

AN ECONOMIC EVALUATION AND REPLACEMENT MODEL FOR THE LACTATING DAIRY COW INCLUDING BIOLOGICAL COMPONENTS

Bу

Joseph G. Hlubik

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Department of Dairy Science

ABSTRACT

AN ECONOMIC EVALUATION AND REPLACEMENT MODEL FOR THE LACTATING DAIRY COW INCLUDING BIOLOGICAL COMPONENTS

By

Joseph G. Hlubik

A computer model was developed to estimate the annualized net present value of a dairy cow, enabling comparisons among cows as an aid in determining optimum voluntary replacement patterns. Expected values (probabilistic sense) were used to account for the uncertainty underlying involuntary culling. Milk production, hence income, is estimated based upon DHIA estimated mature equivalent milk yield, standardized for age and season of calving. Similarly, a credit is made for the sale of cull animals. Costs include both feed and nonfeed variable costs. The feed cost component characterizes dry matter intake and nutrient requirements over the life cycle, and within a lactation, based on expected production performance. Feed disappearance is estimated using a linear programming subsystem which balances a diet and, in turn, projects feed disappearance. The model is flexible; additional subsystems can easily be entered that deal with significant biological and economic factors.

DEDICATION

This thesis is dedicated to the Sacred Heart of Jesus Christ.

ACKNOWLEDGMENTS

I would like to express my appreciation to John and Sarah Dumschat for encouraging me to enter a Master's program at Michigan State and for their hospitality and friendship. Sincere thanks to Winston Ingalls for his much appreciated advice and friendship. Special thanks are due to Drs. Russel Erickson and Roy Black for invaluable assistance and also to members of the committee: Dr. Roy Emery, Dr. Glenn Johnson, and Dr. Donald Hillman.

I am indebted to the Department of Dairy Science for financial assistance during the course of my studies.

I would also like to thank Mrs. Mary Hillman and Susan MacMahon for helping prepare and type the manuscript.

iii

TABLE OF CONTENTS

INTRODUCTION	1
LITERATURE REVIEW OF REPLACEMENT MODELS	3
REVIEW OF IMPORTANT BIOLOGICAL AND ENVIRONMENTAL FACTORS THAT DEFINE THE INPUT-OUTPUT RELATIONSHIPS	
OF THE DAIRY COW	11
Milk Production	11
Estimating the Lactation Curve Effects of Nutrition on the Lactation Curve . Equations for Estimating the Lactation Curve . Environmental Factors Affecting the Shape of	11 12 14
the Curve	15 16 16 17 17 18
Factors Influencing Dry Matter Intake	20
Energy Content of Feeds	22 25 27 30 30 32 32
During the Lactation Cycle	35
Nutrient Requirements	35
Mobilization of Nutrients from Body Stores Energy and Fiber Requirements	36 39 41 42

Page

	Gro	wt	h	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	45
	Ext	ec	ted	ιн	er	d I	jif	е	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	47
	Rea	ISO	ns	fo	r]	Ren	10 V	al	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	49
	Lor	ıge	vit	у	an	d H	lig	h 1	Pro	odu	ci	ng	C	OW	8	•	•	•	•	٠	•	•	•	51
	Cor	ncl	usi	on	s 1	Dra	WD	f	roı	n t	he		it	er	at	ur	`e	Re	eve	Lev	V	•	•	53
THE	e d <i>i</i>	IF	ar c	COW	M	ODE	Ľ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	54
	Ecc	ono	mic	: D	ec	isi	.on	R	ule	8	•	•	•	•	•	•	•	٠	٠	•	•	•	•	54
	Int	ro	duc	ti	on	to) t	he	Mc	de	1	•	•	•	•	•	•	•	•	•	•	•	•	58
	Cos	st	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	60
	Sub	sy	ste	;]	Mil	k	Pro	odu	ict	io	n	•	•	•	•	•	•	•	•	•	•	•	61
		Es	tin	at	in	g I	if	et	ime	P	ro	du	ct	io	n	•	•	•	•	•	•	•	•	64
	Sub		ot a			Dra	r M	eti	ter	. т	'nt	ak	e		_							•	•	66
		.53	300	- <u>- 11</u>	•	Dr J		au		• •				•	•	•	•	•	•	•		•	-	00
		De Im	vel		men of	nt Fe	of	tl	he tec	Dr L F	y ee	Mads	tt	er	I	int	ak	e ب	Eq	lue	ati	.01	1	66 74
		De Im Im Su Ch	vel pac pac te bro	op t t nt	men of of in er:	nt Fe En f t es:	of erm her he	tl en gy Ra DM	he tec De ati IL/	Dr Dr Dr Sns On C th	y ee it an	Ma ds y d Di	tt an DM et	er d ID	I Cr RY	int ud	ak le	re Fj	Eq be	qua er	ati Co	.or	- - -	66 74 78 80 83
	Sut	De Im Im Su Ch	vel pac te bro ara	Lop t t t t t t t t t t t t t t t t t t t	men of of in er:	nt Fe En f t ist Req	of rm er he ic	tl en gy Ra DM s	he ted De ati IL/	Dr Dr IF Sns IC th	y it an	Ma ds J Di	tt an DM et	er d ID	I Cr RY	int ud	ak le	re Fi	Eq be	qua er	ati Co		- - - -	66 74 78 80 83 83
	Sut	De Im Im Su Ch Sy Pr Ca Cr Re	vel pac pac bro ara ste lori ude qui	lot suttent inmF .re	mer of of in er: an ib mer	nt Fe En ft: t: st Req nd er st	of erm ier ic ic ic ui En Ph	tl end By DM s c rer ers or	he ted De ati IL/ of sy cf	Dr Dr IF Sns.on IC th its .oru	yee it an .s.th	Ma ds y d Di	tt an DM et	er d ID	I Cr RY			re Fi	Ec.					66 74 78 80 83 85 85 89 89 89
	Sub	Deelin Im Su Ch Sy Pra Cr Re	vel pac pac bro ara ste ote qui ste	int plot int int int int int int int int int in	mer of in er: au ib mer	nt Fe Ent f s: t s t e s t e s t a d a d r s Bal	of erm ier ic jui En Ph f .an	tl ent By DM s rer er s or cin	he be De atj IL Sy GI	Dr IF ns. C th its v u ts v u th	yee it an .s .th	Ma ds J Di Ra	tt an DM et	er d ID	I Cr RY								· · · · · · · · · · · · · · · · · · ·	66 74 78 80 83 85 85 85 89 89 89 89
RES	Sub	Den Im Suh Sch Sy Pra Cre sy S	vel pac pac te bro ara ste clci ude qui ste	Det tetter inmered	mer of of er: in er: lib mer IS	nt Fe En f t s ist Req nd er s al CUS	of ier ier ic jui En Ph f .an	tl ent By Ra DM: s rer era or cin ON	he be De ti De ti Li Sync Gr	Dr Dr Son C th Son C th Son C th Sor Sor Sor Sor Th Sor Sor Sor Sor Sor Sor Sor Sor Sor Sor	y e it an e .s .th	Ma ds y d Di	tt an. Det ti	er d ID				ce Fi				- or 	· · · · · · · · · · · · · · · · · · ·	66 74 78 80 83 85 85 89 89 89 89 89 89 94 97
RES	Sub Sub SULI	Dem Im Sub SCb Sy Prac Re Sy Sy	vel pac pac te bro ara ste otci qui ste ANI	pettttt innere i	mer of of er: in in in in in in in in in in in in in	nt Fe En f t: st st st Req nd er nts Bal CUS CLU	of frm ier ic jui En Ph f s SI	tl gy Ra DM S C rer (or c c in ON	he be De De De De De De De De De De De De De	DrFsoch lFsoch tts .Cth 	yeeit an .s.th	Ma ds y d Di Ra	tt an .DM et ti	er d ID										66 74 78 80 83 85 85 89 89 89 89 94 97 110
RES SUN BIH	Sub Sub SULI MAF	Dem Im Sub SCb SCb Sy Prace Re Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy	vel pac pac bro ara ste clci ude qui ste ANI ANI	int int int int int int int int int int	mer of of er:] in er:] ib me; IS(ON(nt Fe En f f t : s t e s : s t e s : s t e s : s t c US CLU 	of irm ier ic ic ic ic ic ic ic ic ic ic ic ic ic	t) ent gy Ra DM s c rer cor cor cor cor cor cor	he de la time de la tima de la ti	DrF IF IF I I I I I I I I I I I I I I I I	yeit an .s.th	Ma ds J d Di Ra	tt Det ti	er d ID										66 74 78 80 83 85 85 89 89 89 89 94 97 110 114

LIST OF TABLES

Table		Page
1	Review of Replacement Models	8
2	Expected Impact of Alternative Quantities of Fermented Feeds on Daily Dry Matter Intake of Lactating Dairy Cows	27
3	Mature Equivalent (ME) Factors for Body Weight Derived from Two Studies	46
4	Probability of Failure (Involuntary) of Cows by Lactation Number	48
5	Reasons for Dairy Cattle Replacement	50
6	Percent of Total Culls by Lactation Number .	51
7a	Proportion of Cows Removed from the Herd Dur- ing the Second Through Sixth Lactation When Divided into Four Groups According to First Lactation Production	52
7b	Percent of Cows Removed from the Herd of Those Surviving the Previous Lactation When Divided into Four Groups According to First Lactation Production	52
8	Average Season Effects on ME Milk	62
9	Regression Coefficients Defining Dry Matter Intake/Day During the First Twenty Weeks of Lactation	69
10	Regression Coefficients Characterizing Intake by Age in Early Lactation	71
11	Milk (Average Daily) vs Milk (Weeks 6-8)	73
12	Regression Coefficients Defining Dry Matter Intake in Relation to Moisture and Time .	75

-

Table

13	Regression Coefficients Characterizing the In- fluence of Weeks Into Lactation and Moisture Percent of the Ration on DMI/cwt.	76
14	Regression Coefficients Defining Energy, Crude Fiber and Milk per Day on Dry Matter Intake (DMI/Cwt)	79
15	Estimated Maximum Dry Matter Intake	82
16	Energy Mobilization in Early Lactation Pro- posed as a Percent of Requirements	87
17	Restriction on Maximum Energy Mobilization and Re-conditioning During Lactation	90
18	Nutrient Requirement Specifications for Lactating Cows	92
19	Nutrient Requirement Specifications for Dry Cows	93
20	Linear Programming Balance Matrix	95
21	Performance Characteristics of Cows of Various ME Milk Production Levels at 3 Different Ages	99
22	Lactation Feed Summary for Cows Producing Various Levels of Milk	100
23	Feed Consumption of a Cow Producing 12,100 Lbs of 3.5% Milk	102
24	Feed Consumption of a Cow Producing 14,500 Lbs of 3.5% Milk	103
25	Feed Consumption of a Cow Producing 17,000 Lbs of 3.5% Milk	104
26	Feed Consumption of a Cow Producing 19,400 Lbs of 3.5% Milk	105
27	Projected Annualized Variable Net Present Value of Replacement Heifers	107

LIST OF FIGURES

Figure		Page
1	The Relationship Between Nutritive Value, Dry Matter Intake () and Energy Intake ()	22
2	Effect of Moisture Content on Dry Matter Intake of Lactating Cows	26
3	Impact of Ration Fiber Content on Dry Matter Intake of Lactating Cows Fed Four Levels of Grain and Two Qualities of Hay	28
4	Energy Utilization of Lorna Cow	38
5	Relationship of Crude Fibre Content (%) in the Ration and pH in the Rumen	40
6	Net Revenue vs Time	54
7	Flow Chart of the Model	59
8	Expected Annualized Variable Net Present Value	108

INTRODUCTION

The objective of this research is to develop a dynamic macro-level bio-economic model of the dairy cow, integrating the following subsystem: 1) milk production; 2) dry matter intake; 3) nutrient requirements; 4) growth; and 5) odds of involuntary individual animal removal from the herd. The model's economic focus is to estimate the expected net present value of a cow at any point in her lifetime. Thus, the model can be used or a decision-aid by dairymen when making cow replacement decisions. Questions such as: "Should I replace a four-year old cow whose mature equivalent is 15,000 lbs of milk with a heifer whose mature equivalent is 16,500 lbs?" can be asked.

The model has potential for other uses also, including projection of feed budgets, estimation of variable costs, projection of cash-flow statements, estimation of herd turnover rate, and forecasting herd milk output.

Other studies have dealt with the replacement problem, but none have focused on the characteristics of the particular replacement animal or the animal being replaced. Production level is usually assumed at an average herd value, and if genetic improvement is considered it is

usually expressed as a yearly rate of herd improvement. Dry matter intake and diet characteristics have been typically considered as fixed factors or modeled in a relatively naive manner. Therefore, the focus of this study was on accurately forecasting feed disappearance for cows of alternative mature equivalents.

This study is only a beginning point in the development of a "dairy cow model." As parameters become more refined, corrections can be incorporated. The program is composed of various subsystems which can be easily added to or deleted.

With the age of electronic identification and computer analysis upon us it is not difficult to imagine such programs becoming important in dairy management.

LITERATURE REVIEW OF REPLACEMENT MODELS

Development of replacement decision theory, computer simulation modeling and refinement in biological conceptual framework and parameters have been concurrent with the evolution of models dealing with the question of optimal replacement of dairy cows. Jenkins and Halter, (1962), Redman and Kuo, (1969), and Giaver, (1966), presented the problem as one involving maximization of present value using a multi-stage decision analysis. Whereas a single-stage decision policy is obtained by looking at each decision independent of other decisions in time, a multi-stage policy can be obtained by looking at all possible decision points for the entire time period being considered (Ahmed, 1974). The policy which yields the maximum net returns will be the optimal sequence of decisions. For example, each year a farmer must decide whether to keep or replace an animal based upon the expected returns of the cow versus her replacement candidate. The series of decisions which maximizes expected returns over the years considered is referred to as an optimal policy.

Solutions obtained by Giaver (1966), Redman and Kuo (1969) involve a Markovian programming approach. A Markovian process is a stochastic process where the probability

distribution of outcomes at any given stage depends only on the outcome at the last preceding stage (i.e. if we use a Markovian process and know the outcome of the last observation, we can neglect any information we have about previous observations in predicting the future) (Buffa and Dyer, 1977). Hutton (1966) developed a simulated replacement model which was intended for use at the farm level. Interested dairymen filled out a 50-item questionnaire specifying conditions present at each particular farm. The complexity of the questions made the model impractical.

Rundell (1967) examined replacement strategies among 6 operationally practical systems of culling cows. The strategies employed were: (1) mature equivalent (M.E.) milk production, (2) M.E. gross milk income, (3) actual milk production, (4) actual gross income, (5) income over feed cost, and (6) present value of expected gross income of a cow and her subsequent replacement candidate. The objective criterion was maximization of income over feed costs. Results of his study showed no significant differences among the strategies examined. Smith (1971) and Stewart <u>et al</u>. (1977) formulated generalized production prediction models. As the models evolved, levels of variability of the factors advance from discrete to more continuous variation.

Table 1 shows a comparison among the various replacement studies. The following observations help illustrate

some of the strengths and weaknesses of the models examined and the various factors taken into consideration.

- (1) The probability of success or failure of any given lactation was handled as a stochastic factor across the various studies. Smith and Stewart <u>et al</u>. separated the probability of death from the probability of failure in order to more accurately account for salvage value.
- (2) Production prediction of milk was handled in a variety of ways across the studies. Genetic improvement of replacement candidates was taken into account by Smith, Rundell and Stewart <u>et</u> <u>al</u>. by assuming an increase in production per year of replacements over the herd average production level. Stewart <u>et al</u>. compared cows to an "average" producing replacement candidate to determine whether or not to cull.
- (3) Except for Stewart <u>et al</u>. differences in body weight among cows within any age group were ignored.
- (4) The calving interval was handled as a stochastic factor only by Giaver and Smith.
- (5) Season of calving effects on production were not accounted for in any of the studies to date.
- (6) Feed disappearance was not accurately accounted for in any of the studies. Stewart <u>et al</u>. at-

tempted to deal with the problem in a more advanced manner but did not include enough flexibility in their approach. Since feed costs comprise over 60% of the variable costs of milk production this is a serious weakness of previous replacement models.

Keeping the above observation in mind it is believed that the proper approach is to focus attention upon a more flexible biological model which could be used to predict inputs and outputs for any given cow at any stage of her lifetime. Once the biological model was defined, an economic analysis could then be incorporated and the replacement problem considered. Thus the objectives of this study are two-fold: 1) to begin the process of developing a biological dairy cow model and 2) to use the model to address the question of the proper time to replace a dairy cow and who she should be replaced with. The analysis can be used in answering questions such as: "Should I replace a 4-year old cow whose mature equivalent is 15,000 lbs with a heifer whose mature equivalent is 16,500 lbs?"

The first part of the thesis examines the important biological parameters needed to be taken into consideration. Background research findings are presented to make the reader aware of the sources of information used to define the parameters and the controversy that still envelopes some of them such as the area of protein requirements.

The second part of the thesis explains the economic analysis employed to solve the replacement problem and illustrates how the model operates. The quantitative and qualitative restrictions and parameters used in this particular model are defined there.

The last section presents the results and conclusions of this study pointing out the strengths and weaknesses of the model to date.

	Jenkins & Halter 1962 OREGON	kuo & Redman 1967 KENTUCKY	Giaver 1966 CALIFORHIA Jerseys	Smith 1971 FLOREDA Jerseys.	Stewart <u>et al</u> . 1977 ONTARIO	Hutton 1966 USDA	Rundell 1967 MICHIGAN
Kind of model	Dynamic program Hultistage analysis	Dynamic program Markovian	Dynamic program Markovian	Dynamic program Markovian	Dynamic program Simulation	Simulation	Simulation
Maximum number of lactations considered	12+	1	y	. 0	7	User Input	Based on Pearl's life expectancy formula
Strategy result- ing from the study	Keep a cow for the first seven lactations, then replace with a heifer	Keep a cow for the first six lactations, then replace with a heifer	Depends upon the calving interval and prices	Depends upon the calving interval and prices	Depends upon the calving interval and prices	Depends upon user inputs	Depends upon price informa- tion
Size of animals	Used mature weighting index	Used mature weighting index	Used mature weighting index	Used mature weighting index	Used prediction equation. five levels. 100 kg apart. ranging from 450 kg to 850 kg	User input	Used a predic- tion equation
Production level of coms	<pre>3 levels consid- ered: <350 lbs fat 350-450 lbs >450 lbs</pre>	<pre>3 levels consid- ered: <12,000 lbs milk 12,000-l5,000 lbs >15,000 lbs</pre>	Considers varia- tion among cows in the hard and among lactations of the same cow	Predicted on the basis of previous records, 250 lb intervals from 5,000 to 12,000 lbs	Estimated 305 day milk production at 500 kg increments	305 day NE	Considers varia- tion in produc- tion among cons and among lacta- tion of the same cow
Production level of replacement candidates	3 levels consid- ered	3 levels consid- ered	Assumed to be equal to the average herd level	Genetic improve- ment over herd average of 15 per year	45 kg improvement of helfers per year over the herd average	User input	Genetic improve- ment over herd average of 2% per year

Table 1. Review of Replacement Hodels

	Jenkins & Halter 1962 OREGOH	Kuo & Redman 1967 KENTUCKY	Giaver 1966 CAL I FORMIA Jerseys	Smith 1971 FLORIDA Jerseys	Stewart <u>et al</u> . 1977 ONTARIO	Hutton 1966 USDA	Runde 1 1967 MICHIGAN
Calving interval	Fixed	Fixed	Stochastic	Stochastic, 3 levels	Fixed at 12 months	User input	Fixed at 12 months
Feed disappear- ance	Feed consumption was modified by a body weight index	Feed consumption was modified by a body weight index; used DHIA feed consumption data from 1956- 65	Gain consumption varies with monthly milk level: hay con- sumption is independent of production	Assumed relation- ship between size of animal and intake	Fixed level of corn silage: grain was assumed fed at 1 b/3 lbs used to fill remaining DN	User input	Fixed level of corn silage; grain was assumed fed at 1 h/3 lbs of milk, hay was used to fill remaining TDN
Success or failure of subsequent lactation	Stochastic	Stochastic	Stochastic	Stochastic; death was separ- ated from failure	requirements Stochastic; death was separ- ated from failure	Derived from user input	Stochastic
Salvage value	Included as the price of beef	Included	Included as the function of age	Included as a function of beef prices and heifer prices	Included	User input	Fixed at average Michigan market prices over the years 1958-65
Value of calves	Not included	Not included	Not included	Stochastic, de- pending upon the probability of a heifer bull, the value of veal and the production of the dam	Not included	User input	Stochastic
Price of feed	3 levels of prices: 802 1002 of 1961 Prices 1202	1956-1965 prices in various combinations	Included	Variation of a base price	Included at 3 levels	User input	2 prices each for hay, grain and silage

Table I. (cont'd)

	Jenkins & Halter 1962 OREGON	kuo å Redman 1967 KENTUCKY	Glaver 1966 CAL IFORHIA Jerseys	Smith 1971 FLORIDA Jerseys	Stewart <u>et al</u> . 197 <u>7</u> OMTARIO	Hutton 1966 USDA	Runde]] 1967 MICHIG M
Price of milk	3 levels of prices: 80% 100% 120% of the average price years 1950-61	Expressed as a percent of 1965 prices	3 prices consid- ered	Variation of a base price	Included at 3 levels	User input	2 base prices plus 2 fat differential prices
Interest rate on capital	Not included	Included	Set of 6%	Included	3 levels	User input	Included
Depreciation of a com	Not included	Not included	Not included	Expressed as the difference in salvage value at the beginning and end of lac- tation	Expressed as the difference in present salvage value and value at the 60 days post-calving period	Not included	Not included
Transaction cost (transport, transfer fees)	Included	Included	Not included	Included	Included	Not Included	Included

Tablel. (cont'd)

REVIEW OF IMPORTANT BIOLOGICAL AND ENVIRONMENTAL FACTORS THAT DEFINE THE INPUT-OUTPUT RELATIONSHIPS OF THE DAIRY COW

Milk Production

Estimating the Lactation Curve

The output of milk over the lactation cycle is characterized by a rapid rise during the first few weeks after calving until peak production per day is reached. Output then begins to decline in a linear fashion. Rate of rise in output, peak production and rate of decline in output vary with individual cows. Ridler and Broster (1969) examined the milk yields of 218 Friesian and Shorthorn first and second-half cows which had been individually rationed and subjected to constant managerial conditions. These records were analyzed to find the major characteristics of variability in the milk production cycle, with a view to prediction of performance. The values for the coefficients of variation were: (1) slope of curve from calving to peak yield, 15%; (2) days from calving to peak yield, 45%; (3) peak yield, 15%; (4) rate of decline per week in the three months after peak yield, 50%; (5) rate of yield decline per week in the period from peak yield to ½ peak yield, 25%; and (6) lactation yield, 20%. Peak yield was

found to be the dominant feature of the curve for individual animals within groups. It markedly influenced the total output of milk in the lactation and the rate of decline in milk yield in mid-lactation. First lactation heifers were more persistent than cows, and cows calving in the autumn were more persistent than those calving in the spring.

Effects of Nutrition on the Lactation Curve

Line and Westgarth (1969) showed that the percentage decline in yield was linearly related to percentage reduction in feed consumed. Hillman <u>et al</u>. (1973) also found that feed intake was linearly related to milk yield.

Trimberger <u>et al</u>. (1972), in an experiment involving levels of concentrate fed, found that the weeks of peak production for both actual milk and 4 percent FCM were uniform among the different concentrate feeding groups and fairly uniform for individual cows for the three years, but variations from cow to cow were large. They concluded that peak production was higher in all groups on liberal grain during the three years when compared to the controls with one exception. (The slope of the milk curve with respect to days into lactation is an indication of persistency. Animals on liberal grain dropped in production slower than those fed limited grain.) Van Ostergaard (1978) studied the effects of feeding different concentrate levels throughout the lactation independent of daily milk yield. The rate of decrease in milk yield was very dependent upon the manner in which the grain mix was fed. The decrease in milk yield is markedly lower when the grain mix was fed constantly from day to day instead of according to yield. Also, Thomas and Brown (1974) found that switching from a liberal grain feeding ratio of 1:1 to 1:3.5 pounds of grain per pound of milk caused a decrease in persistency from 92 percent to 79 percent of the previous month's milk yield.

Broster (1974) states that persistency is dominated by the individuality of the cows, but is also influenced by the system of feeding. The ability of the cow to "escape" at least temporarily, the effect of underfeeding, utilizing body reserves to support milk yield, adds to the problem of variation in persistency.

The potentially dangerous situation of low feed intake at the critically important stage of early lactation is met by a withdrawal of reserves to meet deficiencies. Broster (1974) determined that the cow's peak milk yield is critical in that her propensity to direct feed to milk in mid-lactation is favored by a high peak yield and reduced by a low one. The total milk yield output in the lactation is dominated by that peak yield. Broster further stated that once the peak yield is established, an optimal rate

of decline in feed intake exists for an optimal level of milk production, fertility and refurbishing the bodyweight losses incurred earlier.

Equations for Estimating the Lactation Curve

Wood (1969, 1970, 1976) has studied the environmental factors which affect the shape of the lactation curve and how it varies between <u>parities</u> of cows and among herds. Also, he assessed the importance of variation in seasonality from year to year with particular reference to herd production forecasts. He found that in general cows calving in the same parity at the same time of year showed similar curves, modified only by total yield and abnormal season of production.

He proposed using the following equation to explain the shape of the lactation curve:

$$Y_n = an^b e^{cn}$$

where: Y_n = yield of milk being measured at time period n
of the lactation
n = week into lactation
e = the base of natural logarithms
a,b,c = coefficients defining the lactation curve in
question.

The curve reaches a turning point at $n_p = -(b/c)$. The turning point is independent of "a" which is the scaling factor. Thus, "b" and "c" define the shape of the curve. It is therefore possible to construct a curve for any given cow in any lactation by choosing the appropriate value for "a" provided it possesses the shape defined by "b" and "c" which have low coefficients of variation.

Wood (1969) ran a goodness of fit test using a sample of 859 Friesian lactation records drawn from 1964 to 1965. The data consisted of sets of weekly milk weights from calving to week 44 of lactation, or earlier if the cow went dry. Lactations were classified by parity number (1, 2, 3, 4+) as well as season of calving. The parameters "a," "b" and "c" were evaluated for each curve. At best, the model accounted for 91.2 percent of the variation in the logarithm of weekly yield and, at worst, 78.8 percent, with an average of 82.3 percent. The model fit best for those lactations beginning during the March-July period and showed the poorest fit during the September-December period.

Environmental Factors Affecting the Shape of the Curve

Shultz (1974) applied Wood's equation to Holstein Friesian cattle using Wisconsin DHIA records and attempted to determine which environmental factors had an effect on the lactation curve. Lactation number, season of calving, days open, days dry previous to lactation and an indication

of the management level of the herd as measured by the folling herd average were investigated. Of the factors tested, lactation number, season of calving and days open exerted the greatest affect on the shape of the curve.

Lactation Number and Persistency

Shultz (1974), in agreement with Wood (1969), Ridler and Broster (1969), Sikka (1950) and Ripley <u>et al</u>. (1970), showed that persistency of yield decreases with lactation number.

Season of Calving

Season of calving was found by Shultz (1974) to influence the shape of the curve in the following ways: (1) Cows calving during the January-April period tend to be more persistent than cows calving during other seasons; (2) Cows calving during the May-June period show evidence of both a smaller increase in output at the beginning and the end of lactation; (3) Cows calving during the July-October period show a decrease in the relative height of the peak, resulting in a greater persistency than the population average in agreement with Appleven (1969) and Sikka (1950); (4) Cows calving during the November-December period produce a larger than normal percentage during mid-lactation with smaller proportions at the beginning and end, consistent with the findings of Wood (1969). There was a definite seasonal stimulation to milk production, regardless of the stage of lactation, exerted during the March-June period. The shape of the curve was significantly determined by the relative position of these calendar months in the lactation.

Days Open and the Calving Interval

The calving interval is the sum of the days in milk and the days dry and depends upon how soon cows are re-bred after parturition. Days open refers to the period of time between parturition and subsequent conception. Ideally, to achieve maximum production a cow should calve every twelve months. However, this is usually not the case. Some high producers do not return to estrus soon enough after parturition to achieve a yearly calving interval.

Breeding Problems

Heritability and repeatability of factors relating to breeding problems are very low. Johansson and Hansson (1940) found a slight tendency of repeatability, .036, of the calving interval. They assumed heritability of the length of the calving interval to be in the range of 0 to 5%. Trimberger <u>et al</u>. (1972) found it impossible to predict the breeding efficiency (the number of inseminations required per conception) of a cow by her previous record. Sonderegger <u>et al</u>. (1977) propose that excess digestible protein, particularly at levels 250-300 gram per cow per day lengthened the interval between parturition and first service. They also found that an abundant energy supply, particularly during the first 60 days after parturition, decreased the interval from first service to conception and from parturition to conception.

Persistency and the Calving Interval

Sanders (1923, 1930), Gains (1927) and Johansson <u>et</u> <u>al</u>. (1940) have shown that persistency of milk yield decreases for cows with shorter calving intervals. Shultz (1974) found that cows open more than 139 days produced a significantly greater proportion of their total during months 9 and 10 of lactation than cows open less than 70 days. Actually, it is not the length of the calving interval that affects milk production as much as the stage of pregnancy. Pregnancy begins to exert an effect upon lactation approximately 140 days after conception (Foley <u>et</u> <u>al</u>. 1972). At this time mammary cell numbers and milk yield begin to decrease, as compared with non-pregnant lactating cows.

If the calving interval is 350 days, this means that the cow has become pregnant approximately 350 - 280 =70 days after parturition since the average gestation

length is 280 days. The effects of pregnancy would begin to be noticeable about 70 + 140 = 210 days into lactation. For a longer calving interval of 420 days, the effects of pregnancy would not become evident until (420 - 280) + 140 = 280 days. This is approaching the time at which she would be dried off to prepare her for the next lactation.

Smith (1973) examined lactation persistency and derived factors for extending milk production beyond the standard 305-day lactation, accounting for variability in calving intervals. These factors were derived from 61,973 New York DHIA records and were split into 2 categories, lactation 1 and lactations 1. These factors can be applied to the lactation curve across calving intervals beginning 4 months after conception.

The Dry Period

Cows should be given a rest period of 6-8 weeks between lactations to allow refurbishment of the mammary gland (Foley <u>et al</u>. 1972). Shorter or longer periods of time will reduce subsequent milk production. Cows not given a normal dry period produced only 62 to 75 percent as much milk as their twins which were given a rest of 60 days between lactations (Foley <u>et al</u>. 1972).

Factors Influencing Dry Matter Intake

The stimulus initiating feed intake arises from an interaction of environmental and biological conditions mediated through the hypothalamus (Bailey, 1970; Baumgardt, 1970). These conditions define the physiological and physical status of the animal at any time. Body size, sex, age, species, previous nutritional history and production state (pregnancy, lactation, growth and fattening, environment and genetics) "set" the energy demands of the animal. Animals attempt to eat to satisfy this demand and achieve energy balance. Animals change voluntary intake in response to a change in energy demands and thus intake cannot be considered a constant attribute of any particular feed (Butler and Bailey, 1973).

In ruminants, the rate of energy expenditure, environmental temperature, qualitative characteristics of the diet and the physical effects of food in the gut are significant factors influencing the level and day to day changes in food consumption and therefore the amount of energy. Over a rather wide range of energy concentrations in the ration, animals are able to adjust the amount of feed voluntarily consumed so as to maintain equal caloric intakes (Baumgardt, 1970).

Ruminants appear to be exceptions to the energy homeostasis mechanism. Feed intake appears to operate in reverse on many roughage feeding programs. For example,

ruminants consume more early-cut immature forage than latecut mature forage. Since the digestible energy content of the early-cut forage is higher, the animal consumes more energy from the early-cut forage (the energy intake differs between these two forages). This is an example of a breakdown in a homeostatic system due to a secondary but potent force. The very low energy concentration in the late-cut forage coupled with its bulky nature results in a filling of the digestive tract capacity at a level of intake below that which is called for by the homeostatic mechanism (Baumgardt, 1970). This phenomenon can be demonstrated in nonruminant species as well as in ruminants if the ration is diluted to a very large extent with indigestible, bulky material. Such a response was demonstrated by Cowgill with dogs as early as 1928 (Balch and Compling, 1962) and has since been shown in many species including chickens, rats, swine, sheep and cattle (Baumgardt, 1970).

Feed intake is proportional to body size when eating capacity is restricted by intestinal fill and undigested residue (Conrad, 1964). Mather and Rimm (1958) found the ratio of feed intake to $W^{0.73}$ was equal to the least-squares regression for adjusting intake for differences in body size of lactating cows. Blaxter <u>et al</u>. (1961) concluded that voluntary intake in sheep varies with metabolic size $(W^{0.74})$.

Energy Content of Feeds

When the nutritive value is high, fill does not limit feed intake and rats, dairy heifers, lactating dairy cows and sheep adjust the amount of feed eaten to regulate energy intake. This explains why it was possible for Blaxter (1950) and Crampton (1957) to claim that the amount of feed consumed in terms of dry matter increases with increasing concentrations of net energy in the rations, whereas, Greenhalgh and Runcie (1962) found no causative relationship between feed intake and digestibility. Figure 1 demonstrates the relationship of nutritive value of rations and feed dry matter and erengy intake.

Figure 1. The Relationship Between Nutritive Value, Dry Matter Intake (----) and Energy Intake (---).

Source: Butler, G. and R. W. Bailey. 1973. Chemistry and Biochemistry of Herbage. (Academic Press: New York) Vol. 3, p. 141.

Dry matter intake increases with nutritive value until a value of 2.2 Kcal of metabolizable energy per gram of dry matter (65 to 70 percent apparent digestibility) is achieved. Above this value dry matter intake frequently decreases (Butler and Bailey, 1973). Energy intake (Kcal of metabolizable energy per gram of dry matter) also increases with nutritive value until a concentration of approximately 2.2 Kcal, after which it is relatively constant (Butler and Bailey, 1973).

Digestion of low nutritive value herbage within the gastrointestinal tract seems to form the basis for the control of intake, while changes caused within the animal's tissues by the absorbed end-products of digestion form the basis of the control of high nutritive value herbages (Baumgardt, 1969).

Physical characteristics of the diet such as volume displacement, surface area of particles, length of cut of forages, pelleting, grinding and heat processing, energy content of the ration, the rate of passage of digesta out of the rumen and the rate of absorption of nutrients, all affect the amount of energy derived from the feed.

In order to partially account for these factors, Montgomery <u>et al</u>. (1965) proposed the concept of multiplying a measure of digestibility and nutrient density and arriving at a caloric density measurement (Kcal of digestible energy/ml of diet). This provides a basis for estimating

total dry matter intake. Baumgardt et al. (1976) showed that DE/ml (caloric density) accounted for 88 percent of the variation in body weight gains, whereas DE/gm accounted for only 67 percent. Bull et al. (1976) studied the relationship between caloric density and energy intake in 24 lactating cows fed five mixed diets of alfalfa hay and concentrate. For the most dilute rations, A and B, physical fill was limiting intake. DE intake of diets of increasing energy density, C, D and E, was similar indicating that gut fill was not limiting intake and that physiological regulation was occurring. In a similar study by DePeters (1975) with lactating cows, physical fill limited the intake of all four rations of grass and hay. These two data sets were combined by Baumgardt (1977) who found neutral detergent fiber (NDF) and bulk density (gm/ml) highly correlated with dry matter intake (r = 0.91 and 0.93, respectively). Dry matter digestibility was not correlated with intake. Mertens et al. (1973) and Thornton et al. (1972) found that density, the digestion coefficient for NDF and the rate of NDF digestion are parameters that are related to rumen retention time and rate of passage.

The maintenance of relatively constant energy intake may be related to some end product of digestion. In ruminants this may be acetate, the major VFA produced in the rumen. Rate of utilization of acetate may limit voluntary intake. Thus, in early lactation there is generally an

increase in energy intake which may be linked to an increase in acetate utilization for milk synthesis.

Impact of Fermented Feeds

Investigations have shown that the voluntary intake of silage is lower than that of hay made from the same crop, harvested at the same time. Work by Thomas et al. (1973) showed that the lower dry matter content of the silage was not a causal factor per se in limiting intake. This work is supported by Baumgardt and Clancy (1975) who studied intake of alfalfa forage in five forms and found that voluntary intake was not significantly correlated with dry matter content of the forage per se. However, there was an indication that some chemical compound in the silage juice may have depressed intake. Data of Clark (1972), Thomas et al. (1970) and Brown (1965) were analyzed by Hillman et al. (1973) to elucidate the effect of moisture content of the ration on intake and are graphically illustrated in Figure 2. The data show that DMI expressed as a percent of body weight changed approximately -.016 to -.023 per 1% increase in the moisture content of the ration above 20%.

Table 2 estimates the percentage decline in intake with increasing moisture additions to the ration (Hillman et al., 1973).

Figure 2. Effect of Moisture Content on Dry Matter Intake of Lactating Cows.

Source: Hillman, D. <u>et al</u>. 1973. Least Cost Rations: A Look at the Michigan System. Unpublished. Michigan State Univ., East Lansing.

Percent Moisture in the Ration	Expected Intake as a % of Potential Intake	Expected Daily Dry Matter Intake for a 1400 lb Cow Producing 60 lbs Milk
20 or less	100.0	45.8
25	96.4	44.2
30	93.0	42.6
35	89.9	41.2
40	86.9	39.8
45	84.2	38.6
50	81.6	37.4

Table 2.	Expected Impact	of	Alt	terna	ative	Quantiti	.es	of F	?er-
	mented Feeds on	Dai	ly	Dry	Matte	r Intake) of	Lac	tat-
	ing Dairy Cows*		•	-					

*The percent moisture in the ration is a proxy for the impact of fermented feeds. It <u>does</u> not depict the impact of wetting dry feeds.

Source: Hillman, D. <u>et al</u>. 1973. Least Cost Rations: A Look at the Michigan System. Unpublished. Michigan State Univ., East Lansing.

Impact of Crude Fiber

The level of fiber in the diet affects the energy density of the ration, the pH of the rumen and the rate of passage of material through the digestive system; thus the percent fiber has an influence on the level of intake. The data in Figure 3 show the impact of varying the roughage:

% Fiber in Ration

Figure 3. Impact of Ration Fiber Content on Dry Matter Intake of Lactating Cows Fed Four Levels of Grain and Two Qualities of Hay.

Source: Hillman, D. <u>et al</u>. 1973. Least Cost Ration: A Look at the Michigan System. Unpublished. Michigan State Univ., East Lansing, as adapted from: Stoddard and Anderson, J. Dairy Sci. 48:798, 1965.

concentrate ratios on daily feed intake based on a study by Stoddard and Anderson (1965). At low levels of concentrate consumption, dry matter consumed as a percent of body weight increased by .076 lbs per percent decrease in fiber. From .25 lbs of grain fed above 20 lbs of milk to .5 lbs, the increase in intake as per percent decrease in fiber is .046. The change for the next increment is .019.

Relative Intake of Forages

Intake of legumes tends to be higher than that of grasses when they are harvested at the same digestibility (Wilkinson, 1976). Since legumes generally contain more protein and minerals than do grasses, they contain more cell contents and a lower proportion of digestible cell walls than grasses when harvested at the same digestibility. Cell contents are believed to be digested at a faster rate than cell walls. Also, the buffering effect of protein and minerals in legumes which alters rumen pH should give a faster rate of digestion of the digestible cell wall portions. Stage of maturity at harvest influences the digestibility of forages and therefore can influence intake. Its effect on the rate of decline in digestibility differs between forage species, and is greater after seed-head emergence than prior to it (Wilkinson, 1976).

Influence of Protein on Feed Intake

Rogers <u>et al</u>. (1973) have shown in rats that intake is depressed when diets are: (1) low or devoid of a single AA, (2) contain an excess of a single AA, or (3) contain a high level of protein. According to Baumgardt (1969), extremes in protein level have marked effects on intake by ruminants. The low feed intake on a low protein diet is related to the inability of rumen microbiota to function properly and failure of such a diet to support normal growth and milk production. Depressed intake on very high protein rations is due in part to the high specific dynamic activity (SDA) associated with protein metabolism and in part due to a deficiency of enzymes involved in amino acid catabolism (Baumgardt, 1969).

Dry Matter Intake and High-Producing Cows

For a limited period of time, high-producing cows regulate energy intake in a very acceptable manner. However, some cows with a lower genetic ability for milk production and also high-ability cows late in lactation, will deposit body fat at an increasing rate rather than convert the extra energy into milk. Body fat deposition becomes uneconomical, but it does not necessarily mean that the cow lacks the ability to regulate energy intake. At least two other possible explanations are presented by Baumgardt (1969). First, the set point on the cow's energy has been raised to an unusually high level. This can be explained on the basis of selection for high production. Such selection may have resulted in animals that would be considered "pathological." Since lactation has a higher biological priority than fattening, obesity is not observed as often in dairy cattle where limited feeding is practiced. The second explanation involves no change in the set point of the regulator. The main difference is that energy status is monitored on the basis of a circulating metabolite pool or undissipated heat load rather than on the basis of energy balance per se. Thus, increasing enzymatic potential (the level of which is under genetic control) can be visualized as removing metabolites from the circulating pool at an accelerated rate in the fattening animal. Intake is related to energy output, but all functions using energy, including fattening, are considered as drains on the energy metabolite pool, which is the parameter being monitored (Baumgardt, 1969).

Eckles and Reed (1910) state, "The cause of the difference in the amount of milk produced is the amount of feed that cows are able to consume and use above maintenance requirements." There is little doubt that high levels of milk production are accompanied by great appetites. It is also true, however, that the variation from cow to cow in this regard is very great. Not all cows that have a greater

ability for milk production demonstrate greater appetites. The result is that some cows produce milk with great losses in body weight, while others are able to more nearly meet their energy requirements with increased intake (Flatt, 1967). A Pennsylvania cow (Kreig, 1975) produced over 50,000 pounds of milk in one lactation. During this time it was calculated that she was consuming over 7 percent of her body weight in DMI per day.

Seasonal Influences on Intake

Environmental temperatures have predictable results on feed intake. Homeotherms increase feed intake in the cold and decrease intake in the heat. There is a difference in temperature effect on younger and older animals and also between lactating and non-lactating animals (Baumgardt, 1969).

Estimating Voluntary Intake

Conrad and his co-workers (1964) at the Ohio experiment station published the results of the factors which influence the dry matter intake of dairy cows. The basic equation they derived was:

Total DMI = Weight/1000 * 10.7/(1 - % digested)*

*Percent digested expressed as a decimal fraction.

The equation assumes that cows excrete a maximum of 10.7 lbs of indigestible dry matter per day (McCullough, 1973). This estimate has since been challenged by Bull <u>et al</u>. (1976) who propose a value of 13.2. Using 10.7 as a base value, Conrad accounted for a major portion of the variability when requirements for maintenance and milk production were added to the equation. When this was done, the equation for calculating maximum feed intake was:

Max. DMI = $10.7 \cdot Weight/1000 + .58 Weight^{0.73} + .33 Milk + .53$

Brown and Chandler (1978) derived an intake prediction equation from data assembled from nineteen experiments conducted at eleven universities across the country. Each observation represented the average daily intake per cow during a twenty-eight day period. The data set included 4,135 Holstein records and 704 Jersey records. The regression equation developed had an \mathbb{R}^2 value of .74, and an average error or 12.5% when predicted values were compared to actual observed values.

The equation reads as follows: ln DMI = b₀ + Season + b₁(DIL) + b₂(ln DIL) + b₃(ln Milk) + b₄(BF) + b₅(BW) + b₆(CF) + b₇(CF)² where: DMI = dry matter intake, kilograms per day. DIL = the average number of days into lactation for a cow or a group of cows Milk = kilograms of milk produced per day by a cow or group of cows

BF = the kilograms of butterfat produced per day BW = the body weight in kilograms CF = crude fiber, percent of ration dry matter CF^2 = crude fiber squared Season = season of the year ln = natural logarithm b_0 and b_1 = parameters The estimated parameters were: b_0 = .5198 Season = .0418 (Fall and Winter) -.0041 (Spring) -.0376 (Summer) b_1 = -.00827 (DIL) b_5 = .000675 (BW) b_2 = .148073 (ln DIL) b_6 = .018001 (CF) b_3 = .339220 (ln Milk) b_7 = -.000557 (CF²) b_4 = .099266 (BF)

Hillman <u>et al</u>. (1973) developed an intake equation using mean data of Slack <u>et al</u>. (1960) which incorporates characteristics of the diet such as net energy and moisture content of the ration. The moisture factor was intended to account for the negative impact of fermented feed on intake, the quality of fermentation being influenced by the moisture content.

The equation reads as follows:

 $Y = 1.021 + (-.003)X_1 + (.0187)X_2 + (1.476)X_3$ where: Y = dry matter intake/100 lbs of body weight

 X_1 = percent moisture in the ration

 $X_2 = lbs of milk$

 X_3 = estimated net energy (ENE) in mcal/lb of DM The \overline{R}^2 value for the equation is .78.

General Observations Concerning Feed Intake During the Lactation Cycle

Intake is relatively low immediately postpartum. Dry matter consumed can be below 2% of body weight of the animal at this time (Jorgenson, 1978). Intake begins to rise sharply during the first few weeks of lactation and usually peaks between weeks 7 and 12 (Hillman, 1973). At this time it will be 30-40% greater than it was immediately postpartum. Peak intake occurs after peak production, usually following within a couple of weeks. Once peak consumption has occurred, intake progressively declines in a linear fashion with milk yield. The relationship ranges between .02 and .07 lbs of dry matter per lb of milk produced.

Nutrient Requirements

With the onset of lactation, there is initiated a tremendous nutrient sink, the mammary gland, which requires acquisition of energy and protein as well as certain vitamins and minerals in quantities far exceeding maintenance levels in order to achieve an output of milk commensurate with the genetic ability of the animal. Only that level of milk production which can be supported by the most limiting nutrient available will be attained.

Peak production level significantly affects total milk yield of a given lactation. Therefore, attention to the nutritional status of the animal during the period extending from freshening to peak daily production is of critical biological and economic significance. This situation is aggravated by the fact that although early lactation requirements are greater than at any other stage of lactation, intake levels are the lowest.

Mobilization of Nutrients from Body Stores

Animals meet their needs by absorption of nutrients from the digestive tract. However, mobilization of body stores can contribute significantly in meeting certain demands, particularly in early lactation (Flatt <u>et al</u>., 1967). This is especially true in regard to energy. Energy mobilization from fat stores is typical for high-producing dairy cows. It is not unusual for cows to lose 100-200 lbs of body weight during the first 75 days of lactation; some cows have been noted to lose over 400 lbs (Moe, 1971). The famous "Lorna" cow (Flatt <u>et al</u>., 1967) mobilized an average of 20 Mcal of body reserves per day during the first four weeks of lactation. This quantity represents over 40% of her daily energy requirements during that period. During early lactation (weeks 1-8) her production ranged from 35 to 27 Mcal of milk energy per day. Figure 4 illustrates Lorna's energy balance throughout lactation.

Parameters concerning the specific relationship of energy mobilization with genetic potential, body condition and ration composition are not explicitly defined, however the following observations are presented:

- Hickman <u>et al</u>. (1971) found that animals which lost the most weight or recovered weight most slowly were the higher producers. Poos <u>et al</u>. (1978) noted that mature cows lost more weight than first lactation animals. These observations suggest that higher producers have a greater capacity for fat mobilization.
- (2) Davenport and Ricks (1969) noted body weight losses in early lactation for cows given a specified feeding level, were greater for fat versus thin cows but not for medium conditioned animals versus thin animals.
- (3) Flatt <u>et al</u>. (1967) related energy mobilization to the roughage concentration of the ration of cows whose peak milk yield ranged from 25 to 40 kg per day. Cows on the high roughage ration (60% alfalfa) mobilized an average of 10.1 Mcal of body tissue per day during the first 8 weeks of lactation while those on the 40 or 20% alfalfa rations only mobilized 7.0 and 3.5 Mcal respectively. Production during this period was 22.4

Mcal of milk energy daily for cows receiving the 60% alfalfa ration as compared with 19.0 and 14.4 Mcal by cows consuming 40 or 20% of the ration dry matter as hay. The average body tissue lost during early lactation was 6.9 Mcal/day. The effect of restricting intake during early lactation was to reduce milk yield rather than increase tissue loss.

The utilization of energy by Lorna (cow 3884), a high producing dairy cow. She produced 8,768 kg 4% fat corrected milk during this 305-day lactation and her average body weight was 643 kg. Each bar represents the mean of two 5-day total energy balance trials. The extension of a bar below the base line indicates loss of body tissue. Rations D, E and F were 60:40, 40:60 and 20:80 alfalfa: concentrate respectively. The balance trials were conducted 4, 8, 21, 24, 39, 42 weeks *post partum*. The measurements when she was dry and pregnant were made 6 to 3 weeks *pre-partum*.

Figure 4. Energy Utilization of Lorna Cow.

Source: Flatt, W. P. <u>et al</u>. 1967. Energy Utilization by High Producing Dairy Cows. II. Summary of Energy Balance Experiments with Lactating Holstein Cows. Energy Metabolism of Farm Animals. (Oriel Press Limited: Newcastle Upon Tyne, England). Edited by K. L. Blaxter, p. 225.

Energy and Fiber Requirements

Maintenance requirements of lactating cows was found to be 73 Kcal/kg of body weight.⁷⁵ (Moe <u>et al</u>., 1972). Because maintenance requirements depend on the level of activity, an allowance of 10% is included in the 1978 NRC requirements. Blaxter (1962) found that the yield of milk exhibits diminishing marginal return as the level of energy consumed increases. This could be partially due to decreased digestibility of the ration as the level of energy consumed increases. Reid (1965) and Tyrell and Moe (1974) suggest digestibility of high concentrate rations is inversely related to the level of energy intake, amounting to an average decrease in digestibility of 4% for each multiple of maintenance requirements ingested. The digestibility decreases as the proportion of grain increases when hay or haylage is the only forage. Cellulose and hemicellulose digestibility appear to be affected most, possibly due to a negative effect on the cellulolytic bacterial population exerted by a decrease in pH when high levels of grain are fed (Kaufman, 1976). Decreased pH is also believed to negatively affect starch digestibility (Wheeler et al., 1976). According to Kaufmann there is a direct relationship between crude fiber in the ration and pH in the rumen as illustrated in Figure 5.

Crude fiber is a rough estimate of chewing time of feed or rumination. Chewing in turn results in salivation.

Figure 5. Relationship of Crude Fibre Content (%) in the Ration and pH in the Rumen.

Ruminant saliva contains large quantities of bicarbonate which acts as a buffer to prevent a decrease in the pH (Emery, 1979). The pH of the rumen influences the ratio of acetic:propionic acid produced which in turn influences the fat content of the milk (Kaufman, 1976). When the ratio of acetate to propionate decreases as is the case in high grain rations, it is believed to be influential in partitioning energy from milk to body fat synthesis. Thus, ruminal pH is an important consideration in terms of ration digestibility and milk yield. Kaufmann (1976) recommends at least 20% crude fiber (CF) in the ration to maintain proper rumen function and avoid lactic acidosis. With 2 times a day feeding he lowers the limit to 17.5% of the ration dry matter as crude fiber.

Dean <u>et al</u>. (1969) used a value of 15% as a minimum level of CF in the California computer ration balancing program but have since changed the limit to 17% as a result of problems with cows going off feed.

Along with the quantity of fiber, the quality of fiber must also be considered. Roughages that are finely chopped or fermented exert a less pronounced effect in maintaining an optimally functioning rumen than is indicated by the amount of crude fiber contained (Thomas, 1979). The "effective" fiber capacity of corn cob meal, on the other hand, is greater than that of alfalfa hay, although the actual crude fiber content is much lower (Van Soest, 1969).

Energy Requirements vs. Genetic Potential

Bath <u>et al</u>. (1971) reported that cows with greater inherent potential utilize feed more efficiently and consume more feed per unit of body weight than low producers. Their observations are presented in Table . Blaxter (1966) and Broster <u>et al</u>. (1969) have also shown that cows with a great capacity for milk production respond by giving more milk per unit of feed as compared to cows of lower capacity.

Protein Requirements

Protein requirements of dairy cattle are not well defined due to the complexity of the digestive process of ruminants. Proteins entering the rumen can be either digested by the rumen microflora or bypass to the lower G.I. tract. Most bacteria in the rumen first deaminate dietary protein subsequently using the ammonia released in the process to build bacterial protein. Because bacteria can synthesize protein from ammonia, non-protein nitrogen (NFN) which is converted to ammonia can be added as a source of nitrogen in some instances to support protein anabolism. The concentration of ammonia in the rumen is a determinant in the rate of microbial growth when energy is not limiting (Satter, 1978b). However, there is a maximum concentration of ammonia in the rumen after which additional amounts are of no benefit as far as microbial activity is concerned. Satter and Roffler (1975) suggest this maximum is achieved when the ammonia concentration in the rumen exceeds 5 mg %. On typical dairy cattle rations this would be equivalent to 12 to 13% crude protein (CP) in the diet. Huber (1976) proposes NFN to be of benefit for predominantly corn silage rations when requirements are as high as 14 to 14.5% CP. In vitro studies by Helferich et al. (1976) have shown that net protein synthesis does not reach a maximum until the ammonia concentration is 15 to 20 mg %. Orskov (1976) has

shown that the ammonia level in sheep facilitating optimum rumen synthesis is greater than 5 mg %.

The concentration of ammonia from the degradation of dietary proteins will determine the additional amounts of NPN which could additionally benefit microbial protein synthesis. Factors affecting the rate of degradation of dietary protein include: physical characteristics of the protein, the amount of readily fermentable carbohydrates, the pH of the rumen and other factors affecting the nutritional environment, as well as retention of the feed in the rumen (Satter, 1978a).

Protein requirements are met by microbial protein synthesized in the rumen and undegraded digestible protein that has escaped fermentation and to a limited extent by protein mobilization from body stores during early lactation (Satter, 1978b). In the lower GI tract of ruminants the quality or amino acid array presented is important as well as total amounts. Microbial protein has a relatively high biological value in this regard (Satter, 1978) and is therefore an excellent complement to the undegraded dietary protein in meeting the amino acid requirement of dairy cattle under most conditions.

Foldager (1977) tested the requirements of protein and the efficacy of NFN addition to diets using 68 Holsteins during the first 20 weeks post-partum. Seventeen cows were assigned to each of the 4 treatment groups. The first two

groups received rations of only plant protein containing 12-13% CP in DM (group NC) and 15-16% (group PC). The other two groups were also fed rations with 15-16% CP, but approximately 25% of the total nitrogen came from NPN as urea (group U) or ammonia (group AU). It was concluded that high yielding cows fed rations of corn, corn silage and limited hay require no more than 13% CP in DM, which is approximately equal to 80-90% of 1971 NRC standards. Poos <u>et al</u>. (1978) found that 11-12% CP is an adequate level to support first calf heifers in early lactation but is not adequate for mature cows. Cressman <u>et al</u>. (1977) obtained similar results.

Daily body weight losses in Foldager's experiment (1977) averaged -.954, -1.843, -.692 and -1.200 kg for groups NC, PC, U and AU respectively. Taking a value of .954 kg/day of weight loss for the NC groups, it is possible to estimate a feasible amount of body protein that was possibly mobilized based on 1978 NRC.

.954 kg/day x 320 g protein/kg body tissue mobilized (1978 NRC) = 305 g protein. Estimating intake at 19.75 kgs DM (Foldager, 1977) the following is postulated:

> 305 g protein 19.75 kg feed consumed = 1.5% CP

This means that the calculation for CP could be off by 1.5% CP and it would be masked by protein mobilization.

Lamb <u>et al</u>. (1973) found that cows fed rations containing 15.1 or 16.1% CP in the ration showed no difference in milk yield. Van Horn <u>et al</u>. (1968) found no significant difference in performance between groups of cows fed 15.5% CP and 13.2% CP using soybean meal as a source of protein supplement.

Growth

Heifers entering the milking herd are still growing, and will continue to do so at a decreasing rate until they approach 84 months of age. McDaniel and Legates (1965) derived a cubic regression of weight on age within-yearseason on 1,593 Holstein cows. The equation is:

 $Y = 757 + 20.91 M - 0.2036M^2 + .00066M^3$ where: Y = estimated weight

M = age in months

Mature equivalent factors relating weight to age can be established by using weight at 84 months as a mature weight to compare with weights at different ages. Data of Matthews and Fohrman (1954) were analyzed similarly. Table 3 lists the mature equivalent factors derived from both sets of data. Almost identical factors result from both studies.

McDa	aniel and Legat	tes	Matthews and	Fohrman
Age (Months)	Fraction of Mature Wt.	MEl (Weight)	Fraction of Mature Wt.	ME (Weight)
24	.784	1.275	•775	1.290
28	.816	1.225	.810	1.235
32	.844	1.185	.841	1.189
36	.870	1.149	.868	1.152
40	.892	1.121	.892	1.121
44	.912	1.096	.913	1.095
48	•930	1.075	.931	1.074
52	•945	1.058	•947	1.056
56	•957	1.045	.960	1.042
60	•968	1.033	.971	1.030
64	•977	1.024	.980	1.020
68	•984	1.016	.986	1.014
72	•990	1.010	•992	1.008
76	•995	1.005	.996	1.004
80	•998	1.002	.998	1.002
84	1.000	1.000	1.000	1.000

Table 3. Mature Equivalent (ME) Factors for Body Weight Derived from Two Studies.

Mature weight = weight at 84 months of age.

Sources: McDaniel, B. T. and J. E. Legates. 1965. Associations Between Body Weight Predicted from Heart-Girth and Production. Journal of Dairy Sci. 48:947.

Matthews, C. A. and M. H. Fohrman. 1974. Beltsville Growth Standards for Holstein Cattle. Technical Bulletin No. 1099, U.S. Dept of Agric., Washington, D.C.

Expected Herd Life

The average dairy heifer freshens at approximately 27 months of age and leaves the herd at 65 months, completing 3 lactations.

Disappearance of cows from the herd occur as a consequence of mandatory (involuntary) or voluntary reasons. Knowledge of removal for involuntary reasons will provide an estimate of the potential lifetime of animals in the herd and thus can be used as a weighting index in determining economic value.

Stewart <u>et al</u>. (1977) define involuntary removal as that which is due to such reasons as: calving problems, disease, foot and leg injury, and reproductive problems such as sterility. Voluntary removal includes cows with low milk or fat production, bad temperament, other faults of the mammary system or general confirmation weaknesses.

Table 4 presents the probability of failure of cows by lactation number as found by the various studies cited. As indicated in the table the probability of removal increases with lactation number in a relatively linear fashion. Stewart <u>et al</u>. (1977) derived a prediction equation based on data collected by Burnside <u>et al</u>. (1971) estimating the probability of involuntary removal as: .0373 + .0170 (Li), where Li refers to the lactation number. Probability of death was estimated separately as: .0075 + .0043 (Li).

Authors:	Stewart et	t al., 1972	Jenki	ins, Halter,	1962	Giaver, 1966	Smith, 1971	<u>Dayton, 1966</u>
Place:	Car	aada		Pennsylvania		California	Florida	Michigan
No. Animals:	19,337 F	Records	C	10,000 Record	8	702 (Jerseys)	369 (Jeraeya)	7,839 Records
Lactation No.	Estimated	Observed	Bt 350 1bs	utterfat Leve 350-400 lbs	el 450 lbs			
40	5430. 5100	.0611 0620	.0438	.0543 0765	.0674 0825	.071	•0593 0764	.05 08
U 10	.0883	.0806	.0825	6260.	.1222	.086	.0935	.08
4 n	1053	0111.	-0927 	.1196 1350	.1438 1678	-082 107	.1278	.14
<u>\</u> 0	.1393	1370	1393	.1557	1751	.113	.1450	70
~8	.1563	.1605	.1322	.1576 .1662	.1813			
6			.1614	.1358	.1336			
91			.1189	.1578	.1527			
11			.1245	-124	1.260.			
Ste Sai	wart consid th & Giaver	ders death r consider	separatelj involuntar	y from involu cy removal as	untary rem	oval. being the pri	uary reason of	removal:
breeding t	rouble was	considered	voluntary	•				
Ste removal in	ewart includion icludes low	ded cows fa prod., mam	ulling to (mary syste	conceive to em reasons, t	3 service yple faul	s as involunta t and failure t	ry removals. V to conceive 3	<i>f</i> oluntary services.

Reasons for Removal

Many studies have dealt with the reasons for disposal of dairy animals including: Arnold <u>et al</u>. (1958), Dayton (1966), O'Bleness and VanVleck (1962), White and Nichols (1962), Renkema <u>et al</u>. (1977) and Gurtle and Smith (1970). Table 5 compares their findings.

The most important reasons for culling among the studies noted above were: low production, sterility and reproductive disorders, teat and udder troubles and mastitis.

Low production is by far the largest single classification, however this category is frequently used as a catchall for animals whose production has been reduced by other conditions such as mastitis, milk fever, hard milkers as well as nonbreeders in late lactation (Dayton 1966).

Table 6 enumerates the reasons for disposal for different age groups found by Dayton (1966). O'Bleness and VanVleck (1962) and Dayton (1966) found that disposal for sterility increases with age. White and Nichols (1962) found only a slight increase due to sterility as age increased. The following observations were drawn from these studies:

- Low production, sterility, udder trouble and dairy purposes are the major reasons for disposal across all age groups.
- 2) Udder and mastitis troubles become more prevalent with increasing age.

luthors	Van Vleck		Arnold & Beecher	White & Wichols	Gurtle &	Dayton
ocation	New York	Netherlands	Florida	Pennsylvania	California	Michigan
late of Study	1962		1957-1958	1958-1963	1968-1969	1957-1962
COVS	7,362		3,447	7,317	1,704	7,839 Holstein
unual rate of	25%0	25 4	Not Given	Not Given	30.8%	Not . Given
REASON O						
1) Reproduction		24.0	15.8		36	
2) Sterility	16.1			15.66		11.3
3) Low Prod	27.1	18.0	25.2	36.87	01	40.2
4) Dairy	14.2		e	69.65		11.2
5) Udder	06.1	18.0	19.8	13.48	12	
6) Mastitis	08.3			05.81		6.60
7) Legs & feet	02.8	0,90				
8) Type	05.0					
9) Behavior		01.0-02.0				
(O) Milk ability	02.5	01.0				02.4
(1) Other		0.01-0.00	02.3	61.60	60	
L2) Unstated			7.60			00.5
13) Died	10.1		14.2	. 02.86		6.40
(4) Accident	•	05.0	02.5		02.0	6
15) Disease	01.99	08.0	03.0		6	03.90
(9) Injury	04.2			12.10	05.00	12.20
17) Age	03.6	0.60	04.7	9,00		01.8
Total	98.8%	1001	100%	\$91.66	100%	

Table 5. Reasons for Dairy Cattle Replacement.

diseast sccients, scritty reproduction). B The high number in this category is probably B Bucket mattits h Udder Manatitis 5 An additional 2008 was a combination of reproduction & udder & low prod. 7 Soil because of banks A.1.8. 7 Soil Scenese of banks A.1.8.

	I	actation Numbe	r
Reason	1	2	3
Dairy	18.1	10.3	6.3
Low Prod	46	47.1	32.1
Physical Injury	10.2	11.6	15.7
Mastitis	4.2	8.6	16.7
Disease	3.8	4.5	2.9
Milk Ability	3.9	2.6	2.5
Sterility	7.9	10.7	12.4
Old Age	0.2	0.1	5.7
Death	5.7	5.0	5.7

Table 6. Percent of Total Culls By Lactation Number.

Source: Dayton, A. 1966. Differential Removal of Daughters Among A.I. Series. Unpublished M.S. Thesis. Michigan State University, East Lansing.

> 3) Low production is the major reason for disposal for cows under 6 years of age. After this time, udder and mastitis troubles are the primary reasons for disposal.

Longevity and High Producing Cows

Some dairymen believe that high producing heifers "burn themselves out" early in life. Gibson (1977) examined the records of 317,301 cows to test this hypothesis. The cows were equally divided into 4 groups according to deviations from herdmates during their first lactations. The average percent removed for each class was calculated through the

Table 7a. Proportion of Cows Removed from the Herd during the Second through Sixth Lactation when Divided into Four Groups According to First Lactation Production.

		P	ercent	Lost	By The	
Yield Class	No. Having lst Record	2nd Rec.	3rd Rec.	4th Rec.	5th Rec.	6th Rec.
Top ¼	87,409	16	33	50	65	78
Third ¼	83,467	11	39	57	69	80
Second ¼	73,211	25	48	65	75	84
Bottom 1/4	73,214	47	68	80	87	92

Source: Gibson, D. 1977. Green Mountair Newsletter. Univ. of Vermont, Burlington.

Table 7b. Percent of Cows Removed from the Herd of <u>Those</u> <u>Surviving the Previous Lactation</u> when Divided into Four Groups According to First Lactation Production.

Yield Class	No. Having lst Record	Percent lst Rec.	Lost 2nd Rec.	of Those 3rd Rec.	Surviving 4th Rec.	The 5th Rec.
Top 1/4	87,409	16	20	25	30	34
Third 1/4	83,467	20	20	26	30	36
Second	% 73,211	25	30	30	30	36
Bottom	14 73,214	45	42	40	35	38

Source: Meadows, C. July 1977. Cow Losses. Dairy Notes. Michigan State Univ., East Lansing.

sixth lactation. The results presented in Tables 7a, b demonstrate that survival is highest in the top quarter and lowest in the bottom.

The majority of the culling in the first few lactations is due to low production, therefore Meadows (1977) converted Gibson's values to percent lost of those surviving the previous record. His calculations still show a small trend favoring survival of the high group but he concluded there was not much difference in total removals. As expected, as cows get older, a higher proportion are removed.

Conclusions Drawn from the Literature Review

A biological model employed for the prediction of milk production and feed disappearance is only as good as the parameter estimates which define the system. From the review presented in the previous pages the following factors should be further investigated to define more precisely the inputoutput biological relationships of the dairy cow:

- 1) Prediction of dry matter intake.
- 2) Prediction of milk yield over time.
- 3) Protein requirements.
- 4) Protein metabolism and quantitative limits defining the use of supplemental NPN in rations.
- 5) The ability of cows to mobilize nutrient stores (particularly energy) in early lactation.
- 6) The effect of pregnancy on persistency of milk production.

The model presented in the following chapter can be easily amended as new information becomes available. Expected herdlife and other variables that will change with time can be updated when necessary.

THE DAIRY COW MODEL

This chapter presents the specifications of the model and the framework of the subsystems. The Fortran computer code is presented in the appendix. Figure 7 presents a flowchart for the model.

Economic Decision Rules

One of the important objectives of the dairyman is to maximize average net returns per unit of time. Figure 6 will be used to illustrate this concept under the assumption of nonstochastic relationships. The slope of a line from the origin to any point on the curve (e.g. line OD)

Figure 6. Net Revenue vs Time.

gives the average net revenue per unit of time for a process terminated at that point in time (e.g. cow culled from the herd). The maximum net revenue (e.g. cumulative net returns over the lifetime of a cow) occurs at point "A," while the maximum average net revenue occurs at point "B," where the steepest line from the origin is tangent to the curve. Point "B" therefore represents the maximum average net revenue per unit of time. As time continues beyond point "B," the decreasing additions to revenue begin to pull down the average net revenue per unit of time. Thus if all cows were of equal ability and if relationships were nonstochastic, they would be culled at the age implied by point "B."

Animals are not all of equal ability. Thus, a criteria must be developed to compare an existing animal, "the defender," against the potential replacement animal, "the challenger." The rule is: "Keep if the marginal returns per unit of time for the defender equals or exceeds the average net returns per unit of time of the challenger, otherwise replace" (Faris 1960).

The estimation of the future value of a dairy cow is complicated by their long lifespan. For this reason future revenues must be discounted using the opportunity cost of equity capital. For example, if the discount rate were 10% per annum, the dairyman would be indifferent between receiving \$1.00 today or \$1.10 a year from now. Therefore \$1.10 a year from now is only worth \$1.00 in terms of

today's dollars. Futting future returns into today's dollars is referred to as estimating the "net present value (NPV)" (Nelson <u>et al.</u>, 1973). Because we are concerned with comparing revenues relative to the present time when the replacement decision is being made, estimated NFV's are calculated. Average revenue per unit of time must be determined once the net present value of a cow has been calculated, since the choice criteria involves maximizing average net returns per unit of time. The average net revenue per unit of time is comparable to an annuity payment (Faris, 1960). Thus it is possible to compare cows with different expected times in the herd based upon their expected annualized net returns.

The decision could involve, for example, replacing a 6-year-old mature cow producing 15,000 pounds of milk with a heifer whose mature equivalent is 17,000 pounds. The time for replacement occurs when the marginal revenue of the "de-fender" is less than the annualized net revenue of the challenger.

Future gross revenues are projected based on milk production and the milk price subsystems. Costs are projected based on feed disappearance, price, and other variable costs such as veterinary expenses subsystems. Costs and returns considered identical for both the "challenger" and the "defender" are ignored. It is differences in costs and returns that will determine which animal belongs in the herd. Past incomes and expenses are ignored as we are

concerned with maximizing future income.

The dairy cow replacement problem is complicated by the fact that the relevant relationships are stochastic. In particular, the probability of a cow surviving from one lactation to the next is less than 100 percent (Stewart <u>et al.</u>, 1977). The rule becomes: "Keep if the expected (in a Probalistic sense) marginal returns per unit of time for the defender equal or exceed the expected (in a probalistic sense) average returns per unit of time of the challenger."

The net present value (NPV) and annualized net present value (ANPV) calculations, in a probalistic environment are calculated as follows:

1. Calculate the NPV and ANPV for each potential

lifespan of the cow, $j = 1, \ldots, J$.

2. Solve for the age, j, which maximizes ANPV.

3. Calculate the expected NPV (ENPV) and expected

ANPV (EANPV). That is:

$$ENPV = \sum_{j=1}^{j} (NPV_j) (P_j)$$

and

$$EANPV = \sum_{j=1}^{J} (ANPV_j) (P_j)$$

where P_j is the probability that the cow will survive j lactations, $P_j = 1$.

Salvage values must be included in NPV calculations. However, they are ignored in EANFV calculations for making replacement decisions since either the defender or the challenger will be sold. More generally, their salvage value differential, if any, should be included.

Introduction to the Model

This program was designed to simulate the costs and returns for individual dairy cows through time from the present moment onward until the end of lactation 7.

The investigator inputs: age, calving interval, mature equivalent milk production, percent butterfat, mature equivalent weight, milk and feedstuffs prices, opportunity cost on capital and the number of lactations to consider. Model outputs include: predicted milk yield for each lactation and average daily milk for each month within each lactation; amounts of each feedstuff necessary to balance a diet to meet nutrient requirements in a least cost way for each month within each lactation; amount of weight lost or gained for each month within each lactation; net present value of the animal and annualized net present value of the animal.

Revenue is calculated for each lactation. Lifetime milk production and feed disappearance are generated and salvage value appropriate variable costs and probabilities of involuntary removal from the herd are accounted for. The model provides an economic basis for making voluntary culling decisions. Past expenses and revenues are ignored as the model is concerned with future revenues.

Figure 7 Flow Chart of the Model

Feed and other variable costs are estimated in the subroutine:

Cost

Other variable costs are based upon production level considering Michigan farm data analyzed by Nott (1974), adjusted to current price levels using a multiplier of 1.75 (Black 1978).

Costs are subtracted from milk income to estimate the revenue generated during each lactation cycle. Revenue is discounted using present value factors consistent with the interest rate and the time period being considered.

The discounted net returns (DNR) are accumulated for all time periods considered (i.e., if considering a cow which is presently in her third lactation, accumulate the expected revenue for lactation 3, then for the period considering lactations 3 + 4, then for 3 + 4 + 5, 3 + 4 + 5 + 6, and finally for the period 3 + 4 + 5 + 6 + 7).

The accumulated discounted net returns, including each time period are subsequently weighted by the marginal probability of their occurrence, thus estimating the variable net present value for each time period considered.

Net present value is converted to annualized net present value using the formula below

NFV x rate $(1 + rate)^{I}/(1 + rate)^{I} - 1$ where

I = lactation number rate = interest rate.

Subsystem: Milk Production

The model projects average daily milk production of a cow for each month within each lactation from the present moment onward until the end of lactation 7. Factors that are important to consider in projecting milk yield include: 1) genetic potential and environment, 2) age and lactation number, 3) season of calving, 4) feed intake and ration quality and 5) health of the animal.

Genetic potential and environment are taken into account using DHIA (1974) mature equivalent (ME milk) factors which project the 305-day yield of the cow if she were mature (approximately 24 mos of age). They are primarily used to compare the producing capacity of contemporary herdmates during the present year. These factors take into account breed, regional location in the United States and represent the expected phenotypic character of the animal within a given environment. Using these factors thus implies relatively constant environmental conditions across all lactations.

Projected mature equivalent milk production is adjusted by age and season of calving correction factors enabling prediction of the total milk yield for the entire lactation for animals of any age calving at various seasons of the year.
DHIA (1974) age and season of calving correction factors were fitted to reciprocal curves resulting in equations for total milk with age as the dependent variable and read as follows:

If age ≤ 70 months, the mature equivalent (XME milk) factor for milk equals:

 $\underline{\text{XME}}_{\text{milk}} = .809 + (10.68 \div \text{age in months})^{\circ}$ If age > 70 and ≤ 94 months:

 $XME_{mill} = .96$

If age > 94 months:

 $XME_{milk} = .96 + .0016 x (age in months - 94)$

Table	8.	Average	Season	Effects	on i	ME	Milk.
-------	----	---------	--------	---------	------	----	-------

Month	Jan.	Feb.	March	April	May	June
Factor	0	1.005	1.00625	1.0194	1.0368	1.0719
Month	July	Aug.	Sept.	Oct.	Nov.	Dec.
Factor	1.09625	1.095	1.0625	1.036	1.0194	1.0156

Adapted from: Norman, H. <u>et al</u>. 1974. USDA-DHIA. Factors for Standardizing 305-Day Lactation Records for Age and Month of Calving. ARS-NE-40. Agricultural Research Service, US Dept of Agr., p. 48.

The effect of season of calving was adjusted for using DHIA monthly factors averaged across all age groups for the months January through December and are listed in Table 8. Once milk yield for the total lactation is estimated, average daily milk yield for each month within a lactation is projected using Wood's model (1969):

 $Y_n = an^b e^{-cn}$ where: $Y_n = milk$ yield in week n n = weeks into lactation e = base of the natural logarithm a, b, c = the parameter estimatesWood's equation (1969) was adapted for use in the model employing Shultz's (1974) standard values for the

parameters "a," "b," and "c." (See subroutine:

X LACT (AGE, WEEK, SEASON, PRODYR, PRODDY). The parameter "a" defines the level of peak production while "b" and "c" characterize the shape of the curve for the age and season of calving subgroups.

The parameter "a" can be estimated for any level of production using the equation:

a' = "a" + ln (Z/Y)

In this equation a' is the adjusted value for "a," where "a" is the standard value built into the model. Z is the actual level of production (in our model, Z is the 305-day predicted ME_{milk} production level). Y is the accumulated production level of the standard (in our model Y equals the 305-day total for the standard cow).

The following example illustrates these calculations for a 2-year old heifer with a mature equivalent of

15,200 pounds of milk and calving in January.

Step 1: Divide the mature equivalent by DHIA age and season of calving factors

 $\frac{53}{1.24}$ of milk/305 days = 12,285 lbs of milk/305 days = 1.24

Step 2: The lactation curve parameters applicable to this heifer are within the subclass of age (-2) and season of calving (January-February). The standard value for "a" is 3.574, "b" is (.202) and "c" is (.00562). The adjusted value of "a" equals:

 $3.574 + \ln (12,258 \text{ lbs of milk}/12,633 \text{ lbs of milk}) = 3.544$

Therefore, the lactation equation for this particular heifer in her first lactation is defined by the equation:

$$\mathbf{Y}_{n} = an^{b}e^{-cn}$$

In this case:

 $Y_n = 3.544 (n)^{.202} e^{-(.00562)} (n)$

Estimating Lifetime Production

Production in future lactations is calculated in the following manner:

1. Estimate the season of calving.

If the calving interval is 13 months, the season of calving shifts one month with each successive lactation (i.e. if the first calving occurs in January the second will be in February, the third in March, etc.). If the calving interval is 14 months, the season of calving will shift 2 months with each successive lactation.

- 2. Age at second calving is equal to age at first calving + length of the calving interval.
- 3. Total milk production is projected by adjusting the ME by the reciprocal of the appropriate DHIA age and season of calving factor.
- 4. The appropriate standard parameters of the lactation curve are now defined by the age and season of calving factors.
- 5. An adjusted value for "a" is calculated as explained on page 63.
- 6. The appropriate parameters of the lactation equation are applied and average daily milk is projected for every month of lactation 2.

The process is continued for lactations 3, 4, 5, 6, and 7 to calculate weekly production during the lactation cycle. The process is terminated after lactation 7 because the probability of a cow remaining in the herd beyond this length of time is very small (<2%) (Andrus et al., 1970).

Subsystem: Dry Matter Intake

Development of the Dry Matter Intake Equation

Equations used in the model are based upon statistical analysis of the experimental data of Foldager (1978) and the literature. Foldager's experiment was designed to estimate protein requirements in early lactation. Weekly intake data for 68 Holsteins during the first 20 weeks of lactation were available. Regression methods were used to estimate the parameters of dry matter intake per day equations including testing hypotheses about linearity of the impacts of milk production potential and weight. Chandler and Brown's (1976) study and the literature were used in the selection of explanatory variables; variables include age, season of calving, milk produced per day and weeks into lactation.

There was no evidence to support the hypothesis that weight at calving and milk production potential are nonlinearly related to dry matter intake. The resultant equation when WTCLF2 and MILK2(6-8) are excluded is presented in Table 9. Dry matter intake was influenced by the protein system; cows receiving the 13-15% CP diet unsupplemented with NFN and both NFN supplemented diets had lower intakes than the cows receiving 12-13% CP diets unsupplemented with NFN. While the hypothesis that intakes were equivalent was rejected, there was no evidence that a difference existed between 2nd, 3rd and 4th treatments.

DMI _{i,j}	Daily dry matter intake for the i th cow during the j th week, pounds/day
AGE:	
AGE 2	<pre>l if two years old 0 otherwise</pre>
AGE 3	l if 3 years old • O otherwise
AGE 4	<pre>l if 4 years old 0 otherwise</pre>
TIME:	
WEEK	Weeks into lactation
WEEK2	Week squared
WEEK3	Week cubed
PRODUCTION:	
MILK(6-8) _i	Daily milk production for the ith cow during the 6 th through 8 th weeks, pounds per day, a proxy for production potential.
MILK2(6-8)j	Milk(6-8) squared
MILK _i ,j	Daily milk production for the ith cow during the j th week, pounds per day.
MILK2i,j	MILK _{i,j} squared
WEIGHT:	
WTCLF	Weight at one week post partum
WTCLF2	WTCLF squared
SEASON:	
SEASON 1	<pre>l if December, January or February O otherwise</pre>
SEASON 2	l if March or April • O otherwise
SEASON 3	<pre>l if May or June 0 otherwise</pre>

SEASON 4	3	1 0	if July, August, or Sept. otherwise
SEASON 5	3	1 0	if October or November otherwise
PROTEIN TREATMENTS:			
TREAT 1	2	1 0	if cow received 12-13% crude protein diet; no supplemental NFN otherwise
TREAT 2	=	1 0	if cow received 15-16% crude protein diet; no supplemental NPN otherwise
TREAT 3	3	1 0	if cow received 15-16% crude protein diet; urea added at .65% of corn si- lage, fresh basis otherwise
TREAT 4	=	1 0	if cow received 15-16% crude protein diet; ammo- nia added at .40% of corn silage, fresh basis otherwise

The initial equation estimated was:

$$DMI_{i,j} = + 2 SEASON 2 + 3 SEASON 3 + 4 SEASON 4 + 5 SEASON 5 + 3 AGE 3 + 4 AGE 4 + 2 TREAT 2 + 3 TREAT 3 + 4 TREAT 4 + S_1 WEEK + S_2 WEEK2 + S_3 WEEK3 + O_1 WTCLF_{i,j} + O_2 WTCLF2_{i,j} + N_1 MILK(6-8)_{i,j} + N_2 MILK2(6-8)_{i,j} + u_{i,j}$$

where u_{i,j} is a random error. A subsequent model was formulated in which the data were divided into two groups, two year olds and cows at least three years old.

Regression Coefficients Defining Dry Matter Intake/Day During the First Twenty Weeks of Lactation. Table 9.

	Ē ² = .5970	
Standard Er	ror of Estim	ate = 2.2476
Regression Co	efficient	Significance
Description	Value	Level
Constant	1.8049	.016
EI N	6669	.0005
П З	5535	.002
T 4	7418	.0005
S 2	.0639	.815
8 3 2	2423	.252
S 4	.9728	.020
S 5	.6107	.001
A 2	1.0784	.0005
A 3	.7350	.007
Week	2.0906	.0005
Week ²	1831	.0005
Week3	•00	.0005
Milk(6-8)	.2072	.0005
Wt at Calf	.0065	.0005

Regressions are based on 1320 cases of individual animal data.

Source: Foldager, J. 1977. Protein Requirements and Non-Protein Nitrogen for High Producing Cows in Early Lactation. Ph.D. Thesis, E. Lansing, Michigan, Michigan State University.

Twenty-two of the 68 cows in the experiment were first calf heifers; previous studies have suggested the intake curve for heifers is "flatter" than that of other cows. Thus, cows were sorted into two groups; cows 2 years of age and cows at least 3 years of age. Table 10 depicts the regression equation for 2, _3, and the combined data, respectively. The first step is to test the hypothesis that first calf heifers and cows have equivalent intake equations against the alternative that they do not. The appropriate test (Madalla, G. S., 1977, p. 460) is:

where

 $Q_2 = 6205$ $Q_3 = 742$ K = 12m+n = 1360

and

The

$$\mathbf{F} = \frac{742/12}{6205/(1360-24)} = 13.32$$

a significance level .001. Thus, the hypothesis that the intake equations are equivalent was rejected.

Regression Coefficients Characterizing Intake by In Early Lactation Age Table 10.

.0005 .002 .0005 .0005 .0005 .0005 .0005 .815 .252 .020 .001 016 Sig. and Non-Protein Nitrogen for High .5970 E. Lansing, Michigan. -.6669 -.5534 -.7418 Ħ -.2423 .4728 .6107 2.0906 -.1831 .0047 .2072 .0064 1.08 .0638 1.8049.735 **A11** \mathbb{R}^2 .0005 .001 .0005 .0005 .0005 0005 0000 .0005 .875 Sig. .010 - .6026 2.2318 -.7344 -.5634 -.7142 .5146 .6761 -.1891 2060 -.1666 .0420 1.9038 -.1735 .0046 2.2063 3.428 Estimate All \mathbb{R}^2 Thesis. .0005 .005 .090 .420 .014 .0005 .0005 .0005 .0005 Sig. .162 Error of the .5885 Protein Requirements Ph.D. 2.2711 Age Ħ -.7318 -.4989 -.6714 -.1675 -.1675 .5003 .8546 .2444 2.0906 -.1831 AII Foldager, J. 1977. Protein Requir Producing Cows in Early Lactation. R2 Standard 2.4735 .0005 .793 .0005 .001 .0005 .0005 .0005 Sig. .001 .4728 Michigan State University N 2.5120 -.2189 .0056 -. 8829 7543 .1954 -.0823 -1.3706 3.5940 -.9407 R2 m 0.0005 0.0005 0.0005 .0005.0005 0.0005 .945 .316 .460 1.000 .001 179 Sig. .4854 N .2106 .2106 .1721 1.4099 -.1254 +.0032 .0000 .7980 .1588 1.1673 R2 1.284 2 Source: Milk(6-8) .. Constant Age Data ? WTCLF 2 m Age Age NN CIN4 NN N F W3 ≥ 7 3

There are several differences in the equations. Protein treatment system had little impact on the DMI of 2-year heifers, as contrasted to a substantial impact on cows at least 3 years old. The seasonal impacts are similar except for the May-June period when the impacts were in the opposite direction. The most important difference is that the DMI curve is much flatter for the two-year olds than for the older cows. DMI of the older cows was more sensitive to production potential when it was relatively more sensitive to weight for the 2-year olds.

The analysis indicated that protein treatments 2, 3, and 4 be combined and that seasons 1 and 2 be combined as well as seasons 4 and 5. This reduced the total number of variables to 8. However, separate equations should be considered for two-year olds vs. older cows.

Use of the proxy variable for genetic potential $(MILK(6-8)_j)$ resulted in a lower \mathbb{R}^2 than use of average daily production during the week $(MILK_i)$, .588 vs. .6519. These regressions are presented in Table 11. These results must be interpreted with caution, however, since use of $MILK_{ij}$ will result in biased estimators if $MILK_{ij}$ and DMI_{ij} are simultaneously determined (Dean, et al., 1972). Single equation estimators sometimes result in better forcasts than those derived from systems of equations, even when simultaneously is present (Madalla, 1977). However, biased estimators is are inappropriate for managerial decision making.

	<u>Milk</u> (Average Daily)	Milk (Weeks 6-8)
R ²	.6519	•588
Standard Error of the Estimate	2.09	2.27
Constant	1.401	•783
Т 2	- •545	615
S 3	.190	264
S 4	.776	.511
Milk	• 308	0
Milk (6-8)	0	.243
Weeks	1.161	2.091
(Weeks) ²	091	183
(Weeks) ³	.002	.0047
Wt at Calf	.007	.007

Table 11. Milk (Average Daily) vs Milk (Weeks 6-8). 1360 Cases.

The regressions described above pertain to data collected over the first 20 weeks of lactation. Extrapolating the regressions beyond that point in time resulted in absurd estimates.

Impact of Fermented Feeds

The equations presented in Table 12 illustrate the impact of fermented feeds on dry matter intake per cwt. of body weight based on an analysis of monthly treatment mean data from Brown et al. (1965) involving 40 cows and 4 different roughage rations. During the experiment corn silage was fed ad libitum to groups 1, 2 and 3. Average quality alfalfa was fed at the rate of 0, 10, 20 and ad lib pounds to groups 1, 2, 3 and 4 respectively.

The regressions involved 2 independent variables: months into lactation and moisture percent of the ration (which is used as a proxy variable indicating the degree of fermentation). The \overline{R}^2 value of the analysis was .93. A second equation was run containing moisture, the square root of moisture as well as months. Including non-linear relationships did not improve the analysis. A second series of regressions were run excluding the first 10 weeks into lactation, thus removing the confounding effects of early lactation on intake. This analysis involved 32 cases of mean data and is reported in Table 13. The results are similar to those presented in Table 12; however there is

Table	3 I2.	Regression Coe Relatio	officients Defir on to Moisture a	ing Dry Matte nd Time	er Intake in
		Ē2 =	.931	Ē2	- .934
Variablea	~	ß	Significance Level		Significance Level
Constant		3.6731	.0005	3.219	.0005
Month		0177	.0005	0169	.0005
Moisture		0176	.0005	0360	.005
Moisture'	ñ			.1873	.137
Where: M M	lonth loist loist	= months i ure 5 = % moistu ure 5 = (% moist	n lactation ire of the ratio ure of the rati	n.5 0n).5	
F			0 20200 JZ 20 P	6 A-+-	

Regressions are based on 56 cases of mean data.

Brown, L. D., et al. 1965. Effect of Feeding Vari-ous Levels of Corn Silage and Hay with High Levels of Grain to Lactating Dairy Cows. Journal of Dairy Science, 48:816, abs. Source:

and
Lactation
Into
Weeks
of
Influence
the wt.
Characterizing Ration on DMI/c
Regression Coefficients Moisture Fercent of the
lable 13.

	d LLA)a ta	10 We Into Lac	eks tation	weeks 1	0-19	20 Wee	ks	Interact Mois. and 10 Wee Into Lact	ion of 1 Week eks tation
Cases	36		32		12		20		32	
R^2	.931	4	.937	2	.778	4	.9879	_	.961	~
Standard Erron of the Estimat	се .092	2	.088	8	.103	6	.0392		.0690	2
	Sig.		$\mathbf{S1g}$		Sig		Sig.		Sig	
Constant	3.6731	.0005	3.7405	.0005	3.5639	.0005	3.9732	.0005	3.3874	.0005
Week	0177	.000	0194	.0005	0203	.042	0236	.0005	00732	600.
Moisture	0177	.000	0181	.0005	0126	.0005	0201	.0005	0063	.064
Week x Mois.									0004	.0005
Data Source:	Brown, L and Hay 48:816,	. D., <u>e</u> with HI abs.	t al. 19 gh Levels	65. Efi	fect of F in to Lac	eeding tating	Various Le Dairy Cows	vels o	f Corn Sil Dairy Scie	lage ence,

less evidence for a non-linear relationship.

The hypothesis that the impact of fermented feeds might be different at various stages of lactation was examined. The data were divided into 2 periods: WEEKS₁₀₋₁₉ and WEEKS 20. The following hypothesis was tested:

 $H_0 : B_{10-19} = B_{20}$

 H_{Λ} : H_{Ω} false

where: B₁₀₋₁₉ = regression coefficients characterizing intake during weeks 10-19 of lactation.

B 20 = regression coefficient characterizing intake during weeks 20 of lactation.

The appropriate F statistic is

$$F = \frac{Q_3/k}{Q_2/M + N - 2k}$$

where: F = F statistic

 $Q_1 = SS_E$ of the regression characterizing intake for weeks 10 into lactation.

 $Q_2 = SS_E$ of the regression characterizing intake for weeks 10-19 + SS_E of the regression characterizing intake for weeks 20.

 $Q_3 = Q_1 - Q_3$

k = # variables considered in the regression.

(M + N) = # cases for weeks 10-19 (M) + # cases for weeks 20 (N).

```
SS_E (< 10 \text{ WEEKS}) = .228818

SS_E (10-19 \text{ WEEKS}) = .096018

SS_E (\ge 20 \text{ WEEKS}) = .026088

k = 2

M = 12

N = 20

F = 12.2336

F \text{ critical } .05 (2,28) = 4.22

.01 (2,28) = 6.44

F \text{ exceeds F critical.}
```

Therefore, we can reject H_0 (pr \leq .000005); there is not enough evidence contained in Brown's data to show that the regression coefficients are the same for weeks 10-19 and weeks 20 into lactation when characterizing intake by weeks into lactation and moisture content of the diet.

The evidence does indeed suggest that the impact of fermented feeds affects dry matter intake and changes with time during the lactation.

Impact of Energy Density and Crude Fiber Content of the Ration

The impacts of energy density and crude fiber content of the ration on dry matter intake per cwt. of body weight were analyzed using period mean data of Lamb <u>et al</u>. (1973). The regression coefficients are presented in Table 14. Regressions including either energy or crude fiber as variables provide similar \overline{R}^2 's indicating they are good substitutes for one another and are highly related. The best fit regressions included as variables net energy (NE_L), (NE_L)² and crude fiber demonstrating a curvilinear response of intake as energy density increases.

Crude Fiber and	(DMI/Cwt)
Pable 14. Regression Coefficients Defining Energy,	Milk per Day on Dry Matter Intake

	6.	001	<u>.</u>	121	6	R2 167	6.	382	<u>8</u> .	572
				Stand	ard Error	of the	Estimate			
	0.	766	<u>'</u> 0'	728	0.	209	0.	1610	70.	145
VARIABLES	Coef.	Sig.	Coef.	Sig.	Coef.	Sig.	Coef.	Sig.	Coef.	Sig.
Constant	2.3749	•0005	1.2490	•059	2.4227	.0005	8.5246	.002	-13.5959	.037
Milk	.0185	.0005	.0148	.005	.01397	.0005	.0102	.001	.0047	.064
NE _L /1b			1.7610	.080					74.8724	.001
$(NE_L/lb)^2$							-13.7935	.018	-76.8432	.000
Crude Fiber					.1451	.047	1.6481	110.	3.0663	.0005
Regressions from the re	are base gressions	d on 20 •	cases of	mean d	ata. The	first l	0 weeks of	lacta	tion are e	kcluded

Lamb, R. C., et al. Response to Goncentrates Containing Two Percents of Protein Fed at Four Rates for Complete Lactations. Journal of Dairy Sci., 57:811. Source:

Subroutines: DMILAC and DMIDRY

The subroutine:

DMILAC (AGE, WEEK, PROD, PRODDY, PRODLG, WEIGHT, DMI, DMILAG) is used to estimate dry matter intake over the lactation. Cows are differentiated on the basis of age (i.e. animals -2 yrs of age at freshening and those \geq 3 yrs old at freshening).

The intake equation estimated from the analysis of Foldager's data (1977) was used to characterize the intake response curve in early lactation (weeks \leq 10). An upward adjustment of .5 was added to the constant providing a more reasonable estimate of intake.

It is assumed that peak intake has occurred by week 10 into lactation. Intake for weeks > 9 is projected based on intake during the previous month (DMILAG) and adjusted downward to account for decreasing intake as the level of milk production declines (PRODLG - PRODDY). PRODLG refers to average daily milk produced during the previous period and PRODDY refers to daily milk production per day during the present period.

A value of .2 is used as the coefficient characterizing the influence of the change in milk production on dry matter intake. This value was derived from analysis of Lamb's data (1973) presented in Table 14.

Hillman's analysis of Slack's data (1973) yields a coefficient of .0187 x milk when expressing intake as a

percent of bodyweight. Assuming an average bodyweight of 1350 lbs the coefficient becomes:

.0187 x 13.5 = .25245 x (milk, lbs) The coefficient found by analyzing Foldager's (1977) data was:

.2578 x (milk, lbs) for cows \leq 2 yrs old

.2740 x (milk, lbs) for cows 2 3 yrs old

When estimating lbs of dry matter intake, Broster (1978) found the coefficient of:

.158 x milk (lbs)

The average of the above coefficients is .228. The value used in the model, .2 x milk (lbs), compares favorably with the average value of the coefficients.

Intake during the dry period is estimated in the subroutine:

DMIDRY (AGE, WEEK, PROD, PRODDY, PRODLG, WEIGHT, DMI, DMILAG)

Maximum intake is defined as being equal to intake one period (month) prior to the dry period.

Table 15 defines how maximum intake is estimated in the model.

Table 15. Estimated Maximum Dry Matter Intake

		For Weeks 1 < 9 into Lactation
DMI,	(lbs/day) =	$2.30 + 1.03 \times (Age \le 2) + .74 \times (Age \ge 3)$
		+ .0064649 x (Weight, lbs ÷ 2.2) + .20719
		x (Production, lbs of milk per day)
		+ 2.0906 x (Week, into lactation)
		133139 x Week ² + .0046634 x Week ³
		x 2.2
		For Weeks 10 - 40
DMI,	(lbs/day) =	Dry matter intake during the previous
		month (DMILAG)20 x Change in milk
		production, (PRODLG - PRODDY)

For The Dry Period

.

DMI, (lbs/day) = DMILAG

Characteristics of the Diet

The effects on dry matter intake of characteristics of the diet such as fermented feeds and energy density are calculated in subsystem:

> REQLAC (AGE, WEEK, PRODDY, WEIGHT, GROWTH, WTCHG, ITPCHG, DMI, EN, CP, CA, PHOS, SALT, XNPN, CAPHLB, CAPHUB, FMIMP, ENIMP, CF)

DMI is a function of age, week into lactation, milk production potential, energy density of the diet, and an index of fermintation. The equation used is

DMI	3	 	?	WEEK007 MOISTURE %	MOISTURE if WEEK	% - .0039 40.	NEEK-
NTCLF		 	?	WEEK023	if WEEK	40.	

The impact of the fermentation interaction term is equivalent to the most severe declension on intake due to fermented feeds noted by Hillman <u>et al</u>. (1973). The interaction term may explain differences in the slope $\frac{DMI}{FI}$ found by Hillman <u>et al</u>. (1973) ranging from -.017 to -.023. In the model the impact of fermented feeds is designated as FMIMP.

The relationship of DkI and energy density was derived from Lamb's data: It is estimated that

$$\frac{(DMI/CTCLF)}{(NE_{T}/1b)} = 1.48.$$

This compares with Hillman, <u>et al</u>.'s estimate of 1.76 when estimated net energy (ENE) was used.

The impact of energy density is designated as ENIMP in the program. Energy density does not begin to exert a negative effect on intake until energy density exceeds .72 Mcal NE_{I}/lb of dry matter (see Baumgardt 1970).

Subsystem: Requirements

Maintenance requirements are estimated as a function of metabolic size, wt_{kg} .⁷⁵, while production requirements are a linear function of milk production and the percent fat contained in the milk. Lactation requirements are described in the subroutine:

REQLAC (AGE, WEEK, PRODDY, WEIGHT, EN, CP, XNPN,

CA, PHOS, XCAPH, SALT)

while dry cow requirements are described by the subroutine: REQDRY (AGE, WEEK, WEIGHT, EN, CP, XNPN, CA, PHOS, XCAPH, SALT).

Requirements for growth are based on gain per day.

Protein and Energy

The protein subsystem is relatively crude. Since there is little consensus upon the appropriate conceptual framework, NRC requirements were used in conjunction with an upperbound on supplemental NFN use and NFN as a percent of the total protein. There is controversy concerning protein requirements and utilization of supplementary NFN as a source of protein for high producing cows in early lactation. As there is no evidence demonstrating beneficial effects of supplemental NFN in rations of cows whose requirements exceed 14% CP in the ration, supplemental NFN is not permitted as a source of protein if requirements exceed this level. Supplemental NFN was restricted to a maximum of 30 percent of the total crude protein requirement.

It is not clearly established that energy requirements per pound of milk produced decreases as a cow's genetic potential increases as proposed by Smith (1975) and Blaxter (1962); therefore constant partial efficiencies are included in the model.

High producing cows in early lactation have the ability to mobilize significant quantities of body stores thereby helping to meet energy demands when dry matter intake levels are low. This ability appears to be related to the level of milk produced (Poos <u>et al</u>. 1978, Flatt <u>et</u> <u>al</u>. 1967). Calculations in table 16 suggest this relationship may be approximated by expressing mobilization capacity as a function of the level of milk produced. Amounts of energy available through fat mobilization are not precisely defined; however, based on experiments of Flatt and Moe (Flatt <u>et al</u>. 1967, Flatt 1966, Moe 1971) as well as general observations of amounts of body weight lost during early lactation (Trimberger <u>et al</u>. 1972), the following assumptions are incorporated in the analysis:

> 1. Body fat can be used as a source of energy during the first 8 weeks of lactation with up to 30% of daily energy requirements being met during the first 4 weeks of lactation. During weeks 4-8, 15% of requirements can come from body stores. The body fat used in early lactation must be replenished during mid and late lactation.

Energy Mobilization in Early Lactation Proposed as a Percent of Requirements Table 16

	30% of NEL	Estimated Daily Weight Loss (2)	X Body Weight Lost in 30 Days	20X of ME _L Requirements	Estimated Daily Weight Loss	X Body Weight Lost in 30 Days
Pounde of Milk	Mcal	Lbe.	þe .	Mcal	Lbe.	M
100 90 80	12.34 11.40 10.48	5.53 5.11 4.70	11.8 10.9 10.0	8.22 7.60 6.98	3.69 3.41 3.13	7.9 6.7 6.7
2323	9.55 8.62 7.69 6.76	4.28 3.86 3.45 3.02	9.1 8.3 6.4	6.36 5.74 5.14 4.50	2.85 2.58 2.30 2.02	
	15% of ME _L Requirements	Estimated Daily Weight Loss	X Body Weight Lost in 30 Days	10% of NE _L Requirements	Estimated Daily Weight Loss	X Body Weight Lost in 30 Daye
Pounds of Milk	Kce1	Lbe.	н	Mcal	Lbe.	2
188 55 55 55 55 55 55 55 55 55 55 55 55 5	6.17 5.26 5.26 4.77 3.81 18.6 3.83	2.77 2.55 2.35 2.35 2.14 1.93 1.93 1.51	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.11 3.49 3.18 2.25 2.25	1.84 1.71 1.55 1.55 1.23 1.129 1.01	

Requirements are based on a 1400 lb. cov producing 3.5% fat milh.
 Energy per pound of body weight is estimated from 1978 NBC as 2.23

Energy per pound of body weight is estimated from 1978 MRC as 2.23 Mcal of MEL per pound.

- 2. Fat is assumed to contain 9.0 Mcal of energy per kilogram. Conversion from fat to milk is considered to be .86 efficient (Moe, P. and W. Flatt 1969); therefore it is assumed to contain 7.56 Mcal per kg or 3.4 Mcal per pound.
- 3. Moe (1971) states that efficiency of gain in mid and late lactation is the same as for milk production; therefore Mcal required to replenish fat stores can be estimated using NE. Replenishment of body stores is assumed to occur during weeks 12 to 40 of lactation. By week 12 animals should have reached their maximum dry matter intake, and milk production is beginning to decline. After week 40 the animal is approaching the dry period and fattening in the dry period is not recommended. Fat will be replaced evenly during this period by averaging the amount of weight lost over this 196day period.

Energy requirements can be stated as follows: Period 1: lst 4 weeks of lactation $NE_{\ell}^{r} = \neg BW + \beta Milk - \gamma Body Weight Loss$ Period 2: Weeks 4 - 8 $NE_{\ell}^{r} = \neg BW^{\cdot 75} + \beta Milk - \gamma Body Weight Loss$ Period 3: Weeks 8 - 12 $NE_{\ell}^{r} = \neg BW^{\cdot 75} + \beta Milk$ Period 4: Weeks 12 - 40 $NE_{\chi}^{r} = -BW^{\cdot 75} + \frac{(\Sigma \text{ Mcal mobilized})}{196}$ Period 5: Week 40 to Dry $NE_{\chi}^{r} = -BW^{\cdot 75} + \rho \text{ Milk}$ ere:

where:

NE^r is in Mcal per day; BW is in kilograms; Milk is in kilograms per day; and ∝ , e , V are parameters, all 0.

Table 17 shows how the model accounts for changes in body weight.

Calcium and Phosphorus

The Ca/Phos ratio during lactation must be less than 2.5 but greater than two to reduce the incidence of milk fever (Hillman <u>et al</u>. 1973). During the dry period, Jorgensen (1978) recommends that calcium intake not exceed 100 grams per day. Also, the Ca/Phos ratio is set \leq 1.5 to insure that excess phosphorus is not incorporated in the diet.

Crude fiber

The level of crude fiber in the ration is set $\geq 16\%$ DMI in order to assure adequate rumen function.

Requirements for growth

Requirements for growth are not clearly established for a heifer once she enters the milking herd although cows do not reach maturity until an age of approximately 7 years (Foldager et al. 1972). NRC recommends increasing the

Time Period	Change in Body Weight
Week <u>-</u> 4	<pre>~* A Body Weight = [(energy required for maintenance, milk and growth) x .3] + 3.4</pre>
4 < Week <u><</u> 8	<pre>Max & Body Weight = [energy required for maintenance, milk and growth) x .15] + 3.4</pre>
8 < Week <u><</u> 12	Max & Body Weight = 0
12 < Meek <u><</u> 40	Mcal NEL for = [(E Mcal NEL mobilized) + 196] x .8 Reconditioning week =]
Week > 40	Mcal NEL for = 0
	Reconditioning

Table 17 Restriction on Maximum Energy Mobilization and Re-conditioning During Lactation

maintenance allowance for all nutrients by 20% during the first lactation and 10% during the second to allow for growth.

Requirements in this study are based upon the animal's growth rate which is estimated in the subroutine:

WT (MNTAGE, WTME, WEIGHT, GROWTH).

Values of 2.32 Mcal NE and .50 lbs. protein were used per pound of gain for growing lactating cattle based on 1978 NRC.

Tables 18 and 19 show how the model accounts for nutrient requirements.

TABLE 18. NUTRIENT REQUIREMENT SPECIFICATIONS FOR LACTATING COWS.

Daily

DMI	$\Sigma_{x_j} \leq DMI^{max}$
ENERGY	$\Sigma \operatorname{En}_{j}^{a} x_{j} \ge \operatorname{En}^{r} \operatorname{Milk} + \operatorname{En}^{r} \operatorname{Maintenance} + \operatorname{En}^{r} \operatorname{Growth} \pm \operatorname{En}^{r} \triangle \operatorname{Body} \operatorname{Weight}$
CRUDE PROTEIN	$\Sigma CP_j^{a}x_j \ge CP^{r}$ Milk + CP^{r} Maintenance + CP^{r} Growth
CALCIUM & PHOSPHORUS	$\Sigma Ca_{j}^{a}x_{j} \ge Ca^{r} \text{ Milk } + Ca^{r} \text{ Maintenance}$ $\Sigma Phos_{j}^{a}x_{j} \ge Phos^{r} \text{ Milk } + Phos^{r} \text{ Maintenance}$ $2.5 \ge \frac{Ca_{j}^{a}x_{j}}{Phos_{j}^{a}x_{j}} \ge 2.0$
SALT D	Salt _j x _j = Salt ^r Milk + Salt ^r Maintenance
SUPPLEMENTAL NON-PROTEIN NITROGEN	$\Sigma XNPN_j^a x_j = 0 \text{ if } CP^r > .14 \Sigma x_j$ $\Sigma XNPN_j^a x_j \le .3 CP^r$
CRUDE FIBER	$\Sigma C f_j^a x_j \ge .16 x_j$

Where:

The superscript a indicates the amount of that variable in feed x_j ;

x, indicates the amount of individual feedstuffs considered dry matter basis; and

superscript r indicates the amount of that variable that is required for the function stated.

-1

TABLE 19. NUTRIENT REQUIREMENT SPECIFICATIONS FOR DRY COWS Dry Cow Requirements

DRY MATTER INTAKE	$\mathbf{x}_{j} \leq \text{DMI}$ of ultimate week of lactation
ENERGY	$\operatorname{En}_{j}^{a} \geq \operatorname{En}^{r}$ Maintenance and Pregnancy
CRUDE PRCTEIN	$\operatorname{CP}_{j}^{a} \geq \operatorname{CP}^{r}$ Maintenance and Pregnancy
CALCIUM & PHCSFHORUS	$Ca_{j}^{a} \ge Ca^{r}$ Maintenance and Pregnancy $Phos_{j}^{a} \ge Phos^{r}$ Maintenance and Pregnancy $Ca_{j}^{a} < 100$ g. $\frac{Ca_{j}^{a}}{Phos_{j}^{a}} \le 1.5$
SALT	Σ Salt ^a = Salt ^r Maintenance and Pregnancy

Where:

The superscript a above a variable indicates the amount of that variable in feed x_i ;

x, indicates the amount of individual feedstuffs considered on a dry matter basis; and

superscript r indicates the amount of that variable that is required for the function stated.

Subsystem: Balancing the Ration

Using a linear programming (LP) subsystem titled: BAL (DMI, EN, CP, XNFN, CA, PHCS, XCAPH, SALT,

F, P, IOPTI)

a ration is balanced to meet the daily nutrient requirements of dairy cattle taking into account the nutrient composition of feedstuffs, feed prices and dry matter intake, and weight change. The source of the nutrient composition of feedstuffs was Teleplan 31, a computer dairy ration balancing program, developed by Harsh, Hillman and Black (1973). Table 20 illustrates the matrix layout of the ration balancing subsystem and the restrictions that are incorporated.

TABLE 20. Linear Programming Balance Matrix

		$\underline{\mathbf{EX}}_1 + \underline{\mathbf{B}}_1 \underline{\mathbf{FMTMP}} + \underline{\mathbf{B}}_2 \underline{\mathbf{ENTMP}} < \underline{\mathbf{DMTmax}}$	$\sum_{k=1}^{3} x_j^{2k} + \beta_{3k}^{2k} \ge NE_{L}^{e}$ milk + NE_{growth}^{e}	LCP ^a X ₁ 2 CP ^T milk + CP ^T maintenance + CP ^T growth	E(CF ₁ ^a 16) x ₁ ≥ 0	ECa _j ^a X _j 2 Ca ^r milk + Ca ^r maintenance	ZPhos ₁ ^a X ₁ 2 Phos ^r milk + Phos ^r maintenance	<pre>Esalt A > Salt milk + Salt maintenance</pre>	$Ca_{j}^{B} X_{j} - 2 Phos_{j}^{A} X_{j} \ge 0$	$Ca_j^A X_j - 2.5 Phos_j^A X_j \le 0$
METCHI V	11	0.000	C	0.000	0.000	0.000	0.000	0.000	0.000	0.000
dHING	10	-	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
dilika	60	~	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
1100	80	1.000	0.000	0.000	-1.60	0.000	0000°C	1.000	0.000	0.000
Jaestone	01	1.000	0.000	0.000	-1.60	0.338	0.000	0.000	0.338	9.338
DI-Cal	90	1.000	0.000	0.000	160	0.231	0.186	0.000	141	234
Drea	05	1.000	0.000	2.810	160	0.000	0.000	0.000	0.000	0.000
77 Aos	. 70	1.000	0.870	0.508	010	0.0028	0.0064	0.000	-0.01	0132
PJIPJIP	03	1.000	0.440	0.169	0.149	0.013	0.0020	0.000	0.009	3.008
Corn Silage	02	1.000	0.700	0.080	0.0414	0.0028	0.0020	0.000	0012	0022
Corn Grain	10	1.000	0.950	0.101	137	0.0002	0.0026	0.000	005	0063
	Restriction	Dry matter intake (DMI) 1b	Net Energy _L (Mcal) (NE ₁)	Crude Protein (1b) (CP)	Crude fiber (1b) (CF)	Calcium (1b) (Ca)	Phosphorus (1b) (P)	Salt	Calcium:Phosphorus upper bound Ca:P	Calcium:Phosphorus upper bound Ca:P
	Rou	10	03	60	50	05	90	01	08	60

^APHING = (.007 + .0039* week) x (weight, if week ⊆ 40; if week >40 - .023* weight/100) ^BPHING = 1.76 x (weight/100) ^CFT _ a = 3.4 if week ⊆ 8: -4.8 if week >8

20 (continued) Linear Programming Balance Matrix TABLE

170

100000 V	11	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0.000 I (NE _L ^A - 72)/рм1 - Ехнин ² ≤ 0	0 0.000 I (Mois ^a × 100) - 20) /DHI - FHIH ² <u>≤</u> 0	0-1.000 Upper bound on vt ± 1.0 (% E11) + % F 0.1.000 0.1.000 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	0 0.000 Cem silage/sifai(a 2 2.0
	10	00 0.0	1.00	0 0.00	0.0	0.00
	60	0.0	D 0.00	E-1.00	0.00	0.00
- [105	80	0.00			0.000	0.00
Cines tone	10	0.000	-	-	0.000	0.000
01-Ca1	90	0.000	•	2	0000	000
Drea	05	1.967	a	R	.000	000
77 Aos	. 10	.1524	a	8	000	000
PJIPJI	03	- 2050.	q	8	0 000	0 000
Corn SIJage	02	- 024	•	8	0 000	000 -2
Corn Grain	10	- 6060	٩	83	0.000 0	0.000 +1.
	Restriction	Supplemental NPN: Crude Protein (NPN)	Impact of NE/Ib (ENIMP)	Impact of Fermented Feeds on DMI(FIMP)	Upper Bound on Weight Loss, lat 8 vk	Constraints on per- centage of corn silage and alfalfa forages
	Row	9	=	12	2	2

RESULTS AND DISCUSSION

The results of the simulation model are presented including daily feed requirements for cows with varying productive capacity, per lactation budgets, and ENPV and AENPV. Feed prices per 1b of dry matter were: shelled corn, \$.042; corn silage, \$.023; alfalfa hay, \$.030; soybean meal 44, \$.090; urea, \$.080; dicalcium phosphate, \$1.25; limestone, \$.035; and salt, \$.04. Output prices included the cow's salvage value at \$.40/1b and 3.5% milk at \$9.25/cwt.

Before showing expected value results generated by the model, examples of the rations generated throughout lactation as well as across the lifespan of cows with varying productive capacity will be presented.

Table 21 presents performance characteristics of cows with various production abilities at 3 different ages. Looking across lactation feed summaries presented in Table 22, it was found that as production level increases more corn, soybean meal and alfalfa hay are incorporated in the ration while less corn silage and urea are included. The reason less urea is utilized is due to the restriction that urea cannot be included in rations when crude protein exceeds 14% of the dry matter. The concentrate to forage ratio also increases with production level, ranging from .29 to .49.
Beyond a level of 22,000 lbs of milk the computer will not balance for rations during months 2 to 3 into lactation. As there are herd averages above this level it is apparent that either parameters estimating intake are incorrect or energy requirements are not constant for cows of different production levels.

The feed summary of the cow producing 12,500 lbs milk includes 69 lb urea.

69 lb urea x 2.81 lb protein/lb urea = 194 lb protein 194 lb protein/.44 lb protein/lb soybean meal = 441 lb of soybean meal that were spared by including urea in the ration.

69 lb urea x .08/lb = 5.52 for urea 441 lb soybean meal x .09/lb 2 39.70 for soybean meal

This amounts to a savings of approximately \$34.00/ cow/yr. Even at the highest level of production 32 lb of urea were utilized. This amount of urea could substitute for over 200 lb of soybean meal amounting to a savings of approximately \$15.80/cow/yr. Thus, contrary to popular belief, urea serves as a source of protein for cows exhibiting high levels of production. (A note of caution is needed here in interpreting these results; actual farm situations should not permit balancing diets for each month within each lactation.)

Age	Week 7 Milk Yield ¹	· (lbs)	Projected	Milk	Yield ²	(1bs)
	M	E = 15,00	00 lbs			
2	52.9			11,96	52	
4	66.0			14,45	52	
6	70.9			15,62	25	
	М	E = 17,50	00 lbs			
2	61.7			13,95	55	
4	77.0			16,96	56	
6	82.7			18,22	29	
	M	E = 20,00	00 lbs			
2	70.6			15,94	19	
4	88.0			19,38	39	
6	94.5			20,83	53	
	М	E = 22,50	0 ³ lbs			
2	79.4			17,94	-3	
4	98.9			21,81	.3	
6	106.3			23,43	58	

Table 21. Performance Characteristics of Cows of Various ME Milk Production Levels at 3 Different Ages.

¹Week 7 milk yield is an indication of peak yield.

²This assumes a 12-month calving interval (production for 305 days).

³The model cannot solve beyond a level of 22,500 lbs, suggesting that the amount of energy required per pound of milk might not be constant as proposed by WRC.

<pre>ME dicted Corn Alfalfa Soybean Urea Milk Wilk Corn Silage Hay Meal Urea 50 bu⁵ 12,500 12,100 1.4 T⁶ 7.2 T 1.2 T .16 T 64 bu 750 1.8 T 6.9 T 1.2 T .37 T 82 bu 1020 1b 54 1b 17,500 17,000 2.3 T 5.6 T 1.5 T .37 T 91 bu 1020 1b 7 32 1b 91 bu 1.7 T .6 T 91 bu 20,000 19,400 2.6 T 4.8 T 1.7 T .6 T 91 bu 1.6 1.7 T .6 T 91 bu 1.6 1.7 T .6 T 91 bu 1.6 T .5 T 91 bu 1.6 T .5.6 T 1.7 T .6 T 91 bu 1.6 T .5.6 T 1.7 T .6 T 91 bu 1.6 T .5.6 T 1.7 T .6 T 91 bu 1.6 T .5.6 T 1.7 T .6 T 91 bu 1.6 T .5.6 T 1.7 T .6 T 91 bu 1.6 T .5.6 T 1.7 T .6 T 91 bu 1.6 T .5.6 T 1.7 T .6 T 91 bu 1.6 T .5.6 T 1.7 T .6 T 1.6 T .5.6 T 1.7 T .6 T 1.6 T .5.6 T 1.7 T .5 T 1.6 T .5 T .5 T 1.6 T .5 T .5 T .5 T 1.6 T .5 T .5 T .5 T .5 T 1.6 T .5 T .5 T .5 T .5 T 1.6 T .5 T</pre>	falfa Soybean Lime- Hay Meal Urea Di-cal stone 320 1b 69 1b 58 1b 26 1b 22 T .16 T 26 1b 26 1b .2 T .16 T 26 1b 26 1b .2 T .16 T 29 1b 29 1b .2 T .37 T .29 1b .26 1b .2 T .37 T .48 1b .46 1b	ime- Dry Gi 6 lb 4.7 T 9 9 lb 5.1 T 6 5 lb 5.6 T 9 3 lb 6.0 T 1
50 bu^5 50 bu^5 320 1b 69 1b 12,500 12,100 1.4 T ⁶ 7.2 T 1.6 T 64 bu 750 1b 60 1b 15,000 14,500 1.8 T 6.9 T 1.2 T .37 T 15,000 14,500 1.8 T 6.9 T 1.2 T .37 T 15,000 14,500 1.8 T 5.6 T 1.2 T .37 T 17,500 17,000 2.3 T 5.6 T 1.5 T .5 T 91 bu 91 bu 1.5 T .5 T 1.600 $1b^7$ 32 $1b$ 20,000 19,400 2.6 T 4.8 T 1.7 T 8 T 20,000 19,400 2.6 T 4.8 T 1.7 T 8 T 20,000 19,400 2.6 T 4.8 T 1.7 T 8 T 20,000 19,400 2.6 T 4.8 T 1.7 T 8 T 20,000 19,400 2.6 T 4.7 T .8 T 1.0 T 20,000 19,400 2.6 T 4.7 T .8 T 1.0 T 20,000 19,400 2.6 T 4.7 T .	320 Ib 69 Ib 58 Ib 26 Ib .2 T .16 T 750 Ib 60 Ib 62 Ib 29 Ib .2 T .37 T 1020 Ib 54 Ib 48 Ib 46 Ib	6 1b 9 1b 4.7 T 6 1b 5.1 T 3 1b 5.6 T 3 1b 6.0 T
12,500 12,100 1.4 T ⁶ 7.2 T 1.2 T .16 T 64 bu 750 1b 60 1b 64 bu 750 1b 60 1b 750 10 64 bu 15,000 14,500 1.8 T 6.9 T 1.2 T $.37$ T $.37$ T $.5$ T $.5$ T 1.7 $.5$ T $17,500$ 17,000 2.3 T 5.6 T 1.5 T $.5$ T 1020 1b 7 32 1b 91 bu 1600 19,400 2.5 T 4.8 T 1.7 T $.8$ T $.600$ 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.600$ 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.600$ 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.600$ 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.600$ 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.600$ 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.6$ 1000 10,400 2.6 T 4.8 T 1.7 T $.8$ T $.8$ T $.9$ 1.000 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.8$ T $.9$ 1.000 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.8$ T $.9$ 1.000 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.8$ T $.8$ T $.8$ T $.9$ 1.000 19,400 2.6 T 4.8 T 1.7 T $.8$ T $.8$ T $.8$ T $.8$ T $.8$ T $.8$ T $.9$ 1.0000 19,400 2.6 T 4.8 T 1.7 T $.8$ T	-2 T .16 T 750 lb 60 lb. 62 lb 29 lb .2 T .37 T .2 M 1020 lb 54 lb 48 lb 46 lb	9 1b 4.7 T 6 1b 5.1 T 3 1b 5.6 T 3 1b 6.0 T
64 bu 750 lb 60 lb 15,000 14,500 1.8 T 6.9 T 1.2 T .37 T 82 bu 82 bu 1020 lb 54 lb 17,500 17,000 2.3 T 5.6 T 1.5 T 5 T 91 bu 91 bu 1.5 T .5 T .5 T 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T 20,000 10,10 1.0 for feeds from left to right; respective of during lectation 3.5 lb 30,000 1.0,10 1.0 for feeds from left to right; re	750 lb 60 lb. 62 lb 29 lb. 2 T 37 T 1020 lb 54 lb 48 lb 46 lb.	9 1b 6 1b 5.1 T 3 1b 5.6 T 3 1b 6.0 T
15,000 14,500 1.8 T 6.9 T 1.2 T .37 T 82 bu 1020 1b 54 1b 17,500 17,000 2.3 T 5.6 T 1.5 T .5 T 91 bu 1600 1b ⁷ 32 1b 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T $\frac{1}{\text{Estimated for animals 4 yrs of age weighing 130C}{4uring lactation 2.}$ 9, 1.0, 1.0 for feeds from left to right, respective 0, 1.0, 1.0 for feeds from left to right, respective $\frac{7}{\text{Estimated total dry matter consumption during le}{1000}$ $\frac{6}{1000}$ 10 for animals 4 yrs of age weighing 130C $\frac{1}{6}$ 100, 1.0 for feeds from 1eft to right, respective $\frac{6}{6}$ 100 100 for a set to a set	יב 17 בי 12 בי 12 בי 12 בי 10 בי רו ווווווווווווווווווווווווווווווווווו	6 lb 5.6 т 3 lb 6.0 т
82 bu 1020 lb 54 lb 17,500 l7,000 2.3 T 5.6 T 1.5 T .5 T 5.6 T 1.5 T .5 T 5.6 lb 91 bu 1600 lb ⁷ 32 lb 20,000 l9,400 2.6 T 4.8 T 1.7 T .8 T 1.7 T .8 T $\frac{1}{\text{Estimated for animals 4 yrs of age weighing 1300 during lactation 2. }$ 9, 1.0, 1.0 for feeds from left to right, respective $\frac{2}{\text{Feed quantities are on an as fed basis; dry matter consumption during lecows will consume between .8 and .9 tons of dry matter du for an to forage ratio. 5 Bushels from left to \frac{5}{\text{Feela}}$	1020 אר 10 אר 10 אר 1000	6 lb 5.6 т 3 lb 6.0 т
17,500 17,000 2.3 T 5.6 T 1.5 T .5 T 91 bu 1600 $1b^7$ 52 $1b$ 20,000 19,400 2.6 T 4.8 T 1.7 T .8 T $\frac{1}{1}$ Estimated for animals 4 yrs of age weighing 1300 during lactation 2. 9, 1.0, 1.0 for feeds from left to right, respective $\frac{2}{5}$ Estimated total dry matter consumption during le cows will consume between .8 and .9 tons of dry matter du $\frac{4}{5}$ Bushels	40C0 40 JT 40 TO 40 TV 40	5.6 Т. 3 lb 6.0 Т.
91 bu 1600 l9,400 2.6 T 4.8 T 1.7 T .8 T 1 Estimated for animals 4 yrs of age weighing 1300 during lactation 2. 2 Feed quantities are on an as fed basis; dry matt .9, 1.0, 1.0 for feeds from left to right, respectivo 3 Estimated total dry matter consumption during le cows will consume between .8 and .9 tons of dry matter du drain to forage ratio. 5 Bushels	-5 T -5 T	3 lb 6.0 T .
20,000 19,400 2.6 T 4.8 T 1.7 T .8 T $\frac{1}{1}$ Estimated for animals 4 yrs of age weighing 1300 during lactation 2. $\frac{2}{7}$ Feed quantities are on an as fed basis; dry matt .9, 1.0, 1.0 for feeds from left to right, respectiv $\frac{3}{5}$ Estimated total dry matter consumption during le cows will consume between .8 and .9 tons of dry matter du $\frac{4}{5}$ Bushels	1600 1b ⁷ 32 1b 38 1b 53 1b	6.0 H
¹ Estimated for animals 4 yrs of age weighing 1300 during lactation 2. ² Feed quantities are on an as fed basis; dry matt ² Feed quantities are on an as fed basis; dry matt ³ Estimated total dry matter consumption during le cows will consume between .8 and .9 tons of dry matter du ⁴ Grain to forage ratio. ⁵ Bushels	-7 т. 8 т.	
during lactation 2. 2 Feed quantities are on an as fed basis; dry matt 2 Feed quantities are on an as fed basis; dry matt .9, 1.0, 1.0, 1.0 for feeds from left to right, respectiv 3 Estimated total dry matter consumption during le cows will consume between .8 and .9 tons of dry matter du 4 Grain to forage ratio. 5 Bushels	rs of age weighing 1300 lbs, producin	ducing 3.5% fat
^C Feed quantities are on an as fed basis; dry matt .9, 1.0, 1.0, 1.0 for feeds from left to right, respectiv ³ Estimated total dry matter consumption during le cows will consume between .8 and .9 tons of dry matter du ⁴ Grain to forage ratio. ⁵ Bushels		1
³ Estimated total dry matter consumption during le cows will consume between .8 and .9 tons of dry matter du ⁴ Grain to forage ratio. ⁵ Bushels	as fed basis; dry matter content is: eft to right, respectively.	t is: . 86, .32,
⁴ Grain to forage ratio. 5Bushels	r consumption during lactation; it is 9 tons of dry matter during the dry p	it is estimated dry period.
5Bushels		

Looking within lactations presented in Tables 23, 24, 25, 26, amounts of corn and hay in the diet increase until mid lactation and then begin to decline while corn silage exhibits an opposite trend. Amounts of soybean meal steadily decline as lactation progresses until about midlactation subsequently being substituted for by urea. This suggests that cows grouped by stage of lactation could utilize urea in diet formulation for cows producing at high levels of milk in late lactation. Cows producing at 17,500 and 19,400 lb are nearly able to meet calcium and phosphorous requirements during mid lactation with little mineral supplementation. The largest amount of weight was lost by the cow producing at 19,400 lbs of milk. This amounted to an average daily loss of -2.33 lb for the first 4 week period and -.95 lb for weeks 4-8.

> -2.33 lb x 28 days = 65.24 lb -.95 lb x 28 days = <u>26.6</u> lb 91.84 lb

Thus 91.8 lb were lost during the first 8 weeks of lactation. This amount of weight loss lies within range of that expected (See Trimberger et al. 1972).

Cow Producing .5% Milkl
a <i>n</i>
0 f 0 f
Consumption 12,100 lbs
Feed
Table 23.

WEEK ²	MILK ³	₩ Т 4	Corn ⁵	Corn Silage	Alfalfa Hay	Soybean Meal	Urea	Di-cal	Limestone	Max. DMI	Act? DMI
5	53.4	85	9.2	11.0	5.5	5.5	0	.21	.28	2.5	2.4
9	55.3	0	8.5	16.8	8.4	4.1	0	.20	.17	3.1	2.9
11	51.9	0	11.8	16.2	8.1	0	. 562	.27	.13	3.0	2.8
15	47.4	.13	11.5	15.8	7.9	0	.471	.24	.12	3.0	2.8
19	42.7	.13	6.6	15.8	7.9	0	.39	.22	.08	2.9	2.6
24	38.1	.13	8.4	15.9	7.9	0	.31	.19	.05	2.8	2.5
28	33.9	.13	7.0	15.8	7.9	0	.23	.17	•02	2.7	2.4
32	30.0	.13	5.9	15.7	7.8	0	.17	.15	0	2.7	2.3
37	26.4	.13	5.0	15.5	7.7	0	.11	.13	0	2.6	2.2
41	23.2	0	3.1	15.6	7.8	0	.07	.13	0	2.5	2.0
	lThis 6	assumes	B COW	4 yrs of	age weig	hing 1300	lbs.				
	2 weeks	into l	actatio	D.							
	3Averae	se dail	y milk	yield.							
	4 Change	e in we	ight.								
	Freeds	are es	timated	as pound	ds of dry	matter.					
	Maxim	um dry	matter	intake.							
	Actua	l dry m	atter i	ntake.							

Table 24. Feed Consumption of a Cow Producing 14,500 Lbs of 3.5% Milk¹

WEEK ²	MILK ³	^и Т4	Corn ⁵	Corn Silage	Alfalfa Hay	Soybean Meal	Urea	Di-cal	Limestone	Max. DMI	Act? DMI
2	64.0	-1.34	8.8	7.11	5.9	7.1	0	.26	.33	2.7	2.6
9	66.3	0	12.4	15.1	7.5	5.7	0	.22	.30	3.3	3.2
11	62.3	0	11.3	15.4	7.7	5.2	0	.21	.26	3.2	3.1
15	56.9	.21	12.1	14.5	7.3	4.4	0	.19	• 25	3.1	3.0
19	51.3	.21	14.2	14.7	7.3	0	•55	.26	.17	3.0	2.9
24	45.8	.21	12.1	14.9	7.5	0	.45	.23	.13	2.9	2.7
28	40.6	.21	10.4	15.0	7.5	0	.35	.20	60.	2.8	2.6
32	36.0	.21	8.8	15.0	7.5	0	.27	.18	•06	2.8	2.4
37	31.7	.21	7.5	15.0	7.5	0	.20	.16	.03	2.7	2.3
1 4	27.9	0	4.8	15.5	7.7	0	.16	.15	0	2.6	2.2
	1 This	assumes	a cow	4 yrs of	age weig	hing 1300	lbs.				
	² Weeks	into l	actatio	n.							
	Avera	ge dail	y milk	yield.							
	⁴ Chang	e in we	ight.								
	Freeds	are es	timated	as pound	ls of dry	matter.					
	Maxim	um dry	matter	intake.							
	7 Actua	l dry m	atter i	ntake.							

WEEK ²	MILK3	WT ⁴	Corn ⁵	Corn Silage	Alfalfa Hay	Soybean Meal	Urea	Di-cal	Limestone	Max. DMI	Act' DMI
2	74.7	-1.84	8.4	12.4	6.2	8.7	0	.30	.39	2.9	2.8
9	77.4	42	12.4	15.1	7.6	7.3	0	.27	.37	3.5	3.3
11	72.7	0	14.7	14.0	7.0	6.6	0	0	•24	3.4	3.3
15	66.4	.10	17.6	6.0	15.1	4.0	0	0	0	3.3	3.3
19	59.8	.32	17.1	5.8	14.6	3.9	0	0	0	3.2	3.2
24	53.4	.35	17.7	9.6	10.8	0	.42	.25	.11	3.0	3.0
28	47.4	.35	14.6	13.7	6.9	0	.48	.23	.18	2.9	2.8
32	41.9	.35	12.4	14.1	7.0	0	.37	.20	.13	2.8	2.6
37	37.0	.35	10.7	14.2	7.1	0	.28	.18	60.	2.8	2.5
41	32.5	0	6.4	15.3	7.7	0	•24	.18	•02	2.7	2.3
	1 This	assumes	B COW	4 yrs of	age weig	hing 1300	lbs.				
	² weeks	into l	actatio	n.							
	3 _{Avera}	ge dail	y milk	yield.							
	⁴ Chang	e in we	ight.								
	⁵ Feeds	are es	timated	as poun	ds of dry	matter.					

⁶Maximum dry matter intake. 7Actual dry matter intake.

Feed Consumption of a Cow Froducing 17,000 Lbs of 3.5% Milk¹ Table 25.

104

		H	lable 26	. Feed	Consumpti 19,400 L	on of a C bs of 3.5	ow Pro % Milk	ducing			
WEEK ²	MILK ³	wT ⁴	Corn ⁵	Corn Silage	Alfalfa Hay	Soybean Meal	Urea	Di-cal	Limestone	Max ⁶ DMI	Act? DMI
2	85.4	-2.33	8	13	6.5	10.3	0	.34	.44	3.1	3.0
Q	88.4	95	12.4	16	80	6	0	.31	.43	3.6	3.5
11	83.1	0	18.6	12	9	80	0	0	.36	3.5	3.5
15	75.9	0	20	6.2	13.4	5.2	0	0	.10	3.4	3.4
19	63.8	-04	17.8	6.0	15	4.0	0	0	0	3.3	3.3
24	61.0	.29	17.2	5.9	14.7	4.0	0	0	0	3.2	3.2
28	54.2	.50	13.5	5.9	13.6	7.48	0	0	.08	3.0	3.1
32	47.9	• 50	17.0	6.6	9.8	0	• 34	.21	.11	2.9	2.9
37	42.3	• 50	14.4	13.0	6.5	0	.38	.21	.17	2.9	2.7
1 4	37.2	0	8.2	15.1	7.6	0	.33	.20	.06	2.8	2.4
	IThis (assumes	B COW	4 yrs of	age weig	hing 1300	lbs.				
	2 _{Weeks}	into l	actatio	n.							
	Avera	ge dail	y milk	yield.							
	⁴ Chang	e in we	ight.								
	Freeds	are es	timated	as pound	ds of dry	matter.					
	Maxim	um dry	matter	intake.							
	Actua	l dry m	latter i	ntake.							
is bei	^d Frote: ng drawi	in requ n into	lirement the die	was 5.6 t as a s	3 lbs; pr ource of	ovided = energy an	7.87 l d fibe	bs. It r.	appeara soy	bean I	neal

Once feed costs and income from milk are determined the program proceeds to generate estimated variable net present value (ENFV). Income is then weighted by the probability of survival. Expected income is converted to an annuity amount (average yearly value over the lifespan of the animal).

The first question to address when considering the replacement question is that of determining the optimum time of keeping a cow in the herd assuming she has no challenger to contend with.

Figure 8 presents the expected variable annualized net returns of a heifer whose ME is 15,000 lbs of 3.5% milk, starting with lactation 1 and continuing through lactation 7, taking into account probability of expected life at each stage.

Net returns increase with age up until lactation 5 at which time they begin leveling off. By lactation 7 average net returns are actually beginning to decrease due to decreasing milk production as age progresses past maturity.

The optimum length of time to keep an animal in the herd ranges between 5 and 7 lactations. The differences in income at these ages is not significant.

The replacement question can be addressed from 2 different standpoints depending upon where we are situated in regard to the production curve. If we are considering a cow at an age where annualized net returns are decreasing with age then the proper comparison is that of marginal net returns of the current asset (over the next production period) with the maximum annualized net returns of the replacement candidate.

If we are considering a cow at an age where annualized net returns are increasing with age, we should compare maximum annual returns of the existing cow with maximum annual returns of a replacement candidate.

Suppose we have a 6-yr old cow whose ME_(Milk) is 15,000 lbs, should she be kept or replaced? Figure illustrates that the cow is at an age where she has maximized average net returns. Therefore, it is proper to compare her marginal net returns for the next lactation cycle with the maximum average net returns of the replacement candidate. According to the analysis, at age 6 (lactation 5) annual variable net returns are approximately \$930. Therefore any heifer whose variable annualized net income exceeds \$930 should replace the defender.

		. –			
Production level	(ME _{Milk})	Annualized	Variable	Net	Earnings
12,500			\$64 3		
15,000			890		
17,500			930		
20,000			1066		

Table 27 Projected Annualized Variable Net Present Value of Replacement Heifers.

Figure 8. Expected Annualized Variable Net Fresent Value.

From Table 27 it appears that any heifer whose ME_{Milk} is \geq 17,500 lbs would replace the defender. To more accurately access whether or not a cow should be replaced, differences in salvage value should be accounted for.

This is a first endeavor in modelling the dairy cow and it is realized that many parameters need to be defined more precisely especially in regard to projecting milk production and feed intake, estimating protein and energy requirements across cows with differing genetic potential.

Important factors that the model fails to account for include economic losses due to mastitis as well as the probability of occurrence of mastitis with age. Although DHIA mature equivalents are used to predict lifetime milk production their reliability for use for this purpose is questionable. The further into lactation when the ME is estimated the more reliable it will be. Genetic merit of dams or calves in improving herd average production through time is not accounted for.

SUMMARY AND CONCLUSIONS

The objective of this research was to initiate development of a model to simulate the biological parameters defining any particular dairy cow, and subsequently applying appropriate economic evaluation to ascertain the relative worth of any animal in relation to possible replacement candidates.

The biological model:

- 1. Projects animal growth until the age of 7 years, at which time the cow is considered fully mature.
- 2. Estimates average daily milk yield for each month within each lactation until the end of lactation 7.
- 3. Estimates daily nutrient requirements based on body size, projected milk yield, % fat in the milk and growth.
- 4. Projects potential daily dry matter intake considering: age, body weight and milk yield.The model balances the diet for each month within

each lactation considering nutrient requirements and restrictions placed on nutrient parameters, feed ingredients and their composition, and estimated dry matter intake which is adjusted to account for the effects of fermentation and energy density of feed ingredients on dry matter intake.

Because of the impossibility of meeting energy needs of high-producing cows in early lactation, body fat is considered as a source of energy in early lactation which is subsequently replenished in later lactation.

Assembly of the biological model revealed several areas of research which require further investigation to increase the accuracy of the model and make it more dynamic including:

- Defining energy requirements across cows of differing production levels across lactations.
- 2. Defining more accurately the relationship of the energy status of the animal and weight loss in early lactation.
- 3. Quantitatively defining how nutrient deficiencies affect the lactation curve.
- 4. Accurately defining protein requirements and quantitatively accounting for protein and amino acid metabolism to incorporate maximum use of nonprotein nitrogen as a less expensive source of protein.
- 5. Estimating dry matter intake and the relationships of energy density and the impact of fermented feeds upon intake.
- Quantifying the interactions of differing combinations of feed ingredient on the nutrient value of feedstuffs.

- 7. Quantifying how the level of intake affects nutrient value of feedstuffs.
- 8. Fredicting the shape of the lactation curve more accurately and estimating milk production with a greater degree of reliability.
- 9. Estimating the probability of mastitis and the incidence of mastitis with age.
- 10. Estimating the effect of days open on the lactation curve.

The economic analysis:

- Calculates the cumulative discounted variable net revenue (DNR) for all time periods under consideration taking into account income from milk, feed cost and variable veterinary expenses.
- 2. Weights the DNR for each time period by the probability of occurrence.
- 3. Converts weighted income to an annuity amount for comparisons of animals.

Factors in the economic analysis which require further investigation include:

- Defining the appropriate way of handling salvage value in the analysis.
- 2. Estimating the market value of calves depending upon performance of sire progeny and the dam.
- 3. Defining more accurately the probabilities associated with herd life.

Statistically, methods should be developed to:

- 1. Integrate information from various studies into a complete biological model.
- 2. Explore models that are based upon a time series of cross sections, e.g. cows over time.

Modelling the dairy cow has tremendous potential in teaching, research and extension and should be developed at these levels consistent with the audience which it addresses (i.e., simpler models illustrating basic principles for teaching purposes; sophisticaled biological integrated systems for research and an integrated economic analysis for extension). The model to date has many weaknesses; however it logically organizes current knowledge into a complete system which when integrated illustrates what information is still lacking and where inconsistencies in information exists and where further research is necessary.

This is a first endeavor in modelling the dairy cow and it is realized that many parameters need to be defined more precisely especially in regard to projecting milk production and feed intake, estimating protein and energy rewuirements across cows with differing genetic potential.

BIBLIOGRAPHY

- Ahmed, B. 1974. Quantitative Methods for Business. (Columbus, Ohio: Grid, Inc.), p. 125.
- Andrus, D. F., A. E. Freeman, B. R. Eastwood. 1970. Age Distribution and Herd Life Expectancy in Iowa Dairy Herds. J. Dairy Sci., 53:764.
- Appleman, R. D., <u>et al.</u> 1969. Extending Incomplete Lactation Records of Holstein Cows with Varying Levels of Production. J. Dairy Sci. 52:360.
- Arnold, P. T., R. B. Becker and A. H. Spurlock. 1958. Dairy Cattle and Their Care. Bulletin #599, Florida Agric. Exp. Sta, Gainesville, Florida.
- Baile, C. A. and J. Mayer. 1970. Hypothalmic Centres: Feedbacks and Receptor Sites in the Short Term Control of Feed Intake. <u>Physiology of Digestion and</u> <u>Metabolism in the Ruminant</u>. (Edited by A. T. <u>Phillipson, et al.</u>, (Newcastle upon England). Oriel Press Limited, pp. 254-263.
- Balch, C. C. and R. C. Campling. 1962. Regulation of Voluntary Food Intake in Ruminants. Nutrition Abstracts and Reviews, 32(3):669.
- Barry, P. J., J. A. Hopkin and C. B. Baker. 1979. Financial Management in Agriculture. (Danville, Illinois: Interstate Publishers and Printers), pp. 235-288.
- Bath, D. L. 1971. Are High Producing Cows Really More Profitable? Dairy Tales, 1(3). University of California Agricultural Extension, Davis.
- Baumgardt, B. R. 1969. Chapter 6, Voluntary Feed Intake.
 <u>Animal Growth and Nutrition</u>. (Philadelphia: Lea and Febiger), p. 121.
 - Baumgardt, B. R. 1970. Voluntary Feed Intake by Ruminants. Proceedings of the Cornell Nutrition Conference, Ithaca, New York, p. 85.
 - Baumgardt, B. R. and M. Clancy. 1975. Effect of a Conservation Method on Metabolism and Prediction of Intake of Alfalfa. Journal of Dairy Sci. 58:758 (Abstract).

- Baumgardt, B. R., Wangress, P., et al. 1977. Estimating Feed Intake for Cattle, Sheep, and Swine. First International Symposium, Feed Composition, Animal Nutrient Requirements, and Computerization of Diets (Edited by P. V. Fonnesbeck, L. E. Harris, and L. C. Kearl). Utah Agr. Exp. Sta., Utah State University, Logan, Utah, p. 464.
- Black, D. R. 1978. Personal communication. Michigan State University.
- Blaxter, K. L. 1950. Energy Feeding Standards for Dairy Cattle. Nutrition Abstracts and Reviews 20:1.
- Blaxter, K. L., F. W. Wainman and R. S. Wilson. 1961. The Regulation of Intake by Sheep. Animal Production 3:51.
- Blaxter, K. L. 1962. The Energy Metabolism of Ruminants. (London: Hutchinson), pp. 165-173.
- Blaxter, K. L. 1966. The George Scott Robertson Memorial Lecture. Queen's Univ. at Belfast.
- Broster, W. H. 1974. Response of the Dairy Cow to Level of Feeding. Bien. Rev. of the National Institute of Dairy Research. University of Reading, England.
 - Brown, C., and P. Chandler, and J. B. Holter. 1978. The Development of Predictive Equations for Milk Yield, Dry Matter Intake and Forage: Conce Substitution Rate. J. Dairy Sci., 60:173.
 - Brown, L. D. and J. W. Thomas, <u>et al</u>. 1974. Feeding High Energy Rations for Various Lengths of Lactation. J. Dairy Sci., 57:459.
 - Brown, L. D., J. W. Thomas and R. S. Emery. 1965. Effect of Feeding Various Levels of Corn Silage and Hay with High Levels of Grain to Lactating Dairy Cows. J. Dairy Sci., 48:816.
 - Buffa, E. and J. Dyer. 1977. Management Science/Operations Research, (New York: John Wiley & Sons, Inc.), p. 259
 - Bull, L. S., B. R. Baumgardt and M. Claney. 1976. Influence of Caloric Density on Energy Intake of Dairy Cows. J. Dairy Sci., 59:1078.
 - Bull, L., M. I. Poos and R. C. Bull. Protein Solubility and NPN for Dairy Cows--A Problem of Energy Metabolism. Unpublished. Univ. of Kentucky, Lexington.

- Burnside, E. B., Kowalchuch, D. B. Lambroughton and N. M. MacLeod. 1971. Canadian Dairy Cow Disposals. Canadian Journal of Animal Sci., 51:75.
- Burroughs, W., N. L. Jacobson and D. K. Nelson. 1973. Application of the Metabolizable Protein System for Milk Production. Proc. of the Maryland Nutr. Conference, p. 71.
- Burroughs, W., N. L. Jacobson and D. K. Nelson. 1973. Protein Efficiency in the High Producing Cow: Evaluation of Protein Nutrition by Metabolizable Protein and Urea Fermentation Potential. Paper presented ADSA annual meetings, Pullman, Washington.
- Butler, G. W. and R. W. Bailey. 1973. <u>Chemistry and Bio-</u> <u>chemistry of Herbage</u>. Vol. 3, (New York Academic Press), pp. 138-147.
 - Clark, J. H., and K. E. Harshbarger. 1972. High-Moisture Corn Versus Dry Corn in Combination with Either Corn Silage or Hay for Lactating Cows. J. Dairy Sci., 55:1474.
 - Conrad, H. R., A. D. Pratt and J. W. Hibbs. 1964. Regulation of Feed Intake in Dairy Cows. I. Change in Importance of Physical and Physiological Factors with Increasing Digestibility. J. Dairy Sci., 47:54.
 - Crampton, E. W. 1957. Interrelations Between Digestible Nutrient Content, Voluntary Dry Matter Intake and the Overall Feeding Value of Forages. Journal of Animal Sci. 16:546.
 - Cressman, D., G. Grieve, G. K. MacLeod and L. G. Young. 1977. Influence of Dietary Protein Concentration on Milk Production by Dairy Cattle During Early Lactation. J. Dairy Sci., 60:68 (Abstr.).
 - Dayton, A. D. 1966. Differential Removal of Daughters Among A. I. Sires. Master's Thesis. Michigan State Univ., East Lansing, Michigan.
 - Davenport, D. G., A. H. Ricks. 1969. Effects of Prepartum Feeding and Body Condition on Postpartum Performance in Dairy Cows. J. Dairy Sci., 52:1037.
 - Dean, G. W., H. O. Carter, H. R. Wagstaff, S. O. Olayide, M. Ronning and D. L. Bath. 1972. Production Functions and Linear Programming Models for Dairy Cattle Feeding. Giannim Foundation Monograph #31.
 - DePeters, E. 1975. Yields and Nutritive Value of Cuttings of Permanent Pasture Harvested or Dried Forage. M. S. Thesis. Penn. State Univ.

- Eckles, C. H. and O. E. Reed. 1910. A Study of the Cause of Wide Variation in Milk Production by Dairy Cows. Missouri Agric. Exp. Sta. Bulletin 2.
- Emery, R. 1979. Personal communication.
- Esdale, W. J. and L. D. Satter. 1972. Manipulation of Ruminal Fermentation. IV. Effect of Altering Ruminal pH on Volatile Fatty Acid Production. J. Dairy Sci., 55:964.
- Everett, R. W. 1975. Economics of Sire Selection. MABC Dairy Breeding Seminar. Michigan Animal Breeders Cooperative, Inc., East Lansing, Michigan.
- Faris, J. E. 1960. Analytical Techniques Used in Determining the Optimum Replacement Pattern. Journal of Farm Economics. Vol. XLII(4):755.
- Flatt, W. F. 1966. Energy Metabolism Results with Lactating Dairy Cows. J. Dairy Sci., 49:230.
- Flatt, W. P., P. W. Moe, A. W. Munson and T. Cooper. 1967. Energy Utilization by High Froducing Dairy Cows. II. Summary of Energy Balance Experiments with Lactating Holstein Cows. <u>Energy Metabolism of Farm Animals</u>. (Oriel Press Limited: Newcastle Upon Tyne, England), p. 235.
 - Foldager, J. 1977. Protein Requirement and Non-Protein Nitrogen for High Producing Cows in Early Lactation. Ph.D. Thesis. E. Lansing, Michigan State Univ.
 - Foley, R. C., D. L. Bath, F. N. Dickson, and H. A. Tucker. 1972. Dairy Cattle: <u>Frinciples, Fractices, Frob-</u> <u>lems, Profits</u>. (Fhiladelphia, Lea & Feiberger).
 - Gaines, W. L. 1927. Fersistency of Lactation in Dairy Cows. Ill. Agr. Exp. Sta. Bul. 288.
 - Giaever, H. 1966. Optimal Dairy Cow Replacement Policies. Unpublished Fh.D. Thesis. Berkeley, Univ. of California.
 - Gibson, S. 1977. Do Cows Burn Themselves Out? Green Mountain Newsletter. University of Vermont.
 - Greenhalgh, J. F. and K. V. Runcie. 1962. The Herbage Intake and Milk Production of Strip and Zero Grazed Dairy Cows. Journal of Agric. Sci. 59:95.

- Gurtle, G. C. and F. F. Smith. 1970. Expensive Culling Rates Should Encourage Careful Record-Keeping. Dairy Herd Management, September.
- Helferich, J. G., T. L. Hollenshade, T. Sweeney and L. S. Bull. 1976. Influence of Nitrogen Source, Solubility and Ruminal Turnover on Microbial Protein Synthesis in vitro. J. Dairy Sci., 59:24 (Abstr).
- Hickman, C. G., C. J. Lee, S. B. Glen and G. C. Kozub. 1971. Influence of Body Size During Lactation on Level of Milk Production. Canadian Journal of Animal Sci. 51:317.
- Hillman, D. 1978. Personal communication.
- Hillman, D., J. H. Schoonaert, J. Roy Black and S. B. Harsh. 1973. Least Cost Ration: A Look at the Michigan System. Unpublished manuscript. Michigan State Univ.
- Hillman, D., J. T. Huber, R. S. Emery, J. N. Thomas and R. M. Cook. 1975. Basic Dairy Cattle Nutrition. Extension Bulletin E-702. Farm Science Series. Cooperative Extension Service, Mich. State Univ., East Lansing.
- Huber, J. T. 1975. Protein and Non-Protein Nitrogen Utilization in Fractical Dairy Rations. Journal of Animal Sci., 41:954.
- Hutton, R. 1966. A Simulation Technique for Making Management Decisions in Dairy Farming. Ag. Econ. Rep. No. 87. USDA, Ec. Res. Serv.
- Jenkins, K. B. and A. N. Halter. 1962. A Multi-Stage Stochastic Replacement Decision Model (Application to Replacement of Dairy Cows). Oregon Agr. Experiment Station Report.
- Johansson, I., and A. Hansson. 1940. "Causes of Variation in Milk and Butterfat Yields of Dairy Cows." <u>Kungl Lantbruksakademiens Tidsskrift</u>. Journal of the Royal Swedish Academy, LXXIX (No. 6%).
- Jorgensen, N. A., L. H. Schultz and G. R. Barr. 1965. Factors Influencing Milk Fat Depression on Rations High in Concentrates. J. Dairy Sci., 48:1031.
- Jorgensen, N. A., W. T. Howard and J. M. Crowley. 1977. Balancing the Ration During the Lactation Cycle. Unpublished paper, Dept. of Dairy Sci., Univ. of Wisconsin, Madison.

- Kaufman, J. 1976. Influence of the Composition of the Ration and the Feeding Frequency on pH Regulation in the Rumen and on Feed Intake in Ruminants. Livestock Production Science. 3:103.
- Kleiber, M. 1965. Metabolic Body Size. <u>Energy Metabolism</u>. (Academic Press: London) edited by K. L. Blaxter, pp. 428-435.
- Kreig, D. 1975. 50,759 Pounds of Milk in 305 Days. Hoard's Dairyman 120(1):56.
- Kwan, K., C. E. Coppock, G. B. Lake, M. J. Fettman, L. E. Chase and R. E. McDowell. 1977. Use of Urea by Early Fostpartum Cows. J. Dairy Sci., 60:1706.
- Lamb, R. C., G. E. Stoddard, C. H. Michelsen, M. J. Anderson and D. R. Waldo. 1973. Response to Concentrates Containing Two Percents of Protein Fed at Four Rates for Complete Lactations. Journal of Dairy Sci. 57:811.
- Line, C. and D. R. Westgarth. 1969-1970. Response of the Lactating Cow to Variations in Feed Input. National Institute for Research in Dairying. University of Reading, England, p. 35.
- Maddala, G. S. 1977. Econometrics. (New York: McGraw-Hill Book Company), p. 460.
- Mather, R. E. and A. A. Rimm. 1958. Methods of Adjusting Roughage Intake Data of Dairy Cows for Differences in Body Size. J. Dairy Sci. 41:722.
- Matthews, C. A., and M. H. Fohrman. 1954. Beltsville Growth Standards for Holstein Cattle. Technical Bulletin No. 1099, U.S. Dept. of Agric., Mashington D. C.
- McCullough, M. E. 1973. Optimum Feeding of Dairy Animals for Meat and Milk. (Athens: Univ. of Georgia Press).
- McDaniel, B. T., and J. E. Legates. 1965. Associations Between Body Weight Predicted from Heart Girth and Production. J. Dairy Sci., 48:947.
- Meadows, C. 1977. Cow Losses. Dairy Notes. Michigan State Univ., East Lansing, Michigan, July, p. 2.
- Mertins, D. R. and F. J. Van Saest. 1973. Frediction of Voluntary Forage Intake. Journal of Anizal Sci. 37:296 (Abstr.).

- Moe, P. W. and W. P. Flatt. 1969. The Use of Body Tissue for Milk Production. Paper 113 presented at the annual meeting of the American Dairy Science Association, Minneapolis, Minnesota.
- Moe, P. W., H. F. Tyrrell and W. P. Flatt. 1971. Energetics of Body Tissue Mobilization. J. Dairy Sci., 54:548.
- Montgomery, M. J. and B. R. Baumgardt. 1965. Regulation of Food Intake in Ruminants. 2. Rations Varying in Energy Concentration and Physical Form. J. Dairy Sci., 48:1623.
- Nelson, A. G., W. F. Lee and W. G. Murray. 1973. Agricultural Finance. (Iowa State Univ. Press: Ames). pp. 46-53.
- Nott, S. B. 1974. Sorting Telfarm Analyses by Production Level, Michigan Specialized Dairy Farms, 1973. Agricultural Economics Staff Paper 74-34. Michigan State Univ., East Lansing.
- NRC. 1978. Nutrient Requirements of Dairy Cattle. 5th Revised Ed., National Academy of Sciences, Washington, D. C.
- O'Bleness, G. V. and L. D. Van Vlick. 1962. Reasons for Disposal of Dairy Cows from New York Herds. J. Dairy Sci. 48:1087.
- Orskov, E. R. 1976. Unpublished data. Rowett Research Institute.
- Poos, M., L. S. Bull and R. W. Hawkins. 1978. Feeding NPN to Dairy Cows: II. Evaluation of the Urea Fermentation Potential System Using a Negative UFP Diet. Submitted for publication to the British Journal of Nutr.
- Redman, J. C., and L. P. H. Kuo. 1969. Replacement of Dairy Cows, A Multi-Stage Decision Making Problem. Research Report #1; University of Kentucky Agr. Experiment Station, Lexington.
- Reid, J. T., H. F. Tyrell, and P. W. Moe. 1965. Relationship of Depressed Digestibility Associated with Increasing Feed Intakes to Energy Requirements of Milk Production. Proc. of the Cornell Nutr. Conference, Ithaca, New York, p. 56.
- Renkema, J. and J. Stelwagen. 1977. De gebriuksduur van melkvee en zyn economishe Istekenis. Publikatie #1, Afdeling Agravische Econome Vakgroep Zootechniels der Diergeneeskurde Utrecht.

- Ridler, B., and W. H. Broster. 1969-1970. The Course of Level of Milk Yield of the Cow Over the Lactation. National Institute for Research in Dairying. University of Reading, England, p. 53.
- Ripley, R. L. 1970. Effects of Days Cpen on Lactation Production. Paper presented at the 65th Annual Meeting of the American Dairy Science Association. University of Florida, Gainesville.
- Robb, G. W., R. W. Mellenberger and M. Zagsnczyk. 1979. Mastitis Control Program, Lesson I, A Close Look at Mastitis Itself. Dairy Notes, Michigan State Univ. Cooperative Extension Service, East Lansing, Michigan. May.
- Rogers, Q., P. M. P. Leung. 1973. The Influence of Amino Acids in the Neuroregulation of Feed Intake. Federation Proceedings, 32:1709.
- Rundell, R. W. 1967. Optimum Dairy Cow Replacement Policies to Maximize Income Over Feed Cost. Ph.D. Thesis. East Lansing, Michigan State Univ.
- Sanders, H. G. 1923. The Shape of the Lactation Curve. J. of Agr. Sci., 13:169.
- Sanders, H. G. 1930. The Analysis of the Lactation Curve into Maximum Yield and Persistency. Journal of Agr. Sci., 20:145.
- Satter, L. D., and R. E. Roeffler. 1975. Nitrogen Requirement and Utilization in Dairy Cattle. J. Dairy Sci., 58:129.
- Satter, L. D. 1978a. Protein Degredation, Synthesis and Flow Rate from the Rumen. 39th Minnesota Nutrition Conference Proceedings assembled and edited by John Donker and Gerald Wagner.
- Satter, L. D. 1978b. Protein Requirements of Dairy Cattle. 39th Minnesota Nutrition Conference Proceedings assembled and edited by John Donker and Gerald Wagner, p. 45.
- Shultz, A. A. 1974. Factors Affecting the Shape of the Lactation Curve. Master's Thesis. University of Wisconsin, Madison.
- Sikka, L. C. 1950. A Study of Lactations as Affected by Heredity and Environment. J. Dairy Resources. 17:231.

- Slack, S., W. K. Kennedy, K. L. Turk, J. T. Reid and G. W. Trimberger. 1960. Effect of Curing Methods and Stage of Maturity Upon Feeding Value of Roughages, Part 2, Different Levels of Grain. Bulletin #957. Cornell Univ., Agric. Exp. Sta., Ithaca, New York.
- Smith, B. J. 1971. Dairy Cow Replacement Problem--An Application of Dynamic Frogramming. Technical Bulletin #745. Univ. of Florida Agric. Exp. Station, Gainesville, Florida.
- Smith, B. J. 1972. Factors for Extending Partial Milk Records to Determine Economically Optimal Culling Decisions. Research Report #144, Georgia Agric. Exp. Sta. Research Bulletin, September.
- Smith, N. E. 1975. Maximizing Income Over Feed Costs: Evaluation of Production Response Relationships. J. Dairy Sci., 59:1193.
- Sonderegger, H., and A. S. Church. 1977. A Study of the Influence and Supply of the Energy and Protein Supply on the Fertility of Dairy Cows. Livestock Production Science, 4:327.
- Stewart, H. M., E. B. Burnside, J. J. Wilton and W. C. Pfeiffer. 1977. A Dynamic Approach to Culling Decisions in Commercial Dairy Herds. J. Dairy Sci., 60:602.
- Thomas, J. W., L. D. Brown, and R. S. Emery. 1970. Corn Silage Compared to Alfalfa Hay for Lactating Cows When Fed Various Levels of Grain. J. Dairy Sci., 53:342.
- Thomas, J. V. 1971. Protein Requirements of Milk Cows. J. Dairy Sci., 54:1629.

Thomas, J. W. 1979. Personal Communication.

- Thornton, R. F. and D. J. Menson. 1972. The Relationship Between Voluntary Intake and Mean Apparent Retention Time in the Rumen. Aust. Journal of Agric. Res., 23:871.
- Trimberger, G. N., H. F. Tyrrell, D. A. Morrow, J. T. Reid, M. J. Wright, W. F. Shipe, N. G. Merrill, J. K. Loosli, C. E. Coppock, L. A. More and C. H. Gordon. 1972. Effects of Liberal Concentrate Feeding on Health, Reproductive Efficiency, Economy of Milk Froduction and Related Responses of the Dairy Cow. Food and Life Sciences Bulletin #8, Cornell University, Ithaca, New York.

- USDA-DHIA. 1974. Factors for Standardizing 305-day Lactation Records for Age and Month of Calving. ARS-NE-40, Agricultural Research Service. U S Dept. of Agric.
- Van Horn, <u>et al</u>. 1968. Effect of High-Urea Supplementation on Feed Intake and Milk Production of Dairy Cows. J. Dairy Sci., 50:709.
- Van Ostergaard. 1978. Strategies for Concentrate Feeding to Attain Optimum Feeding Level in High Yielding Dairy Cows. National Institute of Animal Science. Rolighedsvej 25, DK-1958. Copenhagen V, Denmark.
- Wheeler, W. E., and C. H. Noller. 1976. Limestone Buffers in Complete Mixed Rations For Dairy Cattle. J. Dairy Sci., 59:1788.
- White, J. M. and J. R. Nichols. 1962. Reasons for Disposal of Pennsylvania Holstein Cattle. J. Dairy Sci., 48:512.
- Wilkinson, J. W. 1977. The Control of Voluntary Feed Intake in Ruminants. Classnotes from Ruminant Nutrition 433, winter term, Michigan State Univ., E. Lansing, Michigan.
- Wood, P. D. 1969. Factors Affecting the Shape of the Lactation Curve. Journal of Animal Production, 11:307.
- Wood, P. D. 1970. A Note on the Repeatability of Parameters of the Lactation Curve in Cattle. Journal of Animal Production, 12:535.
- Wood, P. D. 1976. Algebraic Models of the Lactation Curves for Milk, Fat, and Protein Production, With Estimates of Seasonal Variation. Journal of Animal Production, 22:35.

APPENDIX

THE DAIRY COW REPLACEMENT MODEL

ONCE THE USER HAS SIGNED ON HE/SHE SHOULD ENTER : \$RUN FSUB

.

\$1	LIST MOI	D6+NWT+NMATEQ+NXLACT+NDMI+NREQ+TBAL+NNUT+\$LP+COST+REV
>	100	CC **** MAIN ****
>	110	CC THIS PROGRAM CALCULATES THE FEED DISAPPEARANCE, REVENUE,
>	120	CC COST, DISCOUNTED NET PRESENT VALUE, AND THE ANNUALIZED NET
>	130	CC PRESENT VALUE OVER THE COURSE OF THE LIFETIME OF A COW.
>	140	CC THE FAILURE RATE THE ODDS THAT A COW DOESN'T MAKE IT
>	150	CC FROM YEAR T TO T+1 ARE EXPLICITY ACCOUNTED FOR. AS A
>	160	CC CONSEQUENCE, RESULTS ARE STATED ON AN "EXPECTED VALUE"
>	170	CC BASIS.
>	180	CC
>	190	CC DEVELOPED BY JOE HLUBIK, DAIRY SCIENCE, MICH STATE UNIV
>	200	CC AND J.ROY BLACK, AG. ECONOMICS, MICH STATE UNIV.
>	210	000000000000000000000000000000000000000
>	220	CC TO EXECUTE THE PROGRAM USER SHOULD ENTER:
>	230	CC 1)NUMBER OF LACTATIONS TO CONSIDER
>	240	CC 01 TO 07
>	250	CC 2)MONTHS IN MILK/LACTATION
>	260	CC 09 TO 15
>	270	CC 3)AGE OF THE COW AT THE BEGINNING OF ANALYSIS
>	280	CC 02. YEARS TO 08.YEARS
>	290	CC 4)MONTHS OF AGE AT THE BEGINNING OF ANALYSIS
>	300	CC 20 TO 96
>	310	CC 5)ME LBS OF MILK
>	320	СС 10000. ТО 20000.
>	330	CC 6)ESTIMATED MATURE WEIGHT
>	340	CC 1200. TO 1800.
>	350	CC 7)SALVAGE PRICE(\$/LB FOR CULL BEEF)
>	360	CC .00 TO 7.00
>	370	CC 😪 😪 8) DOES USER WANT NUTRIENT OUTPUT?
>	380	CC 01=N0,03=YES
>	390	CC 9)DOES USER WANT OUTPUT OTHER THAN MILK
>	400	CC PRODUCTION AND ESTIMATED WEIGHT?
>	410	CC 01=YES,00=NO
>	420	CC000000000000000000000000000000000000
>	430	CC OUTPUT:
>	440	CC OUTPUT IS INCLUDED FOR EACH MONTH WITHIN EACH LACTATION.
>	450	CC A SUMMARY OF LACTATION FEED DISAPPEARANCE AND ECONOMICS FOR
>	460	CC EACH LACTATION AS WELL AS THE EXPECTED ANNUALIZED NET PRESENT
>	470	CC VALUE(CONSIDERING PROBABLE HERD LIFE) CONCLUDES EACH ANALYSIS.
>	480	CC
1		
>	490	CC NUTRITION OUTPUT FOR EACH MONTH WITHIN EACH LACTATION INCLUDES:
>	500	CC LINE 1: RESULTS ARE(COST OF RATION)

.

>	510	CC	LINE 2: LBS OF	EACH FEEDSTUFF DELIVERED(SHELLED CORN,CORN
>	520	CC	SILAGE	ALFALFA HAY.SOY MEAL44.UREA.DICAL.LIMESTONE.
>	530	0.0	SALT)	,,,.,
5	5.0			NT BRANISCHRUTE AND BRETBICTIONS (DWI NR CD CR
1	540		LINE S. NUIRIE	NI REQUIREMENTS AND RESIRICITONS(DMI, ME, CF, CF,
>	550	CC	CA, PHO	S, CA: PHOS-LB, CA: PHOS-UB, SUPPLEMENTAL NPN, ENIMP,
>	560	CC	FMIMP,	WT LOSS,CONSTRAINTS ON ROUGHAGES)
>	570	CC	LINE 4: REQUIR	EMENTS DELIVERED (LP SOLUTION).
>	580	CC	-	
\$	590	C C	RCONOMIC OUTPUT	FOR EACH MONTH WITHIN EACH LACTATION INCLUDES:
	600		TINE 1. PEPD C	
1	600		LINE I: FEED S	UMMARI FUR INE MUNIA
>	610	CC	LINE 2: LACTAT	ION FEED SUMARY TO DATE
>	620	CC	LINE 3: FEED C	OST, OTHER COSTS, TOTAL COSTS, GROSS REVENUE, NET
>	630	CC	REVENU	E.DISCOUNTED NET REVENUE (CALCULATED AT THE END
>	640	0.0	OF THE	LACTATION).
ί.	650		PCONONIC SUNNARY	AT THE END OF THE ANALYSIS INCLUDES.
	6.60		ECONOMIC SUMMARI	AL THE ERD OF THE ANALISIS INCLOSES.
>	000	CC	NET PRESENT	VALUE, SALVAGE VALUE, ARRUALIZED REV(EACLODING
>	670	CC	ODDSJAND A F	EED SUMMARY FOR EACH LACTATION.FINALLY EXPECTED
>	680	CC	ANNUALIZED N	ET PRESENT VALUE, INCLUDING PROBABLE HERD LIFE,
>	690	CC	IS ESTIMATED	•
>	700	CCC	00000000000000000000	000000000000000000000000000000000000000
>	710	0.0		
ĺ.	7 2 0		NERTHING.	
/	720		DEFINITIONS:	
>	730	CC	MN TAG E	AGE IN MONTHS(.GE.24)
>	740	CC	MN T CL F	MONTH OF CALVING(112)
>	750	CC	XH EML K	MILK/305 DAY LACTATION.DHIA ME BASIS
>	760	CC	PRODYR	MILK/305 DAY LACTATION LRS PROJECTED FOR
	770		TROPIR	TACTATION T
	770			
>	/80	CC	WTME	ESTIMATED MATURE WEIGHT, LBS
>	790	CC	PRODDY	MILK YIELD, LBS/DAY
>	800	CC	PROD	MILK YIELD, LBS/DAY
>	810	CC	PRODLG	MILK YIELD, PREVIOUS MONTH
>	820	0.0	WEICHT	BODY UPICHT AT CALVING FOR LACTATION L.
	020	00		DODI WEIGHT AT CALVING, FOR EACTAILON 5.
	030		GROWTH	WEIGHT GAINED, LBS/DAY AS A FUNCTION OF
>	840	CC		GROWING OLDER
>	850	CC	DMI	DRY MATTER INTAKE,LBS/DAY
>	860	CC	DMILAG	DRY MATTER INTAKE.LBS/DAY.PREVIOUS MONTH
>	870	CC	CTFEED	FERD COST
5	880		CTOTUD	ATTER CASTS
	000		CICIAR	
2	890		CITOT	TUTAL CUSTS
>	900	CC	RATE	DISCOUNT RATE
>	910	CC	P	PRICE
>	920	CC	7	FEED
>	930	CC	TP	TOTAL PRED
	940	<u> </u>	 CTT	CRAND TOTAL PERDS
	940		GIF	GRAND IVIAL FBEDS
>	950	CC	GREV	GROSS REVENUE
>	960	CC	DNREV	DISCOUNTED NET REVENUE
>	970	CC	XNPV	NET PRESENT VALUE
>	980	CC	ANPV	ANNUALIZED NET PRESENT VALUE
>	990	0.0	TOPT1	DECISION WHETHER OR NOT NUT INPO SHOULD
	1000	~~	* *	BP ITCTPD
-	1000			
>	1010	CC	LOPTZ	DECISION WHETHER OR NOT INFO OTHER THAN
>	1020	CC		BODY WEIGHT AND MILK YIELD SHOULD BE LISTED
>	1030	CC		
>	1040	00	NOLAC	NUMBER OF LACTATIONS TO CONSIDER
\$	1050		MNT AC	NINERS OF MONTHS COUS MITS/ILCTLATION
5	10/0			NONDER OF HUNING COWS MILK/LACIALIUN
2	1000	CC	AGELNT	AGE IN YEARS AT THE BEGINNING OF THE ANALYSIS
>	1070	CC	MNTAGE	MONTHS OF AGE AT THE BEGINNING OF THE ANALYSIS
>	1080	CC	PRODME	PRODUCTION MATURE EQUIVALENT(MILK)
>	1090	00	WTME	ESTIMATED MATURE WEIGHT
\$	1100		PRGAT	
5	1110		FROAL	JABIAND FALUE/DD VF UUEL DEEF
>	1110	CC		
>	1120	CCC	000000000000000000000000000000000000000	000000000000000000000000000000000000000
>	1130	CC		
>	1140	CC	CURRENT VERSION	IS AS OF 28 NOVEMBER, 1977.
>	1150	0.0	JULY 8. 1978 PRV	ISION
\$	1160			
-		~~~		

>	1170	DIMENSION FEED(13.8).CTFEED(13).CTOTHR(13).
>	1180	+ CTTOT(13), GREV(13), XNREV(13), DNREV(13),
>	1190	+ XNPV(13), ANPV(13), GTF(8), TF(13,8), F(8), P(8)
>	1200	CC
>	1210	DATA P/.042,.0235,.0300,.0900,.0800,.125,.035,.04/
>	1220	CC
>	1230	DO 308 I=1,13
>	1240	CTFEED(I)=0.
>	1250	CTOTHR(I)=0.
>	1260	CTTOT(1)=0.
>	1270	GREV(I)=0.
>	1280	XNREV(I)=0.
>	1290	DNREV(I)=0.
>	1300	XNPV(I)=0.
>	1310	308 ANPV(I)=0.
>	1320	
>	1330	DO 280 L=1,8
~	1340	280 GTF(1)=0.
2	1350	
(1300	DU 282 I=1,13
ζ.	1380	292 TR([]])-0
5	1300	
5	1400	640 RODWAT (/)
Ś	1410	CC CC
Ś	1420	READ 1 NOLAC
Ś	1430	READ 1, MNLAC
5	1450	READ 2. AGEINT
>	1450	READ 1.MNTAGE
>	1460	READ 2. PRODME
>	1470	READ 2. WTHE
>	1480	READ 2, PRSAL
>	1490	CC
>	1500	READ 1, IOPT1
>	1510	READ 1, IOPT2
>	1520	CC
>	1530	2 FORMAT(F10.0)
>	1540	1 FORMAT(I2)
>	1550	AGE=AGEINT
>	1560	RATE=.12
>	1570	MONTH=MNLAC+2
>	1580	TIME=0.
>	1590	MTHCLF=1
>	1600	
>	1610	PRINT 640
~	1620	
(1640	DU JUU LEI,HULAU Du juu lei,hulau muri b vurui b vurdina)
Ś	1650	PRODUCE ANALOU (ANTAGU, ALCULF, ANDRUK, ANDRAL) PRODUCE PRODUCE / YMENIE
5	1660	CALL UT (NNTACE UTWE DEICHT CROUTH)
>	1670	CALL XLACT (AGE. 7. PRODYR PROD)
>	1680	
>	1690	PRINT 600.AGE
>	1700	600 FORMAT(1X, 'AGE:', F10.0)
>	1710	PRINT 620.WEIGHT
>	1720	620 FORHAT(1X, 'WEIGHT:', F10.0)
>	1730	PRINT 610, PRODYR
>	1740	610 FORMAT(1X, 'PRODUCTION: ', F10.0)
>	1750	PRINT 640
>	1760	CC
>	1770	WTLOSS=0.
>	1780	CC
>	1790	DO 340 J=1,MONTH
>	1800	CC
>	1810	TIME=TIME+1.
>	1820	CC

1830 > WEEK=((J+(J-1))/2.)*4.3 > 1840 CC 1850 > IF(10PT2.EQ.0)GO TO 683 > 1860 PRINT 680, WEEK 680 FORMAT(1X, 'WEEK:', F10.0) > 1870 PRINT 682,TIME 1880 > 1890 > 682 FORMAT(1X, 'MONTHS SINCE ENTERING HERD', F10.0) СC > 1900 1910 > CC TEST WHETHER IN LACTATION OR DRY PERIOD 1920 > 683 IF(J.GT.MNLAC)GO TO 684 1930 CC > 1940 > IF(WEEK.GT.8.)PRODLG=PRODDY > 1950 CALL XLACT (AGE, WEEK, PRODYR, PRODDY) > 1960 PRINT 1092, PRODDY > 1970 1092 FORMAT(1X, 'DAILY MILK', F10.2) > 1980 IF (WEEK.GT.8.) DMILAG=DMI > 1990 CALL DMILAC (AGE, WEEK, PROD, PRODDY, PRODLG, WEIGHT, 2000 > & DMI, DMILAG) 2010 PCT=(DMI/WEIGHT)*100. > > 2020 CALL REQLAC (AGE, WEEK, PRODDY, WEIGHT, GROWTH, 2030 > & WTCHG, ITPCHG, DMI, EN, CP, CA, PHOS, SALT, XNPN, CAPHLB, > 2040 CAPHUB, FMIMP, ENIMP) > 2050 IF (WEEK.GT.8. .AND. WEEK .LT. 12.)WTCHG=0. 2060 IF(WEEK .GE. 12. .AND. WEEK .LE. 40.)WTCHG=WTLOSS/196. > > 2070 IF (WEEK.GT.40.)WTCHG=0. > 2080 CALL BAL (DMI, EN, CP, CA, PHOS, SALT, XNPN, CAPHLB, > 2090 + CAPHUB, FMIMP, ENIMP, WTCHG, ITPCHG, F, P, IOPT1) > 2100 IF(WEEK.LE.8.)WTLOSS=WTLOSS+WTCHG*30. > 2110 GO TO 686 > 2120 CC 2130 684 PRODDY=0. > > 2140 DMILAG=DMI CALL DMIDRY (AGE, WEEK, PROD, PRODDY, PRODLG, WEIGHT, > 2150 > 2160 & DMI, DMILAG) > 2170 PCT=(DMI/WEIGHT)*100. > 2180 CALL REQDRY (AGE, WEEK, PRODDY, WEIGHT, GROWTH, > 2190 & WTCHG, ITPCHG, DMI, EN, CP, CA, PHOS, SALT, XNPN, CAPHLB, 2200 > & CAPHUB, FMIMP, ENIMP) 2210 > CALL BAL (DMI, EN, CP, CA, PHOS, SALT, XNPN, CAPHLB, > 2220 + CAPHUB, FMIMP, ENIMP, WTCHG, ITPCHG, F, P, IOPT1) 2230 > WTCHG=0. > 2240 686 CALL REVNUE (PRODDY, REV) > 2250 CALL COST (PRODME, OVC) > 2260 CC · 2270 > DO 312 K=1,8 > 2280 312 FEED(I,K)=0. сс 2290 > > 2300 DO 380 K=1,8 FEED(I, K) = FEED(I, K) + F(K) * 30. > 2310 TF(I,K) = TF(I,K) + FEED(I,K)> 2320 2330 380 CTFEED(I)=CTFEED(I)+F(K)*P(K)*30. > > 2340 CTOTHR(I)=CTOTHR(I)+OVC 2350 CTTOT(I)=CTFEED(I)+CTOTHR(I) > > 2360 GREV(I)=GREV(I)+REV > 2370 XNREV(I)=GREV(I)-CTTOT(I) > 2380 IF(J.EQ.MONTH)DNREV(I)=XNREV(I)/((1.+RATE)**I) 2390 CC > > 2400 IF(IOPT2.EQ.0)GO TO 343 > 2410 PRINT 800, (FEED(I,K),K=1,8) > 2420 PRINT 800, (TF(I,K), K=1,8)2430 PRINT 800, CTFEED(I), CTOTHR(I), CTTOT(I), GREV(I), XNREV(I), > > 2440 + DNREV(I) > 2450 PRINT 640 2460 800 FORMAT(1X,14F8.2) > > 2470 СС 2480 343 MNTAGE=MNTAGE+1 >

2490 CC > 2500 340 CONTINUE > > 2510 CC 2520 > AGE = AGE + 12530 > PRINT 640 > 2540 PRINT 640 > 2550 300 CONTINUE 2560 CC > 2570 > CC 2580 EVALUE=0. > > 2590 CUMODD=1. > 2600 AGE=AGEINT 2610 CC > > 2620 DO 500 [=1.NOLAC > 2630 J=I-12640 IF(I.LT.NOLAC)ODDS=1.-(.95-.0183*AGE) > > 2650 IF(I.LT.NOLAC)CUMODD=CUMODD-ODDS > 2660 IF(I.EQ.NOLAC)ODDS=CUMODD 2670 IF(I.EQ.1)XNPV(I)=DNREV(I) > IF(I.GT.1)XNPV(1)=XNPV(J)+DNREV(I) > 2680 > 2690 $XX = (1 \cdot + RATE) * * I$ SALVG=WEIGHT*PRSAL/XX 2700 > > 2710 ANPV(I) = (XNPV(I) + SALVC) * (RATE * XX/(XX-1.))> 2720 PRINT 807, XNPV(I), SALVG, ANPV(I), ODDS 2730 > PRINT 800, (TF(I,K), K=1,8) 2740 > 807 FORMAT(1X, 5F10.2) > 2750 EVALUE=EVALUE+ODDS*ANPV(I) 500 AGE=AGE+1 2760 > > 2770 PRINT 804, EVALUE > 2780 804 FORMAT(1X, 'EXPECTED ANNUALIZED NPV IS: ', F10.1) 2790 СC > 2800 > END > 100 SUBROUTINE WT (MNTAGE, WTME, WEIGHT, GROWTH) > 110 CC 120 > CC CC CALCULATES WEIGHT BASED ON EXPECTED MATURE WEIGHT (ENTERED BY THE > 130 140 СС USER) AND MONTHS OF AGE. > > 150 CC BASED UPON: MC'DANIEL, B.T. AND J.E.LEGATES, "ASSOCIATIONS BETWEEN BODY WEIGHT PREDICTED FROM HEART GIRTH AND > 160 CC 170 СC PRODUCTION, J. DAIRY SCI., 48:947.1965. > 180 CC > 190 CC DEFINITIONS: 2 200 CC MNTAGE AGE IN MONTHS > > 210 CC WTME ESTIMATED MATURE WEIGHT 220 CC > 230 > 240 CC > 250 CC > > 260 IF(MNTAGE.GE.84) GO TO 10 > 270 AGE=MNTAGE 280 CC > > 290 TEMP=.5161+.01423*AGE-.000139*AGE*AGE+.00000045*AGE > 300 *AGE*AGE å 310 WEIGHT=TEMP*WTME > CC > 320 CC SECTION TO CALCULATE THE GROWTH RATE, LBS/DAY. > 330 340 CC CALCULATED BY CALCULATING THE CHANGE IN WEIGHT OVER THE > > 350 CC PERIOD OF A MONTH AND DIVIDING THAT RESULT BY 30 DAYS. > 360 CC > 370 AGETMP=AGE-1. TEMP1=.5161+.01423*AGETMP-.000139*AGETMP*AGETMP+ > 380 > 390 & .00000045*AGETMP*AGETMP*AGETMP 400 WT1=TEMP1*WTHE > СC > 410 > 420 GROWTH=(WEIGHT-WT1)/30. СC 430 >

>	440	CC
>	450	RETURN
>	460	
	400	
>	4/0	WEIGHT=WIME
>	480	RETURN
>	490	CC
>	500	END
\$	510	
	510	
>	520	
>	100	SUBROUTINE XMATEQ(MNTAGE,MONTH,XMEMLK,XMEFAT)
>	110	CC
~	120	CC CONDITION ON THIS & 1079
	120	CC CONFLETED ON JULI 4,1976
>	130	CC
>	140	CC CALCULATES THE ADJUSTMENT FACTOR TO TAKE A COW OF ANY
>	150	CC AGE AND CONVERT HER TO A "MATURE EQUIVALENT" BASIS.
>	160	CC BASED ON . NORMAN P. FT. AL. "USDA-DHIA PACTORS FOR STANDARDIZING
	170	CO BACE DAY NORMANAN PLICAL CODA-DAL ARCONSTAN STRAFARDALIZAR
,	170	CC JUS-DAI LACTATION RECORDS FOR AGE AND MONTH OF CALVING ARS-NE-40
>	180	CC 1974.THE DATA FOR XMMMLK AND XMMFAT ADJUST MILK YIELD FOR
>	190	CC MONTH OF CALVING USING JANURARY AS A STANDARD REFERENCE.
>	200	CC
~	210	CONTRINITIONS.
	210	
>	220	CC AGENNT: AGE IN MONTHS
>	230	CC XMEMIK: MATURE EQUIVALENT FACTOR FOR MILK
>	240	CC XMEFAT: MATURE EQUIVALENT FACTOR FOR BUTTER FAT
>	250	CC XMNMLK, MONTH OF CALVING AD UISTMENT FACTOR FOR MILE
	260	CC WARATA NONTE OF CALVING ADJUSTWENT DACTAR DAR HIMTED BAT
-	200	CC AMARAT: MONTH OF CALVING ADJUSTMENT FACTOR FOR BUTTER FAT
>	270	
>	280	CC000000000000000000000000000000000000
>	290	DIMENSION XMNMLK(12), XMNFAT(12)
>	300	DATA XNNMLK/002 .02 .04 .06 .09 .12 .12 .08 .04 .02 .02/
	310	
-	310	DATA AMARA1/0.,.01,.02,.04,.00,.08,.1,1.,.05,.02,.0,.0/
>	320	CC
5	330	AGEMNT-MNTAGE
-		
>	340	CC
>	340	CC $IF(ACENNT, IE, 70.) XMENIE = 809 \pm (10.68/ACENNT)$
>	340 350	CC IF(AGENNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT)
> > >	340 350 360	CC IF(AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF(AGEMNT.GT.70AND.AGEMNT.LE.94.)XMEMLK=.96
> > > >	340 350 360 370	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016*(AGEMNT-94.)
> > > > >	340 350 360 370 380	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK (MONTH)
· > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC
· > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC LF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT)
~ ~ ~ ~ ~ ~ ~ ~ ~ ~	340 350 360 370 380 390 400	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.72.AND.ACEMNT.LE.80.)XMEFAT=.96
· > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96
·	340 350 360 370 380 390 400 410 420	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.)
·	340 350 360 370 380 390 400 410 420 430	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH)
·	340 350 360 370 380 390 400 410 420 430 440	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 440	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	340 350 360 370 380 390 400 410 420 430 440 450 660	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN FND
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	340 350 360 370 380 390 400 410 420 430 440 450 460	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END
·	340 350 360 370 380 390 400 410 420 430 440 450 460 470	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	340 350 360 370 380 390 400 410 420 430 440 440 450 460 470 480	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 100	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	340 350 360 370 380 390 400 410 420 430 440 450 440 450 460 470 480 100 110	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 100 110	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	340 350 360 370 380 390 400 410 420 430 440 440 450 460 470 480 100 110 120	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 440 440 450 440 450 440 450 480 100 110 120	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 100 110 120 130 140	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 450 440 450 460 470 480 100 110 120 130 140 150	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 100 110 120 130 140 150 160	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 440 440 450 440 450 440 450 440 100 110 120 130 140 150 160 170	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 100 110 120 130 140 150 160	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 440 420 440 450 460 470 480 100 110 120 130 140 150 160 170 180	CC IF (AGENNT.LE.70.)XMENLK=.809+(10.68/AGEMMT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMENLK=.96 IF (AGEMNT.GT.94.)XMENLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014*(AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 100 110 120 130 140 150 160 170 180 190	CC IF (AGENNT.LE.70.)XMENLK=.809+(10.68/AGEMMT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMENLK=.96 IF (AGEMNT.GT.94.)XMENLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014*(AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 440 440 450 440 450 440 450 440 100 110 120 130 140 150 160 170 180 190 200	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMMT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014*(AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 100 110 120 130 140 150 160 170 180 200 210	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMMT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.70.XMEMLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMMMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014*(AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- ^ > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 440 420 440 420 440 420 440 420 440 450 460 110 120 130 140 150 160 170 180 190 210 210	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMMT) IF (AGEMNT.GT.70AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMMMLK (MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
- ^ ^ > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 100 110 120 130 140 150 160 170 180 190 210 220	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014*(AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 440 440 450 460 470 480 100 110 120 130 140 150 160 170 180 190 200 210 220 230	CC IF (AGENNT.LE.70.)XMENLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMENLK=.96 IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMENLK=.96 IF (AGEMNT.GT.94.)XMENLK=.96+.0016* (AGEMNT-94.) XMEMLK=XMEMLK+XMNNLK (MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014* (AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT (MONTH) CC RETURN END CC 00000000000000000000000000000000000
- > > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 450 440 450 460 470 480 100 120 130 140 150 160 170 180 190 200 210 220 230 240	CC IF (AGENNT.LE.70.)XMENLK=.809+(10.68/AGEMMT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMENLK=.96 IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMENLK=.96 IF (AGEMNT.GT.94.)XMEMLK=.96+.0016*(AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014*(AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC RETURN END CC 00000000000000000000000000000000000
- ^ > > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 440 420 440 440 440 450 460 470 480 100 110 120 130 140 150 160 170 180 200 210 220 230 240 250	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014*(AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC CC RETURN END CC 00000000000000000000000000000000000
- ^ ^ > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 430 440 450 460 470 480 100 110 120 130 140 150 160 170 180 190 210 220 230 240 250 260	CC IF (AGEMNT.LE.70.)XMEMLK=.809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK=.96 IF (AGEMNT.GT.74.)XMEMLK=.96+.0016*(AGEMNT-94.) XMEMLK=XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT=.817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT=.96 IF (AGEMNT.GT.80.)XMEFAT=.96+.0014*(AGEMNT-80.) XMEFAT=XMEFAT+XMNFAT(MONTH) CC CC RETURN END CC CC 0000000000000000000000000000000
- ^ ^ > > > > > > > > > > > > > > > > >	340 350 360 370 380 390 400 410 420 430 440 440 440 440 440 440 44	CC IF (AGEMNT.LE.70.)XMEMLK809+(10.68/AGEMNT) IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK96 IF (AGEMNT.GT.70.AND.AGEMNT.LE.94.)XMEMLK96 IF (AGEMNT.GT.94.)XMEMLK96+.0016*(AGEMNT-94.) XMEMLK-XMEMLK+XMNMLK(MONTH) CC IF (AGEMNT.LE.73.)XMEFAT817+(10.276/AGEMNT) IF (AGEMNT.GT.73.AND.AGEMNT.LE.80.)XMEFAT96 IF (AGEMNT.GT.80.)XMEFAT96+.0014*(AGEMNT-80.) XMEFAT-XMEFAT+XMNFAT(MONTH) CC CC RETURN END CC 00000000000000000000000000000000000

/

>	280	CC COW RELATIVE TO THE "STANDARD - 12,000 LB" COW. SEE: SHULTZ
>	290	CC A.A., "FACTORS AFFECTING THE SHAPE OF THE LACTATION
>	300	CC CURVE AND ITS MATHEMATICAL DESCRIPTION, MASTER'S THESIS,
>	310	CC U OF WISCONSIN, 1974.
>	320	CC
>	330	TEMP=A(1, IAGE) + ALOG(PRODYR / 12000.)
>	340	cc
>	350	PRODDY=EXP(TEMP+A(2,IAGE)*ALOG(DAY)-A(3,IAGE)*DAY)
>	360	RETURN
>	370	END
>	380	CC000000000000000000000000000000000000
>	390	
>	100	SUBROUTINE DNILAC (AGE WEEK, PROD. PRODDY, PRODLC, WEIGHT.
>	110	
\$	120	
\$	130	
\$	140	CC DOTENTIAL DBY WATTED INTAFF
5	150	CC FOIERITED DEI MATTER TRIARE
Ś	160	
5	170	
(180	CC FCF INTER NITA DBA NATTED INTARD THE BECREGETON BETINTING
(100	CC ESTIMATES DALLI DAL MATTER INTARETICE REGRESSION ESTIMATING
(200	CC INTARE DURING EARLI LACTATION WEEKS I TO 77,15 DASED ON
<u>.</u>	200	CC DATA OF: FOLDAGER, J. "PROTEIN REQUIREMENT AND NON PROTEIN MIROG
(210	CC FOR HIGH PRODUCING COWS IN EARLY LACIALION, "PH.D.INESIS, MICH.
>	220	CC STATE UNIV., E. LANSING. 1977. INTERCEPT ADJUSTMENT (UPWARD) WAS
>	230	CC INCORPORATED BASED ON: TRIMBERGER, G.W., ET AL. CORNELL BULLETIN
2	240	CC NO.8,1972.
>	250	CC BEYOND WEEK 9 INTO LACTATION INTAKE IS ADJUSTED DOWNWARD
>	260	CC CONSIDERING THE IMPACT OF CHANGE IN MILK YIELD ON DRY MATTER
>	270	CC INTAKE (DMI). THIS ADJUSTMENT IS BASED ON DATA OF: SLACK, S. ET AL.
>	280	CC BULLETIN NO.957, CORNELL UNIV.AGRIC.EXP.STA., ITHACA, NEW YORK
>	290	CC 1960. FOLDAGER, J., PH.D. THESIS, MSU, 1977. AND LAMB, R.C.
>	300	CC ET AL., J. DAIRY SCI. 57:811.1973.
>	310	CC THE IMPACTS OF ENERGY DENSITY AND FERMENTATION UPON DMI IS
>	320	CC ACCOUNTED FOR IN THE L.P. MATRIX.
>	330	cc
>	340	CC **** DEFINITIONS ****
>	350	CC WEEK NUMBER OF WEEKS INTO THE LACTATION
>	360	CC PROD MILK PRODUCTION, LBS/DAY DURING WEEKS 6 TO 8
>	370	CC PRODDY NILK PRODUCTION, LBS/DAY
>	380	CC PRODLG PRODUCTION IN PREVIOUS PERIOD, LBS/DAY
>	390	CC WEIGHT ' COW'S BODY WEIGHT AT CALVING, LBS
>	400	CC DMI DRY MATTER INTAKE, LBS/DAY
>	410	CC DMILAG DRY MATTER INTAKE IN PREVIOUS PERIOD, LBS/DAY
>	420	CC AGE A2 IS TWO YR OLD
>	430	CC A3 IS THREE YEAR OLD
>	440	CC000000000000000000000000000000000000
>	450	CC
>	460	CC
>	470	IF(AGE.LE.2)AGE2=1.
>	480	IF(AGE.GT.2)AGE2=0.
>	490	IF(AGE.EQ.3)AGE3=1.
>	500	IF(AGE.NE.3)AGE3=0.
>	510	CC
>	520	DMI=2.30+1.08*AGE2+.74*AGE3
>	530	4 +.0064649*(WEIGHT/2.2)+.20719*(PROD/2.2)
>	540	CC
>	550	IF(WEEK.LE.9.)DMI=(DMI+2.0906*WEEK183139*WEEK*WEEK
>	560	& +.0046684*WEEK*WEEK*WEEK)*2.2
>	570	cc
>	580	IF(WEEK.GT.9.)DMI=DMILAG20*(PRODLG-PRODDY)
>	590	cc
>	600	RETURN
>	610	END
>	620	CC
>	630	CC

>	640		SUBROUTINE DMIDRY (AGE, WEEK, PROD, PRODDY, PRODLG, WEIGHT
>	650		& DMI, DMILAG)
>	660	CC	
>	670		DMI-DMILAG
>	680	CC	
>	690		RETURN
>	700		END
>	710	ccod	000000000000000000000000000000000000000
>	720	CCOC	000000000000000000000000000000000000000
>	100	CC	
>	110		SUBROUTINE REQLAC (AGE, WEEK, PRODDY, WEICHT, GROWTH,
>	120		& WTCHG, ITPCHG, DMI, EN, CP, CA, PHOS, SALT, XNPN, CAPHLB,
>	130		6 CAPHUB, FMIMP, ENIMP)
>	140	CC	
>	150	CC	
>	160	CCI	BASED UPON THE 1978 DAIRY NRC
>	170	CC	
>	180	CC .	IMPACT OF FERMENTED FEEDS AND ENERGY DENSITY OF THE
>	190	CC 1	RATION ADDED DURING OCT.1978.
>	200	CC	
>	210	CC .	IMPACT OF ENERGY MOBILIZATION FROM BACKFAT DEVELOPED
>	220	CCI	DURING SEPTEMBER 1978.
>	230	CCI	DEFINITIONS:
~	240		EN NET ENERGY FOR LACTATION, MCAL/DAY
~	250		CP CRUDE PROTEIN, LBS/DAI
(200		DAG DAGEDAGUE I BE DAY
(270		CADULE MINIMUM CALCULATO BUCCDUCEUE DATIO
Ś	200		CAPHIR MAXIMUM CALCIUM TO PHOSPHORUS RATIO
Ś	300	00 00	SALT SALT PROVIDENTIAL SALTS
Ś	310	00 00	CP CRIDE FIBER. ISS/IB OF DRY MATTER
>	320	cc	FMIMP IMPACT ON DAY MATTER INTAKE(DMI)PER CWT
>	330	CC	OF BODY WEIGHT OF A ONE PERCENT INCREASE
>	340	CC	IN THE MOISTURE CONTENT OF THE DIET-MOISTURE
>	350	CC	ACTS AS A PROXY FOR THE IMPACT OF FERMENTED
>	360	CC	FEEDS.BASED ON DATA OF:BROWN,L.D. ET AL.,
>	370	CC	"EFFECTS OF FEEDING VARIOUS LEVELS OF CORN
>	380	CC	SILAGE AND HAY WITH HIGH LEVELS OF GRAIN
>	390	CC	TO LACTATING DAIRY COWS," J.DAIRY SCI.,
>	400	CC	48:816.1965.
>	410	CC	XNPN UPPER BOUND ON SUPPLEMENTAL NPN AS A FRACTION
>	420	CC	OF CRUDE PROTEIN
>	430	CC	FATPCT PERCENT BUTTER FAT IN THE MILK
>	440	66	WICHG CHANGE IN THE AMOUNT OF BODY FAT/COW/DAY. THE
>	450		COW IS PERMITTED TO LOOSE WEIGHT DURING THE
~	400		FIRST EIGHT WEEKS OF LACTATION.INE WEIGHT
(470		DUSI DE REGRINED DURING WERS IS INCOUR 40. Basen on et att u b et al "ender until tration
Ś	400	00	BY HICH PRODUCING DATBY COUS.IT.SUMADY OF
Ś	500	сс сс	ENERGY RALANCE PUBLICATION STATIS
>	510	cc	HOLSTEIN COWS. "ENERGY METABOLISM OF FARM
>	520	cc	ANIMALS. (ORIEL PRESS LTD. : NEWCASTLE UPON TYNE
>	530	CC	ENGLAND) 1967. P. 235. AND TRIMBERGER. G.W.
>	540	CC	ET AL. "EFFECTS OF LIBERAL CONCENTRATE FEEDING
>	550	CC	ON HEALTH, REPRODUCTIVE EFFICIENCY, ECONOMY
>	560	CC	OF MILK PRODUCTION AND RELATED RESPONSES OF
>	570	CC	THE DAIRY COW. "FOOD AND LIFE SCIENCES BULL.
>	580	CC	#8.CORNELL UNIV.ITHACA, NEW YORK. 1972.
>	590	CC	ITPCHG FLAG TO DEPICT WHETHER WTCHG IS A GAIN OR LOSS.
>	600	CC	WTLOSS TOTAL FAT LOSS OVER THE FIRST 60 DAYS OF LACT.
>	610	CC	LOSS IS REGAINED DURING THE 196 DAYS OF WEEKS
>	620	CC	13 THROUGH 40.
>	630	CC	ENIMP IMPACT ON DRY MATTER INTAKE PER CWT OF BODY
>	640	CC	WEIGHT OF A ONE MCAL CHANGE IN NET ENERGY
>	650	CC	OF LACTATION PER LB OF DRY MATTER.BASED ON
>	000	CC	DATA UF: LAMB,R.C. ET AL. "RESPONSE TO

			CONCENTRATES CONTAINING TWO PERCENTS OF
>	670	CC	BROTFIN FED AT FOUR RATES FOR COMPLETE
3	890	čč	LACTATIONS," J.DAIRY SCI., 57:811.1973.
>	700	CCC	000000000000000000000000000000000000000
>	710	CC	
>	720	CC	
>	730		FATPCT=3.5
>	735		WTKG=WEIGHT/2.2
>	740		WTMTKG=WTKG**.75
>	750	CC	
~	700		EN=•U/990*WIMIKG+(•31+•U429*(FATPUI-3•))*PRUDDY
\$	780		6
5	790		L +CROWTHA 5
>	800		CA=,00038*WTHTKG+(,0026+,00022*(FATPCT=3,5))*PRODDY
>	810		PHOS=.0003*WTMTKG+(.0018+.000067*
>	820		6 (FATPCT-3.5) * PRODDY
>	830		SALT=.00009031*WEIGHT+.00022*PRODDY
>	840	CC	
>	850		IF(WEEK.LE.4.)WTCHG=(EN*.3/3.4)
>	860		IF(WEEK.GT.4AND.WEEK.LE.8.)WTCHG=(EN*.15/3.4)
>	870		IF(WEEK.LE.8.)ITPCHG=1
>	880		IF(WEEK.GT.8.)ITPCHG=2
>	890	CC	
<	900		FCICF=CF/DAL [P/PCTCP_CT14]YNDN_O
Ś	920		TP(PCTCP, TE, 16) YNDN=. 30
Ś	930	cc	IF(10101.02.014)/AREA=0.50
>	940		CAPHLB=2.
>	950		CAPHUB=2.5
>	960	CC	
>	970		IF(WEEK.LE.40.)FMIMP=(.007+.00039*WEEK)*(WEIGHT/100.)
>	980		IF(WEEK.GT.40)FMIMP=.023*(WEIGHT/100.)
>	990		ENIMP = 1.76*(WEIGHT/100.)
>	1000		CF=.16
2	1010	CC	
ζ.	1020		סדיווסט
5	1040		END
>	1050	CC	
>	1060	CC	
>	1070		SUBROUTINE REQDRY (AGE, WEEK, PRODDY, WEIGHT, GROWTH,
>	1080		& WTCHG, ITPCHG, DMI, EN, CP, CA, PHOS, SALT, XNPN, CAPHLB,
>	1090		& CAPHUB,FMIMP,ENIMP)
>	1100	CC	
2	1110		VERSION AS OF JULY 26,1978
~	1120		UTYC_UTTCUT / 2 2
5	1140		WTMTKC=WTKC**.75
5	1150	cc	
>	1160		EN=.1040*WTMTKG+GROWTH*2.32
>	1170		CP=.017*WTMTKG+GROWTH*.5
>	1180		CA=.00066*WTMTKG
>	1190		PHOS=.00046*WTMTKG
>	1200		SALT=(.041*WEIGHT)/454.
>	1210	CC	
>	1220		WTCHG=V. IP(NERPITP ())ITDCHC-1
~	1230		IF(WEEK.LE.C.)ITFCHG=1 IF(WEEK.CT 8 \ITPCHC=2
Ś	1250		IT (WEEK+UI+U+JIIFURU-2
5	1260		CAPHLB=1.
>	1270		CAPHUB=1.5
>	1280	CC	
>	1290		XNPN=.3
>	1300	CC	
>	1310	CC	
>	1320	FMIMP=.023*(WEIGHT/100.)	
----	------------	--	
>	1330	EN [MP=1.76* (WE [GHT/100.)	
>	1340	CF=•25	
>	1350	cc	
>	1360	RETURN	
>	1370	END	
>	1380	000000000000000000000000000000000000000	
>	1390		
>	20	SUBROUTINE BAL (DMI.EN.CP.CA.PHOS.SALT.XNPN.CAPHLB.	
>	40	+ CAPHUR, FMIMP, ENIMP, WTCHG, ITPCHG, F. P. IOPT1)	
>	41	CC VERSION: JULY 5, 1978	
\$	42	CC BALANCES A BATION IN A IPAST COST MANNER CONSIDERING.	
5	44	CO NITEDIAN DEA NITEDESTECTIONS DATENTIAL DEVINITED INTARP	
5	45	CC (DWILL TO BEFORE OF ENDOW DENGITY AND DEDWENTION OF BEFORE O	
5	45	CC (DAT), THE BEFECTS OF ENERGY DENSITY AND PERMENTATION OF FEEDS O	
ς	40	CC IACTATION BODY DAT IS DECEDATA DELATIVELY UTCU DELCE AND IS	
(47	CO DECIMINON BUDI FAI IS FRICED AL A ADLALIVELI DIGH FRICE AND IS	
(40	CC DRAWN IN AS A SOURCE OF ENERGY WHEN THE RATION WILL NOT	
2	49	CC OTHERWISE BALANCE (DURING EARLY LACT.)	
2	50		
	51		
2	52		
>	60	COMMON/LP/DPM(16, 36), RHS(16), ISACOL(16), INACT(16),	
>	80	+ IRWTY(16), OBJ(36), ZC(36)	
>	100	COMMON/NUT/A(8,9)	
>	120	DIMENSION B(16), F(8), F(8), ACT(36)	
>	140	DIMENSION TEMP(16)	
>	160	DOUBLE PRECISION DPM, RHS, OBJ, ZC	
>	180	cc	
>	200	CC^F IS THE Z OF EACH FEED IN THE DIET DRY MATTER (8 FEEDS)	
>	220	CC P IS THE PRICE OF FEEDSTUFF, \$/LB	
>	240	CC .	
>	260	CC RECALL, IBM READS DATA ACCORDING TO A(1,1), A(2,1),	
>	280	CC A(2,2), ETC.	
>	300	CC	
>	320	CC ****MATRIX LAYOUT FOR DPM***	
>	340	CC	
>	360	CC ROWS:	
>	380	CC 1 - DM INTAKE, LBS.	
>	400	CC 2 – NET ENERGY, MCAL	
>	420	CC 3 - CRUDE PROTEIN, LBS.	
>	440	CC 4 – CRUDE FIBER, LBS	
>	460	CC 5 – CA	
>	480	CC 6 - PHOS	
>	500	CC 7 - SALT	
>	540	CC 8 - CALCIUM:PHOSPHOROUS RATIO (LOWER BOUND)	
>	550	CC 9 - CALCIUM:PHOSPHOROUS RATIO (UPPER BOUND)	
>	560	CC 10 - SUPPLEMENTAL NPN:CRUDE PROTEIN RATIO	
>	580	CC 11 - IMPACT OF NET ENERGY/LB ON DRY MATTER INTAKE	
>	585	CC 12 - IMPACT OF FERMENTATED FEEDS ON DRY MATTER INTAKE	
>	586	CC 13 - UPPER BOUND ON WEIGHT LOSS DURING 1ST 8 WEEKS.	
>	587	CC MEASURES WEIGHT GAIN THEREAFTER.	
>	600	CC 14 - CONSTRAINTS ON ZAGES OF CORN SILAGE AND ALFALFA	
>	620	CC IN THE 'ROUGHAGE'	
>	640	CC	
>	660	CC COLUMNS:	
>	680	CC 1 - CORN GRAIN	
>	700	CC 2 - CORN SILAGE	
>	720	CC 3 - ALFALFA	
>	740		
5	760		
5	780	CC = - DICAL	
5	800		
(820		
\$	810	CC O - JALI CC O - Impact of Fednender Beens on de Mitter Inge	
ζ.	04U 840	CC 10 _ INFACT OF REFERENCED FEEDS ON DAT MATTER INTARE, LBS CC 10 _ INDACT OF NET ENERCY/IS ON DAW MATTER INTARE ISS	
2	000	CO 10 - IMFROI OF REI ERERGI/LE OR DRI MAILER INIARE, LES.	
2	0/0	CC II - WEIGHI LUSS (GAIR)	

•		
>	900	NROW-14
	920	TP PAT = 11
5	920	
5	960	
5	98č	ČČ ZERO OUT ACT(J),OBJ(J)
>	1000	DO 17 J=1,36
>	1020	ACT(J)=0.
>	1040	17 OBJ(J) = 0.
>	1060	CC
>	1080	CC^ZERO OUT DPM
>	1100	DO 20 I=1,16
>	1120	DO 20 J=1.36
>	1140	20 DPM(I, J) = 0.
>	1150	CC
>	1160	DO 16 J=1.8
>	1180	16 OBJ(J) = -P(J)
>	1190	IF(ITPCHG, FO, 1)OBJ(11) = .20
5	1101	IF(ITPCHC, FO, 2)OBI(11) = 20
5	1200	CC
(1200	
2	1220	CC LOAD DPM
>	1240	DO 30 J=1,8
>	1260	DPM(1, J) = A(J, 1)
>	1280	DPM(2, J) = A(J, 2)
>	1300	DPM(3, J) = A(J, 3)
>	1320	DPM(4, J) = A(J, 4) = .16
>	1340	$DPM(5, I) = \Lambda(I, 5)$
\$	1360	DPM(6, 1) = A(1, 6)
5	1380	DPH(7, 1) = A(1, 7)
	1300	DPH(I,J)=A(J,I)
2	1420	DPM(3, J) = A(J, S) = CAPHLB = A(J, S)
>	1422	DPM(9, J) = A(J, S) - CAPHUB + A(J, 6)
>	1440	DPM(10,J)=A(J,9)-XNPN*A(J,3)
>	1460	DPH(11,J)=(.72-A(J,2))/DMI
>	1462	DPM(12, J) = (A(J, 8) + 100 - 20) / DMI
>	1464	30 CONTINUE
>	1480	CC
\$	1500	DPM(14, 2) = -1
\$	1520	DPW(14, 3) = -2
2	1540	DIM(14, 3)2.
	1540	DDW(12,0) = 1
2	1580	DPM(12, 9) = -1.
>	1281	DPM(1,9) = FMIMP
>	1600	CC ·
>	1640	DPM(11, 10) = -1.
>	1641	DPM(1,10) = ENIMP
>	1660	CC
>	1670	IF(ITPCHG.EO.1)DPM(2,11)=3.4
>	1671	IF(ITPCHG.GE.2)DPM(2,11) = -4.8
>	1672	DPM(13, 11) = 1.
5	1680	CC
5	1700	CCCLAND BESTBICTIONS
	1700	CC LOAD RESIRICIONS
2	1720	
>	1740	RHS(2) = EN
>	1760	RHS(3)=CP
>	1780	RHS(4)=0.
>	1800	RHS(5)=CA
>	1820	RHS(6)=PHOS
>	1840	RHS(7)=SALT
\$	1860	RHS(8)=0
5	1990	RHS(0) = 0
(1000	
2	1900	RES(11)=0
>	1920	KH5(11)=U.
>	1940	RHS(12)=U.
>	1951	RHS(13)=WTCHG
>	1952	RHS(14)=0.
>	1953	CC
>	1954	IRWTY(1)=1
>	1955	IRWTY(2)=2
\$	1956	IRWTY(3)=3
•		

>	1957	I RUTY (4) = 3
5	1059	
	1950	
>	1959	
>	1960	IRWTY(7)=3
>	1961	IRWTY(8)=3
>	1962	IRWTY(9)=1
>	1963	IRWTY(10) = 1
	1964	
	1904	
>	1903	1 KWTY(12) = 1
>	1966	IF(ITPCHG.EQ.1)IRWTY(13)-1
>	1966.1	IF(ITPCHG.GE.2)IRWTY(13)=2
>	1967	IRWTY(14)=1
>	1968	CC
	1090	
	1900	
,	1990	CC B(I) ARE THE RESTRICTIONS
>	2000	93 B(I)=RHS(I)
>	2020	CC
>	2040	CC^FILL IN SLACKS AND ARTIFICIALS
>	2060	DO 90 T=1 NROW
5	2100	
	2100	JU CALL ROWSEI(I, JCUL)
>	2120	
>	2140	IF(IOPT1.EQ.2)CALL LPDUMP(NROW, JCOL)
>	2400	CC
>	2420	CC^CALL SOLUTION ALGORITHM(SIMPLEX)
>	2440	CALL LPSOL (NROW ICOL ISOLTY OR IV)
5	2460	
	2400	
>	2480	CC SET ACTIVITIES IN ASCENDING ORDER
>	2500	DO 100 I=1, NROW
>	2520	DO 110 J=1,JCOL
>	2540	LF(INACT(I).NE.J)GO TO 110
>	2560	ACT(J)=RHS(I)
\$	2580	
ξ.	2500	
	2000	
>	2620	100 CONTINUE
>	2621	CC
>	2622	DO 2040 J=1,8
>	2623	2040 F(J) = ACT(J)
>	2623.7	
	2623 0	
	2023.0	
>	2624	CC
>	2640	DO 2008 I=1, NROW
>	2660	IF(IRWTY(I).LE.2)TEMP(I)=B(I)-ACT(ISACOL(I))
>	2670	CC^TEMP REFERS TO THE AMMOUNT OF REQUIREMENTS DELIVERED
5	2680	\mathbf{F} (\mathbf{F} \mathbf{U} \mathbf{V} \mathbf{T} \mathbf{V} \mathbf{T}
	2 7 0 0	
	2700	
>	2/20	
>	2740	IF(IOPT1.LT.2)GO TO 2020
>	2741	CC
>	2760	PRINT 2004
>	2780	2004 FORMAT(/)
	2800	
2	2000	TRINI 4004
2	2820	2002 FORMAT(1X, **RESULTS ARE**)
>	2840	CC
>	2860	PRINT 2000, ISOLTY, OBJV
>	2880	2000 FORMAT(1X,15,3F10.3)
>	2900	PRINT 2004
>	2920	66
5	2040	DELNT 2060 (ACT(1) 1-1 11)
2	2940	FRINI 2000, (AUI(J), J=1, II)
>	2960	2060 FORMAT(1X,11F7.3)
>	2980	CC
>	3000	PRINT 2004
>	3020	PRINT 2070, (B(1), I=1, NROW)
>	3040	PRINT 2070, (TEMP(t) $t=1$ NPOW)
-		INTRE COVO (IBAE (IJ)ITI)NKUWJ
	2060	2020 PODWAT(19 1476 2)
>	3060	2070 FORMAT(1X,14F6.2)
>	3060 3080	2070 FORMAT(1X,14F6.2) PRINT 2004

· ,

	2260	
>	3260	2020 REIGRA
>	3280	END
>	3290	CC000000000000000000000000000000000000
>	3291	000000000000000000000000000000000000000
>	100	CC
>	110	66
\$	120	
	120	
,	130	
>	140	CC NUTRIENT DENSITY OF THE FEEDSTUFFS
>	150	CC CONTAINS THE NUTRIENT DENSITY OF THE FEEDS BASED ON: HARSH
>	160	CC S. ET AL."TELPLAN 31:LEAST COST RATION,"MICH.STATE UNIV.,E.
>	170	CC LANSING.1971.
>	180	000000000000000000000000000000000000000
>	190	66
	200	
	210	
	210	
>	220	CC I-CORN
>	230	CC 2-CORN SILAGE
>	240	CC 3-ALFALFA
>	250	CC 4-SOY 44
>	260	CC 5-UREA
>	270	CC 6-DICAL
	280	
	200	
	290	
>	300	CC ROWS
>	310	CC 1-WEIGHT
>	320	CC 2-NE
>	330	CC 3-CP
>	340	CC 4-CRUDE FIBER
>	350	CC 5-CA
>	360	CC 6-PHOS
Ś	370	
	220	
	300	
>	390	CC 9-NPN PROTEIN
>	400	DATA A/1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000,
>	410	+ 0.950,0.700,0.440,0.870,0.000,0.000,0.000,0.000,
>	420	+ 0.101,0.080,0.169,0.508,2.810,0.000,0.000,0.000,
>	430	+ 0.023,0.259,0.309,0.060,0.000,0.000,0.000,0.000,
>	440	+ .0002,.0028,0.013,.0028,0.000,0.231,0.338,0.000,
>	450	+ .002600200064.0.000.0.186.0.000.0.000.
>	460	+ 0000001.0.
- 	470	
	470	
	400	
3	490	
>	500	END
>	510	ccoooooooooooooooooooooooooooooooooooo
>	520	CC000000000000000000000000000000000000
>	100	CC
>	110	cc
>	120	SUBROUTINE ROWSET(I.JCOL)
>	130	CC
	140	
2	140	CC THERE CURRANTERED ARE HOLD IN THE RALANCE CURRANTER TO
	150	CC INESE SUBROUTINES ARE USED IN THE BALANCE SUBROUTINE TO
,	100	CC FORMULATE A LEAST COST RATION.
>	170	CC
>	180	CC000000000000000000000000000000000000
>	190	CC
>	200	CC
>	210	COMMON/LP/DPM(16,36).RHS(16).ISACOL(16).INACT(16).
>	220	+ $IRWTY(16) OBJ(35) ZC(36)$
	220	DOUBLE DEFICIENT DE DES CELT 70
	230	ICOL I COLAI
2	240	
>	250	INACT(1)=JCOL
>	260	ISACOL(I)=JCOL
>	270	DPM(I,JCOL)=1.
>	280	IF(IRWTY(I).GT.1) GO TO 202

•

•

	200		
	290		
>	300		GU 10 140
>	310	202	OBJ(JCOL)=-(9*(10**5))
>	320		IF(IRWTY(I).EQ.2) GO TO 140
>	330		JCOL=JCOL+1
>	340		DPM(I, JCOL) = -1
\$	350		OBI(ICOL)=0
(360	140	
	300	140	REIORA
>	370		
>	380		SUBROUTINE LPSOL(NOROW, NOCOL, ISOLTY, OBJV)
>	390	CC	
>	400	С	A SUBROUTINE TO SOLVE LINEAR PROGRAM PROBLEMS
>	410	CC	DEVELOPED BY STEVE HARSH. DEPT OF AGR. ECON
>	420	CC.	MICH. STATE UNIV., FAST LANSING, 48824
	430	сс С	POLIOUS BASIC OUTLINE OF CHURCHWAN ET. AL.
(440		FOLLOWS BASIC OUTLINE OF CHURCHNAN, EI. AL.
	440		
>	450		COMMON/LP/DPM(16, 36), RHS(16), ISACOL(16), INACT(16),
>	460	-	+ IRWTY(16),OBJ(36),ZC(36)
>	470		DOUBLE PRECISION DPM, RHS, OBJ, ZC
>	480		DOUBLE PRECISION COLKEY, R, RMIN, R1, R2, X, ZCMX, Z
>	490		DIMENSION COLKEY(16)
>	500		OBIV=0.
<	510		VYITED-NODOUA 4
	510		MAIIER=ROKOW#4
>	520		NOLTER=-1
>	530	200	NOITER=NOITER+1
>	540		JZCMX=0
>	550		ZCMX=0.
>	560		JZCMX=0
>	570		2.04 X = 0.
```	580		
(	500		7-0
,	590		
>	600		D0 102 I=1,NOROW,1
?	610		K=INACT(I)
>	620	102	Z=Z+(DPH(I,J)*OBJ(K))
>	630		ZC(J) = Z - OBJ(J)
>	640		IF(ZC(J))103,101,101
>	650	103	IF(ZC(J) = ZCMX) 104.101.101
	660	104	7049-70(1)
(	670	104	
2	670		
>	680	101	CONTINUE
>	690		IF(JZCMX .GT. 0)GO TO 110
>	700		IF(NOLTER.GT.O) GO TO 112
>	710		ISOLTY=6
>	720		RETURN
\$	730	600	
	740		DETIDN
(	740	110	ALIUAR V_ (0+/10++E))
~	750	112	$A = -\left( \mathbf{y}^{n} \left( \mathbf{y}^{n} - \mathbf{y}^{n} \right) \right)$
>	/00		DU IIJ L=1,NUKUW,I
>	770		J=LNACT(I)
>	780		IF(RHS(I).LT0001)GO TO 113
>	790		IF(OBJ(J) .EQ. X)GO TO 600
>	800	113	IF(IRWTY(I).E0.1)G0 TO 115
>	810	•	J=ISACOL(I)
\$	820		
5	020	115	
>	830	115	CONTINUE
>	840		OBJV=0.
>	850		DO 120 I=1,NOROW,1
>	860		K=INACT(I)
>	870	120	OBJV=OBJV+(RHS(I)*OBJ(K))
>	880		ISOLTY=1
>	890		RETIRN
5	900	110	TP(NOITEP.IT.WTITEP)CO TO 145
5	010	110	TECHTER+DI+HALLER/UU IU 14J
>	910		T20FT1=4
>	920	<b>.</b> .	RETURN
>	930	145	RMIN=999999999.
>	940		N KR = O
>	950		DO 150 I=1,NOROW,1

	060		· · · · · · · · · · · · · · · · · · ·
	900	1	IF (DPM (1, J2CMX)) ISU, ISU, ISI
	970	131	R = RRS(1)/DPR(1, J2GRX)
2	980	1 6 6	IF (K-KMIN)155,150,150
2	1000	133	
2	1000		
>	1010		
>	1020	156	DO 160 J=1,NOCOL,1
>	1030		R 1 = D PM (NKR, J) / D PM (NKR, JZ CMX)
>	1040		R2=DPM(I, J)/DPM(I, JZCMX)
>	1050		IF(R2-R1)155,160,150
>	1060	160	CONTINUE
>	1070		ISOLTY=5
>	1080		RETURN
>	1090	150	CONTINUE
>	1100		IF(NKR.GE.1)GO TO169
>	1110		ISOLTY=3
>	1120		RETURN
>	1130	169	INACT(NKR)=JZCMX
>	1140		DO 171 I=1, NOROW, 1
>	1150	171	COLKEY(I)=DPM(I, JZCMX)
>	1160		DO 170 J=1,NOCOL,1
>	1170	170	DPM(NKR, J)=DPM(NKR, J)/COLKEY(NKR)
>	1180		RHS (NKR) =RHS (NKR) /COLKEY (NKR)
>	1190		DO 175 I=1.NOROW.1
>	1200		IF(I .EO. NKR)GO TO 175
>	1210		RHS(I) = RHS(I) - (RHS(NKR) * COLKEY(I))
>	1220		IF(COLKEY(I)) = EO, O)GO TO 175
>	1230		DO = 176 J = 1. NOCOL. 1
>	1240		IF(DPM(NKR, J), EO, O)GO TO 176
>	1250		DPM(I, J) = DPM(I, J) - (DPM(NKR, J) * COLKEY(I))
>	1260		IF(DPM(I,J).GT000000001)G0 T0 176
>	1270		IF(DPM(I,J).GT0000000001)DPM(I,J)=0.
>	1280	176	CONTINUE
>	1290	175	CONTINUE
>	1300		GO TO 200
>	1310	CC	
>	1320	CC	
>	1330		END
>	1340		SUBROUTINE LPDUMP(NROW, NCOL)
>	1350		COMMON/LP/DPM(16,36), RHS(16), ISACOL(16), INACT(16),
>	1360	-	F IRWTY(16), OBJ(36), ZC(36)
>	1370		DOUBLE' PRECISION DPM, RHS, OBJ, ZC
>	1380	10	FORMAT(//)
>	1390		PRINT 20
>	1400	20	FORMAT(1X, 'PRINT OUT OF RHS VALUES AND A(I,J) S')
>	1410		PRINT 10
>	1420		PRINT 30, NROW
>	1430	30	FORMAT(4X, ROWS ', I5)
>	1440		PRINT 40, NCOL
>	1450	40	FORMAT(4X, COLUMNS', 15)
>	1460		PRINT 10
>	1470		PRINT 50
>	1480	50	FORMAT(1X, 'RHS INFORMATION')
>	1490		PRINT 60
>	1500	60	FORMAT(1X, ' NO TYPE SLACK INACT VALUE')
>	1510		DO 70 I=1,NROW
>	1520	70	<pre>PRINT 75, I, IRWTY(I), ISACOL(I), INACT(I), RHS(I)</pre>
>	1530	75	FORMAT(1X,14,315,F15.4)
>	1540		PRINT 10
>	1550		PRINT 120
>	1560	120	FORMAT(1X, 'OBJ FN AND LOCATION INFORMATION')
>	1570		PRINT 125
>	1580	125	FORMAT(1X, 'COLUMN VALUE')
>	1590		DO 130 J=1,NCOL
Ś	1600	İĴÔ	PRINT 135, J, OBJ(J)
>	1610	135	FORMAT(1X,15,2F12.3)

>	1620	PRINT 10
>	1630	PRINT 80
>	1640	80 FORMAT(1X, "A(1, J) INFORMATION")
>	1650	DO 100 I=1,NROW
>	1660	PRINT 90,1
>	1670	90 FORMAT(1X, 'ROW', 15)
>	1630	DO 110 $J=1$ , NCOL
>	1690	IF(DPM(I,J))105,110,105
>	1700	105 PRINT 108, J, DPM(I, J)
>	1710	108 FORMAT(1X,110,F15.4)
>	1729	116 CONTINUE
>	1730	100 CONTINUE
>	1740	PRINT 10
>	1750	FRINT 10
>	1760	RETURN
>	1770	END
>	20	SUBROUTINE COST(PRODME,OVC)
`>	40	cc
>	60	CC CC VERSION IS: JULY 8,1978
>	80	CC
>	100	CC ESTIAMTES COSTS FOR VET AND BREEDING BASED ON
>	120	CC PRODUCTION LEVEL. BASED UPON S.B. NCTT, 1974, TELFARM ANALYSES
>	140	CC BY PRODUCTION LEVEL FOR MICHIGAN SPECIALIZED DAIRY FARM IN
>	160	CC 1973, AG ECON STAFF PAPER 74-34, MICH STATE UNIV.
>	180	cc
>	200	CC THE "1.75" REFLECTS AN ADJUSTMENT FOR INFLATION
>	220	OVC=((-18.50+.00362*(PRODME/.91))/12.)*1.75
>	240	CC
>	260	RETURN
>	280	END
>	20	SUBROUTINE REVNUE(PRODDY, REV)
>	40	REV=.0925*PRODDY*30.
>	60	RETURN
>	80	END
∮E	ND OF B	ILE

