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ABSTRACT

EXPLORING THE NODULE MICROBIOME COMMUNITY STRUCTURE OF
TRIFOLIUM SPECIES

By
Prateek Shetty
Plant associated microbes have been shown to increase plant growth and
production drastically, yet we are just beginning to understand the parameters that
impact these interactions. Rhizobia are primary bacterial symbionts of legumes
and infect root hairs to form nodules, within which, the symbiotic rhizobia fix
atmospheric nitrogen into biologically available forms in exchange for carbon from
the host. The aim of this project is to understand the community structure and
diversity of the nodule microbiome, with emphasis on the less abundant members,
among coexisting clover species. North American clover Trifolium-Rhizobium
communities are a good system to study host interactions with microbiomes given
the high local species diversity. We analyzed the nodule microbiome of six
congeneric clover plants when they were grown in soils conditioned by members
of their own species and in soils conditioned by congener species by sequencing
the 16s rRNA gene. The visualized microbiomes are similar, with 96% of all reads
belonging to the order Rhizobiales. The rest of the OTUs belong to rarer groups of
microbes. Further, the structure of the microbiome is impacted by both the host
plant species and the soil in which the host is grown in, with soil explaining a larger
degree of variation. There also is a strong interaction between soil and host in
structuring the microbiome. The results are similar when the microbiome is

analyzed with and without its most dominant order (Rhizobiales).
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Introduction

Understanding factors that contribute to the coexistence

The diversity and species composition in plant communities is thought to be regulated
by several different factors such as competition between plant hosts (Tilman 1990),
resource partitioning (Tilman 1982) and interaction with other organisms in the
ecosystem (Bever 1997). Competition between plant species can range from beneficial
to detrimental to each other. The foremost study that explored the effect of negative
interaction between two ecologically similar species showed that one species invariably
was led to extinction (Gause 1934). This theory was later modified by Hardin (Hardin
1960) and named as the competitive exclusion principle. Explicitly, the competitive
exclusion principle states that: Two species competing for the same resource cannot
continue to exist in the same population. Thus, coexistence will not be observed if all
members within the community are competing for the same limiting resources.
However, Hutchinson's study (Hutchinson 1959) on phytoplankton communities showed
confounding results. Phytoplankton communities show a larger diversity than what is
predicted by competitive exclusion. According to the exclusion principle, since all
members of phytoplankton compete for same set of resources (nutrients, light, space);
the species that acquires them most efficiently will out-compete others leading the rest
to extinction. Further, under model developed by Tilman (Tilman 1982), in an
environment with a limited number of resources the number of coexisting species
should not exceed the number of resources they compete for. However, most natural
phytoplankton communities are highly diverse and not representative of this pattern

(Hutchinson 1959).



While competition and resource partitioning have been well studied as primary forces
that structure natural communities, results from long term studies don’t always hold up.
An eleven-year study carried out to test the effect of competition on coexistence of
prairie plants showed only a few communities predictably coexist, suggesting that there
may be other factors that contribute to coexistence (Dybzinski 2007). In an effort to
explain the discrepancy, another view was put forward by Hubbel (Hubbel 1979).
According to Hubbel’s neutral theory of ecology, all species are functionally equivalent,
originate and fluctuate in abundance at random. All species originate from a meta-
community and migrate into smaller, local pools of dispersal limited communities. Within
the smaller pools of local communities, the most common species account for a large
fraction of the individuals sampled while the rest of the members are present in very low
abundance. If communities as structured largely through neutral processes then we
should obtain a sigmoidal curve, with common high abundance species to the right and
rare, low abundance members towards the left of the curve. However, the neutral theory
considers that all species within the community are functionally equivalent and have the
same probability of being replaced.

The neutral theory and competition exclusion theory view interaction between species to
either be nonexistent or constantly negative. However, in nature interactions between
species can be considered to lie on a continuum (Stachowicz 2001, Saikkonen et al.
1998). Thompson proposed the geographic mosaic of coevolution theory in an effort to
unify importance of geographic structure and the dynamic nature of species interactions
(Thompson 2005). It makes use of three distinct components:

a) Geographic selection mosaics; fithess of interacting species is impacted by locally



co-occurring species and a genotype-by-genotype-by environment interaction.
b) Co-evolutionary hotspots; interactions between locally occurring species are
reciprocally affected.
c) Trait remixing; due to gene flow between species and genetic drift continually shape
the genetic structure of the species in the local environment.
Another way to explore Geographic mosaic theory is using ecological niche theory
(Chase and Leibold 2003). Though the term “niche” was used earlier (Grinnell 1917), it
was Elton (Elton 1927) who formalized the term “ecological niche” as: The functional
role occupied by a species in a trophic level. The ecological niche theory relates a set of
environment variables to the fithess of an organism. If an organism has traits that are
suitable for the environment, then the organism continues to persist and traits are fixed
in the given environment.
Recapping, we can study factors that contribute to coexistence and community structure
under these three broad views:
1) Neutral theory of ecology

All species are functionally equivalent. The success of a species in a particular

environment has doesn’t depend on the species or its inherent traits and

interactions with other members of the community. Instead, the success of a

species in a local community can be attributed solely to migration, drift and

abundance in the meta-community.

2) Competition exclusion theory
All species are continually competing for resources. Members of the same

species are more likely to compete for similar resources. Thus the only species



that will persist within the community are those that can outcompete other

members for the limiting resource. Hence, community structure and member

abundance at equilibrium will be directly proportional to the number of limited

resources in the environment.

3) Geographic mosaic of coevolution

All species are randomly distributed into large meta-communities. Species

migrate into local, communities at random and depending on their abundance in

the meta-community. Species that persist within the local communities are those

that share traits with other co-occurring members and interact positively with the

local environment.
The big difference between these processes is that the competition exclusion view
assumes a constant type of interaction (negative, i.e. no mutualistic - parasitic
interaction continuums) between members while the geographic mosaic theory is a
more dynamic view, with interactions subject to change depending on the local
environment and species present within that environment.
Previous studies using long term survey data to explore how species abundance
changes with samples sites (Preston 1948, Bell 2001) comment on the consistency of
abundant species identified. Sites sharing environmental similarity that are also in close
proximity with each other tend to also share abundant species. An analysis by Preston
on several years of survey data also show that such simple survey count data show a
log normal distribution with an intermediate number of species present in moderate to
high abundance and a large fraction of species that are detected in low abundance

(Preston 1948). Microbial communities are several fold more complex than populations



of moths and birds that were typically used in survey data. Since microbial communities
are more diverse, we predict that our abundance curve will be more skewed towards
rare members and have fewer highly abundant members.

One reason why the competition model fails for other natural communities could be due
to the omission of soil microorganisms in these studies. Soil microbial community can
modulate interactions between different plant species and thereby on the plant
community diversity and persistence (Moora 1996). Further, different plant species
uniquely associate with microbial partners in the soil which perform a variety of different
functions from nitrogen fixation to protection from pathogens.

Apart from this, the soil microbiome can play a significant role in maintaining diverse
plant communities thorough processes other than competition and neutral dispersion;
i.e by negative frequency dependent selection. A well-studied example is by
accumulation of pathogens, also known as the Janzen-Connell hypothesis (Klironomos
et al. 2002, Bever 2003, Fitzsimons et al. 2010, Bever et al. 2012). According to the
Janzen-Connell hypothesis, individual plants accumulate species specific herbivores
and pathogens over the period of its lifetime, thus reducing the success of conspecifics
growing near the older plant. Thus, an understanding of the diversity of soil mutualists,
and the strength and direction of interaction between the soil microbial mutualists, is

essential to understand the contribution of different factors to the coexistence of plants.

Importance of microbial community on plant health

Microbial partners can improve plant health through their effects on nutrient availability

as well as modulating abiotic or biotic stress. Elemental nitrogen is among the most



abundant resources on our planet and is a limiting factor in the production of protein and
DNA. However, since accessible soil nitrogen reserves are poor, atmospheric nitrogen
needs to be reduced to ammonia before it can be biologically usable by plants (Hardy
1968). Biologically usable nitrogen can be applied as fertilizers or be fixed by natural
methods (symbiosis or lighting; Kim 1994). Biological nitrogen fixation within root
nodules is carried out by members belonging to the Rhizobiaceae group (Sgrensen and
Sessitsch, 2007). Further, addition of beneficial Plant Growth Promoting Rhizobacteria
(PGPRs) improve plant health and productivity by synergistic interactions with already
present species (Cummings 2009; Guifiazu et al. 2009, Friesen et al. 2011) or by
inhibiting other microbial members that are detrimental to the host (De Vleesschauwer
and Hofte 2009). Apart from this, soil microbes also play an integral role in alleviating
the different kinds of stress. For example, a study done on peppers showed selected
isolates to improve protection under a drought like environmental condition by increased
solubilization of phosphate and secreting a gel like material around the root zones to

protect the root (Rolli 2015).

Generalist vs specialist selection within plant microbiome

An interesting pattern that emerges from most of these host associated microbiome
studies is the presence of a small abundant community and a long tail of rare microbial
members. Abundant microbes are generally found across closely related host species
(Turner 2013, Dohrmann 2013). Further, abundant taxa contributions to microbial
community structure do not vary wildly while rare taxa contributions vary (Dohrmann

2013). Abundant phyla generally include members like Actinomycetes and



Proteobacteria that can produce a plethora of compounds including antibacterial,
nematicidal and antiviral properties (Muharram 2013, Mendes 2011). Rare microbes on
the other hand are involved in more specific functions such as supplying
phytohormones to plants (Karadeniz et al. 2006) or sulfate reduction (Pester 2010).
Since members belonging to these two groups (abundant vs rare or generalist vs
specialist) perform a wide array of different overrepresented and underrepresented

functions, the two groups may be under different selection factors.

BNF: Biological nitrogen fixation

Biological nitrogen fixation is the process by which atmospheric nitrogen gas is
incorporated into plant tissue (Hardy 1968). This can take place in two different ways:
nitrogen fixation within nodule and associative nitrogen fixation. In nitrogen deficient
environments, plants can form symbioses with certain members of rhizobia (associated
with Fabaceae, Sprent 2001) or Frankia (associated with Rosids, Diagne 2013). These
symbiotic partners use the nitrogenase enzyme to reduce atmospheric nitrogen to

ammonia which is useable by the host.

Associative nitrogen fixation

Associative nitrogen fixation is yet another way by which plants can obtain the nitrogen
required for their growth needs. In associative nitrogen fixation, diazotrophic bacteria
are able to fix nitrogen in endophytic compartments with the help of nitrogenase (Doty et
al. 2016). Azospirillum species is the best studied system for associative nitrogen

fixation (Kucey 1998, Steenhoudt 2000). They are aggressive colonisers of both the root



and endophytic compartments and invade the host through undifferentiated root tips or
cracks in the root tissue (Dommelen et al. 2007). The environment within root tissues is
microaerobic and thus allows for nitrogenase to function. While associative nitrogen

fixers are found within root tissues, there is no evidence yet for the occupancy of these

members within root nodules.

Current literature on nodule microbiome

Currently, there are no studies that have used high throughput sequencing to profile
member presence in nodules of nitrogen fixing plants. However, there has been a lot of
sequence and trait data looking at microbial presence, activity and abundance within
different regions of soil and root zones; specifically, the rhizoplane, rhizosphere and
endophytic communities (Weinert et al. 2011, Inceoglu et al. 2011). Diversity of
members within rhizosphere ranges from < 3000 OTUs (Weinert et al. 2011) to >
55,000 OTUs (Inceoglu et al. 2011). Further, most of these communities are so diverse
and species rich that it is hard to reproducibly generate species richness values by
subsampling reads from samples. The most abundant members are commonly from the
phyla: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes. An important pattern
seen is the change in species richness value between root zones. Richness is highest
in the bulk soil and then due to host selection reduces as distance to the root zone
increases. Thus, diversity is typically highest at the rhizoplane zone and reduces across

the rhizosphere and endosphere zones (Marilley 1998).

Soil legacy



Soil acts as a reservoir for local, diverse microbial populations, with upwards of 104
bacterial species found per gram of soil (Weinert et al. 2011). Despite the use of high
throughput sequence technologies, we still fall short of completely profiling the microbial
members in soil samples. Presence of microbial members in the soil depends
specifically on the pH (Fierer and Jackson 2006; Lauber et al. 2008; Rousk et al. 2010),
grain size and nutrient content (Faoro et al. 2010, Chaparro 2013). Large deviation in
taxa presence and abundance is seen when soil pH is varied. Further, there is a strong
positive correlation between the soil pH and diversity and composition of soil microbes
(Rousk et al.2010). A related factor with soil legacy that plays a role in modulating the
benefits from microbial partners is the exposure time with the microbial partners. Hosts
that grow in soils in which members of their own species were previously grown will be
able to select for the most beneficial partners and have a reproducible microbial
community structure. While those grown in soils with members of different species will

show a more diverse microbiome (Bulgarelli et al 2013).

Host species selection

While soil is the primary source, housing all microbial genetic diversity, host species act
as a sink, selecting for specific members from the meta community pool. Host species
release root exudates rich in sugar molecules and have shown to strongly influence the
microbial community structure and abundance (Broeckling et al. 2008). Further, host
species show specific enrichment of certain microbial taxa (Lundberg et al. 2012, Peiffer
et al. 2013) and when hosts are grown with non-native microbial partners, host growth is

affected with them having lower biomass as compared to hosts grown with native



microbial partners (Lou et al. 2014).

Techniques to study microbial populations

Culture dependent methods- Before the widespread use of NGS techniques
Traditionally, the occurrence of microorganisms in a given environment or in an
industrial process has been studied by culture-based methods. While these methods
were initially successful in exploring the characteristics and functions of members in the
sample of interest, they were always labour intensive. Further, these methods often fail
for microorganisms that require selectively enriched media (Lagier 2008). In addition,
conventional culture based methods are only able to detect only half the OTUs identified

by high throughput sequencing methods (Goodman et al. 2011, Rettedal et al. 2014).

Culture independent methods (Table 1)

Lipid analysis

Phospholipid fatty acid (PLFA) analysis is a biochemical technique that uses
phospholipid fatty acids within the plasma membrane of bacterial cells to build a profile
(Mitchell et al. 2016). The chemical composition differs depends on the type of bacterial
organism. Thus, PLFA can be used to evaluate microbial community structure and
activity. PLFAs can be extracted from the soil and their composition is analysed by gas
chromatography. Changes in PLFA profiles are indicative of changes in the overall
structure of microbial communities (Zelles 1999). PLFA analysis offers an advantage
over culture-based techniques as it avoids the selectivity bias that is inherent to in the

isolation and culture techniques (White et al. 1997).
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Gradient Gels

Gradient gel electrophoresis methods are a step up in throughput compared to the
previous techniques (Favier et al. 2002). The basic premise of these methods is
targeted amplification of marker genes and visualization on gels. The electrophoresis
will separate DNA molecules based on their shape, charge and molecular weight.
Increasing concentration of denaturing agents (urea or temperature) will force the
double stranded DNA molecule to melt. Depending on the nature of the sequence,
different DNA strands will have different melting temperatures and thus will only melt at
their corresponding denaturing gradient. The advantage of using gradient gels is that
you do not need to have a reference and offers an initial view at the diversity and
abundance of different groups within the sample. The technique was used to profile the
oral cavity microbiome in children in order to understand if under a diseased condition
(dental carries) certain microbial members are overrepresented (Ling 2010).
Hybridisation techniques - FISH, Microarray

Hybridisation techniques are a powerful tool to visualize structure and abundance of
members within a community. Presence of a certain microbial taxa can be identified
using corresponding oligonucleotide probes. Hybridisation methods allows for
identification of even the rarest member of the community (Amann et al. 2008) and does
not allow for any PCR based biases that previous methods inherently have. The
downside of using a hybridisation technique is novel taxa can’t be identified.

Targeted amplification and sequencing of a marker gene

Amplification of conserved marker genes has been the preferred methods of choice

when multiple samples need to be identified and characterized. With the advent of

11



cheaper and high throughput strategies, sequencing multiple samples with great
coverage has become progressively more affordable (Shendure et al. 2008). The high
coverage, large range of reference databases allows users to characterize entire
communities with taxonomy and in some cases function. Coupling these with the wide
range of “-omics” platforms that are now available, allows one to explore the functional
contribution of different taxa (Marcobal et al. 2013). Since its inception in 2007, the
human microbiome project has generated more than 35 billion reads from 690 samples
taken from 300 US based human subjects from various body sites (Turnbaugh et al.
2007, llseung et al. 2012) in order to explore how diet and nutritional status affect the
microbiome assembly, succession of members within the microbiome and function of

different microbial members.

Importance of studying native plants

Native species offer the best avenue to study established relationships between each
other and their symbiotic partners. Further, native plants are typically locally-adapted to
their home environment (Coleman-Derr et al. 2016) and are a thus a good resource to
study microbial associations, which depend on the nature of the local environment
(Heath & Tiffin 2007). For example, in environments where the host is not nutritionally
limited, there is no selection for it to continue maintaining a costly symbiosis. Thus, such
associations can be affected by fertilizer inputs or land management practices (Ding et
al. 2016). Fields with long term fertilizer inputs have microbial populations that show
reduced dependence on root exudates (Ai et al 2015). This may lead to fewer

associations between microbes and plant hosts. Finally, invasive plant hosts can break

12



down associations between native hosts by changing soil chemistry through allelopathy
(Cipollini et al. 2012), bringing in new partners, associating with other microbial partners

(Putten et al. 2007).

About Trifolium species

Clovers are perennial herbs that have palmate compound, trifoliate bright green leaves.
All species have a distinctive, round flower head composed of many, small, pea-like
flowers. This involucre is considered to be a distinguishing feature of members
belonging to this family. Flowers are typically small, reddish- purple in color with white
tips. Well known members from this group are Trifolium repens and Trifolium pratense.
The different species (Figure 1) that occur at the field site, Bodega Bay, in this study are
named and described by Seringe (1825): 1) Trifolium barbigerum (here abbreviated
Bar) or Bearded clover is an annual herb, native to Northern California and Oregon. The
plant blooms between February to March. 2) Trifolium bifidum (here abbreviated Bif) or
Notch leaf clover is an annual herb, native to the western region of North America
(Washington to California). The plant blooms between April to June. 3) Trifolium
macraei (here abbreviated Mac) is an annual herb, native to California but is also found
in other parts of North America and the world. The plant blooms between March to
May.4) Trifolium microdon(here abbreviated Mic) is an annual herb, endemic to
California. The plant blooms between April to June. 5) Trifolium wormskoldii (here
abbreviated Wor) is a perennial herb, native to California and found in other parts of the
Western North America. The plant blooms between May to June. 6) Trifolium fucatum

(here abbreviated Fuc) is an annual herb, native to the western North America and

13



California. The plant blooms between April to June.
In this project we aim to explore how selection factors specifically soil legacy type, host
species, nodule size and phylogenetic distance has an impact on the microbial
community composition. We used targeted amplicon sequencing of 16s rRNA to profile
the nodule microbial community of our samples. Making use of 16s rRNA allows us not
only to estimate abundances of unique taxa but also allows us to identify them using
reference Greengenes database. However, we can’t directly use the reads generated
by the sequencing run. The reads must first be demultiplexed into individual samples
and then quality filtered. Once the reads are cleaned, they are then ready to be
clustered into representative sequencing. Such a form of data aggregation allows us to
not only generate counts per representative sequence but also gives us a basic
understanding on the diversity of unique clusters seen. In this study, we make use of
Operational Taxonomic Units (OTUs). OTUs can be generated by using QIIME
(Caparaso et al. 2010), MOTUR (Schloss et al. 2009) or UCLUST (Edgar 2010). We
decided to use QIIME for read clustering as it supports the several different clustering
algorithms, including MOTHUR and UCLUST. Further, QIIME also makes use of RTAX
(Soergel 2012), a tool for assigning taxonomies using a reference database. RTAX
makes use of mate pair information when assigning taxonomies making it ideal for our
dataset with non-overlapping mate pairs.
Specifically, in this study we explore the following questions:

1) Analyze the similarity of nodule microbiome community for different Trifolium

species.

2) What is the core nodule microbiome for the home Trifolium samples.
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3)

4)

5)

Do we see the presence of Soil and Species factor impacting species richness

and diversity.

Do we see the presence of Soil and Species factor in structuring microbial
communities.

Do neutral processes contribute to nodule microbiome community assembly.

15



Results

Sample read distribution table.

16s rRNA gene fragments from nodules of 6 home Californian species of Trifolium
grown experimentally in “home” and “away” soil. A total of 227,196,520 reads were
generated through paired end Illlumina sequencing (Table 2). Reads were
demultiplexed, filtered for quality and length. Averages read length for forward and
reverse reads were 51 and 53 bases respectively. Read counts per sample varied from

6,675 to 463,075 reads per sample (Figure 2a).

OTU picking and Taxonomic Classification

OTU picking generated a total of 2,394 OTUs (Figure 3a). Close to 15% to 54.5% of
reads within samples were poorly classified and taxonomically assigned to “None” or
“‘NOHIT”. All OTUs with this label were removed. The filtered OTU table (Figure 3b)
consisted of 1314 OTUs and read counts per sample varied from 6,546 to 462,142
reads per sample. Proteobacteria (representing 97.5 to 99.9% of all the matched reads
per sample), Bacteroidetes (representing 0.035 to 2.04% of all the matched reads per
sample) and Actinobacteria (representing 0.009 to 0.69% of all the matched reads per
sample) were the top three most dominant phyla. By far the most dominant order of
bacteria was identified within the Proteobacteria phylum and was called “Rhizobiales”.
The order represented 86.5 to 99.6% of all the matched reads per sample and was
made up of 123 OTUs. These OTUs were extracted and labeled as the “Rhizobiales”

microbiome.

16



In order explore the nodule microbiome in greater detail, we specifically excluded all
OTU’s belonging to the order “Rhizobiales” and named it the rare microbiome (Figure
3c). The rare microbiome OTU table consisted of 1191 OTU’s and read counts per
sample varied from 163 to 10,867 reads per sample (Figure 2b, Table 2).
Proteobacteria (representing 51.4 to 94.2% of all the matched reads per sample),
Bacteroidetes (representing 3.8 to 43.1% of all the matched reads per sample) and
Actinobacteria (representing 0.89 to 20.07% of all the matched reads per sample) were
the top three most dominant phyla.

The distribution of OTUs across all samples was largely similar. There were very few
OTUs that were abundant and present in high frequency across all samples. Further,
there was the presence of a large rare tail of low abundant community members. This
suggests that the nodule microbiome typically consists a few dominant groups that
contribute to nitrogen fixation and occupancy within nodules and a large population of
low abundance microbial partners that are present within the root tissues as

endosymbionts may or may not contributing to active nitrogen fixation.

Core Microbiome

Presence/Absence matrix

Threshold 1: OTUs present in at least 2 of the 4 samples.

A total number of 64 OTUs (4.8% of all OTUs, Figure 5a) were identified as core. Of
these OTUs, the phylum Proteobacteria was the most represented (44 OTUs) followed
by members of the phylum “Bacteroidetes” (11 OTUs), “Actinobacteria” (6 OTUs) and

“Chloroflexi”, “Armatimonadetes” and “TM7” (1 OTU).
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Threshold 2: OTUs present in at least 3 of the 4 samples.

A total number of 41 OTUs (3.1% of all OTUs, Figure 5b) were identified as core. Of
these OTUs, the phylum Proteobacteria was the most represented (31 OTUs) followed
by members of the phylum “Bacteroidetes” (6 OTUs), “Actinobacteria” (3 OTUs) and

“Chloroflexi” (1 OTU).

Abundance and Presence/Absence matrix
Using an abundance threshold did not change the top three identified core OTUs within
all 6 samples. However, making use of an abundance threshold did reduce the number

of unique OTUs per sample as represented in the graph (Figure 5c and 5d).

Diversity estimate

Alpha diversity

Rarefaction curves generated do not show saturation, further most curves have large
error bars and overlap each other (Figure 6a-6d ). This is most probably due to the low
depth of rarefaction and large diversity of OTUs seen. Rarefaction greater than 6546
reads/ sample led to loss in samples and curves still do not show saturation.
Rarefaction curves remained comparable between hosts grown in home and away soil.
In order to calculate species richness and impact of meta-data factors on species
richness all OTU tables were rarefied to ensure samples had equal number of reads. All
samples in the complete microbiome table were rarefied to 6500 reads/ sample and the

rare microbiome table after dropping the “Rhizobiales” order was rarefied to 163 reads/
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sample. The abundant microbiome table was rarefied to 6250 reads/sample. We carried
out anova tests on the rarefied complete OTU table and abundant OTU table, with
diversity metrics as the response variable. We tested to see if Soil, Species and nodule
size factors had an effect on the species richness.

The three metrics used (Shannon, Observed and Chao1) showed similar results: no
factor significantly affected species richness or there was a very weak, insignificant
effect (Table 3a). The rarefied rare OTU table showed no consistent patterns of

significant Soil and Species interaction (Table 3c).

Ordinations

Beta diversity

All samples in the complete microbiome table were rarefied to 6500 reads/ sample and
the rare microbiome table after dropping the “Rhizobiales” order was rarefied to 163
reads/ sample. The abundant microbiome table was rarefied to 6250 reads/sample.

All beta diversity estimates were calculated from the rarefied, count normalized OTU
table. Such an approach allows us to scale different samples within our data. Beta
diversity was first visualized using ordination methods.

PCoA plot was built using Bray-Curtis dissimilarity distance matrix. Bray-curtis was used
as it works better in tables with large null values. We compared the PCoA plot for all
three microbiome tables: all (Figure 7a.i), abundant (Figure 7b.i)and rare(Figure 7c.i).
For the rare microbiome, the first and second axis explained 12% and 10% of the total
variance respectively. Further, the total variance explained by an axis increased to

55.1% and 51% as we compared the complete and abundant table. Both these plots
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also showed an overlapping of samples indicating that the relationship was being driven
by the abundant OTU order of “Rhizobiales”. We also plotted the eigenvalues using a
scree plot to visualize the range and spread of values for the all axis. The complete and
abundant tables alone showed a very large PC1 axis compared to the rare tables,
further giving evidence that the order “Rhizobiales” maybe driving the relationship. In
order to confirm if the strong grouping effect is driven by abundant taxa that we see in
the both the complete and abundant OTU tables, we ran another ordination with NMDS.
This allowed us to compare how the samples and the OTUs were related with each
other (Figure 8a, Figure 8b, Figure 8c). We also visualized the dataset using CCA and
constraining the axis by Species and Soil factors. Doing this allowed us to visualize how
these factors contributed to the variance seen in the microbial community structure.
Constraining ordinations by the Soil factor explained the largest amount of variation in
the tables (Figure 9a.i: All; CCA1: 3.4% and CCAZ2: 2.2%. Figure 9c.i: Rare; CCA1: 2%
and CCA2: 1.5%). Further we plotted the eigenvalues of the constrained samples to
visualize how the factors are driving these relationships. Constraining by Soil factors
showed samples belonging to Mic and Wor clustering together in the same direction,
while Bif and Mac samples clustered to the opposite direction, showing that Mic and
Wor have more similar community structure compared to the other samples. This
relationship was constantly identified in both complete and rare tables. Further,
clustering by Species factors showed no clustering with arrows pointing in opposite
directions, indicating that samples coming from the same species but different soils

have more diverse microbiomes.
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Adonis modeling results

The rarefied OTU tables were used for multiple factor testing. Multiple factor testing on
the complete OTU table showed that communities were being partitioned out by similar
factors: Soil (R?=0.07711, p=0.006) and Species (R?=0.05961, p=0.043). Interestingly,
there seems to be no significant interaction effects between Soil and Species factors
(R?=0.15806, p=0.522).

Multiple factor testing on the abundant OTU table showed that communities were being
partitioned out by similar factors: Soil (R?=0.05605, p=0.054) and Species (R?=0.07655,
p=0.006). Interestingly, there seems to be no significant interaction effects between Soil
and Species factors (R?=0.19574, p=0.079).

Multiple factor testing on the rare OTU table showed that communities were indeed
partitioned out by several factors, most important of them being; Soil (R>=0.115,
p=0.001) and Species (R?>=0.07676, p=0.001). Also, interaction between Soil and
Species effect (R>=0.183, p=0.001) is highly significant too (Table 5). Both these give
similar results. It is interesting to note that the model with Soil*Species interaction
explains the highest amount of variance explained. These results mean that there is a
strong underlying interaction that influences microbial community assembly even at the
endophyte level. Another interesting result is the strength of Soil factor. In all the Adonis

models, Soil seems to have a greater effect compared to any other factor.

Neutral community model

More number of OTUs were detected for away sample (578 OTUs) compared to home

samples (293). We also had more number of OTUs that were selected for and against
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within away samples compared to home samples. Fishers test on the number of OTUs
selected for, against and neutrally distributed showed that there was indeed a significant
difference between home and away samples (pvalue=3.842e-5). Both OTU tables fit the
neutral distribution pretty well with a marginally higher r-squared value for away

samples (rsquared= 0.918) compared to home samples (rsquared= 0.877).
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Discussion

Composition of nodule microbiome

A total of 1314 OTUs were identified within the nodule microbiome of Trifolium sp. The
nodule microbial community is less diverse compared to the bulk, rhizosphere and
phyllosphere community described in previous literature (Uroz et al. 2010, Mendes
2011, Inceoglu et al. 2011, Peiffer et al. 2013, Chaparro et al. 2013). The nodule
community not only has fewer OTUs but also fewer identified taxa. However, some of
the important taxa groups are identified: Proteobacteria, Actinobacteria and
Bacteroidetes. Members belonging to these phyla are seen as abundant members
within root associated microbiome (Uroz et al. 2010, Mendes 2011). The large tail of
rare microbial members is yet another pattern seen in most natural samples and rare
microbial members are important in successfully assessing diversity metrics (Lynch &
Neufeld 2015).

The top phyla identified in our study belonged to Proteobacteria, Actinobacteria and
Bacteriodetes. Members belonging to these phyla are typically observed to be enriched
in different rhizosphere studies (Wieland et al. 2001, Peiffer et al. 2013, Chaparro et al.
2013). However, the range of diversity also depends on the host: < 3000 OTUs (Weinert
et al. 2011) to > 55,000 OTUs (Inceoglu et al. 2011).

The most abundant OTU belonged to the group Agrobacterium. Typically, members
from this group are pathogenic and not associated with nitrogen fixation. The host
Sesbania has shown to nodulate with a group of agrobacterium. These members also
have a low similarity at the 16s region with rhizobium species (Cummings et al. 2009).

Further, 57 agrobacterium members were isolated from different legume hosts. Wide
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strain variation was also observed. The agrobacterium OTU identified in our samples
may also be one that fixes nitrogen associatively. However, we need biochemical tests
to confirm this. Phylogenetic analysis puts the abundant agrobacterium with rhizobium
species (Figure 10).

While it is identified that multiple strains can colonize the same individual plant (Denison
and Kiers 2004, Denison 2000), how many strains colonize a single nodule is lesser
known. In lab studies there has been evidence of nodules with mixed strains. A study
looking at the nodule occupancy in Medicago sativa showed presence of mixed
infection with nitrogen fixing and non-fixing strains occurring in the same nodule
(Checcucci et al. 2016). Our results identify multiple OTUs present in high abundance
identified to the order Rhizobiales within every sample, where each sample comes from
a single nodule. This could be an evidence for mixed infections within clover nodules.
An oligotyping analysis would help answer this question with greater sensitivity and
accuracy.

We touched upon 2 views of studying community structure and assembly. One views
community assembly processes through competitive exclusion and niche theory.
Competitive exclusion theory suggests that all species in nature are competing for
resources. Species that are closely related will complete for the same set of resources.
Further, two species competing for the same resource niche will not continue to exist as
in the long term the community will be dominated by the one species that has a slight
growth advantage. Thus, the number of species in the environment will be dictated by
the number of limiting resources. Compared to this, is the other view a combination of

neutral theory of ecology and the geographic mosaic of coevolution. The neutral theory
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of ecology says that individuals are functionally equivalent and recruited from a larger
meta-community pool into small local communities. Extending this with the assumptions
from the geographic mosaic theory, individuals are distributed randomly across different
local communities. Within local communities with members whose traits match their
environment interact positively and coevolve more rapidly compared to local
communities with members having dissimilar traits or interacting negatively with the
environment.

The competitive exclusion theory has met with a lot of resistance primarily due to the
fact that microbial communities in nature are highly diverse (Hutchinson 1959). A meta-
community analysis looked at the presence of competition in different microbiome
communities through phylogenetic dispersion (Koeppel et al. 2014). If members within a
community are assembled due to competitive exclusion, then the community will be
phylogenetically over dispersed with more distantly related members. In most
communities they found no signal of phylogenetic overdispersion until they looked
OTUs clustered at higher ranges of sequence similarity. We found several closely
related OTUs occurring across all our nodules, much more than what could be expected
by just the number of limiting resources. However, we would need longer read lengths
to cluster OTUs at a finer scale and test them for phylogenetic over or under dispersion
to infer the strength of competition in assembling nodule communities.

According to the geographic mosaic of coevolution, individuals drift or migrate into
communities randomly and depending on their abundance in the large meta-community.
Their survival in the new environment depends on the traits they carry. Organisms with

traits that closely match their environment will survive and persist while the rest go
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extinct over time. Such a process should give us a sigmoidal species abundance curve
with a long tail of rare, low abundance members and a small group of commonly
occurring, high abundance members. The slope of the curve will depend on the number
of abundant species. The neutral model on the other hand states that member
presence within a local community is solely a function of drift, migration and abundance
in the meta community. The neutral model was applied to study how the gut microbiome
of zebra fishes was structured over time (Burns et al. 2015).

The neutral mode fit better for younger ad juvenile fishes better than adult fishes,
implying that random processes play a large role during the initial microbiome
assembly. As the fish ages, the fit of the neutral model decreases indicating the
importance of environment and interaction between local microbial members in
structuring communities.

Our adonis results show that both soil and species factors play an important role in the
community structure of trifolium nodule microbiome, with soil factor playing a bigger role
and explaining a greater degree of variation. If we consider the soil factor to be the
reservoir or the meta-community housing all the individuals from which members in our
local community are derived, then this result aligns well with both the results of neutral
assembly in young zebra fish gut microbiome and the view of neutral assembly process
described in the introduction. Microbial species from the soil may migrate into the
endophytic microbiome however such a process will only progress if the microbial
species has the right set of genes to interact with the host. Further since we have
several different hosts, the genetic alignment between the microbial partner and plant

host is even more crucial. So while we can consider survival and presence of microbes
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in soil to be a neutrally distributed process, the survival and presence within the plant
host need not necessarily be neutral. Similarly, while initial colonization of microbes
within juvenile zebra fishes maybe neutrally assembled, their long term presence within
adult zebra fishes doesn't fit well with the neutral model due to the interaction between
the microbial partners and the microenvironment offered by the host species.

Further, we would need a time series data to study how the assembly process changes
over development time of the trifolium host and if soil continues playing a larger role
compared to species over long term growth of the host.

We were unable to reliably estimate richness due to the sheer diversity of OTUs and
unbalanced samples that we had. Anova run at different rarefactions and metrics

showed no significant difference in microbial species richness.

Core microbiome

Core microbiome analysis was carried out using both presence/absence matrix and an
abundance matrix. Both the methods gave us similar results. The “core” microbiome
identified was primarily made of up 3 different phyla; Proteobacteria, Actinobacteria and
Bacteroidetes. Members within these phyla have been previously described to be
present in high abundance within plant tissues (Reinhold-Hurek et al. 2015, Turner et al.
2013, Hirsch 2012). In our results we see a very small group of core microbial
members, these members also happen to be those that are abundant across all

samples.
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Alpha Diversity analysis

Despite running alpha diversity at multiple different rarefactions and using different
species richness metrics we were unable to see any saturation in the rarefaction curves.
Further we made use of an anova to look if there were any factors had a significant
effect on the species richness of the community. Most factors were insignificant and
those that were significant showed only borderline significance or disappeared at higher
rarefactions indicating that the effect was possibly a chance observation. Calculating
species richness robustly requires high read coverage within samples to run a robust,

reproducible rarefaction analyses.

Ordinations

Across all tables, few consistent patterns arose. Primarily, we see that abundant OTUs
drive clustering of samples. This implies that apart from the rare tail taxa, the samples
share most of the abundant taxa. Further for the complete and abundant microbiome
table, we see only two axis that largely contribute to the amount of variance explained,
implying that there are two or three important factors impacting the structuring of
microbial communities.

a) PCoA

PCoA of complete tables showed that there was a lot of similarity between the samples
themselves and a large PC1 axis. The PCoA with just the rare microbiome showed
separation of samples by axis. Samples belonging to Worm, bar and mic clustered

together away from Bif and mac samples. This could indicate that Trifolium species
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recruit members into the nodule microbiome community differently.

b) CCA

When we look at samples coming from the same soil but different species (constraining
by soil factor) we see a more similar microbiome as evidenced by the clustering of
arrows. Whereas, when we look at samples coming from different soils but same
species we see a more varying microbiome. This indicates the strong effect of soil
legacy.

c) NMDS

For both the complete and Rhizobiales OTU table, we see that sample clustering
overlaps clustering by the abundant microbial community members. The same
relationship is absent when looking at an NMDS plot generated using only the rare
microbiome. Thus giving us more evidence that the grouping along a single axis is most

probably driven by the dominant taxa.

Beta diversity model comparisons

We made use of adonis analysis to explore individual and interaction effects between
our metadata. Both complete and rare microbiome table showed strong individual
species and soil effects. This indicated that both factors play an important role in
structuring the microbial community. A strong interaction seemed to be present when
we looked at species*soil effects only for the rare microbiome table. This effect was not
seen as a significant effect for the complete table. Further, the only time we see soil
explaining a smaller variance compared to species is when we look at the abundant

microbiome table (Soil R?=0.05605 and Species R?=0.07655). Soil playing a smaller
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role in the structure of abundant community is understandable. Since most of the
abundant organism are also shared by a large majority of samples, their presence and
similar abundance across samples is not surprising.

Soil type and host species have been previously identified as important factors
structuring microbial communities in soil (Garbeva et al. 2004, Berg et al. 2009). In our
study when we look at the complete and rare microbiome tables, we found that soll
factor plays a larger role in structuring these communities compared to species factor.
One possible reason that lets Soil play such an integral role is the duration of the study.
A single generation might not be sufficient for hosts to structure microbial communities,
however over time this relationship may shift. Finally, we see a significant interaction
effect but only for the rare microbiome. The rarest members of the community are more
prone to being lost due to extinction events. Their presence in the microbiome depends
on not only surviving in the soil metacommunity but also selection by the host. The
abundant microbiome members on the other hand are less prone to being lost due to
their sheer abundance. This result could indicate that different members of the

microbiome need not all be selected under the same selection factors.

Neutral community analysis

Plants growing in their own soil were growing on a soil legacy that was conditioned by a
member of the same species and thus would be exposed to microbial members whose
abundances were structured by the ancestor. Whereas plants growing in a soil condition
by a member of a different species would have to select upon a microbial community

with members that will interact with it. This should lead to a change in member
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abundance, specifically the abundant members of the microbiome. This is assuming
that the reason these members are abundant is prior selection by the ancestral host.
Further, we should also see an increase in selection for the rare members of the
microbiome as these members might interact with the new species. Thus, we should
not only detect higher number of species within away samples but also have more
species that do not fit within the neutral distribution. Further, in the away samples we
also see that a lot of the low frequency OTUs are selected for while the high frequency
OTUs are selected against as seen by the few points that fall above and below
predicted neutral model values.

It seems that most of the OTUs in home and away samples fit the neutral model pretty
well. The interesting aspect is the selection for low frequency OTUs in the away
samples. These results indicate that while neutral process play an important role in the
assembly of Trifolium nodule microbiome, different hosts also play a role by selecting
for and against microbial partners. A further study using multi-generation time series
data will allow us to track the increase and decrease of specific OTUs, thus informing us

of their importance with the host.

Broader Impacts

We live in a microbial world with microbes and their communities forming the foundation
of biosphere and playing an integral role in the functioning of all trophic levels. For
example, rhizobia are involved in increasing useable soil nitrogen resources by
reduction of atmospheric nitrogen to ammonia through biological nitrogen fixation in

exchange for photosynthetically fixed carbon from the host (Hayatt et al. 2010). Rice
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fields associated with Azolla can fix upto 600kg N/ha/year during the growing periods
(Fattah et al 2005). Thereby reducing dependence on commercial fertilizers and need
for highly fertile land. Further, microbes play a crucial role in mediating phosphorus
availability too. Further, plants can associate with different kinds of fungi. Plant-
mycorrhizal associations are one of the better studied symbioses and about 80% of all
land plants are capable of associating with mycorrhiza. Such associations lead to
improved phosphate uptake by the host (Vance 2001). Apart from improving nutrient
uptake, mycorrhizal associations also enhance root surface area by sending out their
hyphae and creating secondary root systems. Understanding how plant-microbe
interactions are affected under ecological conditions will help us introduce better land
management practices. Further, reducing the dependence on commercial fertilizer not
only provides monetary benefits to the farmer but also reduces leaching of nutrients into
local water bodies and preventing large scale algal blooms.

Microbes are also shown to protect their hosts from biotic and abiotic stresses. For
example, isolates cultured from wheat grown in saline environments gave rise to about
24 salt tolerant isolates, all of which were able to produce phytohormones like indole 3
acetic acid or gibberelins and improve plant productivity under salt stress (Upadhyay et
al. 2009, Culligan et al. 2012). Further, rhizobacteria produce metabolites that can
inhibit the growth of other taxa (Kim et al. 2006). Rhizospheric fungi are also well known
producers of antibiotic metabolites that can inhibit the growth of other microbes or
defend the host against predatory protozoa, improving protection against biotic stress
(Hoffmeister 2007, Brakhage 2011). Thus, it is important to consider feedbacks from the

local microbiome community when exploring factors that contribute to host growth,
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development and succession.
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Methods

Plant experiment

Seeds from Trifolium barbigerum, T. bifidum, T. fucatum, T. macraei, T. microdon, and
T. wormskioldii were collected from Bodega Marine Reserve, California, in 2012. Soil
was collected from below each species and placed in pots in a UC Davis greenhouse.
Seeds were scarified by razor nicking and planted directly in field soil, then watered as
needed. At 6 weeks of age, plants were harvested, soil shaken from the roots and

individual nodules plucked from roots and flash-frozen.

Sequencing experiment

DNA was extracted from single nodules using Zymo’s quick gDNA kit and stored at -

20C. Two loci were targeted by PCR, nodC and 16S.

nodC

The symbiotic nodC locus was targeted with nodC_4192-4845
(GGCGAGACCCTKTTYTGCTA, GTGACKACCATYSCAAGGCT), with a PCR program
95C 1:00 followed by 35 cycles of 95C 0:30, 51C 0:30, 72C 1:00, and a final extension
of 72C for 1:00. Amplicons were Sanger sequenced at UC Davis and traces were

quality trimmed and aligned with CodonCode to identify polymorphic sites.

16S

The same DNA extractions were used as template in a 16S PCR targeting the 799-1115

region (A ACMGGATTAGATACCCKG, KGGTYKCGCTCGTTRC), with a PCR program
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95C 1:00 followed by 35 cycles of 95C 0:30, 60C 0:30, 72C 1:00, and a final extension
of 72C for 1:00 PCR was done with combinatorially barcoded primers to enable a high
degree of multiplexing; our combinatorial approach enabled this with only 4 barcodes
per end, combined with 9 standard lllumina indexing adaptors (See supplemental
methods). Briefly, first stage PCR was conducted with barcoded primers containing part
of the lllumina adaptor, and then pools were made for the second stage PCR that
completed the adaptor and added the lllumina barcodes. Data was deposited at SRA

under the code SRP070507 and bioproject accession code PRJNA297440.

Microbiome community profile: Building OTU table

Above-mentioned 16s rRNA regions was sequenced on lllumina platform. The
generated paired-end, non-overlapping reads were demultiplexed, trimmed to do away
with bases that had a quality score of lower than 25. Qiime (v1.6.0) was used for all
further downstream analysis. Demultiplexed forward and reverse reads are binned
individually after their headers were renamed.

Each Operational Taxonomic Unit (OTU) is picked based on sequence similarity of the
reads. Clustering is carried out with only forward reads using uclust_ref clustering
algorithm. Against the Greengenes reference database (version: Greengenes 13_5) at
97% similarity. Reads that failed to hit the database were removed from further analysis.
Taxonomic classification was assigned with the RTAX procedure in QIIME, using the
Greengenes database. The RTAX method makes use of reads from both ends before
assignment. The additional information from the second end allows for a more precise

taxonomic assignment.
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The OTU table was further filtered to remove poorly labeled OTUs. Further the OTU
table was divided into complete, abundant and rare microbiome tables based on the
most abundant order of bacteria; Rhizobiales.

For alpha and beta diversity analysis both tables were then rarefied to ensure they had
equal number of reads. All samples in the complete microbiome table were rarefied to
6500 reads/ sample and the rare microbiome table after dropping the “Rhizobiales”
order was rarefied to 163 reads/ sample. The abundant microbiome table was rarefied
to 6250 reads/sample.

Doing this allowed us to study if the rare/ less abundant members of the microbiome

community and the more abundant members were being affected differently.

Core microbiome

We computed the core microbiome within samples grown in home soil alone. This
allowed us to look at the unique OTUs present in each species and those that are
shared by all 6 species. We used 2 different definitions of “core” microbiome. The first
was based on a presence absence matrix alone the second used an abundance
threshold too.

Using presence absence matrix, an OTU was considered a part of the core if it was
present in at least 2 or 3 samples. We also made use of an abundance threshold (0.
00001% of all reads) to select which OTUs would be a part of the presence absence
matrix. Abundances were normalized to library sizes. Percentage of common OTUs was
visualized by plotting a Euler grid. UpsetR, an R library was used to plot the grid.

Taxonomies of common OTUs were saved as a table.
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Diversity analysis

Alpha (within samples) and beta diversity (between samples) were used to estimate
microbial community diversity. Alpha diversity was measured using Chao1, Observed
species and Shannon metrics. All samples were rarefied to 160 and 500 reads/sample
to keep sampling size the same. A permanently set seed was used to make results
reproducible. We carried out an Anova to test if species richness of microbiome
community depends on soil origin and host species. However, the rarified data lead to
inconsistent diversity estimates. Also, results of Anova were depended heavily on the
diversity metric chosen. We imported the OTU tables into QIIME to plot rarefaction
curves. A minimum of 10 reads/sample with increments of 15 reads/sample was used
as parameters.

Beta diversity analyses were carried out using Bray-Curtis distance on a count
normalized OTU table and were visualized by different ordination techniques. R
package “Phyloseq” (1.16.2) was used for principal coordinate analysis. Non parametric
permutation test Adonis with 999 permutations was used on bray-curtis dissimilarity
matrix to test between sample similarity and factors affecting it. As factors we included
Soil (the host conditioning the soil), Species (the host currently planted), Host_PD
(Pairwise distance matrix between host conditioning the soil and host currently planted),

Nod_size (Nodule size of the hosts).

Ordination techniques

PCoA: Principal coordinate analysis

PCoA also called classical multidimensional scaling is a distance-based ordination
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method that can be performed via the ordination function in Phyloseq. The major

benefit of PCoA is the ability to choose a different distance measure.

CCA: Canonical Correspondence Analysis

CCA can be used to explore the relationship between two sets of variables. This is
particularly useful as we make use of this ordination technique to explore how the
Species and Soil variable affects microbial community structure. Further, by plotting out
the eigenvalues of the constrained variables we can visualize how individual groups are

clustering the samples.

NMDS: (Non metric MultiDimensional Scaling)

NMDS is a rank based approach, which substitutes the object distances with ranks. The
NMDS algorithm introduces a parameter called “stress” which is used to measure the
lack of fit between the object distances and calculated distance matrix. Then, all objects
are iteratively repositioned to minimize the stress parameter or lack of fit. A total of 20
iterations were run to identify best fit. We made use of NMDS ordination to explore the

relationships between microbial members themselves.

Sloan neutral community analysis

We wanted to test if our communities were neutrally distributed and if there were
members within our communities that were selected for or against by the host. We
made use of the Sloan neutral community assembly model to test our data. This model

allows us to predict the relationship between the abundance of microbiome members
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and their presence across samples. Our experimental design made use of growing
plants in soil conditioned by the same species (home soil) and in a soil conditioned by
another species (away soil). First the complete microbiome table was rarefied to 6500
reads/ sample and then samples were split into home and away. Samples where new
species were the same as the ancestor were termed as home whereas samples where
new species were different compared to ancestor were termed as away. The model was

run to test the fit of the microbiome to the neutral model.
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APPENDIX 1: List of tables

Table 1: Techniques used to study microbial population structures

Technique |Description Advantage Disadvantage Throughput
Labor intensive,
Cheap, can Needs more
Microbes are cultured |identify basic |downstream work
Culturing on |and isolated on abundance to identify taxa of
plates selective media patterns isolated members |Low
Isolation of the
phospholipids,
conversion of the
phospholipid fatty
acids to their
corresponding fatty
acid methyl esters Labor intensive,
(known by the Can measure |[taxonomic
acronym FAME) and |microbial assignments are
the separation, biomass, no not possible, don’t
identification and prior get abundance
quantification of the  |knowledge of |data, need
FAME by gas sample expertise with GC
PFLA chromatography. required MS Medium
Phylogenetic
relationships
can be
explored, can |PCR bias, can’t be
Known 16s regions get abundance |used for novel Low-
gPCR are amplified. data species Medium
Good for Hard to standadize
profiling and  |gradients from one
exploring gel to another,
community don'’t get
16s fragments are diversity abundance data,
separated by gradient |without prior  |taxonomic
of temperature or knowledge of |assignments can’t |Low-
DGGE/TGGE|denaturant samples be generated Medium
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Table 1: (cont'd)

FISH

Oligonucleotide
probes are designed
for known 16s
regions. Probes are
fluorescently labelled.

Phylogenetic
relationships
can be
explored, can
get abundance
data

Need to know
which members
are present to
design probes or
use general set of
probes, Taxonomic
assignments are
hard

Medium-
High
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Table 2: Read distribution across samples.

SamplelD Soil Species | Comb TotalReads | Reads/sample
master.48.F4 | Bar Bar Bar 189849 342329
master.48.E4 | Bar Bar Bar 106421
master.48.G4 | Bar Bar Bar 6637
master.48.H4 | Bar Bar Bar 39422
master.48.B6 | Bar Bif Bar_Bif 98968 371526
master.48.A6 | Bar Bif Bar Bif 92645
master.48.D6 | Bar Bif Bar_ Bif 92405
master.48.C6 | Bar Bif Bar Bif 87508
master.48.G6 | Bar Fuc Bar Fuc 128604 594061
master.48.H6 | Bar Fuc Bar_Fuc 232217
master.48.F6 | Bar Fuc Bar Fuc 180828
master.48.E6 | Bar Fuc Bar Fuc 52412
master.48.H5 | Bar Mac Bar Mac 117023 319847
master.48.E5 | Bar Mac Bar Mac 18793
master.48.F5 | Bar Mac Bar_Mac 162214
master.48.G5 | Bar Mac Bar Mac 21817
master.48.A5 | Bar Mic Bar_Mic 19272 226774
master.48.C5 | Bar Mic Bar Mic 46511
master.48.D5 | Bar Mic Bar Mic 98248
master.48.B5 | Bar Mic Bar Mic 62743
master.48.D4 | Bar Wor Bar Wor 154560 270937
master.48.C4 | Bar Wor Bar Wor 51693
master.48.A4 | Bar Wor Bar Wor 27108
master.48.B4 | Bar Wor Bar Wor 37576
master.96.G7 | Bif Bar Bif Bar 126863 327944
master.96.G8 | Bif Bar Bif Bar 80669
master.96.G6 | Bif Bar Bif Bar 63119
master.96.G5 | Bif Bar Bif Bar 57293
master.96.H7 | Bif Bif Bif 186780 361000
master.96.H5 | Bif Bif Bif 40991
master.96.H8 | Bif Bif Bif 93458
master.96.H6 | Bif Bif Bif 39771
master.96.H11 | Bif Fuc Bif Fuc 131472 319272
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Table 2: (cont’'d)

master.96.H12 | Bif Fuc Bif Fuc 89609
master.96.H10 | Bif Fuc Bif Fuc 61811
master.96.H9 | Bif Fuc Bif Fuc 36380
master.96.H1 | Bif Mac Bif Mac 111121 303176
master.96.H2 | Bif Mac Bif Mac 82313
master.96.H3 | Bif Mac Bif Mac 76418
master.96.H4 | Bif Mac Bif Mac 33324
master.96.G11 | Bif Mic Bif Mic 123254 413155
master.96.G9 | Bif Mic Bif Mic 80630
master.96.G12 | Bif Mic Bif Mic 54401
master.96.G10 | Bif Mic Bif Mic 154870
master.96.G3 | Bif Wor Bif Wor 73225 607602
master.96.G4 | Bif Wor Bif Wor 73347
master.96.G1 | Bif Wor Bif Wor 213251
master.96.G2 | Bif Wor Bif Wor 247779
master.48.G1 | Fuc Bar Fuc Bar 20758 132620
master.48.E1 | Fuc Bar Fuc Bar 44726
master.48.H1 | Fuc Bar Fuc Bar 25048
master.48.F1 Fuc Bar Fuc Bar 42088
master.48.B3 | Fuc Bif Fuc Bif 33938 463251
master.48.C3 | Fuc Bif Fuc Bif 243008
master.48.D3 | Fuc Bif Fuc Bif 98047
master.48.A3 | Fuc Bif Fuc Bif 88258
master.48.G3 | Fuc Fuc Fuc 21970 382749
master.48.E3 | Fuc Fuc Fuc 227933
master.48.F3 | Fuc Fuc Fuc 116516
master.48.H3 | Fuc Fuc Fuc 16330
master.48.H2 | Fuc Mac Fuc Mac 38522 342113
master.48.G2 | Fuc Mac Fuc Mac 88391
master.48.E2 | Fuc Mac Fuc Mac 172485
master.48.F2 | Fuc Mac Fuc Mac 42715
master.48.C2 | Fuc Mic Fuc Mic 438811 568420
master.48.D2 | Fuc Mic Fuc Mic 54160
master.48.A2 | Fuc Mic Fuc Mic 61288
master.48.B2 | Fuc Mic Fuc Mic 14161
master.48.D1 | Fuc Wor Fuc Wor 198303 449714
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Table 2: (cont’'d)

master.48.C1 | Fuc Wor Fuc Wor 174940
master.48.A1 | Fuc Wor Fuc Wor 16656
master.48.B1 | Fuc Wor Fuc Wor 59815
master.96.C8 | Mac Bar Mac Bar 37786 166469
master.96.C7 | Mac Bar Mac Bar 94665
master.96.C6 | Mac Bar Mac_Bar 27472
master.96.C5 | Mac Bar Mac Bar 6546
master.96.D8 | Mac Bif Mac Bif 60178 154224
master.96.D7 | Mac Bif Mac_ Bif 71358
master.96.D6 | Mac Bif Mac Bif 15733
master.96.D5 | Mac Bif Mac_Bif 6955
master.96.D11 | Mac Fuc Mac Fuc 79379 284968
master.96.D12 | Mac Fuc Mac Fuc 49608
master.96.D9 | Mac Fuc Mac Fuc 66328
master.96.D10 | Mac Fuc Mac Fuc 89653
master.96.D1 | Mac Mac Mac 38213 306450
master.96.D2 | Mac Mac Mac 36878
master.96.D4 | Mac Mac Mac 112389
master.96.D3 | Mac Mac Mac 118970
master.96.C10 | Mac Mic Mac Mic 130701 455614
master.96.C9 | Mac Mic Mac Mic 217853
master.96.C12 | Mac Mic Mac Mic 37171
master.96.C11 | Mac Mic Mac_Mic 69889
master.96.C3 | Mac Wor Mac Wor 111235 694542
master.96.C2 | Mac Wor Mac Wor 34134
master.96.C4 | Mac Wor Mac Wor 462142
master.96.C1 | Mac Wor Mac_Wor 87031
master.96.A7 | Mic Bar Mic_Bar 53540 256638
master.96.A8 | Mic Bar Mic Bar 113895
master.96.A5 | Mic Bar Mic_Bar 73570
master.96.A6 | Mic Bar Mic Bar 15633
master.96.B7 | Mic Bif Mic_Bif 77289 483865
master.96.B6 | Mic Bif Mic_Bif 269418
master.96.B8 | Mic Bif Mic_Bif 62763
master.96.B5 | Mic Bif Mic_Bif 74395
master.96.B9 | Mic Fuc Mic Fuc 146436 385375
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Table 2: (cont’'d)

master.96.B11 | Mic Fuc Mic Fuc 130256
master.96.B10 | Mic Fuc Mic Fuc 47123
master.96.B12 | Mic Fuc Mic Fuc 61560
master.96.B2 | Mic Mac Mic Mac 41173 139607
master.96.B4 | Mic Mac Mic Mac 29519
master.96.B1 | Mic Mac Mic Mac 53367
master.96.B3 | Mic Mac Mic Mac 15548
master.96.A9 | Mic Mic Mic 48316 250180
master.96.A10 | Mic Mic Mic 78005
master.96.A12 | Mic Mic Mic 18385
master.96.A11 | Mic Mic Mic 105474
master.96.A1 | Mic Wor Mic Wor 92763 302158
master.96.A2 | Mic Wor Mic_Wor 114872
master.96.A4 | Mic Wor Mic Wor 43467
master.96.A3 | Mic Wor Mic_ Wor 51056
master.96.E8 | Wor Bar Wor_Bar 172014 580237
master.96.E7 | Wor Bar Wor Bar 113958
master.96.E5 | Wor Bar Wor Bar 272356
master.96.E6 | Wor Bar Wor Bar 21909
master.96.F7 | Wor Bif Wor_Bif 130342 477186
master.96.F8 | Wor Bif Wor Bif 93743
master.96.F6 | Wor Bif Wor Bif 182642
master.96.F5 | Wor Bif Wor_ Bif 70459
master.96.F9 | Wor Fuc Wor Fuc 50120 339721
master.96.F10 | Wor Fuc Wor Fuc 65384
master.96.F12 | Wor Fuc Wor Fuc 80574
master.96.F11 | Wor Fuc Wor Fuc 143643
master.96.F2 | Wor Mac Wor_Mac 179688 477332
master.96.F4 | Wor Mac Wor Mac 60320
master.96.F3 | Wor Mac Wor Mac 88943
master.96.F1 | Wor Mac Wor Mac 148381
master.96.E10 | Wor Mic Wor_ Mic 73516 360102
master.96.E9 | Wor Mic Wor Mic 46202
master.96.E11 | Wor Mic Wor Mic 201793
master.96.E12 | Wor Mic Wor_ Mic 38591
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Table 2: (cont’'d)

master.96.E4 | Wor Wor Wor 117697 558645
master.96.E1 | Wor Wor Wor 242639
master.96.E2 | Wor Wor Wor 122870
master.96.E3 | Wor Wor Wor 75439
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Table 3a: Alpha diversity modelling results using the complete microbiome table

Rarefaction Sum Mean F

Factor depth Metric Df sq sq value | pvalue
Soil 160 | Observed 5 63| 12.594 | 2.147 | 0.0653
Species 160 | Observed 5 42.2 8.444 1.44 | 0.2159
Soil:Species 160 | Observed 25| 247.9 9.918 | 1.691 | 0.0344
Residuals 160 | Observed 108 | 633.5 5.866

Soil 160 | Shannon 5 1082 | 216.31| 2.371 | 0.0439
Species 160 | Shannon 5 375 74.94 | 0.822 | 0.5369
Soil:Species 160 | Shannon 25 2693 107.7 | 1.181| 0.2738
Residuals 160 | Shannon 108 9852 91.22

Soil 160 | Chao1 5| 0.1133]0.02265 | 1.648 | 0.1534
Species 160 | Chao1 51 0.1052 | 0.02104 | 1.531 | 0.1863
Soil:Species 160 | Chao1 25| 0.5278 | 0.02111 | 1.536 | 0.0686
Residuals 160 | Chao1 108 | 1.4842 | 0.01374

Soil 500 | Observed 5 138 2759 | 1.175| 0.326
Species 500 | Observed 5 162.6 32.52 | 1.385| 0.235
Soil:Species 500 | Observed 25| 7318 29.27 | 1.247| 0.217
Residuals 500 | Observed 108 | 2535.2 23.47

Soil 500 | Shannon 5 1556 311.2| 1.113| 0.358
Species 500 | Shannon 5 1616 323.3| 1.156 | 0.336
Soil:Species 500 | Shannon 25 7155 286.2 | 1.024 | 0.444
Residuals 500 | Shannon 108 | 30196 279.6

Soil 500 | Chao1 5| 0.1081 | 0.02161| 1.404| 0.228
Species 500 | Chao1 5] 0.1321]0.02642 | 1.717 | 0.137
Soil:Species 500 | Chao1 25| 0.3876 | 0.0155| 1.007 | 0.465
Residuals 500 | Chao1 108 | 1.6619 | 0.01539

Soil 1000 | Observed 5 211 42.22 | 0.986 0.43
Species 1000 | Observed 5 263 52.56 | 1.227 | 0.301
Soil:Species 1000 | Observed 25 1021 40.83| 0.954 | 0.534
Residuals 1000 | Observed 108 4624 42.82

Soll 1000 | Shannon 5 4802 960.4 | 0.994 | 0.425
Species 1000 | Shannon 5 3747 7494 | 0.776 | 0.569
Soil:Species 1000 | Shannon 25| 20789 831.6| 0.861| 0.656
Residuals 1000 | Shannon 108 | 104316 965.9

Soil 1000 | Chao1 5| 0.0996 | 0.01991 | 1.386 | 0.2353
Species 1000 | Chao1 5] 0.1387 | 0.02773 1.93 | 0.0951
Soil:Species 1000 | Chao1 25| 0.3407 | 0.01363 | 0.948 | 0.5404
Residuals 1000 | Chao1 108 | 1.5517 | 0.01437
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Table 3b: Alpha diversity modelling results using the abundant microbiome table

Rarefactio F
Factor n depth Metric Df Sum sq | Mean sq | value | pvalue
Observe 0.084
Soll 160 | d 5 8.83 1.7667 | 1.998 7
Observe 0.740
Species 160 | d 5 2.42 0.4833 | 0.547 6
Soil:Specie Observe 0.010
) 160 | d 25 43 1.72 | 1.945 3
Observe
Residuals 160 | d 108 95.5 0.8843
0.040
Soil 160 | Shannon 5 39.1 7.82| 2.413 8
Species 160 | Shannon 5 6.8 1.366 | 0.421| 0.833
Soil:Specie 0.011
S 160 | Shannon 25 155.6 6.225 1.92 6
Residuals 160 | Shannon 108 350.1 3.241
0.0143 | 0.00286 0.224
Soil 160 | Chao1 5 4 9| 1.416 3
0.0061 0.694
Species 160 | Chao1 5 5] 0.00123 | 0.607 7
Soil:Specie 0.0924 | 0.00369 0.018
S 160 | Chao1 25 5 8| 1.825 3
0.00202
Residuals 160 | Chao1 108 | 0.2188 6
Observe
Soll 500 | d 5 4.23 0.8458 | 0.448 | 0.814
Observe
Species 500 | d 5 10.81 2.1625| 1.146| 0.341
Soil:Specie Observe
S 500 | d 25 47.15 1.8858 1| 0.474
Observe
Residuals 500 | d 108 | 203.75 1.8866
Soll 500 | Shannon 5 26.9 5.39| 0.487 | 0.786
Species 500 | Shannon 5 46.6 9.317 | 0.841| 0.523
Soil:Specie
) 500 | Shannon 25 226.1 9.043| 0.817| 0.713
Residuals 500 | Shannon 108 1196 11.074
0.0017 | 0.00034
Soll 500 | Chao1 5 3 6| 0.331| 0.893
0.0066 | 0.00132
Species 500 | Chao1 5 3 6| 1.266| 0.284
Soil:Specie 0.0371 | 0.00148
) 500 | Chao1 25 9 8| 1421 | 0.111

49




Table 3b: (cont'd)

0.1130 | 0.00104
Residuals 500 | Chao1 108 5 7
Observe
Soil 1000 | d 5 6.23 1.246 0.48 0.79
Observe
Species 1000 | d 5 23.23 4.646 1.79 | 0.121
Soil:Specie Observe
s 1000 | d 25 68.73 2.749 | 1.059 | 0.401
Observe
Residuals 1000 | d 108 | 280.25 2.595
Soil 1000 | Shannon 5 78.8 15.76 | 0.775 0.57
Species 1000 | Shannon 5 73.2 14.65 0.72 0.61
Soil:Specie
s 1000 | Shannon 25 408.9 16.36 | 0.804 | 0.729
Residuals 1000 | Shannon 108 | 2197.2 20.34
0.0005 | 0.00011
Soil 1000 | Chao1 5 7 4| 0.193 | 0.965
0.0038 | 0.00076
Species 1000 | Chao1 5 1 2| 1.289 | 0.274
Soil:Specie 0.0163 | 0.00065
S 1000 | Chao1 25 2 3| 1.105 0.35
0.0638 | 0.00059
Residuals 1000 | Chao1 108 2 1
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Table 3c: Alpha diversity modelling results using the rare microbiome table

Rarefactio Sum Mean F
Factor n depth Metric Df sq sq value | pvalue
Observe
Soll 160 | d 5 391 78.2 | 3.354 | 0.00743
Observe
Species 160 | d 5| 210.7 42.15| 1.808 | 0.11731
Soil:Specie Observe
) 160 | d 25| 7345 29.38 1.26 | 0.20715
Observe 2517.
Residuals 160 | d 108 8 23.31
0.00026
Soil 160 | Shannon 5| 1797 359.4 | 5.187 4
0.25262
Species 160 | Shannon 5 464 92.9| 1.341 2
Soil:Specie
) 160 | Shannon 25| 1942 77.7 | 1121 | 0.33291
Residuals 160 | Shannon 108 | 7482 69.3
Soil 160 | Chao1 5| 0.424 | 0.0848 | 1.468 0.206
0.0990
Species 160 | Chao1 5| 0.495 1] 1.714 0.138
Soil:Specie 0.0793
S 160 | Chao1 25| 1.984 5| 1.373 0.135
0.0577
Residuals 160 | Chao1 108 | 6.239 7
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Table 4a: Distribution of core OTUs when only presence absence in 2 samples is used
as a threshold.

mac a f | mic a f |wor a f |fuc a f |bif a fr|bar a f
OTUs |req req req req eq req Genus
10214 g__Rhizobiu
2 1 1 1 1 1 1| m
10684
86 1 1 1 1 1 119
11199
24 1 1 1 1 1 119
11240 g__Streptomy
17 1 1 1 1 1 1| ces
13435 g__Agrobacte
9 1 1 1 1 1 1| rium
13607
7 1 1 1 1 1 1| NA
14474
0 1 1 1 1 1 119
15032
8 1 1 1 1 1 1| NA
15468
79 1 1 1 1 1 119
18075
61 1 1 1 1 1 119
19169 g__Mycobact
8 1 1 1 1 1 1 | erium
20479
5 1 1 1 1 1 119
21074
6 1 1 1 1 1 119
21218
6 1 1 1 1 1 1| NA
21791
7 1 1 1 1 1 119
22053 g__Agrobacte
9 1 1 1 1 1 1| rium
22690
6 1 1 1 1 1 119
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Table 4.a: (cont'd)

226964 1 1 1 1 1 1| g Rhizobium
227191 1 1 1 1 1 1| g__ Rhizobium
239819 1 1 1 1 1 1| NA
267575
2 1 1 1 1 1 1| g Rhizobium
275052 1 1 1 1 1 1| NA
279206 1 1 1 1 1 119
322972 1 1 1 1 1 1| NA
333436
9 1 1 1 1 1 119
339053 1 1 1 1 1 119
34879 1 1 1 1 1 119
355504
1 1 1 1 1 1 119
360124 1 1 1 1 1 119
360253 1 1 1 1 1 1| g Sphingomonas
361166 g__Uliginosibacteriu
3 1 1 1 1 1 11m
374687
6 1 1 1 1 1 119
40073 1 1 1 1 1 1| NA
425447
8 1 1 1 1 1 1] NA
426188
0 1 1 1 1 1 1] NA
429504
3 1 1 1 1 1 119
432186
4 1 1 1 1 1 119
432909
3 1 1 1 1 1 1| g Agrobacterium
434424
1 1 1 1 1 1 1| g Mesorhizobium
434605
9 1 1 1 1 1 119
434817
2 1 1 1 1 1 1| g Rhizobium
437151
7 1 1 1 1 1 119
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Table 4.a: (cont'd)

437688

5 1 1 1 1 1 1| g Rhizobium
437688

6 1 1 1 1 1 1| g Rhizobium
439492

2 1 1 1 1 1 119
439648

1 1 1 1 1 1 1| g Rhizobium
441214

1 1 1 1 1 1 119
442455

3 1 1 1 1 1 1| g_ Kaistia
442696

5 1 1 1 1 1 119
445557

0 1 1 1 1 1 119
447654

8 1 1 1 1 1 1| NA

57713 1 1 1 1 1 1| g Fimbriimonas
589483 1 1 1 1 1 1| NA
628400 1 1 1 1 1 1| NA
g__Phenylobacteriu

654155 1 1 1 1 1 1/m
792073 1 1 1 1 1 1| g__ Rhizobium
800671 1 1 1 1 1 1|9
993711 1 1 1 1 1 1| g__Pseudonocardia
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Table 4b: Distribution of core OTUs when abundance along with presence absence in 2

samples is used as a threshold.

mac a f | mic a f |wor a f |fuc a f |bif a fr|bar a f
OTUs |req req req req eq req Genus
10214 g__Rhizobiu
2 1 1 1 1 1 1| m
10684
86 1 1 1 1 1 119
11199
24 1 1 1 1 1 119
11240 g__Streptomy
17 1 1 1 1 1 1| ces
13435 g__Agrobacte
9 1 1 1 1 1 1| rium
13607
7 1 1 1 1 1 1| NA
14474
0 1 1 1 1 1 119
15032
8 1 1 1 1 1 1| NA
15468
79 1 1 1 1 1 119
18075
61 1 1 1 1 1 119
19169 g__Mycobact
8 1 1 1 1 1 1 | erium
20479
5 1 1 1 1 1 119
21074
6 1 1 1 1 1 119
21218
6 1 1 1 1 1 1| NA
21791
7 1 1 1 1 1 119
22053 g__Agrobacte
9 1 1 1 1 1 1| rium
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Table 4b: (cont'd)

226906 1 1 1 1 1 119
226964 1 1 1 1 1 11 g__ Rhizobium
227191 1 1 1 1 1 1| g__ Rhizobium
239819 1 1 1 1 1 1 NA
267575
2 1 1 1 1 1 1| g__ Rhizobium
275052 1 1 1 1 1 1] NA
279206 1 1 1 1 1 119
322972 1 1 1 1 1 1] NA
333436
9 1 1 1 1 1 119
339053 1 1 1 1 1 119
34879 1 1 1 1 1 119
355504
1 1 1 1 1 1 119
360124 1 1 1 1 1 119
360253 1 1 1 1 1 1|9 Sphingomonas
361166 g__Uliginosibacteriu
3 1 1 1 1 1 1|m
374687
6 1 1 1 1 1 119
40073 1 1 1 1 1 1| NA
425447
8 1 1 1 1 1 1| NA
426188
0 1 1 1 1 1 1| NA
429504
3 1 1 1 1 1 119
432186
4 1 1 1 1 1 119
432909
3 1 1 1 1 1 1| g__ Agrobacterium
434424
1 1 1 1 1 1 1| g Mesorhizobium
434605
9 1 1 1 1 1 119
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Table 4b: (cont'd)

434817

2 1 1 1 1 1 1| g Rhizobium
437151

7 1 1 1 1 1 119
437688

5 1 1 1 1 1 1| g Rhizobium
437688

6 1 1 1 1 1 1| g Rhizobium
439492

2 1 1 1 1 1 119
439648

1 1 1 1 1 1 1| g Rhizobium
441214

1 1 1 1 1 1 119
442455

3 1 1 1 1 1 1| g_ Kaistia
442696

5 1 1 1 1 1 119
445557

0 1 1 1 1 1 119
447654

8 1 1 1 1 1 1| NA
57713 1 1 1 1 1 1| g_ Fimbriimonas
589483 1 1 1 1 1 1] NA
628400 1 1 1 1 1 1| NA

g__Phenylobacteriu

654155 1 1 1 1 1 1/m
792073 1 1 1 1 1 1| g__ Rhizobium
800671 1 1 1 1 1 119
993711 1 1 1 1 1 1| g__Pseudonocardia
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Table 5a: Adonis modelling results for complete microbiome

Factor pvalue F pvalue F R2 pvalue
Home 0.0028 0.823
Species 0.05961 0.043
Soil 0.07711 0.006
nod_size 0.00528 0.465

Soil Species Soil:Species
Soil*Species 0.07711 0.003 0.05961 0.02 0.15806| 0.522
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Table 5b: Adonis modelling results for abundant microbiome.

pvalu pvalu pvalu pvalu
Factor R2 e R2 e R2 e e
0.0016
Home 4] 0.953
0.0765
Species 5| 0.006
0.0560
Soil 5| 0.054
0.0056
nod_size 1] 0.496
Specie
Soil s
Soil+Specie 0.0560
s 5| 0.040 | 0.07655 | 0.004
Specie
Soil S Soil:Species
0.0560 0.1957
Soil*Species 5| 0.025 | 0.07655 | 0.002 41 0.079
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Table 5c: Adonis modelling results for rare microbiome.

R2 pvalue | R2 pvalue | R2 pvalue
Home 0.011 0.047
Soil 0.115| 0.001
Species 0.07676 | 0.001
nod_size 0.01223 | 0.032

Soil Species Soil:Species
Soil*Species 0.115| 0.001 | 0.07676 | 0.001 0.183| 0.001
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Table 6: Model statistics for neutral model of away and home samples

model

fit mci rsquared | AIC BIC Samples | Richness
away 0.69 0.078 0.918 | 1722.48 | -1713.76 120 578
home | 0.691 0.121 0.877 | -597.97 | -590.61 24 293
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Table 7.a: OTUs that were selected for or against under the neutral model for all home

samples
Se
lec | OT freq | pre
tio | U.l fre | .pre | d.l
n |D p q d wr | Taxonomy
Ne
ga 00| 04| 0.2]| 0.1

tiv | 239 | 001 | 166 | 650 | 303 | k__Bacteria; p__Proteobacteria;

e [|819| 22| 67| 74| 66| c_ Alphaproteobacteria; o Rhizobiales
Ne k__Bacteria; p__Proteobacteria;

ga 7.6 0.1 | 0.0 | c__ Deltaproteobacteria;

tiv | 279 | 9E-| 0.2 | 582 | 618 | o__Myxococcales; f _Haliangiaceae; g__;
e |206| 05 5| 84| 86|s

Ne k__Bacteria; p__Proteobacteria;

ga 436 | 4.4 0.0 | 0.0 | c__ Deltaproteobacteria;

tiv | 553 | 9E-| 0.2 | 868 | 247 | o__Myxococcales; f _Polyangiaceae;

e 3| 05 5| 23| 13|g ;s

Ne k__Bacteria; p__Proteobacteria;

ga (442 | 0.0| 04| 0.2| 0.1|c__Betaproteobacteria;

tiv | 696 | 001 | 166 | 961 | 523 | o__Methylophilales; f__Methylophilaceae;

e 5/ 35| 67| 05| 38|g ;s

k__Bacteria; p__Proteobacteria;
Ne c__Alphaproteobacteria;
ga 0.0 0.5| 0.2| 0.1| o__Caulobacterales;

tiv | 654 | 001 | 833 | 961 | 523 | f _Caulobacteraceae;

e |155| 35| 33| 05| 38| g Phenylobacterium;s

k__Bacteria; p__Bacteroidetes;

Po | 106 | 0.0| 0.7 | 0.5| 0.3 | c__Sphingobacteriia;

siti | 848 | 002 | 083 | 322 | 424 | o__Sphingobacteriales;

ve 6| 37| 33| 61| 18 |f Sphingobacteriaceae;g ;s

Po 57| 0.1] 0.1 k__Bacteria; p__Actinobacteria;

siti | 111 | 7E- | 666 | 146 | 0.0 | c__Thermoleophilia;

ve |050| 05| 67 9| 381 | o Solirubrobacterales;f ;g ;s
k__Bacteria; p__Actinobacteria;

Po| 112 | 0.0| 0.5| 0.6 | 0.4 |c__ Actinobacteria; o__Actinomycetales;
siti | 401 | 002 | 833 | 213 | 236 | f_Streptomycetaceae; g__Streptomyces;
ve 7| 82| 33| 12| 21]|s

Po| 13| 57| 0.2| 0.1
siti | 60| 7E-| 083 | 146 | 0.0
ve 77| 05| 33 9| 381 | k Bacteria;p TM7;c TM7-3
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Table 7.a: (cont'd)

k__Bacteria; p__Actinobacteria;

Po| 19| 7.0 0.1 | 0.0 | c__Actinobacteria; o__Actinomycetales;
siti | 16| 5E-| 0.2 | 435 | 535 | f__Mycobacteriaceae; g__Mycobacterium;
ve | 98| 05 5| 46 1|s
Po| 36| 0.0| 0.7| 0.7| 0.5 |k __Bacteria; p__Bacteroidetes;
siti | 01|003| 916 | 088 | 088 | c__ [Saprospirae]; o__[Saprospirales];
ve | 24| 33| 67| 73| 66 |f Chitinophagaceae;g ;s

37
Po| 98| 3.8| 0.1| 0.0| 0.0 |k __Bacteria; p__Proteobacteria;
siti | 90 | 5E- | 666 | 733 | 188 | c__Alphaproteobacteria; o__Rhizobiales;
ve 2| 05| 67| 24| 77|f Methylocystaceae;g ;s
Po| 40| 0.0 0.2| 0.2| 0.1 |k __Bacteria; p__Bacteroidetes;
siti | 07 | 001|916 | 961 | 523 | c__[Saprospirae]; o__[Saprospirales];
ve 3| 35| 67| 05| 38|f Chitinophagaceae

42 k__Bacteria; p__Proteobacteria;
Po| 95| 0.0 0.5| 0.3| 0.1 |c__Alphaproteobacteria;
siti | 04 | 001 | 833 | 425 | 866 | o__Caulobacterales;
ve 3| 54| 33| 03| 29 |f Caulobacteraceae;g ;s

43 k__Bacteria; p__Bacteroidetes;
Po| 21| 00| 04| 0.2| 0.1 |c__Sphingobacteriia;
siti | 86 | 001 | 583 | 650 | 303 | o__Sphingobacteriales;
ve 4| 22| 33| 74| 66 |f Sphingobacteriaceae;g ;s

44
Po| 08| 51 0.1 | 0.0 | k__Bacteria; p__Proteobacteria;
siti | 89| 3E-| 0.2 | 006 | 311 | c__Alphaproteobacteria; o__Rhizobiales;
ve 0| 05 5 2| 35|f Hyphomicrobiaceae;g ;s

44
Po | 24| 8.9 0.1 | 0.0 | k__Bacteria; p__Proteobacteria;
siti | 55| 7E-| 0.3 | 882 | 798 | c__Alphaproteobacteria; o__Rhizobiales;
ve 3] 05| 75| 62| 29 |f Rhizobiaceae;g Kaistia;s

44 k__Bacteria; p__Proteobacteria;
Po| 73| 0.0 0.2| 04| 0.2 |c__ Betaproteobacteria;
siti | 17| 001 | 916 | 478 | 701 | o__ Burkholderiales; f _Burkholderiaceae;
ve 8| 99| 67| 43| 87|g ;s
Po 25| 0.0 0.0| 0.0 |k__Bacteria; p__Proteobacteria;
siti | 73 | 6E- | 833 | 473 | 091 | c__ Betaproteobacteria;
ve | 46| 05| 33| 19| 75| o Burkholderiales
Po| 81| 8.3 0.1 | 0.0 | k__Bacteria; p__Actinobacteria;
siti | 51| 3E-| 0.2 | 731 | 706 | c__Actinobacteria; o__Actinomycetales;
ve 02| 05 5| 97| 69 |f Nocardioidaceae;g ;s
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Table 7.b: OTUs that were selected for or against under the neutral model for all away

samples.

OT | Abu fre | pre | pre
Ul |nda |fre |q.p |d. |du
D |nce |q red | wr | pr | Taxonomy
11 08| 0.7 09
Ne | 19| 0.0 63| 90| 13 | k__Bacteria; p__Bacteroidetes;
gat | 92| 004 | 06| 11| 27| 42| c_ Cytophagia; o__ Cytophagales;
ive 4| 63 5 6 6 9 | f Cytophagaceae;g ;s

11 0.7]| 0.6 k__Bacteria; p__Actinobacteria;
Ne | 24| 0.0 08| 22| 0.7 | c__Actinobacteria; o__Actinomycetales;
gat | 01| 003 76| 01| 82 |f__Streptomycetaceae;
ive 7| 33|05 6 1| 57| g Streptomyces;s
0.8 0.9 0.9

Ne | 13| 0.0| 58| 55| 0.9| 80 | k__Bacteria; p__Proteobacteria;

gat | 43| 006 | 33| 63| 02| 42| c_ Alphaproteobacteria; o__Rhizobiales;
ive | 59| 28 3 5| 58 3 | f Rhizobiaceae; g Agrobacterium;s
04 07]06|0.7

Ne | 20| 0.0| 83| 06| 19| 80 |k __Bacteria; p__Bacteroidetes;

gat | 47| 003 | 33| 76| 91| 78 | c__[Saprospirae]; o__[Saprospirales];
ive | 95| 32 3 8 9 9 | f Chitinophagaceae; g ;s

0.8]1 09| 0.9]| 0.9 | k__Bacteria; p__Proteobacteria;

Ne | 21| 0.0 58| 97| 64| 99 | c_ Betaproteobacteria;

gat| 07| 009 | 33| 47| 25| 82| o__ Burkholderiales;

ive | 46| 79 3 1 3 7 | f Oxalobacteraceae; g ;s

0910909
Ne | 21| 00| 58| 99| 68 k__Bacteria; p__Proteobacteria;
gat| 21| 013 | 33| 93| 85 c__Alphaproteobacteria; o__Rhizobiales;
ive | 86| 63 3 6 7 1| f_Bradyrhizobiaceae
0.9 0.9 k__Bacteria; p__Proteobacteria;
Ne | 22| 0.0| 66 68 c__Betaproteobacteria;
gat | 69| 020 | 66 98 o__ Burkholderiales;
ive | 06| 01 7 1 1 1|f Comamonadaceae;g ;s
36 0.9 0.9 k__Bacteria; p__Proteobacteria;
Ne | 11| 0.0| 33 68 c__Betaproteobacteria;
gat | 66 | 021 | 33 98 o__Rhodocyclales; f _Rhodocyclaceae;

ive 3| 82 3 1 1 1| g_ Uliginosibacterium;s
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Table 7.b: (cont'd)

37| 0.0 09|09
Ne | 46| 01 0.9| 68| 99 | k_Bacteria; p__Proteobacteria;
gat | 87| 20| 0.9| 99| 40| 99 | c_ Alphaproteobacteria; o__Rickettsiales;
ive 6 8| 25 7 2 7 | f mitochondria;g ;s

42 0.9 0.9 k__Bacteria; p__Proteobacteria;
Ne | 54| 0.0 41 68 c__Betaproteobacteria;
gat | 47| 01| 66 98 o__ Burkholderiales;
ive 8| 96 7 1 1 1| f Comamonadaceae

431 0.0 0.8 0.9 0.9
Ne | 46| 00| 16| 81| 0.9| 94 | k_ Bacteria; p__ Bacteroidetes;
gat | 05| 74| 66| 16| 38| 45| c_ Cytophagia; o__Cytophagales;
ive 9 1 7 8| 03 5|f Cytophagaceae;g ;s

44| 0.0 0.5| 0.4 | 0.6 | k__Bacteria; p__Proteobacteria;
Ne | 26| 00 86| 97| 70 | c__ Betaproteobacteria;
gat| 96| 26| 04| 93| 47| 99 | o_ Methylophilales; f __Methylophilaceae;
ive 5 4 5 3 4 8lg ;s

44 0.9| 0.9 | 0.9 | k__Bacteria; p__Proteobacteria;
Ne | 60| 0.0 96| 62| 99 | c_ Betaproteobacteria;
gat| 87| 00| 04| 71| 89| 71| o_ Methylophilales; f _Methylophilaceae;
ive 1] 95 5 6 8 8|9 ;s

0.0/ 09| 09| 09| 0.9 | k__Bacteria; p__Proteobacteria;

Ne | 58| 00| 41| 97| 63| 99| c__ Betaproteobacteria;
gat| 94| 97| 66| 26| 87| 79| o__ Burkholderiales;
ive | 83 1 7 1 4 9 | f Comamonadaceae

10 0.0|0.0]0.0]0.0
Po | 13| 1.7 91| 32| 12| 81| k__Bacteria; p__Bacteroidetes;
siti | 95| 9E | 66| 42| 52| 33 |c__[Saprospirae]; o__[Saprospirales];
ve 4| -05 7 5 6 2 | f Chitinophagaceae; g ;s

0.0| 0.8| 0.7 0.6 | 0.7 | k__Bacteria; p__Proteobacteria;

Po | 10| 00| 58| 20| 34| 93 | c__ Alphaproteobacteria; o __Rhizobiales;
siti | 21| 34| 33| 55| 38| 03 |f_Rhizobiaceae; g__ Rhizobium;
ve | 42 1 3 1 2 6 | s_ leguminosarum

10| 0.0 0.7 | 0.6 | 0.5| 0.6 | k__Bacteria; p__Bacteroidetes;
Po | 68| 00| 16| 11| 22| 94 | c_ Sphingobacteriia;
siti | 48| 27| 66| 60| 23| 05| o__ Sphingobacteriales;
ve 6 7 7 7 6 4 | f Sphingobacteriaceae; g ;s
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Table 7.b: (cont'd)

10 0.0] 00| 0.0
Po| 72| 89| 58| 15| 04| 0.0 | k__Bacteria; p__Bacteroidetes;
siti | 35| 7E-| 33| 78| 20| 57 |c__Sphingobacteriia;
ve 2| 06 3 2 5 4 | o Sphingobacteriales;f ;g ;s
10 00| 0.0] 01
Po| 76| 3.2 60| 29| 17 | k__Bacteria; p__Bacteroidetes;
siti | 40| 1E-| 01| 15| 75| 83 |c__ [Saprospirae]; o__[Saprospirales];
ve 5] 05| 25 2 3 9 | f Chitinophagaceae;g ;s
10 0.1] 0.0 0.1 | k__Bacteria; p__Proteobacteria;
Po| 78| 29| 33| 54| 0.0 11 |c__Gammaproteobacteria;
siti | 36 | 5E-| 33| 97| 26| 23 |o__ Xanthomonadales;
ve 2| 05 3 8| 33 4 | f Xanthomonadaceae;g ;s
11 0.2 0.0 0.0| 0.1
Po| 06| 3.9| 08| 76| 40| 37 | k__Bacteria; p__Armatimonadetes;
siti | 41| 7E-| 33| 00| 66| 64| c__ Armatimonadia;o_ FW68;f ;g ;
ve 1] 05 3 3 4 6|s
00| 0.0] 01
Po| 11| 3.5 68| 35| 27 | k__Bacteria; p__Actinobacteria;
siti | 10| 9E-| 0.1| 01| 09| 74 |c__Thermoleophilia;
ve | 50| 05| 75 8 4 1| o Solirubrobacterales;f ;g ;s
11 00| 0.0| 0.0
Po| 18| 1.9 34| 13| 84 | k_Bacteria; p__Proteobacteria;
siti | 08 | 2E- 86| 91| 68 |c__Alphaproteobacteria; o__Rhizobiales;
ve 9| 05| 0.1 9 3 2 | f Hyphomicrobiaceae; g Devosia; s
11 0.1 | 0.0 | 0.1 | k__Bacteria; p__Actinobacteria;
Po| 19| 6.2 26| 78| 97 | c__Thermoleophilia;
siti | 03| 8E-| 0.2 12| 11| 33| o__ Solirubrobacterales;
ve 11 05| 75 5 2 2 | f Solirubrobacteraceae; g ;s
0.1 0.0 0.0| 0.1
Po| 11| 43| 83| 84| 46| 47
siti | 34| 6E-| 33| 10| 44| 55 |k__Bacteria;p__ TM7;c__ TM7-3;0__;
ve | 05| 05 3 3 8 9/f ;9 ;s
11 00| 0.0| 0.0
Po| 37| 24 44 | 19| 97 | k__Bacteria; p__Bacteroidetes;
siti | 88 | 4E- 80| 84| 99 |c_ Cytophagia; o Cytophagales;
ve 8| 05| 0.1 2 7 7 | f Cytophagaceae;g ;s
00| 0.0| 0.0
Po| 11| 16| 83| 29| 11| 0.0 | k__Bacteria; p__Actinobacteria;
siti | 62| 7E-| 33| 99| 18| 77 |c__Actinobacteria; o__Actinomycetales;
ve 2| 05 3 8 3| 97 |f Frankiaceae;g ;s
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Table 7.b: (cont'd)

k__Bacteria; p__Actinobacteria;

0.0| 0.0 | 0.0 | c__Actinobacteria;
Po| 12| 1.7 32| 12| 81| o__Actinomycetales;
siti | 93 | 9E- 42 | 52| 33 |f__Pseudonocardiaceae;
ve 41 05| 0.1 5 6 2 | g Pseudonocardia; s
0.3 0.1] 0.1 0.2 | k__Bacteria; p__Proteobacteria;
Po| 14| 76| 08| 58| 03| 34| c_ Betaproteobacteria;
siti | 47 |9E-| 33| 28| 72| 03| o__Burkholderiales;
ve | 40| 05 3 1 7 4 | f Comamonadaceae;g ;s
0.0 0.0] 01
Po| 15| 5.0 97| 56 | 64 | k_ Bacteria; p__Proteobacteria;
siti| 03| 0E-| 0.2 | 84| 52| 10| c__Alphaproteobacteria;
ve | 28| 05| 25 1 3 8 | o Rhizobiales; f Rhizobiaceae
15 0.1 0.0 | 0.2 | k__Bacteria; p__Actinobacteria;
Po| 46| 7.0 43| 91| 17 | c__Actinobacteria;
siti | 87 |B5E-| 0.2 | 54 | 86| 33| o__ Actinomycetales;
ve 9| 05| 75 4 6 7 | f Micromonosporaceae; g ;s
k__Bacteria; p__Proteobacteria;
15 0.1 0.0 0.1 | c__Alphaproteobacteria;
Po| 83| 29| 41| 54| 0.0| 11| o__ Sphingomonadales;
siti| 20 | 5E-| 66| 97| 26| 23 |f_Sphingomonadaceae;
ve 4| 05 7 8| 33 4 | g Sphingomonas
18 02/ 01]01|0.2
Po| 07| 75| 83| 55| 01| 30|k __Bacteria; p__ Bacteroidetes;
siti| 56 | 6E-| 33| 31| 32| 69 | c_ [Saprospirae]; o__[Saprospirales];
ve 11 05 3 9 8 3 | f _Chitinophagaceae; g ;s
k__Bacteria; p__Actinobacteria;
0.3 0.1] 0.1 c__Actinobacteria;
Po| 19| 82| 41| 70| 13| 0.2 | o__Actinomycetales;
siti| 16 | 1E-| 66 | 19| 45| 47 |f__Mycobacteriaceae;
ve | 98| 05 7 6 3 4 | g Mycobacterium;s
k__Bacteria; p__Proteobacteria;
0.0 0.0 c__Alphaproteobacteria;
Po| 21| 1.6 29| 11| 0.0 | o__Rhizobiales;
siti | 54 | 7E- 99| 18| 77 |f__Hyphomicrobiaceae;
ve | 23| 05| 01 8 3| 97 | g Rhodoplanes;s
0.0 0.9| 0.8 | 0.9 | k__Bacteria; p__Proteobacteria;
Po| 22| 00 30| 70| 63| c__Alphaproteobacteria;
siti| 71| 56| 09| 60| 54| 95| o_ Rhizobiales; f _Rhizobiaceae;
ve | 91 5| 75 6 2 7 | g Rhizobium; s leguminosarum
0.0 0.2 0.3
Po| 23| 00 83| 0.2 | 70| k__Bacteria; p__Proteobacteria;
siti| 98| 121 04| 66| 10| 04| c__ Alphaproteobacteria;
ve | 19 9| 75 4 7 9 | o Rhizobiales
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Table 7.b: (cont'd)

P 1.1 0.0 k__Bacteria; p__Bacteroidetes;

0s 15| 66 0.00 | 0.06 | c__[Saprospirae];

iti | 243 | E-| 66| 0.020 | 629 | 435 | o__ [Saprospirales];

ve | 118 | 05| 7| 453 8 7 | f Chitinophagaceae;g ;s

P 1.10.0 k__Bacteria; p__Proteobacteria;

os | 256 | 15| 66 0.00 | 0.06 | c__Betaproteobacteria;

iti | 866 | E-| 66 | 0.020 | 629 | 435 | o__Rhodocyclales;

ve 3] 05| 7| 453 8 7 | f Rhodocyclaceae;g ;s

P 0. k__Bacteria; p__Proteobacteria;

os | 267 | 00 0.91 | c__Alphaproteobacteria;

iti | 575| 04| 0.9| 0.860 | 0.78 | 166 | o__Rhizobiales; f _Rhizobiaceae;

ve 2| 6 5 893 | 773 6 | g Rhizobium; s leguminosarum
k__Bacteria; p__Proteobacteria;

P 1.10.0 c__ Alphaproteobacteria;

0s 28 | 83 0.00 | 0.06 | o__Rhizobiales;

iti | 273 | E-| 33|0.022| 743 | 779 | f__Hyphomicrobiaceae;

ve | 185| 05| 3 814 9 2| g Devosia;s

P 0.10.9

0s 00 | 91 0.91 | 0.98 | k__Bacteria; p__Proteobacteria;

iti | 275| 06| 66 | 0.962 | 135 | 438 | c__Alphaproteobacteria;

ve | 052 | 5| 7 207 2 8 | o Rhizobiales; f Rhizobiaceae

P 4. k__Bacteria; p__Proteobacteria;

0s 10 0.04 | 0.14 | c__Deltaproteobacteria;

iti | 279 | E-|0.1|0.078| 256 | 094 | o__Myxococcales;

ve | 206 | 05| 75 69 9 9 | f Haliangiaceae;g ;s
k__Bacteria; p__Proteobacteria;

P 1.1 0.0 c__ Betaproteobacteria;

0s 79| 83 0.01 | 0.08 | o__Burkholderiales;

iti | 287 | E-| 33|0.032| 252 | 133 | f__Burkholderiaceae;

ve | 547 | 05| 3| 425 6 2 | g Burkholderia;s

P 2.101

os | 298| 69| 16 0.02 | 0.10

iti | 401 | E-| 66| 0.049| 302 | 462 | k__Bacteria; p__Chloroflexi;

ve 4|1 05| 7 86 5 1]c_ TK10;0 B07 WMSP1

P 5.10.2

0s 51| 58 0.06 | 0.17

iti | 324 | E-| 33| 0.109| 494 | 737 | k__Bacteria; p__Proteobacteria;

ve | 252 | 05| 3 033 3 8 | ¢ Betaproteobacteria

P | 37 0.1]0.0 k__Bacteria; p__Proteobacteria;

os | 981|244 | 33| 44| 0.01| 0.09 | c__Alphaproteobacteria;

iti | 90 E-| 33| 80| 984 | 799 | o__ Rhizobiales;

ve| 2| 05| 3| 2 7 7 | f Methylocystaceae; g ;s
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Table 7.b: (cont'd)

0.2 00| 00| 01
Po| 40| 43| 08| 84| 46| 47 | k__Bacteria; p__ Bacteroidetes;

siti | 07| 6E-| 33| 10| 44| 55| c__[Saprospirae]; o__[Saprospirales];
ve 3] 05 3 3 8 9 | f Chitinophagaceae

41 0.0 00| 0.0 0.0
Po| 78| 19| 91| 34| 13| 84 | k_Bacteria; p__Acidobacteria;

siti | 57 | 2E-| 66| 86| 91| 68 | c__Solibacteres; o Solibacterales;
ve 5| 05 7 9 3 2 | f Solibacteraceae; g ;s

42 0.0| 0.0 | 0.1 | k__Bacteria; p__Proteobacteria;
Po| 61| 4.3 84| 46| 47 | c__Alphaproteobacteria;
siti | 88| 6E-| 0.2| 10| 44| 55| o__ Sphingomonadales;
ve 0] 05| 25 3 8 9 | f Sphingomonadaceae

42 | 0.0 0.3] 0.2 k__Bacteria; p__Proteobacteria;
Po| 95| 00 20| 44| 0.4 | c_ Alphaproteobacteria;
siti | 04| 14 86| 01| 08| o__ Caulobacterales;

ve 3 5] 0.5 1 5| 82|f Caulobacteraceae;g_ ;s

k__Bacteria; p__Actinobacteria;
43 0.0| 0.0| 0.0| 0.0 | c__Actinobacteria;

Po| 03| 11| 66| 20| 06| 64 | o__ Actinomycetales;

siti | 16 | 5E-| 66| 45| 29| 35 |f_Nocardioidaceae;

ve 1] 05 7 3 8 7 | g_ Propionicimonas;s

43 0.0 0.0| 0.0
Po| 03| 2.3 42 | 18| 94 | k__Bacteria; p__Bacteroidetes;
siti | 53 | 1E- 29| 30| 67 |c__Cytophagia; o__Cytophagales;
ve 0] 05| 0.1 6 9 8 | f Cytophagaceae;g ;s

43 0.1] 0.0| 0.0 | 0.1 | k__Bacteria; p__Actinobacteria;

Po| 14| 28| 41| 52| 24| 07 | c__Acidimicrobiia;
siti | 39| 2E-| 66| 41| 66| 92| o__ Acidimicrobiales; f EB1017;g_ ;
ve 1] 05 7 2 2 9s

43 05| 04| 0.3 k__Bacteria; p__Bacteroidetes;
Po| 21| 0.0| 33| 27| 42| 0.5 | c__Sphingobacteriia;

siti| 86| 00| 33| 19| 30| 16 | o__ Sphingobacteriales;

ve 4|1 19 3 9 6| 61|f Sphingobacteriaceae;g ;s

43 0.1] 0.0 0.0 | k__Bacteria; p__Bacteroidetes;
Po| 27| 20| 08| 37| 0.0| 88 |c__Sphingobacteriia;

siti | 90| 5E-| 33| 32| 15| 02| o__ Sphingobacteriales;

ve 6| 05 3 9| 34 2 | f Sphingobacteriaceae; g ;s

43 0.0 | 0.1 | k__Bacteria; p__Proteobacteria;
Po| 29| 4.2 0.0| 44| 44 | c__ Alphaproteobacteria;

siti| 09| 3E-| 0.1| 81| 49| 25| 0__ Rhizobiales; f Rhizobiaceae;
ve 3| 05| 75| 39 8 3 | g Agrobacterium;s
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Table 7.b: (cont'd)

43 0.1] 0.0 | 0.1 | k__Bacteria; p__Proteobacteria;
Po| 44| 6.2 26| 78| 97 | c__Alphaproteobacteria;
siti | 24 |8E-| 0.2 | 12| 11| 33| o__Rhizobiales; f _Phyllobacteriaceae;
ve 1] 05| 25 5 2 2 | g_ Mesorhizobium;s
43 0.1] 0.0 k__Bacteria; p__Proteobacteria;
Po| 48| 5.6 11| 67| 0.1 | c__Alphaproteobacteria;
siti | 17 | 4E- 85| 09| 80| o_ Rhizobiales;f Rhizobiaceae;
ve 2| 05] 0.3 7 4 7 | g_ Rhizobium; s leguminosarum
43 0.0| 0.0 | 0.1 | k__Bacteria; p__Proteobacteria;
Po| 65| 5.0 97| 56 | 64 | c__ Deltaproteobacteria;
siti| 53 |0OE-| 0.2 | 84 | 52| 10| o__ Myxococcales; f _Polyangiaceae;
ve 3] 05| 25 1 3 8/g ;s
43100/ 0403|0304
Po| 71| 00| 91| 91| 08| 80|k __Bacteria; p__ Proteobacteria;
siti| 51| 17| 66| 29| 64| 68 | c_ Deltaproteobacteria;
ve 7 4 7 6 6 9 | o _Myxococcales;f ;g ;s
43 0.0 0.1 | k__Bacteria; p__Proteobacteria;
Po| 76 | 2.9 54| 0.0 | 11| c__Alphaproteobacteria;
siti| 88 |5E-| 0.1 | 97| 26| 23| o__ Rhizobiales; f _Rhizobiaceae;
ve 5| 05| 75 8| 33 4 | g Rhizobium; s leguminosarum
43 0.2 0.0 | 0.0 | 0.1 | k__Bacteria; p__Proteobacteria;
Po| 76 | 50| 58| 97| 56| 64 | c__Alphaproteobacteria;
siti| 88 |0OE-| 33| 84| 52| 10| o__Rhizobiales; f _Rhizobiaceae;
ve 6| 05 3 1 3 8 | g Rhizobium; s leguminosarum
43 0.0/ 0.0 0.0
Po| 90| 89| 58| 15| 04| 0.0 | k__Bacteria; p__Bacteroidetes;
siti| 89| 7E-| 33| 78| 20| 57 | c__[Saprospirae]; o__[Saprospirales];
ve 1] 06 3 2 5 4 | f Chitinophagaceae;g ;s
43 0.1] 0.0 k__Bacteria; p__Bacteroidetes;
Po| 91| 5.6 11| 67| 0.1 | c__Sphingobacteriia;
siti| 31|4E-| 0.2| 85| 09| 80 | o__ Sphingobacteriales;
ve 8| 05 5 7 4 7 | f _Sphingobacteriaceae; g ;s
43 0.1 0.1
Po| 94| 51 00| 0.0 | 67 | k__Bacteria; p__Proteobacteria;
siti | 92 | 3E-| 0.2 | 62| 58| 42 | c_ Betaproteobacteria; o___Ellin6067;
ve 2| 05| 25 3 6 3|f ;9 ;s
43 0.3 0.1 0.0 | 0.2 | k__Bacteria; p__Proteobacteria;
Po| 96| 6.5 08| 31| 82| 03| c__Alphaproteobacteria;
siti | 48 |4E-| 33| 89| 63| 99| o_ Rhizobiales; f Rhizobiaceae;
ve 1] 05 3 7 5 5| g Rhizobium; s leguminosarum
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44 0.0/ 0.0 0.0
Po| 00| 2.4 44 | 19| 97 | k__Bacteria; p__Bacteroidetes;
siti| 32| 4E| 0.1 80| 84| 99 | c_ Sphingobacteriia;
ve 8|-05| 25 2 7 7 | o Sphingobacteriales;f ;g ;s
44 0.2 0.0| 0.0 | 0.1 | k__Bacteria; p__Proteobacteria;
Po| 08| 48| 16| 95| 54| 60 | c__ Alphaproteobacteria;
siti| 89| 7TE| 66| 07| 46| 79 | o_ Rhizobiales;
ve 0] -05 7 1 7 5| f Hyphomicrobiaceae;g ;s
441 0.0 03] 0.2 0.2 | k__Bacteria; p__Proteobacteria;
Po| 12| 00| 58| 15| 0.1| 97 | c_ Gammaproteobacteria;
siti| 14| 10| 33| 67| 51| 46 | o Xanthomonadales;
ve 1 1 3 3| 52 4 | f Xanthomonadaceae;g ;s
44 011 0.0|0.0]| 0.0
Po| 17| 21| 08| 39| 16| 91| k__Bacteria; p__ Proteobacteria;
siti| 47| 8E| 33| 80| 80| 35| c__Alphaproteobacteria;
ve 51| -05 3 5 6 3 | o Rhizobiales;f ;g ;s
k__Bacteria; p__Proteobacteria;
44 0.1] 0.0 0.1 | c__Alphaproteobacteria;
Po| 18| 25| 16| 47| 0.0| 01| o__ Sphingomonadales;
siti| 69| 6E| 66| 32| 21| 31 |f__Sphingomonadaceae;
ve 51 -05 7 4| 42 1| g Sphingomonas
441 0.0 04| 0.2 0.2 | k__Bacteria; p__Proteobacteria;
Po| 24| 00| 66| 15| 0.1| 97 | c_ Alphaproteobacteria;
siti| 55| 10| 66| 67| 51| 46 | o__ Rhizobiales; f _Rhizobiaceae;
ve 3 1 7 3| 52 4 | g Kaistia;s
k__Bacteria; p__Proteobacteria;
44 0.1] 0.0 0.0 | c__Alphaproteobacteria;
Po| 27| 20| 16| 37| 0.0| 88| o__ Rhizobiales;
siti| 86| 5E| 66| 32| 15| 02 | f__Hyphomicrobiaceae;
ve 1] -05 7 9| 34 2 | g Rhodoplanes; s elegans
44 0.0 | 0.0 | 0.0 | k__Bacteria; p__Proteobacteria;
Po| 29|15 27| 09| 74 | c__Alphaproteobacteria;
siti | 88| 4E 58 | 88| 59 | o_ Rhizobiales; f _Bradyrhizobiaceae;
ve 4|-05| 0.1 6 5 5|9 ;s
44 0.0 | 0.0 | 0.0 | k__Bacteria; p__Acidobacteria;
Po| 30| 1.9 34| 13| 84 | c__ Acidobacteriia;
siti| 56 | 2E| 0.1 86| 91| 68 | o__ Acidobacteriales;
ve 8| -05| 25 9 3 2 | f Acidobacteriaceae; g ;s
44 011 0.0|0.0]| 0.0
Po| 34| 23| 16| 42| 18| 94 | k_ Bacteria; p__Acidobacteria;
siti| 88| 1E| 66| 29| 30| 67 |c__Sva0725;0_ Sva0725;f ;g ;
ve 91 -05 7 6 9 8|s
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Table 7.b: (cont'd)

44 0.0 0.0
Po| 45| 2.0 37| 0.0| 88| k__Bacteria; p__Bacteroidetes;
siti | 43| 5E 32| 15| 02 | c__ [Saprospirae]; o__[Saprospirales];
ve 21-05]| 0.1 9| 34 2 | f Chitinophagaceae;g ;s
k__Bacteria; p__Proteobacteria;
44 0.0| 0.0 | 0.0 | c__Betaproteobacteria;
Po| 56| 2.4 44 | 19| 97 | o_ Burkholderiales;
siti | 11| 4E 80| 84| 99 |f_Comamonadaceae; g__ Rhodoferax;
ve 3|-05| 0.1 2 7 7|s
44 0.0 0.0 | 0.0 | 0.0 | k__Bacteria; p__Actinobacteria;
Po| 58| 19| 91| 34| 13| 84| c__Actinobacteria;
siti| 21| 2E| 66| 86| 91| 68 | 0o__ Actinomycetales;
ve 4| -05 7 9 3 2 | f Nocardioidaceae; g ;s
44 0.0 0.0 | 0.0 | 0.0 | k__Bacteria; p__Actinobacteria;
Po| 63| 1.7| 83| 32| 12| 81 | c__ Actinobacteria;
siti| 76 | 9| 33| 42| 52| 33| o__Actinomycetales;
ve 7| -05 3 5 6 2 | f Nocardioidaceae; g ;s
k__Bacteria; p__Proteobacteria;
44 0.0/ 00| 0.0 c__Alphaproteobacteria;
Po| 65| 89| 58| 15| 04| 0.0 | o__Sphingomonadales;
siti| 15| 7TE| 33| 78| 20| 57 |f__Sphingomonadaceae;
ve 8| -06 3 2 5 4 | g_ Kaistobacter; s
44 0.0] 0.0 0.0 k__Bacteria; p__Proteobacteria;
Po| 65| 89| 58| 15| 04| 0.0 | c__ Alphaproteobacteria;
siti| 43| 7TE| 33| 78| 20| 57 | o__Rhizobiales; f _Methylocystaceae;
ve 1] -06 3 2 5 419 ;s
44 0.1] 0.0 | 0.0| 0.0 | k__Bacteria; p__Proteobacteria;
Po| 76| 21| 08| 39| 16| 91| c__ Alphaproteobacteria;
siti| 08| 8E| 33| 80| 80| 35| o__ Caulobacterales;
ve 91| -05 3 5 6 3 | f Caulobacteraceae;g ;s
44 | 0.0 0.2/ 0103
Po| 76| 00 55| 86| 40 | k__Bacteria; p__Proteobacteria;
siti| 54| 11| 04| 75| 11| 54 | c_ Alphaproteobacteria;
ve 8 8 5 5 9 3 | o__Rhizobiales; f Phyllobacteriaceae
44 0.1 0.0 0.0| 0.1
Po| 78| 47| 91| 92| 52| 57| k__Bacteria; p__ Bacteroidetes;
siti| 41| 4E| 66| 31| 43| 48 | c_ [Saprospirae]; o__[Saprospirales];
ve 3| -05 7 1 1 4 | f Chitinophagaceae; g ;s
44 0.1] 0.0 | 0.0| 0.0 | k__Bacteria; p__Proteobacteria;
Po| 80| 23| 08| 42| 18| 94 | c_ Alphaproteobacteria;
siti| 02| 1E| 33| 29| 30| 67| o__ Sphingomonadales;
ve 2| -05 3 6 9 8 | f Sphingomonadaceae
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Table 7.b: (cont'd)

Po
siti
ve

49
43
67

1.0
3E-
05

0.0
66
66

7

0.0
18
10

0.0
05
21

k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria;
o Rhizobiales; f Rhizobiaceae

Po
siti
ve

54
34
57

15
AE-
05

0.0
91
66

7

0.0
27
58

0.0
09
88

k__Bacteria; p__Bacteroidetes;
c__Cytophagia; o__Cytophagales;
f Cytophagaceae;g ;s

Po
siti
ve

56
74
86

1.9
2E-
05

0.1
16
66

7

0.0
34
86

0.0
13
91

k__Bacteria; p__Proteobacteria;
c__Gammaproteobacteria;

o__ Xanthomonadales;

f _Xanthomonadaceae;

g__ Dokdonella; s

Po
siti
ve

o7
71
3

15
4E-
05

0.0
91
66

7

0.0
27
58

0.0
09
88

k__Bacteria; p__Armatimonadetes;
c__[Fimbriimonadia];
o__[Fimbriimonadales];
f__[Fimbriimonadaceae];

g_ Fimbriimonas;s

Po
siti
ve

61
04
18

8.9
TE-
06

0.0
58
33

3

0.0
15
78

0.0
04
20

k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria;
o__Rhizobiales;
f__Hyphomicrobiaceae;

g_ Rhodoplanes; s

Po
siti
ve

62
84
00

6.0
3E-
05

0.2
91
66

7

0.1
20
38

0.0
73
65

k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria;
o Rhizobiales; f Rhizobiaceae

Po
siti
ve

65
41
55

0.0
00
22

8

0.5
13
09

0.4
24
65

k__Bacteria; p__Proteobacteria;
c__Alphaproteobacteria;
o__Caulobacterales;

f _Caulobacteraceae;

g__ Phenylobacterium;s

Po
siti
ve

65
68
9

7.5
6E-
05

0.1
95
31

0.1
01
32

k__Bacteria; p__ Chloroflexi;
c__ Chloroflexi; o__[Roseiflexales];
f [Kouleothrixaceae]; g ;s

Po
siti
ve

66
68
83

3.7
2E-
05

0.0
70
66

0.0
36
92

k__Bacteria; p__Proteobacteria;
c__Deltaproteobacteria;

o__ Bdellovibrionales;
f__Bdellovibrionaceae; g__Bdellovibrio;
)
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Table 7.b: (cont'd)

0.0 0.1 | 0.3 | k__Bacteria; p__Proteobacteria;
Po| 76 | 00 0.2| 56| 04 | c_ Betaproteobacteria;
siti| 71| 10 03| 21| 75| 11| o__ Burkholderiales;
ve | 42 4| 25| 81 9 8 | f Comamonadaceae
0.8 | 0.7 0.7 | 0.8 | k__Bacteria; p__Proteobacteria;
Po| 79| 00| 91| 87| 05| 50| c__Alphaproteobacteria; o__Rhizobiales;
siti| 20| 00| 66| 17| 63| 90 |f__Rhizobiaceae; g__ Rhizobium;
ve | 73| 39 7 8 4 6 | s leguminosarum
0.2| 0.1 0.1
Po| 80| 53| 58| 06| 0.0| 74 | k__Bacteria; p__Actinobacteria;
siti | 06 | 8E| 33| 21| 62| 05| c__ Acidimicrobiia; o__Acidimicrobiales;
ve | 71| -05 3 9| 81 8|f C111;g ;s
0.0 0.0| 0.1
Po| 81| 4.3 84 | 46 | 47 | k__Bacteria; p__Actinobacteria;
siti| 51| 6E| 0.1 | 10| 44| 55| c__Actinobacteria; o__Actinomycetales;
ve | 02]-05] 75 3 8 9 | f Nocardioidaceae; g ;s
0.0 0.0| 0.1
Po | 81| 3.7 70| 36| 31| k__Bacteria; p__ Proteobacteria;
siti | 77| 2E| 01| 66| 92| 04 | c_ Deltaproteobacteria;
ve | 14| -05 5 6 6 2 | o Myxococcales;f ;g ;s
00| 0.0]0.0]| 0.0
Po| 86| 15| 83| 27| 09| 74 | k__Bacteria; p__ Bacteroidetes;
siti| 95| 4E| 33| 58| 88| 59 | c__ Sphingobacteriia;
ve | 13| -05 3 6 5 5 | o Sphingobacteriales;f ;g ;s
0.3 0.1| 0.1 0.2 | k__Bacteria; p__Actinobacteria;
Po | 99| 87| 41| 82| 23| 60| c__Actinobacteria; o__Actinomycetales;
siti | 37| 2E| 66| 21| 37| 76 |f_Pseudonocardiaceae;
ve | 11| -05 7 2 2 7 | g Pseudonocardia; s
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APPENDIX 2: List of figures

LY 7

- ‘l‘\\h'“;

Figure 1: Trifolium species used in this study.
A) Trifolium bifidum, B) Trifolium barbigerum, C)Trifolium macraei, D) Trifolium
microdon, E)Trifolium fucatum, F) Trifolium wormskioldii
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Figure 2a: Distribution of reads across samples — Basic.

This graph represents the distribution of reads across all 144 samples. X axis has the
sample names and Y axis show the total number of reads.
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Figure 2b: Distribution of reads: Coloured.
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This graph represents the distribution of reads across all 144 samples, coloured by the
different growing combinations. X axis has the sample names and Y axis show the total

number of reads.
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b)

NOHIT;Other

None;Other

k__ Bacteria; p__ AD3

k__ Bacteria; p_ Acidobacteria
k_Bacteria; p_ Actinobacteria
k__Bacteria; p__Armatimonadetes
k__Bacteria; p__Bacteroidetes

! k__Bacteria; p_ Chlamydiae
k__Bacteria; p__Chlorobi
k__Bacteria; p__Chloroflexi

k_ Bacteria; p_ Cyanobacteria
k__ Bacteria; p__Elusimicrobia
k__Bacteria; p_ FBP

k_ Bacteria; p_ Firmicutes
k__Bacteria; p__Fusobacteria
k__Bacteria; p_ Gemmatimonadetes
k__Bacteria; p__Nitrospirae

k_ Bacteria; p_ OP3

k__ Bacteria; p__Planctomycetes
k__Bacteria; p__Proteobacteria
k_Bacteria; p_ Spirochaetes

k_ Bacteria; p_TM7
k__Bacteria; p__Verrucomicrobia
k_ Bacteria; p_ [Thermil]

Figure 3a: Individual phyla contributions: Unfiltered OTU table
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This graph represents the distribution of different phyla across the 144 samples.
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I k__Bacteria;p__Firmicutes
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Figure 3b: Individual phyla contributions: Complete filtered OTU table.

This graph represents the distribution of different phyla across the 144 samples. Table
is filtered to remove bad taxonomic assignments.
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k__Bacteria; p__AD3

k__Bacteria; p__Acidobacteria
k__Bacteria; p__Actinobacteria
k__Bacteria; p_ Armatimonadetes
k__Bacteria; p__ Bactercidetes
k__Bacteria; p_ Chlamydiae
k__Bacteria; p__Chlorobi
k__Bacteria; p__Chloroflexi
k__Bacteria; p__Cyanobacteria

k_ Bacteria; p__Elusimicrobia
k__Bacteria; p_ FBP
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k_ Bacteria; p_ Nitrospirae
k__Bacteria; p__ OP3
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k__Bacteria; p_ Proteobacteria
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L e e A I I

Figure 3c: Individual phyla contributions: Rare OTU table.
This graph represents the distribution of different phyla across the 144 samples. Table

is filtered to remove bad taxonomic assignments and OTUs belonging to the
“Rhizobiales” group.
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Distribution of all OTU phyla-Complete microbiome
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Figure 4a: Top five phyla contributions: Complete OTU table.

This graph represents how many OTUs are present in high frequency across samples.
Here the image shows that the order Proteobacteria is not only the dominant order
present in high abundance but also in high frequency across samples. Log scale along
x axis is log10
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Figure 4b: Top five phyla contributions: Rare OTU table.

This graph represents how many OTUs are present in high frequency across samples.
Here the image shows that no single phylum is present in all samples. Thus the
abundance within the rare microbiome is more variable. The order Proteobacteria and
Bacteriodetes is not only the dominant order present in high abundance but also in high
frequency across samples. Log scale along x axis is log10
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Distribution of all OTU phyla—Rhizobiales microbiome
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Figure 4c: Top five phyla contributions: Abundant OTU table.

This graph represents how many OTUs are present in high frequency across samples
for the abundant (Rhizobiales) OTU table. Log scale along x axis is log10
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Figure 5a: Number of OTUs identified as core within at least 2 home samples.
The plot is built using presence absence data from OTUs present in at least 2 of the 4
native samples. Blue bars on the left indicate number of OTUs identified as core in the

corresponding sample while the black histogram bars indicate number of intersecting
OTUs.
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Figure 5b: Number of OTUs identified as core within at least 3 home samples.

The plot is built using presence absence data from OTUs present in at least 3 of the 4
native samples. Blue bars on the left indicate number of OTUs identified as core in the
corresponding sample while the black histogram bars indicate number of intersecting

OTUs.
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Figure 5¢: Number of OTUs identified as core within at least 2 home samples and an

abundance threshold of 0.00001%.

Blue bars on the left indicate size of the library while the black histogram bars indicate
number of intersecting OTUs. Abundance threshold: the above mentioned threshold
was used as this seemed to be the faint cut off between abundance vs presence. Any
higher abundance and | select only OTUs belonging to Rhizobiales and there isn’t a

comparison.
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Figure 5d: Number of OTUs identified as core within at least 3 home samples and an

5 1

40 20

Set Size

abundance threshold of 0.00001%.

Blue bars on the left indicate size of the library while the black histogram bars indicate
number of intersecting OTUs.
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Figure 6a: Rarefaction at 160reads/ sample using the complete OTU table.

This figure shows rarefaction curves for species richness when all home samples are
subsampled to 160 sequences each. Metric for species richness is Observed species
and rarefaction curves are colored by a)“Soil” followed by b)“Species” c) legend for the

colored rarefaction curves.
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Figure 6b: Rarefaction at 500 reads/ sample using the complete OTU table.

This figure shows rarefaction curves for species richness when all home samples are
subsampled to 500 sequences each. Metric for species richness is Observed species
and rarefaction curves are colored by a) “Soil” followed by b) “Species” c) legend for the
colored rarefaction curves.
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Figure 6¢: Rarefaction at 160 reads/ sample using the rare OTU table.

This figure shows rarefaction curves for species richness when all home samples are
subsampled to 160 sequences each. Metric for species richness is Observed species
and rarefaction curves are colored by a) “Soil” followed by b) “Species” c) legend for the
colored rarefaction curves.
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Figure 6d: Rarefaction at 500 reads/ sample using the rare OTU table.

This figure shows rarefaction curves for species richness when all home samples are
subsampled to 500 sequences each. Metric for species richness is Observed species
and rarefaction curves are colored by a) “Soil” followed by b) “Species” c) legend for the
colored rarefaction curves. Both graphs show incomplete rarefaction curves indicating
that these samples did not have sufficient read depth to rarefy to 500 reads/ sample.
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Figure 7a.i: PCoA ordination using the complete filtered OTU table

This graph a principal coordinate analysis performed using the complete OTU table
rarefied and normalized to 6500 reads/ sample (586 OTUs detected). Samples are
coloured by Soil factor and shaped by Species factor to represent all the combinations
used in the study. Samples group along a single, dominant axis. One possible reason
this could happen in the abundance of the OTUs belonging to the Rhizobiales category
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Figure 7a.ii) Scree plot for the PCoA ordination using the complete OTU table.

Notice large eigenvalue first axis is also seen in the scree plot, indicating that one
dominant factor is driving the relationship.
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Figure 7b.i: PCoA ordination using the rare OTU table

Rare table was rarefied and then normalized to 163 reads/ sample (513 OTUs
identified). Removing the abundant taxa also removes the grouping along a single axis.
However, there still seems to be an overall clustering by the Soil factor. Samples are
coloured by Soil factor and shaped by Species factor to represent all the combinations
used in the study.
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Figure 7b.ii: ) Scree plot for the PCoA ordination using the rare OTU table
Removing the dominant taxa also removes the single dominant eigen value we see in

the complete OTU PCoA plot. This could indicate that a single factor is pushing the
grouping that we see earlier.
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Figure 7c.i PCoA ordination using the abundant OTU table (comprising of 75 OTUs)

Rhizobiales OTU table was rarefied and then normalized to 6250 reads/sample.

Samples tend to group towards the left half go the ordination, similar to the complete
OUT .table.
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Figure7c.ii: ) Scree plot for the PCoA ordination using the abundant OTUtable.
Samples again have the large single dominant axis also seen when looking at the scree

plot for complete OTU table, which is absent in the rare microbiome table. This indicates
that samples grouping along a single axis are driven by the dominant taxa.
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Figure 8a: NMDS plot performed on the complete OTU table.
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Samples are represented on the left and their corresponding microbial communities on
the right. This plot explores how clustering of samples relates to clustering of microbial
community members. Samples tend to cluster along a single axis.
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Figure 8b: NMDS plot performed on the rare OTU table

Samples are represented on the left and their corresponding microbial communities on
the right. This plot explores how clustering of samples relates to clustering of microbial
community members. Here we do not see the close grouping in the center that we see
for both the samples and microbial communities of the complete table. The close the
points are, the most similar the samples and microbiome. This graph gives further
evidence that the rare OTUs are more variable than the complete OTUs.
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Figure 8c: NMDS plot performed on the abundant OTU table.
Samples are represented on the left and their corresponding microbial communities on

the right. Sample grouping overlaps with abundant taxa of microbial community
specifically with the abundant members: Agrobacterum and leguminosarum.
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Figure 9a.i: CCA ordinations on complete OTU tables constrained by Soil factor.

This plot shows that all samples are highly similar to each other when Soil factor is
constrained. This means that the variation explained by the other factors is pretty small.
This could indicate that either the relationships are driven by the dominant taxa or
communities are highly similar when removing the soil factor. The arrows are coloured
by the corresponding Soil factor.
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Figure 9a.ii: CCA ordinations on complete OTU tables constrained by Species factor.

This plot too shows that all samples are highly similar to each other when Species factor
is constrained. However, we see larger eigenvalues for the CCA axis when Soil factor
(CCA1: 3.4%) is constrained compared to species factor (2.8%). This means that the
variation explained by the other factors is pretty small and relationships are driven by
the dominant taxa. The arrows are coloured by the corresponding Species factor.
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Figure 9b.i: CCA ordinations on abundant OTU tables constrained by Soil factor
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Figure 10: Phylogenetic tree of Agrobacterium and Rhizobium.

The tree represents a phylogeny between agrobacterium OTUs and rhizobium OTUs
from our samples. The agrobacterium coloured in red is the one that is present in high
abundance within our samples (~85-95% of OTUs). Labels in black are reference
rhizobium sequences.
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APPENDIX 3: Main script

This script is used to process the OTU table received from QIIME. The script runs a
filtering step, diversity analysis, ordinations and Adonis models.

#required libraries
library("RColorBrewer")

library("ggplot2")
library("plyr")
library("vegan")
library("reshape2")
library("ape")
library("phyloseq")
library("data.table")
library("biome")

#otu files

otu_all ="../Desktop/nod_mb/R_files/otus.biom"
m=read.csv("../Desktop/nod_mb/R _files/nodule_map_new.txt", row.names=1)
file<-import_biom(otu_all)

map = sample_data(m)

comp <-merge_phyloseq(file,map)

head(sample_data(comp))

colnames(tax_table(comp)) <- c(k = "Kingdom", p = "Phylum", ¢ = "Class", o = "Order", f
= "Family", g = "Genus", s = "Species")

taxa_sums(comp)

#complete otu mb

comp

#removing low quality taxa matches and normalize

mb_all= subset_taxa(comp, Kingdom!="None" & Kingdom!="NOHIT" )
norm_all = transform_sample_counts(mb_all, function(x) x/sum(x))
taxa_sums(mb_all)

mb_all

df_all = as(sample_data(norm_all), "data.frame")
d_all = phyloseq::distance(norm_all, "bray")
norm_all

#only rhiz and normalize

mb_rhiz= subset_taxa(mb_all, Order=="o0__ Rhizobiales")

norm_rhiz = transform_sample_counts(mb_rhiz, function(x) x/sum(x))
df rhiz = as(sample_data(norm_rhiz), "data.frame")

d_rhiz = phyloseq::distance(norm_rhiz, "bray")
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#take rare as a percentage of the reads => OTUS <0.01% in abundance is "rare"

#only rare and normalize

#get OTUs

x = names(sort(taxa_sums(mb_rhiz), decreasing = TRUE))
y = names(sort(taxa_sums(mb_all), decreasing = TRUE))
select_rare <- setdiff(y, x)

#subsample and normalize

mb_rare= prune_taxa(select_rare, mb_all)

norm_rare = transform_sample_counts(mb_rare, function(x) x/sum(x))
df rare = as(sample_data(norm_rare), "data.frame")

d_rare = phyloseq::distance(norm_rare, "bray")

taxa <- tax_table(mb_all)

otus <- otu_table(mb_all)
write.table(otus, file="otus-genus.txt')
write.table(taxa, file="taxa.txt")

taxa_rhiz <- tax_table(mb_rhiz)
otus_rhiz <- otu_table(mb_rhiz)
write.table(otus_rhiz, file="otus-rhiz.txt")
write.table(taxa_rhiz, file="taxa-rhiz.txt')

taxa_rare <- tax_table(mb_rare)
otus_rare <- otu_table(mb_rare)
write.table(otus_rare, file='otus-rare.txt')
write.table(taxa_rare, file='taxa-rare.txt')

#rarefy tables to same depth

even_depth <- function(ss_no, otu_table){

#set.seed(3336)

rarefied <- rarefy_even_depth(otu_table, sample.size = ss_no)
return(rarefied)

}

set.seed(123)

mb_rare <- even_depth(163, mb_rare)
mb_rhiz <- even_depth(6200, mb_rhiz)
mb_all <- even_depth(6500, mb_all)

#read distribution

readsumsdf_all = data.frame(nreads = sort(sample_sums(mb_all),TRUE), sorted =
1:nsamples(mb_all), type = "Samples")

range(readsumsdf_all$nreads)
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readsumsdf_rhiz = data.frame(nreads = sort(sample_sums(mb_rhiz), TRUE), sorted =
1:nsamples(mb_all), type = "Samples")

range(readsumsdf_rhiz$nreads)

readsumsdf _rare = data.frame(nreads = sort(sample_sums(mb_rare), TRUE), sorted =
1:nsamples(mb_all), type = "Samples")

range(readsumsdf _rare$nreads)

#plot read_counts

sdt = data.table(as(sample_data(mb_all), "data.frame"), TotalReads =
sample_sums(mb_all), keep.rownames = TRUE)

setnames(sdt, "rn", "SamplelD")

ggplot(sdt, aes(x=SamplelD,y=TotalReads,fill=Comb)) + geom_bar(stat="identity",
position=position_dodge()) +facet_wrap(facets = ~Soil)

ggplot(sdt, aes(x=Soil,y=TotalReads,fill=Comb)) + geom_bar(stat="identity")
+facet_wrap(facets = ~Soil)

ggplot(sdt, aes(x=SamplelD,y=TotalReads)) + geom_bar(stat="identity")

#save file
read_dist <- subset(sdt, select=c("SamplelD", "Soil", "Species","Comb", "TotalReads"))
write.table(read_dist,file="../Desktop/read_dist.txt")

#otu abundances and frequencies
abund_val <- function(normalized){

otu.abun = apply(otu_table(normalized),1,mean)

# Calculate the frequency of each OTU across all samples

otu.freq = rowSums(otu_table(normalized) != 0)/144

# Reassign names of phyla so we only color by the top 5 phyla and mark all others as
"other"

phyla = as.vector(data.frame(tax_table(normalized))$Phylum)

levels(phyla) = c(levels(phyla),"other")

keephyla = c("p__ Bacteroidetes","p__ Proteobacteria","p__ Actinobacteria",
"p__Chloroflexi", "p__ TM7")

phyla[!(phyla %in% keephyla)] = "Other"

phyla = as.vector(phyla)

phyla=as.factor(phyla)

otuabun = cbind.data.frame(abundance=Ilog(otu.abun),frequency=otu.freq,phyla)

return(otuabun)

}

#get values to plot chart

abun_all <- abund_val(norm_all)
abun_rhiz <- abund_val(norm_rhiz)
abun_rare <- abund_val(norm_rare)

# Use color brewer to pick a color scheme for the phyla
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brew = brewer.pal(6, "Set1")

# Create a scatterplot of OTUs showing their average relative abundance and frequency
ggplot(abun_all, aes(x=abundance,y=frequency,color=phyla)) + geom_point(size=3) +
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - All
mb") + scale_colour_brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Complete microbiome")+ xlim(-20, 5)

ggplot(abun_rare, aes(x=abundance,y=frequency,color=phyla)) + geom_point(size=3) +
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - Rare
mb") + scale_colour_brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Rare microbiome")+ xlim(-20, 5)

ggplot(abun_rhiz, aes(x=abundance,y=frequency,color=phyla)) + geom_point(size=3) +
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - Rhiz
mb") + scale_colour_brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Rhizobiales microbiome")+ xlim(-20, 5)

#bar plots needed for rare and rhizobiales taxa

#distribution of phylums
abudance_cal <- function(normalized_otu, Taxa_sel)}{
bar_table <- plot_bar(normalized_otu, fill="Phylum")
bar_table <- bar_table$data[bar_table$data$Abundance>0,]
bar_taxa <- bar_table[bar_table$Phylum==Taxa_sel,]
bar_taxa <- bar_taxa[c(2,3,17)]
sum_prot <- ddply(bar_taxa, .(Sample), summarize, Sum=sum(Abundance))
return(sum_prot)

}

prot_all <- abudance_cal(norm_all, "p__ Proteobacteria")
bact_all <- abudance_cal(norm_all, "p__Bacteroidetes")
act_all <- abudance_cal(norm_all, "p__Actinobacteria")

prot_rare <- abudance_cal(norm_rare, "p__Proteobacteria")
bact_rare <- abudance_cal(norm_rare, "p__Bacteroidetes")
act_rare <- abudance_cal(norm_rare, "p__Actinobacteria")

#Richness
adiv_anova <- function(ss_no, otu_table, outf){
mlist <- factor(c("Observed", "Shannon", "Chao1"))
set.seed(3336)
rarefied <- rarefy_even_depth(otu_table, sample.size = ss_no)
richness <- estimate_richness(rarefied, measures=mlist)
richness <- richness[-3]
sdata <- sample_data(rarefied)
for (iin 1:3){
aov_facs <- aov(richness][i]]~ sdata$Soil*sdata$Species)
capture.output(summary(aov_facs), file=outf, append=T)
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}
}

adiv_anova(160, mb_all, "ALL_160.txt")
adiv_anova(500, mb_all, "ALL_500.txt")
adiv_anova(1000, mb_all, "ALL_1000.txt")

adiv_anova(160, mb_rhiz, "Rhiz_160.txt")
adiv_anova(500, mb_rhiz, "Rhiz_500.txt")
adiv_anova(1000, mb_rhiz, "Rhiz_1000.txt")

adiv_anova(160, mb_rare, "Rare_160.txt")
adiv_anova(500, mb_rare, "Rare_500.txt")
adiv_anova(1000, mb_rare, "Rare_1000.txt")

#0ne more for nod_size
adiv_anova_ns <- function(ss_no, otu_table, outf){
mlist <- factor(c("Observed", "Shannon", "Chao1"))
set.seed(3336)
rarefied <- rarefy_even_depth(otu_table, sample.size = ss_no)
richness <- estimate_richness(rarefied, measures=mlist)
richness <- richness|[-3]
sdata <- sample_data(rarefied)
for (iin 1:3){
aov_facs <- aov(richness][i]]~ sdata$nod_size)
capture.output(summary(aov_facs), file=outf, append=T)

}
}

adiv_anova_ns(160, mb_all, "ALL_160_ns.txt")
adiv_anova_ns(500, mb_all, "ALL_500_ns.txt")

adiv_anova_ns(160, mb_rhiz, "Rhiz_160_ns.txt")
adiv_anova_ns(500, mb_rhiz, "Rhiz_500_ns.txt")

adiv_anova_ns(160, mb_rare, "Rare_160_ns.txt")
adiv_anova_ns(500, mb_rare, "Rare_500_ns.txt")

#Ordinations: PCoA principal

mb.pcoa.rare <- ordinate(norm_rare, d_rare, method="PCoA")
pcoa.rare<-plot_ordination(norm_rare, mb.pcoa.rare, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for rare OTUs")
pcoa.rare

plot_scree(mb.pcoa.rare, "Scree plot for PCoA with bray-curtis distance")
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mb.pcoa.rhiz <- ordinate(norm_rhiz, d_rhiz, method="PCoA")
pcoa.rhiz<-plot_ordination(norm_rhiz, mb.pcoa.rhiz, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for Rhizobales OTUs")
pcoa.rhiz

plot_scree(mb.pcoa.rhiz, "Scree plot for PCoA with bray-curtis distance")

mb.pcoa.all <- ordinate(norm_all, d_all, method="PCoA")
pcoa.all<-plot_ordination(norm_all, mb.pcoa.all, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for all OTUs")
pcoa.all

plot_scree(mb.pcoa.all, "Scree plot for PCoA with bray-curtis distance")

#Ordination: CCA constrained by species soil interaction

#seems like most are along a single axis now.. not sure how to communicate this
result?

mball.cca <- ordinate(mb_all, method= "CCA", formula=norm_all~Soil)

all_cca <- plot_ordination(norm_all, mball.cca, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="CCA plot for All OTUs, constrained
by Species interaction")

all_cca

arrowmat = vegan::scores(mball.cca, display = "bp")

arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat)

# Define the arrow aesthetic mapping

arrow_map = aes(xend = CCA1, yend = CCA2, x =0, y = 0, shape = NULL, color =

NULL,
label = labels)

label_map = aes(x = 1.2 * CCA1,y=1.2* CCA2, shape = NULL, color = NULL,
label = labels)

# Make a new graphic

arrowhead = arrow(length = unit(0.05, "npc"))

p1 = all_cca+ geom_segment(arrow_map, size = 0.2, data = arrowdf, color = "black",

arrow = arrowhead) + geom_text(label_map, size = 2, data = arrowdf)

p1

HitHHHAHAHH##CCA with rare otu table

mbrare.cca <- ordinate(mb_rare, method= "CCA", formula=norm_rare~Species)
rare_cca <- plot_ordination(norm_rare, mbrare.cca, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="CCA plot for Rare OTUs,
constrained by Species interaction")

rare_cca

arrowmat = vegan::scores(mbrare.cca, display = "bp")
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat)
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# Define the arrow aesthetic mapping
arrow_map = aes(xend = CCA1, yend = CCA2, x =0, y =0, shape = NULL, color =
NULL,
label = labels)
label_map = aes(x = 1.2 * CCA1,y =1.2 * CCA2, shape = NULL, color = NULL,
label = labels)
# Make a new graphic
arrowhead = arrow(length = unit(0.05, "npc"))
p1 = rare_cca+ geom_segment(arrow_map, size = 0.2, data = arrowdf, color = "black",
arrow = arrowhead) + geom_text(label_map, size = 2, data = arrowdf)

p1

HHHHHHHHH###CCA with rhizobiaes otu table

mbrhiz.cca <- ordinate(mb_rhiz, method= "CCA", formula=norm_rhiz~Soil)
rhiz_cca <- plot_ordination(norm_rhiz, mbrhiz.cca, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="CCA plot for Rhizobiales OTUs,
constrained by Soil interaction")

rhiz_cca

arrowmat = vegan::scores(mbrhiz.cca, display = "bp")
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat)
# Define the arrow aesthetic mapping
arrow_map = aes(xend = CCA1, yend = CCA2, x =0, y = 0, shape = NULL, color =
NULL,
label = labels)
label_map = aes(x = 1.2 * CCA1,y=1.2* CCA2, shape = NULL, color = NULL,
label = labels)
# Make a new graphic
arrowhead = arrow(length = unit(0.05, "npc"))
p1 = rhiz_cca+ geom_segment(arrow_map, size = 0.2, data = arrowdf, color = "black",
arrow = arrowhead) + geom_text(label_map, size = 2, data = arrowdf)

p1

#NMDS visualize the distance between the points themselves.

nmds_ordinations <- function(mb_otu, norm_otu, d_otu, title

mb.nmds<- ordinate(norm_otu, d_otu, method="NMDS", "bray")
plot_ordination(norm_otu, mb.nmds, type = "taxa", color = "Phylum", title = "taxa")

}

nmds_ordinations(mb_all,norm_all, d_all, "ALL")
nmds_ordinations(mb_rhiz,norm_rhiz, d_rhiz, "Rhizobiales")
nmds_ordinations(mb_rare,norm_rare, d_rare, "Rare")

#adonis

#beta div -- adonis rare using distances identified above
#rare
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set.seed(123)
ads1<-adonis
ads2<-adonis

(d_rare ~ Native, df rare, permutations = 999) # not imp
(d_rare ~ Species , df_rare, permutations = 999) # imp 8
ads3<-adonis(d_rare ~ Soil , df _rare, permutations = 999) #
ads4<-adonis(d_rare ~ nod_size , df_rare, permutations = 999) #
ads5<-adonis(d_rare ~ Soil+Species , df rare, permutations = 999)
ads6<-adonis(d_rare ~ Soil:Species , df_rare, permutations = 999)
ads7<-adonis(d_rare ~ Soil*Species , df rare, permutations = 999)
ads8<-adonis(d_rare ~ X18s_PD , df_rare, permutations = 999) #
ads9<-adonis(d_rare ~ trna_PD , df_rare, permutations = 999) #

ads10<—adonis(a_rare ~ elison_PD , df_rare, permutations = 999) #
ads11<-adonis(d_rare ~ Soil * Species * nod_size , df rare, permutations = 999) #
#rhiz

set.seed(123)

ads1<-adonis(d_rhiz ~ Native, df_rhiz, permutations = 999) # not imp
ads2<-adonis(d_rhiz ~ Species , df_rhiz, permutations = 999) # imp 8
ads3<-adonis(d_rhiz ~ Soil , df_rhiz, permutations = 999) #
ads4<-adonis(d_rhiz ~ nod_size , df_rhiz, permutations = 999) #
ads5<-adonis(d_rhiz ~ Soil+Species , df _rhiz, permutations = 999)
ads6<-adonis(d_rhiz ~ Soil:Species , df_rhiz, permutationads1s = 999)
ads7<-adonis(d_rhiz ~ Soil*Species , df rhiz, permutations = 999)
ads8<-adonis(d_rhiz ~ Native*nod_size , df_rhiz, permutations = 999)
ads9<-adonis(d_rhiz ~ nod_size*Soil*Species , df rhiz, permutations = 999)
ads10<-adonis(d_rhiz ~ X18s_PD , df_rhiz, permutations = 999) # ads11<-
adonis(d_rhiz ~ trna_PD , df_rhiz, permutations = 999) #
ads12<-adonis(d_rhiz ~ elison_PD , df_rhiz, permutations = 999) #

ads13<-adonis(d_rhiz ~ Soil+Species+Soil:Species+nod_size , df_rhiz, permutations =
999) #

#all

set.seed(123)

ads1<-adonis(d_all ~ Native, df_all, permutations = 999) # not imp
ads2<-adonis(d_all ~ Species , df _all, permutations = 999) # imp 8
ads3<-adonis(d_all ~ Soil , df_all, permutations = 999) #
ads4<-adonis(d_all ~ nod_size , df_all, permutations = 999) #
ads5<-adonis(d_all ~ Soil*Species , df_all, permutations = 999)

ads6<-adonis(d_all ~ Soil:Species , df_all, permutations = 999)
ads7<-adonis(d_all ~ Soil*Species , df all, permutations = 999)
ads8<-adonis(d_all ~ Soil*Species*nod_size , df_all, permutations = 999)
ads10<-adonis(d_all ~ X18s_PD , df_all, permutations = 999) #
ads11<-adonis(d_all ~ trna_PD , df_all, permutations = 999) #
ads12<-adonis(d_all ~ elison_PD , df _all, permutations = 999) #
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APPENDIX 4: Core microbiome calculations

library(UpSetR)

bar= subset_samples(mb_all, Comb=="Bar")
bif= subset_samples(mb_all, Comb=="Bif")
mac= subset_samples(mb_all, Comb=="Mac")
mic= subset_samples(mb_all, Comb=="Mic")
wor= subset_samples(mb_all, Comb=="Wor")
fuc= subset_samples(mb_all, Comb=="Fuc")

abun_freq <- function(otu_table){
otu_table = filter_taxa(otu_table, function(x) mean(x) > 0, TRUE)
norm_cat <- transform_sample_counts(otu_table, function(x) x/sum(x))
otu.abun = apply(otu_table(norm_cat),1,mean)
otu.freq = rowSums(otu_table(otu_table) != 0)/nsamples(otu_table)
otuabun = cbind.data.frame(abundance=otu.abun,frequency=otu.freq)
return(otuabun)

}

bar_a<- abun_freq(bar)
bif _a<- abun_freq(bif)
fuc_a<- abun_freq(fuc)
wor_a<- abun_freq(wor)
mac_a<- abun_freq(mac)
mic_a<- abun_freq(mic)

trial <- merge(otu_table(mb_all),mac_a, by="row.names", all=T)
rownames(trial) <- trialRow.names
trial <- trial[,c(146:147)]

trial <- merge(trial,mic_a, by="row.names", all=T)
rownames(trial) <- trialRow.names
trial <- trial[,-c(1)]

trial <- merge(trial, wor_a,by="row.names", all = T)
rownames(trial) <- trialRow.names

trial <- trial[,-c(1)]

trial <- merge(trial, fuc_a,by="row.names", all = T)
rownames(trial) <- trialRow.names

trial <- trial[,-c(1)]

trial <- merge(trial, bif_a,by="row.names", all = T)
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rownames(trial) <- trialRow.names
trial <- trial[,-c(1)]

trial <- merge(trial, bar_a,by="row.names", all = T)

rownames(trial) <- trialRow.names

trial <- trial[,-c(1)]

colnames(trial) <- ¢("mac_a_abun", "mac_a_freq", "mic_a_abun", "mic_a_freq",
"wor_a_abun", "wor_a_freq","fuc_a_abun", "fuc_a_freq","bif_a_abun",
"bif_a_freq","bar_a_abun", "bar_a_freq")

trial[is.na(trial)] <- 0
mat_freq <- trial[,c(2,4,6,8,10,12)]

mat_comp <- trial

#presence/absence core otus
half_freq <- mat_freq

half freq[half freq<0.5] <-0
half_freq[half_freq>=0.5] <- 1

third_freq <- mat_freq
third_freq[third_freq<0.75] <- 0
third_freq[third_freq>=0.75] <- 1

full_freq <- mat_freq
full_freq[full_freq<1] <- 0
full_freq[full_freg>=1] <- 1

write.table(half_freq, file="half_freq.txt")
write.table(third_freq, file="third_freq.txt")
write.table(full_freq, file="full_freq.txt")

#Upset plots

upset(half_freq, sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq"
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq")
upset(third_freq, sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq"
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq")

upset(full_freq, sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq"
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq")

#complete the taxonomy table
get_ids <- function(frequency_tab, out_file){
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row_sub = apply(frequency_tab, 1, function(row) all(row !=0 ))
taxa_tab <- merge(frequency_tab[row_sub,], tax_table(mb_all), by="row.names")
return(table(taxa_tab$Phylum))

# write.table(taxa_tab,file=out_file)

}

get_ids(half_freq, "half_taxa.txt")
get_ids(third_freq, "third_taxa.txt")
get_ids(full_freq, "full_taxa.txt")

##tttabundance
head(mat_comp)
#add in abundace threshold.

abun.00001 <- mat_comp[mat_compl[,"mac_a_abun"]>=0.00001 &
mat_comp[,"mic_a_abun"]>=0.00001& mat_comp[,"fuc_a_abun"]>=0.00001&
mat_comp[,"wor_a_abun"]>=0.00001& mat_comp][,"bif _a_abun"]>=0.00001&
mat_comp[,"bar_a_abun"]>=0.00001,]

#half <- abun.00001[abun.00001[,"mac_a_freq"]>=0.5 &
abun.00001[,"mic_a_freq"]>=0.5& abun.00001[,"fuc_a_freq"]>=0.5&
abun.00001[,"wor_a_freq"]>=0.5& abun.00001[,"bif a freq"]>=0.5&
abun.00001[,"bar_a_freq"]>=0.5,]

abund_freq <- abun.00001[,c(2,4,6,8,10,12)]

half _abun <- abund_freq

half_abun[half_abun<0.5] <- 0

half _abun[half _abun>=0.5] <- 1

upset(half_abun, sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq")

third_abun <- abund_freq

third_abun[third_abun<0.75] <- 0

third_abun[third_abun>=0.75] <- 1

upset(third_abun, sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq"
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq")

full_abun <- abund_freq

full_abun[full_abun<1]<-0

full_abun[full_abun>=1] <- 1

upset(full_abun, sets=c("fuc_a_freq", "wor_a_freq" ,"mic_a_freq" ,"mac_a_freq"
,"bif_a_freq" ,"bar_a_freq"), sets.bar.color = "#56B4E9",order.by = "freq")

write.table(half_abun, file="half_abun.txt")

write.table(third_abun, file="third_abun.txt")
write.table(full_abun, file="full_abun.txt")
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get_ids(half_abun, "half_abun_taxa.txt")
get_ids(third_abun, "third_abun_taxa.txt")
get_ids(full_abun, "full_abun_taxa.txt")

121



APPENDIX 5: Neutral model analysis

#Adam Burns - 2/10/2015

#aburns2@uoregon.edu

#Fits the neutral model from Sloan et al. 2006 to an OTU table and returns several
fitting statistics. Alternatively, will return predicted occurrence frequencies for each OTU
based on their abundance in the metacommunity when stats=FALSE.

sncm.fit <- function(spp, pool=NULL, stats=TRUE, taxon=NULL)
require(minpack.Im)
require(Hmisc)
require(stats4)

options(warn=-1)

#Calculate the number of individuals per community
N <- mean(apply(spp, 1, sum))

#Calculate the average relative abundance of each taxa across communities
if(is.null(pool){
p.m <- apply(spp, 2, mean)
p.m <- p.m[p.m != 0]
p <-p.m/N
} else {
p.m <- apply(pool, 2, mean)
p.m <- p.m[p.m != 0]
p <-p.m/N
}

#Calculate the occurrence frequency of each taxa across communities
spp.bi <- 1*(spp>0)

freq <- apply(spp.bi, 2, mean)

freq <- freq[freq != 0]

#Combine

C <- merge(p, freq, by=0)

C <- Clorder(C[,2]),]

C <- as.data.frame(C)

C.0 <- C[!(apply(C, 1, function(y) any(y == 0))),] #Removes rows with any zero (absent
in either source pool or local communities)

p <- C.0[,2]

freq <- C.0[,3]

names(p) <- C.0[,1]

names(freq) <- C.0[,1]
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#Calculate the limit of detection
d=1/N

##Fit model parameter m (or Nm) using Non-linear least squares (NLS)
m.fit <- nlsLM(freq ~ pbeta(d, N*m*p, N*m*(1-p), lower.tail=FALSE), start=list(m=0.1))
m.ci <- confint(m.fit, 'm’, level=0.95)

##Fit neutral model parameter m (or Nm) using Maximum likelihood estimation (MLE)
sncm.LL <- function(m, sigma){

R = freq - pbeta(d, N*m*p, N*m*(1-p), lower.tail=FALSE)

R =dnorm(R, 0, sigma)

-sum(log(R))
}

m.mle <- mle(sncm.LL, start=list(m=0.1, sigma=0.1), nobs=length(p))

##Calculate Akaike's Information Criterion (AIC)
aic.fit <- AIC(m.mle, k=2)
bic.fit <- BIC(m.mle)

##Calculate goodness-of-fit (R-squared and Root Mean Squared Error)
freq.pred <- pbeta(d, N*coef(m.fit)*p, N*coef(m.fit)*(1-p), lower.tail=FALSE)
Rsqr <- 1 - (sum((freq - freq.pred)*2))/(sum((freq - mean(freq))*2))

RMSE <- sqrt(sum((freqg-freq.pred)”*2)/(length(freq)-1))

pred.ci <- binconf(freq.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson",
return.df=TRUE)

##Calculate AIC for binomial model

bino.LL <- function(mu, sigma){
R = freq - pbinom(d, N, p, lower.tail=FALSE)
R = dnorm(R, mu, sigma)
-sum(log(R))

bino.mle <- mle(bino.LL, start=list(mu=0, sigma=0.1), nobs=length(p))

aic.bino <- AIC(bino.mle, k=2)
bic.bino <- BIC(bino.mle)

##Goodness of fit for binomial model

bino.pred <- pbinom(d, N, p, lower.tail=FALSE)

Rsqr.bino <- 1 - (sum((freq - bino.pred)*2))/(sum((freq - mean(freq))"*2))
RMSE.bino <- sqgrt(sum((freq - bino.pred)*2)/(length(freq) - 1))

bino.pred.ci <- binconf(bino.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson",
return.df=TRUE)
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##Calculate AIC for Poisson model

pois.LL <- function(mu, sigma){
R = freq - ppois(d, N*p, lower.tail=FALSE)
R = dnorm(R, mu, sigma)
-sum(log(R))

}

pois.mle <- mle(pois.LL, start=list(mu=0, sigma=0.1), nobs=length(p))

aic.pois <- AlC(pois.mle, k=2)
bic.pois <- BIC(pois.mle)

##Goodness of fit for Poisson model

pois.pred <- ppois(d, N*p, lower.tail=FALSE)

Rsqr.pois <- 1 - (sum((freq - pois.pred)*2))/(sum((freq - mean(freq))"2))
RMSE.pois <- sqrt(sum((freq - pois.pred)*2)/(length(freq) - 1))

pois.pred.ci <- binconf(pois.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson",
return.df=TRUE)

##Results
if(stats==TRUE){
fitstats <- data.frame(m=numeric(), m.ci=numeric(), m.mle=numeric(),
maxLL=numeric(), binoLL=numeric(), poisLL=numeric(), Rsqr=numeric(),
Rsqr.bino=numeric(), Rsqr.pois=numeric(), RMSE=numeric(), RMSE.bino=numeric(),
RMSE.pois=numeric(), AlIC=numeric(), BIC=numeric(), AIC.bino=numeric(),
BIC.bino=numeric(), AlC.pois=numeric(), BIC.pois=numeric(), N=numeric(),
Samples=numeric(), Richness=numeric(), Detect=numeric())
fitstats[1,] <- c(coef(m.fit), coef(m.fit)-m.ci[1], m.mle@coef['m'], m.mle@details$value,
bino.mle@details$value, pois.mle@details$value, Rsqgr, Rsqr.bino, Rsqr.pois, RMSE,
RMSE.bino, RMSE .pois, aic.fit, bic.fit, aic.bino, bic.bino, aic.pois, bic.pois, N, nrow(spp),
length(p), d)
return(fitstats)
} else {
A <- cbind(p, freq, freq.pred, pred.ci[,2:3], bino.pred, bino.pred.ci[,2:3])
A <- as.data.frame(A)
colnames(A) <- ¢('p', 'freq’, 'freq.pred’, 'pred.lwr', 'pred.upr’, 'bino.pred'’, 'bino.lwr',
'bino.upr')
if(is.null(taxon)}
B <- Alorder(A[,1]),]
} else {
B <- merge(A, taxon, by=0, all=TRUE)
row.names(B) <- B[,1]
B <- B[,-1]
B <- B[order(B[,1]).]
}

return(B)
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}
}

#required libraries
library("RColorBrewer")

library("ggplot2")
library("plyr")
library("vegan")
library("reshape2")
library("ape")
library("phyloseq")
library("data.table")
library("biome")
library("metagenomeSeq")

#otu files

otu_all ="../Desktop/Thesis_files/R_files/otus.biom"
m=read.csv("../Desktop//Thesis_files/R_files/nodule_map_new.txt", row.names=1)
file<-import_biom(otu_all)

map = sample_data(m)

comp <-merge_phyloseq(file,map)

head(sample_data(comp))

colnames(tax_table(comp)) <- c(k = "Kingdom", p = "Phylum", ¢ = "Class", o = "Order", f
= "Family", g = "Genus", s = "Species")

taxa_sums(comp)

#complete otu mb

comp

#removing low quality taxa matches and normalize

mb_all= subset_taxa(comp, Kingdom!="None" & Kingdom!="NOHIT" )
norm_all = transform_sample_counts(mb_all, function(x) x/sum(x))
taxa_sums(mb_all)

mb_all

#rarefy tables to same depth

even_depth <- function(ss_no, otu_table){
#set.seed(3336)
rarefied <- rarefy_even_depth(otu_table, sample.size = ss_no)
return(rarefied)

}

home= subset_samples(mb_all, Native=="yes")
away= subset_samples(mb_all, Native=="no")

set.seed(24)
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home_mb <- even_depth(6500, home)
away_mb <- even_depth(6500, away)

tab_home <- t(otu_table(home_mb))
tab_away <- t(otu_table(away_mb))

tax <- read.table("../Desktop//Thesis_files/tax_tab.txt", head=T, sep="\t")
tax <- tax[c(2,1)]

mod_stats _home <-sncm.fit(spp=tab_home, stats=TRUE)
mb_table_home <- sncm.fit(spp=tab_home, stats=FALSE)
otu_home <- cbind(row.names(mb_table_home), mb_table _home$freq)

mod_stats_away <-sncm.fit(spp=tab_away, stats=TRUE)
mb_table_away <- sncm fit(spp=tab_away, stats=FALSE)
#otu_away <- cbind(row.names(mb_table_away),mb_table _away$freq)

ggplot(mb_table _home, aes(log10(p), freq)) +
geom_point() +
geom_ribbon(data=mb_table _home,aes(ymin=pred.lwr,ymax=pred.upr),alpha=0.3)+
geom_line(data=mb_table_home,aes(y = freq.pred))+
xlab("Average relative abundance (log10 scale)") + ylab("Frequency in all home
samples") +
theme(axis.title = element_text(size = 26),axis.text = element_text(colour = "black"))

ggplot(mb_table away, aes(log10(p), freq)) +
geom_point() +
geom_ribbon(data=mb_table_away,aes(ymin=pred.lwr,ymax=pred.upr),alpha=0.3)+
geom_line(data=mb_table_away,aes(y = freq.pred))+
xlab("Average relative abundance (log10 scale)") + ylab("Frequency in all away
samples") +
theme(axis.title = element_text(size = 26),axis.text = element_text(colour = "black"))

home_lwr <- ifelse(mb_table_home$freq<mb_table _home$pred.iwr,
row.names(mb_table_home),0 )

home_upr <- ifelse(mb_table_home$freq>mb_table _home$pred.upr,
row.names(mb_table_home),0 )

table(home_Iwr)

table(home_upr)

as <- away_upr %in% row.names(mb_table_away)
away_u <- mb_table_awaylas,]
away_u$OTU.ID <- row.names(away_u)
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as <- away_Iwr %in% row.names(mb_table_away)
away_| <- mb_table_awaylas,]
away_I$OTU.ID <- row.names(away _|)

as <- home_Iwr %in% row.names(mb_table_home)
home_| <- mb_table _homeJ[as,]
home_I$OTU.ID <- row.names(home_I)

as <- home_upr %in% row.names(mb_table_home)
home_u <- mb_table_homeJas,]
home_u$OTU.ID <- row.names(home_u)

au <- merge(away_u, tax, by="OTU.ID")
al <- merge(away_|, tax, by="OTU.ID")
hu <- merge(home_u, tax, by="OTU.ID")
hl <- merge(home_|, tax, by="OTU.ID")

away_lwr <- ifelse(mb_table_away$freq<mb_table _away$pred.lwr,
row.names(mb_table_home),0 )

away_upr <- ifelse(mb_table_away$freq>mb_table _away$pred.upr,
row.names(mb_table_home),0 )

table(away_Iwr)

table(away_upr)

## fishers exact test for OTU presence between home and away samples
otu_fish <- matrix(c(5,14,15,88,251,459),2,3)
fisher.test(otu_fish)

HHHHHHHHHR
otu_test <- merge(otu_home, otu_away, by=1, all=T)

write.table(au, "away_upr.txt")
write.table(al, "away_Iwr.txt")
write.table(hu, "home_upr.txt")
write.table(hl, "home_ Iwr.txt")

h_ot <- read.table("../Desktop/Thesis_files/home_otus.txt", head=T)
a_ot <- read.table("../Desktop/Thesis_files/away_otus.txt", head=T)
h <- merge(h_ot, tax, by="OTU.ID")
a <- merge(a_ot, tax, by="OTU.ID")
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