

This is to certify that the

thesis entitled

The Inter-Relationship Between Prostaglandin E_1 , Various Vasoactive Substances, and Macromolecular Permeability in the Canine Forelimb presented by

Arthur Neil Gorman

has been accepted towards fulfillment of the requirements for

M.S. degree in Physiology

Date_August 8, 1979

O-7639

OVERDUE FINES ARE 25¢ PER DAY PER ITEM

Return to book drop to remove this checkout from your record.

THE INTER-RELATIONSHIP BETWEEN PROSTAGLANDIN E_1 , VARIOUS VASOACTIVE SUBSTANCES, AND MACROMOLECULAR PERMEABILITY IN THE CANINE FORELIMB

Ву

Arthur Neil Gorman

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Physiology

ABSTRACT

THE INTER-RELATIONSHIP BETWEEN PROSTAGLANDIN E_1 , VARIOUS VASOACTIVE SUBSTANCES, AND MACROMOLECULAR PERMEABILITY IN THE CANINE FORELIMB

Ву

Arthur Neil Gorman

The effects of PGE1, by itself and in combination with other vasoactive agents, on hemodynamics, lymph protein concentration, and weight, were examined in canine forelimbs perfused at constant inflow. PGE₁ (16 μg/min i.a.) produced profound vasodilation and caused marked increases in lymph protein concentration but failed to significantly increase lymph flow rate. Forelimb weights significantly increased owing to edema formation. Under similar conditions, this same dose of PGE₁ infused with isoproterenol (3 μ g/min), vasopressin (0.8 Pressor Units/min), angiotensin II (2 μg/ min), or methylprednisolone (15 μg/min) failed to increase lymph protein concentration relative to control. Serotonin (7 μ g base/min i.a.) infused concomitantly with PGE₁ (16 μ g/ min i.a.) produced increases in lymph protein concentration and limb weights similar to those achieved with PGE1 alone. The antagonism of the PGE1-induced increase in protein efflux by isoproterenol, vasopressin, angiotensin II, and methylprednisolone was independent of changes in blood flow, vascular pressures, or perfused surface area. Thus, like

histamine and bradykinin, PGE_1 produces increases in microvascular permeability which can ve antagonized by other vasoactive agents.

To my lovely wife, Anita, and to my wonderful parents; their love has lit my way to accomplishment and joy.

ACKNOWLEDGMENTS

Many people have contributed in many different ways to the success of this project. I would like to thank:

Don Anderson, whose technical assistance and moral support

were invaluable during our many months together;
Jim Maciejko, for his assistance and patience in teaching

- me proper theory and technique;
- Rich Raymond, for convincing me to undertake this endeavor and for his encouragement along the way;
- Drs. C.C.Chou and T.E. Emerson for their services on the guidance committee; and
- Dr. George Grega, for his guidance, generosity, and kindness in helping me, not only in the preparation of this thesis, but in the finding of a new and promising future.

Finally, I wish to express my gratitude to my wife, Anita, for her assistance in the typing of this thesis, but more importantly, for the love and understanding she has shown me during these long and difficult months.

TABLE OF CONTENTS

					Page
LIST OF TABLES	•		•	•	v
LIST OF SYMBOLS AND ABBREVIATIONS		 •	•	•	vii
INTRODUCTION		 •	•	•	1
SURVEY OF THE LITERATURE		 •	•	•	4
METHODS		 •	•	•	26
RESULTS		 •	•	•	30
DISCUSSION	•	 •	•	•	40
SUMMARY AND CONCLUSIONS		 •			50
APPENDICES		 •	•	•	52
BIBLIOGRAPHY					73

LIST OF TABLES

Table		Pa	age
1.	Effects of PGE ₁ (16 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	34
2.	Effects of PGE ₁ (16 μg/min i.a., CF) and isoproterenol (3 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, and hematocrit	•	35
3.	Effects of PGE, (16 μg/min i.a., CF) and vasopressin (0.8 Pressor Units/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	36
4.	Effects of PGE ₁ (16 μg/min i.a., CF) and angiotensin II (2 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	37
5.	Effects of PGE ₁ (16 μg/min i.a., CF) and methylprednisolone (15 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	38
6.	Effects of PGE ₁ (16 μg/min i.a., CF) and serotonin (7 μg base/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	39
A-1.	Effects of PGE ₁ (16 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights		53

Table		Pa	age
A-2.	Effects of PGE ₁ (16 μg/min i.a., CF) and isoproterenol (3 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, and hematocrit	•	57
A-3.	Effects of PGE ₁ (16 μg/min i.a., CF) and vasopressin (0.8 Pressor Units/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	60
A-4.	Effects of PGE ₁ (16 μ g/min i.a., CF) and angiotensin II (2 μ g/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	63
A-5.	Effects of PGE ₁ (16 μg/min i.a., CF) and methylprednisolone (15 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	67
A-6.	Effects of PGE ₁ (16 μg/min i.a., CF) and serotonin (7 μg base/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights	•	70

LIST OF SYMBOLS AND ABBREVIATIONS

mmHg = Millimeters of mercury pressure.

M.W. = Molecular weight.

gm % = Grams per cent.

A = Angstrom units.

μm = Micrometer.

μg = Microgram

ng = Nanogram

ml = Milliliter

min = Minute

i.v. = Drug infusion into the vena cava.

i.a. = Drug infusion intra-arterially into the forelimb.

CF = Forelimb perfused at constant inflow.

INTRODUCTION

Although the issue has been under considerable debate, there is a great deal of evidence to indicate that prostaglandins, especially PGE₁, are intimately involved in the inflammatory process (102). Numerous studies (11,12,19, 20,47,74) conducted in rats, and guinea pigs have demonstrated that PGE₁ increases vascular permeability to macromolecules. These studies have been conducted using the vital dye technique which has a number of methodological drawbacks which may have contributed to the unusual variability of response to PGE₁ found by some investigators (20).

Using the more reliable hamster cheek pouch preparation, Svensjo (95) and Joyner et al. (45) have shown that PGE1 increases the leakage of FITC-dextran from postcapillary venules by forming interendothelial cell venular gaps. However, they found PGE1 to be considerably less potent than histamine or bradykinin in producing FITC-dextran leakage sites. They and others (57,107,108) have also reported that PGE1 potentiates the direct actions of histamine and bradykinin on the microvascular membrane.

To date, only a few studies have been conducted in the dog. Greenberg and Sparks (27), Daugherty (13), and Joyner (43) have all failed to show that PGE₁ causes an

increase in microvascular permeability to macromolecules. However, these studies either did not measure protein fluxes directly, or did not study the effects of PGE₁ over a wide dose range. Recent work from our laboratory (58) has shown that a wide dose range of PGE₁ causes increases in lymph protein concentration and forelimb weights when infused locally intra-arterially into canine forelimbs perfused either naturally or at constant inflow. Lymph flow rate did not increase as expected. Following pretreatment with indomethacin, PGE₁ produced increases in lymph protein concentration similar to those produced in the absence of indomethacin, but now produced marked increases in lymph flow rate under both natural and constant inflow conditions.

Based on these data in the dog and similar findings in other species, it appears that PGE₁ is likely to have a role in inflammation and increases vascular permeability in a manner similar to that of histamine and bradykinin. Work from this laboratory (29,59,65) and others (98) has demonstrated that catecholamines possess the unique ability to antagonize the protein efflux produced by histamine and bradykinin owing to a direct action on the microvascular membrane which counteracts that of histamine and bradykinin. This antagonism is independent of changes in blood flow, microvascular pressure and perfused surface area (29,51,65). It is now known that other agents possess the ability to antagonize or potentiate the protein efflux produced by these agents (29,59,78). In this study, the effects of

catecholamines and a variety of other natural and synthetic agents were studied to determine if they antagonize or potentiate the direct actions of PGE₁ on the microvascular membrane.

SURVEY OF THE LITERATURE

The vascular system carries nutrients, hormones, electrolytes, gases, and macromolecules required by the cells throughout the body and it takes up the products of their metabolism for excretion. The actual exchange between the blood and tissues takes place in the capillaries and venules and can occur by filtration, diffusion or micropinocytosis.

Fluid filtration is governed by physical forces and can be expressed by the following equation derived by Starling (91).

$$F = k(Pc - Pi - \pi p + \pi i),$$

where

F = the rate of fluid movement across the capillary
 wall:

k = capillary filtration coefficient. This is a
 measure of the permeability of the microvascular
 wall to isotonic fluid. It is determined by
 the product of capillary permeability and surface
 area available for diffusion;

Pc = capillary hydrostatic pressure;

Pi = interstitial hydrostatic pressure;

πp = plasma colloid osmotic pressure;

πi = interstitial colloid osmotic pressure.

When the equation is positive, filtration of fluid occurs, and when it is negative, fluid reabsorption occurs.

Capillary hydrostatic pressure is determined by capillary blood volume and capillary compliance. Clough et al. (8) has reported changes of only 0.1 µm in the diameter of capillaries in the cat mesentery during systole. This very low compliance is probably due to the incompressible nature of the surrounding gel matrix (21). Since there is little change in compliance, Pc is determined primarily by capillary blood volume which is in turn determined by several physical factors affecting both inflow and outflow. These factors are related by the equation:

$$\overline{P}c = (\overline{P}a - Pv) \underline{Rv} + Pv,$$

where

Pc = mean capillary hydrostatic pressure;

Pa = mean arterial pressure;

Pv = venous or outflow pressure;

Rv = venous resistance to outflow;

Ra = arterial resistance to inflow.

An increase in arterial pressure, venous pressure, or venous resistance will increase $\overline{P}c$. An increase in arterial resistance will lower $\overline{P}c$. Vascular resistances are related to vessel caliber which is determined by active changes due to vascular smooth muscle activity, passive changes (due to changes in transmural pressure), and blood viscosity.

Interstitial fluid hydrostatic pressure is analogous to capillary hydrostatic pressure but is that pressure found in the interstitial spaces. It had been generally accepted that Pi was slightly positive (55) and would oppose fluid

filtration. Guyton (32), however, has suggested that interstitial fluid pressure is subatmospheric, thus enhancing fluid filtration. This issue remains to be resolved.

Plasma colloid osmotic pressure is the pressure resulting from the concentration of dissolved protein in the blood. This oncotic pressure is estimated to be about 25 mmHg out of a total plasma osmotic pressure of 6,000 mmHg (3) but is of great importance for, unlike the electrolytes which contribute to the total osmotic pressure, plasma proteins do not diffuse readily into the interstitial spaces and are largely confined to the intravascular space.

Plasma proteins are primarily a mixture of albumin (M.W. 69,000), globulins (M.W. 140,000), and fibrinogen (M.W. 400,000). Approximately 65% of plasma colloid osmotic pressure is attributable to albumin and only 15% to globulins as the albumin molecule is only one-half the size of the golbulin molecule and is present in higher concentrations. These plasma proteins exert an oncotic pressure of about 19 mmHg. In addition, cations which bind to the negatively charged protein ions exert another 6 mmHg pressure.

Similarly, interstitial colloid osmotic pressure is determined by the protein concentration of the interstitial fluid. Average total protein concentration of interstitial fluid is about 3 gm % and the colloid osmotic pressure about 10 mmHg (106). Protein concentrations and colloid osmotic pressures vary from one tissue to another. In skin and skeletal muscle the average protein concentration has been

found to be 2.0 gm % yielding an oncotic pressure of about 5 mmHg. In the liver, where discontinuous sinusoids allow for even greater filtration, protein concentrations of greater than 3.3 gm % and oncotic pressures of 16 mmHg have been reported. Discontinuous sinusoids which allow proteins and other large molecules to freely pass through large gaps, are also found in the bone marrow and the spleen.

Two other types of capillaries have been distinguished in studies using electron microscopy. Continuous capillaries are found in smooth, skeletal, and cardiac muscle, as well as in connective tissue and the central nervous system (4). They are characterized by an uninterrupted endothelium and intercellular gaps 40 Å wide. intercellular junctions may correspond to the "small pore" system postulated by Landis and Pappenheimer (55). These pores represent only 0.1 - 0.2 per cent of the total capillary surface area. Peroxidase, a protein tracer of relatively low molecular weight (40,000), has been shown to pass rapidly through these clefts while ferriten (M.W. 500,000) does not (49). Cerebral capillaries are impermeable to both peroxidase and ferriten reflecting the barrier function of the cerebral capillary wall (blood-brain barrier). Fenestrated capillaries, found in the renal glomeruli, endocrine glands, and the intestinal mucosa, have circular pores 1 µm in diameter which penetrate the endothelium. These pores are usually covered by a very thin diaphragm and appear to be regularly spaced approximately 1300 A apart.

Tissue colloid osmotic pressure can be measured by different techniques. Measurements using implantable devices such as perforated capsules that theoretically equilibrate with the interstitial fluid may be inaccurate because of the possibility of contamination by plasma, or that the sampled fluid may not contain all osmotically active particles. A more common method, lymph fluid analysis, makes the assumption that the lymph accurately reflects the interstitial fluid contents. This method has been challenged, for changes in lymph concentration could occur as the lymph flows centrally from the terminal lymphatics to the larger lymph vessels. Lymph analysis may also not reflect protein concentration gradients that exist in the interstitium. Using dextran molecules of known molecular weight and size, Renkin and Garlick (80) found that concentrations were equal in lymph and interstitial fluid thus precluding the possibility of protein concentration gradients existing in the interstitium. Studies conducted by Garlick and Renkin (22) and Mayerson et al. (66) have shown that exchange only occurs at lymph nodes and not in the lymphatic trunks. Thus, if lymph is sampled before it reaches a node it should be a true reflection of what is at the terminal lymphatic vessel.

The lymph vascular system forms a "drainage system" as lymph is conducted from the lymphatic capillaries through successively larger vessels that ultimately empty into the venous system. The lymph is propelled centrally through one-way valves that only permit unidirectional flow. When

a lymph vessel is distended with fluid, contractile elements or smooth muscle cells, if present in the vessel wall, contract (31). In addition to the pumping caused by the intrinsic contraction of the vessel walls, any external factor that compresses the lymph vessel can also contribute to the movement of lymph fluid. Such factors are muscle contraction, passive movements of parts of the body, arterial pulsations, and compression of the body tissues from the outside. Though usually ignored, a variety of vasoactive agents have the ability to contract or relax lymphatic vessels in vivo and in vitro.

Diffusion is the most important means by which substances are transferred between the plasma and interstitium. This process results from the random thermal movement of water molecules and dissoved particles. Hence, the greater the concentration gradient across the membrane, the greater the rate of diffusion. Fick's Law describes the process of diffusion:

$$\frac{ds}{dt} = D \cdot A \cdot \frac{dc}{dx},$$

where

 $\frac{ds}{dt}$ = the amount of substance moved per unit time;

D = the diffusion coefficient for a particular molecule. (This value is inversely proportional to the square root of the molecular weight of the particle.);

A = the cross-sectional area of the capillary membrane:

 $\frac{dc}{dx}$ = the concentration gradient across the capillary membrane.

Thus, the amount of substance which diffuses per unit time is equal to the product of the diffusion coefficient, the area of the capillary membrane, and the concentration gradient. Small molecules such as water and urea diffuse rapidly through capillary pores. Lipid-insoluble substances must also diffuse through these pores but due to the larger size of these molecules their diffusion is more restricted. With increasing size diffusion becomes much more difficult. Molecules with molecular weights of 60,000 or greater are almost completely impermeable. Substances which are lipid-soluble such as CO_2 and O_2 can diffuse directly through the lipid membrane of the cell. Since these substances can diffuse across the entire capillary membrane, their rates of diffusion are several hundred times the rates of most lipid-insoluble molecules.

Micropinocytosis (cytopempsis) is a relatively slow transport process that may be responsible for the movement of large lipid-insoluble molecules between plasma and interstitial fluid. This process takes place via vesicles which invaginate from the plasma-membrane and migrate across the cytoplasm from one surface of the endothelial cell to another where the contents are released. The actual passage of the vesicle across the cell may be passive, but the structural reorganization of the membrane during invagination and exocytosis is regarded as an active, energy-consuming

process. Although such a mechanism is known to exist, its quantitative importance in capillary and venular exchange is under considerable debate.

It has been repeatedly suggested that the vesicles are of major importance for transport of large molecules (5,81,87) and may contribute to a "large pore" system (81) which permit plasma proteins, hormones and antibodies to pass freely into the interstitium. It has been hypothesized by Renkin's group (5,44,79) that this mode of transport may play a primary role in changes in vascular permeability associated with inflammation. Increasing the permeability of the microvascular membrane will result in the escape of plasma protein from the vasculature to the interstitial fluid which will raise the oncotic pressure of the intersti-The increased interstitial fluid oncotic pressure will enhance fluid movement out of the vasculature. Using microperoxidase tracer in mice, Simionescu et al. (88) found that leakage of macromolecules is primarily restricted to venules 8 - 16 μm in diameter. Svensjo et al. (98) reported similar findings using the hamster cheek pouch preparation. procedure can be used to study changes in permeability in the microvasculature. FITC fluorescein-labeled dextran (M.W. 145,000) is administered intravenously and a portion of the cheek pouch is dissected and viewed microscopically (96). Leakage sites are counted, after topical application of various agents, as areas of fluorescence appear. tissues can then be collected and examined via electron

microscopy. Histamine and bradykinin, two of the most important edemogenic and vasoactive agents in the body, produced a dose-related increase in the number of leakage sites in venules 9 - 16 μ m in diameter (99). No leakage sites were detected in the arterioles or the capillaries. However, Svensjo et al. and other investigators (82) do not believe that the increased macromolecular leakage occurs as a result of increased vesicular transfer. They propose that interendothelial gaps form as adjacent endothelial cells "round up" in response to these vasoactive agents (36). These gaps are believed to be formed by active contraction, presumably as a result of shortening of actinomyosin-like filaments within these cells (63). Numerous morphological studies have demonstrated these gaps in tissues exposed to histamine (6.60.61.62) and bradykinin (30.33.86). The gaps formed were from 0.08 µm to 1.4 µm in width, large enough to easily allow passage of macromolecules.

In contrast, there is no direct evidence to support the claim of Carter, Joyner, and Renkin (5) that inflammatory mediators increase vesicular transfer. Morphological studies have been unable to substantiate this claim. Since cytopempsis must be somewhat of an active process (81), it would be expected that interference with cellular metabolism would curtail vesicular transport. However, micropinocytosis has proven to be relatively resistant to oxygen lack and/or to inhibitors of cellular metabolism (92). Active processes are temperature sensitive and yet it has been

demonstrated (82) that marked cooling of the rat hindquarters failed to alter the increased clearance of macromolecules in response to elevations in venous pressure. Jennings and Florey (42) observed no change in vesicular uptake of ferriten during cooling, whereas Rippe and Grega (82) have shown that cooling markedly reduced the increase in macromolecular efflux produced by histamine in rats. Indeed, this effect was immediately reversible by rewarming the preparation to 37° C. Thus, at present, there is no conclusive evidence to support the hypothesis that cytopempsis plays a significant role in transcapillary movement. On the other hand, a significant amount of morphological data is available to attest to the formation of venular gaps as a means by which protein efflux can occur during inflammation.

Inflammation is characterized by vasodilation, increased vascular permeability, pain, and migration of leukocytes into the inflamed area (56). The high concentration of plasma proteins in inflammatory exudates as compared with normal extravascular fluid (90) makes it certain that whatever other changes are present, an increased permeability of the vessel wall to protein is an essential feature of inflammation.

Histamine and bradykinin have been implicated in playing a major role in inflammation. It has been shown that local administration of histamine (1 - 64 μ g base/min) or bradykinin (0.8 - 10 μ g/min) into the canine forelimb significantly increases net fluid filtration in skin and

skeletal muscle (28,35,52,59,65) resulting in significant increases in the weight and volume of the perfused limb. The increase in net fluid filtration is due to both an increase in microvascular pressure resulting from the vasodilation produced by these autocoids, as well as a decrease in the transmural oncotic pressure gradient. The decrease in the transmural oncotic pressure gradient is due to an enhanced rate of protein efflux into the interstitium (36) subsequent to an increase in vascular permeability to macromolecules.

The relative contributions of these pressure-dependent and pressure-independent effects are dose related. Low doses of histamine (e.g. 5 µg base/min) and bradykinin (e.g. 0.8 µg/min) infused into the naturally perfused fore-limb produce increases in lymph flow, small skin vein pressure (a minimun for capillary hydrostatic pressure), and limb weight (28,52). These same doses infused into forelimbs perfused at constant inflow still increase lymph flow greatly but small skin vein pressures are not altered and the weight gain is largely attenuated (28,59). Thus, under conditions where microvascular pressure is held constant, the edema is considerably reduced.

High doses of histamine (e.g. $64~\mu g$ base/min) and bradykinin (e.g. $10~\mu g/min$) increase blood flows and skin small vein pressures to the same levels as do the lower doses, yet the edema is three to four times greater with the higher doses. Under constant inflow conditions the same

large increases in limb weight are seen despite the fact that skin small vein pressures, and inferentially, capillary hydrostatic pressures, probably remain at control levels. Thus, with the higher doses of histamine and bradykinin, the pressure-independent effects of these autocoids are dominant in producing edema (28,52), whereas at the lower doses, the pressure-dependent increases in capillary hydrostatic pressure are important in the genesis of the edema formation.

Other agents have also been found to contribute to the inflammatory response. Among them are the prostaglandins. Prostaglandins are potent vasoactive agents having a wide range of actions and are synthesized from 20 - carbon polyunsaturated fatty acids. The effects of prostaglandins were first noted by Kurzrok and Lieb (54) in 1930 when they observed that uterine muscle strips would relax or contract when exposed to human semen. A few years later von Euler (103) reported that human and sheep seminal fluid extracts had potent stimulatory actions on smooth muscle and lowered arterial blood pressure in experimental animals. He demonstrated that the biological activity of the seminal fluid was associated with a lipid-soluble acid which he called prostaglandin. During the 1950's and early 1960's pioneering work by Bergstrom and Samuelsson (2) found that at least four major groups of prostaglandins existed; i.e., the E, F, D, and A groups. Two other groups, the thromboxanes (TXAa) (37) and prostacyclins (PGI_2) (71) have recently been isolated.

The main precursor for these prostaglandins is arachidonic acid (5.8.11.14. eicosatrienoic acid) which has four double bonds and gives rise to prostaglandins with two double bonds. The arachidonic acid found in the cell membrane is derived from the diet, either from elongation and desaturation of the essential fatty acid linolenic acid found in vegetables, or from the arachidonic acid content of meats. Even very slight chemical or mechanical stimuli can activate the enzyme phospholipase A_a (72) which releases arachidonic acid from membrane phospholipids. The enzyme complex known as cyclo-oxygenase or prostaglandin synthetase, which seems to be present in the membranes of all cells, converts the arachidonic acid into the unstable cyclic endoperoxide PGG2. This substance is rapidly converted to yet another unstable cyclic endoperoxide, PGH2. At this point the biochemical pathways diverge. Depending on the tissue in question different prostaglandins will be synthesized, probably due to the differential activity of certain enzymes in their respective tissues. PGE2, a vasodilator and bronchodilator is formed from PGH_2 , as is $PGF_{2\alpha}$ which is a venoconstrictor and bronchoconstrictor. It has been pointed out that there is a certain symmetry between the various prostaglandins. The PGE and PGF compounds have been shown to have opposing actions in most tissues (41). It has recently been shown in monkeys, chickens, and pigeons (94) that PGE2 can be converted to $PGF_{2\alpha}$ by the enzyme PGE_{2} 9-Keto Reductase. It has been postulated that PGF20 may be converted to PGE2 as well, but as yet no evidence exists to support this theory.

Prostacyclin (PGI₂) is formed from PGH₂ in the walls of arteries and veins. PGI₂, which has a half-life of only two to three minutes (72), increases platelet adenyl cyclase activity. This results in increased cyclic-AMP levels and inhibition of platelet aggregation. PGI₂ prevents platelet aggregation in vivo and in vitro at concentrations of l ng/ml. Prostacyclin is also a vasodilator and is broken down rapidly into 6-oxo-PGF₁ α which has only weak anti-aggregatory activity.

The symmetry of the system is preserved by thromboxane A_2 (TXA₂), another product of PGH₂. TXA₃ is found in the platelets and constricts blood vessels (37). It is metabolized to the inactive compound, thromboxane B_2 , in approximately 30 seconds. TXA₂ decreases adenyl cyclase activity which decreases cyclic-AMP levels and promotes platelet aggregation. Thus PGI₂ and TXA₂ are in opposition to one another. It has been postulated by Moncada and Vane (72) that the delicate balance of these two prostaglandins is essential for proper homeostasis and that prostacyclin may one day be used in a clinical setting to prevent thrombosis.

Dihomo-gamma-linolenic acid (8,11,14 eicosatrienoic acid) contains three double bonds and gives rise to the 1-series of prostaglandins, i.e. those prostaglandins containing just a single double bond. The biochemical pathways involved here are similar to those of the 2-series discussed above. Cyclo-oxygenase converts dihomo-gamma-linolenic acid into the cyclic endoperoxide PGG₁ which rapidly converts to

 PGH_1 . PGH_1 gives rise to PGE_1 and $PGF_{1\alpha}$. The relationship between these two prostaglandins is similar to that of their 2-series counterparts.

The 1-series prostaglandins are not as prevalent as the 2-series prostaglandins and their physiologic importance is largely unknown. This is not to say that they have no role. PGE₁ has been shown to have high anti-aggregatory activity (77) due to its ability to increase cyclic-AMP levels(25), and can inhibit aggregation of human platelets (53) at a dose of 1 µg/ml. If the precursor dihomo-gamma-linolenic acid is administered, significant amounts of PGE₁ are synthesized in sheep vesicular gland (84) and the microsomes of bovine vesicular gland (112). Dihomo-gamma-linolenic acid competes with arachidonic acid for the cyclo-oxygenase of human platelets (111) and thus may effect the production of the 2-series prostaglandins.

In 1971 Vane (101) proposed that the anti-inflammatory action of aspirin arises from the inhibition of prostaglandin synthesis. This view has been supported by reports that aspirin can inhibit prostaglandin synthesis in human platelets (89) and semen (9). It is now known that low concentrations of aspirin-like drugs inhibit cyclo-oxygenase (72), the first enzyme in the arachidonic acid cascade, and thus inhibit the formation of the endoperoxides and all their subsequent products. Aspirin-like drugs have analgesic, antipyretic and anti-inflammatory properties, thus their ability to inhibit prostaglandin synthesis fits well with the belief

that prostaglandins are involved in the inflammatory process.

There is a great deal of evidence to implicate prostaglandins in inflammatory processes. Increased concentrations of prostaglandins, mainly PGE's, have been recovered from inflammatory exudates in man (14, 26, 76), dog (1), and rat (109). Anaphalaxis (75), tissue ischemia (16, 67), mechanical stimulation (15, 23), chemical inflammatory agents (110), and scalding injuries (1) all release prostaglandins, especially PGE's. PGE, induces migration of leukocytes (48) in concentrations of 1 µg/ml or greater. In man, 100 mg of PGE2 causes pain when injected subdermally (10). PGE1 also sensitizes pain receptors for subsequent infusions of histamine or bradykinin (17): i.e. concentrations of these autocoids which did not ellicit pain in untreated skin were very painful after treatment with PGE1. In cats and rabbits (70) PGE₁ induces a dose-dependent pyresis with doses up to 10 μg . Thus, prostaglandins, especially PGE1, reproduce many of the cardinal signs of inflammation.

PGE₁ can also affect net fluid filtration. Weiner and Kaley (104) have shown that in the rat mesocecum preparation in vivo, topical applications of PGE₁ in doses of 1 to 10 μ g/ml, produces a dilation of metarterioles, precapillary sphincters and venules concomitant with an augmentation of capillary blood flow leading to increased fluid filtration. However considerable debate exists among investigators concerning the relative capacity to which PGE₁ is involved in the movement of fluid and macromolecules across

the microvascular membrane. The different experimental techniques employed, different PGE₁ doses and routes of administration, species variability as well as other factors, may have contributed to the conflicting data found in the literature.

Many investigators have employed the vital dye technique which involves the injection of a vital dye (e.g. Evans Blue) into the systemic circulation of the experimental animal and the subsequent measurement of the amount of dye leakage at the site of administration of the prostaglandin The injection site is usually skin. The dye is assumed to bind to circulating plasma proteins and will therefore be transported with filtered proteins. Changes in microvascular permeability are quantitated by either measuring the diameter of the dye-leakage in the area of application, or more precisely, by recovering the extravasated dye by extraction from the tissue and measuring the concentration of the dye spectrophotometrically. A modification of the method involves the intravenous injection of readio-actively labelled albumin and the subsequent measurement of the radioactivity of the extravasated protein at the site of prostaglandin injection. However, the vital dye technique has three major drawbacks. 1) The extent to which the dye binds to the plasma protein is variable and uncertain. 2) The concentrations of PGE1 at the site of leakage are not well controlled. Depending on the rate of penetration and diffusion of PGE, in the tissue.

concentration differences could occur. 3) The injected PGE₁ would only have short-lived effects owing to the rapid metabolism of the agent by degradation enzymes located in the tissue. Thus it is not surprising that there is a diversity of opinion among investigators utilizing this technique.

In 1963, Horton, using the vital dye procedure, reported that PGE₁ increased permeability in guinea pig skin (40). Since that time, other investigators (11,12,19,20,47,74) have also shown increases in vascular permeability in response to PGE₁ in both rat and guinea pig. Kaley (47) noted increases in permeability, especially in venules, while Panagides and Tolman (74) observed a direct relationship between the dose of PGE₁ used and the average diameter of the lesion. Another group of investigators utilizing the vital dye technique, have reported that while PGE₁ itself does not alter vascular permeability, it potentiates the effects of bradykinin and histamine (17,57,100,107,108). This potentiation can be inhibited by indomethacin pretreatment (7).

Using the more reliable hamster cheek pouch preparation (as described above), Svensjo (95) and Joyner, Svensjo and Arfors (45) have shown that PGE₁, in doses ranging from 1 to 100 ng, increases the leakage of FITC-dextran from postcapillary venules in a manner similar to that of histamine and bradykinin; i.e. via formation of interendothelial venular gaps. The number of leakage sites

was linearly related to the amount of PGE, administered, but PGE, was found to be at least ten times less effective than bradykinin in producing FITC-dextran leakage sites. also potentiated the response to bradykinin (95). Some investigators (108) have suggested that PGE1 only increases protein efflux due to its ability to increase blood flow. However, when terbutaline, a β -agonist, was administered together with PGE1, arteriolar blood flow was increased to levels even greater than those achieved with PGE1 alone, while the number of leakage sites decreased. Panagides and Tolman (74) also noted that isoproterenol, a β -agonist, inhibited the PGE₁ evoked increase in permeability, although it too increases blood flow. Thus it appears that the increases in permeability attributable to PGE1 are not due solely to increases in blood flow. The antagonism of the increased macromolecular permeability by β -agonist has been postulated to be due to the ability of the β -agonists to relax the contractile elements of the venular endothelial cells, and thus close the interendothelial gaps (97).

The evidence discussed above suggesting a role for PGE₁ in inflammation has been from studies conducted in rats, guinea pigs, and hamsters. So far, the few studies conducted in dogs have not provided substantial evidence to support this contention. Rosenthale (83) injected PGE₁ into the dog knee joint and it became inflamed. Greenberg and Sparks (27) studied the effects of PGE₁ on the vascular resistance, capacitance and capillary filtration coefficient

in the isolated canine hindlimb by measuring the total venous outflow of the popliteal vein and the changes in pleythysomographic recordings in an enclosed hindlimb. found that the intravenous administration of 0.01 to 10 μg/ min of PGE1 increases blood flow and vascular volume which is evidence for an increase in vascular capacitance. PGE1 also increased the capillary filtration coefficient, indicating either an increase in capillary permeability or an increase in capillary surface area due to increased relaxation of precapillary sphincters. They postulated that the predominant effect of PGE, infusion was a decreased precapillary sphincter tone (or increased relaxation), since there was no net filtration associated with the increased capillary filtration coefficient, and the relative changes in resistance and the capillary filtration coefficient were similar in magnitude to those observed during exercise when there is no increase in capillary permeability. Daugherty (13) studied the effects of PGE, on skin and skeletal muscle vascular beds in the dog forelimb and observed little effect on filtration. In these studies, PGE_1 (2 to 10 $\mu g/min$) infused into the brachial artery produced large increases in both skin and muscle blood flows whereas total vascular resistance in skin and muscle decreased. However, the small effect on filtration, as measured by forelimb weight, was postulated to be due to a proportional dilation of the preand post-capillary vascular segments.

The above studies did not measure protein fluxes directly nor did they study the effects of a wide dose range of PGE₁. It has been shown (18) that large amounts of PGE₁ can be inactivated in a single passage through the lungs and liver (39). Thus the doses used in the above studies may have been insufficient. The duration of the infusions were also very short.

Recent work by Joyner (43) afforded a direct measurement of protein fluxes in the hindlimb of the dog. Subcutaneous injections of 0.01 µg of PGE₁ failed to show increases in vascular permeability as ascertained from the protein concentration of collected lymph. Joyner proposed that PGE₁ enhanced transcapillary fluid movement, as evidenced by an increased lymph flow, primarily by its vasodilatory properties. But Joyner himself raised the issue as to the accuracy of the study. Lymph samples were collected at 30 minute intervals and, if the increase in permeability was of a short duration, as was likely with the low doses employed, the permeability effects could have been masked. Moreover, in the same study, when the vital dye technique was used in the dog, PGE₁ (10-20 µg administered intradermally) produced bluing in 71% of the trials.

Recently, a systematic study of the effects of a wide dose range of PGE₁ on fluid filtration and macromolecular efflux was conducted in our laboratory (58). Sixty minute local intra-arterial infusions of PGE₁ (2 to 16 μ g/min) into canine forelimbs perfused either naturally or at constant

inflow produced profound vasodilation and increases in lymph total protein concentration, but only slight dose-independent increases in lymph flow. PGE_1 (16 or 32 $\mu g/min$ i.a.) also produced marked increases in forelimb weight owing to edema formation. Following pretreatment with indomethacin (5 mg/kg, i.v.), PGE_1 produced vasodilation and increases in lymph total protein concentration similar to those produced in the absence of indomethacin, but now produced marked increases in lymph flow rate under both natural and constant inflow conditions.

Based on these data in the dog and similar findings in other species, it appears that PGE, is likely to have a role in inflammation and increases vascular permeability in a manner similar to that of histamine and bradykinin. Work from this laboratory (29,59,65) and others (98) has demonstrated that catecholamines possess the unique ability to antagonize the protein efflux produced by histamine and bradykinin owing to a direct action on the microvascular membrane which counteracts that of histamine and bradykinin. This antagonism is independent of changes in blood flow, microvascular pressure and perfused surface area (29,51,65). It is now known that other agents possess the ability to antagonize or potentiate the protein efflux produced by these agents (29,59,78). In this study, the effects of catecholamines and a variety of other natural and synthetic agents were studied to determine if they antagonize or potentiate the direct actions of PGE1 on the microvascular membrane.

METHODS

Thirty-five mongrel dogs of either sex, having an average weight of 27 kilograms (range: 17-45 kg), were anesthesized with sodium pentobarbital (30 mg/kg) and ventilated with room air using a Harvard respiratory pump.

In these studies, the intact canine forelimb perfused at constant inflow was used to collect skin lymph and measure lymph protein concentration. The surgical procedure consisted of using an electrocautery to make small incisions superficial to the brachial artery, cephalic vein (5 cm below the elbow), and second superficial dorsal metacarpal vein in the right forelimb. A side branch of the brachial artery, a lymph vessel, and a vein, respectively, were isolated. After administering 10,000 U.S.P. units of heparin intravenously, these vessels were cannulated in an upstream direction with polyethylene tubing for monitoring brachial artery perfusion pressure, lymph collection, and small skin vein pressure, respectively. The side branch of the brachial artery was cannulated with PE-50 tubing while the small vein in the paw was cannulated with PE-60 tubing. The cannulated small vessel acts as an extension of the catheter, and thus the catheter measures pressure in the vessels to which the cannulated vessel connects (30, 33, 34, 86), which is

representative of all small venous vessels in the skin of the paw.

The lymph vessels in the area of the cephalic vein below the elbow drain forelimb skin and paw (36,69). Two or three were usually tied centrally and one of them was cannulated distally with a 10 cm length of PE-10 tubing which had been beveled at the cannulating end. The walls of these vessels were quite substantial requiring that they be punctured with a 22 gauge needle prior to cannulation.

The brachial artery was then isolated, tied off and transected about 5 cm proximal to the side branch which had been cannulated. Blood was obtained from a cannula inserted into the femoral artery and pumped at a controlled flow into the transected brachial artery. A Sigmamotor pumb (Model T68H, Sigmamotor Inc., Middleport, N.Y.) was used to keep inflow constant at a value which produced a perfusion pressure similar to aortic pressure. Aortic pressure was monitored via a cannula in the left carotid artery.

All pressures were monitored with Statham pressure transducers (Model P23Gb, Statham Instruments, Inc., Oxnard, California), connected to a direct writing oscillograph (Model 7754A, Hewlett-Packard Co., Palo Alto, California).

Lymph was collected at 10 minute intervals in miniature 0.3 ml graduated cylinders, constructed from plastic pipettes. Forelimb small skin vein pressure, aortic pressure, and brachial artery perfusion pressure were continuously monitored and recorded at the end of each 10 minute period. After two consecutive control periods local (intra-arterial) administration of PGE, and/or other drugs was begun by infusing directly into the circuit behind the Sigmamotor pumb. Arterial blood samples (5 ml) for measuring hematocrit and plasma proteins were drawn from the cannula monitoring aortic pressure. Samples were taken five minutes before the local infusions of drugs began, as well as at 30 minute intervals throughout the experiment. The protein concentration of the lymph and plasma samples were analyzed by the modified Biuret reaction (51). The samples were read spectrophotmetrically in grams percent with an ACCU-STAT Blood Chemistry Analyzer (Clay Adams, Model 2000) which had been calibrated with samples known protein concentrations. Lymph protein transport was calculated as follows: Lymph Protein Transport = (10)(Lymph Flow Rate)(Lymph Protein Concentration).

PGE₁ was obtained from the Upjohn Company, Kalamazoo, Michigan (U-10136, Lot No. 12874-JHK-102C and 11894-VOV-77). Stock solutions were prepared by dissolving 10 mg of PGE₁ into 10 ml of absolute ethanol. Appropriate dilutions were made up using normal saline as the solvent, and the PGE₁ was then infused into the animal at a rate of 16 μ g/min for 60 minutes.

The following drugs were also used in this study and prepared in normal saline: 1) isoproterenol hydrochloride, 3 µg/min infused for 60 minutes, Winthrop Laboratories; 2) vasopressin, 0.8 Pressor Units/min infused for 60 minutes, Calbiochem Co., Inc.; 3) angiotensin II, 2 µg/min infused for 60 minutes, Sigma Chemical Co.; 4) methylprednisolone

(Solu-Medrol), 15 µg/min infused for 60 minutes, Upjohn Co.; 5) serotonin creatinine sulfate, 7 µg base/min infused for 60 minutes, Sigma Chemical Co.. All drugs were administered intra-arterially at a delivery rate of 0.2 ml/min with a Harvard infusion/withdrawal pump. Control infusions of ethanol alone, in the same preparation, produced no significant changes in any of the measured parameters.

At the conclusion of the experiment the animals were sacrificed. The right and left forelimbs were then severed approximately 2 cm above the humeral condyle, and the brachialis, biceps, and triceps muscles were carefully dissected down to their tendons of insertions on the ulnar and radial tuberosities. Great care was taken to insure that the limbs were always severed at the same points on the humeral condyle. The limbs were then exsanguinated and weighed. Limb weights (experimental vs. contralateral control) were compared by using a paired t test. Control infusions of ethanol alone, in the same preparation, produced no significant changes in limb weights, thus neither the ethanol vehicle nor the trauma produced by surgery were responsible for the significant increases in limb weights seen in dogs with significantly increased lymph total protein concentrations. Moreover, when lymph total protein concentration did not significantly increase, the experimental and contralateral control limb weights were always very similar. Thus, this method is a valid means whereby changes in limb weights may be detected. All other data were statistically analyzed by Analysis of Variance (Randomized Complete Block Design) and the means compared to control by the Least Significant Difference Test (93).

RESULTS

Table 1

In limbs perfused at constant inflow, intra-arterially infused PGE₁ (16 µg/min) produced a moderate increase in lymph total protein concentration (p<.01). Lymph flow rate increased slightly but not significantly (p>.05) by the 20 minute sample period and then waned. There was a tendency for a slight but insignificant (p>.05) increase in lymph protein transport. Limb weights were significantly greater (p<.01) in the experimental limbs when compared to the contralateral control limbs. Plasma protein concentrations were not changed while the hematocrits were significantly increased (p<.01). Systemic arterial pressure increased significantly (p<.01) and remained elevated throughout the infusion period. Perfusion pressure decreased markedly (p<.01) and small skin vein pressure increased significantly but minimally (p<.01) toward the end of the infusion period.

Table 2

Table 2 shows the effects of isoproterenol (3 μ g/min, i.a.) infused concomitantly with PGE₁ (16 μ g/min, i.a.) into limbs perfused at constant inflow. Lymph flow rate, lymph protein concentration and lymph protein transport were unchanged. Systemic arterial pressure and small skin vein

pressure were not significantly altered. Perfusion pressure was markedly decreased (p<.01) for the duration of the infusion period. Plasma protein concentrations were not changed while the hematocrits were significantly increased (p<.01).

Table 3

No changes in lymph flow rate or lymph protein transport were seen when vasopressin (0.8 Pressor Units/min, i.a.) was infused concurrently with PGE1 (16 µg/min, i.a.) in forelimbs perfused at constant inflow. Lymph total protein concentration minimally decreased (p<.01) and then returned to control levels by the end of the infusion period. The weights of the experimental and control limbs were not significantly different. Systemic arterial pressure was significantly increased (p<.01) at the start of the infusion period and then waned, returning to control levels. Perfusion pressure and small skin vein pressure were unchanged. Plasma protein concentrations and hematocrits were not significantly different from control.

Table 4

In limbs perfused at constant inflow, angiotensin II (2 μ g/min, i.a.) in combination with PGE₁ (16 μ g/min, i.a.) did not change lymph flow rate, lymph total protein concentration or lymph protein transport. The weights of the perfused limbs were moderately greater than those of the contralateral control limbs (p<.05). Systemic arterial pressure increased at the onset of the infusion period and gradually waned. Perfusion pressures significantly decreased (p<.01) and small skin vein pressure remained unchanged. Plasma

protein concentrations were not changed while the hematocrits were significantly increased (p<.01).

Table 5

No changes in lymph flow rate, lymph total protein concentration or lymph protein transport were seen when methylprednisolone (15 $\mu g/min$, i.a., CF) was infused concurrently with PGE₁ (16 $\mu g/min$, i.a., CF). The weights of the experimental and control limbs were not significantly different. Systemic arterial pressure increased (p<.01) while perfusion pressure decreased markedly (p<.01). Small skin vein pressure remained unchanged. Plasma protein concentrations were not changed while the hematocrits increased significantly (p<.01).

Table 6

Table 6 shows the effects of serotonin (7 µg base/min, i.a.) infused concomitantly with PGE₁ (16 µg/min, i.a.) into a limb perfused at constant inflow. Lymph flow rate increased slightly but not significantly (p>.05) by the 20 minute sample period and then waned. Lymph protein concentration increased significantly and remained elevated throughout the infusion period. There was a tendency for a slight but insignificant (p>.05) increase in lymph protein transport. The weights of the perfused limbs were markedly greater than those of the contralateral control limbs. Systemic arterial pressure decreased minimally but not significantly while perfusion pressure was moderately decreased. Small skin vein pressure increased moderately. Plasma protein

concentrations were unchanged while the hematocrits increased significantly.

Thus, PGE1, and concomitant infusions of serotonin and PGE1, produced significant increases in both lymph protein concentration and limb weight. Of the other four agents, only angiotensin II, by producing a moderate increase in limb weight, significantly altered either lymph total protein concentration or limb weight. Generally, systemic arterial pressure and hematocrit were significantly increased. Lymph flow rate, lymph protein transport, and plasma protein concentration remained unchanged relative to control in all groups.

Effects of PGE, (16 $\mu g/min$ i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights. (n=7) Table 1.

	Control -10	ro1 0	10	20	Infusion Period 30 40	Period 40	50	09
Systemic Arterial Pressure	124	124	139*	139*	141*	141*	141*	141*
Perfusion Pressure	109	110	55*	¥95	*95	55*	*95	57*
Skin Small Vein Pressure	11	12	12	13	13	13 ^x	13 ^x	13 ^x
Lymph Flow Rate	.01	.02	†0 .	.07	90.	.03	.02	.02
Lymph Total Protein	5.6	2.8	2.7	3.1	3.4*	3.3 ^x	3.4*	3.2 ^x
(gms %) Lymph Protein Transport	.38	777.	1.31	2.82	2.53	1.04	.85	18.
Plasma Protein		5.5			5.7			5.7
(gms %) Hematocrit		39			*††			*54
	Control	<u>ro1</u>	EXI	Experimental	딥	Difference	ence	
Limb Weight	665.3	ė.		682.9		22.	22.6**	
greer oo min iniusion (gms)	±28.9	6		±29.8		±3.7	2	

*=P < .01 relative to zero time
**=P < .01 relative to contralateral
control limb weight</pre>

x=P < .05 relative to zero time

Effects of PGE₁ (16 μg/min i.a., CF) and isoproterenol (3 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, and hematocrit. (n*5) Table 2.

	4				Tnfusion Period	Period			
	-10	0	10	20	30	40	50	09	1 1
Systemic Arterial Pressure	133	132	127	133	136	140	140	140	
(mmHg) Perfusion Pressure	114	117	\$8 *	*59	*59	*49	*99	*99	
(mmHg) Skin Small Vein Pressure	15	17	12	11	11	11	12	12	
(mmHg) Lymph Flow Rate	.03	.02	40.	.03	.02	.02	.02	.01	
<pre>(ml/lo min) Lymph Total Protein</pre>	2.4	2.5	2.5	5.4	2.4	2.3	2.4	7.2	ככ
(gm %) Lymph Protein Transport	69.	.52	.85	.63	.50	64.	44.	.29	
(mg/lo min) Plasma Protein		0.9			0.9			6.1	
(gm %) Hematocrit		41			*24			*67	

*=P < .01 relative to zero time

x=P < .05 relative to zero time

Effects of PGE, (16 μg/min i.a., CF) and vasopressin (0.8 Pressor Units/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights. (n=5) Table 3.

	Control	rol			Infusion Period	Period			
	-10	0	10	20	30	047	50	09	
Systemic Arterial Pressure	118	122	142*	137 ^x	131	127	122	121	
Perfusion Pressure	103	109	66	98	112	114	112	109	
Skin Small Vein Pressure	11	12	13	11	11	11	11	11	
Lymph Flow Rate	.01	.02	.01	.01	.01	.01	.02	.02	
Lymph Total Protein	2.9	2.8	2.5	2.3*	2.5 ^x	2.4	2.5	2.4	
Lymph Protein Transport	.35	04.	.29	.31	.34	.28	.38	.43	
(mg/10 min) Plasma Protein		5.9			0.9			6.2	
(gm %) Hematocrit		047			745			43	
	Con	<u>Control</u>	Experimental	mental		Difference	ence		
Limb Weight	69	693.1	69	693.2		00.1	-		
gree oo min intasion (gms)	±5(1 50.0	+5;	1 52.0		±3.1	П		

*=P < .01 relative to zero time

x=P < .05 relative to zero time

Effects of PGE, (16 $\mu g/min$ i.a., CF) and angiotensin II (2 $\mu g/min$ i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights. (n=7) Table 4.

	Control	rol			Infusion Period	Period		
	-10	0	10	20	30	047	50	09
Systemic Arterial Pressure	134	135	156*	150*	145X	777	141	140
Perfusion Pressure	122	124	78*	72*	72*	71*	71*	71*
Skin Small Vein Pressure	11	10	12	12	11	11	11	11
Lymph Flow Rate	.01	.01	.02	.03	.02	.02	.02	.02
Lymph Total Protein	2.7	2.7	2.9	3.1	3.3	3.2	3.2	3.0
Lymph Protein Transport	.27	.27	.51	1.48	.88	.86	.78	.55
Plasma Protein		0.9			6.2			0.9
(gm //o/ Hematocrit		41			*47			*9†
	Control	<u>:01</u>	EXI	Experimental	ᆌ	Difference	ence	
Limb Weight	587.7	.2		600.1		12.	12.5 ^{xx}	
gms)	±34°8	8		±33.0		† • † ∓	.	

*=P < .01 relative to zero time

x=P < .05 relative to zero time
xx=P < .05 relative to contralateral
control limb weight</pre>

Effects of PGE, (16 $\mu g/min$ i.a., CF) and methylprednisolone (15 $\mu g/min$ i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights. (n=5) Table 5.

	Cont	rol			Infusion Period	Period			
	-10 (0	10	20	30	04	50	09	1 1
Systemic Arterial Pressure	122	126	*771	143*	142*	140x	139 ^x	138	
(mmng) Perfusion Pressure	117	118	¥05	51*	52*	53*	53*	\$2\$	
Skin Small Vein Pressure	12	12	12	13	13	13	13	13	
Lymph Flow Rate	.02	.02	.01	.02	.02	.01	.01	.01	
Lymph Total Protein	2.5	2.7	2.5	5.6	2.7	2.8	2.9	2.7	38
lymph Protein Transport	.59	09.	.30	.38	94.	.37	.29	.39	
Plasma Protein		5.1			5.4			5.3	
(gm %) Hematocrit		37			* † †			45 _X	
	Control	701	EX.	Experimental	<u>a1</u>	Difference	ence		
Limb Weight	774.0	0.		793.8		19.8	80		
arcer oo man minasion (gms)	749.0	0		±45.6		4.67	-		

*=P < .01 relative to zero time

x=P < .05 relative to zero time

Effects of PGE, (16 $\mu g/min$ i.a., CF) and serotonin (7 μg base/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, hematocrit, and limb weights. (n=5) Table 6.

	Control	rol			Infusior	Infusion Period		
	-10	0	10	20	30	047	50	09
Systemic Arterial Pressure	129	130	119	114	113	113	115	118
Perfusion Pressure	118	118	*62	* 18	83*	* 178	*48	*88
Skin Small Vein Pressure	13	13	14	15 ^x	17*	17*	17*	17*
Lymph Flow Rate	.01	.02	.02	90.	.03	.03	.03	70 °
Lymph Total Protein	2.7	5.6	2.8	3.3 ^x	3.7*	4.1*	3.8*	3.7*
Lymph Protein Transport	.27	.45	.58	2.03	1.36	1.10	1.29	1.34
(mg/10 min) Plasma Protein		0.9			6.2			5.9
(gm %) Hematocrit		39			45 ^x			43 *
	Control	rol	Expe	Experimental	اب	Difference	ence	
Limb Weight	592.8	89.		628.3		35.	35.5**	
arter oo min initasion (gms)	±37.6	9.		±36.5		±5.9	6.	:

*=P < .01 relative to zero time
**=P < .01 relative to contralateral
control limb weight</pre>

x=P < .05 relative to zero time

DISCUSSION

In forelimbs perfused at constant inflow (Table 1), PGE_1 (16 µg/min i.a.) infused for 60 minutes significantly increased lymph total protein concentration and limb weight. Small skin vein pressure remained unchanged relative to control until min $\underline{40}$, by which time lymph protein concentration had significantly increased. Thus the edema produced by PGE_1 in a constantly pump-perfused forelimb is not attributable to an increased microvascular pressure, but to an increased net fluid filtration subsequent to a decrease in the transmural colloid osmotic pressure gradient owing to an increase in microvascular permeability to macromolecules.

This conclusion is supported by the work of Svensjo (95) and Joyner et al. (45). These investigators have shown that PGE1 increases the leakage of FITC-dextran (M.W. 145,000) from postcapillary venules in the hamster cheek pouch preparation in a manner similar to that of histamine and brady-kinin (99); i.e. via formation of interendothelial cell venular gaps. These gaps form in venules 9 to 16 μ m in diameter, owing to the active contraction of endothelial cell filaments. Thus, PGE1 increases macromolecular efflux by increasing vascular permeability in the venular section of the microvasculature.

It has recently been suggested by Williams and Peck (108) that PGE₁ has no direct effect on permeability but simply increases blood flow and thereby potentiates the leakage of macromolecules produced by histamine and bradykinin. However, in this study PGE₁ has been shown to increase protein efflux under constant inflow conditions which would not allow any increase in total blood flow.

When the β -agonist isoproterenol (3 μ g/min i.a.) was infused concomitantly with PGE, (Table 2), it failed to increase lymph total protein concentration. Joyner et al. (45) has shown that terbutaline, a β -agonist, markedly reduces the macromolecular leakage evoked by PGE, in the hamster cheek pouch preparation. The edemogenic effects of histamine (29, 65) and bradykinin (59) are also antagonized by isoproterenol. Although isoproterenol markedly increases nutritional flow (82), the simultaneous infusion of isoproterenol with these autocoids intra-arterially into the canine forelimb prevents the marked increase in protein efflux usually produced by histamine and bradykinin (59,65). Norepinephrine also antagonizes the increase in microvascular permeability produced by these autocoids (29,59,65). This antagonism of the histamine and bradykinin protein efflux is completely independent of changes in blood flow, microvascular pressure, and perfused surface area (29,51,65). Instead, it reflects a direct action on the microvascular membrane which counteracts that produced by histamine and bradykinin. This conclusion is supported by morphological data which demonstrates that the marked increase

in venular leakage sites of FITC-dextran (M.W. 145,000) evoked by histamine and bradykinin is greatly reduced by the simultaneous application of catecholamines (98).

Similarly, the antagonism of the PGE₁-induced protein efflux by the β-agonists is completely independent of changes in blood flow, microvascular pressure, and perfused surface area. Both PGE₁ and isoproterenol are potent vasodilators which are expected to increase surface area and, under constant inflow conditions, fail to decrease skin small vein pressure and, inferentially, microvascular pressure. Thus, as with histamine and bradykinin, isoproterenol and terbutaline may physiologically antagonize the action of PGE₁, presumably by causing the relaxation of the actinomyosin-like filaments of the venular endothelial cells, thus closing the interendothelial gaps.

It is interesting to note that, like histamine and bradykinin, PGE₁ only produces increases in macromolecular permeability in doses exceeding those necessary to produce significant vasodilation. Subcutaneous injections of PGE₁ in doses as low as 10 ng/ml produce profound erythmea (26), and Daugherty (13) found that only 1-2 µg infused intraarterially in the canine forelimb preparation produced maximal vasodilation. Thus, as with some of the other ubiquitous prostaglandins, PGE₁ may have a physiological function, such as local regulation of blood flow, in addition to its role as a mediator of inflammation.

The increase in macromolecular permeability produced by PGE, is considerably less than that produced by the other two autocoids. This has been noted by other investigators in the rat (102) and hamster (45). In the present study PGE₁ produced an average maximal increase in lymph total protein concentration of approximately 1 gm %, whereas high concentrations of histamine and bradykinin increase the total protein concentration of lymph to values approaching that of plasma (29,59). The more modest increases in vascular permeability attained with large doses of PGE, suggest that the inability of other investigators (13,27) to demonstrate an effect of PGE, on macromolecular permeability in the dog may be due to the dose studied. It has been shown that large amounts of PGE1 can be inactivated in a single passage through the lungs and liver (18,39). In addition, these investigators failed to directly measure protein efflux, and therefore it is possible that the quantitatively smaller changes in fluid flux were not easily measurable with the techniques they employed. However, results from numerous other studies (11,12, 19,20,45,74,95) in rats, guinea pigs, and hamsters, are consistent with the findings of this study.

PGE₁ differs from histamine and bradykinin in yet another respect. Despite the increase in lymph total protein concentration, lymph flow rate (Table 1) does not significantly increase as it does with these other two autocoids (35,52,64,65). Changes in lymph flow rate have traditionally been considered to reflect changes in transvascular fluid fluxes,

and increases in net fluid filtration generally produce roughly proportional increases in lymph flow rate. For instance, with low doses of bradykinin (0.8 µg base/min) infused locally intra-arterially into canine forelimbs perfused at constant inflow, a comparable increase in lymph total protein concentration (e.g. 1 gm %) produced a 10 to 15-fold increase in lymph flow rate (59). In the present study, only a 3 to 6-fold increase in lymph flow rate was observed (Table 1). Since drainage of the limb was somehow impeded it would be expected that for a comparable increase in lymph total protein concentration, the PGE1 limbs would be more edematous than the low-dose bradykinin limbs. Indeed, the PGE1 limbs were 60% heavier than the bradykinin limbs were, when comparable increases in lymph total protein concentration occurred (59).

Following pretreatment with indomethacin (5 mg/kg, i.v.), PGE1 (16 µg/min) infused locally intra-arterially into canine forelimbs perfused at constant inflow (58) produced a significant increase in lymph total protein concentration similar to that produced in the absence of indomethacin, but under these same conditions produced a 10 to 15-fold increase in lymph flow rate as would be expected from the bradykinin data. Thus it appears that the PGE1 causes the liberation of some endogenous substance which constricts the prenodal lymph vessels impeding drainage of the interstitium and compounding the edema. Since indomethacin blocks this constriction and restores normal lymph drainage, it is proposed that the endogenous agent involved is another prostaglandin. It is interesting to speculate as to the identity of this agent. Both

thromboxane A_2 and $PGF_{2\alpha}$ can constrict vessels, and $PGF_{2\alpha}$ has been shown to antagonize the increases in vascular permeability elicited by PGE_1 (12,74). This agent may also have contributed to the unusual variability of the data found in the literature. Additional experimentation is needed to resolve these issues.

Other substances which are released into the circulation during hemorrhage have been found to antagonize the protein efflux evoked by histamine and bradykinin (29,59,78). The simultaneous infusion of vasopressin (0.8 Pressor Units/ min i.a.) with PGE1 (Table 3) prevented the increase in lymph total protein concentration and limb weights, as it prevented the increase in vascular permeability induced by histamine and bradykinin. However, angiotensin II (2 μg/min i.a.), which does not block the edemogenic effect of bradykinin, does block the increase in lymph total protein concentration produced by PGE, (Table 4). Apparently the 2 μg/min dose of angiotensin II was near the effective threshold dose for antagonizing the PGE1-induced protein efflux, as two of the seven dogs showed increases in lymph total protein concentration and limb weight. Hence, there was a slight but significant increase in limb weight for this group. However, lymph total protein concentration was not significantly increased indicating an inhibition of the protein efflux by angiotensin II.

Low doses of methylprednisolone (15 µg/min i.a.), a glucocorticoid, (Table 5) also block the edemogenic action

of PGE1 although only a much larger dose (30 mg/kg i.v.) is effective in preventing the increases in macromolecular permeability elicited by histamine and bradykinin (29,78). Seeing that the more modest increases in vascular permeability elicited by PGE, were also more susceptible to inhibition by other vasoactive substances than histamine or bradykinin were, serotonin (7 μg base/min i.a.) was infused simultaneously with PGE1. This dose did not block the increase in lymph total protein concentration or limb weight. Lymph flow increased slightly but not significantly, to levels similar to those achieved when PGE1 was infused alone. A higher dose of serotonin (15 µg base/min i.a.) does prevent the edemogenic effects of histamine and bradykinin (29,78), and so it is likely that the dose of serotonin used in this study was simply insufficient to inhibit the actions of PGE1. Further experimentation is needed to determine whether serotonin, in higher concentrations, in fact inhibits the edemogenic effects of PGE1.

The antagonism of the PGE₁-induced protein efflux demonstrated in this study by a number of agents cannot be simply attributed to decreases in blood flow and/or perfused surface area. No changes in blood flow were possible as all experiments occurred under constant inflow conditions. Isoproterenol increases perfused surface area (82) and yet this catecholamine antagonized the edemogenic actions of PGE₁. Changes in vascular pressures were not responsible either. Methylprednisolone blocked the PGE₁ response even while perfusion pressure was extremely low, while serotonin did not

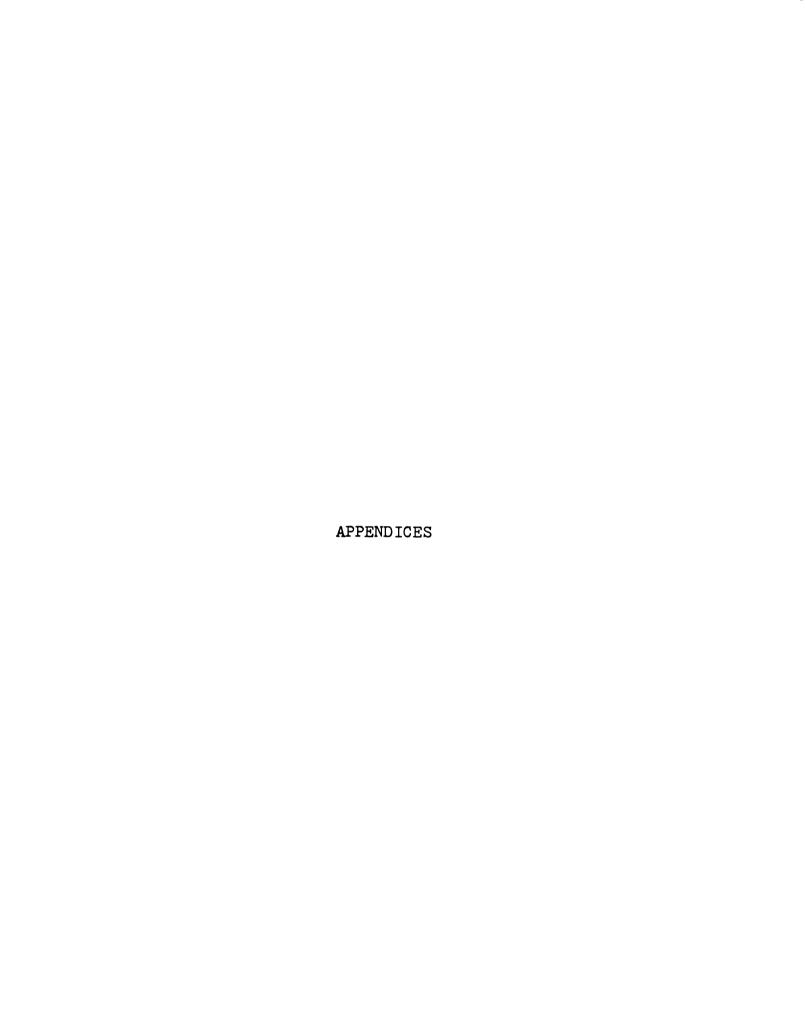
block the development of edema with perfusion pressures that were relatively high. Vasopressin antagonized the PGE₁ effect but produced no change in perfusion pressure. Skin small vein pressures and, inferentially microvascular pressures, were unchanged in all groups except for a small increase in the serotonin group due to this agent's ability to constrict skin small veins (24). Thus, it must be concluded that the antagonism of the PGE₁-induced protein efflux by isoproterenol, vasopressin, and low doses of methylprednisolone represents a direct action of these agents on the microvascular membrane. The antagonism by angiotensin II may be due to a direct action on the microvascular membrane, or may be due to an indirect effect owing to its ability to release catecholamines from the adrenal medulla and adrenergic terminals (24).

Local intra-arterial infusions of PGE₁ (16 μg/min), PGE₁ and vasopressin (0.8 Pressor Units/min), PGE₁ and angiotensin II (2 μg/min), and PGE₁ and methylprednisolone (15 μg/min) produced significant increases in systemic arterial pressure. Local intra-arterial infusions of PGE₁ and isoproterenol (3 μg/min) and PGE₁ and serotonin (7 μg base/min) produced no change in systemic arterial pressure. Under these conditions all groups showed significant increases in hematocrit except one. Vasopressin did not produce a significantly increased hematocrit. These results can best be explained if PGE₁ causes an increase in sympatho-adrenal activity. Others have shown that PGE₁ causes a reflex increase in systemic arterial pressure and heart rate (50,73)

which can be blocked by pretreatment with ganglionic blocking agents. PGE1 does not have a direct action on the adrenal medulla (68) and studies have shown that PGE, inhibits the release of norepinephrine from adrenergic terminals (38,46,85,105). The pressor response does not occur in dogs with their adrenal glands excluded from the circulation (50). Thus it is suggested that the increases in systemic arterial pressures and hematocrits may be due to catecholamine release from the adrenal medulla. However, we have no data to suggest what the stimulus for the sympathoadrenal discharge might be as mean arterial pressure did not fall, and PGE1 does not cause a release of adrenal catecholamines. Histamine produces a similar vasodilation, and yet no increase in systemic arterial pressure occurs although it causes a direct release of catecholamines. Perhaps large doses of PGE, have a direct stimulatory effect on central vasomotor neurons which produce an increase in sympathetic outflow. Further experimentation is needed to resolve this issue.

In general, the present study shows that PGE₁ in large doses increases macromolecular permeability in a manner similar to that of histamine and bradykinin. This data correlates well with morphological data available from Svensjo's laboratory. The increases in vascular permeability produced by PGE₁ are more modest than those produced by histamine and bradykinin, and are susceptible to antagonism by a greater number of other vascactive agents. None of the

agents studied measurably potentiated the protein efflux produced by PGE_1 . Lymph flow rate failed to increase significantly despite the increase in vascular permeability induced by PGE_1 . Serotonin did not block the increased lymph total protein concentration produced by PGE_1 , and it too failed to significantly increase lymph flow rate. Local intra-arterial infusions of PGE_1 (16 $\mu g/min$) produced significant increases in systemic arterial pressures and hematocrits, suggesting that PGE_1 causes an increase in sympatho-adrenal activity, perhaps via a direct action on central vasomotor neurons.


SUMMARY AND CONCLUSIONS

The canine forelimb perfused at a constant inflow was used to examine the effects of local intra-arterial infusions of PGE_1 , and to determine if catecholamines and other vasoactive agents antagonized or potentiated the actions of PGE_1 on the microvascular membrane. The results indicate that large doses of PGE_1 (16 $\mu g/min$ i.a.) produced profound vasodilation and increased macromolecular permeability by mechanisms similar to that of histamine and bradykinin, as evidenced by marked increases in lymph protein concentration and forelimb weight owing to edema formation. This data correlates well with morphological data from other laboratories. Lymph flow rate did not change relative to control.

The increases in lymph protein concentration and forelimb weight elicited by PGE₁ are more modest than those produced by histamine and bradykinin and are susceptible to inhibition by isoproterenol, vasopressin, angiotensin II, and methylprednisolone. The antagonism of the PGE₁-induced protein efflux by these agents is independent of changes in blood flow and vascular pressures, and may represent a direct action of these agents on the microvascular membrane.

In contrast to the other four agents, concomitant infusions of serotonin and PGE, produced increases in lymph

protein concentration, lymph flow rate, and forelimb weight similar to those achieved with PGE₁ alone. Thus serotonin failed to antagonize the PGE₁-induced protein efflux. None of the agents studies potentiated the protein efflux produced by PGE₁. Local intra-arterial infusion of PGE₁ produced significant increases in systemic arterial pressures and hematocrits, suggesting that PGE₁ causes an increase in sympatho-adrenal activity. In summary, these results indicate that PGE₁ may function as a mediator of inflammation in the dog, and that some natural or synthetic chemical agents can antagonize its effect on microvascular permeability.

APPENDIX

This appendix lists, in the form of tables, all the individual observations for the experiments performed in this study. Also listed are the means, standard error of the mean, and statistical significance.

The data in the appendix tables corresponds to the mean values in Tables 1-6 as follows:

Table Number	Appendix Table Number
1	Al
2	A2
3	A3
4	A 4
5	A 5
6	A 6

Table Al.	Effects of PGE, (10 and plasma protein weights. (n=7)	\sim 1	μg/min i.a concentrati	., CF) ons, va	on lymph scular pr	flow and essures,	protein hematocı	transpor rit, and	t, lymph limb
		Contro	101			Infusion			
		-10	0	10	20	30	047	50	09
Systemic #	Systemic Arterial Pressure	125	<i>(</i> 1)	9	9	9	9	9	9
(mmHg)		120 140	トク	95	S 50	25	カマ	トク	カマ
		125 135	(L) (L	W r	WA	ソカ	ソカ	サィ	ソカ
		120 120 118	118 118 811	112 122	115 115	120	120	125	127
+1	means - standard error	124 4				141*		1	
Perfusion Pressure	Pressure	105			60				
(mmHg)		130	2 CO		7. 7.80 7.80				
		125 110	3		8 1 9				
		105 115	102 115	50 50 50	52 50	55 50 50	55 50 50	2, 2,0	57 50
+1	means standard error	109 5		55 *	56 * 2	56* 2	بر س *	56*	57*
Skin Small	Skin Small Vein Pressure	11						13	13
(g,)		11						13	13
		12 10 1	113 61 61	117	777 787	91 91 9	16 12 12	16 12 14	9175
+ i	means standard error	110						13x	13x

Table Al. Continued.

	Control	rol	0	00	Infusion	n Period	08	09
	OT		21	23	2			S
Lymph Flow Rate (ml/10 min)	0.00	.01	.02	20.	.02	20	10.01	10.01
	20.		0					.02
	1000							1500
means - standard error	.00							.02
Lymph Total Protein	2.4	•	• •		•	•	•	• •
(gm %)	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	600 504	100 100	20.0	14 W	2 6 6 7	4.6	, w.w.
	4.0	•	•	•	•	•	•	•
	3.5	• •	• •	• •	•		• •	• •
means - standard error	2.6	• •	• •	• •	• •	• •	• •	
Lymph Protein Transport	.48	1.04	.52	.64	.68	.74	.35	.36
(mg/ 10 min)	£.3.	.35	.34 .48	.40 1.00	1.62	. 56	.41	238
	.24		. 20	2	2	10	103	•
	.21	.28	2 2	3.00 14.28	7.36 7.20	2.46 2.76	1.68 2.82	1.95 2.52
# means - standard error	.38	. 144 . 1.3	1.31	8.	200	• •	.85 .41	.39

Table Al. Continued.

	Control		ion Pe		
	0 0T-	10 20	30 40	50	09
Plasma Protein (gm %)					
	<i>พพ</i> + ก นํฒํ๛ํ๛		40.00 oʻi		,00,0,0 ,00,0
+ standard error					
Hematocrit	4 63.7 2.53.8 38.65		5,0 8,0 7,0 7,0		525 472 773 774
# standard error	13/86		447 738 74*		24 mm 4 m

Table Al. Continued.

Difference	23.5 15.5 22.5 20.5 22.6 3.7	
Experimental	745.5 6757.0 616.5 730.0 564.0	
<u>Control</u>	212 669 594 701 701 865 9	
	Limb Weight after 60 min infusion (gms) means tandard error	

*=P < .01 relative to zero time
**=P < .01 relative to contralateral
control limb weight</pre>

x=P < .05 relative to zero time

data expressed as mean - standard error of the mean

Effects of PGE, (16 μ g/min i.a., CF) and isoproterenol (3 μ g/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, vascular pressures, and hematocrit. (n=5) Table A2.

	1	ŀ	זכ	1		1
09	115 128 160 155	140	7,000 200 200 200 200 200 200 200 200 200	90 10	13 12 10	
50	115 126 160 160	H	25 60 10 50 50	90 86* 10	13 11 10	122
Period	110 130 160 160	140	11,500 11,500 11,500 11,500	67*	12 11 9 10	11 2
Infusion	108 1255 150	136	2,00 11,00 10 10 10 10 10 10 10 10 10 10 10 10 1	65*	111 601	11.
08	105 120 158 142	133	2,00 110 110	65*	111 6 6	11
0	100 117 145 140	127 8	24967 02020	78 78*	11 11 8 13	122
rol	125	132	125 130 110	117	12 11 10 35	15
Control	1125 1110 1420 130	133	125 90 120 110	114	30 20	157
	Systemic Arterial Pressure (mmHg)	means + standard error	Perfusion Pressure (mmHg)	means + standard error	Skin Small Vein Pressure (mmHg)	means - standard error

Table A2. Continued.

ı	1	1	-	1		ļ
09	10.00.00.00.00	00.	2.2.2.1.0 2.0.2.3	• •	0.23 0.54 0.18 0.18	0.0
50	100.00.00	.02	2867.0 4867.0		0.24 0.29 0.29 0.17 0.40	
n Period	100.00	.02	0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0	• •	0.22 0.28 0.16 0.16	7.2
Infusion 30	10.00.00.00.00.00.00.00.00.00.00.00.00.0		るるうこううけるとう		0.23 1.20 0.64 0.17 0.25	• •
50	100.00.00.00.00.00.00.00.00.00.00.00.00.		010010 1.4.0.0.0		0.21 1.68 0.66 0.34	
0	10:00:00:00:00:00:00:00:00:00:00:00:00:0		88610 4150	• • •	0.24 1.05 0.16 0.27	8.4.
trol 0	0.00.00	.01	41.04.4 4.86.4.4	• • •	0.25 1.26 0.37 0.21 0.50	2.4
Control	10	003	30.00.0	2.4	0.22 2.04 0.72 0.19	0.69
	Lymph Flow Rate (ml/lo min)	means - standard error	Lymph Total Protein (gm %)	means - standard error	Lymph Protein Transport (mg/lo min)	means + standard error

Table A2. Continued.

			<i>J</i> 9	
09	00000 00000	6.1	75 670 75 670 75 670	*6#
50				
Period 40				
Infusion Period 30 40	<i>るろるる</i> ようすがの	0.2	52 4 4 52 5	17*
20				
10				
0	00000 0444 0		7450 7450 7450	7 - 1
Control				
		means error		means error
	ein	+ means - standard error		means standard error
	Plasma Protein (gm %)	- sta	Hematocrit	- star
	Plas		Неша	

*=P < .01 relative to zero time

x=P < .05 relative to zero time

data expressed as mean - standard error of the mean

Effects of PGE, (16 µg/min i.a., CF) and vaso pressin (0.8 Pressor Unites/min Table A3.

	i.a., CF) on lymph centrations, vascul	flo ar	e si	nd protein trassures, hemat	transport, natocrit, a	lymph ind limb	and plasma weights.	a protein (n=5)	-uoo
		Conti	.o1			Infusior	Pe		
		-10	0	10	20	30	9	50	09
Systemic Arterial (mmHg)	Irterial Pressure	80 128 150 150	100 105 150	105 125 195 195	95 118 135 180	100 112 135 160	100 1112 135 041	98 132 145 145	98 112 130 140
+ı	means - standard error	118	122	74 7	とうし	אטרו	127	2 N	4 <i>C</i> V
Perfusion Pressure (mmHg)	Pressure	85 110 92 120 110	100 115 90 120	100 75 122 122	75 63 100 125	160 100 125	180 55 130	160 55 130	180 55 100 100
+ 1 S	means – standard error	103	0	10 C	10 H		114	\square	100
Skin Small (mmHg)	Skin Small Vein Pressure (mmHg)	9978 c	1269	8 11 12 12	8 2 11 2 8	01 711 111	10 7 11 11	8 71 10 7	921
+ 1 \$\alpha\$	means standard error	11 2	12		11 2			111	11 2

Table A3. Continued.

	Control	rol	O.L	06	Infusion	Period	7	09
	27		2	2	2			8
Lymph Flow Rate	.02	.01	.01	.01		.01		.02
(wim) (/ Lm)	.01	.01	.01	.01		.01		.01
/ III	.01	.01	.01	.01		.01		.01
	.01	• 0 •	.02	٠. دو.	٠. د ٥.	20.		†o.
	.0T	.01	.01	.01		.01		.01
means +	.01	.02	.01	.01		.01		.02
- standard error	00.	.01	00.	00.		00.		.01
Lymph Total Protein		•	5.6	•	•	•	•	•
(Sum ()	3.8	5. 8	7.2	2.1	5.4	2.5	5.4	2.3
(e''' /'e')		•	•	•	•	•	•	•
		•	•	•	•	•	•	•
		•	•	•	•	•	•	•
means		•	•	•	•	•	•	•
- standard error		•	•	•	•	•	•	•
Lymph Protein Transport	.56	.28	.26	.20	.22	.19	94.	77.
(x:# OL/ +#)	.32	.28	72.	.21	72.	.25	72.	.23
(IIIE) TO IIITII)	72.	.22	.20	.19	.20	.23	.22	.23
	.20	.80	.38	.63	99.	⇉	99.	96.
	.42	.42	.38	. 32	.36	.28	. 32	.30
means	.35	04.	.29	.31	.34	.28	.38	.43
- standard error	90.	.11	70 °	.08	60.	.05	80.	.14

Table A3. Continued.

	Control -10 0 10	Infusion 30	n Period 40 50	09
Plasma Protein (gm %)	<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	พ.พ.พ.พ ช.พ.ซ.ษ์		<i>พพ</i> ดพูต ๑๓๚๓๏
means - standard error	• •	• • •		• •
Hematocrit	4 6 6 4 4 6 6 6 5 7 7	36 36 36 47 36 47		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
means - standard error	04	42		43
Limb Weight after 60 min infusion (gms)	Control 868.5 573.0 694.0	Experimental 873.5 568.0 694.5	Difference 5.0 -5.0 0.5 -8.5	
+ standard error	•1 • • 1	693.2 52.0	3.1	

x=P < .05 relative to zero time *=P < .01 relative to zero time

data expressed as mean + standard error of the mean

Effects of PGE, (16 μg/min i.a., CF) and angiotensin II (2 μg/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, Table A4.

vascular pressures	-	hematocrit,	and	limb weights	ts. (n=7)	2)		
	Cont	_			Infusion	14		
	-10	0	10	20	30		50	09
Systemic Arterial Pressure	122	125 150	145 155	140	135	130	127 138	127 132
(Summa)	110 156	7	148 168	かん	132	125 152	7	7
	115	\	148	ーサー	148	148	すっ	ノナノ
	138	とろ	150 175	7	145 160	150 160	ろろ	9
means - standard error	134		156*	3	145x 4	144		
Perfusion Pressure (mmHg)	100 150 115		70 80 65		62 42 42 46 46 46 46 46 46 46 46 46 46 46 46 46	0994 994	んる みれれ	
	150 130	155 130 130	12,7 46,0 60,0 7,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	125 50 60	120 60 60	125 58 60	130	133 57 60
	130		100		85	82	80	
+ standard error	10		10		520	10	11	
Skin Small Vein Pressure (mmHg)	117	777	177	117	12	11,	11,	11,
		,11,	170					
•		8	10 12			10 12		
+ standard error	11 1	10 1	12 1					

₩₩

1000880000

9

50

とはこれるようのはるようのこれをはるこれをは Infusion Period うせるよころろうのはらってららららららって 4.2.6.2.1.9.4.8.2. 4 5 8 8 8 8 8 8 8 7 7 8 8 8 7 7 ではりりりこここここここここここここここここここここここここここここここここここいいい 20 8.33 447 1.220 1.487 26.62.23.66.60 00000000000 Control 40.46 40.66 40.66 Lymph Protein Transport + means + standard error + means + standard error means error Continued. Lymph Total Protein standard Lymph Flow Rate (ml/10 min) (mg/10 min) (gm %) Table A4. + 1

0000000000 000000000

09

カサササササ 0 かかなななない *

50 Infusion Period 0000000000 0000000000 2448488000 0 Control -10 + means - standard error means standard error Continued. Plasma Protein (gm %) Hematocrit Table A4. +1

Table A4. Continued.

Difference	24.5 0.05 12.0 1.5	25.0 12.5xx 4.4
Experimental	626.0 528.5 517.0 496.0 698.0	626.0 600.1 33.0
Control	624.5 504.0 517.0 473.0 687.0	601.0 587.7 34.8
	Limb Weight after 60 min infusion (gms)	means - standard error

x=P < .05 relative to zero time
xx=P < .05 relative to contralateral
control limb weight</pre> *=P < .01 relative to zero time

data expressed as mean + standard error of the mean

Effects of PGE, (16 µg/min i.a., CF) and methylprednisolone (15 µg/min i.a., CF) on lumph flow and material transment. Table A5.

CF) on lymph flow and protein tions, vascular pressures, hem	ow and pressu	protein res, her	in transport, lymph a hematocrit, and limb	t, lympk and lin	and wej	plasma prot ights. (n=5	tein conc	concentra-
	Cont	ıtrol			Infusion	Pe		
		0	10	20	30	07	50	09
Systemic Arterial Pressure (mmHg)	115 132 152 152	120 130 88 155	135 145 145 147	135 135 150	132 144 135	130 145 147	138 136 150	135 144 125 142
means - standard error	128 122 11	135	VIZ	40	150	148 140x 4	14 M	≯ ₩
Perfusion Pressure (mmHg)	105 105 130 130	80 120 138	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 N 3 N 1	3 2 4 2 2 6 3 2 2 2 2 6	\$ 22 \$ 22 \$ 8 22 22	4 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 ル4 ル/ 0 窓 ん ん
means - standard error	117	7 1-1	\$0 *			20 40 40 40	×23*	25* 44*
Skin Small Vein Pressure (mmHg)	110 100 90 51	81 9996	100 4	113 113 111 111	27111	1114	1124	27277
means + standard error	12	122	12	13		13		25-1

Table A5. Continued.

						1 '		
	Control -10 (rol 0	10	20	Infusion 30	n Period 40	50	09
Lymph Flow Rate (ml/10 min)	200.00	00000	100.00	00.00.00.00.00	20. 00. 00. 00. 00.	200.00	0.00.00	100.00.00.00
means - standard error	.02	.02	00.	000			00.	
Lymph Total Protein (gm %)	10000 2000	1644 7088	1 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	18666	1,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	00000 18000	0,0,0,0,0 0,0,0,0,0	00000 1004
means - standard error		• • •	• • •	• • •	• • •	• • •	• •	• •
Lymph Protein Transport (mg/10 min)	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0.30	0.28 0.58 0.58 0.27	0.28 0.28 0.52 0.52	0.28 0.28 0.52 0.52	000000000000000000000000000000000000000	0.20 0.30 0.27 0.48
means - standard error		100	• • •	• • •	• • •	-1	700	• • •

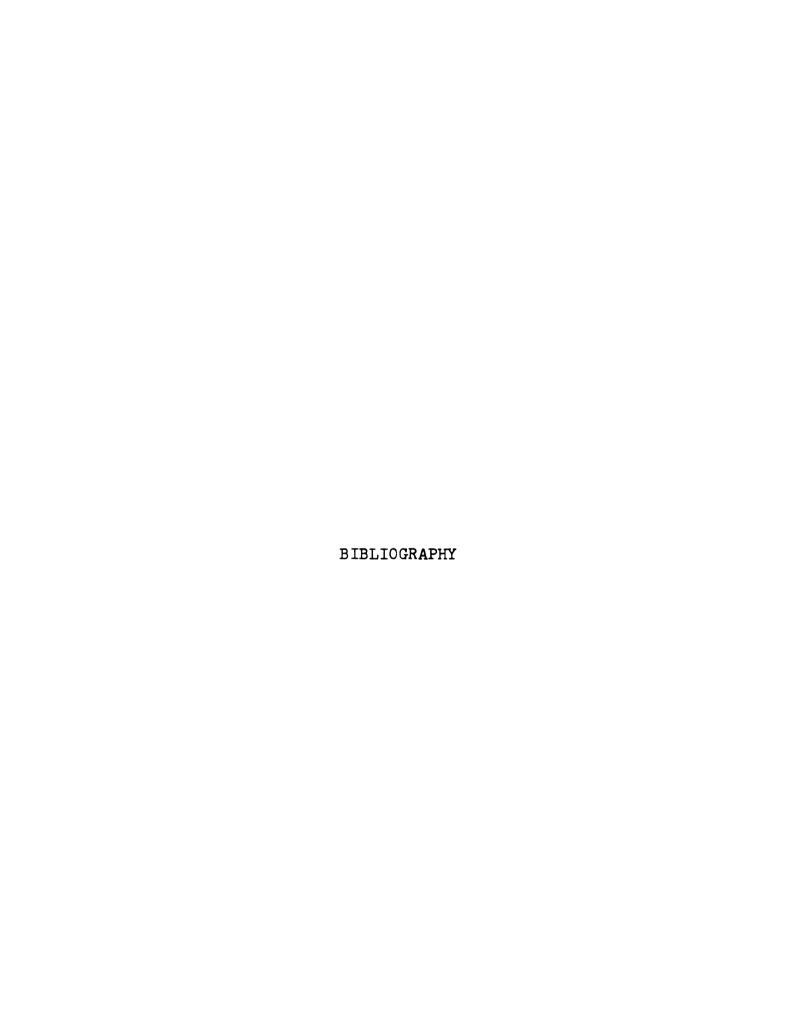
Table A5. Continued.

	Control	Infusion 20 30	n Period 40 50	09
Plasma Protein (gm %)	7 2 2	4 NNN		キャンキャン 8 からい
means - standard error	-1	• • •		• •
Hematocrit	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75 74 74 75 76 76 76 76 76 76 76 76 76 76 76 76 76		000223 25000
means - standard error	37 22	*111		42x
Limb Weight after 60 min infusion (gms)	Control 683.5 733.5 735.5 964.5	Experimental 739.5 739.5 742.5 974.5	<u>Difference</u> 56.0 6.0 7.0	
means - standard error	753.0 774.0 49.0	-1 1		
٠				

x=P < .05 relative to zero time *=P < .01 relative to zero time

data expressed as mean - standard error of the mean

Effects of PGE, (16 μg/min i.a., CF) and serotonin (7 μg base/min i.a., CF) on lymph flow and protein transport, lymph and plasma protein concentrations, Table A6.


vascular pressures	_	hematocrit,		and limb weights.	ts. (n=5)	5)			
	Cont	ro1			Infusion	Pe			
	-10	0	10	20	30	047	50	09	
Systemic Arterial Pressure (mmHg)	1227	135 125 130 130	142 125 100 100	140 127 95 85	142 122 855 855 855	140 125 100 85	140 125 102 90	148 108 90	
means + standard error	129	JW -	7 ⊢	114	4 — —	ᅦᆏᅥ	3 ⊢	3	
Perfusion Pressure (mmHg)	125 127 130 100	118 125 125 105	122 525 53 855	127 58 55 90	125 125 60 60 95	122 125 65 60 100	221 225 205 205 205 205	128 822 822 822 822 822 822 822 822 822	
means + standard error				81* 13	83* 12	84*		12	
Skin Small Vein Pressure (mmHg)	15 12 12 11	14 12 13 10	16 12 15 18	17 13 15 10	20 14 15 11	20 14 16 11 24	20 14 16 12 25	20 15 11 25	
+ standard error	13	13	14 2	15 ^x 2	17* 2	17* 2	17*	17* 2	

 $\frac{1}{2}$ $\frac{1$ 0000000 9 グラ4 00 00 のアコグの 第4 0000000 3.15 3.15 3.15 1.29 1.29 20 Infusion Period とうけ ろうせっ 1.71 1.08 1.72 34 1.10 1.10 0000000 07 900000 23.45 20.03 20.03 20.03 20 1.02 28 448 87 87 .58 00000000 10 1000000 0 Control -10 .00 40 24 1 C C \$0555E 10.00 Lymph Protein Transport means standard error means standard error means standard error Lymph Total Protein Lymph Flow Rate (ml/10 min) (mg/10 min) (gm %) +1 +1

Table A6. Continued.

Table A6. Continued.

	Control -10 0	Infusion 10 20 30	on Period 40 50	09
Plasma Protein (gm %)	たろろう なよう	~พพ พ้า พ้า		てよららなるような
means - standard error	• • •			• • •
Hematocrit	35 44 41 41 99	37 44 37		3 23 W 2 3 0 2 8 6
means - standard error	39	42x 42x		*C7
Limb Weight after 60 min infusion (gms)	Control 520.0 715.0 549.0 645.5 534.5	Experimental 541.0 736.5 592.0 690.5	Difference 21.0 21.5 43.0 45.0 47.0	
+ standard error	592. 37.	628.3 36.5	35.5** 5.9	

BIBLIOGRAPHY

- 1. Anggard, E. and C.-E. Jonsson. Efflux of prostaglandins in lymph from scalded tissue. <u>Acta Physiol</u>. Scand. 81:440-447, 1971.
- 2. Bergstrom, S. and B. Samuelsson. Prostaglandins:

 Proceedings of 2nd Nobel Symposium. Almquist
 and Wiksell, Stockholm; Interscience Publishers,
 New York. 1967.
- 3. Berne, R.M. and M.N. Levy. <u>Cardiovascular Physiology</u>. C.V. Mosby Co., St. Louis, 1977.
- 4. Bloom, W. and D.W. Fawcett. <u>A Textbook of Histology</u>. W.B. Saunders Co., Philadelphia, 1975.
- 5. Carter, R.D., W.L. Joyner and E.M. Renkin. Effects of histamine and some other substances on molecular selectivity of the capillary wall to plasma proteins and dextran. Microvasc. Res. 7:31-48, 1974.
- 6. Casey-Smith, J.R. and J. Window. Quantitative morphological correlations of alterations in capillary permeability following histamine and moderate burning in the mouse diaphragm, and the effects of benzopyrones. Microvasc. Res. 11:279-305, 1976.
- 7. Chahl, J.S. and L.A. Chahl. The role of prostaglandins in chemically induced inflammation. Brit. J. Exptl. Path. 57:689-695, 1976.
- 8. Clough, G., P.A. Fraser and L.H. Smoje. Compliance measurement in single capillaries of the cat mesentery. <u>J. Physiol</u>. 240:9P, 1974.
- 9. Collier, J.G. and R.J. Flower. Effect of aspirin on human seminal prostaglandins. <u>Lancet</u> 2:852-853, 1971.

- 10. Collier, J.G., S.M.M. Karim, B. Robinson and K. Somers. Action of prostaglandins A_2 , B_1 , E_2 and $F_{2\alpha}$ on superficial hand veins in man. Brit. J. Pharm. 44:374, 1972.
- 11. Crunkhorn, P. and A.L. Willis. Cutaneous reactions to intradermal prostaglandins. Brit. J. Pharm. 41:49-56, 1971.
- 12. Crunkhorn, P. and A.L. Willis. Interaction between prostaglandins E and F given intradermally in the rat. <u>Brit. J. Pharm</u>. 41:507-512, 1971.
- 13. Daugherty, R.M. Effects of i.v. and i.a. prostaglandin E₁ on dog forelimb skin and muscle blood flow. Am. J. Physiol. 220:392-396, 1971.
- 14. Dipasquale, G., C. Rassaert, R. Richter, P. Welaj and L. Tripp. Influence of prostaglandins E₂ and F_{2α} on the inflammatory process. <u>Prostaglandins</u>. 3:741-757, 1953.
- 15. Edmonds, J.F., E. Berry and J.H. Wyllie. Release of prostaglandins caused by distension of the lungs. Brit. J. Surg. 56:622-623, 1969.
- 16. Edwards, Jr. W.G., C.G. Strong and J.C. Hunt. A vaso-depressor lipid resembling prostaglandin E₂ in the renal venous blood of hypertensive patients.

 J. Lab. Clin. Med. 74:389-399, 1969.
- 17. Ferreira, S.H. Prostaglandin, aspirin-like drugs and analgesia. Nature New Biology. 200:200-203, 1972.
- 18. Ferreira, S.H. and J.R. Vane. Prostaglandins: Their disappearance from and release into the circulation. Nature. 216:868, 1967.
- 19. Flower, R.J., E.A. Harvey and W.P. Kingston. Inflammatory effects of prostaglandin D₂ in rat and human skin. Brit. J. Pharm. 56:229-233, 1976.
- 20. Freeman, P.C. and G.B. West. Skin reactions to prostaglandins. <u>J. Pharm. Pharmacol</u>. 24:407-408, 1972.
- 21. Fung, Y.C., B.W. Zweifach and M. Intaglietta. Elastic environment of the capillary bed. <u>Circ. Res.</u> 19:441-461, 1966.
- 22. Garlick, D.G. and E.M. Renkin. Transport of large molecules from plasma to interstitial fluid and lymph in dogs. Am. J. Physiol. 219:1595-1605, 1970.

- 23. Gilmore, N., J.R. Vane and J.H. Wyllie. Prostagland-ins released by the spleen. <u>Nature (London)</u> 218:1135-1140, 1968.
- 24. Goodman, L.S. and A. Gilman. <u>The Pharmacological</u>

 <u>Basis of Therapeutics</u>. MacMillan Publishing Co.,
 Inc., New York, 1975.
- 25. Gorman, R.R. and O. Miller. Modulation of platelet cyclic nucleotide levels by PGE, and the prostaglandin endoperoxides PGG, and PGH,. In:

 Prostaglandins in Hematology. Spectrum Publications, New York, p. 237, 1976.
- 26. Greaves, M.W., J. Sondergaard and W. McDonald-Gibson. Recovery of prostaglandins in human cutaneous inflammation. Brit. Med. J. 2:258-260, 1971.
- 27. Greenberg, R.A. and H.V. Sparks. Prostaglandins and consecutive vascular segments of the canine hindlimb. Am. J. Physiol. 216:567-571, 1969.
- 28. Grega, G.J., R.L. Kline, D.E. Dobbins and F.J. Haddy.

 Mechanisms of edema formation by histamine administered locally into canine forelimbs. Am.

 J. Physiol. 225(5)1165-1171, 1972.
- 29. Grega, G.J., J.J. Maciejko, R.M. Raymond and D.P. Sak.
 The inter-relationship between histamine, various vasoactive substances, and macromolecular permeability in the canine forelimb. In Press.
- 30. Grega, G.J., J.M. Schwinghamer and F.J. Haddy. Changes in forelimb weight and segmental vascular resistances following severe hemorrhage. <u>Circ. Res</u>. 29:691-703, 1971.
- 31. Guyton, A.C. <u>Medical Physiology</u>. W.B. Saunders Co., Philadelphia, 1971.
- 32. Guyton, A.C., H.J. Granger and A.E. Taylor. Interstitial fluid pressure. <u>Physiol. Rev.</u> 51:527, 1971.
- 33. Haddy, F.J., J.I. Molnar, C.W. Borden and E.C. Texter. Comparison of direct effects of angiotensin and other vasoactive agents on small and large blood vessels in several vascular beds. Circ. 25:231-246, 1962.
- 34. Haddy, F.J., J.I. Molnar and R.W. Campbell. Effects of denervation and vasoactive agents on vascular pressures and weight of dog forelimb. Am. J. Physiol. 201:631-638, 1961.

- 35. Haddy, F.J., J.B. Scott and G.J. Grega. Effects of histamine on lymph protein concentration and flow in the dog forelimb. Am. J. Physiol. 223(5):1172-1177, 1972.
- 36. Haddy, F.J., J.B. Scott and G.J. Grega. Peripheral Circulation: Fluid transfer across the microvascular membrane. Int. Rev. of Physiol.

 Cardiovasc. Physiol. II. Edited by: Guyton, A.C. and A.W. Cowley. 9:63-109, 1976.
- 37. Hamburg, M., J. Svensson and B. Samuelsson. Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. 72:2294-2298, 1975.
- 38. Hedquist, P. Studies on the effect of PGE₁ and PGE₂ on the sympathetic neuromuscular transmission in some animal tissues. <u>Acta Physiol. Scand</u>. Suppl. 345, 1970.
- 39. Hornstra G. Degree and duration of prostaglandin E₁-insuced inhibition of platelet aggreagation. Europ. J. Pharmacol. 15:343-349, 1971.
- 40. Horton, E.W. Action of prostagland E₁ on tissues which respond to bradykinin. Nature. 200: 892-893, 1963.
- 41. Horton, E.W. Hypotheses on physiological roles of prostaglandins. <u>Physiol. Rev.</u> 49:122-161, 1969.
- 42. Jennings, M.A. and H.W. Florey. An investigation of some properties of endothelium related to capillary permeability. Proc. Royal. Soc. B167: 39-63, 1967.
- 43. Joyner, W.L. Effect of prostaglandins on macromolecular transport from blood to lymph in the dog.

 Am. J. Physiol. 232(6):H690-H696, 1977.
- 44. Joyner, W.L., R.D. Carter, G.S. Raizes and E.M. Renkin. Influence of histamine and some other substances on blood-lymph transport of plasma protein and dextran in dog paw. Microvasc. Res. 7:19-30, 1974.
- 45. Joyner, W.L., E. Svensjo and K.-E. Arfors. Simultaneous measurements of molecular leakage and arteriolar blood flow as altered by PGE₁ and β_2 -receptor stimulant in the hamster cheek pouch. In press.

- 46. Kadowitz, P.J., C.S. Sweet and M.J. Brody. Differential effects of prostaglandins E_1 , E_2 , $F_{1\alpha}$ and $F_{2\alpha}$ on adrenergic vasoconstriction in the dog hindpaw. J. Pharmacol. Expt. Therap. 177:641-649, 1971.
- 47. Kaley, G. and R. Weiner. PGE₁: A potential mediator of the inflammatory response. Ann. N.Y. Acad. Sci. 180:338-350, 1971(a).
- 48. Kaley, G. and R. Weiner. Effect of PGE₁ on leukocyte migration. <u>Nature New Biology</u>. 234:114-115, 1971(b).
- 49. Karnovsky, M.J. The ultrastructural basis of transcapillary exchanges. <u>J. Gen. Physiol</u>. 52:64S, 1968.
- 50. Kayaalp, S.O. and R.K. Turker. Release of catecholamines from the adrenal medulla by prostaglandin E₁. Europ. J. Pharmacol. 2:175-180, 1967.
- 51. Kline, R.L., D.P. Sak, F.J. Haddy and G.J. Grega.

 Pressure-dependent factors in edema formation
 in canine forelimbs. J. Pharmacol. Exp. Ther.
 193(2):452-459, 1975.
- 52. Kline, R.L., J.B. Scott, F.J. Haddy and G.J. Grega.

 Mechanisms of edema formation in canine forelimbs by locally administered bradykinin. Am.
 J. Physiol. 225:1051-1056, 1973.
- 53. Kloeze, J. Influence of prostaglandins on platelet adhesiveness and platelet aggregation. In:

 Prostaglandins: Proceedings of 2nd Nobel
 Symposium. S. Bergstrom and B. Samuelsson, eds.
 Almquist and wiksell, Stockholm; Interscience
 Publishers, New York, pp. 241-252, 1967.
- 54. Kurzrok, R. and C. Lieb. Biochemical studies of human semen. The action of semen on the human uterus.

 Proc. Soc. Exp. Biol. New York. 28:268-272, 1930.
- 55. Landis, E.M. and J.R. Pappenheimer. Exchange of substances through capillary walls. Handbook of Physiology, Circulation, Section 2, Vol. 2, American Physiological Society, Washington, D.C. p. 961, 1963.
- 56. Lewis, G.P. Plasma kinins and other vasoactive compounds in acute inflammation. Ann. N.Y. Acad. Sci. 116:847, 1964.

- 57. Lewis, A.J., D.J. Nelson and M.F. Sugrue. Potentiation by prostaglandin E₁ and arachadonic acid of edema in the rat paw induced by various phlogogenic agents. <u>Br. J. Pharmacol</u>. 50:468P-469P, 1974.
- 58. Maciejko, J.J., D.L. Anderson, A.N. Gorman and G.J. Grega. Effects of Prostaglandin E₁ on macromolecular efflux and weight in the canine foelimb. In preparation.
- 59. Maciejko, J.J., D.L. Marciniak, E.F. Gersabeck and G.J. Grega. Effects of locally and systemically infused bradykinin on transvascular fluid and protein transfer in the canine forelimb. J. Pharmacol. Exp. Ther. 205:221-235, 1978.
- 60. Majno, G., V. Gilmore and M. Leventhal. On the mechanism of vascular leakage caused by histamine-type mediators. Circ. Res. 21:833-847, 1967.
- 61. Majno, G. and G.E. Palade. Studies on inflammation.

 I. The effect of histamine and serotonin on vascular permeability: An electron microscope study. J. Biophys. Biochem. Cytol. 11:571-606, 1961.
- 62. Majno, G., G.E. Palade and G.I. Schoefl. Studies on inflammation. II. The site of action of hist-amine and serotonin along the vascular tree:

 A topographic study. J. Biophys. Biochem. Cytol. 11:607-626, 1961.
- 63. Majno, G., S.M. Shea and M. Leventhal. Endothelial contraction induced by histamine-type mediators.

 J. Cell Biol. 42:647-672, 1969.
- 64. Marciniak, D.L., D.E. Dobbins, J.J. Maciejko, J.B. Scott, F.J. Haddy and G.J. Grega. Effects of systemically infused histamine on transvascular fluid and protein transfer. Am. J. Physiol. 233:148-153, 1977.
- 65. Marciniak, D.L., D.E. Dobbins, J.J. Maciejko, J.B. Scott, F.J. Haddy and G.J. Grega. Antagonism of histamine edema formation by catecholamines.

 Am. J. Physiol. 234(2):H180-H185, 1978.
- 66. Mayerson, H.S., R.M. Patterson, A. McKee, S.J. LeBrie and P. Mayerson. Permeability of lymphatic vessels. Am. J. Physiol. 203:98-1062, 1962.

- 67. McGriff, J.C., K. Crowshaw, N.A. Ferragro, A.J. Lonigro, J.C. Strand, et al. Release of prostaglandin-like substance during acute renal ischemia.

 <u>Circ.</u> 40:Suppl. III, 1969.
- 68. Miele, E. Lack of effect of PGE₁ and PGF_{1α} on adrenomedullary catecholamines. In: Prostaglandins, Peptides and Amines. P. Mantegazza and E.W. Horton, eds. Academic Press, Lond. and N.Y. pp. 85-93, 1969.
- 69. Miller, M.E., G.C. Christensen and H.E. Evans. Anatomy of the Dog. W.B. Saunders and Co., Philadelphia, p. 432, 1964.
- 70. Milton, A.S. and S. Wendlandt. Effect on body temperature of prostaglandins of the A, E and F series on injection into the third ventricle of unanaesthetized cats and rabbits. <u>J. Physiol.</u> 218:325-336. 1971.
- 71. Moncada, S. R. Gryglewski and S. Bunting. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 263: 663-665, 1976.
- 72. Moncada, S. and J.R. Vane. Arachidonic acid metabolites and the interactions between platelets and blood-vessel walls. New England J. Med. 300:1142-1147, 1979.
- 73. Nakano, J. and J.R. McCurdy. Cardiovascular effects of prostaglandin E₁. <u>J. Pharmacol. Exptl. Therap.</u> 156:538-547, 1967.
- 74. Panagides, J. and E. Tolman. Effect of various pharm-acological agents on prostaglandin induced increases in microvascular permeability. Res.

 Comm. Chemical Pathol. Pharmacol. 12:609-612, 1975.
- 75. Piper, P.J. and J.R. Vane. Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs. Nature. 223:29-35, 1969.
- 76. Plummer, N.A., C.N. Hensby, A. Kobza-Black and M.W. Greaves. Prostaglandin activity in sustained inflammation of human skin before and after aspirin. General Science and Molecular Med. 52:615-620, 1977.

- 77. Ramwell, P.W. and B.B. Pharriss. <u>Prostaglandins in Cellular Biology</u>. Plenum Press, N.Y.-London, p. 2, 1972.
- 78. Raymond, R.M. and G.J. Grega. The inter-relationship between bradykinin, various vasoactive substances, and macromolecular permeability in the canine forelimb. In Press.
- 78. Raymond, R.M. and G.J. Grega. The inter-relationship between bradykinin, various vasoactive substances, and macromolecular permeability in the canine forelimb. In Press.
- 79. Renkin, E.M., R.D. Carter and W.L. Joyner. Mechanism of the sustained action of histamine and brady-kinin on transport of large molecules across capillary walls in dog paw. Microvasc. Res. 7: 49-60, 1974.
- 80. Renkin, E.M. and D.G. Garlick. Blood-lymph transport of macromolecules. Microvasc. Res. 2:392-398, 1970.
- 81. Renkin, E.M., P.D. Watson, C.H. Sloop, W.M. Joyner and F.E. Curry. Transport pathways for fluid and large molecules in microvascular endothelium of the dog's paw. Microvasc. Res. 14:205-214, 1977.
- 82. Rippe, B. and G.J. Grega. Effects of isoprenaline and cooling on histamine induced changes of capillary permeability in the rat hinquarter vascular bed.

 Acta Physiol. Scand. 103:252-262, 1978.
- 83. Rosenthale, M.E., A. Dervinis, J. Kassarich and S. Singer.

 Prostaglandins and anti-inflammatory drugs in
 the dog knee joint. J. Pharm. Pharacol. 24:
 149-150, 1972.
- 84. Samuelsson, B., E. Granston, and M. Hamburg. Prostaglandins: Proceedings of the 2nd Nobel Symposium.
 S. Bergstrom and B. Samuelsson, eds. Alquist
 and Wilsell, Stockholm; Interscience Publishers,
 New York, p. 31, 1967.
- 85. Samuelsson, B. and A. Wennmalm. Increased nerve stimulation induced release of noradrenaline from rabbit heart after inhibition of prostaglandin synthesis. Acta Physiol. Scand. 83:163-168, 1971.
- 86. Schwinghamer, J.M., G.J. Grega anf F.J. Haddy. Skin and muscle circulatory responses during prolonged hypovolemia. Am. J. Physiol. 219:318-326,1971.

- 87. Simionescu, N., M. Simionescu and G.E. Palade.
 Permeability of muscle capillaries to exogenous
 myoglobin. <u>J. Cell Biol</u>. 57:424-452, 1973.
- 88. Simionescu, N., M. Simionescu and G.E. Palade. Structural basis of permeability in sequential segments of the microvasculature. <u>Microvasc. Res.</u> 15:17-36, 1978.
- 89. Smith, J.B. and A.L. Willis. Aspirin selectively inhibits prostaglandin production in human platelets. Nature: New Biology. 231:235-237, 1971.
- 90. Spector, W.G. and D.A. Willoughby. The Pharmacology of Inflammation. Grune & Stratton Inc., New York, 1968.
- 91. Starling, E.H. On the absorption of fluid from connective tissue spaces. <u>J. Physilo</u>. (London) 19:312-326, 1896.
- 92. Steiman, R.M., J.M. Silver and Z.A. Cohn. Pinocytosis in fibroblasts. Quantitative studies in vitro. J. Cell Biol. 63:949-969, 1974.
- 93. Steel, R.G.D. and J.H. Torrie. <u>Principles and Procedures of Statistics</u>. McGraw-Hill Book Co. Inc., New York, 1960.
- 94. Subbiah, M.T.R. On the characterization of PGE₂ 9-Keto Reductase from aorta and regional differences in its activity. <u>Proc. Soc. Exp. Biol.</u> Med. 161:158-161, ,979.
- 95. Svensjo, E. Bradykinin and Prostaglandin E_1 , E_2 and $F_{2\alpha}$ -induced macromolecular leakage in the hamster cheek pouch. <u>Prostaglandins and Medicine</u>. 1:397-410, 1978.
- 96. Svensjo, E., K.-E. Arfors, G. Arturson and G. Rutili. The hamster cheek pouch preparation as a model for studies of macromolecular permeability of the microvasculature. <u>Upsula J. Med. Sci.</u> 83: 71-79, 1978.
- 97. Svensjo, E., K.-E. Arfors, R.M. Raymond and G.J. Grega.

 Morphological and physiological correlation of
 bradykinin-induced macromolecular efflux. Am.
 J. Physiol. 236(4):H600-H606, 1979.

- 98. Svensjo, E., C.G.A. Persson and G. Rutili. Inhibition of bradykinin induced macromolecular leakage from post-capillary venules by a β₂-adrenoreceptor stimulant, Terbutaline. <u>Acta Phyiol. Scand</u>. 101: 504-506, 1977.
- 99. Svensjo, E., D. Sharp and K.-E. Arfors. Leakage induced by histamine in postcapillary venules of the hamster cheek pouch. Microvasc. Res. 6:261, 1973.
- 100. Thomas, G. and G.B. West. Prostaglandins as regulators of bradykinin responses. J. Pharm Pharmacol. 25: 747-748, 1973.
- 101. Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for the aspirin-like drugs.

 Nature: New Biology. 231:232-235, 1971.
- 102. Vane, J.R. Prostaglandins as mediators of inflammation. In: Advances in Prostaglandin and Thromboxane Research vol. 2, B.Samuelsson and R. Paoletti, eds. Raven Press, New York p. 791-801, 1976.
- 103. von Euler, U.S. On the specific vasodilating and plain muscle stimulating substance from accessory genital glands in man and certain animals. (Prostaglandin and Vesiglandin) J. Physiol. (London) 88:213-234, 1936.
- 104. Weiner, R. and G. Kaley. Influence of PGE, on the terminal vascular bed. Am. J. Physiol. 217:563, 1969.
- 105. Wennmalm, A. and L. Stjarme. Inhibition of the release of adrenergic transmittor by a fatty acid in the perfusate from sympathetically stimulated rabbit heart. <u>Life Sci.</u> 10:471, 1971.
- 106. Wiederheilm, C.A. The interstitial space and lymphatic pressures in the bat wing. In: Pulmonary Circulation and Interstitial Space. A.P. Fishman and H. H. Hecht, eds. University of Chicago Press, Chicago, 1969.
- 107. Williams, T.J. and J. Morley. Prostaglandins as potentiators of increased vascular permeability in inflammation. Nature 246:215-217,1973.
- 108. Williams, T.J. and M.J. Peck. Role of prostaglandin-mediated vasodilation in inflammation. Nature 270:530-532, 1977.
- 109. Willis, A.L. Parallel assay of prostaglandin-like activity in rat inflammatory exudate by means of cascade superfusion. J. Pharm. Pharmacol. 21: 126-128, 1969.

- 110. Willis, A.L. Identification of PGE₂ in rat inflammatory exudate. <u>Pharacol. Res. Comm.</u> 2(4):297-304, 1970.
- 111. Willis, A.L., K.J. Stone, M.Hart, V. Gibson, P.Marples and E. Botfield. In: <u>Prostaglandins in Hematology</u>. Spectrum Publications, New York p.378-382, 1976.
- 112. Yamamoto, S., N. Ogino, S. Ohki, T. Yoshimoto, S.G.
 Bhat, J. Oka and O Hayaishi. Enzymological
 studies in prostaglandin biosynthesis. In:
 Biochemical Aspects of Prostaglandins and Thromboxanes. N. Kharasch and J. Fried, eds. Academic
 Press, New York, 1977.

