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ABSTRACT

COMPARISON OF FOUR SEQUENTIAL SAMPLING

PLANS APPLIED TO FOREST TENT CATERPILLAR

EGGS ON SUGAR MAPLE BRANCHES

By

Jan P. Nyrop

Sequential sampling is a valuable tool for classifying population

density. To date, all applications in insect sampling have used Wald's

Sequential Probability Ratio Test (SPRT). Use of the procedure

necessitates knowing the distribution of the underlying population and

requires that the distribution be constant in time and space. When

these assumptions are not met sequential t-tests and a new sequential

test proposed by Iwao provide alternatives. Four sequential procedures

were compared through simulation. These were the SPRT, Iwao's test

and two sequential t-tests proposed by Barnard and Fowler and O'Regan.

Forest tent caterpillar (Malacosoma disstria) egg band sampling was
 

used as a test case. Though not universally true, in this instance

SPRT was robust to changes in k of the negative binomial distribution.

Fowler's and O'Regan's t-test and Iwao's procedure were comparable to

the SPRT. Fowler's and O'Regan's t-test required the least informa-

tion about the population distribution for construction.
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INTRODUCTION
 

Biological monitoring is an important component of any successful

pest management program. Often, it is only necessary to classify an

arthropod population as above or below a specified density. In such

cases sequential hypothesis testing provides an attractive alternative

to sampling schemes which employ a fixed number of observations. Fixed

sample size methods are invariably inadequate at low population densi-

ties and excessive at high densities. With sequential procedures sample

size is dependent on the outcome of each successive observation. These

tests, on the average, require fewer observations than do equally reliable

tests based on fixed sample size procedures. For this reason, they are

attractive sampling schemes when cost and time efficiency are important.

To date, all applications of sequential hypothesis testing in in-

sect sampling have employed Wald's Sequential Probability Ratio Test

(SPRT) (Wald i947). Pieters (1978) provides an extensive list of insect

species for which such sampling schemes have been developed. Use of the

SPRT requires that the underlying population distribution and variance

be known. However, these parameters are often unknown and the population

distribution upon which an SPRT is developed may change with changes in

the density, quality and age of the population and spatial and temporal

changes in the environment. Such changes will affect the results ob-

tained using SPRT.

Alternatives to the SPRT exist. These are sequential t-tests and

a new sequential procedure based on the regression of Lloyd's mean

crowding on mean density (Iwao 1975). The latter requires an estimation

of the population distribution based on the aforementioned regression,

however, this relationship is reported to be stable in time and space

1



(Iwao and Kuno 1971). Sequential t-tests assume the population is

approximately normally distributed.

The purpose of this paper is to compare, through simulation, four

different sequential procedures. Forest tent caterpillar (Malacasoma
 

disstria) (FTC) egg band sampling is used as a test case. The four

sequential procedures investigated are the SPRT, Barnard's sequential

t-test (BTTEST) (Barnard 1952), Fowler's and O'Regan's truncated sequen~

tial t-test (FTTEST) (Fowler and O'Regan 1974) and Iwao's sequential

test (ITEST) (Iwao 1975). Simulation, the process of conducting experi-

ments on a model, as opposed to attempting the experiment with the real

system, provides an ideal tool for this evaluation. The result provides

the reader with a method to weigh relative merits of each test and

facilitate a choice between tests.

Development follows four parts: 1) A detailed description of the

SPRT and a less intense outline of the other sequential procedures and

problems in their use; 2) a description of the model used to investigate

these problems and compare tests; 3) experiments conducted with the model

and their results; 4) discussion and conclusion.

Wald's Sequential Probability Ratio Test
 

IAL_Maximum Likelihood Estimation
 

The SPRT is defined as the ratio of the probabiltiy of obtaining a

given set of observations if an alternate hypothesis is true to the

probability of obtaining the same set of observations if the null hypoth-

esis is true. Initially, two hypotheses (H0, H1) of the actual popur

lation parameter (9) are established. Consecutive samples are then

examined and evaluated until cumulative results dictate acceptance of

one of the hypotheses. The SPRT is based on the maximum likelihood



which is now introduced through illustration.

Assume x is distributed binomially with probability density function

(p.d.f.);

x l-x

f(x,p) = p (l-p) where x = 0,1 and 0 s p s 1.

We wish to find an estimation u(X1,X2,X3,...,Xn) such that u(xl,x2,x3,

...,xh) is a good estimate of p where x1, x2, x ., xn are observed.3,..

The probability that X X X .., Xh takes on these particular values
1’ 2’ 3"

is;

P(Xl=xl, X2=x2, X3=x3,..., Xn=xn)

which equals;

xi l-xi in n- in

fir) (l-p) = p (l-p)

i=1

This is the joint p.d.f. of x1, x2, x xn. An estimate of p may be3,...,

arrived at by regarding the p.d.f. as a function of p and finding the

value of p which maximizes it. In other words, we wish to find the p

value most likely to have produced these values. This is the likeli-

hood function L(p; xl,x2,x3,...,xn) and will henceforth be designated

as L(O). Instead of finding the value p which maximizes L(O) it is

easier to find p which maximizes 1n L(Q). The maximum is found by

taking the first derivative and setting it equal to zero. Calculation

will show the solution is;

1/n (2:Xi)

or the mean as expected.

Neyman and Pearson (1928) suggested that a useful criterion for

testing hypotheses is provided by the likelihood ratio;

L(O) when 9 = 90

A:

L(O) when 9 = 91

 

9 = 9The hypothesis H 1; lO; 9 = 90 will be accepted when A is large and H



accepted when.K is small. Values of.k may be selected to assure a

specified level of a; the probability of accepting H1 when H0 is true

and G; the probability of accepting HO when H1 is true (Type I and II

errors respectively). Wald (1947) applied this criterion in developing

the SPRT. Approximate values of %.are calculated using the following

logic.

Suppose a large number of sequential tests are made. Those which

terminate with acceptance H have a likelihood ratio equal to or slightly

0

greater than A0. Those terminating with acceptance of H1 have a like-

lihood ratio slightly less than )1. Consider the group of samples with

likelihood ratio greater than )0. The probability that the sample really

originated from the population with parameter 9 is A times as great as

0 O

the probability that it originated from a population with parameter 91.

This is true for every sample, thus the total chance of obtaining a

sample of this sort is A0 times as large when H0 is true as when H1 is

true. We desire the chance of getting such a sample from a population

where 9 = 90 to be 1 -oCand the chance to be 6 for 9 = 91. Consequently,

in order to satisfy both conditions A. must equal (l-dDAS. Using similar

0

reasoning A1 must equal «7(1-8).

In practice, the likelihood function is solved for the total units

found in Q observations. At each sample this total (T) is compared to

a function of A0 and A1 and decisions made:

2T f(xo) accept H0

< .
T - f(xl) reject H0

£00) 2 T 2 fosl) continue sampling

An illustration is given assuming a normal distribution:



The probability of a single observation from a normal distribution is;

(x -u 2

or: Iexp [___i_0__]

(W) 20‘2

 

The probability of a sample of n independent observations x1, x2, x3,

..., xn is the product of n such expressions;

2

1 am [-Z(x1-u0) l

n n/2

a' (2”) 2,2

 

Therefore, the likelihood ratio is;

2
epr- Z<xi-u0> m2]

2

exp I- xxi-ul) ml]

 

Taking the natural log and rearranging;

_ _ 2

Xxi T - Iv/(n>~>I/<ul+u0) + n[(ul+u0)/21

In general form T = h + ns, 1 = 0,1. Decisions are based on this func-
1

tion by substituting the respective values forA0 and X. Onsager (1976)1.

and Waters (1955) provide formulas for calculating f()o for binomial,

Poison and negative binomial distributions.

B;_Operatigg_Characteristic Function and the Average Sample Number Function
 

Two other calculations of importance are the operating characteris-

tic function (OC) and the average sample number function (ASN). Once the

levels at and 5 have been set for an SPRT, the probability that the test

will terminate with the acceptance of the null hypothesis depends on the

distribution of the sampled variable. If the probability density func-

tion of x is f(x,0) then the probability of accepting H0 is a function of

O. The OC curve therefore gives the level of probability of accepting

H0 or Hl for any true parameter of the actual population.

a

The following argument used for the derivation of 0C is due to



Baker (1950). A normal distribution is assumed. Suppose a sequential

test is based on the quantities no, ul, at, a and 0’. We wish to know acl

for accepting H1 when the true mean is u. When a large number of sequen-

tial tests are performed the proportion.¢}'of tests terminating with

acceptance of H1 is dependent on ho, hl’ and 3. An OC curve based on ué,

ui, 0:1 and 61 which gives the same value of ho, hl and 8 would therefore

be the same. Suppose u1 a u and recall that;

0

s = (uo + ul)/2

We can see that u: must equal u0 + u1 - u for this to hold. By the same

reasoning in order for hO and hl to remain unchanged and remembering )0 =

(1") lg and Al " “/ (1-6);

(1) ho = I-«2/<u1+uO-2u>11nt<1-«1) ml] [-a2/(u1-u0) lln[(1-¢)/6l

[-a'z/ (ul-uo) llnl (1-a)k<l<2) hl = [-ch/(ulw‘uO-Zu)lln[(1-al)/¢ll

Write A = (1~fl)k£; B = (l-«OAQ; t = (u1+u0—2u)/(u1+uo). Then (1) and

(2) may be written as;

(145/01 - at and (1-63") /«1 = At

Solving for acl;

«1 = (Bt-l)/(AtBt-l)

Thus, values of t are calculated for desired values of u andcxl calculated

accordingly.

The average number of observations (N) required by a sequential test

is dependent on the distribution of x which is determined by the parameter

9. The expected value of (N) therefore depends on 9. Davis (1958) pro-

vides the following derivation.

We have shown that the SPRT is a decision based on the total number

of observations exceeding linear limits;

h0 + ns



h1 + us

If we reduce the test to a scoring procedure taking 3 as the origin of

all observations and calling resultant numbers the score, the test ter-

minates when the scores reach either of the limits hO or hl. If «:is the

probability of accepting H when 9 = 91, on the average Q(l-d$ tests will
1

terminate with a score hO and Q¢rtests will terminate with score hl where

Q is the total tests performed. The total of all scores for all observa-

tions NT is Q(l-«9ho + Quhl. In practice, this is only approximate as

the scores will normally exceed these bounds. The total score for NT

observations is NT times the average score. Therefore the average

sample number when 9 = 91 is;

 

NT (l-cac)h0 + ‘hl (l-oc)h0 + ochl

Q average score 91-3

per observation

when 9 = 91

In summary, the 0C function describes how well the test procedure

achieves its objective of making correct decisions and the ASN function

represents the price paid in terms of the number of samples required

for the test. Onsager (1976) and Waters (1955) provide formulas for

easy calculation of OC and ASN.

§2_Application Using the Negative Binomial

Use of the SPRT is dependent on knowing the distribution of the pop-

ulation to be sampled and that for the characteristics of a specific

SPRT to remain stable in time and space so must the distribution. Various

mathematical distributions have been used to describe biological patterns.

Mathematically, a distribution function describes a particular random

variable. As few plant and animal populations are randomly distributed

the negative binomial (NBD) has been used extensively to describe the



the distribution of aggregated populations (Iwao and Kuno 1971). Much

of this discussion will center about it.

Individual terms of the expected frequency distribution of NBD are

given by n(P(x)) where n is the sample size and P(x) is the probability

of accurance of the random variable x. Individual terms of function P(x)

are given by;

k' k-x x

x!(k-x)!

where q = l-p, k is a measure of dispersion and p = x7k. Clearly for a

given E, the distribution is dependent on k and concurrently so are the

characteristics of a SPRT based on this distribution.

Inaccurrate estimation of k has obvious implication in calculating

SPRT decision boundaries. Knight (1967) illustrated the divergence of

these boundaries with different values of k for similar population means.

Less obvious is the impact of divergence of k in the population being

sampled from the estimate of k used to calculate the decision boundaries

on the power of a specific test.

That k, or aggregation tendancy of a species, may not be independent

of the density, quality or age of the population or the environment in

which it exists is well documented (Abrogast and Mullen 1978, Berthet

and Gerard 1965, Breyer 1968, Harcourt 1961, 1963, 1964, Iwao and Kuno

1971, Kobayashi 1968, Kuno 1963, Shiyomi 1976, Wadley 1950). Bliss and

Owen (1958) derived a technique for obtaining from a series of k, the

most likely k which they called common k. However, this does not elimi-

nate the potential problems which variable k values may incur on the

accurracy of the SPRT. Stevens egugl (1976) recently concluded that the

A

common k may not be an adequate substitute for the parameter k in all



the different k that describe a population. In addition, they concluded

that sequential sampling plans dependent on a common k should not be

applied at times when the common k cannot be used as an adequate substi-

tute for k. However, emperical evidence was not provided.

While this discussion deals primarily with NBD the general implica-

tions need not be so restricted. Distribution patterns may completely

change with changes in population density (see for example Ellenbeger

and Cameron 1978) and the resultant affect on an SPRT based on the origi-

nal distribution will be severe.

Barnard's Sequential Procedure
 

Barnard's sequential procedure is similar to the SPRT in that a

likelihood ratio is compared to upper and lower bounds and decisions are

made accordingly. However, it is assumed that x is distributed normally

with unspecified variance and mean u = 80' where J is the non-centrality

parameter;

8 = (u - u0)/a-

The hypotheses are stated as;

H : u = 80’

H : u = 81V

with E and 81 specified. That this is logical can be illustrated as

follows:

If we wish to determine the probability that x is less than some

value 2 and x is normally distributed with mean u and standard deviation

0; the probability that x is less than 2, P(x<z), equals fn[(z-u)A7]

where fn(x) is the cumulative distribution for the standard normal dis-

tribution. By subtracting E from all x our interest is transformed to

P(x<0) which equals fn(8). Thus, the question we are asking is whether
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(u - uO)/V = a or (u - uO)/I7= :1.

With n observations, x i = 1,n the likelihood function L is;i’

TnT'(1/<2n195>exp((xi-u)2/2v2>

Whichimiy be stated as;

L(x.s/u, 0')

because x. and s are jointly sufficient statistics for u and<7. Con-

sidering the ratio t = x.(n/s)%, on H0 t has a non-central t distribution

with (n—l) degrees of freedom and parameter 8. On H1 the non-centrality

parameter is 8;. With the probability density indicated by f the likeli-

hood ratio criteria, considering only the distribution of t is;

>rt/s, 8') = f(t/al, n)/f(t/8, n)

Evaluating >(t/8, 81) as a function of t for each value of n requires

a difficult series of approximations. Tables are available for comparing

the test statistic U = Z(x--u0)/Z(x-u0)2 for various values of 0C, 0 and

difference in 8 which it is important to detect.

Little is known about the OC and ASN for these tests. The test is

not linear and therefore usual ASN formulas are not applicable. Rushton

(1950) provides means for obtaining the lower bound to the mean sample

size.

Fowler's Squential Procedure

Fowler and O'Regan (1974) present a truncated sequential t-test

derived by employing Monte Carlo procedures to approximate the distribution

of the conditional test statistic at each stage of the test. A truncated

test ensures that a decision will be reached before or at a specified

number of observations. Their test is constructed by specifyinng, the

truncation point nO and a probability boundary pattern. This boundary

pattern establishes the probability of accepting and rejecting HO (HO
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being true) at each stage of the test such that the overall probability

of rejecting H0 with HO true is an

The test statistic is defined as;

d = (; - u0)/ 21x1 - ;)2/n(n-1)
n

which has a t distribution with one degree of freedom for d1 and an

unknown conditional distribution for dn (n>1). Decision points for re-

jection and acceptance of HO based on dn were approximated using Monte

Carlo procedures. Null and alternate hypotheses are stated in terms of

8;

HO: u=uoor 8a 50 =:0

1

0C and ASN functions of each test are approximated with simulation tech-

H: u- “1 or 8: 81, (81>0)

niques.

The sequential t procedures assume that the population being sampled

is approximately normal. Divergence from this assumption is known to

alter the power of a test employing this statistic (Pearson and Please

1975).

Iwao's Sequential Procedure
 

Iwao (1968) proposed the regression of Lloyd's mean crowding on

mean density as a method for analyzing aggregation patterns. Lloyd

(1967) established the parameter mean crowding as the mean number per

individual of other individuals in the same quadrat. The parameter is

defined as;

swimmfi:
3:1 J 1‘1

where Q is the total number of quadrats and x is the number of indivi-

i

duals in the jth quadrat. Mean density is related to it through;

3= u + (v2/(u-l))
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The parameter is estimated by substituting the sample mean and variance

E; 32 for u, v?. The relationship;

3 a A + Bu

has been shown to be linear in a wide variety of applications (Iwao 1968,

Iwao and Kuno 1971). If a population distribution follows a Poisson

series the regression line passes through the origin (A=0) and its slope

B is equal to unity. For a negative binomial with a common k, A - 0 and

B a 1 + (1/k). Underdispursed or completely uniform distributions are

characterized by 3 taking zero up to u - 1 and increasing along the

linear regression of slope B é 1. Through extrapolation of the regres-

sion line from u z 1, A is -l.

The value of the intercept A may be interpreted as the number of

organisms which would live together with A other individuals at some

infinitessimally small density. Iwao (1968) categorized this as the

"Index of Basic Contagion". The slope B is an index of the spatial

pattern of habitat use by individuals or groups of individuals in rela-

tion to their density. This is called the "Density - Contagiousness

Coefficient". Both indices are necessary to describe a distribution.

In relation to the problem currently under investigation, a linear rela-

tionship has been shown to hold even when k varies with population den-

sity in a negative binomial (Iwao and Kuno 1971).

As previously indicated, mean crowding, 3, is related to population

variance (v2) by;

3= u + (Wm-1))

Therefore;

V2 = u(U-u+l)

Substituting the mean crowding to mean density relationship;
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v2 - (A+1)u + (B-l)u2

The half width of a confidence interval is given by d = tSE-where t is

the value of the normal deviate corresponding to a desired confidence

probability (Student's t). Employing the variance relationship Iwao

and Kuno (1968) calculated d as;

d . t(((A+1)u + (3—1)u2/n)5)

where n is the number of samples.

As illustrated by Iwao (1975) this relationship may be used to cal-

culate a sequential sampling procedure based on whether observations

fall within desired confidence limits based on a hypothesized mean (uo).

The upper limit is defined as;

Tu = nuo + t(n((A+1)u0 + (B-1)ug)%)

and the lower limit as;

T a nu - t(n((A+l)u + (B-l)uz)k)
l 0 0 0

Decisions are made with the assigned confidence limit that Q > uo when

T > Tu and § < u0 when T < T1 where T is the total number of individuals.

As in other sequential procedures when i is very close to u a large

0

number of samples may be required for termination. However, the maximum

number of observations required for a desired confidence limit, d, is;

nmax = (tZ/d2)((A+l)uo + (3-1)u3)

This method is intuitively appealing because of the reported stability

of the mean crowding - mean density relationship. This clearly circum-

vents problems encountered due to variable distribution parameters and

deviations from the normality assumption.

METHODS

We are now in a position to investigate the properties of the afore-

mentioned tests. Specificly; l) the power (0C) defined as the probability
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of correctly choosing between two hypotheses about a true population

parameter and average number of samples (ASN) required for each test and,

2) the effect of deviations from assumptions inherent to tests are in-

vestigated. In brief, the experimental design was to sample a population

and then use this sample as a population with which to simulate sampling.

The sampled population consisted of FTC egg masses located on 76 cm (30

inch) branch samples. All possible samples were taken from the upper

crown of sugar maple (Acer saccharum) trees by felling the trees and
 

then carefully pruning off the branches. The mean number of branch

samples per tree was 148.7 (s = 41.3). Data collection took place in

August and September 1978 in an area surrounding Pellston, Michigan. In

total, nineteen complete trees were enumerated.

Mean crowding and mean density were calculated for each tree and a

regression of these parameters formulated to describe the egg mass dis-

tribution.

For the simulation, six routines were developed. These are des-

cribed below. A listing of each routine may be found in respective

appendices.

1) STAT calculates statistics; mean, variance and estimate of k

through the maximum likelihood method of the population (Appendix pg. 39).

2) NEGBIN distributes egg masses among 500 samples according to a

negative binomial. The mean and k are specified exogenous from the

routine (Appendix pg, 42),

3) SEQUAN randomly samples the population 1000 times and makes

decisions regarding the mean with SPRT. The null hypothesis is given

as x s 0.2 egg masses per branch and the alternate hypothesis as i z 0.5.

The latter density corresponds to the reported level at which heavy
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defoliation by FTC on sugar maple can be expected at the start of an

infestation (Connola e£_§I_1957, Marshall and Hoffard 1976). The proba-

bility of Type I and II errors are 0.1. Decision boundaries and nominal

values of the OC and ASN based on all data points are given in appendix

figure 1. Because the procedure is Open ended, during the simulation

sampling was arbitrarily truncated at 50 observations. If no decision

had been made after 50 observations, output indicated such (Appendix 98- 45)-

4) BTTEST randomly samples the population 1000 times and makes

decisions regarding the mean with BTTEST. In order to facilitate use

of tables, error levels were set at 0.05. The null and alternate hypothe-

ses are given as i - 0.5 and x > 0.5 egg masses per branch respectively.

In addition, the difference, stated in terms of standard deviations D,

(8:= Dv), which it is important to detect, was set at 0.5. Decision

boundaries are given in appendix figure 2. As in SEQUAN sampling is

truncated at 50 observations (Appendix pg. 47).

5) TTEST randomly samples the population 1000 times and makes de-

cisions regarding the mean with FTTEST. The null and alternate hypothe-

ses and error levels are identical to those in BTTEST. Because this is

a truncated test a decision is assured at the termination point of 10

observations. Decision boundaries are given in appendix figure 3. The

probability boundary pattern employed specifies «.at each decision stage

to increase at a constantly increasing rate (Appendix pg. 50)

6) SEQRT randomly samples the papulation 1000 times and makes de-

cisions regarding the mean with ITEST. The null and alternate hypotheses

are 2 < 0.5 and i 7 0.5 egg masses per branch respectively. Type I and

II errors are set at 0.1. Decision boundaries are illustrated in

appendix figure 4. Sampling was again terminated at 50 observations
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(Appendix pg. 53).

Three simulations were executed using the described routines:

1) A comparison of the OC and ASN of the four sequential procedures

assuming the population distribution was constant regardless of popula-

tion density; 2) the effect of distribution varying with density on DC

of SPRT; and 3) a comparison of sample unit sizes as applied to FTTEST.

RESULTS

Mean Crowdi3g_and Mean Density and Comparison 9§_gg_§gg_§§§

Regression of mean crowding on mean density (fig. 1) provided the

relationship;

§= -o.0052 + 1.69562)

While NBD is characterized with A = 0, A of -0.0052 in this instance

meets this requirement considering the variability about the regression

line. Therefore, the data is described by NBD with k = 1.449. From

the original sample a subsample of 500 with x = 0.222, 32 = .273 and k

of 1.0768 was randomly selected for use in the simulation. No loss in

accuracy of the results is incured by using a population of n = 500,

however, computations and costs are substantially reduced.

Simulation results are presented in figures 2, 3 and 4. 0C curves

were adjusted for no decision cases. Only SPRT and ITEST possessed use-

ful 0C curves (fig. 2). That BTTEST and FTTEST were inferior in this

regard is not surprising considering the skewed distribution from which

samples were drawn.

A complete picture of the usefulness of a sequential procedure

must also include the ASN function. In the simulation this is comprised

of two components; the average number of samples per decision (fig. 3)

and the proportion of no decisions after the truncation point of 50
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samples (fig. 4). Although the sequential procedure may not have reached

a decision stage prior to the truncation point, gathered information is

still usefull. Both SPRT and ITEST exhibited similar variations about

an estimated mean, however, the number of times this estimate is used

differed between tests. At the critical density the 95 percent confi-

dence interval half width is approximately 0.2. Assuming a constant

distribution this is calculated by knowing the actual papulation variance

at a density of 0.5 and calculating the standard deviation of the mean

with a sample size of 50. An estimate with sample size of 50 is there-

fore 0.5 i 0.2 egg masses. SPRT must be considered superior in this

regard as this estimate is used less frequently than with ITEST.

Effects gf_Changing_Population Distribution
 

As previously stated the assumption of invariant population distri-

bution in relation to pOpulation density is often not upheld. The

second simulation was designed to investigate the effect of divergence

from this assumption on SPRT. Linear relationships between k and the

population mean were established. Maximum divergence are given by;

k - 1.077 + 10(Mean)

k a 1.077 - 0.5(Mean)

The first resulted in the population becoming more random while the

second produced a more aggregated distribution. The relationships do

not imply a realistic representation and are presented merely as examples.

However, this has no effect on conclusions drawn from the results. The

simulation employed NEGBIN to update the population distribution with

each change in mean density.

Changes in OC associated with the largest change of k in relation

to the mean are presented in figure 5. A more random distribution
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actually improved the power of a test considering it important to detect

population levels exceeding the critical density. A tendancy toward

greater aggregation in relation to the mean had an opposite effect.

Differences in OC due to changes in k must be considered in light of

respective changes in population distribution. From figure 6 it is evi-

dent that variable k did not induce large changes in the distribution.

Therefore, changes in OC were likewise not great. Divergence in OC may

be much greater for other NBD.

Effects g£_Different Sample Unit Sizes 22_FTTEST
 

Obtaining estimates of parameters required to describe a population

distribution is often tedious. Also, these parameters are rarely invar-

iant with density. For these reasons sequential t procedures are

appealing. However, we have already demonstrated their ineffectiveness

when the distribution is highly skewed. More specificly we are dealing

in this case with a population containing a high percentage of zero

values. This situation commonly presents itself when sampling insect

populations. A solution to this problem is now presented.

Population distribution is largely a function of the size of the

sample unit. By varying the sample unit, the distribution and associated

mean and variance change (Elliot 1977, Pielou 1978). Employing this

principle, sample surface can be varied by considering 1, 2,..., n

branches as an observation. A sequential procedure may then be consid-

ered by increasing the densities defined under the null and alternate

hypotheses by the same change in factor as the sample surface. Thus, if

the null hypothesis is; x - 0.5 with a sample surface of 1 it will be

increased to i - 1.0 with a sample surface of 2.
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The effectiveness of the strategy was investigated with FTTEST and

this comprised the third simulation. The OC and ASN functions for sample

surfaces of 1 to 9 branches are given in figures 7 and 8 respectively.

ASN is still expressed in terms of number of branches and not observa-

tions. Additionally, the effect of change in sample surface on distri-

bution is portrayed in figure 9. As sample surface increased, the OC

became more favorable. Though a sample surface of 9 has a superior CC

to sample surface 7, the cost in terms of ASN is large. It is also

evident that increasing sample surface to 9 did not normalize the distri-

bution. Thus, FTTEST must be considered robust to some deviation from

the assumption of normality.
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Figure 1. Regression of mean crowding on mean density of forest tent

caterpillar egg masses on 76 cm. branch samples from 19 trees.

The model is: Y = A + BX + e where Y = mean crowding, X =

mean density, A = —o.0052, B = 1.695, R2 = 0.8704.
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Figure 2. Adjusted OC curves for FTTEST, BTTEST, ITEST and SPRT.
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Figure 3. Average sample number in relation to population mean for

FTTEST, BTTEST, ITEST and SPRT.
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Figure 4. Proportion of no decisions after fifty observations in rela-

tion to mean density for BTTEST, ITEST and SPRT.
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Figure 5. Probability of accepting H relative to the population mean

for three hypothetical meag - k relationships employing SPRT.
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Figure 6. Effect of changes in k of negative binomial distribution on

frequency distribution of forest tent caterpillar egg masses.

Class refers to number of egg masses per branch sample.
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Figure 7. Probability of accepting Ho relative to the population mean

for five sample surfaces represented by branches per observa-

tion employing FTTEST.
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Percentage Occurance
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Average sample number curves for FTTEST for five sample

surfaces represented by branches per observation.
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DISCUSSION AND CONCLUSIONS
 

Selection of a sequential procedure must be based on three criteria;

the 0C and ASN functions and information required about a distribution

for construction of a procedure with desirable OC and ASN. The type

of information required for quantifying population distributions according

to a numerical function or the regression of mean crowding on mean den-

sity are similar. If an SPRT is to be employed one is limited to a

negative binomial, Poisson, binomial or normal distribution as the SPRT

is available only for these distributions. Additionally, it is unlikely

that the parameters estimated for these distributions are invariant to

population density changes. These changes in turn will affect OC and

ASN of SPRT, however, as illustrated with FTC these changes may not be

so severe as to render the test useless. Clearly, if a variable parameter

say k of a negative binomial distribution is suspected, it behooves the

investigator to have prior knowledge of how this varability will affect

SPRT. By placing reasonable bounds on this variability simulation pro-

vides a logical method for obtaining this information.

Sequential procedures based on distributions described by the

regression of mean crowding on mean density are appealing due to the

reported linearity of the relationship over a wide range of distributions

and densities. In the simulation the 0C for ITEST was comparable to the

0C for SPRT and to an extent superior. Error levels at low egg densi-

ties were less with this procedure though greater at high densities.

The ASN was greater with ITEST, however, the truncation point may be

specified to correspond with a desired confidence interval width. This

width only applies to populations approximating the critical densities

and the confidence interval width will change as density deviates from
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this critical density.

Because the distribution relationship is defined with a linear

regression, the linear fit will influence determination of confidence

intervals necessary to construct the sequential test. A similar problem

may occur with SPRT, however, tests for lack of fit from a mathematical

distribution are better defined. Recall that decision boundaries are

based on the confidence interval given by;

d a t(((A+1)u + <13--1)nZ)/n);5

With stochastic variation in A and B one can be assurred that estimated

d contains true dO by using the upper and lower confidence bounds of A

and B for the upper and lower decision boundaries of the sequential

test respectively. This will widen the band with which continued

sampling is dictated and increase ASN. However, it also assures OC will

be as specified.

Describing a distribution with a mean crowding - mean density

regression also allows use of a fixed precision level sequential plan.

An obvious deficiency of sequential sampling is that the procedure only

classifies a population into predesignated categories. Much work re-

quires an actual estimate of the population mean. Kuno (1968) used the

variance relationship provided by the mean crowding - mean density re-

gression to derive a sequential procedure concerned with the level of

precision attained for estimating the mean. The decision boundary is

given as;

A + 1

 T =

n 92 - ((B-l)/n>

where D equals silx and Tn is the total of n observations.

When the underlying distribution of a population is unknown,



31

sequential t procedures may be used. As demonstrated, complete ignor-

ance of the population distribution is unacceptable. A large percentage

of zero counts or a highly skewed distribution invalidates the normality

assumption and destroys the test. However, with far less effort than is

needed to quantify a distribution, information may be gathered to assure

that the sample surface is of proper size to insure a viable DC. A

comparison of 0C for FTTEST and SPRT with error levels of both tests

set at 0.05 is presented in figure 10. Previously a and G of SPRT were

each set at 0.1 to insure reasonable ASN. FTTEST has a better DC at

low densities, however, beyond the critical density of 0.5 egg masses

SPRT is superior. ASN curves for both tests are compared in figures 11

and 12. Because SPRT is an Open test some cases will result in no

decisions and this factor must be taken into account when comparing ASN

curves. In this regard, FTTEST is superior at low densities and the

reverse is true at higher population levels. Finally, FTTEST will be

largely invariant to changes in population distribution. Clearly,

neither test is optimal in all instances. Users must weigh these attri-

butes and base a decision for test use on criteria specific to each case.

From this study the following generalized conclusions may be drawn:

1) Attributes of SPRT are dependent on the underlying population distri-

bution and vary with changes in this distribution. These changes may or

may not be significant.

2) ITEST and FTTEST offer likely alternatives to SPRT and may be superior

when confronted with a changing population distribution.

3) FTTEST requires the least information when applicable for construction.

4) Simulation provides a quick and inexpensive method for analyzing

different sequential schemes.
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Figure 10. Probability of accepting H adjusted for no decision cases

relative to the population mean for SPRT and FTTEST (a: and

(3 - 0.05, FTTEST sample surface = 7).
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Figure 11. Average sample number in relation to population mean per

fifty samples for FTTEST and SPRT (cc and G - 0.05, FTTEST

40. sample surface - 7).
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Figure 12. Proportion of no decisions after fifty observations in

relation to population mean for SPRT (cc and 6 - 0.05).
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Figure 1a. Decision boundaries, 0C and ASN curves of SPRT for forest
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Figure 2a. Decision boundaries of BTTEST for forest tent caterpillar

egg mass sampling (see text for details).
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Decision boundaries of ITEST for forest tent caterpillar

egg mass sampling (see text for details).
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Subroutine STAT
 

STAT calculates the mean (MEANEG), variance (VAREGG) and total num-

ber of egg masses (TOTEGG), and an estimate of k (KEST) of the negative

binomial. Input into the routine consists of the population of 500

branch samples (EGG). A maximum likelihood estimate of k is calculated

using an iterative approach until the difference between two successive

estimates is 0.001 or twenty five iterations have been processed. Finally,

a frequency distribution of egg masses is created.
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240 FORMAT (" EGGS IN CLASSES 0 THROUGH 5 RESPECTIVELY")

PRINT 250, (F0,F1,F2,F3,F4,F5)

250 FORMAT (12X,6(F4.0,3X))

RETURN

END
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Subroutine NEGBIN
 

NEGBIN distributes egg masses according to a negative binomial distri-

bution with exogenously specified mean (MEANEG) and k (KEST). Change in

k relative to the mean is given by;

KEST = (estimated k) + (BETA * MEANEG)

where BETA is specified. With each iteration the mean increases linearly

through the function;

MEANEG = MEANEG + CHANGE

where CHANGE is Specified. The probability of occurrance of egg masses

per branch with a range of zero to five egg masses is given P(X) where

X is equal to one through six. Egg masses are allocated over a sample

of 500.
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SUBROUTINE NEGBIN (KEST,EGG,MEANEG,CHANGE, BETA )

DIMENSION EGG (500), PX(6), SAMP(6)

REAL KEST,MEANEG

F0=F1=F2=F3=F4=F5=0

C CALCULATE CHANGE IN THE MEAN AND KEST

MEANEG = MEANEG + CHANGE

KEST= 1. 0768 + (BETA*MEANEG)

C CALCULATE P(X=0) = PX(1)

PX(1) = 1/((1+(MEANEG/KEST))**KEST)

C CALCULATE P(X(GT)0) WITH GENERAL FORM:

C P(X=J)= P(X=J-1)*((K+J-1)/J)*(XBAR/(XBAR+K)

00 10 N=2,6

M=N- 1

PX(N)= PXX(M)*((KEST + N-2)/(N-1))*(MEANEG/(MEANEG+KEST))

10 CONTINUE

C CALCULATE NUMBER OF SAMPLES WITH X EGGS PER SAMPLE

C AND TOTAL SAMPLES IN DISTRIBUTION

COUNT = 0

00 20 J=1,5

N=7-J

SAMP(N) = PX(N) * 500

I = (SAMP(N) + .5)

DO 30 K=1,I

M = K+COUNT

EGG(M) =

30 CONTINUE

COUNT = COUNT + SAMP(N) + .5

20 COUNT

SAMP(l) + PX(1) * 500

J = COUNT

DO 40 I=J.500

EGG(I) = O

CONTINUE

C
D
C
-
D

O

PRINT 50

50 FORMAT ("OSAMPLES DEFINED IN DISTRIBUTION FOR X; 0-5”)

PRINT 60, (SAMP(J), J=1,6)

6O FORMAT (1X,5(3X,F7.3))

PRINT 7O

7O FORMAT (" MEAN 0F SAMPLE, KEST 0F SAMPLE”)

PRINT 80, MEANEG,KEST

80 FORMAT (2X,F7.4,2X,F7.4)

DO 100 I=1.500

EGGTT = EGG(I)

IF (EGGTT.EQ.O) F0 = F0+1

IF (EGGTT.EQ.1.) = F1+1

IF (EGGTT.EQ.2.) = F2+1

IF (EGGTT.EQ.3.) F3 = F3+1

IF (EGGTT.EQ.4.) = F4+1

IF (EGGTT.EQ.5.) = F5+1

100 CONTINUE

PRINT 200
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200 FORMAT (" SAMPLES IN CLASSES 0 THROUGH 5 RESPECTIVELY")

PRINT 210, FO,F1,F2,F3,F4,F5

210 FORMAT (12X,6(F4.0,3X))

RETURN

END
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Subroutine SEQUAN
 

SEQUAN randomly samples the egg mass papulation 1000 times with

a truncation point of SO observations per sample and classifies the

population according to the Sequential Probability Ratio Test (Wald 1947).

Input consists of the egg mass p0pulation (EGG). Output consists of the

number of rejections (NREJ) and acceptances (NACEPT) of the null hypothe-

sis, no decision cases (NODEC) and the average sample size (AVGSAM). The

upper and lower rejection boundaries (URB and LRB) are given by;

URB 3.125 + (.323*N)

LRB -3.125 + (.323*N)

for a and 6 equal to 0.10 where N is the sample size. For a and 0 equal

to 0.05 the equations take the form;

URB 4.193 + (.323*N)

LRB -4.193 + (.323*N)
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SUBROUTINE SEQUAN (EGG)

DIMENSION EGG (500)

REAL LRB

NREJ = NACEPT = TOTSAM = 0

DO 500 K= 1,1000

EGGT = O

C WITH AN OPEN TEST A MAX 0F 50 SAMPLES ARE TAKEN

DO 60 N=1.50

TOTSAM = TOTSAM +1

C GENERATE A RANDOM SAMPLE

I= 500*RANF(O.) +1

EGGT = EGGT + EGG(I)

C CALCULATE URB AND LRB

C URB = IU + B(N)

URB = 3.125 + (.323*N)

C LRB = IC + B(N)

LRB = -3.125 + (.323*N)

C DECISION MAKING

IF (EGGT .GT. URB) GO TO 100

IF (EGGT .LT. LRB) GO TO 110

60 CONTINUE

GO TO 500

100 NREJ = NREJ +1

GO TO 500

110 NACEPT = NACEPT +1

500 CONTINUE

NODEC = 1000 - NREJ - NACEPT

AVGSAM = TOTSAM/1000

C PRINT RESULTS

PRINT 200

200 FORMAT (" SEQUAN SUMMARYzACCEPTANCES, REJECTIONS, NO DECISIONS

PRINT 250, (NACEPT,NREJ,NODEC)

250 FORMAT (2X,3(I3,8X))

PRINT 300

300 FORMAT (" AVERAGE NUMBER OF SAMPLES PER DECISION")

PRINT 350, AVGSAM

350 FORMAT (3X,F7.4)

RETURN

END
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Subroutine BTTEST
 

BTTEST randomly samples the egg mass population 1000 times with

a truncation point of 50 observations per sample and classifies the

population according to Barnard's sequential t-test (Barnard 1952). In-

put consists of the egg mass population (EGG). Upper and lower rejec-

tion boundaries (UNR, UNA) are initialized as these were determined from

published tables (National Bureau of Standards t-test Tables).

The test initially requires seven random samples. Following these

samples the decision statistic (DESTAT) is calculated and recalculated

for each subsequent single sample. The first and subsequent test statis-

tics are calculated as;

DESTAT = TDEv/(TDEVSQ)15

where; 1) TDEV = ZDEV and DEV is the deviation from the critical density

of each observation, 2) TDEVSQ = ZKDEV)2. Output consists of the number

of acceptances (NACEPT) and rejections (NREJ) of the null hypothesis, no

decision cases (NODEC) and average sample number (AVGSAM).
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SUBROUTINE BTTEST (EGG)

DIMENSION UNR(43), UNA(43), EGG(SOO)

NREJ = NACEPT = TSAMP = O

C ENTER VALUES OF UNR, UNA, A=B = .05, D=.5

C

DATA UNA /-1.51,-1.33,-1.15,-1.034,-.918,-.802,-.686,-.57,-.498

+-.426,-.354,-.282,-.21,-.154,-.098,-.042,.014,.07,.114,.158,.202,

+.246,.29,.328,.366,.404,.442,.48,.514,.548,.582,.616,.65,.678,

+.706,.734,.762,.79,.816,.842,.868,.894,.92/

DATA URN /2.56,2.51,2.46,2.436,2.412,2.388,2.364,2.34,2.334,2.328,

+2.322,2.316,2.31,2.308,2.306,2.304,2.302,2.30,2.304,2.308,2.312,

+2.316,2.32,2.328,2.336,2.344,2.352,2.36,2.368,2.376,2.384,2.392,

+2.4,2.408,2.416,2.424,2.432,2.44,2.45,2.46,2.47,2.48,2.49/

DO 100 M=1,1000

TDEV = TDEVSQ = 0

C THE TEST REQUIRES 7 RANDOM SAMPLES INITIALLY

DO 110 J=1,7

I= 500*RANF(O.) +1

C CALCULATE DEVIATION, SQUARED,TOTALS,FROM HO

DEV = EGG(I) - .499999

DEVSQ = DEV**2

TDEV = TDEV + DEV

TDEVSQ = TDEVSQ + DEVSQ

110 CONTINUE

TSAMP = TSAMP + 7

C CALCULATE DECISION STATISTICS FOR N UP TO 50

DO 120 L = 1,43

TSAMP = TSAMP + 1

I = 500*RANF(O.) +1

DEV = EGG(I) - .499999

DEVSQ = DEV**2

TDEV = TDEV + DEV

TDEVSQ = TDEVSQ + DEVSQ

IF (TDEVSQ .EQ.0.) GO TO 200

C CALCULATE DECISION STATISTIC

DESTAT = TDEV/(SQRT(TDEVSQ))

C DECISION MAKING

IF (DESTAT .GT. UNR(L)) GO TO 300

IF (DESTAT .LT. UNA(L)) GO TO 310

GO TO 120

200 DESTAT = 0

IF (DESTAT .LT. UNA (L)) GO TO 310

120 CONTINUE

GO TO 100

300 NREJ = NREJ +1

GO TO 100

310 NACEPT = NACEPT + 1

100 CONTINUE

AVGSAM = TSAMP/1000

NODEC = 1000-NREJ-NACEPT

C PRINT RESULTS

PRINT 400

400 FORMAT ("-SUMMARRY OF BARNARD'S TTEST DECISIONS")

PRINT 410



410

420

430

440
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FORMAT (" ACCEPTANCES. REJECTIONS, NO DECISIONS")

PRINT 420, NACEPT, NREJ, NODEC

FORMAT (5X,I4,5X,I4,8X,I4)

PRINT 430

FORMAT (" AVERAGE SAMPLE NUMBER")

PRINT 440, AVGSAM

FORMAT (4X,F6.2)

RETURN

END
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Subroutine TTEST
 

TTEST randomly samples the egg mass population 1000 times and

classifies the population according to Fowler's and O'Regan's truncated

sequential t—test (Fowler and O'Regan 1974). Input consists of the egg

mass population (ECG) and the number of branches (NN) to serve as an

observation. This is refered to as sample surface in the text. Upper

and lower rejection boundaries (UNR, UNA) are initialized.

Two random samples are initially required. The decision statistic

(DESTAT) is calculated following this sampling and for each subsequent

single observation until a decision is reached through;

DESTAT = TOTSUM/TOTSSQ

where; 1) TOTSUM = ZSUM and SUM is the deviation from the critical

density for each sample, 2) TOTSSQ = EKSUM)2. Output consists of the

number of acceptances (NACEPT) and rejections (NREJ) of the null hypothe-

sis and average number of branches sampled (AVGBRN).
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AVGBRN = TBRAN/IOOO

C PRINT RESULTS

PRINT 200

200 FORMAT (" SUMMARY OF T-TEST DECISIONS")

PRINT 210

210 FORMAT (" REJECTIONS, ACCEPTANCES, SAMPLE SURFACE")

PRINT 220, NREJ, NACEPT, NN

220 FORMAT (2X,3(I3,8X))

PRINT 230

230 FORMAT (" AVERAGE NUMBER OF BRANCHES SAMPLED PER DECISION")

PRINT 240, AVGBRN

240 FORMAT (5X,F7.4)

RETURN

END
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Subroutine SEQRT
 

SEQRT randomly samples the egg mass population 1000 times with a

truncation point of 50 observations per sample and classifies the pOpu-

lation according to Iwao's sequential test (Iwao 1975). Input consists

of the egg mass population (ECG) and critical density (CDEN) which is to

be exceeded for rejection of the null hypothesis. The upper (URB) and

lower (LRB) decision boundaries take the form;

URB = (N*CDEN) + A

LRB = (N*CDEN) - A

where; A = (T * (0.9948*N*CDEN)+(0.6952*N*CDEN2) and T is the desired

confidence probability (Student's t). Output consists of the number of

rejections (NREJ) and acceptances (NACEPT) of the null hypothesis, no

decision cases (NODEC) and average sample size (AVGSAM).
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