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ABSTRACT

APPLIED ECONOMETRIC STUDIES IN AIR QUALITY AND EDUCATION

By

Christopher Khawand

This dissertation is comprised of three standalone chapters loosely organized around a causal

inference theme. It addresses empirical questions in environmental quality and education, while

also offering some methodological insight in each chapter.

Chapter 1 is an empirical paper exploring the health effects of air pollution using the large-

scale natural experiment generated by U.S. wildfires. In it, I apply a combination of forest fire and

atmospheric dispersion models to provide predictions of where wildfire pollution goes after a fire.

I use a panel instrumental variables framework to estimate the impact of increasing fine particu-

late matter pollution (PM2.5) on mortality and perinatal health. Increased short-term exposure to

PM2.5 is associated with both increased mortality among elderly and poorer birth outcomes, and

toxic metals appear to explain most of the effect.

Chapter 2, co-authored with colleague Wei Lin, is an econometric theory paper focused on the

two-sample two-stage least squares estimator (TS2SLS). Here, we aim to fill a gap in the literature

on how two-sample instrumental variables estimators behave in finite samples. We show closed-

form approximations, simulation evidence, and empirical examples of how the estimator behaves.

We offer recommendations for econometric practitioners using two-sample estimation.

Finally, Chapter 3 attempts to answer the question of whether there are ability peer effects in

high school classrooms and how strong they are across the ability distribution. I leverage a series

of placebo tests to validate whether the estimated peer effects justifiably represent causal effects. I

provide a closed-form expression for the placebo estimates, showing that they are directly propor-

tional to the amount of bias in their corresponding peer effect estimates. I find largely plausible

peer effects nonlinear in ability, with high-performing students having the greatest positive impact

on classrooms’ overall performance.



To Lydia “Pikachu-Yoshi-Kitty-Puppy-Raccoon” Khawand

iii



ACKNOWLEDGEMENTS

This dissertation represents five years of hard work and a slew of mistakes overcome. Here’s a

list of people I’d like to thank for, in one way or another, keeping those mistakes from sinking the

ship:

Michael Bates, Julie Harris, and Dan Litwok—with whom I shared comradery, foosball, and

MSU Dairy Store ice cream. We have all gazed into the ancient chicken bone in the 1st-year grad

student office, and it has gazed into us.

My committee—for their kindness and patience through wild goose chases and long spells

of no progress. Gary Solon taught me the fundamental causal inference skills that have sparked

an exciting start to my career; Soren Anderson was truly a second advisor, giving me an incred-

ible amount of detailed feedback and morale boosts when things were not going well; and Jeff

Wooldridge bestowed upon me nearly all of the useful econometric knowledge that I have and an

unwavering committment to finding econometric truths (even if they tend to mostly be in asymp-

totia).

Lastly, my wife Jennifer and daughter Lydia—they are the Chapter 0 of this dissertation, my

life’s work.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1. Air Quality, Perinatal Health, and Mortality: Causal Evidence from Wild-
fires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Modeled Wildfire Air Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Wildfire Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Description of Wildfire Emissions and Air Pollution Modeling . . . . . . . 7
2.1.3 Modeling Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Birth and Mortality Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Ambient Air Pollution and Weather Data . . . . . . . . . . . . . . . . . . . . . . . 10

3 Econometric Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Testing and Controlling for Effects from Multiple Pollutants . . . . . . . . . . . . 14

3.3.1 Controlling for Multiple Wildfire Pollutants . . . . . . . . . . . . . . . . . 14
3.3.2 Pre-testing for Omitted Pollutants . . . . . . . . . . . . . . . . . . . . . . 16

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Wildfires’ Effect on Ambient Air Quality . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 First Stage: Wildfires’ Effect on Ambient Concentrations of Pollutants . . . 18
4.1.2 PM2.5 Chemical Composition Identified by Wildfire Instrument . . . . . . 20

4.2 Short-term Effects on Mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Short-term Effects of PM2.5 on All-Cause Mortality . . . . . . . . . . . . 22
4.2.2 Heterogeneous Effects of PM2.5 by Chemical Composition . . . . . . . . 24
4.2.3 Nonlinear Effects of PM2.5 . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.4 Short-Term Effects of PM2.5 by Cause of Death . . . . . . . . . . . . . . 27
4.2.5 Lagged and Lead Short-Term Associations with PM2.5 . . . . . . . . . . . 29

4.3 Effects on Infant Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5 Wildfire Externalities and Current Management Policy . . . . . . . . . . . . . . . . . . 34
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 2. Finite Sample Properties and Empirical Applicability of Two-Sample Two-
Stage Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2 Properties of the TS2SLS Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.2 Definitions of Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.3 First-order bias approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

v



2.4 Asymptotic Variance of TS2SLS . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.5 TS2SLS Under Data Availability Constraints . . . . . . . . . . . . . . . . . . . . 93

3 Simulation Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1 TS2SLS in Practice: Synthetic Example from Angrist and Evans (1998) . . . . . . 97
4.2 Other Considerations for Applications . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 The Practical Impact of Sample Overlap ρ . . . . . . . . . . . . . . . . . . . . . . 102
4.4 Computation of Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Chapter 3. Estimating and Validating Nonlinear and Heterogeneous Classroom Peer
Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

1.1 The Peer Effects Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
1.2 Peer Effects Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
1.3 Biases from Sorting and Identifying Nonlinear vs. Linear Effects . . . . . . . . . . 129
1.4 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

1.4.1 North Carolina Administrative Data . . . . . . . . . . . . . . . . . . . . . 131
1.4.2 Determining Course Membership . . . . . . . . . . . . . . . . . . . . . . 132
1.4.3 Test Scores and Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
2.1 Linear vs. Non-linear Peer Effects Estimates . . . . . . . . . . . . . . . . . . . . . 135
2.2 Placebo Tests – Alternate Classrooms . . . . . . . . . . . . . . . . . . . . . . . . 138
2.3 Note on the Interpretation of the Placebo Test . . . . . . . . . . . . . . . . . . . . 141
2.4 Policy Implications: Optimal Ability Tracking . . . . . . . . . . . . . . . . . . . . 144

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

vi



LIST OF TABLES

Table 1: AQS PM2.5 and NLDAS Weather Descriptive Statistics . . . . . . . . . . . . 44

Table 2: Monthly, County-Level Mortality Rate (per 100,000) by Subgroup from U.S.
Death Certificates, 2004-2010 . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 3: Monthly, County-Level Mean Birth Outcomes and Rates for Birth Cohorts
from U.S. Birth Certificates, 2004-2010 . . . . . . . . . . . . . . . . . . . . 45

Table 4: First Stage Regression of PM2.5 and Regressions of Criteria Pollutants on
Wildfire Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 5: Regressions of Highly Toxic PM2.5 Subspecies on Wildfire PM2.5 . . . . . . 47

Table 6: Regressions of Non-Metallic PM2.5 Subspecies on Wildfire PM2.5 . . . . . . 48

Table 7: Percentage of Wildfire PM2.5 Exposure Outside of the State of Origin . . . . 49

Table 8: IV Estimates: PM2.5 Effects on All-Cause Mortality (by Fixed-Effects Spec-
ification) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 9: IV Estimates: PM2.5 Effects on Mortality (by Cause) . . . . . . . . . . . . . 51

Table 10: IV Estimates: PM2.5 (Non-)Effects on Mortality from External Causes . . . . 52

Table 11: IV Estimates: PM2.5 Effect on All-Cause Mortality by Age Group . . . . . . 53

Table 12: Reduced Form Lead and Lagged Wildfire PM2.5 Effect on All-Cause Mortality 54

Table 13: IV Estimates: Effect of PM2.5 Exposure for Full Gestation and 16 Weeks
Before Birth on Birth Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 14: Henry’s Law Constants and Dry Deposition Velocities for Gaseous Pollutants 57

Table 15: Regression of Organic Gases on Wildfire PM2.5 . . . . . . . . . . . . . . . . 58

Table 16: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set I . . . . . . . 59

Table 17: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set II . . . . . . . 60

Table 18: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set III . . . . . . 61

Table 19: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set IV . . . . . . 62

Table 20: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set VI . . . . . . 63

vii



Table 21: Hypothetical Two-Sample Estimates for Angrist and Evans (1998), Effects of
2 or More Children on Labor Supply for Married Women, 21-35 . . . . . . . 112

Table 22: Linear Peer Effect Component Estimates (Math and Science) . . . . . . . . . 149

Table 23: Linear Peer Effect Component Estimates (Social Studies and English) . . . . 150

Table 24: Linear Peer Effect Component Placebo Test (Algebra II and Biology) . . . . . 151

viii



LIST OF FIGURES

Figure 1: Number of Acres Burned (Thousands) for All Fires Greater than 1,000 Acres,
2000-2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 2: Wildfire Air Pollution Modeling - BlueSky Framework Workflow . . . . . . . 40

Figure 3: Average Raw Wildfire PM2.5 Output by County, CONUS, 2004-2010 . . . . 41

Figure 4: Quantile-Quantile Plots of PM2.5 versus Counterfactuals . . . . . . . . . . . 42

Figure 5: Spline Control Function Regression of All-Cause Mortality on PM2.5, by
Decile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 6: Piecewise Regression Coefficient Estimates of Daily Station PM2.5 on Raw
and Log-transformed Wildfire PM2.5 Model Output, by Vigintile . . . . . . . 56

Figure 7: Mean Simulated TS2SLS Point Estimate by First Stage Sample Size N2 . . . 107

Figure 8: Simulated TS2SLS Standard Error by First Stage Sample Size N2 . . . . . . . 108

Figure 9: Simulated TS2SLS Standard Error by second-stage Sample Size N1 . . . . . . 109

Figure 10: Mean Simulated TS2SLS Point Estimate by Proportion of Overlap Between
Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Figure 11: TS2SLS Simulated Standard Error by Proportion of Overlap Between Samples 111

Figure 12: Algebra II: Effects of Peer Ability Shares by Own Relative Ability in Classroom152

Figure 13: Algebra II: Inverted Plot of Effects of Peer Ability Shares by Own Relative
Ability in Classroom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 14: Algebra II: English Class Composition Placebo Test . . . . . . . . . . . . . . 154

Figure 15: Algebra II: English Class Composition Placebo Test (Inverted) . . . . . . . . 155

Figure 16: Algebra II: Science Class Composition Placebo Test . . . . . . . . . . . . . . 156

Figure 17: Algebra II: Social Studies Class Composition Placebo Test . . . . . . . . . . 157

Figure 18: Peer Effects: Geometry with English Class Placebo . . . . . . . . . . . . . . 158

Figure 19: Peer Effects: Science with English Class Placebo . . . . . . . . . . . . . . . 159

Figure 20: Peer Effects: English with Social Studies Class Placebo . . . . . . . . . . . . 160

Figure 21: Peer Effects: U.S. History with English Class Placebo . . . . . . . . . . . . . 161

ix



Figure 22: Peer Effects: Civics with English Class Placebo . . . . . . . . . . . . . . . . 162

Figure 23: Peer Effects: Biology with English Class Placebo . . . . . . . . . . . . . . . 163

x



Chapter 1. Air Quality, Perinatal Health, and Mortality: Causal Evidence from Wildfires

1 Introduction

In the past 40 years, ambient air quality regulation has grown in response to the burgeoning ev-

idence of the public health costs of air pollution. The Clean Air Act Amendments of 1970, the

establishment of the Environmental Protection Agency (EPA), and subsequent refinements of air

quality standards have all contributed to general downward trends in pollution levels. While the

health benefits of air quality improvement are uncontroversial at the highest margins of pollutant

levels, the important question remains whether additional reductions will also yield health bene-

fits, and whether those health benefits exceed the marginal costs of abatement. Because pollutants

are not randomly assigned and may be correlated with other determinants of health outcomes, an

important scientific challenge has been to develop research designs that provide precise, unbiased,

and population-representative estimates of air pollution’s effects.

In this paper, I exploit quasi-random shocks to ambient fine particulate matter (PM2.5) concen-

trations generated by large wildfires across the United States to estimate effects on mortality and

infant health outcomes. Wildfires are uncontrolled fires primarily occurring in remote wilderness

areas, but cause significant variation in urban particulate levels through mechanisms that are plau-

sibly unrelated to non-pollution determinants of health. First, I quantify the effect that wildfires

have on air quality by applying a sequence of specialized emissions and dispersion models to his-

torical fire data to generate measures of wildfire pollution for the continental U.S. over time. Then,

I estimate the effects of short-term and in utero exposures on adult mortality and infant health

outcomes, using modeled wildfire PM2.5 as an instrumental variable for station-observed PM2.5.

I use extensive pollution monitoring data—spanning 60 PM2.5 subspecies and 18 criteria pollu-

tant and organic gases—to decompose the shock to air quality represented by the wildfire PM2.5

instrument and present a methodology for assessing potential bias from omitted pollutants.
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The U.S. Environmental Protection Agency (EPA) has identified six airborne “criteria” pol-

lutants to be regulated under the Clean Air Act that are generally considered harmful to public

health: particle pollution (PM2.5 and PM10), carbon monoxide (CO), nitrogen dioxide (NO2),

ozone (O3), sulfur dioxide (SO2), and lead (Pb). This study estimates the effects of PM2.5 gen-

erated by wildfires and tests whether these estimates potentially reflect the effects of other criteria

pollutants. Fine particulate matter, defined as particulate matter less than 2.5 micrometers in di-

ameter (PM2.5), is considered the most dangerous because of its ability to penetrate deep into the

human lung and sometimes enter the bloodstream.

I make several contributions to the literature on both the health effects of air pollution and air

quality effects of wildfires. First, I systematically assess the impact of large wildfires (≥ 1000

acres) on ground-level air quality in the continental United States. I combine estimates of source

emissions with an atmospheric model to retrospectively forecast the spatial distribution of wildfire-

related pollutant concentrations in the period following a historical fire event, using the resulting

data to predict pollutant concentrations at air pollution monitors. For 78 pollutants, I estimate a

set of lower bounds for the percentage of each pollutant’s average ambient concentration that is

attributable to wildfires; notably, wildfires contribute at least 15% of ambient aggregate PM2.5,

5% of PM10, 5% of O3, and large fractions (15%-35%) of several dangerous metals bound to fine

particulates, including arsenic, lead, mercury, nickel, and cadmium. In addition to the aggregate

quantities of particulate pollutants they generate, wildfires cycle metallic and other highly toxic

industrial emissions previously deposited into wildland vegetation and soils back into the atmo-

sphere, resulting in new ground-level exposures in population centers. These findings underscore

the potential significance of wildfires’ contribution to public health and that socially optimal fire

management policies must take wildfires’ health costs from worsened air quality into account.

Furthermore, 75% of geographic exposure to wildfire PM2.5 occurs outside of the state of ori-

gin, raising the possibility that wildfire management policy in the U.S. may be inefficient due to

inter-state spillovers.

Next, I estimate the effect of average monthly PM2.5 exposure on county-level mortality rates

2



for 2004-2010 via instrumental variables, controlling for weather variables and stringent sets of

region-specific fixed effects. Short-term exposure to PM2.5 is associated with mortality with mag-

nitudes consistent with prior literature, and the dose response is approximately linear below reg-

ulatory limits of PM2.5. A transitory 10µgm−3 increase in a county’s average monthly PM2.5

(approximately a doubling of average ambient concentrations in the sample period) is associated

with one additional death per 100,000 individuals. These effects are largely driven by cardiovas-

cular and respiratory fatalities, but PM2.5 is also associated with general disease-related causes

of death. Nearly all short-term PM2.5-related deaths are of individuals over age 65, and women

are twice as susceptible as men. Because wildfires also emit large quantities of several gaseous

pollutants, I attempt to control for potentially correlated pollutants by including a set of compa-

rably modeled controls for NO2, SO2, NH3, and VOC gases. Because of the complex chemical

and environmental interactions underlying O3 production and the corresponding difficulty of pre-

dicting O3 concentrations from wildfires using the same set of pollution models, I am unable to

decisively rule out confounding effects from O3. Based on best available estimates from other

studies, I estimate that this effect is on the order of 35% of the estimated effect of PM2.5. Finally,

I estimate the effects of prenatal exposure to PM2.5 on premature birth rates, birth weight, and sex

ratios, finding small but statistically significant harmful effects. I also find marginally insignifi-

cant evidence for negative effects on the fraction of males in a birth cohort, and my estimates are

consistent with higher susceptibility of male fetuses to death from pollution shocks estimated in

Sanders and Stoecker (2011).

Controlling for non-PM2.5 emissions from wildfires results in a different composition of PM2.5

that more heavily favors toxic species, and I find larger effects in the presence of higher fractions

of metals and lower fractions of non-metal particulates. While the intrusive quality of PM2.5 is the

basis for the proposed dangers of PM2.5, there is wide heterogeneity in the chemical composition

of PM2.5 and some evidence of heterogeneous effects, but relatively little understood about the

relative toxicities of individual substances (Bell 2012). PM2.5 is composed of a wide range of sub-

stances, including elemental carbon (EC), organic carbon (OC), nitrates (NO3-), sulfates (SO42-),
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and metals bound to particulates (such as mercury and lead). Some of these are formed or re-

leased directly from an emission source (commonly EC, OC, and metals) and others are formed

through chemical reactions in the atmosphere (e.g., nitrates and sulfates). Composition also varies

widely by region and over time from cross-sectional differences and seasonal differences within

regions (Franklin et al. 2008). This heterogeneity presents problems for the effective regulation of

particulate levels, as small exposures of highly toxic species are potentially as dangerous as large

exposures of EC, OC, or other species that account for most of PM2.5 mass. Relatedly, it presents

statistical challenges for interpeting estimated effects for PM2.5. When controls for non-PM2.5

pollutants from wildfires are included, estimated effects on mortality increase by over two times.

For infant health, effects approximately double for prematurity, gestational age, and average birth

weight. I interpret this pattern of estimates as evidence that the conditional mixture of PM2.5 iden-

tified has increased toxicity that exceeds any reduction in upward bias accomplished by adding

controls.

This work attempts to make new methodological and evidentiary contributions to the already-

large and diverse economic literature on the health effects of pollution. For short-term health

outcomes, panel studies and regional natural experiment studies are two popular research designs.

The widely-accepted truism motivating most of the contemporary air pollution literature is that

pollution exposure is non-randomly assigned and systematically related to other determinants of

health outcomes. Panel studies, such as Currie and Neidell (2005), attempt to address this non-

random assignment through exploiting narrow variation through stringent fixed effects. Natural

experiment studies try to provide a source of quasi-random assignment by isolating the variation

they use to a particular type of pollution-generating (or reducing) event. Strategies have included

exploiting the timing of the Clean Air Act of 1970 to predict relatively sudden decreases in par-

ticulate concentrations (Chay and Greenstone 2003); changes in daily airport traffic congestion in

California caused by weather in other major airports (Schlenker and Walker 2011); weekly panel

variation in automobile traffic to identify the effects of carbon monoxide, ozone, and particulate

matter on infant mortality rates (Knittel, Miller, and Sanders 2011); and temperature inversions
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in Mexico City (Arceo-Gomez et al. 2011). Currie et al. (2013) provide an extensive survey of

both types of papers exploring the effects of early-life exposure to pollution, finding a general con-

sensus that airborne pollutants are associated with infant mortality, premature birth, and low birth

weight. Papers applying natural experiments to adult mortality have been more infrequent. Chay

et al. (2003) uses the timing of the Clean Air Act of 1970, finding insignificant effects on adult and

elderly mortality. Pope et al. (2007) use an 8-month national strike of copper smelter workers to

estimate the effect of sulfate particulate reductions, finding a 2.5% reduction in mortality over the

strike period.

Several papers have attempted to estimate health effects of major wildfire events, implicitly

taking their exposure measures as proxies for pollution shocks. Jayachandran (2009) examines

sharp increases in particulate pollution from an intense wildfire season in Indonesia in 1997, track-

ing spatial and temporal variation in pollution from wildfires using satellite-based measures of

particulate levels. She finds evidence that prenatal smoke exposures during that period caused a

substantial increase in early-life mortality, on the order of a 20 percent increase in the under-age-

three mortality rate. Breton, Park, and Wu (2011) estimate that prenatal exposure to high PM2.5

concentrations from a week-long wildfire event in California was associated with an 18g decrease

in mean infant birth weight in comparison to counties unaffected by the fires.

Few studies have used modeled exposures from large emission events based on atmospheric

transport models, and none have used exposures in tandem with monitoring data to predict health

outcomes.1 Rappold et al. (2012) use modeled wildfire exposures in North Carolina to assess

increases in asthma and congestive heart failure risks with reduced-form Poisson regressions. I

fill a gap in the literature by incorporating developments in emissions and atmospheric transport

modeling and taking advantage of substantial increases in computational power made over the

last decade. I unite quasi-random variation in pollution levels predicted from wildfire and at-

1A class of study distinct from this one combines modeled exposures with pre-existing estimates of health risks to
determine population-wide impacts. For example, Caiazzo et al. (2013) use the Community Multiscale Air Quality
(CMAQ) model combined with the U.S. National Emissions Inventory for 2005 to create an annual predicted map of
average pollution concentrations, and interpret this as a measure of long-term pollution exposure. Also, several studies
use observed changes in particulate measurements and only employ “backward trajectory” calculations to indirectly
verify that large changes are due to a specific event, such as wildfires or dust episodes.
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mospheric models with observed pollution levels in a panel econometrics framework to estimate

health effects, providing a methodology that bridges some of the long-standing gaps between the

atmospheric science, epidemiology, and economics literatures on air quality.

2 Data

2.1 Modeled Wildfire Air Pollution

Combining historical wildfire event data and meteorology with scientifically relevant fire and atmo-

spheric transport models, I generate a high-resolution, gridded daily measure of wildfire pollution

for the continental U.S. (CONUS) domain. The measure represents a retrospective forecast of

where pollution from documented fire events would be likely to have traveled given what is known

about atmospheric behavior during and after the fire. To this end, I use the BlueSky Framework

software package, which integrates several existing models of emissions and transport processes

into a unified process.

2.1.1 Wildfire Data

State and federal agencies responsible for wildfire management keep records on the location, size,

and timing of wildfire events. Fire events larger than 1,000 acres are gathered from the Fire Pro-

tection Agency (FPA) Fire Occurrence Database (FOD), an interagency collection of fire event

reports updated for accuracy and cleaned for duplicates using methods described in Short (2013).

The fire event characteristics drawn from this database for modeling are the latitude and longitude

point data of the fire, date and time the fire was detected, area of the fire burned in acres, and the

date and time at which a fire agency declared it contained. For an available subset of federal fires, I

draw the date and time at which a fire agency declared the fire extinguished from a U.S. Geological

Survey database of fires reported by the six major federal agencies tasked with managing wildfires.

If any of the values except for the containment or extinguish dates are missing, the fire is omitted.

Where time of extinguishment data are missing, I empirically estimate the total burn time using
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a regression model with categorical dummies for the fire area and the duration from start to con-

tainment as predictors, adjusting for region-specific unobserved effects and seasonal effects; where

both containment and extinguishment dates are missing, I use the same model without containment

time to predict burn duration. The methodology, rationale, and results of the total burn time esti-

mation procedure are described in Appendix A.1. Figure 1 shows the total number of acres burned

in fires larger than 1,000 acres mapped by state for 2000-2010, as calculated from the FPA FOD

database. The majority of area burned is concentrated in the West, Northwest, and Southwestern

United states, with a decreasing eastward and strongly decreasing Northeastward pattern. These

large fires constitute over 85 percent of area burned in the United States over this period. Fires

smaller than 1,000 acres are a significantly larger percentage of area burned for Northeastern and

Central states, but are not included because of high computational costs of the modeling process

relative to their small total emissions contributions compared to larger fires.

2.1.2 Description of Wildfire Emissions and Air Pollution Modeling

Wildfires can be started by lightning strikes or direct sunlight when highly flammable fuels (e.g.,

forest underbrush) endure an extended dry period. Wildfires are also caused by human errors, such

as escaped campfires, car accidents, or downed power lines. Occasionally, they are intentionally

set by arsonists. Fires are also intentionally set by fire management agencies to preemptively burn

fuels for naturally-occurring fires, among other functions. Wildfire incidence peaks in mid-to-late

summer, but has varying seasonal peaks by region. The majority of large wildfire events (over

1,000 acres in size) occur in the Western and Northwestern United States.

There are several phenomena which contribute variation to the amount of wildfire-generated

pollution at a given point in time in space. Broadly, these are the characteristics of the fire and the

meteorological conditions at the time of and shortly after the fire event. The duration of the fire

is a function of time till detection, containment efforts, and the containment difficulty of the fire.

Besides its role in promoting the rate of spread and ultimate size of a fire, the fuel cover determines

the volume and chemical composition of emissions from the fire per unit of area burned. Wildfires’
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dominant emissions by mass are PM10, PM2.5, CO, and NOx. In addition to PM2.5 generated by

biomass burning, such as Organic Carbons (OC), wildfires release minerals and metals which ac-

cumulate in forest soils and vegetation from atmospheric deposition. Nearby historical industrial

activity is strongly related to the amount of lead and mercury re-released by fires into the atmo-

sphere, with these re-emissions representing a significant fraction of atmospheric concentrations.

Once generated, emissions travel upward at varying speeds depending on a variety of factors,

resulting in a heterogeneous vertical distribution of pollutants in a fire. This vertical distribution

then interacts with ambient pressure and wind conditions which result in airborne transport of emis-

sions downwind. Emitted particles (and gases) interact with weather conditions heterogeneously,

resulting in relative downwind changes in concentrations that vary by pollutant. Dry deposition is

a set of processes by which pollutant concentrations decrease through contact with surfaces, which

include gravitational settling and interception (collision with trees, buildings, etc.). Wet deposition

is a set of processes by which atmospheric hydrometeors (e.g., precipitation) absorb particles.

I utilize a sequence of wildfire models that exploit several facets of these wildfire emissions

and pollution transport processes to predict the contribution to PM2.5 levels from wildfires. The

computational workflow is explicitly described in Appendix Section A.2.1; Figure 2 depicts the

workflow visually. Historical fire events are input into the BlueSky Framework, where fuel load-

ings, fuel consumption, emissions, and vertical plume rise are estimated; these are fed as emission

sources into HYSPLIT, which calculates the concentations’ trajectory and dispersion from each

source; hourly spatial concentration estimates are calculated at an approximately 1600km2 reso-

lution (approximately 5,000 unique points in the continental US); then, the HYSPLIT predicted

concentrations are sampled at pollution monitoring station locations and averaged by county and

month to create a monthly panel of county averages of wildfire pollution.

2.1.3 Modeling Tools

The interface between wildfire management and air quality standards has prompted extensive de-

velopment of tools in the last two decades to appraise the downwind impacts of wildfires. Begin-
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ning in 2003, the National Oceanic and Atmospheric Administration (NOAA) developed and im-

plemented the Smoke Forecasting System (SFS) to provide operational forecasts of wildfire PM2.5

(Rolph et al. 2008). A central tool in the NOAA SFS is the BlueSky Framework (BSF), a model-

ing framework which connects independently developed models of fuel loading, fire consumption,

fire emissions, and atmospheric transport (Larkin et al. 2009). The BSF has also been used in

development of regional forecasting systems in the Pacific Northwest (O’Neill et al. 2009). The

BSF readily accommodates several popular models of each component of the modeling process.

The Fuel Characteristic Classification System (FCCS) is a 1km-resolution spatial map of fu-

elbed types across the continental United States developed from a combination of fuel photo se-

ries, scientific literature, satellite imagery, and expert opinions (Ottmar et al. 2007). CONSUME

3.0 predicts how the amount of fuel consumption for a given fire event divides between flaming,

smouldering, and residual phases, each of which have unique contributions to emissions due to

differences in combustion efficiency (Prichard et al. 2005). The Fire Emissions Production Simu-

lator (FEPS) is a software module that simulates emission production and plume buoyancy based

on a provided consumption profile (Anderson et al. 2004). FEPS is capable of fuel consumption

calculations, but this functionality is replaced by CONSUME 3.0 in this modeling process. These

three modules have all been used, via the BSF, in the development of national fire emissions in-

ventories since 2008. Lastly, the Hybrid Single-Particle Lagrangian Integrated Trajectory model

(HYSPLIT) is a system which uses gridded meteorological data to simulate airmass trajectories,

dispersion of concentrations from pollutant plumes, and deposition processes (Draxler and Hess

1997). In addition to being used in the NOAA SFS, HYPSLIT has been used in hundreds of appli-

cations, such as modeling fallout dispersion from the Fukushima Daichii nuclear disaster (Draxler

et al. 2013), African dust transport to the Iberian peninsula (Escudero et al. 2006), and dispersion

of particulate heavy metals from industrial emission sources in Spain (Chen et al. 2013).
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2.2 Birth and Mortality Data

Data on the population of births, linked infant deaths, and mortality events in the United States

for 2004-2010 come from the U.S. Center for Disease Control’s (CDC) National Center for Health

Statistics’ (NCHS) National Vital Statistics System (NVSS). Data sets contain all non-identifying

information recorded on birth and death certificates. Each birth record contains the year and month

of the birth event in addition to important perinatal health outcomes, such as birthweight, Apgar

scores, estimated gestation, birth complications, and characteristics of the mother and father of the

child. Table 3 summarizes these outcomes by gestational category (full-term and pre-term). The

mortality data contain individual death records, which include the year and month, county, cause

of death, and characteristics of the deceased individual (race, gender, and education). For 2005

and beyond, county identifiers are censored for all counties with fewer than 100,000 individuals.

Causes of death are coded into 39 groups, in accordance with the latest classifications of the

International Statistical Classification of Diseases and Related Health Problems (ICD-10). County-

by-month mortality rates for each cause are calculated by summing counts from the 34 categories

causes of death, including cancers, heart failure, respiratory disease, and other diseases and divid-

ing by a population measure. The population estimates used to calculate rates per 100,000 indi-

viduals are from the CDC NCHS Bridged-Race Population Estimates, a set of annual intercensal

county population estimates with breakdowns by sex, age, and race. I generate an “all-cause” rate

from all non-external, non-accidental causes of death for the general population, and by gender,

and infant, child, and 10-year age groups. Table 2 reports summary statistics for mortality rates in

the sample.

2.3 Ambient Air Pollution and Weather Data

Daily average monitoring station observations of pollutant levels are gathered from the U.S. En-

vironmental Protection Agency’s Air Quality System (AQS), a centralized database of pollutant

measurements from state and federal monitors. The geographic and temporal distribution of mea-
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surements varies widely by pollutant. The PM2.5 Chemical Speciation Network provides measure-

ments of PM2.5 subspecies of interest, such as metals and nitrates. Some stations collect data at

weekly rather than daily frequency. For county-months with missing station-days, I use the average

of nonmissing observations by first averaging to monthly station observations, and then averaging

station-month values to county-month values. County-months with no station observations are ex-

cluded from the sample. For birth and death outcomes, I define the mother’s and decedent’s county

of residences, respectively, as the aggregate geographic units for calculating pollution exposure.

For local weather measures, I use data from the North America Land Data Assimilation System on

average monthly daily maximum and minimum air temperatures and monthly precipitation quan-

tities for each U.S. county. These data were drawn from the CDC WONDER database. This data

source is distinct from the meteorological reanalysis data used as inputs into the pollution transport

model.

3 Econometric Approach

3.1 Statistical Model

I consider the following linear model of health outcome yit with a K× 1 vector of endogenous

variables representing pollution levels, Pit , and a set of unobserved effects:

yit = Pitβ+Ritψ+αi +git(t)+ εit (1)

Pkit = zitγk +Ritψ
f
k +ηki + fki(t)+ vkit (2)

git(t) = ci,a(t)+ si,m(t)+ τiω(t) (3)

fki(t) = c f
ki,a(t)+ s f

ki,m(t)+ τ
f
kiω(t) (4)
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Equation (1) shows the relationship between the health outcome (e.g., mean birthweight) yit

and pollutants Pit for county i in month t. Rit is a set of time-varying county characteristics, αi

represents a county fixed effect, and gi(t) generally represents time-varying unobserved hetero-

geneity. εit is an idiosyncratic error term which may generally be correlated with Pit . Equation

(2) represents the first stage relationship between pollutant k and the vector of at least K excluded

modeled wildfire pollution instruments, zit , with a set of fixed effects ηki and fki(t) matching those

in equation (1). Equation (3) defines gi(t) as the sum of sets of region-year fixed effects ci,a(t),

region-month (seasonal) effects si,m(t), and arbitrary regional time trends τiω(t). a(t) and m(t)

are functions which convert the global time index t to the correct calendar year (e.g., 2004) and

calendar month (e.g., July) indices. “Region” can generally refer to any geographic unit which

hierarchically nests counties, including counties, states, and NCDC climate regions. Equation (4)

defines fki(t) in parallel to (3) for Pkit (except naturally requiring that fixed effects vary by pollutant

k).

Region-year fixed effects account for annual trends in the health outcome including those

driven by changes in pollution from sources other than wildfires. This includes region-specific

climatological changes and regulatory responses to wildfire incidence or pollution, which might

simultaneously affect both wildfire incidence and health outcomes. Region-month fixed effects

account for unobserved persistent seasonal differences between regions, such as weather patterns

that drive seasonality in wildfire incidence and health outcomes. Including fixed effects increases

the plausibility of the assumption that the instrument is exogenous in equation 1; namely, that

E[εit |zit ,Rit ,αi,git(t)] = 0.

3.2 Identification

The structural model of atmospheric transport represented by HYPSLIT seamlessly combines

emission inputs, trajectory and dispersion calculations, and pollutant removal from the atmosphere

through deposition processes to form a single, powerful instrument in the form of a predicted

concentration. The dominant source of variation in simulated pollution concentrations using the
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HYSPLIT-based modeling framework is the common movement of air parcels (i.e., wind). How-

ever, fuel loadings, wet deposition, and dry deposition generate some independent variation among

pollutant types that can separately identify their effects. The possibility of separate identification

of pollutants breaks down as the pollutants become more similar in the ways that HYSPLIT is able

to distinguish them; modeled concentrations of similar pollutants are highly collinear. A corol-

lary of this is that even a perfectly calibrated pollutant instrument will also proxy for the effects

of its unmodeled close chemical neighbors, potentially causing bias in estimates of the effect of

a specific pollutant species. In the modeling framework used here, variation in downwind wild-

fire PM2.5 independent from other wildfire pollutants is identified primarily by differences in fuel

composition at the wildfire and deposition rates between PM2.5 and gases. Interpretation of the

estimated effects is complicated by heterogeneous effects, especially those driven by the chemical

composition of the PM2.5 that is statistically identified; this complication is examined in Section

4.1.2. These problems hold true for nearly any attempt to identify the effects of PM2.5.

Previous studies have similary exploited atmospheric phenomena and pollutant characteristics

through regression interactions. For example, Schlenker and Walker (2011) interact airport taxi

time with wind speed to separately identify CO and NO2, which may be explained by differing dry

deposition rates between CO and NO2. NO2 has a higher deposition velocity than CO. Assum-

ing a fixed emission ratio of CO to NO2, higher wind speeds will carry parcels of both pollutants

equally far but deposit more NO2 than CO, resulting in an increasing ratio of CO to NO2 in dis-

tance from the airport. An alternative explanation they supply is that higher wind speeds change

the composition of emissions from airplane engines to be more NO2-heavy. Both deposition dif-

ferences across pollutants and differences in emissions ratios for specific events would be captured

by HYSPLIT’s deposition modeling process, with the practical drawback that one must be specific

about deposition characteristics and emissions quantities in HYSPLIT’s setup.
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3.3 Testing and Controlling for Effects from Multiple Pollutants

3.3.1 Controlling for Multiple Wildfire Pollutants

In the ideal empirical setting, one would have a large enough dataset with measurements of all

species of interest with identifying instruments for each species and estimate the effects of multiple

endogenous variables using 2SLS or otherwise appropriate IV estimator. In reality, station cover-

age is limited to fewer than 20% of county-month observations in the sample period, and further

limited when overlapping species measurements are required. The generation of strong identifying

instruments may be both scientifically constrained by the quality of models and practically con-

strained by computational power. In lieu of the ideal estimation of all pollutants’ coefficients, it

is feasible to consistently estimate a single structural parameter of interest (in this case PM2.5’s

effect) without any concern for the structural parameter values for other pollutants. Generally,

evidence for a consistent estimate of the effect of PM2.5 can be established by exhausting poten-

tial confounding causal pathways through a combination of control variables and pre-testing for

omitted variables.2

Under the assumption that estimates using the wildfire pollution instrument will reflect effects

causally originating with wildfire events only, the primary risk of confounding comes from omit-

ted pollutants which are correlated with the wildfire instrument. A measure of downwind PM2.5

from a wildfire will be correlated with other pollutants emitted concurrently in the same fire’s com-

bustion processes, which will also share at least some of its atmospheric trajectory. For example,

wildfires simultaneously emit quantities of PM2.5 and NO2, and their atmospheric destinations are

highly correlated. In this framework, the health-effect parameter for PM2.5, βPM25, can be iden-

tified either through joint IV estimation of all pollutants, or through single-variable IV estimation

of PM2.5 alone with controls for pollutants from the same source. This equivalence is motivated

by writing the reduced form for equation 1 as follows, only substituting the endogenous variable

representing PM2.5 using the first stage based on a single instrument for wildfire PM2.5

2Causal pathways can also be credibly ruled out using evidence from rigorous studies that find no effects of an
omitted explanator on the outcome of interest, but I do not do this here.
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yit = zpm25,itηpm25 +PB,itηB +ϒk,it + ε
∗
it (5)

zk,it is defined as pollutant k originating from wildfires. PB,it is the vector of all pollutants

excluding PM2.5 originating from all sources. For brevity, define ϒk,it as the composite set of

controls and effects and ε∗it as a composite error term for equation 1. Partition each pollutant k

into its concentration from wildfires and its concentration from all other sources, defining PB,it =

zB,it + P̃B,it . Then,

yit = zpm25,itηpm25 + zB,itη
w f
B +ϒk,it + P̃B,it η̃B + ε

∗
it (6)

Because wildfire PM2.5 in part shares common emission and transport processes with other

pollutants from fires, PM2.5 and other wildfire pollution are correlated: E[zB,it |zpm25,it ,ϒk,it ] 6= 0.

Uncontroversially, E[P̃B,it |zpm25,it ,ϒk,it ] = 0 is a core assumption for the validity of the instrument;

wildfire PM2.5 must be orthogonal to any pollutants in B from all non-wildfire sources. The

reduced-form regression of y on zpm25 will be inconsistent for ηpm25. However, zB,it is observed

by virtue of the same modeling process that generates zpm25, and the reduced-form regression of y

on zpm25 and zB produces a consistent estimate for ηpm25. Correspondingly, provided the other key

assumptions for the consistency of IV are met, IV estimation of y on Ppm25 and zB with (zpm25, zB)

as instruments is consistent for βpm25. While both the joint IV estimation and the single-variable

IV procedures will be consistent for βPM25, single-variable IV is far more feasible to implement;

it only requires station observations of PM2.5, an instrument for PM2.5, and adequate controls

for correlated pollutants. In some cases, modeled pollutants may be sufficient as controls but

not sufficient as identifying instruments; joint IV estimation of PM2.5 and NO2 with a strong

instrument for PM2.5 and weak instrument for NO2 may result in an inferior estimate for PM2.5

compared to the corresponding consistent one-variable IV estimate for PM2.5.

An alternative solution to creating an instrument or proxy is to use the endogenous measure

of the omitted variable as a control, but in the pollution setting this is not always feasible. First,

measurement coverage for each pollutant species incompletely overlaps both across stations and
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time. Second, while the quality of station measurements for a particular species might be sufficient

for determining whether wildfires have an impact on concentrations of that species in a station-by-

station analysis, they may not be appropriate measures of concentrations for aggregate geographic

regions used to measure health outcomes (i.e., counties in this paper). Relatedly, to the extent

that station measurements (whether due to direct station mismeasurement or spatial error) fail to

capture variation from wildfires due to measurement error, the control would fail to account for the

influence of the omitted variable. The estimates in this paper instead use the equivalent of a proxy

for pollutants emitted from wildfires as controls, thereby reducing or removing their confounding

role.

3.3.2 Pre-testing for Omitted Pollutants

It is possible to meaningfully pre-test for potential omitted variables provided there are observa-

tions containing values of both the omitted variable and the instrument. Sufficient power in the test

obviates the need to develop instruments or controls for the omitted variable if the test is negative.

The test is to run a pseudo-first-stage regression of the suspected omitted variable on the current

set of instruments and controls and checking whether the current instruments are jointly significant

predictors of the proposed omitted variable. In practice, a researcher may not be able to develop an

adequate identifying instrument or proxy for the potential omitted variable, and she might not be

able to directly control for measures of the omitted variable without losing sample size (or relying

on imputation methods). The creation of new instruments or proxies for new pollutant species is

constrained practically by computational requirements and development time for accurate emission

factors and deposition parameters. Separate identification of pollutants is also statistically limited

by the mechanical richness of the modeling process. As separate identification of pollutants in the

modeling process used here is driven by differential emissions and deposition behavior, pollutants

with very similar emission and deposition properties will be weakly identifiable unless some part

of the modeling process is upgraded to exploit other differences in characteristics not accounted

for by HYSPLIT (e.g., buoyancy, aerodynamic, or photochemical properties).
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To illustrate, consider a simple two-pollutant example with Pollutant A and Pollutant B and

a wildfire-generated measure of Pollutant A as an identifying instrument. Assume we have a

prior belief that Pollutant B causes mortality. If Pollutant B is positively correlated with wildfire-

generated Pollutant A, then an instrumental variables regression of mortality on Pollutant A with

wildfire-generated Pollutant A as an instrument and no control for Pollutant B will be biased up-

ward due to the confounding effect of Pollutant B. Hence, a pseudo-first-stage regression of Pol-

lutant B observations on wildfire-generated Pollutant A which produces a significantly positive

coefficient on wildfire-generated Pollutant A is interpreted as evidence of this upward bias (in

context of the prior belief that Pollutant B has an effect on mortality).

This test for omitted variables holds under one additional assumption: the direction, but not

necessarily the magnitude, of the average partial effect of the instrument is the same between

the samples used for testing and estimation. If the instrument is monotonically related to the

endogenous variable of interest for the population, this assumption is satisfied. For the relationship

between wildfire-generated pollution to observed pollution, these assumptions are likely to hold.

While there may be first-stage heterogeneous effects of the modeled wildfire-generated pollution

(either due to heterogeneous modeling error or because of true heterogeneity in the world due to

chemistry or other processes), I assume that effects are bounded by zero. With the exception of a

few highly reactive pollutants and/or pollutants with low atmospheric quantities, wildfire pollution

can be generally expected to homogeneously weakly increase (or decrease) each pollutant type

across geographic location and time. Let superscript A and superscript B denote that the variable is

drawn from estimation sample’s and testing sample’s subpopulations, respectively. The assumption

can be written as

∂E(PA
it |zA

it ,R
A
it ,η

A
ki, f A

ki(t))
∂zA

it
> 0⇐⇒

∂E(PB
it |zB

it ,R
B
it ,η

B
ki, f B

ki(t))
∂zB

it
> 0. (7)

In the linear case, this simply translates to the pseudo-first-stage coefficients having the same

direction in each sample (i.e., γA
k > 0⇐⇒ γB

k > 0). The corresponding hypothesis test is of H0 :

γA
k = γB

k = 0, HA : γA
k 6= 0 using the t-test of H0 : γB

k = 0 from the regression using the testing sample
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B. Because of sampling error, failure to reject the null does not rule out omitted pollutants, but the

estimate’s confidence interval can be informative of the largest effect that is statistically supported

by the given estimate. The true coefficient in the testing sample could be substantively smaller

than the coefficient in the estimation sample, in which case the confidence interval bound may be

misleadingly low. A more stringent assumption, which would imply (7), is similar to the necessary

assumption for the consistency of two-sample IV estimators: γA
k = γB

k . This assumption permits a

more literal interpretation of the coefficients and confidence intervals when the omitted variables

test is conducted with a set of observations that is not identical to that being used to estimate the

equation of interest. I perform and interpret this test for criteria and organic gases in Section 4.1.1.

4 Results

4.1 Wildfires’ Effect on Ambient Air Quality

4.1.1 First Stage: Wildfires’ Effect on Ambient Concentrations of Pollutants

Wildfires have a considerable impact on urban air quality, and noticeably and dangerously so for

larger wildfires close to urban centers. The wildfire PM2.5 instrument is a strong predictor of

PM2.5, but also captures some of the relationship between wildfires and other criteria pollutants.

For each pollutant, I regress the county-monthly average of its station values on the county-monthly

average of the wildfire PM2.5 instrument (sampled at the station sites), and I control for county,

state-year, and state-month fixed effects, and quadratics of average minimum temperature, max-

imum temperature, and precipitation. I measure the average contribution by wildfires for each

pollutant’s concentration in the estimation sample by calculating its partial fitted value zit γ̂
B, and

calculate the percentage of all concentrations of that pollutant attributable to the instrument by

dividing by the average measured concentration. These percentages can be interpreted as lower

bounds of the amount of each pollutant attributable to wildfires in the CONUS. I repeat this pro-

cedure controlling for estimates of NO2, SO2, NH3, and organic (VOC) gases from wildfires and

assess how a unit increase in the wildfire instrument predicts downwind concentrations of criteria
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gases, organic gases, and PM2.5 subspecies. In another specification, I control for only wildfire

NO2 and SO2.

Panel A in Tables 4, 6, and 5 shows the estimated regression coefficients and percentage of av-

erage ambient concentrations contributed by wildfires for criteria pollutants, non-metallic PM2.5,

and five of the most toxic PM2.5 species. Appendix Tables 16 through 20 repeat this exercise for all

other metallic PM2.5 species. Under the assumption that the estimated coefficients reflect purely

causal relationships, the maximum of the wildfire percentage of ambient concentration across dif-

ferent control pollutant specifications can be interpreted as an estimated lower bound on the true

percentage of ambient concentrations caused by wildfires. Assuming the station sets are represen-

tative of the U.S., the instrument predicts nearly 15% of PM2.5 levels and 5% of PM10 levels.

Controlling for non-PM2.5 species alters the distribution of pollutants predicted by the instrument,

which has significant implications for health effects estimates. Panel B of the pollution regres-

sion tables report the estimated coefficients for the regression with controls for other pollutants.

The wildfire instrument ceases to be a statistically (and chemically) significant predictor of PM10,

while still predicting 15% of PM2.5 mass.

Interpreting hypothesis tests for these estimates as the omitted variables test described in Sec-

tion 3.3 for IV estimates with no controls for other pollutants, we expect the effect identified by

the wildfire PM2.5 instrument to be biased upward by any health effects of non-PM2.5 pollutants

that are significantly associated with the PM2.5 instrument. Hence, PM10 and two criteria gases,

O3 and NO2, are possible confounders, though the contributions predicted by the instrument for

these pollutants are only 4.7%, 3%, and 5.7% of ambient levels. Organic gases are insignificantly

predicted, both statistically and in magnitude. Because of sampling error, this test does not rule

out that other pollutants with statistically insignificant coefficients may still confound estimates,

especially if their 95% confidence interval upper bound is a quantity that could have meaningful

health effects. For example, benzene is insignificantly predicted at 6% of total concentrations, but

its confidence interval upper bound is 16.2% of benzene, which is arguably a quantity that could

have a marginal health impact. Benzene concentrations may only be poorly detected statistically;
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short-lived organic gases, such as m-xylene and toluene (8 to 48 hours, Prinn et al. 1987) show

neither statistically nor substantively significant effects, while benzene has a comparatively long

atmospheric lifetime (2 weeks to 2 months).

Wildfires have the unique property of inducing changes in PM2.5 almost uniformly across both

highly and lightly polluted areas. This property is favorable to estimating population-representative

effects, since an area’s non-wildfire pollution levels drives nonlinear dose response and might also

be correlated with effect heterogeneity due to other factors (e.g., highly-polluted areas also have

low-income individuals who are more vulnerable to pollution shocks). Figure 4a shows a quantile-

quantile plot of all PM2.5 against the estimated implied counterfactual PM2.5 (a world with no

wildfire PM2.5), with each point representing the numerical values at which the same quantile

occurs in each distribution. The quantile relationships are approximately parallel to the line of

distributional equivalence and shifted upward, suggesting that wildfire PM2.5 largely preserves

the shape of the distribution of PM2.5 and only shifts the mean. For comparison, Figure 4b shows

a comparable quantile-quantile plot when the counterfactual is estimated using the same set of

fixed effects and station observations (i.e., a pure panel data approach) instead of fixed effects-IV,

revealing a considerably different distribution of margins of change for PM2.5 driven mostly by

left- and right-tail behavior.

4.1.2 PM2.5 Chemical Composition Identified by Wildfire Instrument

The types and quantities of PM2.5 predicted by the instrument significantly change when non-

PM2.5 controls are included. Section 4.2.2 outlines an argument for how this changes the inter-

pretation of health effects estimates because of changes in the level of toxicity per unit PM2.5.

While the total mass of PM2.5 predicted by the instrument only decreases by 10%, the fractions of

subspecies groups change significantly. In the non-metallic category, Organic Carbons decrease in

concentration by 60-75% per unit wildfire PM2.5, Elemental Carbons by 40-50%, and hydrogen

PM2.5 by 70-85%. Bromine PM2.5 increases by 100%, and nitrates by 50%, while the influence

of sulfates stays approximately the same. Several metallic PM2.5 species become more strongly
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represented per unit of wildfire PM2.5 by at least 50%: Arsenic, Lead, Nickel, Mercury, Cad-

mium, Barium, Cesium, Cobalt, Gallium, Lanthanum, Selenium, Niobium, and Rubidium. The

estimated fraction of atmospheric mercury PM2.5 attributable to wildfires becomes approximately

30 percent, parallel to the fraction established in an inventory of mercury wildfire emissions in the

U.S. (Wiedenmyer and Friedli 2007). Predicted arsenic increases by a factor of nearly 30, now

accounting for 19 percent of ambient arsenic concentrations. Lead, Nickel, and Cadmium are also

all significantly enhanced per unit wildfire PM2.5.

The speciated PM2.5 data present a fairly complete picture of PM2.5 in the U.S. Over 81%

of average PM2.5 concentration is accounted for by the subspecies I model. The remaining un-

explained PM2.5 concentration may be due to known PM2.5 species which I measure imperfectly

or not at all (such as sea salt and dust) and differences in mean concentrations between the PM2.5

Speciation network and general PM2.5 station samples. Moreover, heterogeneous coefficients

between testing and estimation samples are not likely to drive most of the results. The number

of observations measuring total PM2.5 exceeds the number of observations measuring individual

species by 20,000 to 30,000, driven mostly by spatial variation in station coverage. Despite the

disparity in spatial sampling, the instrument’s estimated effect on total PM2.5 concentration is

closely matched by the sum of coefficients for individual PM2.5 species (in the no-controls case,

a less than 1% difference). This suggests that any between-sample differences in the relationship

between the wildfire instrument and pollutants are mean-zero across PM2.5 subspecies.

Some coefficients for metallic species are negative. The causal interpretation for negative co-

efficients is that something in the pollutant plume causes a chemical reaction that removes quan-

tities of another species or its precursors (e.g., through oxidation or binding). Many metal PM2.5

species, including mercury, are defined as the metal bound to other airborne particles, such as black

carbon (soot). Chemical reactions with wildfire emissions may change such metals back to their

gaseous phases, or additional substances may bind to and change the particle to a larger size class.

Another possibility is that the relationship is not causal. The PM2.5 instrument is generated using a

set of emissions factors for all PM2.5. If there is geographic heterogeneity of subspecies emissions

21



(e.g., aluminum, silicon, and other metals) that is negatively correlated with the total amount of

PM2.5 emitted, high downwind PM2.5 values will also be negatively correlated with those metals.

The final possibility is that stations’ measurement methods may have some systematic measure-

ment error for subspecies measurements that varies with the amount of other substances in the

air.

4.2 Short-term Effects on Mortality

4.2.1 Short-term Effects of PM2.5 on All-Cause Mortality

Panel A of Table 8 reports the 2SLS estimates of the effect of average monthly PM2.5 on monthly

all-cause mortality rates using wildfire PM2.5 as an instrument, each column reporting a specifi-

cation with a different set of fixed effects. Estimates range from 0.67 to 1.05 additional deaths

per 100,000 people per monthly 10µgm−3 increase in PM2.5. Panel D reports OLS estimates

with the same fixed effects and weather controls as the 2SLS estimates; they are insignificant and

sharply estimated close to zero, reflecting the important role of exposure measurement error and

omitted variables causing downward bias. Estimated effects using 2SLS increase with the inclu-

sion of more stringent region-specific fixed effects, providing some evidence of region-specific

confounders to wildfire PM2.5 such as unobserved seasonal weather factors or endogenous an-

nual policy responses to poor air quality or high wildfire activity. It is also partially explainable

by changes in the finite-sample bias of the 2SLS estimator across specifications because of rel-

ative changes in the ratio of endogeneity in PM2.5 to the strength of the first-stage relationship

(see Appendix A.5); however, confidence intervals based on the inverted Anderson-Rubin test

statistic (Anderson and Rubin 1949; Finlay and Magnusson 2009) are very close to the conven-

tional asymptotic confidence intervals, which is evidence against any meaningful bias from weak

instruments. Finally, these changes can be attributable to changes in the PM2.5 composition iden-

tified by wildfire PM2.5, since different fixed effects may remove certain correspondingly invariant

characteristics of wildfire PM2.5. The effect size in column 4 translates to approximately 39,230
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premature deaths per year in the U.S. due to monthly exposure to PM2.5, based on the 2010 U.S.

population and assuming the sample average PM2.5 of 10.6µgm−3 is representative of the entire

U.S. I find evidence that many of these deaths are driven by forward displacement of mortality

within six months in Section 4.2.5.

OLS estimates may be downward-biased because of some combination of correlated unobserv-

ables not removed by fixed effects or measurement errors (potentially worsened by fixed effects).

The traditional culprits for bias, such as residential sorting, seasonality, and coincidental trends pre-

sumably have their influence removed by the stringent fixed effects imposed in each specification.

The identifying variation for the OLS estimates remaining is based on within-region, within-year,

within-season comparisons, with variation likely to be driven by the totality of incidental vari-

ations in PM2.5 emissions and weather patterns. Co-emission would bias estimates upward, as

changes in PM2.5 emissions would likely be accompanied by changes in other pollutants. On the

other hand, the activities underlying emissions of PM2.5 are likely correlated with several time-

varying economic and health behavior processes, including changes in traffic, smoking and drug

use, short-term health inputs, physical activity, and stressful events.

More likely is that measurement error plays a significant role in shrinking both OLS and 2SLS

estimates toward zero, though the 2SLS estimate corrects this measurement error to the extent that

both PM2.5 and the wildfire PM2.5 are characterized by classical measurement error. County-level

averages of PM2.5 and the wildfire PM2.5 instrument are calculated from raw averages of mea-

surements at the sites of pollution monitors, which are not always spatially representative. In the

traditional errors-in-variables setup, nonzero correlation between the true value of the regressor

and the measurement error (i.e., non-classical error) has different implications for bias (expression

in Appendix A.4). In the case of negative correlation large enough relative to the signal value of the

mismeasured regressor, the coefficient estimate can also reverse sign. Stations tend to be located

in more densely populated and plausibly more polluted areas. More densely populated areas have

higher pollution but would have their aggregate exposures well-measured by local station obser-

vations. Less-densely populated and less-polluted areas will use information on PM2.5 from more
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highly-populated areas, resulting in overestimation of PM2.5 levels. The combination of these two

factors may result in a negative correlation between the measurement error and PM2.5 levels.

Table 11 reports estimates by age group, revealing that the observed aggregate effects are pri-

marily driven by the three age groups over age 65. Elderly individuals are more likely to be living

at vulnerable health margins, and thus are more susceptible to a relatively short-term shock to

pollution cause a life-threatening health complication. Also (not reported in tables), the estimated

effect is twice as large for women as it is for men. Similarly, Chen et al. (2005) find a higher in-

creased relative risk for females for fatal heart disease and Kunzli et al. (2005) for atherosclerosis

from PM2.5 exposure.

4.2.2 Heterogeneous Effects of PM2.5 by Chemical Composition

The inclusion of any of the controls for other pollutants results in a sharp increase in the estimated

effect of PM2.5 on all-cause mortality by about two and a half times (Panels B and C, Table 8).

In tandem with the distinctive changes in composition across the specifications observed in Sec-

tion 4.1.2, the increase in mortality estimates with additional controls suggests that PM2.5 has

heterogeneous effects that depend on its underlying chemical composition. Because of changes

in the toxicological properties of the PM2.5 whose effects are being measured, the interpretation

of changes in effect estimates across different identification strategies is potentially ambiguous,

even when the regions and emissions sources being studied are identical across estimation meth-

ods. In a homogeneous-effects world, a pollutant A’s health effect estimate is biased upward by

the effect of harmful pollutant B co-emitted from wildfires, implying that including controls for

pollutant B would make the estimated effect of pollutant A smaller in expectation. This property

does not always hold if there are heterogeneous effects from chemical composition. Specifically,

heterogeneous chemical composition may result in some controls removing the statistical influ-

ence of some subspecies of pollutant A in favor of more harmful ones. A 1µgm−3 increase in

ambient PM2.5 induced by general wildfire PM2.5 will have a smaller marginal health impact than

a 1µgm−3 increase of wildfire-emitted PM2.5 subspecies with above-average toxicity. Control-
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ling for another wildfire pollutant eliminates variation from emissions and atmospheric trajectory

components common between the control pollutant and PM2.5 in the identification of the PM2.5

coefficient, resulting in greater weight on identification idiosyncratic to the fuel type at the fire and

deposition behavior. For example, Organic Carbons (OC), common byproducts of primary com-

bustion, are a major constituent of wildfire emissions by mass across all wildfire fuel types and

would thus have a large part of their influence removed by including any other wildfire pollutant

controls due to their commonality to all fires.3

Because including controls changes the breakdown of PM2.5 that is identifying the effect to

favor relatively more mass from highly toxic species (as demonstrated in Section 4.1.2), we can not

unequivocally expect including controls to have a net downward effect on the magnitude of health

effects estimates. Hence, the increase in mortality estimates is prima facie evidence of large com-

positional effects in PM2.5. As shown in Section 4.1.2, the specifications in Panel B and Panel C

reflect changes in PM2.5 composed of greater proportions of metals and nitrates than the no-control

specifications in Panel A. A common finding in the epidemiological and medical literature is that

PM2.5 effects are higher in the presence of metallic PM2.5 subspecies. Bell (2012) finds 15%

larger PM2.5 effect estimates for cardiovascular and respiratory morbidity when ambient Nickel

(N) is elevated. In a study of rats, Pozzi et al. (2003) find evidence that inflammatory response

from particulates is driven by contaminants adsorpted onto particles by comparing inflammatory

responses between exposures to urban-sampled particulate matter and pure black carbon.

There are also some shifts in predictions of criteria and organic gases depending on the set

of pollutant controls, suggesting a potential role of changing correlations with omitted pollutants

driving the increase in mortality effects. However, the loss of PM2.5 mass from carbons and

gain from metals is roughly stable across estimates using different pollutant control groups; the

changes in estimated mass contributions by the instrument to these gaseous species varies widely

with control groups; and estimates are relatively stable across control group sets after the first

3Also, the deposition parameters chosen for PM2.5 place relatively more weight on PM2.5 species whose deposi-
tion characteristics mimic the chosen parameters most closely. This has ambiguous estimation consequences without
further investigation of the distribution of emission deposition characteristics across PM2.5 subspecies.
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control pollutant is included. While this analysis is not a substitute for joint IV estimation of

all pollutants, this is evidence that most of the increases in effects are driven by a set of PM2.5

species and not from confounding by simultaneous wildfire emissions of criteria and organic gases.

Despite attempts to control for O3 production by modeling its key precursor NO2, the instrument

predicts approximately 1ppb of O3 per 0.1µgm−3 of PM2.5 predicted by the instrument across

specifications. Bell et al. (2004) find a 0.52% increase in daily mortality per 10ppb increase in the

previous week’s O3; if this effect were true and the base mortality rate is 67.6 deaths per 100,000,

then 0.35 of the 1.04 deaths per 10µgm−3 of PM2.5 estimated with the wildfire PM2.5 instrument

and no controls are attributable to bias from O3. The estimate for O3-related bias is comparable

for the effect with all non-PM2.5 controls, but relatively smaller (0.35 of 2.68 deaths).

4.2.3 Nonlinear Effects of PM2.5

Using a control function approach to estimate nonlinear dose response of short-term mortality, I

find that the marginal effect of PM2.5 slightly declines at low concentrations (less than 5µgm−3)

and becomes approximately linear. Previous studies using multi-city time series analyses exam-

ining short-term PM2.5 dose response have also found a roughly linear relationship below the

NAAQS concentration level of 25µgm−3 for all-cause mortality (Schwartz, Laden, and Zanobetti

2002; Stieb et al. 2008); Daniels et al. (2000) additionally finds approximate linearity in PM10 for

all-cause mortality. Piecewise regressions for an endogenous variable can be easily estimated via

control function methods without the need to develop additional identifying instruments. In the

control function procedure, the first-stage regression is identical to the conventional IV first stage,

but the residuals from that regression are generated and used as a control variable in a regression

of the outcome on the endogenous variable. Results can be made further robust to endogeneity by

controlling for corresponding nonlinear functions of the control function residual, accounting for

changing correlation with the error term across the support of the endogenous variable. The only

other required assumptions are mean independence of the instrument from the structural error and

that the distribution of the first stage is correctly specified; in the case of wildfire pollution, the en-
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dogenous explanatory variable is continuous and its relationship to the instrument is conceptually

linear. Figure 5 is a graph of the fitted values and 95% confidence interval of a spline regression

dividing average monthly PM2.5 concentrations into splines by decile (denoted by vertical bars),

controlling for the linear control function residual.

4.2.4 Short-Term Effects of PM2.5 by Cause of Death

I estimate effects on mortality rates by broad cause-of-death categories using specification (4)

from Table 8, and report the results in Table 9. Unsurprisingly, the fatal effects of PM2.5 manifest

most strongly through cardiovascular and respiratory causes, consistent with prior literature. A

10µgm−3 increase in average monthly PM2.5 is associated with additional deaths from ischemic

heart disease (0.26 additional deaths per 100,000), cerebrovascular disorders (0.17), influenza and

pneumonia (0.15), and chronic lower respiratory disease (0.19). PM2.5 also has an impact (0.16)

on deaths in the ICD-10’s broad “Other Diseases” category, suggesting that PM2.5 exposures

either lead to complications for already-vulnerable individuals or also cause cardiovascular and

respiratory-related deaths for individuals whose cause of death is coded in accordance with the

presence of another major health condition.

These wide-ranging effects are supported by the medical literature, which generally finds var-

ious undesirable immune system and other bodily responses to fine particulates. Proposed patho-

physiological pathways for short-term effects to exposure of PM reviewed in Brook et al. (2010)

and Pope et al. (2003) include the production of proinflammatory cytokines that create a systemic

inflammatory response affecting bodily areas outside the lungs (also in van Eeden et al. 2001),

systemic oxidative stress, changes in coagulation, changes in blood pressure, impaired vascular

function, and increased heart rate variability. Brook et al. (2010) cite some conflicting evidence on

the effects of particulates on biomarkers for these pathways, likely due to heterogeneity in chemi-

cal composition and exposure duration and intensity, but nevertheless reveal a common association

between PM2.5 and important biomarkers related elevated risks of cardiovascular and respiratory

morbidity. Specific studies have also specifically tied certain types of morbidity to particulate pol-
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lution, such as pneumonia (Zeikloff et al. 2002; Zeikloff et al. 2003) and chronic obstructive

pulmonary disease (MacNee and Donaldson 2003). There are also research findings which asso-

ciate subspecies with certain respiratory and cardiovascular health effects. Dye et al. (2001) find

pulmonary injury in rats after exposure to PM2.5 subcomponents, with suggestive evidence of the

high pulmonary toxicity of metal particulates, while Huang and Ghio (2006) implicate arsenic,

mercury, and nickel exposure as causes for anemia, tachycardia, and increased blood pressure.

The inclusion of the wildfire non-PM2.5 pollution controls show the corresponding increases

of toxicity of implied changes in PM2.5 across these dominant causes of death. Effects per unit

mass PM2.5 on increase by factors of approximately 1.8 for ischemic heart disease and cere-

brovascular deaths and 2.3 for chronic lower respiratory deaths, while increasing by a factor of 3

for influenza/pneumonia and other disease-related deaths (though individually remain within sam-

pling error of the no-control effect sizes). Assuming these accurately represent the comparative

magnitudes of true effects and that changes in identified PM2.5 composition explain most of the

estimated increase in mortality per unit mass, this implies greater toxicity of PM2.5 metals for

respiratory and general illnesses relative to cardiovascular illnesses. One explanation is that metals

interfere with antimicrobial processes in the lungs, thereby raising the risk and severity of infec-

tion. Systemic inflammatory response may also inhibit the body’s ability to fight infections outside

the lungs.

As a sensitivity check, I estimate whether wildfire-instrumented PM2.5 has an impact on ex-

ternal causes of death (Table 10), with rationale comparable to Heutel and Ruhm (2013): if effect

estimates are driven by confounding variation from seasonal or trending factors related to both

wildfires and mortality, then external causes of death physiologically unrelated to wildfires might

show an effect. I consider 5 outcome groups as classified by the ICD-10: deaths from motor vehi-

cle accidents, accidents, suicides, assaults/homicides, and from “all other external and unspecified

causes.” Motor vehicle accidents may regardless be affected by wildfires in extreme cases, as wild-

fires near major roadways can rapidly impede visibility causing massive, multi-vehicle accidents

(Collins et al. 2009). ICD-10’s “all other external and unspecified” category contains deaths due
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to fire exposure and acute smoke inhalation, which would reflect the deaths of firefighters, rural

residents, campers, hikers, and other individuals who may be trapped in the vicinity of a wildfire.

However, neither of these show any relationship to wildfire smoke, which is some evidence that

wildfire pollution exposure is driven by fires distant enough to not have potential direct effects of

fire events themselves (e.g., stress caused by imminent danger or property damage). I also find

no relationship to suicides and homicides. With no wildfire pollution controls, I find a moderate,

marginally statistically significant positive effect on the deaths under the “other unspecified acci-

dents or adverse effects” category, which includes all deaths due to complications related to surgery

or medication. This result may be explained by expected increase in the frequency of medical care

being administered for increased rates of morbidity due to pollution.

4.2.5 Lagged and Lead Short-Term Associations with PM2.5

Estimating causal associations of air pollution with health outcomes is complicated by a wide

range of potential intertemporal relationships between outcome and regressor, both causal and

non-causal. There are three reasons to expect lagged pollution values to have negative effects:

forward displacement of deaths, depletion of wildfire fuel stocks combined with contemporaneous

measurement error, and denominator error in population rates due to annual population measures.

In Table 12, I report reduced form estimates of lead, lagged, and both lead and lagged effects of

the instrument on all-cause mortality, as well as the joint F-statistic of lead/lagged coefficients. I

find evidence of forward displacement and generally violations of the strict exogeneity assumption

for fixed effects estimators.

Pollution exposure causes forward displacement of an event if it causes the relocation of an

event that otherwise would have occurred to an earlier time period. Schlenker and Walker (2011)

argue that welfare impacts of air pollution through morbidity would be be overestimated if forward

displacement occurs and is not taken into account (but they test for and find no evidence of forward

displacement of hospitalizations). Unless there is a value on postponing a particular outcome, the

only negative impact pollution exposure would have on welfare is through events that counterfac-
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tually would not have existed if not for the exposure. Since everybody dies4, welfare effects of

pollution-induced mortality can only be measured through the average change in life expectancy.

Short-term pollution exposures may primarily only affect those who would otherwise die within a

few months, but forward displacement of mortality in this sense is still economically meaningful

as long as individuals place positive value on an additional month of life, though one might expect

that such value is lower than that of a healthy working individual. The estimates in the second

column reveal significant forward displacement.

If wildfire smoke is measured with substantial error, part of the error term of observed pollution

is a function of the true level of wildfire pollution, which may in turn be predicted by past (or future)

wildfire pollution due to fuel stock dynamics. A large wildfire may burn fuels accumulated over

long periods that are not immediately replaced. Wildfires in the near future in the same area are

well-situated to affect the same downwind areas as the past large wildfire, but likely to have smaller

sizes and shorter durations. In turn, high concentrations in the past predict low concentrations in

the present, which would result in lower present mortality.

Lastly, error in the population measure used to calculate mortality rates may cause a lagged

negative relationship between mortality and pollution to appear. I measure mortality rates using

annual intercensal estimates of population, but measure mortality effects with monthly frequency.

Holding changes due to births and migrations fixed, if contemporaneous pollution causes deaths

in one month, then the following month’s population count is too high, resulting in a measured

mortality rate lower than the true rate. The measured rate is hence negatively correlated with the

previous month’s pollution, generating downward bias in estimates of lagged effects.

Jointly significant lead and lagged effects are interpreted as evidence of violation of the strict

exogeneity assumption needed for large-N (number of cross-sectional observations) consistency

of fixed effects estimators with a small number of time periods. The inconsistency has bounds

shrinking at a rate proportional to the number of time periods (Wooldridge 2010), which in this

case is 84 months. In all three specifications I find evidence that strict exogeneity is violated.

4I was unable to find a citation for this.
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Lagged and lead effects may also be indicative of shocks correlated with the regressor that affect

multiple time periods and the outcome variable. In the wildfire setting, this may be weather or

climatological variables not adequately captured by temperature, precipitation, and annual and

seasonal regional fixed effects.

4.3 Effects on Infant Health

While infants at the most vulnerable health margins may be more likely to die from pollution

shocks, the larger population of surviving infants may have their health after birth and subsequent

quality of life impacted by in utero pollution exposure. Table 13 reports IV estimates for average

exposures over the 9 months preceding birth and 4 months preceding birth. Prenatal exposure to

PM2.5 has a strong effect on premature births, with effects concentrated in the 4 months leading

up to birth. A 10µgm−3 increase in PM2.5 over the gestational period is associated with a 2.6

percentage point increase in the number of premature births and an average decrease in gestational

age of 0.23 weeks. There are also negative, but not statistically significant effects on average birth

weight, amounting to a 19g decrease per 10µgm−3 increase in PM2.5.

As with the mortality outcomes, controlling for NO2 and SO2 strengthens effects, testament

to the increased relative toxicity of a unit change in PM2.5; in the final 4 months before birth, a

10µgm−3 increase in PM2.5 lowers average birth weights by 31g, but there is no significant in-

crease in the likelihood of low birth weight. If the increased toxicity also would result in increased

fetal attrition (weakly suggested by the increase in the effect on percentage of female births),

then this effect is likely to be occurring for healthier neonates. Alternatively, the effect could be

driven by additional growth losses for neonates who regardless of exposure would have been low

birth weight. There are at least four classes of physiological mechanisms which may explain the

observed negative associations with birth weight: intrauterine growth restriction, fetal genetic or

epigenetic changes, pollutant-DNA adducts, and premature birth (Slama et al. 2008). Prematurity

may be highly correlated with any of the other mechanisms, or the increased rates of prematurity

alone could be driving most of the effect.
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The complex interaction of birth timing, overlapping exposures between birth cohorts, and

strict exogeneity requirements for fixed effects estimators are possible hazards to identifying mean-

ingful effects of in utero exposure. Because these exposure estimates are framed relative to the

birth month, and not the month of conception, substantial harmful effects may be attributable to

displacement of unhealthy births from future cohorts into current ones via decreases in gestational

age. In the same vein, I expect that displacement due to premature births (and fetal deaths) caused

by PM2.5 exposure will cause bias in the opposite direction due to cohort composition effects, as

infants with worse health outcomes are deselected from a birth cohort and displaced into earlier

cohorts (or completely removed the sample due to fetal death). Exposure timing varies even for

births within the same month (by as much as 30 days), resulting in a mixture of true exposure

effects estimated in each exposure window. More complicatedly, if the error is not strictly exoge-

nous conditional on the exposure measures and controls, then exposure windows with a mixture of

true exposure period and non-exposure periods will reflect a mixture of exposure effects and strict

exogeneity violations (i.e., feedback between the dependent variable and lead/lagged values of the

regressor).

Attrition from fetal deaths is likely to cause downward bias in the magnitude of these estimates.

One key piece of evidence for fetal attrition is the large, albeit imprecisely estimated, effect of aver-

age exposure on the sex ratio: each 1µgm−3 increase in average PM2.5 exposure over nine months

before birth raises the percentage of female births by 0.2 percentage points with no non-PM2.5

controls and 0.4 percentage points with NO2 and SO2 controls. This magnitude is comparable to

the findings of Sanders and Stoecker (2011) for Total Suspended Particulates (TSPs), which are all

particles less than 100µm. Limited monitor coverage at the time of Clean Air Act makes it impossi-

ble to ascertain the effects TSP reductions had on fine particulates. Using rough conversion factors

(based on ratios of means in the AQS data) for TSPs to PM10 of 0.55, and PM10 to PM2.5 of 0.6,

a one-unit change in TSPs corresponds to a 0.33 unit change in PM2.5, translating the estimate to

0.067 percentage points per unit change in TSP compared to Sanders and Stoecker’s (2011) 0.088.

This pattern of results is comparable to Bharadwaj and Eberhard’s (2008) estimates of the
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effects of PM10 in Santiago, Chile on birth outcomes, but with smaller magnitudes. They estimate

a 125g effect on birth weight per 17.57µgm−3 (one standard deviation) increase in PM10 pollution

1-16 weeks before birth, whereas I estimate a substantially smaller effect of 32g for a comparable

change in PM2.5 (again using a conversion factor of PM10 = 0.6×PM2.5). Besides differences

in toxicity between PM10 and PM2.5 (which we regardless might expect to make the difference

smaller), this large difference is likely to be driven by some combination of nonlinear effects

due to the substantially higher pollution levels in their sample period and the effects of omitted

pollutants that also significantly decrease with rainfall. Average PM10 in the U.S. sample period is

18µgm−3 compared to 76µgm−3 in the Santiago sample, and any increasing dose response would

be reflected. The rainfall instrument is likely to be strongly associated with decreases in non-

PM10 pollutants relative to its association with PM10. While the wildfire instrument does predict

some non-PM2.5 pollution levels, this contribution (and thus potential upward bias in estimates’

magnitudes) is constrained by the wildfire instrument’s dependence on wildfire-specific PM2.5

emissions and PM2.5-specific deposition parameters, compared to the broad and relatively less

PM-heavy distribution of pollutants from all industrial sources in or near Santiago. Lastly, because

they identify their pollution changes through rainfall, they also identify effects on health outcomes

through the associated changes in water pollution generated thru deposition; deposited pollutants

run off into water and food supplies and are exposed to individuals through consumption and skin

contact. This can bias their estimates either way, depending on whether the pollutants are more

harmful after deposition or in the air. In contrast, I control for local rainfall, which will generally

account for the aggregate effect of deposited pollutants that could affect health outcomes through

the water supply. If deposition occurs in watersheds outside of the area that affect the area’s water

supply and precipitation differs significantly between the two areas, then the airborne pollutant

estimated effects may still pick up effects from associated changes in water supply quality.
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5 Wildfire Externalities and Current Management Policy

Wildfires induce significant changes in PM2.5 concentrations over long distances, with polluted air

parcels crossing intranational and international boundaries. Assuming that monitoring stations are

representative of a state’s overall exposure to wildfire pollution, I calculate the fraction of wildfire

PM2.5-months that occur outside the state of the wildfire, finding that over 75% of geographic

exposure to PM2.5 from large wildfire events in the continental U.S. occurs in states other than

the state of origin. Table 7 reports the percentage of modeled wildfire PM2.5 exposure that occurs

outside of each state of the wildfire occurrence as an approximation of the intensity of inter-state

pollution externalities from wildfires. Because of the implied externalities, wildfire management is

subject to the classic tradeoff between inefficient local management behavior and potentially inef-

ficient centralized, uniform policies for environmental goods. To the extent that local jurisdictions

in charge of wildfires (e.g., state fire agencies) are individual actors and ignore inter-state pollu-

tion spillovers in making fire management decisions, then they will tend to under-suppress wildfire

activity or engage in more aggressive prescribed burning for other local benefits. The structure

of wildfire management in the U.S. is a complicated mixture of many agencies acting individu-

ally and collaborating at multiple levels of government, while the Clean Air Act does not penalize

states for pollution from naturally-occurring wildfires. Hence, it is unclear whether current wildfire

management efforts properly account for the welfare effects from poor air quality.

While air quality externalities largely make wildfire abatement a national environmental good,

it is uncertain whether fire policy would strongly improve with greater centralization. Banzhaf and

Chupp (2011) show for the U.S. electricity sector that a uniform federal pollution abatement policy

has better welfare implications than decentralized state policies because the inter-state spillovers

addressed by a uniform policy are relatively more important than the between-state heterogeneity

of benefits addressed by decentralized policies. They argue that relatively inelastic marginal cost of

abatement in the relevant region of the uniform policy results in smaller distortions from ignoring

between-state heterogeneity of marginal benefits. Wildfires are characterized by large inter-state
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spillovers, but the concavity or convexity properties of the marginal costs of abatement are unclear,

as are their true marginal damages. Wildfire management has two dimensions of abatement: pre-

fire measures, such as prescribed burning and fuel clearing, and suppression efforts. Marginal

costs of suppression efforts are relatively easy to measure; for example, Donovan (2006) finds a

convex marginal cost function for the number of contract-based firefighting crews hired in a season.

Regardless, all abatement measures may have strong heterogeneity and uncertainty in marginal

benefits and costs associated with them. Prescribed wildfires themselves generate pollution and

some ecological hazards because of their artificial timing (Knapp et al. 2009). Naturally-occurring

wildfires have ecological benefits, such as biodiversity and better disease regulation, which may

potentially counterbalance the marginal benefits of improved air quality (e.g., Keane and Karau

2010). Even suppression’s benefits cannot be well-accounted for, as aggressive suppression can

lead to higher likelihood and intensity of future fires by altering the nature of fuel accumulation

(Yoder 2004).

Despite federal guidelines governing fire suppression attempts in the interest of protecting pub-

lic health (Fire Executive Council 2009), the incentives facing the agencies making fire manage-

ment choices are vague relative to the regulation of agents generating industrial air pollution. The

Clean Air Act distinguishes between “unplanned” and “planned” fire, only penalizing states for the

pollution generated by planned fire (i.e., prescribed burns), resulting in the adverse health effects

of natural wildfires not being inherently taken into account by air quality regulations (Engel and

Reeves 2011). There are federal directives and funding for wildfire management, with $3.9 billion

allocated for FY2014 (Bracmort 2013). Decision-making regarding suppression and prescribed

burning is not federally-determined, however. Currently, fire management in the U.S. predomi-

nantly falls upon five federal agencies for fires over 1,000 acres5 and individual state, county, and

local agencies, with frequent interagency collaboration. For the fires in the sample period, 36%

were reported by state, county, and local agencies, while the remainder were federally-reported.

The Forest Service and and Bureau of Land Management reported the majority of the remaining

5These are the the Bureau of Land Management (BLM), Bureau of Indian Affairs (BIA), the U.S. Forest Service
(USFS), Fish and Wildfire Service (FWS), and National Park Service (NPS) for 99% of federally-reported fires.
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fires. There are ambiguities regarding which agency is responsible for suppression decisions; for

example, the agency making the report does not always commit all of the resources tasked with

managing the fire, and multiple agencies may report the same fire but only one record is retained

in the FPA fire database.

6 Conclusion

This study uses new tools to measure the health externality costs of both industrial and natural

sources of air pollution and provides estimates for the effects of fine particulate matter on mortality

and infant health. To my knowledge, it is the first to synthesize historical emissions, atmospheric

transport models, and ground-level monitoring data at a large scale to estimate the distribution of

environmental pollutants and their health effects in the United States. Its design provides spatially

and temporally smooth measures of pollution shocks, and the ability to construct a full emissions-

to-destination modeling process provides a large degree of customizability and control over the

variation used to identify changes in air quality. The choice of wildfires as emissions source re-

sults in geographically wide-reaching variation in particulate levels, inducing both small and large

shocks to highly polluted and relatively unpolluted areas. The findings of effects on short-term

mortality and infant health contribute to the body of evidence supporting that PM2.5, and gener-

ally air quality, has important impacts on human health. They also highlight the importance of fire

management as an important public health issue.

As might be expected with a new source of data, there are several statistical issues which must

be addressed to fully realize the potential of wildfires to identify useful, policy-relevant health

effects parameters. Incorrect exposure measurements in both space and time create potentially

serious measurement error problems which are only partially alleviated by instrumental variables

techniques. Imperfect monitoring coverage results in measurement error of exposures both within

and between geographic units. Spatial measurement error can be alleviated through more com-

prehensive measures of ambient pollution, generated through a combination of interpolation of

data points, remote sensing data, and two-sample instrumental variables estimation techniques
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(Khawand 2014). Two-sample IV techniques can also be used to include geographic regions with

no monitoring coverage in estimating health effects, resulting in estimated average effects more

representative of the U.S. population. In the short run, this study can be improved upon through

developing richer model inputs from higher-quality data products that require substantially greater

computational input to implement. Satellite products for fire detection allow wildfire burn dynam-

ics to be better parsed out in space and time. Higher-resolution meteorological products can be

used to better capture short-range dispersion patterns, which in turn require more intensive geo-

graphic sampling schemes to properly translate to aggregate concentrations.

The modeling of wildfires’ air quality impact itself also stands to be significantly improved.

The relationship between the wildfire pollution forecasts and actual pollution levels, while intu-

itively seeming to be relatively uncomplicated, is subject to situation-specific measurement errors

due to the complex interaction among fire, fuel, and meteorological data inputs and modeling as-

sumptions. Modeling errors may occur due to unmodeled heterogeneity at the source or between

the source and the destination. A richer exploration of heterogeneous source-receptor relationships

is needed to understand where modeling errors may result in putting undue weight on health ef-

fects in certain areas or discarding useful variation in others. Extensive further work, particularly

in collaboration with scientists in the wildfire community, is required to improve the realism and

predictive power of the wildfire pollution simulation.
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Figure 1: Number of Acres Burned (Thousands) for All Fires Greater than 1,000 Acres, 2000-2010

Map shows the number of acres (in thousands) for all 1,000 acre or greater fires in the US from 2000 to 2010 by state, ranging from red
(most area burned) to blue (least area burned).



Figure 2: Wildfire Air Pollution Modeling - BlueSky Framework Workflow
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Flow chart depicting the modeling workflow to produce pollution concentration outputs from in-
gestion of fire data to output by the HYSPLIT model.]
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Figure 3: Average Raw Wildfire PM2.5 Output by County, CONUS, 2004-2010

Map of untransformed average PM2.5 concentrations by U.S. county for 2004-2010 sample period. Dark blue values represent low
concentrations and brown values high concentrations (e.g, California has high concentrations, while Maine has low concentrations).



Figure 4: Quantile-Quantile Plots of PM2.5 versus Counterfactuals

(a) PM2.5 (with Wildfire PM2.5) versus Estimated Counterfactual PM2.5 (No Wildfire
PM2.5)
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(b) PM2.5 versus Counterfactual PM2.5 Estimated with Fixed Effects
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Sub-figure A plots PM2.5 against the counterfactual estimated using the wildfire PM2.5 instrument; sub-
figure B plots it against the counterfactual as estimated using state-year, state-month, and county fixed
effects. Each point on the plot represents the values in each distribution at which the quantiles are equivalent.
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Figure 5: Spline Control Function Regression of All-Cause Mortality on PM2.5, by Decile
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This is a plot of the estimated effect of average monthly PM2.5 estimated by splines in deciles of
average monthly PM2.5 conditional on a linear control function residual using wildfire PM2.5 as
the excluded instrument.
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Table 1: AQS PM2.5 and NLDAS Weather Descriptive Statistics

Mean Std. Dev 5th Pctile. Median 95th Pctile. N
Average Daily Pollution and
Weather Measures
 PM2.5 Concentration (ug/m3) 10.60 4.37 4.50 10.13 18.47 37,259
 Precipitation (mm) 2.72 2.04 0.25 2.35 6.45 171,014
 Maximum Air Temperature (F) 63.82 19.43 29.13 65.96 91.02 171,014
 Minimum Air Temperature (F) 46.09 17.23 16.88 46.49 72.48 171,014

County-level descriptive statistics for 2004-2010 across all U.S. counties. PM2.5 concentration is
only available for county-months with monitoring data.

Table 2: Monthly, County-Level Mortality Rate (per 100,000) by Subgroup from U.S. Death Cer-
tificates, 2004-2010

Mean Std. Dev 5th Pctile. Median 95th Pctile. N
All individuals 78.58 33.62 36.38 73.73 136.38 171,182
< 1 year 54.67 222.98 0.00 0.00 278.55 170,782
01 to 04 1.56 18.77 0.00 0.00 2.15 170,787
05 to 14 0.69 6.50 0.00 0.00 1.52 170,796
15 to 24 1.71 10.65 0.00 0.00 7.56 170,855
25 to 34 4.18 18.92 0.00 0.00 22.82 170,836
35 to 44 11.52 27.14 0.00 0.00 50.48 170,837
45 to 54 31.70 41.41 0.00 24.25 98.14 170,847
55 to 64 73.93 70.76 0.00 64.44 188.95 170,834
65 to 74 173.19 128.88 0.00 159.49 386.10 170,820
75 to 84 431.85 255.33 0.00 410.98 833.33 170,831
85+ 1247.40 747.52 0.00 1173.70 2395.20 170,823
All Ages, Male 76.67 42.35 24.85 70.17 147.49 171,075
All Ages, Female 79.28 43.25 26.26 72.74 152.65 170,917
County Population 110,000 350,000 3,394 28,494 490,000 171,182

County-level mortality rates calculated using U.S. death certificate date for 2004-2010. All figures
are scaled per 100,000 county population.
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Table 3: Monthly, County-Level Mean Birth Outcomes and Rates for Birth Cohorts from U.S.
Birth Certificates, 2004-2010

Mean Std. Dev 5th Pctile. Median 95th Pctile.

# Births 113 391 3 28 476
Avg. Birth Weight (g) 3268 197 2966 3274 3556
%  Male 48.8% 15.1% 25.0% 49.1% 71.4%
% Low Birth Weight 8.1% 8.3% 0.0% 7.1% 21.4%
APGAR 0-3 0.5% 2.3% 0.0% 0.0% 2.9%
APGAR 4-6 1.4% 3.9% 0.0% 0.0% 6.7%
APGAR 7-8 13.0% 14.4% 0.0% 9.4% 40.0%
APGAR 9-10 82.7% 19.2% 46.0% 88.0% 100.0%
APGAR Unknown 2.4% 13.7% 0.0% 0.0% 3.8%
Preterm Birth 12.6% 10.4% 0.0% 11.7% 29.2%
Full-Term Birth 87.3% 10.5% 70.5% 88.1% 100.0%
Gest. Age Unknown 0.2% 1.3% 0.0% 0.0% 0.4%
N = 259,471

# Births 98 339 2 24 417
Avg. Birth Weight (g) 3368 167 3108 3371 3619
%  Male 49.1% 15.9% 25.0% 49.8% 75.0%
% Low Birth Weight 3.2% 5.5% 0.0% 1.8% 11.9%
APGAR 0-3 0.2% 1.6% 0.0% 0.0% 0.9%
APGAR 4-6 1.0% 3.5% 0.0% 0.0% 5.0%
APGAR 7-8 11.5% 14.5% 0.0% 7.7% 40.0%
APGAR 9-10 85.0% 19.4% 50.0% 90.6% 100.0%
APGAR Unknown 2.3% 13.7% 0.0% 0.0% 3.1%
N = 258,748

# Births 14 48 0 3 60
Avg. Birth Weight (g) 2570 481 1778 2574 3323
%  Male 46.4% 29.2% 0.0% 48.5% 100.0%
% Low Birth Weight 41.3% 29.4% 0.0% 42.3% 100.0%
APGAR 0-3 2.8% 9.8% 0.0% 0.0% 16.7%
APGAR 4-6 4.2% 12.1% 0.0% 0.0% 25.0%
APGAR 7-8 22.3% 25.8% 0.0% 16.7% 100.0%
APGAR 9-10 68.1% 30.0% 0.0% 74.1% 100.0%
APGAR Unknown 2.6% 14.5% 0.0% 0.0% 4.7%
N = 216,452

All Births

Full-Term Births Only  (< 37 wks.)

Pre-Term Births Only  (≥ 37 wks.)

County-level birth outcome descriptive statistics derived from U.S. birth certificate data for 2004-
2010.
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Table 4: First Stage Regression of PM2.5 and Regressions of Criteria Pollutants on Wildfire Instrument

Fine
Particulate

(PM2.5)

Coarse
Particulate

(PM10)

Carbon
Monoxide

(CO)

Sulfur
Dioxide
(SO2)

Nitric
Oxide
(NO)

Nitrogen
Dioxide
(NO2)

Ozone (O3)

Coefficient 1.1e-01*** 5.5e-02** -1.2e-04 2.9e-03 -2.2e-02 2.2e-02*** 1.1e-04***
(1.1e-02) (2.4e-02) (3.2e-04) (3.4e-03) (1.5e-02) (5.8e-03) (1.1e-05)

% Wildfire 15.3% 4.7% -0.4% 1.5% -4.8% 3.0% 5.7%
95% CI Upper 18.5% 8.7% 1.6% 4.8% 1.6% 4.6% 6.9%
95% CI Lower 12.2% 0.7% -2.4% -1.9% -11.2% 1.4% 4.6%

Coefficient 1.1e-01*** 4.7e-02 6.1e-04 4.0e-03 -1.4e-02 5.5e-03 9.2e-05***
(1.2e-02) (2.9e-02) (3.7e-04) (4.9e-03) (2.1e-02) (8.0e-03) (1.8e-05)

% Wildfire 16.1% 4.0% 2.0% 2.0% -3.1% 0.8% 4.8%
95% CI Upper 19.5% 9.0% 4.3% 6.8% 5.8% 2.9% 6.6%
95% CI Lower 12.8% -0.9% -0.4% -2.8% -12.1% -1.4% 3.0%

Coefficient 1.0e-01*** 3.3e-02 5.6e-04 4.6e-03 8.5e-03 3.8e-03 9.7e-05***
(1.1e-02) (2.7e-02) (3.7e-04) (4.8e-03) (1.8e-02) (8.6e-03) (1.9e-05)

% Wildfire 14.5% 2.8% 1.8% 2.3% 1.8% 0.5% 5.1%
95% CI Upper 17.5% 7.3% 4.1% 7.1% 9.6% 2.9% 7.0%
95% CI Lower 11.5% -1.7% -0.5% -2.4% -6.0% -1.8% 3.1%

Mean Conc. 1.10E+01 1.80E+01 4.60E-01 2.90E+00 7.00E+00 1.10E+01 3.00E-02
N 36752 14706 11955 14719 10665 13119 26063

Panel A: OLS

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel B: OLS with Wildfire NO2, SO2 Controls

Coefficients are for a 1µgm-3 change in PM2.5. Units are ppb for SO2, NO, and NO2 and ppm for O3 and CO. "% Wildfire" is calculated as the overall
quantity of pollutant predicted by the instrument divided by the mean concentration times 100%. Standard errors clustered at state-year level are in
parentheses. Significance stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).



Table 5: Regressions of Highly Toxic PM2.5 Subspecies on Wildfire PM2.5

Arsenic Mercury Lead Nickel Cadmium

Coefficient 2.1e-07 -1.6e-05*** 2.0e-05** 4.7e-06 9.5e-06
(1.5e-06) (4.1e-06) (8.6e-06) (3.2e-06) (6.5e-06)

% Wildfire 0.4% -24.0% 10.6% 6.7% 8.4%
95% CI Upper 6.8% -12.1% 19.7% 15.5% 19.8%
95% CI Lower -5.9% -35.9% 1.5% -2.2% -3.0%

Coefficient 8.7e-06*** 2.4e-05*** 2.6e-05* 8.5e-06 3.8e-05***
(2.3e-06) (6.3e-06) (1.4e-05) (6.3e-06) (9.4e-06)

% Wildfire 18.6% 35.5% 14.1% 12.1% 33.9%
95% CI Upper 28.0% 53.6% 28.6% 29.8% 50.2%
95% CI Lower 9.1% 17.4% -0.5% -5.6% 17.6%

Coefficient 9.1e-06*** 2.2e-05*** 3.3e-05** 1.1e-05* 3.5e-05***
(2.4e-06) (6.2e-06) (1.3e-05) (6.3e-06) (9.1e-06)

% Wildfire 19.4% 31.7% 17.9% 16.3% 30.7%
95% CI Upper 29.3% 49.6% 32.2% 33.9% 46.5%
95% CI Lower 9.6% 13.9% 3.6% -1.2% 14.9%

Mean Concentration 7.00E-04 1.10E-03 2.80E-03 1.00E-03 1.70E-03
N 15,566 8,300 15,624 15,624 10,439

Panel A: OLS

Panel B: OLS with Wildfire NO2, SO2 Controls

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls

Coefficients are for a 1-unit change in the wildfire PM2.5 instrument. Units are in µgm-3 for all PM2.5. "% Wildfire" is calculated as
the overall quantity of pollutant predicted by the instrument divided by the mean concentration times 100%. Standard errors clustered
at state-year level are in parentheses. Significance stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).
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Table 6: Regressions of Non-Metallic PM2.5 Subspecies on Wildfire PM2.5

Organic
Carbon

(OC)

Elemental
Carbon

(EC)
Hydrogen Chloride Bromine Sulfur Nitrite Soil Sulfate Nitrate

Coefficient 2.3e-02*** 3.0e-03*** 2.9e-03*** -2.6e-04 1.9e-05*** 9.7e-03*** 1.1e-04** -2.3e-04 2.7e-02*** 2.1e-02***
(4.8e-03) (8.4e-04) (4.9e-04) (4.8e-04) (3.7e-06) (1.3e-03) (4.5e-05) (1.8e-03) (3.8e-03) (3.1e-03)

% Wildfire 25.3% 13.7% 15.9% -4.9% 10.4% 17.9% 10.8% -0.5% 17.4% 28.2%
95% CI Upper 35.9% 21.2% 21.2% 12.9% 14.4% 22.5% 19.2% 6.7% 22.1% 36.4%
95% CI Lower 14.8% 6.3% 10.6% -22.8% 6.4% 13.3% 2.4% -7.7% 12.6% 20.1%

Coefficient 5.6e-03 1.5e-03 6.7e-04 -1.4e-03 3.8e-05*** 1.1e-02*** 4.4e-05 8.7e-04 3.2e-02*** 3.2e-02***
(4.7e-03) (1.7e-03) (6.7e-04) (9.8e-04) (6.1e-06) (1.5e-03) (4.4e-05) (2.3e-03) (4.6e-03) (4.5e-03)

% Wildfire 6.3% 6.8% 3.7% -26.8% 20.8% 20.0% 4.2% 1.8% 20.6% 42.4%
95% CI Upper 16.7% 21.8% 10.9% 9.7% 27.4% 25.6% 12.5% 11.2% 26.2% 54.2%
95% CI Lower -4.1% -8.2% -3.6% -63.2% 14.2% 14.3% -4.1% -7.7% 14.9% 30.6%

Coefficient 9.6e-03* 1.7e-03 4.1e-04 -9.9e-04 3.6e-05*** 8.6e-03*** 5.7e-05 2.1e-03 2.5e-02*** 3.2e-02***
(5.3e-03) (1.5e-03) (6.7e-04) (9.7e-04) (5.4e-06) (1.7e-03) (4.6e-05) (2.5e-03) (5.0e-03) (4.1e-03)

% Wildfire 10.7% 7.7% 2.3% -18.8% 19.9% 15.9% 5.4% 4.3% 15.9% 42.6%
95% CI Upper 22.3% 20.6% 9.5% 17.5% 25.7% 22.1% 14.1% 14.2% 22.2% 53.4%
95% CI Lower -0.8% -5.3% -5.0% -55.0% 14.1% 9.7% -3.3% -5.6% 9.7% 31.7%

Mean Concentration 1.30E+00 3.20E-01 2.60E-01 7.60E-02 2.70E-03 8.00E-01 1.50E-02 7.10E-01 2.30E+00 1.10E+00
N 6,477 6,469 6,281 6,359 15,481 15,561 6,299 6,281 15,628 15,378

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel B: OLS with Wildfire NO2, SO2 Controls

Panel A: OLS

Coefficients are for a 1-unit change in the wildfire PM2.5 instrument. Units are in µgm-3 for all PM2.5. "% Wildfire" is calculated as the overall quantity of pollutant predicted by the instrument divided by the mean
concentration times 100%. Standard errors clustered at state-year level are in parentheses. Significance stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).
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Table 7: Percentage of Wildfire PM2.5 Exposure Outside of the State of Origin

AL AR AZ CA CO CT DE FL GA IA ID IL IN KS KY LA

72.2% 72.1% 77.9% 80.3% 56.9% 7.3% -- 83.4% 86.7% -- 74.1% 83.6% 74.5% 92.5% 82.0% 73.7%

MA MD ME MI MN MO MS MT NC ND NE NH NJ NM NV NY

-- 96.5% -- 84.8% 94.3% 69.8% 58.5% 75.7% 86.1% 75.1% 90.6% -- 65.8% 69.8% 73.7% 68.0%

OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY

80.4% 61.7% 72.0% 78.4% -- 58.0% 50.2% 75.2% 92.3% 65.2% 78.6% -- 76.2% -- -- 54.5%

Each cell represents the fraction of raw average wildfire PM2.5 unit-months that occurs within the wildfire's state of origin. Empty cells indicate states with no wildfires larger than 1,000 acres in the
sample period.



Table 8: IV Estimates: PM2.5 Effects on All-Cause Mortality (by Fixed-Effects Specification)

(1) (2) (3) (4) (5) (6)

Avg. PM2.5 (10µgm-3) 0.671*** 0.806*** 0.881*** 1.041*** 1.049*** 0.926***
(0.121) (0.126) (0.123) (0.199) (0.125) (0.129)

First-Stage F-Statistic 67.791 80.118 79.523 79.078 82.994 76.378
First-Stage Partial R2 0.03 0.025 0.025 0.024 0.025 0.028

Avg. PM2.5 (10µgm-3) 1.590** 1.965*** 2.067*** 2.350*** 2.419*** 2.875***
-0.701 (0.670) (0.695) (0.737) (0.736) (1.015)

First-Stage F-Statistic 10.102 17.334 16.737 19.645 20.799 13.569
First-Stage Partial R2 0.003 0.004 0.004 0.004 0.004 0.003

Avg. PM2.5 (10µgm-3) 1.791** 2.269*** 2.365*** 2.680*** 2.779*** 3.175***
(0.780) (0.802) (0.823) (0.870) (0.874) (1.145)

First-Stage F-Statistic 9.123 14.695 14.556 17.441 18.459 12.713
First-Stage Partial R2 0.003 0.003 0.003 0.003 0.003 0.003

Avg. PM2.5 (10µgm-3) -0.043* -0.017 -0.022 -0.013 -0.009 0.001
(0.024) (0.025) (0.025) (0.024) (0.025) (0.026)

Fixed Effects
Year Y Y -- -- -- --
Month Y -- -- -- -- --
County Y Y Y Y -- --
County-Month N N N N N Y
County-Year N N N N Y N
Climate Region-Month N Y Y -- -- --
State-Year N N Y Y -- Y
State-Month N N N Y Y --

Panel A: 2SLS

Panel B: 2SLS - Wildfire NO2, SO2 Controls

Panel C: 2SLS -Wildfire NO2, SO2, NH3, VOC Controls

Panel D: OLS

N = 36,752. Coefficients are effects for mortality rate per 100,000 population for a 10µgm-3 change in PM2.5. Standard errors clustered
at state-year level are in parentheses. Significance stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).
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Table 9: IV Estimates: PM2.5 Effects on Mortality (by Cause)

All-Cause All-Cause
(ln(rate))

Ischemic
Heart Disease

Other
Heart Disease Cerebrovascular Influenza &

Pneumonia
Chronic Lower

Respiratory

ICD-10
"All Other
(Residual)"

1.041*** 0.013*** 0.258*** 0.066 0.166*** 0.146*** 0.194*** 0.163**
(0.233) (0.003) (0.073) (0.041) (0.043) (0.044) (0.048) (0.070)

2.680*** 0.033*** 0.472** 0.257* 0.292** 0.458*** 0.454*** 0.529**
(0.885) (0.012) (0.225) (0.133) (0.134) (0.167) (0.169) (0.230)

-0.013 0.000 -0.010 0.007 -0.015** -0.009** -0.003 -0.003
(0.024) (0.000) (0.011) (0.007) (0.006) (0.004) (0.006) (0.009)

67.64 4.16 11.97 5.53 4.20 1.67 4.20 11.92
N = 36,752

Panel B: 2SLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel A: 2SLS

Panel C: OLS

Outcome Means (monthly, per 100,000)

Coefficients are effects for mortality rate per 100,000 population for a 10µgm-3 change in PM2.5. Standard errors clustered at state-year level are in parentheses. Significance stars
represent p < 0.1 (*), p < .05 (**), p < .01 (***).



Table 10: IV Estimates: PM2.5 (Non-)Effects on Mortality from External Causes

Motor
Vehicle

Accidents

Other
Unspecified
& Adverse

Effects

Homicides Suicides
Other

External
Causes

0.020 0.083** -0.031 0.001 0.008
(0.026) (0.040) (0.021) (0.009) (0.007)

0.067 0.060 -0.063 -0.007 0.006
(0.076) (0.111) (0.060) (0.024) (0.020)

-0.001 -0.003 0.007** -0.000 -0.000
(0.004) (0.005) (0.003) (0.002) (0.001)

1.35 2.53 1.10 0.42 0.18
N = 36,752

Panel A: 2SLS

Panel B: 2SLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel C: OLS

Outcome Means (monthly, per 100,000)

Coefficients are effects for mortality rate per 100,000 population for a 10µgm-3 change in PM2.5.
Standard errors clustered at state-year level are in parentheses. Significance stars represent p < 0.1
(*), p < .05 (**), p < .01 (***).
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Table 11: IV Estimates: PM2.5 Effect on All-Cause Mortality by Age Group

01 to 04 05 to 14 15 to 24 25 to 34 35 to 44

-0.028 -0.043 0.011 -0.230* 0.032
(0.088) (0.037) (0.072) (0.124) (0.148)

-0.014 -0.057 0.069 -0.395 0.042
(0.241) (0.102) (0.199) (0.344) (0.408)

45 to 54 55 to 64 65 to 74 75 to 84 85+

0.103 0.584 3.140*** 7.009*** 27.027***
(0.227) (0.419) (0.907) (1.956) (6.978)

0.275 1.615 6.042** 14.892** 78.988***
(0.626) (1.223) (2.795) (6.181) (26.583)

Coefficients are effects for mortality rate per 100,000 population for a 10µgm-3 change in
PM2.5. Standard errors clustered at state-year level are in parentheses. Significance stars
represent p < 0.1 (*), p < .05 (**), p < .01 (***).

Panel A: 2SLS

Panel A: 2SLS

Panel C: 2SLS -Wildfire NO2, SO2, NH3, VOC Controls

Panel C: 2SLS -Wildfire NO2, SO2, NH3, VOC Controls
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Table 12: Reduced Form Lead and Lagged Wildfire PM2.5 Effect on All-Cause Mortality

(1) (2) (3)
6 Month Lead -0.007 0.011

(0.01) (0.02)
5 Month Lead 0.009 -0.035**

(0.019) (0.016)
4 Month Lead 0.046** 0.046**

(0.019) (0.023)
3 Month Lead 0.016 0.008

(0.018) (0.022)
2 Month Lead -0.035* -0.009

(0.019) (0.019)
1 Month Lead 0.015 -0.018

(0.019) (0.023)
Contemp. 0.077*** 0.046*** 0.036*

(0.018) (0.018) (0.022)
1 Month Lag -0.022 -0.043**

(0.016) (0.018)
2 Month Lag -0.008 0.016

(0.016) (0.019)
3 Month Lag -0.049*** -0.03

(0.016) (0.019)
4 Month Lag -0.021 -0.031

(0.019) (0.021)
5 Month Lag -0.052*** -0.062***

(0.019) (0.022)
6 Month Lag 0.009 0.036

(0.018) (0.023)
Joint F-test Leads/Lags (p-
value) 0.00015 0.00055 0.00028
N 30,355 30,394 24,096
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Table 13: IV Estimates: Effect of PM2.5 Exposure for Full Gestation and 16 Weeks Before Birth on Birth Outcomes

% Female
Gestational Age

(Weeks)
% Premature

(< 37 Weeks GA)
Avg. Birth
Weight (g)

Low Birth Weight
(< 2500g)

Low Apgar
(< 5)

Avg. PM2.5
(9 mo. Before Birth)

0.00226* -0.0228*** 0.00257*** -1.9235 0.0090 -0.0003

(0.00116) (0.0077) (0.00083) (1.7574) (0.0070) (0.0005)

1-16 Weeks Before Birth 0.00117 -0.0238*** 0.00195*** -1.7355 0.0031 0.0000
(0.00086) (0.0055) (0.00064) (1.1570) (0.0046) (0.0003)

Avg. PM2.5
(9 mo. Before Birth)

0.00397 -0.0464*** 0.00388** -4.4164 0.0006 0.0001

(0.00244) (0.0164) (0.00177) (3.6309) (0.0015) (0.0010)

1-16 Weeks Before Birth 0.00107 -0.039*** 0.00297*** -3.1059** 0.00001 0.0002
(0.00112) (0.0078) (0.00088) (1.4327) (0.0006) (0.0004)

FS F-stat = 37.68, Partial R2 = 0.023, N = 43,585. PM2.5 is denominated in 1ugm-3 and averaged over the specified period. The instrument is wildfire PM2.5 averaged over the same period, and all
controls are averaged over the same period.

FS F-stat F = 156.45, Partial R2 = 0.0977, N = 43,585

Panel A: 2SLS

Panel B: 2SLS - Wildfire NO2, SO2 Controls



Figure 6: Piecewise Regression Coefficient Estimates of Daily Station PM2.5 on Raw and Log-
transformed Wildfire PM2.5 Model Output, by Vigintile

(a) Raw Wildfire PM2.5 Output

0

100

200

300

400

500

600

700

800

900

40th 55th 70th 85th 100th

C
oe

ff
ic

ie
nt

 E
st

im
at

e

Vigintile Indicator

Coefficient Estimate
95% CI

(b) Log-Transformed Wildfire PM2.5 Output
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Table 14: Henry’s Law Constants and Dry Deposition Velocities for Gaseous Pollutants

Pollutant Henry's Law Constant Citation Dry Deposition Velocity Citation
Ozone (O3) 9.40E-03 1.25E-02
Sulfur Dioxide (SO2) 1.23E+01 1.50E-02
Nitrogen Dioxide (NO2) 1.20E-02 3.60E-03
Nitric Oxide (NO) 1.90E-03 0.00E+00
Carbon Monoxide (CO) 9.40E-04 3.00E-04
Methane (CH4) 1.40E-03
Carbon Dioxide (CO2) 3.40E-02
Ammonia (NH3) 6.10E+01 6.50E-03
Formaldehyde (HCHO) 3.20E+03 5.00E-03
Mercury Elemental (Gas) 9.30E-02 1.00E-04
Mercury Reactive Gaseous 1.40E+06 1.00E-03
Toluene (C6H5CH3) 1.50E-01 0.00E+00
Benzene 1.60E-01
O-Xylene 1.30E-01
M-Xylene 1.90E-01
P-Xylene 1.30E-01



Table 15: Regression of Organic Gases on Wildfire PM2.5

M/P Xylene Benzene Toluene Ethylbenzene O-Xylene Styrene

Coefficient -2.4e-04 8.7e-03 1.5e-02 8.5e-04 1.6e-03 -5.5e-03
(5.1e-03) (6.5e-03) (1.7e-02) (2.6e-03) (2.8e-03) (3.8e-03)

% Wildfire -0.2% 6.6% 4.6% 1.8% 2.9% -18.8%
95% CI Upper 7.1% 16.2% 15.2% 12.5% 13.0% 7.2%
95% CI Lower -7.5% -3.0% -6.0% -9.0% -7.3% -44.9%

Coefficient 1.1e-02 1.3e-02 6.0e-03 -2.0e-03 -4.3e-03 -2.0e-03
(7.4e-03) (8.1e-03) (4.0e-02) (6.4e-03) (7.3e-03) (4.3e-03)

% Wildfire 8.1% 9.6% 1.9% -4.3% -7.9% -7.0%
95% CI Upper 18.7% 21.5% 26.9% 22.1% 18.6% 22.1%
95% CI Lower -2.5% -2.4% -23.1% -30.7% -34.5% -36.1%

Coefficient 1.0e-02 1.7e-02** 1.9e-02 1.7e-03 -6.3e-05 -2.3e-03
(7.7e-03) (7.7e-03) (3.1e-02) (4.8e-03) (5.2e-03) (5.1e-03)

% Wildfire 7.6% 12.9% 6.0% 3.6% -0.1% -7.8%
95% CI Upper 18.6% 24.4% 25.3% 23.4% 18.9% 26.8%
95% CI Lower -3.5% 1.5% -13.3% -16.2% -19.1% -42.4%

Mean Concentration 2.00E+00 1.90E+00 4.60E+00 6.90E-01 7.90E-01 4.30E-01
N 8044 8924 8653 8580 8364 7761

Chloroform
Carbon

Tetrachloride
Methyl

Chloroform
Tetrachloro-

ethylene
Trichloro-ethylene

Dichloro-
Trifluoroethane

Coefficient -8.6e-05 -1.8e-04 -2.6e-04 -2.4e-04 -5.6e-05 -5.6e-05
(7.6e-05) (1.3e-04) (5.1e-04) (2.8e-04) (4.9e-04) (4.9e-04)

% Wildfire -4.9% -2.9% -6.4% -4.5% -2.2% -2.2%
95% CI Upper 3.6% 1.3% 17.8% 5.8% 36.5% 36.5%
95% CI Lower -13.3% -7.1% -30.6% -14.7% -41.0% -41.0%

Coefficient -1.8e-04 -9.6e-05 -4.2e-04 -1.0e-03* 8.5e-04 8.5e-04
(1.5e-04) (1.4e-04) (8.7e-04) (5.9e-04) (6.4e-04) (6.4e-04)

% Wildfire -10.5% -1.5% -10.1% -18.7% 34.2% 34.2%
95% CI Upper 6.1% 2.9% 31.2% 3.1% 84.9% 84.9%
95% CI Lower -27.0% -6.0% -51.4% -40.6% -16.4% -16.4%

Coefficient -1.9e-04 -2.4e-04* -7.6e-04 -6.3e-04 9.5e-04 9.5e-04
(1.6e-04) (1.5e-04) (1.1e-03) (6.0e-04) (7.6e-04) (7.6e-04)

% Wildfire -11.0% -3.8% -18.3% -11.9% 38.2% 38.2%
95% CI Upper 6.6% 0.7% 34.1% 10.3% 98.9% 98.9%
95% CI Lower -28.6% -8.4% -70.7% -34.2% -22.5% -22.5%

Mean Concentration 2.50E-02 8.80E-02 6.00E-02 7.60E-02 3.50E-02 3.50E-02
N 8086 7687 7569 8131 8090 8090

Coefficients are for a one-unit change in the wildfire PM2.5 instrument. Units for organic gases are ppbC (parts per billion carbon). "% Wildfire" is calculated as the overall
quantity of pollutant predicted by the instrument divided by the mean concentration times 100%. Standard errors clustered at state-year level are in parentheses. Significance
stars represent p < 0.1 (*), p < .05 (**), p < .01 (***).

Panel A: OLS

Panel B: OLS with Wildfire NO2, SO2 Controls

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls

Panel A: OLS

Panel B: OLS with Wildfire NO2, SO2 Controls

Panel C: OLS with Wildfire NO2, SO2, NH3, VOC Controls
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Table 16: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set I

Aluminum Ammonium
Ion

Ammonium
Nitrate

Ammonium
Sulfate Antimony Barium Calcium Cerium Cesium Chlorine

Coefficient -4.6e-04*** 2.1e-02*** 9.8e-03*** 1.8e-02*** -2.4e-05 7.7e-05*** 4.2e-05 6.4e-05** 6.6e-05*** -1.1e-04
(1.2e-04) (2.6e-03) (2.7e-03) (3.7e-03) (1.9e-05) (2.5e-05) (8.8e-05) (2.7e-05) (1.7e-05) (1.9e-04)

% Wildfire -15.9% 24.0% 23.1% 12.3% -2.3% 9.0% 1.2% 7.0% 9.0% -5.0%
95% CI Upper -7.5% 29.9% 35.7% 17.3% 1.3% 14.8% 6.1% 12.7% 13.7% 11.1%
95% CI Lower -24.3% 18.2% 10.6% 7.3% -5.9% 3.2% -3.7% 1.2% 4.3% -21.1%

Coefficient -6.0e-04*** 2.8e-02*** 2.0e-02*** 2.1e-02*** -5.3e-05* 1.2e-04*** 1.1e-04 2.2e-04*** 5.5e-05** -5.0e-04
(1.5e-04) (3.5e-03) (5.1e-03) (6.3e-03) (2.8e-05) (4.1e-05) (1.2e-04) (3.9e-05) (2.6e-05) (3.7e-04)

% Wildfire -20.8% 32.2% 0.4806919 14.3% -5.1% 13.6% 3.2% 23.8% 7.4% -21.8%
95% CI Upper -10.5% 40.2% 0.7209205 22.8% 0.3% 22.9% 10.2% 32.2% 14.4% 9.7%
95% CI Lower -31.1% 24.2% 0.2404632 5.8% -10.6% 4.3% -3.8% 15.4% 0.4% -53.4%

Coefficient -5.6e-04*** 2.4e-02*** 1.8e-02*** 1.5e-02** -4.0e-05 1.2e-04*** 1.2e-04 2.3e-04*** 6.5e-05** -3.8e-04
(1.6e-04) (3.2e-03) (4.6e-03) (6.4e-03) (3.0e-05) (4.0e-05) (1.2e-04) (4.0e-05) (3.0e-05) (3.4e-04)

% Wildfire -19.3% 27.5% 43.4% 10.2% -3.9% 14.5% 3.4% 25.4% 8.8% -16.5%
95% CI Upper -8.6% 34.7% 64.7% 18.9% 1.8% 23.6% 10.4% 34.0% 16.8% 12.9%
95% CI Lower -30.1% 20.2% 22.0% 1.5% -9.5% 5.5% -3.6% 16.8% 0.8% -45.9%

Mean Concentration 4.30E-02 1.30E+00 6.10E-01 2.10E+00 1.60E-02 1.30E-02 5.20E-02 1.40E-02 1.10E-02 3.40E-02
N 15529 10899 6299 6295 10859 10719 15516 10273 10432 15561
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Table 17: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set II

Chromium Chromium Vi Cobalt Copper Europium Gallium Gold Hafnium Indium

Coefficient -6.1e-06 6.6e-05*** 1.6e-06*** 5.8e-06 -1.1e-05 2.6e-06 2.0e-06 4.2e-05*** -1.3e-05**
(1.0e-05) (1.7e-05) (5.7e-07) (8.3e-06) (1.5e-05) (1.6e-06) (2.6e-06) (1.1e-05) (6.0e-06)

% Wildfire -5.5% 9.0% 3.2% 2.5% -3.6% 2.7% 1.3% 8.4% -2.5%
95% CI Upper 12.6% 13.7% 5.3% 9.5% 5.5% 6.1% 4.6% 12.6% -0.2%
95% CI Lower -23.6% 4.3% 1.0% -4.5% -12.7% -0.7% -2.0% 4.2% -4.7%

Coefficient 2.5e-06 5.5e-05** 2.8e-06** 5.4e-06 9.1e-06 -6.4e-07 -7.3e-06** -1.6e-05 -8.6e-06
(1.8e-05) (2.6e-05) (1.2e-06) (1.6e-05) (2.6e-05) (2.3e-06) (3.4e-06) (1.2e-05) (7.8e-06)

% Wildfire 2.2% 7.4% 5.5% 2.3% 2.9% -0.7% -4.7% -3.2% -1.6%
95% CI Upper 34.3% 14.4% 9.9% 16.1% 19.2% 4.0% -0.4% 1.6% 1.3%
95% CI Lower -29.8% 0.4% 1.0% -11.5% -13.4% -5.3% -9.1% -7.9% -4.5%

Coefficient 7.5e-06 6.5e-05** 3.7e-06*** 5.0e-06 -6.2e-06 4.4e-06* -8.3e-07 7.2e-06 -6.9e-06
(1.8e-05) (3.0e-05) (1.2e-06) (2.0e-05) (2.9e-05) (2.6e-06) (3.9e-06) (1.2e-05) (8.0e-06)

% Wildfire 6.7% 8.8% 7.1% 2.1% -2.0% 4.6% -0.5% 1.4% -1.3%
95% CI Upper 37.9% 16.8% 11.6% 18.7% 15.9% 9.9% 4.3% 6.3% 1.7%
95% CI Lower -24.4% 0.8% 2.5% -14.5% -19.9% -0.8% -5.4% -3.4% -4.3%

Mean Concentration 1.70E-03 1.10E-02 7.80E-04 3.50E-03 4.80E-03 1.50E-03 2.40E-03 7.70E-03 7.90E-03
N 15579 10432 10769 15561 7850 7896 7896 7850 10319
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Table 18: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set III

Iridium Iron Lanthanum Magnesium Manganese Molybdenum Niobium Potassium Potassium
Ion

Coefficient -9.1e-07 -2.0e-04 1.0e-04*** -1.4e-04*** 5.2e-06 4.3e-06 2.5e-06* 6.4e-04*** 5.7e-04***
(3.0e-06) (1.3e-04) (2.5e-05) (3.4e-05) (1.7e-05) (3.9e-06) (1.4e-06) (1.4e-04) (2.0e-04)

% Wildfire -0.5% -4.2% 11.8% -13.4% 2.8% 2.1% 2.0% 15.1% 13.9%
95% CI Upper 2.7% 1.1% 17.6% -7.0% 20.8% 5.8% 4.2% 21.7% 23.6%
95% CI Lower -3.7% -9.4% 5.9% -19.8% -15.3% -1.6% -0.2% 8.4% 4.2%

Coefficient -1.5e-05*** -2.8e-05 2.2e-04*** -7.2e-05 6.9e-06 -2.1e-05*** 1.9e-06 5.5e-04** 5.0e-04
(4.1e-06) (2.0e-04) (3.6e-05) (5.3e-05) (3.4e-05) (6.7e-06) (1.9e-06) (2.2e-04) (3.3e-04)

% Wildfire -8.3% -0.6% 26.2% -6.9% 3.7% -10.4% 1.5% 12.9% 12.1%
95% CI Upper -3.9% 7.6% 34.7% 3.1% 39.3% -4.0% 4.5% 23.1% 27.6%
95% CI Lower -12.8% -8.7% 17.8% -17.0% -32.0% -16.8% -1.6% 2.7% -3.4%

Coefficient -3.4e-06 4.9e-05 2.4e-04*** -9.0e-05* 3.1e-05 -1.0e-05 5.1e-06** 7.0e-04*** 7.2e-04**
(4.7e-06) (2.2e-04) (3.9e-05) (5.3e-05) (3.7e-05) (7.8e-06) (2.1e-06) (2.4e-04) (3.4e-04)

% Wildfire -1.9% 1.0% 28.2% -8.6% 16.8% -5.0% 4.0% 16.5% 17.5%
95% CI Upper 3.2% 10.0% 37.3% 1.4% 56.0% 2.4% 7.3% 27.4% 33.9%
95% CI Lower -7.0% -7.9% 19.1% -18.7% -22.4% -12.5% 0.7% 5.5% 1.2%

Mean Concentration 2.80E-03 7.20E-02 1.30E-02 1.50E-02 2.80E-03 3.20E-03 1.90E-03 6.40E-02 6.20E-02
N 7850 15574 7896 15081 15611 8378 7850 15592 10628
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Table 19: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set IV

Rubidium Samarium Scandium Selenium Silicon Silver Sodium Sodium Ion Strontium

Coefficient 1.2e-06** -1.1e-05 -5.7e-05*** 4.6e-06*** -6.7e-04** -1.5e-05*** -7.2e-05 6.4e-04*** 1.4e-07
(5.7e-07) (1.1e-05) (9.5e-06) (1.6e-06) (2.7e-04) (5.1e-06) (1.5e-04) (2.1e-04) (2.3e-06)

% Wildfire 2.6% -4.3% -14.1% 6.4% -8.2% -3.7% -1.4% 7.8% 0.2%
95% CI Upper 4.9% 4.8% -9.5% 10.7% -1.8% -1.3% 4.1% 12.8% 5.7%
95% CI Lower 0.2% -13.5% -18.7% 2.1% -14.7% -6.1% -6.9% 2.7% -5.3%

Coefficient 4.2e-06*** -5.1e-06 -1.3e-04*** 1.1e-05*** -7.6e-04** 9.8e-06 1.4e-04 3.4e-04 -6.7e-06*
(7.3e-07) (2.0e-05) (1.5e-05) (2.6e-06) (3.1e-04) (6.3e-06) (2.7e-04) (2.9e-04) (3.6e-06)

% Wildfire 8.8% -2.1% -31.2% 14.8% -9.3% 2.4% 2.6% 4.1% -8.2%
95% CI Upper 11.8% 14.2% -23.9% 21.8% -1.8% 5.4% 12.9% 11.1% 0.3%
95% CI Lower 5.8% -18.3% -38.5% 7.8% -16.8% -0.6% -7.7% -2.9% -16.8%

Coefficient 4.7e-06*** -9.0e-06 -1.1e-04*** 1.1e-05*** -6.8e-04** 9.3e-06 2.3e-04 4.3e-04 -5.2e-06
(7.9e-07) (2.2e-05) (1.6e-05) (2.7e-06) (3.3e-04) (6.8e-06) (3.0e-04) (3.1e-04) (3.9e-06)

% Wildfire 9.8% -3.7% -26.3% 15.6% -8.4% 2.2% 4.4% 5.3% -6.4%
95% CI Upper 13.1% 14.1% -18.6% 23.1% -0.4% 5.5% 15.6% 12.8% 2.9%
95% CI Lower 6.6% -21.5% -34.1% 8.0% -16.3% -1.0% -6.8% -2.2% -15.7%

Mean Concentration 7.10E-04 3.80E-03 6.30E-03 1.10E-03 1.20E-01 6.20E-03 7.80E-02 1.20E-01 1.20E-03
N 15561 7850 7863 15611 15561 10319 15112 10697 15561
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Table 20: Regression of PM2.5 Metal Subspecies on Wildfire PM2.5, Set VI

Tantalum Terbium Tin Titanium Tungsten Vanadium Yttrium Zinc Zirconium

Coefficient 1.6e-05** -8.7e-06 3.8e-06 -2.3e-05** 1.2e-05** 2.3e-06 2.5e-06* -1.6e-06 -4.2e-06**
(6.3e-06) (1.8e-05) (6.5e-06) (9.1e-06) (5.6e-06) (2.6e-06) (1.4e-06) (3.2e-05) (2.1e-06)

% Wildfire 4.7% -2.2% 0.5% -8.2% 4.5% 1.9% 2.8% -0.2% -3.9%
95% CI Upper 8.5% 6.9% 2.3% -1.8% 8.8% 6.4% 5.9% 9.0% -0.2%
95% CI Lower 1.0% -11.4% -1.3% -14.6% 0.3% -2.5% -0.2% -9.5% -7.6%

Coefficient 8.9e-06 6.7e-06 -1.7e-05 -1.1e-05 -1.1e-07 3.0e-06 4.6e-06*** 5.4e-05 -8.6e-06**
(7.5e-06) (3.1e-05) (1.2e-05) (1.2e-05) (7.1e-06) (4.8e-06) (1.7e-06) (4.0e-05) (3.4e-06)

% Wildfire 2.7% 1.7% -2.4% -3.8% 0.0% 2.6% 5.2% 8.1% -7.9%
95% CI Upper 7.2% 17.4% 1.1% 4.5% 5.3% 10.7% 9.0% 19.8% -1.7%
95% CI Lower -1.8% -14.0% -5.8% -12.1% -5.4% -5.5% 1.3% -3.7% -14.0%

Coefficient 2.7e-05*** 4.4e-06 -1.4e-05 -5.7e-06 1.3e-05 8.6e-07 6.5e-06*** 6.4e-05 -6.6e-06*
(8.8e-06) (3.3e-05) (1.3e-05) (1.2e-05) (7.7e-06) (4.6e-06) (2.0e-06) (4.1e-05) (3.5e-06)

% Wildfire 8.1% 1.1% -1.9% -2.0% 4.9% 0.7% 7.3% 9.5% -6.0%
95% CI Upper 13.3% 17.9% 1.7% 6.3% 10.8% 8.4% 11.6% 21.6% 0.3%
95% CI Lower 2.8% -15.6% -5.5% -10.4% -1.0% -6.9% 2.9% -2.5% -12.3%

Mean Concentration 5.10E-03 6.00E-03 1.10E-02 4.20E-03 4.00E-03 1.70E-03 1.40E-03 1.00E-02 1.60E-03
N 7850 7850 10809 15561 7850 15574 8470 15574 15161



A.1 Estimating Fire Burn Durations

Wildfires can last for a period of hours to hundreds of days (for large, remote complex fires). The

best measure in the FPA database of a fire’s start time is the discovery time by the reporting agency,

which is almost always reported. The time of the fire’s containment, which indicates a judgment

by the fire managing agency that the fire perimeter is secured from spreading further, is reported

with similar frequency. Only some of the FPA database sources also have reports of their fires’

extinguishment dates. Substantial emissions may still occur during the period between containment

and extinguishment, especially for large fires. For fires greater than 300 acres, approximately 43%

of burn time is post-containment. To better calibrate the time profile of emissions from fires, I

use these fire events to fit a model and predict the burn duration for all fires in the absence of an

explicitly-reported extinguishment or “put-out” time.

I merge fire extinguishment dates from the DOI-USGS database of fire reports from six major

federal agencies. Then, estimate a linear model of a fire’s burn duration:

Di = ciξ+ s(i)θs +m(i)θm + y(i)θy + ri

A fire’s burn duration is a function of its time to containment Di; its final land-area size, mea-

sured by a categorical “size class” ci; some unobserved seasonal-, year-, and state-specific factors;

and idiosyncratic factors ri. I estimate this relationship using all fires from 2000-2010 larger than

300 acres. The containment time is naturally a strong predictor, as it is the earliest a fire can be ex-

tinguished. Its coefficient is sharply estimated close to 1, suggesting that time-to-containment is at

least conditionally unrelated to unobservable characteristics of the fire that affect its total duration.

Where both containment and put-out dates are unavailable, a fire is assigned its duration based

on the same model, estimated without including containment date as a covariate. All predictions

less than 1 day due to the linear fit of the model are assigned a value of 1 day of burning. All

fires with reported and predicted durations exceeding 160 days are assigned 160 days of burning to

lower computational overhead. This is based on an assumption that fires reported to burn in excess
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of 160 days have reporting error in their records or are long-burning smoldering fires, which do

not have comparable emissions to flaming fires. This truncation procedure removes approximately

10 percent of fire emission days, and less than 4 percent of emissions when weighted by the total

land area of the fire.

The purpose of these duration estimates is to improve the predictive power of modeled concen-

trations. Errors in the prediction from reporting errors or misspecification of the model for fire burn

duration will result in emissions profiles of incorrect length. These errors will not affect the validity

of the modeled pollutant concentrations as instruments for observed pollutant concentrations, pro-

vided they are statistically unrelated to the determinants of the observed pollutant concentrations I

do not include in my first stage estimation.

A.2 Wildfire Modeling Details

A.2.1 Modeling Workflow

The fire events from the FPA FOD database are each input as individual events into the BSF. The

CONSUME module reads the coordinate data of the event and determines the likely fuel type using

the FCCS fuel map. CONSUME then divides the fuel consumption into flaming, smouldering,

and residual emission phase, each of which has a distinct contribution to emissions volume for the

same fuel (as a model of fuel combustion efficiency). Combining the fuel consumption profile with

empirically-derived emissions factors, FEPS then estimates the quantities of heat and the pollutant

of interest released by the fire. Using an empirically-derived diurnal (i.e., daily recurring) time

profile embedded in FEPS, I generate a 24-hour emissions pattern that repeats for each day a fire

burns and terminates at the estimated date of the fire’s extinguishment. The pattern distributes the

total emissions calculated by CONSUME among hours of the day. This modeling step is designed

to improve downwind concentration estimates by accounting for fire burn cycles that vary with

meteorological parameters that systematically vary with time of day, with lower emissions during

nighttime hours.
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The FEPS Plume Rise module estimates the buoyancy of the emitted pollutant due to the heat

calculated by CONSUME and assigns 20 heights into which fractions of the hourly emissions are

injected. This step reflects that quantities of a pollutant will be lofted higher from a fire location

the more heat the fire releases, and that larger fires will also tend to have higher plumes that will

result in longer-range transport. The result is a set of hourly point-source emissions for each fire

event, with 20 emissions quantities in each hour released at the FEPS-calculated altitudes.

The point-source emissions generated by the CONSUME and FEPS models from the fire event

data are then inputted into HYSPLIT, which calculates the trajectory and dispersion of the emitted

pollutants and outputs a spatial field of concentrations over time. To calculate concentrations,

HYSPLIT requires continuous meteorological data spanning the time period of the fire event and

its corresponding downwind impacts of interest. Meteorological reanalysis data sets or archived

forecasts are typically used for retrospective applications. Here, I use the Eta Data Assimilation

System 40km (EDAS40), an archived 3-hourly forecast spanning 2004 to the present with a spatial

resolution of 40km. This forecast system was developed and maintained by National Weather

Service’s National Centers for Environmental Prediction.

HYSPLIT represents the distribution of pollutants from a source through the behavior of a large

number of individual “particles” (which are computational representations of pollutant masses, not

to be confused with particulate pollutants in themselves). These particles are released over the

duration of an emission and HYSPLIT models their advective motion using three-dimensional

velocity vectors from the meteorological data. In addition, the particle approach adds a random

component to their advective motion that approximates a random walk process calibrated by local

atmospheric turbulence. HYSPLIT particles are assigned a proportional fraction of pollutant mass

at the time of emission and shed mass through atmospheric removal processes (dry and wet depo-

sition). Concentrations for a grid cell are calculated through the sum of masses of particles within

the grid cell divided by the size of the grid cell. All HYSPLIT calculation methods are described

in detail in Draxler and Hess (1997). I describe deposition processes and my choice of calibration

parameters in the next section.

66



Each HYSPLIT run uses a 5-day set of hourly burning emissions at 21 vertical levels for a sin-

gle fire location. I set HYSPLIT to release 300,000 particles per emissions hour, which are evenly

divided among the vertical emission levels. I allow HYSPLIT to calculate the travel of particles

for 920 hours (approximately five and a half weeks) from the hour of the first emission. From

these calculations, HYSPLIT creates an hourly concentration grid for the CONUS model domain

roughly matching the resolution of the meteorological data, with each grid square encompassing

approximately 1,600 km sq. for 2004-2010. I sample concentrations from each fire event’s grid

at 10 meters above ground level at pollution monitoring sites and census tract centroids, sum con-

centrations across all fire events, and average the resulting hourly concentrations to daily average

concentrations by each sampling site.

While the raw output is constructed from emissions measures and conversions that would de-

nominate it in µgm−3 if it were to be taken literally, I remain agnostic about the units of the output

and allow first-stage regressions to implicitly rescale the wildfire PM2.5 measure. In Appendix

Section A.3, I establish that the output has a strongly logarithmic fit to observed pollution data and

take a logarithmic transformation of the raw concentrations shifted by a small constant. This will

be the wildfire PM2.5 instrument used for the remainder of the paper.

A.2.2 Deposition Processes

HYSPLIT’s modeling of deposition, or the removal of pollutants from the atmosphere by precip-

itation and settling or impaction upon terrain, plays an important role in generating independent

variation among pollutants to allow the separate identification of their health effects. HYSPLIT

dynamically accounts for the amount of air pollution lost to precipitation by modeling the inter-

action of traveling parcels of air pollution from origin to destination with temporally and spatially

smooth representations of precipitation events. HYSPLIT models particle pollutant wet deposition

(also referred to as “wet removal” and “wet scavenging”) via two processes described as in-cloud

removal (“washout”) and below-cloud removal (“rainout”).6 For gaseous pollutants, it uses a cal-

6There is some inconsistent usage of the terms “washout” and “rainout” in across some papers, their meanings
occasionally swapped.
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culation method based on gas solubility. HYSPLIT has one common process for both particles and

gases for modeling dry deposition which assumes a rate of removal driven by wind speed. One

pollutant-specific constant calibrates the intensity of each process: the washout ratio, represent-

ing an average ratio of pollutant concentration in air to concentration in water at the ground; the

rainout rate, or a fixed rate of pollutant removal while pollutant concentrations are in a meteoro-

logical layer with precipitation (s−1); the Henry’s Law Constant for wet removal of soluble gases

(mol atm−1); and the dry deposition velocity (ms−1). The constants I choose for each pollutant

type, along with corresponding citations, are reported in Appendix Table 14. For reference, I also

report constants for related pollutants that I do not model.

Wet deposition of particulate pollutants is characterized by HYSPLIT through one process in

which polluted air is ingested over time into proximal atmospheric moisture (washout), and another

in which rain falls through polluted air (rainout). Wet deposition processes play a relatively larger

role in mass removal of fine particulate pollutants than they do for gaseous pollutants, up to an order

of magnitude higher, though this relation varies by species. While there is substantial heterogeneity

in the efficiency with which PM2.5 pollutants are removed by rain because of the many component

subspecies and variation in the particle size distribution, a washout ratio of 1× 105 is broadly

used as an estimate for the washout ratio of general PM2.5. In the absence of well-established

parameters for rainout rates, I use HYSPLIT’s suggested particle rainout rate of 5×10−5s−1 which

has been used in other HYSPLIT particulate modeling applications (Chand et al. 2008; Wen et al.

2013). I expect that empirically-derived washout ratios will capture most deposition since they are

often measured without HYSPLIT’s deposition process distinction in mind, and at least one study

finds that below-cloud deposition is insignificant for fine particles except in extreme precipitation

events (Andronache 2003).

Instead of explicit washout and rainout parameters, gaseous pollutants’ wet deposition is cali-

brated by the appropriate Henry’s Law constant for the water-soluble gas. Henry’s Law holds that

at a constant temperature, the solubility of gas in a liquid is proportional to the pressure of the gas

surrounding the liquid. An intuitive example of Henry’s Law at work is a carbonated soda: while
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sealed, a soda bottle contains liquid with dissolved CO2 and a space above the liquid with CO2

gas. The opening of the bottle lowers the resulting pressure above the liquid, and over time the

CO2 escapes from the liquid and into the open air through the bottle opening. The reverse process

occurs if there is liquid in the same bottle with no CO2, and CO2 is injected into the empty space

of the sealed bottle: the higher the pressure of the resulting air space in the bottle (and the greater

the concentration of CO2), the greater the equilibrium concentration of CO2 in the liquid will be.

Henry’s Law constants are chosen from an extensive collection of estimates from academic papers

(Sander 1999). Estimates are typically calculated in one of three ways: by theoretical calculations,

extrapolations from other measured constants, or by field measurements and experiments. For

each gas, I choose the most recent estimate from a literature review where available. If a litera-

ture review-based estimate is not available, I choose the modal Henry’s Law constant reported in

Sander (1999).

Dry deposition is modeled through gravitational settling and impaction at ground level which

intensifies with wind velocity. In the absence of precipitation and chemical reactions, dry deposi-

tion is the primary determinant of a pollutant’s lifetime in the atmosphere following emissions. I

conduct a literature search for dry deposition velocities, using the compound name and “deposi-

tion velocity” as search terms. For deposition velocities for gases drawn from field observations,

urban-setting deposition velocities are preferred. Many gases, such as NO and HCHO, do not

have significant dry deposition fluxes over land. I use a deposition velocity of 0ms−1 for such

gases with trivial land deposition rates, and also for any gases for which I am unable to find any

direct reference to deposition fluxes or velocities. The deposition velocities I choose are reported

in Appendix Table 14.

A.3 Nonlinear First Stage Transformation

The relationship between measured concentrations and modeled concentrations is extremely non-

linear, requiring a monotonic transformation to maximize the predictive power of the wildfire pol-

lution instrument. Figure 6a shows the estimated coefficients of a piecewise linear regression
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of daily station PM2.5 on wildfire PM2.5 interacted with vigintile (5-percentile-block) indicator,

representing an approximation of the first derivative of the true dose response function between

measured and raw modeled PM2.5 across the raw modeled PM2.5 distribution. This regression

controls for year, month, and county fixed effects, with standard errors clustered at the state level.

The pattern is highly nonlinear, scaling multiple orders of magnitude, with the estimated slope

monotonically decreasing in concentration. A function of the form f (x) = a
x+c (with a > 0, c≥ 0)

follows a comparable pattern, suggesting that a linear approximation better predicts station PM2.5

using as a regressor the natural logarithm of modeled wildfire PM2.5 plus some constant. This

nonlinear pattern implies that some combination of the emissions calculations and HYSPLIT is

resulting in systematic overestimation of large concentrations and underestimation of small con-

centrations. The monotonically decreasing slope across the domain of concentrations implicates

the dispersion calculation of HYSPLIT, which relies on calibration from atmospheric parameters to

determine turbulent velocities and a Gaussian random component that determine the random-walk-

like dispersive behavior of the particle. One explanation for the subsequent logarithmic fit is that

the calibration of the Gaussian component’s variance does not account for how the true variance

is itself positively related to concentration level, resulting in systematic underestimation of disper-

sion for large concentrations and overestimation for small concentrations (causing overestimated

and underestimated concentrations, respectively).

A logarithmic transformation of the wildfire pollution measure in the first stage accounts for

the implicit overdispersion of concentrations along trajectories by compressing the distribution of

magnitudes. To accomplish this transformation without discarding zero values, I take the natural

logarithm of daily average wildfire PM2.5 plus a constant. The choice of constant by which to

shift the raw concentration before taking the logarithm, the “shift parameter” has two important

impacts: it determines the position of zeroes on the log function, and relatedly, it changes the

relative curvature of the fit of logged concentrations to observed concentrations. Shift parameters

that are too small will result in the log transformation overestimating the contrast between the effect

of positive wildfire concentrations relative to zero wildfire concentrations, while shift parameters
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that are too large will cause an underestimated contrast. Large shift parameters may also distort

the marginal effects for larger values in the distribution. One sensible choice of shift parameter

is a point at which positive concentrations could be considered effectively zero for the dependent

variable of interest. HYSPLIT’s concentration outputs near zero can be reasonably framed as a

sensitivity problem: there is a computational threshold below which it will never give a positive

value, and the distribution of values approaching zero is continuous until the trivial minimum value

at 4.92× 10−34µgm−3. I choose a value corresponding to the 10th percentile of positive values

(7.21× 10−14µgm−3), add it to the raw concentration value, and take the logarithm. For ease of

interpretation later, I also shift all transformed values by the minimum of the transformed values to

make all values nonnegative. Figure 6b shows the same regression as in Figure 6b, but now with

logged daily wildfire PM2.5 interacted with vigintile indicator. The slopes now fall within the same

order of magnitude, slightly increasing in vigintile (implying a gradual shift to underestimation of

marginal changes in concentrations relative to smaller vigintiles).

Additionally, there are several numerically large outliers which may affect the fit, but station

data provides a way of trimming outlier values sensibly. I account for these right-tail outliers by

assigning the instrument the station PM2.5 value if the raw modeled wildfire PM2.5 exceeds the

station-observed PM2.5 value, and both values are greater than 65µgm−3. Empirically, the latter

condition implies the former in 100 percent of cases, which motivated the selection of this cutoff.

Less than 0.1 percent of station-days have measured PM2.5 exceeding 65µgm−3. All other wildfire

PM2.5 values exceeding 65µgm−3 (approximately 0.6 percent of all values) are set to 65µgm−3.

This adjustment compresses the right tail of the distribution, enhancing the performance of the

logarithmic transformation I take to improve the fit of the instrument (in exchange for losing some

variation in extreme values). Because the observed nonlinear relationship and outliers are osten-

sibly due to HYSPLIT’s dispersion calculation methods, which are not unique to any pollutant, I

assume that concentrations for other pollutant species follow a comparable relationship with their

observed values (in the absence of daily station data to do a pollutant-specific adjustment). For all

control species, I reduce all right-tail values for other pollutant species to their 98th percentile of
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positive values before taking the logarithmic transformation, since that is the approximate point at

which the PM2.5 values always exceed station values. Then, I take the logarithm of the outlier-

adjusted modeled concentration outputs plus the 10th percentile of their positive values added.

A.4 Coefficient Estimates under Non-Classical Measurement Error

Consider a simplified cross-sectional setting, with health outcome y as a function of true exposure

x∗,

yi = x∗i β+ εi

Assume x∗i is uncorrelated with εi, and that the researcher only observes an imperfect measure

x of x∗such that x = x∗+ e. Define var(x∗) = σ2
x∗ , var(e) = σ2

e , and cov(x∗, e) = σx∗e. Then, the

probability limit of the ordinary least squares estimator of y on x can be written as

plimβ̂ = β
(σ2

x∗+σx∗e)

σ2
x∗+σ2

e +2σx∗e

By the Cauchy-Schwarz inequality, the denominator is always positive: it represents the vari-

ance of the error-prone regressor x. σx∗e = 0 corresponds to the classical errors-in-variables as-

sumption, which results in attenuation bias. The probability limit of the OLS estimate β̂ is both

attenuated and incorrectly-signed if σx∗e < 0 and σ2
x∗ < |σx∗e|. Negative correlation between the

true regressor value and the size of the measurement error is plausible in the pollution setting if

population density increases both pollution levels and reduces exposure measurement error asym-

metrically across polluted areas.

A.5 Change in Finite-Sample Bias of IV when Fixed Effects are Included

Another possibility for the increase in estimates across different fixed effects specifications is that

the inclusion of fixed effects potentially changes the finite-sample bias of the 2SLS estimate, even
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with equally “strong” instruments in the Staiger and Stock (1997) nomenclature. This is because

both the strength of the first-stage relationship and the amount of correlation between the endoge-

nous variable and structural equation error term both determine finite-sample bias of IV estimators.

In this interpretation, the inclusion of fixed effects chooses variation in observed PM2.5 that is less

correlated with unobserved determinants of health than the total variation in PM2.5, while simul-

taneously not weakening the relationship between wildfire PM2.5 and station PM2.5 sufficiently

to counterbalance the change. The corresponding OLS estimates for PM2.5 are close to zero and

relatively precise, implying that IV estimates would be biased toward zero. One might be inclined

to believe that between-county variation in pollution is more strongly associated with unobserved

determinants of health than within-county variation is, both based on the mechanisms proposed for

either correlation (e.g., residential and industrial sorting versus micro-level changes in economic

activity) and more pragmatically through the revealed preference of researchers for multiple time-

series and panel studies over cross-sectional studies. Murray (2006) provides a simplified approxi-

mation of the finite-sample bias of 2SLS based on Hahn and Hausman (2001) (where the structural

and first-stage equation error terms have varianced normalized to one) as follows:

E(β̂,2SLS)−β≈ lρ(1− R̃2)

NR̃2 .

Here, β is the effect of PM2.5 on mortality, l = 1 is the number of instruments, ρ is the corre-

lation between the structural and first-stage equation error terms (a measure of the level of endo-

geneity), R̃2 is the partial R-squared of the first stage regression, and N is the sample size. If the

inclusion of fixed effects decreases ρ to ρ f e, but decreases R̃2 to R̃2
f e , then the approximate bias

decreases as long as ρ

ρ f e
>
(
(1−R̃2)

R̃2

)(
(1−R̃2

f e)

R̃2
f e

)−1

.
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Chapter 2. Finite Sample Properties and Empirical Applicability of Two-Sample

Two-Stage Least Squares

(With Wei Lin)

1 Introduction

Instrumental variables (IV) methods enable the consistent estimation of endogenous variables’

causal effects but suffer from poor finite-sample properties and data availability constraints. Bound,

Jaeger, and Baker (1995) establish that estimation with weak instruments can lead to large incon-

sistencies and finite sample bias. IV estimates also tend to have relatively large standard errors,

often inhibiting the interpretability of differences between IV and non-IV point estimates. Lastly,

the idiosyncratic nature of valid instrumental variables reduces their availability in data sets along-

side outcome and other variables of interest. Beginning with Klevmarken (1982), some researchers

have sought to address the problem of data availability by using two-sample IV methods (TSIVM),

which combine parameter estimates from multiple data sets into a final IV estimate. Under a set of

ideal conditions, a TSIVM produces an estimate with identical bias to the otherwise inaccessible

traditional IV estimate. However, the finite-sample properties of TSIVM estimators are generally

unknown, and prior literature lacks clear guidelines for how researchers should interpret them. The

potential for researchers to introduce additional data and estimate models by TSIVM to produce

estimates superior to available single-sample estimates has also not been explored.

We establish some insights into the finite-sample properties of the two-sample two-stage least

squares (TS2SLS) estimator. Likely owing to its ease of implementation and interpretation, the

TS2SLS estimator is the most commonly-used TSIVM estimator in empirical applications (e.g.,

Arellano and Meghir 1992; den Berg et al. 2015; Devereux and Hart 2014; Nicoletti and Ermisch

2014; Rothstein and Wozny 2014). We broaden the set of potential applications of TS2SLS by
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demonstrating that even where a one-sample 2SLS estimate is available, a TS2SLS estimator may

sometimes be preferred or worth reporting alongside the one-sample estimate because of greater

precision and smaller bias. We propose approximations for the bias and variance of the TS2SLS

estimator that are dependent on both the typical set of parameters in the “weak instruments” liter-

ature for one-sample IV estimators and on three parameters unique to two-sample estimators: the

distinct sample sizes of the first-stage and second-stage samples and the proportion of observations

that “overlap” between them (i.e., the fraction of real population units from the first-stage sample

which are also in the second-stage sample). To test the approximations, we conduct a series of

Monte Carlo simulations and compute the average bias and standard errors across simulations.

We develop a data framework in which the TS2SLS estimator is computed from a complete

theoretical sample of population units (the “super-sample”) of which the first-stage and second-

stage samples used to compute the TS2SLS estimate of interest are subsets containing potentially

overlapping units. This approach formally reconciles two-sample and split-sample 2SLS estima-

tors by nesting them in a common framework; for example, it makes equivalent the no-overlap

TS2SLS estimator studied in Inoue and Solon (2008) and split-sample 2SLS (SS2SLS) estima-

tor analogous to Angrist and Krueger (1995)’s split-sample IV (SSIV). We find that the TS2SLS

estimator can be written as a convex linear combination of the 2SLS estimator computed using

the overlapping units between the two samples, and the SS2SLS estimator computed using the

remaining non-overlapping units. The weight on the 2SLS component is a function of sampling

variation in the first-stage estimates for each of the overlapping and non-overlapping subsamples.

The weight converges asymptotically to the “overlap” parameter, representing the proportion of

units in the second-stage sample which are also in the first-stage sample. This linear partitioning

of the TS2SLS estimator frames it as a function of two estimators with known properties, simpli-

fying the development of approximations of bias and variance.

We find that the TS2SLS estimator has all bias dependent on the degree of sampling error in

the first-stage parameters (i.e., the coefficients on the instruments) relative to the strength of the

endogeneity. As with 2SLS, the bias is only decreasing for the finite-sample bias from first-stage
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sampling error. Biases from invalid instruments or from violations of the key TS2SLS assumption

(that the first-stage coefficients on the instruments are identical for both primary and secondary

samples) are invariant to sample size. The TS2SLS estimator’s variance is decreasing in each of

its corresponding sample sizes, with variance reduction diminishing more rapidly from increasing

first-stage sample size.

We demonstrate a hypothetical empirical application of TS2SLS using data from Angrist and

Evans (1998), using their actual sample as the “super-sample” and examining the estimates they

could have recovered had they been forced to use TS2SLS with subsets of their sample instead

of 2SLS with their entire sample. Using TS2SLS with half the data for the first stage and half

for the second stage (effectively a SS2SLS estimate), the estimate is closer to zero than the super-

sample 2SLS estimate and less precise. We find that a TS2SLS estimate using only half of their

observations for the first-stage estimation but their entire sample for the second-stage almost ex-

actly recovers the super-sample 2SLS estimate with equivalent precision, providing evidence of the

strength of the instrument used. This exercise suggests one situation in practice in which TS2SLS

is most likely to yield a high return: when the researcher can estimate the first stage precisely with

one set of data, but also has access to more observations containing the outcome and the instrument

but not the endogenous variable.

The econometrics literature formally concerning TSIVM has explored the computation and

asymptotic properties of various two-sample IV estimators. Angrist and Krueger (1995) provide

the finite-sample properties of the split-sample IV estimator, only alluding to its relationship to

the two-sample IV estimator, which they use in another study (Angrist and Krueger 1993). Inoue

and Solon (2008) computationally distinguish the two-sample IV estimator, which is calculated

explicitly using the ratio of covariance matrices each estimated from different data sets, from the

TS2SLS estimator, which is calculated using ordinary least squares of the outcome against cross-

sample first-stage fitted values. Their main finding is that the TS2SLS approach is asymptotically

more efficient than the TSIV approach because TS2SLS takes into account differences in the sam-

pling distribution of the instrument between the primary and secondary samples, while TSIV does
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not. Both Angrist and Krueger (1995) and Inoue and Solon (2008) only consider two-sample es-

timators which use fully independent samples. One paper in the epidemiology literature, Pierce

and Burgess (2013), makes some commentary on the finite-sample properties of two-sample IV

estimators via simulation, though the paper is primarily focused on the use of TSIV methods to

promote efficient study design by reducing the number of first-stage observations needed. This

paper contributes to the TSIVM literature by formalizing results around the finite-sample behavior

of the TS2SLS estimator, generalizing the results to potentially non-independent first-stage and

second-stage samples, and applying the results to common applications in which TS2SLS-style

estimators are used.

2 Properties of the TS2SLS Estimator

2.1 Model

To examine the TS2SLS estimator, we establish a conventional linear simultaneous equations

framework while also defining the relationships between two arbitrary samples. Suppose S1

{(y1i,z1i)}N1
i=1 and S2

{(
x2 j,z2 j

)}N2
j=1 are i.i.d. random vectors from the same underlying pop-

ulation, where z′1i and z′2 j are K× 1 vectors and y1i and x2 j are scalars. S1 corresponds to what

we call the “second-stage sample,” and S2 corresponds to the “first-stage sample.” We assume the

following on z and x:

1. E(z′1iz1i) = E(z′2 jz2 j) = Ωz.

2. E(z′1ix1i) = E(z′2 jx2 j) = Ωxz.

3. Rank E
(

z′1iz1i

)
= Rank E

(
z′2 jz2 j

)
= K

4. Rank E
(

z′1ix1i

)
= Rank E

(
z′2 jx2 j

)
= 1

We follow a general single-endogenous variable framework:
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x1i = z1iγ1 + v1i (8)

x2 j = z2 jγ2 + v2 j. (9)

y1i = x1iβ+ εi (10)

= z1iγβ+βv1i + εi (11)

= z1iγβ+u1i (12)

Without loss of generality, predetermined variables w (including constants) are “partialled out”

of source variables to create x, z, and y. The outcome y is a function of an endogenous variable x,

and x is a function of an instrument z and error v. The error ε may in general be correlated with

error v, giving rise to the endogeneity of x. The data sets available for use in estimation consist

of two subsamples, S1 and S2 of a broader data set of N units. S1 and S2 generally may partially

or entirely overlap in terms of the underlying units for which they have data. The first subscript

identifies the sample from which each observations of x, y, or z is drawn. The second subscripts, i

for sample 1 and j for sample 2, index individuals within each sample. β is the causal effect of x

on y, and the parameter of interest estimated by instrumental variables. γ1 and γ2 are the first-stage

linear projection coefficients of x on z in each sample, and could differ in practice; here, we assume

that γ1 = γ2. The assumptions for this model are as follows:

Assumptions:

1. Define a function Φ(i) which takes on value 1 if unit i in S1 is also a member of S2, and zero

otherwise.

2. The number of units in N2 also in N1 is ρN2, with 0≤ ρ≤ 1.

(a) The total number of distinct units represented by subsamples S1 and S2 is N = N1 +

(1−ρ)N2.
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3. The data are ordered so that sequence of the first ρN2 number of observations from S2 are

identical to the sequence of the first ρN2 number of observations in S1
{(

x2 j,z2 j
)}ρN2

j=1 =

{(x1i,z1i)}ρN2
i=1 .

4. z1i are valid and relevant excluded instruments for x; that is,

E(εi|z1i) = E(εi|z2i) = 0, E(v1i|z1i) = 0, E(v2 j|z2 j) = 0, γ 6= 0

5. The ratio of S1 and S2 converges to a fixed positive number in large samples, that is,

plim
N1,N2→∞

N1

N2
= α.

6. Equation (8) is the structural equation with structural error εi. Equation (12) is the “reduced-

form” equation, from substituting (8) into (10) and defining composite error u1i = βv1i + εi.

The error terms are homoscedastic (implicitly conditioned on the partialled out exogenous

variables w) with covariance matrix,

var


εi

v1i

v2 j

=


σ2

ε σεv ρσεv

σεv σ2
v ρσ2

v

ρσεv ρσ2
v σ2

v

 .

Note that εi and v2 j are independent when Φ(i) = 0, but when Φ(i) = 1, v2 j = v1 j. This

covariance matrix implies

(a) var(u1i) = β2σ2
v +σ2

ε +2βσεv. Define σ2
u ≡ var(u1i).

(b) εi = θv1i + r1i, where θ = σεv
σ2

v
, and r1i is independent of v1i.

(c) E
(
x2 jεi

)
= ρσεv.

Thus far, we have been agnostic regarding any practical case of data combination - this model will

generally apply to any combination of two samples to estimate β. The model specifies how two
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samples are drawn from the same underlying population and may share some units, describing

the resulting covariance structure of the errors. For simplicity of argument, we have assumed

zero conditional mean (i.e., valid instruments z) and homoscedasticity of the errors (implicitly

conditioned on predetermined variables w). The bias and variance approximations presented in this

paper are intended for directional insight regarding the relationship between the first- and second-

stage samples, rather than explicit estimation. Invalid instruments will change the finite sample

bias as a function of the magnitude and direction of covariance between z and ε; we conjecture

that invalid instruments would not affect the nature of finite sample bias arising strictly from first-

stage sampling error. However, heteroscedasticity would likely increase the finite sample bias

and variance of the TS2SLS estimator relative to a model under homoscedasticity with the same

parameters ρ and σεv. Heteroscedastic error in the first stage results in an OLS first stage estimates

no longer being minimum-variance and first-stage variance drives both bias and variance in the

final 2SLS estimate. Practitioners will still need to compute accurate standard errors on their

estimates, and thus variance estimates should be made robust to arbitrary heteroscedasticity.

2.2 Definitions of Estimators

In practice, the TS2SLS estimator involves generating an estimate of the first stage parameter γ,

γ̂2, using N2 observations with nonmissing values of x and z, generating N1 cross-sample fitted

values x̂1i = z1iγ̂2, and then regressing y1 on x̂1 via OLS to estimate β. To facilitate a clearer un-

derstanding of the estimator, we express TS2SLS as a weighted combination of 2SLS and SS2SLS

estimators on different subsets of the data, whose sizes depend on the degree of overlap between

samples S1 and S2. Intuitively, the 2SLS component of the estimator is estimated using all units

which are shared between S1 and S2; the SS2SLS component is estimated using all units which lie

exclusively within S1 or S2. Accordingly, the TS2SLS estimator is equivalent to 2SLS for ρ = 1

and SS2SLS for ρ = 0 when N1 = N2. Note that these individual estimates may rely on data that

is not observed in the practical setting in which we are considering estimators; the expression of a

weighted average of estimators primarily serves the purpose of providing a more interpretable and
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algebraically convenient starting point for deriving the estimator’s properties.

Let Y1≡


y11

...

y1N1

≡
 Y11

Y12

, X̂1≡


x̂11

...

x̂1N1

≡


ẑ11γ̂2

...

ẑ1N1 γ̂2

≡
 X̂11

X̂12

, Z1≡


z11

...

z1N1

≡
 Z11

Z12

, Ξ1 ≡


ε1

...

εN1

 ≡
 Ξ11

Ξ12

 and V1 ≡


v11

...

v1N1

 ≡
 V11

V12

 be the vectors in S1,

where vectors Y11, X̂11, Z11, Ξ11, V11 are the first ρN2 rows, and vectors Y12, X̂12, Z12, Ξ12,

V12 are the remaining N1 − ρN2 rows. Let X1 ≡


x11

...

x1N1

 ≡
 X11

X12

, where we observe

X11 but not X12. Similarly, let X2 ≡


x21

...

x2N2

 ≡
 X11

X22

, Z2 ≡


z21

...

z2N2

 ≡
 Z11

Z22

 and

V2 ≡


v21

...

v2N2

≡
 V11

V22

 be the vectors in S2, where vectors X11, Z11 are the same as the first

ρN2 rows in S1, and vectors X22 and Z22 are the remaining (1−ρ)N2 rows in S2.

The TS2SLS estimator is defined by

β̂O =
(

X̂ ′1X̂1

)−1
X̂ ′1Y1.

Proposition 1. By the proof in the appendix, β̂O can be rewritten as

β̂O =
(

X̂ ′1X̂1

)−1(
X̂ ′11X̂11

)(
X̂ ′11X̂11

)−1(
X̂ ′11Y11

)
+
(

X̂ ′1X̂1

)−1(
X̂ ′12X̂12

)(
X̂ ′12X̂12

)−1(
X̂ ′12Y12

)
= Ŵ β̂

(1)
2SLS +

(
1−Ŵ

)
β̂
(2)
SS2SLS (13)

88



where

Ŵ ≡
(

X̂ ′1X̂1

)−1(
X̂ ′11X̂11

)
,

β̂
(1)
2SLS =

(
X̂ ′11X̂11

)−1(
X̂ ′11Y11

)
,

and

β̂
(2)
SS2SLS =

(
X̂ ′12X̂12

)−1(
X̂ ′12Y12

)
.

Proposition 2. The probability limit of Ŵ as both samples approach infinity is the ratio of the

overlap parameter to the asymptotic ratio of sample sizes.

plim
N1,N2→∞

Ŵ ≡W =
ρ

α
.

Remark 3. The expected value of Ŵ can be approximated as follows (see appendix):

E
(

Ŵ
)
≈

ρN2γ′Ωzγ+K ·σ2
v

N1γ′Ωzγ+K ·σ2
v +(N1−ρN2)/(1−ρ)N2σ2

v
.

Proposition 1 formalizes the partition of β̂O into a weighted average of β̂
(1)
2SLS and β̂

(2)
SS2SLS. The

weights represent the sum of squares used by each estimator relative to the total sum of squares in

the entire vector of data. This variation has two components: variation explicitly from instruments

Z, and variation from first stage error vectors V which manifests through the estimated first stage

coefficients. Asymptotically, the weights are a function of the degree of overlap between samples

and the ratio of sample sizes. For α = 1, the weights are the ratio of the overlapping sample size

to the second-stage sample size.
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2.3 First-order bias approximation

There is an expansive literature on the finite-sample bias of IV estimators, with papers such as

Nagar (1959), Bekker (1994), Staiger and Stock (1997), and Bun and Windmeijer (2010) offering

approximations of various forms. For simplicity, we consider first-order approximations of the bias

of 2SLS and SS2SLS and develop a bias approximation for TS2SLS. Hahn and Hausman (2002)

offer a simple approximation of the bias of 2SLS, using the product of the inverse expected value

of the variance of fitted values to the expected value of the covariance between the fitted values

and the outcome. In a scalar case, this is in effect using the ratio of expectations in place of the

expected value of the ratio. This approximation corresponds to a first-order Taylor Series expansion

of the 2SLS estimator about each of these “numerator” and “denominator” terms. For 2SLS, this

approximation sufficiently characterizes the directional responses of bias to sample size, number

of instruments, error covariance, and instrument strength. The same holds for SS2SLS, which has

a comparable shape of response but has bias characterized entirely by first-stage sampling error.

Proposition 4. The finite-sample bias for the 2SLS estimator on the overlapping portion of the

sample is approximated by a first-order Taylor expansion:

E(β̂(1)
2SLS−β)≈ K ·σεv

ρN2γ′1Ωzγ1 +K ·σ2
v
. (14)

The approximate finite-sample bias for the SS2SLS estimator on the non-overlap portion of the

sample is given by

E(β̂(2)
SS2SLS−β) ≈ − σ2

vβ/(1−ρ)N2

γ′Ωzγ+σ2
v/(1−ρ)N2

= − β

(1−ρ)N2γ′Ωzγ/σ2
v +1

(15)

Equation (14) and equation (15) show that the bias of both the 2SLS estimator and SS2SLS

estimator approach zero as N2 gets large: they are asymptotically unbiased in first stage sample
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size. This conforms with the intuition that all finite-sample bias in 2SLS (under valid instruments)

originates from first-stage sampling error. Both the direction and magnitude of bias in the 2SLS

estimator depends on σεv, the covariance of error terms representing the endogenous portion of x.

SS2SLS has a attenuation bias that is inversely proportional to (1−ρ)N2γ′Ωzγ/σ2
v , the first-stage

“concentration parameter,” intuitively similar to a bias from measurement error. Note that this

attenuation, found similarly in Angrist and Krueger (1995), is dependent on the assumption of a

linear conditional expectation function in the first stage. An application of Jensen’s inequality to

the SS2SLS estimator suggests that the attenuation bias may not generally hold (see appendix).

Proposition 5. For 0 < ρ < 1 and N2 6= N1, the finite sample bias of β̂O is approximated by

E
(

β̂O−β

)
= E

[
Ŵ
(

β̂
(1)
2SLS−β

)
+
(

1−Ŵ
)(

β̂
(2)
SS2SLS−β

)]
≈ K ·σεv− ((N1−ρN2)/(1−ρ)N2)σ2

vβ

N1γ′Ωzγ+K ·σ2
v +((N1−ρN2)/(1−ρ)N2)σ2

v
. (16)

β̂O is approximately unbiased when the overlap proportion ρ is set according to the following

formula (noting θ = σεv
σ2

v
and K is the number of instruments):

For N2
N1

< 1 and β < Kθ
N2
N1

,

ρ =
Kθ−β

N1
N2

Kθ−β
∈ (0,1) ,

For N2
N1

> 1 and β > Kθ
N2
N1

, set the overlap proportion to

ρ =
β

N1
N2
−Kθ

β−Kθ
∈ (0,1)

Proposition 5 follows from a first-order Taylor series approximation of E(β̂O), derived in the

appendix. The second part is shown by setting the numerator in equation (16) to zero and solving

for ρ. The net bias of TS2SLS is dependent on the overlap parameter ρ and sampling variation in

the first stage parameters estimated from the units used in TS2SLS estimation expressed through

the ratio Ŵ . When the combination of β and σεv makes the direction of bias for the two estimators
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have different signs, the overlap parameterρ can be tuned to yield an approximately unbiased

estimator β̂O.

Because of the nature of the approximation used, the approximation performs poorly near ρ= 1

and is undefined at ρ = 1.With N1 6= N2 and ρ = 1, the expression evaluates to−β after multiplying

the numerator and denominator by (1−ρ), suggesting that the first-order approximation does not

capture useful properties of this important edge case of TS2SLS. With N1 = N2 and ρ = 1, the

expression is undefined but has a defined limit as ρ approaches one:

limρ→1,N1=N2

(
K ·σεv− ((N1−ρN2)/(1−ρ)N2)σ2

vβ

N1γ′Ωzγ+K ·σ2
v +((N1−ρN2)/(1−ρ)N2)σ2

v

)
=

K ·σεv−σ2
vβ

N1γ′Ωzγ+K ·σ2
v +σ2

v
.

This edge case is a likely inaccurate approximation, arising as an artifact of the first-order

Taylor series approximation. We can intuit that the total overlap (ρ = 1) case with N1 = N2 results

in an estimate computationally identical to 2SLS; the two-step nature of 2SLS means that the

ability to explicitly link the units used in the steps has no bearing on the estimate if the units used in

the steps are indeed the same. This approximation contains all elements of the bias approximation

for 2SLS presented in equation (14) but has “artifacts” from the mixture of 2SLS and SS2SLS

estimators. Incidentally, with N1 = N2, we intuit that the no-overlap (ρ = 0) case generates a

computationally identical estimate to the the “split-sample” estimator that is biased toward zero, a

result that would be consistent with Angrist and Krueger (1995).

2.4 Asymptotic Variance of TS2SLS

Proposition 6. β̂O is consistent and asymptotically normally distributed with asymptotic variance

√
N1 +(1−ρ)N2

(
β̂O−β

)
a∼

N

0,
(1+α−ρ)ρ

α2 σ
2
ε

[
ΩxzΩ

−1
z Ωxz

]−1
+

(1+α−ρ)(α−ρ)

α2

[
Ω
′
xz

[(
σ

2
ε +

α−ρ

1−ρ
β
′
σ

2
vβ

)
Ωz

]−1

Ωxz

]−1
 .

(17)
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This result follows from the fact that the limiting distribution of β̂O is a linear combination of

the two estimators β̂
(1)
2SLS and β̂

(2)
SS2SLS with weight ρ

α
(see appendix for proof).

Then, a natural approximation for var(β̂o) is as follows:

var(β̂o)≈ ˜var(β̂o) = (N1 +(1−ρ)N2)
−1 avar(β̂O)

This approximation nests conventional 2SLS, which corresponds to the case where α = 1

and ρ = 1 under which the asymptotic variance is the conventional 2SLS asymptotic variance

(Wooldridge 2010). TS2SLS has an asymptotic variance that accounts for variation in the final

estimate β̂O due to first-stage sampling error, but only due to the error originating in the SS2SLS

component. The 2SLS’ asymptotic variance treats the first stage parameter as known (Wooldridge

2010), and so any variability from the first stage of the 2SLS component of the TS2SLS estimator

is ignored. The presence of (1−ρ) in the stabilizing factor, (N1 +(1−ρ)N2)
−1, implies that in-

creasing first stage observations N2 has a discounted and diminishing effect on precision relative

to increasing second stage observations N1.

Inoue and Solon (2008) derive the asymptotic variance of TS2SLS, but do so only for the case

of independent primary and supplemental samples (i.e., ρ = 0). Allowing the samples to generally

overlap, we find that the asymptotic variance is decreasing in ρ. The basic intuition underlying this

property is that sampling variation in the first stage parameter coming from a secondary, indepen-

dent sample is additional noise originating with error term v2 unrelated to the outcome y1. First

stage estimate sampling variation coming from the same units used in second stage estimation (as

they would in the typical 2SLS computation implied by ρ = 1) have a component with explanatory

power for outcome y through the error component of x1, v1.

2.5 TS2SLS Under Data Availability Constraints

The traditional motivation behind using TS2SLS is to achieve an 2SLS estimate where all neces-

sary variables are not available in a single sample. A second potential reason to use TS2SLS is that
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it may provide lower bias or variance than the best available 2SLS estimator. Define β̂2SLS(N
′
) as

a 2SLS estimator using N
′

observations. Define β̂T S2SLS,N2,N1 as the TS2SLS estimator using N2

observations to estimate the first stage and N1 observations to estimate the second stage. Suppose

a researcher has access to a single-sample 2SLS estimator. Provided model assumptions are met,

we propose that a researcher with access to larger supplemental samples for either the first stage

or second stage can provide a TS2SLS estimator that outperforms the 2SLS estimator on bias,

variance, or both. Using a large supplemental sample for the first-stage in a TS2SLS estimator

improves both the bias and variance over using the single-sample 2SLS estimator; using a large

supplemental sample for the second stage in a TS2SLS estimator improves the variance. This

motivates two conjectures:

Conjecture 7. There exists a value N
′′
> N

′
such that var(β̂T S2SLS,N′′ ,N′ ) < var(β̂2SLS,N′ ) and

bias(β̂T S2SLS,N′′ ,N′ )< bias(β̂2SLS,N′ ).

and

Conjecture 8. There exists a value N
′′
> N

′
such that var(β̂T S2SLS,N′ ,N′′ )< var(β̂2SLS,N′ ).

Because of the lack of closed-form expressions for both the bias and variance of TS2SLS and

2SLS estimators, these are only conjectures supported by the first-order bias approximations and

asymptotic variance presented in sections 2.3 and 2.4. Given the approximations provided, we can

only justify two narrower propositions:

Proposition 9. (Larger first-stage supplemental sample)

There exists a value N
′′
> N

′
such that

a) ˜var(β̂T S2SLS,N′′ ,N′ )< ˜var(β̂2SLS,N′ ) if ρ 6= 1, where ˜var is the asymptotic variance approximation

presented in equation 17 and

b) | ˜bias(β̂T S2SLS,N′′ ,N′ )| < | ˜bias(β̂2SLS,N′ )|, where ˜bias is the approximation presented in equation

(16).
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and

Proposition 10. (Larger second-stage/second-stage supplemental sample)

There exists a value N
′′
> N

′
such that avar(β̂T S2SLS,N′ ,N′′ )< avar(β̂2SLS,N′ ).

Proposition 9a. and 10 hold trivially: comparing the two asymptotic variances, we increase

either the first-stage or second-stage samples until the variance “penalty” from using TS2SLS is

overcome. The following values for N′′ (i.e., first stage observations) satisfy 9a.:

N′′ >
N′

(1−ρ)

[
avar(β̂2SLS)

]−1(
avar(β̂T S2SLS)−avar(β̂2SLS)

)
.

At a minimum, N′′ must be at least as large as N′, noting that avar(β̂T S2SLS)− avar(β̂2SLS)

is positive semi-definite. In the limiting case of ρ = 1, TS2SLS has no variance penalty rela-

tive to 2SLS, and thus TS2SLS would have the same variance provided that N′ = N′′ for either

β̂T S2SLS,N′ ,N′′ or β̂T S2SLS,N′′ ,N′ . The TS2SLS variance penalty is maximized for ρ = 0, requiring

the largest increase in first-stage sample size to achieve equal variance to the single-sample es-

timator. Similarly, the following values for N′′ (i.e., second-stage observations in the context of

β̂T S2SLS,N′ ,N′′ ) satisfy 10:

N′′ > N′
[
avar(β̂2SLS)

]−1(
avar(β̂T S2SLS)− (1−ρ)avar(β̂2SLS)

)
.

When ρ= 1 and α= 1, avar(β̂T S2SLS)= avar(β̂2SLS), and unsurprisingly we need only N′′>N′

for TS2SLS to achieve lower variance than 2SLS according to the approximation.

Finally, for proposition 9b., we set N′′ to a quantity such that

| K ·σεv− ((N′−ρN′′)/(1−ρ)N′′)σ2
vβ

N′′γ′Ωzγ+K ·σ2
v +((N′−ρN′′)/(1−ρ)N′′)σ2

v
|< |E(β̂2SLS,N′−β)| ≈ | K ·σεv

ρN′γ′1Ωzγ1 +K ·σ2
v
|.

The exact solution depends on the direction and relative magnitude of the bias in each estimator.
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3 Simulation Evidence

We conduct a series of Monte Carlo simulations of the model characterized in Section 2.1, setting

the following parameters:

β = 1

 ε

v

∼ N(

 0

0

 ,

 .5 .4

.4 .5



z =

 z1

z2

 , K = 2

z1 ∼ N(0,2.5), z2 ∼ N(0,2.5)

γ =

 γ1

γ2

=

 0.0316

0.0316


Figure 7 plots the average parameter estimate across simulation repetitions for different first

stage sample sizes N2, approximating the expected values of 2SLS and TS2SLS estimators. The

2SLS estimator uses N = N2 observations, while the TS2SLS estimator uses two non-overlapping

data sets (ρ = 0) of N1 = 200 and N2 observations. In this setup, the OLS estimate is biased

upward by about 80%, and the 2SLS estimate is biased toward the OLS estimate, while the TS2SLS

estimate is biased towards zero (because it is equivalent to SS2SLS and the simulation uses a linear

CEF). For both estimators, as N2 increases the bias decreases. This simulation illustrates one of the

potential bias advantages of using a second, larger sample for the first stage even when a single-

sample estimate is available. A TS2SLS estimate using N1 = 200 and N2 ≥ 400 is approximately

unbiased while the 2SLS estimate with N = 200 is biased by around 6%, suggesting the TS2SLS
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estimate is preferable (notwithstanding precision).

Figure 8 plots the average standard deviation across simulation repetitions for first stage sample

sizes N2, revealing that the variance of TS2SLS is decreasing in the number of first stage obser-

vations but eventually flattening as the first stage becomes precisely estimated while the 2SLS

estimator continues to grow in precision (because of additional data to estimate the second stage).

Finally, Figure 9 shows the same relationship but allowing N1 to vary, showing that the TS2SLS

standard error decreases with more N1 at a rate comparable to OLS.

The bias consequences of overlap dovetail with the description of TS2SLS as a linear combi-

nation of 2SLS and SS2SLS estimators. Figure 10 plots the mean simulated point estimates for the

TS2SLS estimator as a function of the percentage of overlap between samples for N1 = N2 = 200.

Increasing overlap between samples weighs the estimate towards 2SLS, which is biased towards

the probability limit of OLS. In this calibration, the sample-varying portion of Ŵ is small enough

such that the weight is nearly the probability limit of Ŵ , ρ

α
= ρ. The point of zero bias occurs

approximately at 57 percent overlap. On the other hand, the effect on estimate variance of overlap

is predicted by the asymptotic variance expression in proposition 6. Figure 11 shows a plot of the

simulated standard error against the percentage overlap parameter, demonstrating the anticipated

downward-sloping relationship. In this setting, 2SLS is always more efficient than SS2SLS using

an equivalent number of observations per stage. Overlap results in a mixture of the two estimators,

with more observations used in (and thus greater weight placed on) the 2SLS component when the

degree of overlap increases.

4 Application

4.1 TS2SLS in Practice: Synthetic Example from Angrist and Evans (1998)

Angrist and Evans (1998) estimate the effect of fertility on parents’ labor supply decisions. They

use gender composition indicators of a family’s first two children as instruments (z) for whether

the family has more than two children (x). In one set of estimates, they use Census microdata
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to estimate IV regressions of various labor market outcomes (e.g., whether the mother worked,

how much she worked, and her labor income) on an indicator for more than two children, using

indicators for the first two children being boys and first two children being girls as instruments.7

We create hypothetical situations in which some data are missing and examine whether the study’s

findings could have been recreated using TS2SLS estimates under these conditions. The hypo-

thetical TS2SLS estimates mimic what the authors might have needed to run if their data were

only available in two samples, as they might have been if the Census had decided to release their

first-stage variables in one anonymized microdata set and their second-stage variables in another.

We attempt this exercise for Angrist and Evans’ estimates for married women ages 21-35 with

2 or more children. We develop hypothetical scenarios in which the authors receive their data in

two data subsets of their true data on {y,x,z}. We simulate multiple draws of data sets for each

estimator in order to isolate the expected value of each estimator across possible data draws the hy-

pothetical data-constrained Angrist and Evans might have faced. For example, we randomly draw

two mutually exclusive and exhaustive 25- and 75-percent subsets of the 254,654 observations and

compute the SS2SLS estimate with each sample, repeating the procedure a total of 1000 times.

In reality, practitioners would face a single draw of data, and sampling variation could result in a

pattern of results that does not conform with theoretical predictions.

Table 21 shows a series of estimates for various hypothetical situations in which the authors

have restricted access to some part of their data. First, we exactly replicate the estimates from Table

7, columns 4 and 6 (p. 465) in the original paper. As a baseline, we show what the 2SLS estimates

would have been had the authors only had access to a 50% subsample of their data. Column 5

shows what the TS2SLS (effectively a split-sample 2SLS estimate) using 50% of their sample for

the first stage and 50% for the second stage would have been, had they only had access to x and z

in one set and y and z in another (with no overlapping observations). Column 6 shows the estimate

if they had access to 100% of their original sample for the first stage, but only 50% for the second

7There is some controversy as to the validity of the family gender-composition instruments they use (e.g., Rosen-
zweig and Wolpin 2000). This exercise takes no position in this debate and only focuses on the comparison of the bias
and variance mechanics of the estimators used as they relate to one-sample vs. two-sample 2SLS.
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stage. Finally, column 6 shows the TS2SLS estimate if they had 50% of their original sample for

the first stage, but 100% of their sample for the second stage (y and z).

The 50% 2SLS estimate counterintuitively moves 0.02 towards zero instead of OLS, but this

is plausible given the large standard error (0.039) of the estimate. The 50-50 SS2SLS estimate

also moves towards zero with a comparable, slightly larger standard error (0.041), consistent with

the variance increase from using non-overlapping units in each stage. The bootstrapped estimate

with only 50% subsample for the second stage in column 5 has a standard error roughly equal to

the 2SLS and SS2SLS estimates in columns 3 and 4, suggesting that the variance improvement

from additional first-stage observations is close to zero. As might be conversely expected, the

estimate in the final column, instead with a 50% subsample for the first stage, has a comparable

standard error to the full-sample 2SLS estimate in column 2. Recall that the finite sample bias

of TS2SLS is the result of competing forces of bias towards OLS (from the overlapping part of

the sample) and bias towards zero (from the non-overlapping part of the sample). In themselves,

the positions of both the 50% 2SLS and 50% SS2SLS estimates suggest that finite sample bias

is not a significant issue; we were able to discard 50% of observations altogether and still not

alter the estimate substantially. Once we discard 50% of first-stage observations but use all of

our second-stage observations, we find an estimate (-0.114) that is almost exactly the same as

the 100% 2SLS estimate (-0.113) with the same standard error (0.028). This example strongly

illustrates the potential variance improvements in practice one can get by using TS2SLS. It is more

difficult to show any bias improvements in practice, particularly in this example: 2SLS and OLS

point estimates are marginally indistinguishable to begin with. Decreasing the first stage sample

size to increase bias is somewhat masked by the large standard error, which only increases as more

observations are discarded.

One issue worth discussion is the assumption of a linear conditional expectation function (CEF)

in the first stage required for the SS2SLS “attenuation bias” result to hold. Because Angrist and

Evans’ endogenous explanator is a binary variable, whether a mother has more than two children,

the linear CEF assumption can potentially be called into question. However, it is important to note
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that their main specification consists entirely of binary instruments, binary controls for race, and

only two linear terms for mother’s age (at Census collection and at first birth). The CEF is linear

in saturated models–which increase by one parameter per potential combination of predictors–and

the use of almost exclusively binary predictors makes the main specification already close to satu-

ration. Indeed, fewer than 0.02% of observations have a predicted probability that lies outside the

[0,1] interval, consistent with (though not sufficient for) a linear CEF. As a secondary check, we

re-run the first stage using a fully saturated set of interactions among all predictors (with age cate-

gorical variables fully converted to binary variables) and re-compute fitted values. We find that 90

percent of predicted probabilities in the saturated model are within 0.05 of the main specification

model, compared to an overall probability of approximately 0.38 of a mother having more than

two children. We also expect some differences in individual predictions due to random chance, as

the saturated model adds thousands of additional parameters, many of which are estimated from

sparsely populated cells. To the extent that the saturated and main specifications produce statis-

tically indistinguishable results, the assumption of linear CEF for the main specification becomes

more plausible.

4.2 Other Considerations for Applications

There are several practical applications of two-sample estimators. The typical application in em-

pirical literature using two-sample estimators is when the researcher only has access to one data set

with the outcome and instrument and one data set with the endogenous variable and instrument; in

this case, the researcher’s only option to generate an IV estimate is to use a TSIVM. The second

application, strongly suggested by the finite-sample findings here, is when researchers have access

to a single-sample IV estimator but have additional observations usable to estimate the first-stage

(endogenous variable and instrument) or second-stage (outcome and instrument) relationships.

The simulation evidence and synthetic working example from Angrist and Evans (1998) sug-

gest that reporting a TS2SLS estimate may be the most rewarding when practitioners have access

to additional second-stage observations. The TS2SLS estimate using all available observations
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could then be substantially more precise without a need for having equal numbers of observations

for the first-stage and second-stage samples. In that case, the strength of the instrument is likely

to be established, and practitioners need only justify that their additional observations come from

a population with the same first-stage projection coefficients. Even when that justification is lack-

ing, the two-sample estimates can simply be presented alongside the single-sample estimates as

additional evidence for a causal hypothesis, allowing the reader to decide the weight of evidence

to assign to the TS2SLS estimate. A secondary case of interest is when practitioners have a single

sample 2SLS estimate with weak instruments (i.e., an imprecisely-estimated first stage) but have

access to additional observations with which to estimate the first stage. In this case, the TS2SLS

estimate can potentially “solve” a weak instruments problem, but then the justification of first-stage

coefficient equivalence between the two samples is of much greater importance, since the primary

causal inference in the paper comes from the TS2SLS estimate.

In practice, these situations occur because of real-world limitations on the way data can be

collected. Data on the endogenous variable may be costly to collect and thus limited (e.g., envi-

ronmental monitoring of pollutants, accurate personal income measures), but sufficient to estimate

a strong, representative first stage relationship with an instrument. With weak instruments bias

not a concern, a study could then be scaled to have adequate power only through the expansion of

data collection on the second-stage variables. This insight is also reflected in the findings of Pierce

and Burgess (2013), who focus in particular on “Mendelian Randomization” designs, which use

genetic factors as instruments for biological exposures. They conclude that it is possible to collect

only a small first-stage sample and achieve comparable results to a “complete-data” design with

equal first-stage and second-stage observations.

Practical issues with data linkage also make TSIVM potentially useful, especially where the

providers of data can perfectly manipulate what data is available to the public. The complete

interchangeability of two-sample estimators with one-sample estimators when the data sampling

process is exactly known is a useful property for confidentiality applications. Consider a situation

in which the combination of information on y, x, and z for subjects in a randomized study could
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allow anonymous subjects to be identified, but providing information on just x and z or just y and

z reduce that risk significantly. Data releases could then offer two data sets with those elements

separate and unlinkable, but researchers could still generate IV estimates using TSIVM at little

cost to their inferences. In this setting, two of the greatest sources of uncertainty in the validity of

TS2SLS estimates are obviated: the populations constituting each of the samples are known to be

equivalent and the level of overlap between the primary and secondary samples is generated by the

study designers and passed on to the practitioner.

Lastly, as a generalization of split-sample IV methods, the results presented in this paper could

also be used as part of an “eyeball test” for weak instruments. Practitioners can subdivide their

samples arbitrarily and run a series of TS2SLS estimates using the subsamples, examining the

sensitivity of their coefficient estimates to smaller first stage sample sizes or varying levels of

overlap. This methodology may be superseded by other weak-instruments tests or bias-robust IV

estimation methods such as Jackknife IV (Angrist et al. 1999), but it is also easy to implement and

intuitively present to an audience using plots of estimates across researcher-manipulated overlap

or sample size parameters.

4.3 The Practical Impact of Sample Overlap ρ

The overlap parameter ρ may in general be unknown and may have an impact on the performance

of a TS2SLS estimator. We might imagine having a small sample of complete cases with which

to estimate a parameter via 2SLS, but wish to get an improved estimate using TS2SLS using

an supplemental sample of additional first-stage or second-stage observations. For example, we

may have complete data to estimate a treatment effect for participants in a longitudinal survey

like NLSY79, but wish to supplement with a significantly larger sample from the CPS or Census

microdata. If we use supplemental data for the first stage, then the overlap moves toward zero.

If we use supplemental data for the second stage, then the overlap approaches one (but for large

enough populations the influence of the overlap is diminished).

Recall that ρ represents the fraction of units in the first-stage sample which also appear in the
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second-stage sample. Suppose we have a sample of size N1 with which to estimate the second

stage, and can achieve a larger sample of size N2 with which to estimate the first stage; then, as N2

approaches the size of the population, ρ approaches its theoretical minimum. For infinitely large

populations, this minimum is zero. In terms of the partitioning of the TS2SLS estimator into 2SLS

and SS2SLS estimators on overlapping and non-overlapping units (per Proposition 1), this implies

that growing N2 with fixed N1 results in the 2SLS component of the estimator decreasing towards

zero, moving the TS2SLS estimator toward a SS2SLS estimator. However, it is also important to

note that growing N2 also results in shrinking finite sample bias of the TS2SLS estimator, obviating

the role of the overlap parameter in bias. Furthermore, as N2 becomes large, the variance of the

TS2SLS estimator approaches the variance of the OLS estimator implied by regressing y on zγ

with N1 observations.

Alternatively, we might attain a larger sample of size N1 for estimating the second stage, while

holding our sample for estimating the first stage fixed at size N2, resulting in a ρ approaching

one as N1 approaches the size of the population. In this case, the TS2SLS estimator is expressed

as a weighted combination of a SS2SLS estimator on N1−N2 non-overlapping units and a 2SLS

estimator on N2 overlapping units. The 2SLS component on N2 units will have impact approaching

zero as the ratio N1/N2 grows larger. Intuitively, if the population size is large relative to the first-

stage sample being held fixed, then the implied overlap will have minimal impact on the estimates.

It is possible in some circumstances to estimate ρ or bound its potential impact on TS2SLS

estimates. If the sampling schemes and populations of two samples are known, the probability a

unit in the first-stage sample is also in the second-stage sample can be estimated. For example,

in the case of simple random sampling from the same population, ρ is simply the product of

probabilities of an individual’s inclusion into each sample. We can approximately bound the impact

of ρ on variance by computing the asymptotic variance with ρ = 0 and ρ = 1. Bias is more

challenging to address, given that the true bias is a nonlinear function of the unobserved covariance

between the endogenous explanator and the error and the overlap parameter ρ. However, given

that the limiting case of ρ = 1 corresponds to 2SLS and ρ = 0 corresponds to SS2SLS, and one
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is confident to have approximately identified the probability limit of OLS, one should expect the

TS2SLS estimate to lie somewhere between zero and what the single-sample 2SLS estimate would

have been (and correspondingly between zero and the OLS estimate).

4.4 Computation of Standard Errors

As with 2SLS, the classic “generated regressors” problem results in inaccurate inference with

a tendency towards overrejection of null hypotheses on β . Standard errors on β̂T S2SLS can be

estimated in one of two ways: using the asymptotic variance-based approximation in Section 2.4

or via a bootstrap method. The asymptotic variance formula captures the decreasing relationship

between variance and ρ. Thus, because of uncertainty about the value of ρ in a given application,

a conservative prescription is to compute standard errors using the formula with ρ set to zero. In

practice, many data combination scenarios will either have have relatively small ρ or the impact of

ρ will be diminished by a strong first stage.

As noted in 2.4, the asymptotic variance does not account for sampling variation in the first-

stage parameters generated by the overlapping units (the “2SLS component” of the partitioned

TS2SLS expression from Proposition 1). An alternative approach to account for generated re-

gressors is to use a bootstrap procedure, resampling both first-stage and second-stage samples and

estimating a new βT S2SLS in each bootstrap repetition. The resulting distribution of estimates has a

standard deviation that approximates the standard error.

5 Conclusion

This paper introduces new considerations for applied researchers using TS2SLS. First, we offer a

new way of expressing the TS2SLS estimator as a weighted average of 2SLS and SS2SLS estima-

tors using the underlying sample units. The weights structurally depend on the degree to which

the researcher’s supplemental sample overlap with those in the primary sample, overlapping units

used in the 2SLS component and only non-overlapping units used in the SS2SLS component. A
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first-order approximation characterizes the behavior of the TS2SLS estimator in finite samples in

conformity with the typical intuition from the weak instruments literature for 2SLS: the magni-

tude of bias is always related to the degree of sampling error in the first stage parameter estimate.

However, the bias is pulled in two competing directions: toward zero to the extent that the two

samples are non-overlapping, and toward the probability limit of OLS to the extent that the two

samples are overlapping. We also show that the variance of the TS2SLS estimator is decreasing

in both first-stage and second-stage sample sizes as well as the degree of overlap. We replicate

our theoretical findings using both simulation methods and an empirical example from Angrist and

Evans (1998), noting that TS2SLS can perform as well as 2SLS with equivalent sample size when

instruments are strong.

These results show the potential for TS2SLS to be useful in empirical studies beyond its tra-

ditional use as a solution to missing data, while also suggesting that TS2SLS estimates should

be interpreted with caution when samples have an unknown level of overlap and instruments are

not strong. Researchers may have access to many different data sets with multiple options for

how to combine them into IV estimates, also potentially having access to both single-sample and

two-sample estimates. Any uses of TS2SLS, whether to present alone or alongside single-sample

estimates, must carefully consider the populations represented by each sample.
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Figure 7: Mean Simulated TS2SLS Point Estimate by First Stage Sample Size N2
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This is a plot of mean simulated coefficients of three estimators: OLS, 2SLS, and TS2SLS. OLS and 2SLS have their sample sizes grow
according to the horizontal axis. TS2SLS holds the second-stage sample at N1 = 200, but the first stage sample size grows according to
the horizonal axis. The degree of overlap is held fixed at ρ = 0.
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Figure 8: Simulated TS2SLS Standard Error by First Stage Sample Size N2
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Figure 9: Simulated TS2SLS Standard Error by second-stage Sample Size N1
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Figure 10: Mean Simulated TS2SLS Point Estimate by Proportion of Overlap Between Samples
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Figure 11: TS2SLS Simulated Standard Error by Proportion of Overlap Between Samples
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Table 21: Hypothetical Two-Sample Estimates for Angrist and Evans (1998), Effects of 2 or More Children on Labor Supply for Married
Women, 21-35

OLS 2SLS
50% Sample

2SLS
50-50

SS/TS2SLS
50% Sample +

100% First Stage

50% Sample +
100% Reduced-

Form

Worked? -0.167 -0.113 -0.086 -0.092 -0.091 -0.114
(0.002) (0.028) (0.039) (0.041) (0.041) (0.028)

# Weeks Worked -8.043 -5.164 -4.461 -5.037 -4.981 -5.242
(0.086) (1.156) (1.694) (1.716) (1.694) (1.158)

# Hours/Week -6.021 -4.613 -3.678 -2.972 -2.938 -4.682
(0.075) (1.023) (1.412) (1.521) (1.5) (1.038)

Labor Income -3165.4 -1321.2 -836.5 -567.6 -569.7 -1344.3
(39.41) (550) (793.53) (819.14) (813.72) (550.03)

N1 254,654 254,654 127,327 127,327 127,327 254,654
N2 -- -- -- 127,327 254,654 127,327

Split-Sample Estimates (Bootstrapped)Original Estimates

Huber-white robust standard errors in parenthesis. This table presents the replicated estimates from Angrist and Evans (1998) for the
effect of 2 or more children on labor supply for married women aged 21-35 alongside a series of hypothetical downsampled 2SLS and
TS2SLS estimates.



Proof for proposition 1

Under the regularity condition that the data matrix X̂ ′1X̂1 is nonsingular w.p.a. 1,

β̂O =
(

X̂ ′1X̂1

)−1
X̂ ′1Y1

=
(

X̂ ′1X̂1

)−1
[(

X̂ ′11, X̂
′
12

)(Y11

Y12

)]
=

(
X̂ ′1X̂1

)−1(
X̂ ′11Y11 + X̂ ′12Y12

)
=

(
X̂ ′1X̂1

)−1(
X̂ ′11X̂11

)(
X̂ ′11X̂11

)−1(
X̂ ′11Y11

)
+
(

X̂ ′1X̂1

)−1(
X̂ ′12X̂12

)(
X̂ ′12X̂12

)−1(
X̂ ′12Y12

)

Denote W ≡
(

X̂ ′1X̂1

)−1(
X̂ ′11X̂11

)
, 1−W ≡

(
X̂ ′1X̂1

)−1(
X̂ ′12X̂12

)
, and that

β̂
(1)
2SLS =

(
X̂ ′11X̂11

)−1(
X̂ ′11Y11

)
,

β̂
(2)
SS2SLS =

(
X̂ ′12X̂12

)−1(
X̂ ′12Y12

)
,

from which β̂O = Ŵ β̂
(1)
2SLS +

(
1−Ŵ

)
β̂
(2)
SS2SLS follows.

Proof for proposition 2

Decompose Ŵ into the following block vectors,

Ŵ =
(

X̂ ′1X̂1

)−1(
X̂ ′11X̂11

)
=

(̂
γ
′
1Z′11Z11γ̂1 + γ̂

′
2Z′12Z12γ̂2

)−1 (̂
γ
′
1Z′11Z11γ̂1

)
=

[
ρN2γ̂

′
1

Z′11Z11

ρN2
γ̂1 +(N1−ρN2) γ̂

′
2

Z′12Z12

N1−ρN2
γ̂2

]−1(
ρN2γ̂

′
1

Z′11Z11

ρN2
γ̂1

)

By assumption 1.(a) plimZ′11Z11
ρN2

= E(z′1iz1i) = plim Z′12Z12
N1−ρN2

= E(z′2iz2i) = Ωz, and assumption

113



1.(b), plim γ̂1 = plim γ̂2 = γ. Therefore, by Slutsky’s theorem,

plimŴ =
[
ρN2γ

′
Ωzγ1 +(N1−ρN2)γ

′
Ωzγ1

]−1 (
ρN2γ

′
Ωzγ1

)
= [ρN2 +(N1−ρN2)]

−1
ρN2

(
γ
′
Ωzγ1

)−1 (
γ
′
Ωzγ1

)
=

ρ

α
.

Derivation of Remark 3

Use the first order Taylor expansion of Ŵ at the point of
[
E
(

X̂ ′11X̂11

)
,E
(

X̂ ′12X̂12

)]

E
(

Ŵ
)

= E
[(

X̂ ′11X̂11 + X̂ ′12X̂12

)−1(
X̂ ′11X̂11

)]
≡ E

[
g
(

X̂ ′11X̂11, X̂ ′12X̂12

)]
≈ E

[E (X̂ ′11X̂11

)
+E

(
X̂ ′12X̂12

)]−1
E
(

X̂ ′11X̂11

)
+

E
(

X̂ ′12X̂12

)[
X̂ ′11X̂11−E

(
X̂ ′11X̂11

)]
E
(

X̂ ′11X̂11

)
+E

(
X̂ ′12X̂12

)
−

E
(

X̂ ′11X̂11

)[
X̂ ′12X̂12−E

(
X̂ ′12X̂12

)]
[
E
(

X̂ ′11X̂11

)
+E

(
X̂ ′12X̂12

)]2


=

[
E
(

X̂ ′11X̂11

)
+E

(
X̂ ′12X̂12

)]−1
E
(

X̂ ′11X̂11

)

The numerator is equal to

E
(

X̂ ′11X̂11

)
= E

(
X ′11PZ11X11

)
= E

[(
γ
′Z′11 +V ′11

)
PZ11 (Z11γ+V11)

]
= E

(
γ
′Z′11Z11γ

)
+E

(
V ′11PZ11V

′
11
)

= ρN2γ
′
Ωzγ+K ·σ2

v .

where PZ11 ≡ Z11 (Z′11Z11)
−1 Z′11 is the projection matrix. By assumption 1, E(z′1iz1i) = Ωz.

Since rank (PZ11) = K, w.p.a 1, we have V ′11
σv

PZ11
V11
σv

∼ χ2
K , and E

(
χ2

K
)
= K for the last equality.
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Another component of the denominator is

E
(

X̂ ′12X̂12

)
= E

{[
Z12γ+Z12

(
Z′22Z22

)−1 Z′22V22

]′ [
Z12γ+Z12

(
Z′22Z22

)−1 Z′22V22

]}
= E

(
γ
′Z′12Z12γ

)
+E

(
γ
′Z′12Z12

(
Z′22Z22

)−1 Z′22V22

)
+E
(

V ′22Z22
(
Z′22Z22

)−1 Z′12Z12γ

)
+E
(

V ′22Z22
(
Z′22Z22

)−1 Z′12Z12
(
Z′22Z22

)−1 Z′22V22

)
= (N1−ρN2)γ

′
Ωzγ

+E
(

V ′22Z22
(
Z′22Z22

)−1 Z′12Z12
(
Z′22Z22

)−1 Z′22V22

)

The third equality follows because Z12 and Z22 are independent and by Assumption 5,

E (V22|Z22) = 0.

Because E
(

V ′22Z22 (Z′22Z22)
−1 Z′12Z12 (Z′22Z22)

−1 Z′22V22

)
is a scalar,

E
(

V ′22Z22
(
Z′22Z22

)−1 Z′12Z12
(
Z′22Z22

)−1 Z′22V22

)
= E

[
tr
(

V ′22Z22
(
Z′22Z22

)−1 Z′12Z12
(
Z′22Z22

)−1 Z′22V22

)]
= E

[
tr
(

Z′22V22V ′22Z22
(
Z′22Z22

)−1 Z′12Z12
(
Z′22Z22

)−1
)]

= E
{

tr
[
Z′22E

(
V22V ′22|Z22

)
Z22
(
Z′22Z22

)−1 Z′12Z12
(
Z′22Z22

)−1
]}

= E
{

tr
[
Z′12Z12

(
Z′22Z22

)−1
]}

σ
2
v

= tr
{

E
[
Z′12Z12

(
Z′22Z22

)−1
]}

σ
2
v

≈ (N1−ρN2)

(1−ρ)N2
σ

2
v

The third equality follows by the law of iterated expectations. The independence between

Z12 and Z22 and Assumption 1.(a) and 5 enables us to pull E (V22V ′22|Z22) = E (V22V ′22) = σ2
vIn

out of the expectation. The last equality follows because Z′12Z12 is independent of Z′22Z22 and

E (Z′12Z12) = (N1−ρN2)Ωz, E (Z′22Z22) = (1−ρ)N2Ωz , and the first order Taylor expansion
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gives tr
{

E
[
Z′12Z12 (Z′22Z22)

−1
]}
≈ (N1−ρN2)

(1−ρ)N2
.

Therefore,

E
(

Ŵ
)
≈ ρN2γ′Ωzγ+K ·σ2

v
N1γ′Ωzγ+K ·σ2

v +(N1−ρN2)/(1−ρ)N2σ2
v

Proof for proposition 4

β̂
(1)
2SLS−β =

(
X̂ ′11X̂11

)−1(
X̂ ′11Ξ11

)

We have derived the expectation of the denominator in remark 3.

Similarly, the expectation of the numerator is

E
(

X̂ ′11Ξ11

)
= E

(
X ′11PZ11E11

)
= E

[(
γ
′Z′11 +V ′11

)
PZ11 (θV11 +R11)

]
= θE

(
V ′11PZ11V11

)
+E

(
V ′11PZ11R11

)
= θσ

2
v ·E

(
χ

2
1
)

= K ·σεv,

The second equality follows from assumption 4, that is,

E
(
γ
′Z′11PZ11Ξ11

)
= E

(
γ
′Z′11Ξ11

)
= 0

Also, due to assumption 3.(c), write Ξ11 = θV11 +R11, and R11 is independent of V11.

So E (V ′11PZ11R11) = 0 for the fourth equality to hold.

The first-order Taylor expansion of

g
(
X ′11PZ11X11,X ′11PZ11Ξ11

)
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at point [
E
(
X ′11PZ11X11

)
,E
(
X ′11PZ11E11

)]
is

E
(

β̂
(1)
2SLS−β

)
≈ E

(
X̂ ′11X̂11

)−1
E
(

X̂ ′11Ξ11

)
=

K ·σεv

ρN2γ′1Ωzγ1 +K ·σ2
v
.

Following Angrist and Kruger (1995),

E
(

β̂
(2)
SS2SLS−β

)
= E

[(
X̂ ′12X̂12

)−1(
X̂ ′12Y12

)]
−β

= E
{[

X̂ ′12X̂12

]−1 [
X̂ ′12 (X12β+V12)

]′}
−β

= E
[(

X̂ ′12X̂12

)−1(
X̂ ′12X12

)]
β−β

The second equality follows from Assumption 3 ( E(v2 j|z2 j) = 0) and the independence be-

tween V12 and (X22 ,Z12),

E
[(

X̂ ′12X̂12

)−1(
X̂ ′12Ξ12

)]
= E

{{[
Z12
(
Z′22Z22

)−1 Z′22X22

]′ [
Z12
(
Z′22Z22

)−1 Z′22X22

]}−1

X
′
22Z22

(
Z′22Z22

)−1 Z
′
12V12

}
= 0
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The following shows that E(x1i|x̂1i) = x̂1i

{
E
[
x̂′1ix̂1i

]−1 E
[
x̂′1ix1i

]}
for i = 1, ...,ρN2:

E(x1i|x̂1i) = E (z1iγ+ v1i|z1iγ̂2)

= E (z1iγ|z1iγ̂2)

= z1iγ̂2
E
(̂
γ′2z′1iz1iγ

)
E
(̂
γ′2z′1iz1iγ̂2

)
= z1iγ̂2

E
(̂
γ′2z′1iz1iγ

)
+E

(̂
γ′2z′1iv1i

)
E
(̂
γ′2z′1iz1iγ̂2

)
= x̂1i

E
(
x̂′1ix1i

)
E
(
x̂′1ix̂1i

) ,
Because γ̂2 =

(
z′2 jz2 j

)−1(
z′2 jx2 j

)
and the fact that v1i is independent of z1i,z2 j,x2 j, the second

equality follows from E (v1i|z1iγ̂2) = 0. The third equality is clear since γ̂2 can be seen as a constant

so that z1iγ is linear in z1iγ̂2.

By stacking the number of the observations, it follows that E(X12|X̂12) is linear as well and that

E(X12|X̂12) = X̂12

{
E
[
X̂ ′12X̂12

]−1
E
[
X̂ ′12X12

]}
. Once more, by the law of iterated expectations,

E
[(

X̂ ′12X̂12

)−1(
X̂ ′12X12

)]
= E

(
X̂ ′12X̂12

)−1
E
(

X̂ ′12X12

)

The numerator simplifies to

E
(

X̂ ′12X12

)
= E

{[
Z12γ+Z12

(
Z′22Z22

)−1 Z′22V22

]′
(Z12γ+V12)

}
= E

(
γ
′Z′12Z12γ

)
+E(V ′22Z22

(
Z′22Z22

)−1 Z′12Z12γ)+E
(
γ
′Z′12V12

)
+E
(

V ′22Z22
(
Z′22Z22

)−1 Z′12V12

)
= E

(
γ
′Z′12Z12γ

)
= (N1−ρN2)γ

′
Ωzγ

The third equality follows from assumption 5 and V22 and V12 coming from independent sam-
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ples. Also, recall E(z′2iz2i) = Ωz.

We already derived in remark 3

E
(

X̂ ′12X̂12

)
= (N1−ρN2)γ

′
Ωzγ+((N1−ρN2)/(1−ρ)N2)σ

2
v ,

so the approximate bias of SS2SLS follows as,

E
(

β̂
(2)
SS2SLS−β

)
=− σ2

vβ/((1−ρ)N2)

γ′Ωzγ+σ2
v/((1−ρ)N2)

.

Proof for Proposition 5

E
[
Ŵ
(

β̂
(1)
2SLS−β

)
+
(

1−Ŵ
)(

β̂
(2)
SS2SLS−β

)]
= E

[
Ŵ
(

β̂
(1)
2SLS−β

)]
+E

[(
1−Ŵ

)
β̂
(2)
SS2SLS

]
−E

(
1−Ŵ

)
β

= E

(
X̂ ′11Ξ11

X̂ ′11X̂11 + X̂ ′12X̂12

)
+E

(
X̂ ′12X12

X̂ ′11X̂11 + X̂ ′12X̂12

)
β−E

(
X̂ ′12X̂12

X̂ ′11X̂11 + X̂ ′12X̂12

)
β

≈
E
(

X̂ ′11Ξ11

)
+E

(
X̂ ′12X12

)
β−E

(
X̂ ′12X̂12

)
β

E
(

X̂ ′11X̂11 + X̂ ′12X̂12

)
=

K ·σεv− ((N1−ρN2)/(1−ρ)N2)σ2
vβ

N1γ′Ωzγ+K ·σ2
v +((N1−ρN2)/(1−ρ)N2)σ2

v
.

The third approximation uses a first-order Taylor expansion. All the moments in this approxi-

mation can be found in the proofs of proposition 1 and 2.

Proof for Proposition 6

The asymptotic variance of 2SLS estimator is

√
ρN2

(
β̂
(1)
2SLS−β

)
a∼ N

[
0,σ2

εE
(
x∗′1ix

∗
1i
)−1
]
= N

{
0,σ2

ε

[
ΩxzΩ

−1
z Ωxz

]−1
}

where x∗1i = z1iγ = z1iE
(
z′1iz1i

)−1 E
(
z′1ix1i

)
(Wooldridge 2010).
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The asymptotic variance of the SS2SLS estimator is adapted from Inoue and Solon (2010) in

this context as a special case of TS2SLS:

√
N1−ρN2

(
β̂
(2)
SS2SLS−β

)
a∼ N

0,

[
Ω
′
xz

[(
σ

2
u +

α−ρ

1−ρ
β
′
σ

2
vβ

)
Ωz

]−1

Ωxz

]−1
 .

By the asymptotic equivalence theorem,

√
N1 +(1−ρ)N2

(
β̂O−β

)
=

√
N1 +(1−ρ)N2

ρN2

√
ρN2Ŵ

(
β̂
(1)
2SLS−β

)
+

√
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α−ρN2

√
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)(
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(2)
SS2SLS−β

)
p→
√

(1+α−ρ)ρ

α

√
ρN2

(
β̂
(1)
2SLS−β

)
+

√
(1+α−ρ)(α−ρ)

α
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(2)
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)
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Chapter 3. Estimating and Validating Nonlinear and Heterogeneous Classroom

Peer Effects

1 Introduction

Studies of educational peer effects suffer from the classic tensions between the validity, power, and

cost-effectiveness of research designs. Natural experiments generally provide credible sources of

identification of limited peer-effects models, but frequently lack the necessary statistical power to

fully explore nonlinear and heterogeneous effects. Observational data provides power in excess,

but without the prima facie validity of estimates conferred by randomized assignment. Large-scale

randomized trials are costly and may fail to yield effects with clear policy implications, as there

exists both empirical and theoretical evidence that peer effects in the presence of purely random

assignment differ from those with endogenous assignment (Weinberg 2007; Duflo, Dupas, and

Kremer 2011). Observational approaches may provide useful advantages over quasi-experimental

or experimental methods if inferences from observational studies can be made credibly robust to

potential biases. Combined with the growth in availability of administrative educational data sets,

robust observational methods can supply a low-cost, scalable method for developing peer effect

estimates directly relevant to local policy.

This paper uses an observational approach to estimate the nonlinear shape of peer effects, ex-

amines whether effects vary depending on a student’s relative ability in the classroom, and checks

the plausibility of estimated patterns using a placebo testing approach. Using administrative data

for students in North Carolina high schools from 2006-2013, I estimate a model of ability peer

effects with linear-in-shares and linear-in-means components for standardized tests in Algebra II,

Geometry, Biology, Physical Science, U.S. History, Civics, and English I. I control for several po-

tential confounding factors, including student past test scores, teacher quality, and school quality.

In contrast with prior studies using a single test score or an unweighted average of test scores,
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I measure subject-specific peer ability using a regression-calibrated nonlinear function of prior

test scores which better measures the underlying ability construct associated with a particular test.

Estimates reveal some evidence of peer effects operating through mean ability in a classroom,

but I also find evidence that they are biased upward by sorting or non-classroom peer effects.

I find robust evidence of peer effects nonlinear in ability, with effects monotonically increasing

in peer ability in most cases. I also find that peer effects are decreasing in relative ability of a

student—higher-achieving students within a classroom tend to receive smaller test score increases

than their lower-achieving peers from improving peer ability in any part of the distribution.

To assess the extent to which sorting or non-classroom peer effects may be driving the observed

linear and nonlinear associations, I estimate a series of placebo regressions. The regressions test

whether a student’s test score in a specific core subject is predicted by the ability composition of a

student’s classrooms for other core subjects (the “placebo”) conditional on the outcome classroom

(“treatment”) ability composition. While there are almost always both significant estimated linear

and nonlinear coefficients for the classrooms corresponding to the treatment classrooms, placebo

classrooms almost always return significant linear coefficients but largely insignificant nonlinear

coefficients. I interpret this pattern as evidence that the estimated coefficients for peer mean ability

are driven by sorting or peer effects external to the classroom, but that the model’s estimates of

peer ability’s nonlinear effects are valid. I provide a more formal econometric interpretation for

placebo tests, showing how the placebo estimand in large samples is directly proportional to the

magnitude of omitted variables bias in the main estimates.

This study contributes new knowledge about the nonlinear shape of peer effects for high school

students and how effects are heterogeneous depending on a student’s own ability. It also applies

a unique placebo methodology to examine the validity of each estimate, providing new evidence

of bias in linear-in-means estimates from observational data. Previous studies have provided some

evidence of nonlinear effects, and this study expands the body of evidence on nonlinear effects

to include richer divisions of students into ability group and subject-specific nonlinear effects for

seven core high school subjects. Either nonlinear or heterogeneous peer effects are necessary con-
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ditions for there to be any improvement in total education production by sorting into classrooms

based on peer groups (Carrell, Sacerdote, and West 2013). However, it is important to distinguish

between nonlinear response to the ability of individual students in contrast with nonlinearity in the

aggregate composition of a peer group. Linear-in-shares specifications capture the degree to which

one student can have a nonlinear response to the ability of another student. However, there may be

further emergent effects from classroom composition: two high ability students may have an effect

on one low ability student that is greater than the sum of individual effects of high ability on low

ability, which linear-in-shares models do not directly account for. For both linear-in-means and

linear-in-shares models (with fixed class sizes), improvements from reassignment of a peer to an-

other classroom are offset by losses in another. Nonetheless, the methods used here to validate the

coefficients can be applied to broader nonlinear or heterogeneous-effect specifications that capture

the nonlinear compositional effects required for there to be gains from changing peer ability group-

ing. In Section 2.4, I estimate a model with heterogeneous effects by students’ own absolute ability

and use the estimates to demonstrate an example of optimal ability grouping for two Algebra II

classrooms. I find that the underlying estimated heterogeneous effects are robust to unobservables

according to the same placebo tests as the main results. I calculate that the mean achievement gains

of optimal ability tracking (based only on the modeled heterogeneity) over random assignment are

at least 0.03 SD. Further extensions of the model to accommodate nonlinearity in composition

and heterogeneous effects can be used to identify ability sorting strategies that result in significant

additional test score gains.

1.1 The Peer Effects Literature

The educational peer effects literature aims to measure the interdependence of outcomes among

students. The existence of significant academic and disciplinary spillovers between students has

policy implications for the optimal grouping of students between or within schools. The quintessen-

tial problem in the measurement of peer effects is endogeneity of assignment to a peer group:

low-performing students may tend to be assigned to low-performing schools and classrooms and
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have low-performing friends. One strand of literature attempts to isolate idiosyncratic variation

in peer group composition over time, essentially controlling for (or exploiting) cross-group varia-

tion within schools through adjacent differencing techniques (Hoxby 2000; Lavy, Paserman, and

Schlosser 2011; Bifulco et al. 2011). Burke and Sass (2013) estimate peer effects observationally

as well, using estimated student fixed effects from past achievement as measures of peer ability.

Some papers have used explicitly identifiable, plausibly exogenous natural sources of variation in

peer groups, such as quasi-random college dormitory assignment (Sacerdote 2001) and Air Force

academy squadron assignments (Carrell, Fullerton, and West 2009).

Several studies test for whether peer effects have any nonlinear shape. Lavy, Paserman, and

Schlosser (2012) find that the proportion of grade-repeating students in a classroom has a negative

impact on classwide achievement in Israeli middle schools. Using survey data, they find that

higher proportions of lower-achieving students alter teachers’ pedagogical practice, increase the

frequency of violent or disruptive behavior, and harm student-teacher relationships. Using within-

student regressions, Lavy, Silva, and Weinhardt (2012) find that the fraction of students in the

bottom 5 percent of the ability distribution (based on prior test scores) is negatively associated

with test scores.

1.2 Peer Effects Model

I employ a typical education production function using a combination of “linear-in-means” and

“linear-in-shares” peer effects:

yrigst = X (−i)gstλ+Xd
(−i)gstβ1 +Ad

igst ?Xd
(−i)gstβ2 +Xigstη+Ggstγ+αs +Tgs + εigst (18)

This model relates a standardized test score y in any subject r for student i in classroom g in

school s to individual, classroom, school, and peer characteristics at time t. Students are only ob-

served for each subject in one time period, resulting in a repeat cross-section of students nested in

classrooms and schools. X (−i)gst , the “linear component” of the peer effect, is part of the classic
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linear baseline specification for peer effects studies (e.g., Carrell, Fullerton, and West 2009), mea-

suring the mean ability of student i’s classroom peers. Xd
(−i)gst is a vector of shares of a student’s

classroom peers in each decile of ability in the given subject, representing a nonlinear compo-

nent of the peer effect. Ad is a vector of dummy indicators for the decile of ability within the

classroom into which student i falls. Ad
igst ?Xd

(−i)gst is the interaction between the two factors, its

vector of coefficients β2 measuring heterogeneous nonlinear response to peer ability levels with

respect to a student’s relative ability ranking. Xigs and Ggs represent observable individual- and

group-level characteristics, while αs and Tgs correspond to school- and teacher-unobserved het-

erogeneity (which are controlled for in estimation by fixed effects). The coefficients λ and β can

be understood as Manski’s (1993) “exogenous effects,” measuring the effects of pre-existing peer

background characteristics rather than the effects of contemporaneous peer performance. In prac-

tice, estimates for these coefficients may also reflect the effects of endogenous decisions made by

students that are predicted by peer composition variables but are not accounted for by controls.

While each coefficient on peer characteristics reflects a meaningful aggregate of peer effects,

the exact mechanisms driving the effects are difficult to discern. Low-achieving peers can impact

classrooms by altering teachers’ pedagogical approaches or by diverting teacher effort from other

students. Students engaging in disruptive behavior can also divert teacher effort to disciplinary

action instead of instruction, affect other students’ ability to engage in learning, or cause further

disruptive behavior among other students. Furthermore, both low achievement and poor classroom

discipline are highly correlated. Measures of both are characterized by measurement error. Thus,

estimates of the impacts of ability may in part reflect the effects of disciplinary peer effects.

Generally, high-achieving peers are likely to have positive effects on classroom learning. In

group activities such as science labs or in-class open study they may facilitate additional learning

and even be explicitly tasked by the teacher to assist with instruction. Students of higher ability

tend to have significantly fewer disciplinary infractions and so will reflect positive effects on class-

room achievement to the extent that they displace more disruptive students. Social ties plausibly

span achievement levels and may result in top students assisting other students with studying or
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homework assignments. On the other hand, some models of peer effects such as the “invidious

comparison” model suggest that additional high-achieving students may create a climate discour-

aging to lower-achieving peers by diminishing the perceived returns to additional academic effort

or affecting pedagogical practices (e.g., encouraging the teacher to cover more advanced material).

If teachers aim to maximize the share of their students passing, pedagogical practices are unlikely

to be affected by high-achieving students. Akerlof (1997) and Lantis (2014) put forward models

that imply that if students are engaged in a “tournament” within their peer group for various re-

wards, the ability levels of competing students affect their effort choices. The most commonplace

instance of the tournament occurs due to grade curving, where relative performance within the

classroom dictates the reward of high grades.

1.3 Biases from Sorting and Identifying Nonlinear vs. Linear Effects

In section 2.2, I conclude that estimates of the linear component of peer effects are likely to be

biased upward by sorting or non-classroom peer effects even given a rich set of controls, but the

nonlinear components are approximately unbiased from these sources. There are several mean-

ingful reasons why the estimates for the linear components are not credible, while the nonlinear

components are. The bulk of the correlation between own performance and peers’ ability is likely

to be accounted for by a student’s own ability measure based on past test scores, school quality,

teacher quality, and course level. However, there may remain sorting between multiple classrooms

at the same level with the same teacher, and there also may be time-varying changes within groups

which explain part of the correlation between own academic performance and peers’ ability. Mean

classroom peer ability thus captures at least part of the sorting mechanisms and shocks not ac-

counted for by the existing set of controls. This amounts to changing the empirical role of mean

peer ability from a variable of interest to a control variable, allowing more robust inference for the

nonlinear effects of peer ability.

Consider a simple one school, two-classroom setting with a repeat cross-section structure. One

classroom is classified as “high ability” (e.g., honors) and the other “low ability” (regular), and
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students are probabilistically sorted on an ability cutoff into each, but the class type is not directly

observed by the researcher. In this stylized setting, mean peer ability would perfectly distinguish

(in expectation) between the high- and low-ability classrooms and mute any corresponding bias

from sorting, leaving only variation in the shares of peer ability orthogonal to the course type

identifying their effects. The high ability classroom has a higher average share of 90th-percentile

ability students than the low ability classroom, but only deviations from the expected share of

90th-percentile ability students for each class type are used to identify the nonlinear effect of 90th

percentile students. In that manner, mean peer ability plays a comparable role to a fixed effect that

could be included if class type were explicitly observed.

In this setting, I control for two key characteristics of courses that are strongly related to sorting

into them: their formal level and their teachers. In addition, I control for a students’ own underlying

ability, which is correlated with academic performance and hence likely correlated with classroom

sorting. However, there may be ability differentiation between classrooms which persists even

conditional on these controls because of transitory shocks in time or because of the structure of a

school’s classrooms in a subject. School- or cohort-specific annual shocks could shift both a stu-

dent’s performance and the absolute ability composition of his peers through sample attrition (i.e.,

dropouts and retention). Alternatively, a teacher may have multiple classrooms in the same formal

course level that are achievement-differentiated, resulting in correlated sorting not accounted for

by the controls. As in the stylized model, mean peer ability in these classrooms captures at least

part of the residual unobserved characteristics and time-varying shocks.

Variation in the distribution of peer ability in a classroom is likely to be coming from a mix-

ture of cross-cohort variation in ability composition, students’ course-picking decisions (based on

preferences for teachers or friends) and constraints (e.g., the timing of their other courses), and

any administrative rules for or direct intervention in student schedules. Sorting into subjects is

moderated by the number of classrooms available into which students can sort: if there is only

one classroom available for a subject, then all variation in peer ability composition in the class

is only driven by cross-cohort variation. The included fixed effects narrow this to the number of
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classrooms in a subject per teacher and per course level. A large number of classrooms potentially

implies greater unobserved differentiation between classrooms.

1.4 Data Description

1.4.1 North Carolina Administrative Data

The North Carolina Education Research Data Center (NCERDC) is a centralized database of ad-

ministrative data for North Carolina public schools. It contains student-level data for all students

in grades 3-12 spanning from as early as the 1997-1998 school year to the 2013-2014 school year.

Students can be tracked across years using the database’s anonymized master identifier. Based on

the overlapping availability of multiple variables used in the analysis, I use all available historical

data for students who were in grades 9-12 from 2006-2014.

The student-level master build files form the core data set for the analysis, providing a record

identifying each student by school membership, grade level, and school year. The course mem-

bership files allow students to be matched to their classroom peers, and classrooms to be matched

to the corresponding subject tests. The attendance and demographic file provides students’ month

and year of birth, sex, ethnicity, school membership and number of days therein for each year,

and annual attendance. The master suspension files document suspensions and other disciplinary

actions taken by the school against the student, including information on the offense and the ex-

tent of the punishment. Finally, the measures of secondary school achievement I use come from

North Carolina’s state-mandated End of Course (EOC) tests for Algebra I, Algebra II, Physical

Science, and English. Each testing mandate covers a different period, with some tests no longer

being administered. For example, Algebra II EOC tests were no longer administered after the 2011

school year. For each test subject, I standardize students’ test scores within school year across all

students with available test scores in the database to account for annual statewide variation in score

distributions.
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1.4.2 Determining Course Membership

During 2006-2013, North Carolina high schools typically operated in a 4x4 semester block sched-

ule. Under 4x4 block scheduling, students take 4 courses in Fall and 4 courses in Spring with

90-minute daily instructional periods. Most core courses last one semester, though some schools

offer year-long versions of courses. The NCERDC data provides records on students’ member-

ship in courses collected from databases one time on each of the first days of Fall and Spring

semesters. This includes the course title, semester, teacher ID (when matched by NCERDC), and

section (i.e., class period) of the course. Students’ classrooms contain a course title that is used to

assign them into subject groups. Depending on keywords in the course titles, courses are classified

as math, science, social studies, or English. For example, classes with “Algebra” or “Alg” in the

title are classified as math, “Biology” or “Bio” science, “English” or “Eng” English, and “Civics”

or “Civ” social studies. The keyword lists I use are largely comprehensive—I manually review

the remainder of course titles to ensure that only elective courses remain and no core courses are

omitted.

I am able to track students’ changing classroom memberships between Fall and Spring semesters.

Students’ course choices are generally stable, but in some cases students may transfer or change

courses within a semester. To account for classroom changes from Fall to Spring (either due to

teacher changes or class period changes with the same teacher), a student with records in multiple

courses of the same type (e.g., Algebra I) is counted as being included in the course discovered in

the Spring data collection.

There are multiple types of courses for which the same EOC tests are administered; they have

varying pedagogical designs and target different populations of students. Students may endoge-

nously track into courses of different levels. To help account for variation in course levels, I use

the hierarchical nature of North Carolina’s state course codes to differentiate courses into level

groups. For example, both “Algebra I” and remedially-themed “Foundations of Algebra” courses

are associated with students who take the Algebra I EOC test in the same semester, but are appro-

priately assigned different 4-digit prefixes in their course codes. Each 4-digit prefix in a subject is
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represented by a dummy indicator contained in Ggst .

1.4.3 Test Scores and Ability

Previous studies have attempted to measure peer ability using past test scores (Lantis 2014; Lavy,

Silva, and Weinhardt 2012; Hoxby and Weingarth 2006) or other traits correlated with low achieve-

ment, such as grade repetition (Lavy, Paserman, and Schlosser 2012). I introduce a more flexible

way of approximating the underlying ability construct for a specific outcome of interest using a

regression of the outcome on a nonlinear function of past test scores. A typical approach is to use a

single test itself or an unweighted average of tests. In contrast, the regression-based method allows

a broader set of information on students’ characteristics to be incorporated into ability measures

and empirically calibrates the relative weights of each characteristic instead of imposing them ex-

ternally. Among other potential benefits, the regression approach flexibly incorporates multiple

prior test score measures (and characteristics) nonlinearly and adjusts for the partial correlation

between past scores and current scores generated by fadeout, subject differences, and normal test

score variation, and to incorporate multiple prior test score measures.

The procedure is to regress the test score in a subject on the chosen nonlinear function of past

test scores and generate the fitted values, which form the ability score composite. Students can

then be ranked on this score and the score used to generate peer ability averages. This can result a

different linear-in-means (LIM) peer effect coefficient estimate even using only a linear function of

a single past test score, since the ability composite regression coefficient “rescales” the estimated

LIM peer effect to account for the partial correlation between past and present tests.

If multiple test scores are available, the regression-based ability score results in a different

ability ranking than if students were ranked on a single test score. The fitted values reflect an

empirically-calibrated weighted average of the two past test scores, resulting in a higher-quality

measure of the underlying ability construct most relevant to a given high school subject than to just

use a single test. For example, 8th-grade reading scores are more highly predictive of high school

science and English test scores than are 8th-grade math scores. Using a single score or unweighted
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average of the two scores would fail to take this into account, resulting in additional measurement

error in the peer ability measure.

For this setting, I use a piecewise function of North Carolina’s 8th-grade End-of-Grade math

and reading tests equivalent in fit to a 20-piece regression spline with cut points at vigintiles of

each test score. Using OLS, I estimate the following model of student i’s test score in subject s:

yri = Mv
i ψ1 +Miψ2 +Mi ∗Mv

i ψ3 +Rv
i ψ4 +Riψ5 +Ri ∗Rv

i ψ6 + vri

Mi and Ri are continuous test scores (standardized within years) for math and reading. Mv
i

and Rv
i are vectors of indicator variables identifying which vigintile of the score distribution each

subject test score falls into. I generate an estimated ability composite using the fitted values from

this regression:

Ar
i = ŷri = Mv

i ψ̂1 +Miψ̂2 +Mi ∗Mv
i ψ̂3 +Rv

i ψ̂4 +Riψ̂5 +Ri ∗Rv
i ψ̂6

This ability score is then used to calculate own-ability decile indicators Ad
igst and peer ability

variables in equation 18. The splines of math and reading scores used to generate this ability score

are included for individuals directly in Xigs for additional flexibility.

Using the regression-based ability composite may induce minor econometric problems that

likely do not significantly impact the results in this context. Because the realization of the outcome

of interest is used in estimation, a particular student’s past test scores and the dependent variable

(current test score) enters into the computation of the coefficient that serves as the weight on prior

test scores. Thus, the main regressions of the dependent variable on the ability measure partially

use variation from the dependent variable itself through the estimated ability weights. The problem

is similar in concept to the finite sample bias issue in instrumental variables, and can be understood

in the same way: as the sample size grows, bias from this phenomenon shrinks to zero.8 A second

econometric issue is that the ability measures are a form of generated regressor, and using them

8A jackknife-type procedure can also be potentially used to exclude a student’s own score from the estimation of
the weights and sidestep this problem directly.
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without adjusting for their variability results in underestimated standard errors. While this is of

greatest concern in using a continuous ability measure, the primary use of the ability measure is

for estimation of decile cut points for ability classification, and any variability is only expressed

through reclassification of marginal students from one decile to the other. Moreover, the only direct

use of continuous ability in the regression corresponding to equation 18 is through the mean peer

ability measure, which to some extent dilutes the impact of sampling variability by averaging over

several students.

2 Results

2.1 Linear vs. Non-linear Peer Effects Estimates

Tables 22 and 23 present the estimated coefficients for only peer mean ability, percentage male,

and percentage peers who were held back a grade at least once in grades 3-8 for each subject’s

EOC standardized test across four specifications of the complete model (including nonlinear inter-

actions). All specifications control for 8th grade math and reading scores (in vigintile dummies),

gender, the semester of test administration, and year, grade, and school fixed effects. Column (2)

for each subject is the same specification as Column (1), but with controls for the course level of

the course taken in the same semester as the test. Column (3) adds teacher-by-school fixed effects,

which are roughly comparable to teacher and school fixed effects independently (but additionally

accounting for teacher-school-specific effects for teachers who switch schools). Column (4) is the

specification of column (2) plus school-by-year fixed effects. Standard errors are clustered at the

school level.

As is typical of observational estimates of peer effects, there is a strong positive relationship

between classroom mean ability and own achievement for all subjects across all specifications,

with the exception of column (3) for Biology. Controlling for course level and teacher fixed effects

tends to weakly decrease the magnitude of all peer ability estimates for all subjects, with the largest

decreases occurring for Algebra II and Biology. As the most stringent specification, column (3) is
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preferred. The mean ability coefficients are interpreted as the effect on students in the lowest decile

of ability in the class of raising mean ability in the classroom but holding the shares of students in

each ability decile fixed. For example, a 1 S.D. increase in mean peer ability in a student’s Algebra

II classroom corresponds to a baseline increase of 0.13 standard deviations in the student’s test

score. In practice, increasing mean peer ability also means increasing the share of students in

higher ability deciles, and I find that peer effects are monotonically increasing in peer ability.

Figure 12 and the top plots of figures 7-12 plot the 100 estimates contained in model coefficient

vectors β1 and β2 for Algebra II, Geometry, Physical Science, English I, U.S. History, Civics, and

Biology, respectively. The coefficient estimates correspond to the interaction terms between shares

of peers in each absolute ability decile and individual student i’s own relative ability within the

classroom. The omitted category is for a student in the bottom decile of relative ability with

a classroom composed of 100% students in the bottom decile of absolute ability. The baseline

coefficients on the peer ability decile shares measure the effect of increasing the share of peers

in an ability decile by one unit (100%) for a student in the first decile of relative ability. Each

dot in the plot shows the sum of the baseline coefficient and the interaction coefficient for each

relative-ability-decile-by-peer ability-decile pair. Horizontal lines within each division represent

the average effect for each peer ability decile.

Across all subjects, there is a general upward trend in effect size by ability decile. For example,

in Algebra II, the average effect on test scores of a 10 percentage point increase in students in the

40th-50th percentile (replacing students in the bottom decile) is approximately 0.015 standard de-

viations; the average effect of a comparable increase of students in the for the 70th-80th percentile,

0.03 standard deviations; the 90th-100th percentile, 0.05 standard deviations. Figure 13 shows the

same estimates for Algebra II as Figure 12, but now inverted to have own relative ability in the top

axis defining each group and peer ability decile shares within each group. The sawtooth pattern of

Figure 13 demonstrates a strongly nonlinear peer effect that is increasing in ability. For a student

in the 40th-50th percentile, the effect of increasing the share of peers in an ability decile ranges

from 0.01 SD for the 2nd decile to 0.05 SD for the top decile.
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The apparent nonlinear profile of peer effects is similar across all subjects except Physical

Science, which is flat or even negative at higher peer ability shares. This somewhat surprising

result may be an effect of varying student populations or classroom structures across subjects.

Physical Science precedes specialized science courses (Biology, Chemistry, and Physics) in the

curriculum and is not a required part of the course track, but is designed as an additional option

for students to meet their science requirements (North Carolina Department of Public Instruction

2004). Both the mean and standard deviation of 8th-grade math and reading test scores among

students taking the physical science exam are the smallest among the subjects presented here,

suggesting both lower-achieving students in general and smaller dispersion in ability. Mean 8th-

grade scores in both math and science for physical science students are 0.2 SD below the mean.

Peer effects may be heterogeneous over a student’s own absolute ability (rather than relative ability

within a classroom). Alternatively, there may be unobserved heterogeneous effects arising from

differences in ability peer effects across grades.

There are also generally flat or downward-sloping estimates across individuals’ own relative

ability in the classroom. Lower-achieving students may be more sensitive to peer influences for

obvious reasons. Instructional time may be relatively more valuable for their achievement than

self-study, and so disruptions to it are more harmful. To the extent that these ability effects are

biased by disciplinary spillovers, we might also expect that low-achieving students are more likely

to commit infractions that result in missed school time or decreases in teacher investment in their

success. In accordance with the tournament concept, in which students compete with each other

for rewards including grades or academic opportunities, higher-achieving students may also reduce

their effort choices in the presence of greater academic competition.

Endogenous ability sorting into classrooms is most likely source of bias in peer effects esti-

mates generated from observational data. Worse-performing students may be more likely to sort

into classrooms with higher proportions of low-ability students, suggesting negative bias. On the

other hand, if schools effectively sort students into classrooms which maximize their potential test

scores by adapting pedagogical practices, a higher proportion of low-performing students may sig-
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nal a remedial or other curriculum-adapted class which can increase a low-performing student’s

test score. Conditioning on own 8th-grade test scores accounts for some of this sorting, but is lim-

ited by measurement error in the scores and the potential for down-trending performance from 8th

grade to high school. The inclusion of course level and teacher fixed effects also account for some

sorting but some unobserved differentiation of classrooms within course levels or teachers may

persist. For example, a teacher may teach courses for high ability and for low ability students sep-

arately which have the same course code prefix (and hence the same course level), such as Algebra

I and Algebra I honors. Furthermore, there may be peer effects operating in a context broader than

the classroom. Peer composition in a classroom may be correlated with peer composition in other

courses or in other aspects of school life (such as the lunch period or after school activities), and

meaningful academic or disciplinary spillovers can occur in these other contexts. Because these

potential correlated unobservables are likely to manifest themselves across all of a student’s core

classrooms, I test for their existence through a series of classroom-based placebo tests in the next

section.

2.2 Placebo Tests – Alternate Classrooms

I conduct several placebo tests to address the threat of bias in peer effects estimates from indi-

viduals’ unobservable characteristics that are correlated with peer ability group composition. Test

scores are highly correlated across high school subjects, suggesting that the underlying correlations

of peer abilities are also large. Thus, sorting into classrooms on ability is likely to be a related pro-

cess across subjects. In practice, its most distinctive manifestation is the tracking of high ability

students into multiple “honors” courses and low ability students into multiple remedial courses.

The primary placebo test is to regress student test scores in subject A on peer ability composi-

tion in the corresponding classrooms for subject A and subject B. A significant positive estimate

for peer ability composition in subject B is evidence of correlated unobservables which may bias

the estimates for subject A’s peer composition. Specifically, for some unobservable affecting test

scores, the compositions for both A and B classrooms are both correlated with the unobservable.
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The parts of the compositions that are correlated with each other are not reflected in the coeffi-

cient estimates, but each subject’s classroom peer composition may have a part that is uncorrelated

with the other subject’s but correlated with the unobservable.9 Statistically significant placebo es-

timates in the same direction as the treatment estimates are evidence that the primary regression

results are at least partially driven by either correlated peer effects occurring at a level above the

classroom or ability sorting into classrooms unaccounted for by controls. Section 2.3 provides

a formal econometric interpretation of the placebo test for a single treatment, showing that the

placebo coefficient is proportional to the amount of omitted variables bias in effect estimates from

the primary specification.

Table 24 shows estimates for the linear effects of treatment and placebo classroom mean ability,

gender composition, and proportion retained for Algebra II and Biology, using the classrooms of

three other core subjects as the placebo classrooms. Most of the placebo coefficient estimates are

significant and in the same direction as the treatment effect, indicating that unobservable character-

istics or broader peer effects are driving the effect of peer mean ability for the treatment classrooms.

The same reasoning applies to estimates for both classroom gender composition and percentage of

students retained.

Figure 14 shows the peer ability-relative ability coefficients for the English class placebo for

Algebra II, and Figure 13 is the inverted version of the same plot. Both of the patterns observed

in the treatment effect plots in Figures 12 and 13 are not upheld in the English placebo, with most

estimates noisy and narrowly distributed around zero or opposite-signed to the treatment effect. I

repeat this exercise using science classes in Figure 16 and social studies classes in Figure 17. In

contrast with the mean ability case, this placebo is evidence in favor of the estimated nonlinear

relationship being approximately unbiased by unobservable mechanisms or characteristics that

would be related across classrooms, such as sorting and non-classroom peer effects.

The bottom plots of figures 7-12 are the placebo tests for the corresponding subjects, using

9An even stronger placebo test would be to repeat the above regression excluding the true treatment; a null finding
would strongly indicate that correlated unobservables are not driving the main result. However, any correlation be-
tween A and B’s compositions would cause part of the true treatment effect of classroom A to appear in estimates for
B.

139



English classroom composition for all subjects for the placebo test except English (which uses

social studies classroom composition). In most cases, any nonlinear pattern in peer ability is not

upheld in the placebo case. Where nonlinear patterns are replicated in the placebo, there is cause to

distrust the estimated magnitude of that specific portion of the nonlinear peer effect. For example,

for Biology, the effects of the shares of students in the 2nd and 3rd ability deciles in the placebo

classroom are slightly larger than those in the treatment classroom, suggesting that those specific

coefficients are identified using variation in shares associated with some unobserved sorting pro-

cess. This would arise if there were several classes in the data targeted for and successful in raising

the test scores of struggling students. The remainder of the Biology deciles show a monotoni-

cally increasing nonlinear pattern, while the placebo estimates are small in magnitude and tightly

clustered near zero, underscoring the credibility of the estimates for those peer ability deciles.

In some cases, the pattern over relative ability is mirrored by the placebo. For biology, civics,

and U.S. History, though the average magnitude of the effects is smaller, the placebo estimates

show a downward-sloping pattern in relative ability in several categories. A possible explanation

is a peer effect occurring outside of the classroom with a similar heterogeneous response over own

ability as the classroom peer effect, such as disciplinary spillovers or some other cultural effect.

Another explanation is sorting, which would require both foresight and intentional manipulation

of a student’s position in the relative ability distribution in the classroom, but is less plausible in

light of these requirements combined with the typically student-driven classroom selection in high

schools.

There is a useful interpretation to the nonlinear effect coefficients alone. Multiple distributions

of peer abilities correspond to the same mean ability, but there are potentially well-defined rankings

of test score production over those distributions of peers. For a function of form y = xλ+ f (x)β,

the marginal effect of increasing x is dy/dx = λ+ f ′(x)β. Suppose that x represents the linear

(mean ability) peer component of the educational production function and f (x) a continuous, pos-

itive nonlinear component (e.g., x2). Assuming λ ≥ 0 (i.e., test scores are weakly increasing in

peer ability for at least some part of the domain of ability), then f ′(x)β < λ+ f ′(x)β; the non-
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linear marginal effect bounds the total effect of a change in x from below. This generalizes to

non-continuous functions f (x) as long as they are also positive and increasing in x. In practice,

this means that if we have an estimate of λ that is not trustworthy but an estimate of β that is

trustworthy, we can determine the minimum increase in test scores due to changing the peer ability

distribution within a classroom. We only need to rely on the assumption that λ≥ 0. However, this

result generalizes further, irrespective of the value of λ. For a fixed pool of students and group

of classrooms to assign to, the score changes from reassignment that operate through λ will result

in a net zero change in mean achievement. For some functions f (x), such as the linear-in-shares

specification used thus far, the changes also net to zero. When f (x) reflects compositional changes

in the classroom, mean overall achievement will be responsive to classroom sorting and the gains

will be captured by the term f (x)β regardless of the value of λ. In Section 2.4, I pursue an exercise

that demonstrates a gain in mean overall achievement by sorting based on a heterogeneous effect

of peer ability.

2.3 Note on the Interpretation of the Placebo Test

Using a simplified setup with one treatment classroom and one placebo classroom, I show how the

placebo estimand in large samples is directly proportional to the magnitude of omitted variables

bias in the estimated peer effect. I also show some conditions under which the placebo estimate

produces either a false negative or false positive result. I begin by writing outcome yi1 as a function

of classroom peer ability in classroom 1, Ti1, student characteristics, and peer ability in a student’s

other classroom, Ti2. All observable student characteristics are “partialled out”, leading to the

following specification:

y∗i1 = T ∗i1β+T ∗i2β
p + ε

∗
i1 (19)

ε
∗
i1 = T ∗i1ρ+ ε

∗
i1 (20)
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T ∗i2 = T ∗i1γ+ v∗i2 (21)

ρ represents the projection of the residual error on the treatment of interest, T ∗i1, capturing the

bias in the OLS estimator of y∗i1 on T ∗i1. We can imagine any linear projection coefficient being

partitioned in two parts, a coefficient that represents correlations from causal relationships and one

that represents non-causal correlations. For the “placebo coefficient”,βp = βp,c+βp,b. The placebo

test’s critical assumption is that βp,c = 0.

plimN→∞β̂
p =

(
var(T̃i2)

)−1 cov(T̃i2,yi1)

=
(
var(T̃i2)

)−1 cov(T ∗i2− γT ∗i1,ε
∗
i1)

=
(
var(T̃i2)

)−1 cov(v∗i2,ε
∗
i1)

Then, substituting in 20,

=
(
var(T̃i2)

)−1 cov(v∗i2,T
∗

i1ρ+ ε
∗
i1) (22)

Now suppose students are sorted into classrooms for each subject on the basis of a general

ability level, Ai, and other idiosyncratic factors specific to each subject aic, which includes subject-

specific ability (e.g., ability in math that does not predict sorting into English classes). A linear

reduced form representation of the ability level of one’s peers in their classroom for subject c

chosen through this sorting mechanism is

T ∗ic = A∗i Γc +a∗ic (23)

Then, beginning from the relationship between classroom ability levels across subject in 21,

substitute for peer ability level as a function of own ability described by the sorting mechanism:
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T ∗i2 = T ∗i1γ+ v∗i2

⇒ AiΓ2 +a∗i2 = (AiΓ1 +a∗i1)γ+ v∗i2

Rearranging gives

v∗i2 = Ai(Γ2−Γ1γ)+(a∗i2−a∗i1γ) (24)

Note that

γ = var(T ∗i1)
−1cov(T ∗i2,T

∗
i1)

= var(T ∗i1)
−1

σ
2
AΓ1Γ2

Finally, substituting 24 and 23 into 22 yields

plimN→∞β̂
p =

(
var(T̃i2)

)−1 cov(Ai(Γ2−Γ1γ)+(a∗i2−a∗i1γ), ρ(AiΓ1 +a∗i1)+ ε
∗
i1)

=
(
var(T̃i2)

)−1

[
σ

2
AΓ2Γ1

(
1−

σ2
A

σ2
T1

Γ
2
1−

σ2
a1

σ2
T1

)
+ cov(a∗i2,a

∗
i1)

]
ρ (25)

where σ2
T1
= var(T ∗i1), var(Ai) = σ2

A, var(ai1) = σ2
a1

.

As intuitively proposed in all papers using placebo tests, a zero placebo coefficient estimate is

evidence of the unbiasedness of the main estimates. Indeed, the placebo coefficient in this setting

is directly proportional to ρ. If ρ = 0, implying no bias in the estimate of β from OLS of yi1 on Ti1

conditional on observables, then the placebo coefficient is correspondingly zero (as it would be if

T ∗i1 were randomly assigned, for example).
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Reflecting the inherent weaknesses of placebo tests, the placebo coefficient may also be zero

because the placebo test is irrelevant. The first term is zero if either Γ1 = 0 or Γ2 = 0, meaning

that there is no sorting on “overall ability” into one of the two classrooms conditional on observ-

ables. The second term is zero if cov(a∗i2,a
∗
i1) = 0, which would occur if there were no unobserved

common factors that drive sorting into classrooms besides overall ability. These conditions will

potentially mask nonzero ρ (i.e., selection on unobservables), suggesting a notable limitation of

placebo tests: it is possible to create poor placebo tests of little relevance that will always fail to

reject the null of ρ = 0. Thus, the credibility of the placebo estimates shown hinge on our belief

that cov(a∗i2,a
∗
i1) = 0 and (Γ1 = 0 or Γ2 = 0) are only true when ρ = 0; otherwise, it is possible

that the placebo test will give a misleading null result (a “false negative”). There is also some risk

of false positives: the placebo coefficient may be nonzero despite ρ = 0 if our assumption that the

true causal effect is zero (βp,c = 0) is false.

2.4 Policy Implications: Optimal Ability Tracking

The estimates presented thus far have only shown “ability-nonlinear” peer effects; that is, the es-

timates only represent a nonlinearity in the ability level of each individual peer. It has also only

shown heterogeneity in effects by a student’s relative ability ranking in the classroom. Models with

nonlinearities in composition of the classroom and broader dimensions of heterogeneity are re-

quired to derive policy implications for optimal classroom assignment of students. “Composition-

nonlinear” effects are those which are nonlinear in the effect of some aggregate peer statistic, such

as the proportion of students who are high ability.

The central policy implication of composition-nonlinear or heterogeneous peer effects is that

some arrangements of classrooms result in higher total educational achievement than others. Be-

cause linear-in-composition model components always result in net zero estimated changes in to-

tal achievement from reassignment of students between classrooms, only credible estimates of

the nonlinear components of any peer effects model are needed in order to determine the total-

achievement-maximizing arrangement of students across multiple classrooms. As discussed in
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Section 2.2, various placebo estimates suggest that some nonlinear effect estimates are valid while

most linear components are not.

To put this idea into practice, I estimate a similar peer effects model as used in previous esti-

mates, but instead use a student’s decile of absolute ability rather than relative ability in a class-

room. The ability-nonlinear component interacted with student’s own ability results in average

test scores that vary by classroom assignment regime, opening the possibility of optimal sorting

into classrooms. I consider a hypothetical case of 40 students with 4 students per absolute ability

decile who must be assigned to two Algebra II classrooms of 20 students. Using the nonlinear

Algebra II peer effect estimates just presented, I simulate all assignment possibilities of students

to classrooms and identify the allocation of students between classrooms that maximizes average

Algebra II achievement. The score impact from heterogeneous peer effects for each classroom is

the sum of products of the classroom’s peer ability shares interacted with student ability decile

indicators and their corresponding estimated average effects. The net gain for one classroom as-

signment regime over another is the difference between their heterogeneous-composition score

gains. By construction, the average effect of a sorting regime from this simulation generalizes to a

real-world, multiple classroom case (holding all inputs such as teachers and class size fixed).

The results of the simulation show that the nonlinear-heterogeneous profile of effects for Al-

gebra II imply some meaningful benefits of ability tracking. Choosing a regime optimized for

the heterogeneous effects identified results in a 0.03 SD average gain in test scores over a ran-

dom assignment regime. Figure 13 shows the shares of students in each ability decile for each

classroom for the maximum-achievement assignment regime. The effects imply that the optimal

sorting regime is consistent with a traditional tracking model, separating students into high- and

low-ability classrooms. The practical strength of this result is tempered by the limited criterion

used to choose the optimal sorting—merely average test score—and ignores the effects of group-

ing on other outcomes of interest, such as test score distribution.

Whether these potential gains can be easily achieved in practice is a complicated administrative

matter. The policy implications of ability peer effects in secondary schools are not directly in
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parallel to the obvious “ability tracking” implications commonly explored in peer effects studies for

primary school students. The secondary school setting has a comparatively large degree of student

autonomy in classroom selection and it is less feasible than in primary schools for secondary

schools’ administrators (or district policies) to intervene directly in course selection. Instead, they

would need to manipulate course offerings, academic requirements, or other incentives, which

may be fraught with their own problems. Generally, knowledge of ability peer effects in secondary

school classrooms may serve the role of guiding optimal curricular design and classroom offering

structure instead of providing information for school administrators to directly implement (as they

might in elementary schools).

3 Conclusion

This paper is another of several studies estimating peer effects using observational techniques

while attempting to account for endogenous variation in assignment to peer groups. I focus on the

classroom as one of the most salient peer groups with respect to educational outcomes. Classrooms

are the core of educational production, yet have several avenues of social interaction that lead to

causal dependency between students’ outcomes. With a linear-in-shares model, I find evidence of

highly nonlinear response to peer ability for high school students in nearly all tested subjects in

North Carolina. I also find that a student’s relative ability ranking in a classroom moderates the

estimated effect, with lower-ability students benefitting the most from the nonlinearity. Drawing on

complete data on students’ classroom assignments to core subjects, I develop a set of placebo tests

based on the composition of peers in other core subjects. The findings of the placebo tests strongly

suggest that estimates of the effect of mean ability in a high school classroom are biased upward,

even when accounting for school quality, teacher quality, and formal course level. However, they

also suggest that most of the estimated nonlinear effects are approximately unbiased conditional

on mean ability.

Peer effects that heterogeneous or nonlinear in classroom composition in general are needed to

determine ability groupings of students into classrooms that result in higher overall achievement.
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The combined linear-in-means and linear-in-shares model used to estimate the main results only

uncovers students’ nonlinear responses to individual peers’ ability rather than nonlinear responses

to the peer ability composition of the classroom. However, the placebo testing framework applied

to the main results can be applied flexibly to any nonlinear or heterogeneous-effects specification.

Using a specification allowing heterogeneous effects by own absolute (rather than relative) ability,

I find that optimal sorting only on heterogeneous effects by own absolute ability produces a 0.03

SD gain in average test scores. The implied optimal sort is nearly a classic ability tracking struc-

ture, with a clearly delineated low- and high-ability classrooms, though both high- and low-ability

students appear in both classrooms (likely to tap into the relatively large benefits for low-ability

peers of high-ability peers).

There are several limitations to the estimates presented that future work can easily address

with richer, more general specifications of peer effects. First, these estimates potentially reflect a

composite of both the effect of those background characteristics and changes in endogenous stu-

dent decisions (e.g., effort) that are correlated with peer ability, and understanding the mechanisms

at play can result in more robust policy recommendations. Second, future models should more

generally account for nonlinearities in composition and heterogeneous effects in order to develop

classroom assignment algorithms that maximize potential score gains. Models such as the one

used in the simulation in Section 2.4 only capture part of the potential gains of intentional ability

grouping. On that point, there are further dimensions of heterogeneity that also must be explored

to make optimal sorting predictions more robust. For example, there is evidence that peer effects

differ by gender and race (Hoxby 2000; Hoxby and Weingarth 2006; Lantis 2014b) both in terms

of the peer composition and the characteristics of the individual student. While generalization to

these many nuances and complications makes for a multiplicity of additional parameters to esti-

mate, the growth in availability of large, rich administrative data sets like North Carolina’s may

allow the statistical analysis of peer effects to attain greater relevance and scope.
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Table 22: Linear Peer Effect Component Estimates (Math and Science)

(1) (2) (3) (4) (1) (2) (3) (4)

Mean Ability (SD) 0.22 0.22 0.13 0.2 0.17 0.17 0.18 0.17

(0.05) (0.05) (0.04) (0.04) (0.04) (0.04) (0.03) (0.04)

% Male -0.11 -0.11 -0.08 -0.11 -0.08 -0.08 -0.07 -0.09

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

% Retained Gr. 3-8 -0.15 -0.14 -0.15 -0.14 -0.17 -0.17 -0.14 -0.11

(0.07) (0.07) (0.06) (0.07) (0.06) (0.06) (0.05) (0.06)

Mean Ability (SD) 0.14 0.17 0.11 0.19 0.06 0.04 0.02 0.05

(0.03) (0.04) (0.04) (0.04) (0.02) (0.02) (0.02) (0.02)

% Male -0.04 -0.06 -0.05 -0.03 -0.07 -0.06 -0.06 -0.07

(0.03) (0.03) (0.02) (0.03) (0.01) (0.01) (0.01) (0.01)

% Retained Gr. 3-8 -0.07 -0.06 -0.05 -0.02 -0.13 -0.12 -0.1 -0.08

(0.06) (0.06) (0.05) (0.05) (0.03) (0.03) (0.03) (0.03)

School FE X X X X X X X X
Course Level FE X X X X X X
Teacher X School FE X X
School X Year FE X X

Algebra II Geometry

Physical Science Biology

Table presents estimates corresponding to the coefficient of the mean ability component of the model (λ) by
specification and by class subject. Standard errors are in parentheses.
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Table 23: Linear Peer Effect Component Estimates (Social Studies and English)

(1) (2) (3) (4) (1) (2) (3) (4)

Mean Ability (SD) 0.07 0.06 0.07 0.07 0.08 0.08 0.08 0.09

(0.03) (0.03) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01)

% Male -0.07 -0.07 -0.07 -0.07 -0.08 -0.08 -0.07 -0.07

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

% Retained Gr. 3-8 -0.17 -0.16 -0.12 -0.13 -0.09 -0.09 -0.1 -0.06

(0.03) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)

Mean Ability (SD) 0.27 0.25 0.24 0.22

(0.03) (0.03) (0.03) (0.03)

% Male -0.05 -0.04 -0.05 -0.04

(0.02) (0.02) (0.02) (0.02)

% Retained Gr. 3-8 -0.11 -0.1 -0.1 -0.12

(0.05) (0.05) (0.04) (0.05)

School FE X X X X X X X X
Course Level FE X X X X X X
Teacher X School FE X X
School X Year FE X X

U.S. History

Civics English I

Table presents estimates corresponding to the coefficient of the mean ability component of the model (λ) by
specification and by class subject. Standard errors are in parentheses.
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Table 24: Linear Peer Effect Component Placebo Test (Algebra II and Biology)

Subject
Algebra II Main Class Placebo Main Class Placebo Main Class Placebo Main Class Placebo

Mean Ability (SD) - - 0.11** 0.08*** 0.08 0.10*** 0.06 0.10***
- - (0.06) (0.03) (0.05) (0.02) (0.06) (0.03)

% Male - - -0.08*** -0.07*** -0.06*** -0.02 -0.07*** -0.02
- - (0.02) (0.02) (0.02) (0.02) (0.03) (0.02)

% Retained Gr. 3-8 - - -0.13* -0.15*** -0.14* 0.01 -0.19** -0.20***
- - (0.08) (0.05) (0.08) (0.04) (0.09) (0.05)

Biology Main Class Placebo Main Class Placebo Main Class Placebo Main Class Placebo

Mean Ability (SD) -0.00 0.07*** -0.00 0.10*** - - -0.05* 0.11***
(0.02) (0.02) (0.03) (0.02) - - (0.03) (0.02)

% Male -0.03** -0.03** -0.04** -0.04*** - - -0.06*** -0.04***
(0.01) (0.01) (0.02) (0.01) - - (0.01) (0.01)

% Retained Gr. 3-8 -0.06** -0.09*** -0.10*** -0.16*** - - -0.08** -0.07**
(0.03) (0.03) (0.04) (0.03) - - (0.03) (0.03)

Math Placebo Sample

Math Placebo Sample

Science Placebo Sample Social Studies Placebo SampleEnglish Placebo Sample

English Placebo Sample Science Placebo Sample Social Studies Placebo Sample

*** corresponds to p < .01, ** p < .05, * p < 0.1. Table presents estimates corresponding to the coefficient of the mean ability component of the
model (λ) by specification for Algebra II and Biology alongside the corresponding placebo coefficient using mean ability from other class subjects.
Standard errors are in parentheses.
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Figure 12: Algebra II: Effects of Peer Ability Shares by Own Relative Ability in Classroom

% Peers in Ability Decile  /  Decile of Relative Ability
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Each point represents the effect of increasing the proportion of students in a classroom with an ability score in a given decile (top axis) on a student
with an ability score in a given within-classroom ability decile (bottom horizontal axis, within bins denoted by top axis). X’s denote estimates
statistically insignificantly different from zero, O’s otherwise. The sizes of points are scaled to the absolute value of the t-statistic.
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Figure 13: Algebra II: Inverted Plot of Effects of Peer Ability Shares by Own Relative Ability in Classroom

Decile of Relative Ability  /  % Peers in Ability Decile
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Each point represents the effect of increasing the proportion of students in a classroom with an ability score in a given decile (bottom horizontal
axis, within bins denoted by top axis) on a student with an ability score in a given within-classroom ability decile (top axis). X’s denote estimates
statistically insignificantly different from zero, O’s otherwise. The sizes of points are scaled to the absolute value of the t-statistic.
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Figure 14: Algebra II: English Class Composition Placebo Test

% Peers in Ability Decile  /  Decile of Relative Ability
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Each point represents the estimated effect of increasing the proportion of students in the placebo classroom with an ability score in a given decile
(top axis) on a student with an ability score in a given within-classroom ability decile (bottom horizontal axis, within bins denoted by top axis). X’s
denote estimates statistically insignificantly different from zero, O’s otherwise. The sizes of points are scaled to the absolute value of the t-statistic.
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Figure 15: Algebra II: English Class Composition Placebo Test (Inverted)

Decile of Relative Ability  /  % Peers in Ability Decile
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Figure 16: Algebra II: Science Class Composition Placebo Test

% Peers in Ability Decile  /  Decile of Relative Ability
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Figure 17: Algebra II: Social Studies Class Composition Placebo Test

Decilepeerab  /  Decilerelab
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Figure 18: Peer Effects: Geometry with English Class Placebo
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Figure 19: Peer Effects: Science with English Class Placebo
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Figure 20: Peer Effects: English with Social Studies Class Placebo
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Figure 21: Peer Effects: U.S. History with English Class Placebo
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Figure 22: Peer Effects: Civics with English Class Placebo
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Figure 23: Peer Effects: Biology with English Class Placebo



Figure 13: Optimal Classroom Sorting for Peer Effect Model with Heterogeneous Peer Effects by
Own Absolute Ability
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This chart shows the distribution of absolute ability in two simulated Algebra II classrooms that optimizes
total mean test scores in accordance with the peer effect estimates in Section 2.4. The top plot is the first
classroom, corresponding to a “high ability” mixture of students, and the second plot is for the second,
“low-ability” classroom.

164



REFERENCES

165



REFERENCES

[1] Akerlof, G. A. (1997). Social distance and social decisions. Econometrica: Journal of the
Econometric Society, 1005–1027.

[2] Bifulco, R., Fletcher, J. M., & Ross, S. L. (2011). The Effect of Classmate Characteristics
on Post-Secondary Outcomes: Evidence from the Add Health. American Economic Journal:
Economic Policy, 3(1), 25–53.

[3] Burke, M. A., & Sass, T. R. (2013). Classroom Peer Effects and Student Achievement.
Journal of Labor Economics, 31(1), 51–82. http://doi.org/10.1086/666653

[4] Carrell, S. E., Fullerton, R. L., & West, J. E. (2009). Does Your Cohort Matter? Measur-
ing Peer Effects in College Achievement. Journal of Labor Economics, 27(3), 439–464.
http://doi.org/10.1086/600143

[5] Carrell, S. E., Sacerdote, B. I., & West, J. E. (2013). From natural variation to optimal pol-
icy? The importance of endogenous peer group formation. Econometrica, 81(3), 855–882.

[6] Duflo, E., Dupas, P., & Kremer, M. (2011). Peer Effects, Teacher Incentives, and the Im-
pact of Tracking: Evidence from a Randomized Evaluation in Kenya. American Economic
Review, 101(5), 1739–74. http://doi.org/10.1257/aer.101.5.1739

[7] Hoxby, C. (2000). Peer Effects in the Classroom: Learning from Gender and Race Vari-
ation (Working Paper No. 7867). National Bureau of Economic Research. Retrieved from
http://www.nber.org/papers/w7867

[8] Lantis, R. (2014a). Academic Performance, Effort Choice, and the Role of Peers. Retrieved
from http://web.ics.purdue.edu/~rlantis/Peer%20EffectAug28.pdf

[9] Lantis, R. (2014b). Birds of a Feather Flock Together, but Does it
Matter?: Inter and Intra Race Effects of Peer Ability. Retrieved from
http://web.ics.purdue.edu/~rlantis/RaceEffectsEdits.pdf

[10] Lavy, V., Paserman, M. D., & Schlosser, A. (2012). Inside the Black Box of Ability Peer Ef-
fects: Evidence from Variation in the Proportion of Low Achievers in the Classroom*. The
Economic Journal, 122(559), 208–237. http://doi.org/10.1111/j.1468-0297.2011.02463.x

[11] Lavy, V., Silva, O., & Weinhardt, F. (2012). The Good, the Bad, and the Average: Evidence
on Ability Peer Effects in Schools. Journal of Labor Economics, 30(2), 367 – 414.

[12] Manski, C. F. (1993). Identification of Endogenous Social Effects: The Reflection Problem.
The Review of Economic Studies, 60(3), 531–542. http://doi.org/10.2307/2298123

[13] Sacerdote, B. (2001). Peer Effects With Random Assignment: Results For Dartmouth
Roommates. The Quarterly Journal of Economics, 116(2), 681–704.

166



[14] Weinberg, B. A. (2007). Social Interactions with Endogenous Associations (Work-
ing Paper No. 13038). National Bureau of Economic Research. Retrieved from
http://www.nber.org/papers/w1303

167


