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ABSTRACT

CLUSTER VALIDITY AND INTRINSIC DIMENSIONALITY

BY

Thomas Anderson Bailey, Junior

Cluster analysis, one type of exploratory data

analysis, is a crucial part of a pattern recognition

study. Although many methods for discovering clusters in

a data set have been deve10ped, few techniques for

objectively evaluating clusters are available. One

approach to this question of cluster validity uses a null

hypothesis of "no clustering” based on random graph theory

and applies when the proximities between data points have

ordinal scale, as is assumed for several popular

clustering techniques.

A new random-graph-based technique for validating

clusters, called the cluster profile, is developed and

analyzed in this dissertation. Simple indices of cluster

compactness and isolation are defined, and measures of

validity are deve10ped from probability distributions of

the indices over sample populations selected from subsets

of nodes in random graphs. The measures are inexpensive

to calculate and may be applied to any subset of nodes,

whether discovered by clustering methods or defined a

priori. Thus the measures may be used to judge the

validity of arbitrary clusters and are not limited to
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clusters found by a specific clustering method.

Random-graph-based techniques for validating clusters

are limited to a particular null hypothesis. This

dissertation studies the extent to which techniques for

judging cluster validity based on random graph theory are

applicable to data sets produced under an alternative

random model. Monte Carlo simulation is used to create

data sets of points from a uniform density in a hypercube.

Distributions of the validity indices, obtained from these

data sets, are compared to the distributions under the

random graph null hypothesis. The dissertation shows that

as the dimensionality of the hypercube decreases, the

distributions of validity indices obtained under this

uniform hypercube null hypothesis consistently shift away

from those obtained under the random graph null

hypothesis. Because of this shift, almost all data sets

produced under the uniform hypercube model with low

dimensionality contain "valid" clusters when tested

against a random graph null hypothesis.

One resolution of this difficulty is suggested by_a

simulation of the placement of points at random in a

hypercube. The ratio of the shortest to longest

interpoint distances among five points approaches one as

the dimensionality of the hypercube becomes much larger

than five. This result implies that, at very high
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dimensionalities, the distributions of validity indices

under a uniform hypercube null hypothesis should be

approximately the same as those under the random graph

null hypothesis.

The cluster profile technique is applied to a speaker

recognition problem to illustrate its applicability. This

technique not only extends existing validity measures, but

also applies to clusters formed by any method, which is a

primary advantage over previously defined validity tests.
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1. Introduction

Clustering is used as a tool of data analysis in

areas as diverse as sociology [BRE75] and medicine

[WON77]. Clustering may be used as a means of classifying

a large mass of data [MSH77] or to suggest a causative

relationship between variables [BOR75]. The aim of

clustering is to find natural groupings present in the

data. Ideally, these natural groups are compact and well

isolated from one another. Unfortunately, the clustering

process may impose cluster structure even if it is not

appropriate.

1.1. The Cluster Validity Problem

Many clustering methods are currently available and

are being used for data analysis and data description.

The data generally comprise a set of points, which may be

objects of any kind, such as subjects, features, samples,

journals, species, etc., plus information about the

points, which may take the form of a set of features for

each point or a proximity value for each pair of points.

The proximity value indicates the extent to which the two

data points are alike or close together. (See [AND73] or

[BLA77] for a thorough presentation of proximity measures

and clustering techniques and algorithms.) Though these

methods provide information about the data, it is unclear

in many cases whether the information is inherent in the



data, or is being imposed by the clustering method,

especially since different clustering methods often give

different results [DUB76]. Thus, the question of validity

arises. Should the results, the clusters or partitions or

hierarchies produced by a clustering method, be accepted

as a representation of the data, or should they be viewed

as a form which has been imposed on the data?

We can distinguish several types of cluster validity

questions. The first type asks whether the data exhibit a

tendency to cluster. There are two models of the

mechanism which produces the tendency to cluster. The

usual model assumes the data are drawn, by independent

trials, from a distribution characterized by the

clustering observed in the data set. This is the model

assumed by almost all users of clustering. An alternative

model, used by Strauss [STR75, KEL76], assumes the data

points would have a non-clustered distribution if they

could be drawn by independent trials, but the presence of

an interaction mechanism causes the set of observed points

to occur in clusters. Under Strauss' model, it is also

possible to produce ”anti—clustered" data sets in which

the interaction mechanism causes the observed points to be

more evenly distributed than expected for independent

trials. Whichever model is appropriate, tests for the

presence of clustering tendency should be the first step

in an analysis of clustering structures. They can be



performed before clustering algorithms are applied to the

data [DUB77].

The second type of cluster validity question asks

whether the relationship between clusters represents the

true structure of the data set. Most clustering methods

produce a set of clusters and an indication of the

relationship between clusters. The membership of the

clusters and the relationship between clusters defines the

structure of the data set. Under Strauss' model such a

relationship does not exist in the underlying

distribution, but under the more usual model this data

structure indicates the structure of the population from

which the data were drawn. For example, if a clustering

method has forced a data set into an inappropriate

hierarchical structure, we would like to be able to detect

this error.

The third type of question concentrates on the

individual cluster. Given the data set in which the

cluster is located, the cluster may exhibit

characteristics, such as compactness, long lifetime, small

variance about the clustering center, or large separation

from other clusters, which lead to the conclusion that the

cluster forms a valid subgroup which should be treated as

a single entity.

The validity questions can be asked on several

levels. The observed structure can be compared with other



similar structures on the same data set. It can be

compared with a postulated ideal structure. Or it can be

compared with similar structures over the set of all

similar data sets. In the same manner, a cluster may be

compared with all possible clusters in the same data set,

with all possible clusters in all similar data sets, or

with the best cluster in all similar data sets.

This thesis examines techniques for answering the

question: Is this cluster valid? More specifically, is it

unusual to find a cluster which is as compact and isolated

as the observed cluster? The approach is probabalistic in

nature and is based on the theory of random graphs.

The remainder of Chapter 1 provides some necessary

definitions and a literature review. Chapter 2 describes

and analyzes a new tool called a Cluster Profile.

ApprOpriate indices of cluster isolation and compactness

are defined. Probability distributions which can be used

to test cluster validity are developed and measures of

cluster isolation and compactness based on these

distributions are defined. Chapter 3 describes a study

which considers one relaxation of the "no clustering"

assumption used in Chapter 2. Chapter 4 reports an

application of the Cluster Profile technique to a speaker

recognition problem and Chapter 5 draws conclusions,

identifies the contributions of the thesis and outlines

further work.



1.2. Non-Graph-Theoretic Approaches

Many different approaches to the cluster validity

questions have appeared. One approach is to consider only

whether the results of a clustering algorithm, either the

clusters or the structure, make sense. The user must try

to explain the results and no validity checks based on the

distribution of the data points are used. Anderberg

[AND73, pp.18-19] poses three cases in response to the

question "How do you know when you have a good set of

clusters?” In each case the question is answered without

reference to the distribution of the data points. In Case

One clustering is used to provide summary statistics. In

this case the validity question is irrelevant because the

only question is the accuracy of the calculation. In Case

Two the clustering technique is defined in such a way that

any clusters found must have the desired properties.

Again the validity of the results is not in question. Any

clusters found are, by definition, valid.

In Case Three the clustering technique is used as an

exploratory tool. Anderberg takes the position that all

the results should be evaluated by attempting to explain

them and validity tests based on distributions of the data

are of no value. If the results cannot be explained, then

validity tests will not save them. If an explanation is

forthcoming, then the validity test results are not

relevant to the explanation.



In contrast, Rapoport and Fillenbaum [RAP72] state

that ”Safeguards of various sorts (such as stress values

less than critical cutoff points, significant clusterings,

significant graph results, etc.) are obviously necessary

to guard against elaborate interpretation of randomly

generated data.” The increasing use of clustering in many

different fields and continuing work on the question of

cluster validity (see [DUB77] for a complete review) shows

that the view of RapOport and Fillenbaum is widely

accepted at present.

Several existing approaches to cluster validity that

do not use the graph-theoretical models on which this

thesis is based, but which establish a background for the

thesis, are outlined in the subsequent sections.

1.2.1. The Restricted Definition Approach

The work of McQuitty [MQU61, MQU67] is an early

example of the use of a strict definition of cluster to

ensure that any clusters which are found will be valid.

Hubert [HUB74a] uses the term "perfect cluster" for

subsets which satisfy some strict definition of cluster.

Definitions of perfect clusters usually compare an

index of compactness with an index of isolation. A

cluster is compact if its points have a high degree of

similarity, thus forming a cohesive set. A cluster is

isolated if it is well separated from other clusters, so



that points in the cluster are very dissimilar from points

not in the cluster. The significance of an index of

compactness or isolation depends on the distribution of

the index across the data set. In the following

definitions a cluster with strong compactness needs less

isolation to be considered perfect than does a cluster

with weak compactness.

McQuitty defines a "comprehensive type" as a subset

of points for which each point in the subset is more like

every other point in the subset than it is like any point

not in the subset. McQuitty also provides another, more

easily satisfied, definition for a perfect cluster. A

"restricted type" is a subset of points for which each

point in the subset is more like some other point in the

subset than it is like any point outside the subset. The

isolation criterion is the same for both definitions, the

least similarity between the point in question and a point

not in the subset. This isolation criterion provides, for

each point in the subset, a standard outside point against

which the compactness is compared. The point in question

must be more similar to some point in the subset -- or to

all points in the subset -- than to the standard outside

point. The isolation index is used as a reference with

which the compactness index is compared.

A less easily satified definition of perfect cluster,

given by van Rijsbergen [RIJ70], requires that the



smallest similarity between points in the subset be

greater than the largest similarity between some point in

the subset and some point not in the subset. Hubert

[HUB74a] gives several generalizations of these

definitions.

The work of Day [DAY77] is an extension of this

approach to cluster validity. His work applies to the

"overlapping" case, in which a data point may belong to

more than one cluster, which is not covered in this

thesis. He defines two properties, consistency and

authenticity, which a clustering method should exhibit and

then investigates classes of clustering methods to see if

they have the desired properties. Day also defines

general indices of cluster cohesion (or compactness) and

cluster attenuation (or isolation). The indices must be

specialized to each clustering method and no expected

values or distributions are given.

1.2.2. The Statistical Test Approach

Other work on cluster validity has approached the

question via statistical tests. This approach requires a

null hypothsis, or random distribution, against which

cluster validity indices, derived from a data set or from

the results of applying a clustering method to a data set,

may be evaluated. This section describes two types of



random distributions which have been used as the "no

clustering" hypothesis.

1.2.2.1. Tests Based on Random Patterns

Data sets in pattern recognition studies often

consist of feature values measured on each object under

study. The values can be used to form a pattern matrix, a

matrix with rows representing the objects and columns

representing the features. Each object may then be

represented by a point in a multidimensional space, with

each dimension corresponding to a feature. One type of

randomness hypothesis assumes the data have been drawn

from a known unimodal distribution in a multidimensional

space. Typical distributions of this type are the uniform

distribution inside a multidimensional sphere and the

multidimensional normal distribution [ENG69, SNE77]. Both

of these distributions seem natural as null hypotheses.

They represent the cases of no clustering or only one

cluster.

In one strategy for testing cluster validity we would

like to know the null distribution of a cluster validity

index over the best partition or the best cluster in each

random data set. Tests based on such null distributions

are difficult to devise because it is necessary to find

the best cluster or partition for a general data set, and

this is very difficult, especially in a space of many
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dimensions. The requirement that only the best clusters

or partitions in each random set be considered also

prohibits the use of standard analysis of variance

techniques to determine cluster validity.

1.2.2.2. Tests Based on Random Proximities

The information in the pattern matrix can be used to

form a proximity matrix. A proximity matrix is a square

matrix with row i and column i both representing object i.

The proximity matrix is symmetric and represents either

similarity measures between objects, such as correlation,

or dissimilarity measures, such as distance. Sometimes,

especially with psychometric data, the proximities are

measured directly and there is no pattern matrix. A

second type of randomness hypothesis assumes that the

starting point for the clustering analysis is the

proximity matrix. A model for the creation of the

proximity matrix in the absence of clustering is developed

and tests of cluster validity are based on random

proximity matrices drawn from the model distribution.

Mountford [MOU70] offers a test of the difference

between two clusters. The null hypothesis is that the

proximities are drawn from a normal distribution with mean

u and variance S. The covariance is c*S, where c is a

constant, if the two proximities share a data point, ie.,

if both are on the same row or column of the proximity
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matrix, otherwise the covariance is a. This hypothesis is

tested against the alternative that the data points split

into two groups with at least two items in each group.

The test is conservative because of the bound which must

be used to ensure that the best possible value of the

statistic over all partitions of the random data set is

found.

1.3. Graph Theoretic Approaches

Another model of the null hypothesis for statistical

tests of cluster validity assumes that values in the

proximity matrix have only ordinal significance. This is

widely assumed for data collected in psychology and the

social sciences [JOH67]. The information of interest is

the order of the values in the matrix. Under this model

there is a clear relationship between graph theory and the

proximity matrix. Descriptions of clustering methods in

terms of graph theory occur in many papers [HAR67, ZAH71,

HUB74a, HUB74b, MAT77].

1.3.1. Graph Theory and Clustering

Two prominent hierarchical clustering methods, the

single link method and the complete link method [JOHé7],

produce results which depend on the order of the

proximities but not on the actual values. Single link

clusters are subgraphs of minimum spanning trees [GOW70].
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Complete link clusters are related to the node

colorability of graphs [BAK76].

Agglomerative algorithms for implementing these

methods begin by considering each point in the data set to

be a cluster. The set of proximities is searched to find

the most similar pair of clusters, which are then joined

to form a new cluster. If ties occur in the set of

proximity values, the definition of these clusters is

greatly complicated, especially in the case of complete

link clusters. In this thesis, we assume that no ties

occur. The process is continued until all the points have

been joined into one cluster.

The single and complete link methods differ in the

way in which new proximities are defined when a cluster

forms. The single link method, also called the minimum

distance method, defines the proximity of the new cluster

to an old cluster to be the smallest of the two

proximities between the parts of the new cluster and the

old cluster. In contrast, the complete link method, also

‘called the maximum distance method, defines the proximity

of the new cluster to an old cluster to be the largest of

the two proximities between the parts of the new cluster

and the old cluster.

In both methods the clusters are determined solely by

the order of the proximities, so these methods are

apprOpriate for proximity matrices composed of ordinal
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data. A survey [BLA77 (1) pg.13, Table 3] of applications

in 122 research publications in 1973 showed that at least

58 of 162 applications of clustering involved clustering

methods which required only ordinal information. The

widespread use of these clustering methods implies that a

description of "no clustering" based on the rank of

entries in the proximity matrix rather than on the

positions defined by the pattern matrix will be of value.

1.3.2. Random Graph Models

We define two graphs from a proximity matrix D (on an

interval scale) as follows. Let a threshold c be given.

A threshold graph, T(D,c), is a graph on n labeled nodes

with two nodes i and j connected by an edge if the (i,j)

entry in D is less than or equal to c. A different

threshold graph is defined for each distinct entry in D.

A rank graph, R(D,c), is an edge-weighted threshold graph

at level c with an order imposed on the edges by the order

of the entries in D. If we assume no ties among the

proximities, the edges of R(D,c) may be labeled

sequentially to indicate the order of the proximities.

Each proximity matrix determines a set of threshold and

rank graphs, one pair of graphs for each distinct value of

c.

The representation of the proximity matrix D by a set

of rank graphs is accompanied by a loss of information,
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except in those cases where the entries in D are on an

ordinal rather than an interval or ratio scale. The

utility of the rank graph is seen in the wide use of

clustering methods, such as single link and complete link,

which require only ordinal information from the proximity

matrix to form the sequences of clusterings. The clusters

of the single link method are components of some threshold

graph, and each component of a threshold graph is a single

link cluster. The clusters of the complete link method

are maximal complete subgraphs (cliques) of some threshold

graph. However, not all cliques of a threshold graph are

complete link clusters. In both methods, the clusters are

determined by the order of the proximity values but do not

depend on the actual values. Thus the proximity matrix

may be replaced with the complete rank graph with no

change in the sequence of clusters produced by these

methods. Other graph theoretic concepts of connectedness,

such as k-edge and k-node connectedness, have also been

used to define clusters which depend only on the rank

graph [HUB74a, MAT77].

Consider the set of all symmetric n by n matrices

with zero entries on the diagonal and with the integer

values 1 to n(n-1)/2 in the upper triangle. A random rank

matrix is a matrix chosen at random from this set. An

experiment in which the proximities of objects are ordered

by random choice should give a "no clustering" result. In
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fact, not only is there "no clustering", but other forms

of structure will also be absent [LIN73a].

A random rank matrix may be represented by a complete

rank graph. The weights on the edges of a random rank

graph are integers showing the order of the edges. A

random rank graph may be formed directly by randomly

ordering the edges (or node pairs) of a complete graph. A

random threshold graph with N edges is the subgraph of a

random rank graph having the same node set as the random

rank graph and having all the edges with rank less than or

equal to N. In this thesis a "random graph" is a random

threshold graph. The random graph formed by choosing a

random rank graph on n nodes and then using the threshold

rank N to form a threshold graph is equivalent to the

random graph found by choosing a graph at random from the

set of all labeled graphs with n nodes and N edges. This

definition of random graph is used by Erdos and Renyi

[ERD59], Ling [LIN73a] and Baker and Hubert [BAK76].

Several authors speak of the evolution of a random

graph [ERD60]. If a random rank graph on n nodes is

given, a different threshold graph is defined for each of

the n(n-1)/2 distinct threshold ranks. The threshold

graph at rank i+l differs from the graph at rank i by a

single edge. A random graph is evolved by starting with a

graph of n nodes and no edges, and then repeatedly adding

new edges one by one at random until the graph is



16

complete. If the edges are labeled as first, second,

etc., as they are entered, then a random rank graph is

created by this evolutionary process.

Because graphs provide a representation of the

ordinal information in a proximity matrix, assuming all

orderings of the proximities are equally likely is

equivalent to assuming all rank graphs are equally likely.

In turn, the concept of random graph evolution links

random rank graphs and random threshold graphs. Any

hypothesis of "no clustering" which is equivalent to

assuming that all orderings of the proximities are equally

likely will be called a random graph null hypothesis.

1.3.3. Validity Tests Based on Random Graphs

Erdos and Renyi [ERD59, ERDGB, ERDGl] list a number

of asymptotic results in random graph theory. They are

particularly interested in the asymptotic behavior of’

various graph properties as the number of nodes in the

graph increases. In many cases they also give exact

expressions for the probability of special subgraphs, such

as cycles of order k, in random graphs. Erdos and Renyi

define a random graph as a graph with n nodes and N edges

where the edges have been chosen at random, without

replacement, from among the n(n-l)/2 node pairs. The

nodes are labeled. Thus there are three possible graphs

with three nodes and one edge.
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Abraham [ABR64] uses graph theoretic notions to

define several different types of clusters. He also

attempts to use random graph theory to determine the

significance of clustering tendency. Several errors in

his asymptotic expressions limit the usefulness of the

results [LIN75].

Rapoport and Fillenbaum [RAP72] use several results

from Erdos and Renyi in tests of non—randomness for data

'gathered in studies of semantic structure. They test sets

of trees using the distributions of the degree sequence of

the nodes. They also test sets of graphs using degree

sequence, occurrence of cycles of order 3 and 4, and the

number of edges required to connect the graphs. They test

clusters by using the difference between the mean rank of

edges inside clusters and the mean rank of edges between

clusters. Unfortunately, the distribution which they use

to test the clusters is appropriate only if the cluster of

nodes being tested is selected independently of the graph

which determines the statistic. In their case, the

cluster is chosen by selecting a good cluster on the basis

of the graph, so the distribution on which the test is

based is not the appropriate one.

Ling [LIN73a] defines an isolation index called

lifetime for single link clusters. The lifetime is the

number of edges in the graph in which the cluster is

absorbed by creation of another cluster less the number of
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edges in the graph in which the cluster is formed. Using

the random graph null hypothesis, Ling determines the

distribution of this index for a given cluster size and a

given number of edges in the graph at formation of the

cluster. The lifetime index is defined for clusters

obtained by any hierarchical technique. However, the

distribution is specific to the single link clustering

technique.

Several authors have obtained results for the

expected value of the number of edges needed to connect a

random graph. Erdos and Renyi give an asymptotic form.

Rapoport and Fillenbaum used this asymptotic form for

small graphs. Schultz and Hubert [SCH73] later showed,

using Monte Carlo simulation, that the asymptotic form was

not accurate for small graphs. Ling [LIN75] and Ling and

Killough [LIN76] used exact results due to Riddell and

Ulenbeck [RID53] to produce expressions of greater

accuracy for small graphs and tables of accurate results.

The number of edges needed to connect a graph is an

index of the tendency toward clustering of the nodes in

the graph. It is not an indication of compactness or

isolation for a particular cluster. The number of edges

needed to connect a graph measures the clustering tendency

at only one rank in the evolution of the graph. A test

which is applicable at all ranks uses the number of

components in a graph. Expected values for this index are
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given by Ling [LIN73b]. Since only the expected values

and not the complete distribution are given, no test of

significance can be based on this index.

Baker and Hubert [BAK75] use the random graph null

hypothesis in a study of the power of a test of

clustering. The test is based on the Goodman-Kruskal

gamma statistic and is applied to single and complete link

hierarchies. The gamma statistic is used to measure rank

correlation between the actual proximity matrix and an

ideal proximity matrix derived from the cluster hierarchy.

The alternative hypotheses consist of proximity matrices

which are ”perfect” for a partition into three clusters,

to which Gaussian noise is added. The study consists of

Monte Carlo runs to determine the distributions of

interest. The results can be used to test the fit of a

proximity matrix to the hierarchy of clusters given by the

single or complete link clustering technique. The

required simulation results are given only for the 12 node

case.

In another study Baker and Hubert [BAK76] used Monte

Carlo simulation under the random graph null hypothesis to

find the distribution of an isolation index defined for a

partition into complete link clusters. The index is the

number of extraneous edges, edges which are not internal

to some complete link cluster. They propose a test of

goodness-of-fit in which the observed number of extraneous
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edges after each new complete link cluster forms is

evaluated by reference to tables produced by their

simulation. The published tables are for clusters on 8,

12 and 16 nodes.

Matula [MAT77] finds the distribution of the size of

the largest clique (maximal complete subgraph) for a

random edge graph. A random edge graph is a graph in

which each node pair has probability p of being chosen as

an edge. The number of edges is not specified. The

expected number of edges for a random edge graph of n

nodes is pn(n-l)/2. The distribution of largest clique

size, or clique number, is quite peaked. Chance

occurrence of a clique which is more than a few nodes

larger than the expected size is quite unlikely.

1.3.4. Limitations of Present Validity Tests

The work to date in cluster validity based on random

graphs is limited in two ways. First, with the exception

of the clique number test of Matula, the tests of cluster

validity which have been proposed are specific to

particular clustering methods. They cannot be used to

test clusters found by any of the many other proposed

graph theory based clustering techniques. Second, with

the exception of the cluster lifetime test of Ling and the

clique number test of Matula, the tests of validity are

based on distributions which must be obtained by
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simulation. Since the simulations are specific to graphs

of certain sizes, the results cannot be used to test

experimental results unless the sizes happen to match. In

most cases the experimenter would need to run a simulation

for the graph size which matches his experiment in order

to use the proposed test. The tests proposed in Chapter 2

can be applied to any subset of points and do not require

simulation to determine the required distributions.



2. Cluster Profiles

Most random graph tests of cluster isolation and

compactness are based on one or two ranks in the evolution

of the complete graph. Ling [LIN73a] forms an index of

the isolation of a single link cluster by noting the

difference in the rank at formation and at absorption of

the cluster. Two important ranks in the evolution of the

graph are used, the lowest rank at which the nodes of the

cluster are connected and the lowest rank at which some

node in the cluster is connected to a node not in the

cluster. An index of isolation prOposed by Baker and

Hubert [BAK76] is the number of edges between complete

link clusters. All edges of a partition which are not

within clusters are counted. The fewer edges between

clusters, the more isolated they are, and the more valid

is the partition. In this case one rank is considered for

each new cluster, the rank at which the complete link

cluster is formed.

By contrast, the Cluster Profile method proposed in

this chapter looks at all ranks, or thresholds, in the

data set. This requires compactness and isolation indices

which are defined at each threshold. The proposed method

has the advantage of being applicable to the results of

any clustering method. Any ranks which are of special

significance for a particular clustering method will be

included.

22
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Sections 2.1 and 2.2 define the concepts of "raw" and

"probability" profiles. Indices of validity appropriate

to profiles are defined and several probability

distributions which are used to investigate cluster

validity are developed. The probability distributions

lead directly to the definition of several measures of

cluster validity which comprise the probability profiles.

Section 2.3 examines a special case of one probability

distribution to determine the accuracy of a probability

bound developed in Section 2.2.

2.1. Raw Profiles

A 'raw profile" is a sequence of cluster validity

indices. The sequence is formed by observing the indices

in the threshold graphs for each distinct threshold. A

raw profile provides a basic picture of the interaction of

a cluster with other elements in the data set. This

section develops the definition of the raw profile and

defines indices of cluster isolation and compactness.

2.1.1. The Sequence of Threshold Graphs

A "rank graph”, representing the order of edges in a

proximity matrix, may be thought of as a sequence of

threshold graphs, one threshold graph for each possible

threshold. If the thresholds are distinct, then each

threshold graph in the sequence has one more edge than the
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preceeding graph. Suppose that a clustering method has

been applied to the data and one or more clusters have

been identified. We wish to test the proposed clusters

for isolation and compactness.

A raw profile of each cluster is developed as

follows. Indices of compactness and isolation of the

proposed cluster are observed in each threshold graph.

The sequence of values for these indices, one value for

each rank, forms a profile of the cluster over the

evolution of the rank graph. With properly chosen indices

it may be possible to classify clusters as ”isolated“ or

“compact” directly from these raw profiles, although the

information may be hard to interpret. This motivates the

probability profile.

2.1.2. Indices of Isolation and Compactness

In this section two indices of cluster validity are

defined. Typically, indices of cluster validity are based

on some definition of compactness or cohesiveness of a set

of nodes or on some definition of isolation or uniqueness

of the set of nodes. The indices proposed here are very

simple. This simplicity has two advantages. First, the

indices are easy to evaluate, which makes them

computationally inexpensive. Second, their simple nature

allows them to be applied to many different situations.

More complex definitions of validity indices are often
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limited to one clustering method. These simple indices

can be applied to the clusters produced by any clustering

method. A disadvantage is that it is difficult to compare

clusters of different sizes or clusters from different

data sets using these indices.

The indices are based on a threshold graph. Let D be

a proximity matrix. Let A be a subset of the data points

which has been proposed as a cluster. The subset A may be

used to divide the proximities in the upper right triangle

of D into three sets. The first set, D(A,in), is the set

of proximities, d(i,j) with i<j, for which both data

points i and j are in the subset A. The second set,

D(A,out), is the set of proximities, d(i,j) with i<j, for

which both data points i and j are not in A. The

remaining proximities in the upper right triangle,

D(A,betw), are those with one data point in A and one data

point not in A.

For each possible threshold t, an index of cluster

compactness can be defined as follows. Let e(t) be the

number of proximities in D(A,in) which are less than or

equal to t. Then, for each t, e(t) is an index of cluster

compactness. If a cluster is very compact at level t it

will have many pairs of points with dissimilarity less

than t. If the cluster is not compact, it will have

relatively few pairs with proximities below t.

An index of cluster isolation can be defined in a
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similar way. Let b(t) be the number of proximities in

D(A,betw) which are less than or equal to t. Then b(t) is

an index of cluster isolation. A very isolated subset at

level t will have relativly few proximities below t, while

a subset of points which is not isolated will have many

points linking to points not in the subset with

proximities less than t.

A cluster which is perfectly compact and isolated

will have, for some threshold, all proximities in D(A,in)

below the threshold and all proximities in D(A,betw) above

the threshold. Such a cluster satifies van Rijsbergen's

definition [RIJ70] of a perfect cluster.

2.1.3. An Example

Figure 2.1 is an artificial data set of 25 points in

two dimensions. The dissimilarity measure is the

Euclidean distance between points. The threshold graph,

containing 25 edges, for a threshold of 1.00 inches is

shown. The six points which are circled at the lower left

are a proposed cluster. These six points are a

single-link cluster and also a complete-link cluster. For

this threshold graph with 25 edges the cluster has a

compactness index of 12 and an isolation index of 1. This

cluster does not satisify van Rijsbergen's definition of a

perfect cluster. However, it is apparent that the edges

of the threshold graph are concentrated in the cluster.



The threshold graph with 25 edges using distance as

the proximity measure.

Figure 2.1. An Artificial 25-point Data Set
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Figure 2.2 gives the raw profiles for the proposed

cluster. The compactness index (internal edges), the

isolation index (linking edges), and the edges which have

no connection with the cluster (outside edges) are plotted

for every fifth rank. The compactness index rises rapidly

to its maximum value of 15, indicating a relatively

compact cluster. The isolation index is quite small when

the number of edges in the threshold graph is small, then

rises at a fairly constant rate until the threshold graph

is complete at 300 edges. Tests which quantify the

significance of the rapid rise in the compactness index

and the slow rise in the isolation index are developed in

the next section.

2.2. Probability Profiles

A "probability profile" is a refinement of a raw

profile and is formed by computing, for each rank, the

probability, p, that the validity index for a subset of

nodes in a random graph would be as good as the observed

index. This significance level, p, is used as a measure

of cluster validity at each rank. The sequence of

measures forms the probability profile.

The validity measures proposed here are based on

distributions over random graphs as defined in Section

1.3.2. Section 2.2.1 discusses several of these

distributions. Sections 2.2.2 and 2.2.3 develOp the
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expressions for the probabilities required to compute

validity measures. Section 2.2.4 discusses the

application of the probability profiles and Section 2.2.5

applies probability profiles to an example.

2.2.1. Distributions Based on Random Graphs

One possible distribution is the set of validity

indices found by letting the sampled population contain

all possible subsets of nodes of fixed size in all random

graphs. This ”complete" distribution provides a proper

evaluation of a cluster if the cluster has been defined a

priori, without reference to the proximities or the

features used to find the proximities. In most cases,

this type of distribution is not useful because the

cluster has been chosen to maximize the validity indices.

Such a cluster is almost certain to have better validity

indices than a randomly chosen subset of points.

The distribution used to test validity must somehow

take into account the special way in which the cluster to

be tested was formed. One way to do this is to restrict

the sampled population to subsets of nodes of fixed size

in the random rank graph which are recognized as clusters

by the clustering method, CM, being used. By restricting

the population in this manner, the clustering method is

used to pick out good subsets of nodes from each random

graph for inclusion in the null distribution. This
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"CM-reachable" distribution is a "limited" distribution, a

distribution computed on the assumption that only selected

subsets of nodes in each random graph are included in the

sampled population. Baker and Hubert [BAK76] use the

"Complete-Link-reachable" distribution to develop their

test of cluster validity. A test of cluster validity

based on a reachable distribution is specific to clusters

found by the clustering method used to determine the

subsets of the random graph.

Another type of limited distribution assumes the

validity index rather than the clustering method limits

the sampled population. A "best case" distribution

assumes the sampled population is restricted to a subset

of nodes of fixed size in each random graph which produces

the optimum value of the validity index. A best case

distribution has the advantage of being applicable to

clusters formed by any clustering method. In a sense, the

best case distribution is the least upper bound on all the

reachable distributions. For any random graph, a subset

of points which is included in the best case sampled

population has validity index at least as good as any

subset included in a reachable sampled population. A test

of cluster validity based on a best case distribution is a

"general test” in that it can be applied to clusters

formed by any clustering technique.
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2.2.2. Distributions for the Isolation Index

In this section two probability distributions for the

cluster isolation index defined in Section 2.1.2 are

presented. The null hypotheses which form the bases for

the distributions are defined using random graphs. One of

the distributions is a best case distribution.

Let G be a labeled graph with n nodes and N edges (a

labeled (n,N) graph). Let A be a k-node subset of the

nodes of G which is to be tested for compactness and

isolation. Let (A) be the subgraph of G induced by the

node set A.

Let e be the number of edges in (A). If e' is the

number of edges in <-A> (where -A is the subset of nodes

not in A), then let b = N-e-e' be the number of linking

edges, or edges in G which join a node in A to a node in

-A.

The following two probability distributions are used

to evaluate the number of linking edges, b, as an index of

isolation.

Theorem 1.

The probability, P(blk), that a random labeled (n,N)

graph has at least one subset of k nodes with b or fewer

linking edges is bounded above by
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P(blk) <= /n\ \
°

\k/ /

--- /n:2\

B=0 \ N /

The notation i:j is used for the binomial coefficient, the

number of ways of choosing j unordered items from a set of

i distinguishable items. If i<j or j<D then i:j = 0.

This convention simplifies the notation.

Proof:

For a particular subset A of k nodes there are k(n-k)

pairs of nodes in G at which linking edges can be placed.

The number of ways in which B of these edges can be chosen

is

/ k(n-k) \

\B/.

Since the remaining N-B edges must be chosen from the

non-linking possibilities, the number of labeled (n,N)

graphs in which A may have b or fewer linking edges is

\ / k(n-k) \ / n:2 - k(n-k) \ .

/ \ B / \ N-B /

B=0

There are n:k ways to pick a particular subset of k

nodes. If all such possible subsets are considered, the

set of labeled (n,N) graphs contains
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b

n \ \ / k(n-k) \ / n:2 - k(n-k) \

k / / \ B / \ N - B /

B=0

subsets of k nodes which have b or fewer linking edges.

The number of labeled (n,N) graphs which have at

least one k node subset with b or fewer linking edges is

bounded above by the number of k-node subsets with b or

fewer linking edges which appear in all labeled (n,N)

graphs. Thus, dividing by the number of labeled (n,N)

graphs gives an upper bound on the probability that a

random labeled (n,N) graph contains a subset of k nodes

with b or fewer linking edges.

End of proof.

The probability that a random (n,N) graph contains at

least one subset of order k with b or fewer linking edges

is equal to the probability that the subset of order k in

a random (n,N) graph with the fewest linking edges has b

or fewer linking edges. Thus, the probability we have

bounded is from a best case distribution. This

probability bound, which we call measure I1, is a measure

of the isolation of a cluster with isolation index b.

A test of cluster validity may be based on measure

I1. Under the null hypothesis for the test, the isolation

index has the best case distribution derived above.

Measure 11 is an upper bound on the size of the test for
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rejection of this null hypothesis. The technique for

determining cluster validity proposed in this thesis

involves judging the validity on the basis of the sequence

of measures, or test sizes, over the evolution of the rank

graph. Thus we do not propose a significance level for

this test at one rank. At a particular rank, small values

of 11 are evidence of a valid cluster, while large values

are not.

The form of the above result suggests a close

connection to the hypergeometric distribution. We now

develOp the bound on P(blk) using the hypergeometric

model.

In the hypergeometric model [BR065] we have a

population of R elements, of which D are defective. We

draw a sample of size W, without replacement. The

probability that our sample contains exactly X defectives

is

Consider a specific k-node subset of a graph with n

nodes. The R elements in our population are the n:2 node

pairs of the graph. The D defectives are the k(n-k)

linking node pairs for the subset. The sample of size W

is the set of N node pairs chosen as edges in the random
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graph. The probability that the sample contains exactly B

defectives, or linking edges, is then

The probability that at least one of the k-node

subsets in the random graph has b or fewer linking edges

is bounded above by the probability that our specific

subgraph has b or fewer linking edges times the number of

ways in which the specific subgraph could be chosen,

W
5P(blk) <= /

\ \
/

\
/ "
O m

This is the same as our previous expression.

An exact expression for the probability P(blk) would

be much more satifactory than the present result.

However, the problem is made very difficult by the high

degree of interaction among the various subgraphs of each

possible random graph. An exact expression for the

desired probability is not known, and we must settle for

the upper bound obtained, which ignores interactions among

the subgraphs.

Consider k-node subsets of the nodes of labeled (n,N)

graphs which have exactly e internal edges (call these
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(k;e) subsets of the graphs). We compute the probability,

P(blk,e), that a subset chosen at random from all (k;e)

subsets of all labeled (n,N) graphs has b or fewer linking

edges.

Theorem 2.

A labeled (n,N) graph with a (k;e) subset has N-e

edges to distribute between linking edges and external

edges. Thus

b / k(n-k) \ / (n-k):2 \

--- \ B / \ N-e-B /

P(blk,e) = \ .
 

--- / k(n-k) + (n-k):2 \

B=0 \ N - e /

The sum is over the first b+l terms of the

probability mass function of the hypergeometric

distribution. This time, in contrast to the result for

P(blk), the expression for the probability is exact.

However, a test based on this result is not a general test

since the sampled population is not limited to the best

subset of nodes in each random graph. For this ”fixed

compactness index” distribution, the sampled population

includes all k-node subsets with exactly e internal edges

and is a third way of limiting the sampled population.

This probability, which we call measure 12, is also a

measure of the isolation of a cluster with b linking
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edges. Again, we may base a test of cluster validity on

this measure. Under the null hypothesis, the isolation

index has the fixed compactness index distribution given

above. Measure I2 is the size of the test for rejection

of this null hypothesis.

2.2.3. Distributions for the Compactness Index

The following two probability distributions concern

e, the number of internal edges.

Theorem 3.

The probability, P(e|k), that a random labeled (n,N)

graph has at least one subset of k nodes with e or more

internal edges is bounded above by

 

k:2 / k:2 \ / n:2 - k:2 \

--- \E/\ N-E /

P(e|k) <= /n\ \ -

\k/ /

--- / n:2 \

E=e \ N /

Proof:

Consider a particular subset of k nodes. It has k:2

pairs of nodes. The number of ways in which E of these

pairs can be chosen as internal edges is

/ k 2\

\ /[
I
3
0
0

The number of ways in which the remaining N-E edges

can be placed in the graph as linking or external edges is
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k:2

\ / k:2 \ / n:2 - k:2 \

/ \ E / \ N - E /

E=e

is the number of ways in which a particular subset of k

nodes may have e or more internal edges. If all possible

subsets of k nodes are considered, the set of all labeled

(n,N) graphs contains

k:2

n \ \ / k:

\ k / / \ E / \ N - E /

EL;

subsets
of k nodes

which
have e or more internal

edges.

The number
of labeled

(n,N) graphs
which

have at

least
one k node subset

with e or more internal
edges

is

bounded
above by the number

of k-node
subsets

with e or

more internal edges which appear in all labeled (n,N)

graphs.

End of proof.

The same result can be obtained using the

hypergeometric probability model by an arguement similar

to that used in Section 2.2.2. The probability that a

k-node subset with e or more internal edges occurs in a

random (n,N) graph is equal to the probability that the
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number of edges in the k-node subset with the largest

number of internal edges is e or more. Thus, the

probability we have bounded is from a best case

distribution. This probability bound, which we call

measure C1, is a measure of the compactness of a cluster

with compactness index e.

The corresponding test of cluster validity uses the

null hypothesis which assumes the compactness measure has

the best case distribution given above. Measure Cl is an

upper bound on the size of the test for rejection of this

null hypothesis. If a cluster has small measure C1 at

rank N, we may conclude that the cluster is compact at

that rank.

Consider subsets of k nodes which have exactly b

linking edges (call these (k;b) subsets). We compute the

probability, P(elk,b), that a subset chosen at random from

all (k;b) subsets that exist in all labeled (n,N) graphs

has e or more internal edges.

Theorem 4.

A labeled (n,N) graph with a (k;b) subset A has N-b

edges to distribute between internal edges of A and

external edges of A (internal edges of -A). Thus
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k:2 / k:2 \ / (n-k):2 \

--- \ E / \ N-b-E /

P(elkrb) = \ .

/

--- / k:2 + (n-k):2 \

E=e \ N - b /

Again, the sum is over terms of the probability mass

function of the hypergeometric distribution and we have an

exact probability rather than an upper bound. However, we

do not have a best case distribution since the sampled

population includes many subsets from some labeled (n,N)

graphs and no subsets from others. This ”fixed isolation

index" distribution uses a sampled population which is

limited to all k-node subsets with exactly b linking

edges. This probability, measure C2, is also a measure of

the compactness of a cluster with e internal edges.

Measure C2 is the size of a test for rejection of the null

hypothesis that the compactness index has the fixed

isolation index distribution given above.

2.2.4. Application of Probability Profiles

The measures developed in Sections 2.2.2 and 2.2.3

comprise the probability profiles of a cluster. At each

rank in the sequence of threshold graphs defined from the

proximity matrix, the indices of isolation and compactness

are evaluated. The probability that the value obtained,

or some better value, would occur in a random graph is

calculated using the best case and fixed index
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distributions. Thus, at each rank, we form four measures

(11, 12, Cl and C2) of the validity of the cluster. The

measures are the sizes of tests of cluster compactness and

isolation under the random graph null hypothesis. 1f the

null probability of an index at least as good as the

observed index is large, we have evidence that the cluster

is not valid at the rank tested. If the probability is

low, we have evidence that the cluster is unusual, and

therefore valid, at the rank tested. If the probability

is low over a span of many ranks, we conclude that the

cluster is valid.

The most favorable results are the simultaneous

occurrence of low values, say less than 10 ** (-3), for

both measure 11 and measure Cl over a wide range of ranks.

However, it may happen that a subset of points has low

measure for one validity index, say compactness, but not

for the other, isolation, when using the best case

distributions. In this case we consider the fixed index

distributions developed in Sections 2.2.2 and 2.2.3. If a

subset is compact with respect to the best case

distribution, we ask whether it is isolated with respect

to the fixed compactness index distribution. That is, we

ask if both measure C1 and measure 12 are small over a

‘wide range of ranks. If so, we may conclude that the

subset is compact and, for a subset with its compactness,

it is isolated. Similarly, if a subset is isolated with
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respect to the best case distribution, we ask whether it

is compact with respect to the fixed isolation index

distribution. If it is, we may conclude that the subset

is isolated and, for a subset with its isolation, it is

compact. In other words, the subset of points forms a

valid cluster.

'If both measure 11 and measure C1 are large, the

subset is neither isolated nor compact with respect to the

best case distributions, and we have no justification for

using the fixed index distributions. In this case we

conclude that the subset of points does not form a valid

cluster.

2.2.5. An Example

Figure 2.3 shows a logarithmic plot of isolation

measures 11 and 12 and compactness measures Cl and C2 for

the 6—node subset of Figure 2.1. The four measures are

plotted for every fifth rank of the sequence of threshold

graphs. The probability profiles show that this cluster

is unusually compact, but not isolated, when compared

against the most compact (measure Cl) and most isolated

(measure 11) subsets of a random graph. When compared

with subsets of the same compactness, this cluster is

unusually isolated (measure 12). From this observation,

we conclude that, under the random graph null hypothesis,

this subset of 6 points forms a valid cluster.
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Logarithmic plots of the four validity measures for

the six-point cluster of Figure 2.1.

Figure 2.3. Probability Profiles of a Cluster
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2.3. Accuracy of Bounds for P(e|k) when e = k:2

In Section 2.2 we developed upper bounds on the best

case distributions for the indices of isolation and

compactness. The upper bounds are useful measures only if

they are close to the actual values. If the upper bounds

are much larger than the actual probabilities, tests of

compactness and isolation based on them will be very

conservative and the probability profiles will show very

few low values. In the extreme, an upper bound of 1.00 is

always available, but it is of no use in judging cluster

validity.

In this section we investigate the accuracy of the

upper bound for a special case of the compactness index.

Several results on the probability p(k) that a random

labeled (n,N) graph contains at least one complete

subgraph of order k are presented. This is a special case

of the probability P(e|k), studied under Theorem 1 in

Section 2.2.3, that a random labeled (n,N) graph contains

a subset of k nodes with e or more internal edges. In

this case e = k:2 and the subset has all its internal

edges.

2.3.1. Upper and Lower Bounds

The probability p(k) that a randomly chosen labeled

(n,N) graph contains at least one complete subgraph of

order k is simply the number C(k) of labeled (n,N) graphs
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which contain at least one complete subgraph of order k

divided by the total number of labeled (n,N) graphs. Thus

P(k) = C(k) / Q

where

Q = /n:2\

\ N / .

The quantity C(k) may be expressed in terms of the

clique number of a graph. A clique is a maximal complete

subgraph and the clique number of a graph is the order of

the largest clique in the graph. Thus C(k) is the number

of labeled (n,N) graphs with clique numbers greater than

or equal to k.

Let C(k,r) be the number of labeled (n,N) graphs

which contain exactly r distinct complete subgraphs of

order k. These r subgraphs may overlap.

Note that

Q = \ C(k,r)

r=0

and

C(k) ll

/ C(k,r)

r=l

where R is the maximum number of complete subgraphs of

order k which can occur in a graph with N edges.

Bounds on C(k) will first be expressed in terms of

the number of complete subgraphs of order k and the number
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A

of pairs (both from the same graph) of complete subgraphs

of order k in the set of all labeled (n,N) graphs.

Let S(k,l) be the number of complete subgraphs of

order k in the set of all labeled (n,N) graphs.

R

S(k,l) = > r C(k,r)

r=1

Comparing S(k,l) and C(k) gives

R R

\ r C(k,r) - \ C(k,r)

/ /

r=1 r=1

R

= \ (r-l) C(k,r) >= 9 .

/

r=2

Thus S(k,l) is an upper bound on C(k) and

p(k) <= S(k,l) / Q .

We proceed to find a lower bound. If a labeled (n,N)

graph contains r complete subgraphs of order k, then there

are r:2 ways to choose a pair of complete subgraphs of

order k from the graph. The total number of pairs (from

the same graph) of complete subgraphs of order k which

occur among all labeled (n,N) graphs is
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R

S(k,2) = \ (r:2) C(k,r) .

/

r=2

Comparing C(k) and the difference S(k,1) - S(k,2) we

see that

C(k) - S(k,1) + S(k,2)

R R

= \ (r:2) C(k,r) - \ (r-l) C(k,r)

/ /

r=2 r=2

R

= \ ( (r-l):2 ) C(k,r) >= 0 .

/

r=3

Thus S(k,1) - S(k,2) is a lower bound on C(k) and

P(k) >= ( S(k,1) - S(k,2) ) / Q .

We could proceed in this manner, counting triples,

quadruples, etc., of complete subgraphs of order k and

developing tighter bounds on C(k). However, the value of

this development depends on being able to calculate the

bounds.

The number S(k,1) may be found by considering each

specific subset of k nodes in turn. Let A be a fixed

subset of k nodes. The number of labeled (n,N) graphs in

which A induces a complete subgraph is
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since k:2 edges are used to form the complete subgraph of

order k and the remaining edges may be used to join any of

the remaining pairs of nodes.

Since there are n:k such subsets of k nodes, we have

S(k,1) = /n\ / n:2 - k:2 \

\k/ \ N - k:2 / .

Thus

/ n \ / n:2 - k:2 \

\ k / \ N - k:2 /

P(k) <= ---------------------- ,

This is a special case of the upper bound on P(e|k) given

in Section 2.2.3.

The derivation of an expression for S(k,2) is similar

to that for S(k,1), though the details are more complex.

Let A and B be different subsets of k nodes. The number

of labeled (n,N) graphs in which both A and B induce

complete subgraphs depends on the overlap between the two

subsets. Let m be the number of nodes the two sets share.

Then u = k-m is the number of unshared nodes in each

subset. Note that 0 <= m < k.

As in the case of S(k,1), we first find the number of

labeled (n,N) graphs in which a specific subset of nodes,

A union B, induces a pair of complete subgraphs of order

k. Since the induced graph has ( 2*(k:2) - m:2 ) edges,
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the result we need is

/ n:2 - 2 (k:2)

\ N - 2 (k:2) +
-
+

The number of ways in which the set of 2k-m nodes may

be chosen can be developed in several ways. For example,

first choose the m nodes to be shared. This may be done

in n:m ways. From the remaining nodes choose u unshared

nodes to complete subset A, which can be done in (n-m):u

ways. Finally choose another u nodes to complete B, in

(n-m—u):u ways. Since the order in which the two sets are

completed is not significant, we divide by two. The

result is

 

/n\ /n-m\ /n-m-u\ / = / n \ /

\m/\U/\U//2 \m.U.U//2-

Thus,

k-l / n \

"‘ \ ml u: u /

S(k,2) = \ / n:2 - 2 (k:2) + m:2 \

/ \ N - 2 (k:2) + m:2 / .

--- 2

m=0

We could proceed to calculate the number of triples

of complete subgraphs of order k in the set of (n,N)

graphs. However, instead of one parameter to define the

overlap, we would now have four, implying that the number

of cases to be considered would increase as the fourth

power of k. Thus, consideration of triples appears to be

computationally infeasible.
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2.3.2. Asymptotic Forms for the Bounds

This section examines the asymptotic behavoir of the

bounds, developed in Section 2.3.1, on the probability

p(k) that a random labeled (n,N) graph contains at least

one complete subgraph of order k. The results indicate

that p(k) tends to be close to the upper bound whenever

the upper bound is small.

In the limit of large graphs the upper and lower

bounds on p(k) take on simple forms. We will show that

the upper bound takes on the form

where

We will present evidence that the difference between the

upper and lower bounds takes on the form

r(k) = ------ --—> 1/2 s .

We consider the asymptotic case where n, N and k all

grow without bound with a and 3 held constant. The

requirement that a be held constant ensures that the

number of edges (N) in the random graph increases as the

number of nodes (n) increases so as to keep the proportion

of edges which are present constant. The requirement that

s be held constant means that the size (k) of the subset
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of nodes under consideration also increases as n

increases, though not nearly as rapidly as n. By holding

s constant, k increases in such a way that the probability

of occurrence of a complete subgraph of order k approaches

3.

We derive the first result as follows. With a and s

held constant as n, N and k increase, we have

/n\ / n:2 - k:2 \

S(k,1) \k/ \ N - k:2 /

u(k) = ------ = -----------------

Q / n:2 \

\ N /

/n\ ( n:2 - k:2 )1 N!

= \k/ ----------------------- .

( n:2 )1 ( N - k:2 )1

Using

t! v

------ ---> t as t/v ---> infinity,

(t-v)!

k:2

/n\ N /n\ k:2

u(k) ---> \k/ ---------- = \k/ a

k:2

( n:2 )

k k:2

n a

---> -------- = s .

k!

The definition of s specifies the relationship

between n and k as they become very large. Starting with

this expression we may write k as a function of n as

follows. Start with



Taking the logarithm of both sides and expanding ln kl, we

obtain

ln s " k 1n n + k:2 1n a - k 1n k + k

- 1n (2 * 3.14159...) / 2 - ln (k) / 2 .

Now divide by k and drop terms which go to zero as n (and

k) get very large. The remaining terms are

0 “ 1n n + (k-l) 1n (a) / 2 - 1n k + 1.

Now let a' = - 2 / 1n a and multiply by a' to obtain

0 ” a' 1n n - k + l - a' 1n k + a' .

Thus, since k << n,

k --> a' 1n n - a' 1n (a' 1n n) + a' + l .

The terms which are ignored are of order ( ln (1n n) / 1n

n ) or ( 1n k / k ). This expression for k is (a' 1n 2)

larger than the result obtained by Matula [MAT77] for the

expected value of the largest clique size in a random edge

graph with edge probability a. Note that s does not

appear in the final result. The important point is that s

is constant.

A partial proof of the second result has been found.

Confidence in the correctness of the result is enhanced by
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observing the behavior of r(k) / u(k) ** 2 as k increases.

The plots in Figure 2.4 show, for several different values

of s and a, the convergence to a value of 1/2. The curves

were calculated by fixing the values of a and s, then for

each subgraph size (k) calculating the required number of

nodes (n) and edges (N). The exact upper and lower bounds

on the probability of a complete subgraph of order k in a

random labeled (n,N) graph were then calculated and used

to determine the desired ratio. Convergence to 1/2 occurs

for relatively small values of k.

Using this result, the asymptotic difference between

the bounds is one-half the square of the upper bound.

Thus, for the special case e = k:2, the upper bound on

P(e|k) = p(k) is quite close to the actual value if the

upper bound is small and k is large enough. For u(k) =

.1, the lower bound approaches .1 - (.l)(.l)/2 = .095 for

large k. The relationship of the upper and lower bounds

is exactly the relationship expected if the objects of

interest, the complete subgraphs of order k, are

distributed at random among the set of all labeled (n,N)

graphs. We may hope that the objects of interest in the

calculations of P(e|k) and P(blk) are also distributed at

random for large k, so that the upper bounds are tight

bounds whenever they are small.
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2.4. Summary

This chapter develops two Cluster Profiles, defined

from a proximity matrix using a sequence of threshold

graphs, which describe the interaction of a subset of

points with its environment. The Raw Profile of a cluster

is the sequence of cluster validity indices observed for

the sequence of threshold graphs. Computationally

inexpensive indices of compactness and isolation for any

subset of nodes in a threshold graph are defined. The

Probability Profile of a cluster is the sequence of

measures -- the test sizes for a cluster validity test

applied at all ranks -- for the sequence of threshold

graphs. Validity tests under the Random Graph Null

Hypothesis for the indices of compactness and isolation

are developed. We argue that the distributions based on

the best case sampled pOpulations provide the most useful

distributions for validity tests. Using these

distributions, upper bounds on the cumulative distribution

functions for the validity indices are develOped. These

upper bounds form two measures of cluster validity.

The cumulative distribution functions for the

validity indices using a second sampled population are

also developed. This sampled pOpulation includes all

subsets of points with a specified validity index, either

isolation or compactness. We argue that this distribution

is useful for testing one validity index when the other
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index is known to be valid under the best case

distribution. The probabilities given by these two

cumulative distribution functions form two additional

measures of cluster validity.

The final section of the chapter explores the

asymptotic accuracy of the upper bound on the best case

distribution of the compactness index. For the special

case in which the compactness index takes on its maximum

value, we develop a lower bound on the cumulative

distribution function of the index and show that the

difference between the upper and lower bounds

asymptotically approaches one-half the square of the upper

bound. We conclude that the upper bound will be useful

for testing cluster validity.



3. Intrinsic Dimensionality and Cluster Validity

This chapter explores some limitations of validity

tests based on random graphs when the proximity matrix is

derived from a pattern matrix. We investigate the effect

this pattern matrix starting point has on distributions of

indices of cluster validity.

3.1. Introduction

Ling [LIN73a] has applied his random-graph-based test

of the lifetime of single link clusters to clusters found

in a star map of sixty bright stars in the neighborhood of

Polaris. He found several clusters with unusually long

lifetimes and concluded that the clusters were valid.

Such results, on data sets which are presumably random,

have led several investigators, including Ling [LIN76,

pg.294] and Matula [MAT77, pg.126], to warn against using

cluster validity tests based on a null hypothesis of a

random graph.

This chapter studies the relationship between the

dimensionality of a set of data points and the

distributions of indices of compactness and isolation used

for testing cluster validity. We ask whether a prescribed

dimensionality for the data set automatically precludes

the use of tests based on random graphs.

Suppose that, instead of using random graphs as the

null hypothesis of ”no clustering", we assume that the

58
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patterns themselves are randomly chosen points from a

uniform distribution in a hypercube and compute the

dissimilarity matrix with some distance metric. This

random experiment provides a null hypothesis, called the

I'uniform hypercube null hypothesis," which may be more

appropriate than the random graph null hypothesis if our

data are patterns in a feature space. Other distributions

from which the points could be chosen include the uniform

distribution in a hypersphere and the multidimensional

normal distribution. The uniform distribution in the

hypercube is used here because it is the cheapest to

simulate.

Suppose we use hypothesis tests based on the random

graph null hypothesis to test clusters from data sets

created by choosing points from a uniform distribution in

a hypercube. It may be that 10% of the data sets exhibit

clusters which are valid at the 10% level, or perhaps

there are valid clusters in 40% of the data sets. Perhaps

there are never any valid clusters by our test.

Considerations such as these motivate the investigation

below.

Section 3.2 derives analytic results for the case of

four points placed at random on the unit interval and

presents simulation results for five points placed at

random in a unit hypercube. Section 3.3 examines a

phenomenon discovered in the five point simulation of
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Section 3.2 and relates it to an issue in the

determination of the intrinsic dimensionality of a data

set. Section 3.4 presents and discusses the results of a

simulation study of the relationship between the random

graph null hypothesis and the uniform hypercube null

hypothesis for data sets of medium size. The results of

this study provide empirical evidence which supports the

note of caution suggested by Ling and Matula, namely,

tests based on the random graph null hypothesis cannot be

indiscriminately applied to data sets best represented as

points in a multidimensional space.

3.2. Very Small Data Sets

It is easy to show that the uniform hypercube null

hypothesis will generate distributions of clustering

statistics different from those computed under the random

graph null hypothesis for the special case when four

points are chosen at random from a uniform distribution on

the unit interval. Form a threshold graph by using

distance as proximity and including only the edges joining

the three closest pairs of points. The distributions of

statistics based on the resulting unlabeled (4,3) graphs

are certain to be different from those based on random

labeled (4,3) graphs since one of the graphs which occurs

for the random graph case, the graph where one of the

nodes is adjacent to each of the other three nodes, cannot
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occur when the four points lie on a line.

The distribution over the possible rank orders of

interpoint distances for four points placed at random on

the interval (0,1) is equivalent to that obtained when two

points are placed at random on the interval and the end

points, 0 and 1, are used as the other two points. Thus,

the problem of finding distributions based on the possible

rank orders of the proximities reduces to a two variable

problem. Counting distributions over threshold graphs may

be derived by considering a unit square representing all

possible values of the two interior points. The square is

divided into regions corresponding to the various possible

rank orderings of the interpoint distances and the areas

are calculated. The counting distributions over threshold

graphs with various numbers of edges for four points

chosen at random in a unit interval and for four-node

random graphs are given in Table 3.1. For example, there

are twenty possible random graphs with four nodes and

three edges and sixteen of them are connected. However,

four of the connected graphs cannot occur under the one

dimensional hypothesis, and each of the twelve which can

occur have only one-third the probability of occurrance of

one of the unconnected graphs. Whenever there is more

than one possible threshold graph the distributions under

the two null hypotheses are different. The change in the

distribution over threshold graphs affects the
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Table 3.1 Frequency Distributions over (4,N) Graphs

Edges Graph Probability: Probability:

Random Graph One Dimensional

Null Hypothesis Uniform Hypercube

Null Hypothesis

0 1. 1.

1 1. 1.

2 I__ .80 .67

I I .29 .33

3 L_J .60 .59

B: .29 .59

Z .29 9.

4 N .80 1.

C .29 9.
 

M
E
I
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distribution of the indices of compactness and isolation

defined in Section 2.1.2. The best case distributions of

the indices for three-node subgraphs are shown in Table

3.2. The distributions are different under the two

hypotheses.

This analysis is possible for four points on a line

because the problem reduces to a two-variable problem.

With more points, or points in higher dimensions, the

increase in the number of variables creates an intractable

problem. Some insight into the five point case may be

gained by noting which five-node graphs can occur if the

points are restricted to a line. A theoretical analysis

of the probabilities in this case is very tedious.

The approach taken here is to simulate the random

placement of points in an interval and observe the

counting distribution over the various graphs. This

approach is easily extended to higher dimensions. Table

3.3 shows several counting distributions over the six

possible threshold graphs with five nodes and five edges.

The distributions were obtained by Monte Carlo simulation

of the placement of five points in hypercubes with various

dimensionalities of one through two hundred. For each

dimensionality, 1000 sets of five points were obtained.

For each set of five points the ten interpoint distances

were calculated and the five smallest distances were used

to define a (5,5) threshold graph. The random graph case
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Table 3.2 Distributions of Validity Indices

e: Maximum number of internal edges for a 3-node subset

b: Minimum number of linking edges for a 3-node subset

Edges e b Probability: Probability:

Random Graph One Dimensional

Null Hypothesis Uniform Hypercube

Null Hypothesis

2 1 1 .20 .33

2 0 .80 .67

3 2 1 .80 .50

3 0 .20 .50
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Table 3.3 Counting Distributions over (5,5) Graphs

1 2 3 4 5 6 T

r1> mom-71> D:
a

Random Graph Null Hypothesis ( Theoretical ) 1

238.1 238.1 238.1 119.0 119.0 47.6 i

2

Random Graph Null Hypothesis ( Simulation )

251 233 218 131 118 49 3.76

Uniform Hypercube Null Hypothesis ( Simulation )

D = l 560 87 0 353 0 0 1395.

D = 2 433 177 22 282 79 7 643.

D = 3 337 256 45 232 114 16 328.

D = 4 365 216 43 245 109 22 378.

D = 10 245 248 98 239 148 22 225.

D = 20 228 284 111 186 150 41 124.

D = 100 211 232 154 206 176 21 139.

D = 200 202 243 159 171 200 25 120.
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was simulated by randomly choosing five of the ten

possible node pairs as edges in the (5,5) threshold graph.

The observed simulation results, {O(j), j=1,6}, may

be compared with the results expected under the random

graph null hypothesis, {E(j), j=l,6}, using the statistic

 

c . . 2

‘-- ( 0(3) - E(J) )

T = \ I

/ .
--- R(J)

i=1

where c=6 is the number of classes. For large sample size

and under the null hypothesis that the observed values are

drawn from the distribution given by the expected values,

T has the chi-squared distribution with five degrees of

freedom. The mean of this distribution is 5.0 and the

variance is 10.0. With one exception, the difference

between the simulation distribution and the distribution

expected under the random graph null hypothesis is

extremely significant, with p << .001. The exception, as

expected, is the direct simulation of the random graph

case, for which the value T = 3.74 falls between the 40th

and 50th percentiles.

The best case distributions for the indices of

compactness and isolation are easily determined from the

counting distributions over the threshold graphs. The

Optimum value for each measure on each possible graph is

determined by inspection. For four-node subsets, graphs

number 1, 2, 3 and 5 in Table 3.3 have a best case
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compactness index of 4 and a best case isolation index of

1, while graph number 4 has best case compactness and

isolation indices of 5 and 0, respectively, and graph

number 6 has indices of 4 and 2. The counts for the

various graphs are combined to produce the distributions

for the indices. For example, for the three dimensional

hypercube simulation, the counts for graphs 1, 2, 3 and 5

are added to give 752 graphs with a best case isolation

index of 1. The results for four-node subsets are given

in Table 3.4. The statistic, T (with c=3), is again used

to test the goodness-of-fit of the simulation results to

the expected distribution under the random graph null

hypothesis. Under the null hypothesis and for large

samples, T has a chi-squared distribution with two degrees

of freedom, a mean of 2.0 and a variance of 4.0. Again,

with the exception of the random graph simulation, all of

the simulation distributions are significantly different

from the expected distribution under the random graph null

hypothesis. This provides additional support for the

contention that cluster validity measures have

significantly different distributions under the two

hypotheses.

3.3. High Dimensionality in Small Data Sets

An interesting phenomenon appears in Table 3.3. Note

that the distribution continues to change as the



68

Table 3.4 Distributions of Validity Indices

The counts are the numbers of (5,5) graphs (see Table 3.3)

with the indicated best case validity indices on 4-node

subsets.

Compactness 4 3 T

Isolation 1 2 Statistic@
U
‘
l

Random Graph Null Hypothesis ( Theoretical )

119.0 833.3 47.6

Random Graph Null Hypothesis ( Simulation )

131 820 49 1.46

Uniform Hypercube Null Hypothesis ( Simulation )

D = 1 353 647 0 549.

D = 2 282 711 7 276.

D = 3 232 752 16 136.

D = 4 245 733 22 159.

D = 10 239 739 22 145.

D = 20 186 773 41 43.0

D = 100 206 773 21 82.8

D = 200 171 804 25 34.5



69

dimensionality of the hypercube is increased beyond four.

This is counter-intuitive. Since any set of five points

in Euclidean space can be used to determine a four

dimensional space in which interpoint distances are

maintained, intuition dictates that the distributions for

all dimensions beyond three should be the same. The

observed changes raise an interesting question concerning

the nature of intrinsic dimensionality, which is develOped

below.

3.3.1. Definitions of Intrinsic Dimensionality

The intrinsic dimensionality of a set of points can

be viewed in two ways. The first is that the intrinsic

dimensionality is the order of the lowest dimensional

space in which the data points can be embedded without

changing the rank order of the interpoint distances

[KRU64]. Given a matrix of interpoint distances for a set

of n points, it is always possible to embed the n points

in a space of n-2 dimensions without changing the order of

the interpoint distances. In other words, all possible

orderings of interpoint distances can be achieved in a

space of n-2 dimensions using Euclidean distance as the

proximity measure. Several embedding methods which

"attempt to decrease the dimensionality while maintaining

the order of the interpoint distances, at least locally,

have been proposed [BEN69, CHE74]. Methods based on



70

finding principal axes also attempt to find a small number

of dimensions in which most of the information contained

in the interpoint distances is retained. For n points in

a high dimensional Euclidean space, it is always possible

to embed the points in a space of n-l dimensions while

maintaining the interpoint distances. From this

viewpoint, the intrinsic dimensionality of our five point

data set cannot be larger than four. However, since the

higher dimensional hypercubes do provide different

distributions of graphs, either the viewpoint must be

changed, or some additional information must be permitted

in the description of the data.

A second viewpoint is that intrinsic dimensionality

is the minimum number of variables needed to determine the

spatial position of a point in the data set. This

viewpoint was Bennett's [BEN69] motivation for his

dimension-reducing algorithm. He wanted to find the

number of free system parameters needed to generate a set

of signals. A method for estimating the intrinsic

dimensionality which is not based on finding an embedding

has been proposed by Pettis, Bailey, Jain and Dubes

[PET79]. If data points are known to lie along a curve in

three dimensions, two of the coordinates of a data point

may be determined from the third using the equations which

define the curve. It takes only one variable to specify

the position of a member of this data set, which is
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intrinsically one dimensional. From this viewpoint, our

two hundred dimensional hypercube defines a set of data

points with intrinsic dimensionality of two hundred. Even

though the five points are on a four dimensional

hyperplane, each distinct set of five points establishes a

different hyperplane. Thus the equations which define a

fixed hyperplane cannot be used to determine additional

coordinates of a data point once the four coordinates

which specify its position in the hyperplane are known.

All two hundred coordinates must be given.

The first viewpoint of intrinsic dimensionality is

useful if the problem at hand is to represent the data in

a space of low dimensions. However, valuable information

concerning the data is lost if the ability to represent

the data using few dimensions is mistaken for the ability

to determine the spatial positions of the data points by

specifying only a few variables. If the data are a sample

from some target population, the ability to embed the

sample in a space of low dimensions does not mean the

target population is of low dimensionality. On the other

hand, the number of variables needed to determine the

spatial position of a point in the sample should

accurately represent the dimensionality of the target

population. The second viewpoint is the more useful one

if a basic description of the data is the goal. One
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consequence of large dimensionality for a small number of

points is develOped in the next section.

3.3.2. Five Points in a Hypercube

One effect of intrinsic dimensionality higher than

four on a set of five random points is seen in the set of

curves in Figure 3.1. Each curve is computed from one

hundred sets of five points. Each point consists of d

numbers chosen at random from a uniform distribution on

the unit interval. These d numbers are used as the d

coordinates of a point in a hypercube. The ten

interpoint distances are calculated and the ratio of the

smallest to the largest is found. Graphed are the

empirical cumulative distribution functions of this

random variable. As the dimensionality increases the

ratio becomes closer to one. In other words, it becomes

more likely that all ten interpoint distances are close

to the longest interpoint distance. As the

dimensionality is increased to extremely large values,

the distribution of the five random points approaches

the state in which all interpoint distances are

approximately the same.

Bennett [BEN69] notes a similar result for the

distribution of points in a unit hypersphere. As the

dimensionality of the hypersphere increases the

distribution of interpoint distances approaches a delta
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function located at square root (2.0). That is, almost

all pairs of data points are the same distance apart.

The distribution of interpoint distances depends on

the underlying distribution of the data points. Since all

interpoint distances are approximately equal for both the

uniform hypersphere and the uniform hypercube, we

conjecture that any uniform distribution bounded by a

convex hull will exhibit the same effect. We also

conjecture that the same effect occurs for the I

multidimensional Gaussian distribution, and perhaps for

any distribution which is unimodal.

When all the interpoint distances are approximately

the same, restrictions on the occurrence of some threshold

graphs, which are so evident in the one dimensional

hypercube case, disappear. The lengths of the edges are

randomly ordered and all possible threshold graphs are

equally likely. Thus, at extremely large

dimensionalities, the uniform hypercube null hypothesis

produces distributions over threshold graphs which are

approximately equivalent to those under the random graph

null hypothesis. If the distributions were equal at very

low dimensionality, then validity tests based on the

random graph null hypothesis could be applied in

situations where a null hypothesis based on random pattern

distributions is apprOpriate.

The simulation reported in this section indicates



75

that in the asymptotic case of very high dimensionality

the uniform hypercube null hypothesis and the random graph

null hypothesis produce identical distributions over

threshold graphs. This asymptotic identity does not apply

in practical situations, where the dimensionality is

typically much less than 100. For data sets of five

points it is apparent that the random graph null

hypothesis should not be used to check the validity of

clusters in a data set for which a uniform distribution of

points in a hypercube of low dimensionality is an

apprOpriate null hypothesis.

3.4. Data Sets of Medium Size

The evidence concerning data sets with four and five

points presented in Section 3.2, while certainly

suggestive, does not rule out the possibility that the

random graph and uniform hypercube null hypotheses may,

for larger data sets, be more or less equivalent with

respect to the indices and measures of validity defined in

Chapter 2. The following simulation experiments are

designed to shed some light on this question. We simulate

the creation of random graphs under the random graph and

uniform hypercube null hypotheses and find best case

distributions for the indices of compactness and isolation

defined in Chapter 2. We must resort to simulation

because calculation of the needed distributions under the
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uniform hypercube null hypothesis by analytic methods is

intractable for more than four points. The inspection

technique used in Section 3.2 to find the best case must

also be abandoned, both because the number of possible

graphs increases rapidly with the number of nodes and

because finding the best case by inspection becomes

impossible for large graphs.

3.4.1. Simulation of the Distributions

The simulations which find empirical best case

distributions for the uniform hypercube model are

performed as follows. Choose a set of n points from a

uniform distribution over a d-dimensional hypercube and

determine the N closest pairs of points. These N pairs

define an (n,N) threshold graph. Find the optimal values

of the indices of compactness and isolation over all

k-node subsets in this threshold graph. Record the

indices. Repeating this many times will build up the

probability distributions for the indices.

Bias is introduced into the distributions because it

is not computationally possible to find the optimal values

for the validity indices over all k-node subsets in each

threshold graph. The huge number of k-node subsets in a

graph of n nodes, (n:k), precludes an exhaustive search.

The simulations-reported here use a gradient ascent

technique to find subsets of nodes with good values for
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each index of validity. The technique is explained in the

Appendix.

Simulations which find empirical best case

distributions for the random graph model are run in a

similar fashion. For these simulations the threshold

graph is created by randomly choosing as edges N pairs of

points from the n:2 equally likely possible pairs.

Simulation of the random graph model can be used to check

the accuracy of the technique for finding the best case

k-node subset and the accuracy of the upper bound given by

the theory of Chapter 2. The empirical best case

distributions for the random graph model will match the

upper bounds on the best case distributions, developed in

Sections 2.2.2 and 2.2.3 under the random graph null

hypothesis, only if both are accurate.

Simulations to find the best case distributions for

the cluster validity indices were run for a variety of

graph sizes, ratios of edges to node pairs, subset sizes

and dimensionalities. The graphs are of medium size, the

smallest having 20 nodes and the largest, 40. The 40 node

size was chosen because the data studied in Chapter 4

consists of 40 samples. The first set of simulations was

used to find the shapes of the empirical distributions of

the validity indices. The main feature of the first set

is the large number of random data sets used for each run

of the simulation. Best case distributions for the
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compactness and isolation indices were obtained for graphs

with 40 nodes and 156 edges, subsets with 8 nodes and

dimensionalities of one and five for the uniform hypercube

model. The same graph and subset sizes were used to find

best case distributions for the random graph model. The

156-edge case was chosen because both the compactness and

isolation indices have extended ranges for this edge

number. Each simulation was repeated for 1000 random data

sets. Histograms of the results are given in Figures

3.2a,b. We note that the random graph and one dimensional

histograms do not overlap for either index. Gaussian

distributions with the same mean and variance as each

distribution are also plotted in Figures 3.2a,b. The

histograms appear Gaussian in shape, except for the one

dimensional compactness histogram which is strongly

affected by the upper limit of 28 on the compactness

index. With more edges in the graph, distributions for

the compactness index are strongly affected by the upper

limit for dimensionalities higher than one. With fewer

edges in the graph, distributions for the isolation index

are affected by the lower limit of 0.

The main feature of the second set of simulations is

the large assortment of different dimensionalities used.

Runs were made for the uniform hypercube model with

dimensionalities of l, 2, 3, 5, l0 and 20 and for the

random graph model. Simulation runs of 25 data sets each
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were made for threshold graphs of 40 nodes with 8-node

subsets and for threshold graphs of 20 nodes with 4-node

subsets. Each run was repeated with ten and twenty

percent of the node pairs present as edges. Figures

3.3a,b are plots of the means of the best case compactness

and isolation distributions for the various runs. Figures

3.4a,b show the empirical cumulative distribution

functions for the (40,156) threshold graphs for the

various runs. The upper bounds on the cumulative

distributions derived in Sections 2.2.2 and 2.2.3 under

the random graph null hypothesis are also plotted.

The third set of simulations uses the random graph

model, and can be used to check the accuracy of the

theoretical upper bounds and the best case approximation

algorithm in the simulation. Plots of the empirical

cumulative best case distributions of the compactness and

isolation indices are presented in Figures 3.5a,b. Each

plot represents 250 random data sets of 25 nodes. The

distributions were determined for a 6-node cluster in

graphs with 25, 50, 100, and 200 edges. Also plotted are

the theoretical upper bounds on the best case

distributions calculated from the expressions in Sections

2.2.2 and 2.2.3.

The results of the fourth set of simulations can be

used to evaluate the cluster, in Figure 2.1, used as the

example of Chapter 2. This simulation uses the two
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dimensional uniform hypercube model with 250 data sets for

each run. Runs were made for a data set of 25 nodes and a

6-node cluster with 25, 50, 75, 100 and 200 edges. Table

3.5 lists the numbers of linking and internal edges

observed in the profiles of Figure 2.3 along with measures

I1 and C1, the calculated upper bounds on the

probabilities under the random graph null hypothesis, and

the equivalent measures obtained from this simulation of

the best case distributions under the two dimensional

uniform hypercube null hypothesis.

3.4.2. Evaluation of the Results

We draw several observations from the results.

First, the first and second sets of simulations, Figures

3.2, 3.3 and 3.4, show that the effect of low

dimensionality is to shift the distributions of the

indices of compactness and isolation away from the

distributions under the random graph null hypothesis.

This effect was observed in every simulation which was

run. The direction of the shift, to higher compactness

values and lower isolation values, is such that tests

based on the random graph null hypothesis will give

results which indicate that almost any set of points

chosen at random from a uniform distribution in a

hypercube of low dimensionality contains "valid" clusters.
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Table 3.5 Evaluation of the Cluster of Figure 2.1

Measure 1: Measure 1:

Edges Observed Random Graph Two Dimensional

Index (Theoretical Uniform Hypercube

Upper Bound) (Empirical)

Compactness C1 "C1"

25 12 < 1.00E-6 21/250 = .084

50 15 < 1.00E-6 62/250 = .248

75 15 5.3 E-S 232/250 8 .928

100 15 5.84E-3 250/250 = 1.000

200 15 > 1.00 250/250 = 1.000

Isolation 11 ”11"

25 1 > 1.00 250/250 = 1.000

50 9 > 1.00 250/250 = 1.000

75 17 > 1.00 250/250 = 1.000

100 26 > 1.00 250/250 = 1.000
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If the bounds based on random graph theory are used to

test the significance of clusters, too many significantly

unusual values will be found.

As Figure 3.4 illustrates, the upper bounds developed

in Chapter 2 do not bound the cumulative distributions of

validity measures for points chosen from a hypercube of

low dimensionality. For the lower dimensionalities under

the uniform hypercube model, the entire set of indices

obtained by simulation lies beyond the .01 probability

level in the left tail of the upper bound.

The third set of simulations, Figure 3.5, shows that

the cumulative distribution functions of the validity

indices for the random graph model are close to the

calculated upper bounds for the left tail of the

cumulative probability. The discrepancies seen in Figure

3.5 are greatest for the poorer values of the indices, the

situation in which the approximation to the optimum values

of the validity indices is most likely to be inaccurate.

Thus the theoretical upper bounds appear to be fairly

close to the actual values of the cumulative

probabilities, supporting the conclusions concerning the

accuracy of the bounds reached in Section 2.3.

Finally, the two dimensional 25-node example of

Sections 2.1.3 and 2.2.4 can be reevaluated using the

results of the fourth simulation given in Table 3.5. The

results for 25 and 50 edges cover the region in the
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probability profiles (Figure 2.3) for which the measure C1

takes on its lowest values. The best case compactness

measures under the two dimensional uniform hypercube null

hypothesis are much larger than those found under the

random graph null hypothesis. Under the random graph null

hypothesis, the probability profiles of Figure 2.3,

discussed in Section 2.2.4, indicate that the six-point

subset is significantly compact at 25, 50 and 7S edges.

Under the two dimensional uniform hypercube null

hypothesis, the compactness measure is only low for 25

edges, and at p=.084 it is not significantly low. The

best case measures for the observed isolation index remain

high. Since the best case compactness measure and the

best case isolation measure are both high, we do not need

to look at the fixed index measures. Using the reasonable

null hypothesis of points chosen at random from a uniform

distribution in a unit square, this six-point subset is

neither compact nor isolated.

3.5. Conclusions

The cumulative distributions of the two validity

indices under the uniform hypercube null hypothesis do not

match those obtained under the random graph null

hypothesis. Figures 3.4a,b illustrate the fact that the

upper bounds developed in Chapter 2 do not bound the

distributions of the validity indices for points chosen
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dimensionality. Thus, the probability profiles, deve10ped

in Section 2.3 using the random graph null hypothesis,

should not be used to validate clusters if the patterns

can be thought of as a set of points in Euclidean space.

This is shown in Section 3.2 for small data sets of four

and five points and in Section 3.4 for data sets of medium

size, 20 to 40 points. Even if the space has

dimensionality as high as 20, the structure imposed by

embedding a moderate number of points in space shifts the

distributions of these validity indices away from the

distributions given by random graph theory.

The measures defined using random graph theory do

provide a convenient base for evaluation of clusters drawn

from a fixed experiment. The dimensionality of the data

will be consistent from one cluster to another. Although

the absolute significance of the measures will not be

known, tentative conclusions regarding the relative

validity of different clusters can still be drawn from the

probability profiles. Experience gained on one data set

can be carried over to other data sets representing the

same type of data, since the probability structure of the

measure calculations will account for changes in cluster

size and for changes in the size of the data set.



4. Analysis of a Data Set

This chapter brings together the concepts developed

in Chapters 2 and 3 in the analysis of a data set. The

data set is clustered using several hierarchical

clustering algorithms. The intrinsic dimensionality of

the data set is determined using two different methods.

The clustering tendency is tested. The validities of

several clusters are determined using the lifetime measure

of Ling and the profiles developed in Chapter 2.

4.1. Description of the Data

The data were obtained from Professor Oscar Tosi of

the Department of Audiology and Speech Science at Michigan

State University and consist of 40 samples of speech, 10

samples each from four different male subjects. Each

subject read five different pieces of material while being

recorded in two ways. The sound was recorded directly

and, simultaneously, was transmitted over telephone lines

and recorded. For each subject we have five direct and

five phone samples. The recordings were then translated

into choral speech [T0875] and Fourier analyzed to

determine the energy in each of 2048 frequency bands.

Each sample was normalized so that the maximum feature

value for that sample is 1.00. All 2048 features were

used to calculate a proximity matrix with Manhattan

distance, viz:

93
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2048

d(i,j) = > ABS ( F(i,m) - F(j,m) ) I

m=l

where F(i,m) is the m—th feature for the i-th sample. The

data set for this study consists of the resulting 40 by 40

dissimilarity matrix.

4.2. Intrinsic Dimensionality of the Data Set

Two different methods were used to determine the

intrinsic dimensionality of the data set. Kruskal's

[KRU64] multidimensional scaling program (MDSCAL) was used

to find a configuration of 40 points in a low dimensional

space which preserved the order of the proximities. The

two dimensional MDSCAL configuration is shown in Figure

4.1. The marked clusters will be discussed in Section

4.5. The ten samples for each subject are numbered

consecutively with the direct samples first. For example,

point 22 is the second direct sample for subject 3. The

stress for this configuration, which is a measure of the

amount of distortion introduced by embedding the data in a

space of two dimensions, is .140 so we conclude that

Figure 4.1 is a good representation of the proximity

matrix.

The second method used to determine the intrinsic

dimensionality of the data set is due to Pettis, Bailey,

Jain and Dubes [PET79]. This method assumes that points
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are randomly chosen from a locally uniform distribution

and uses nearest neighbor distances to estimate the

dimensionality of the distribution. Using the two nearest

and four nearest neighbors of each point, the estimates of

the dimensionality are 38.6 and 31.4. With more neighbors

the estimates become much smaller, dropping to 14.5 for

sixteen neighbors. Since we have reason to believe this

data set is organized into eight clusters of five points

each, use of more than four nearest neighbors should cause

the clustering structure to interfere with the estimate of

the dimensionality. We therefore assume that the

intrinisic dimensionality is best estimated by the nearest

two to four neighbors.

The great discrepancy between the estimates of the

intrinsic dimensionality by these two methods may be due

to several factors. The methods differ in their

assumptions regarding the scale of the proximities, which

may affect the results. The MDSCAL program assumes only

ordinal scale for the proximities. The Pettis technique,

on the other hand, assumes the proximities have ratio

scale.

A second interpretation of the discrepancy is that

the two techniques are finding different things. The

MDSCAL program searches for a configuration of points in a

space of low dimensionality which is an accurate

representation of the order of the proximities. The
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Pettis technique estimates the number of variables

necessary to specify the position of a data point in a

local region. In the following analysis of cluster

validity we assume the high value of the estimate of the

intrinsic dimensionality found by the Pettis technique is

correct. We further assume that the high intrinsic

dimensionality permits use of the random graph null

hypothesis as our hypothesis of ”no clustering."

As Figure 3.3 shows, even with a dimensionality of 30

to 40, the distributions of the indices of compactness and

isolation obtained using the Uniform Hypercube model are

shifted away from those obtained using the Random Graph

model. In the following analysis, the effects of this

shift are partially offset by requiring rather low

significance levels, l0**(-3) to l0**(-5), for our

judgement of cluster validity. An alternative procedure

would be to run the simulations for, say, a 38 dimensional

Uniform Hypercube model. Since the simulation results

would be needed for many cluster sizes and many ranks for

each cluster size, the computing requirement is

impractical.

4.3. Hierarchical Clusters of the Data Set

Three different clustering techniques were used to

study the data set. The single link and complete link

cluster hierarchies are shown in Figures 4.2 and 4.3.
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Several groupings of five points representing single

speakers are evident in the results. A clustering method

defined by Ling [LIN72] was also applied to the proximity

matrix. This method requires that each cluster be a

connected subgraph with minimum degree k. The k a 1

clusters are identical to single link clusters. For

values of k greater than one, k-clusters require a

stronger internal connectedness than do single link

clusters. The k-cluster hierarchy for k=4 is shown in

Figure 4.4. Again, meaningful groupings of five points

are evident in the results.

In addition to the striking appearance of five-point

clusters in several of the clustering results, we note the

split into two clusters of 20 points each which occurs in

the single link hierarchy. An even split of this type is

unusual when using the single link clustering method. The

single link method tends to form one large cluster which

then gradually absorbs the remaining points singly or in

small clusters [BAK75]. In the next two sections tests of

cluster validity based on the random graph null hypothesis

will be applied to many of these clusters.

4.4. Connected Graph and Cluster Lifetime Tests

The first step in an analysis of the validity of

clusters is a test of the clustering tendency of the data

set. A statistic which can be used for this test is the
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number of edges, V, required to form a connected graph.

For this data set, V = 223. The tables published by Ling

and Killough [LIN76] for the cumulative probability of

this statistic under the random graph null hypothesis

yield Prob ( V <= 145 ) >= 0.99.

There is less than one chance in one hundred that a

40-node graph would require more than 145 edges to become

connected under the random graph null hypothesis.

Expressions given by Ling and Killough may be used to

calculate the probability that a 40-node random graph with

223 edges is connected, since only two terms contribute to

the required sums. The result is

Prob ( V <= 223 ) = 0.999950.

We conclude that the data set is not a random data set

under the random graph null hypothesis.

The validity of single link clusters may be tested

using the cluster lifetime statistic develOped by Ling

[LIN73a]. Table 4.1 lists the number of nodes, rank at

formation, value 1 of the random variable L (cluster

lifetime) and Prob ( L >= 1 ) under the random graph null

hypothesis for 26 single link clusters. The composition

of each cluster is listed in Table 4.2. Twelve of the

clusters, marked "*" in Table 4.1, have Prob ( L >= 1 ) <=

0.05 and, thus, are "real” clusters by this test. Several

of these clusters are identified in Figure 4.1.

As expected, subclusters of five samples from single
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Table 4.1 Single Link Cluster Lifetime Test

Cluster Size Birth Lifetime Prob (L>=l)

Number Rank 1

* 2 20 144 79 small

* 3 20 150 73 small

* 4 19 82 62 small

* 6 16 41 41 small

* 8 15 110 40 small

13 11 39 2 .57

* l9 10 60 50 small

21 9 32 7 .60E-1’

24 5 57 3 .57

* 25 5 19 22 .38E-2

* 26 5 55 55 .l7E-6

* 28 5 31 119 small

* 30 5 24 36 .78E-4

31 5 29 3 .59

32 4 20 12 .98E-1

34 4 51 6 .33

35 4 12 7 .29

37 4 50 5 .41

38 4 30 1 1.00

* 39 4 5 24 .82E-2

40 4 21 3 .66

41 3 l0 10 .24

42 3 35 16 .87E-1

43 3 34 16 .87E-1

* 44 3 38 44 .75E-3

45 3 16 5 .53

Cluster Number refers to clusters listed in Table 4.2.

small indicates the probability is less than

10 ** (-10).

.4lE—2 indicates the probability is .41 x 10 ** (-2).
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Table 4.2 Validity Measures of Potential Clusters

The entries are the smallest values for C1 and I1 in the

profiles of potential clusters from the Tosi data.

Cluster

Number Size Samples in the Cluster Cl I1

1 24 5-10,16-20,23-24,26-31,36-40 .63E-10 small

2 20 1-5,11-15,21-25,31-35 small small

3 20 6-10,16-20,26-30,36-40 .27E- 8 small

4 l9 1-4,11-15,21-25,31-35 small small

5 18 l-4,1l-15,21-25,32-35 small small

6 16 l-4,1l-15,21-22,25,32-35 small small

7 15 1[3-4'11-15'21-22'25'32p35 small small

8 15 6-10,16-20,36-40 small small

9 14 5-10,23-24,26-31 .19E- 3 small

10 14 6-10,l6-19,36-40 .6 E-14 small

11 12 11-15,21-22,25,32-35 small .12E- 4

12 ll l-4,ll-15,21-22 small small

13 ll l—4,21-22,25,32-35 small .16E- 7

15 10 11-20 1.0 .40E- 2

16 10 21-30 1.0 1.0

17 10 31-40 1.0 1.0

18 10 6-10,26-30 .21 small

19 10 6-10,36-40 .16E— 7 small

20 10 16-20,36-40 .70E-12 small

21 9 1-4,25,32-35 .36E- 8 .59E- 1

22 7 11-15,21-22 .68E- 9 1.0

23 5 1-5 1.0 1.0

25 5 11-15 .62E- 5 1.0

26 5 16-20 1.0 .79E- 6

27 5 21-25 1.0 1.0

28 5 26-30 .35E- 2 .42E-12

30 5 36-40 .12- 4 .38- 2



105

Table 4.2 ( Continued )

Cluster

Number Size Samples in the Cluster C1

31 5 25,32-35 .508-

32 4 1-4 .47E-

33 4 5,23-24,31 1.0

34 4 6-8,10 1.0

35 4 11‘12’14-15 0113-

36 4 16-19 .36

37 4 16-18,20 1.0

38 4 26-28,30 1.0

39 4. 32-35 .188-

40 4 36-38,40 .393-

41 3 1,3-4 .14

42 3 6-8 1.0

43 3 16-18 1.0

44 3 23-24,31 1.0

45 3 36-37,40 .14

small indicates the smallest value in the

is less than 10 ** (~15)

.44E- 2 indicates the smallest value in the

is .44 x 10 ** (-2)

I1

4 1.0

2 1.0

0898- 7

1.0

2 1.0

.12E- 3

060E- 1

o7gE- 9

3 1.0

1 1.0

1.0

1.0

.38

0443- 2

1.0

profile

profile



106

subjects are important components of the data set. Four

of the twelve clusters with significantly long lifetimes

have five points and four others have multiples of five

points. Furthermore, these eight clusters all consist of

combinations of complete five point groupings, where each

five point grouping contains all the samples from a single

speaker using one mode of recording. The two twenty-point

clusters consist of the direct and phone recording mode

samples.

4.5. Cluster Profiles

Raw profiles, sequences of the compactness and

isolation indices, and probability profiles, sequences of

the four measures 11, I2, Cl and C2, were obtained for all

single link and complete link clusters with four or more

nodes and for all clusters which appeared in more than one

k-clustering. In addition, profiles were calculated for

all five-point subsets corresponding to a single subject

and single mode of recording, and all ten-point subsets

corresponding to a single subject. The indices and

measures were calculated for every tenth rank from 10 to

780.

The probability profiles for four of the five-point

subsets for a single subject and single recording mode are

shown in Figure 4.5. These four subsets are circled in

Figure 4.1. The profiles vary greatly from one subset to
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the next. Cluster 25, points 11-15, shows good evidence

of compactness, with measure Cl below .001 for ranks 40 to

100. The number of linking edges is not unusually low by

measure 11, but 12 is below .001 for ranks 40 to 70, so

this subset is compact and for a subset this compact, it

is somewhat isolated. Cluster 26, points 16—20, exhibits

strong isolation, with measure 11 below .001 for ranks 80

to 170, but weak compactness by measure C1. Since measure

C2 is below .001 for ranks 100 to 160, this subset is

isolated, and compact for a subset this isolated.

Cluster 27, points 21—25, is neither compact nor

isolated. Since measures 11 and C1 are never small, we do

not consider measures 12 or C2. Cluster 28, points 26-30,

has lower isolation measure 11 than cluster 26. In

addition, this cluster also has several low values for the

compactness measure Cl, but the evidence for compactness

is not as strong as it was for cluster 25. The

compactness measure C2 is quite low, so the cluster is

compact among clusters with the same isolation. Of these

four clusters, number 25 is the most compact and number 28

is the most isolated. Cluster 26 is also isolated, while

cluster 27 is neither compact nor isolated.

Inspection of the two dimensional configuration in

Figure 4.1 provides support for the conclusions reached by

analyzing the probability profiles. An analysis of the

single link and complete link hierarchies regarding the
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four clusters also supports the conclusions reached above.

Clusters 25, 26 and 28 are both single and complete link

clusters. Cluster 27 is neither a single link nor a

complete link cluster, which supports the conclusion that

it is neither compact nor isolated. If we use rank at

birth as a measure of compactness, Table 4.1 shows that

cluster 25 is the most compact and cluster 26 is the least

compact, with cluster 28 falling in between. If we use

the lifetime as a measure of isolation, then cluster 28 is

the most isolated, cluster 25 is the least isolated and

cluster 26 falls in between.

From our knowledge of the data collection process, we

might expect the data set to be organized as two clusters

of twenty points each (telephone and direct) or as four

clusters of ten points each (by speaker). The profiles

for the four fgpropriate ten-point clusters, clusters 14,

15, 16 and 17 in Table 4.2, and the two appropriate

twenty-point clusters, clusters 2 and 3, are given in

Figures 4.6a,b. It is immediately apparent that the

subsets of ten points in Figure 4.6a do not form valid

clusters. None of them has a compactness measure C1 below

0.1 and only cluster 15 has an isolation measure I1 below

0.01 so none of these subsets are compact or isolated.

Figure 4.6b shows that clusters 2 and 3 are compact and

isolated. The isolation measures 11 are below l0**-15 for

a wide range of ranks. The compactness measure Cl is
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better for cluster 2 (direct recording), less than l0**-15

for a wide range ranks, but is also very good for cluster

3 (telephone), with a low value below l0**-8. We conclude

that the data may be thought of as organized into two

clusters, ( 2 and 3 ), while the four clusters, ( l4 -

l7 ), are not valid.

Profiles were obtained for all the 45 potential

clusters listed in Table 4.2. Table 4.2 also lists the

lowest value observed for the compactness measure Cl and

for the isolation measure 11. Table 4.3 lists the

clusters with more than four nodes which appear as single

link clusters, as complete link clusters and as k-clusters

for more than one k value. The clusters which have a

compactness measure C1 (or C2) less than 10**-5, and those

which have an isolation measure Il (or 12) less than

l0**-5 are marked.

With three exceptions, all the clusters with 10 or

more points are both compact and isolated at the 10**-5

level. Clusters 9 and 18 are isolated, and compact among

clusters of their isolation. Cluster 11 is compact, and

isolated among clusters of its compactness. Only three

clusters fail to be either compact or isolated by the best

case measures. Of these, the most interesting is cluster

30, identified in Figure 4.1, which appears as a single

link and complete link cluster and as a k-cluster for k =

2 and 3. This cluster is somewhat compact, with measure
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Table 4.3 Validity of Hierarchical Clusters

Single Link Clusters

Cluster Size Validity Cluster Size Validity

Number 11 Cl 12 C2 Number 11 C1 12 C2

2 20 x x 21 9 x x

3 20 x x 24 5 x x

4 19 x x 25 5 x

6 16 x x 26 5 x x

8 15 x x 28 5 x x

13 11 x x 30 5 x x

l9 10 x x 31 5 x

Complete Link Clusters

Cluster Size Validity Cluster Size Validity

Number 11 Cl 12 C2 Number 11 C1 12 C2

1 24 x x 24 5 x x

6 16 x x 25 5 x

9 14 x x 26 5 x x

12 11 x x 28 5 x x

l8 10 x x 30 5 x x

20 10 x x 31 5 x

22 7 x

k-Clusters, for more than one k of k = l, 2, 3, 4 and 7

Cluster Size Validity Cluster Size Validity

Number 11 Cl 12 C2 Number 11 Cl 12 C2

2 20 x x 10 14 x x

3 20 x x 11 12 x x

4 19 x x 19 10 x x

5 18 x x 25 5 x

6 16 x x 28 5 x x

7 15 x x 30 5 x x

8 15 x x

x indicates the measure has a minimum value

less than 10 ** (-5).
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C1 below l0**-4, but the isolation measure 11 never falls

below l0**-3. The probability of a single link cluster

lifetime as good as the observed value of 36 with a

formation rank of 24 is .000078, which indicates that the

cluster is isolated. Also, the isolation measure 12 is

below l0**—5. If we are willing to accept a cluster with

Clbelow 10**-4 as compact, then we also conclude that

cluster 30 is isolated among clusters with the same

compactness index.

Clusters 22 and 25, identified in Figure 4.1, are

compact, but are not isolated at the l0**-5 level, even

among clusters of their compactness. Cluster 25 is a

single link cluster with lifetime 1 = 22 and

Prob ( L >= 1 ) = .0038 under the random graph null

hypothesis. From the probability profiles we conclude

that this low value is due to the compactness of the

cluster, rather than its isolation. It is interesting to

compare cluster 25 with another single link cluster,

number 21, also identified in Figure 4.1. The lifetime of

cluster 21, l = 7 with Prob ( L >= 1 ) = .060, is much

shorter than the lifetime of cluster 25, yet the validity

measures Cl and 11 are both lower for cluster 21 than for

cluster 25. The probability profiles provide information

on the interaction of the cluster with other points in the

data set at many different ranks, and thus may provide a
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much different view of the cluster than a test which

observes only a limited range of ranks.

4.6. Conclusions

The probability profiles show that almost all the

potential clusters identified by the three clustering

methods used here are significantly compact and isolated.

This data set is well described by clusters. It is far

from being a random data set under the random graph null

hypothesis.

Aside from statements regarding the birth and life

times of the clusters, which are useful only for

comparisons among clusters, the only tools available in

the literature for testing the validity of clusters

derived from proximity matrices are the single link

lifetime test of Ling [LIN73a] and the complete link

extraneous edges test of Baker and Hubert [BAK76]. The

extraneous edges test cannot be applied to a 40-node data

set since the required Monte Carlo runs for 40-node data

have not been published and are time consuming to obtain.

The single link cluster lifetime test is inferior to the

use of cluster profiles in two ways. First, cluster

profiles yield unique information about the compactness

and isolation of a cluster, while the lifetime test

combines the two requirements into a single test. Second,

cluster profiles may be applied to any subset, including
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k-clusters and complete link clusters, while the lifetime

test is only applicable to single link clusters.

Another conclusion must be considered and cannot be

easily dismissed. If the intrinisic dimensionality of the

data set is two, as suggested by the results of the MDSCAL

program, then the results in Chapter 3 lead to the

conclusion that probability bounds developed under the

random graph null hypothesis are not appropriate and will

lead to gross underestimates of the probability that a

validity index will have a value as good as the observed

value. Even if the intrinsic dimensionality is near 38,

the distributions developed under the random graph null

hypothesis may not give a true picture of the validity of

the clusters. If the intrinsic dimensionality is two, the

distributions used in the cluster profiles must be

determined by simulation under an appropriate

two dimensional null hypothesis. Since no other test is

available, this simulation is necessary if validity tests

are to be applied to clusters created by methods other

than single link or complete link clustering. We must

join with Ling and Matula in warning of the danger

inherent in applying tests based on the random graph null

hypothesis to situations where the assumptions of the

hypothesis may be violated.



5. Conclusion

The main thrust of this thesis is a study of the

distribution of two measures of cluster validity under two

null hypotheses. Section 5.1 summarizes the results and

cites the main contributions of the thesis and Section 5.2

suggests areas for future work.

5.1. Summary of Results

The clustering situation under consideration is that

in which the information of interest is a matrix of

proximities with ordinal scale. This situation often

occurs in psychometric and sociometric data. Chapter 1

presents necessary definitions and a review of the

literature on cluster validity with emphasis on proximity

matrices with ordinal scale. The ordinal information in

such a proximity matrix may be represented as a sequence

of threshold graphs. This sequence of threshold graphs is

used to develop Cluster Profiles, a new tool for the

analysis of cluster validity. The probability

distributions which are needed for the computation of

Cluster Profiles are investigated for the Random Graph

Null Hypothsis and for the Uniform Hypercube Null

Hypothesis.

The concept of a Cluster Profile, which graphically

represents the interaction of a proposed cluster with the

environment of points in which it occurs, is developed in

117
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Chapter 2. This concept has not previously been applied

to cluster validity studies and allows a more detailed

analysis of the compactness and isolation of a cluster

than previous cluster testing techniques. The Cluster

Profile concept requires indices of cluster validity which

may be applied to any subset of points in a threshold

graph. Two indices which meet this requirement, the

number of internal edges for compactness and the number of

linking edges for isolation, are developed in Section

2.1.2.

A contribution of this thesis is the discussion of

the classification and utility of various choices for the

sample population of clusters in Section 2.2.1. We argue

that the best case distribution is the most useful

distribution for tests of cluster validity, because it is

applicable to any subset of points, and thus to a cluster

found by any clustering method, and because it forms an

upper bound on the distribution of any sample population

which includes one subset from each random graph. Upper

bounds on the cumulative distribution function for the

number of internal and linking edges using the best case

distribution are derived in Sections 2.2.2 and 2.2.3. The

derivation of these bounds and the demonstration of their

asymptotic behavior in the special case where all internal

edges are present, given in Section 2.3, are the main

contributions of this thesis. These bounds are used to
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calculate two of the validity measures which form the

Probability Profile. Two other validity measures, based

on fixed validity index distributions, are also developed

in Section 2.2.2 and 2.2.3.

Chapter 3 presents a study of the cumulative

distributions of the number of internal and linking edges

under the Uniform Hypercube Null Hypothesis. The results

demonstrate that distributions derived under the Random

Graph Null Hypothesis lead to false conclusions with data

sets created under the Uniform Hypercube Null Hypothesis.

Although several authors have warned against using results

based on the Random Graph Null Hypothesis to test the

validity of clusters, this is the first explicit

demonstration of the extent to which an alternative null

hypothesis can affect the distributions. Theoretical

distributions under the Uniform Hypercube Null Hypothesis

are presented for four points in one dimension, and

distributions created by Monte Carlo simulation of the

creation of data sets are presented for several medium-

sized data sets.

An explicit effect of high dimensionality on the

distribution of interpoint distances for a set of five

points chosen from a uniform distribution in a hypercube

is shown in Section 3.2. This effect has not been

reported in the literature and sheds light on a subtle

issue in intrinsic dimensionality. Two viewpoints of the
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meaning of intrinsic dimensionality are discussed and it

is shown that the viewpoint which assumes the intrinsic

dimensionality to be the number of free parameters which

define the allowed positions of the points in space leads

to important information on the structure of the

underlying population which is suppressed by the

alternative viewpoint.

In Chapter 4 Cluster Profiles are used to determine

the validity of several potential clusters in a data set

consisting of 40 samples of choral Speech. We show that

for many of the potential clusters, no test of cluster

validity in the literature can be applied. The single

link cluster lifetime test of Ling [LIN73a] does not apply

to subsets of points which are not single link clusters,

and the extraneous edges test of Baker and Hubert [BAK76]

does not apply to subsets which are not complete link

clusters. Furthermore, the distributions required for

application of the extraneous edges test are not readily

available for 40-point data sets. The Cluster Profiles

show that most of the large clusters found by the single

link, complete link and k-clustering methods are unusually

compact and isolated, and thus we conclude that these

clusters are valid, with a proviso concerning intrinsic

dimensionality. The Cluster Profiles show that one

natural way of organizing this data set into clusters

yields valid clusters, while another does not.
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A note of warning is emphasized in Chapters 3 and 4,

namely, tools based on the Random Graph Null Hypothesis,

such as Cluster Profiles, which test the validity of

clusters, must be applied with caution. If the data are

patterns in a space, the distributions derived using the

Random Graph Null Hypothesis are not applicable, and the

results will overrate the validity of the clusters.

5.2. Areas of Future Work

The best case distributions used in this thesis

select the subset of nodes in each random graph which has

the optimum validity index. Distributions for the

isolation and compactness indices are developed

separately. Best case distributions for subsets which

satisfy a combination of requirements of compactness and

isolation should be developed. Other indices of

compactness and isolation and their best case

distributions should also be developed.

The validity measures Cl and 11 are upper bounds on

the best case distributions of the compactness and

isolation indices under the random graph null hypothesis.

The development of exact expressions of these

distributions is an area for future work. Along the same

line, development of an algorithm for determining the

optimal compactness and isolation indices for a k-node

subset of a graph would improve the simulation used in
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this thesis.

The distributions of graph-theory-based tests of

cluster validity other than those defined here should be

investigated under the Uniform Hypercube Null Hypothesis.

The goal of such studies is to find computationally

inexpensive tests based on the Random Graph Null

Hypothesis, which are robust enough to be applicable in

situations where the Uniform Hypercube Null Hypothesis is

appropriate. In particular, the distribution of Ling's

single link cluster lifetime statistic should be

investigated.

In this thesis two versions of a "no clustering" null

hypothesis are investigated. The development of tests for

rejection of these null hypotheses are an important step

in the study of cluster validity. A further step is to

investigate alternatives to the null hypotheses. What are

the standard hypotheses of "clustering” which are to be

accepted when a ”no clustering" null hypothesis is

rejected? Definition and classification of "clustering"

hypotheses is an important area of future work.

The distribution of interpoint distances for a set of

points chosen at random from a uniform distribution in a

hypercube is studied in this thesis. The interpoint

distance distribution for other distributions of the

points, such at the multidimensional Gaussian

distribution, should be studied. It would be interesting
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to know the characterization of distributions for which

the ratio of shortest to longest interpoint distances in a

set of points drawn from the distribution goes to one as

the dimensionality increases.

Finally, the regular changes in the cumulative

distribution functions of the validity measures as the

dimensionality is varied under the Uniform Hypercube Null

Hypothesis suggest that it may be possible to find a

functional relationship among these distributions for the

various dimensions. Distributions under the Random Graph

Null Hypothesis, together with the transformation relating

an infinite dimensional distribution to a d-dimensional

distribution, would provide an inexpensive test of cluster

validity under the Uniform Hypercube Null Hypothesis.
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An Approximate Best Case Algorithm

We wish to find the Optimal value for a validity

index over all K-node subsets of the nodes of a graph as

required for the simulation of Section 3.4.1, given an

adjacency matrix GR(i,j), K, and a parameter TRIES. The

following algorithm approximates the optimal value for the

number of internal edges, a compactness index. A similar

algorithm approximates the Optimal value for the number of

linking edges, an isolation index.

1. Use the K nodes with highest degrees as the initial

subset.

Call SEARCH to find a subset with "local" optimal

compactness.

Set COMP to the compactness index for the subset.

Set LOOP to 1.

Choose a K-node subset at random.

Call SEARCH to find a subset with "local" optimal

compactness.

Find the compactness index for the subset. If the

index is greater than COMP, then set COMP to the new

index and GO TO 4.

Set LOOP to LOOP + 1. If LOOP <= TRIES then GO TO 5,

124
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else DONE.

Now COMP is a good value for the best case

compactness index of the graph. It is a "local" optimal

value and is at least as good as TRIES other randomly

selected "local" maxima.

The routine SEARCH finds a "local" subset with

optimal ”local” validity index. A "local" subset is one

which can be created by repeatedly exchanging a node in

the subset with a node not in the subset such that each

exchange improves the validity index as much as possible.

The SEARCH algorithm for the compactness index is given

below.

1. For each node i, find the change VAL(i) in the number

of internal edges of the subset if node i is moved

from outside the subset into the subset.

2. Find the highest VAL among nodes outside the subset

(BESTOUT) and the lowest VAL among nodes in the

subset (WORSTIN). If BESTOUT <= WORSTIN, then DONE.

3. Look for a pair of nodes (IN,OUT) such that VAL(IN) =

WORSTIN, VAL(OUT) = BESTOUT and (IN,OUT) is not an

edge of the graph. If such a pair is found, then GO

TO 5, else if BESTOUT <= WORSTIN + 1, then DONE.

4. Find a pair of nodes (IN,OUT) such that VAL(IN) =

WORSTIN, VAL(OUT) = BESTOUT and (IN,OUT) is an edge

of the graph.
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5. Move node IN out of the subset, move node OUT into the

subset and update VAL to reflect the exchange. GO TO

2.

Two versions of random selection of the subset were

tried. Weighting nodes with the degree of the node seemed

better than weighting nodes uniformly in that more subsets

were discovered which improved the indices found using the

initial subsets. Results using TRIES = 100 suggest that

about 90 percent of the improved indices are found with

the first ten random subsets. Since the search time was

the determining factor in the time required for each

simulation run, TRIES = 10 was used for all the reported

runs.
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