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ABSTRACT

AN INFORMATION THEORY APPROACH

TO HYDROGEN HALIDE

REACTION PRODUCT DISTRIBUTIONS

BY

David H. Stone

Chemical laser modeling is dependent on the reaction

rate coefficients available from both experiment and theory.

A statistical model is developed to correlate the relative

rate coefficients for the laser pumping reactions:

(I) F + H -—+ HF(V,J) + H, (II) F + D -—* DF(V,J) + D,
2

-¥’HF(v,J) + F, (IV) D + F

2

(III) H + F -—+ DF(v,J) + F,
2

-—+ HCl(v,J) + c1, (VI) D + c1

2

(V) H + Cl —+'DC1(V,J) + C1,
2

'—+ HBr(v,J) + Br, and (VIII) D + Br2-4~

2

(VII) H + Br2

DBr(v,J) + Br. The detailed product distributions for

reactions (IV) and (VIII) are generated by the model; these

distributions have not yet been experimentally observed.

The model uses surprisal analysis to transform the product

translational distributions into an analytically tractable

form. The translational surprisals are approximately quad-

ratic in form and vary in width with vibrational energy.

The surprisal widths are identified with product distribution

entropy for use in developing the statistical collision
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model. The model assumes a reaction complex interaction

among nascent vibrational levels. The strength of the inter-

action determines the proposed degree of energy interchange

among vibration, rotation, and translation. The logarithm

of the number of nascent states involved in the interaction

is identified as proportional to the translational distribu-

tion entropy. Relative values for the entropy are predicted

and compared with the experimental data.

The statistical model is coupled to an algorithm

which closely regenerates the reaction (III) product vibro-

tational distribution. Certain parameters are identified

and assumed to be constant with respect to isotopically

similar reactions. These parameters are incorporated into

the model to predict the full vibrotational distributions

for reactions (IV) and (VIII). The v = 1 rotational distri-

bution for reaction (II) is predicted, since the reaction

product data for that level was not accurately determined

when these experiments were performed by Polanyi and others

in 1972. The surprisal approach is also applied to HP

vibration to rotation collisional relaxation. Surprisals

are identified which correspond to recently reported trajec-

tory studies and experimental data.
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1. THE STATISTICAL METHOD IN

REACTION PRODUCT DISTRIBUTIONS

1.1 Introduction

Chemical laser modeling is dependent on the reaction

rate coefficients available from both experiment and theory.

A comprehensive computer model must incorporate potentially

hundreds of rates for the various pumping and relaxation

mechanisms, in order to accurately predict laser performance.

Available reaction rate data for HF (hydrogen fluoride)

chemical lasers, for example, is usually taken from selected

experiments and trajectory calculations as reviewed by

Cohen and Bott in references 1 and 2. Not all reaction

rates of interest in chemical lasers have been studied and

significant uncertainties are present in many that are known.

Techniques are needed to expand the data base from a few

accurately measured reaction rates to a complete rate set.

In this work the information theoretic or "surprisal”

approach to reaction product distributions as developed by

Bernstein, Levine, and Ben-Shaul (references 3-5) is applied

in part to several reactions important in chemical laser

deve10pment. Using the surprisal approach as a starting

point, the reactions are then analyzed from the vieWpoint

of both reaction complex dynamics and statistical collision

theory.
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The experimental data which forms the basis of the

analysis was obtained by Polanyi and other workers as cited

below using reacting molecular beams. The reactions of

primary interest in this work are the HF/DF laser pumping

reactions, so-called because the reaction exothermicity

"pumps” the molecular products into excited vibrational and

rotational energy states. The product vibrational and rota-

tional distributions were obtained by Polanyi, Woodall, and

Sloan (references 6 and 7) for the reactions

F + H2-—+ HF(v,J) + H (I)

F + D2-—+ DF(v,J) + D (II)

H + F -—+ HF(v,J) + F (III)
2

where "v" is the vibrational quantum number and "J" is the

rotational quantum number.

The objectives of this work are to develop a model

which accurately predicts the features of the experimental

distributions, and to develop a method to predict reaction

product distributions which have never been measured experi-

mentally. Of particular interest is an accurate prediction

for the DP laser pumping reaction

D + F2-—+ DF(v,J) + F (IV)

which has not been studied to any detailed extent experi-

mentally.

To test the range of validity of the model and also

for use in other types of chemical laser studies, the model
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is applied to the product distributions obtained by Anlauf,

et. a1. (reference 8) for the reactions

H + C12-—+ HC1(v,J) + C1 (V)

D + Clz-—+ DCl(v,J) + C1 (VI)

H + Brz -+'HBr(v,J) + Br (VII)

The model is then used to predict the experimentally unknown

product distribution for the reaction

D + Br -—+ DBr(v,J) + Br (VIII)
2

Each of the product distributions for reactions (I)-

(VIII) will be transformed via the surprisal technique as

modified in this work to make statistical analysis more

tractable. Similarities are anticipated in the analysis for

reactions (III)-(VIII) due to the character of the reactants,

namely monatomic hydrogen and diatomic halide. The model

incorporates the dynamical similarity of these reactions,

but will be seen to exhibit sufficient flexibility to distin-

guish among these separate reactions.

The surprisal technique is also applied to vibration

to rotation (V-R) relaxation processes in the HF molecule.

Due to the lack of experimental data, a linear surprisal

function is assumed. Results for different values of the

surprisal slope are compared with trajectory calculations

by Wilkins and recent limited experiments by Hinchen.
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1.2 An Overview of the Information-Theoretic Approach

to Reaction Product Distributions

Combining in part the developments from references

5 and 9, the basic concepts from information theory may be

applied to reaction product distributions. The discussion

is restricted to the "analytical route" which begins with

observed experimental distributions and progresses toward

understanding of the underlying reaction dynamics. This is

in contrast to the "synthetic route" in which constraints

to the product distribution are known or postulated. The

form of the distribution is then synthetically obtained by

maximizing the entropy subject to the given constraints.

The analytical route is typically used by workers in this

field to obtain these constraints given an observed distri-

bution. The present work diverges from this approach by

interpreting the observed distributions in terms of a modi-

fied statistical collision theory. The mathematical con-

straints of the distribution are not necessary here

because useful results and predictions may be easily obtained

without them, as will be shown later.

Consider an experiment which has n distinct possible

outcomes which arise with equal probability. For example,

we may choose any of reactions (I)-(VIII) and obtain a

product distribution in n different vibrational levels. Let

the measurement of the vibrational level for a given product

diatomic molecule constitute a single experiment. Repeating

this experiment N times will produce a particular sequence of

n possible outcomes, arranged in a chain N items long. There
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are evidently nN different possible sequences, where each

sequence item has a probability of l/n. The actual sequence

of outcomes is not particularly interesting compared with the

number of events, Ni’ which result in the i'th outcome, where

i = 1,2,...,n. Any set of integers INiI which satisfies

ii N. = N 1

i=1 1 ( )

is a possible result. The number of such combinations of N

objects taken in groups of N1, N2""’Nn is given by

w = Nl/nN.! (2)
l 1

If equation (2) is summed over all sets INiI that satisfy

equation (1), the result must be nN. Therefore the fraction

of times, or probability, that a particular set INiI is

observed is given by

P(INi|) = W/nN (3)

In any real experiment, the number of reactions, N,

far exceeds the number of product levels, n. Stirling's

approximation may then be used, such'that in the limit where

N>>n,

NlnN - Z N.lnN. - Nln(n)
i 1 1

-qunm)+ 23(Ni/N)ln(Ni/N)]

1

lnP(lNi|)

-N[ln(n) + Z PilnPi] (4)

1

where Pi = Ni/N is the observed probability of occurrence of
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the i'th outcome. The information content of the distri-

bution (ie., the particular set INiI) is defined by

J ~(l/N)ln[P(lNil)]

11101) + § PilnPi

g PilnIPi/(l/n)l (5)

The information is a non-negative quantity and is

always defined even if some outcomes are never observed,

using the convention PilnPi = 0 when Pi = 0 or 1. The

smallest value of a! occurs when Pi = l/n so that all possible

outcomes arise with equal probability. The entropy of the

distribution is defined as

H = X PilnPi (6)

1

and is related to the information by

J=1D(D)'H (7)

The entropy is also exclusively non-negative and attains

its largest value, 1mm, for the distribution Pi = l/n.

The entropy is sometimes termed the "missing information,"

due to its complementary nature with respect to the informa-

tion. The entrOpy of a distribution, H, is related to the

thermodynamic entropy, S, by the gas constant: 8 = RH.

The physical significance of the information and

entropy of distributions is explored in the following section.

It is necessary to develop strict conditions governing the
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physical interpretation of these mathematical quantities.

These conditions are fundamental to quantitative prediction

and so form the framework of the model to be developed.

1.3 A Physical Interpretation of the Information Content

of a Distribution

The relationship between entropy and information is

provided by Brillouin in reference 10: ”Entropy measures

the lack of information; it gives us the total amount of

missing information on the ultramicroscopic structure of

the system." The structure of interest in this work is

given by the details of the molecular reaction dynamics

which produce the actual product distributions. Alterna-

tively the term "structure” can be applied directly to the

product distributions. This idea will be explored later

in this section.

In the previous section, the information content of

a known experimental distribution was derived. The form of

equation (5) exhibits the averaging process which defines cl.

In words, the information is the average difference between

the logarithm of the observed probability, Pi’ and the loga-

rithm of a microcanonical distribution, l/n. A microcan-

onical distribution is defined by the equality of each

possible outcome. For chemical reactions of the types (I)-

(VIII), a product microcanonical distribution is determined

by calculating the number of allowed quantum states avail-

able to the products in terms of the total translational

energy and the vibrational and rotational energies of the

diatomic molecule. No change in electronic energy levels



8

is considered due to the limited amount of energy involved

in these reactions.

The first excited electronic state of the HF molecule,

for example, is 242 kcal/mole above the ground state (refer-

ence 11), whereas the total energy available to the products

of reaction (III) is only 102 kcal/mole. Excited reactant

electronic states are also too high in energy to influence

product distributions under typical experimental conditions.

In reaction (I), for example, the first F-atom excited state

is 293 kcal/mole (reference 12) above the ground state while

the first H2 excited electronic state is 262 kcal/mole (refer-

ence 11) above its ground state. A review of the effect on

product distributions of exciting vibrational modes in react-

ants for cases including reactions (II) and (V) is given in

reference 13. These modes must be excited selectively since

at T = 300K, for example, the v = 1 population of H2 is only

0.15% of the v = 0 population, due to the energy difference

in the Boltzmann factor of about 12 kcal/mole.

The product microcanonical distribution is called the

"prior" distribution and is described in some detail in the

next chapter. When the observed experimental distribution,

Pi’ corresponds to the prior distribution, P2, the informa-

tion is zero and the entropy is a maximum. The information

can now be written

I _§: 0

It is convenient to define the "surprisal" by



_ o
Ii - -ln(Pi/Pi) (9)

which gives the local (ie., for outcome 1) logarithmic

deviation of the actual distribution from the prior distri-

bution. Thus the information can also be written as

J = {3 PilnIi (10)

1

Equations (8)-(10) must be subject to the constraint

Zp.=2p‘?=1 (11)

in order to satisfy non-negativity of the information. It

is also necessary to identify a one-to-one correspondence

among data points in the actual and prior distributions.

Failure to satisfy equation (11) and/or to insure point-by-

point correspondence, as occurs occasionally in the litera-

ture, can lead to erroneous physical interpretations of

experimental data as will now be shown.

As described in reference 10, information is the

result of a choice which diminishes the number of possible

outcomes. Information is not to be considered as the basis

for a prediction in order to determine future outcomes.

This is manifested in two principal ways: First, we must

treat independent choices completely apart from each other.

When specifying the product state of a diatomic molecule,

such as produced by the reaction A + BC-—+ AB(v,J) + C, the

vibrational distribution might first be determined. This

"choice" increases our information toward determining the

detailed product state which specifies vibrational,



10

rotational, and translational energies. The "choice" which

determines the vibrational part of the product state is quite

independent of the rotational distribution, however, except

within the overall constraint of conserving total available

energy. Therefore a prediction of the details of the rota-

tional distribution cannot be made from any vibrational

information obtained. Second, the averaging process of equa-

tion (10) produces a number independent of the symmetry or

"structure" of a distribution. It may be desirable, for

example, to use quantities like the mean product vibrational

energy or the most probable product vibrational level as

cornerstones of a dynamical theory. The information calcu-

lated by equation (10) may be used as a numerical measure of

confidence in these desired quantities, if special conditions

are invoked. These special conditions are now developed

to make use of the information as a predictive tool.

Consider two hypothetical chemical reactions of

the type A + BC —-AB(v) + C. The vibrational product

distributions resulting from these similar experiments labeled

"A" and "B" are shown in Figure 1. Also shown is the RRHO

(rigid-rotor harmonic oscillator) prior distribution as a

function of the fractional available vibrational energy.

Distribution "A" is evidently more narrow than distribution

"B". This seems intuitively related to the amount of "infor-

mation" derived from performing the experiments. Applying

equation (10) to these distributions, however, results in a

value of .1 greater for "B" than for "A". This results
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from both the averaging process and the use of the same

prior distribution for both "A" and "B" which precludes

point-by-point correspondence subject to equation (11).

The information as given by equation (10) can be

made to exhibit predictive qualities subject to special condi-

tions. In addition to normalization to satisfy equation (11),

point-by-point correspondence must be imposed with respect

to a fixed prior distribution. Use of a common prior distri-

bution for different actual distributions enables identifi-

cation of the width of a distribution with its entropy. This

cannot be done in the example given because the product vib-

rational levels for "A" and "B" differ.

The functional form, or "class", of a distribution must

also be specified. For a given class, the distribution sharp-

ens as the information increases, subject to the conditions

mentioned before. For complicated distributions, the turning

points must also be specified. These occur where the slope

of the surprisal changes sign. Simple distributions with

one turning point are shown in Figure 2. The curve labeled

"1" is the fixed prior distribution. As the curve number

increases, so does the information via equation (10) and also

the sharpness, or predictive quality of each distribution.

All of the curves shown satisfy the constraints listed before

and therefore exhibit a direct correlation between their

information content and their predictive qualities.

For purposes of discussion, the class of a distribution

is defined by the number of its turning points. Reactions
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of the type H + BrC1-—+ HCl + Br exhibit bimodal rotational

distributions, as discussed in reference 14. A typical

bimodal distribution is shown in Figure 3. Also shown are

the same data points arranged to form a one-peak distribution.

Thus Figure 3 exhibits a Class 3 and a Class 1 distribution.

For simplicity, the prior distribution is simply taken to

be the reciprocal of the number of data points. It is evi-

dent that equation (10) is useless as a measure of predictive

information to compare these distributions of different

classes, since the same value of 2! results from quite

different physical results. It would be useful to find a

function which is indifferent to the class of distribution

while distinguishing among different physical results. In

particular, a quantity is desired which measures the ”struc-

ture" of a distribution.

A suggested candidate which measures the absolute

deviation between the actual and prior distributions might

be termed the "structural information", given by

 
.15 = ln{|dI/dx- + 1] (12)

Here the average value of the absolute surprisal slope is

calculated with respect to an appropriate variable like

fraction of energy in vibration, x = fV’ or rotation,

x = fR. Then

 

I(xi+1) - I(xi)

x. - x.

1+1 1

d1

3?

(13)
 

2;_l_

n-l

   

 

where the sum runs over the n-l intervals between the n data
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points. Equation (12) avoids the averaging process of

equation (10), giving .15 certain advantages over 2’, although

there are several mathematical properties satisfied by.[

which do not apply to :15.

There_are several useful features of the function .15.

When the actual and prior distributions coincide, dI/dx = O

at each point and thus ‘15 = 0 which implies zero structure

in a microcanonical distribution. If the actual distribution

oscillates rapidly above and below a given prior distribution,

.15 can be quite large while the information,el, may be quite

small. Thus .15 is larger for the Class 3 distribution in

Figure 3 than for the Class 1 distribution. The function :15

also has additivity characteristics due to the logarithm.

Thus an experiment resolving both vibrational and rotational

data can be described by two components of structure which

can be summed to give a total measure of structure. It

should be pointed out that calculating .15 as a combined

function of vibrational and rotational energies will give a

number different from the sum of component values of :15.

This would, however, involve use of entirely different prior

distributions which is not allowed according to the conven-

tions cited earlier.

As an example of the property of additivity, consider

experimental data consisting of detailed vibrational and rota-

tional distributions. Let the vibrational distribution be

characterized by the function

 

v - dICfv) + 1 (14)

HIV



d1

ti
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and the rotational distribution by

 

dI(fR)

R
GR

 

 
" 1 (15)

Then the complete vibrotational distribution may be charac-

terized by

KV,R = FVGR (16)

The total "structural information" is then given by

.1 ln K

5v
V,R

1n FVGR

ln F + 1n G

V R

+ e! (17)

45v SR

which illustrates the property of additivity due to the

logarithmic definition of‘IS.

In the applications to follow, all experimental

distributions to be analyzed are of the type Class 1 and

thus may be handled subject to the conditions already

discussed. The following chapter incorporates these con-

ditions as a baseline for the analysis leading to a computa-

tional reaction model.

 



2. SURPRISAL ANALYSIS

2.1 Calculation of the Surprisal

To analytically describe and model the pumping dis-

tributions for reactions (I)-(VIII) the surprisals are

now determined. The experimental rate coefficients, ie.

the Pi’ are those of references 6-8. The RRHO approximation

is found to be quite sufficient for calculating the micro-

canonical, or prior, distributions Pg. For analytical

simplicity, the prior distributions are calculated as

functions of the fractional available energies in vibration,

rotation, and translation, denoted fV, fR, and fT respec-

tively. These quantities must therefore satisfy

fV + fR + fT = l (18)

for each reaction product distribution.

The fractional energies are determined with respect

to the total energy available to the reaction products,

E = -AH° + Ea + éRT + RT (19)
total 2

The heat of reaction or exothermicity of the reaction is

denoted "-AHO". This is added to the relative reactant

translational energy, Ea + gRT, where E8 is the activation

energy which must be overcome in order for each reaction

to occur. Finally, an additional RT is available from the

18
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internal energy of the incident diatomic molecule. It

should be noted that these are molar quantities where the

RT terms are the average thermal energies determined from

statistical mechanics. Therefore the energy available in

a particular molecular encounter may vary slightly about

the statistical average per encounter.

The values of E for reactions (I)-(VIII) are
total

given in Table 1.

Table 1. Total Available Reaction Product Energies

 

REACTION Etota1(kcal/mole)

F + H2-—+ HF + H 34.7

+ D2 —» DF + D 34-4

H + F2 —>HF + F 102.0

D + F2 —+’DF + F 103.0

H + C12-—+ HCl + C1 48.4

D + Cl2 —+'DC1 + C1 49.6

H + Brz —*’HBr + Br 43.6

D + Br2 -*'DBr + Br 44.6

These values are approximate to typically 1-2 kcal/mole

due largely to difficulties in determining the activation

energy, Ea

There are three forms of the surprisal of interest in

this work, based on the prior distribution functions Po(fv),

P°(fR), and P°(fT). The development of these functions is

given in some detail in reference 5, using the RRHO approxi-

mation to determine the density of product states at a

particular fractional energy. The results are:

3/2

(20)
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1/2

 

(1 - f - f )
Po(f f ) = g v R (21)

R v 2 3/2

P°(fT) = cnle/2(l - fT)“ (22)

The notation P°(fR fv) denotes the prior distribution as

a function of fR once fV is already specified. The coeffi-

cients cn are given by

_ ,an + 5/2)

Cn ' n1r(3/2)' (23)

where n = 1,3,4, and 6 respectively for products of the

types A + BC, AB + CD, A + BCD, and AB + CDE. In this work

all reaction products are of the form A + BC, so that n = 1.

The formulas (20)-(22) are smooth functions whose

coefficients are determined by requiring the normalization

ij°(fx)dfx = 1 (24)

This computation is not meaningful when dealing with quan-

tized product levels. The forms of the prior distribution

to be applied to reactions (I)-(VIII) are given as

 

P°(fv) = A(l - fv)3/2 (25)

1/2
(1 - f - f )

o _ V R
p (fR fV) - B (1 - fV)372 (26)

p°(£T) = cri/Z(1 - fT) (27)

where the coefficients A, B, and C are determined by the

normalization of equation (11). This normalization facil-

itates physical interpretation of the surprisal distributions
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obtained from the experimental data.

The rotational surprisals, I(f -ln P(fR)/P°(fR) = R).

for reactions (I)-(III) are shown in Figures 4-6. In devel-

oping the analytical model in the next chapter, the trans-

lational surprisals are found to be most useful and therefore

only a few rotational surprisals are presented for descrip-

tive purposes. The translational surprisals for reactions

(I), (II), (III), (V), (VI), and (VII) are shown in Figures

7-12, respectively. Note that for each experimentally observed

vibrational level there corresponds a rotational and transla-

tional surprisal distribution. The significance of the sur-

prisals is discussed in the following section.

2.2 Comparison and Significance of the Surprisal

Distributions

The complementarity of the rotational and transla-

tional surprisals is evident. The symmetry of the rotational

curves with respect to each distribution maximum is reversed

in the translational curves due to the relation

fT = 1 - (fV + fR) = 1 - finternal (28)

The translational surprisals are multi-peaked because the

internal modes of energy are effectively lumped together

when computing the prior distributions. The translational

peaks for a given reaction are approximately equal in mag-

nitude, however, due to the normalization of both the actual

and prior rates for each vibrational level. The normaliza-

tion thus has the desirable effect of removing the weighting-

effect of the vibrational distributions, which tend to be
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sharply peaked in the intermediate vibrational levels.

This weighting effect would result in surprisal distributions

of severely varying peak magnitudes and preclude meaning-

ful physical interpretation. It would be mathematically

produced by using the prior distributions given by equations

(20)-(22) and neglecting the principle of point-by-point

correspondence.

It is observed that the rotational surprisals have the

same general form as the actual experimental rotational dis-

tributions. The actual distributions are the result of

the particular combination of statistics and reaction dyna-

mics peculiar to each reaction. The surprisal, however, is

a quantitative measure of the deviation of the actual and

statistical distributions. Therefore, in the surprisal, the

"statistics“ due to the density of available product states

has been effectively subtracted from the actual distribution,

leaving a distribution with principally dynamical information.

This "subtraction," coupled with the logarithmic definition

of the surprisal, results in relatively smooth curves of the

same general form. The model developed in the next chapter

identifies further statistical information peculiar to the

dynamics of each reaction, now independent of the statistics

already removed by calculating the surprisals.

There are two main features common to the surprisals

shown in Figures 4-12. The first is the variation in the

"widths" of the surprisals as functions of fractional vibra-

tional energy. The width in each case is arbitrarily meas-

ured at I = 1n2, where P = PO/Z. The units of surprisal
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width are the dimensionless energies fR and fT' It is

significant that the largest width systematically occurs

in the intermediate vibrational levels, except for reac-

tion (II). It is suspected that this exception occurs

because of the uncertainty in the data presented in refer-

ence 6. The data for the second vibrational level "was

determined with considerably less accuracy than the v = 3

and v'= 4- levels due to a low signal-to-noise ratio."

Furthermore, the v = 1 data was simply estimated. The

model to be developed predicts a maximum width in the inter-

mediate vibrational levels for reaction (II) and is used

to generate rotational data for the product v = 1 level.

The second main feature of the surprisal distribu-

tions is the consistently skewed symmetry toward the high

rotational (low translational) levels. There are generally

a couple more J-levels found on the high rotational energy

side of the most probable J-level (denoted f'or Eh).

Coupled with the increased rotational level spacing at

high energies characteristic of diatomic molecules, the

effect is a pronounced asymmetry in rotational energy. The

difference in rotational energy between ffi and the value of

the energy at I = ln2 is hereafter termed the surprisal

"half-width". The notation "A" will refer to the ”full-width"

and "A1" and ”A2" to the smaller and larger half-widths of

each distribution, such that

(29) -

The full-widths in translational energy are shown for
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reactions (I)-(III) and (V)—(VII) in Table 2.

Table 2. Translational Surprisal Full-Widths, A(fT),

at I = an

V-LEVEL

R____EAc___TIO...N 1 .2 .3. 1 .5. 9. 2 a

I 0.198 0.212 0.045

II 0.181 0.147 0.122 0.054

III 0.036 0.048 0.065 0.068 0.064 0.068 0.030 0.017

V 0.144 0.146 0.148 0.111

VI 0.193 0.161 0.107 0.082 0.014

VII 0.068 0.096 0.089 0.065 0.037

An upper limit is automatically placed on each sur-

prisal width due to the available rotational energy once a

vibrational level is specified. For the lower vibrational

levels of reactions (I)-(VIII) this upper limit in energy

is much larger than the observed distribution widths.

Restrictions from conservation of angular momentum account

for the narrow range of observed product rotational energies.

This is treated in some detail in reference 15. Physically,

these restrictions are expected since the reactants must come

close enough together to produce a reaction. This limits

the impact parameter and therefore the range of initial angu-

lar momentum. A crude but illustrative calculation may be

performed to approximate the magnitude of initial angular

momentum as a function of impact parameter. This will lead

into the discussion of reaction dynamics in the next chapter.

A simple parameter by which to visualize angular

momentum in the reaction is the product rotational quantum

number, J. In the rotational surprisals, data points at
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fR = 0 correspond to J = 0 and subsequent data points corres-

pond to J = l, J = 2, etc. The angular momentum with respect

to the center of mass of monatomic and diatomic reactants is

given by

1/2
L=pv b=tiJU-+l) (an

rel

where 11 is the reduced mass of the reactants, v is the
rel

relative velocity, and b is the impact parameter. A sample

calculation for the H + F2 reactant pair produces solutions

for J for several values of the impact parameter, as shown

in Table 3. The relative velocity is taken simply as the

root mean square speed of a particle of reduced mass 11 at

T = 300K. All reaction temperatures in this work are taken

to be T 300K unless otherwise specified.

Table 3. Initial Reactant Angular Momentum for Various

Impact Parameters, H + F2‘—+ HF + F

 
 

IMPACT PARAMETER ANGULAR MOMENTUM

"b"(A) QUANTUM NO. J*

0.2 0.5

0.4 1.3

0.6 2.1

0.3 2.9

1.0 3.7

1.2 4.6

1.4 5.4

1.6 6.3

1.8 7.1

2.0 7.9

* The fractional J-values shown are intended for

descriptive purposes only.
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For reaction to occur, as explained in reference 7, the

impact parameter must be small. For reaction (III), the

mean value of b is about 1.0A. The maximum allowed b for

this reaction to occur is about 2.0A. It is evident from

Table 3 that even for large values of the impact parameter,

there is not enough initial rotational energy to excite very

many J-levels in the product HF molecule. Theoretical work

will be cited in the next chapter that indicates some corre-

lation between the magnitude of the impact parameter and the

final range of rotational level excitation. It may therefore

be inferred that the small values of initial rotational

energy are amplified by whatever process occurs within the

reaction complex. Examination of this process is the subject-

of the next chapter.



3. A SEMI-EMPIRICAL MODEL TO CORRELATE

TRANSLATIONAL SURPRISAL DISTRIBUTIONS

3.1 Review and Reinterpretation of Reaction Dynamics

The surprisal distributions for reactions (I)-(VIII)

are markedly similar, implying similarity in reaction dyna-

mics. Particularly reactions (III)-(VIII) should exhibit

similar dynamics due to the common monatomic hydrogen and

diatomic halide reactants. In this section the fundamen—

tals of reaction complex dynamics are reviewed and combined

in such a way as to lead naturally to a statistical inter-

pretation of the significant features of the surprisal dis-

tributions.

There are several features common to the experimental

results for reactions (I)-(VIII) as outlined, for example,

in reference 7. The products exhibit (a) relatively ineff-

cient vibrational excitation, (b) inefficient rotational

excitation, and (c) not much increase in rotational excita-

tion in successively lower vibrational levels. These effects

are proposed in this work to be related to each other as

described later in this chapter.

The inefficient conversion of available product energy

into vibration can be explained via the "light-atom anomaly”,

as described in reference 14. This effect is pronounced in

reactions (III)-(VIII), which involve a light attacking atom

"A" incident on a heavy diatomic "BC”. Each reaction may be

37
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characterized by the degree to which the potential energy

surfaces are "repulsive" or "attractive". Attractive sur-

faces produce energy release as the reactants A + BC ap-

proach each other. Repulsive surfaces produce energy as the

products, AB + C, are separating. For reactants of approxim-

ately equal mass, the AB-C replusion occurs with the new

A-B bond still extended. This is called "mixed energy

release" on a repulsive surface. As a result, the repulsive

energy produces large momentum of B and C, with consequent

internal excitation of AB. In the case where A is very light

compared to B and C, a "light-atom anomaly" may be encountered,

if the surface is sufficiently repulsive in nature. Here the

A atom approaches BC so rapidly that an AB bond effectively

forms before the products can separate. With A and B close

together, the B-C repulsion causes the AB product to recoil

as a unit, producing large translational excitation but very

little vibrational excitation. This light-atom effect will

be used later to simplify model computations.

Low rotational excitation is particularly pronounced

in reactions (III)-(VIII), due largely to the necessarily

small initial orbital angular momentum as discussed in refer-

ence 7 and in the previous chapter. Although the impact par-

ameter must remain small in order to insure reaction, there

tends to be a correlation between its magnitude and the degree

of product rotational excitation, as discussed in reference 16.

In effect the energy release of the reaction may be thought

of as amplifying the initial orbital angular momentum. This

effect becomes more pronounced as the character of the potential
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energy surface becomes more attractive. The more attractive

reaction surfaces produce greater percentage rotational ex-

citation, but also produce greater complexity in the reaction

complex interaction. References 14 and 16-19 treat these

effects and their implications in considerable detail, as

summarized in the discussion to follow.

Larger degrees of complexity in the reaction complex

interaction ultimately destroy smooth correlations between

the impact parameter and the degree of rotational excitation.

When the impact parameter is high and the potential energy

surface is significantly attractive, there is a tendency

for A to spiral in toward B and form AB with higher angular

momentum. The three particles will spend a longer time to-

gether on an attractive surface and therefore undergo mul-

tiple collisions with each other. The overall probability

of reaction and the form of the product energy distribution

become extremely sensitive functions of both the impact

parameter and the initial energy. Thus molecular level

variations about' the ensemble average available energy

may have significant effect on the form of the experimental

product distributions.

The multiple collisions in the reaction complex fall

into two general categories. A ”clouting" encounter is typ-

ical of more repulsive surfaces and a "clutching" encounter

is more probable for attractive surfaces. In the clouting

encounter, atom A may spiral in toward B, begin to form a

bond and induce rotational motion of the pair AB. The rota-h

tion brings A to a position where it "clouts" atom C before
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the products separate. This collision tends to decrease

the rotational energy possessed by AB as the products sep-

arate.

In a clutching encounter, atom A spirals in toward

B as before, but the attractive surface induces reaction

between A and C such that A is "clutched" by C away from

B. This type of reaction is also termed a "migratory"

encounter and tends to produce higher rotational excitation

of the product AC. Clutching encounters also tend to destroy

simple impact parameter correlations with product excitation.

A significant effect of both clouting and clutching

secondary encounters is a tendency for the mean product

vibrational energy to fall. Trajectory studies in the ref-

erences cited show a definite correlation between this de-

crease and the degree to which secondary encounters occur.

This drop in vibrational energy becomes especially signifi-

cant as the attractive part of a potential energy surface

is increased. The longer-lived and more complex the inter-

action becomes, implies transition to a statistical regime

where correlations between initial and final states-become

too uncertain to allow for accurate dynamical study. In the

limit of a truly long-lived complex, the dissociation of the

A-B-C complex is governed by statistical considerations as

explored in references 20-24. The product probabilities are

then proportional to the amount of phase space accessible

to the products as functions of internal and translational

energies.
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A primary consequence of the transition toward the

statistical regime is a broadening of the product energy

distributions. Energy lost from vibration must be trans-

formed into some combination of rotational and translational

energy. The evidence of low fractional rotational energy

in low vibrational levels indicates that the primary con-

version is to translational energy. The broadening is es-

pecially exhibited in the tails of the reported vibrational

distributions toward low energies. These tails are also

exhibited in the translational distributions, and in the

rotational distributions with opposite symmetry. The degree

of conversion to rotation is predicted in this work from

statistical considerations later in this chapter.

A striking example of the effect of secondary en-

counters on the product distributions is presented in ref-

erence 16. Bimodal distributions in rotation for the lower

vibrational levels are characteristic of the reactions

H + ICl -'HC1(v,J) + I (IX)

and

H + BrCl -+-HCl(v,J) + Br (X)

The separation in the rotational peaks is especially pro-

nounced for reaction (IX) and increases for both reactions

as the vibrational level decreases. These reactions are

examples of ”microscopic branching" where the type of sec-

ondary encounter which occurs determines the domain of the

reaction products.
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The domain in low rotational energy evidently results

from clouting encounters which tend to restrict product

rotational energy. The high rotational energy domain re-

sults from migratory encounters following interaction with

the monatomic product atom. It is significant that the

separation in rotational domains is more pronounced in reac-

tion (IX) than in reaction (X). This may be due quite

simply to the size of the atoms involved, and hence the

respective potential energy surfaces. The smaller size

difference between the Br and C1 atoms evidently decreases

the domain separation caused by the different types of sec-

ondary encounters. It is easily projected that the diatomic

reactants of reactions (I)-(VIII) will exhibit even less

separation, although the broadening effect will still occur.

In reviewing the surprisals of Figures 4-12, there

is observed a correlation between the degree of asymmetry

toward the high rotational levels and the magnitude of the

attractive part of the potential energy surface. As described

in references 25-27, the attractive percentage of the potential

energy surfaces for reactions (III),(V), and (VII) is approx-

imately 45%, 30%, and 45%, respectively. The balance of the

percentage is primarily repulsive. It is observed that the

surprisals exhibit considerably more asymmetry for reactions

(III) and (VII) than for reaction(flO. The larger attractive

percentages result in more migratory encounters which produce

the asymmetry.

A model incorporating the physical ideas presented in

this section is now developed. Attempts are made to quantify
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both the broadening effect of all secondaryencountersand the

degree of asymmetry of rotational distributions charac-

terized by migratory encounters.

3.2 The Statistical Model

The discussion in Chapter 1 produced conditions under

which the information content of a distribution, or con-

versely its entropy, takes on physical significance. The

surprisal distributions in Figures 4-12 satisfy these con-

ditions. Therefore the width of a given surprisal is directly

related to the entropy of that distribution. As widths in-

crease with respect to a fixed peak magnitude, so also does

the entropy, corresponding to a lack of "predictive quality"

in the data. An extremely important feature of the surpri-

sals shown is the approximate equality in peak magnitudes for

a given reaction, as discussed in the previous chapter. This

enables comparison of translational surprisal entropies for

each reaction, despite the lack of point-by-point correspon-

dence as illustrated, for example, in Figure 2. If the peak

magnitudes varied considerably, an analysis based on equation

(12) would be necessary. Once making this straightforward

connection between distribution width and entropy, a tech-

nique must be developed to predict the entropy of a distri-

bution.

The fundamental assumption in statistical collision

theory (references 20-24) is that the reaction complex is

sufficiently long-lived to produce randomization between

initial and final dynamical conditions. The product distri-

butions are then basically microcanonical, although various
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constraints may be invoked to add structure to the results.

From the point of view of the reaction complex, the entropy

of the product distribution is given by

H = lnS? (31)

where S? is the number of product states accessible from the

complex.

If dynamical constraints are invoked, then some

product states become more probable than others. Identify-

ing the entropy, H, with the surprisal width, A , the rela-

tion for this case becomes

A = c 1n 52’ (32)

where STIrepresents the constrained distribution of product

states and C is a normalization constant to be determined

empirically. The entropy was shown to increase positively

with distribution width in Chapter 1. A simple linear rela-

tionship is assumed which will be shown to correspond to the

experimental distribution widths.

Determination of the quantity .Q’can be achieved by

combining the dynamical ideas of the previous section. A

schematic of the model is shown iangure.l3‘which leads to

a useful form for ST’and predictions of the distribution

widths. (Hereafter the terms width and entropy as applied

to product distributions are used equivalently.)

A three level product vibrational level distribution

is used for simplicity in explanation. The physical example

shown in Figure 13 also corresponds to the reaction (I)
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Figure 13. Schematic of the reaction complex

redistribution process.
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product energy levels. As the reaction begins, a particular

product vibrational energy becomes most probable depending

on a given trajectory through the potential energy surface.

This vibrational energy is characteristic of the initial

A-B bond forming before any secondary encounters occur. The

attractive part of the potential energy surface will produce

initially high values of rotational energy by amplifying

the initial orbital angular momentum. The secondary en-

counters then transform part of the vibrational energy into

a mixture of rotation and translation. The strong repulsive

part of the surface generates the majority of the transla-

tional energy and also causes a drop in rotational energy by

the time the products are completely separated. This proc-

ess is illustrated in Figure 13 by assuming that an initial

reaction complex population forms with energy intervals

of width ‘4' centered about ffi in each vibrational level.

These populations in levels v = 2 and v = 3 are energy res-

onant with rotational levels diagonally below along the

dashed lines. The actual quantum energy levels used for com-

putation are those of the fully formed product diatomic mol-

ecule. The justification of this approximation to the very

time-dependent energy eigenstates is the light-atom anomaly,

which is quite applicable for reactions (III)-(VIII). Since

both atoms of the reactant diatomic are identical, use of the

product diatomic energy levels is proposed to be valid for

both clouting and clutching encounters. In reactions of the

types (IX) and (X) this would not be true. In reaction (IX),
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for example, the HI energy levels would be quite different

from the HCl energy levels.

The secondary encounters are then assumed to mix the

vibrational and rotational modes along the energy resonant

diagonal lines. If the final encounter is clouting in nature,

followed by repulsive release, populations in high rotational

levels will effectively relax within a given vibrational

level during the conversion to translational energy. If the

final encounter is migratory, the A-C pair's rotational

energy will be diminished by the B-C repulsion. This relax-

ation analogy is simply a descriptive summary of the reaction

dynamics detailed in references 16-19. It is proposed in

this work that the rotational energy relaxation in a migra-

tory encounter takes place because repulsion occurs before A

has time to rotate around C. The momentum contributed to C

therefore opposes the rotational angular momentum imparted

by the migration of A. The resulting decrease in product

rotational energy is substantial, but evidently less than

that produced by a clouting encounter. Instructive diagrams

of these secondary encounters may be found in reference 19.

The difference in rotational energy decrease produced by the

two types of encounters is assumed in this work to account

for the asymmetry of the significantly attractive reaction

surface product distributions.

The reaction complex energy redistribution process is

therefore assumed to take a path from vibration to rotation

to translation. A simpler model based on a direct path from

vibration to translation is analyzed in the next chapter and
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is seen to be quite inferior to the present model in predict-

ing the values of entropy for the reaction distributions of

interest.

A given rotational distribution is assumed to be com-

prised of direct contributions plus population arriving as

a result of the energy redistribution process. The v = 1

population, for example, consists of molecules initially

selecting that vibrational manifold, plus populations trans-

ferred from levels v = 2 and v = 3. Consider looking within

the reaction complex from the energy point of view of the

v = 1 level. The v = 1 product rotational entropy is depen-

dent on the number of states ultimately accessible to that

level. These states are assumed to be grouped within inter-

vals of energy of width 4’, resonant in energy with the v = 2

and v = 3 initial vibrational populations. Each accessible

state must be weighted, however, according to assumed con-

straints characteristic of the dynamics of the secondary

encounters. The functional form of the weighting factors

must be assumed and then tested via equation (32) against

the measured surprisal entropy values.

The assumed form for the weighted number of states

available to contribute to the entropy of a particular dis-

tribution is

-dE/akT (33)

52'(V) selected (23 + 1)P(E

J-levels

V-R)e

Here the sum runs over the J-levels found within each inter-

val A' which is resonant with higher vibrational levels, as

depicted in Figure 13.
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The coefficient ZJ + 1 is the degeneracy of each

rotational level, ie., the number of separate quantum states

allowed in each J-level. The quantity P(EV_R) is the arbit-

rarily chosen nascent vibrational distribution. It turns

out that the results are not qualitatively affected by the

specific form of this distribution. A convenient choice for

the nascent vibrational distribution is the experimentally

observed product distribution. When the model is coupled

with an algorithm (to be developed in the next chapter), this

choice of distribution produces favorable results in gener-

ating the full set of reaction rate coefficients. It would

be expected that the redistribution process would greatly

transform the nascent distribution as it progresses toward

the final vibrational distribution. When the final vibra-

tional data is normalized, however, the numerical differences

between nascent and final distributions fall within experi-

mental error. This was tested in detail when using the model

to generate the reaction (III) rate coefficients.

-GE/akT whichEach state is also weighted by a factor e

gives the effective probability of rotational to translational

energy exchange. The temperature is taken as 300K and the

quantity 6B is the energy difference (see Figure 13) between

the reaction complex rotational level and the peak of the

rotational distribution in a given vibrational level. This

is a simplification compared to the actual case of a variable

energy distance between a selected rotational level in the

resonant manifold and the multitude of allowed final J-levels.
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The quantity <1 is empirically determined to match

the actual with the predicted distribution entropy values.

The value of' a'is interpreted as a measure of the magnitude

of the effectiveness of the redistribution process produced

by the secondary encounters characteristic of a particular

reaction. The exponential form is used by analogy with

collisional relaxation processes involving fully formed

molecules. In particular, a'is analogous to the reciprocal

of the constant quantity C2 used by Polanyi and Woodall

in reference 28 for HF collisional rotational relaxation,

P = C

L
9
9

1 exp(-C26E/kT) (34)

where

6E = E - EA (35)

The process within the reaction complex is assumed to be

analogous to collisional relaxation because of the apparent

progression of energy from vibration to rotation to trans-

lation resulting from secondary collisional encounters.

Combining equations (32) and (33) for future reference

produces the general form for prediction of distribution

entropy as a function of vibrational level:

-6E/akT

A(v) = c 1n selected (2.) + 1)P(EV_R)e (36)

J-levels



4. APPLICATION OF THE MODEL TO HYDROGEN

HALIDE PRODUCT DISTRIBUTIONS

4.1 Prediction of the Entropy and Asymmetry of Product

Distributions

Equation (36) is now used to predict the transla-

tional distribution entropy values for reactions (I)-(III)

and (V)-(VII), for comparison with experimental data. Argu-

ments will be made in the next chapter to enable prediction

of the entropy values for reactions (IV) and (VIII). The

translational distributions are chosen for quantitative

analysis because the corresponding prior distributions are

computed by considering vibration and rotation as simply

components of the internal energy. This approach is in

accordance with the model just presented which postulates

mixing between vibrational and rotational energies, prior

to release of translational energy.

To make use of equation (36) a matrix of the molecular

product rotational levels is arranged as shown schematically

in Figure 13 in the last chapter. The energy levels are

computed according to the spectroscopic data in reference

11. The peak of each surprisal distribution is taken as the

energy about which approximately resonant states are selected

in lower vibrational levels. This peak is usually, but not

necessarily, the most populated rotational level within a

given vibrational level. The surprisal peak might

51
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occasionally be shifted slightly from the population peak

depending on the functional form of the prior distribution.

The nascent vibrational distribution, P(E is applied
V-R)’

as a weighting factor to each state found along the diagonal

resonance. The values of the rotational peaks, 3, and the

nascent distributions, P(EV_R), are listed in Table 4, shown

on the next page. The values are given for each populated

vibrational level for each reaction.

A somewhat arbitrary choice must be made for the

magnitude of the energy interval, 4', which determines the

number of approximately resonant states contributing to the

distribution entropy. The value is chosen to correspond

roughly to twice the full-width of the most narrow transla-

tional surprisal of each reaction. The most narrow surprisal

is always found in the highest observed vibrational level

which, according to the model, receives no entropy contribu-

tion from the energy redistribution process. The population

in this level therefore results only from molecules initially

selecting that vibrational manifold. Twice the width of this

population is then centered on the surprisal peak energy and

rotational levels are located within this range along the

resonant diagonals, as illustrated before in Figure 13. The

intervals chosen for reactions (I)-(III) and (V)-(VII) in

units of cm“1 are 1100, 1200, 1100, 1000, 1000, and 1000,

respectively.

Using the data appropriate for each reaction and apply-

ing equation (36) produces the entropy predictions from the

model shown in Table 5 and Figures 14 and 15. In the figures,
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the small circles represent experimental surprisal entropy

values and the triangles are the predictions from equation

(36). The convention of circles corresponding to observed

data will be maintained throughout this work. The coeffi-

cient, C, in equation (36) is empirically determined by match-

ing the largest observed and predicted translational entropy

values, except for reaction (II) where the entropy values

for v = 2 are equated. The exception is taken because the

model predicts a maximum in entropy for v = 2 in reaction (II).

This is the only case among the reactions studied where there

is not accurate experimental data for the lower vibrational

levels.

Table 5. Translational Surprisal Full-Widths,.d(fT), at

I = an

V-LEVEL*

REACTION

I 0.198/0.208 0.212/0.212

II 0.181/0.117 0.147/0.147 0.122/0.131

* For each reaction and vibrational level, the values

of Aobs and A are denoted as Aobs/ A
pred pred'

The normalization chosen results in relative predic-

tions of translational entropy. The value of C is a constant

for a given reaction. It should be noted that the model pre-

dicts translational entropy values for each vibrational level

up to, but not including, the highest experimentally observed

level. Therefore for reactions (1), (II), (III), and (VI)

there is no comparison with the highest observed v-levels.

For reactions (V) and (VII), a nominal value for P(EV-R)
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has been assigned to the vibrational level just above the

highest one observed, in order to compare a reasonable

number of data points. For reactions (I) and (II) this

assignment is not justifiable since the v = 4 and v = 5

levels, respectively, are not energetically accessible.

Each set of predicted data corresponds to the value

of the adjustable parameter, at, which generates entropies

corresponding most closely to the observed values. This

optimum value of (I Was easily determined in each case ex-

cept for reaction (II), and is identified for each reaction

in Figures 14 and 15. Although an optimum for reaction (II)

was not found, the value a = 6 identified for reaction (1)

produces a maximum translational entropy for v = 2. This is

a prediction of the model which remains to be experimentally

verified since the data for the v = 1 distribution was only

projected by extrapolation in reference 6.

In general, the optimum value of (I is determined by

locating the minimum in the standard deviation function,

a = 0(0), where

2

observed
oz = 1/N Z A(V.a)

v=l (37)predicted - A(v,a)

Here the sum runs over the translational entropy data points

corresponding to each v-level in a given reaction. In reac-

tion (III), for example, calculation of equation (37) for

the five lowest vibrational levels results in a pronounced

minimum at (a = 14, as shown in Figure 16.

As described previously, <1 is a measure of the
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Figure 16. Standard deviation between predicted and

experimental translational entropy values

as a function of the parameter.a for

reaction (III).
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effectiveness of the reaction complex interaction in redis-

tributing energy modes. Large values of c: will cause res-

onantly selected rotational states to contribute more to

each distribution entropy. A large number of strongly con-

tributing states will tend to make this statistical inter-

action dominant over miscellaneous dynamical effects- There-

fore it is expected that reactions with many interacting

vibrational modes will produce entropy values closely match-

ing the results predicted by the model. This is indeed the

case as a good correspondence between observed and predicted

values is evident for reactions (V) and (VI) while excellent

correspondence is noted for reactions (III) and (VII). The

large energy separation in vibrational levels which tends

to destroy a smooth statistical model is thus offset by a

large number of v-levels mixing rapidly in the reaction

complex.

The relationship between <1 and C is shown in Figure

17 for reaction (III). The curve exhibits the necessary

decrease in C in order to match the observed data, as a

increases. Large values of <1 produce increasing contribu-

tions to the entropy from more distant vibrational levels.

The smooth functional relationship exhibited coupled with

the small but negative slope, dC/da, for large or , will be

titilized in the next chapter for predicting unknown trans-

Zlational entropy values.

A significant observation can be made relating the

OIDtimum value of c: to the total available energy of a
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reaction. The values of E for those reactions in which

total

an optimum value of (1 could be determined are listed in

Table 6.

Table 6. Total Available Energies Compared with Optimum

Values of the Parameter a

 
 

REACTION Etotal(kcal/m°16) 5;

I ‘ ' 34.7 6

VII 43.6 9

v 48.4 9

v1 49.6 8

III 102.0 14

A correspondence between E and. a is readily observed.
total

Reactions exhibiting high available energy will have cor-

respondingly strong secondary encounter effects in the reac-

tion complex. These stronger interactions will facilitate

greater interchange among the vibrational, rotational, and

translational energy modes. Thus the value of (I, which

measures the probability of interaction among distant energy

levels, is anticipated to increase with increasing Btotal’

As an aside, it should be noted that the energy inter-

vals prescribed for the various reactions are arbitrary, al-

though related to each reaction's minimum translational sur-

prisal width. Contrary to the ease of determination of an

optimum value of <1, there is usually no such optimum A'.

As long as A' is chosen large enough to select several

rotational levels, but small enough to prevent interval

overlap, various values will prove acceptable. As an example,
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the predicted and observed entropy values for reaction (III)

at a = 14 are shown in Figure 18 for three different energy

intervals. The quantity, AB, is given simply by AB = A'/2.

It is apparent for this case that only minor fluctuations in

the results develop from variations in A'.

A significant feature of the surprisals is their

asymmetry toward the higher rotational levels. This asymme-

try is particularly pronounced for reactions (III) and (VII)

which exhibit significantly attractive potential energy sur-

faces, compared with reactions (V) and (VI) which are more

repulsive in nature. The degree of asymmetry can be modeled

using the ideas already developed.

The assumed energy path in the reaction complex is

from vibration to rotation to translation. The transition

or relaxation probability from rotation to translation is

given by the exponential factor in equation (36). Suppose

that the reaction complex is at some point along one of

the resonant energy diagonals. Relaxation to the high ro-

tational levels in the final distribution will be more prob-

able than to lower J-levels. Specifically, the probabilities

of transition to the half-width points are required. These

are the two translational energies on either side of the

surprisal maximum such that I = an. If the surprisal

distribution is approximately triangular in shape, ie.,

given by the maximum and the two half-width points, then

the ratio of the half-widths gives a measure of the ratio

of the populations on either side of the maximum. This

ratio should correspond, according to the model,
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approximately to the ratio of transition probabilities to the

half-width points.

The transition probability from a diagonal state

of rotational energy E to a low rotational level of energy
0

E1 is given by

P(EO —+ E1) = exp -(130 - E1)/akT (38)

where the value of' a’is the optimum for a given reaction.

Specifying the energy of a high rotational level in the

same vibrational level as E2, the ratio of transition

probabilities to these levels is

P(EO ->E1) ___ epr-(EO - Ell/ kTI .—. expl-(EZ - El)/akT (39)

P(E0 —*-E2) expi-(E0 - E2)/ le

  

If E and E are the rotational energies of the half-width
l 2

points, then E2 - El =21, and the ratio of half-widths is

predicted to be

A1 = e-A/akT
37 (40)

where the units of A are chosen so as to make the exponent

dimensionless. A further refinement to this simple model

would take into account the difference in degeneracies between

low and high J-levels. This would manifest itself by

adding statistical weights to rotational levels within

the final distribution in addition to those along the

energy diagonals. This degree of complexity is unwarran-

ted, however, since the purpose of this work is to develop
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a statistical model as simple as possible that adequately

determines the product distributions.

A comparison of the predicted and actual ratio of

half-widths for reaction (III) is shown in Figure 19, with

or 14. The data corresponds reasonably well with this

simple approach, although the best match occurs with a = 11.

The same technique was applied to reaction (VII) with less

quantitative success, because the surprisals cannot be well

approximated by simple triangular distributions. This de-

stroys the simple correlation between the transition proba-

bilities to the half-width points and the product population

on either side of the surprisal maximum. The model does,

however, qualitatively predict the reaction (VII) half-width

ratios.

4.2 An Alternate Model to Predict Distribution Entropy

Values

The model already described has been shown to accurately

account for the entropy of translational product distributions.

Assuming a reaction complex redistribution of energy, a more

simple but reasonable path is directly from vibration to

translation (V-T). After all, the final distributions are

restricted to low fractions of available rotational energy.

If a V-T interaction model could be made to account for dis-

tribution entropy values, there would be no need to postulate

high intermediate rotational states along the resonant energy

diagonals of Figure 13.

The same general approach as before is taken where

the entropies are predicted by .A = C ln.Q', where.Q' repre-

sents the number of product states viewed from the initial
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Figure 19. Predicted (triangles) and experimental

(circles) values of the translational

surprisal half-widths for reaction (III).
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stages of the reaction complex. The energy intervals are

chosen such that three rotational levels in each vibrational

level are selected, specifically the rotational peak level

with one on each side. This represents a uniformly broad

nascent rotational population, as before, while the nascent

vibrational population, P(E weighted according to
V-T)’

the values, P(EV_R)) as given before in Table 4.

The significant difference in the V-T approach lies

in the rotational level degeneracies. Since the interaction

between the vibrational levels is restricted to very much

the same rotational levels, there is no need to assign the

2J + 1 coefficient when summing selected product levels.

Therefore the weighted number of product states is given by

52'CV) = naggent p(EV-T)e.6E/akT (41)

J-levels

where the sum is over the rotational levels selected by the

energy intervals in all vibrational levels above v. The

energy difference between the peak rotational level in v

and each selected rotational level above is denoted as 6E.

The values of 6E are generally very close to those values

in equation (33). Since P(EV_T) = P(EV_R) in each case,

the only essential difference between equations (41) and

(33) is the degeneracy, ZJ + 1. This difference is quite

significant, however, as shown in Figure 20. The example

taken is reaction (III) with a = 25. For smaller values

of <1, the predicted entropy values form even more narrow

distributions. There is in fact no value of <1 which
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Vibration to translation reaction complex

interaction model results for translational

entropy values of reaction (III).
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produces entropy predictions close to the observed values.

The low values of predicted entropy are due to the

lack of contribution from states in distant vibrational

levels. Here the exponential factor is dominant, thereby

restricting interaction to nearby levels. In the vibration

to rotation to translation (V-R-T) model, the more distant

v-levels contribute significantly because of the resonant

equivalence to high rotational levels, and a correspondingly

high coefficient ZJ + 1. It is observed that to bring the

entropies for v = 6 and v = 7 in Figure 20 up to the observed

values would require such a large value of <1 that the data

for the low v-levels would be random, Therefore the V-T

approach is rejected in favor of the V-R-T model, which is

not only dynamically reasonable, but also produces entropy

values close to the empirically observed data.



5. PREDICTION OF REACTION RATE COEFFICIENTS

5.1 Development and Application of an Algorithm to

Generate Rate Coefficients

In this section, an algorithm is developed to regen-

erate the reaction.(III)rate coefficients based on the

entropy and asymmetry predicted by the V-R-T model for each

translational distribution. The purpose of this develop-

ment is to provide a reliable method of prediction for iso-

topically related reactions for which there is no experimen-

tal data. In Section 5.2, this algorithm is applied to pre-

dict the full vibrotational distributions for reactions (IV)

and (VIII) which are isotopic in hydrogen with respect to

reactions (III) and (VII), respectively.

For most vibrational levels, the translational sur-

prisals for reaction(dllj can be approximated by a quadratic

function for the low rotational levels, fT>'fT(J)’ and by

a linear function for the high rotational levels, fT<:fT(J).

This choice is of course somewhat arbitrary, and is taken

simply as empirical information. Therefore, for large values

of fT’ the coefficient m is determined such that

_ - A 2
1 - 1(3) -— m[fT(I — ln2) - arm] (42)

where 1(5) is the value of the surprisal maximum and the two

values of fT are taken at the half-width point and the sur-

prisal maximum, respectively. The value for I is chosen to

70
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be ln2 to correspond to the half-width point for the low

rotational levels.

The value of fT(3) is taken empirically for reaction

(III) and the value of fT(I = ln2) is determined by knowing

that

A+A=A=Cln52'
(43)

and

 

 

A / A = e‘A/"'kT (44)
1 2

Combining equations (43) and (44) gives

A = A (45)
1 1 + expfAfika) ~

and

A = A

2 1 + exp(?A/akT) (46)

Thus for large fT(small fp),

fT(I = ln2) = me + A1 (47)

The peak value of the surprisal, 1(3), must be pre-

dicted in order to make the technique as general as possible.

It is observed that each product rotational distribution has

a total population roughly proportional to the width times

the height of the distribution. This is a reasonable approx-

imation for distributions which are close to triangular in

shape. Therefore the peak population can be expressed by

up = 21131 (48)
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where 7 is fixed to normalize the largest value of P(j)

for the entire vibrotational distribution to unity.

From the definition of the surprisal,

P(f = P°(fT)e'I(fT) (49)T)

where the product distribution sums to unity for each vibra-

tional level. To compare with experimental data, this norm-

alized distribution must be multiplied by whatever factor

was originally used as a normalizing divisor. Thus

P(lev) = K(v)PO(fT|v)e-I(fTIV) (50)

where

K(v) =25 P'(JIv) (51)

is the normalizing factor representing the sum of rotational

level populations for each v-level, P'(J|v), as presented in

the experimental literature. In effect the process in con-

verting experimental distributions to surprisals has been

reversed.

The result for the surprisal maximum is then

1(3) = -ln[figé%%j] = -ln[%%é%%%é] (52)

For values fT<:fT(T), the distribution is simply

approximated as a straight line through the points

[fT(5),I(3)] and [fT(3) - AZ, I = ln2]. Using these linear

and quadratic approximations to the translational surpri-

sals, the predicted product distributions for reaction (III)
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can be generated. The quantized values of translational

energy are identified with specific vibrational and rotational

levels as shown in Figure 21. As before, the small circles

represent the experimental data of reference 7. Note the

especially accurate data prediction for the first five vibra-

tional levels. From Figure 15, these are the levels for

which the model predicts translational entropy most accu-

rately.

The same technique was applied to reaction (VII) with

somewhat less quantitative success due to the greater func-

tional complexity of the translational surprisals.

5.2 Rate Coefficient Prediction for the Reactions

D + F -—+ DF + F and D + Br -e~DBr + Br
2 2

The technique developed in the previous section is

now applied to reactions (IV) and (VIII) for which there

is no experimental vibrotational product data. Several

assumptions must be made and justified in applying the sta-

tistical model and algorithm to these reactions. The vibra-

tional product distributions must be predicted, along with

the location of the peak of each rotational distribution.

The translational entropies can be predicted by equation (36)

and used with the linear-quadratic surprisal form to gen-

erate the rate coefficients.

The vibrational distributions for isotopically

similar reactions often exhibit the same form. The vibra-

tional surprisals for reactions (1) and (II), for example,

are nearly collinear, as reported in reference 29. The

linearity of these surprisals indicate that the distribution
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is characterized by just one constraint, namely the mean

product vibrational energy. The similarity in surprisals is

expected due to the similarity in reaction potential energy

surfaces. The main difference lies in the quantization of

vibrational energy, determined by the different masses of

the hydrogen isotopes.

The vibrational surprisal for reaction (III) is

shown in Figure 22, where the prior rates have been cal-

culated by equation (25). The surprisal is not entirely

linear but is assumed to be isotopically independent. Since

Polanyi obtained the reaction (III) rate coefficients of

reference 7, improvements in the values of the Einstein A

coefficients have been cited by Herbelin and Emanuel in

reference 30. Modifications to Polanyi's data would involve

some decrease in the product v = 7 and v = 8 levels. This

decrease would cause a smaller decrease in the corresponding

surprisal values, and would not remove the non-linearity.

The circles represent the HF product levels and the triangles

are the predicted DF values. Note the closer vibrational

level spacing for DF compared to HP. Using the predicted

surprisal values, the DF vibrational distribution is gen-

erated by

oe-I(f

pm = K'P v) (53)

where K' is determined such that the largest value of P(v)

is unity. This normalization is the conventional one as

given, for example, in reference 7.
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The resulting DF product vibrational distribution

(triangles) is compared with the HF data (circles) in Figure

23. The HP data represents v = 1-8 and the DF data repre-

sents v - 1-10.

The vibrational distribution predicted for reaction

(IV) is then used as the weighting function, P(EV_R), to

predict the translational surprisal entropies. In generat-

ing4A(v) for reaction (III) the values for a'and C used in

equation (36) were determined empirically. This of course

cannot be done for reaction (IV). Since a measures the strength

of the secondary encounters in the reaction complex and has

been shown to be related to the total available energy, it

is assumed to be isotopically independent. This is reason-

able for reactions (III) and (IV) since the potential energy

surfaces must be similar in form and the values of Etotal

are approximately the same. Furthermore, the optimum values

of c! for the isotopic reactions (V) and (VI) are nearly the

same.

A smooth functional relationship exists between on and

C as shown earlier in Figure 17. It has also been observed

that dC/da is small and negative for large values of CI, par-

ticularly in the neighborhood of a = 14, the optimum value

for reaction (III). Therefore the parameter C, directly tied

to (r, is also assumed to be isotopically independent. The

values of the reaction (IV) translational entropies are

presented as the triangles in Figure 24. Also shown are

the reaction(III) entropies (circles). The squares represent
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reaction (IV) entropies where the value of C is not assumed

isotopically independent, but is fixed by normalization

with respect to the reaction (III) data. This comparison

illustrates the statistical differences between the HF and

DF vibrational and rotational energy levels.

A significant prediction of the model, assuming

isotOpically independent values for C and a', is larger

translational entropies for the heavier isotope reactions,

where the vibrational levels are more closely spaced. The

closer spacing facilitates energy interchange among the

modes present in the reaction complex. From the statistical

point of view, the closer spacing produces a higher density

of states leading to greater product entropies. Evidence

for this prediction is observed in Figure 14, where the DCl

product entropies range significantly higher than the HCl

values.

The value of fT(3) must also be predicted for reac-

tion (IV). There has been shown in reference 31 an isotopic

independence between reactions (I) and (II) for the function

f§(f This independence is also assumed for reactions
V)'

(III) and (IV) with results shown in Figure 25. The circles

represent reaction (III) data where the simple curve is

broken by one data point at v = 3. The open circle at v = 3

corresponds to J = 8. The solid circle at v = 3 corresponds

to J = 7 and falls on the curve relating the rest of the

data. The predicted DF data (triangles) are placed on the

curve at the proper quantized values of vibrational energy.

The significance of the curve in Figure 25 is in the increased
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rotational energy of the most populated J-level as the

available rotational energy, 1 - fV, increases.

In generating the rotational distributions, it is

assumed that only one rotational level beyond each half-

width point is significantly populated. This provides a

reasonable cut-off in accordance with the surprisals based

on experimental data. The full vibrotational distribution

for reaction (IV) is shown in Figure 26.

It is assumed that the same arguments involving

parameter isotopic independence can be applied to reactions

(VII)-(VIII). The translational entropies for the DBr prod-

ucts are predicted in comparison with the predicted DF values

in Figure 27. The DBr entropies are seen to be substantially

larger than the HBr values in Figure 14. The predicted

rotational distributions for reaction (VIII) generated by

the technique developed in this chapter are shown in Figure

28. Less confidence should be attached to the reaction (VIII)

data than to the reaction(IV) data because the simple

linear-quadratic surprisal approximation does not work as

well in the former case.

The model is also applied to the v = l rotational

distribution of the reaction (II) which was not measured accu-

rately according to the discussion in reference 6. The trans-

lational entropy was determined for this level using the

optimum value, <1 = 6, characteristic of reaction (I). The

algorithm was applied as before, using the weighting factors

and translational surprisal peaks taken from the experimental



84'

 

 

 
 

D + F2—>DF(V,J) + F

08" o g V 3 9

o

0 o

<14- 0 o

o o

o o

1 u 1 10 ° 01 g: 1

:5 o
O

; O.8(— ° v=8

s . °:3 o

85 ° °
a. 041-- °

0 o

P- o

3 ° ° 0

0

fig 1 1 1 1 1

O.

0.8t- V: 7

o

o o

0

° 0

CM4P 0 ° 0

o o

o o
o o

1 1 1 1 L

0.02 0.04 0.06 0 08 0.10

fa

Figure 26a. Predicted relative rate coefficients for

reaction (IV).



85.

 

 

 

  

v=6

0 ° 0

o O .

° 0 3
oo o o

1 1 1 1

2 0.8l- V =5

_l

D

95
o

0' 0.4— ° 0
p. 0 <3 0

8 0 °

8 o o o o o o

(r l 1 1 1

o.

ost- V = 4

(14%

O O o

o o

o

° 0

° 1 L 1 o 1

0.02 004 0.08 0J0

Figure 26b.

 



86

 

 

  

0+ V33

0.4-

o

O o o o o

oo o 0

0° 1 1 L ° 1° 1

Z

9 -
12 0.8- “'2

.J

D

“o‘

m 0.4P

§ 0 O

o 0 ° 0
o O

:3 69° 1 1 0 ° 9 1 1

O.

681- V"

0.4-

0

0" ° 0

o 1 o °1 ° 0 1 1 1

0.02 0.04 0.06 0.08 0.10

Figure 26c.

 



87

0J2 L 0

D
D

I 0(M0

§

 
 ooz . . ‘ 1 - 1

Figure 27. Predicted translational entrapy values for

reactions (IV) and (VIII).



reaction (VIII).

Predicted relative rate coefficients forFigure 28a.

A VI?

0 V=6

u v=5

A V34

0 V113

o

0.

"vA

‘°"~—-o

0J2

  

LC)-

88



39

1182

VII
 

w
a

H

w
m

’
2
3
H
4
4
3
m
o
m

h
o
a
o
o
m
m

0.0l-

 
0J20.l00.080.060.02

Figure 28b.



90

data for the product levels v = 2-4. The predicted rotational

distribution is shown in Figure 29.
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6. APPLICATION TO NON-REACTIVE INELASTIC COLLISIONS

The information theory approach to reaction product

distributions has been developed in detail for vibrationally

and rotationally inelastic collisions, as in references

31 and 32. The general case of simultaneous vibrational

and rotational relaxation is treated in reference

33. The reaction type of interest is given as

AB(v,J) + X -4-AB(v',J') + X (XI)

The prior rate for this reaction is proportional to the

total density of states of the system. The result derived

in reference 33 may then be given as

P°(EV,EJ,EV,,EJ,)

(54)

= C'explf(AE)/kT (ZJ' + 1)(|AE|/2kT)e\AEi/2kTK1([AE|/2kr)

where K1 is the first order modified Bessel function of the

second kind. The degeneracy of the initial rotational level

is incorporated into the normalization constant C', since

J remains unchanged for all final levels. The function

f(AE) is given by

0 if E + E ZtE + Ema) V J V. J!

{AE if E + E < E + E
v J V' (55)

J!

The total energy difference is
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AB = (EV + E - E - E (56)
J v' J')

The usefulness of the analytical surprisal approach

depends on the availability of experimental data. For ex-

ample, in reference 33 linear surprisals of approximately

equal slope are generated for collisions of I2 with several

monatomic species. This equivalence of surprisals leads to

predictions of inelastic product distributions of I2 with

atomic species for which there is no experimental data.

In chemical laser modeling, inelastic product distributions

for the HF molecule are necessary. Detailed relaxation

data is available from trajectory calculations given in ref-

erence 34. The uncertainty in this data is quite large and

the range of allowed product J' levels exhibits apparently

arbitrary cutoff points. For example, in the case v = 3,

J = 2, and v' = 2, the product rotational population lies

in the range J' = 10-15. The energy resonance point,.AE = 0,

lies between J' 13 and J' = 14. The data points also ex-

hibit no distribution symmetry for the various cases listed.

A characteristic feature of the inelastic surprisals

in references 31-33 is their linearity as functions of the

total energy difference. This has been reported for several

different diatomic molecules and collision partners. Insight

may be gained with respect to HF collisional relaxation if

the corresponding surprisals are also assumed to be linear.

The surprisal form is then given by

I = -ln(P/PO) = A0 +AAE/kT (s7)
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Therefore

-AAE/kT
P = c"P°e (58)

where the surprisal intercept, A0, is absorbed by the normal-

ization constant C", which is determined to satisfy equation

(11).

Results for the HF case where v = 3, J = 8, v' = 2,

and J' = 0-17 are shown in Figures 30-33. Several positive

and negative values of A are selected and the data is presented

in terms of both the total energy difference and the product

rotational level. The initial level J = 8 is the most pop-

ulated within the v = 3 manifold for reaction (III), as re-

ported in reference 7. The energy resonance, .AE = 0 lies

between J' = 15 and J' = 16 in the v' = 2 level. The curves

labeled 1A= 0 represent the prior distribution, Po, given by

equation (54). For the values of A shown, the temperature is

taken to be 300K. It is evident from equation (58) that

varying the parameter' A is completely equivalent to varying

the temperature in the inverse manner. Thus the condition

A = 0.3 and T = 1800K is completely equivalent to the con-

dition A, 0.05 and T = 300K.

The parameter A , formally given by

A = kT 61/6(AE) (59)

is described in reference 31 as a differential measure of

the deviation of the actual rate from the prior rate. The

magnitude of A is a measure of the structure of the linear
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Class 0 surprisal distribution, as described in Chapter 1.

When A = 0, all final states are equally probable and the

prior distribution is the result. As ‘A becomes increasingly

negative, as shown in Figure 30, the products populate in-

creasingly distant energy levels. In this case the vibra-

tional energy loss goes mostly into translation, at the ex-

pense of rotation. Negative values of A, are common to the

highly exothermic reactions (I)-(VIII), as shown,for example,

by the surprisal slope in Figure 22 for reaction (III).

Positive values of A denote a tendency for the prod-

uct pOpulation to cluster about AB = 0, as shown in Figure

32. If Wilkins' data is accurate with respect to the allowed

product rotational range, a positive value for .A of the

order of 0.3 could be used to characterize the distributions.

Recent experiments performed by J. J. Hinchen on the HF

v = 1 to v = 0 transition, indicate: a fairly fast relax-

ation by collision with other HF molecules, with a slight

product excess population near AB = 0. Although specific

data is not available, indications from his experiments (ref-

erence 35) are favorable for the use of linear surprisals

with positive slopes in modeling vibration to rotation

relaxation mechanisms. The curves labeled A.= 0.05 in

Figures 32 and 33 might therefore be quite reasonable approx-

imations to the product populations for the HF v = 3 to

v' = 2 collisional transition at T = 300K. Verification of

these prOposals awaits accurate experimental data. The

exact form of the experimental distributions is required if

a statistical model, as described earlier, is to be employed.



7. SUMMARY AND CONCLUSIONS

The information theory approach to reaction prod-

uct distributions develops correlations among large sets

of experimental data points. The approach is used to dis-

cover and quantify similarities in the experimental re-

sults for several different reactions. The quantity of

interest is the information content of a product distri-

bution which is directly related to its entropy. The

physical significance of the information is dependent on

the symmetry of product distributions. Constraints must

be identified which determine when the value of the informa-

tion is useful as a measure of confidence in predicting the

outcome of additional experiments. A proposed quantity

termed the "structural information" is defined for use when

product distributions of different classes are to be com-

pared. This quantity is a function of the surprisal, which

quantifies the difference between experimental and statis-

tical product distributions. The structural information

measures the absolute value of the derivative of the surpri-

sal function, thereby quantifying structure in a distribution

of arbitrary symmetry.

The transformation from experimental to surprisal

distributions, subject to various constraints, produces dis-

tributions of like symmetry for the hydrogen halide exothermic
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reactions. This circumstance allows analysis in terms of

the entropy, rather than necessitating use of the struc-

tural information. A significant feature of the surprisal

distributions as functions of translational energy is the

approximate equality of the maxima for a given reaction.

This feature, coupled with the identification of like sym-

metry, allows direct correspondence between the entropy and

width of each translational surprisal distribution.

Other significant features of the surprisals include

the variation of translational entropy as a function of

product vibrational energy, and the degree to which the

surprisals are asymmetric toward low translational (high

rotational) energies. These features are related qualita-

tively to theoretical and experimental work done in reac-

tion dynamics since 1966 by several researchers. The dynam-

ical principles characteristic of the hydrogen halide reactions

may be combined with the fundamental assumption of statis-

tical collision theory to produce a model which predicts

reaction product entropy values. These predictions compare

favorably with the experimental values. The model predicts

values most accurately for those reactions which involve the

greatest number of product vibrational levels. It is pro-

posed that the secondary encounters characteristic of these

reactions, are directly responsible for the specific variation

of the product translational entropies as functions of vibra-

tional energy. The effects of the secondary encounters are

most pronounced when a reaction is characterized by a large
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value of total available energy, E It is therefore
total‘

not surprising that the model predicts results most accurately

when the underlying mechanism, namely secondary encounters in

the reaction complex, is most pronounced.

The model is quantified for comparision with exper-

imental data by means-of an adjustable paramter, a . The

value of c: is proposed to be related to the amount of inter-

action of product energy states within the reaction complex.

This interaction via secondary encounters is dependent on the

value of E It is therefore expected that <3 should
total'

increase as E increases. This correspondence has been
total

demonstrated for those reactions where accurate data is

available.

The asymmetry of the translational product distribu-

tions is proposed to be determined by the same dynamics, and

to be most pronounced when the secondary encounters are

substantially attractive in nature. This has been demon-

strated quantitatively for the H + F2 ”+1HF + F reaction

which exhibits quite large attractive characteristics. The

predicted asymmetries and distribution widths are incorpo-

rated into a simple algorithm which generates predicted rel-

ative rate coefficients for each vibrational level. The

algorithm is applied to the H + F2 —+ HF + F reaction, and

the predicted values compare favorably with the experimental

data. The algorithm predicts the rate coefficients for the

rotational levels most accurately when the predicted distribu-

tion widths are most accurate. Other differences between
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experimental and predicted values are due largely to the

simplicity of the algorithm itself.

The model also predicts distribution widths for two

reactions which have not been studied in detail experimen—

tally. Several assumptions must be made in using these

predictions in the algorithm to generate the full vibro-

tational distributions. It is significant that the model

predicts greater distribution entropy values for the DF, DCl,

and DBr products than for the HF, HCl and HBr products, re-

spectively. In the case of DCl and HCl, this is also ob-

served experimentally. According to the model, this is due

to the close vibrational level spacing of the heavier isotope

diatomics which results in more energy states contributing

to the product entropy values. The larger translational

entropies imply a greater range of rotational levels found

in each product vibrational level. This prediction can be

tested further only by future experiments.

The information theory approach has also been ap-

plied by several researchers to collisional relaxation

processes. When relaxation surprisal functions assume

simple forms, especially linear or quadratic functions,

large sets of data can be reduced to a small set of param-

eters. This can be useful in chemical laser modeling. If

no experimental data is available for a particular process,

a surprisal function may be assumed based on results from

similar processes. Assuming linear surprisals, several poss-

ible product distributions can be generated, simply by vary-

ing the slope of the surprisals. Trajectory calculations
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by Wilkins and recent experiments by Hinchen on vibration

to rotation relaxation processes in HF, indicate collisional

transition primarily to near resonant energy levels. This

type of distribution is easily modeled by linear surprisals

with positive slopes. As before, these predictions await

the results of future experiments.
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