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ABSTRACT

CLUSTER VALIDITY AND INTRINSIC DIMENSIONALITY

By

Thomas Anderson Bailey, Junior

Cluster analysis, one type of exploratory data
analysis, is a crucial part of a pattern recognition
study. Although many methods for discovering clusters in
a data set have been developed, few techniques for
objectively evaluating clusters are available. One
approach to this question of cluster validity uses a null
hypothesis of "no clustering" based on random graph theory
and applies when the proximities between data points have
ordinal scale, as is assumed for several popular
clustering techniques.

A new random-graph-based technique for validating
clusters, called the cluster profile, is developed and
analyzed in this dissertation. Simple indices of cluster
compactness and isolation are defined, and measures of
validity are developed from probability distributions of
the indices over sample populations selected from subsets
of nodes in random graphs. The measures are inexpensive
to calculate and may be applied to any subset of nodes,
whether discovered by clustering methods or defined a
priori. Thus the measures may be used to judge the

validity of arbitrary clusters and are not limited to
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clusters found by a specific clustering method.

Random-graph-based techniques for validating clusters
are limited to a particular null hypothesis. This
dissertation studies the extent to which techniques for
judging cluster validity based on random graph theory are
applicable to data sets produced under an alternative
random model. Monte Carlo simulation is used to create
data sets of points from a uniform density in a hypercube.
Distributions of the validity indices, obtained from these
data sets, are compared to the distributioné under the
random graph null hypothesis. The dissertation shows that
as the dimensionality of the hypercube decreases, the
distributions of validity indices obtained under this
uniform hypercube null hypothesis consistently shift away
from those obtained under the random graph null
hypothesis. Because of this shift, almost all data sets
produced under the uniform hypercube model with low
dimensionality contain "valid" clusters when tested
against a random graph null hypothesis,

One resolution of this difficulty is suggested by a
simulation of the placement of points at random in a
hypercube. The ratio of the shortest to longest
interpoint distances among five points approaches one as
the dimensionality of the hypercube becomes much larger

than five. This result implies that, at very high
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dimensionalities, the distributions of validity indices
under a uniform hypercube null hypothesis should be
approximately the same as those under the random graph
null hypothesis.

The cluster profile technique is applied to a speaker
recognition problem to illustrate its applicability. This
technique not only extends existing validity measures, but
also applies to clusters formed by any method, which is a

primary advantage over previously defined validity tests.



ACKNOWLEDGMENTS

I would like to acknowledge the guidance provided by
my thesis director, Dr. Richard Dubes. During my tenure
at Michigan State University he has served as advisor,
teacher, research director, and finally as editor of this
dissertation. His continuing support and direction were
essential to the completion of my doctoral program.

I thank Dr. Carl Page, Dr. Anil Jain, Dr. John
Forsyth and Dr. Edgar Palmer for serving on my doctoral
committee. Two fellow students, Karl Pettis and Richard
Bolz, provided emotional support and often served as a
captive audience for the presentation and clarification of
ideas.

Thanks are also due to the Division of Engineering
Research at Michigan State University and to the National
Science Foundation (Grant No. ENG 76-11936) for financial
support during the last two years.

Finally, a special thanks to my wife, Carolyn. Her
support through many trying moments, her gentle (and
sometimes not-so-gentle) prodding, and her sacrifice of a

comfortable home, made this study possible.

ii



TABLE OF CONTENTS

1. Introduction

l1.1. The

Cluster Validity Problem

1.2. Non-Graph-Theoretic Approaches

l.2.1.
1.2.2.

The Restricted Definition Approach

The Statistical Test Approach

l1.2.2.1. Tests Based on Random Patterns

1.2.2.2. Tests Based on Random Proximities

1.3. Graph Theoretic Approaches

1.3.1.
1.3.2.
1.3.3.
1.3.4.

2. Cluster
2.1. Raw
2.1.1.
2.1.2.

2.1.3.

Graph Theory and Clustering
Random Graph Models
Validity Tests Based on Random Graphs

Limitations of Present Validity Tests

Profiles

Profiles

The Sequence of Threshold Graphs
Indices of Isolation and Compactness

An Example

2.2. Probability Profiles

2.2.1.
2.2.2.
2.2.3.
2.2.4.

Distributions Based on Random Graphs
Distributions for the Isolation Index
Distributions for the Compactness Index

Application of Probability Profiles

iii

22
23
23
24
26
28
30
32
38
41



TABLE OF CONTENTS ( Continued )

2.2.5. An Example

2.3. Accuracy of Bounds for P(e|k) when e = k:2
. 2.3.1. Upper and Lower Bounds
2.3.2. Asymptotic Forms for the Bounds

2.4. Summary

3. Intrinsic Dimensionality and Cluster Validity

3.1. Introduction

3.2. Very Small Data Sets

3.3. High Dimensionality in Small Data Sets
3.3.1. Definitions of Intrinsic Dimensionality
3.3.2. Five Points in a Hypercube

3.4. Data Sets of Medium Size
3.4.1. Simulation of the Distributions
3.4.2. Evaluation of the Results

3.5. Conclusions

4. Analysis of a Data Set
4.1. Description of the Data
4.2. Intrinsic Dimensionality of the Data Set
4.3. Hierarchical Clusters of the Data Set
4.4. Connected Graph and Cluster Lifetime Tests

4.5, Cluster Profiles

4.6. Conclusions

5. Conclusion

iv

43
45
45
51
56

58
58

60
67

72
75
76
88

91

93
93
94
97
100
106

115

117



TABLE OF CONTENTS ( Continued )

5.1. Summary of Results

5.2. Future Work

Appendix: An Approximate Best Case Algorithm

Bibliography

117
121

124

127



LIST OF TABLES

Frequency Distributions over (4,N) Graphs
Distributions of Validity Indices
Counting Distributions over (5,5) Graphs
Distributions of Validity Indices
Evaluation of the Cluster of Figure 2.1
Single Link Cluster Lifetime Test
Validity Measures of Potential Clusters

Validity of Hierarchical Clusters

vi

62
64
65
68
89
183

104
113



LIST OF FIGURES

An Artificial 25-point Data Set

Raw Profiles of a Cluster

Probability Profiles of a Cluster
Asymptotic Behavior of r(k) / u(k) ** 2
Interpoint Distance Ratios for Five Points
Histograms of Validity Index Distributions
Means of Validity Index Distributions
CDF's of Validity Indices

CDF's with Theoretical Upper Bounds

MDSCAL Configuration of the Tosi Data
Single Link Dendrogram, Tosi Data

Complete Link Dendrogram, Tosi Data
k-Clustering Dendrogram, k=4, Tosi bata
Probability Profiles of Clusters 25-28

Probability Profiles of Clusters 14-17,2,3

vii

27
29
44
55
73
79
82
84
86
95
98
99
191
187

110



l. Introduction

Clustering is used as a tool of data analysis in
areas as diverse as sociology [BRE75] and medicine
[WON77]. Clustering may be used as a means of classifying
a large mass of data [MSH77] or to suggest a causative
relationship between variables [BOR75]. The aim of
clustering is to find natural groupings present in the
data. TIdeally, these natural groups are compact and well
isolated from one another. Unfortunately, the clustering
process may impose cluster structure even if it is not

appropriate.

l.1. The Cluster Validity Problem

Many clustering methods are currently available and
are being used for data analysis and data description.
The data generally comprise a set of points, which may be
objects of any kind, such as subjects, features, samples,
journals, species, etc., plus information about the
points, which may take the form of a set of features for
each point or a proximity value for each pair of points.
The proximity value indicates the extent to which the two
data points are alike or close together. (See [AND73] or
[BLA77] for a thorough presentation of proximity measures
and clustering techniques and algorithms.) Though these
methods provide information about the data, it is unclear

in many cases whether the information is inherent in the



data, or is being imposed by the clustering method,
especially since different clustering methods often give
different results [DUB76]. Thus, the question of validity
arises. Should the results, the clusters or partitions or
hierarchies produced by a clustering method, be accepted
as a representation of the data, or should they be viewed
as a form which has been imposed on the data?

We can distinguish several types of cluster validity
questions. The first type asks whether the data exhibit a
tendency to cluster. There are two models of the
mechanism which produces the tendency to cluster. The
usual model assumes the data are drawn, by independent
trials, from a distribution characterized by the
clustering observed in the data set. This is the model
assumed by almost all users of clustering. An alternative
model, used by Strauss [STR75, KEL76)], assumes the data
points would have a non-clustered distribution if they
could be drawn by independent trials, but the presence of
an interaction mechanism causes the set of observed points
to occur in clusters. Under Strauss' model, it is also
possible to produce "anti-clustered" data sets in which
the interaction mechanism causes the observed points to be
more evenly distributed than expected for independent
trials. Whichever model is appropriate, tests for the
presence of clustering tendency should be the first step

in an analysis of clustering structures. They can be



performed before clustering algorithms are applied to the

data [DUB77].

The second type of cluster validity question asks
whether the relationship between clusters represents the
true structure of the data set. Most clustering methods
produce a set of clusters and an indication of the
relationship between clusters. The membership of the
clusters and the relationship between clusters defines the
structure of the data set. Under Strauss' model such a
relationship does not exist in the underlying
distribution, but under the more usual model this data
structure indicates the structure of the population from
which the data were drawn. For example, if a clustering
method has forced a data set into an inappropriate
hierarchical structure, we would like to be able to detect
this error.

The third type of question concentrates on the
individual cluster. Given the data set in which the
cluster is located, the cluster may exhibit
characteristics, such as compactness, long lifetime, small
variance about the clustering center, or large separation
from other clusters, which lead to the conclusion that the
cluster forms a valid subgroup which should be treated as
a single entity.

The validity questions can be asked on several

levels. The observed structure can be compared with other



similar structures on the same data set. It can be
compared with a postulated ideal structure. Or it can be
compared with similar structures over the set of all
similar data sets. In the same manner, a cluster may be
compared with all possible clusters in the same data set,
with all possible clusters in all similar data sets, or
with the best cluster in all similar data sets.

This thesis examines techniques for answering the
question: Is this cluster valid? More specifically, is it
unusual to find a cluster which is as compact and isolated
as the observed cluster? The approach is probabalistic in
nature and is based on the theory of random graphs.

The remainder of Chapter 1 provides some necessary
definitions and a literature review. Chapter 2 describes
and analyzes a new tool called a Cluster Profile.
Appropriate indices of cluster isolation and compactness
are defined. Probability distributions which can be used
to test cluster validity are developed and measures of
cluster isolation and compactness based on these
distributions are defined. Chapter 3 describes a study
which considers one relaxation of the "no clustering”
assumption used in Chapter 2. Chapter 4 reports an
application of the Cluster Profile technique to a speaker
recognition problem and Chapter 5 draws conclusions,
identifies the contributions of the thesis and outlines

further work.



1l.2. Non-Graph-Theoretic Approaches

Many different approaches to the cluster validity
questions have appeared. One approach is to consider only
whether the results of a clustering algorithm, either the
clusters or the structure, make sense. The user must try
to explain the results and no validity checks based on the
distribution of the data points are used. Anderberg
[AND73, pp.18-19] poses three cases in response to the
question "How do you know when you have a good set of
clusters?"”™ 1In each case the question is answered without

reference to the distribution of the data points. 1In Case

One clustering is used to provide summary statistics. 1In
this case the validity question is irrelevant because the
only question is the accuracy of the calculation. In Case
Two the clustering technique is defined in such a way that
any clusters found must have the desired properties.

Again the validity of the results is not in question. Any
clusters found are, by definition, valid.

In Case Three the clustering technique is used as an
exploratory tool. Anderberg takes the position that all
the results should be evaluated by attempting to explain
them and validity tests based on distributions of the data

are of no value. If the results cannot be explained, then

validity tests will not save them. If an explanation is

forthcoming, then the validity test results are not

relevant to the explanation.



In contrast, Rapoport and Fillenbaum [RAP72] state
that "safequards of various sorts (such as stress values
less than critical cutoff points, significant clusterings,
significant graph results, etc.) are obviously necessary
to guard against elaborate interpretation of randomly
generated data." The increasing use of clustering in many
different fields and continuing work on the question of
cluster validity (see [DUB77] for a complete review) shows
that the view of Rapoport and Fillenbaum is widely
accepted at present.

Several existing approaches to cluster validity that

do not use the graph-theoretical models on which this
thesis is based, but which establish a background for the

thesis, are outlined in the subsequent sections.

1.2.1. The Restricted Definition Approach

The work of McQuitty [MQU61, MQU67] is an early
example of the use of a strict definition of cluster to
ensure that any clusters which are found will be valid.
Hubert [HUB74a] uses the term "perfect cluster" for
subsets which satisfy some strict definition of cluster.

Definitions of perfect clusters usually compare an
index of compactness with an index of isolation. A
cluster is compact if its points have a high degree of

similarity, thus forming a cohesive set. A cluster is

isolated if it is well separated from other clusters, so



that points in the cluster are very dissimilar from points

not in the cluster. The significance of an index of
compactness or isolation depends on the distribution of
the index across the data set. In the following
definitions a cluster with strong compactness needs less
isolation to be considered perfect than does a cluster
with weak compactness.

McQuitty defines a "comprehensive type" as a subset
of points for which each point in the subset is more like
every other point in the subset than it is like any point
not in the subset. McQuitty also provides another, more
easily satisfied, definition for a perfect cluster. A
"restricted type" is a subset of points for which each
point in the subset is more like some other point in the
subset than it is like any point outside the subset. The
isolation criterion is the same for both definitions, the
least similarity between the point in question and a point
not in the subset. This isolation criterion provides, for
each point in the subset, a standard outside point against
which the compactness is compared. The point in question
must be more similar to some point in the subset -- or to
all points in the subset -- than to the standard outside
point. The isolation index is used as a reference with
which the compactness index is compared.

A less easily satified definition of perfect cluster,

given by van Rijsbergen [RIJ708], requires that the



smallest similarity between points in the subset be
greater than the largest similarity between some point in
the subset and some point not in the subset. Hubert
[HUB74a] gives several generalizations of these
definitions.

The work of Day [DAY77] is an extension of this
approach to cluster validity. His work applies to the
"overlapping" case, in which a data point may belong to
more than one cluster, which is not covered in this
thesis. He defines two properties, consistency and
authenticity, which a clustering method should exhibit and
then investigates classes of clustering methods to see if
they have the desired properties. Day also defines
general indices of cluster cohesion (or compactness) and
cluster attenuation (or isolation). The indices must be
specialized to each clustering method and no expected

values or distributions are given.

1.2.2. The Statistical Test Approach
Other work on cluster validity has approached the

question via statistical tests. This approach requires a

null hypothsis, or random distribution, against which
cluster validity indices, derived from a data set or from

the results of applying a clustering method to a data set,

may be evaluated. This section describes two types of



random distributions which have been used as the "no

clustering” hypothesis.

1.2.2.1. Tests Based on Random Patterns

Data sets in pattern recognition studies often
consist of feature values measured on each object under
study. The values can be used to form a pattern matrix, a
matrix with rows representing the objects and columns
representing the features. Each object may then be
represented by a point in a multidimensional space, with
each dimension corresponding to a feature. One type of
randomness hypothesis assumes the data have been drawn
from a known unimodal distribution in a multidimensional
space. Typical distributions of this type are the uniform
distribution inside a multidimensional sphere and the
multidimensional normal distribution [ENG69, SNE77]. Both
of these distributions seem natural as null hypotheses.
They represent the cases of no clustering or only one
cluster.

In one strategy for testing cluster validity we would

like to know the null distribution of a cluster validity

index over the best partition or the best cluster in each
random data set. Tests based on such null distributions
are difficult to devise because it is necessary to find
the best cluster or partition for a general data set, and

this is very difficult, especially in a space of many
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dimensions. The requirement that only the best clusters

or partitions in each random set be considered also

prohibits the use of standard analysis of variance

techniques to determine cluster validity.

1.2.2.2. Tests Based on Random Proximities

The information in the pattern matrix can be used to
form a proximity matrix. A proximity matrix is a square
matrix with row i and column i both representing object i.
The proximity matrix is symmetric and represents either

similarity measures between objects, such as correlation,

or dissimilarity measures, such as distance. Sometimes,
especially with psychometric data, the proximities are
measured directly and there is no pattern matrix. A
second type of randomness hypothesis assumes that the
starting point for the clustering analysis is the
proximity matrix. A model for the creation of the
proximity matrix in the absence of clustering is developed
and tests of cluster validity are based on random
proximity matrices drawn from the model distribution.
Mountford [MOU70) offers a test of the difference
between two clusters. The null hypothesis is that the
proximities are drawn from a normal distribution with mean
u and variance S. The covariance is c*S, where c is a
constant, if the two proximities share a data point, ie.,

if both are on the same row or column of the proximity
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matrix, otherwise the covariance is #. This hypothesis is
tested against the alternative that the data points split
into two groups with at least two items in each group.

The test is conservative because of the bound which must
be used to ensure that the best possible value of the
statistic over all partitions of the random data set is

found.

1.3. Graph Theoretic Approaches

Another model of the null hypothesis for statistical
tests of cluster validity assumes that values in the
proximity matrix have only ordinal significance. This is
widely assumed for data collected in psychology and the
social sciences [JOH67]. The information of interest is
the order of the values in the matrix. Under this model
there is a clear relationship between graph theory and the
proximity matrix. Descriptions of clustering methods in
terms of graph theory occur in many papers [HAR67, ZAH71,

HUB74a, HUB74b, MAT77].

1.3.1. Graph Theory and Clustering
Two prominent hierarchical clustering methods, the

single link method and the complete link method [JOH67],
produce results which depend on the order of the
proximities but not on the actual values. Single link

clusters are subgraphs of minimum spanning trees [GOW74].
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Complete link clusters are related to the node
colorability of graphs [BAK76].

Agglomerative algorithms for implementing these
methods begin by considering each point in the data set to
be a cluster. The set of proximities is searched to find
the most similar pair of clusters, which are then joined
to form a new cluster. If ties occur in the set of
proximity valugs, the definition of these clusters is
greatly complicated, especially in the case of complete
link clusters. In this thesis, we assume that no ties
occur. The process is continued until all the points have
been joined into one cluster.

The single and complete link methods differ in the
way in which new proximities are defined when a cluster
forms. The single link method, also called the minimum
distance method, defines the proximity of the new cluster
to an o0ld cluster to be the smallest of the two
proximities between the parts of the new cluster and the
old cluster. 1In contrast, the complete link method, also
‘called the maximum distance method, defines the proximity
of the new cluster to an 0ld cluster to be the largest of
the two proximities between the parts of the new cluster
and the old cluster.

In both methods the clusters are determined solely by
the order of the proximities, so these methods are

appropriate for proximity matrices composed of ordinal
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data. A survey [BLA77 (1) pg.l13, Table 3] of applications
in 122 research publications in 1973 showed that at least
58 of 162 applications of clustering involved clustering
methods which required only ordinal information. The
widespread use of these clustering methods implies that a
description of "no clustering” based on the rank of
entries in the proximity matrix rather than on the

positions defined by the pattern matrix will be of value.

1.3.2. Random Graph Models

We define two graphs from a proximity matrix D (on an
interval scale) as follows. Let a threshold c be given.
A threshold graph, T(D,c), is a graph on n labeled nodes
with two nodes i and j connected by an edge if the (i,j)
entry in D is less than or equal to c. A different
threshold graph is defined for each distinct entry in D.
A rank graph, R(D,c), is an edge-weighted threshold graph
at 1evei ¢ with an order imposed on the edges by the order
of the entries in D. If we assume no ties among the
proximities, the edges of R(D,c) may be labeled
sequentially to indicate the order of the proximities.
Each proximity matrix determines a set of threshold and
rank graphs, one pair of graphs for each distinct value of
c.

The representation of the proximity matrix D by a set

of rank graphs is accompanied by a loss of information,
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except in those cases where the entries in D are on an

ordinal rather than an interval or ratio scale. The
utility of the rank graph is seen in the wide use of
clustering methods, such as single link and complete link,
which require only ordinal information from the proximity
matrix to form the sequences of clusterings. The clusters
of the single link method are components of some threshold
graph, and each component of a threshold graph is a single
link cluster. The clusters of the complete link method
are maximal complete subgraphs (cliques) of some threshold
graph. However, not all cliques of a threshold graph are
complete link clusters. In both methods, the clusters are
determined by the order of the proximity values but do not
depend on the actual values. Thus the proximity matrix
may be replaced with the complete rank graph with no
change in the sequence of clusters produced by these
methods. Other graph theoretic concepts of connectedness,
such as k-edge and k-node connectedness, have also been
used to define clusters which depend only on the rank
graph [HUB74a, MAT77].

Consider the set of all symmetric n by n matrices

with zero entries on the diagonal and with the integer
values 1 to n(n-1)/2 in the upper triangle. A random rank
matrix is a matrix chosen at random from this set. An
experiment in which the proximities of objects are ordered

by random choice should give a "no clustering" result. 1In
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fact, not only is there "no clustering", but other forms

of structure will also be absent [LIN73a].

A random rank matrix may be represented by a complete
rank graph. The weights on the edges of a random rank
graph are integers showing the order of the edges. A
random rank graph may be formed directly by randomly

ordering the edges (or node pairs) of a complete graph. A

random threshold graph with N edges is the subgraph of a
random rank graph having the same node set as the random
rank graph and having all the edges with rank less than or
equal to N. In this thesis a "random graph"” is a random
threshold graph. The random graph formed by choosing a
random rank graph on n nodes and then using the threshold
rank N to form a threshold graph is equivalent to the
random graph found by choosing a graph at random from the
set of all labeled graphs with n nodes and N edges. This
definition of random graph is used by Erdos and Renyi
[ERD59], Ling [LIN73a] and Baker and Hubert [BAK76].
Several authors speak of the evolution of a random
graph (ERD68]. If a random rank graph on n nodes is
given, a different threshold graph is defined for each of
the n(n-1)/2 distinct threshold ranks. The threshold
graph at rank i+l differs from the graph at rank i by a
single edge. A random graph is evolved by starting with a
graph of n nodes and no edges, and then repeatedly adding

new edges one by one at random until the graph is
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complete. If the edges are labeled as first, second,
etc., as they are entered, then a random rank graph is
created by this evolutionary process.

Because graphs provide a representation of the
ordinal information in a proximity matrix, assuming all
orderings of the proximities are equally likely is
equivalent to assuming all rank graphs are equally likely.
In turn, the concept of random graph evolution links
random rank graphs and random threshold graphs. Any
hypothesis of "no clustering" which is equivalent to
assuming that all orderings of the proximities are equally

likely will be called a random graph null hypothesis.

1.3.3. Validity Tests Based on Random Graphs

Erdos and Renyi [ERD59, ERD68, ERD61] list a number
of asymptotic results in random graph theory. They are
particularly interested in the asymptotic behavior of
various graph properties as the number of nodes in the
graph increases. 1In many cases they also give exact
expressions for the probability of special subgraphs, such
as cycles of order k, in random graphs. Erdos and Renyi
define a random graph as a graph with n nodes and N edges
where the edges have been chosen at random, without
replacement, from among the n(n-1)/2 node pairs. The

nodes are labeled. Thus there are three possible graphs

with three nodes and one edge.
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Abraham [ABR64] uses graph theoretic notions to
define several different types of clusters. He also
attempts to use random graph theory to determine the

significance of clustering tendency. Several errors in

his asymptotic expressions limit the usefulness of the
results [LIN75].

Rapoport and Fillenbaum [RAP72] use several results
from Erdos and Renyi in tests of non-randomness for data
'gatheted in studies of semantic structure. They test sets
of trees using the distributions of the degree sequence of
the nodes. They also test sets of graphs using degree
sequence, occurrence of cycles of order 3 and 4, and the
number of edges required to connect the graphs. They test
clusters by using the difference between the mean rank of
edges inside clusters and the mean rank of edges between
clusters. Unfortunately, the distribution which they use
to test the clusters is appropriate only if the cluster of
nodes being tested is selected independently of the graph
which determines the statistic. 1In their case, the
cluster is chosen by selecting a good cluster on the basis
of the graph, so the distribution on which the test is
based is not the appropriate one.

Ling [(LIN73a)] defines an isolation index called
lifetime for single link clusters. The lifetime is the

number of edges in the graph in which the cluster is

absorbed by creation of another cluster less the number of
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edges in the graph in which the cluster is formed. Using
the random graph null hypothesis, Ling determines the
distribution of this index for a given cluster size and a
given number of edges in the graph at formation of the
cluster. The lifetime index is defined for clusters
obtained by any hierarchical technique. However, the
distribution is specific to the single link clustering
technique.

Several authors have obtained results for the
expected value of the number of edges needed to connect a
random graph. Erdos and Renyi give an asymptotic form.
Rapoport and Fillenbaum used this asymptotic form for
small graphs. Schultz and Hubert [SCH73] later showed,
using Monte Carlo simulation, that the asymptotic form was
not accurate for small graphs. Ling [LIN75] and Ling and
Killough [LIN76]) used exact results due to Riddell and
Ulenbeck [RID53] to produce expressions of greater
accuracy for small graphs and tables of accurate results.

The number of edges needed to connect a graph is an
index of the tendency toward clustering of the nodes in
the graph. It is not an indication of compactness or
isolation for a particular cluster. The number of edges
needed to connect a graph measures the clustering tendency
at only one rank in the evolution of the graph. A test
which is applicable at all ranks uses the number of

components in a graph. Expected values for this index are
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given by Ling [LIN73b]. Since only the expected values
and not the complete distribution are given, no test of
significance can be based on this index.

Baker and Hubert [BAK75] use the random graph null
hypothesis in a study of the power of a test of

clustering. The test is based on the Goodman-Kruskal
gamma statistic and is applied to single and complete link
hierarchies. The gamma statistic is used to measure rank
correlation between the actual proximity matrix and an
ideal proximity matrix derived from the cluster hierarchy.
The alternative hypotheses consist of proximity matrices
which are "perfect" for a partition into three clusters,
to which Gaussian noise is added. The study consists of
Monte Carlo runs to determine the distributions of
interest. The results can be used to test the fit of a
proximity matrix to the hierarchy of clusters given by the
single or complete link clustering technique. The
required simulation results are given only for the 12 node
case.

In another study Baker and Hubert [BAK76] used Monte

Carlo simulation under the random graph null hypothesis to

find the distribution of an isolation index defined for a
partition into complete link clusters. The index is the

number of extraneous edges, edges which are not internal

to some complete link cluster. They propose a test of

goodness-of-fit in which the observed number of extraneous
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edges after each new complete link cluster forms is
evaluated by reference to tables produced by their

simulation. The published tables are for clusters on 8,

12 and 16 nodes.

Matula [MAT77] finds the distribution of the size of
the largest clique (maximal complete subgraph) for a
random edge graph. A random edge graph is a graph in
which each node pair has probability p of being chosen as
an edge. The number of edges is not specified. The
expected number of edges for a random edge graph of n
nodes is pn(n-1)/2. The distribution of largest clique

size, or clique number, is quite peaked. Chance
occurrence of a clique which is more than a few nodes

larger than the expected size is quite unlikely.

l1.3.4. Limitations of Present Validity Tests

The work to date in cluster validity based on random
graphs is limited in two ways. First, with the exception
of the clique number test of Matula, the tests of cluster
validity which have been proposed are specific to
particular clustering methods. They cannot be used to
test clusters found by any of the many other proposed
graph theory based clustering techniques. Second, with
the exception of the cluster lifetime test of Ling and the
clique number test of Matula, the tests of validity are

based on distributions which must be obtained by



21

simulation. Since the simulations are specific to graphs
of certain sizes, the results cannot be used to test
experimental results unless the sizes happen to match. 1In
most cases the experimenter would need to run a simulation
for the graph size which matches his experiment in order
to use the proposed test. The tests proposed in Chapter 2
can be applied to any subset of points and do not require

simulation to determine the required distributions.



2. Cluster Profiles

Most random graph tests of cluster isolation and
compactness are based on one or two ranks in the evolution
of the complete graph. Ling [LIN73a] forms an index of
the isolation of a single link cluster by noting the
difference in the rank at formation and at absorption of
the cluster. Two important ranks in the evolution of the
graph are used, the lowest rank at which the nodes of the
cluster are connected and the lowest rank at which some
node in the cluster is connected to a node not in the
cluster. An index of isolation proposed by Baker and
Hubert [BAK76] is the number of edges between complete
link clusters. All edges of a partition which are not
within clusters are counted. The fewer edges between
clusters, the more isolated they are, and the more valid

is the partition. 1In this case one rank is considered for

each new cluster, the rank at which the complete 1link
cluster is formed.

By contrast, the Cluster Profile method proposed in
this chapter looks at all ranks, or thresholds, in the
data set. This requires compactness and isolation indices
which are defined at each threshold. The proposed method
has the advantage of being applicable to the results of
any clustering method. Any ranks which are of special

significance for a particular clustering method will be

included.

22
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Sections 2.1 and 2.2 define the concepts of "raw" and
"probability" profiles. 1Indices of validity appropriate
to profiles are defined and several probability
distributions which are used to investigate cluster
validity are developed. The probability distributions
lead directly to the definition of several measures of
cluster validity which comprise the probability profiles.
Section 2.3 examines a special case of one probability
distribution to determine the accuracy of a probability

bound developed in Section 2.2.

2.1. Raw Profiles

A "raw profile" is a sequence of cluster validity
indices. The sequence is formed by observing the indices
in the threshold graphs for each distinct threshold. A
raw profile provides a basic picture of the interaction of
a cluster with other elements in the data set. This
section develops the definition of the raw profile and

defines indices of cluster isolation and compactness.

2.1.1. The Sequence of Threshold Graphs

A "rank graph", representing the order of edges in a
proximity matrix, may be thought of as a sequence of
threshold graphs, one threshold graph for each possible
threshold. 1If the thresholds are distinct, then each

threshold graph in the sequence has one more edge than the
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preceeding graph. Suppose that a clustering method has
been applied to the data and one or more clusters have

been identified. We wish to test the proposed clusters
for isolation and compactness.

A raw profile of each cluster is developed as
follows. Indices of compactness and isolation of the
proposed cluster are observed in each threshold graph.
The sequence of values for these indices, one value for
each rank, forms a profile of the cluster over the
evolution of the rank graph. With properly chosen indices
it may be possible to classify clusters as "isolated" or
"compact" directly from these raw profiles, although the
information may be hard to interpret. This motivates the

probability profile.

2.1.2. Indices of Isolation and Compactness

In this section two indices of cluster validity are
defined. Typically, indices of cluster validity are based
on some definition of compactness or cohesiveness of a set
of nodes or on some definition of isolation or unigueness
of the set of nodes. The indices proposed here are very
simple. This simplicity has two advantages. First, the
indices are easy to evaluate, which makes them
computationally inexpensive. Second, their simple nature
allows them to be applied to many different situations.

More complex definitions of validity indices are often



25

limited to one clustering method. These simple indices
can be applied to the clusters produced by any clustering
method. A disadvantage is that it is difficult to compare
clusters of different sizes or clusters from different
data sets using these indices.

The indices are based on a threshold graph. Let D be
a proximity matrix. Let A be a subset of the data points
which has been proposed as a cluster. The subset A may be
used to divide the proximities in the upper right triangle
of D into three sets. The first set, D(A,in), is the set
of proximities, d(i,j) with i<j, for which both data
points 1 and j are in the subset A. The second set,
D(A,out), is the set of proximities, d4(i,j) with i<j, for
which both data points i and j are not in A. The
remaining proximities in the upper right triangle,
D(A,betw), are those with one data point in A and one data
point not in A.

For each possible threshold t, an index of cluster
compactness can be defined as follows. Let e(t) be the
number of proximities in D(A,in) which are less than or
equal to t. Then, for each t, e(t) is an index of cluster
compactness. If a cluster is very compact at level t it
will have many pairs of points with dissimilarity less
than t. If the cluster is not compact, it will have
relatively few pairs with proximities below t.

An index of cluster isolation can be defined in a
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similar way. Let b(t) be the number of proximities in
D(A,betw) which are less than or equal to t. Then b(t) is
an index of cluster isolation. A very isolated subset at

level t will have relativly few proximities below t, while

a subset of points which is not isolated will have many

points linking to points not in the subset with

proximities less than t.
A cluster which is perfectly compact and isolated
will have, for some threshold, all proximities in D(A,in)

below the threshold and all proximities in D(A,betw) above

the threshold. Such a cluster satifies van Rijsbergen's

definition [RIJ70] of a perfect cluster.

2.1.3. An Example

Figure 2.1 is an artificial data set of 25 points in
two dimensions. The dissimilarity measure is the
Euclidean distance between points. The threshold graph,
containing 25 edges, for a threshold of 1.80 inches is
shown. The six points which are circled at the lower left
are a proposed cluster. These six points are a

single-1link cluster and also a complete-link cluster. For

this threshold graph with 25 edges the cluster has a
compactness index of 12 and an isolation index of 1. This
cluster does not satisify van Rijsbergen's definition of a
perfect cluster. However, it is apparent that the edges

of the threshold graph are concentrated in the cluster.
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The threshold graph with 25 edges using distance as

the proximity measure.

Figure 2.1. An Artificial 25-point Data Set
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Figure 2.2 gives the raw profiles for the proposed
cluster. The compactness index (internal edges), the
isolation index (linking edges), and the edges which have
no connection with the cluster (outside edges) are plotted
for every fifth rank. The compactness index rises rapidly
to its maximum value of 15, indicating a relatively
compact cluster. The isolation index is quite small when
the number of edges in the threshold graph is small, then
rises at a fairly constant rate until the threshold graph

is complete at 308 edges. Tests which quantify the

significance of the rapid rise in the compactness index
and the slow rise in the isolation index are developed in

the next section.

2.2. Probability Profiles

A "probability profile"™ is a refinement of a raw
profile and is formed by computing, for each rank, the
probability, p, that the validity index for a subset of
nodes in a random graph would be as good as the observed
index. This significance level, p, is used as a measure
of cluster validity at each rank. The sequence of
measures forms the probability profile.

The validity measures proposed here are based on
distributions over random graphs as defined in Section

1.3.2. Section 2.2.1 discusses several of these

distributions. Sections 2.2.2 and 2.2.3 develop the
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Figure 2.2. Raw Profiles of a Cluster
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expressions for the probabilities required to compute
validity measures. Section 2.2.4 discusses the
application of the probability profiles and Section 2.2.5

applies probability profiles to an example.

2.2.1. Distributions Based on Random Graphs

One possible distribution is the set of validity
indices found by letting the sampled population contain
all possible subsets of nodes of fixed size in all random
graphs. This "complete" distribution provides a proper
evaluation of a cluster if the cluster has been defined a
priori, without reference to the proximities or the
features used to find the proximities. In most cases,
this type of distribution is not useful because the
cluster has been chosen to maximize the validity indices.
Such a cluster is almost certain to have better validity
indices than a randomly chosen subset of points.

The distribution used to test validity must somehow
take into account the special way in which the cluster to
be tested was formed. One way to do this is to restrict

the sampled population to subsets of nodes of fixed size

in the random rank graph which are recognized as clusters
by the clustering method, CM, being used. By restricting
the population in this manner, the clustering method is

used to pick out good subsets of nodes from each random

graph for inclusion in the null distribution. This
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"CM-reachable" distribution is a "limited" distribution, a
distribution computed on the assumption that only selected
subsets of nodes in each random graph are included in the
sampled population. Baker and Hubert [BAK76] use the
"Complete-Link-reachable" distribution to develop their
test of cluster validity. A test of cluster validity
based on a reachable distribution is specific to clusters
found by the clustering method used to determine the
subsets of the random graph.

Another type of limited distribution assumes the
validity index rather than the clustering method limits
the sampled population. A "best case" distribution
assumes the sampled population is restricted to a subset
of nodes of fixed size in each random graph which produces
the optimum value of the validity index. A best case
distribution has the advantage of being applicable to
clusters formed by any clustering method. 1In a sense, the
best case distribution is the least upper bound on all the
reachable distributions. For any random graph, a subset
of points which is included in the best case sampled
population has validity index at least as good as any
subset included in a reachable sampled population. A test
of cluster validity based on a best case distribution is a
"general test" in that it can be applied to clusters

formed by any clustering technique.
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2.2.2. Distributions for the Isolation Index

In this section two probability distributions for the
cluster isolation index defined in Section 2.1.2 are
presented. The null hypotheses which form the bases for
the distributions are defined using random graphs. One of
the distributions is a best case distribution.

Let G be a labeled graph with n nodes and N edges (a
labeled (n,N) graph). Let A be a k-node subset of the
nodes of G which is to be tested for compactness and
isolation. Let <A> be the subgraph of G induced by the
node set A.

Let e be the number of edges in <A>. If e' is the
number of edges in <-A> (where -A is the subset of nodes
not in A), then let b = N-e-e' be the number of linking
edges, or edges in G which join a node in A to a node in
-A.

The following two probability distributions are used
to evaluate the number of linking edges, b, as an index of

isolation.

Theorem 1.

The probability, P(blk), that a random labeled (n,N)
graph has at least one subset of k nodes with b or fewer

linking edges is bounded above by



b / k(n=-k) \ / n:2 - k(n=-k) \
--- \ B / \ N-B /
P(blk) <= [/

e
x>
NS

The notation i:j is used for the binomial coefficient, the
number of ways of choosing j unordered items from a set of
i distinguishable items. If i<j or j<@ then i:j = 0.

This convention simplifies the notation.

Proof:
For a particular subset A of k nodes there are k(n-k)

pairs of nodes in G at which linking edges can be placed.
The number of ways in which B of these edges can be chosen
is

/ k(n=k) \

\ B / .

Since the remaining N-B edges must be chosen from the

non-linking possibilities, the number of labeled (n,N)

graphs in which A may have b or fewer linking edges is

b

\ / k(n-k) \ / n:2 - k(n-k) \ .
/ \ B / \ N-B /

B=0@
There are n:k ways to pick a particular subset of k
nodes. If all such possible subsets are considered, the

set of labeled (n,N) graphs contains
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n \ \ / ki(n-k) \ / n:2 - k(n=k) \
k / / \ B / \ N - B /

B=0

subsets of k nodes which have b or fewer linking edges.

The number of labeled (n,N) graphs which have at
least one k node subset with b or fewer linking edges is
bounded above by the number of k-node subsets with b or
fewer linking edges which appear in all labeled (n,N)
graphs. Thus, dividing by the number of labeled (n,N)
graphs gives an upper bound on the probability that a
random labeled (n,N) graph contains a subset of k nodes

with b or fewer linking edges.
End of proof.

The probability that a random (n,N) graph contains at
least one subset of order k with b or fewer linking edges
is equal to the probability that the subset of order k in
a random (n,N) graph with the fewest linking edges has b
or fewer linking edges. Thus, the probability we have
bounded is from a best case distribution. This
probability bound, which we call measure Il, is a measure
of the isolation of a cluster with isolation index b.

A test of cluster validity may be based on measure
Il. Under the null hypothesis for the test, the isolation
index has the best case distribution derived above.

Measure Il is an upper bound on the size of the test for
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rejection of this null hypothesis. The technique for
determining cluster validity proposed in this thesis
involves judging the validity on the basis of the sequence
of measures, or test sizes, over the evolution of the rank
graph. Thus we do not propose a significance level for
this test at one rank. At a particular rank, small values
of Il are evidence of a valid cluster, while large values

are not.

The form of the above result suggests a close
connection to the hypergeometric distribution. We now
develop the bound on P(blk) using the hypergeometric
model.

In the hypergeometric model [BRO65] we have a
population of R elements, of which D are defective. We
draw a sample of size W, without replacement. The
probability that our sample contains exactly X defectives

is

Consider a specific k-node subset of a graph with n
nodes. The R elements in our population are the n:2 node
pairs of the graph. The D defectives are the k(n-k)

linking node pairs for the subset. The sample of size W

is the set of N node pairs chosen as edges in the random
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graph. The probability that the sample contains exactly B

defectives, or linking edges, is then

2 - k(n-k) \

/ k(n=k) \ /n
\

\ B / N -B /
P(B) = —===————m——————————————— oo .
/ n:2 \
\ N /

The probability that at least one of the k-node
subsets in the random graph has b or fewer linking edges
is bounded above by the probability that our specific
subgraph has b or fewer linking edges times the number of
ways in which the specific subgraph could be chosen,

b

P(blk) <= / n\ \ p(B) .
\k/ /

B=0

This is the same as our previous expression.

An exact expression for the probability P(blk) would
be much more satifactory than the present result.
However, the problem is made very difficult by the high
degree of interaction among the various subgraphs of each
possible random graph. An exact expression for the
desired probability is not known, and we must settle for
the upper bound obtained, which ignores interactions among

the subgraphs.

Consider k-node subsets of the nodes of labeled (n,N)

graphs which have exactly e internal edges (call these
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(k;e) subsets of the graphs). We compute the probability,
P(blk,e), that a subset chosen at random from all (k;e)
subsets of all labeled (n,N) graphs has b or fewer linking

edges.

Theorem 2.

A labeled (n,N) graph with a (k;e) subset has N-e
edges to distribute between linking edges and external
edges. Thus

b / k(n=k) \ / (n=k):2 \

--- \ B / \ N-e-B /
P(blk,e) = > .

- / k(n=k) + (n-k):2 \
B=0 \ N -e /

The sum is over the first b+l terms of the
probability mass function of the hypergeometric
distribution. This time, in contrast to the result for
P(blk), the expression for the probability is exact.
However, a test based on this result is not a general test
since the sampled population is not limited to the best
subset of nodes in each random graph. For this "fixed
compactness index" distribution, the sampled population
includes all k-node subsets with exactly e internal edges
and is a third way of limiting the sampled population.
This probability, which we call measure I2, is also a

measure of the isolation of a cluster with b linking
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edges. Again, we may base a test of cluster validity on
this measure. Under the null hypothesis, the isolation
index has the fixed compactness index distribution given

above. Measure I2 is the size of the test for rejection

of this null hypothesis.

2.2.3. Distributions for the Compactness Index
The following two probability distributions concern

e, the number of internal edges.

Theorem 3.
The probability, P(elk), that a random labeled (n,N)
graph has at least one subset of k nodes with e or more

internal edges is bounded above by

k:2 / k:2\ / n:2 - k:2 \
--- \ E / \ N-E /
P(elk) <= / n\ \ .
\k/ /
-—- / n:2 \
E=e \ N /

Proof:

Consider a particular subset of k nodes. It has k:2
pairs of nodes. The number of ways in which E of these
pairs can be chosen as internal edges is

/ k
\

2\
/.

] oo

The number of ways in which the remaining N-E edges

can be placed in the graph as linking or external edges is



Thus
ks2
\ / k:2 \ / n:2 - k:2 \
/ \ E / \ N-E [/
E=e

is the number of ways in which a particular subset of k
nodes may have e or more internal edges. 1If all possible
subsets of k nodes are considered, the set of all labeled
(n,N) graphs contains

k:2

ks 7 S 7 A"NZET)
E=e
subsets of k nodes which have e or more internal edges.
The number of labeled (n,N) graphs which have at
least one k node subset with e or more internal edges is
bounded above by the number of k-node subsets with e or

more internal edges which appear in all labeled (n,N)

graphs.
End of proof.

The same result can be obtained using the
hypergeometric probability model by an arguement similar
to that used in Section 2.2.2. The probability that a
k-node subset with e or more internal edges occurs in a

random (n,N) graph is equal to the probability that the
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number of edges in the k-node subset with the largest
number of internal edges is e or more. Thus, the
probability we have bounded is from a best case

distribution. This probability bound, which we call

measure Cl, is a measure of the compactness of a cluster
with compactness index e.

The corresponding test of cluster validity uses the
null hypothesis which assumes the compactness measure has
the best case distribution given above. Measure Cl is an
upper bound on the size of the test for rejection of this

null hypothesis. If a cluster has small measure Cl at
rank N, we may conclude that the cluster is compact at

that rank.

Consider subsets of k nodes which have exactly b
linking edges (call these (k;b) subsets). We compute the
probability, P(elk,b), that a subset chosen at random from
all (k;b) subsets that exist in all labeled (n,N) graphs

has e or more internal edges.

Theorem 4.
A labeled (n,N) graph with a (k;b) subset A has N-b
edges to distribute between internal edges of A and

external edges of A (internal edges of -A). Thus



41

ks:2 / k:2 \ / (n=k):2 \
--- \ E / \ N-b-E /

P(elk,b) = \ .
/

-—— / k:2 + (n-k):2 \
E=e \ N-b /

Again, the sum is over terms of the probability mass
function of the hypergeometric distribution and we have an
exact probability rather than an upper bound. However, we
do not have a best case distribution since the sampled
population includes many subsets from some labeled (n,N)
graphs and no subsets from others. This "fixed isolation
index" distribution uses a sampled population which is
limited to all k-node subsets with exactly b linking
edges. This probability, measure C2, is also a measure of
the compactness of a cluster with e internal edges.
Measure C2 is the size of a test for rejection of the null
hypothesis that the compactness index has the fixed

isolation index distribution given above.

2.2.4. Application of Probability Profiles
The measures developed in Sections 2.2.2 and 2.2.3

comprise the probability profiles of a cluster. At each

rank in the sequence of threshold graphs defined from the
proximity matrix, the indices of isolation and compactness
are evaluated. The probability that the value obtained,
or some better value, would occur in a random graph is

calculated using the best case and fixed index
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distributions. Thus, at each rank, we form four measures
(I1, 12, C1 and C2) of the validity of the cluster. The
measures are the sizes of tests of cluster compactness and
isolation under the random graph null hypothesis. If the
null probability of an index at least as good as the
observed index is large, we have evidence that the cluster
is not valid at the rank tested. If the probability is
low, we have evidence that the cluster is unusual, and
therefore valid, at the rank tested. If the probability
is low over a span of many ranks, we conclude that the
cluster is valid.

The most favorable results are the simultaneous
occurrence of low values, say less than 10 ** (-3), for
both measure Il and measure Cl over a wide range of ranks.
However, it may happen that a subset of points has low
measure for one validity index, say compactness, but not
for the other, isolation, when using the best case
distributions. 1In this case we consider the fixed index
distributions developed in Sections 2.2.2 and 2.2.3. If a
subset is compact with respect to the best case
distribution, we ask whether it is isolated with respect
to the fixed compactness index distribution. That is, we
ask if both measure Cl and measure I2 are small over a
"wide range of ranks. If so, we may conclude that the
subset is compact and, for a subset with its compactness,

it is isolated. Similarly, if a subset is isolated with
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respect to the best case distribution, we ask whether it
is compact with respect to the fixed isolation index
distribution. If it is, we may conclude that the subset

is isolated and, for a subset with its isolation, it is

compact. In other words, the subset of points forms a
valid cluster.

If both measure Il and measure Cl are large, the
subset is neither isolated nor compact with respect to the
best case distributions, and we have no justification for
using the fixed index distributions. In this case we

conclude that the subset of points does not form a valid

cluster.

2.2.5. An Example

Figure 2.3 shows a logarithmic plot of isolation
measures Il and I2 and compactness measures Cl and C2 for
the 6-node subset of Figure 2.1. The four measures are
plotted for every fifth rank of the sequence of threshold
graphs. The probability profiles show that this cluster
is unusually compact, but not isolated, when compared
against the most compact (measure Cl) and most isolated
(measure Il) subsets of a random graph. When compared
with subsets of the same compactness, this cluster is
unusually isolated (measure I2). From this observation,

we conclude that, under the random graph null hypothesis,

this subset of 6 points forms a valid cluster.
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Logarithmic plots of the four validity measures for

the six-point cluster of Figure 2.1.

Figure 2.3. Probability Profiles of a Cluster
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2.3. Accuracy of Bounds for P(elk) when e = k:2

In Section 2.2 we developed upper bounds on the best
case distributions for the indices of isolation and
compactness. The upper bounds are useful measures only if
they are close to the actual values. If the upper bounds
are much larger than the actual probabilities, tests of
compactness and isolation based on them will be very
conservative and the probability profiles will show very
few low values. In the extreme, an upper bound of 1.00 is
always available, but it is of no use in judging cluster
validity.

In this section we investigate the accuracy of the
upper bound for a special case of the compactness index.
Several results on the probability p(k) that a random
labeled (n,N) graph contains at least one complete
subgraph of order k are presented. This is a special case
of the probability P(elk), studied under Theorem 1 in
Section 2.2.3, that a random labeled (n,N) graph contains
a subset of k nodes with e or more internal edges. 1In
this case e = k:2 and the subset has all its internal

edges.

2.3.1. Upper and Lower Bounds
The probability p(k) that a randomly chosen labeled
(n,N) graph contains at least one complete subgraph of

order k is simply the number C(k) of labeled (n,N) graphs
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which contain at least one complete subgraph of order k

divided by the total number of labeled (n,N) graphs. Thus
p(k) =C(k) / Q
where
Q = / n:2\
\ N / o
The quantity C(k) may be expressed in terms of the

clique number of a graph. A clique is a maximal complete

subgraph and the clique number of a graph is the order of

the largest clique in the graph. Thus C(k) is the number

of labeled (n,N) graphs with clique numbers greater than

or equal to k.
Let C(k,r) be the number of labeled (n,N) graphs
which contain exactly r distinct complete subgraphs of

order k. These r subgraphs may overlap.

Note that

Q =\ C(k,r)

r=0

and

C(k) = \ C(k,r)
/

r=1
where R is the maximum number of complete subgraphs of
order k which can occur in a graph with N edges.
Bounds on C(k) will first be expressed in terms of

the number of complete subgraphs of order k and the number
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«

of pairs (both from the same graph) of complete subgraphs
of order k in the set of all labeled (n,N) graphs.
Let S(k,1) be the number of complete subgraphs of
order k in the set of all labeled (n,N) graphs.
R

S(k,1) = > r C(k,r)

r=1

Comparing S(k,1) and C(k) gives

R R
S(k,1) - C(k) = \ r C(k,r) - \ C(k,r)
/ /
r=1 r=1
R
=\ (r-1) C(k,r) »>= B8 .
/
r=2

Thus S(k,1) is an upper bound on C(k) and

p(k) <= sS(k,1) / Q.

We proceed to find a lower bound. If a labeled (n,N)

graph contains r complete subgraphs of order k, then there
are r:2 ways to choose a pair of complete subgraphs of
order k from the graph. The total number of pairs (from
the same graph) of complete subgraphs of order k which

occur among all labeled (n,N) graphs is
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S(k,2) (r:2) C(k,r) .

"
N7

r=2
Comparing C(k) and the difference S(k,1l) - S(k,2) we
see that

C(k) - s(k,1) + s(k,2)

R R
= \ (r:2) C(k,r) - \ (r-1) C(k,r)
/ /
r=2 r=2
R
= \ ( (r=1):2 ) C(k,r) »>= 08 .
/
r=3

Thus S(k,1) - S(k,2) is a lower bound on C(k) and
p(k) >= ( s(k,1) -s(k,2) ) / Q.

We could proceed in this manner, counting triples,
quadruples, etc., of complete subgraphs of order k and
developing tighter bounds on C(k). However, the value of
this development depends on being able to calculate the

bounds.

The number S(k,l1) may be found by considering each
specific subset of k nodes in turn. Let A be a fixed
subset of k nodes. The number of labeled (n,N) graphs in

which A induces a complete subgraph is
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since k:2 edges are used to form the complete subgraph of
order k and the remaining edges may be used to join any of
the remaining pairs of nodes.

Since there are n:k such subsets of k nodes, we have

S(k,1) = /n\ / n:2 - k:2 \
\k/ \ N =-k:2/ .
Thus
/n\ / n:2-k:2\
\Nk/ \ N =-k:2/

This is a special case of the upper bound on P(elk) given
in Section 2.2.3.

The derivation of an expression for S(k,2) is similar
to that for S(k,l), though the details are more complex.
Let A and B be different subsets of k nodes. The number
of labeled (n,N) graphs in which both A and B induce
complete subgraphs depends on the overlap between the two
subsets. Let m be the number of nodes the two sets share.
Then u = k-m is the number of unshared nodes in each
subset. Note that # <= m < k.

As in the case of S(k,1l), we first find the number of
labeled (n,N) graphs in which a specific subset of nodes,
A union B, induces a pair of complete subgraphs of order

k. Since the induced graph has ( 2*(k:2) - m:2 ) edges,
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the result we need is

/ n:2 - 2 (k:2) + m:2 \
\ N -2 (k:2) +m:2 / .

The number of ways in which the set of 2k-m nodes may
be chosen can be developed in several ways. For example,
first choose the m nodes to be shared. This may be done
in n:m ways. From the remaining nodes choose u unshared
nodes to complete subset A, which can be done in (n-m):u
ways. Finally choose another u nodes to complete B, in

(n-m-u) :u ways. Since the order in which the two sets are

completed is not significant, we divide by two. The

result is
/n\ /n-m\ /n-m-u\ / = / n \ /
\m/\Nu/\ u //2 \m,u, u//2 .
Thus,
k-1 / n \
--- \m, u, u/
S(k,2) = \ / n:2 - 2 (k:2) + m:2 \
/ \ N -2 (k:2) +m:2 / .
-—- 2
m=0

We could proceed to calculate the number of triples
of complete subgraphs of order k in the set of (n,N)
graphs. However, instead of one parameter to define the
overlap, we would now have four, implying that the number
of cases to be considered would increase as the fourth
power of k. Thus, consideration of triples appears to be

computationally infeasible.
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2.3.2. Asymptotic Forms for the Bounds

This section examines the asymptotic behavoir of the
bounds, developed in Section 2.3.1, on the probability
p(k) that a random labeled (n,N) graph contains at least
one complete subgraph of order k. The results indicate
that p(k) tends to be close to the upper bound whenever
the upper bound is small.

In the limit of large graphs the upper and lower
bounds on p(k) take on simple forms. We will show that

the upper bound takes on the form

where

We will present evidence that the difference between the

upper and lower bounds takes on the form

We consider the asymptotic case where n, N and k all
grow without bound with a and s held constant. The
requirement that a be held constant ensures that the
number of edges (N) in the random graph increases as the
number of nodes (n) increases so as to keep the proportion
of edges which are present constant. The requirement that

8 be held constant means that the size (k) of the subset
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of nodes under consideration also increases as n
increases, though not nearly as rapidly as n. By holding
s constant, k increases in such a way that the probability
of occurrence of a complete subgraph of order k approaches
s.

We derive the first result as follows. With a and s

held constant as n, N and k increase, we have

/n\ / n:2 - k:2 \

S(k,1) \k/ \ N - k:2/
u(k) = ====-= 2 ememeccccccccc———-
Q / n:2 \
\ N /
/n\ (n:2 - k:2 )! N!
= \k/  mmmmmmmmmmmmmem—e—eeee— .
(n:2)! (N - k:2)!
Using
tl! v
------ -—=> t as t/v --=> infinity,
(t-v) !

k:2
/n\ N /n\ k:2
u(k) =--=-> \k/ =-====e-——- = \k/ a
k:2
( n:2 )
k k:2
n a
——) emm————— = 8 .
k!

The definition of s specifies the relationship
between n and k as they become very large. Starting with

this expression we may write k as a function of n as

follows. Start with



Taking the logarithm of both sides and expanding 1ln k!, we
obtain
Ins ° klnn + k:21lmnma - klnk + k
- 1ln (2 * 3.14159...) /2 - 1ln (k) / 2 .

Now divide by k and drop terms which go to zero as n (and

k) get very large. The remaining terms are

- lnn + (k-1) ln (a) /2 - 1lnk + 1.
Now let a' = - 2 / 1n a and multiply by a' to obtain
g8 - a'lnn - kK + 1 - a'lnk + a' .

Thus, since k << n,

k --> a'lnn - a'ln (a'lnn) + a' + 1 .,

The terms which are ignored are of order ( 1n (ln n) / 1ln
n)or (lnk / k). This expression for k is (a' 1ln 2)
larger than the result obtained by Matula [MAT77] for the
expected value of the largest clique size in a random edge
graph with edge probability a. Note that s does not
appear in the final result. The important point is that s

is constant.

A partial proof of the second result has been found.

Confidence in the correctness of the result is enhanced by
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observing the behavior of r(k) / u(k) ** 2 as k increases.
The plots in Figure 2.4 show, for several different values
of s and a, the convergence to a value of 1/2. The curves
were calculated by fixing the values of a and s, then for
each subgraph size (k) calculating the required number of

nodes (n) and edges (N). The exact upper and lower bounds

on the probability of a complete subgraph of order k in a
random labeled (n,N) graph were then calculated and used
to determine the desired ratio. Convergence to 1/2 occurs
for relatively small values of k.

Using this result, the asymptotic difference between
the bounds is one-half the square of the upper bound.
Thus, for the special case e = k:2, the upper bound on
P(elk) = p(k) is quite close to the actual value if the
upper bound is small and k is large enough. For u(k) =
.1, the lower bound approaches .1 - (.1)(.1)/2 = .895 for
large k. The relationship of the upper and lower bounds
is exactly the relationship expected if the objects of
interest, the complete subgraphs of order k, are
distributed at random among the set of all labeled (n,N)
graphs. We may hope that the objects of interest in the
calculations of P(elk) and P(blk) are also distributed at
random for large k, so that the upper bounds are tight

bounds whenever they are small.
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Figure 2.4. Asymptotic Behavior of r(k) / u(k) ** 2
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2.4. Summary
This chapter develops two Cluster Profiles, defined

from a proximity matrix using a sequence of threshold

graphs, which describe the interaction of a subset of
points with its environment. The Raw Profile of a cluster
is the sequence of cluster validity indices observed for
the sequence of threshold graphs. Computationally
inexpensive indices of compactness and isolation for any
subset of nodes in a threshold graph are defined. The
Probability Profile of a cluster is the sequence of
measures -- the test sizes for a cluster validity test
applied at all ranks -- for the sequence of threshold
graphs. Validity tests under the Random Graph Null
Hypothesis for the indices of compactness and isolation
are developed. We argue that the distributions based on
the best case sampled populations provide the most useful
distributions for validity tests. Usiﬁg these
distributions, upper bounds on the cumulative distribution
functions for the validity indices are developed. These
upper bounds form two measures of cluster validity.

The cumulative distribution functions for the
validity indices using a second sampled population are
also developed. This sampled population includes all
subsets of points with a specified validity index, either
isolation or compactness. We argue that this distribution

is useful for testing one validity index when the other
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index is known to be valid under the best case
distribution. The probabilities given by these two
cumulative distribution functions form two additional
measures of cluster validity.

The final section of the chapter explores the
asymptotic accuracy of the upper bound on the best case
distribution of the compactness index. For the special
case in which the compactness index takes on its maximum
value, we develop a lower bound on the cumulative
distribution function of the index and show that the
difference between the upper and lower bounds
asymptotically approaches one-half the square of the upper
bound. We conclude that the upper bound will be useful

for testing cluster validity.



3. Intrinsic Dimensionality and Cluster Validity

This chapter explores some limitations of validity
tests based on random graphs when the proximity matrix is
derived from a pattern matrix. We investigate the effect
this pattern matrix starting point has on distributions of

indices of cluster validity.

3.1. Introduction

Ling [LIN73a] has applied his random-graph-based test
of the lifetime of single link clusters to clusters found
in a star map of sixty bright stars in the neighborhood of
Polaris. He found several clusters with unusually long
lifetimes and concluded that the clusters were valid.

Such results, on data sets which are presumably random,
have led several investigators, including Ling [LIN76,
Pg.294] and Matula [MAT77, pg.126], to warn against using
cluster validity tests based on a null hypothesis of a
random graph.

This chapter studies the relationship between the
dimensionality of a set of data points and the
distributions of indices of compactness and isolation used
for testing cluster validity. We ask whether a prescribed

dimensionality for the data set automatically precludes

the use of tests based on random graphs.

Suppose that, instead of using random graphs as the

null hypothesis of "no clustering", we assume that the

58
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patterns themselves are randomly chosen points from a
uniform distribution in a hypercube and compute the
dissimilarity matrix with some distance metric. This
random experiment provides a null hypothesis, called the
"uniform hypercube null hypothesis," which may be more
appropriate than the random graph null hypothesis if our
data are patterns in a feature space. Other distributions
from which the points could be chosen include the uniform
distribution in a hypersphere and the multidimensional
normal distribution. The uniform distribution in the
hypercube is used here because it is the cheapest to
simulate.

Suppose we use hypothesis tests based on the random
graph null hypothesis to test clusters from data sets
created by choosing points from a uniform distribution in
a hypercube. It may be that 10% of the data sets exhibit
clusters which are valid at the 10% level, or perhaps
there are valid clusters in 40% of the data sets. Perhaps
there are never any valid clusters by our test.
Considerations such as these motivate the investigation
below.

Section 3.2 derives analytic results for the case of
four points placed at random on the unit interval and
presents simulation results for five points placed at
random in a unit hypercube. Section 3.3 examines a

phenomenon discovered in the five point simulation of
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Section 3.2 and relates it to an issue in the
determination of the intrinsic dimensionality of a data
set. Section 3.4 presents and discusses the results of a
simulation study of the relationship between the random
graph null hypothesis and the uniform hypercube null
hypothesis for data sets of medium size. The results of
this study provide empirical evidence which supports the
note of caution suggested by Ling and Matula, namely,

tests based on the random graph null hypothesis cannot be

indiscriminately applied to data sets best represented as

points in a multidimensional space.

3.2. Very Small Data Sets

It is easy to show that the uniform hypercube null
hypothesis will generate distributions of clustering
statistics different from those computed under the random
graph null hypothesis for the special case when four
points are chosen at random from a uniform distribution on
the unit interval. Form a threshold graph by using
distance as proximity and including only the edges joining
the three closest pairs of points. The distributions of
statistics based on the resulting unlabeled (4,3) graphs
are certain to be different from those based on random
labeled (4,3) graphs since one of the graphs which occurs
for the random graph case, the graph where one of the

nodes is adjacent to each of the other three nodes, cannot
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occur when the four points lie on a line.

The distribution over the possible rank orders of
interpoint distances for four points placed at random on
the interval (@8,1) is equivalent to that obtained when two
points are placed at random on the interval and the end
points, @ and 1, are used as the other two points. Thus,
the problem of finding distributions based on the possible
rank orders of the proximities reduces to a two variable
problem. Counting distributions over threshold graphs may
be derived by considering a unit square representing all
possible values of the two interior points. The square is
divided into regions corresponding to the various possible
rank orderings of the interpoint distances and the areas
are calculated. The counting distributions over threshold
graphs with various numbers of edges for four points
chosen at random in a unit interval and for four-node
random graphs are given in Table 3.1. For example, there
are twenty possible random graphs with four nodes and
three edges and sixteen of them are connected. However,
four of the connected graphs cannot occur under the one
dimensional hypothesis, and each of the twelve which can
occur have only one-third the probability of occurrance of
one of the unconnected graphs. Whenever there is more
than one possible threshold graph the distributions under
the two null hypotheses are different. The change in the

distribution over threshold graphs affects the
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Table 3.1 Frequency Distributions over (4,N) Graphs

Edges  Graph Probability: Probability:
Random Graph One Dimensional
Null Hypothesis Uniform Hypercube
Null Hypothesis

g 1. 1.

1 1. 1.
2 ) .80 .67
I .20 .33
3 | .60 .50
]x .20 .50

|£ .20 9.

4 N .80 1.

.20 9.

X U
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distribution of the indices of compactness and isolation
defined in Section 2.1.2. The best case distributions of
the indices for three-node subgraphs are shown in Table
3.2. The distributions are different under the two
hypotheses.

This analysis is possible for four points on a line
because the problem reduces to a two-variable problem.
With more points, or points in higher dimensions, the
increase in the number of variables creates an intractable
problem. Some insight into the five point case may be
gained by noting which five-node graphs can occur if the

points are restricted to a line. A theoretical analysis

of the probabilities in this case is very tedious.

The approach taken here is to simulate the random
placement of points in an interval and observe the
counting distribution over the various graphs. This
approach is easily extended to higher dimensions. Table
3.3 shows several counting distributions over the six
possible threshold graphs with five nodes and five edges.
The distributions were obtained by Monte Carlo simulation
of the placement of five points in hypercubes with various
dimensionalities of one through two hundred. For each
dimensionality, 1000 sets of five points were obtained.
For each set of five points the ten interpoint distances
were calculated and the five smallest distances were used

to define a (5,5) threshold graph. The random graph case
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Table 3.2 Distributions of Validity Indices

e: Maximum number of internal edges for a 3-node subset
b: Minimum number of linking edges for a 3-node subset

Edges e b Probability: Probability:
Random Graph One Dimensional
Null Hypothesis Uniform Hypercube

Null Hypothesis

2 1 1 .20 .33
2 ) .80 .67
3 2 1 .80 .50
3 ) .20 .50
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Table 3.3 Counting Distributions over (5,5) Graphs

1 2 3 4 5 6 T
o [ D> N B D> D8
g
Random Graph Null Hypothesis ( Theoretical ) i
238.1 238.1 238.1 119.6 119.0 47.6 2
é
Random Graph Null Hypothesis ( Simulation )
251 233 218 131 118 49 3.76
Uniform Hypercube Null Hypothesis ( Simulation )
D=1 560 87 9 353 ) ) 1395,
D=2 433 177 22 282 79 7 643.
D=3 337 256 45 232 114 16 328.
D =4 365 216 43 245 189 22 378.
D = 10 245 248 98 239 148 22 225,
D = 29 228 284 111 186 150 41 124.
D = 100 211 232 154 206 176 21 139.

D = 200 202 243 159 171 200 25 129.
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was simulated by randomly choosing five of the ten
possible node pairs as edges in the (5,5) threshold graph.

The observed simulation results, {O0(j), j=1,6}, may
be compared with the results expected under the random

graph null hypothesis, {E(j), j=1,6}, using the statistic

c i 2
- ( 0(3) - E(3) )

T =\ '
/ .
-— E(])
j=1

where c=6 is the number of classes. For large sample size

and under the null hypothesis that the observed values are
drawn from the distribution given by the expected values,

T has the chi-squared distribution with five degrees of
freedom. The mean of this distribution is 5.8 and the
variance is 10.6. With one exception, the difference
between the simulation distribution and the distribution
expected under the random graph null hypothesis is
extremely significant, with p << .8681. The exception, as
expected, is the direct simulation of the random graph
case, for which the value T = 3.74 falls between the 40th
and 50th percentiles.

The best case distributions for the indices of
compactness and isolation are easily determined from the
counting distributions over the threshold graphs. The
optimum value for each measure on each possible graph is
determined by inspection. For four-node subsets, graphs

number 1, 2, 3 and 5 in Table 3.3 have a best case
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compactness index of 4 and a best case isolation index of
1, while graph number 4 has best case compactness and
isolation indices of 5 and @, respectively, and graph
number 6 has indices of 4 and 2. The counts for the
various graphs are combined to produce the distributions

for the indices. For example, for the three dimensional

hypercube simulation, the counts for graphs 1, 2, 3 and S
are added to give 752 graphs with a best case isolation
index of 1. The results for four-node subsets are given
in Table 3.4. The statistic, T (with c=3), is again used
to test the goodness-of-fit of the simulation results to
the expected distribution under the random graph null
hypothesis. Under the null hypothesis and for large
samples, T has a chi-squared distribution with two degrees
of freedom, a mean of 2.0 and a variance of 4.0. Again,
with the exception of the random graph simulation, all of
the simulation distributions are significantly different
from the expected distribution under the random graph null
hypothesis. This provides additional support for the
contention that cluster validity measures have

significantly different distributions under the two
hypotheses.

3.3. High Dimensionality in Small Data Sets
An interesting phenomenon appears in Table 3.3. Note

that the distribution continues to change as the
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Table 3.4 Distributions of Validity Indices

The counts are the numbers of (5,5) graphs (see Table 3.3)
with the indicated best case validity indices on 4-node

subsets,

Compactness 5 4 3 T
Isolation ) 1 2 Statistic

Random Graph Null Hypothesis ( Theoretical )

119.9 833.3 47.6

Random Graph Null Hypothesis ( Simulation )
131 820 49 1.46

Uniform Hypercube Null Hypothesis ( Simulation )

D=1 353 647 ) 549.
D=2 282 711 7 276.
D=3 232 752 16 136.
D=4 245 733 22 159.
D =19 239 739 22 145.
D = 20 186 773 41 43.0
D = 100 206 773 21 82.8

D = 200 171 804 25 34.5
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dimensionality of the hypercube is increased beyond four.
This is counter-intuitive. Since any set of five points
in Euclidean space can be used to determine a four
dimensional space in which interpoint distances are
maintained, intuition dictates that the distributions for
all dimensions beyond three should be the same. The
observed changes raise an interesting question concerning
the nature of intrinsic dimensionality, which is developed

below.

3.3.1. Definitions of Intrinsic Dimensionality

The intrinsic dimensionality of a set of points can
be viewed in two ways. The first is that the intrinsic
dimensionality is the order of the lowest dimensional
space in which the data points can be embedded without
changing the rank order of the interpoint distances
[KRU64]. Given a matrix of interpoint distances for a set
of n points, it is always possible to embed the n points
in a space of n-2 dimensions without changing the order of
the interpoint distances. In other words, all possible
orderings of interpoint distances can be achieved in a
space of n-2 dimensions using Euclidean distance as the
proximity measure. Several embedding methods which
~attempt to decrease the dimensionality while maintaining
the order of the interpoint distances, at least locally,

have been proposed [BEN69, CHE74]. Methods based on
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finding principal axes also attempt to find a small number
of dimensions in which most of the information contained
in the interpoint distances is retained. For n points in
a high dimensional Euclidean space, it is always possible
to embed the points in a space of n-1 dimensions while
maintaining the interpoint distances. From this
viewpoint, the intrinsic dimensionality of our five point
data set cannot be larger than four. However, since the
higher dimensional hypercubes do provide different
distributions of graphs, either the viewpoint must be
changed, or some additional information must be permitted
in the description of the data.

A second viewpoint is that intrinsic dimensionality
is the minimum number of variables needed to determine the
spatial position of a point in the data set. This
viewpoint was Bennett's [BEN69] motivation for his
dimension-reducing algorithm. He wanted to find the
number of free system parameters needed to generate a set
of signals. A method for estimating the intrinsic
dimensionality which is not based on finding an embedding
has been proposed by Pettis, Bailey, Jain and Dubes
[PET79]. If data points are known to lie along a curve in
three dimensions, two of the coordinates of a data point
may be determined from the third using the equations which
define the curve. It takes only one variable to specify

the position of a member of this data set, which is
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intrinsically one dimensional. From this viewpoint, our
two hundred dimensional hypercube defines a set of data
points with intrinsic dimensionality of two hundred. Even
though the five points are on a four dimensional
hyperplane, each distinct set of five points establishes a

different hyperplane. Thus the equations which define a

fixed hyperplane cannot be used to determine additional
coordinates of a data point once the four coordinates
which specify its position in the hyperplane are known.
All two hundred coordinates must be given.

The first viewpoint of intrinsic dimensionality is

useful if the problem at hand is to represent the data in

a space of low dimensions. However, valuable information
concerning the data is lost if the ability to represent
the data using few dimensions is mistaken for the ability
to determine the spatial positions of the data points by
specifying only a few variables. If the data are a sample
from some target population, the ability to embed the
sample in a space of low dimensions does not mean the
target population is of low dimensionality. On the other
hand, the number of variables needed to determine the
spatial position of a point in the sample should
accurately represent the dimensionality of the target
population. The second viewpoint is the more useful one

if a basic description of the data is the goal. One
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consequence of large dimensionality for a small number of

points is developed in the next section.

3.3.2. Five Points in a Hypercube

One effect of intrinsic dimensionality higher than
four on a set of five random points is seen in the set of
curves in Figure 3.1. Each curve is computed from one
hundred sets of five points. Each point consists of d
numbers chosen at random from a uniform distribution on
the unit interval. These d numbers are used as the 4
coordinates of a point in a hypercube. The ten
interpoint distances are calculated and the ratio of the
smallest to the largest is found. Graphed are the
empirical cumulative distribution functions of this
random variable. As the dimensionality increases the
ratio becomes closer to one. 1In other words, it becomes
more likely that all ten interpoint distances are close
to the longest interpoint distance. As the
dimensionality is increased to extremely large values,
the distribution of the five random points approaches
the state in which all interpoint distances are
approximately the same.

Bennett [BEN69] notes a similar result for the
distribution of points in a unit hypersphere. As the
dimensionality of the hypersphere increases the

distribution of interpoint distances approaches a delta
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Cumulative distributions of the ratio of shortest to
longest interpoint distances for 100 sets of five random

points in a d-dimensional hypercube.

Figure 3.1. Interpoint Distance Ratios for Five Points
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function located at square root (2.8). That is, almost
all pairs of data points are the same distance apart.

The distribution of interpoint distances depends on
the underlying distribution of the data points. Since all
interpoint distances are approximately equal for both the
uniform hypersphere and the uniform hypercube, we
conjecture that any uniform distribution bounded by a
convex hull will exhibit the same effect. We also
conjecture that the same effect occurs for the |
multidimensional Gaussian distribution, and perhaps for
any distribution which is unimodal.

When all the interpoint distances are approximately
the same, restrictions on the occurrence of some threshold
graphs, which are so evident in the one dimensional
hypercube case, disappear. The lengths of the edges are
randomly ordered and all possible threshold graphs are
equally likely. Thus, at extremely large
dimensionalities, the uniform hypercube null hypothesis
produces distributions over threshold graphs which are
approximately equivalent to those under the random graph
null hypothesis. If the distributions were equal at very
low dimensionality, then validity tests based on the
random graph null hypothesis could be applied in

situations where a null hypothesis based on random pattern

distributions is appropriate.

The simulation reported in this section indicates
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that in the asymptotic case of very high dimensionality
the uniform hypercube null hypothesis and the random graph
null hypothesié produce identical distributions over
threshold graphs. This asymptotic identity does not apply
in practical situations, where the dimensionality is
typically much less than 108. For data sets of five
points it is apparent that the random graph null
hypothesis should not be used to check the validity of
clusters in a data set for which a uniform distribution of
points in a hypercube of low dimensionality is an

appropriate null hypothesis.

3.4. Data Sets of Medium Size

The evidence concerning data sets with four and five
points presented in Section 3.2, while certainly
suggestive, does not rule out the possibility that the
random graph and uniform hypercube null hypotheses may,
for larger data sets, be more or less equivalent with
respect to the indices and measures of validity defined in
Chapter 2. The following simulation experiments are
designed to shed some light on this question. We simulate
the creation of random graphs under the random graph and
uniform hypercube null hypotheses and find best case
distributions for the indices of compactness and isolation
defined in Chapter 2. We must resort to simulation

because calculation of the needed distributions under the
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uniform hypercube null hypothesis by analytic methods is
intractable for more than four points. The inspection
technique used in Section 3.2 to find the best case must
also be abandoned, both because the number of possible
graphs increases rapidly with the number of nodes and

because finding the best case by inspection becomes

impossible for large graphs.

3.4.1. Simulation of the Distributions

The simulations which find empirical best case
distributions for the uniform hypercube model are
performed as follows. Choose a set of n points from a
uniform distribution over a d-dimensional hypercube and
determine the N closest pairs of points. These N pairs
define an (n,N) threshold graph. Find the optimal values
of the indices of compactness and isolation over all
k-node subsets in this threshold graph. Record the
indices. Repeating this many times will build up the
probability distributions for the indices.

Bias is introduced into the distributions because it
is not computationally possible to find the optimal values
for the validity indices over all k-node subsets in each
threshold graph. The huge number of k-node subsets in a
graph of n nodes, (n:k), precludes an exhaustive search.
The simulations:-reported here use a gradient ascent

technique to find subsets of nodes with good values for
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each index of validity. The technique is explained in the
Appendix.

Simulations which find empirical best case
distributions for the random graph model are run in a
similar fashion. For these simulations the threshold
graph is created by randomly choosing as edges N pairs of
points from the n:2 equally likely possible pairs.
Simulation of the random graph model can be used to check
the accuracy of the technique for finding the best case
k-node subset and the accuracy of the upper bound given by
the theory of Chapter 2. The empirical best case
distributions for the random graph model will match the
upper bounds on the best case distributions, developed in
Sections 2.2.2 and 2.2.3 under the random graph null
hypothesis, only if both are accurate.

Simulations to find the best case distributions for
the cluster validity indices were run for a variety of
graph sizes, ratios of edges to node pairs, subset sizes
and dimensionalities. The graphs are of medium size, the
smallest having 20 nodes and the largest, 46. The 40 node

size was chosen because the data studied in Chapter 4

consists of 40 samples. The first set of simulations was
used to find the shapes of the empirical distributions of
the validity indices. The main feature of the first set

is the large number of random data sets used for each run

of the simulation. Best case distributions for the
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compactness and isolation indices were obtained for graphs

with 40 nodes and 156 edges, subsets with 8 nodes and

dimensionalities of one and five for the uniform hypercube
model. The same graph and subset sizes were used to find
best case distributions for the random graph model. The
156-edge case was chosen because both the compactness and
isolation indices have extended ranges for this edge
number. Each simulation was repeated for 1060 random data
sets., Histograms of the results are given in Figures
3.2a,b. We note that the random graph and one dimensional
histograms do not overlap for either index. Gaussian
distributions with the same mean and variance as each
distribution are also plotted in Figures 3.2a,b. The
histograms appear Gaussian in shape, except for the one
dimensional compactness histogram which is strongly
affected by the upper limit of 28 on the compactness
index. With more edges in the graph, distributions for
the compactness index are strongly affected by the upper
limit for dimensionalities higher than one. With fewer
edges in the graph, distributions for the isolation index
are affected by the lower limit of 9.

The main feature of the second set of simulations is
the large assortment of different dimensionalities used.
Runs were made for the uniform hypercube model with
dimensionalities of 1, 2, 3, 5, 10 and 20 and for the

random graph model. Simulation runs of 25 data sets each
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were made for threshold graphs of 40 nodes with 8-node
subsets and for threshold graphs of 20 nodes with 4-node
subsets. Each run was repeated with ten and twenty
percent of the node pairs present as edges. Figures
3.3a,b are plots of the means of the best case compactness
and isolation distributions for the various runs. Figures
3.4a,b show the empirical cumulative distribution
functions for the (40,156) threshold graphs for the
various runs. The upper bounds on the cumulative
distributions derived in Sections 2.2.2 and 2.2.3 under
the random graph null hypothesis are also plotted.

The third set of simulations uses the random graph
model, and can be used to check the accuracy of the
theoretical upper bounds and the best case approximation
algorithm in the simulation. Plots of the empirical
cumulative best case distributions of the compactness and
isolation indices are presented in Figures 3.5a,b. Each
plot represents 250 random data sets of 25 nodes. The
distributions were determined for a 6-node cluster in
graphs with 25, 58, 1066, and 200 edges. Also plotted are
the theoretical upper bounds on the best case
distributions calculated from the expressions in Sections
2.2.2 and 2.2.3.

The results of the fourth set of simulations can be
used to evaluate the cluster, in Figure 2.1, used as the

example of Chapter 2. This simulation uses the two
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dimensional uniform hypercube model with 250 data sets for
each run. Runs were made for a data set of 25 nodes and a
6-node cluster with 25, 50, 75, 106 and 200 edges. Table
3.5 lists the numbers of linking and internal edges
observed in the profiles of Figure 2.3 along with measures
Il and Cl, the calculated upper bounds on the
probabilities under the random graph null hypothesis, and
the equivalent measures obtained from this simulation of
the best case distributions under the two dimensional

uniform hypercube null hypothesis.

3.4.2. Evaluation of the Results

We draw several observations from the results.
First, the first and second sets of simulations, Figures
3.2, 3.3 and 3.4, show that the effect of low
dimensionality is to shift the distributions of the
indices of compactness and isolation away from the
distributions under the random graph null hypothesis.
This effect was observed in every simulation which was
run. The direction of the shift, to higher compactness
values and lower isolation values, is such that tests
based on the random graph null hypothesis will give
results which indicate that almost any set of points
chosen at random from a uniform distribution in a

hypercube of low dimensionality contains "valid" clusters.
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Table 3.5 Evaluation of the Cluster of Figure 2.1

Measure 1: Measure 1:
Edges Observed Random Graph Two Dimensional
Index (Theoretical Uniform Hypercube
Upper Bound) (Empirical)
Compactness Cl "Ccl1"
25 12 < 1.00E-6 21/250 = .084
50 15 < 1.00E-6 62/250 = .248
75 15 5.3 E-5 232/256 = ,928
100 15 5.84E-3 250/250 = 1.000
200 15 > 1.00 250/250 = 1.000
Isolation Il "I1"
25 1 > 1.00 250/250 = 1.009
50 9 > 1.00 250/2506 = 1.000
75 17 > 1.00 250/250 = 1.000
100 26 > 1.00 250/250 = 1.000
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If the bounds based on random graph theory are used to
test the significance of clusters, too many significantly
unusual values will be found.

As Figure 3.4 illustrates, the upper bounds developed
in Chapter 2 do not bound the cumulative distributions of
validity measures for points chosen from a hypercube of
low dimensionality. For the lower dimensionalities under
the uniform hypercube model, the entire set of indices
obtained by simulation lies beyond the .01 probability
level in the left tail of the upper bound.

The third set of simulations, Figure 3.5, shows that
the cumulative distribution functions of the validity
indices for the random graph model are close to the
calculated upper bounds for the left tail of the
cumulative probability. The discrepancies seen in Figure
3.5 are greatest for the poorer values of the indices, the
situation in which the approximation to the optimum values
of the validity indices is most likely to be inaccurate.
Thus the theoretical upper bounds appear to be fairly
close to the actual values of the cumulative
probabilities, supporting the conclusions concerning the
accuracy of the bounds reached in Section 2.3.

Finally, the two dimensional 25-node example of
Sections 2.1.3 and 2.2.4 can be reevaluated using the
results of the fourth simulation given in Table 3.5. The

results for 25 and 58 edges cover the region in the
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probability profiles (Figure 2.3) for which the measure Cl
takes on its lowest values. The best case compactness
measures under the two dimensional uniform hypercube null
hypothesis are much larger than those found under the
random graph null hypothesis. Under the random graph null
hypothesis, the probability profiles of Figure 2.3,
discussed in Section 2.2.4, indicate that the six-point
subset is significantly compact at 25, 58 and 75 edges.
Under the two dimensional uniform hypercube null
hypothesis, the compactness measure is only low for 25
edges, and at p=.084 it is not significantly low. The
best case measures for the observed isolation index remain
high. Since the best case compactness measure and the
best case isolation measure are both high, we do not need
to look at the fixed index measures. Using the reasonable
null hypothesis of points chosen at random from a uniform
distribution in a unit square, this six-point subset is

neither compact nor isolated.

3.5. Conclusions

The cumulative distributions of the two validity
indices under the uniform hypercube null hypothesis do not
match those obtained under the random graph null
hypothesis. Figures 3.4a,b illustrate the fact that the
upper bounds developed in Chapter 2 do not bound the

distributions of the validity indices for points chosen
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dimensionality. Thus, the probability profiles, developed
in Section 2.3 using the random graph null hypothesis,
should not be used to validate clusters if the patterns
can be thought of as a set of points in Euclidean space.
This is shown in Section 3.2 for small data sets of four
and five points and in Section 3.4 for data sets of medium
size, 20 to 40 points. Even if the space has
dimensionality as high as 20, the structure imposed by
embedding a moderate number of points in space shifts the
distributions of these validity indices away from the
distributions given by random graph theory.

The measures defined using random graph theory do
provide a convenient base for evaluation of clusters drawn
from a fixed experiment. The dimensionality of the data
will be consistent from one cluster to another. Although
the absolute significance of the measures will not be
known, tentative conclusions regarding the relative
validity of different clusters can still be drawn from the
probability profiles. Experience gained on one data set
can be carried over to other data sets representing the

same type of data, since the probability structure of the

measure calculations will account for changes in cluster

size and for changes in the size of the data set.



4. Analysis of a Data Set

This chapter brings together the concepts developed
in Chapters 2 and 3 in the analysis of a data set. The
data set is clustered using several hierarchical
clustering algorithms. The intrinsic dimensionality of
the data set is determined using two different methods.
The clustering tendency is tested. The validities of
several clusters are determined using the lifetime measure

of Ling and the profiles developed in Chapter 2.

4,1. Description of the Data

The data were obtained from Professor Oscar Tosi of
the Department of Audiology and Speech Science at Michigan
State University and consist of 40 samples of speech, 10
samples each from four different male subjects. Each
subject read five different pieces of material while being
recorded in two ways. The sound was recorded directly
and, simultaneously, was transmitted over telephone lines
and recorded. For each subject we have five direct and
five phone samples. The recordings were then translated
into choral speech [TOS75] and Fourier analyzed to
determine the energy in each of 20848 frequency bands.

Each sample was normalized so that the maximum feature

value for that sample is 1.060. All 2048 features were

used to calculate a proximity matrix with Manhattan

distance, viz:

93



94

2048

d(i,j) = > ABS ( F(i,m) - F(j,m) ) ,

m=1
where F(i,m) is the m-th feature for the i-th sample. The
data set for this study consists of the resulting 48 by 40

dissimilarity matrix.

4.2. Intrinsic Dimensionality of the Data Set

Two different methods were used to determine the
intrinsic dimensionality of the data set. Kruskal's
[KRU64] multidimensional scaling program (MDSCAL) was used
to find a configuration of 40 points in a low dimensional
space which preserved the order of the proximities. The
two dimensional MDSCAL configuration is shown in Figure
4.1. The marked clusters will be discussed in Section
4.5. The ten samples for each subject are numbered
consecutively with the direct samples first. For example,
point 22 is the second direct sample for subject 3. The
stress for this configuration, which is a measure of the
amount of distortion introduced by embedding the data in a
space of two dimensions, is .140 so we conclude that
Figure 4.1 is a good representation of the proximity
matrix.

The second method used to determine the intrinsic
dimensionality of the data set is due to Pettis, Bailey,

Jain and Dubes [PET79]. This method assumes that points
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are randomly chosen from a locally uniform distribution
and uses nearest neighbor distances to estimate the
dimensionality of the distribution. Using the two nearest
and four nearest neighbors of each point, the estimates of
the dimensionality are 38.6 and 31.4. With more neighbors
the estimates become much smaller, dropping to 14.5 for
sixteen neighbors. Since we have reason to believe this
data set is organized into eight clusters of five points
each, use of more than four nearest neighbors should cause
the clustering structure to interfere with the estimate of
the dimensionality. We therefore assume that the
intrinisic dimensionality is best estimated by the nearest
two to four neighbors.

The great discrepancy between the estimates of the
intrinsic dimensionality by these two methods may be due
to several factors. The methods differ in their
assumptions regarding the scale of the proximities, which
may affect the results. The MDSCAL program assumes only
ordinal scale for the proximities. The Pettis technique,
on the other hand, assumes the proximities have ratio
scale.

A second interpretation of the discrepancy is that
the two techniques are finding different things. The
MDSCAL program searches for a configuration of points in a
space of low dimensionality which is an accurate

representation of the order of the proximities. The
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Pettis technique estimates the number of variables
necessary to specify the position of a data point in a
local region. In the following analysis of cluster
validity we assume the high value of the estimate of the
intrinsic dimensionality found by the Pettis technique is
correct. We further assume that the high intrinsic
dimensionality permits use of the random graph null
hypothesis as our hypothesis of "no clustering.”

As Figure 3.3 shows, even with a dimensionality of 30
to 40, the distributions of the indices of compactness and
isolation obtained using the Uniform Hypercube model are
shifted away from those obtained using the Random Graph
model. 1In the following analysis, the effects of this
shift are partially offset by requiring rather low
significance levels, 10**(-3) to 18**(-5), for our
judgement of cluster validity. An alternative procedure
would be to run the simulations for, say, a 38 dimensional
Uniform Hypercube model. Since the simulation results
would be needed for many cluster sizes and many ranks for
each cluster size, the computing requirement is

impractical.

4.3. Hierarchical Clusters of the Data Set

Three different clustering techniques were used to
study the data set. The single link and complete link

cluster hierarchies are shown in Figures 4.2 and 4.3.
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Several groupings of five points representing single
speakers are evident in the results. A clustering method
defined by Ling [LIN72] was also applied to the proximity
matrix. This method requires that each cluster be a

connected subgraph with minimum degree k. The k =1
clusters are identical to single link clusters. For
values of k greater than one, k-clusters require a
stronger internal connectedness than do single link
clusters. The k-cluster hierarchy for k=4 is shown in
Figure 4.4. Again, meaningful groupings of five points
are evident in the results.

In addition to the striking appearance of five-point
clusters in several of the clustering results, we note the
split into two clusters of 20 points each which occurs in
the single link hierarchy. An even split of this type is
unusual when using the single link clustering method. The
single link method tends to form one large cluster which
then gradually absorbs the remaining points singly or in
small clusters [BAK75]. In the next two sections tests of
cluster validity based on the random graph null hypothesis

will be applied to many of these clusters.

4.4. Connected Graph and Cluster Lifetime Tests
The first step in an analysis of the validity of

clusters is a test of the clustering tendency of the data

set, A statistic which can be used for this test is the
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number of edges, V, required to form a connected graph.

For this data set, V = 223. The tables published by Ling
and Killough [LIN76] for the cumulative probability of
this siatistic under the random graph null hypothesis
yield Prob ( V <= 145 ) >= 08.99.

There is less than one chance in one hundred that a
40-node graph would require more than 145 edges to become
connected under the random graph null hypothesis.
Expressions given by Ling and Killough may be used to
calculate the probability that a 40-node random graph with
223 edges is connected, since only two terms contribute to
the required sums. The result is

Prob ( V <= 223 ) = 0.999950.
We conclude that the data set is not a random data set
under the random graph null hypothesis.

The validity of single link clusters may be tested
using the cluster lifetime statistic developed by Ling
[LIN73a]. Table 4.1 lists the number of nodes, rank at
formation, value 1 of the random variable L (cluster
lifetime) and Prob ( L >= 1 ) under the random graph null
hypothesis for 26 single link clusters. The composition
of each cluster is listed in Table 4.2. Twelve of the
clusters, marked "*" in Table 4.1, have Prob ( L >= 1 ) <=
#.65 and, thus, are "real" clusters by this test. Several
of these clusters are identified in Figure 4.1.

As expected, subclusters of five samples from single
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Table 4.1 Single Link Cluster Lifetime Test

Cluster Size Birth Lifetime Prob (L>=1)

Number Rank 1l
* 2 20 144 79 small
* 3 20 159 73 small
* 4 19 82 62 small
* 6 16 41 41 small
* 8 15 110 49 small
13 11 39 2 .57
* 19 19 60 58 small
21 9 32 7 .GEE-l'
24 5 57 3 .57
* 25 5 19 22 .38E-2
* 26 5 55 55 .17E-6
* 28 5 31 119 small
* 30 ) 24 36 .78E-4
31 5 29 3 .59
32 4 29 12 .98E-1
34 4 51 6 .33
35 4 12 7 .29
37 4 50 5 .41
38 4 30 1 1.00
* 39 4 5 24 .82E-2
40 4 21 3 .66
41 3 19 19 .24
42 3 35 16 .87E-1
43 3 34 16 .87E-1
* 44 3 38 44 .75E-3
45 3 16 5 .53

Cluster Number refers to clusters listed in Table 4.2.

small indicates the probability is less than
10 ** (-14@).

.41E-2 indicates the probability is .41 x 10 ** (-2).



Table 4.2

The entries
profiles of

Cluster
Number Size
1 24
2 20
3 20
4 19
5 18
6 16
7 15
8 15
9 14
10 14
11 12
12 11
13 11
14 10
15 10
16 10
17 19
18 198
19 10
20 19
21 9
22 7
23 5
24 5
25 5
26 5
27 5
28 5
29 5
30 5
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Validity Measures of Potential Clusters

are the smallest values for C1 and Il in the

potential clusters from the Tosi data.

Samples in the Cluster

5-10,16-20,23-24,26-31,36-40
1-5,11-15,21-25,31-35
6-19,16-20,26-30,36-40
1-4,11-15,21-25,31-35
1-4,11-15,21-25,32-35

1-4,11-15,21-22,25,32-35
1,3-4,11-15,21-22,25,32,35
6-10,16-20,36-40
5-10,23-24,26-31
6-10,16-19,36-40

11-15,21-22,25,32-35
1-4,11-15,21-22
1-4,21-22,25,32-35
1-10

11-20

21-30

31-40
6-10,26-30
6-10,36-40
16-20,36-40

1-4,25,32-35
11-15,21-22
1-5

6-10

11-15

16-240
21-25
26-30
31-35
36-490

Cl

Y 63E-1
small
.27E- 8
small
small

small
small
small

.19E- 3
.6 E-14

small
small

Il

small
small
small
small
small

small
small
small

small
small

.12E- 4
small
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Table 4.2 ( Continued )

Cluster

Number Size

31
32
33
34
35

small

W &b e e

WwWw www

Samples in the Cluster Cl
25,32-35 .50E-
1-4 .47E-
5'23-24'31 1-0
6-8,10 1.0
11-12,14-15 .11E-
16-19 .36
16-18,20 1.0
26-28,30 1.0
32-35 .18E-
36-38,40 «39E-
1,3-4 .14
6-8 1.0
16-18 1.0
36-37,490 .14

indicates the smallest value in the
is less than 10 ** (-15)

.44E- 2 indicates the smallest value in the

is .44 x 10 ** (-2)

Il
4 1.0
2 1.9
.89E-
l.o
2 1.0
.12E-
nng-
o7ﬂE-
3 1.0
1 1.0
1.0
1.
.38
0443-
l.a
profile
profile

=W
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subjects are important components of the data set. Four
of the twelve clusters with significantly long lifetimes
have five points and four others have multiples of five
points. Furthermore, these eight clusters all consist of
combinations of complete five point groupings, where each
five point grouping contains all the samples from a single
speaker using one mode of recording. The two twenty-point
clusters consist of the direct and phone recording mode

samples.

4.5. Cluster Profiles

Raw profiles, sequences of the compactness and
isolation indices, and probability profiles, sequences of
the four measures I1, 12, Cl and C2, were obtained for all
single link and complete link clusters with four or more
nodes and for all clusters which appeared in more than one
k-clustering. In addition, profiles were calculated for
all five-point subsets corresponding to a single subject
and single mode of recording, and all ten-point subsets
corresponding to a single subject. The indices and
measures were calculated for every tenth rank from 14 to
780.

The probability profiles for four of the five-point
subsets for a single subject and single recording mode are
shown in Figure 4.5. These four subsets are circled in

Figure 4.1. The profiles vary greatly from one subset to
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the next. Cluster 25, points 11-15, shows good evidence
of compactness, with measure Cl below .801 for ranks 40 to
160. The number of linking edges is not unusually low by
measure I1, but I2 is below .0801 for ranks 48 to 70, so
this subset is compact and for a subset this compact, it
is somewhat isolated. Cluster 26, points 16-20, exhibits
strong isolation, with measure Il below .001 for ranks 80
to 170, but weak compactness by measure Cl. Since measure
C2 is below .901 for ranks 100 to 160, this subset is
isolated, and compact for a subset this isolated.

Cluster 27, points 21-25, is neither compact nor
isolated. Since measures Il and Cl are never small, we do
not consider measures I2 or C2. Cluster 28, points 26-34,
has lower isolation measure Il than cluster 26. In
addition, this cluster also has several low values for the
compactness measure Cl, but the evidence for compactness
is not as strong as it was for cluster 25. The
compactness measure C2 is quite low, so the cluster is
compact among clusters with the same isolation. Of these
four clusters, number 25 is the most compact and number 28
is the most isolated. Cluster 26 is also isolated, while
cluster 27 is neither compact nor isolated.

Inspection of the two dimensional configuration in
Figure 4.1 provides support for the conclusions reached by
analyzing the probability profiles. An analysis of the

single link and complete link hierarchies ragarding the
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four clusters also supports the conclusions reached above.

Clusters 25, 26 and 28 are both single and complete link
clusters. Cluster 27 is neither a single link nor a
complete link cluster, which supports the conclusion that
it is neither compact nor isolated. If we use rank at
birth as a measure of compactness, Table 4.1 shows that
cluster 25 is the most compact and cluster 26 is the least
compact, with cluster 28 falling in between. If we use
the lifetime as a measure of isolation, then cluster 28 is
the most isolated, cluster 25 is the least isolated and
cluster 26 falls in between.

From our knowledge of the data collection process, we
might expect the data set to be organized as two clusters
of twenty points each (telephone and direct) or as four
clusters of ten points each (by speaker). The profiles
for the four‘ﬁg;ropriate ten-point clusters, clusters 14,
15, 16 and 17 in Table 4.2, and the two appropriate
twenty-point clusters, clusters 2 and 3, are given in
Pigures 4.6a,b. It is immediately apparent that the
subsets of ten points in Figure 4.6a do not form valid
clusters. None of them has a compactness measure Cl below
#.1 and only cluster 15 has an isolation measure Il below
P.01 so none of these subsets are compact or isolated.
Figure 4.6b shows that clusters 2 and 3 are compact and
isolated. The isolation measures Il are below 18**-15 for

a wide range of ranks. The compactness measure Cl is



oHNcuMO=E 0got

- 101

110

- o._a.n,T
-5 I1 \01

Points 1-10 Cluster 14

0+

- /0-

‘ /baRaI'lkzbo 300 ' 400 500

. | ~I1 \Ci

Points 11-20 Cluster 15

1 1 i ] 1 1 1 i ] ]

0
~ 5. \11 \01
-
Points 21-30 Cluster 16
Y ' v ' v v v ' b(’
IOORankZOO 300 400 S
0
-5 \II \Cl

Points 31-40 Cluster 17

Figure 4.6a. Probability Profiles of Clusters 14-17




111

Cluster 2 (direct)

0 -
- - C1
~/0- ' o c1
—,5 - v v v - v - Yo
_ 0 — Cluster 3 (telephone)
=9 I1
- =/0-
-/ 5 r r r
| 100

oRcumoO= (ot

c1~

200 300 400 500
Rank ‘ .

~

_Figure 4.6v. Probability Profiles of Clusters 2,3



112

better for cluster 2 (direct recording), less than 18**-15
for a wide range ranks, but is also very good for cluster
3 (telephone), with a low value below 10**-8. We conclude
that the data may be thought of as organized into two
clusters, ( 2 and 3 ), while the four clusters, ( 14 -

17 ), are not valid.

Profiles were obtained for all the 45 potential
clusters listed in Table 4.2. Table 4.2 also lists the
lowest value observed for the compactness measure Cl and
for the isolation measure I1l. Table 4.3 lists the
clusters with more than four nodes which appear as single
link clusters, as complete link clusters and as k-clusters
for more than one k value. The clusters which have a
compactness measure Cl (or C2) less than 18**-5, and those
which have an isolation measure Il (or I2) less than
1p**-5 are marked.

With three exceptions, all the clusters with 18 or
more points are both compact and isolated at the 1@**-5
level. Clusters 9 and 18 are isolated, and compact among
clusters of their isolation. Cluster 11 is compact, and
isolated among clusters of its compactness. Only three
clusters fail to be either compact or isolated by the best
case measures. Of these, the most interesting is cluster
38, identified in Figure 4.1, which appears as a single
link and complete link cluster and as a k-cluster for k =

2 and 3. This cluster is somewhat compact, with measure
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Table 4.3 Validity of Hierarchical Clusters

Single Link Clusters

Cluster Size Validity Cluster Size Validity
Number I1 C1 I2 C2 Number I1 C1 12 C2
2 20 X X 21 9 X X
3 20 X X 24 5 X X

4 19 X X 25 5 X

6 16 X X 26 5 X X
8 15 X X 28 5 X X
13 11 X X 30 5 X X
19 19 X X 31 5 X

Complete Link Clusters

Cluster Size Validity Cluster Size Validity
Number I1 Cl1 12 C2 Number I1 Cl I2 C2
1 24 X X 24 5 X X
6 16 X X 25 5 X
9 14 X X 26 5 X X
12 11 X X 28 5 X X
18 19 X X 30 5 X X
20 18 X X 31 5 X
22 7 X

k-Clusters, for more than one k of k =1, 2, 3, 4 and 7

Cluster Size Validity Cluster Size Validity
Number I1 C1 12 C2 Number I1 C1 12 C2
2 20 X X 10 14 X X
3 20 X X 11 12 X X
4 19 X X 19 10 X X
5 18 X X 25 5 X
6 16 X X 28 5 X X
7 15 X X 30 5 X X
8 15 X X

X indicates the measure has a minimum value
less than 10 ** (-5).
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Cl below 18**-4, but the isolation measure Il never falls
below 10**-3, The probability of a single link cluster
lifetime as good as the observed value of 36 with a
formation rank of 24 is .000078, which indicates that the
cluster is isolated. Also, the isolation measure I2 is
below 18**-5, If we are willing to accept a cluster with
Cl below 10**-4 as compact, then we also conclude that
cluster 30 is isolated among clusters with the same
compactness index.

Clusters 22 and 25, identified in Figure 4.1, are
compact, but are not isolated at the 10**-5 level, even
among clusters of their compactness. Cluster 25 is a
single link cluster with lifetime 1 = 22 and
Prob ( L >= 1 ) = ,0038 under the random graph null
hypothesis. From the probability profiles we conclude
that this low value is due to the compactness of the
cluster, rather than its isolation. It is interesting to
compare cluster 25 with another single link cluster,
number 21, also identified in Figure 4.1. The lifetime of
cluster 21, 1 = 7 with Prob ( L >= 1 ) = .060, is much
shorter than the lifetime of cluster 25, yet the validity
measures Cl and Il are both lower for cluster 21 than for
cluster 25. The probability profiles provide information
on the interaction of the cluster with other points in the

data set at many different ranks, and thus may provide a
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much different view of the cluster than a test which

observes only a limited range of ranks.

4.6. Conclusions

The probability profiles show that almost all the
potential clusters identified by the three clustering
methods used here are significantly compact and isolated.
This data set is well described by clusters. It is far
from being a random data set under the random graph null
hypothesis.

Aside from statements regarding the birth and life
times of the clusters, which are useful only for
comparisons among clusters, the only tools available in
the literature for testing the validity of clusters
derived from proximity matrices are the single link
lifetime test of Ling [LIN73a] and the complete 1link
extraneous edges test of Baker and Hubert [BAK76]. The
extraneous edges test cannot be applied to a 40-node data
set since the required Monte Carlo runs for 40-node data
have not been published and are time consuming to obtain.
The single link cluster lifetime test is inferior to the
use of cluster profiles in two ways. First, cluster
profiles yield unique information about the compactness
and isolation of a cluster, while the lifetime test
combines the two requirements into a single test. Second,

cluster profiles may be applied to any subset, including
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k-clusters and complete link clusters, while the lifetime
test is only applicable to single link clusters.

Another conclusion must be considered and cannot be
easily dismissed. If the intrinisic dimensionality of the
data set is two, as suggested by the results of the MDSCAL
program, then the results in Chapter 3 lead to the
conclusion that probability bounds developed under the
random graph null hypothesis are not appropriate and will
lead to gross underestimates of the probability that a
validity index will have a value as good as the observed
value., Even if the intrinsic dimensionality is near 38,
the distributions developed under the random graph null
hypothesis may not give a true picture of the validity of
the clusters. If the intrinsic dimensionality is two, the
distributions used in the cluster profiles must be
determined by simulation under an appropriate
two dimensional null hypothesis. Since no other test is
available, this simulation is necessary if validity tests
are to be applied to clusters created by methods other
than single link or complete link clustering. We must
join with Ling and Matula in warning of the danger
inherent in applying tests based on the random graph null
hypothesis to situations where the assumptions of the

hypothesis may be violated.



5. Conclusion
The main thrust of this thesis is a study of the
distribution of two measures of cluster validity under two

null hypotheses. Section 5.1 summarizes the results and

cites the main contributions of the thesis and Section 5.2

suggests areas for future work.

5.1. Summary of Results

The clustering situation under consideration is that
in which the information of interest is a matrix of
proximities with ordinal scale. This situation often
occurs in psychometric and sociometric data. Chapter 1
presents necessary definitions and a review of the
literature on cluster validity with emphasis on proximity
matrices with ordinal scale. The ordinal information in
such a proximity matrix may be represented as a sequence
of threshold graphs. This sequence of threshold graphs is
used to develop Cluster Profiles, a new tool for the
analysis of cluster validity. The probability
distributions which are needed for the computation of

Cluster Profiles are investigated for the Random Graph

Null Hypothsis and for the Uniform Hypercube Null
Hypothesis.

The concept of a Cluster Profile, which graphically
represents the interaction of a proposed cluster with the

environment of points in which it occurs, is developed in

117
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Chapter 2. This concept has not previously been applied
to cluster validity studies and allows a more detailed
analysis of the compactness and isolation of a cluster
than previous cluster testing techniques. The Cluster
Profile concept requires indices of cluster validity which
may be applied to any subset of points in a threshold
graph. Two indices which meet this requirement, the
number of internal edges for compactness and the number of
linking edges for isolation, are developed in Section
2.1.2.

A contribution of this thesis is the discussion of
the classification and utility of various choices for the
sample population of clusters in Section 2.2.1. We argue
that the best case distribution is the most useful
distribution for tests of cluster validity, because it is
applicable to any subset of points, and thus to a cluster
found by any clustering method, and because it forms an
upper bound on the distribution of any sample population
which includes one subset from each random graph. Upper
bounds on the cumulative distribution function for the
number of internal and linking edges using the best case
distribution are derived in Sections 2.2.2 and 2.2.3. The
derivation of these bounds and the demonstration of their
asymptotic behavior in the special case where all internal

edges are present, given in Section 2.3, are the main

contributions of this thesis. These bounds are used to
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calculate two of the validity measures which form the
Probability Profile. Two other validity measures, based
on fixed validity index distributions, are also developed
in Section 2.2.2 and 2.2.3.

Chapter 3 presents a study of the cumulative
distributions of the number of internal and linking edges
under the Uniform Hypercube Null Hypothesis. The results
demonstrate that distributions derived under the Random
Graph Null Hypothesis lead to false conclusions with data
sets created under the Uniform Hypercube Null Hypothesis.
Although several authors have warned against using results
based on the Random Graph Null Hypothesis to test the
validity of clusters, this is the first explicit
demonstration of the extent to which an alternative null
hypothesis can affect the distributions. Theoretical
distributions under the Uniform Hypercube Null Hypothesis
are presented for four points in one dimension, and
distributions created by Monte Carlo simulation of the
creation of data sets are presented for several medium-
sized data sets.

An explicit effect of high dimensionality on the
distribution of interpoint distances for a set of five
points chosen from a uniform distribution in a hypercube
is shown in Section 3.2. This effect has not been
reported in the literature and sheds light on a subtle

issue in intrinsic dimensionality. Two viewpoints of the
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meaning of intrinsic dimensionality are discussed and it

is shown that the viewpoint which assumes the intrinsic
dimensionality to be the number of free parameters which
define the allowed positions of the points in space leads
to important information on the structure of the
underlying population which is suppressed by the
alternative viewpoint.

In Chapter 4 Cluster Profiles are used to determine
the validity of several potential clusters in a data set
consisting of 40 samples of choral speech. We show that

for many of the potential clusters, no test of cluster

validity in the literature can be applied. The single
link cluster lifetime test of Ling [LIN73a] does not apply
to subsets of points which are not single link clusters,
and the extraneous edges test of Baker and Hubert [BAK76]
does not apply to subsets which are not complete link
clusters. Furthermore, the distributions required for
application of the extraneous edges test are not readily
available for 40-point data sets. The Cluster Profiles
show that most of the large clusters found by the single
link, complete link and k-clustering methods are unusually
compact and isolated, and thus we conclude that these
clusters are valid, with a proviso concerning intrinsic
dimensionality. The Cluster Profiles show that one
natural way of organizing this data set into clusters

yields valid clusters, while another does not.
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A note of warning is emphasized in Chapters 3 and 4,

namely, tools based on the Random Graph Null Hypothesis,
such as Cluster Profiles, which test the validity of

clusters, must be applied with caution. If the data are
patterns in a space, the distributions derived using the
Random Graph Null Hypothesis are not applicable, and the

results will overrate the validity of the clusters.

5.2. Areas of Future Work

The best case distributions used in this thesis
select the subset of nodes in each random graph which has
the optimum validity index. Distributions for the
isolation and compactness indices are developed
separately. Best case distributions for subsets which
satisfy a combination of requirements of compactness and
isolation should be developed. Other indices of
compactness and isolation and their best case
distributions should also be developed.

The validity measures Cl and Il are upper bounds on
the best case distributions of the compactness and
isolation indices under the random graph null hypothesis.
The development of exact expressions of these
distributions is an area for future work. Along the same
line, development of an algorithm for determining the
optimal compactness and isolation indices for a k-node

subset of a graph would improve the simulation used in
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this thesis.

The distributions of graph-theory-based tests of
cluster validity other than those defined here should be
investigated under the Uniform Hypercube Null Hypothesis.
The goal of such studies is to find computationally
inexpensive tests based on the Random Graph Null
Hypothesis, which are robust enough to be applicable in
situations where the Uniform Hypercube Null Hypothesis is
appropriate. 1In particular, the distribution of Ling's
single link cluster lifetime statistic should be
investigated.

In this thesis two versions of a "no clustering” null
hypothesis are investigated. The development of tests for
rejection of these null hypotheses are an important step
in the study of cluster validity. A further step is to
investigate alternatives to the null hypotheses. What are
the standard hypotheses of "clustering" which are to be
accepted when a "no clustering” null hypothesis is
rejected? Definition and classification of "clustering"
hypotheses is an important area of future work.

The distribution of interpoint distances for a set of
points chosen at random from a uniform distribution in a
hypercube is studied in this thesis. The interpoint
distance distribution for other distributions of the

points, such at the multidimensional Gaussian

distribution, should be studied. It would be interesting
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to know the characterization of distributions for which
the ratio of shortest to longest interpoint distances in a

set of points drawn from the distribution goes to one as

the dimensionality increases.

Finally, the regular changes in the cumulative
distribution functions of the validity measures as the
dimensionality is varied under the Uniform Hypercube Null
Hypothesis suggest that it may be possible to find a
functional relationship among these distributions for the
various dimensions. Distributions under the Random Graph
Null Hypothesis, together with the transformation relating
an infinite dimensional distribution to a d-dimensional
distribution, would provide an inexpensive test of cluster

validity under the Uniform Hypercube Null Hypothesis.
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An Approximate Best Case Algorithm

We wish to find the optimal value for a validity
index over all K-node subsets of the nodes of a graph as
required for the simulation of Section 3.4.1, given an
adjacency matrix GR(i,j), K, and a parameter TRIES. The
following algorithm approximates the optimal value for the
number of internal edges, a compactness index. A similar
algorithm approximates the optimal value for the number of

linking edges, an isolation index.

1. Use the K nodes with highest degrees as the initial
subset.

2. Call SEARCH to find a subset with "local" optimal
compactness.

3. Set COMP to the compactness index for the subset.

4. Set LOOP to 1.

5. Choose a K-node subset at random.

6. Call SEARCH to find a subset with "local" optimal
compactness.

7. Find the compactness index for the subset. If the

index is greater than COMP, then set COMP to the new
index and GO TO 4.
8. Set LOOP to LOOP + 1. If LOOP <= TRIES then GO TO 5,
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else DONE.

Now COMP is a good value for the best case
compactness index of the graph. It is a "local" optimal

value and is at least as good as TRIES other randomly

selected "local"™ maxima.

The routine SEARCH finds a "local" subset with
optimal "local"™ validity index. A "local" subset is one
which can be created by repeatedly exchanging a node in
the subset with a node not in the subset such that each
exchange improves the validity index as much as possible.
The SEARCH algorithm for the compactness index is given

below.

1. For each node i, find the change VAL(i) in the number
of internal edges of the subset if node i is moved
from outside the subset into the subset.

2. Find the highest VAL among nodes outside the subset
(BESTOUT) and the lowest VAL among nodes in the
subset (WORSTIN). If BESTOUT <= WORSTIN, then DONE.

3. Look for a pair of nodes (IN,OUT) such that VAL(IN) =
WORSTIN, VAL(OUT) = BESTOUT and (IN,OUT) is not an
edge of the graph. If such a pair is found, then GO
TO 5, else if BESTOUT <= WORSTIN + 1, then DONE.

4., Find a pair of nodes (IN,OUT) such that VAL(IN) =
WORSTIN, VAL(OUT) = BESTOUT and (IN,OUT) is an edge

of the graph.
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5. Move node IN out of the subset, move node OUT into the
subset and update VAL to reflect the exchange. GO TO

2.

Two versions of random selection of the subset were
tried. Weighting nodes with the degree of the node seemed
better than weighting nodes uniformly in that more subsets
were discovered which improved the indices found using the
initial subsets. Results using TRIES = 100 suggest that
about 98 percent of the improved indices are found with
the first ten random subsets. Since the search time was

the determining factor in the time required for each

simulation run, TRIES = 10 was used for all the reported

runs.
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