift rate d, the linearized system
of the influenza epidemic model satisfies the stability

condition; therefore, the linearized technique will be used

for this analysis.
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Population Level
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(=)
+
Infective + Virus
Population Strain _
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Figure 3.3. Simplified causal loop diagram of the
influenza epidemic model.
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3.3.1 Equilibrium Points Analysis
The equilibrium points for the system are solved by
setting each state equation in the state model (3.2) equal to

zero; that is, F(X) = O. They are given by

- r N rN 3
b(1-c) ~=c
= ch 0
- |7 X2 = (3.3)
= , = .
e Nec € c
. ¢ | 0

where c is some constant. Since we are concerned with a
system which produces an endemic state; that is, the steady
state of the infective population is non zero, this analysis
considers the linearization about the first equilibrium point
Xi. Moreover, the second equilibrium point Xi can be shown
to be structurally unstable for all values of c.

The constant c¢ must be such that the boundary conditions
are met; that is:

Xg1 + Xg2 * Xg3 =

and

0 =< Xg1 < N, O = Xgp < N, O = Xe3 S N.

Hence we have the relations:

BT%EET + % ch + Nc =N

and

0 <c <1.

(]

As before, let p; = % be the relative removal rate and p, = £

be the relative immune rate. Then we have



(3.4)

Therefore, ¢ is the real root of the cutic equation which
lies between O and 1. The existence of such ¢ is shown by

the intermediate value theorem of calculus. We let

-1 N-p
f(x) = x> - P2 ~ - x° - 2 x4 —-—ﬁ—l .
P2 P2 P2
Then,
N - Py .
f(O) = -—p—;N—— >0 (Slnce N > pl),
and
2N + p
£(1) = - -Sgﬁ-l < 0.

Since the sign of f(x) at x = 0 and x = 1 are opposite, and
f(x) is a continuous function, the graph of f(x) must cross
the X axis between x = O and x = 1.

From the above analysis, given Pys» Po» there exists an
equilibrium point given by (3.3) where the constant c is the
real root of the cubic equation (3.4). In most cases this
equilibrium point is unique because a chance of having three
real roots being in the interval x = 0 to x = 1 is relatively
small.

Since the virus strain is bounded by O and 1, the struc-

tural change of the virus (drift) resulting from one epidemic
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to the next may be measured in terms of percentage differences.
Suppose that the state of the virus strain causing the ini-
tial epidemic were .1 and at the beginning of the next

epidemic had changed to .3. Then we would say that the drift
was 20 percent, the quantitative measurement of the struc-
tural change of the virus. (A more precise definition of
drift will be given in Chapter L.) As a series of epidemics
occurs, the virus strain changes in such a way as to approach
the immunity level of the population A(t) provided the system
is stable. Let I be the steady state of the immunity level

of the population as defined before. Then

I = lim A(t) = lim Z{8
t > oo t > oo
= Mo _ .,

Hence, the steady state of the virus strain is equal to the
steady state of the immunity level, and the reciprocal of
the drift rate d is analogous to a delay constant in an

exponential growth curve.

3.3.2 Linearized Model

The relations X] + Xy + X3 = N enables one to reduce
the dimension of the state model (3.2) by one because any one
of the variables can be expressed as a function of the other.
We let Xy = f(x1 xz). Then, we can eliminate the state
equation for X4 from the state model (3.2) and obtain the

following reduced state model X = F(X):
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x
il =-b (1 - T%) X) Xy + ex3 X,
x
iz = b (1 - 1%) Xy X, = IX,
x
).(14- = d (_N2 - xt&) x’-& (305)

with the initial conditions
xl(O) = Cq, xz(O) = Cyy xh(O) =c,.
Note x3 is now a function of Xy and X5 The Jacobian matrix

3F _ for the state model (3.5) is given by

axi
- p'd X4 X x X, X N
-b[(l-19)12+ %JZJ-exh -b[(l-T%)x1+—%rg]-exh exh
p'd X4 X X X4 X
bL(1-72) X,y +—52] b[(1—) Xy +—=2]-r 0
d
§ - N xh N xh -deh

The A matrix of the linearized model i = AX is obtained by

evaluating the Jacobian matrix at the equilibrium point

- N
Py
1-c
pch2
Xe =
Nc
¢ )
and has the form
rU - ec V - ec Nec A
A= -U -(V+r) 0 (3.6)
d d -
\ N c - N c 2dc)

where
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P4P
U = -be? [(1 -c) poN + —%:% ]
PP °2
V=-b(p + -li%g—-)- (3.7)

We now derive a formula which directly gives the coef-
ficients of the characteristic equation of the A matrix
without having to compute det(sI - A) = O each time as is the
normal procedure for obtaining the characteristic equation.
The computational advantage of uéing such a formula becomes
quite clear when one is comparing the behavior of the
linearized system for a number of different sets of para-
meters.

The inverse of the matrix A (3.6) is calculated as

L Adi A
det A
2dc(V+r) de(2V-3ec) Nec(V+r)
= 33%_1 ~2dcU -dc(2U-3ec) -NecU
d d
ﬁc[U—(V+r)] ﬁc(U—V) U(V-ec)=(V+r)(U=-ec)
where

det A = -dc[U(2V - 3ec) - (V + r)(2U - 3ec)].
In the case of a three by three matrix A, it can be shown

that the characteristic equation is given by (Wilkinson, 1965)

s3 - (tr A)s? + (tr Adj A)s - det A =0 (3.8)
where
tr A = trace of matrix A
tr Adj A = trace of the adjoint matrix A.
From the equation (3.8) we obtain the coefficients of

the characteristic equation of the matrix A (3.6),
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s3 + a, 52 +a; s +ay = o,
given by
a, = 2dc - (U -ec) + (V + r)
a, = dc [2(V +r) - (2U - 3ec)] + U(V - ec) = (V+r)(U-ec)

dc [U(2V - 3ec) - (V + r)(2U - 3ec)]. (3.9)

Note that if we are given P12 Py then the coefficients of

the characteristic equation are expressed as functions of d:
3 2 =
s’ + fl(d) s< + f2(d) s + f3(d) = 0.

In a linear system, the location of the roots of the
characteristic equation determines the system response.
Kilbourne's observation of the influenza epidemic cycles
(see Figure 1.2.) suggests that the system response for the
type A virus epidemic system is stable and underdamped oscil-
lation. The drift rate constant d can be chosen in such a
way as to determine the desired response described above.

We will consider first the chpice of d required for
stability, then for oscillation, and finally, for underdamped
oscillation. A linear system is stable in the sense of
Liapunov if all the roots of the characteristic equation lie
in the left half plane. The Routh stability criterion gives
the condition for which the linear system is stable (Saucedo,
1968). The Routh array for the characteristic equation is

formed as follows:
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3

S 1 a;
2

s a, ag
1 o)

s a - cmm— O

1 a

0]

s ag 0

The Routh criterion states that the number of roots
with positive real parts is equal to the number of sign
changes in the first column of the Routh array. In this case
each element of the first column must be positive for all
three roots to lie in the left half plane. Also, from the
theory of equations, all coefficients must be positive.
Hence, the system is stable if the coefficients of the charac-
teristic equation satisfy the inequalities

a
a, >0, i =20,1,2; and a; >

a2
In an oscillatory system one of the roots of the
characteristic equation has to be real and the other two

complex. From the theory of equations, the necessary and

sufficient condition for the cubic equation

3

2 =
x” + a5, X7 +a; X +ay = 0]
to have one real root and two complex roots is that the

discriminant
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A =18 asajag -~ L a23ao + a22a12 -4 al3 - 27 a02

is negative. Here we have the characteristic equation whose
coefficients are functions of the drift rate d. To find the
range of d which gives a set of coefficients satisfying the

above condition is computationally impractical. Therefore,

we now seek a simpler sufficient condition for the system to
be oscillatory.

Consider the characteristic polynomial

f(s) = 83 + a232 + a;s + ag.

The graph of the cubic polynomial crosses the real axis only
once if there is no relative minimum or relative maximum, or
if the critical point is the point of inflection. The
critical points of f(s) are solved by taking the derivative
and setting f'(s) = O. Hence, the critical points are the
roots of the quadratic equation 332 + Zazs +a; = 0 and

are given by

2
_ -2a, \[Laz - 12a, (3.10)
51’2 = 5 . .

If the discriminant is non positive; i.e.,
La 2 _ 12a, = O
2 1°

or equivalently

a3 2 3 (3.11)

then the roots are either complex or multiple roots. If the
roots are complex, the cubic polynomial has no critical point;

and if the roots are multiple, the critical point is the
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point of inflection. Therefore, a sufficient condition for
the system to be oscillatory is that the coefficients of the
characteristic polynomial satisfy inequality (3.11).

The system is both stable and oscillatory if the coef-
ficients of the characteristic equation satisfy the inequal-
ity

2
a; > max ;% ’ 3%— . (3.12)

Although such a choice of coefficients guarantees the
oscillatory, stable system, the real root of the character-
istic equation may lie to the right of the real part of the
complex roots. In order to have underdamped oscillation, we
require that the real root be on the left side of the real
part of the complex roots, preferably as far to the left as
possible. (The influence of the real root is negligible if
it lies six times as far to the left as the real part of the
complex roots.) Figure 3.1 shows the location of the roots
and the system response for the third order linear system.

We now derive a sufficient condition for the system to
be underdamped. This condition will be such that the widest
range of d can be easily obtained. The coefficients of the

characteristic equation

3

2 =
S7 + ays” + a8 + a5 = 0
with the roots s,, s, 3 =ut jv have the following relation-
14

ships:
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Figure 3.6. System response of a third order linear system.
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ay = -(sl + 5, + 83)
al = 5132 + 5153 + 8253

Assume all roots lie in the left half plane; i.e., sy < o,

u < 0. Then all coefficients are positive. Since as is
equal to the negative of the sum of the three roots, the
magnitude of the real root is greater than one third of a,
whenever the real root lies to the left of the real part of
the complex roots. That is, sy < = %% if and only if sy < u.
Note that the real part of the critical points given in
Equation (3.10) is - %% . Hence, if the coefficients of the
characteristic polynomial f(s) satisfy Inequality (3.11) and
if sy < u, then we must have f(- ;%) > 0. (See Figﬁre

3.7 (a).) This inequality can be simplified to yield the

relation

Combining the above inequality with inequality (3.12), we
obtain a sufficient condition for the system to be stable,
oscillatory and underdamped. This condition is given by

2
a a a
max{ % , —§—-} < a; <3 -é-g- + % 322. (3.13)
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f(s f(s)

f(s)=33+azsz+a1s+aO

(a) (b)

Figure 3.7. Curves of cubic polynomials having one
real root and two complex roots, (a) with no relative
maximum or relative minimum, (bs with a relative max-
imum and a relative minimum. :

So far we have dealt only with the case where the
characteristic polynomial has no relative maximum or relative
minimum. We now relax this condition and allow it to have a
relative maximum and a relative minimum (Figure 3.7 (b)).

We note from Equation (3.10) that the point of inflection sp
a

is equal to - T%u Hence, if Sy < u, then the relative

minimum must be positive.

To obtain a simple relationship among the coefficients

of the characteristic polynomial which satisfy the above

condition, we draw two lines, one tangent at the point
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a - a

(- 7%, f(- T%)) and the other tangent at the point (O, ao).
The point of intersection of the two tangent lines is given
by (- @7, 9 9. al) Thus, a sufficient condition for the

relative minimum to be positive is given by

Since the existence of the relative maximum and the relative
2

minimum implies that a; < a2 y the sufficient condition for

the system to be stable, oscillatory and underdamped is

given by

2
a a a
0 . 2 0
5-2-<a1< min ——-3.9-3—5}.
The sufficient condition which satisfies both cases is
obtained by combining inequality (3.13) and inequality (3.14)

and is given by

o) &% 2 a9
T-<a, <max {3 ;-+5a 9 — . (3.15)
a; < "1 { ay §2' 2}

3.3.3 Computation for Range of Drift Rate

The following example shows the computational procedure
for obtaining the range of d.

Consider the test case in which the following parameters

are given:
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b = .002 (infective rate)
r = .8 (removal rate)
e = .5 (susceptible rate)
N = 1000 (total population)
Then p; - § = 400 and p, = £ = .625. From Equation (3.4),

we can compute the steady state of the virus strain c which

is the root of

3 + .6c2 - 3.2¢ + .96 =0

satisfying the boundary condition O < ¢ < 1. The root is
¢ = .3321. Then the equilibrium point Xe given by Equation
(3.3) is
[ 599 |

69
© 332
\.3321‘
The coefficients of the characteristic equation of the

linearized system are computed using Equations (3.7) and
(3.9) and are as follows:
a, = 6642 d + .2581
= 2266 d + .1550
ao = 01080 do

[
-
I

We solve the Inequality (3.15) to obtain the range of
a

d which gives a stable underdamped oscillation: ;% < ay
yields

.1505 a% + .0534 d + .04 > O.
The graph of the above parabola does not cross the real

axis; i.e., the roots of the quadratic equation are complex
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(d1,2 = -.1775 + j .484). Hence, the solution is
d >Q. (3‘16)

- a
aq <-3 3% + % a22 yields
.0525 d° - .2388 d + .0252 < O.

L.4420., Hence,

The parabola crosses at d; = .1080 and d,
the solution is
1081 < d < L.4420. O (3.17)

a
20 yields
a2

.1505 d° - .8106 d + .OL < O.

al <9

5.3357. -Hence,

The parabola crosses at d; = .0498 and d,
the solution is

0498 < d < 5.3357. (3.18)
Taking the union of the solutions (3.17) and (3.18) and
then taking the intersection of the union and the solution
(3.16) we obtain the range of d:

1.081 < d < 5.3357.



CHAPTER 4
SYSTEM SIMULATION AND MODEL VALIDATION

A number of simulation outputs for the influenza epidemic
model developed in Chapter 3 will be presented here, and the
relationship between each parameter and its corresponding
system behavior will be analyzed. 1In particular, the peaks
and the thresholds of the epidemics, the intervals between
epidemics, and the drift of the virus will be discussed.
Then the system output will be compared with historical data
on influenza epidemics.

We have computed the equilibrium point and the range
of drift rate d for underdamped oscillation for the test
case in Chapter 3. The range of d is between .1080 and
5.3357. Figures 4.1, 4.2, 4.3, and L4L.L show the DYNAMO out-
puts ford =1, d = .5, d = .3, d = . 1 respectively, with

the initial conditions:

c; = 900 (susceptible population)
c, = 50 (infective population)
c3 = 50 (immune population)

c, = -001 (virus strain)

71
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L.1 Analysis of Drift

In the case of oscillation (Figures 4.1, 4.2, and 4.3)
there are three distinct epidemics before the system reaches
its steady state. Also, the virus strain peaks twice, each
peak occuring between the epidemics. We note that the time
intervals between epidemics (measured from one peak time to
the next peak time) is longer as the reciprocal of d is
larger. Hence, we can consider T = % as a delay constant
similar to the time constant of the exponential growth as
mentioned in the discussion of the equilibrium point analysis
in Chapter 3. Using the basic unit of time as one month,
we find that the time intervals between the epidemics for
T = 1 month are 24 and 16 months; and for T = 2 months, 38
and 17 months; and for T = 3 1/3 months, 56 and 19 months.

Likewise, the virus strain reaches its peak in longer
time when T is larger. In this model, drift is not only the
measurement of the difference in the virus strain, but also
a function of the time interval between the two virus strains.
As the virus strain grows, a continuous transfer of indivi-
duals from the immune population to the susceptible popula-
tion takes place. Hence, even though the difference of the
virus strain from time tl'to time t, may be small, if the
interval ty, - t, is large, the total transfer of individuals
from the immune to the susceptible population is large, thus
causing a severe epidemic. As the size of the immune
population becomes smaller through this transfer, the immunity

level of the population decreases which causes the growth of
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the virus strain to slow down or even decrease. The

occurrence of another epidemic builds up the immune popula-

tion which in turn causes the virus strain to grow again.
From this causal description of the virus and the epi-

demics, we define the drift D to be

=1 -
D=3 (Vo -V

min) * (41)

where Vma is a peak of the virus strain and Vmi is the

X n

minimum value of the virus strain preceding V (I.e.,

max®
the difference of the virus strain is measured from one valley
to the next peak. See Figure 4.5.) The time of the occur-
rence of drift T, is defined to be the time at which the

virus strain attains its peak.

Virus

Epidemic Curve

min D

Figure 4.5. Drift and epidemic curve.



78

IJTIP = d
UTBJ]S SNJITA = A\
utesils
SNJITA JO 9NTBA UNUWITUTW © aAand octwaptds = g3
mzhﬁ>\oﬁEmvﬁam Jo xead (yuow) owrl = 13
cge’ 19 LL 90¢* 9% 8¢ oz€* 09 A
L LLZ" % (]9 (072 ¢ (074 ™ 8¢ (0] AN €GE° ™ we
6%1" 8TTx 89 LT LOTx ™ N[er A 68x L2
ENT°e TL 9$ G9T" e 19 6€ T61°® s %4
$9° L6T° 0 oY 96%° 6%12° x 0 Le gee: 6£€° % 1 91
100° 89 Tx 2 T00° 62Tx € OtT*® OfTx €
T00°e oY 0 T00°e oY 0 T00° @ oY 0
a A q 2 a A d 2 a A q 2
€ = ¢t =p T=p
*syead otwapyda pue SqJTJIP SNJATA Uaamiaq diysuotaeIdy °I°Y 919el



79

Table 4.1 shows the numerical values of the'epidemic
peaks and the drifts‘for the oscillatory cases (Figures 4.1,
L.2, and 4.3). The_relationship between the drift calculated
using the above definition and the following peak of the
epidemic curve confirms the reasonableness of the definition;
that is, the higher the drift, the more severe the subsequent

epidemic.

L.2 Threshold of Epidemics

In the general epidemics model the threshold level of
the epidemic is equal to the relative removal rate p. When-
ever the size of the susceptible population exceeds that
level, the size of the infective population increases, thus
causing the epidemic. The difference between the initial
susceptible population and the threshold is the measurement
for the severity of the epidemic. If the initial susceptible
population is very large compared to the threshold, the peak
of the epidemic is high. On the other hand, if the initial
susceptible population is smaller than the threshold, the
infective population decreases asymptotically to zero as
shown in Figure 2.8 (b).

In the case of the influenza epidemic model, the threshold
is a time varying one. Setting iz = 0 in the state model

(3.2) we obtain the threshold H(t) as
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Ht) = s1ey

— - (4.2)

The threshold is inversely proportional to the susceptible
level. Even if the composition of the initial population is
such that the susceptible population is below the threshold,
it will not necessarily prevent epidemics because the sus-
ceptible population may cross the threshold and stay above
it. If we consider the infective population negligible, the
size of the susceptible population required to be equal to
the threshold level can be calculated from Equation (4.2)

and is given by

Xy = J Np1 .

Figure 4.6 shows the simulation output for the test

case with the initial conditions:

c, = 600 (susceptible population)
c, = 50 (infective population)
cqy = 350 (immune population)

c, = +001 (virus strain).

The initial threshold is
An optimal immunization strategy to minimize the peak

of the epidemic will be treated in the next chapter.
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L.3 Causal Loop Diagram of Parameters

Simulations are performed more efficiently in terms of
the number of runs if the causal effects of the parameters
on the system outputs are known. A desired response may be
obtained fairly quickly by adjusting one appropriate para-
meter rather than making adjustments on all of them. Such
effects are obsér?ed from the results of the simulation of a
test case obtained by varying one parameter and fixing all
others. The causal effects on the peaks and the intervals
of epidemics by each parameter is demonstrated in the causal
loop diagram Figure 4.6. This causal relationship was used

to generate the system outputs for the model validation.

L.4 Model Validation

The Center for Disease Control (CDC) in Atlanta, Georgia
maintains the weekly statistics on the number of deaths
resulting from influenza pneumonia. These data are collected
from 121 cities with a population in excess of 100,000.

This mortality chart is also broken down into nine geographi-
cal regions. Figure 4.7 shows the mortality data from
September 1968 to September 1977. The expected curve is
taken from the least square method of fitting the curve to
the data for the previous five years excluding epidemic
periods (periods in which the number of deaths exceed the

threshold).
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Figure 4.7.
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From numerous simulation results of the model, it be-
came apparent that the oscillation dies down quickly after
the third epidemic. Hence, with this model we can generate
three distinct epidemics and two drifts. There were six
epidemics from the onset of the 1968 Hong Kong influenza (an
occurrence of the virus shift) up to 1977 excluding the
small epidemic in July 1972. Of these six epidemics, we will
attempt to produce the system outputs of the model to fit
the data for three epidemics and compare the results with
the actual figures. The three epidemics we will consider
are: the outbreak of November 1968 - March 1969, that of
January 1972 - March 1973, and that of January - March 1975.
The difficulty in validating the model by fitting the his-
torical curve is that data for the initial values and the
parameters are not available. Nevertheless, we will estimate
these values in order to generate the historical curve.

The model will be modified to accomodate the population

growth and the seasonal variation of influenza. We let

POP = total population

SPOP = susceptible population
IPOP = infective population
BRTH = birth rate (people/month)

DTH = death rate (people/month).
Assuming the exponential growth of the population, we have

-d%; POP = (BRTH - DTH) * POP

and

POP = SPOP + IPOP + RPOP.
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The newborns are put into the susceptible population, and

the death rate is equally applied to the three groups of
population. Table 4.2 gives the annual birth and death rates
of the United States from 1968 to 1976. The birth rate BRTH
and death rate DTH for the simulation is calculated to be the
average of the actual death and birth rates of the eight year
period, and this figure is converted into the monthly rate.

These rates are

BRTH = 1.36 x 107

DTH = .775 x 1072,

The seasonal variation of influenza is considered by
making the infective rate sinosoidal, a sine curve which
starts at the initial time equal to September. The sine
curve represents the fact that influenza occurs most fre-
quently during the fall and the winter and least frequently
during the summer. We let

INF = infective rate (fraction/people month)

CR = contact rate (fraction/people month)

PRD = period = 12 months

H = height of the sine curve (dimensionless).
Then we can form the infective rate as
INF = CR * (1+H + SIN((6.25/PRD) * TIME)).
Integrating the above changes to the influenza epidemic model
and simulating by varying parameters, we obtain a reasonable
fit with the historical data.
The comparison of simulation output and the actual

figures for the three epidemics are given in Table 4.3 and
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Table 4.3. Monthly mortality rates in the three epidemics
used in model validation.

Epidemic 1 AQLQQLI Simulation
NOV 68 459 | 919
DEC 1068 1184
JAN 69 1359 4 1304
FEB 677 1236
MAR 673 1037
APR 695 759
MAY 545 574

Epidemic 2 Actual1 Simulation
DEC 72 508 966
JAN 73 830 1029
FEB 904 1006
MAR 701 917
APR 398 796

Epidemic 3 Actuall Simulation
DEC 75 479 691
JAN 76 819 710
FEB 824 714
MAR 606 702
APR 467 678

1 From Monthly Vital Statistics Report.



plotted in Figure 4.8.
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The values of the parameters and

initial conditions used to obtain these results are as

.07 x 10‘6(1 + .03 sin .52t) (infective rate)

follows:

Parameters
b =
r = .8
e = .5
d = .6

Initial conditions
¢, = 19.19 x 10
Cy, = 5 x 106
¢y = 5 x 106

= .001

6

(removal rate)
(susceptible rate)

(drift rate)

(susceptible population)
(infective population)
(immune population)

(virus strain).

The composition of the initial populations is 80 percent

susceptible, 10 percent infective, and 10 percent immune.

Since the monthly mortality data is from the 10 percent

sample of the total U.S. population, the simulations were

performed using that figure as the initial total population.

Figure 4.8 shows that the simulation results in terms of

the epidemic peaks and the peak times are reasonably close

to the actual data.

This demonstrates a possible use of the

model for prediction provided that the initial conditions

and the values of the parameters can be measured.
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CHAPTER 5
IMMUNIZATION MODEL AND CONTROL SYSTEM

In the influenza epidemic model developed in Chapter 3,
the cycle of epidemics begins as a result of a virus shift.
The size of the susceptible population in relation to the
threshold determines the severity of the initial epidemic;
that is, if the difference between the initial susceptible
population and the threshold is large, the peak of the
epidemic curve is high. Subsequent epidemics are caused by
drifts. The peaks of these epidemics are also determined by
the difference between the susceptitbtle population and the
threshold. We now construct an immunization system to pro-
vide the control input to the influenza epidemic system.

Figure 5.1 shows the block diagram of this control system.

INFLUENZA
'y EPIDEMIC -
SYSTEM

IMMUNIZATION
SYSTEM [+

Figure 5.1. Block diagram of the control system.

91



92

The goal of the control system is to minimize the severity
of the second epidemic caused by drift. One method of pre-
venting the occurrence of the second epidemic is to remove a
sufficient number of individuals from the susceptible popu-
lation so that the size of the susceptible population is
always below the threshold level. This method could be costly
in terms of a percentage of the total population required to
be immunized. We, therefore, developed an immunization system
which accomplishes the goal of the control system by immuniz-
ing as few individuals as possible.

First we will examine the relationships among the
variables which determine the size of the epidemic peak; then
construct the state model for the immunization system; and

finally, present the results of simulation.

5.1 Causal Analysis

After the initial epidemic, the susceptible population
starts building up through the transfer of individuals from
the immune population due to the structural change of the
virus. The decrease of the immune population causes the
immunity level to fall, thus increasing the susceptible level.
As the susceptible level increases the threshold decreases
and the difference between the susceptible population and the
threshold becomes larger causing the higher peak of the next
epidemic. To remedy this situation, we add the vaccinated
population in the causal loop diagram (Figure 5.2). We now

decrease the susceptible population and follow through the
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dotted lines. The causality indicates that the difference
between the susceptible population and the threshold becomes

smaller, causing a smaller epidemic peak.

Epidemic (E_..)
Peak max
+
(xl) Susceptible Difference (xl-H)
Population -
- \
|
|
I
' -
v (v) P1
(x3) Immune Vaccinated Threshold (H= 3—)
Population Population Level
/ -
/
/
/
X, 4V - /7
(h= =) Immunity” * Susceptible (S=1-A)

Level \\\\\\‘—~__—’Bsyel

Figure 5.2. Causal loop diagram of the control system.

5.2 State Model of the Immunization System

We construct the state model in such a way that the
vaccinated population behaves like a goal seeking curve. This
goal is the number equal to the difference between the
susceptitle population and the threshold level. We let

v = vaccinated population
G = goal.
Then
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G(t) = x;(t) - H(t)

where
x4 (t)
H(t)

susceptible population

threshold level.

If the goal is constant; i.e. G(t) = G, then the state equa-
tion for the goal seeking curve is given by

v =k (G -v) (5.1)
with the initial condition v(0) = O. The constant k is the
vaccination rate. The solution for the state equation (5.1)
is

v = d (1 - %Y,
The graph of the vaccinated population is shown in Figure

5.3.

t
Figure 5.3. The goal seeking curve of the vaccinated popu-
lation.
Using the time varying goal G(t), the state model for
the immunization system is then obtained as

v =k (G(t) - v) (5.2)
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with the initial condition v(0) = O.

The rate of immunization must be positive; hence, we
consider applying the model only when the susceptible popu-
lation exceeds the threshold. After the initial epidemic
the susceptible population crosses over the threshold just
before the drift time TD,and the next epidemic begins just
after the virus strain reaches the relative minimum. There-
fore, the immunization system will be initiated at the drift
time TD and continue up to the time the virus strain attains
relative minimum T . (see Figure 5.4). This procedure can
be accomplished by using a rectangular function (the
difference of two step functions) to simulate the model. The
state model (5.2) becomes

=k (G(t) -v)T
where T is the rectangular function with the height equal to
1 and the length equal to the period of the immunization.

The immunity level A(t) is now the sum of the immune

population and the vaccinated population divided by the total

population:

Xqa + V
A(t) = 25—

As before, the susceptible level S(t) is defined to be
S(t) =1 - A(t).

Since the susceptible population decreases at the rate of

immunization, the state equation for the susceptible popu-

lation in the state model (3.2) is changed to

il = -b S(t) X) Xy + exy X, = v.
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Susceptible Population
Threshold

Virus

Epidemic Curve

Immunization Period

Figure 5.4. Immunization period.
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£.3 Simulation Results

The control system is simulated using the three test
cases given in Chapter 4, Figures 4.1, 4.2, and 4.3. In all
cases, the total vaccinated population becomes larger as the
vaccination rate k is set larger. However, the vaccinated
population stabilized at k = 1; that is, there is very
little difference in the number of the vaccinated population
beyond that range of k. The simulation outputs for un-
vaccinated cases with the drift rate d = .5 are shown in
Figure 5.5. (The epidemic curve is identical to that in
Figure 4.2.) The rate of immunization ¥ and the vaccinated
population v with the vaccination rate k = 1 and the period
of immunization from TD = 27 to Tmin = 39 are given in
Figure 5.6. The epidemic curve produced after immunization
is shown in Figure 5.7.

The total vaccinated population for each case and the
drift calculated from Equation (4.1) are compared in
Table 5.1. Note that the higher the drift, the larger the
number of individuals in the susceptible population must be
vaccinated to reduce the next epidemic peak to an endemic
level. This observation agrees with reality.

The control system takes no consideration of the efficacy
of the vaccine. According to Pereira (1979), the efficacy of
vaccine ranges from 4O to 80 percent. Also, only individuals
in the susceptible population are immunized in this model.

In reality, individuals in the immune population are

immunized as well as those in the susceptible population.
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Therefore, to compute the percentage of the total population
required to be immunized, taking into consideration the effi-
cacy of the vaccine and assuming that the immune population
and the susceptible population are vaccinated proportionally,
we use the formula:

1 VPOP

% POP = 5%F X gpgp X 100
where
% POP = percentage of total population required to be
immunized
EFF = efficacy of the vaccine (expressed in decimal)
VPOP = vaccinated population from the simulation
SPOP = the size of the susceptible population at the

beginning of the immunization period.
The percentage of the total population required to be immunized
are calculated for each test case using the efficacy of the
vaccine to be 4O and 80 percent. The results are given in
Table 5.1.

Table 5.1. Percentage of total population required
to be immunized.

d D VPOP SPOP EFF % POP EFF % POP
1.0 .338 178 682 o 65 .8 33
5 496 205 763 o 67 .8 34
.3 .650 215 795 o 68 .8 34
d = drift rate
D = drift



CHAPTER 6
SUMMARY AND CONCLUSIONS

The influenza epidemic model was systematically built
from the basic three epidemic models described by Bailey
(1975). In the basic epidemic models, the variables which
afe of particular interest to epidemiologists, such as the
peaks and durations of epidemics, were defined and analyzed.
The numerical values of these variables computed from analy-
sis were compared with those obtained from simulation. The
results show that the Euler integration method used in DYNAMO
was reasonably accurate for simulating these nonlinear models.

The influenza epidemic model is an aggregated system with
four state variables which includes the structural state of
the virus as one of the state variables. The state equation
for the virus strain was constructed using the idea of a
logistic curve, the asymptote of which is the immunity level
of the population. With a proper choice of the drift rate,
the system provides an epidemic curve which resembles under-
damped oscillation. Linearization was used to analyze the
system behavior and to compute the range of the drift rate
required for this underdamped oscillation. The computational
procedure for finding this range is based on a sufficient

condition, expressed in terms of the coefficients of the
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characteristic equation, for the third order linear system
to be stable oscillatory and underdamped.

With this model three epidemic cycles can be shown. The
initial epidemic results from virus shift which is represented
by the presence of low immunity level in the population. The
following two epidemics result from drifts which cause the
susceptible population to build up above the threshold level.
For the first three epidemics, the dynamic behavior of the
virus, the immunity level, and the epidemic curve are similar
to those graphically represented by Kilbourne.

Model validation was performed using the data taken from
the Vital Statistics Report of the United States. The model
was modified to accomodate population growth and the seasonal
variation of the infective rate. The attempt to fit the
historical data on the mortality rate of the three selected
epidemics in recent time to the simulation results was
reasonably successful, considering the complexity of the
real world system.

The model analysis and simulation of the aggregated sys-
tem provide a good insight into the behavior of the essential
variables. In particular the threshold is one such variable
whose behavior may not have been so obvious. The threshold
is a time varying quantity which is inversely proportional
to the susceptible level of the population. The size of the
difference between the susceptible population and the threshold
prior to an epidemic determines the severity of that epidemic.

A formula used to calculate the numerical value of
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drifts was developed. It was shown from simulation results
that the value of the drift is an indication of the severity
of the following epidemic, measured in terms of the peak of
the epidemic curve. The drift time, the time at which a
drift occurs, was also defined. Knowing the drift time, the
beginning of the next epidemic could be estimated.

In this model the second epidemic occurs if the sus-
ceptible population exceeds the threshold. To control this
epidemic, an immunization system was developed as a sub-
system of a control system. The immunization model consists
of the vaccinated population as a state variable. The state
equation was constructed using the idea of a goal seeking
curve, the goal of which is the difference between the sus-
ceptible population and the threshold. The immunization
period begins with the drift time and ends at the time the
virus reaches relative minimum.

The control system is an idealized model. It takes no
consideration of the efficacy of the vaccine, and only the
susceptible population is immunized. To translate the total
vaccinated population obtained from simulation into more
realistic figures, a simple formula was used to estimate the
percentage of the total population required to be immunized.

The following are suggestions for building a more complex
model from this aggregated model:

(1) The susceptible level of the population may be made
more precise by defining it to be a function of general

health and age as well as antibody level.
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(2) The infective rate may be a function of season,
mobility, the density of the population and the effective
contact rate.

(3) Geographical spread of infection may be modelled
using partial differential equations.

(4) Population may be divided into three or four age
brackets with each group having different infective removal
and immune rates.

(5) Subclinical cases may be considered by having a
separate immune population for those cases.

(6) Surveillance systems may be established to identify
drifts and shifts of the virus.

(7) Immunization systems may include the efficacy of
the vaccine which is a function of the virus and the effect-
iveness of surveillance. They may also include economic
factors such as production, distribution and manpower costs.

(8) A more precise mathematical representation of the

virus may be developed as research in this area progresses.
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APPENDIX A

DERIVATION OF THE FORMULA FOR THE FUNDAMENTAL MATRIX
OF THE 2X2 MATRIX A IN WHICH THE EIGENVALUES ARE COMPLEX

Let s =u+ Jv, S, =u - jv be the eigenvalues. Then,
from the theory of the function of matrices,

s.t sS,t
eAt = Z1 e 1 + 22 e 2 ’

where Zl’ Z, are the constituent matrices given by

7 - A-s, I

Writing Zl, Z2 in terms of the real and the complex parts,

we obtain

zy =4 [I-j%(a-uD] (A.1)

and Z, = Z; (conjugate of Z,).

Hence,

2 Re Z1 e .

Now, using the Euler Formula we can write

106
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= elu + jvit

eut egvt

= elt (cos vt + j sin vt). (A.2)
Multiplying Equations (A.l) and (A.2) and taking twice the
real part, we obtain the formula

et - eut [(cos vt) I + (% sin vt) (A - ul)].



APPENDIX B
DYNAMO LISTINGS

Table B.1. Simple epidemics model.

# SIMPLE CRINIMICS mMOLEL
NOTE ’

MOTFE it 3

L SPOP. K=cpis J+=2TxE00PR. UK SUECE

PTIBLE POPULATION

L IpOn. Ke=io00, JoT+IA0PR. JK INFECTI
PT
TI

OPULATION
NOTE HATEN

3. .1~":T(--PDH KeIPOP. K SUSCE
LaDETS#G0P. K#IPOP. K INFEC

NOTE NITINCLZATICN

N IFOP =Y

N SPDI‘J

C S=750

C I=00

NOTE

NOTE FLAR AT TEN S |

C BLTA= cOR INFECTIVE RATE
PRINT -oh: YFTV:"”HH

PLOYT SPCE= [ 0, (ROHR=N

SFEC DT~.Cwl/r‘rHLQ . L/LEMGTH=3/PRTRPER=. 1
RUN BAZE

#EOF

g
VE P
IBILE
VE

108
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Table B.2. General epidemics model.

# GENERAL CGPIDE NICQ HODE
NOTE

MOTE LEVEL D

L SPOP. K=SPOP. J+DT*SPOPR. JK SUSCEPTIEBLE POPULATION
L IPOP. K=I70P. J+DT+#[POPR. JK INFECTIVE POPULATION
}{.‘DQﬁCIP. A=RPOF. JIDT#RFPOPR. JKk IMMUNE POPULATION

NDTE RATIEG

R SFOMR. AL=-DBLTAZSPOP. K& IFOP. K

R IFOPR. KL=BETA®SPRY. KIPOF. K-GAMMA*IPOP. K

R RPUSR. KL=CAMMARIPOP. K

NOTE

NOTE IMITIALIZATION

N SPO =g

N IPQP:-

N RPO =R

C S=9%0

C I=50

C R=0

NOTE .

NOTE PARAMITERS

C BETA=. 002 INFECTIVE RATE
C GAMMA=_5 REMOVAL RATE
PRINT SPi$, IPCE, REOP, RPOPR

PLOT SPOF=S, IPOP=1, RPOP=R/RPOPR=N

SPEC DT=.001/PLTPER=. 1/LENGTH=10/PRTPER=. 1

RUN BASE

*EOR

C 3=350

€ I=:100

C R=550

C BETA=. (0T
C GAMMA=.
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Table B.3. Endemic model.

# EMDEMIC ™MCixEL

NOTE

NOTE LEVELS

L SPOP. K=gFir. J+DTRES0PR. K SUSCEPTIBLE POPULATICM
L IPOD. K=ipPCP. y+DTwIPCITR. W INFECTIVE FOPULATICN

L RPORP. K=3xP3OP. J+L M +FP0PR. Uik IMMUNE FOPULATION

NOTE

NOTE

CREIROP. K+EPSLN

4 KEIPOP. K-GAMMA«+IPOP. K
R RPOHR. K foIPU“.ﬂ ERSLNM
NOTE

NOTE OISENASE INCIDENCE
] INNL KerGAMMA L TFOP. K

NDTE o IMITIN . TZATION

R SFOFE. KL
R IPOPR. Ki
L

NOTE PARAIIETERS
C BETA= 0]} INFECTIVE RATE
C GAMMA=. & REMOVAL RATE
C EP3SLN=3Q SUSCEPTIBLE RATE
PRIMI SFoF, 12002 i, 1
PLOV SPCP=3, IPQP=1, RPOP JC I=N

" PBLTRE=1/1 100/PRTPER=1

C BFTA' oel

C EPSLIMN=!:

SPEC PLTHER=Z/I.CNGTH=200
RUN CH!

*EOF



111

Table B.4. Influenza epidemic model.

# INFLUENMZIA EPIDEMIC MODEL

NOTE
NOTE

L IpOD.
L RPOP fe=

L gbop. k=2
Y

C VT, K

NOT[E
NOTL:
R SPUPXI. KL
R IpQbR.
R RPUPR F
R VIk. i

i=1-

C DELT&<.

PRINT 5703,

PLOT Ji#(iIxp

SPEC DTﬁ,Lz:

RUN BaAZEZ=
*E0OR

C DELTa=. Y
RUN Ciit

C DELTA=. 2
RUN CHZ2

C DELYA:= ¢
RUN GG

C S=600

C R“iﬁo

o

DTV IR

ix
78|
ke ¥ o8

=B O

=" LCOG- '(b)“l W |A/B
L REGAMMAETIOR. K

LIEVELS

TP JHDTEEPOPR. JK SUSCEPTIBLE POPULATION
0. JHRTIPCPR. UK INFECTIVE POPULATION
RIGFR. JDTEAPOPR. UK IMMUNE POPULATION

WA\ VIRUS 3TRAIN

PATEDR

=-BETA#SLYL. K¥SPDOP. K4IPCP. K+EPSLN#VI. K#RPOP. X
=RETALGLYL. KeSPOP. K#IP0OP, K—-GAMMA®*IPOP. K
Ale=@aritasfFOP, K=EPSLN#V T, K¥RPOP. K

L=URLTAw v, K-

T KIRVILK
AUX/SUFPL VARIABLES
PO H/lOOO

- 1MLt

IMMUNITY LEVEL

SUSCEPRPTIBLE LEVEL
TAY)/(1Q00-RPOP. K) THRESHOLD

DISEASE INCIDENCE

IMITIALIZATION

INFECTIVE
REFYVAL
SUSCER
ORIFT

50 RPOR, TH, THCT, VI, TMLYL

/IMLViHﬁ/Vl=V

TLTiEH=1/LENCTH=100/PRTPER-1

RATE

ﬁ&t&
TI2LE RATE

RaiTE
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Table B.5. Model validation.

% MODEL “al 1TATIOM

NOTE

NOTE L LIvELG

L SPOP. K=3PLF. U+ DT#SROPR. UK SUSCEPTIBLE PCPULATION
L IPOP. K=15C2) J+DT#IPOVR. JK INFECTIVE POPULATION
L RPOP. K=5F5R. J+ET+REGPR. UK IMMUNE POPULATION

L VI K=UL JroTEvIin. Jik VIRUS STRAIN

NOTE

NOTIZ

R sboes. 4 K5P0° K= IPOP. K+EPSLN#VI. K#¥RPOP. K
R 1P0RE. BFIPOR. K-GAMMA®IPOR. K-DTHI*IPOP. K
R RPOUFS. KL . K=DTHR#RPOP. K

R VIR KL=

NOTE

NOTE SUN/SUPPL YARIABLES

A ING, R=CR# (i +H25IM{ (6. 28/PRD) #TIME. K)) INFECTIVITY
S MomT **D'm'w-ﬁt’ N MORTALITY RATE

A PGP K=8P0P. K+IP0P K+RPOP. K TOTAL POPULATION

S INCI. RirAmiaslOP. K DISEASE INCIDENCE

A IMLVL, ReRROD. /PGP, K IMMUNITY LEVEL
§D$§VL.K=L*INLVL.K SUSCEPTIGSLE LEVEL

NOTE SEASONAL VARIATIONM

C CR=. Q7E -4 CONTACT RATE

C H=. 03 HIGHT STEP FUNC

C PRD=12 PERIOD SINE

NOTE

NOTE  IMITIALIZATION

REMOYVAL RATE
SUSCEPTIBLE RATE
DRIFT RATE

BIRTH RATE

DEATH RATE

L, MORT, INCI
éI?LVL‘A/MCRT‘M/INCI—N

~—=3
vHr
m<<
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Table B.6. Immunization model.

# IMMUNIZATION MOBEL AMD CONTROL SYSTEM
NOTE

NOTE LEVELS
L SPOP. K=SPGP. J+DT#SPCPR. JK SUSCEPTIBLE POPULATION
IPOP. K=1POP. J+DT*IPCPR. JK INFECTIVE PGPULATION
RPOP. K=RPOP. J+DTXREPOPR. JK IMIHUNE POPULATION

VI. K=Y, J+DT#VIH, UK VIRUS STRAIN
D¥EDP.K=VPDP.J+DT*VPOPR.JK VACCINATED POPULATIOCN
OTE RATEDR

SPOPR. AL=A. K-NVHOPR. K

IPOPR. \‘"°-T‘zSLVL K¥SPOP. K*IPOP. K-GAMMA*IPOP. K
REOFPR. Hi=CAMIIARIB0P, K-ERSLNeVI. K*RPOP K
VPOPR.\.v..:*"(L~F° K-VPOP. K) *VAC.

VIR, KL=l Tas TV, K-VIL K)Y#YVI K

AR BUPL, VYARTABLES
A K==RETa=SL VL. K#SPOR. A#IPOP. K+EPSLN#YI. K#RPOP. K
VAC. A S’FsiHGHTlaSTTNI)-STEP(HGHTI:STTMQ) VACCIN PERIOD

oc
13
mm

IMLVL k‘(?POP.K+VPOP.K)/1000 IMMUNITY LEVEL
SLVL.K:I—INLVL.K SUSCEPTIBLE LEVEL
TH. K=RHC ! 7SIV, THRESHOLD

DIFF. K=bPu~.h—fH A SUSCEP-THRESH
INCI. R=SaMMaxi"QP. K DISEASE INCIDENCE

INITIALTIZATION

00
——
mm

SPLP=3
IPCRP=1
RPOUP=R
VPOPR=ri
Vi=y
S==900
I1=50
R=50
M=0

Y=, 00
oTE

RHO1=400 SR ELATIVE REMOVAL RATE
BLTA—. O'.. I

oooooogzooooozzzzzzz>>>>>oon>>zzmzwnmzzrrrr
-
m
?
E-E‘
g
i

KSAI=1" VACCIN RATE
‘p? REGR, YBOP, TH, DIFF, INCL, VI, IMLVL, VPOPR
iz / s =

L e e TH=100/PRTPER=1
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