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ABSTRACT 
 

EXPLORING THE NODULE MICROBIOME COMMUNITY STRUCTURE OF 
TRIFOLIUM SPECIES 

 
By 

 
Prateek Shetty 

 
Plant associated microbes have been shown to increase plant growth and 

production drastically, yet we are just beginning to understand the parameters that 

impact these interactions. Rhizobia are primary bacterial symbionts of legumes 

and infect root hairs to form nodules, within which, the symbiotic rhizobia fix 

atmospheric nitrogen into biologically available forms in exchange for carbon from 

the host. The aim of this project is to understand the community structure and 

diversity of the nodule microbiome, with emphasis on the less abundant members, 

among coexisting clover species. North American clover Trifolium-Rhizobium 

communities are a good system to study host interactions with microbiomes given 

the high local species diversity. We analyzed the nodule microbiome of six 

congeneric clover plants when they were grown in soils conditioned by members 

of their own species and in soils conditioned by congener species by sequencing 

the 16s rRNA gene. The visualized microbiomes are similar, with 96% of all reads 

belonging to the order Rhizobiales. The rest of the OTUs belong to rarer groups of 

microbes. Further, the structure of the microbiome is impacted by both the host 

plant species and the soil in which the host is grown in, with soil explaining a larger 

degree of variation. There also is a strong interaction between soil and host in 

structuring the microbiome. The results are similar when the microbiome is 

analyzed with and without its most dominant order (Rhizobiales).   
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Introduction 

Understanding factors that contribute to the coexistence 

The diversity and species composition in plant communities is thought to be regulated 

by several different factors such as competition between plant hosts (Tilman 1990), 

resource partitioning (Tilman 1982) and interaction with other organisms in the 

ecosystem (Bever 1997). Competition between plant species can range from beneficial 

to detrimental to each other. The foremost study that explored the effect of negative 

interaction between two ecologically similar species showed that one species invariably 

was led to extinction (Gause 1934). This theory was later modified by Hardin (Hardin 

1960) and named as the competitive exclusion principle. Explicitly, the competitive 

exclusion principle states that: Two species competing for the same resource cannot 

continue to exist in the same population. Thus, coexistence will not be observed if all 

members within the community are competing for the same limiting resources. 

However, Hutchinson's study (Hutchinson 1959) on phytoplankton communities showed 

confounding results. Phytoplankton communities show a larger diversity than what is 

predicted by competitive exclusion. According to the exclusion principle, since all 

members of phytoplankton compete for same set of resources (nutrients, light, space); 

the species that acquires them most efficiently will out-compete others leading the rest 

to extinction. Further, under model developed by Tilman (Tilman 1982), in an 

environment with a limited number of resources the number of coexisting species 

should not exceed the number of resources they compete for. However, most natural 

phytoplankton communities are highly diverse and not representative of this pattern 

(Hutchinson 1959).  
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While competition and resource partitioning have been well studied as primary forces 

that structure natural communities, results from long term studies don’t always hold up. 

An eleven-year study carried out to test the effect of competition on coexistence of 

prairie plants showed only a few communities predictably coexist, suggesting that there 

may be other factors that contribute to coexistence (Dybzinski 2007). In an effort to 

explain the discrepancy, another view was put forward by Hubbel (Hubbel 1979). 

According to Hubbel’s neutral theory of ecology, all species are functionally equivalent, 

originate and fluctuate in abundance at random. All species originate from a meta-

community and migrate into smaller, local pools of dispersal limited communities. Within 

the smaller pools of local communities, the most common species account for a large 

fraction of the individuals sampled while the rest of the members are present in very low 

abundance. If communities as structured largely through neutral processes then we 

should obtain a sigmoidal curve, with common high abundance species to the right and 

rare, low abundance members towards the left of the curve. However, the neutral theory 

considers that all species within the community are functionally equivalent and have the 

same probability of being replaced.  

The neutral theory and competition exclusion theory view interaction between species to 

either be nonexistent or constantly negative. However, in nature interactions between 

species can be considered to lie on a continuum (Stachowicz 2001, Saikkonen et al. 

1998). Thompson proposed the geographic mosaic of coevolution theory in an effort to 

unify importance of geographic structure and the dynamic nature of species interactions 

(Thompson 2005). It makes use of three distinct components: 

a) Geographic selection mosaics; fitness of interacting species is impacted by locally 
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co-occurring species and a genotype-by-genotype-by environment interaction. 

b) Co-evolutionary hotspots; interactions between locally occurring species are 

reciprocally affected.  

c) Trait remixing; due to gene flow between species and genetic drift continually shape 

the genetic structure of the species in the local environment.  

Another way to explore Geographic mosaic theory is using ecological niche theory 

(Chase and Leibold 2003). Though the term “niche” was used earlier (Grinnell 1917), it 

was Elton (Elton 1927) who formalized the term “ecological niche” as: The functional 

role occupied by a species in a trophic level. The ecological niche theory relates a set of 

environment variables to the fitness of an organism. If an organism has traits that are 

suitable for the environment, then the organism continues to persist and traits are fixed 

in the given environment.   

Recapping, we can study factors that contribute to coexistence and community structure 

under these three broad views: 

1) Neutral theory of ecology  

All species are functionally equivalent. The success of a species in a particular 

environment has doesn’t depend on the species or its inherent traits and 

interactions with other members of the community. Instead, the success of a 

species in a local community can be attributed solely to migration, drift and 

abundance in the meta-community. 

2) Competition exclusion theory 

All species are continually competing for resources. Members of the same 

species are more likely to compete for similar resources. Thus the only species 
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that will persist within the community are those that can outcompete other 

members for the limiting resource. Hence, community structure and member 

abundance at equilibrium will be directly proportional to the number of limited 

resources in the environment.  

3) Geographic mosaic of coevolution 

All species are randomly distributed into large meta-communities. Species 

migrate into local, communities at random and depending on their abundance in 

the meta-community. Species that persist within the local communities are those 

that share traits with other co-occurring members and interact positively with the 

local environment. 

The big difference between these processes is that the competition exclusion view 

assumes a constant type of interaction (negative, i.e. no mutualistic - parasitic 

interaction continuums) between members while the geographic mosaic theory is a 

more dynamic view, with interactions subject to change depending on the local 

environment and species present within that environment.  

Previous studies using long term survey data to explore how species abundance 

changes with samples sites (Preston 1948, Bell 2001) comment on the consistency of 

abundant species identified. Sites sharing environmental similarity that are also in close 

proximity with each other tend to also share abundant species. An analysis by Preston 

on several years of survey data also show that such simple survey count data show a 

log normal distribution with an intermediate number of species present in moderate to 

high abundance and a large fraction of species that are detected in low abundance 

(Preston 1948). Microbial communities are several fold more complex than populations 
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of moths and birds that were typically used in survey data. Since microbial communities 

are more diverse, we predict that our abundance curve will be more skewed towards 

rare members and have fewer highly abundant members. 

One reason why the competition model fails for other natural communities could be due 

to the omission of soil microorganisms in these studies. Soil microbial community can 

modulate interactions between different plant species and thereby on the plant 

community diversity and persistence (Moora 1996). Further, different plant species 

uniquely associate with microbial partners in the soil which perform a variety of different 

functions from nitrogen fixation to protection from pathogens.   

Apart from this, the soil microbiome can play a significant role in maintaining diverse 

plant communities thorough processes other than competition and neutral dispersion; 

i.e by negative frequency dependent selection. A well-studied example is by 

accumulation of pathogens, also known as the Janzen-Connell hypothesis (Klironomos 

et al. 2002, Bever 2003, Fitzsimons et al. 2010, Bever et al. 2012). According to the 

Janzen-Connell hypothesis, individual plants accumulate species specific herbivores 

and pathogens over the period of its lifetime, thus reducing the success of conspecifics 

growing near the older plant. Thus, an understanding of the diversity of soil mutualists, 

and the strength and direction of interaction between the soil microbial mutualists, is 

essential to understand the contribution of different factors to the coexistence of plants.  

 

Importance of microbial community on plant health 

Microbial partners can improve plant health through their effects on nutrient availability 

as well as modulating abiotic or biotic stress. Elemental nitrogen is among the most 
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abundant resources on our planet and is a limiting factor in the production of protein and 

DNA. However, since accessible soil nitrogen reserves are poor, atmospheric nitrogen 

needs to be reduced to ammonia before it can be biologically usable by plants (Hardy 

1968). Biologically usable nitrogen can be applied as fertilizers or be fixed by natural 

methods (symbiosis or lighting; Kim 1994). Biological nitrogen fixation within root 

nodules is carried out by members belonging to the Rhizobiaceae group (Sørensen and 

Sessitsch, 2007). Further, addition of beneficial Plant Growth Promoting Rhizobacteria 

(PGPRs) improve plant health and productivity by synergistic interactions with already 

present species (Cummings 2009; Guiñazú et al. 2009, Friesen et al. 2011) or by 

inhibiting other microbial members that are detrimental to the host (De Vleesschauwer 

and Höfte 2009). Apart from this, soil microbes also play an integral role in alleviating 

the different kinds of stress. For example, a study done on peppers showed selected 

isolates to improve protection under a drought like environmental condition by increased 

solubilization of phosphate and secreting a gel like material around the root zones to 

protect the root (Rolli 2015). 

 

Generalist vs specialist selection within plant microbiome 

An interesting pattern that emerges from most of these host associated microbiome 

studies is the presence of a small abundant community and a long tail of rare microbial 

members. Abundant microbes are generally found across closely related host species 

(Turner 2013, Dohrmann 2013). Further, abundant taxa contributions to microbial 

community structure do not vary wildly while rare taxa contributions vary (Dohrmann 

2013). Abundant phyla generally include members like Actinomycetes and 
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Proteobacteria that can produce a plethora of compounds including antibacterial, 

nematicidal and antiviral properties (Muharram 2013, Mendes 2011). Rare microbes on 

the other hand are involved in more specific functions such as supplying 

phytohormones to plants (Karadeniz et al. 2006) or sulfate reduction (Pester 2010). 

Since members belonging to these two groups (abundant vs rare or generalist vs 

specialist) perform a wide array of different overrepresented and underrepresented 

functions, the two groups may be under different selection factors. 

 

BNF: Biological nitrogen fixation 

Biological nitrogen fixation is the process by which atmospheric nitrogen gas is 

incorporated into plant tissue (Hardy 1968). This can take place in two different ways: 

nitrogen fixation within nodule and associative nitrogen fixation. In nitrogen deficient 

environments, plants can form symbioses with certain members of rhizobia (associated 

with Fabaceae, Sprent 2001) or Frankia (associated with Rosids, Diagne 2013). These 

symbiotic partners use the nitrogenase enzyme to reduce atmospheric nitrogen to 

ammonia which is useable by the host.  

 

Associative nitrogen fixation 

Associative nitrogen fixation is yet another way by which plants can obtain the nitrogen 

required for their growth needs. In associative nitrogen fixation, diazotrophic bacteria 

are able to fix nitrogen in endophytic compartments with the help of nitrogenase (Doty et 

al. 2016). Azospirillum species is the best studied system for associative nitrogen 

fixation (Kucey 1998, Steenhoudt 2000). They are aggressive colonisers of both the root 
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and endophytic compartments and invade the host through undifferentiated root tips or 

cracks in the root tissue (Dommelen et al. 2007). The environment within root tissues is 

microaerobic and thus allows for nitrogenase to function. While associative nitrogen 

fixers are found within root tissues, there is no evidence yet for the occupancy of these 

members within root nodules. 

 

Current literature on nodule microbiome  

Currently, there are no studies that have used high throughput sequencing to profile 

member presence in nodules of nitrogen fixing plants. However, there has been a lot of 

sequence and trait data looking at microbial presence, activity and abundance within 

different regions of soil and root zones; specifically, the rhizoplane, rhizosphere and 

endophytic communities (Weinert et al. 2011, Inceoglu et al. 2011). Diversity of 

members within rhizosphere ranges from < 3000 OTUs (Weinert et al. 2011) to > 

55,000 OTUs (Inceoglu et al. 2011). Further, most of these communities are so diverse 

and species rich that it is hard to reproducibly generate species richness values by 

subsampling reads from samples. The most abundant members are commonly from the 

phyla: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes. An important pattern 

seen is the change in species richness value between root zones. Richness is highest 

in the bulk soil and then due to host selection reduces as distance to the root zone 

increases. Thus, diversity is typically highest at the rhizoplane zone and reduces across 

the rhizosphere and endosphere zones (Marilley 1998). 

 

Soil legacy 
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Soil acts as a reservoir for local, diverse microbial populations, with upwards of 10^4 

bacterial species found per gram of soil (Weinert et al. 2011). Despite the use of high 

throughput sequence technologies, we still fall short of completely profiling the microbial 

members in soil samples. Presence of microbial members in the soil depends 

specifically on the pH (Fierer and Jackson 2006; Lauber et al. 2008; Rousk et al. 2010), 

grain size and nutrient content (Faoro et al. 2010, Chaparro 2013). Large deviation in 

taxa presence and abundance is seen when soil pH is varied. Further, there is a strong 

positive correlation between the soil pH and diversity and composition of soil microbes 

(Rousk et al.2010). A related factor with soil legacy that plays a role in modulating the 

benefits from microbial partners is the exposure time with the microbial partners. Hosts 

that grow in soils in which members of their own species were previously grown will be 

able to select for the most beneficial partners and have a reproducible microbial 

community structure. While those grown in soils with members of different species will 

show a more diverse microbiome (Bulgarelli et al 2013).  

 

Host species selection 

While soil is the primary source, housing all microbial genetic diversity, host species act 

as a sink, selecting for specific members from the meta community pool. Host species 

release root exudates rich in sugar molecules and have shown to strongly influence the 

microbial community structure and abundance (Broeckling et al. 2008). Further, host 

species show specific enrichment of certain microbial taxa (Lundberg et al. 2012, Peiffer 

et al. 2013) and when hosts are grown with non-native microbial partners, host growth is 

affected with them having lower biomass as compared to hosts grown with native 
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microbial partners (Lou et al. 2014). 

 

Techniques to study microbial populations 

Culture dependent methods- Before the widespread use of NGS techniques 

Traditionally, the occurrence of microorganisms in a given environment or in an 

industrial process has been studied by culture-based methods. While these methods 

were initially successful in exploring the characteristics and functions of members in the 

sample of interest, they were always labour intensive. Further, these methods often fail 

for microorganisms that require selectively enriched media (Lagier 2008). In addition, 

conventional culture based methods are only able to detect only half the OTUs identified 

by high throughput sequencing methods (Goodman et al. 2011, Rettedal et al. 2014).  

 

Culture independent methods (Table 1) 

Lipid analysis 

Phospholipid fatty acid (PLFA) analysis is a biochemical technique that uses 

phospholipid fatty acids within the plasma membrane of bacterial cells to build a profile 

(Mitchell et al. 2016). The chemical composition differs depends on the type of bacterial 

organism. Thus, PLFA can be used to evaluate microbial community structure and 

activity. PLFAs can be extracted from the soil and their composition is analysed by gas 

chromatography. Changes in PLFA profiles are indicative of changes in the overall 

structure of microbial communities (Zelles 1999). PLFA analysis offers an advantage 

over culture-based techniques as it avoids the selectivity bias that is inherent to in the 

isolation and culture techniques (White et al. 1997). 
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Gradient Gels 

Gradient gel electrophoresis methods are a step up in throughput compared to the 

previous techniques (Favier et al. 2002). The basic premise of these methods is 

targeted amplification of marker genes and visualization on gels. The electrophoresis 

will separate DNA molecules based on their shape, charge and molecular weight. 

Increasing concentration of denaturing agents (urea or temperature) will force the 

double stranded DNA molecule to melt. Depending on the nature of the sequence, 

different DNA strands will have different melting temperatures and thus will only melt at 

their corresponding denaturing gradient. The advantage of using gradient gels is that 

you do not need to have a reference and offers an initial view at the diversity and 

abundance of different groups within the sample. The technique was used to profile the 

oral cavity microbiome in children in order to understand if under a diseased condition 

(dental carries) certain microbial members are overrepresented (Ling 2010).   

Hybridisation techniques - FISH, Microarray 

Hybridisation techniques are a powerful tool to visualize structure and abundance of 

members within a community. Presence of a certain microbial taxa can be identified 

using corresponding oligonucleotide probes. Hybridisation methods allows for 

identification of even the rarest member of the community (Amann et al. 2008) and does 

not allow for any PCR based biases that previous methods inherently have. The 

downside of using a hybridisation technique is novel taxa can’t be identified.  

Targeted amplification and sequencing of a marker gene 

Amplification of conserved marker genes has been the preferred methods of choice 

when multiple samples need to be identified and characterized. With the advent of 
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cheaper and high throughput strategies, sequencing multiple samples with great 

coverage has become progressively more affordable (Shendure et al. 2008). The high 

coverage, large range of reference databases allows users to characterize entire 

communities with taxonomy and in some cases function. Coupling these with the wide 

range of “-omics” platforms that are now available, allows one to explore the functional 

contribution of different taxa (Marcobal et al. 2013). Since its inception in 2007, the 

human microbiome project has generated more than 35 billion reads from 690 samples 

taken from 300 US based human subjects from various body sites (Turnbaugh et al. 

2007, Ilseung et al. 2012) in order to explore how diet and nutritional status affect the 

microbiome assembly, succession of members within the microbiome and function of 

different microbial members. 

 

Importance of studying native plants 

Native species offer the best avenue to study established relationships between each 

other and their symbiotic partners. Further, native plants are typically locally-adapted to 

their home environment (Coleman-Derr et al. 2016) and are a thus a good resource to 

study microbial associations, which depend on the nature of the local environment 

(Heath & Tiffin 2007). For example, in environments where the host is not nutritionally 

limited, there is no selection for it to continue maintaining a costly symbiosis. Thus, such 

associations can be affected by fertilizer inputs or land management practices (Ding et 

al. 2016). Fields with long term fertilizer inputs have microbial populations that show 

reduced dependence on root exudates (Ai et al 2015). This may lead to fewer 

associations between microbes and plant hosts. Finally, invasive plant hosts can break 
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down associations between native hosts by changing soil chemistry through allelopathy 

(Cipollini et al. 2012), bringing in new partners, associating with other microbial partners 

(Putten et al. 2007). 

 

About Trifolium species 

Clovers are perennial herbs that have palmate compound, trifoliate bright green leaves. 

All species have a distinctive, round flower head composed of many, small, pea-like 

flowers. This involucre is considered to be a distinguishing feature of members 

belonging to this family. Flowers are typically small, reddish- purple in color with white 

tips. Well known members from this group are Trifolium repens and Trifolium pratense. 

The different species (Figure 1) that occur at the field site, Bodega Bay, in this study are 

named and described by Seringe (1825): 1) Trifolium barbigerum (here abbreviated 

Bar) or Bearded clover is an annual herb, native to Northern California and Oregon. The 

plant blooms between February to March. 2) Trifolium bifidum (here abbreviated Bif) or 

Notch leaf clover is an annual herb, native to the western region of North America 

(Washington to California). The plant blooms between April to June. 3) Trifolium 

macraei (here abbreviated Mac) is an annual herb, native to California but is also found 

in other parts of North America and the world. The plant blooms between March to 

May.4) Trifolium microdon(here abbreviated Mic) is an annual herb, endemic to 

California. The plant blooms between April to June. 5) Trifolium wormskoldii (here 

abbreviated Wor) is a perennial herb, native to California and found in other parts of the 

Western North America. The plant blooms between May to June. 6) Trifolium fucatum 

(here abbreviated Fuc) is an annual herb, native to the western North America and 
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California. The plant blooms between April to June. 

In this project we aim to explore how selection factors specifically soil legacy type, host 

species, nodule size and phylogenetic distance has an impact on the microbial 

community composition. We used targeted amplicon sequencing of 16s rRNA to profile 

the nodule microbial community of our samples. Making use of 16s rRNA allows us not 

only to estimate abundances of unique taxa but also allows us to identify them using 

reference Greengenes database. However, we can’t directly use the reads generated 

by the sequencing run. The reads must first be demultiplexed into individual samples 

and then quality filtered. Once the reads are cleaned, they are then ready to be 

clustered into representative sequencing. Such a form of data aggregation allows us to 

not only generate counts per representative sequence but also gives us a basic 

understanding on the diversity of unique clusters seen. In this study, we make use of 

Operational Taxonomic Units (OTUs). OTUs can be generated by using QIIME 

(Caparaso et al. 2010), MOTUR (Schloss et al. 2009) or UCLUST (Edgar 2010). We 

decided to use QIIME for read clustering as it supports the several different clustering 

algorithms, including MOTHUR and UCLUST. Further, QIIME also makes use of RTAX 

(Soergel 2012), a tool for assigning taxonomies using a reference database. RTAX 

makes use of mate pair information when assigning taxonomies making it ideal for our 

dataset with non-overlapping mate pairs. 

Specifically, in this study we explore the following questions: 

1) Analyze the similarity of nodule microbiome community for different Trifolium 

species. 

2) What is the core nodule microbiome for the home Trifolium samples. 
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3) Do we see the presence of Soil and Species factor impacting species richness 

and diversity. 

4) Do we see the presence of Soil and Species factor in structuring microbial 

communities. 

5) Do neutral processes contribute to nodule microbiome community assembly. 
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Results 

 

Sample read distribution table. 

16s rRNA gene fragments from nodules of 6 home Californian species of Trifolium 

grown experimentally in “home” and “away” soil. A total of 227,196,520 reads were 

generated through paired end Illumina sequencing (Table 2). Reads were 

demultiplexed, filtered for quality and length. Averages read length for forward and 

reverse reads were 51 and 53 bases respectively. Read counts per sample varied from 

6,675 to 463,075 reads per sample (Figure 2a). 

 

OTU picking and Taxonomic Classification 

OTU picking generated a total of 2,394 OTUs (Figure 3a). Close to 15% to 54.5% of 

reads within samples were poorly classified and taxonomically assigned to “None” or 

“NOHIT”. All OTUs with this label were removed. The filtered OTU table (Figure 3b) 

consisted of 1314 OTUs and read counts per sample varied from 6,546 to 462,142 

reads per sample. Proteobacteria (representing 97.5 to 99.9% of all the matched reads 

per sample), Bacteroidetes (representing 0.035 to 2.04% of all the matched reads per 

sample) and Actinobacteria (representing 0.009 to 0.69% of all the matched reads per 

sample) were the top three most dominant phyla. By far the most dominant order of 

bacteria was identified within the Proteobacteria phylum and was called “Rhizobiales”. 

The order represented 86.5 to 99.6% of all the matched reads per sample and was 

made up of 123 OTUs. These OTUs were extracted and labeled as the “Rhizobiales” 

microbiome. 
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In order explore the nodule microbiome in greater detail, we specifically excluded all 

OTU’s belonging to the order “Rhizobiales” and named it the rare microbiome (Figure 

3c). The rare microbiome OTU table consisted of 1191 OTU’s and read counts per 

sample varied from 163 to 10,867 reads per sample (Figure 2b, Table 2). 

Proteobacteria (representing 51.4 to 94.2% of all the matched reads per sample), 

Bacteroidetes (representing 3.8 to 43.1% of all the matched reads per sample) and 

Actinobacteria (representing 0.89 to 20.07% of all the matched reads per sample) were 

the top three most dominant phyla. 

The distribution of OTUs across all samples was largely similar. There were very few 

OTUs that were abundant and present in high frequency across all samples. Further, 

there was the presence of a large rare tail of low abundant community members. This 

suggests that the nodule microbiome typically consists a few dominant groups that 

contribute to nitrogen fixation and occupancy within nodules and a large population of 

low abundance microbial partners that are present within the root tissues as 

endosymbionts may or may not contributing to active nitrogen fixation. 

 

Core Microbiome 

Presence/Absence matrix 

Threshold 1: OTUs present in at least 2 of the 4 samples. 

A total number of 64 OTUs (4.8% of all OTUs, Figure 5a) were identified as core. Of 

these OTUs, the phylum Proteobacteria was the most represented (44 OTUs) followed 

by members of the phylum “Bacteroidetes” (11 OTUs), “Actinobacteria” (6 OTUs) and 

“Chloroflexi”, “Armatimonadetes” and “TM7” (1 OTU). 
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Threshold 2: OTUs present in at least 3 of the 4 samples. 

A total number of 41 OTUs (3.1% of all OTUs, Figure 5b) were identified as core. Of 

these OTUs, the phylum Proteobacteria was the most represented (31 OTUs) followed 

by members of the phylum “Bacteroidetes” (6 OTUs), “Actinobacteria” (3 OTUs) and 

“Chloroflexi” (1 OTU). 

 

Abundance and Presence/Absence matrix 

Using an abundance threshold did not change the top three identified core OTUs within 

all 6 samples. However, making use of an abundance threshold did reduce the number 

of unique OTUs per sample as represented in the graph (Figure 5c and 5d). 

  

Diversity estimate 

Alpha diversity 

Rarefaction curves generated do not show saturation, further most curves have large 

error bars and overlap each other (Figure 6a-6d ). This is most probably due to the low 

depth of rarefaction and large diversity of OTUs seen. Rarefaction greater than 6546 

reads/ sample led to loss in samples and curves still do not show saturation. 

Rarefaction curves remained comparable between hosts grown in home and away soil. 

In order to calculate species richness and impact of meta-data factors on species 

richness all OTU tables were rarefied to ensure samples had equal number of reads. All 

samples in the complete microbiome table were rarefied to 6500 reads/ sample and the 

rare microbiome table after dropping the “Rhizobiales” order was rarefied to 163 reads/ 
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sample. The abundant microbiome table was rarefied to 6250 reads/sample. We carried 

out anova tests on the rarefied complete OTU table and abundant OTU table, with 

diversity metrics as the response variable. We tested to see if Soil, Species and nodule 

size factors had an effect on the species richness.  

The three metrics used (Shannon, Observed and Chao1) showed similar results: no 

factor significantly affected species richness or there was a very weak, insignificant 

effect (Table 3a). The rarefied rare OTU table showed no consistent patterns of 

significant Soil and Species interaction (Table 3c).  

 

Ordinations 

Beta diversity 

All samples in the complete microbiome table were rarefied to 6500 reads/ sample and 

the rare microbiome table after dropping the “Rhizobiales” order was rarefied to 163 

reads/ sample. The abundant microbiome table was rarefied to 6250 reads/sample. 

All beta diversity estimates were calculated from the rarefied, count normalized OTU 

table. Such an approach allows us to scale different samples within our data. Beta 

diversity was first visualized using ordination methods.  

PCoA plot was built using Bray-Curtis dissimilarity distance matrix. Bray-curtis was used 

as it works better in tables with large null values. We compared the PCoA plot for all 

three microbiome tables: all (Figure 7a.i), abundant (Figure 7b.i)and rare(Figure 7c.i). 

For the rare microbiome, the first and second axis explained 12% and 10% of the total 

variance respectively.  Further, the total variance explained by an axis increased to 

55.1% and 51% as we compared the complete and abundant table. Both these plots 
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also showed an overlapping of samples indicating that the relationship was being driven 

by the abundant OTU order of “Rhizobiales”. We also plotted the eigenvalues using a 

scree plot to visualize the range and spread of values for the all axis. The complete and 

abundant tables alone showed a very large PC1 axis compared to the rare tables, 

further giving evidence that the order “Rhizobiales” maybe driving the relationship. In 

order to confirm if the strong grouping effect is driven by abundant taxa that we see in 

the both the complete and abundant OTU tables, we ran another ordination with NMDS. 

This allowed us to compare how the samples and the OTUs were related with each 

other (Figure 8a, Figure 8b, Figure 8c). We also visualized the dataset using CCA and 

constraining the axis by Species and Soil factors. Doing this allowed us to visualize how 

these factors contributed to the variance seen in the microbial community structure. 

Constraining ordinations by the Soil factor explained the largest amount of variation in 

the tables (Figure 9a.i: All; CCA1: 3.4% and CCA2: 2.2%. Figure 9c.i: Rare; CCA1: 2% 

and CCA2: 1.5%). Further we plotted the eigenvalues of the constrained samples to 

visualize how the factors are driving these relationships. Constraining by Soil factors 

showed samples belonging to Mic and Wor clustering together in the same direction, 

while Bif and Mac samples clustered to the opposite direction, showing that Mic and 

Wor have more similar community structure compared to the other samples. This 

relationship was constantly identified in both complete and rare tables. Further, 

clustering by Species factors showed no clustering with arrows pointing in opposite 

directions, indicating that samples coming from the same species but different soils 

have more diverse microbiomes. 
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Adonis modeling results 

The rarefied OTU tables were used for multiple factor testing. Multiple factor testing on 

the complete OTU table showed that communities were being partitioned out by similar 

factors: Soil (R2=0.07711, p=0.006) and Species (R2=0.05961, p=0.043). Interestingly, 

there seems to be no significant interaction effects between Soil and Species factors 

(R2=0.15806, p=0.522). 

Multiple factor testing on the abundant OTU table showed that communities were being 

partitioned out by similar factors: Soil (R2=0.05605, p=0.054) and Species (R2=0.07655, 

p=0.006). Interestingly, there seems to be no significant interaction effects between Soil 

and Species factors (R2=0.19574, p=0.079). 

Multiple factor testing on the rare OTU table showed that communities were indeed 

partitioned out by several factors, most important of them being; Soil (R2=0.115, 

p=0.001) and Species (R2=0.07676, p=0.001). Also, interaction between Soil and 

Species effect (R2=0.183, p=0.001) is highly significant too (Table 5). Both these give 

similar results. It is interesting to note that the model with Soil*Species interaction 

explains the highest amount of variance explained. These results mean that there is a 

strong underlying interaction that influences microbial community assembly even at the 

endophyte level. Another interesting result is the strength of Soil factor. In all the Adonis 

models, Soil seems to have a greater effect compared to any other factor.  

 

Neutral community model  

More number of OTUs were detected for away sample (578 OTUs) compared to home 

samples (293). We also had more number of OTUs that were selected for and against 
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within away samples compared to home samples. Fishers test on the number of OTUs 

selected for, against and neutrally distributed showed that there was indeed a significant 

difference between home and away samples (pvalue=3.842e-5). Both OTU tables fit the 

neutral distribution pretty well with a marginally higher r-squared value for away 

samples (rsquared= 0.918) compared to home samples (rsquared= 0.877). 
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Discussion 

Composition of nodule microbiome 

A total of 1314 OTUs were identified within the nodule microbiome of Trifolium sp. The 

nodule microbial community is less diverse compared to the bulk, rhizosphere and 

phyllosphere community described in previous literature (Uroz et al. 2010, Mendes 

2011, Inceoglu et al. 2011, Peiffer et al. 2013, Chaparro et al. 2013). The nodule 

community not only has fewer OTUs but also fewer identified taxa. However, some of 

the important taxa groups are identified: Proteobacteria, Actinobacteria and 

Bacteroidetes. Members belonging to these phyla are seen as abundant members 

within root associated microbiome (Uroz et al. 2010, Mendes 2011). The large tail of 

rare microbial members is yet another pattern seen in most natural samples and rare 

microbial members are important in successfully assessing diversity metrics (Lynch & 

Neufeld 2015). 

The top phyla identified in our study belonged to Proteobacteria, Actinobacteria and 

Bacteriodetes. Members belonging to these phyla are typically observed to be enriched 

in different rhizosphere studies (Wieland et al. 2001, Peiffer et al. 2013, Chaparro et al. 

2013). However, the range of diversity also depends on the host: < 3000 OTUs (Weinert 

et al. 2011) to > 55,000 OTUs (Inceoglu et al. 2011).  

The most abundant OTU belonged to the group Agrobacterium. Typically, members 

from this group are pathogenic and not associated with nitrogen fixation. The host 

Sesbania has shown to nodulate with a group of agrobacterium. These members also 

have a low similarity at the 16s region with rhizobium species (Cummings et al. 2009). 

Further, 57 agrobacterium members were isolated from different legume hosts. Wide 
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strain variation was also observed. The agrobacterium OTU identified in our samples 

may also be one that fixes nitrogen associatively. However, we need biochemical tests 

to confirm this. Phylogenetic analysis puts the abundant agrobacterium with rhizobium 

species (Figure 10).  

While it is identified that multiple strains can colonize the same individual plant (Denison 

and Kiers 2004, Denison 2000), how many strains colonize a single nodule is lesser 

known. In lab studies there has been evidence of nodules with mixed strains. A study 

looking at the nodule occupancy in Medicago sativa showed presence of mixed 

infection with nitrogen fixing and non-fixing strains occurring in the same nodule 

(Checcucci et al. 2016). Our results identify multiple OTUs present in high abundance 

identified to the order Rhizobiales within every sample, where each sample comes from 

a single nodule. This could be an evidence for mixed infections within clover nodules. 

An oligotyping analysis would help answer this question with greater sensitivity and 

accuracy. 

We touched upon 2 views of studying community structure and assembly. One views 

community assembly processes through competitive exclusion and niche theory. 

Competitive exclusion theory suggests that all species in nature are competing for 

resources. Species that are closely related will complete for the same set of resources. 

Further, two species competing for the same resource niche will not continue to exist as 

in the long term the community will be dominated by the one species that has a slight 

growth advantage. Thus, the number of species in the environment will be dictated by 

the number of limiting resources. Compared to this, is the other view a combination of 

neutral theory of ecology and the geographic mosaic of coevolution. The neutral theory 
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of ecology says that individuals are functionally equivalent and recruited from a larger 

meta-community pool into small local communities. Extending this with the assumptions 

from the geographic mosaic theory, individuals are distributed randomly across different 

local communities. Within local communities with members whose traits match their 

environment interact positively and coevolve more rapidly compared to local 

communities with members having dissimilar traits or interacting negatively with the 

environment.  

The competitive exclusion theory has met with a lot of resistance primarily due to the 

fact that microbial communities in nature are highly diverse (Hutchinson 1959). A meta-

community analysis looked at the presence of competition in different microbiome 

communities through phylogenetic dispersion (Koeppel et al. 2014). If members within a 

community are assembled due to competitive exclusion, then the community will be 

phylogenetically over dispersed with more distantly related members. In most 

communities they found no signal of phylogenetic overdispersion until they looked 

OTUs clustered at higher ranges of sequence similarity. We found several closely 

related OTUs occurring across all our nodules, much more than what could be expected 

by just the number of limiting resources. However, we would need longer read lengths 

to cluster OTUs at a finer scale and test them for phylogenetic over or under dispersion 

to infer the strength of competition in assembling nodule communities. 

According to the geographic mosaic of coevolution, individuals drift or migrate into 

communities randomly and depending on their abundance in the large meta-community. 

Their survival in the new environment depends on the traits they carry. Organisms with 

traits that closely match their environment will survive and persist while the rest go 
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extinct over time. Such a process should give us a sigmoidal species abundance curve 

with a long tail of rare, low abundance members and a small group of commonly 

occurring, high abundance members. The slope of the curve will depend on the number 

of abundant species.  The neutral model on the other hand states that member 

presence within a local community is solely a function of drift, migration and abundance 

in the meta community. The neutral model was applied to study how the gut microbiome 

of zebra fishes was structured over time (Burns et al. 2015).  

The neutral mode fit better for younger ad juvenile fishes better than adult fishes, 

implying that random processes play a large role during the initial microbiome 

assembly. As the fish ages, the fit of the neutral model decreases indicating the 

importance of environment and interaction between local microbial members in 

structuring communities.  

Our adonis results show that both soil and species factors play an important role in the 

community structure of trifolium nodule microbiome, with soil factor playing a bigger role 

and explaining a greater degree of variation. If we consider the soil factor to be the 

reservoir or the meta-community housing all the individuals from which members in our 

local community are derived, then this result aligns well with both the results of neutral 

assembly in young zebra fish gut microbiome and the view of neutral assembly process 

described in the introduction. Microbial species from the soil may migrate into the 

endophytic microbiome however such a process will only progress if the microbial 

species has the right set of genes to interact with the host. Further since we have 

several different hosts, the genetic alignment between the microbial partner and plant 

host is even more crucial. So while we can consider survival and presence of microbes 
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in soil to be a neutrally distributed process, the survival and presence within the plant 

host need not necessarily be neutral. Similarly, while initial colonization of microbes 

within juvenile zebra fishes maybe neutrally assembled, their long term presence within 

adult zebra fishes doesn’t fit well with the neutral model due to the interaction between 

the microbial partners and the microenvironment offered by the host species.   

Further, we would need a time series data to study how the assembly process changes 

over development time of the trifolium host and if soil continues playing a larger role 

compared to species over long term growth of the host.  

We were unable to reliably estimate richness due to the sheer diversity of OTUs and 

unbalanced samples that we had. Anova run at different rarefactions and metrics 

showed no significant difference in microbial species richness.  

 

Core microbiome 

Core microbiome analysis was carried out using both presence/absence matrix and an 

abundance matrix. Both the methods gave us similar results. The “core” microbiome 

identified was primarily made of up 3 different phyla; Proteobacteria, Actinobacteria and 

Bacteroidetes. Members within these phyla have been previously described to be 

present in high abundance within plant tissues (Reinhold-Hurek et al. 2015, Turner et al. 

2013, Hirsch 2012). In our results we see a very small group of core microbial 

members, these members also happen to be those that are abundant across all 

samples. 
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Alpha Diversity analysis 

Despite running alpha diversity at multiple different rarefactions and using different 

species richness metrics we were unable to see any saturation in the rarefaction curves. 

Further we made use of an anova to look if there were any factors had a significant 

effect on the species richness of the community. Most factors were insignificant and 

those that were significant showed only borderline significance or disappeared at higher 

rarefactions indicating that the effect was possibly a chance observation. Calculating 

species richness robustly requires high read coverage within samples to run a robust, 

reproducible rarefaction analyses. 

 

Ordinations 

Across all tables, few consistent patterns arose. Primarily, we see that abundant OTUs 

drive clustering of samples. This implies that apart from the rare tail taxa, the samples 

share most of the abundant taxa. Further for the complete and abundant microbiome 

table, we see only two axis that largely contribute to the amount of variance explained, 

implying that there are two or three important factors impacting the structuring of 

microbial communities. 

a) PCoA 

PCoA of complete tables showed that there was a lot of similarity between the samples 

themselves and a large PC1 axis. The PCoA with just the rare microbiome showed 

separation of samples by axis. Samples belonging to Worm, bar and mic clustered 

together away from Bif and mac samples. This could indicate that Trifolium species 
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recruit members into the nodule microbiome community differently.  

b) CCA  

When we look at samples coming from the same soil but different species (constraining 

by soil factor) we see a more similar microbiome as evidenced by the clustering of 

arrows. Whereas, when we look at samples coming from different soils but same 

species we see a more varying microbiome. This indicates the strong effect of soil 

legacy.   

c) NMDS 

For both the complete and Rhizobiales OTU table, we see that sample clustering 

overlaps clustering by the abundant microbial community members. The same 

relationship is absent when looking at an NMDS plot generated using only the rare 

microbiome. Thus giving us more evidence that the grouping along a single axis is most 

probably driven by the dominant taxa. 

 

Beta diversity model comparisons 

We made use of adonis analysis to explore individual and interaction effects between 

our metadata. Both complete and rare microbiome table showed strong individual 

species and soil effects. This indicated that both factors play an important role in 

structuring the microbial community. A strong interaction seemed to be present when 

we looked at species*soil effects only for the rare microbiome table. This effect was not 

seen as a significant effect for the complete table. Further, the only time we see soil 

explaining a smaller variance compared to species is when we look at the abundant 

microbiome table (Soil R2=0.05605 and Species R2=0.07655). Soil playing a smaller 
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role in the structure of abundant community is understandable. Since most of the 

abundant organism are also shared by a large majority of samples, their presence and 

similar abundance across samples is not surprising. 

Soil type and host species have been previously identified as important factors 

structuring microbial communities in soil (Garbeva et al. 2004, Berg et al. 2009). In our 

study when we look at the complete and rare microbiome tables, we found that soil 

factor plays a larger role in structuring these communities compared to species factor. 

One possible reason that lets Soil play such an integral role is the duration of the study. 

A single generation might not be sufficient for hosts to structure microbial communities, 

however over time this relationship may shift. Finally, we see a significant interaction 

effect but only for the rare microbiome. The rarest members of the community are more 

prone to being lost due to extinction events. Their presence in the microbiome depends 

on not only surviving in the soil metacommunity but also selection by the host. The 

abundant microbiome members on the other hand are less prone to being lost due to 

their sheer abundance. This result could indicate that different members of the 

microbiome need not all be selected under the same selection factors. 

 

Neutral community analysis 

Plants growing in their own soil were growing on a soil legacy that was conditioned by a 

member of the same species and thus would be exposed to microbial members whose 

abundances were structured by the ancestor. Whereas plants growing in a soil condition 

by a member of a different species would have to select upon a microbial community 

with members that will interact with it. This should lead to a change in member 
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abundance, specifically the abundant members of the microbiome. This is assuming 

that the reason these members are abundant is prior selection by the ancestral host. 

Further, we should also see an increase in selection for the rare members of the 

microbiome as these members might interact with the new species.  Thus, we should 

not only detect higher number of species within away samples but also have more 

species that do not fit within the neutral distribution. Further, in the away samples we 

also see that a lot of the low frequency OTUs are selected for while the high frequency 

OTUs are selected against as seen by the few points that fall above and below 

predicted neutral model values.  

It seems that most of the OTUs in home and away samples fit the neutral model pretty 

well. The interesting aspect is the selection for low frequency OTUs in the away 

samples. These results indicate that while neutral process play an important role in the 

assembly of Trifolium nodule microbiome, different hosts also play a role by selecting 

for and against microbial partners. A further study using multi-generation time series 

data will allow us to track the increase and decrease of specific OTUs, thus informing us 

of their importance with the host. 

 

Broader Impacts 

We live in a microbial world with microbes and their communities forming the foundation 

of biosphere and playing an integral role in the functioning of all trophic levels. For 

example, rhizobia are involved in increasing useable soil nitrogen resources by 

reduction of atmospheric nitrogen to ammonia through biological nitrogen fixation in 

exchange for photosynthetically fixed carbon from the host (Hayatt et al. 2010). Rice 
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fields associated with Azolla can fix upto 600kg N/ha/year during the growing periods 

(Fattah et al 2005). Thereby reducing dependence on commercial fertilizers and need 

for highly fertile land. Further, microbes play a crucial role in mediating phosphorus 

availability too. Further, plants can associate with different kinds of fungi. Plant-

mycorrhizal associations are one of the better studied symbioses and about 80% of all 

land plants are capable of associating with mycorrhiza. Such associations lead to 

improved phosphate uptake by the host (Vance 2001). Apart from improving nutrient 

uptake, mycorrhizal associations also enhance root surface area by sending out their 

hyphae and creating secondary root systems. Understanding how plant-microbe 

interactions are affected under ecological conditions will help us introduce better land 

management practices. Further, reducing the dependence on commercial fertilizer not 

only provides monetary benefits to the farmer but also reduces leaching of nutrients into 

local water bodies and preventing large scale algal blooms.  

Microbes are also shown to protect their hosts from biotic and abiotic stresses. For 

example, isolates cultured from wheat grown in saline environments gave rise to about 

24 salt tolerant isolates, all of which were able to produce phytohormones like indole 3 

acetic acid or gibberelins and improve plant productivity under salt stress (Upadhyay et 

al. 2009, Culligan et al. 2012). Further, rhizobacteria produce metabolites that can 

inhibit the growth of other taxa (Kim et al. 2006). Rhizospheric fungi are also well known 

producers of antibiotic metabolites that can inhibit the growth of other microbes or 

defend the host against predatory protozoa, improving protection against biotic stress 

(Hoffmeister 2007, Brakhage 2011). Thus, it is important to consider feedbacks from the 

local microbiome community when exploring factors that contribute to host growth, 
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development and succession. 
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Methods 

Plant experiment 

Seeds from Trifolium barbigerum, T. bifidum, T. fucatum, T. macraei, T. microdon, and 

T. wormskioldii were collected from Bodega Marine Reserve, California, in 2012. Soil 

was collected from below each species and placed in pots in a UC Davis greenhouse. 

Seeds were scarified by razor nicking and planted directly in field soil, then watered as 

needed. At 6 weeks of age, plants were harvested, soil shaken from the roots and 

individual nodules plucked from roots and flash-frozen. 

 

Sequencing experiment 

DNA was extracted from single nodules using Zymo’s quick gDNA kit and stored at -

20C. Two loci were targeted by PCR, nodC and 16S. 

  

nodC 

The symbiotic nodC locus was targeted with nodC_4192-4845 

(GGCGAGACCCTKTTYTGCTA, GTGACKACCATYSCAAGGCT), with a PCR program 

95C 1:00 followed by 35 cycles of 95C 0:30, 51C 0:30, 72C 1:00, and a final extension 

of 72C for 1:00. Amplicons were Sanger sequenced at UC Davis and traces were 

quality trimmed and aligned with CodonCode to identify polymorphic sites. 

  

16S 

The same DNA extractions were used as template in a 16S PCR targeting the 799-1115 

region (AACMGGATTAGATACCCKG, KGGTYKCGCTCGTTRC), with a PCR program 
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95C 1:00 followed by 35 cycles of 95C 0:30, 60C 0:30, 72C 1:00, and a final extension 

of 72C for 1:00 PCR was done with combinatorially barcoded primers to enable a high 

degree of multiplexing; our combinatorial approach enabled this with only 4 barcodes 

per end, combined with 9 standard Illumina indexing adaptors (See supplemental 

methods). Briefly, first stage PCR was conducted with barcoded primers containing part 

of the Illumina adaptor, and then pools were made for the second stage PCR that 

completed the adaptor and added the Illumina barcodes. Data was deposited at SRA 

under the code SRP070507 and bioproject accession code PRJNA297440. 

  

Microbiome community profile: Building OTU table 

Above-mentioned 16s rRNA regions was sequenced on Illumina platform. The 

generated paired-end, non-overlapping reads were demultiplexed, trimmed to do away 

with bases that had a quality score of lower than 25. Qiime (v1.6.0) was used for all 

further downstream analysis. Demultiplexed forward and reverse reads are binned 

individually after their headers were renamed. 

Each Operational Taxonomic Unit (OTU) is picked based on sequence similarity of the 

reads. Clustering is carried out with only forward reads using uclust_ref clustering 

algorithm. Against the Greengenes reference database (version: Greengenes 13_5) at 

97% similarity. Reads that failed to hit the database were removed from further analysis. 

Taxonomic classification was assigned with the RTAX procedure in QIIME, using the 

Greengenes database. The RTAX method makes use of reads from both ends before 

assignment. The additional information from the second end allows for a more precise 

taxonomic assignment. 
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The OTU table was further filtered to remove poorly labeled OTUs. Further the OTU 

table was divided into complete, abundant and rare microbiome tables based on the 

most abundant order of bacteria; Rhizobiales.  

For alpha and beta diversity analysis both tables were then rarefied to ensure they had 

equal number of reads. All samples in the complete microbiome table were rarefied to 

6500 reads/ sample and the rare microbiome table after dropping the “Rhizobiales” 

order was rarefied to 163 reads/ sample. The abundant microbiome table was rarefied 

to 6250 reads/sample. 

Doing this allowed us to study if the rare/ less abundant members of the microbiome 

community and the more abundant members were being affected differently.  

  

Core microbiome 

We computed the core microbiome within samples grown in home soil alone. This 

allowed us to look at the unique OTUs present in each species and those that are 

shared by all 6 species. We used 2 different definitions of “core” microbiome. The first 

was based on a presence absence matrix alone the second used an abundance 

threshold too. 

Using presence absence matrix, an OTU was considered a part of the core if it was 

present in at least 2 or 3 samples. We also made use of an abundance threshold (0. 

00001% of all reads) to select which OTUs would be a part of the presence absence 

matrix. Abundances were normalized to library sizes. Percentage of common OTUs was 

visualized by plotting a Euler grid. UpsetR, an R library was used to plot the grid. 

Taxonomies of common OTUs were saved as a table. 
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Diversity analysis 

Alpha (within samples) and beta diversity (between samples) were used to estimate 

microbial community diversity. Alpha diversity was measured using Chao1, Observed 

species and Shannon metrics. All samples were rarefied to 160 and 500 reads/sample 

to keep sampling size the same.   A permanently set seed was used to make results 

reproducible. We carried out an Anova to test if species richness of microbiome 

community depends on soil origin and host species. However, the rarified data lead to 

inconsistent diversity estimates. Also, results of Anova were depended heavily on the 

diversity metric chosen. We imported the OTU tables into QIIME to plot rarefaction 

curves. A minimum of 10 reads/sample with increments of 15 reads/sample was used 

as parameters. 

Beta diversity analyses were carried out using Bray-Curtis distance on a count 

normalized OTU table and were visualized by different ordination techniques. R 

package “Phyloseq” (1.16.2) was used for principal coordinate analysis. Non parametric 

permutation test Adonis with 999 permutations was used on bray-curtis dissimilarity 

matrix to test between sample similarity and factors affecting it. As factors we included 

Soil (the host conditioning the soil), Species (the host currently planted), Host_PD 

(Pairwise distance matrix between host conditioning the soil and host currently planted), 

Nod_size (Nodule size of the hosts).  

 

Ordination techniques 

PCoA: Principal coordinate analysis 

PCoA also called classical multidimensional scaling is a distance-based ordination 
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method that can be performed via the ordination function in Phyloseq.  The major 

benefit of PCoA is the ability to choose a different distance measure.  

  

CCA: Canonical Correspondence Analysis 

CCA can be used to explore the relationship between two sets of variables. This is 

particularly useful as we make use of this ordination technique to explore how the 

Species and Soil variable affects microbial community structure. Further, by plotting out 

the eigenvalues of the constrained variables we can visualize how individual groups are 

clustering the samples. 

 

NMDS: (Non metric MultiDimensional Scaling) 

NMDS is a rank based approach, which substitutes the object distances with ranks. The 

NMDS algorithm introduces a parameter called “stress” which is used to measure the 

lack of fit between the object distances and calculated distance matrix. Then, all objects 

are iteratively repositioned to minimize the stress parameter or lack of fit. A total of 20 

iterations were run to identify best fit. We made use of NMDS ordination to explore the 

relationships between microbial members themselves. 

 

Sloan neutral community analysis 

We wanted to test if our communities were neutrally distributed and if there were 

members within our communities that were selected for or against by the host. We 

made use of the Sloan neutral community assembly model to test our data. This model 

allows us to predict the relationship between the abundance of microbiome members 
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and their presence across samples. Our experimental design made use of growing 

plants in soil conditioned by the same species (home soil) and in a soil conditioned by 

another species (away soil). First the complete microbiome table was rarefied to 6500 

reads/ sample and then samples were split into home and away. Samples where new 

species were the same as the ancestor were termed as home whereas samples where 

new species were different compared to ancestor were termed as away. The model was 

run to test the fit of the microbiome to the neutral model.   
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APPENDIX 1: List of tables 

 

Table 1: Techniques used to study microbial population structures  

Technique Description Advantage Disadvantage Throughput 

Culturing on 
plates 

Microbes are cultured 
and isolated on 
selective media 

Cheap, can 
identify basic 
abundance 
patterns 

Labor intensive, 
Needs more 
downstream work 
to identify taxa of 
isolated members Low 

PFLA 

Isolation of the 
phospholipids, 
conversion of the 
phospholipid fatty 
acids to their 
corresponding fatty 
acid methyl esters 
(known by the 
acronym FAME) and 
the separation, 
identification and 
quantification of the 
FAME by gas 
chromatography. 

Can measure 
microbial 
biomass, no 
prior 
knowledge of 
sample 
required 

Labor intensive, 
taxonomic 
assignments are 
not possible, don’t 
get abundance 
data, need 
expertise with GC 
MS Medium 

qPCR 
Known 16s regions 
are amplified.  

Phylogenetic 
relationships 
can be 
explored, can 
get abundance 
data 

PCR bias, can’t be 
used for novel 
species 

Low-
Medium 

DGGE/TGGE 

16s fragments are 
separated by gradient 
of temperature or 
denaturant 

Good for 
profiling and 
exploring 
community 
diversity 
without prior 
knowledge of 
samples 

Hard to standadize 
gradients from one 
gel to another, 
don’t get 
abundance data, 
taxonomic 
assignments can’t 
be generated 

Low-
Medium 
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Table 1: (cont’d)  

FISH 

Oligonucleotide 
probes are designed 
for known 16s 
regions. Probes are 
fluorescently labelled. 

Phylogenetic 
relationships 
can be 
explored, can 
get abundance 
data 

Need to know 
which members 
are present to 
design probes or 
use general set of 
probes, Taxonomic 
assignments are 
hard 

Medium-
High 
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Table 2: Read distribution across samples. 
 

SampleID Soil Species Comb TotalReads Reads/sample 
master.48.F4 Bar Bar Bar 189849 342329 

master.48.E4 Bar Bar Bar 106421  
master.48.G4 Bar Bar Bar 6637  
master.48.H4 Bar Bar Bar 39422  
master.48.B6 Bar Bif Bar_Bif 98968 371526 

master.48.A6 Bar Bif Bar_Bif 92645  
master.48.D6 Bar Bif Bar_Bif 92405  
master.48.C6 Bar Bif Bar_Bif 87508  
master.48.G6 Bar Fuc Bar_Fuc 128604 594061 

master.48.H6 Bar Fuc Bar_Fuc 232217  
master.48.F6 Bar Fuc Bar_Fuc 180828  
master.48.E6 Bar Fuc Bar_Fuc 52412  
master.48.H5 Bar Mac Bar_Mac 117023 319847 

master.48.E5 Bar Mac Bar_Mac 18793  
master.48.F5 Bar Mac Bar_Mac 162214  
master.48.G5 Bar Mac Bar_Mac 21817  
master.48.A5 Bar Mic Bar_Mic 19272 226774 

master.48.C5 Bar Mic Bar_Mic 46511  
master.48.D5 Bar Mic Bar_Mic 98248  
master.48.B5 Bar Mic Bar_Mic 62743  
master.48.D4 Bar Wor Bar_Wor 154560 270937 

master.48.C4 Bar Wor Bar_Wor 51693  
master.48.A4 Bar Wor Bar_Wor 27108  
master.48.B4 Bar Wor Bar_Wor 37576  
master.96.G7 Bif Bar Bif_Bar 126863 327944 

master.96.G8 Bif Bar Bif_Bar 80669  
master.96.G6 Bif Bar Bif_Bar 63119  
master.96.G5 Bif Bar Bif_Bar 57293  
master.96.H7 Bif Bif Bif 186780 361000 

master.96.H5 Bif Bif Bif 40991  
master.96.H8 Bif Bif Bif 93458  
master.96.H6 Bif Bif Bif 39771  
master.96.H11 Bif Fuc Bif_Fuc 131472 319272 
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Table 2: (cont’d) 

master.96.H12 Bif Fuc Bif_Fuc 89609  
master.96.H10 Bif Fuc Bif_Fuc 61811  
master.96.H9 Bif Fuc Bif_Fuc 36380  
master.96.H1 Bif Mac Bif_Mac 111121 303176 

master.96.H2 Bif Mac Bif_Mac 82313  
master.96.H3 Bif Mac Bif_Mac 76418  
master.96.H4 Bif Mac Bif_Mac 33324  
master.96.G11 Bif Mic Bif_Mic 123254 413155 

master.96.G9 Bif Mic Bif_Mic 80630  
master.96.G12 Bif Mic Bif_Mic 54401  
master.96.G10 Bif Mic Bif_Mic 154870  
master.96.G3 Bif Wor Bif_Wor 73225 607602 

master.96.G4 Bif Wor Bif_Wor 73347  
master.96.G1 Bif Wor Bif_Wor 213251  
master.96.G2 Bif Wor Bif_Wor 247779  
master.48.G1 Fuc Bar Fuc_Bar 20758 132620 

master.48.E1 Fuc Bar Fuc_Bar 44726  
master.48.H1 Fuc Bar Fuc_Bar 25048  
master.48.F1 Fuc Bar Fuc_Bar 42088  
master.48.B3 Fuc Bif Fuc_Bif 33938 463251 

master.48.C3 Fuc Bif Fuc_Bif 243008  
master.48.D3 Fuc Bif Fuc_Bif 98047  
master.48.A3 Fuc Bif Fuc_Bif 88258  
master.48.G3 Fuc Fuc Fuc 21970 382749 

master.48.E3 Fuc Fuc Fuc 227933  
master.48.F3 Fuc Fuc Fuc 116516  
master.48.H3 Fuc Fuc Fuc 16330  
master.48.H2 Fuc Mac Fuc_Mac 38522 342113 

master.48.G2 Fuc Mac Fuc_Mac 88391  
master.48.E2 Fuc Mac Fuc_Mac 172485  
master.48.F2 Fuc Mac Fuc_Mac 42715  
master.48.C2 Fuc Mic Fuc_Mic 438811 568420 

master.48.D2 Fuc Mic Fuc_Mic 54160  
master.48.A2 Fuc Mic Fuc_Mic 61288  
master.48.B2 Fuc Mic Fuc_Mic 14161  
master.48.D1 Fuc Wor Fuc_Wor 198303 449714 
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Table 2: (cont’d) 

master.48.C1 Fuc Wor Fuc_Wor 174940  
master.48.A1 Fuc Wor Fuc_Wor 16656  
master.48.B1 Fuc Wor Fuc_Wor 59815  
master.96.C8 Mac Bar Mac_Bar 37786 166469 

master.96.C7 Mac Bar Mac_Bar 94665  
master.96.C6 Mac Bar Mac_Bar 27472  
master.96.C5 Mac Bar Mac_Bar 6546  
master.96.D8 Mac Bif Mac_Bif 60178 154224 

master.96.D7 Mac Bif Mac_Bif 71358  
master.96.D6 Mac Bif Mac_Bif 15733  
master.96.D5 Mac Bif Mac_Bif 6955  
master.96.D11 Mac Fuc Mac_Fuc 79379 284968 

master.96.D12 Mac Fuc Mac_Fuc 49608  
master.96.D9 Mac Fuc Mac_Fuc 66328  
master.96.D10 Mac Fuc Mac_Fuc 89653  
master.96.D1 Mac Mac Mac 38213 306450 

master.96.D2 Mac Mac Mac 36878  
master.96.D4 Mac Mac Mac 112389  
master.96.D3 Mac Mac Mac 118970  
master.96.C10 Mac Mic Mac_Mic 130701 455614 

master.96.C9 Mac Mic Mac_Mic 217853  
master.96.C12 Mac Mic Mac_Mic 37171  
master.96.C11 Mac Mic Mac_Mic 69889  
master.96.C3 Mac Wor Mac_Wor 111235 694542 

master.96.C2 Mac Wor Mac_Wor 34134  
master.96.C4 Mac Wor Mac_Wor 462142  
master.96.C1 Mac Wor Mac_Wor 87031  
master.96.A7 Mic Bar Mic_Bar 53540 256638 

master.96.A8 Mic Bar Mic_Bar 113895  
master.96.A5 Mic Bar Mic_Bar 73570  
master.96.A6 Mic Bar Mic_Bar 15633  
master.96.B7 Mic Bif Mic_Bif 77289 483865 

master.96.B6 Mic Bif Mic_Bif 269418  
master.96.B8 Mic Bif Mic_Bif 62763  
master.96.B5 Mic Bif Mic_Bif 74395  
master.96.B9 Mic Fuc Mic_Fuc 146436 385375 
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Table 2: (cont’d) 

master.96.B11 Mic Fuc Mic_Fuc 130256  
master.96.B10 Mic Fuc Mic_Fuc 47123  
master.96.B12 Mic Fuc Mic_Fuc 61560  
master.96.B2 Mic Mac Mic_Mac 41173 139607 

master.96.B4 Mic Mac Mic_Mac 29519  
master.96.B1 Mic Mac Mic_Mac 53367  
master.96.B3 Mic Mac Mic_Mac 15548  
master.96.A9 Mic Mic Mic 48316 250180 

master.96.A10 Mic Mic Mic 78005  
master.96.A12 Mic Mic Mic 18385  
master.96.A11 Mic Mic Mic 105474  
master.96.A1 Mic Wor Mic_Wor 92763 302158 

master.96.A2 Mic Wor Mic_Wor 114872  
master.96.A4 Mic Wor Mic_Wor 43467  
master.96.A3 Mic Wor Mic_Wor 51056  
master.96.E8 Wor Bar Wor_Bar 172014 580237 

master.96.E7 Wor Bar Wor_Bar 113958  
master.96.E5 Wor Bar Wor_Bar 272356  
master.96.E6 Wor Bar Wor_Bar 21909  
master.96.F7 Wor Bif Wor_Bif 130342 477186 

master.96.F8 Wor Bif Wor_Bif 93743  
master.96.F6 Wor Bif Wor_Bif 182642  
master.96.F5 Wor Bif Wor_Bif 70459  
master.96.F9 Wor Fuc Wor_Fuc 50120 339721 

master.96.F10 Wor Fuc Wor_Fuc 65384  
master.96.F12 Wor Fuc Wor_Fuc 80574  
master.96.F11 Wor Fuc Wor_Fuc 143643  
master.96.F2 Wor Mac Wor_Mac 179688 477332 

master.96.F4 Wor Mac Wor_Mac 60320  
master.96.F3 Wor Mac Wor_Mac 88943  
master.96.F1 Wor Mac Wor_Mac 148381  
master.96.E10 Wor Mic Wor_Mic 73516 360102 

master.96.E9 Wor Mic Wor_Mic 46202  
master.96.E11 Wor Mic Wor_Mic 201793  
master.96.E12 Wor Mic Wor_Mic 38591  
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Table 2: (cont’d) 

master.96.E4 Wor Wor Wor 117697 558645 

master.96.E1 Wor Wor Wor 242639  
master.96.E2 Wor Wor Wor 122870  
master.96.E3 Wor Wor Wor 75439  
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Table 3a: Alpha diversity modelling results using the complete microbiome table 

Factor 
Rarefaction 
depth Metric Df 

Sum 
sq 

Mean 
sq 

F 
value pvalue 

Soil 160 Observed 5 63 12.594 2.147 0.0653 

Species 160 Observed 5 42.2 8.444 1.44 0.2159 

Soil:Species 160 Observed 25 247.9 9.918 1.691 0.0344 

Residuals 160 Observed 108 633.5 5.866   

Soil 160 Shannon 5 1082 216.31 2.371 0.0439 

Species 160 Shannon 5 375 74.94 0.822 0.5369 

Soil:Species 160 Shannon 25 2693 107.7 1.181 0.2738 

Residuals 160 Shannon 108 9852 91.22   

Soil 160 Chao1 5 0.1133 0.02265 1.648 0.1534 

Species 160 Chao1 5 0.1052 0.02104 1.531 0.1863 

Soil:Species 160 Chao1 25 0.5278 0.02111 1.536 0.0686 

Residuals 160 Chao1 108 1.4842 0.01374   

Soil 500 Observed 5 138 27.59 1.175 0.326 

Species 500 Observed 5 162.6 32.52 1.385 0.235 

Soil:Species 500 Observed 25 731.8 29.27 1.247 0.217 

Residuals 500 Observed 108 2535.2 23.47   

Soil 500 Shannon 5 1556 311.2 1.113 0.358 

Species 500 Shannon 5 1616 323.3 1.156 0.336 

Soil:Species 500 Shannon 25 7155 286.2 1.024 0.444 

Residuals 500 Shannon 108 30196 279.6   

Soil 500 Chao1 5 0.1081 0.02161 1.404 0.228 

Species 500 Chao1 5 0.1321 0.02642 1.717 0.137 

Soil:Species 500 Chao1 25 0.3876 0.0155 1.007 0.465 

Residuals 500 Chao1 108 1.6619 0.01539   

Soil 1000 Observed 5 211 42.22 0.986 0.43 

Species 1000 Observed 5 263 52.56 1.227 0.301 

Soil:Species 1000 Observed 25 1021 40.83 0.954 0.534 

Residuals 1000 Observed 108 4624 42.82   

Soil 1000 Shannon 5 4802 960.4 0.994 0.425 

Species 1000 Shannon 5 3747 749.4 0.776 0.569 

Soil:Species 1000 Shannon 25 20789 831.6 0.861 0.656 

Residuals 1000 Shannon 108 104316 965.9   

Soil 1000 Chao1 5 0.0996 0.01991 1.386 0.2353 

Species 1000 Chao1 5 0.1387 0.02773 1.93 0.0951 

Soil:Species 1000 Chao1 25 0.3407 0.01363 0.948 0.5404 

Residuals 1000 Chao1 108 1.5517 0.01437   
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Table 3b: Alpha diversity modelling results using the abundant microbiome table 

Factor 
Rarefactio
n depth Metric Df Sum sq Mean sq 

F 
value pvalue 

Soil 160 
Observe
d 5 8.83 1.7667 1.998 

0.084
7 

Species 160 
Observe
d 5 2.42 0.4833 0.547 

0.740
6 

Soil:Specie
s 160 

Observe
d 25 43 1.72 1.945 

0.010
3 

Residuals 160 
Observe
d 108 95.5 0.8843   

Soil 160 Shannon 5 39.1 7.82 2.413 
0.040

8 

Species 160 Shannon 5 6.8 1.366 0.421 0.833 
Soil:Specie
s 160 Shannon 25 155.6 6.225 1.92 

0.011
6 

Residuals 160 Shannon 108 350.1 3.241   

Soil 160 Chao1 5 
0.0143

4 
0.00286

9 1.416 
0.224

3 

Species 160 Chao1 5 
0.0061

5 0.00123 0.607 
0.694

7 
Soil:Specie
s 160 Chao1 25 

0.0924
5 

0.00369
8 1.825 

0.018
3 

Residuals 160 Chao1 108 0.2188 
0.00202

6   

Soil 500 
Observe
d 5 4.23 0.8458 0.448 0.814 

Species 500 
Observe
d 5 10.81 2.1625 1.146 0.341 

Soil:Specie
s 500 

Observe
d 25 47.15 1.8858 1 0.474 

Residuals 500 
Observe
d 108 203.75 1.8866   

Soil 500 Shannon 5 26.9 5.39 0.487 0.786 

Species 500 Shannon 5 46.6 9.317 0.841 0.523 
Soil:Specie
s 500 Shannon 25 226.1 9.043 0.817 0.713 

Residuals 500 Shannon 108 1196 11.074   

Soil 500 Chao1 5 
0.0017

3 
0.00034

6 0.331 0.893 

Species 500 Chao1 5 
0.0066

3 
0.00132

6 1.266 0.284 
Soil:Specie
s 500 Chao1 25 

0.0371
9 

0.00148
8 1.421 0.111 
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Table 3b: (cont’d)  

Residuals 500 Chao1 108 
0.1130

5 
0.00104

7   

Soil 1000 
Observe
d 5 6.23 1.246 0.48 0.79 

Species 1000 
Observe
d 5 23.23 4.646 1.79 0.121 

Soil:Specie
s 1000 

Observe
d 25 68.73 2.749 1.059 0.401 

Residuals 1000 
Observe
d 108 280.25 2.595   

Soil 1000 Shannon 5 78.8 15.76 0.775 0.57 

Species 1000 Shannon 5 73.2 14.65 0.72 0.61 
Soil:Specie
s 1000 Shannon 25 408.9 16.36 0.804 0.729 

Residuals 1000 Shannon 108 2197.2 20.34   

Soil 1000 Chao1 5 
0.0005

7 
0.00011

4 0.193 0.965 

Species 1000 Chao1 5 
0.0038

1 
0.00076

2 1.289 0.274 
Soil:Specie
s 1000 Chao1 25 

0.0163
2 

0.00065
3 1.105 0.35 

Residuals 1000 Chao1 108 
0.0638

2 
0.00059

1   
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Table 3c: Alpha diversity modelling results using the rare microbiome table 

Factor 
Rarefactio
n depth Metric Df 

Sum 
sq 

Mean 
sq 

F 
value pvalue 

Soil 160 
Observe
d 5 391 78.2 3.354 0.00743 

Species 160 
Observe
d 5 210.7 42.15 1.808 0.11731 

Soil:Specie
s 160 

Observe
d 25 734.5 29.38 1.26 0.20715 

Residuals 160 
Observe
d 108 

2517.
8 23.31   

Soil 160 Shannon 5 1797 359.4 5.187 
0.00026

4 

Species 160 Shannon 5 464 92.9 1.341 
0.25262

2 
Soil:Specie
s 160 Shannon 25 1942 77.7 1.121 0.33291 

Residuals 160 Shannon 108 7482 69.3   

Soil 160 Chao1 5 0.424 0.0848 1.468 0.206 

Species 160 Chao1 5 0.495 
0.0990

1 1.714 0.138 
Soil:Specie
s 160 Chao1 25 1.984 

0.0793
5 1.373 0.135 

Residuals 160 Chao1 108 6.239 
0.0577

7   
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Table 4a: Distribution of core OTUs when only presence absence in 2 samples is used 
as a threshold. 
 

OTUs 
mac_a_f
req 

mic_a_f
req 

wor_a_f
req 

fuc_a_f
req 

bif_a_fr
eq 

bar_a_f
req Genus 

10214
2 1 1 1 1 1 1 

g__Rhizobiu
m 

10684
86 1 1 1 1 1 1 g__ 

11199
24 1 1 1 1 1 1 g__ 

11240
17 1 1 1 1 1 1 

g__Streptomy
ces 

13435
9 1 1 1 1 1 1 

g__Agrobacte
rium 

13607
7 1 1 1 1 1 1 NA 

14474
0 1 1 1 1 1 1 g__ 

15032
8 1 1 1 1 1 1 NA 

15468
79 1 1 1 1 1 1 g__ 

18075
61 1 1 1 1 1 1 g__ 

19169
8 1 1 1 1 1 1 

g__Mycobact
erium 

20479
5 1 1 1 1 1 1 g__ 

21074
6 1 1 1 1 1 1 g__ 

21218
6 1 1 1 1 1 1 NA 

21791
7 1 1 1 1 1 1 g__ 

22053
9 1 1 1 1 1 1 

g__Agrobacte
rium 

22690
6 1 1 1 1 1 1 g__ 
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Table 4.a: (cont’d) 

226964 1 1 1 1 1 1 g__Rhizobium 

227191 1 1 1 1 1 1 g__Rhizobium 

239819 1 1 1 1 1 1 NA 
267575

2 1 1 1 1 1 1 g__Rhizobium 

275052 1 1 1 1 1 1 NA 

279206 1 1 1 1 1 1 g__ 

322972 1 1 1 1 1 1 NA 
333436

9 1 1 1 1 1 1 g__ 

339053 1 1 1 1 1 1 g__ 

34879 1 1 1 1 1 1 g__ 
355504

1 1 1 1 1 1 1 g__ 

360124 1 1 1 1 1 1 g__ 

360253 1 1 1 1 1 1 g__Sphingomonas 
361166

3 1 1 1 1 1 1 
g__Uliginosibacteriu
m 

374687
6 1 1 1 1 1 1 g__ 

40073 1 1 1 1 1 1 NA 
425447

8 1 1 1 1 1 1 NA 
426188

0 1 1 1 1 1 1 NA 
429504

3 1 1 1 1 1 1 g__ 
432186

4 1 1 1 1 1 1 g__ 
432909

3 1 1 1 1 1 1 g__Agrobacterium 
434424

1 1 1 1 1 1 1 g__Mesorhizobium 
434605

9 1 1 1 1 1 1 g__ 
434817

2 1 1 1 1 1 1 g__Rhizobium 
437151

7 1 1 1 1 1 1 g__ 
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Table 4.a: (cont’d) 

437688
5 1 1 1 1 1 1 g__Rhizobium 

437688
6 1 1 1 1 1 1 g__Rhizobium 

439492
2 1 1 1 1 1 1 g__ 

439648
1 1 1 1 1 1 1 g__Rhizobium 

441214
1 1 1 1 1 1 1 g__ 

442455
3 1 1 1 1 1 1 g__Kaistia 

442696
5 1 1 1 1 1 1 g__ 

445557
0 1 1 1 1 1 1 g__ 

447654
8 1 1 1 1 1 1 NA 

57713 1 1 1 1 1 1 g__Fimbriimonas 

589483 1 1 1 1 1 1 NA 

628400 1 1 1 1 1 1 NA 

654155 1 1 1 1 1 1 
g__Phenylobacteriu
m 

792073 1 1 1 1 1 1 g__Rhizobium 

800671 1 1 1 1 1 1 g__ 

993711 1 1 1 1 1 1 g__Pseudonocardia 
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Table 4b: Distribution of core OTUs when abundance along with presence absence in 2 
samples is used as a threshold. 
 

OTUs 
mac_a_f
req 

mic_a_f
req 

wor_a_f
req 

fuc_a_f
req 

bif_a_fr
eq 

bar_a_f
req Genus 

10214
2 1 1 1 1 1 1 

g__Rhizobiu
m 

10684
86 1 1 1 1 1 1 g__ 

11199
24 1 1 1 1 1 1 g__ 

11240
17 1 1 1 1 1 1 

g__Streptomy
ces 

13435
9 1 1 1 1 1 1 

g__Agrobacte
rium 

13607
7 1 1 1 1 1 1 NA 

14474
0 1 1 1 1 1 1 g__ 

15032
8 1 1 1 1 1 1 NA 

15468
79 1 1 1 1 1 1 g__ 

18075
61 1 1 1 1 1 1 g__ 

19169
8 1 1 1 1 1 1 

g__Mycobact
erium 

20479
5 1 1 1 1 1 1 g__ 

21074
6 1 1 1 1 1 1 g__ 

21218
6 1 1 1 1 1 1 NA 

21791
7 1 1 1 1 1 1 g__ 

22053
9 1 1 1 1 1 1 

g__Agrobacte
rium 
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Table 4b: (cont’d) 

226906 1 1 1 1 1 1 g__ 

226964 1 1 1 1 1 1 g__Rhizobium 

227191 1 1 1 1 1 1 g__Rhizobium 

239819 1 1 1 1 1 1 NA 
267575

2 1 1 1 1 1 1 g__Rhizobium 

275052 1 1 1 1 1 1 NA 

279206 1 1 1 1 1 1 g__ 

322972 1 1 1 1 1 1 NA 
333436

9 1 1 1 1 1 1 g__ 

339053 1 1 1 1 1 1 g__ 

34879 1 1 1 1 1 1 g__ 
355504

1 1 1 1 1 1 1 g__ 

360124 1 1 1 1 1 1 g__ 

360253 1 1 1 1 1 1 g__Sphingomonas 
361166

3 1 1 1 1 1 1 
g__Uliginosibacteriu
m 

374687
6 1 1 1 1 1 1 g__ 

40073 1 1 1 1 1 1 NA 
425447

8 1 1 1 1 1 1 NA 
426188

0 1 1 1 1 1 1 NA 
429504

3 1 1 1 1 1 1 g__ 
432186

4 1 1 1 1 1 1 g__ 
432909

3 1 1 1 1 1 1 g__Agrobacterium 
434424

1 1 1 1 1 1 1 g__Mesorhizobium 
434605

9 1 1 1 1 1 1 g__ 
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Table 4b: (cont’d) 

434817
2 1 1 1 1 1 1 g__Rhizobium 

437151
7 1 1 1 1 1 1 g__ 

437688
5 1 1 1 1 1 1 g__Rhizobium 

437688
6 1 1 1 1 1 1 g__Rhizobium 

439492
2 1 1 1 1 1 1 g__ 

439648
1 1 1 1 1 1 1 g__Rhizobium 

441214
1 1 1 1 1 1 1 g__ 

442455
3 1 1 1 1 1 1 g__Kaistia 

442696
5 1 1 1 1 1 1 g__ 

445557
0 1 1 1 1 1 1 g__ 

447654
8 1 1 1 1 1 1 NA 

57713 1 1 1 1 1 1 g__Fimbriimonas 

589483 1 1 1 1 1 1 NA 

628400 1 1 1 1 1 1 NA 

654155 1 1 1 1 1 1 
g__Phenylobacteriu
m 

792073 1 1 1 1 1 1 g__Rhizobium 

800671 1 1 1 1 1 1 g__ 

993711 1 1 1 1 1 1 g__Pseudonocardia 
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Table 5a: Adonis modelling results for complete microbiome 
 
Factor pvalue F pvalue F R2 pvalue 
Home 0.0028 0.823     
Species 0.05961 0.043     
Soil 0.07711 0.006     
nod_size 0.00528 0.465     

       

 Soil  Species  Soil:Species 
Soil*Species 0.07711 0.003 0.05961 0.02 0.15806 0.522 
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Table 5b: Adonis modelling results for abundant microbiome. 
 

Factor R2 
pvalu
e R2 

pvalu
e R2 

pvalu
e 

R
2 

pvalu
e 

Home 
0.0016

4 0.953       

Species 
0.0765

5 0.006       

Soil 
0.0560

5 0.054       

nod_size 
0.0056

1 0.496       

 Soil  

Specie
s      

Soil+Specie
s 

0.0560
5 0.040 0.07655 0.004     

 Soil  

Specie
s  Soil:Species   

Soil*Species 
0.0560

5 0.025 0.07655 0.002 
0.1957

4 0.079   
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Table 5c: Adonis modelling results for rare microbiome. 
 

 R2 pvalue R2 pvalue R2 pvalue 
Home 0.011 0.047     
Soil 0.115 0.001     
Species 0.07676 0.001     
nod_size 0.01223 0.032     

       

 Soil  Species  Soil:Species 
Soil*Species 0.115 0.001 0.07676 0.001 0.183 0.001 
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Table 6: Model statistics for neutral model of away and home samples 

 

 

model 
fit mci rsquared AIC BIC Samples Richness 

away 0.69 0.078 0.918 
-

1722.48 -1713.76 120 578 

home 0.691 0.121 0.877 -597.97 -590.61 24 293 
 
  



  

 62

Table 7.a: OTUs that were selected for or against under the neutral model for all home 

samples 

 
Se
lec
tio
n 

OT
U.I
D p 

fre
q 

freq
.pre
d 

pre
d.l
wr Taxonomy 

Ne
ga
tiv
e 

239
819 

0.0
001

22 

0.4
166

67 

0.2
650

74 

0.1
303

66 
k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales 

Ne
ga
tiv
e 

279
206 

7.6
9E-
05 

0.2
5 

0.1
582

84 

0.0
618

86 

k__Bacteria; p__Proteobacteria; 
c__Deltaproteobacteria; 
o__Myxococcales; f__Haliangiaceae; g__; 
s__ 

Ne
ga
tiv
e 

436
553

3 

4.4
9E-
05 

0.2
5 

0.0
868

23 

0.0
247

13 

k__Bacteria; p__Proteobacteria; 
c__Deltaproteobacteria; 
o__Myxococcales; f__Polyangiaceae; 
g__; s__ 

Ne
ga
tiv
e 

442
696

5 

0.0
001

35 

0.4
166

67 

0.2
961

05 

0.1
523

38 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Methylophilales; f__Methylophilaceae; 
g__; s__ 

Ne
ga
tiv
e 

654
155 

0.0
001

35 

0.5
833

33 

0.2
961

05 

0.1
523

38 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Caulobacterales; 
f__Caulobacteraceae; 
g__Phenylobacterium; s__ 

Po
siti
ve 

106
848

6 

0.0
002

37 

0.7
083

33 

0.5
322

61 

0.3
424

18 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; 
f__Sphingobacteriaceae; g__; s__ 

Po
siti
ve 

111
050 

5.7
7E-
05 

0.1
666

67 

0.1
146

9 
0.0

381 

k__Bacteria; p__Actinobacteria; 
c__Thermoleophilia; 
o__Solirubrobacterales; f__; g__; s__ 

Po
siti
ve 

112
401

7 

0.0
002

82 

0.5
833

33 

0.6
213

12 

0.4
236

21 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Streptomycetaceae; g__Streptomyces; 
s__ 

Po
siti
ve 

13
60
77 

5.7
7E-
05 

0.2
083

33 

0.1
146

9 
0.0

381 k__Bacteria; p__TM7; c__TM7-3 
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Table 7.a: (cont’d) 

Po
siti
ve 

19
16
98 

7.0
5E-
05 

0.2
5 

0.1
435

46 

0.0
535

1 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Mycobacteriaceae; g__Mycobacterium; 
s__ 

Po
siti
ve 

36
01
24 

0.0
003

33 

0.7
916

67 

0.7
088

73 

0.5
088

66 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

Po
siti
ve 

37
98
90
2 

3.8
5E-
05 

0.1
666

67 

0.0
733

24 

0.0
188

77 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales; 
f__Methylocystaceae; g__; s__ 

Po
siti
ve 

40
07
3 

0.0
001

35 

0.2
916

67 

0.2
961

05 

0.1
523

38 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae 

Po
siti
ve 

42
95
04
3 

0.0
001

54 

0.5
833

33 

0.3
425

03 

0.1
866

29 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Caulobacterales; 
f__Caulobacteraceae; g__; s__ 

Po
siti
ve 

43
21
86
4 

0.0
001

22 

0.4
583

33 

0.2
650

74 

0.1
303

66 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; 
f__Sphingobacteriaceae; g__; s__ 

Po
siti
ve 

44
08
89
0 

5.1
3E-
05 

0.2
5 

0.1
006

2 

0.0
311

35 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales; 
f__Hyphomicrobiaceae; g__; s__ 

Po
siti
ve 

44
24
55
3 

8.9
7E-
05 

0.3
75 

0.1
882

62 

0.0
798

29 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales; 
f__Rhizobiaceae; g__Kaistia; s__ 

Po
siti
ve 

44
73
17
8 

0.0
001

99 

0.2
916

67 

0.4
478

43 

0.2
701

87 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; f__Burkholderiaceae; 
g__; s__ 

Po
siti
ve 

73
46 

2.5
6E-
05 

0.0
833

33 

0.0
473

19 

0.0
091

75 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales 

Po
siti
ve 

81
51
02 

8.3
3E-
05 

0.2
5 

0.1
731

97 

0.0
706

69 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Nocardioidaceae; g__; s__ 
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Table 7.b: OTUs that were selected for or against under the neutral model for all away 

samples. 

 

 

OT
U.I
D 

Abu
nda
nce 

fre
q 

fre
q.p
red 

pre
d.l
wr 

pre
d.u
pr Taxonomy 

Ne
gat
ive 

11
19
92
4 

0.0
004

63 
0.6

5 

0.8
63
11
6 

0.7
90
27
6 

0.9
13
42
9 

k__Bacteria; p__Bacteroidetes; 
c__Cytophagia; o__Cytophagales; 
f__Cytophagaceae; g__; s__ 

Ne
gat
ive 

11
24
01
7 

0.0
003

33 0.5 

0.7
08
76
6 

0.6
22
01
1 

0.7
82
57 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Streptomycetaceae; 
g__Streptomyces; s__ 

Ne
gat
ive 

13
43
59 

0.0
006

28 

0.8
58
33
3 

0.9
55
63
5 

0.9
02
58 

0.9
80
42
3 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales; 
f__Rhizobiaceae; g__Agrobacterium; s__ 

Ne
gat
ive 

20
47
95 

0.0
003

32 

0.4
83
33
3 

0.7
06
76
8 

0.6
19
91
9 

0.7
80
78
9 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

Ne
gat
ive 

21
07
46 

0.0
009

79 

0.8
58
33
3 

0.9
97
47
1 

0.9
64
25
3 

0.9
99
82
7 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; 
f__Oxalobacteraceae; g__; s__ 

Ne
gat
ive 

21
21
86 

0.0
013

63 

0.9
58
33
3 

0.9
99
93
6 

0.9
68
85
7 1 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales; 
f__Bradyrhizobiaceae 

Ne
gat
ive 

22
69
06 

0.0
020

01 

0.9
66
66
7 1 

0.9
68
98
1 1 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; 
f__Comamonadaceae; g__; s__ 

Ne
gat
ive 

36
11
66
3 

0.0
021

82 

0.9
33
33
3 1 

0.9
68
98
1 1 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Rhodocyclales; f__Rhodocyclaceae; 
g__Uliginosibacterium; s__ 
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Table 7.b: (cont’d) 

Ne
gat
ive 

37
46
87
6 

0.0
01
20
8 

0.9
25 

0.9
99
7 

0.9
68
40
2 

0.9
99
99
7 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rickettsiales; 
f__mitochondria; g__; s__ 

Ne
gat
ive 

42
54
47
8 

0.0
01
96 

0.9
41
66
7 1 

0.9
68
98
1 1 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; 
f__Comamonadaceae 

Ne
gat
ive 

43
46
05
9 

0.0
00
74
1 

0.8
16
66
7 

0.9
81
16
8 

0.9
38
03 

0.9
94
45
5 

k__Bacteria; p__Bacteroidetes; 
c__Cytophagia; o__Cytophagales; 
f__Cytophagaceae; g__; s__ 

Ne
gat
ive 

44
26
96
5 

0.0
00
26
4 

0.4
5 

0.5
86
93
3 

0.4
97
47
4 

0.6
70
99
8 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Methylophilales; f__Methylophilaceae; 
g__; s__ 

Ne
gat
ive 

44
60
87
1 

0.0
00
95 

0.4
5 

0.9
96
71
6 

0.9
62
89
8 

0.9
99
71
8 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Methylophilales; f__Methylophilaceae; 
g__; s__ 

Ne
gat
ive 

58
94
83 

0.0
00
97
1 

0.9
41
66
7 

0.9
97
26
1 

0.9
63
87
4 

0.9
99
79
9 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; 
f__Comamonadaceae 

Po
siti
ve 

10
13
95
4 

1.7
9E
-05 

0.0
91
66
7 

0.0
32
42
5 

0.0
12
52
6 

0.0
81
33
2 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

Po
siti
ve 

10
21
42 

0.0
00
34
1 

0.8
58
33
3 

0.7
20
55
1 

0.6
34
38
2 

0.7
93
03
6 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales; 
f__Rhizobiaceae; g__Rhizobium; 
s__leguminosarum 

Po
siti
ve 

10
68
48
6 

0.0
00
27
7 

0.7
16
66
7 

0.6
11
60
7 

0.5
22
23
6 

0.6
94
05
4 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; 
f__Sphingobacteriaceae; g__; s__ 
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Table 7.b: (cont’d) 

 
Po
siti
ve 

10
72
35
2 

8.9
7E-
06 

0.0
58
33
3 

0.0
15
78
2 

0.0
04
20
5 

0.0
57
4 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; f__; g__; s__ 

Po
siti
ve 

10
76
40
5 

3.2
1E-
05 

0.1
25 

0.0
60
15
2 

0.0
29
75
3 

0.1
17
83
9 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

Po
siti
ve 

10
78
36
2 

2.9
5E-
05 

0.1
33
33
3 

0.0
54
97
8 

0.0
26
33 

0.1
11
23
4 

k__Bacteria; p__Proteobacteria; 
c__Gammaproteobacteria; 
o__Xanthomonadales; 
f__Xanthomonadaceae; g__; s__ 

Po
siti
ve 

11
06
41
1 

3.9
7E-
05 

0.2
08
33
3 

0.0
76
00
3 

0.0
40
66
4 

0.1
37
64
6 

k__Bacteria; p__Armatimonadetes; 
c__Armatimonadia; o__FW68; f__; g__; 
s__ 

Po
siti
ve 

11
10
50 

3.5
9E-
05 

0.1
75 

0.0
68
01
8 

0.0
35
09
4 

0.1
27
74
1 

k__Bacteria; p__Actinobacteria; 
c__Thermoleophilia; 
o__Solirubrobacterales; f__; g__; s__ 

Po
siti
ve 

11
18
08
9 

1.9
2E-
05 0.1 

0.0
34
86
9 

0.0
13
91
3 

0.0
84
68
2 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales; 
f__Hyphomicrobiaceae; g__Devosia; s__ 

Po
siti
ve 

11
19
03
1 

6.2
8E-
05 

0.2
75 

0.1
26
12
5 

0.0
78
11
2 

0.1
97
33
2 

k__Bacteria; p__Actinobacteria; 
c__Thermoleophilia; 
o__Solirubrobacterales; 
f__Solirubrobacteraceae; g__; s__ 

Po
siti
ve 

11
34
05 

4.3
6E-
05 

0.1
83
33
3 

0.0
84
10
3 

0.0
46
44
8 

0.1
47
55
9 

k__Bacteria; p__TM7; c__TM7-3; o__; 
f__; g__; s__ 

Po
siti
ve 

11
37
88
8 

2.4
4E-
05 0.1 

0.0
44
80
2 

0.0
19
84
7 

0.0
97
99
7 

k__Bacteria; p__Bacteroidetes; 
c__Cytophagia; o__Cytophagales; 
f__Cytophagaceae; g__; s__ 

Po
siti
ve 

11
62
2 

1.6
7E-
05 

0.0
83
33
3 

0.0
29
99
8 

0.0
11
18
3 

0.0
77
97 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Frankiaceae; g__; s__ 
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Table 7.b: (cont’d) 

Po
siti
ve 

12
93
4 

1.7
9E-
05 0.1 

0.0
32
42
5 

0.0
12
52
6 

0.0
81
33
2 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; 
o__Actinomycetales; 
f__Pseudonocardiaceae; 
g__Pseudonocardia; s__ 

Po
siti
ve 

14
47
40 

7.6
9E-
05 

0.3
08
33
3 

0.1
58
28
1 

0.1
03
72
7 

0.2
34
03
4 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; 
f__Comamonadaceae; g__; s__ 

Po
siti
ve 

15
03
28 

5.0
0E-
05 

0.2
25 

0.0
97
84
1 

0.0
56
52
3 

0.1
64
10
8 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae 

Po
siti
ve 

15
46
87
9 

7.0
5E-
05 

0.2
75 

0.1
43
54
4 

0.0
91
86
6 

0.2
17
33
7 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; 
o__Actinomycetales; 
f__Micromonosporaceae; g__; s__ 

Po
siti
ve 

15
53
20
4 

2.9
5E-
05 

0.1
41
66
7 

0.0
54
97
8 

0.0
26
33 

0.1
11
23
4 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Sphingomonadales; 
f__Sphingomonadaceae; 
g__Sphingomonas 

Po
siti
ve 

18
07
56
1 

7.5
6E-
05 

0.2
83
33
3 

0.1
55
31
9 

0.1
01
32
8 

0.2
30
69
3 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

Po
siti
ve 

19
16
98 

8.2
1E-
05 

0.3
41
66
7 

0.1
70
19
6 

0.1
13
45
3 

0.2
47
4 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; 
o__Actinomycetales; 
f__Mycobacteriaceae; 
g__Mycobacterium; s__ 

Po
siti
ve 

21
54
23 

1.6
7E-
05 0.1 

0.0
29
99
8 

0.0
11
18
3 

0.0
77
97 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; 
f__Hyphomicrobiaceae; 
g__Rhodoplanes; s__ 

Po
siti
ve 

22
71
91 

0.0
00
56
5 

0.9
75 

0.9
30
60
6 

0.8
70
54
2 

0.9
63
95
7 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae; 
g__Rhizobium; s__leguminosarum 

Po
siti
ve 

23
98
19 

0.0
00
12
9 

0.4
75 

0.2
83
66
4 

0.2
10
7 

0.3
70
04
9 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales 
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Table 7.b: (cont’d) 

P
os
iti
ve 

243
118 

1.
15
E-
05 

0.0
66
66
7 

0.020
453 

0.00
629

8 

0.06
435

7 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; 
o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

P
os
iti
ve 

256
866

3 

1.
15
E-
05 

0.0
66
66
7 

0.020
453 

0.00
629

8 

0.06
435

7 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Rhodocyclales; 
f__Rhodocyclaceae; g__; s__ 

P
os
iti
ve 

267
575

2 

0.
00
04
6 

0.9
5 

0.860
893 

0.78
773 

0.91
166

6 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae; 
g__Rhizobium; s__leguminosarum 

P
os
iti
ve 

273
185 

1.
28
E-
05 

0.0
83
33
3 

0.022
814 

0.00
743

9 

0.06
779

2 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; 
f__Hyphomicrobiaceae; 
g__Devosia; s__ 

P
os
iti
ve 

275
052 

0.
00
06
5 

0.9
91
66
7 

0.962
207 

0.91
135

2 

0.98
438

8 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae 

P
os
iti
ve 

279
206 

4.
10
E-
05 

0.1
75 

0.078
69 

0.04
256

9 

0.14
094

9 

k__Bacteria; p__Proteobacteria; 
c__Deltaproteobacteria; 
o__Myxococcales; 
f__Haliangiaceae; g__; s__ 

P
os
iti
ve 

287
547 

1.
79
E-
05 

0.0
83
33
3 

0.032
425 

0.01
252

6 

0.08
133

2 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; 
f__Burkholderiaceae; 
g__Burkholderia; s__ 

P
os
iti
ve 

298
401

4 

2.
69
E-
05 

0.1
16
66
7 

0.049
86 

0.02
302

5 

0.10
462

1 
k__Bacteria; p__Chloroflexi; 
c__TK10; o__B07_WMSP1 

P
os
iti
ve 

324
252 

5.
51
E-
05 

0.2
58
33
3 

0.109
033 

0.06
494

3 

0.17
737

8 
k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria 

P
os
iti
ve 

37
98
90
2 

2.44
E-
05 

0.1
33
33
3 

0.0
44
80
2 

0.01
984

7 

0.09
799

7 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; 
f__Methylocystaceae; g__; s__ 
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Table 7.b: (cont’d) 

Po
siti
ve 

40
07
3 

4.3
6E-
05 

0.2
08
33
3 

0.0
84
10
3 

0.0
46
44
8 

0.1
47
55
9 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae 

Po
siti
ve 

41
78
57
5 

1.9
2E-
05 

0.0
91
66
7 

0.0
34
86
9 

0.0
13
91
3 

0.0
84
68
2 

k__Bacteria; p__Acidobacteria; 
c__Solibacteres; o__Solibacterales; 
f__Solibacteraceae; g__; s__ 

Po
siti
ve 

42
61
88
0 

4.3
6E-
05 

0.2
25 

0.0
84
10
3 

0.0
46
44
8 

0.1
47
55
9 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Sphingomonadales; 
f__Sphingomonadaceae 

Po
siti
ve 

42
95
04
3 

0.0
00
14
5 0.5 

0.3
20
86
1 

0.2
44
01
5 

0.4
08
82 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Caulobacterales; 
f__Caulobacteraceae; g__; s__ 

Po
siti
ve 

43
03
16
1 

1.1
5E-
05 

0.0
66
66
7 

0.0
20
45
3 

0.0
06
29
8 

0.0
64
35
7 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; 
o__Actinomycetales; 
f__Nocardioidaceae; 
g__Propionicimonas; s__ 

Po
siti
ve 

43
03
53
0 

2.3
1E-
05 0.1 

0.0
42
29
6 

0.0
18
30
9 

0.0
94
67
8 

k__Bacteria; p__Bacteroidetes; 
c__Cytophagia; o__Cytophagales; 
f__Cytophagaceae; g__; s__ 

Po
siti
ve 

43
14
39
1 

2.8
2E-
05 

0.1
41
66
7 

0.0
52
41
2 

0.0
24
66
2 

0.1
07
92
9 

k__Bacteria; p__Actinobacteria; 
c__Acidimicrobiia; 
o__Acidimicrobiales; f__EB1017; g__; 
s__ 

Po
siti
ve 

43
21
86
4 

0.0
00
19 

0.5
33
33
3 

0.4
27
19
9 

0.3
42
30
6 

0.5
16
61 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; 
f__Sphingobacteriaceae; g__; s__ 

Po
siti
ve 

43
27
90
6 

2.0
5E-
05 

0.1
08
33
3 

0.0
37
32
9 

0.0
15
34 

0.0
88
02
2 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; 
f__Sphingobacteriaceae; g__; s__ 

Po
siti
ve 

43
29
09
3 

4.2
3E-
05 

0.1
75 

0.0
81
39 

0.0
44
49
8 

0.1
44
25
3 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae; 
g__Agrobacterium; s__ 
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Table 7.b: (cont’d) 

Po
siti
ve 

43
44
24
1 

6.2
8E-
05 

0.2
25 

0.1
26
12
5 

0.0
78
11
2 

0.1
97
33
2 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Phyllobacteriaceae; 
g__Mesorhizobium; s__ 

Po
siti
ve 

43
48
17
2 

5.6
4E-
05 0.3 

0.1
11
85
7 

0.0
67
09
4 

0.1
80
7 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae; 
g__Rhizobium; s__leguminosarum 

Po
siti
ve 

43
65
53
3 

5.0
0E-
05 

0.2
25 

0.0
97
84
1 

0.0
56
52
3 

0.1
64
10
8 

k__Bacteria; p__Proteobacteria; 
c__Deltaproteobacteria; 
o__Myxococcales; f__Polyangiaceae; 
g__; s__ 

Po
siti
ve 

43
71
51
7 

0.0
00
17
4 

0.4
91
66
7 

0.3
91
29
6 

0.3
08
64
6 

0.4
80
68
9 

k__Bacteria; p__Proteobacteria; 
c__Deltaproteobacteria; 
o__Myxococcales; f__; g__; s__ 

Po
siti
ve 

43
76
88
5 

2.9
5E-
05 

0.1
75 

0.0
54
97
8 

0.0
26
33 

0.1
11
23
4 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae; 
g__Rhizobium; s__leguminosarum 

Po
siti
ve 

43
76
88
6 

5.0
0E-
05 

0.2
58
33
3 

0.0
97
84
1 

0.0
56
52
3 

0.1
64
10
8 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae; 
g__Rhizobium; s__leguminosarum 

Po
siti
ve 

43
90
89
1 

8.9
7E-
06 

0.0
58
33
3 

0.0
15
78
2 

0.0
04
20
5 

0.0
57
4 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

Po
siti
ve 

43
91
31
8 

5.6
4E-
05 

0.2
5 

0.1
11
85
7 

0.0
67
09
4 

0.1
80
7 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; 
f__Sphingobacteriaceae; g__; s__ 

Po
siti
ve 

43
94
92
2 

5.1
3E-
05 

0.2
25 

0.1
00
62
3 

0.0
58
6 

0.1
67
42
3 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; o__Ellin6067; 
f__; g__; s__ 

Po
siti
ve 

43
96
48
1 

6.5
4E-
05 

0.3
08
33
3 

0.1
31
89
7 

0.0
82
63
5 

0.2
03
99
5 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae; 
g__Rhizobium; s__leguminosarum 
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Table 7.b: (cont’d) 

Po
siti
ve 

44
00
32
8 

2.4
4E
-05 

0.1
25 

0.0
44
80
2 

0.0
19
84
7 

0.0
97
99
7 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; f__; g__; s__ 

Po
siti
ve 

44
08
89
0 

4.8
7E
-05 

0.2
16
66
7 

0.0
95
07
1 

0.0
54
46
7 

0.1
60
79
5 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; 
f__Hyphomicrobiaceae; g__; s__ 

Po
siti
ve 

44
12
14
1 

0.0
00
10
1 

0.3
58
33
3 

0.2
15
67
3 

0.1
51
52 

0.2
97
46
4 

k__Bacteria; p__Proteobacteria; 
c__Gammaproteobacteria; 
o__Xanthomonadales; 
f__Xanthomonadaceae; g__; s__ 

Po
siti
ve 

44
17
47
5 

2.1
8E
-05 

0.1
08
33
3 

0.0
39
80
5 

0.0
16
80
6 

0.0
91
35
3 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__; g__; s__ 

Po
siti
ve 

44
18
69
5 

2.5
6E
-05 

0.1
16
66
7 

0.0
47
32
4 

0.0
21
42 

0.1
01
31
1 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Sphingomonadales; 
f__Sphingomonadaceae; 
g__Sphingomonas 

Po
siti
ve 

44
24
55
3 

0.0
00
10
1 

0.4
66
66
7 

0.2
15
67
3 

0.1
51
52 

0.2
97
46
4 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae; 
g__Kaistia; s__ 

Po
siti
ve 

44
27
86
1 

2.0
5E
-05 

0.1
16
66
7 

0.0
37
32
9 

0.0
15
34 

0.0
88
02
2 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; 
f__Hyphomicrobiaceae; 
g__Rhodoplanes; s__elegans 

Po
siti
ve 

44
29
88
4 

1.5
4E
-05 0.1 

0.0
27
58
6 

0.0
09
88
5 

0.0
74
59
5 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Bradyrhizobiaceae; 
g__; s__ 

Po
siti
ve 

44
30
56
8 

1.9
2E
-05 

0.1
25 

0.0
34
86
9 

0.0
13
91
3 

0.0
84
68
2 

k__Bacteria; p__Acidobacteria; 
c__Acidobacteriia; 
o__Acidobacteriales; 
f__Acidobacteriaceae; g__; s__ 

Po
siti
ve 

44
34
88
9 

2.3
1E
-05 

0.1
16
66
7 

0.0
42
29
6 

0.0
18
30
9 

0.0
94
67
8 

k__Bacteria; p__Acidobacteria; 
c__Sva0725; o__Sva0725; f__; g__; 
s__ 
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Table 7.b: (cont’d) 

Po
siti
ve 

44
45
43
2 

2.0
5E
-05 0.1 

0.0
37
32
9 

0.0
15
34 

0.0
88
02
2 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

Po
siti
ve 

44
56
11
3 

2.4
4E
-05 0.1 

0.0
44
80
2 

0.0
19
84
7 

0.0
97
99
7 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; 
f__Comamonadaceae; g__Rhodoferax; 
s__ 

Po
siti
ve 

44
58
21
4 

1.9
2E
-05 

0.0
91
66
7 

0.0
34
86
9 

0.0
13
91
3 

0.0
84
68
2 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; 
o__Actinomycetales; 
f__Nocardioidaceae; g__; s__ 

Po
siti
ve 

44
63
76
7 

1.7
9E
-05 

0.0
83
33
3 

0.0
32
42
5 

0.0
12
52
6 

0.0
81
33
2 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; 
o__Actinomycetales; 
f__Nocardioidaceae; g__; s__ 

Po
siti
ve 

44
65
15
8 

8.9
7E
-06 

0.0
58
33
3 

0.0
15
78
2 

0.0
04
20
5 

0.0
57
4 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Sphingomonadales; 
f__Sphingomonadaceae; 
g__Kaistobacter; s__ 

Po
siti
ve 

44
65
43
1 

8.9
7E
-06 

0.0
58
33
3 

0.0
15
78
2 

0.0
04
20
5 

0.0
57
4 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Methylocystaceae; 
g__; s__ 

Po
siti
ve 

44
76
08
9 

2.1
8E
-05 

0.1
08
33
3 

0.0
39
80
5 

0.0
16
80
6 

0.0
91
35
3 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Caulobacterales; 
f__Caulobacteraceae; g__; s__ 

Po
siti
ve 

44
76
54
8 

0.0
00
11
8 

0.4
5 

0.2
55
75
5 

0.1
86
11
9 

0.3
40
54
3 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Phyllobacteriaceae 

Po
siti
ve 

44
78
41
3 

4.7
4E
-05 

0.1
91
66
7 

0.0
92
31
1 

0.0
52
43
1 

0.1
57
48
4 

k__Bacteria; p__Bacteroidetes; 
c__[Saprospirae]; o__[Saprospirales]; 
f__Chitinophagaceae; g__; s__ 

Po
siti
ve 

44
80
02
2 

2.3
1E
-05 

0.1
08
33
3 

0.0
42
29
6 

0.0
18
30
9 

0.0
94
67
8 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Sphingomonadales; 
f__Sphingomonadaceae 
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Table 7.b: (cont’d) 

Po
siti
ve 

49
43
67 

1.0
3E-
05 

0.0
66
66
7 

0.0
18
10
9 

0.0
05
21
8 

0.0
60
89
5 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae 

Po
siti
ve 

54
34
57 

1.5
4E-
05 

0.0
91
66
7 

0.0
27
58
6 

0.0
09
88
5 

0.0
74
59
5 

k__Bacteria; p__Bacteroidetes; 
c__Cytophagia; o__Cytophagales; 
f__Cytophagaceae; g__; s__ 

Po
siti
ve 

56
74
86 

1.9
2E-
05 

0.1
16
66
7 

0.0
34
86
9 

0.0
13
91
3 

0.0
84
68
2 

k__Bacteria; p__Proteobacteria; 
c__Gammaproteobacteria; 
o__Xanthomonadales; 
f__Xanthomonadaceae; 
g__Dokdonella; s__ 

Po
siti
ve 

57
71
3 

1.5
4E-
05 

0.0
91
66
7 

0.0
27
58
6 

0.0
09
88
5 

0.0
74
59
5 

k__Bacteria; p__Armatimonadetes; 
c__[Fimbriimonadia]; 
o__[Fimbriimonadales]; 
f__[Fimbriimonadaceae]; 
g__Fimbriimonas; s__ 

Po
siti
ve 

61
04
18 

8.9
7E-
06 

0.0
58
33
3 

0.0
15
78
2 

0.0
04
20
5 

0.0
57
4 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; 
f__Hyphomicrobiaceae; 
g__Rhodoplanes; s__ 

Po
siti
ve 

62
84
00 

6.0
3E-
05 

0.2
91
66
7 

0.1
20
38
9 

0.0
73
65
4 

0.1
90
67
4 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Rhizobiales; f__Rhizobiaceae 

Po
siti
ve 

65
41
55 

0.0
00
22
8 

0.6
75 

0.5
13
09
4 

0.4
24
65
5 

0.6
00
71
9 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; 
o__Caulobacterales; 
f__Caulobacteraceae; 
g__Phenylobacterium; s__ 

Po
siti
ve 

65
68
9 

7.5
6E-
05 

0.2
66
66
7 

0.1
55
31
9 

0.1
01
32
8 

0.2
30
69
3 

k__Bacteria; p__Chloroflexi; 
c__Chloroflexi; o__[Roseiflexales]; 
f__[Kouleothrixaceae]; g__; s__ 

Po
siti
ve 

66
68
83 

3.7
2E-
05 

0.1
41
66
7 

0.0
70
66
6 

0.0
36
92
6 

0.1
31
04
2 

k__Bacteria; p__Proteobacteria; 
c__Deltaproteobacteria; 
o__Bdellovibrionales; 
f__Bdellovibrionaceae; g__Bdellovibrio; 
s__ 
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Table 7.b: (cont’d) 

Po
siti
ve 

76
71
42 

0.0
00
10
4 

0.3
25 

0.2
21
81 

0.1
56
75
9 

0.3
04
11
8 

k__Bacteria; p__Proteobacteria; 
c__Betaproteobacteria; 
o__Burkholderiales; 
f__Comamonadaceae 

Po
siti
ve 

79
20
73 

0.0
00
39 

0.8
91
66
7 

0.7
87
17
8 

0.7
05
63
4 

0.8
50
90
6 

k__Bacteria; p__Proteobacteria; 
c__Alphaproteobacteria; o__Rhizobiales; 
f__Rhizobiaceae; g__Rhizobium; 
s__leguminosarum 

Po
siti
ve 

80
06
71 

5.3
8E
-05 

0.2
58
33
3 

0.1
06
21
9 

0.0
62
81 

0.1
74
05
8 

k__Bacteria; p__Actinobacteria; 
c__Acidimicrobiia; o__Acidimicrobiales; 
f__C111; g__; s__ 

Po
siti
ve 

81
51
02 

4.3
6E
-05 

0.1
75 

0.0
84
10
3 

0.0
46
44
8 

0.1
47
55
9 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Nocardioidaceae; g__; s__ 

Po
siti
ve 

81
77
14 

3.7
2E
-05 

0.1
5 

0.0
70
66
6 

0.0
36
92
6 

0.1
31
04
2 

k__Bacteria; p__Proteobacteria; 
c__Deltaproteobacteria; 
o__Myxococcales; f__; g__; s__ 

Po
siti
ve 

86
95
13 

1.5
4E
-05 

0.0
83
33
3 

0.0
27
58
6 

0.0
09
88
5 

0.0
74
59
5 

k__Bacteria; p__Bacteroidetes; 
c__Sphingobacteriia; 
o__Sphingobacteriales; f__; g__; s__ 

Po
siti
ve 

99
37
11 

8.7
2E
-05 

0.3
41
66
7 

0.1
82
21
2 

0.1
23
37
2 

0.2
60
76
7 

k__Bacteria; p__Actinobacteria; 
c__Actinobacteria; o__Actinomycetales; 
f__Pseudonocardiaceae; 
g__Pseudonocardia; s__ 
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APPENDIX 2: List of figures 

 

 

 

 

 

Figure 1: Trifolium species used in this study. 
A) Trifolium bifidum, B)Trifolium barbigerum, C)Trifolium macraei, D) Trifolium 
microdon, E)Trifolium fucatum, F) Trifolium wormskioldii 
 
  

B CA

D E F
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Figure 2a: Distribution of reads across samples – Basic. 

This graph represents the distribution of reads across all 144 samples. X axis has the 
sample names and Y axis show the total number of reads. 
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Figure 2b: Distribution of reads: Coloured. 

This graph represents the distribution of reads across all 144 samples, coloured by the 
different growing combinations. X axis has the sample names and Y axis show the total 
number of reads. 
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a) 

 
b) 

  
Figure 3a: Individual phyla contributions: Unfiltered OTU table 

This graph represents the distribution of different phyla across the 144 samples. 
  



  

 79

a) 

b) 

 
Figure 3b: Individual phyla contributions: Complete filtered OTU table. 

This graph represents the distribution of different phyla across the 144 samples. Table 
is filtered to remove bad taxonomic assignments. 
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a) 

 
b) 

  
Figure 3c: Individual phyla contributions: Rare OTU table. 

This graph represents the distribution of different phyla across the 144 samples. Table 
is filtered to remove bad taxonomic assignments and OTUs belonging to the 
“Rhizobiales” group. 
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Figure 4a: Top five phyla contributions: Complete OTU table. 

This graph represents how many OTUs are present in high frequency across samples. 
Here the image shows that the order Proteobacteria is not only the dominant order 
present in high abundance but also in high frequency across samples. Log scale along 
x axis is log10 
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Figure 4b: Top five phyla contributions: Rare OTU table. 

This graph represents how many OTUs are present in high frequency across samples. 
Here the image shows that no single phylum is present in all samples. Thus the 
abundance within the rare microbiome is more variable. The order Proteobacteria and 
Bacteriodetes is not only the dominant order present in high abundance but also in high 
frequency across samples. Log scale along x axis is log10 
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Figure 4c: Top five phyla contributions: Abundant OTU table. 

This graph represents how many OTUs are present in high frequency across samples 
for the abundant (Rhizobiales) OTU table. Log scale along x axis is log10 
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Figure 5a: Number of OTUs identified as core within at least 2 home samples. 

The plot is built using presence absence data from OTUs present in at least 2 of the 4 
native samples. Blue bars on the left indicate number of OTUs identified as core in the 
corresponding sample while the black histogram bars indicate number of intersecting 
OTUs. 
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Figure 5b: Number of OTUs identified as core within at least 3 home samples.  

The plot is built using presence absence data from OTUs present in at least 3 of the 4 
native samples. Blue bars on the left indicate number of OTUs identified as core in the 
corresponding sample while the black histogram bars indicate number of intersecting 
OTUs. 
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Figure 5c: Number of OTUs identified as core within at least 2 home samples and an 

abundance threshold of 0.00001%. 

Blue bars on the left indicate size of the library while the black histogram bars indicate 
number of intersecting OTUs. Abundance threshold: the above mentioned threshold 
was used as this seemed to be the faint cut off between abundance vs presence. Any 
higher abundance and I select only OTUs belonging to Rhizobiales and there isn’t a 
comparison. 
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Figure 5d: Number of OTUs identified as core within at least 3 home samples and an 

abundance threshold of 0.00001%. 

Blue bars on the left indicate size of the library while the black histogram bars indicate 
number of intersecting OTUs. 
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a)        b) 

 
c) 

 
Figure 6a: Rarefaction at 160reads/ sample using the complete OTU table. 

This figure shows rarefaction curves for species richness when all home samples are 
subsampled to 160 sequences each. Metric for species richness is Observed species 
and rarefaction curves are colored by a)“Soil” followed by b)“Species” c) legend for the 
colored rarefaction curves. 
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a)       b) 

 
c) 

 
Figure 6b: Rarefaction at 500 reads/ sample using the complete OTU table. 

This figure shows rarefaction curves for species richness when all home samples are 
subsampled to 500 sequences each. Metric for species richness is Observed species 
and rarefaction curves are colored by a) “Soil” followed by b) “Species” c) legend for the 
colored rarefaction curves. 
  



  

 90

a)       b) 

 
c) 

 
Figure 6c: Rarefaction at 160 reads/ sample using the rare OTU table. 

This figure shows rarefaction curves for species richness when all home samples are 
subsampled to 160 sequences each. Metric for species richness is Observed species 
and rarefaction curves are colored by a) “Soil” followed by b) “Species” c) legend for the 
colored rarefaction curves. 
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a)        b) 

 
c) 

 
Figure 6d: Rarefaction at 500 reads/ sample using the rare OTU table. 

This figure shows rarefaction curves for species richness when all home samples are 
subsampled to 500 sequences each. Metric for species richness is Observed species 
and rarefaction curves are colored by a) “Soil” followed by b) “Species” c) legend for the 
colored rarefaction curves. Both graphs show incomplete rarefaction curves indicating 
that these samples did not have sufficient read depth to rarefy to 500 reads/ sample. 
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Figure 7a.i: PCoA ordination using the complete filtered OTU table 

This graph a principal coordinate analysis performed using the complete OTU table 
rarefied and normalized to 6500 reads/ sample (586 OTUs detected). Samples are 
coloured by Soil factor and shaped by Species factor to represent all the combinations 
used in the study. Samples group along a single, dominant axis. One possible reason 
this could happen in the abundance of the OTUs belonging to the Rhizobiales category 
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Figure 7a.ii) Scree plot for the PCoA ordination using the complete OTU table. 

Notice large eigenvalue first axis is also seen in the scree plot, indicating that one 
dominant factor is driving the relationship. 
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Figure 7b.i: PCoA ordination using the rare OTU table 

Rare table was rarefied and then normalized to 163 reads/ sample (513 OTUs 
identified). Removing the abundant taxa also removes the grouping along a single axis. 
However, there still seems to be an overall clustering by the Soil factor. Samples are 
coloured by Soil factor and shaped by Species factor to represent all the combinations 
used in the study. 
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Figure 7b.ii: ) Scree plot for the PCoA ordination using the rare OTU table 

Removing the dominant taxa also removes the single dominant eigen value we see in 
the complete OTU PCoA plot. This could indicate that a single factor is pushing the 
grouping that we see earlier. 
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Figure 7c.i PCoA ordination using the abundant OTU table (comprising of 75 OTUs) 

Rhizobiales OTU table was rarefied and then normalized to 6250 reads/sample. 
Samples tend to group towards the left half go the ordination, similar to the complete 
OUT.table. 
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Figure7c.ii: ) Scree plot for the PCoA ordination using the abundant OTUtable. 

Samples again have the large single dominant axis also seen when looking at the scree 
plot for complete OTU table, which is absent in the rare microbiome table. This indicates 
that samples grouping along a single axis are driven by the dominant taxa. 
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Figure 8a: NMDS plot performed on the complete OTU table. 

Samples are represented on the left and their corresponding microbial communities on 
the right. This plot explores how clustering of samples relates to clustering of microbial 
community members. Samples tend to cluster along a single axis. 
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Figure 8b: NMDS plot performed on the rare OTU table 

Samples are represented on the left and their corresponding microbial communities on 
the right. This plot explores how clustering of samples relates to clustering of microbial 
community members. Here we do not see the close grouping in the center that we see 
for both the samples and microbial communities of the complete table. The close the 
points are, the most similar the samples and microbiome. This graph gives further 
evidence that the rare OTUs are more variable than the complete OTUs. 
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Figure 8c: NMDS plot performed on the abundant OTU table. 

Samples are represented on the left and their corresponding microbial communities on 
the right. Sample grouping overlaps with abundant taxa of microbial community 
specifically with the abundant members: Agrobacterum and leguminosarum. 
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Figure 9a.i: CCA ordinations on complete OTU tables constrained by Soil factor. 

This plot shows that all samples are highly similar to each other when Soil factor is 
constrained. This means that the variation explained by the other factors is pretty small. 
This could indicate that either the relationships are driven by the dominant taxa or 
communities are highly similar when removing the soil factor. The arrows are coloured 
by the corresponding Soil factor.  
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Figure 9a.ii: CCA ordinations on complete OTU tables constrained by Species factor. 

This plot too shows that all samples are highly similar to each other when Species factor 
is constrained. However, we see larger eigenvalues for the CCA axis when Soil factor 
(CCA1: 3.4%) is constrained compared to species factor (2.8%). This means that the 
variation explained by the other factors is pretty small and relationships are driven by 
the dominant taxa. The arrows are coloured by the corresponding Species factor. 
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Figure 9b.i: CCA ordinations on abundant OTU tables constrained by Soil factor 
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Figure 9b.ii: CCA ordinations on abundant OTU tables constrained by Species factor 
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Figure 9c.i: CCA ordinations on rare OTU tables constrained by Soil factor  
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Figure 9c.ii: CCA ordinations on rare OTU tables constrained by Species factor 
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Figure 10: Phylogenetic tree of Agrobacterium and Rhizobium. 

The tree represents a phylogeny between agrobacterium OTUs and rhizobium OTUs 
from our samples. The agrobacterium coloured in red is the one that is present in high 
abundance within our samples (~85-95% of OTUs). Labels in black are reference 
rhizobium sequences. 
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Figure 11.a: Fit of neutral model for home samples 
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Figure 11.b: Fit of neutral model for away data   
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APPENDIX 3: Main script 

 
This script is used to process the OTU table received from QIIME. The script runs a 
filtering step, diversity analysis, ordinations and Adonis models. 
 
#required libraries 
library("RColorBrewer") 
library("ggplot2") 
library("plyr") 
library("vegan") 
library("reshape2") 
library("ape") 
library("phyloseq") 
library("data.table") 
library("biome") 
 
#otu files 
otu_all = "../Desktop/nod_mb/R_files/otus.biom" 
m=read.csv("../Desktop/nod_mb/R_files/nodule_map_new.txt", row.names=1) 
file<-import_biom(otu_all) 
map = sample_data(m) 
comp <-merge_phyloseq(file,map) 
head(sample_data(comp)) 
colnames(tax_table(comp)) <- c(k = "Kingdom", p = "Phylum", c = "Class", o = "Order", f 
= "Family", g = "Genus", s = "Species") 
taxa_sums(comp) 
#complete otu mb 
comp 
 
#removing low quality taxa matches and normalize 
mb_all= subset_taxa(comp, Kingdom!="None" & Kingdom!="NOHIT" ) 
norm_all = transform_sample_counts(mb_all, function(x) x/sum(x)) 
taxa_sums(mb_all) 
mb_all 
 
df_all = as(sample_data(norm_all), "data.frame") 
d_all = phyloseq::distance(norm_all, "bray") 
norm_all 
 
#only rhiz and normalize 
mb_rhiz= subset_taxa(mb_all, Order=="o__Rhizobiales") 
norm_rhiz = transform_sample_counts(mb_rhiz, function(x) x/sum(x)) 
df_rhiz = as(sample_data(norm_rhiz), "data.frame") 
d_rhiz = phyloseq::distance(norm_rhiz, "bray") 
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#take rare as a percentage of the reads => OTUS <0.01% in abundance is "rare" 
 
#only rare and normalize 
#get OTUs 
x = names(sort(taxa_sums(mb_rhiz), decreasing = TRUE)) 
y = names(sort(taxa_sums(mb_all), decreasing = TRUE)) 
select_rare <- setdiff(y, x) 
 
#subsample and normalize 
mb_rare= prune_taxa(select_rare, mb_all) 
norm_rare = transform_sample_counts(mb_rare, function(x) x/sum(x)) 
df_rare = as(sample_data(norm_rare), "data.frame") 
d_rare = phyloseq::distance(norm_rare, "bray") 
 
taxa <- tax_table(mb_all) 
otus <- otu_table(mb_all) 
write.table(otus, file='otus-genus.txt') 
write.table(taxa, file='taxa.txt') 
 
taxa_rhiz <- tax_table(mb_rhiz) 
otus_rhiz <- otu_table(mb_rhiz) 
write.table(otus_rhiz, file='otus-rhiz.txt') 
write.table(taxa_rhiz, file='taxa-rhiz.txt') 
 
taxa_rare <- tax_table(mb_rare) 
otus_rare <- otu_table(mb_rare) 
write.table(otus_rare, file='otus-rare.txt') 
write.table(taxa_rare, file='taxa-rare.txt') 
 
#rarefy tables to same depth 
even_depth <- function(ss_no, otu_table){ 
#set.seed(3336) 
rarefied <- rarefy_even_depth(otu_table, sample.size = ss_no) 
return(rarefied) 
} 
 
 
set.seed(123) 
mb_rare <- even_depth(163, mb_rare) 
mb_rhiz <- even_depth(6200, mb_rhiz) 
mb_all <- even_depth(6500, mb_all) 
 
#read distribution 
readsumsdf_all = data.frame(nreads = sort(sample_sums(mb_all),TRUE), sorted = 
1:nsamples(mb_all), type = "Samples") 
range(readsumsdf_all$nreads) 
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readsumsdf_rhiz = data.frame(nreads = sort(sample_sums(mb_rhiz),TRUE), sorted = 
1:nsamples(mb_all), type = "Samples") 
range(readsumsdf_rhiz$nreads) 
readsumsdf_rare = data.frame(nreads = sort(sample_sums(mb_rare),TRUE), sorted = 
1:nsamples(mb_all), type = "Samples") 
range(readsumsdf_rare$nreads) 
 
#plot read_counts 
sdt = data.table(as(sample_data(mb_all), "data.frame"), TotalReads = 
sample_sums(mb_all), keep.rownames = TRUE) 
setnames(sdt, "rn", "SampleID") 
ggplot(sdt, aes(x=SampleID,y=TotalReads,fill=Comb)) + geom_bar(stat="identity", 
position=position_dodge()) +facet_wrap(facets = ~Soil) 
ggplot(sdt, aes(x=Soil,y=TotalReads,fill=Comb)) + geom_bar(stat="identity") 
+facet_wrap(facets = ~Soil) 
ggplot(sdt, aes(x=SampleID,y=TotalReads)) + geom_bar(stat="identity") 
 
#save file 
read_dist <- subset(sdt, select=c("SampleID", "Soil", "Species","Comb", "TotalReads")) 
write.table(read_dist,file="../Desktop/read_dist.txt") 
 
#otu abundances and frequencies 
abund_val <- function(normalized){ 
  otu.abun = apply(otu_table(normalized),1,mean) 
  # Calculate the frequency of each OTU across all samples 
  otu.freq = rowSums(otu_table(normalized) != 0)/144 
  # Reassign names of phyla so we only color by the top 5 phyla and mark all others as 
"other" 
  phyla = as.vector(data.frame(tax_table(normalized))$Phylum) 
  levels(phyla) = c(levels(phyla),"other") 
  keephyla = c("p__Bacteroidetes","p__Proteobacteria","p__Actinobacteria", 
"p__Chloroflexi", "p__TM7") 
  phyla[!(phyla %in% keephyla)] = "Other" 
  phyla = as.vector(phyla) 
  phyla=as.factor(phyla) 
  otuabun = cbind.data.frame(abundance=log(otu.abun),frequency=otu.freq,phyla) 
  return(otuabun) 
} 
 
 
#get values to plot chart 
abun_all <-  abund_val(norm_all) 
abun_rhiz <- abund_val(norm_rhiz) 
abun_rare <- abund_val(norm_rare) 
 
# Use color brewer to pick a color scheme for the phyla 
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brew = brewer.pal(6, "Set1") 
# Create a scatterplot of OTUs showing their average relative abundance and frequency  
ggplot(abun_all, aes(x=abundance,y=frequency,color=phyla)) + geom_point(size=3) + 
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - All 
mb") + scale_colour_brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Complete microbiome")+ xlim(-20, 5) 
ggplot(abun_rare, aes(x=abundance,y=frequency,color=phyla)) + geom_point(size=3) + 
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - Rare 
mb") + scale_colour_brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Rare microbiome")+ xlim(-20, 5) 
ggplot(abun_rhiz, aes(x=abundance,y=frequency,color=phyla)) + geom_point(size=3) + 
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - Rhiz 
mb") + scale_colour_brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Rhizobiales microbiome")+ xlim(-20, 5) 
#bar plots needed for rare and rhizobiales taxa  
 
#distribution of phylums 
abudance_cal <- function(normalized_otu, Taxa_sel){ 
  bar_table <- plot_bar(normalized_otu, fill="Phylum") 
  bar_table <- bar_table$data[bar_table$data$Abundance>0,] 
  bar_taxa <- bar_table[bar_table$Phylum==Taxa_sel,] 
  bar_taxa <- bar_taxa[c(2,3,17)] 
  sum_prot <- ddply(bar_taxa, .(Sample), summarize, Sum=sum(Abundance)) 
  return(sum_prot)   
} 
 
prot_all <- abudance_cal(norm_all, "p__Proteobacteria") 
bact_all <- abudance_cal(norm_all, "p__Bacteroidetes") 
act_all <- abudance_cal(norm_all, "p__Actinobacteria") 
 
prot_rare <- abudance_cal(norm_rare, "p__Proteobacteria") 
bact_rare <- abudance_cal(norm_rare, "p__Bacteroidetes") 
act_rare <- abudance_cal(norm_rare, "p__Actinobacteria") 
 
 
#Richness 
adiv_anova <- function(ss_no, otu_table, outf){ 
  mlist <- factor(c("Observed", "Shannon", "Chao1")) 
  set.seed(3336) 
  rarefied <- rarefy_even_depth(otu_table, sample.size = ss_no) 
  richness <- estimate_richness(rarefied, measures=mlist) 
  richness <- richness[-3] 
  sdata <- sample_data(rarefied) 
  for ( i in 1:3){ 
    aov_facs <- aov(richness[[i]]~ sdata$Soil*sdata$Species) 
    capture.output(summary(aov_facs), file=outf, append=T) 
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  } 
} 
 
adiv_anova(160, mb_all, "ALL_160.txt") 
adiv_anova(500, mb_all, "ALL_500.txt") 
adiv_anova(1000, mb_all, "ALL_1000.txt") 
 
adiv_anova(160, mb_rhiz, "Rhiz_160.txt") 
adiv_anova(500, mb_rhiz, "Rhiz_500.txt") 
adiv_anova(1000, mb_rhiz, "Rhiz_1000.txt") 
 
adiv_anova(160, mb_rare, "Rare_160.txt") 
adiv_anova(500, mb_rare, "Rare_500.txt") 
adiv_anova(1000, mb_rare, "Rare_1000.txt") 
 
 
#One more for nod_size 
adiv_anova_ns <- function(ss_no, otu_table, outf){ 
  mlist <- factor(c("Observed", "Shannon", "Chao1")) 
  set.seed(3336) 
  rarefied <- rarefy_even_depth(otu_table, sample.size = ss_no) 
  richness <- estimate_richness(rarefied, measures=mlist) 
  richness <- richness[-3] 
  sdata <- sample_data(rarefied) 
  for ( i in 1:3){ 
    aov_facs <- aov(richness[[i]]~ sdata$nod_size) 
    capture.output(summary(aov_facs), file=outf, append=T) 
  } 
} 
 
adiv_anova_ns(160, mb_all, "ALL_160_ns.txt") 
adiv_anova_ns(500, mb_all, "ALL_500_ns.txt") 
 
adiv_anova_ns(160, mb_rhiz, "Rhiz_160_ns.txt") 
adiv_anova_ns(500, mb_rhiz, "Rhiz_500_ns.txt") 
 
adiv_anova_ns(160, mb_rare, "Rare_160_ns.txt") 
adiv_anova_ns(500, mb_rare, "Rare_500_ns.txt") 
 
 
#Ordinations: PCoA principal  
mb.pcoa.rare <- ordinate(norm_rare, d_rare, method="PCoA") 
pcoa.rare<-plot_ordination(norm_rare, mb.pcoa.rare, color="Soil", 
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for rare OTUs") 
pcoa.rare 
plot_scree(mb.pcoa.rare, "Scree plot for PCoA with bray-curtis distance") 
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mb.pcoa.rhiz <- ordinate(norm_rhiz, d_rhiz, method="PCoA") 
pcoa.rhiz<-plot_ordination(norm_rhiz, mb.pcoa.rhiz, color="Soil", 
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for Rhizobales OTUs") 
pcoa.rhiz 
plot_scree(mb.pcoa.rhiz, "Scree plot for PCoA with bray-curtis distance") 
 
mb.pcoa.all <- ordinate(norm_all, d_all, method="PCoA") 
pcoa.all<-plot_ordination(norm_all, mb.pcoa.all, color="Soil", 
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for all OTUs") 
pcoa.all 
plot_scree(mb.pcoa.all, "Scree plot for PCoA with bray-curtis distance") 
 
 
#Ordination: CCA constrained by species soil interaction 
#seems like most are along a single axis now.. not sure how to communicate this 
result? 
mball.cca <- ordinate(mb_all, method= "CCA", formula=norm_all~Soil) 
all_cca <- plot_ordination(norm_all, mball.cca, color="Soil", 
shape="Species")+geom_point(size=5)+labs(title="CCA plot for All OTUs, constrained 
by Species interaction")  
all_cca 
 
arrowmat = vegan::scores(mball.cca, display = "bp") 
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat) 
# Define the arrow aesthetic mapping 
arrow_map = aes(xend = CCA1, yend = CCA2, x = 0, y = 0, shape = NULL, color = 
NULL,  
                label = labels) 
label_map = aes(x = 1.2 * CCA1, y = 1.2 * CCA2, shape = NULL, color = NULL,  
                label = labels) 
# Make a new graphic 
arrowhead = arrow(length = unit(0.05, "npc")) 
p1 = all_cca+ geom_segment(arrow_map, size = 0.2, data = arrowdf, color = "black",  
                           arrow = arrowhead) + geom_text(label_map, size = 2, data = arrowdf) 
p1 
 
###########CCA with rare otu table 
mbrare.cca <- ordinate(mb_rare, method= "CCA", formula=norm_rare~Species) 
rare_cca <- plot_ordination(norm_rare, mbrare.cca, color="Soil", 
shape="Species")+geom_point(size=5)+labs(title="CCA plot for Rare OTUs, 
constrained by Species interaction")  
rare_cca 
 
arrowmat = vegan::scores(mbrare.cca, display = "bp") 
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat) 
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# Define the arrow aesthetic mapping 
arrow_map = aes(xend = CCA1, yend = CCA2, x = 0, y = 0, shape = NULL, color = 
NULL,  
                label = labels) 
label_map = aes(x = 1.2 * CCA1, y = 1.2 * CCA2, shape = NULL, color = NULL,  
                label = labels) 
# Make a new graphic 
arrowhead = arrow(length = unit(0.05, "npc")) 
p1 = rare_cca+ geom_segment(arrow_map, size = 0.2, data = arrowdf, color = "black",  
                            arrow = arrowhead) + geom_text(label_map, size = 2, data = arrowdf) 
p1 
 
#############CCA with rhizobiaes otu table 
mbrhiz.cca <- ordinate(mb_rhiz, method= "CCA", formula=norm_rhiz~Soil) 
rhiz_cca <- plot_ordination(norm_rhiz, mbrhiz.cca, color="Soil", 
shape="Species")+geom_point(size=5)+labs(title="CCA plot for Rhizobiales OTUs, 
constrained by Soil interaction")  
rhiz_cca 
 
arrowmat = vegan::scores(mbrhiz.cca, display = "bp") 
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat) 
# Define the arrow aesthetic mapping 
arrow_map = aes(xend = CCA1, yend = CCA2, x = 0, y = 0, shape = NULL, color = 
NULL,  
                label = labels) 
label_map = aes(x = 1.2 * CCA1, y = 1.2 * CCA2, shape = NULL, color = NULL,  
                label = labels) 
# Make a new graphic 
arrowhead = arrow(length = unit(0.05, "npc")) 
p1 = rhiz_cca+ geom_segment(arrow_map, size = 0.2, data = arrowdf, color = "black",  
                            arrow = arrowhead) + geom_text(label_map, size = 2, data = arrowdf) 
p1 
 
#NMDS visualize the distance between the points themselves. 
nmds_ordinations <- function(mb_otu, norm_otu, d_otu, title){ 
mb.nmds<- ordinate(norm_otu, d_otu, method="NMDS", "bray") 
  plot_ordination(norm_otu, mb.nmds, type = "taxa", color = "Phylum", title = "taxa") 
} 
 
nmds_ordinations(mb_all,norm_all, d_all, "ALL") 
nmds_ordinations(mb_rhiz,norm_rhiz, d_rhiz, "Rhizobiales") 
nmds_ordinations(mb_rare,norm_rare, d_rare, "Rare") 
 
#adonis 
#beta div -- adonis rare using distances identified above 
#rare 
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set.seed(123) 
ads1<-adonis(d_rare ~ Native, df_rare, permutations = 999) # not imp 
ads2<-adonis(d_rare ~ Species , df_rare, permutations = 999) # imp 8 
ads3<-adonis(d_rare ~ Soil , df_rare, permutations = 999) # 
ads4<-adonis(d_rare ~ nod_size , df_rare, permutations = 999) # 
ads5<-adonis(d_rare ~ Soil+Species , df_rare, permutations = 999) 
ads6<-adonis(d_rare ~ Soil:Species , df_rare, permutations = 999) 
ads7<-adonis(d_rare ~ Soil*Species , df_rare, permutations = 999) 
ads8<-adonis(d_rare ~ X18s_PD , df_rare, permutations = 999) # 
ads9<-adonis(d_rare ~ trna_PD , df_rare, permutations = 999) # 
ads10<-adonis(d_rare ~ elison_PD , df_rare, permutations = 999) # 
ads11<-adonis(d_rare ~ Soil * Species * nod_size , df_rare, permutations = 999) # 
 
#rhiz 
 set.seed(123) 
 ads1<-adonis(d_rhiz ~ Native, df_rhiz, permutations = 999) # not imp 
 ads2<-adonis(d_rhiz ~ Species , df_rhiz, permutations = 999) # imp 8 
ads3<-adonis(d_rhiz ~ Soil , df_rhiz, permutations = 999) # 
 ads4<-adonis(d_rhiz ~ nod_size , df_rhiz, permutations = 999) # 
 ads5<-adonis(d_rhiz ~ Soil+Species , df_rhiz, permutations = 999) 
 ads6<-adonis(d_rhiz ~ Soil:Species , df_rhiz, permutationads1s = 999) 
ads7<-adonis(d_rhiz ~ Soil*Species , df_rhiz, permutations = 999) 
 ads8<-adonis(d_rhiz ~ Native*nod_size , df_rhiz, permutations = 999) 
 ads9<-adonis(d_rhiz ~ nod_size*Soil*Species , df_rhiz, permutations = 999) 
  ads10<-adonis(d_rhiz ~ X18s_PD , df_rhiz, permutations = 999) # ads11<-
adonis(d_rhiz ~ trna_PD , df_rhiz, permutations = 999) # 
 ads12<-adonis(d_rhiz ~ elison_PD , df_rhiz, permutations = 999) # 
 
ads13<-adonis(d_rhiz ~ Soil+Species+Soil:Species+nod_size , df_rhiz, permutations = 
999) # 
 
 
#all 
set.seed(123) 
ads1<-adonis(d_all ~ Native, df_all, permutations = 999) # not imp 
ads2<-adonis(d_all ~ Species , df_all, permutations = 999) # imp 8 
ads3<-adonis(d_all ~ Soil , df_all, permutations = 999) # 
ads4<-adonis(d_all ~ nod_size , df_all, permutations = 999) # 
ads5<-adonis(d_all ~ Soil*Species , df_all, permutations = 999) 
 
ads6<-adonis(d_all ~ Soil:Species , df_all, permutations = 999) 
ads7<-adonis(d_all ~ Soil*Species , df_all, permutations = 999) 
ads8<-adonis(d_all ~ Soil*Species*nod_size , df_all, permutations = 999) 
ads10<-adonis(d_all ~ X18s_PD , df_all, permutations = 999) # 
ads11<-adonis(d_all ~ trna_PD , df_all, permutations = 999) # 
ads12<-adonis(d_all ~ elison_PD , df_all, permutations = 999) #  
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APPENDIX 4: Core microbiome calculations 

 
library(UpSetR) 
 
bar= subset_samples(mb_all, Comb=="Bar") 
bif= subset_samples(mb_all, Comb=="Bif") 
mac= subset_samples(mb_all, Comb=="Mac") 
mic= subset_samples(mb_all, Comb=="Mic") 
wor= subset_samples(mb_all, Comb=="Wor") 
fuc= subset_samples(mb_all, Comb=="Fuc") 
 
abun_freq <- function(otu_table){ 
  otu_table = filter_taxa(otu_table, function(x) mean(x) > 0, TRUE) 
  norm_cat <-  transform_sample_counts(otu_table, function(x) x/sum(x)) 
  otu.abun = apply(otu_table(norm_cat),1,mean) 
  otu.freq = rowSums(otu_table(otu_table) != 0)/nsamples(otu_table) 
  otuabun = cbind.data.frame(abundance=otu.abun,frequency=otu.freq) 
  return(otuabun) 
} 
 
bar_a<- abun_freq(bar) 
bif_a<- abun_freq(bif) 
fuc_a<- abun_freq(fuc) 
wor_a<- abun_freq(wor) 
mac_a<- abun_freq(mac) 
mic_a<- abun_freq(mic) 
 
 
trial <- merge(otu_table(mb_all),mac_a,  by="row.names", all=T) 
rownames(trial) <- trial$Row.names 
trial <- trial[,c(146:147)] 
 
trial <- merge(trial,mic_a,  by="row.names", all=T) 
rownames(trial) <- trial$Row.names 
trial <- trial[,-c(1)] 
 
trial <- merge(trial, wor_a,by="row.names", all = T) 
rownames(trial) <- trial$Row.names 
trial <- trial[,-c(1)] 
 
trial <- merge(trial, fuc_a,by="row.names", all = T) 
rownames(trial) <- trial$Row.names 
trial <- trial[,-c(1)] 
 
trial <- merge(trial, bif_a,by="row.names", all = T) 
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rownames(trial) <- trial$Row.names 
trial <- trial[,-c(1)] 
 
trial <- merge(trial, bar_a,by="row.names", all = T) 
rownames(trial) <- trial$Row.names 
trial <- trial[,-c(1)] 
 
colnames(trial) <- c("mac_a_abun", "mac_a_freq", "mic_a_abun", "mic_a_freq", 
"wor_a_abun", "wor_a_freq","fuc_a_abun", "fuc_a_freq","bif_a_abun", 
"bif_a_freq","bar_a_abun", "bar_a_freq") 
 
trial[is.na(trial)] <- 0 
mat_freq <- trial[,c(2,4,6,8,10,12)] 
 
mat_comp <- trial 
 
 
#presence/absence core otus 
half_freq <- mat_freq 
half_freq[half_freq<0.5] <- 0 
half_freq[half_freq>=0.5] <- 1 
 
 
third_freq <- mat_freq 
third_freq[third_freq<0.75] <- 0 
third_freq[third_freq>=0.75] <- 1 
 
full_freq <- mat_freq 
full_freq[full_freq<1] <- 0 
full_freq[full_freq>=1] <- 1 
 
write.table(half_freq, file="half_freq.txt") 
write.table(third_freq, file="third_freq.txt") 
write.table(full_freq, file="full_freq.txt") 
 
#Upset plots 
upset(half_freq,  sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq" 
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq") 
upset(third_freq,  sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq" 
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq") 
upset(full_freq,  sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq" 
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq") 
 
 
#complete the taxonomy table 
get_ids <- function(frequency_tab, out_file){ 
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  row_sub = apply(frequency_tab, 1, function(row) all(row !=0 )) 
  taxa_tab <- merge(frequency_tab[row_sub,], tax_table(mb_all), by="row.names") 
  return(table(taxa_tab$Phylum)) 
#  write.table(taxa_tab,file=out_file) 
} 
 
get_ids(half_freq, "half_taxa.txt") 
get_ids(third_freq, "third_taxa.txt") 
get_ids(full_freq, "full_taxa.txt") 
 
 
###abundance 
head(mat_comp) 
#add in abundace threshold. 
  
abun.00001 <- mat_comp[mat_comp[,"mac_a_abun"]>=0.00001 & 
mat_comp[,"mic_a_abun"]>=0.00001& mat_comp[,"fuc_a_abun"]>=0.00001& 
mat_comp[,"wor_a_abun"]>=0.00001& mat_comp[,"bif_a_abun"]>=0.00001& 
mat_comp[,"bar_a_abun"]>=0.00001,] 
#half <- abun.00001[abun.00001[,"mac_a_freq"]>=0.5 & 
abun.00001[,"mic_a_freq"]>=0.5& abun.00001[,"fuc_a_freq"]>=0.5& 
abun.00001[,"wor_a_freq"]>=0.5& abun.00001[,"bif_a_freq"]>=0.5& 
abun.00001[,"bar_a_freq"]>=0.5,] 
abund_freq <- abun.00001[,c(2,4,6,8,10,12)] 
 
half_abun <- abund_freq 
half_abun[half_abun<0.5] <- 0 
half_abun[half_abun>=0.5] <- 1 
upset(half_abun,  sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq" 
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq") 
 
third_abun <- abund_freq 
third_abun[third_abun<0.75] <- 0 
third_abun[third_abun>=0.75] <- 1 
upset(third_abun,  sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq" 
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq") 
 
full_abun <- abund_freq 
full_abun[full_abun<1] <- 0 
full_abun[full_abun>=1] <- 1 
upset(full_abun,  sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq" 
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq") 
 
write.table(half_abun, file="half_abun.txt") 
write.table(third_abun, file="third_abun.txt") 
write.table(full_abun, file="full_abun.txt") 
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get_ids(half_abun, "half_abun_taxa.txt") 
get_ids(third_abun, "third_abun_taxa.txt") 
get_ids(full_abun, "full_abun_taxa.txt") 
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APPENDIX 5: Neutral model analysis 

 
#Adam Burns - 2/10/2015 
#aburns2@uoregon.edu 
#Fits the neutral model from Sloan et al. 2006 to an OTU table and returns several 
fitting statistics. Alternatively, will return predicted occurrence frequencies for each OTU 
based on their abundance in the metacommunity when stats=FALSE.  
 
sncm.fit <- function(spp, pool=NULL, stats=TRUE, taxon=NULL){ 
  require(minpack.lm) 
  require(Hmisc) 
  require(stats4) 
   
  options(warn=-1) 
   
  #Calculate the number of individuals per community 
  N <- mean(apply(spp, 1, sum)) 
   
  #Calculate the average relative abundance of each taxa across communities 
  if(is.null(pool)){ 
    p.m <- apply(spp, 2, mean) 
    p.m <- p.m[p.m != 0] 
    p <- p.m/N 
  } else { 
    p.m <- apply(pool, 2, mean) 
    p.m <- p.m[p.m != 0] 
    p <- p.m/N 
  } 
   
  #Calculate the occurrence frequency of each taxa across communities 
  spp.bi <- 1*(spp>0) 
  freq <- apply(spp.bi, 2, mean) 
  freq <- freq[freq != 0] 
   
  #Combine 
  C <- merge(p, freq, by=0) 
  C <- C[order(C[,2]),] 
  C <- as.data.frame(C) 
  C.0 <- C[!(apply(C, 1, function(y) any(y == 0))),] #Removes rows with any zero (absent 
in either source pool or local communities) 
  p <- C.0[,2] 
  freq <- C.0[,3] 
  names(p) <- C.0[,1] 
  names(freq) <- C.0[,1] 
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  #Calculate the limit of detection 
  d = 1/N 
   
  ##Fit model parameter m (or Nm) using Non-linear least squares (NLS) 
  m.fit <- nlsLM(freq ~ pbeta(d, N*m*p, N*m*(1-p), lower.tail=FALSE), start=list(m=0.1)) 
  m.ci <- confint(m.fit, 'm', level=0.95) 
   
  ##Fit neutral model parameter m (or Nm) using Maximum likelihood estimation (MLE) 
  sncm.LL <- function(m, sigma){ 
    R = freq - pbeta(d, N*m*p, N*m*(1-p), lower.tail=FALSE) 
    R = dnorm(R, 0, sigma) 
    -sum(log(R)) 
  } 
  m.mle <- mle(sncm.LL, start=list(m=0.1, sigma=0.1), nobs=length(p)) 
   
  ##Calculate Akaike's Information Criterion (AIC) 
  aic.fit <- AIC(m.mle, k=2) 
  bic.fit <- BIC(m.mle) 
   
  ##Calculate goodness-of-fit (R-squared and Root Mean Squared Error) 
  freq.pred <- pbeta(d, N*coef(m.fit)*p, N*coef(m.fit)*(1-p), lower.tail=FALSE) 
  Rsqr <- 1 - (sum((freq - freq.pred)^2))/(sum((freq - mean(freq))^2)) 
  RMSE <- sqrt(sum((freq-freq.pred)^2)/(length(freq)-1)) 
   
  pred.ci <- binconf(freq.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson", 
return.df=TRUE) 
   
  ##Calculate AIC for binomial model 
  bino.LL <- function(mu, sigma){ 
    R = freq - pbinom(d, N, p, lower.tail=FALSE) 
    R = dnorm(R, mu, sigma) 
    -sum(log(R)) 
  } 
  bino.mle <- mle(bino.LL, start=list(mu=0, sigma=0.1), nobs=length(p)) 
   
  aic.bino <- AIC(bino.mle, k=2) 
  bic.bino <- BIC(bino.mle) 
   
  ##Goodness of fit for binomial model 
  bino.pred <- pbinom(d, N, p, lower.tail=FALSE) 
  Rsqr.bino <- 1 - (sum((freq - bino.pred)^2))/(sum((freq - mean(freq))^2)) 
  RMSE.bino <- sqrt(sum((freq - bino.pred)^2)/(length(freq) - 1)) 
   
  bino.pred.ci <- binconf(bino.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson", 
return.df=TRUE) 
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  ##Calculate AIC for Poisson model 
  pois.LL <- function(mu, sigma){ 
    R = freq - ppois(d, N*p, lower.tail=FALSE) 
    R = dnorm(R, mu, sigma) 
    -sum(log(R)) 
  } 
  pois.mle <- mle(pois.LL, start=list(mu=0, sigma=0.1), nobs=length(p)) 
   
  aic.pois <- AIC(pois.mle, k=2) 
  bic.pois <- BIC(pois.mle) 
   
  ##Goodness of fit for Poisson model 
  pois.pred <- ppois(d, N*p, lower.tail=FALSE) 
  Rsqr.pois <- 1 - (sum((freq - pois.pred)^2))/(sum((freq - mean(freq))^2)) 
  RMSE.pois <- sqrt(sum((freq - pois.pred)^2)/(length(freq) - 1)) 
   
  pois.pred.ci <- binconf(pois.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson", 
return.df=TRUE) 
   
  ##Results 
  if(stats==TRUE){ 
    fitstats <- data.frame(m=numeric(), m.ci=numeric(), m.mle=numeric(), 
maxLL=numeric(), binoLL=numeric(), poisLL=numeric(), Rsqr=numeric(), 
Rsqr.bino=numeric(), Rsqr.pois=numeric(), RMSE=numeric(), RMSE.bino=numeric(), 
RMSE.pois=numeric(), AIC=numeric(), BIC=numeric(), AIC.bino=numeric(), 
BIC.bino=numeric(), AIC.pois=numeric(), BIC.pois=numeric(), N=numeric(), 
Samples=numeric(), Richness=numeric(), Detect=numeric()) 
    fitstats[1,] <- c(coef(m.fit), coef(m.fit)-m.ci[1], m.mle@coef['m'], m.mle@details$value, 
bino.mle@details$value, pois.mle@details$value, Rsqr, Rsqr.bino, Rsqr.pois, RMSE, 
RMSE.bino, RMSE.pois, aic.fit, bic.fit, aic.bino, bic.bino, aic.pois, bic.pois, N, nrow(spp), 
length(p), d) 
    return(fitstats) 
  } else { 
    A <- cbind(p, freq, freq.pred, pred.ci[,2:3], bino.pred, bino.pred.ci[,2:3]) 
    A <- as.data.frame(A) 
    colnames(A) <- c('p', 'freq', 'freq.pred', 'pred.lwr', 'pred.upr', 'bino.pred', 'bino.lwr', 
'bino.upr') 
    if(is.null(taxon)){ 
      B <- A[order(A[,1]),] 
    } else { 
      B <- merge(A, taxon, by=0, all=TRUE) 
      row.names(B) <- B[,1] 
      B <- B[,-1] 
      B <- B[order(B[,1]),] 
    } 
    return(B) 
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  } 
} 
 
#required libraries 
library("RColorBrewer") 
library("ggplot2") 
library("plyr") 
library("vegan") 
library("reshape2") 
library("ape") 
library("phyloseq") 
library("data.table") 
library("biome") 
library("metagenomeSeq") 
 
#otu files 
otu_all = "../Desktop/Thesis_files/R_files/otus.biom" 
m=read.csv("../Desktop//Thesis_files/R_files/nodule_map_new.txt", row.names=1) 
file<-import_biom(otu_all) 
map = sample_data(m) 
comp <-merge_phyloseq(file,map) 
head(sample_data(comp)) 
colnames(tax_table(comp)) <- c(k = "Kingdom", p = "Phylum", c = "Class", o = "Order", f 
= "Family", g = "Genus", s = "Species") 
taxa_sums(comp) 
#complete otu mb 
comp 
 
#removing low quality taxa matches and normalize 
mb_all= subset_taxa(comp, Kingdom!="None" & Kingdom!="NOHIT" ) 
norm_all = transform_sample_counts(mb_all, function(x) x/sum(x)) 
taxa_sums(mb_all) 
mb_all 
 
#rarefy tables to same depth 
even_depth <- function(ss_no, otu_table){ 
  #set.seed(3336) 
  rarefied <- rarefy_even_depth(otu_table, sample.size = ss_no) 
  return(rarefied) 
} 
 
 
home= subset_samples(mb_all, Native=="yes") 
away= subset_samples(mb_all, Native=="no") 
 
set.seed(24) 
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home_mb <- even_depth(6500, home) 
away_mb <- even_depth(6500, away) 
 
tab_home <- t(otu_table(home_mb)) 
tab_away <- t(otu_table(away_mb)) 
 
tax <- read.table("../Desktop//Thesis_files/tax_tab.txt", head=T, sep="\t") 
tax <- tax[c(2,1)] 
 
mod_stats_home <-sncm.fit(spp=tab_home, stats=TRUE) 
mb_table_home <- sncm.fit(spp=tab_home,  stats=FALSE) 
otu_home <- cbind(row.names(mb_table_home), mb_table_home$freq) 
 
mod_stats_away <-sncm.fit(spp=tab_away, stats=TRUE) 
mb_table_away <- sncm.fit(spp=tab_away, stats=FALSE) 
#otu_away <- cbind(row.names(mb_table_away),mb_table_away$freq)  
 
 
 
ggplot(mb_table_home, aes(log10(p), freq)) + 
  geom_point() + 
  geom_ribbon(data=mb_table_home,aes(ymin=pred.lwr,ymax=pred.upr),alpha=0.3)+ 
  geom_line(data=mb_table_home,aes(y = freq.pred))+ 
  xlab("Average relative abundance (log10 scale)") + ylab("Frequency in all home 
samples") +  
  theme(axis.title = element_text(size = 26),axis.text = element_text(colour = "black")) 
 
ggplot(mb_table_away, aes(log10(p), freq)) + 
  geom_point() + 
  geom_ribbon(data=mb_table_away,aes(ymin=pred.lwr,ymax=pred.upr),alpha=0.3)+ 
  geom_line(data=mb_table_away,aes(y = freq.pred))+ 
  xlab("Average relative abundance (log10 scale)") + ylab("Frequency in all away 
samples") +  
  theme(axis.title = element_text(size = 26),axis.text = element_text(colour = "black")) 
 
home_lwr <- ifelse(mb_table_home$freq<mb_table_home$pred.lwr, 
row.names(mb_table_home),0 ) 
home_upr <- ifelse(mb_table_home$freq>mb_table_home$pred.upr, 
row.names(mb_table_home),0 ) 
table(home_lwr) 
table(home_upr) 
 
 
as <- away_upr %in% row.names(mb_table_away) 
away_u <- mb_table_away[as,] 
away_u$OTU.ID <- row.names(away_u) 
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as <- away_lwr %in% row.names(mb_table_away) 
away_l <- mb_table_away[as,] 
away_l$OTU.ID <- row.names(away_l) 
 
as <- home_lwr %in% row.names(mb_table_home) 
home_l <- mb_table_home[as,] 
home_l$OTU.ID <- row.names(home_l) 
 
as <- home_upr %in% row.names(mb_table_home) 
home_u <- mb_table_home[as,] 
home_u$OTU.ID <- row.names(home_u) 
 
au <- merge(away_u, tax, by="OTU.ID") 
al <- merge(away_l, tax, by="OTU.ID") 
hu <- merge(home_u, tax, by="OTU.ID") 
hl <- merge(home_l, tax, by="OTU.ID") 
 
away_lwr <- ifelse(mb_table_away$freq<mb_table_away$pred.lwr, 
row.names(mb_table_home),0 ) 
away_upr <- ifelse(mb_table_away$freq>mb_table_away$pred.upr, 
row.names(mb_table_home),0 ) 
table(away_lwr) 
table(away_upr) 
 
## fishers exact test for OTU presence between home and away samples 
otu_fish <- matrix(c(5,14,15,88,251,459),2,3) 
fisher.test(otu_fish) 
 
################# 
otu_test <- merge(otu_home, otu_away, by=1, all=T) 
 
 
write.table(au, "away_upr.txt") 
write.table(al, "away_lwr.txt") 
write.table(hu, "home_upr.txt") 
write.table(hl, "home_lwr.txt") 
 
h_ot <- read.table("../Desktop/Thesis_files/home_otus.txt", head=T) 
a_ot <- read.table("../Desktop/Thesis_files/away_otus.txt", head=T) 
h <- merge(h_ot, tax, by="OTU.ID") 
a <- merge(a_ot, tax, by="OTU.ID") 
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