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ABSTRACT

A MONTE CARLO EVALUATION OF RIDGE REGRESSION

AS AN ALTERNATIVE TO ORDINARY LEAST SQUARES

By

Bryan Walter Coyle

This study investigated a proposed modification of ordinary

least squares (OLS) multiple regression. Conventional OLS is generally

used to combine the information present among a set of variables so as

to optimize the prediction of a criterion variable in the original

sample and to provide an equation for use in subsequent samples without

the necessity of re-estimation. In addition, the predictor weights

estimated are frequently used to infer the functional characteristics

of the system which produced the data.

Hoerl and Kennard (1970a) have suggested deliberately introducing

a statistical bias into the OLS estimation procedure in an attempt to

increase the predictive robustness and structural accuracy of ordinary

least squares in collinear data sets. Their method, termed ridge

regression, was compared with unit weighting (Schmidt, 1971) and with

OLS in a Monte Carlo experiment based on three data matrices drawn from

the literature.

It was concluded that the ridge technique can outperform OLS

in situations where the collinearity is high and consistent across all
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predictors. When the collinearity is concentrated in subsets of the

predictor matrix ridge regression is dominated by OLS. Consistent with

Schmidt (1971), when sample sizes are small relative to the number of

predictors, no suppressors are present and only prediction as opposed

to structural interpretation is relevant, unit weighting is to be

preferred.
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CHAPTER I

INTRODUCTION

Linear composites are commonly used in psychology, education

and in the social sciences generally for the purpose of combining the

information present among a group of variables into a single variable.

While many methods of forming a composite have been proposed and

utilized (Blum & Naylor, 1968; Burket, 1964; Claudy, 1972; Lawshe &

Shucker, 1959) multiple linear regression is by far the most commonly

used combinatorial method. This is especially true since the advent

of digital computers and widely available "canned" programs which save

the researcher the tedium of hand calculation and often the concomitant

necessity of considering the applicability of this method to the

research problem at hand.

Linear composites, whether formed by multiple regression or

other techniques to be discussed subsequently, are generally used for

either predictive or descriptive purposes. In the former case one is

interested in creating the composite so as to maximize its correlation

with some external variable, usually designated the criterion. Examples

of this usage would be predicting a person's future academic standing

from past records or estimating the probability of job success on the

basis of a composite formed by qualification tests, interview data



and previous employment history. Descriptive uses, also termed

structural interpretation, of linear composites involve assessing the

degree of change produced in the criterion variable by a unit change in

one or more of those variables which form the composite.

As multiple linear regression is the most frequently used com-

binatorial scheme, at least when the number of available cases is large

relative to the number of indicator variables intended to form the

composite, its assumptions and use will be discussed first. Limitations

inherent in this model are presented as well as the major alternatives

to it. Various criteria that have been pr0posed to evaluate the opti-

mality of combination rules are then contrasted with a modified

regression approach, termed ridge regression (Hoerl & Kennard, 1970a;

1970b). The empirical performance of this method was assessed in a

Monte Carlo design employing three data sets with different degrees of

intervariable relationships. From each of these populations 25 samples

at each of five sample sizes were randomly drawn. Ridge regression and

ordinary least squares (multiple regression) are then employed on each

of these 375 samples as are three different methods of simple unit

weighting (Schmidt, 1971). For each method the predictive efficiency

in the initial sample as well as the long-term efficiency in the popula-

tion are evaluated. In addition, the structural accuracy with respect

to the precision of parameter estimation of ridge regression and

ordinary least squares (OLS) are compared.



CHAPTER II

MULTIPLE LINEAR REGRESSION

The Model

An optimal method for obtaining estimates of criterion values

as a function of predictor score levels would be the following (Burket,

1964): Select all conceptually relevant variables not statistically

independent of the criterion. Measurements on these predictors and

the criterion should be obtained on a sufficiently large number of

cases (termed the validation sample) such that all possible combinations

of score levels are represented. The criterion prediction for a parti-

cular case would be the criterion mean of all cases in the validation

sample having the same predictor profile.

In practice this idealized system is not generally workable

because of the large sample size required to insure stable parameter

estimates for every possible predictor profile. What is necessary then

is to make simplifying assumptions and ad0pt a system which will provide

fairly accurate predictions of criterion performance over a wide range

of possible predictor profiles despite the unavailability of some of

them. The assumption most frequently employed in the behavioral

sciences is that there exists an approximate functional relationship

(most often presumed to be linear although this is not necessary)



between the predictors and criterion. The function form relating

these is estimated in the sample at hand by the method of multiple

linear regression or ordinary least squares which assures two important

properties: (1) the sum of squared residuals between the actual

criterion values and those predicted from the weighted profile comr

ponents will be minimized for the validation sample; and (2) the corre-

lation between these two score sets will be the maximum obtainable for

this sample (Draper & Smith, 1966; Li, 1974).

The method of least squares and its properties may be summarized

with the following notation. The linear regression function relating

the dependent variable (Y) to one or more independent predictor variables

(X), is for the ith case,

(1) yi a + le11 + 82x12 + . . . + B x + e

pip i

where: y. = criterion score for the ith subject in the sample,

a = a scaling constant used to adjust for differences

in origin between the y and x variables; also termed

the intercept,

Bj = a partial regression coefficient used to weight the

jth predictor variable,

x = the 1th individual's observed score on the jth

predictor,

£1 a error in prediction for the ith subject,

y1 = predicted criterion score for the 1th subject.



Thus,

(2) (" p“ >e = y - a + 2 B x

i i j=1 j ij

gyi-yi

Thus the properties of OLS noted above are then

(3) Z ( - A )2 = minimum

1 3’1 3'1

(4) r . = maximum,

YY

with these properties holding for the N cases in the sample on which

the weights were estimated. The correlation of equation (4) is referred

to as the multiple correlation or if squared, the coefficient of deter-

mination of the weighted predictor composite with the criterion.

The model for estimating the weights is more easily presented

in matrix terms and that notation will be established here. Proofs of

the derivations are available in Draper and Smith (1966), Finn (1974)

and Scheffe (1959). Without loss of generality the observations on all

variables are assumed to be standardized so that the constant term (a)

in the general model is identically zero.

Let y be a column vector of N criterion observations,

X be a N x p matrix with rank p less than N,

each row representing one cases' observations on

the p predictor variables,

a be a column vector of N uncorrelated errors with

mean zero and variance 02,

B be a column vector of p population regression coefficients.



The general linear model presented in (1) becomes

(5) y = XB +.€.

Because of the assumptions concerning errors, E(e) a 0; E(se’) = ozI,

the criterion vector y has the expectation

(6) E(y) = X8

and the covariance matrix

, 2

(7) E[(y - X8) (y - X8) ] = 0 I.

If the B are the sample estimates of the population regression coeffi-

cients, B, and § are the predicted criterion scores based on these same

sample estimates then

(8) E -- (x'x)'1X'§

and,

(9) >3 = XE.

Because the variables have been standardized (X'X) is in the form of a

zero—order correlation matrix among the predictors and X'y is the vector

of predictor-criterion correlations or validities. The estimates of

the population regression coefficients have the expectation

(10) E(§) = B

and the covariance matrix

on EHé-m(é-mu=o%wmd.



B is the "best" estimate of the population vector 8 in that the

sum of squared errors in prediction is minimized in the sample. This

can be demonstrated (Finn, 1974, p. 96) by considering any other estimate

8* where 8* a B + d and d is the vector of discrepancies between B and

the alternative estimate. The sum of squared errors with 8* replacing

B is

(6’6)* = (y - XB*)'(y - XB*)

=Hy-m)-mrHy-m>-m1

= (y - xé)'(y - X6) — 2d'X'(y - xé) + d‘X'Xd.

The first term is 8'5; the second term is zero as from equation (8)

d'X'(y - xé) = d'x'y - d'X'X(X'X)-1X'y = o.

The third term is positive as it represents the sum of the squared

elements of Xd. Thus the residuals (e'e) are inflated anytime one

departs from B as the estimate of population weights derived from the

sample.

The variance of these minimized residuals in the standardized

case is one minus the coefficient of multiple determination (R2), that

value which expresses the squared correlation between the optimally

weighted predictor combination and the criterion. Where X'X is in the

form of a correlation matrix equivalent formulae for R2 are (Burket,

1964; Overall & Klett, 1972),

(12) R y'X(x'X)‘1x'y

(13) R2 - é'x'y.



R2, R or (1 - R2) are commonly presented as indices of the predictive

efficiency of the multiple regression model in the estimation sample.

Although the multiple linear regression model presented above

has been used extensively throughout the sciences for the purposes of

prediction and structural interpretation, its assumptions are often

poorly understood. Cureton (1950) considered that, "It is doubtful that

any other statistical techniques have been so generally and widely

misused and misinterpreted as have those of multiple correlation"

(p. 690). The situation is perhaps worse today with the wider avail-

ability of canned computer programs for regression.

Assumptions of the Regression Model
 

The simplest set of crucial assumptions (Johnston, 1972, p. 122)

necessary to estimate the 8 vector in the model y = X3 + s are three in

number:

(14) E(ee') = 021,

(15) X is a set of fixed values,

(16) X has rank p less than N.

The requirement of (14) is that the error or disturbance values

have constant variance--a prOperty referred to as homoscedasticity. The

diagonal nature of the symmetric matrix E(es’) implies that the covari-

ance between any pair of error terms be zero. Fulfillment of this

assumption can often be evaluated by visual examination of residual

value plots (Draper & Smith, 1966, ch. 3). Failure to meet this

assumption most often occurs in time series analysis or when the linear



model fitted is inappropriate for the set of observations at hand

(i.e., there exists a nonlinear relation between the predictors and

the criterion). As the assumption can generally be adequately met by

the inclusion of appropriate quadratic terms or by the inclusion of

linear or higher order terms in time or by suitable data transformations

such as the arcsin, square root or log transforms before analysis

(Tukey, 1949; Winer, 1971) the consequences of failure to meet this

assumption will not be considered further here.

The second essential assumption (15) is more germane to the

purpose of the present paper. Regression theory requires that the X

matrix be a set of values fixed by the experimenter exactly as are the

levels of independent variables at which observations on y, the criter-

ion, are taken in fixed effects analysis of variance designs (Binder,

1959). Implicit in this assumption is the requirement that the X values

be free of measurement error. This means that in repeated sampling of

criterion values the only source of variation is attributable to the

vector of disturbances, a. If this assumption is met, B is an unbiased

linear estimator (Johnston, 1972, pp. 18-23). Effects of violations of

this assumption are discussed below under the correlation model.

The third assumption (16) states that X must be of full rank

equal to p, the number of predictors. If the rank of X is less than

the number of predictors the 6 vector is indeterminate and no unique

solution to the normal equations exists. As will be discussed under

the heading of "multicollinearity," problems can also arise when this

assumption is only approximately met.
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The Correlation Model

While data transformations or deletion of some predictors have

been found in many cases to adequately compensate for violations of

assumptions (14) and (16), failure to obtain fixed predictor values

requires an alternative model. Traditionally, multiple regression

techniques have been applied in precisely those situations where the

control required to obtain fixed-X values cannot be insured (Cohen,

1968). Data sets analyzed by means of OLS are typified by subjects'

test scores, historical records and in general by data that is not

collected according to a design for the systematic evaluation of

criterion scores obtained at preselected levels of the independent vari-

ables. In this type of situation the correlational model for the

predictors is more appropriate than is the regression model. The latter

is based on the assumption that only the disturbance vector 5 is subject

to sampling error--an assumption that is rarely met in applied multiple

regression situations. The correlation or random-X model assumes that

the predictors and the criterion are random variables sampled from a

joint multivariate normal distribution.

Regardless of the distributional form of the disturbances (and

hence of the y values) the OLS method provides "best"--i.e., minimum

variance, unbiased estimators of the pOpulation 8 values. While the

fixed-X or regression model makes no assumptions about the distribution

of the predictor variables it does require a normal error assumption

to permit inferential tests. This assumption is based on empirical

evaluations of the robustness of the £_and E statistics against moder-

ate departures from normality (Neter & Wasserman, 1974). When this

assumption is met the B estimates are maximum likelihood estimates of
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the true, population weights with the same best linear unbiased pro—

perties as the least squares values (Herzberg, 1969; Neter & Wasserman,

1974).

While both models would appear to provide the necessary data

for inferential uses of multiple regression results it is clear that

the correlational model is almost always more appropriate. Under the

null hypothesis of zero multiple correlation the distributional theory

is identical for the two models. However in applications, especially

those for predictive purposes such as in personnel selection, the null

hypothesis is rarely true (Burket, 1964). The extreme complexity of

the correlational model in cases where the null hypothesis does not

obtain has led most investigators to use the fixed-X model in the hope

that there will be little practical difference in the results derived

(Burket, 1964; Claudy, 1972; Cohen & Cohen, 1975; Neter & Wasserman,

1974).

While this subject has not received a great deal of attention

in the literature, it would appear that application of fixed-X procedures

to randomrX data affects the suitability of the weight estimates thus

derived. It has been demonstrated by Berkson (1950), Geary (1953)

and Rao and Miller (1971) that if the predictor variables are not held

at preselected values and are subject to errors of measurement the beta

weights will in fact be biased estimates of the population values. It

is thus not necessarily the case that beta weights derived on a sample

of finite size such that they maximize the multiple correlation in the

sample are.the "best" estimates of the parameter vector 8 (Claudy, 1972).

"Best" here refers not to the minimum variance properties of least

squares estimators but rather to the minimization of the difference
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between the true population multiple correlation (p) and the estimate

of it (R) obtained by application of the sample weights to the popula-

tion.

Application of the fixed-X regression model to data collected

under the assumptions of the randomrX model results in an over-fitting

of the regression surface to the sample data. In practice this means

that the beta weights are optimized on the idiosyncracies caused by

sampling and measurement error in the estimation sample. Accordingly,

when these weights are applied in a new sample or in the population the

resulting multiple correlation will be lower than the initial estimate.

This general problem has been termed "shrinkage" and has been considered

by numerous authors. For instance, formulae have been evaluated to

estimate this shrinkage (see Schmitt, Coyle, & Rauschenberger, 1977 for

a comparison of the major formulae) and alternatives to OLS have been

proposed (Claudy, 1972; Cureton, 1962; Herzberg, 1969; Lawshe & Schucker,

1959; Schmidt, 1971).

While accurate estimation of the multiple correlation is of

primary interest for predictive uses of multiple regression techniques,

it does not touch upon the second purpose of multiple regression:

structural interpretation.

The final consideration relative to assumption (15) is germane

to this purpose. Application of fixed-X OLS to random—X data subject

to sampling and measurement error inflates the variability among the

optimizing weights without regard to the true variance of the parameter

values. It is not the standard error or variance of any single weight

estimate which is referred to here but rather the dispersion of the p

weights calculated on the p predictors in a sample. This effect is
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attributable to the sample values being subject to not only the vari-

ance of the pOpulation weights but also to the error variance generated

by the less than perfectly reliable measurement of predictor scores.

Awareness of this artifact has led to such prOposals as averaging the

beta weights obtained in a random split of the sample (Claudy, 1972)

and using as a 3 estimate the least deviant (from zero) of the two

weights obtained in a fifty-fifty Split (Cureton, 1962). The relative

merits of several such alternatives to OLS are discussed subsequent to

the further examination of the implications of assumption (16) in the

following section.

Multicollinearity
 

The assumption of equation (16) that X, the predictor matrix,

has rank p < N actually has implicit two requirements. The first con-

cerns the ratio of the sample size available to the number of predictors

for which weights must be estimated, and the second involves the number

of linear dependencies among the predictor set.

The question of sample size is common to any attempt to establish

a statistical estimate of a parameter--the greater the number of cases

upon which the estimate is derived, the more stable it will be. In the

case of OLS using standardized data the requirement is that p §_N or

else the model is considered to be overdefined and a unique solution for

B is not possible. In point of fact one generally desires that N be much

greater than the number of predictors for as was demonstrated by Wishart

(1931),

2
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where 9 represents the population multiple correlation. In the case

where the null hypothesis of no predictor-criterion correlation holds

in the population, equation (17) shows that the sample value will be

inflated. Setting p2 to zero yields

2 -.B
(18) E(R ) - N'

It is from this equation that the various shrinkage estimators have

been derived (Darlington, 1968; Lord, 1950; Nicholson, 1960; Wherry,

1931). From the above formula it is obvious that the extent to which

R2 over-estimates p2 varies directly with the number of predictors and

inversely with the sample size. These characteristics are important

when one compares the efficiency of OLS and alternative estimators

(Schmidt, 1971) in a variety of practical situations.

Throughout the long history of multiple regression usage in the

sciences, practitioners have come to appreciate its robustness in the

face of violations of some underlying assumptions and have, in many

cases, developed remedial procedures to correct unsuitable data

before analysis. Examples of this would be the Durbin-Watson (1950)

test statistic for autocorrelated error terms with the attendant sug-

gestions of Cochrane and Orcutt (1949) as to their correction. Simi-

larly, Bartlett's variance homogeneity test has given rise to a number

of data transformations suitable to different types of heteroscedasti-

city (Winer, 1971). The development of detection and correction methods

for problems of multicollinearity in regression models has not yet

reached the level of rote application of Specified test statistics

which in turn could provide evidence as to appropriate alterations to

be made (Farrar & Glauber, 1967). In fact, while economists have
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apparently been aware of the difficulties inherent in highly correlated

predictor sets for some time, it seems that others in the social and

behavioral sciences have frequently labeled such a concern as being of

"theoretical interest only" and thereby dismissed it from consideration

in their applied work. As shall be demonstrated multicollinearity can

cause some very practical problems to arise (Darlington, 1968).

While a variety of definitions of multicollinearity exist in the

literature, many of them are more symptomatic than definitive. The

definition used here is attributable to Johnston (1972) and Silvey

(1969). If one considers the predictor matrix X of dimensions (N x p)

a linear dependence is said to exist between the column vectors x1,

x2,..., xp if there exist constants a1, a2, ..., ap, not all zero, such

that

P

(19) Z a x = 0 .

When (19) holds for some subset of the column vectors of X (and thus

for the matrix as a whole), multicollinearity is said to exist. In

this case beta estimates cannot be obtained as the predictor matrix is

singular and thus its inverse does not exist (equation 8). However,

even when (19) does not obtain exactly but rather is only approximately

true, multicollinearity is still a relevant problem for the data analyst.

Thus the question of collinearity is one of severity or the degree of

departure from orthogonal variates (Kmenta, 1971; Mason, Gunst & Webster,

1975).

There are three primary sources of highly collinear data sets

(Mason, Gunst, & Webster, 1975). The first involves an overdefined



16

model--one where there exist more predictors than observations. The

difficulties caused by cases in which this is approximately true were

discussed above. When faced with such a situation the analyst must,

(a) eliminate some predictors; (b) use grouped subsets of predictors;

or (c) utilize some form of principal components regression. There are

deficiencies inherent in each of these solutions and they will be dis-

cussed in the following section.

The latter two sources of collinearity, sampling techniques and

physical constraints on the model, are quite similar and can be presented

together. These situations arise when the data have been sampled from

only a subspace of the predictor variable domain or when some predictors'

values are restricted to a near exact relationship with other variables

in the X matrix. In the former case data observations can be added from

the undersampled area of the domain, if indeed the investigator is aware

of the problem, which can usually be identified through eigenvector

analysis (Silvey, 1969). When practical constraints eliminate this

alternative or when the problem cannot be identified as attributable

to undersampling, few remedial measures are available.

The effects of approximate multicollinearity have been presented

by Johnston (1972) as follows:

1. The precision of estimation falls so that it becomes very

difficult, if not impossible, to disentangle the relative

influences of the various x variables. This loss of precisicnl

has three aspects: specific estimates may have very large

errors; these errors may be highly correlated, one with

another; and the sampling variances of the coefficients will

be very large.

2. Investigators are sometimes led to drop variables from an

analysis because their coefficients are not significantly

different from zero, but the true situation may be not that

a variable has no effect but simply that the set of sample

data has not enabled us to pick it up.
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3. Estimates of coefficients become very sensitive to particular

sets of sample data, and the addition of a few more observa‘

tions can sometimes produce dramatic shifts in some of the

coefficients (p. 160).

The first difficulty has been well documented and illustrated

by Darlington (1968) while the latter two consequences are familiar to

psychologists under the general rubric of "bouncing betas." The detection

and analysis of these effects will be considered for the two predictor

case although all results are applicable to the case of any number of

predictors as long as equation (19) is not exactly satisfied.

The effects of collinearity on estimates can best be seen by

considering the inverse of the correlation matrix. Equation (8) can be

written for the standardized model with C = (X'}()-1 as

8 c c r
(20) .YI.2 ll 1 yl

By2.1 c21 c22 ry2

where ryj represents the validity coefficient for the jth predictor.

From (20) it is evident that in the case of uncorrelated predictors

(c12 - c21 = O), the validity coefficient is the beta for any one

predictor as the predictor matrix is then an identity matrix.

A

1.0 0.0 r
(21) éyl.2 : yl

By2.1 0.0 1.0 ry2

When the predictor intercorrelation is not equal to zero the inverse

matrix is of the form

(22) c -- (x'X)‘1 = (——1———> 12
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This is the matrix formulation of the familiar computational solution

for beta weights with two predictors.

 

 

. ryl - ry2 r12
8 =

1 1 _ r2

12

(23)

. ryZ " 13,1 1[12
828 2

l - r
12

Equation (23) is a well-known result and illustrates that as (19)

becomes exact (i.e., r12 or riz + 1.0) the diagonal elements of the

inverse matrix approach infinity (l.0_: C11-+ 0°). Several consequences

follow from this. The limiting case of intercorrelation is derived by

assuming ryl - ry2 which is justified since as r12-+ 1.0, each pre-

dictor's validity must become equal (Klein & Nakamure, 1962; Sastry,

1970). This further implies that as r + 1.0 the slightest discrepancy
12

in the magnitude of the validity coefficients will result in the beta

weights being approximately equal but Opposite in sign. Obviously,

the slight discrepancies causing this are sample specific and due to

sampling error and lack of perfect reliability in measurement. This is

the "bouncing beta" problem (McDonald & Schwing, 1972; Swindel, 1974;

Wampler, 1970) demonstrated by sign reversals and in the case of multi-

ple predictors by dramatic shifts in the magnitude of weights in differ-

ent samples from the same population (Johnston, 1972; Wherry, 1975).

Table 1 provides sample calculations demonstrating the effects of

varying r12 and discrepant versus equal validities.

While it is possible for a beta weight to be underestimated, the

gross inflation of the diagonal elements in the inverse matrix due to
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Table 1

Two Predictor Regression Results with Varying

Intercorrelation and Validity

 

Validities Predictor Beta Weights Variance Covariance Multiple R

  
 

 

ryl ry2 r13 By1.2 By2.1 81 B12

.50 .50 .00 .50 .50 0.50 0.0 .710

.50 .50 .30 .38 .38 0.68 -0.2 .620

.50 .50 .60 .31 .31 1.08 -0.65 .560

.50 .50 .90 .26 .26 3.89 -3.51 .510

.50 .50 .95 .256 .256 7.63 -7.25 .506

.50 .50 .99 .25 .25 37.64 -37.26 .501

.51 .50 .00 .51 .50 .49 0.0 .714

.51 .50 .30 .396 .381 .688 -0.2 .626

.51 .50 .60 .328 .303 1.064 -O.639 .565

.51 .50 .90 .316 .216 3.845 -3.461 .519

.51 .50 .95 .358 .159 7.563 -7.185 .512

.51 .50 .99 .75 —.246 36.11 —36.74 .511
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high collinearity generally results in betas with large absolute values

without regard to the true pOpulation value. While these are "correct"

values their counterintuitive signs and magnitudes again have prompted

the discussion of alternative estimators to OLS (Churchill, 1971; Hoerl

& Kennard, 1970a; Klein & Nakamura, 1962). The notion that these

inflated betas are potentially poor estimates is attributable to the

effects of collinearity on the variance-covariance of the beta weights.

Equation (11) can be expressed (with r = a) as (omitting a
12

function of sample size)

 

 

. o: 1.0 -¢

(24) VarB = ( 2

l-d ) -¢ 1

so that

2

A A as

(25) VarB1 = VarB = 2

l—m

and

A A —C O

(26) CovBIB2 = 1.«2 -

As multicollinearity, here expressed as a, increases it is

evident that the sampling variances of the estimated coefficients

increase. For example, as m increases from .5 to .9 the sampling vari-

ance increases by over 300 percent while a a .95 gives an increment of

750 percent (Johnson, 1972). It should be noted though that poor

precision in the estimation of individual coefficients does not imply

that the linear combination of predictors is correspondingly poor.
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This apparent anomaly is evidenced in the two predictor case with

positive a by the negative covariance of the estimates. This means

that if one beta weight is overestimated, another in the same sample

with which it is positively correlated with also be overestimated in

absolute value but will have the Opposite sign. The higher the corre-

lation between the two variables, the more pronounced will be this

tendency to compensate for errors in estimation. In the extreme case

of r12 = 1.0 any pair of weights with the same sum will be exactly

equivalent--for instance, weights of -4.0 and 6.0 or 3.0 and -l.0.1

This effect is exemplified by Darlington (1968) and proven by Mason,

Gunst, and Webster (1975) for the greater than two predictors case.

The above discussion has illustrated the nature of the problems

cited by Johnston (1972) as being attributable to the effects of multi—

collinearity in the predictor set. Yet large predictor sets with, as a

rule, validities above .25 or .30 are the norm rather than the exception

in most MR applications. With higher validities and p greater than

three or four it becomes inevitable that the deleterious effects of

multicollinearity will be felt. While this problem is of minimal

interest for purely predictive MR uses, it should be carefully con-

sidered when structural interpretation is the goal. In this setting

the magnitudes and sampling variances of weight estimates can lead to

erroneous conclusions as to the importance or predictive utility of

individual variables. Thus it is important to consider ways of

 

1This is true despite the fact that perfect collinearity (r 2 =

1.0) makes inversion of the predictor matrix impossible (Darlington,

1968).
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detecting multicollinearity, assessing its impact, and hopefully dis-

covering solutions to the problems it poses.

Numerous techniques have been proposed for detecting multi-

collinearity and the more important will be discussed.

The simplest available Operational definition of unacceptable

collinearity is the arbitrary establishment of a maximum permissible

value for predictor intercorrelation. Aside from the arbitrariness

inherent in this approach it shares the faults of the next pr0posal to

be presented.

Klein (1962) suggests that ". . . intercorrelation or multi-

collinearity is not a problem unless it is high relative to the over-

all degree of multiple correlation . . ." (p. 101). Despite its

intuitive appeal this rule of thumb is not valid. Farrar and Glauber

(1967), while providing a geometric rationale for the rule, point out

that perfect collinearity or the case of a completely singular predictor

matrix is perfectly compatible with low pairwise correlations. A set

of dummy coded contrast vectors such as commonly used for the analysis

of variance whose non-zero elements exhaust the sample space would

fulfill these requirements (Cohen, 1967; Cohen & Cohen, 1975). For the

same reasons measures based on average intercorrelations (Cureton, 1971;

Kaiser, 1968; Meyer, 1975) are inadequate warnings of severe multi-

collinearity.

A measure presented by Kmenta (1971) is the coefficient of deter-

mination R2(j) which is obtained by regressing the criterion variable

on all predictors excluding x If a high degree of collinearity is3.

present in the data the discrepancy between REJ) and the coefficient of

determination for the full predictor set will be quite small. However,
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a small difference may simply be reflective of the worthlessness of X1

as a predictor variable. This is illustrated by Darlington's (1968)

suggestion of this exact comparison for estimating the importance of

individual predictors. Furthermore, this measure does not depict the

nature of the collinearity, i.e., which variables are involved in the

relationships.

Another measure with the same limitations as Rfij) is based on

the §_statistic obtained from fitting the full model and the E statis-

tics obtained by deleting one variable at a time from the equation.

If the overall §_is significant and the individual 5 tests are not,

multicollinearity is indicated. However, this occurrence is unusual

even with high collinearity (Mason, Gunst, & Webster, 1975), and, like

the previous measure, the nature of the collinearity is not specifiable.

A single measure which summarizes the collinearity present in

the entire predictor matrix, again without providing information as to

its nature, is provided by the determinant, symbolized IX'XI. As

IX'XI is in standardized form, 0 §_|X'XI f_1.0 while if a linear

dependence satisfying equation (19) exists the determinant is equal to

zero. This measure provides at least an ordinal indicant of the presence

of multicollinearity although the collinearity could be attributable to

one or several very small latent roots. Under the assumption of multi-

variate normality (not generally tenable in the assumed fixed-X case,

as discussed earlier) work by Wilks (1932) and Bartlett (1950) indicates

that a chi-square test of the departure of the determinant from zero is

possible. Further, the determinant obtained by deleting one variable

or set of variables from the matrix forms an §_ratio with the deter-

minant of the full p-order matrix. These tests are however very
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sensitive to departures from normality and are of sufficient complexity

to discourage their frequent use (Farrar & Glauber, 1967). Much the

same information can be obtained more readily by the methods to be dis-

cussed next.

Johnston's (1972, pp. 162-163) conclusion that the standard

error of beta weight estimates should give adequate warning of the

presence of multicollinearity can be extended to provide more exact

information. The standard error of a single beta weight, 31’ is defined

to be

2

. C (1 - R )

(27)
SOEOBi

a/ii
yOlgz’ooo’P

N - p

 

 

where Cii is the diagonal element of (X'X)-l correSponding to the ith

predictor. This measure provides an intra-matrix indication of col-

linearity but still does not facilitate inter-matrix comparisons. A

more useful measure is the C11 component of the standard error formula

which indicates collinearity without reference to the coefficient of

determination for the full equation.

This diagonal element of the inverse intercorrelation matrix

of predictors (actually a transformation of it) has been termed the

variance inflation factor by Marquardt (1970) and has been employed as

an indicant of multicollinearity by Marquardt and Snee (1975) and Snee

(1973). This element, C11, and the off-diagonal values of the matrix

can be expressed in terms of more familiar quantities to demonstrate

their utility. If the symbol si.j,...p is used to represent the square-

root of the residual variance obtained when any one predictor is

regressed on the remaining p-l predictors (i.e., 81 j p =
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//(l - R: j p) , then Ci1 is the reciprocal of this variance--

_ 1

ii
(Siojgooop

multicollinearity (Farrar & Glauber, 1967) as the squared multiple

C
 )2' This provides a convenient means of assessing

correlation of each predictor regressed on those remaining is implicit

in the inverse matrix of (X'X). The relationship is

2 _ 1
(28) R - l -

i.j,...p Cii

Thus if perfect collinearity exists (19), the C element will be
ii

infinitely large and the matrix is seen as singular. For matrices which

do not exactly satisfy (19), the natural range of C is simply greater
ii

than or equal to one with equality obtaining in the orthogonal variate

case. If a single high-collinearity exists (high pairwise correlations)

the large Cii and ij will indicate which variables are involved. How—

ever, if multiple caused collinearities are present one must look to the

off-diagonal elements of (X'X)-1 for more information. An off-diagonal

element 0 is defined as

13

_ ij.k,...p

(29) c - .

ij (Si.j,...p)(sj.i,k,...p)

The numerator is a partial correlation of an order two less than the

rank of the full matrix. It may be noted that inversion of the correla-

tion matrix provides a means of quickly obtaining all of the highest

order partial correlations by the formula

(30) r .—.. __il 0
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Especially in cases of non-overlapping groups of multicollineari-

ties consideration of the diagonal and off-diagonal elements of the

inverse allow one to locate the variables contributing to the problem.

Marquardt (1970), Mason, Gunst, and Webster (1975), and Farrar and

Glauber (1967) consider this indication of collinearity to be the best

available. Gordon (1967) illustrates the effects on these values

produced by varying intercorrelation and subset size.

There is yet one improvement which can be suggested to further

facilitate the interpretation of multicollinear matrices. Once the

presence of high collinearity has been established by means of one or

several high C values or, in a summary manner, by the existence of a

ii

near-zero determinant, one is still interested in accurately pinpointing

the contributions to the problem--essentially in Specifying the coeffi-

cients of equation (19). A procedure which enables this is basically

the stepping stone for rank-reduction alternatives to OLS or, alterna—

tively, as an exploratory statistical method in its own right. Eigenan-

alysis is basic to all expositions of principal components or factor

analysis, but its utility has not been widely appreciated by users of

multiple regression. Eigenanalysis is essentially a procedure for

extracting from a matrix the successive vectors of weights which when

applied to the original variables will produce linear combinations of

maximum variance. These eigen or characteristic vectors as they are

also called are subject to two conditions. First, they are restricted

to unit length, i.e., v1 vJ - 1.0. Secondly, each vector must maximize

the residual variance extracted from the matrix subject to the condition

that it is orthogonal to all other vectors. For the case of an inter-

correlation matrix (X'X), the matrix equation to be solved is
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(31) ((X'X) - ADVi = 0

where 11 represents the characteristic root or variance of its associated

vector of coefficients, vi and is obtained from

(32) V'(X'X)V = 1 diagonal.

Solution of this equation (Cooley & Lohnes, 1971; Finn, 1974; Tatsuoka,

1971) yields a set of p roots and a matrix of dimension p x p containing

the coefficient vectors. Some attributes of these values can be of use

in assessing the effects of multicollinearity. For a matrix of ortho-

gonal standardized variates each characteristic root is equal to exactly

one.

Therefore, if

r = 0 for all i # j

11

then, 11 = 1.0 for all i,

and

P

(33) Z 11 = p, the matrix rank.

i=1

If the vectors are not orthogonal the sum of the roots must still equal

the variance of the full matrix--thus (33) is true in all cases. How-

ever, with correlated variates the first one or several eigenvectors

extracted will exhaust much of the variance and the later eigenvalues

will approach zero. In the case of perfect collinearity (19) one or

more of the roots will in fact be equal to or less than zero. Thus each

eigenvalue is an indicant of the degree of collinearity present in the
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matrix and the inflation of the sum of the reciprocals of the roots

away from p provides another matrix-wide summary of the severity. 0f

more interest than merely another summary measure are the elements of

the vectors associated with small eigenvalues. These coefficients,

just as in factor analytic interpretations, Show which variables are

the major contributors to the definition of the vector. Thus large

positive or negative coefficients in a vector with a small eigenvalue

indicate which variables are contributing the most to the lack of

orthogonality (Marquardt & Snee, 1975; Mason, Gunst, & Webster, 1975;

Snee, 1973; Webster, Gunst, & Mason, 1971). A relationship of interest

(Snee, 1973) involves an alternative method of computing the diagonal

elements of the correlation matrix inverse. Because the eigenvector

matrix is columnwise orthogonal and of unit length (V'V - VV' a I)

equation (32) can be rearranged to give

(34) (X’X) = VADV’.

Using a matrix theorem for inverses ((ABC)-1 = C-lB-lA-l, Dorf, 1969)

it is evident that

(35) 8’1 = V’ABIV,

and

(36) R;i = 011 = vilxl’l + vi212‘1+...+vip1;1.

From this equation the significance of characteristic roots less than

1.0 is immediately obvious. The basis of the standard error for any

one beta weight (28) is a direct function of the spectrum of eigenvalues
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for the matrix upon which it is computed. An eigenanalysis and other

multicollinearity statistics discussed above are presented in Table 2

based on a numerical example taken from Cooley and Lohnes (1971). With

only three variables and a rather simple pattern of interdependence the

source of the collinearity is readily apparent. In more complex analyses

however the information provided by large loadings (-.66 and .72 in v3)

and associated small roots (.304) can be valuable.

Because of the problems with established methods of assessing

multicollinearity outlined above, it is suggested that eigenanalysis

be performed on any data set in which high collinearity is suspected.

InSpection of the eigenvector values should allow a researcher to pin-

point likely problem variables or sets of variables. Once the severity

of the multicollinearity present in a matrix has been assessed, ways

should be considered for handling the deleterious effects it can have

on weight estimates. Numerous methods have been presented in the sta-

tistical, sociological, and econometrics literature and several will be

discussed here.

Alternatives to Ordinary Least Squares

The two basic uses to which multiple regression estimation of

weighting coefficients are applied are again relevant here. The majority

of alternatives to OLS (including derivations based on the OLS pro-

cedure) are directed at maximizing the sample equation's multiple R or

else its expected value on cross-validation, subject to such constraints

as computational ease or the availability of adequately large data

samples. Thus, many alternatives are explicitly concerned only with

prediction, and several in fact make structural interpretation
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Table 2

Illustrative Multicollinearity and Eigenanalysis Values

 

  

(X'X) - 1.00 .67 -.10r-

067 1.00 -029

J—.010 -029 IOOOJ

  

Determinant (X'X) - .4987

-1 q .—

(X'X) - C - 1.84 -l.28 -.18

-l.28 1.98 .44

-.18 .44

I.. 1 11.3

F
-

Eigenvectors - V - .64 .38 -.66

.69 .10 .72

-.34 .91 .20
h ‘  

Z of Trace

I- _'

Eigenvalues - 11 - 1.768 59.0 P _1

2 A = 4.924

0.927 30.9 181 i

  J 0.304J 10.1
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impossible either by eliminating some variables on the basis of speci-

fied criteria or by utilizing arbitrary weights. Alternatives to

ordinary least squares can be briefly summarized as falling into one of

the following classes: (a) some form of data augmentation; (b) rank

reduction procedures; (c) utilization of weights independent of inter-

dependence relationships present in the initial sample.

The need for data augmentation is most explicit when the avail-

able sample size is less than the number of predictor variables for

which weights are to be estimated. When this situation arises, as it

often does for example in medical studies involving multiple observa-

tions on a limited number of patients, there are few alternatives to

simply obtaining more subjects or eliminating some variables. The

latter course of action precludes structural interpretation of a full

set of weights although predictive utility may not be significantly

hampered. Evaluating more subjects is often prohibitively expensive

if not simply impossible. If excessive collinearity attributable to an

undersampling of the regions of the data domain is evidenced by either

evaluation of the eigenvectors or joint variable distributions (Webster,

Gunst, & Mason, 1974), little choice remains other than to acquire

observations on a larger N.

Rank reduction procedures have occasionally been employed in the

last mentioned case, although interpretation may be vastly complicated.

These procedures may be classified basically as either based on a

posteriori orthogonalization of the data vectors or on evaluation of

successive partial validities as variables are included or deleted from

the predictor set. Virtually all orthogonalization models attempt to

eliminate specific variance (in the factor analytic sense) from the
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predictor intercorrelation matrix. Thus, one approach in this area is

the application of a principal components analysis of the predictors

(normalized eigenvector values). Based on a scree test (Cattell,

1966) or the meaningfulness of the resulting components, an arbitrary

number (Jeffers, 1966; Jolife, 1972, 1973) are retained and matrix

transformations are used to re-estimate variable scores for individual

subjects. These scores are then used in the usual regression computa-

tions. Examples of this method have become fairly common since the

advent of readily available computers to carry out the tedious matrix

manipulations (Gunst, Mason, & Webster, 1975; Jeffers, 1966; Massey,

1974, Schmitt & Coyle, 1976). Variations on this approach have utilized

the characteristic vectors as predictors (Gunst, Mason, & Webster, 1971),

inserted communality estimates in the R matrix (Horst, 1941), and

attempted to estimate the R.1 matrix (Guttman, 1958) rather than R

itself. One method (Burket, 1964) augments the predictor matrix with

the vector of criterion validities before principal axes orthogonaliza-

tion. Finally, all analyses based on components or axes may also be

subjected to rotation (for example, varimax or quartimax) before being

used to re-estimate subjects' scores.

If a principal components analysis is employed and the number

of retained components is the same as the number of original variables

it can be shown that the multiple regression equation derived will be

identical to that obtainable from the raw variables (Darlington, 1968;

Herzberg, 1968). Therefore, only cases in which fewer factors are

extracted than the number of original variables can potentially be of

interest. The argument in favor of such rank reduction is usually

based on the well known fact that if the variables being factored
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contain substantial error variance, it will tend to be concentrated in

the vectors associated with small roots. Potentially serious problems

exist in applications of any of these methods. The distributional

theory is exceedingly complex for those analyses employing communality

estimates and this leaves significance testing of derived weights a

virtually intractable problem (Burket, 1964). Further it is possible

that the factor accounting for the least variance in the predictor set,

and therefore the prime candidate for omission, in fact correlates

perfectly with the criterion (Darlington, 1968). Description of the

variables re-estimated from factor matrices is also generally compli-

cated by "intermediate" loadings, and the indeterminancy of factor

scores up to a linear transformation and this in turn obfuscates efforts

to interpret the subsequent regression equation.

Variable deletion based on various criteria has been prOposed

when degrees of freedom are limited or when collinearity is a problem

(Draper & Smith, 1966). In all cases deletion procedures attempt to

maximize the validity of the initial equation subject to specified

constraints, and are thus not amenable to instances in which structural

interpretations of a full rank predictor matrix is of interest. As

Darlington (1968) notes, removing the variable with the smallest beta

weight is not guaranteed to produce the equation with the highest

population validity for that rank model. Accretion methods of variable

selection begin with the variable having the highest zero-order validity

and then in successive steps add those variables which will give the

greatest increase in the multiple R for the equation (Draper & Smith,

1966). Horst and MacEwan (1960) suggest the reverse of this procedure

and note that the two methods--forward selection and backward
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elimination—-will not in general yield the same equations. Both pro-

cedures are terminated on the basis of arbitrary criteria such as

validity increment or number of variables included. Stepwise regression

is essentially identical to forward selection but additionally it tests

at each step all variables already in the equation. If, because of the

inclusion of subsequent predictors, a variable's partial correlation

has fallen below a Specified value it is then eliminated and the pro-

cedure continues to evaluate the remaining candidates for the equation

(Nie, Hull, Jenkins, Steinbrenner, & Bent, 1975). Numerous variations

on these three basic approaches have been suggested (Anderson & Fruchter,

1960; Burket, 1964; Furnival & Wilson, 1974; Hocking & Leslie, 1967;

LaMotte & Hocking, 1970; Rock, Linn, Evans, & Patrick, 1970) but in

general these three have been preferred.

The case of interest in the present paper is that in which one

wishes, for either predictive or interpretative purposes, to obtain an

equation based on all p variables upon which data were collected.

Accordingly, the relative merits and problems of reduced rank procedures

will not be discussed further.

The selection and application of non-least squares estimated

weights has received a great deal of attention especially in the psy-

chological decision-making literature (Einhorn & Hogarth, 1975). In

general the motivation for development of alternative weighting strate-

gies has had three facets: (a) especially when computations must be

done by hand, the complexity of the work necessary to calculate OLS

weights is prohibitive; (b) high collinearity situations combined with

less than perfect reliability of measurement make it quite likely that

arbitrary weights will outperform unstable beta estimates in subsequent
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usage; (c) situations in which it is desired to correlate a linear

function of the predictors with a criterion but a sufficiently large

sample on which to estimate beta weights is not available.

A variety of combinatorial schema have been evaluated in the

literature (Claudy, 1972; Lawshe & Schucker, 1959; Trattner, 1963;

Wesman & Bennett, 1959) such as raw score addition so that variables

are weighted by their standard deviations, addition of standardized

scores, weighting by the reciprocal of the standard deviation, and

weighting by the validity coefficient. The concensus has developed

that equal weights for situations in which N is less than approximately

50 are superior or only slightly inferior to OLS weights regardless of

the number of predictors. The comparison made is generally between the

multiple R obtained from application of the original beta weights in a

cross-validational sample (a set of cases not included in the original

estimation of the weights) and the multiple R produced by unit weights.

A comprehensive Monte Carlo study of the empirical performance of unit

weights versus sample beta weights when they are validated in the popu-

lation was done by Schmidt (1971). For 40 combinations of N and p com-

parisons on a variety of correlation matrices sampled from the litera-

ture, he demonstrated that the maximal superiority (in terms of obtained

R2 values) of beta weights averaged over 100 samples was only .083.

When suppressor variables were removed this maximum dropped to .039.

Both maximum beta versus unit weight discrepancies were in fact obtained

in the papulations themselves where the beta weights were error free,

i.e., parameter values rather than sample estimates. No other weighting

scheme has been shown to be so consistently comparable to the perfor-

mance of beta weights.
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The results provided by Schmidt's analysis are in accord with

the suggestions of Einhorn and Hogarth (1975) and Dawes and Corrigan

(1974) who derived their conclusions from comparative studies of the

human decision making process. Dawes and Corrigan summarize their

results by Stating that to obtain stable prediction equations in situ-

ations where all variables are subject to error it is necessary simply

to select relevant predictors, determine their sign, make all predictors

comparable, and then add. While this solution appears at first to be a

panacea for the numerous problems encountered in MR. Roose and Doherty

(1976) noted several difficulties in attempting to apply these sug-

gestions. They found that selecting the variables without the use of

some sort of stepwise procedure an arduous task. Nor had they any

manner of a priori determining the predictor signs. Those they used

were based on the validity coefficients for the selected variables.

In their words (Roose & Doherty, 1976), ". . . the success of unit

weighting as demonstrated in the present study rested upon crutches

fashioned from the very MR procedure bested by unit weighting" (p. 245).

Wainer (1975, 1976) has formulated the expected loss attributable to

the use of unit rather than OLS weights and noted that for practical

purposes the loss is so small that the OLS procedure is not justifiable.

Again though, his derivations assume some sort of selection and sign

assignment a priori, no suppressors, as well as a maximal spread in the

beta weights of only .5, conditions which it is frequently impossible

to meet.

If one is interested in full rank multiple prediction it would

appear that unit weighting is the viable alternative to MR. While

structural interpretation is not possible, except on the gross level of
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zero weights implying no utility and weights of one or minus one indi-

cating acceptable utility, the robustness of unit weights makes them

worthy of further consideration especially in cases of extreme collin—

earity where large beta weight sampling variances are common.

Three methods of assessing the signs of unit weights (discussed

below) are compared to OLS in this work. The problems with standard

multiple regression which prompted researchers to consider unit weighting

and various orthogonalization schema have recently given rise to a

modified OLS methodology. The details of this method, termed ridge

regression, are discussed next.

Ridge Regression
 

Hoerl (1962) originally prOposed this modified regression method

Specifically to deal with the problems of severe multicollinearity dis-

cussed above. In exemplifying the method of ridge analysis (Hoerl &

Kennard, 1970a; 1970b) the errors associated with non-experimentally

collected data are noted in that (X'X) is not nearly a unit or identity

matrix. Weighting coefficients derived from such a matrix are often of

incorrect Sign and have inflated values, as was noted before. The

undesirable nature of such weights are expressed by Hoerl and Kennard

(1970a);

. . . the least squares estimates [which] often do not make sense

when put into the context of the physics, chemistry, and engineering

of the process which is generating the data. In such cases, one

is forced to treat the estimated predicting function as a black

box or to drop factors to destroy the correlation bonds among the

x1 used to form X'X. Both these alternatives are unsatisfactory

if the original intent was to use the estimated predictor for con-

trol and optimization (p. 55).

The suggestion offered in such cases is the use of
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(37) 8 a mu: + uprlx'y, k 3 0

for estimating beta weights rather than equation (8). This procedure

it is claimed modifies the weight values such that they are less extreme

in absolute value and thus necessarily have reduced variance. The

technique can also be used to generate a trace of the effects of in-

creasing k values on the coefficients which portrays the differential

effects on each. Hoerl and Kennard (1970a) contend that by reducing

the variability of the coefficients a more accurate estimate of the

parameter values can be obtained although the resultant estimates are

biased.

The derivation of this approach considers the variance of the

coefficient vector 8 (equation 11) and notes that the expected value

of the squared distance (L2) from 8 to B is

2
(38) E(LZ) = 0 Trace (X'X)"1

or equivalently,

(39) E(B'B) = B'B + ozTrace(X'X)-1.

Hoerl and Kennard also demonstrate that (38) is equivalent to

P _
(40) E(LZ) = 022 11 1.

i=1

The lower bound for the average squared distance between the sample

coefficients and the parameters is given by 02/1m This corresponds

in'

to the previous discussion of multicollinearity wherein it was noted

that small eigenvalues are one of the best indicants of unstable weights.

The authors suggestion of augmenting the diagonal of (X'X) with small
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positive quantities (0 §_k_:_1) has the effect of decreasing the diagonal

elements of the predictor inverse matrix. This in turn deflates the

absolute values of the beta weights and reduces their collective vari-

ance.

Hoerl and Kennard (1970a, p. 60) demonstrate that the expected

squared distance from 8 to B is composed of two elements-the total

variance of the parameter estimates and the square of the bias intro-

duced by the non-least squares computation (equation 37). Thus when

k = 0 and OLS are calculated the bias is zero. The authors Show with

an existence theorem that it is possible to select k greater than 0,

take a little bias, and without greatly inflating the residual error

variance for the equation, obtain 8 estimates with substantially lower

mean square errors (L2).

The problem is then one of selecting an optimal k value for use

in any one matrix. The suggestion of Hoerl and Kennard (1970b) is to

use a graphic display of the effects of increasing k and note the point

at which four conditions are met: (a) the characteristics of the graph

will be those of an orthogonal system, (b) coefficients will have

reasonable absolute values, (c) coefficients with apparently incorrect

signs at k a 0 will have changed to correct signs, and (d) the residual

sums of square will not have inflated to an unreasonable value. The

plot (Hoerl & Kennard, 1970b, Figure 2, p. 72) shows the values of

each of 10 coefficients plotted against the value of k in equation (37)

which produced them. They would advocate selecting the beta weights

produced by the equation with a k of approximately .25--that is, after

the point of maximum decline in absolute value is passed and the
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coefficients are seen to be visually stable. Assessments which Hoerl

and Kennard (1970b) make on the basis of this graph exemplify the

utility of the procedure:

(1) The coefficients from the ordinary least squares are un-

doubtedly overestimated. At least, they are collectively not

stable. It is unlikely that another set of y's would give Bi

like these. Moving a short distance from the least squares point

k = 0 shows a rapid decrease in absolute value of at least two of

them, namely, those for factors 5 and 6. Figure 2 shows the

decrease in the Squared length of the coefficient vector with k.

When k 8 .1, it is 43.3% of its original value; for an orthogonal

system it would be 83%.

(ii) Factor 5 has the negative coefficient with the largest value.

But the addition of k > 0 quickly drives it toward zero and it

then becomes positive. Such action should not be surprising,

eSpecially when it is compared with the action of factor 6.

Factor 6 also decreases rapidly but stabilizes and does not go

down to zero. Factors 5 and 6 have a simple correlation coeffi-

cient of 0.84 which says that to a first approximation, they are

the same factor but with different names. It would be surprising

if their true effects were opposite in Sign. (Without a knowledge

of the underlying technology, no definitive statement can be made.)

The covariance of -4.33 is driving them apart so that they are

Opposite in Sign. The phenomenon observed here is not atypical.

Positive coefficients for highly correlated factors can be stable

as a sum, especially when they are correlated to various degrees

with other factors.

(iii) The correlations with other factors causes factor 1 to be

underestimated. At k = 0 factor 1 is the second least important

negative factor. But with the addition of k > 0 it increases in

absolute value. The other negative factors are slightly over—

estimated and when sufficient k > 0 has been added to stabilize

the system, factor 1 becomes the most important negative factor.

(iv) Factor 7 is overestimated and is driven toward zero.

(v) At a value of k in the interval (0.2,.3) the system has

stabilized and coefficients chosen from a k in this range will

undoubtedly be closer to 8 and more stable for prediction than

the least squares coefficients or some subset of them (pp. 71-72).

Several authors have utilized the ridge regression (RR) techni-

que. Churchill (1975) used 3001 cases selected in samples of size 50

and calculated ridge coefficients (8) for 13 predictors. His results

demonstrated a departure from the parameter values 1.7 times higher
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for OLS as Opposed to RR. Vinod (1976) who used a modified RR method

which selected arbitrary k values based on rank reduction analyses,

Marquardt and Snee (1975), McDonald and Schwing (1973), and Snee (1973)

all reported superiority of RR over OLS.

Several researchers have attempted to develop point estimates

of k (Baldwin, 1975; Hoerl & Kennard, 1976; Lawless & Wang, 1976;

McDonald & Galarneau, 1975; Newhouse & Oman, 1971) but these attempts

uniformly assume that k is non-stochastic (Coniffe & Stone, 1973; Smith,

1976)--an unadmissable assumption. Further, these more exhaustive

studies do not invariably demonstrate RR as superior to OLS. Thus while

virtually all investigators consider RR to be an instructive mode of

analysis most contend that it is preferable to OLS in all nonorthogonal

situations, it Still remains as much an art (selecting k) as a science.

The most practical suggestion is probably that of Marquardt's (1970)

variance inflation factor (VIF) which was mentioned earlier. This

value for the 1th predictor is the ith diagonal element of the matrix

[(X'X);1(X'X)(X'X);1]. Just as the diagonal elements of (X'X)-1 in

standard form range from one to infinity as collinearity increases, so

do these VIF values. Marquardt's suggestion is that k be selected at

the point where these values are ". . . reasonable, certainly less

than 10 . . ." (p. 609). Evaluation of the VIP along with the eigen-

vector weights associated with small eigenvalues (Snee, 1973; Webster,

Gunst, & Mason, 1974) would appear to be the most reasonable way Of

ascertaining which VIF's should be deflated the most and therefore

which k value should be selected.

The research reported here proposed to evaluate the relative

efficiency of ridge regression as compared with ordinary least squares.
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In addition, unit weighting was contrasted with these methods both

because of its demonstrated utility and because it should in fact be

most efficient in exactly the high collinearity situations for which RR

was prOposed (Wainer, 1976; Wainer & Thissen, 1976).



CHAPTER III

METHOD

Consideration Of the possible approaches to these comparisons

favored a Monte Carlo study in which the sample size and collinearity

could be controlled. Accordingly three matrices were selected from the

literature. The factor structures for each of these matrices were input

to the Ohio State Correlated Score Generation Program (Wherry, Naylor,

Wherry, & Fallis, 1965) which produces multiple random samples corre-

sponding to the structure. Generated samples from each Of the three

matrices were pooled to form three pOpulations of 6000 cases each.

Each matrix selected had 10 predictors so that a total of 165 coeffi-

cients were estimated. The maximum Obtained discrepancy between a tar-

get and an estimated population correlation was .031.

The Population Matrices
 

The first matrix selected was used as an example by Hoerl and

Kennard (1970a) and was taken from Gorman and Toman (1966). This matrix

(hereafter referenced as HOPOP, Table 3) was selected both because of

its previous use as an RR supportive example and because Of its broad

range Of predictor intercorrelations. Two other matrices were selected

so as to broaden the scOpe of the comparisons. These matrices were

considered more typical of those generally encountered in psychological

43



T
a
b
l
e

3

P
o
p
u
l
a
t
i
o
n
M
a
t
r
i
x

B
a
s
e
d

o
n

6
0
0
0

C
a
s
e
s
-
-
H
O
P
O
P
a

 V
a
r
i
a
b
l
e

1
1
0

 

-
.
0
3
4

.
5
1
1

.
1
1
6

—
.
7
1
3

-
.
8
7
0

-
.
0
8
3

-
.
0
0
3

-
.
1
1
1

-
.
3
6
0

C
r
i
t
e
r
i
o
n

-
.
8
1
6

NMQWONQ$ Q
...g

.
0
0
3

-
.
l
6
6

.
0
5
2

.
0
8
6

.
2
4
2

.
0
0
6

.
1
1
3

-
.
2
9
9

-
.
1
0
4

-
.
0
1
8

-
.
6
1
0

-
.
6
5
9

-
.
0
3
1

.
3
3
7

-
.
0
7
4

-
.
4
4
1

-
.
6
4
0

-
.
O
6
5

-
.
0
8
5

.
0
0
6

.
0
7
8

.
0
0
3

-
.
O
9
3

-
.
1
0
2

.
8
4
6

.
3
7
1

-
.
3
7
0

-
.
1
2
3

.
5
4
2

.
5
7
9

.
1
2
3

.
1
9
8

.
0
5
0

.
4
4
2

.
8
1
4

-
.
5
0
2

.
0
7
5

.
4
1
2

.
0
4
0

-
.
1
7
2

-
.
4
6
2

.
0
5
8

.
0
3
1

.
1
5
6

.
4
5
0

 

P
o
p
u
l
a
t
i
o
n

B
e
t
a

W
e
i
g
h
t
s

—
.
1
7
5

-
.
2
2
6

-
.
3
7
1

-
.
1
0
9

-
.
4
5
9

.
8
1
1

.
2
8
9

.
3
8
4

.
0
8
0

.
0
9
2

 M
u
l
t
i
p
l
e

R
I

.
9
4
7

R
2

=
.
8
9
7

D
e
t
e
r
m
i
n
a
n
t

=
.
0
0
3
4

 

E
i
g
e
n
v
a
l
u
e
s

3
.
7
0
9

1
.
5
5
4

1
.
3
1
3

1
.
0
4
1

.
9
5
2

.
6
5
7

.
3
5
7

.
2
1
5

.
1
3
2

.
0
6
9

 

a
T
a
k
e
n

f
r
o
m
H
o
e
r
l

a
n
d

K
e
n
n
a
r
d

(
1
9
7
0
b
)
.

44



45

and sociological applications. Table 4 illustrates the high average

intercorrelation matrix reproduced from the factor structure Of a matrix

employed by Rock, Linn, Evans, and Patrick (1970) and originally taken

from Klein and Evans (1969). Table 5 is the low average intercorrela-

tion matrix used by Rock et a1. (1970) and taken from Klein and Evans

(1968). These two matrices (HIPOP and LOPOP respectively), incorpora-

ting two other predictors which were deleted for the present research,

were selected by Rock et a1. (1970) to evaluate four methods of predictor

selection because of their representativeness. It was felt that these

three data sets constituted a reasonable sample from the domain of

possible matrices of interest to researchers in the social sciences.

The HOPOP matrix with its negative intercorrelations and validities is

atypical of most psychological data but does characterize occurrences in

the economics and management literature. Additionally its use by Hoerl

and Kennard (1970a) as an RR example without benefit of comparison with

other techniques warrants its inclusion. Eigenanalyses of the HIPOP

and LOPOP matrices (Table 6) illustrate their salient features. Both

data sets differ from HOPOP in that their ranges of intercorrelation

are more restricted typifying the data encountered in psychological and

measurement studies. The first eigenvalue Of the HIPOP matrix accounts

for 67 percent of the total variance while the first four roots of the

LOPOP data set account for only 63 percent of its variance. Thus, by

any accepted definition, the HIPOP matrix would be considered highly

multicollinear while the LOPOP matrix is less severely afflicted. The

fact that six of its roots combined account for less than 37 percent

of the possible variance however indicates that weight estimation is

likely to be adversely affected.
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Table 6

Eigenvectors of the Population Matrices

Variable HIPOP

l .31 .38 -.38 -.23 .09 .34 .57 -.29 .05 .17

2 .31 .05 .37 -.16 -.84 .07 .12 .04 .07 .09

3 .34 .03 .23 .05 .09 .12 .39 —.36 .71 .09

4 .34 .06 .16 .34 .19 -.18 .06 -.46 .37 .56

5 .33 .09 .17 .24 .25 .54 .01 .63 .02 .19

6 .33 .09 .10 .30 .07 -.65 .37 .30 .21 .30

7 .35 -.13 .08 .03 .08 .09 .32 -.13 .53 .66

8 .30 .42 -.40 -.37 -.03 -.31 .48 .23 .08 .21

9 .26 -.55 -.64 .34 -.28 .06 .04 .02 .11 .09

10 .28 -.58 .16 -.63 .29 -.ll .18 .07 .02 .16

HOPOP

1 -.41 .36 -.14 .07 .02 -.36 .15 .03 .60 .40

2 .01 .10 .77 .09 .33 -.22 .29 .37 .04 .ll

3 -.39 .14 .07 .20 .02 .61 .42 .48 .08 .02

4 -.O6 -.02 -.36 -.50 .76 .02 .01 .19 .05 .04

5 .47 -.06 .00 .16 .18 .03 .26 -.03 .69 .41

6 .46 -.28 .11 -.O4 .05 .05 .19 .20 .05 .78

7 .21 .59 .12 .14 .30 .40 .09 -.52 .09 .19

8 -.25 -.57 .09 .07 .12 .43 .51 -.24 .28 .07

9 .04 .17 .30 -.80 -.36 .22 .02 -.03 .25 .04

10 .36 .24 -.36 .09 -.21 .22 .59 .48 .01 .06

LOPOP

l .24 .46 .35 .Ol -.36 .43 .46 .15 .07 .23

2 .07 .73 .22 -.14 .01 -.34 .46 -.ll .01 .23

3 .46 -.13 -.04 .14 -.08 .24 .04 -.03 .02 .82

4 .44 .03 -.ll .03 .22 .10 .15 .12 .80 .23

5 .38 .12 -.40 .11 .20 -.06 .16 .57 .49 .18

6 .36 .09 -.04 -.04 .43 -.39 .55 -.45 .13 .07

7 .27 -.25 .14 .19 -.61 -.64 .04 .14 .08 .09

8 .13 -.32 .61 -.54 .29 -.07 .02 .35 .07 .06

9 .ll .02 -.48 —.79 -.35 .02 .05 -.10 .02 .01

10 .39 -.23 .17 .02 -.10 .26 .47 -.52 .29 .33

 

aEach population contained 6000 cases.
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Samples

Twenty-five samples of sizes 30, 60, 90, 120, and 200 were drawn

from each population using a random sampling procedure available in the

SPSS package (Nie et al., 1975). These sample sizes were selected to

span the range of values for which unit weights have been demonstrated

to be superior to OLS (Schmidt, 1971). Each sample (375 in all) was

standardized and input to a program written by the author for the

necessary least squares, unit weights and ridge regression computations.

Equation Estimation

Five equations were estimated in each of the samples. OLS

weights and the multiple R they produced were calculated according to

equation (8). Three unit weight equations were also estimated in each

sample. The first equation was produced by assigning the Sign of the

fallible sample beta weights (BU) to the unit weighting coefficients.

The Sign of each validity coefficient (VU) in each sample was also used

to determine the unit weight signs. Third, the infallible population

beta weight signs (PU) were employed. This third method implies that

the investigator has prior information as to the correct signs, pre-

sumably on the basis of previous experience with the variable. These

three methods were selected because, in an applied situation, they

correSpond to the manner in which one would generally determine the

unit signs.

For the ridge regression equation in each sample the value of

k in equation (37) was determined by the following rule: select the

largest k possible (stepsizes of .01) with the restriction that no

diagonal element of [X'X);1(X'X)(X'X);1] is less than 1.0. Attendant
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to the earlier discussion of VIF's (Marquardt, 1970; Snee, 1973) pilot

work was done experimenting with a variety of selection rules based on

these values. It was found that the above rule always selected reason-

able k values at a point just slightly lower than a visual trace

examination would suggest. This criterion is also in keeping with more

recent analytical attempts to define k which have generally found that

less bias (i.e., small k values) can adequately handle the problems of

multicollinearity (Guilkey & Murphy, 1975; McDonald & Galarneau, 1975).

Data Analysis
 

Virtually all studies evaluating ridge regression to date have,

at least implicitly, been concerned only with structural interpreta-

tion. Previous Monte Carlo studies (Hoerl, Kennard, & Baldwin, 1976;

McDonald & Golarneau, 1975) which had available the true parameter

values of 8 based their evaluations on the mean square error (MSE)

criterion, i.e., §1(81 - Bi)2 with the 81 vector being produced by

either OLS or RR.i While this comparison statistic accurately reflects

the average precision of the 81 point estimates, it does not provide

for assessment of the predictive utility of the overall linear combina-

tion. It is possible that while one method of estimating Bi will have

a lower MSE than another, the predictive utility of the latter will be

superior.

Because of this consideration the predictive ability of all

five equations was evaluated as well as the MSE. As the RR procedure

necessarily decrements the coefficient of determination as compared

to that Of OLS in the estimation sample, these initial R and R2 values

were evaluated. Due to the overfitting of the regression surface in
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the estimation sample discussed earlier, a practical measure of an

equation's utility is its performance in a cross-validation sample.

However, as Schmidt (1971) has noted, a researcher is not interested in

how a set of weights do in a single random replication sample but rather

in how they perform in the long run, i.e., how they compare with the

predictive utility of the infallible pOpulation weights. Accordingly,

the equations estimated for each sample were cross-validated in the

populations from which they were drawn. The formula for the cross-

validated multiple R is (Nunnally, 1967)

w'X'y

(41) Rw = ‘20P

/(w (X X)p°pw)

 

 

where (w) is the appropriate vector of unit, RR, or OLS weights.

The final comparison statistic, like MSE, is applicable only

to the RR and OLS results. The coefficient of variation proposed by

Churchill (1975) is calculated by dividing the square root of the MSE

for a single coefficient by the true parameter value. These coeffi-

cients of variation (CV) can then be averaged over predictors, sample

sizes, and/or populations for summary purposes.



CHAPTER IV

RESULTS AND DISCUSSION

Estimation sample results for the five equations discussed above

are presented in terms of the Obtained mean coefficients of determina-

tion in Table 7. As noted above, the bias factor due to the k value in

equation (37) results in a lower R2 for ridge regression than ordinary

least squares in all cases. The average values of these differences

for 25 samples are presented for all sample sizes and for the three

populations in Table 8. The magnitude of the positive values in Table 8

reflect the higher average obtained R2 values for OLS over 25 samples

for each of the four alternative weighting methods. It should be noted

that the lower obtained values for RR equations (approximately .038)

will in general make them better estimates of the pOpulation cross-

validity due to the overfitting of sampling error present in the estima-

tion sample. Possible exceptions to this conclusion are cases in which

either an OLS or RR initial equation cross-validates in a single instance

upward in terms of the R2. This in fact occurred, on the average, for

samples of sizes 90, 120, and 200 drawn from the HOPOP matrix and

estimated by RR. The special nature of this population will be dis-

cussed below. A final difference tO be noted between OLS and RR in

Table 7 is the reduced range of R2 estimates provided by RR over

52
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Table 7

1611:1211 R2 - LS, RIDGE, BU, VU, Pu£1

Sample Size

Population Equation 30 6O 90 120 200

LS .663 .615 .578 .544 .527

RIDGE .587 .562 .540 .513 .502

HIPOP BU .415 .478 .468 .463 .463

VU .466 .485 .486 .471 .470

PU .483 .483 .493 .477 .476

LS .933 .918 .911 .907 .902

RIDGE .869 .864 .857 .858 .856

HOPOP BU .641 .672 .683 .692 .696

V0 .688 .642 .636 .651 .674

PU .698 .700 .700 .697 .696

LS .434 .307 .265 .228 .208

RIDGE .395 .291 .257 .222 .204

LOPOP BU .241 .198 .191 .161 .158

VU .238 .184 .169 .154 .146

PU .125 .149 .150 .150 .155

Note. All entries are mean values based on 25 samples.

aLS - ordinary least squares; RIDGE 8 ridge regression; BU -

unit weights with Signs determined by sample beta weights; VU 8 unit

weights with signs determined by sample validity coefficients; PU -

unit weights with Signs determined by infallible pOpulation beta

weights.
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Table 8

Over RIDGE, BU, VU, PUa

 

 

 

 

 

 

 
 

Sample Size

Population Equation 30 60 90 120 200 Average

RIDGE .076 .053 .038 .031 .025 .045

BU .248 .137 .100 .081 .063 .128

HIPOP

V0 .197 .130 .092 .071 .057 .109

PU .180 .132 .085 .067 .051 .103

RIDGE .064 .054 .054 .049 .046 .053

BU .292 .246 .228 .215 .206 .237

HOPOP

VU .245 .276 .275 .256 .228 .256

PU .235 .218 .211 .210 .206 .216

RIDGE .039 .016 .008 .006 .004 .015

BU .193 .109 .074 .067 .050 .099

LOPOP

VU .196 .123 .096 .074 .062 .110

PU .305 .158 .115 .078 .053 .142

RIDGE .060 .041 .033 .029 .025 .038

BU .244 .164 .137 .121 .106 .155

AVERAGE

VU .213 .176 .154 .134 .116 .159

PU .240 .169 .137 .118 .103 .154

Note. All entries are mean values based on 25 samples.

aRIDGE = ridge regression; BU = unit weights with signs deter-

mined by sample beta weights; VU 8 unit weights with signs determined by

sample validity coefficients; PU = unit weights with signs determined by

infallible population beta weights.
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different sample sizes. It appears then that RR is somewhat less sensi-

tive to the size of the sample in which weights are estimated than is

OLS. Over the three populations and five sample sizes, the range Of

ridge estimated coefficients of determination are approximately 37 per-

cent less than those Of OLS estimates. All three unit weight equations

demonstrate the same relative indifference to sample size and in some

cases to be discussed below, provide better estimates of actual utility

than either OLS or RR.

For predictive purposes the R2 Obtained in the initial sample

is typically not of interest beyond indicating whether the linear com-

bination of predictor variables has any utility at all. Cross-validated

(typically in only a single holdout sample) or formula estimated coeffi-

cients of determination are the usual criteria for utility decisions.

In general, the latter approach has been Shown to be preferable (Schmitt,

Coyle, & Rauschenberger, 1977); however in a Monte Carlo study such as

considered here, one has available the actual pOpulation matrix which

obviates the need for estimates of long-term cross-validated efficiency.

Table 9 presents the results, for the four relevant equation types, Of

applying the sample estimates to the population from which the data

were drawn. AS this step concerns validation of sample dependent values

the unit weight equations signed by the infallible population beta

weights (PU in Table 7 and 8) are not evaluated. Table 10 contains the

average differences between OLS and the RR equations, the unit weights

signed by the sample validity coefficients (VU) and the weights signed

by the sample beta weights (BU). Negative entries in this Table (10)

indicate that the equation in question obtained a higher average cross-

validated R2 than did OLS for the same population and sample size.
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Table 9

Cross-Validated 112 - LS, RIDGE, BU, vua

 

 

 

 

 

Sample Size

Population Equation 30 60 90 120 200

LS .345 .405 .447 .466 .481

RIDGE .428 .456 .474 .482 .489

HIPOP

BU .231 .326 .358 .390 .412

VU .465 .465 .465 .465 .465

LS .845 .872 .879 .886 .890

RIDGE .838 .858 .867 .875 .880

HOPOP

BU .574 .640 .673 .684 .697

VU .601 .566 .588 .612 .659

LS .050 .085 .111 .130 .147

RIDGE .056 .089 .113 .132 ..148

LOPOP

BU .040 .056 .075 .092 .113

VU .093 .116 .124 .128 .135  
Note: All entries are mean values based on 25 samples.

a

LS - ordinary least squares; RIDGE a ridge regression; BU -

unit weights with signs determined by sample beta weights; VU 8 unit

weights with Signs determined by sample validity coefficients.
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Table 10

Mean Cross-Validated R2 Superiority of Least Squares

 

 

 

 

 

 

 
 

Sample Size

Population Equation 30 60 90 120 200 Average

RIDGE -.083 -.051 -.027 -.016 -.008 -.037

HIPOP BU .144 .079 .089 .076 .069 .085

VU -.120 -.060 -.018 .001 .016 -.036

RIDGE .007 .014 .012 .011 .010 .011

HOPOP BU .271 .232 .206 .202 .193 .221

VU .244 .306 .291 .274 .231 .269

RIDGE -.006 -.004 -.002 -.002 -.001 -.003

LOPOP BU .010 .029 .036 .038 .034 .029

VU -.043 -.031 -.013 .002 .012 -.015

RIDGE -.027 -.014 -.006 -.002 .000 -.010

Average BU .132 .113 .110 .105 .099 .112

VU .027 .072 .087 .092 .086 .073

Note. All entries are mean values based on 25 samples.

aRIDGE = ridge regression; BU = unit weights with Sign deter-

mined by sample beta weights; VU = unit weights with signs determined

by sample validity coefficients.
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Inspection of Tables 9 and 10 shows that BU equations are generally the

poorest while RR provides the best average results. These results are

more evident if one ignores the obtained values for the Hoerl and Kennard

(1970b) population. In the high and low intercorrelation populations,

ridge regression outperforms OLS by a small margin (.02) for all sample

sizes. In the HOPOP matrix the situation is reversed with OLS demon-

strating a Slight superiority (.01) over RR.

As Tables 7 through 10 concern predictive utility rather than

structural interpretation, it is at this point that the efficiency of

the various unit weighting schemes must be considered. Schmidt (1971)

noted that with simulated data such as presented here, violations of the

assumptions of multiple regression (linearity, homogeneity, and normality

of conditional variances) cannot occur. Such violations apparently

occur in approximately 20 percent Of actual empirical data sets (Sevier,

1957; Schmidt, 1971; Tupes, 1964) and their effect is to attenuate the

predictive utility of OLS. Therefore, in this simulation differences

between OLS Obtained R2 values and those of unit weights should be

taken as maximal estimates. In practice, OLS will be somewhat less

efficient than is indicated here.

In the HIPOP and LOPOP matrices (Table 9 and 10) the results

for unit weighting methods are similar to those reported by Schmidt

(1971). As concluded in that study, when no suppressor effects are

present, a sample size of approximately 180 is necessary before OLS will

demonstrate a distinct superiority over unit weights. In Table 9 the

high and low intercorrelation populations Show OLS to be useful upon

cross-validation in the range between 120 and 200 cases. It is also

concluded from these tables (9 and 10) that signing unit weights with
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the sign of the sample beta weight estimate is not generally advantage-

ous. This is congruent with Hoerl and Kennard's (1970a, 1970b) rationale

for RR; that is, that when collinearity is high, the sample beta weights

will frequently exhibit incorrect signs and indicate excessive suppressor

effects. Thus, when previous experience with the variables permits one

to decide the sign of the unit weight for each predictor, these signs

should be employed. This method is conceptually at least, preferable to

both the BU and VU Sign assignment as it is independent Of sampling

fluctuations.

In practice many uses of MR involve variables (as predictors or

criteria) for which one could not confidently decide on their sign

before analysis (Roose & Doherty, 1976). The conclusion to be drawn

from this study is that the next best alternative is to use the Sign of

each predictor's zero-order validity coefficient.

The Hoerl and Kennard (1970b) pOpulation matrix (HOPOP in

Tables 7 through 10) presents several contradictions to the above

mentioned conclusions. This pOpulation is not typical of those en-

countered in social science data; generally, its coefficient of deter-

mination is higher than the norm, four of the validities are negative,

and five variables in the population are identified as suppressors (see

Table 3). It is ironic that this matrix was chosen by Hoerl and Kennard

(1970b) as an example of the advantages Of RR over OLS. Across all

sample sizes investigated in this study RR equations based on random

samples from the HOPOP matrix are dominated by OLS. Ordinary least

squares also demonstrates higher cross-validated coefficients of deter-

mination than do either beta weight or validity signed unit weights.

With regard to the RR results it must be concluded that the biasing
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factor of equation (37) "overcorrected" the weights of some predictors

in this population and thus reduced the cross-validated R2. This

occurrence emphasizes the need for an analytical determination of an

optimal biasing parameter (k) which ideally could adopt different values

for different predictors. This would seem to be indicated as advantage-

ous for sample data from a matrix such as HOPOP where the collinearity

is not uniform across the predictors. A mixture of high and low pair-

wise intercorrelations (Table 3) presumably requires a variable bias

factor. This conclusion is supported by the results for the HIPOP and

LOPOP matrices both of which demonstrated RR as superior to OLS upon

cross-validation of the sample equations in the population. These

discrepancies further demonstrate that the determinant is an insuffi-

cient indicant of the degree of collinearity insofar as its value might

be used to determine whether OLS or RR should be applied. The LOPOP

population actually has a determinant 48 times larger (indicating less

severe multicollinearity) than the HOPOP matrix, yet RR was superior on

the LOPOP samples and not on the HOPOP samples.

Conclusions as to the predictive utility of these various com-

binatorial schema would seem to be as follows:

1. In agreement with Schmidt (1971), unit weights should be

employed in samples of under approximately 200 cases.

2. In the absence of prior knowledge, validity coefficients should

be used to determine the sign Of each predictor's unit weight.

3. The predictive utility of ridge regression, while superior to

OLS and unit weights in some instances, would not seem to be

great enough to warrant its use. If an analytic determination

of the bias parameter k is develOped, ridge regression would
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seem to be practical for analyses in which the intercorrelation

is both "high" and consistent throughout the matrix and sample

size is not very large. While this study is not conclusive, it

appears that RR is most useful for predictive purposes in the

same sample size range as are unit weights.

The focus of the discussion now turns to consideration Of the

accuracy Of weight estimation by the OLS and RR methods as Opposed to

the predictive utility of their respective linear combinations. Table 11

presents the average mean square error (MSE) of estimation values, the

average bias factor (k), and the calculated average sum of reciprocals

of the eigenvalues for each population and sample size. It should be

recalled that the selection of the value for k determines, along with

sample specific collinearity, the value which will result for MSE.

Thus, as long as an analytic solution for the bias factor is not avail-

able, individuals may rightly argue for the appropriateness of values

other than those employed here. It is considered, however, that the

method of determining k employed in this study yields reasonable results

which are consistent with published uses of RR. Further, as noted by

Churchill (1975), a Monte Carlo study is potentially susceptible to-

the criticism of Optimizing the selection of the bias factor so as to

conform to the population specifications. Thus, it is argued that the

arbitrariness of a "reasonable" selection rule such as used herein will

permit greater generalizability of results as we await a solution to

the problem of analytically optimizing k on the basis of sample infor-

mation only.

The mean square error values in Table 11 can be interpreted as

a summary measure of the accuracy with which weights were estimated.
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Table 11

Equation Mean Square Errors

 

 

 
  

 

 

 

 

 

Population

Sample HIPOP HOPOP LOPOP

a
Equation _1 _1 _1

Size MSE 21 k MSE 21 k MSE 21 k

LS .085 51.15 .020 54.46 .064 20.47

30

RIDGE .023 23.67 .15 .041 27.04 .08 .043 16.56. .07

L8 .489 125.34 .009 43.78 .027 16.45

60

RIDGE .033 23.01 .15 .029 26.85 .06 .022 14.75 .05

LS .023 36.15 .006 39.48 .016 15.54

90

RIDGE .009 20.87 .14 .025 25.64 .06 .014 14.52 .03

LS .013 34.75 .004 38.89 .010 15.19

120

RIDGE .006 20.43 .14 .021 26.42 .05 .009 14.27 .03

L8 .008 32.80 .002 37.05 .006 14.43

200

RIDGE .004 19.87 .15 .018 26.23 .05 .005 13.84 .02     
Note. All entries are mean values based on 25 samples.

aLS = ordinary least squares; RIDGE a ridge regression; 21-1 =

sum of the reciprocals of the sam 1e eigenvalues; k = average value of

k in the expression ((X'X) + kI)‘ X'y.



63

MSE is equal to the sum of the deviations squared about the parameter

beta weight plus the squared bias. Thus, the smaller the MSE value is

for a particular cell, the better the average beta estimate was when one

averages errors over the 10 coefficients in each sample and the 25

samples per cell. It is seen in Table 11 that RR had a smaller MSE

than OLS in all HIPOP and LOPOP samples. This improvement in accuracy

seems to be inversely related to the sample size available for estimation,

similar to the results for predictive utility presented above. While

it was concluded earlier that unit weights were preferable to RR esti-

mates for predictive use when sample size is less than approximately

180, the same is not true here. Structural interpretation of regression

estimates makes explicit the intent to characterize a system or process

as a function of the magnitude of weight estimates. The substitution

of arbitrary weights (i.e., unit weights) may not deter predictive use

of the system's indicators but it necessarily eliminates the possibility

Of assessing their individual utilities.

The improvement in MSE attributable to RR is substantial in most

cases. The outlying value of .489 for the least squares mean value of

MSE at a sample size of 60 is attributable to one random sample's

extreme beta estimates. Omitting this one sample and calculating the

-l

i

and k for RR remains unchanged at .15. It is interesting to note that

same statistics for OLS on 24 samples yields MSE = .033; Z 1 = 39.36

this one sample's extreme beta estimates were adequately handled by the

RR technique using the decision rule for k selection discussed above.

Over all sample sizes in the high intercorrelation maxtrix, the

MSE due to use of RR weight estimates is approximately 91 percent less

than that generated by OLS (the value is 65 percent if the one aberrant
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sample from the sample size 60 cell is removed). In the LOPOP matrices

RR is 24 percent more accurate overall. In the HOPOP matrices, as was

the case with predictive utility, RR is dominated at all sample sizes

by OLS. For these samples OLS is 69 percent more efficient than RR.

The conclusion is therefore similar to that for predictive considerations:

for the appropriate matrices (high collinearity which is consistent

across the matrix) ridge regression can provide improved weight estima-

tion, especially for small sample sizes. Even in subjectively low inter-

correlation cases (LOPOP) RR will not be worse than OLS although the

extra computational labor may not be worth the slight gain in estimation

precision.

Table 11 also lists the values computed for the sum of the

reciprocals of the eigenvalues with and without the biasing factor (OLS

and RR solutions respectively). This value was assessed by Hoerl and

Kennard (1970b) as an indication of the degree to which orthogonalization

had been achieved by the RR technique. If the predictors utilized had

in fact been uncorrelated, this value, as demonstrated earlier, would

equal 10.0 or equivalently, p, the number of predictors. RR over all

HIPOP matrices demonstrated a 61 percent reduction (44 percent with the

above noted sample omitted from the sample size 60 cell) in the sum of

eigenvalue reciprocals as compared to OLS. In the LOPOP matrices the

figure was 10 percent while in the HOPOP samples the reciprocals were

38 percent smaller. These results demonstrate the inappropriateness of

this value (the sum of reciprocals of eigenvalues) as an indicant of

the utility of the RR technique. AS noted for the HOPOP matrices

reduction in the size of this value is an artifact of the application
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of equation (37) and does not necessarily imply either enhanced precision

of estimation or superior predictive ability.

Churchill's (1975) modified coefficient of variation can also

be used to assess the advantages of one technique relative to another.

This value (CV) is calculated by dividing the square root of an esti-

mate's MSE by the absolute value of the parameter it is intended to

estimate. These values can then be averaged for summary purposes.

Table 12 presents the ratio of the average CV produced by 0L3 to that

of RR. Again, deleting the single outlying sample from the HIPOP 60

cell reduces the value reported in Table 12 to approximately 1.71.

These results are consistent with the conclusions drawn on the basis of

MSE comparisons; RR is substantially more accurate at small sample sizes

with high, consistent collinearity than is the OLS technique. This

dominance diminishes as sample size increases and it is further decre-

mented for lower collinearity samples such as those represented by

LOPOP. The Hoerl and Kennard (1970b) population again demonstrates the

superiority of OLS at all sample sizes investigated.

Tables 13 through 15 present the relevant precision statistics

for each coefficient for the HIPOP, HOPOP, and LOPOP matrices, reSpec-

tively. Table 16 presents the differences between OLS and RR precision

statistics pooled over sample sizes. It is interesting to note in these

tables that RR produces a smaller bias in estimation for virtually all

coefficients at all sample sizes for the HIPOP and LOPOP sets than does

OLS despite the inclusion of k in equation (37) as a deliberate biasing

factor. The exceptions among the 100 bias estimates are seven values

found among the LOPOP matrices for samples of sizes 120 and 200. In

these cases OLS and RR produce identical (to three places of accuracy)
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Table 12

Ratio of Average LS to Average RIDGE a
CV CV

 

 

 

Population

Sample Size HIPOP HOPOP LOPOP

30 1.820 .919 1.182

60 3.194 .789 1.088

90 1.530 .706 1.053

120 1.460 .621 1.049

200 1.238 .532 1.032

 

Note. All entries are mean values for 25 samples averaged

over 10 beta weights per sample.

aLS = ordinary least squares, RIDGE = ridge regression; cv =

coefficient Of variation.
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bias values. In Table 14 the inapprOpriateness of RR for the HOPOP

based samples is again evident. For most coefficients the variance

of the estimate has been reduced as expected but the bias has grown

large enough to offset this improvement and thus the MSE is worse, in

general, for RR than for OLS. This information is summarized in

Table 16 where negative values indicate the superior accuracy (i.e.,

smaller variance, less bias, smaller MSE, etc.) of OLS.



CHAPTER V

SUMMARY

The ridge regression technique advocated by Hoerl and Kennard

(1970a, 1970b) for use in regression analyses when high collinearity

is present among the predictors was evaluated by comparing it with the

ordinary least squares and unit weighting methods of combining pre-

dictors so as to form a linear composite. It is concluded that the RR

technique is preferable to OLS in certain restricted situations.

Specifically, if one's intent is to optimize the prediction of a

criterion by the composite, unit weighting with signs for the predictor

variables determined by their zero-order validity coefficients is

probably preferable to the calculation of a ridge regression. When

sample size is large enough (for instance, greater than 200, Schmidt,

1971) so that OLS weights are expected to yield better prediction in

subsequent samples than will unit weights, the indication from the

present study is that RR will be very little, if at all, better. Thus,

for large samples OLS seems to provide weights which are not signifi-

cantly inferior to RR weights for prediction.

If the purpose of the regression analysis is structural inter-

pretation however, RR, based on the empirical populations evaluated

above, yields substantially more accurate weight estimates than does

72
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OLS for certain types of matrices. Ridge regression, on the average,

exhibited less bias, smaller variance, and a smaller overall MSE than

OLS for all coefficients estimated in samples drawn from two empirical

populations: HIPOP, in which the pairwise intercorrelation was high

and consistent throughout the matrix, and LOPOP, in which pairwise

values were low but also consistent across 10 predictors.

The ridge technique was dominated by OLS from both a predictive

and structural interpretation perspective when evaluation was based on

samples drawn from the HOPOP matrix. This matrix exhibited a number of

characteristics which are uncommon in social science data sets. The

wide dispersion of pairwise intercorrelations and the presence of both

high positive and high negative validities contributed to the formation

of a population beta vector with large absolute values. This would

appear to be the prime reason for ridge regression's failure to yield

better precision statistics than OLS in samples from the HOPOP matrix.

RR functions in general to reduce the absolute value of the beta esti-

mates in the sample which are considered inflated due to sample speci-

fic error and high multicollinearity. However, in the Hoerl and Kennard

(1970b) population the collinearity is not consistent throughout the

matrix and the validities for some relatively independent predictors

are quite high (see Table 3). Applying RR to samples from a pOpulation

with these characteristics will, it appears, result in overcorrection

for the properly large weights and undercorrection for the others.

It is concluded therefore that RR can be used to more precisely

estimate beta weights even when an analytic determination of the bias

parameter is not available. The prime consideration in the decision

to use RR over OLS is the type of matrix one has to analyze. It is
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apparent that the determinant is insufficient as an indicator of the

degree of collinearity as it is not sensitive to the distribution of

pairwise correlations in the matrix. Two suggestions may be made on

the basis of the present study. First, RR is a preferable method of

analysis to the extent that the correlation matrix is unidimensional.

This can be evaluated by considering the eigenvalues and eigenvectors

for the matrix. Secondly, the diagonal values of the correlation

matrix's inverse should not be widely diapersed. In effect, this means

that any p-l combination of the predictors should predict the pth

predictor equally well. This rule is an indication of the consistency

of the intercorrelation level in the matrix.

The ridge regression technique has been criticized justifiably

as being an arbitrary method when applied to any one sample matrix

which requires excessive subjective interpretation and final identifi-

cation of an adequate result (Conniffe & Stone, 1973; Smith, 1976).

The element of subjectivity, whether in defining an arbitrary bias (k)

selection rule or in visually examining the ridge trace for a stable

solution, cannot be denied at the moment. However, it is concluded on

the basis of this study that reasonable decision rules can be established

which, for appropriate data sets, will function better than ordinary

least squares. Thus, the author is in agreement with Churchill (1975),

Hoerl and Kennard (1970b), and Smith and Goldstein (1975) in concluding

that RR does offer potential improvements over OLS. It is hOped that

an analytic derivation of an Optimal bias parameter will be develOped

as well as objective methods of determining the apprOpriateness of any

particular data set for the ridge technique.
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