EXPLORING THE NODULE MICROBIOME COMMUNITY STRUCTURE OF TRIFOLIUM SPECIES

Ву

Prateek Shetty

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

Plant Biology - Master of Science

2016

ABSTRACT

EXPLORING THE NODULE MICROBIOME COMMUNITY STRUCTURE OF TRIFOLIUM SPECIES

By

Prateek Shetty

Plant associated microbes have been shown to increase plant growth and production drastically, yet we are just beginning to understand the parameters that impact these interactions. Rhizobia are primary bacterial symbionts of legumes and infect root hairs to form nodules, within which, the symbiotic rhizobia fix atmospheric nitrogen into biologically available forms in exchange for carbon from the host. The aim of this project is to understand the community structure and diversity of the nodule microbiome, with emphasis on the less abundant members, among coexisting clover species. North American clover Trifolium-Rhizobium communities are a good system to study host interactions with microbiomes given the high local species diversity. We analyzed the nodule microbiome of six congeneric clover plants when they were grown in soils conditioned by members of their own species and in soils conditioned by congener species by sequencing the 16s rRNA gene. The visualized microbiomes are similar, with 96% of all reads belonging to the order Rhizobiales. The rest of the OTUs belong to rarer groups of microbes. Further, the structure of the microbiome is impacted by both the host plant species and the soil in which the host is grown in, with soil explaining a larger degree of variation. There also is a strong interaction between soil and host in structuring the microbiome. The results are similar when the microbiome is analyzed with and without its most dominant order (*Rhizobiales*).

ACKNOWLEDGEMENTS

I would like to pay my gratitude to the persons below who made my research successful and assisted me at every step of the way:

My supervisor, Dr. Maren Friesen for her constant support and assistance. Her encouragement was instrumental in the completion of my thesis.

My committee members, Dr. Yair Shachar-Hill and Dr. Ashley Shade, whose guidance during my research was invaluable.

Dr. Alan Prather, Graduate director of the Department of Plant biology, whose reminders and constant motivation encouraged me to meet the deadlines.

All the members of the Friesen Lab, interacting with whom not only improved my research but also helped me ask better questions.

Finally, I would like to thank my family members and friends, without whom I would be a whole lot lesser. They not only assisted me financially but more importantly, extended moral and emotional support during the course.

This work was funded by grant NSF 1342793 to Dr. Maren Friesen

TABLE OF CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	vii
KEY TO ABBREVIATIONS	ix
Introduction	1
Understanding factors that contribute to the coexistence	1
Importance of microbial community on plant health	
Generalist vs specialist selection within plant microbiome	
BNF: Biological nitrogen fixation	7
Associative nitrogen fixation	7
Current literature on nodule microbiome	8
Soil legacy	
Host species selection	
Techniques to study microbial populations	10
Culture dependent methods- Before the widespread use of NGS	40
techniques	
Culture independent methods (Table 1)	
Lipid analysis Gradient Gels	
Hybridisation techniques - FISH, Microarray	
Targeted amplification and sequencing of a marker gene	11
Importance of studying native plants	
About <i>Trifolium</i> species	
Results	16
Sample read distribution table.	
OTU picking and Taxonomic Classification	
Presence/Absence matrix	17
Abundance and Presence/Absence matrix	
Diversity estimate	18
Alpha diversity	18
Ordinations	
Beta diversity	
Adonis modeling results	
Neutral community model	21
Discussion	23
Composition of nodule microbiome	
Core microbiome	
Alpha Diversity analysis	
Ordinations	28

a) PCoA	28
b) CCA	
c) NMDS	
Beta diversity model comparisons	
Neutral community analysis	
Broader Impacts	
Methods	34
Plant experiment	34
Sequencing experiment	
nodC	34
16S	34
Microbiome community profile: Building OTU table	35
Core microbiome	36
Ordination techniques	37
PCoA: Principal coordinate analysis	37
CCA: Canonical Correspondence Analysis	38
NMDS: (Non metric MultiDimensional Scaling)	38
Sloan neutral community analysis	38
APPENDICES	40
APPENDIX 1: List of tables	
APPENDIX 1: List of figures	
APPENDIX 3: Main script	
APPENDIX 4: Core microbiome calculations	
APPENDIX 5: Neutral model analysis	
7 1 LIVE IX 0. INCUITAL MOUCH analysis	122
REFERENCES	128

LIST OF TABLES

Table 1: Techniques used to study microbial population structures4	1
Table 2: Read distribution across samples43	3
Table 3a: Alpha diversity modelling results using the complete microbiome table48	8
Table 3b: Alpha diversity modelling results using the abundant microbiome table49	9
Table 3c: Alpha diversity modelling results using the rare microbiome table 5	1
Table 4a: Distribution of core OTUs when only presence absence in 2 samples is used as a threshold	
Table 4b: Distribution of core OTUs when abundance along with presence absence in 2 samples is used as a threshold5	5
Table 5a: Adonis modelling results for complete microbiome58	8
Table 5b: Adonis modelling results for abundant microbiome59	9
Table 5c: Adonis modelling results for rare microbiome	0
Table 6: Model statistics for neutral model of away and home samples6	1
Table 7.a: OTUs that were selected for or against under the neutral model for all home samples62	
Table 7.b: OTUs that were selected for or against under the neutral model for all away samples64	

LIST OF FIGURES

Figure 1: Trifolium species used in this study.	.75
Figure 2a: Distribution of reads across samples – Basic.	.76
Figure 2b: Distribution of reads: Coloured.	.77
Figure 3a: Individual phyla contributions: Unfiltered OTU table	.78
Figure 3b: Individual phyla contributions: Complete filtered OTU table	.79
Figure 3c: Individual phyla contributions: Rare OTU table	.80
Figure 4a: Top five phyla contributions: Complete OTU table	.81
Figure 4b: Top five phyla contributions: Rare OTU table	.82
Figure 4c: Top five phyla contributions: Abundant OTU table	.83
Figure 5a: Number of OTUs identified as core within at least 2 home samples.	. 84
Figure 5b: Number of OTUs identified as core within at least 3 home samples.	. 85
Figure 5c: Number of OTUs identified as core within at least 2 home samples and an abundance threshold of 0.00001%.	. 86
Figure 5d: Number of OTUs identified as core within at least 3 home samples and an abundance threshold of 0.00001%.	. 87
Figure 6a: Rarefaction at 160reads/ sample using the complete OTU table	.88
Figure 6b: Rarefaction at 500 reads/ sample using the complete OTU table	.89
Figure 6c: Rarefaction at 160 reads/ sample using the rare OTU table	.90
Figure 6d: Rarefaction at 500 reads/ sample using the rare OTU table	.91
Figure 7a.i: PCoA ordination using the complete filtered OTU table	.93
Figure 7a.ii) Scree plot for the PCoA ordination using the complete OTU table	. 94
Figure 7b.i: PCoA ordination using the rare OTU table	. 95
Figure 7b.ii:) Scree plot for the PCoA ordination using the rare OTU table	.95

Figure 7c.i PCoA ordination using the abundant OTU table (comprising of 75 OTUs)	97
Figure7c.ii:) Scree plot for the PCoA ordination using the abundant OTUtable.	97
Figure 8a: NMDS plot performed on the complete OTU table	99
Figure 8b: NMDS plot performed on the rare OTU table	99
Figure 8c: NMDS plot performed on the abundant OTU table	00
Figure 9a.i: CCA ordinations on complete OTU tables constrained by Soil factor1	01
Figure 9a.ii: CCA ordinations on complete OTU tables constrained by Species factor1	02
Figure 9b.i: CCA ordinations on abundant OTU tables constrained by Soil factor1	03
Figure 9b.ii: CCA ordinations on abundant OTU tables constrained by Species factor1	04
Figure 9c.i: CCA ordinations on rare OTU tables constrained by Soil factor1	05
Figure 9c.ii: CCA ordinations on rare OTU tables constrained by Species factor1	06
Figure 10: Phylogenetic tree of Agrobacterium and Rhizobium1	07
Figure 11.a: Fit of neutral model for home samples1	80
Figure 11.b: Fit of neutral model for away samples1	09

KEY TO ABBREVIATIONS

Bar Trifolium barbigerum

Bif Trifolium bifidum

Mac Trifolium macraei

Mic Trifolium microdon

Wor Trifolium wormskioldii

Fuc Trifolium fucatum

PLFA Phospholipid Fatty Acid Analysis

NMDS Non-metric Multi Dimensional Scaling

CCA Canonical Correspondence Analysis

PCoA Principal Coordinate Analysis

Introduction

Understanding factors that contribute to the coexistence

The diversity and species composition in plant communities is thought to be regulated by several different factors such as competition between plant hosts (Tilman 1990), resource partitioning (Tilman 1982) and interaction with other organisms in the ecosystem (Bever 1997). Competition between plant species can range from beneficial to detrimental to each other. The foremost study that explored the effect of negative interaction between two ecologically similar species showed that one species invariably was led to extinction (Gause 1934). This theory was later modified by Hardin (Hardin 1960) and named as the competitive exclusion principle. Explicitly, the competitive exclusion principle states that: Two species competing for the same resource cannot continue to exist in the same population. Thus, coexistence will not be observed if all members within the community are competing for the same limiting resources. However, Hutchinson's study (Hutchinson 1959) on phytoplankton communities showed confounding results. Phytoplankton communities show a larger diversity than what is predicted by competitive exclusion. According to the exclusion principle, since all members of phytoplankton compete for same set of resources (nutrients, light, space); the species that acquires them most efficiently will out-compete others leading the rest to extinction. Further, under model developed by Tilman (Tilman 1982), in an environment with a limited number of resources the number of coexisting species should not exceed the number of resources they compete for. However, most natural phytoplankton communities are highly diverse and not representative of this pattern (Hutchinson 1959).

While competition and resource partitioning have been well studied as primary forces that structure natural communities, results from long term studies don't always hold up. An eleven-year study carried out to test the effect of competition on coexistence of prairie plants showed only a few communities predictably coexist, suggesting that there may be other factors that contribute to coexistence (Dybzinski 2007). In an effort to explain the discrepancy, another view was put forward by Hubbel (Hubbel 1979). According to Hubbel's neutral theory of ecology, all species are functionally equivalent, originate and fluctuate in abundance at random. All species originate from a metacommunity and migrate into smaller, local pools of dispersal limited communities. Within the smaller pools of local communities, the most common species account for a large fraction of the individuals sampled while the rest of the members are present in very low abundance. If communities as structured largely through neutral processes then we should obtain a sigmoidal curve, with common high abundance species to the right and rare, low abundance members towards the left of the curve. However, the neutral theory considers that all species within the community are functionally equivalent and have the same probability of being replaced.

The neutral theory and competition exclusion theory view interaction between species to either be nonexistent or constantly negative. However, in nature interactions between species can be considered to lie on a continuum (Stachowicz 2001, Saikkonen *et al.* 1998). Thompson proposed the geographic mosaic of coevolution theory in an effort to unify importance of geographic structure and the dynamic nature of species interactions (Thompson 2005). It makes use of three distinct components:

a) Geographic selection mosaics; fitness of interacting species is impacted by locally

co-occurring species and a genotype-by-genotype-by environment interaction.

- b) Co-evolutionary hotspots; interactions between locally occurring species are reciprocally affected.
- c) Trait remixing; due to gene flow between species and genetic drift continually shape the genetic structure of the species in the local environment.

Another way to explore Geographic mosaic theory is using ecological niche theory (Chase and Leibold 2003). Though the term "niche" was used earlier (Grinnell 1917), it was Elton (Elton 1927) who formalized the term "ecological niche" as: *The functional role occupied by a species in a trophic level*. The ecological niche theory relates a set of environment variables to the fitness of an organism. If an organism has traits that are suitable for the environment, then the organism continues to persist and traits are fixed in the given environment.

Recapping, we can study factors that contribute to coexistence and community structure under these three broad views:

1) Neutral theory of ecology

All species are functionally equivalent. The success of a species in a particular environment has doesn't depend on the species or its inherent traits and interactions with other members of the community. Instead, the success of a species in a local community can be attributed solely to migration, drift and abundance in the meta-community.

2) Competition exclusion theory

All species are continually competing for resources. Members of the same species are more likely to compete for similar resources. Thus the only species

that will persist within the community are those that can outcompete other members for the limiting resource. Hence, community structure and member abundance at equilibrium will be directly proportional to the number of limited resources in the environment.

3) Geographic mosaic of coevolution

All species are randomly distributed into large meta-communities. Species migrate into local, communities at random and depending on their abundance in the meta-community. Species that persist within the local communities are those that share traits with other co-occurring members and interact positively with the local environment.

The big difference between these processes is that the competition exclusion view assumes a constant type of interaction (negative, i.e. no mutualistic - parasitic interaction continuums) between members while the geographic mosaic theory is a more dynamic view, with interactions subject to change depending on the local environment and species present within that environment.

Previous studies using long term survey data to explore how species abundance changes with samples sites (Preston 1948, Bell 2001) comment on the consistency of abundant species identified. Sites sharing environmental similarity that are also in close proximity with each other tend to also share abundant species. An analysis by Preston on several years of survey data also show that such simple survey count data show a log normal distribution with an intermediate number of species present in moderate to high abundance and a large fraction of species that are detected in low abundance (Preston 1948). Microbial communities are several fold more complex than populations

of moths and birds that were typically used in survey data. Since microbial communities are more diverse, we predict that our abundance curve will be more skewed towards rare members and have fewer highly abundant members.

One reason why the competition model fails for other natural communities could be due to the omission of soil microorganisms in these studies. Soil microbial community can modulate interactions between different plant species and thereby on the plant community diversity and persistence (Moora 1996). Further, different plant species uniquely associate with microbial partners in the soil which perform a variety of different functions from nitrogen fixation to protection from pathogens.

Apart from this, the soil microbiome can play a significant role in maintaining diverse plant communities thorough processes other than competition and neutral dispersion; i.e by negative frequency dependent selection. A well-studied example is by accumulation of pathogens, also known as the Janzen-Connell hypothesis (Klironomos et al. 2002, Bever 2003, Fitzsimons et al. 2010, Bever et al. 2012). According to the Janzen-Connell hypothesis, individual plants accumulate species specific herbivores and pathogens over the period of its lifetime, thus reducing the success of conspecifics growing near the older plant. Thus, an understanding of the diversity of soil mutualists, and the strength and direction of interaction between the soil microbial mutualists, is essential to understand the contribution of different factors to the coexistence of plants.

Importance of microbial community on plant health

Microbial partners can improve plant health through their effects on nutrient availability as well as modulating abiotic or biotic stress. Elemental nitrogen is among the most

abundant resources on our planet and is a limiting factor in the production of protein and DNA. However, since accessible soil nitrogen reserves are poor, atmospheric nitrogen needs to be reduced to ammonia before it can be biologically usable by plants (Hardy 1968). Biologically usable nitrogen can be applied as fertilizers or be fixed by natural methods (symbiosis or lighting; Kim 1994). Biological nitrogen fixation within root nodules is carried out by members belonging to the Rhizobiaceae group (Sørensen and Sessitsch, 2007). Further, addition of beneficial Plant Growth Promoting Rhizobacteria (PGPRs) improve plant health and productivity by synergistic interactions with already present species (Cummings 2009; Guiñazú et al. 2009, Friesen et al. 2011) or by inhibiting other microbial members that are detrimental to the host (De Vleesschauwer and Höfte 2009). Apart from this, soil microbes also play an integral role in alleviating the different kinds of stress. For example, a study done on peppers showed selected isolates to improve protection under a drought like environmental condition by increased solubilization of phosphate and secreting a gel like material around the root zones to protect the root (Rolli 2015).

Generalist vs specialist selection within plant microbiome

An interesting pattern that emerges from most of these host associated microbiome studies is the presence of a small abundant community and a long tail of rare microbial members. Abundant microbes are generally found across closely related host species (Turner 2013, Dohrmann 2013). Further, abundant taxa contributions to microbial community structure do not vary wildly while rare taxa contributions vary (Dohrmann 2013). Abundant phyla generally include members like Actinomycetes and

Proteobacteria that can produce a plethora of compounds including antibacterial, nematicidal and antiviral properties (Muharram 2013, Mendes 2011). Rare microbes on the other hand are involved in more specific functions such as supplying phytohormones to plants (Karadeniz *et al.* 2006) or sulfate reduction (Pester 2010). Since members belonging to these two groups (abundant vs rare or generalist vs specialist) perform a wide array of different overrepresented and underrepresented functions, the two groups may be under different selection factors.

BNF: Biological nitrogen fixation

Biological nitrogen fixation is the process by which atmospheric nitrogen gas is incorporated into plant tissue (Hardy 1968). This can take place in two different ways: nitrogen fixation within nodule and associative nitrogen fixation. In nitrogen deficient environments, plants can form symbioses with certain members of rhizobia (associated with Fabaceae, Sprent 2001) or Frankia (associated with Rosids, Diagne 2013). These symbiotic partners use the nitrogenase enzyme to reduce atmospheric nitrogen to ammonia which is useable by the host.

Associative nitrogen fixation

Associative nitrogen fixation is yet another way by which plants can obtain the nitrogen required for their growth needs. In associative nitrogen fixation, diazotrophic bacteria are able to fix nitrogen in endophytic compartments with the help of nitrogenase (Doty *et al.* 2016). *Azospirillum* species is the best studied system for associative nitrogen fixation (Kucey 1998, Steenhoudt 2000). They are aggressive colonisers of both the root

and endophytic compartments and invade the host through undifferentiated root tips or cracks in the root tissue (Dommelen *et al.* 2007). The environment within root tissues is microaerobic and thus allows for nitrogenase to function. While associative nitrogen fixers are found within root tissues, there is no evidence yet for the occupancy of these members within root nodules.

Current literature on nodule microbiome

Currently, there are no studies that have used high throughput sequencing to profile member presence in nodules of nitrogen fixing plants. However, there has been a lot of sequence and trait data looking at microbial presence, activity and abundance within different regions of soil and root zones; specifically, the rhizoplane, rhizosphere and endophytic communities (Weinert *et al.* 2011, Inceoglu *et al.* 2011). Diversity of members within rhizosphere ranges from < 3000 OTUs (Weinert *et al.* 2011) to > 55,000 OTUs (Inceoglu *et al.* 2011). Further, most of these communities are so diverse and species rich that it is hard to reproducibly generate species richness values by subsampling reads from samples. The most abundant members are commonly from the phyla: Proteobacteria, Actinobacteria, Firmicutes, Bacteriodetes. An important pattern seen is the change in species richness value between root zones. Richness is highest in the bulk soil and then due to host selection reduces as distance to the root zone increases. Thus, diversity is typically highest at the rhizoplane zone and reduces across the rhizosphere and endosphere zones (Marilley 1998).

Soil legacy

Soil acts as a reservoir for local, diverse microbial populations, with upwards of 10^A4 bacterial species found per gram of soil (Weinert *et al.* 2011). Despite the use of high throughput sequence technologies, we still fall short of completely profiling the microbial members in soil samples. Presence of microbial members in the soil depends specifically on the pH (Fierer and Jackson 2006; Lauber *et al.* 2008; Rousk *et al.* 2010), grain size and nutrient content (Faoro *et al.* 2010, Chaparro 2013). Large deviation in taxa presence and abundance is seen when soil pH is varied. Further, there is a strong positive correlation between the soil pH and diversity and composition of soil microbes (Rousk *et al.*2010). A related factor with soil legacy that plays a role in modulating the benefits from microbial partners is the exposure time with the microbial partners. Hosts that grow in soils in which members of their own species were previously grown will be able to select for the most beneficial partners and have a reproducible microbial community structure. While those grown in soils with members of different species will show a more diverse microbiome (Bulgarelli *et al* 2013).

Host species selection

While soil is the primary source, housing all microbial genetic diversity, host species act as a sink, selecting for specific members from the meta community pool. Host species release root exudates rich in sugar molecules and have shown to strongly influence the microbial community structure and abundance (Broeckling *et al.* 2008). Further, host species show specific enrichment of certain microbial taxa (Lundberg *et al.* 2012, Peiffer *et al.* 2013) and when hosts are grown with non-native microbial partners, host growth is affected with them having lower biomass as compared to hosts grown with native

microbial partners (Lou et al. 2014).

<u>Techniques to study microbial populations</u>

Culture dependent methods- Before the widespread use of NGS techniques

Traditionally, the occurrence of microorganisms in a given environment or in an industrial process has been studied by culture-based methods. While these methods were initially successful in exploring the characteristics and functions of members in the sample of interest, they were always labour intensive. Further, these methods often fail for microorganisms that require selectively enriched media (Lagier 2008). In addition, conventional culture based methods are only able to detect only half the OTUs identified by high throughput sequencing methods (Goodman et al. 2011, Rettedal et al. 2014).

Culture independent methods (Table 1)

Lipid analysis

Phospholipid fatty acid (PLFA) analysis is a biochemical technique that uses phospholipid fatty acids within the plasma membrane of bacterial cells to build a profile (Mitchell *et al.* 2016). The chemical composition differs depends on the type of bacterial organism. Thus, PLFA can be used to evaluate microbial community structure and activity. PLFAs can be extracted from the soil and their composition is analysed by gas chromatography. Changes in PLFA profiles are indicative of changes in the overall structure of microbial communities (Zelles 1999). PLFA analysis offers an advantage over culture-based techniques as it avoids the selectivity bias that is inherent to in the isolation and culture techniques (White *et al.* 1997).

Gradient Gels

Gradient gel electrophoresis methods are a step up in throughput compared to the previous techniques (Favier et al. 2002). The basic premise of these methods is targeted amplification of marker genes and visualization on gels. The electrophoresis will separate DNA molecules based on their shape, charge and molecular weight. Increasing concentration of denaturing agents (urea or temperature) will force the double stranded DNA molecule to melt. Depending on the nature of the sequence, different DNA strands will have different melting temperatures and thus will only melt at their corresponding denaturing gradient. The advantage of using gradient gels is that you do not need to have a reference and offers an initial view at the diversity and abundance of different groups within the sample. The technique was used to profile the oral cavity microbiome in children in order to understand if under a diseased condition (dental carries) certain microbial members are overrepresented (Ling 2010).

Hybridisation techniques - FISH, Microarray

Hybridisation techniques are a powerful tool to visualize structure and abundance of members within a community. Presence of a certain microbial taxa can be identified using corresponding oligonucleotide probes. Hybridisation methods allows for identification of even the rarest member of the community (Amann et al. 2008) and does not allow for any PCR based biases that previous methods inherently have. The downside of using a hybridisation technique is novel taxa can't be identified.

Targeted amplification and sequencing of a marker gene

Amplification of conserved marker genes has been the preferred methods of choice when multiple samples need to be identified and characterized. With the advent of

cheaper and high throughput strategies, sequencing multiple samples with great coverage has become progressively more affordable (Shendure *et al.* 2008). The high coverage, large range of reference databases allows users to characterize entire communities with taxonomy and in some cases function. Coupling these with the wide range of "-omics" platforms that are now available, allows one to explore the functional contribution of different taxa (Marcobal *et al.* 2013). Since its inception in 2007, the human microbiome project has generated more than 35 billion reads from 690 samples taken from 300 US based human subjects from various body sites (Turnbaugh *et al.* 2007, Ilseung *et al.* 2012) in order to explore how diet and nutritional status affect the microbiome assembly, succession of members within the microbiome and function of different microbial members.

<u>Importance of studying native plants</u>

Native species offer the best avenue to study established relationships between each other and their symbiotic partners. Further, native plants are typically locally-adapted to their home environment (Coleman-Derr *et al.* 2016) and are a thus a good resource to study microbial associations, which depend on the nature of the local environment (Heath & Tiffin 2007). For example, in environments where the host is not nutritionally limited, there is no selection for it to continue maintaining a costly symbiosis. Thus, such associations can be affected by fertilizer inputs or land management practices (Ding *et al.* 2016). Fields with long term fertilizer inputs have microbial populations that show reduced dependence on root exudates (Ai *et al* 2015). This may lead to fewer associations between microbes and plant hosts. Finally, invasive plant hosts can break

down associations between native hosts by changing soil chemistry through allelopathy (Cipollini *et al.* 2012), bringing in new partners, associating with other microbial partners (Putten *et al.* 2007).

About *Trifolium* species

Clovers are perennial herbs that have palmate compound, trifoliate bright green leaves. All species have a distinctive, round flower head composed of many, small, pea-like flowers. This involucre is considered to be a distinguishing feature of members belonging to this family. Flowers are typically small, reddish- purple in color with white tips. Well known members from this group are *Trifolium repens* and *Trifolium pratense*. The different species (Figure 1) that occur at the field site, Bodega Bay, in this study are named and described by Seringe (1825): 1) Trifolium barbigerum (here abbreviated Bar) or Bearded clover is an annual herb, native to Northern California and Oregon. The plant blooms between February to March. 2) Trifolium bifidum (here abbreviated Bif) or Notch leaf clover is an annual herb, native to the western region of North America (Washington to California). The plant blooms between April to June. 3) Trifolium macraei (here abbreviated Mac) is an annual herb, native to California but is also found in other parts of North America and the world. The plant blooms between March to May.4) Trifolium microdon(here abbreviated Mic) is an annual herb, endemic to California. The plant blooms between April to June. 5) Trifolium wormskoldii (here abbreviated Wor) is a perennial herb, native to California and found in other parts of the Western North America. The plant blooms between May to June. 6) Trifolium fucatum (here abbreviated Fuc) is an annual herb, native to the western North America and

California. The plant blooms between April to June.

In this project we aim to explore how selection factors specifically soil legacy type, host species, nodule size and phylogenetic distance has an impact on the microbial community composition. We used targeted amplicon sequencing of 16s rRNA to profile the nodule microbial community of our samples. Making use of 16s rRNA allows us not only to estimate abundances of unique taxa but also allows us to identify them using reference Greengenes database. However, we can't directly use the reads generated by the sequencing run. The reads must first be demultiplexed into individual samples and then quality filtered. Once the reads are cleaned, they are then ready to be clustered into representative sequencing. Such a form of data aggregation allows us to not only generate counts per representative sequence but also gives us a basic understanding on the diversity of unique clusters seen. In this study, we make use of Operational Taxonomic Units (OTUs). OTUs can be generated by using QIIME (Caparaso et al. 2010), MOTUR (Schloss et al. 2009) or UCLUST (Edgar 2010). We decided to use QIIME for read clustering as it supports the several different clustering algorithms, including MOTHUR and UCLUST. Further, QIIME also makes use of RTAX (Soergel 2012), a tool for assigning taxonomies using a reference database. RTAX makes use of mate pair information when assigning taxonomies making it ideal for our dataset with non-overlapping mate pairs.

Specifically, in this study we explore the following questions:

- Analyze the similarity of nodule microbiome community for different *Trifolium* species.
- 2) What is the core nodule microbiome for the home *Trifolium* samples.

- 3) Do we see the presence of **Soil** and **Species** factor impacting species richness and diversity.
- 4) Do we see the presence of **Soil** and **Species** factor in structuring microbial communities.
- 5) Do neutral processes contribute to nodule microbiome community assembly.

Results

Sample read distribution table.

16s rRNA gene fragments from nodules of 6 home Californian species of *Trifolium* grown experimentally in "home" and "away" soil. A total of 227,196,520 reads were generated through paired end Illumina sequencing (Table 2). Reads were demultiplexed, filtered for quality and length. Averages read length for forward and reverse reads were 51 and 53 bases respectively. Read counts per sample varied from 6,675 to 463,075 reads per sample (Figure 2a).

OTU picking and Taxonomic Classification

OTU picking generated a total of 2,394 OTUs (Figure 3a). Close to 15% to 54.5% of reads within samples were poorly classified and taxonomically assigned to "None" or "NOHIT". All OTUs with this label were removed. The filtered OTU table (Figure 3b) consisted of 1314 OTUs and read counts per sample varied from 6,546 to 462,142 reads per sample. Proteobacteria (representing 97.5 to 99.9% of all the matched reads per sample), Bacteroidetes (representing 0.035 to 2.04% of all the matched reads per sample) and Actinobacteria (representing 0.009 to 0.69% of all the matched reads per sample) were the top three most dominant phyla. By far the most dominant order of bacteria was identified within the Proteobacteria phylum and was called "Rhizobiales". The order represented 86.5 to 99.6% of all the matched reads per sample and was made up of 123 OTUs. These OTUs were extracted and labeled as the "Rhizobiales" microbiome.

In order explore the nodule microbiome in greater detail, we specifically excluded all OTU's belonging to the order "Rhizobiales" and named it the rare microbiome (Figure 3c). The rare microbiome OTU table consisted of 1191 OTU's and read counts per sample varied from 163 to 10,867 reads per sample (Figure 2b, Table 2).

Proteobacteria (representing 51.4 to 94.2% of all the matched reads per sample),

Bacteroidetes (representing 3.8 to 43.1% of all the matched reads per sample) and

Actinobacteria (representing 0.89 to 20.07% of all the matched reads per sample) were the top three most dominant phyla.

The distribution of OTUs across all samples was largely similar. There were very few OTUs that were abundant and present in high frequency across all samples. Further, there was the presence of a large rare tail of low abundant community members. This suggests that the nodule microbiome typically consists a few dominant groups that contribute to nitrogen fixation and occupancy within nodules and a large population of low abundance microbial partners that are present within the root tissues as endosymbionts may or may not contributing to active nitrogen fixation.

Core Microbiome

Presence/Absence matrix

Threshold 1: OTUs present in at least 2 of the 4 samples.

A total number of 64 OTUs (4.8% of all OTUs, Figure 5a) were identified as core. Of these OTUs, the phylum Proteobacteria was the most represented (44 OTUs) followed by members of the phylum "Bacteroidetes" (11 OTUs), "Actinobacteria" (6 OTUs) and "Chloroflexi", "Armatimonadetes" and "TM7" (1 OTU).

Threshold 2: OTUs present in at least 3 of the 4 samples.

A total number of 41 OTUs (3.1% of all OTUs, Figure 5b) were identified as core. Of these OTUs, the phylum Proteobacteria was the most represented (31 OTUs) followed by members of the phylum "Bacteroidetes" (6 OTUs), "Actinobacteria" (3 OTUs) and "Chloroflexi" (1 OTU).

Abundance and Presence/Absence matrix

Using an abundance threshold did not change the top three identified core OTUs within all 6 samples. However, making use of an abundance threshold did reduce the number of unique OTUs per sample as represented in the graph (Figure 5c and 5d).

Diversity estimate

Alpha diversity

Rarefaction curves generated do not show saturation, further most curves have large error bars and overlap each other (Figure 6a-6d). This is most probably due to the low depth of rarefaction and large diversity of OTUs seen. Rarefaction greater than 6546 reads/ sample led to loss in samples and curves still do not show saturation.

Rarefaction curves remained comparable between hosts grown in home and away soil. In order to calculate species richness and impact of meta-data factors on species richness all OTU tables were rarefied to ensure samples had equal number of reads. All samples in the complete microbiome table were rarefied to 6500 reads/ sample and the rare microbiome table after dropping the "Rhizobiales" order was rarefied to 163 reads/

sample. The abundant microbiome table was rarefied to 6250 reads/sample. We carried out anova tests on the rarefied complete OTU table and abundant OTU table, with diversity metrics as the response variable. We tested to see if Soil, Species and nodule size factors had an effect on the species richness.

The three metrics used (Shannon, Observed and Chao1) showed similar results: no factor significantly affected species richness or there was a very weak, insignificant effect (Table 3a). The rarefied rare OTU table showed no consistent patterns of significant Soil and Species interaction (Table 3c).

Ordinations

Beta diversity

All samples in the complete microbiome table were rarefied to 6500 reads/ sample and the rare microbiome table after dropping the "Rhizobiales" order was rarefied to 163 reads/ sample. The abundant microbiome table was rarefied to 6250 reads/sample. All beta diversity estimates were calculated from the rarefied, count normalized OTU table. Such an approach allows us to scale different samples within our data. Beta diversity was first visualized using ordination methods.

PCoA plot was built using Bray-Curtis dissimilarity distance matrix. Bray-curtis was used as it works better in tables with large null values. We compared the PCoA plot for all three microbiome tables: all (Figure 7a.i), abundant (Figure 7b.i)and rare(Figure 7c.i). For the rare microbiome, the first and second axis explained 12% and 10% of the total variance respectively. Further, the total variance explained by an axis increased to 55.1% and 51% as we compared the complete and abundant table. Both these plots

also showed an overlapping of samples indicating that the relationship was being driven by the abundant OTU order of "Rhizobiales". We also plotted the eigenvalues using a scree plot to visualize the range and spread of values for the all axis. The complete and abundant tables alone showed a very large PC1 axis compared to the rare tables, further giving evidence that the order "Rhizobiales" maybe driving the relationship. In order to confirm if the strong grouping effect is driven by abundant taxa that we see in the both the complete and abundant OTU tables, we ran another ordination with NMDS. This allowed us to compare how the samples and the OTUs were related with each other (Figure 8a, Figure 8b, Figure 8c). We also visualized the dataset using CCA and constraining the axis by Species and Soil factors. Doing this allowed us to visualize how these factors contributed to the variance seen in the microbial community structure. Constraining ordinations by the Soil factor explained the largest amount of variation in the tables (Figure 9a.i: All; CCA1: 3.4% and CCA2: 2.2%. Figure 9c.i: Rare; CCA1: 2% and CCA2: 1.5%). Further we plotted the eigenvalues of the constrained samples to visualize how the factors are driving these relationships. Constraining by Soil factors showed samples belonging to Mic and Wor clustering together in the same direction, while Bif and Mac samples clustered to the opposite direction, showing that Mic and Wor have more similar community structure compared to the other samples. This relationship was constantly identified in both complete and rare tables. Further, clustering by Species factors showed no clustering with arrows pointing in opposite directions, indicating that samples coming from the same species but different soils have more diverse microbiomes.

Adonis modeling results

The rarefied OTU tables were used for multiple factor testing. Multiple factor testing on the complete OTU table showed that communities were being partitioned out by similar factors: Soil (R^2 =0.07711, p=0.006) and Species (R^2 =0.05961, p=0.043). Interestingly, there seems to be no significant interaction effects between Soil and Species factors (R^2 =0.15806, p=0.522).

Multiple factor testing on the abundant OTU table showed that communities were being partitioned out by similar factors: Soil (R^2 =0.05605, p=0.054) and Species (R^2 =0.07655, p=0.006). Interestingly, there seems to be no significant interaction effects between Soil and Species factors (R^2 =0.19574, p=0.079).

Multiple factor testing on the rare OTU table showed that communities were indeed partitioned out by several factors, most important of them being; Soil (R²=0.115, p=0.001) and Species (R²=0.07676, p=0.001). Also, interaction between Soil and Species effect (R²=0.183, p=0.001) is highly significant too (Table 5). Both these give similar results. It is interesting to note that the model with Soil*Species interaction explains the highest amount of variance explained. These results mean that there is a strong underlying interaction that influences microbial community assembly even at the endophyte level. Another interesting result is the strength of Soil factor. In all the Adonis models, Soil seems to have a greater effect compared to any other factor.

Neutral community model

More number of OTUs were detected for away sample (578 OTUs) compared to home samples (293). We also had more number of OTUs that were selected for and against

within away samples compared to home samples. Fishers test on the number of OTUs selected for, against and neutrally distributed showed that there was indeed a significant difference between home and away samples (pvalue=3.842e-5). Both OTU tables fit the neutral distribution pretty well with a marginally higher r-squared value for away samples (rsquared= 0.918) compared to home samples (rsquared= 0.877).

Discussion

Composition of nodule microbiome

A total of 1314 OTUs were identified within the nodule microbiome of *Trifolium sp.* The nodule microbial community is less diverse compared to the bulk, rhizosphere and phyllosphere community described in previous literature (Uroz *et al.* 2010, Mendes 2011, Inceoglu *et al.* 2011, Peiffer *et al.* 2013, Chaparro *et al.* 2013). The nodule community not only has fewer OTUs but also fewer identified taxa. However, some of the important taxa groups are identified: Proteobacteria, Actinobacteria and Bacteroidetes. Members belonging to these phyla are seen as abundant members within root associated microbiome (Uroz *et al.* 2010, Mendes 2011). The large tail of rare microbial members is yet another pattern seen in most natural samples and rare microbial members are important in successfully assessing diversity metrics (Lynch & Neufeld 2015).

The top phyla identified in our study belonged to Proteobacteria, Actinobacteria and Bacteriodetes. Members belonging to these phyla are typically observed to be enriched in different rhizosphere studies (Wieland *et al.* 2001, Peiffer *et al.* 2013, Chaparro *et al.* 2013). However, the range of diversity also depends on the host: < 3000 OTUs (Weinert *et al.* 2011) to > 55,000 OTUs (Inceoglu *et al.* 2011).

The most abundant OTU belonged to the group *Agrobacterium*. Typically, members from this group are pathogenic and not associated with nitrogen fixation. The host *Sesbania* has shown to nodulate with a group of agrobacterium. These members also have a low similarity at the 16s region with rhizobium species (Cummings *et al.* 2009). Further, 57 agrobacterium members were isolated from different legume hosts. Wide

strain variation was also observed. The agrobacterium OTU identified in our samples may also be one that fixes nitrogen associatively. However, we need biochemical tests to confirm this. Phylogenetic analysis puts the abundant agrobacterium with rhizobium species (Figure 10).

While it is identified that multiple strains can colonize the same individual plant (Denison and Kiers 2004, Denison 2000), how many strains colonize a single nodule is lesser known. In lab studies there has been evidence of nodules with mixed strains. A study looking at the nodule occupancy in *Medicago sativa* showed presence of mixed infection with nitrogen fixing and non-fixing strains occurring in the same nodule (Checcucci *et al.* 2016). Our results identify multiple OTUs present in high abundance identified to the order Rhizobiales within every sample, where each sample comes from a single nodule. This could be an evidence for mixed infections within clover nodules. An oligotyping analysis would help answer this question with greater sensitivity and accuracy.

We touched upon 2 views of studying community structure and assembly. One views community assembly processes through competitive exclusion and niche theory. Competitive exclusion theory suggests that all species in nature are competing for resources. Species that are closely related will complete for the same set of resources. Further, two species competing for the same resource niche will not continue to exist as in the long term the community will be dominated by the one species that has a slight growth advantage. Thus, the number of species in the environment will be dictated by the number of limiting resources. Compared to this, is the other view a combination of neutral theory of ecology and the geographic mosaic of coevolution. The neutral theory

of ecology says that individuals are functionally equivalent and recruited from a larger meta-community pool into small local communities. Extending this with the assumptions from the geographic mosaic theory, individuals are distributed randomly across different local communities. Within local communities with members whose traits match their environment interact positively and coevolve more rapidly compared to local communities with members having dissimilar traits or interacting negatively with the environment.

The competitive exclusion theory has met with a lot of resistance primarily due to the fact that microbial communities in nature are highly diverse (Hutchinson 1959). A metacommunity analysis looked at the presence of competition in different microbiome communities through phylogenetic dispersion (Koeppel *et al.* 2014). If members within a community are assembled due to competitive exclusion, then the community will be phylogenetically over dispersed with more distantly related members. In most communities they found no signal of phylogenetic overdispersion until they looked OTUs clustered at higher ranges of sequence similarity. We found several closely related OTUs occurring across all our nodules, much more than what could be expected by just the number of limiting resources. However, we would need longer read lengths to cluster OTUs at a finer scale and test them for phylogenetic over or under dispersion to infer the strength of competition in assembling nodule communities.

According to the geographic mosaic of coevolution, individuals drift or migrate into communities randomly and depending on their abundance in the large meta-community. Their survival in the new environment depends on the traits they carry. Organisms with traits that closely match their environment will survive and persist while the rest go

extinct over time. Such a process should give us a sigmoidal species abundance curve with a long tail of rare, low abundance members and a small group of commonly occurring, high abundance members. The slope of the curve will depend on the number of abundant species. The neutral model on the other hand states that member presence within a local community is solely a function of drift, migration and abundance in the meta community. The neutral model was applied to study how the gut microbiome of zebra fishes was structured over time (Burns *et al.* 2015).

The neutral mode fit better for younger ad juvenile fishes better than adult fishes, implying that random processes play a large role during the initial microbiome assembly. As the fish ages, the fit of the neutral model decreases indicating the importance of environment and interaction between local microbial members in structuring communities.

Our adonis results show that both soil and species factors play an important role in the community structure of trifolium nodule microbiome, with soil factor playing a bigger role and explaining a greater degree of variation. If we consider the soil factor to be the reservoir or the meta-community housing all the individuals from which members in our local community are derived, then this result aligns well with both the results of neutral assembly in young zebra fish gut microbiome and the view of neutral assembly process described in the introduction. Microbial species from the soil may migrate into the endophytic microbiome however such a process will only progress if the microbial species has the right set of genes to interact with the host. Further since we have several different hosts, the genetic alignment between the microbial partner and plant host is even more crucial. So while we can consider survival and presence of microbes

in soil to be a neutrally distributed process, the survival and presence within the plant host need not necessarily be neutral. Similarly, while initial colonization of microbes within juvenile zebra fishes maybe neutrally assembled, their long term presence within adult zebra fishes doesn't fit well with the neutral model due to the interaction between the microbial partners and the microenvironment offered by the host species.

Further, we would need a time series data to study how the assembly process changes over development time of the trifolium host and if soil continues playing a larger role compared to species over long term growth of the host.

We were unable to reliably estimate richness due to the sheer diversity of OTUs and unbalanced samples that we had. Anova run at different rarefactions and metrics showed no significant difference in microbial species richness.

Core microbiome

Core microbiome analysis was carried out using both presence/absence matrix and an abundance matrix. Both the methods gave us similar results. The "core" microbiome identified was primarily made of up 3 different phyla; Proteobacteria, Actinobacteria and Bacteroidetes. Members within these phyla have been previously described to be present in high abundance within plant tissues (Reinhold-Hurek et al. 2015, Turner et al. 2013, Hirsch 2012). In our results we see a very small group of core microbial members, these members also happen to be those that are abundant across all samples.

Alpha Diversity analysis

Despite running alpha diversity at multiple different rarefactions and using different species richness metrics we were unable to see any saturation in the rarefaction curves. Further we made use of an anova to look if there were any factors had a significant effect on the species richness of the community. Most factors were insignificant and those that were significant showed only borderline significance or disappeared at higher rarefactions indicating that the effect was possibly a chance observation. Calculating species richness robustly requires high read coverage within samples to run a robust, reproducible rarefaction analyses.

Ordinations

Across all tables, few consistent patterns arose. Primarily, we see that abundant OTUs drive clustering of samples. This implies that apart from the rare tail taxa, the samples share most of the abundant taxa. Further for the complete and abundant microbiome table, we see only two axis that largely contribute to the amount of variance explained, implying that there are two or three important factors impacting the structuring of microbial communities.

a) PCoA

PCoA of complete tables showed that there was a lot of similarity between the samples themselves and a large PC1 axis. The PCoA with just the rare microbiome showed separation of samples by axis. Samples belonging to Worm, bar and mic clustered together away from Bif and mac samples. This could indicate that *Trifolium* species

recruit members into the nodule microbiome community differently.

b) CCA

When we look at samples coming from the same soil but different species (constraining by soil factor) we see a more similar microbiome as evidenced by the clustering of arrows. Whereas, when we look at samples coming from different soils but same species we see a more varying microbiome. This indicates the strong effect of soil legacy.

c) NMDS

For both the complete and Rhizobiales OTU table, we see that sample clustering overlaps clustering by the abundant microbial community members. The same relationship is absent when looking at an NMDS plot generated using only the rare microbiome. Thus giving us more evidence that the grouping along a single axis is most probably driven by the dominant taxa.

Beta diversity model comparisons

We made use of adonis analysis to explore individual and interaction effects between our metadata. Both complete and rare microbiome table showed strong individual species and soil effects. This indicated that both factors play an important role in structuring the microbial community. A strong interaction seemed to be present when we looked at species*soil effects only for the rare microbiome table. This effect was not seen as a significant effect for the complete table. Further, the only time we see soil explaining a smaller variance compared to species is when we look at the abundant microbiome table (Soil R²=0.05605 and Species R²=0.07655). Soil playing a smaller

role in the structure of abundant community is understandable. Since most of the abundant organism are also shared by a large majority of samples, their presence and similar abundance across samples is not surprising.

Soil type and host species have been previously identified as important factors structuring microbial communities in soil (Garbeva et al. 2004, Berg et al. 2009). In our study when we look at the complete and rare microbiome tables, we found that soil factor plays a larger role in structuring these communities compared to species factor. One possible reason that lets Soil play such an integral role is the duration of the study. A single generation might not be sufficient for hosts to structure microbial communities, however over time this relationship may shift. Finally, we see a significant interaction effect but only for the rare microbiome. The rarest members of the community are more prone to being lost due to extinction events. Their presence in the microbiome depends on not only surviving in the soil metacommunity but also selection by the host. The abundant microbiome members on the other hand are less prone to being lost due to their sheer abundance. This result could indicate that different members of the microbiome need not all be selected under the same selection factors.

Neutral community analysis

Plants growing in their own soil were growing on a soil legacy that was conditioned by a member of the same species and thus would be exposed to microbial members whose abundances were structured by the ancestor. Whereas plants growing in a soil condition by a member of a different species would have to select upon a microbial community with members that will interact with it. This should lead to a change in member

abundance, specifically the abundant members of the microbiome. This is assuming that the reason these members are abundant is prior selection by the ancestral host. Further, we should also see an increase in selection for the rare members of the microbiome as these members might interact with the new species. Thus, we should not only detect higher number of species within away samples but also have more species that do not fit within the neutral distribution. Further, in the away samples we also see that a lot of the low frequency OTUs are selected for while the high frequency OTUs are selected against as seen by the few points that fall above and below predicted neutral model values.

It seems that most of the OTUs in home and away samples fit the neutral model pretty well. The interesting aspect is the selection for low frequency OTUs in the away samples. These results indicate that while neutral process play an important role in the assembly of *Trifolium* nodule microbiome, different hosts also play a role by selecting for and against microbial partners. A further study using multi-generation time series data will allow us to track the increase and decrease of specific OTUs, thus informing us of their importance with the host.

Broader Impacts

We live in a microbial world with microbes and their communities forming the foundation of biosphere and playing an integral role in the functioning of all trophic levels. For example, rhizobia are involved in increasing useable soil nitrogen resources by reduction of atmospheric nitrogen to ammonia through biological nitrogen fixation in exchange for photosynthetically fixed carbon from the host (Hayatt *et al.* 2010). Rice

fields associated with *Azolla* can fix upto 600kg N/ha/year during the growing periods (Fattah *et al* 2005). Thereby reducing dependence on commercial fertilizers and need for highly fertile land. Further, microbes play a crucial role in mediating phosphorus availability too. Further, plants can associate with different kinds of fungi. Plantmycorrhizal associations are one of the better studied symbioses and about 80% of all land plants are capable of associating with mycorrhiza. Such associations lead to improved phosphate uptake by the host (Vance 2001). Apart from improving nutrient uptake, mycorrhizal associations also enhance root surface area by sending out their hyphae and creating secondary root systems. Understanding how plant-microbe interactions are affected under ecological conditions will help us introduce better land management practices. Further, reducing the dependence on commercial fertilizer not only provides monetary benefits to the farmer but also reduces leaching of nutrients into local water bodies and preventing large scale algal blooms.

Microbes are also shown to protect their hosts from biotic and abiotic stresses. For example, isolates cultured from wheat grown in saline environments gave rise to about 24 salt tolerant isolates, all of which were able to produce phytohormones like indole 3 acetic acid or gibberelins and improve plant productivity under salt stress (Upadhyay *et al.* 2009, Culligan *et al.* 2012). Further, rhizobacteria produce metabolites that can inhibit the growth of other taxa (Kim *et al.* 2006). Rhizospheric fungi are also well known producers of antibiotic metabolites that can inhibit the growth of other microbes or defend the host against predatory protozoa, improving protection against biotic stress (Hoffmeister 2007, Brakhage 2011). Thus, it is important to consider feedbacks from the local microbiome community when exploring factors that contribute to host growth,

development and succession.

Methods

Plant experiment

Seeds from *Trifolium barbigerum*, *T. bifidum*, *T. fucatum*, *T. macraei*, *T. microdon*, and *T. wormskioldii* were collected from Bodega Marine Reserve, California, in 2012. Soil was collected from below each species and placed in pots in a UC Davis greenhouse. Seeds were scarified by razor nicking and planted directly in field soil, then watered as needed. At 6 weeks of age, plants were harvested, soil shaken from the roots and individual nodules plucked from roots and flash-frozen.

Sequencing experiment

DNA was extracted from single nodules using Zymo's quick gDNA kit and stored at - 20C. Two loci were targeted by PCR, nodC and 16S.

<u>nodC</u>

The symbiotic nodC locus was targeted with nodC_4192-4845 (GGCGAGACCCTKTTYTGCTA, GTGACKACCATYSCAAGGCT), with a PCR program 95C 1:00 followed by 35 cycles of 95C 0:30, 51C 0:30, 72C 1:00, and a final extension of 72C for 1:00. Amplicons were Sanger sequenced at UC Davis and traces were quality trimmed and aligned with CodonCode to identify polymorphic sites.

16S

The same DNA extractions were used as template in a 16S PCR targeting the 799-1115 region (AACMGGATTAGATACCCKG, KGGTYKCGCTCGTTRC), with a PCR program

95C 1:00 followed by 35 cycles of 95C 0:30, 60C 0:30, 72C 1:00, and a final extension of 72C for 1:00 PCR was done with combinatorially barcoded primers to enable a high degree of multiplexing; our combinatorial approach enabled this with only 4 barcodes per end, combined with 9 standard Illumina indexing adaptors (See supplemental methods). Briefly, first stage PCR was conducted with barcoded primers containing part of the Illumina adaptor, and then pools were made for the second stage PCR that completed the adaptor and added the Illumina barcodes. Data was deposited at SRA under the code SRP070507 and bioproject accession code PRJNA297440.

Microbiome community profile: Building OTU table

Above-mentioned 16s rRNA regions was sequenced on Illumina platform. The generated paired-end, non-overlapping reads were demultiplexed, trimmed to do away with bases that had a quality score of lower than 25. Qiime (v1.6.0) was used for all further downstream analysis. Demultiplexed forward and reverse reads are binned individually after their headers were renamed.

Each Operational Taxonomic Unit (OTU) is picked based on sequence similarity of the reads. Clustering is carried out with only forward reads using uclust_ref clustering algorithm. Against the Greengenes reference database (version: Greengenes 13_5) at 97% similarity. Reads that failed to hit the database were removed from further analysis. Taxonomic classification was assigned with the RTAX procedure in QIIME, using the Greengenes database. The RTAX method makes use of reads from both ends before assignment. The additional information from the second end allows for a more precise taxonomic assignment.

The OTU table was further filtered to remove poorly labeled OTUs. Further the OTU table was divided into complete, abundant and rare microbiome tables based on the most abundant order of bacteria; Rhizobiales.

For alpha and beta diversity analysis both tables were then rarefied to ensure they had equal number of reads. All samples in the complete microbiome table were rarefied to 6500 reads/ sample and the rare microbiome table after dropping the "Rhizobiales" order was rarefied to 163 reads/ sample. The abundant microbiome table was rarefied to 6250 reads/sample.

Doing this allowed us to study if the rare/ less abundant members of the microbiome community and the more abundant members were being affected differently.

Core microbiome

We computed the core microbiome within samples grown in home soil alone. This allowed us to look at the unique OTUs present in each species and those that are shared by all 6 species. We used 2 different definitions of "core" microbiome. The first was based on a presence absence matrix alone the second used an abundance threshold too.

Using presence absence matrix, an OTU was considered a part of the core if it was present in at least 2 or 3 samples. We also made use of an abundance threshold (0. 00001% of all reads) to select which OTUs would be a part of the presence absence matrix. Abundances were normalized to library sizes. Percentage of common OTUs was visualized by plotting a Euler grid. UpsetR, an R library was used to plot the grid. Taxonomies of common OTUs were saved as a table.

Diversity analysis

Alpha (within samples) and beta diversity (between samples) were used to estimate microbial community diversity. Alpha diversity was measured using Chao1, Observed species and Shannon metrics. All samples were rarefied to 160 and 500 reads/sample to keep sampling size the same. A permanently set seed was used to make results reproducible. We carried out an Anova to test if species richness of microbiome community depends on soil origin and host species. However, the rarified data lead to inconsistent diversity estimates. Also, results of Anova were depended heavily on the diversity metric chosen. We imported the OTU tables into QIIME to plot rarefaction curves. A minimum of 10 reads/sample with increments of 15 reads/sample was used as parameters.

Beta diversity analyses were carried out using Bray-Curtis distance on a count normalized OTU table and were visualized by different ordination techniques. R package "Phyloseq" (1.16.2) was used for principal coordinate analysis. Non parametric permutation test Adonis with 999 permutations was used on bray-curtis dissimilarity matrix to test between sample similarity and factors affecting it. As factors we included Soil (the host conditioning the soil), Species (the host currently planted), Host_PD (Pairwise distance matrix between host conditioning the soil and host currently planted), Nod size (Nodule size of the hosts).

Ordination techniques

PCoA: Principal coordinate analysis

PCoA also called classical multidimensional scaling is a distance-based ordination

method that can be performed via the ordination function in Phyloseq. The major benefit of PCoA is the ability to choose a different distance measure.

CCA: Canonical Correspondence Analysis

CCA can be used to explore the relationship between two sets of variables. This is particularly useful as we make use of this ordination technique to explore how the Species and Soil variable affects microbial community structure. Further, by plotting out the eigenvalues of the constrained variables we can visualize how individual groups are clustering the samples.

NMDS: (Non metric MultiDimensional Scaling)

NMDS is a rank based approach, which substitutes the object distances with ranks. The NMDS algorithm introduces a parameter called "stress" which is used to measure the lack of fit between the object distances and calculated distance matrix. Then, all objects are iteratively repositioned to minimize the stress parameter or lack of fit. A total of 20 iterations were run to identify best fit. We made use of NMDS ordination to explore the relationships between microbial members themselves.

Sloan neutral community analysis

We wanted to test if our communities were neutrally distributed and if there were members within our communities that were selected for or against by the host. We made use of the Sloan neutral community assembly model to test our data. This model allows us to predict the relationship between the abundance of microbiome members

and their presence across samples. Our experimental design made use of growing plants in soil conditioned by the same species (home soil) and in a soil conditioned by another species (away soil). First the complete microbiome table was rarefied to 6500 reads/ sample and then samples were split into home and away. Samples where new species were the same as the ancestor were termed as home whereas samples where new species were different compared to ancestor were termed as away. The model was run to test the fit of the microbiome to the neutral model.

APPENDICES

APPENDIX 1: List of tables

Table 1: Techniques used to study microbial population structures

Technique	Description	Advantage	Disadvantage	Throughput
Culturing on plates	Microbes are cultured and isolated on selective media	Cheap, can identify basic abundance patterns	Labor intensive, Needs more downstream work to identify taxa of isolated members	Low
PFLA	Isolation of the phospholipids, conversion of the phospholipid fatty acids to their corresponding fatty acid methyl esters (known by the acronym FAME) and the separation, identification and quantification of the FAME by gas chromatography.	Can measure microbial biomass, no prior knowledge of sample required	Labor intensive, taxonomic assignments are not possible, don't get abundance data, need expertise with GC MS	Medium
qPCR	Known 16s regions are amplified.	Phylogenetic relationships can be explored, can get abundance data	PCR bias, can't be used for novel species	Low- Medium
DGGE/TGGE	16s fragments are separated by gradient of temperature or denaturant	Good for profiling and exploring community diversity without prior knowledge of samples	Hard to standadize gradients from one gel to another, don't get abundance data, taxonomic assignments can't be generated	Low- Medium

Table 1: (cont'd)

Oligonucleotide probes are designed for known 16s regions. Probes are FISH	relationships can be explored, can get abundance	Need to know which members are present to design probes or use general set of probes, Taxonomic assignments are hard	Medium- High
--	---	---	-----------------

Table 2: Read distribution across samples.

SampleID	Soil	Species	Comb	TotalReads	Reads/sample
master.48.F4	Bar	Bar	Bar	189849	342329
master.48.E4	Bar	Bar	Bar	106421	
master.48.G4	Bar	Bar	Bar	6637	
master.48.H4	Bar	Bar	Bar	39422	
master.48.B6	Bar	Bif	Bar_Bif	98968	371526
master.48.A6	Bar	Bif	Bar_Bif	92645	
master.48.D6	Bar	Bif	Bar_Bif	92405	
master.48.C6	Bar	Bif	Bar_Bif	87508	
master.48.G6	Bar	Fuc	Bar_Fuc	128604	594061
master.48.H6	Bar	Fuc	Bar_Fuc	232217	
master.48.F6	Bar	Fuc	Bar_Fuc	180828	
master.48.E6	Bar	Fuc	Bar_Fuc	52412	
master.48.H5	Bar	Mac	Bar_Mac	117023	319847
master.48.E5	Bar	Mac	Bar_Mac	18793	
master.48.F5	Bar	Mac	Bar_Mac	162214	
master.48.G5	Bar	Mac	Bar_Mac	21817	
master.48.A5	Bar	Mic	Bar_Mic	19272	226774
master.48.C5	Bar	Mic	Bar_Mic	46511	
master.48.D5	Bar	Mic	Bar_Mic	98248	
master.48.B5	Bar	Mic	Bar_Mic	62743	
master.48.D4	Bar	Wor	Bar_Wor	154560	270937
master.48.C4	Bar	Wor	Bar_Wor	51693	
master.48.A4	Bar	Wor	Bar_Wor	27108	
master.48.B4	Bar	Wor	Bar_Wor	37576	
master.96.G7	Bif	Bar	Bif_Bar	126863	327944
master.96.G8	Bif	Bar	Bif_Bar	80669	
master.96.G6	Bif	Bar	Bif_Bar	63119	
master.96.G5	Bif	Bar	Bif_Bar	57293	
master.96.H7	Bif	Bif	Bif	186780	361000
master.96.H5	Bif	Bif	Bif	40991	
master.96.H8	Bif	Bif	Bif	93458	
master.96.H6	Bif	Bif	Bif	39771	
master.96.H11	Bif	Fuc	Bif_Fuc	131472	319272

Table 2: (cont'd)

master.96.H12	Bif	Fuc	Bif Fuc	89609	
master.96.H10	Bif	Fuc	Bif Fuc	61811	
master.96.H9	Bif	Fuc	Bif Fuc	36380	
master.96.H1	Bif	Mac	Bif Mac	111121	303176
master.96.H2	Bif	Mac	Bif_Mac	82313	
master.96.H3	Bif	Mac	Bif_Mac	76418	
master.96.H4	Bif	Mac	Bif_Mac	33324	
master.96.G11	Bif	Mic	Bif_Mic	123254	413155
master.96.G9	Bif	Mic	Bif_Mic	80630	
master.96.G12	Bif	Mic	Bif_Mic	54401	
master.96.G10	Bif	Mic	Bif_Mic	154870	
master.96.G3	Bif	Wor	Bif_Wor	73225	607602
master.96.G4	Bif	Wor	Bif_Wor	73347	
master.96.G1	Bif	Wor	Bif_Wor	213251	
master.96.G2	Bif	Wor	Bif_Wor	247779	
master.48.G1	Fuc	Bar	Fuc_Bar	20758	132620
master.48.E1	Fuc	Bar	Fuc_Bar	44726	
master.48.H1	Fuc	Bar	Fuc_Bar	25048	
master.48.F1	Fuc	Bar	Fuc_Bar	42088	
master.48.B3	Fuc	Bif	Fuc_Bif	33938	463251
master.48.C3	Fuc	Bif	Fuc_Bif	243008	
master.48.D3	Fuc	Bif	Fuc_Bif	98047	
master.48.A3	Fuc	Bif	Fuc_Bif	88258	
master.48.G3	Fuc	Fuc	Fuc	21970	382749
master.48.E3	Fuc	Fuc	Fuc	227933	
master.48.F3	Fuc	Fuc	Fuc	116516	
master.48.H3	Fuc	Fuc	Fuc	16330	
master.48.H2	Fuc	Mac	Fuc_Mac	38522	342113
master.48.G2	Fuc	Mac	Fuc_Mac	88391	
master.48.E2	Fuc	Mac	Fuc_Mac	172485	
master.48.F2	Fuc	Mac	Fuc_Mac	42715	
master.48.C2	Fuc	Mic	Fuc_Mic	438811	568420
master.48.D2	Fuc	Mic	Fuc_Mic	54160	
master.48.A2	Fuc	Mic	Fuc_Mic	61288	
master.48.B2	Fuc	Mic	Fuc_Mic	14161	
master.48.D1	Fuc	Wor	Fuc_Wor	198303	449714

Table 2: (cont'd)

master.48.C1	Fuc	Wor	Fuc Wor	174940	
master.48.A1	Fuc	Wor	Fuc Wor	16656	
master.48.B1	Fuc	Wor	Fuc Wor	59815	
master.96.C8	Mac	Bar	Mac Bar	37786	166469
master.96.C7	Mac	Bar	Mac Bar	94665	100400
master.96.C6	Mac	Bar	Mac Bar	27472	
master.96.C5	Mac	Bar	Mac Bar	6546	
master.96.D8	Mac	Bif	Mac Bif	60178	154224
master.96.D7	Mac	Bif	Mac Bif	71358	104224
master.96.D6	Mac	Bif	Mac_Bif	15733	
master.96.D5	Mac	Bif	Mac Bif	6955	
master.96.D11	Mac	Fuc	Mac Fuc	79379	284968
master.96.D12	Mac	Fuc	Mac Fuc	49608	204000
master.96.D9	Mac	Fuc	Mac Fuc	66328	
master.96.D10	Mac	Fuc	Mac Fuc	89653	
master.96.D1	Mac	Mac	Mac Mac	38213	306450
master.96.D2	Mac	Mac	Mac	36878	000100
master.96.D4	Mac	Mac	Mac	112389	
master.96.D3	Mac	Mac	Mac	118970	
master.96.C10	Mac	Mic	Mac Mic	130701	455614
master.96.C9	Mac	Mic	Mac Mic	217853	
master.96.C12	Mac	Mic	Mac Mic	37171	
master.96.C11	Mac	Mic	Mac Mic	69889	
master.96.C3	Mac	Wor	Mac Wor	111235	694542
master.96.C2	Mac	Wor	Mac Wor	34134	
master.96.C4	Mac	Wor	Mac Wor	462142	
master.96.C1	Mac	Wor	Mac Wor	87031	
master.96.A7	Mic	Bar	Mic Bar	53540	256638
master.96.A8	Mic	Bar	Mic_Bar	113895	
master.96.A5	Mic	Bar	Mic_Bar	73570	
master.96.A6	Mic	Bar	Mic_Bar	15633	
master.96.B7	Mic	Bif	Mic_Bif	77289	483865
master.96.B6	Mic	Bif	Mic_Bif	269418	
master.96.B8	Mic	Bif	Mic_Bif	62763	
master.96.B5	Mic	Bif	Mic_Bif	74395	
master.96.B9	Mic	Fuc	Mic_Fuc	146436	385375

Table 2: (cont'd)

master.96.B11	Mic	Fuc	Mic Fuc	130256	
master.96.B10	Mic	Fuc	Mic Fuc	47123	
master.96.B12	Mic	Fuc	Mic_Fuc	61560	
master.96.B2	Mic	Mac	Mic_Mac	41173	139607
master.96.B4	Mic	Mac	Mic_Mac	29519	
master.96.B1	Mic	Mac	Mic_Mac	53367	
master.96.B3	Mic	Mac	Mic_Mac	15548	
master.96.A9	Mic	Mic	Mic	48316	250180
master.96.A10	Mic	Mic	Mic	78005	
master.96.A12	Mic	Mic	Mic	18385	
master.96.A11	Mic	Mic	Mic	105474	
master.96.A1	Mic	Wor	Mic_Wor	92763	302158
master.96.A2	Mic	Wor	Mic_Wor	114872	
master.96.A4	Mic	Wor	Mic_Wor	43467	
master.96.A3	Mic	Wor	Mic_Wor	51056	
master.96.E8	Wor	Bar	Wor_Bar	172014	580237
master.96.E7	Wor	Bar	Wor_Bar	113958	
master.96.E5	Wor	Bar	Wor_Bar	272356	
master.96.E6	Wor	Bar	Wor_Bar	21909	
master.96.F7	Wor	Bif	Wor_Bif	130342	477186
master.96.F8	Wor	Bif	Wor_Bif	93743	
master.96.F6	Wor	Bif	Wor_Bif	182642	
master.96.F5	Wor	Bif	Wor_Bif	70459	
master.96.F9	Wor	Fuc	Wor_Fuc	50120	339721
master.96.F10	Wor	Fuc	Wor_Fuc	65384	
master.96.F12	Wor	Fuc	Wor_Fuc	80574	
master.96.F11	Wor	Fuc	Wor_Fuc	143643	
master.96.F2	Wor	Mac	Wor_Mac	179688	477332
master.96.F4	Wor	Mac	Wor_Mac	60320	
master.96.F3	Wor	Mac	Wor_Mac	88943	
master.96.F1	Wor	Mac	Wor_Mac	148381	
master.96.E10	Wor	Mic	Wor_Mic	73516	360102
master.96.E9	Wor	Mic	Wor_Mic	46202	
master.96.E11	Wor	Mic	Wor_Mic	201793	
master.96.E12	Wor	Mic	Wor_Mic	38591	

Table 2: (cont'd)

master.96.E4	Wor	Wor	Wor	117697	558645
master.96.E1	Wor	Wor	Wor	242639	
master.96.E2	Wor	Wor	Wor	122870	
master.96.E3	Wor	Wor	Wor	75439	

Table 3a: Alpha diversity modelling results using the complete microbiome table

i able 3a: Alpha		delling result	ts using t				e I
Castan	Rarefaction	N 4 a 4 mi a	Dt	Sum	Mean	F	
Factor	depth	Metric	Df	sq	sq	value	pvalue
Soil	160	Observed	5	63	12.594	2.147	0.0653
Species	160	Observed	5	42.2	8.444	1.44	0.2159
Soil:Species	160	Observed	25	247.9	9.918	1.691	0.0344
Residuals	160	Observed	108	633.5	5.866		
Soil	160	Shannon	5	1082	216.31	2.371	0.0439
Species	160	Shannon	5	375	74.94	0.822	0.5369
Soil:Species	160	Shannon	25	2693	107.7	1.181	0.2738
Residuals	160	Shannon	108	9852	91.22		
Soil	160	Chao1	5	0.1133	0.02265	1.648	0.1534
Species	160	Chao1	5	0.1052	0.02104	1.531	0.1863
Soil:Species	160	Chao1	25	0.5278	0.02111	1.536	0.0686
Residuals	160	Chao1	108	1.4842	0.01374		
Soil	500	Observed	5	138	27.59	1.175	0.326
Species	500	Observed	5	162.6	32.52	1.385	0.235
Soil:Species	500	Observed	25	731.8	29.27	1.247	0.217
Residuals	500	Observed	108	2535.2	23.47		
Soil	500	Shannon	5	1556	311.2	1.113	0.358
Species	500	Shannon	5	1616	323.3	1.156	0.336
Soil:Species	500	Shannon	25	7155	286.2	1.024	0.444
Residuals	500	Shannon	108	30196	279.6		
Soil	500	Chao1	5	0.1081	0.02161	1.404	0.228
Species	500	Chao1	5	0.1321	0.02642	1.717	0.137
Soil:Species	500	Chao1	25	0.3876	0.0155	1.007	0.465
Residuals	500	Chao1	108	1.6619	0.01539		
Soil	1000	Observed	5	211	42.22	0.986	0.43
Species	1000	Observed	5	263	52.56	1.227	0.301
Soil:Species	1000	Observed	25	1021	40.83	0.954	0.534
Residuals	1000	Observed	108	4624	42.82		
Soil	1000	Shannon	5	4802	960.4	0.994	0.425
Species	1000	Shannon	5	3747	749.4	0.776	0.569
Soil:Species	1000	Shannon	25	20789	831.6	0.861	0.656
Residuals	1000	Shannon	108	104316	965.9		
Soil	1000	Chao1	5	0.0996	0.01991	1.386	0.2353
Species	1000	Chao1	5	0.1387	0.02773	1.93	0.0951
Soil:Species	1000	Chao1	25	0.3407	0.01363	0.948	0.5404
Residuals	1000	Chao1	108	1.5517	0.01437		
1	1		•	•		•	

Table 3b: Alpha diversity modelling results using the abundant microbiome table

Factor	lable 3b: Alpha		delling resul	its using	tne abuno	ant microbio		9
Soil 160 d d 5 8.83 1.7667 1.998 7 Species 160 d 5 2.42 0.4833 0.547 6 Soil:Specie soil:Specie soil:Specie soil:Specie soil:Species 160 d 25 43 1.72 1.945 3 Residuals 160 d 108 95.5 0.8843 0.040 0.040 Soil 160 Shannon 5 39.1 7.82 2.413 8 Species 160 Shannon 5 6.8 1.366 0.421 0.833 Soil:Specie soil:Specie soil 160 Shannon 25 155.6 6.225 1.92 6 Residuals 160 Chao1 5 4 9 1.416 3 0.011 3 0.021 0.021 0.021 0.024 0.024 0.024 0.024 0.002 0.024 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002		Rarefactio					F	
Soil 160 d 5 8.83 1.7667 1.998 7 Species 160 d 5 2.42 0.4833 0.547 6 Soil: Specie Observe 3 0.010 0.014<	Factor	n depth	Metric	Df	Sum sq	Mean sq	value	pvalue
Species 160 d 5 2.42 0.4833 0.547 6 Soil:Specie s 160 d 25 43 1.72 1.945 3 Residuals 160 d 25 43 1.72 1.945 3 Residuals 160 d 108 95.5 0.8843 0.0040 Soil 160 Shannon 5 39.1 7.82 2.413 8 Species 160 Shannon 5 6.8 1.366 0.421 0.833 Soil:Specie 160 Shannon 25 155.6 6.225 1.92 6 Residuals 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 5 0.00123 0.607 7 Soil:Specie 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 25 5			Observe					0.084
Species 160 d 5 2.42 0.4833 0.547 6 Soil:Specie 0 0.010 3 1.72 1.945 3 3 0.0040 3 0.0011 3 0.0011 3 0.0014 3 0.0040 3 0.00	Soil	160	d	5	8.83	1.7667	1.998	7
Soil:Specie 160			Observe					0.740
s 160 d 25 d 43 d 1.72 d 1.945 d 3 Residuals 160 d 108 d 95.5 d 0.8843 d 0.040 d Soil 160 Shannon 5 39.1 d 7.82 d 2.413 d 8 Species 160 Shannon 5 6.8 d 1.366 d 0.421 d 0.833 d Soil:Specie s 160 Shannon 25 155.6 d 6.225 d 1.92 d 6 Residuals 160 Shannon 108 350.1 d 3.241 d 0.0113 d 0.00286 d 0.224 d 0.00286 d 0.224 d 0.00286 d 0.224 d 0.00286 d 0.00202 d 0.00143 d 0.00028 d 0.0007 d 7 0.00143 d 0.00020 d 0.0007 d 7 0.0018 d 0.00020 d 0.00123 d 0.607 d 7 0.0018 d 0.00020 d 0.0012 d 0.0018 d 0.00202 d 0.0012 d 0.00202 d 0.0018 d 0.00202 d	Species	160	d	5	2.42	0.4833	0.547	6
s 160 d 25 ds 43 ds 1.72 ds 3 Residuals 160 d 108 gs 0.8843 0.040 Soil 160 Shannon 5 39.1 gs 7.82 gs 2.413 gs Species 160 Shannon 5 6.8 ls 1.366 ls 0.421 ls 0.833 ls Soil:Specie s 160 Shannon 25 155.6 ls 6.225 ls 1.92 ls 6 ls Residuals 160 Shannon 108 350.1 ls 3.241 ls 0.0113 ls 0.0224 ls 0.0014 ls 0.0014 ls 0.0014 ls 0.0012 ls 0.0014 ls 0.0012 ls 0.0018 ls 0.0018 ls 0.0012 ls 0.0018 ls 0.0018 ls 0.0012	Soil:Specie		Observe					0.010
Residuals	s	160		25	43	1.72	1.945	
Residuals 160 d 108 95.5 0.8843 0.040 Soil 160 Shannon 5 39.1 7.82 2.413 8 Species 160 Shannon 5 6.8 1.366 0.421 0.833 Soil: Species 160 Shannon 25 155.6 6.225 1.92 6 Residuals 160 Shannon 108 350.1 3.241 0.011 Soil 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 5 0.00123 0.607 7 Soil: Species 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00123 0.607 7 Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.			Observe					
Soil 160 Shannon 5 39.1 7.82 2.413 8 Species 160 Shannon 5 6.8 1.366 0.421 0.833 Soil:Specie s 160 Shannon 25 155.6 6.225 1.92 6 Residuals 160 Shannon 108 350.1 3.241 0.011 Soil 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 5 0.00123 0.607 7 Soil:Specie 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.0123 0.607 7 Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 25	Residuals	160		108	95.5	0.8843		
Soil 160 Shannon 5 39.1 7.82 2.413 8 Species 160 Shannon 5 6.8 1.366 0.421 0.833 Soil: Specie 160 Shannon 25 155.6 6.225 1.92 6 Residuals 160 Shannon 108 350.1 3.241 0.224 Soil 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 5 0.00123 0.607 7 Soil: Species 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00202 Residuals 160 Chao1 108 0.2188 6 0.448 0.814 Species 500 d 5 10.81 2.16	110010.0.0				00.0	0.00.0		0.040
Species	Soil	160	Shannon	5	39 1	7 82	2 413	
Soil:Specie 160								
s 160 Shannon 25 155.6 6.225 1.92 6 Residuals 160 Shannon 108 350.1 3.241 0.0224 Soil 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 5 0.00123 0.607 7 Soil:Species 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00202 Residuals 160 Chao1 108 0.2188 6 0.448 0.814 Species 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Species 500 d 25 47.15 1.8858	_	100	Sharifori	3	0.0	1.300	0.421	
Residuals 160 Shannon 108 350.1 3.241 Soil 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 5 0.00123 0.607 7 Soil:Species 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00202 Residuals 160 Chao1 108 0.2188 6 0.448 0.814 Species 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Species 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 </td <td>•</td> <td>160</td> <td>Shannon</td> <td>25</td> <td>155.6</td> <td>6 225</td> <td>1 02</td> <td></td>	•	160	Shannon	25	155.6	6 225	1 02	
Soil 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 5 0.00123 0.607 7 Soil:Specie s 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00202 Soil 500 d 5 4.23 0.8458 0.448 0.814 Observe Soil:Specie s 500 d 5 10.81 2.1625 1.146 0.341 Soil:Specie s 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Species 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 <				1			1.92	0
Soil 160 Chao1 5 4 9 1.416 3 Species 160 Chao1 5 5 0.00123 0.607 7 Soil:Specie s 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00202 Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Species 500 d 5 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Residuals 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 25	Residuais	160	Snannon	108				0.004
Species 160 Chao1 5 5 0.00123 0.607 7 Soil:Specie s 160 Chao1 25 5 0.0924 0.00369 stree 0.018 Residuals 160 Chao1 108 0.2188 6 0.00202 Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Specie s 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Residuals 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 226.1 9.043 0.817 0.713 Residuals 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Sh	0 "	400		_	1	_	4 4 4 6	
Species 160 Chao1 5 5 0.00123 0.607 7 Soil:Specie s 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00202 6 Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Specie s 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Species 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon <td>Soil</td> <td>160</td> <td>Chao1</td> <td>5</td> <td>-</td> <td>9</td> <td>1.416</td> <td></td>	Soil	160	Chao1	5	-	9	1.416	
Soil:Specie 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00202 0.0024 0.00202 0.00202 0.00202 0.0044 <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>0.694</td>	_		_					0.694
s 160 Chao1 25 5 8 1.825 3 Residuals 160 Chao1 108 0.2188 6 0.00202 0.0021 0.0021 0.0014 0.0014 0.0014 0.0014 0.0014 0.00202 0.0024 0.	•	160	Chao1	5	_		0.607	7
Residuals 160 Chao1 108 0.2188 6 Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Specie 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 25 47.15 1.8866	Soil:Specie				0.0924	0.00369		0.018
Residuals 160 Chao1 108 0.2188 6 Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Specie Observe 3 47.15 1.8858 1 0.474 Residuals 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.786 Species 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Specie 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 11.074 Soil 500 Chao1 5 3 6 <	S	160	Chao1	25	5	8	1.825	3
Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Specie s 0bserve s 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.786 Species 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Specie s 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 11.074 Soil 500 Chao1 5 3 6 0.331 0.893 Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.0						0.00202		
Soil 500 d 5 4.23 0.8458 0.448 0.814 Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Species 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Soil 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Species 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 11.074 Soil 500 Chao1 5 3 6 0.331 0.893 Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 500 Chao1 5<	Residuals	160	Chao1	108	0.2188	6		
Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Specie s 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.786 Soil 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Specie s 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 11.074 Soil 500 Chao1 5 3 6 0.331 0.893 Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.00148 0.00148 0.00148			Observe					
Species 500 d 5 10.81 2.1625 1.146 0.341 Soil:Specie 0bserve 108 25 47.15 1.8858 1 0.474 Residuals 500 108 203.75 1.8866 1 0.786 0.784 0.786 0.784 0.786 0.784 0.786 0.784 0.786 0.784 0.784 0.786 0.784 0.784 0.784 0.784 0.784 0.784 0.786 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784 0.784	Soil	500	d	5	4.23	0.8458	0.448	0.814
Soil:Specie Observe 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Soil 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Specie 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 11.074 Soil 500 Chao1 5 3 6 0.331 0.893 Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.00148 0.00148 0.00148			Observe					
Soil:Specie s 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866 1 0.474 Soil 500 Shannon 5 26.9 5.39 0.487 0.786 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 0.523 Soil:Specie s 500 Shannon 25 226.1 9.043 0.817 0.713 0.713 Residuals 500 Shannon 108 1196 11.074 11.074 Soil 500 Chao1 5 3 6 0.331 0.893 Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.00148	Species	500	d	5	10.81	2.1625	1.146	0.341
s 500 d 25 47.15 1.8858 1 0.474 Residuals 500 d 108 203.75 1.8866			Observe					
Residuals 500 d 108 203.75 1.8866 Soil 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Specie s 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 <td>•</td> <td>500</td> <td>_</td> <td>25</td> <td>47.15</td> <td>1.8858</td> <td>1</td> <td>0.474</td>	•	500	_	25	47.15	1.8858	1	0.474
Residuals 500 d 108 203.75 1.8866 Secion Soil 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Specie 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td>-</td><td>0</td></t<>			_				-	0
Soil 500 Shannon 5 26.9 5.39 0.487 0.786 Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Specie 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 <td>Residuals</td> <td>500</td> <td></td> <td>108</td> <td>203 75</td> <td>1 8866</td> <td></td> <td></td>	Residuals	500		108	203 75	1 8866		
Species 500 Shannon 5 46.6 9.317 0.841 0.523 Soil:Specie 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074							0.487	0.786
Soil:Specie 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074 <								
s 500 Shannon 25 226.1 9.043 0.817 0.713 Residuals 500 Shannon 108 1196 11.074<		500	Shannon	5	40.0	9.317	0.041	0.523
Residuals 500 Shannon 108 1196 11.074 Incompany Soil 500 Chao1 5 3 6 0.331 0.893 Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.00148 0.00148 0.00148	•	500	Ob come -	0.5	000.4	0.040	0.047	0.740
Soil 500 Chao1 5 3 6 0.331 0.893 Species 500 Chao1 5 3 6 0.00132 Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.00148				1			0.817	0.713
Soil 500 Chao1 5 3 6 0.331 0.893 Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.00148 0.00148 0.00148 0.00148	Residuals	500	Shannon	108				
Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.00148 0.00148						0.00034		
Species 500 Chao1 5 3 6 1.266 0.284 Soil:Specie 0.0371 0.00148 0.00148	Soil	500	Chao1	5			0.331	0.893
Soil:Specie 0.0371 0.00148					0.0066	0.00132		
	Species	500	Chao1	5	3		1.266	0.284
	Soil:Specie				0.0371	0.00148		
-	s	500	Chao1	25	9	8	1.421	0.111

Table 3b: (cont'd)

				0.1130	0.00104		
Residuals	500	Chao1	108	5	7		
		Observe					
Soil	1000	d	5	6.23	1.246	0.48	0.79
		Observe					
Species	1000	d	5	23.23	4.646	1.79	0.121
Soil:Specie		Observe					
S	1000	d	25	68.73	2.749	1.059	0.401
		Observe					
Residuals	1000	d	108	280.25	2.595		
Soil	1000	Shannon	5	78.8	15.76	0.775	0.57
Species	1000	Shannon	5	73.2	14.65	0.72	0.61
Soil:Specie							
S	1000	Shannon	25	408.9	16.36	0.804	0.729
Residuals	1000	Shannon	108	2197.2	20.34		
				0.0005	0.00011		
Soil	1000	Chao1	5	7	4	0.193	0.965
				0.0038	0.00076		
Species	1000	Chao1	5	1	2	1.289	0.274
Soil:Specie				0.0163	0.00065		
S	1000	Chao1	25	2	3	1.105	0.35
				0.0638	0.00059		
Residuals	1000	Chao1	108	2	1		

Table 3c: Alpha diversity modelling results using the rare microbiome table

Table 3c. Alpha diversity modelling results using the rare microbiome table							
	Rarefactio			Sum	Mean	F	
Factor	n depth	Metric	Df	sq	sq	value	pvalue
		Observe					
Soil	160	d	5	391	78.2	3.354	0.00743
		Observe					
Species	160	d	5	210.7	42.15	1.808	0.11731
Soil:Specie		Observe					
S	160	d	25	734.5	29.38	1.26	0.20715
		Observe		2517.			
Residuals	160	d	108	8	23.31		
							0.00026
Soil	160	Shannon	5	1797	359.4	5.187	4
							0.25262
Species	160	Shannon	5	464	92.9	1.341	2
Soil:Specie							
S	160	Shannon	25	1942	77.7	1.121	0.33291
Residuals	160	Shannon	108	7482	69.3		
Soil	160	Chao1	5	0.424	0.0848	1.468	0.206
					0.0990		
Species	160	Chao1	5	0.495	1	1.714	0.138
Soil:Specie					0.0793		
s	160	Chao1	25	1.984	5	1.373	0.135
					0.0577		
Residuals	160	Chao1	108	6.239	7		

Table 4a: Distribution of core OTUs when only presence absence in 2 samples is used as a threshold.

			wor_a_f				
OTUs	req	req	req	req	eq	req	Genus
10214							gRhizobiu
2	1	1	1	1	1	1	m
10684							
86	1	1	1	1	1	1	<u>g</u>
11199							
24	1	1	1	1	1	1	<u>g</u>
11240							gStreptomy
17	1	1	1	1	1	1	ces
13435							gAgrobacte
9	1	1	1	1	1	1	rium
13607							
7	1	1	1	1	1	1	NA
14474							
0	1	1	1	1	1	1	g
15032							
8	1	1	1	1	1	1	NA
15468							
79	1	1	1	1	1	1	g
18075							
61	1	1	1	1	1	1	g
19169							gMycobact
8	1	1	1	1	1	1	erium
20479							
5	1	1	1	1	1	1	g
21074							<u> </u>
6	1	1	1	1	1	1	g
21218		-		-	-	-	<u> </u>
6	1	1	1	1	1	1	NA
21791	-	-	-		-	•	
7	1	1	1	1	1	1	g
22053	•			<u> </u>		<u> </u>	g_Agrobacte
9	1	1	1	1	1	1	rium
22690	•	<u>'</u>	<u>'</u>	' '			
6	1	1	1	1	1	1	g
U	'	· '	· '	! "	· '	· ') 9

Table 4.a: (cont'd)

226964	1	1	1	1	1	1	gRhizobium
227191	1	1	1	1	1	1	g_Rhizobium
239819	1	1	1	1	1	1	NA NA
267575							
2	1	1	1	1	1	1	gRhizobium
275052	1	1	1	1	1	1	NA
279206	1	1	1	1	1	1	g
322972	1	1	1	1	1	1	NA NA
333436							
9	1	1	1	1	1	1	g
339053	1	1	1	1	1	1	g
34879	1	1	1	1	1	1	<u>g</u>
355504							
1	1	1	1	1	1	1	<u>g</u>
360124	1	1	1	1	1	1	g
360253	1	1	1	1	1	1	g_Sphingomonas
361166							g_Uliginosibacteriu
3	1	1	1	1	1	1	m
374687							
6	1	1	1	1	1	1	<u>g</u>
40073	1	1	1	1	1	1	NA
425447							
8	1	1	1	1	1	1	NA
426188	_						
0	1	1	1	1	1	1	NA
429504	_	4	4	_	,	_	_
432186	1	1	1	1	1	1	<u>g</u>
432100	1	1	1	1	1	1	a
432909	<u>'</u>		ı	1		<u>'</u>	<u>g</u>
3	1	1	1	1	1	1	gAgrobacterium
434424	<u> </u>					·	g
1	1	1	1	1	1	1	g_Mesorhizobium
434605							<u> </u>
9	1	1	1	1	1	1	g
434817							
2	1	1	1	1	1	1	g_Rhizobium
437151							
7	1	1	1	1	1	1	g

Table 4.a: (cont'd)

437688							
5	1	1	1	1	1	1	g_Rhizobium
437688							
6	1	1	1	1	1	1	gRhizobium
439492							
2	1	1	1	1	1	1	g
439648							
1	1	1	1	1	1	1	g_Rhizobium
441214							
1	1	1	1	1	1	1	g
442455							
3	1	1	1	1	1	1	g_Kaistia
442696							
5	1	1	1	1	1	1	<u>g</u>
445557							
0	1	1	1	1	1	1	<u>g</u>
447654							
8	1	1	1	1	1	1	NA
57713	1	1	1	1	1	1	gFimbriimonas
589483	1	1	1	1	1	1	NA
628400	1	1	1	1	1	1	NA
							g_Phenylobacteriu
654155	1	1	1	1	1	1	m ,
792073	1	1	1	1	1	1	g_Rhizobium
800671	1	1	1	1	1	1	<u>g</u>
993711	1	1	1	1	1	1	gPseudonocardia

Table 4b: Distribution of core OTUs when abundance along with presence absence in 2 samples is used as a threshold.

_	mac_a_f		wor_a_f		bif_a_fr		_
OTUs	req	req	req	req	eq	req	Genus
10214							gRhizobiu
2	1	1	1	1	1	1	m
10684							
86	1	1	1	1	1	1	g
11199							
24	1	1	1	1	1	1	g
11240							g_Streptomy
17	1	1	1	1	1	1	ces
13435							gAgrobacte
9	1	1	1	1	1	1	rium
13607	•	-				-	
7	1	1	1	1	1	1	NA
14474		•	'			•	107
0	1	1	1	1	1	1	g
15032			1	!	Į.	Į.	9
8	1	1	1	1	1	1	NA
15468	'		'	1	I		INA
	4	1	4	4	4	1	~
79	1	<u> </u>	1	1	1	<u> </u>	<u>g</u>
18075	4	4		4	,	4	_
61	1	1	1	1	1	1	9
19169	4	4	_	4	,	4	gMycobact
8	1	1	1	1	1	1	erium
20479						_	
5	1	1	1	1	1	1	<u>g</u>
21074							
6	1	1	1	1	1	1	<u>g</u>
21218							
6	1	1	1	1	1	1	NA
21791							
7	1	1	1	1	1	1	g
22053							gAgrobacte
9	1	1	1	1	1	1	rium

Table 4b: (cont'd)

226906	1	1	1	1	1	1	g
226964	1	1	1	1	1	1	g Rhizobium
227191	1	1	1	1	1	1	g_Rhizobium
239819	1	1	1	1	1	1	NA
267575							
2	1	1	1	1	1	1	gRhizobium
275052	1	1	1	1	1	1	NA
279206	1	1	1	1	1	1	g
322972	1	1	1	1	1	1	NA
333436							
9	1	1	1	1	1	1	g
339053	1	1	1	1	1	1	g
34879	1	1	1	1	1	1	g
355504							
1	1	1	1	1	1	1	g
360124	1	1	1	1	1	1	g
360253	1	1	1	1	1	1	g_Sphingomonas
361166							g_Uliginosibacteriu
3	1	1	1	1	1	1	m
374687							
6	1	1	1	1	1	1	<u>g</u>
40073	1	1	1	1	1	1	NA
425447							
8	1	1	1	1	1	1	NA
426188	_						
0	1	1	1	1	1	1	NA
429504							
400400	1	1	1	1	1	1	9
432186	4	4	4	4	4		_
432909	1	1	1	1	1	1	9
432909	1	1	1	1	1	1	g_Agrobacterium
434424	ı		ı	'	'	'	g_Agrobacterium
1	1	1	1	1	1	1	gMesorhizobium
434605	<u>'</u>	<u>'</u>	1		'	'	<u>3</u>
9	1	1	1	1	1	1	g

Table 4b: (cont'd)

434817							
2	1	1	1	1	1	1	g Rhizobium
437151							<u> </u>
7	1	1	1	1	1	1	<u>g</u>
437688							
5	1	1	1	1	1	1	g_Rhizobium
437688	4	,	,	,	4	_	DI. 1.
6	1	1	1	1	1	1	g_Rhizobium
439492	4	4	4	4	4	_	_
439648	1	1	1	1	1	1	<u>g</u>
433040	1	1	1	1	1	1	g Rhizobium
441214							grtmzobiam
1	1	1	1	1	1	1	g
442455							<u> </u>
3	1	1	1	1	1	1	g_Kaistia
442696							
5	1	1	1	1	1	1	<u>g</u>
445557							
0	1	1	1	1	1	1	9
447654	4	,	,	,	4	_	N. A.
8	1	1	1	1	1	1	NA
57713	1	1	1	1	1	1	g_Fimbriimonas
589483	1	1	1	1	1	1	NA
628400	1	1	1	1	1	1	NA
054455	,	,	,	,	,		gPhenylobacteriu
654155	1	1	1	1	1	1	m
792073	1	1	1	1	1	1	g_Rhizobium
800671	1	1	1	1	1	1	9
993711	1	1	1	1	1	1	gPseudonocardia

Table 5a: Adonis modelling results for complete microbiome

Factor	pvalue	F	pvalue	F	R2	pvalue
Home	0.0028	0.823				
Species	0.05961	0.043				
Soil	0.07711	0.006				
nod_size	0.00528	0.465				
	Soil		Species		Soil:Speci	es
Soil*Species	0.07711	0.003	0.05961	0.02	0.15806	0.522

Table 5b: Adonis modelling results for abundant microbiome.

		pvalu		pvalu		pvalu	R	pvalu
Factor	R2	е	R2	е	R2	е	2	е
	0.0016							
Home	4	0.953						
	0.0765							
Species	5	0.006						
	0.0560							
Soil	5	0.054						
	0.0056							
nod_size	1	0.496						
			Specie					
	Soil		S					
Soil+Specie	0.0560							
S	5	0.040	0.07655	0.004				
			Specie					
	Soil		S		Soil:Spe	cies		
	0.0560				0.1957			
Soil*Species	5	0.025	0.07655	0.002	4	0.079		

Table 5c: Adonis modelling results for rare microbiome.

	R2	pvalue	R2	pvalue	R2	pvalue
Home	0.011	0.047				
Soil	0.115	0.001				
Species	0.07676	0.001				
nod_size	0.01223	0.032				
	Soil		Species		Soil:Spe	cies
Soil*Species	0.115	0.001	0.07676	0.001	0.183	0.001

Table 6: Model statistics for neutral model of away and home samples

	model fit	mci	rsquared	AIC	BIC	Samples	Richness
away	0.69	0.078	0.918	- 1722.48	-1713.76	120	578
home	0.691	0.121	0.877	-597.97	-590.61	24	293

Table 7.a: OTUs that were selected for or against under the neutral model for all home samples

					1	
Se	ОТ					
lec	OT		_	freq	pre	
tio	U.I		fre	.pre	d.l	
n	D	р	q	d	wr	Taxonomy
Ne						
ga		0.0	0.4	0.2	0.1	
tiv	239	001	166	650	303	kBacteria; pProteobacteria;
е	819	22	67	74	66	cAlphaproteobacteria; oRhizobiales
Ne						kBacteria; pProteobacteria;
ga		7.6		0.1	0.0	cDeltaproteobacteria;
ti∨	279	9E-	0.2	582	618	o_Myxococcales; f_Haliangiaceae; g_;
е	206	05	5	84	86	s
Ne						k Bacteria; p Proteobacteria;
ga	436	4.4		0.0	0.0	c Deltaproteobacteria;
tiv	553	9E-	0.2	868	247	o Myxococcales; f Polyangiaceae;
е	3	05	5	23	13	g; s
Ne						k_Bacteria; p_Proteobacteria;
ga	442	0.0	0.4	0.2	0.1	c Betaproteobacteria;
tiv	696	001	166	961	523	o Methylophilales; f Methylophilaceae;
е	5	35	67	05	38	g ; s
						k Bacteria; p Proteobacteria;
Ne						c Alphaproteobacteria;
ga		0.0	0.5	0.2	0.1	o Caulobacterales;
tiv	654	001	833	961	523	f Caulobacteraceae;
е	155	35	33	05	38	g_Phenylobacterium; s_
						k Bacteria; p Bacteroidetes;
Ро	106	0.0	0.7	0.5	0.3	c Sphingobacteriia;
siti	848	002	083	322	424	o_Sphingobacteriales;
ve	6	37	33	61	18	f Sphingobacteriaceae; g ; s
Po		5.7	0.1	0.1		k Bacteria; p Actinobacteria;
siti	111	7E-	666	146	0.0	c Thermoleophilia;
ve	050	05	67	9	381	o Solirubrobacterales; f ; g ; s
10	000	- 00			001	k Bacteria; p Actinobacteria;
Ро	112	0.0	0.5	0.6	0.4	c Actinobacteria; o Actinomycetales;
siti	401	0.0	833	213	236	f Streptomycetaceae; g Streptomyces;
ve	7	82	33	12	21	S
Po	13	5.7	0.2	0.1	<u> </u>	
siti	60	7E-	0.2	146	0.0	
ve	77	05	33	9	381	k Bacteria; p TM7; c TM7-3
٧e	11	US	33	9	JO 1	κDacteria, μTivi <i>t</i> , υΤivi <i>t</i> -3

Table 7.a: (cont'd)

						I. Dantaria y Astinahantaria
	4.0			0.4		kBacteria; pActinobacteria;
Ро	19	7.0		0.1	0.0	cActinobacteria; oActinomycetales;
siti	16	5E-	0.2	435	535	fMycobacteriaceae; gMycobacterium;
ve	98	05	5	46	1	S
Ро	36	0.0	0.7	0.7	0.5	kBacteria; pBacteroidetes;
siti	01	003	916	880	088	c[Saprospirae]; o[Saprospirales];
ve	24	33	67	73	66	f_Chitinophagaceae; g; s
	37					
Ро	98	3.8	0.1	0.0	0.0	k Bacteria; p Proteobacteria;
siti	90	5E-	666	733	188	cAlphaproteobacteria; oRhizobiales;
ve	2	05	67	24	77	f_Methylocystaceae; g; s
Ро	40	0.0	0.2	0.2	0.1	k_Bacteria; p_Bacteroidetes;
siti	07	001	916	961	523	c_[Saprospirae]; o_[Saprospirales];
ve	3	35	67	05	38	f_Chitinophagaceae
VC	42	- 55	07	- 03	30	k_Bacteria; p_Proteobacteria;
Ро	95	0.0	0.5	0.3	0.1	c Alphaproteobacteria;
siti	04	0.0	833	425	866	
	3					o_Caulobacterales;
ve		54	33	03	29	f_Caulobacteraceae; g_; s_
_	43	0.0		0.0		kBacteria; pBacteroidetes;
Po	21	0.0	0.4	0.2	0.1	cSphingobacteriia;
siti	86	001	583	650	303	oSphingobacteriales;
ve	4	22	33	74	66	fSphingobacteriaceae; g; s
	44					
Po	80	5.1		0.1	0.0	kBacteria; pProteobacteria;
siti	89	3E-	0.2	006	311	cAlphaproteobacteria; oRhizobiales;
ve	0	05	5	2	35	fHyphomicrobiaceae; g; s
	44					
Po	24	8.9		0.1	0.0	kBacteria; pProteobacteria;
siti	55	7E-	0.3	882	798	c Alphaproteobacteria; o Rhizobiales;
ve	3	05	75	62	29	f_Rhizobiaceae; g_Kaistia; s_
	44					k Bacteria; p Proteobacteria;
Ро	73	0.0	0.2	0.4	0.2	c Betaproteobacteria;
siti	17	001	916	478	701	oBurkholderiales; fBurkholderiaceae;
ve	8	99	67	43	87	g; s
Po		2.5	0.0	0.0	0.0	k_Bacteria; p_Proteobacteria;
siti	73	6E-	833	473	0.0	c Betaproteobacteria;
ve	46	05	33	19	75	o Burkholderiales
	81		- 55			
Po		8.3	0.3	0.1	0.0	kBacteria; pActinobacteria;
siti	51	3E-	0.2	731	706	cActinobacteria; oActinomycetales;
ve	02	05	5	97	69	fNocardioidaceae; g; s

Table 7.b: OTUs that were selected for or against under the neutral model for all away samples.

	ОТ	Abu		fre	pre	pre	
	U.I	nda	fre	q.p	d.l	d.u	
	D	nce	q	red	wr	pr	Taxonomy
	11			8.0	0.7	0.9	
Ne	19	0.0		63	90	13	kBacteria; pBacteroidetes;
gat	92	004	0.6	11	27	42	cCytophagia; oCytophagales;
ive	4	63	5	6	6	9	fCytophagaceae; g; s
	11			0.7	0.6		kBacteria; pActinobacteria;
Ne	24	0.0		80	22	0.7	cActinobacteria; oActinomycetales;
gat	01	003		76	01	82	fStreptomycetaceae;
ive	7	33	0.5	6	1	57	gStreptomyces; s
			8.0	0.9		0.9	
Ne	13	0.0	58	55	0.9	80	kBacteria; pProteobacteria;
gat	43	006	33	63	02	42	cAlphaproteobacteria; oRhizobiales;
ive	59	28	3	5	58	3	fRhizobiaceae; gAgrobacterium; s
			0.4	0.7	0.6	0.7	
Ne	20	0.0	83	06	19	80	kBacteria; pBacteroidetes;
gat	47	003	33	76	91	78	<pre>c_[Saprospirae]; o_[Saprospirales];</pre>
ive	95	32	3	8	9	9	fChitinophagaceae; g; s
			8.0	0.9	0.9	0.9	kBacteria; pProteobacteria;
Ne	21	0.0	58	97	64	99	cBetaproteobacteria;
gat	07	009	33	47	25	82	oBurkholderiales;
ive	46	79	3	1	3	7	f_Oxalobacteraceae; g; s
			0.9	0.9	0.9		
Ne	21	0.0	58	99	68		kBacteria; pProteobacteria;
gat	21	013	33	93	85		<pre>cAlphaproteobacteria; oRhizobiales;</pre>
ive	86	63	3	6	7	1	f_Bradyrhizobiaceae
			0.9		0.9		k_Bacteria; p_Proteobacteria;
Ne	22	0.0	66		68		cBetaproteobacteria;
gat	69	020	66		98		oBurkholderiales;
ive	06	01	7	1	1	1	fComamonadaceae; g; s
	36		0.9		0.9		k_Bacteria; p_Proteobacteria;
Ne	11	0.0	33		68		cBetaproteobacteria;
gat	66	021	33		98		oRhodocyclales; fRhodocyclaceae;
ive	3	82	3	1	1	1	gUliginosibacterium; s

Table 7.b: (cont'd)

	37	0.0			0.9	0.9	
Ne	46	01		0.9	68	99	kBacteria; pProteobacteria;
gat	87	20	0.9	99	40	99	cAlphaproteobacteria; oRickettsiales;
ive	6	8	25	7	2	7	f_mitochondria; g; s
	42		0.9		0.9		k_Bacteria; p_Proteobacteria;
Ne	54	0.0	41		68		c Betaproteobacteria;
gat	47	01	66		98		o Burkholderiales;
ive	8	96	7	1	1	1	f Comamonadaceae
	43	0.0	8.0	0.9		0.9	
Ne	46	00	16	81	0.9	94	k Bacteria; p Bacteroidetes;
gat	05	74	66	16	38	45	cCytophagia; oCytophagales;
ive	9	1	7	8	03	5	f_Cytophagaceae; g; s
	44	0.0		0.5	0.4	0.6	k Bacteria; p Proteobacteria;
Ne	26	00		86	97	70	c Betaproteobacteria;
gat	96	26	0.4	93	47	99	oMethylophilales; fMethylophilaceae;
ive	5	4	5	3	4	8	g; s
	44			0.9	0.9	0.9	k_Bacteria; p_Proteobacteria;
Ne	60	0.0		96	62	99	cBetaproteobacteria;
gat	87	00	0.4	71	89	71	oMethylophilales; fMethylophilaceae;
ive	1	95	5	6	8	8	g; s
		0.0	0.9	0.9	0.9	0.9	kBacteria; pProteobacteria;
Ne	58	00	41	97	63	99	cBetaproteobacteria;
gat	94	97	66	26	87	79	oBurkholderiales;
ive	83	1	7	1	4	9	fComamonadaceae
	10		0.0	0.0	0.0	0.0	
Po	13	1.7	91	32	12	81	kBacteria; pBacteroidetes;
siti	95	9E	66	42	52	33	c[Saprospirae]; o[Saprospirales];
ve	4	-05	7	5	6	2	fChitinophagaceae; g; s
		0.0	8.0	0.7	0.6	0.7	kBacteria; pProteobacteria;
Po	10	00	58	20	34	93	cAlphaproteobacteria; oRhizobiales;
siti	21	34	33	55	38	03	fRhizobiaceae; gRhizobium;
ve	42	1	3	1	2	6	sleguminosarum
	10	0.0	0.7	0.6	0.5	0.6	kBacteria; pBacteroidetes;
Ро	68	00	16	11	22	94	cSphingobacteriia;
siti	48	27	66	60	23	05	oSphingobacteriales;
ve	6	7	7	7	6	4	fSphingobacteriaceae; g; s

Table 7.b: (cont'd)

	10		0.0	0.0	0.0		
Ро	72	8.9	58	15	04	0.0	kBacteria; pBacteroidetes;
siti	35	7E-	33	78	20	57	c Sphingobacteriia;
ve	2	06	3	2	5	4	oSphingobacteriales; f; g; s
10	10	- 00		0.0	0.0	0.1	<u>oopriirigosaotoriaioo, i, g, o</u>
Ро	76	3.2		60	29	17	kBacteria; pBacteroidetes;
siti	40	1E-	0.1	15	75	83	c_[Saprospirae]; o_[Saprospirales];
ve	5	05	25	2	3	9	f_Chitinophagaceae; g; s
	10		0.1	0.0		0.1	k Bacteria; p Proteobacteria;
Ро	78	2.9	33	54	0.0	11	cGammaproteobacteria;
siti	36	5E-	33	97	26	23	o Xanthomonadales;
ve	2	05	3	8	33	4	f_Xanthomonadaceae; g; s
	11		0.2	0.0	0.0	0.1	, <u>, , , , , , , , , , , , , , , , , , </u>
Ро	06	3.9	80	76	40	37	kBacteria; pArmatimonadetes;
siti	41	7E-	33	00	66	64	cArmatimonadia; oFW68; f; g;
ve	1	05	3	3	4	6	s
				0.0	0.0	0.1	
Ро	11	3.5		68	35	27	kBacteria; pActinobacteria;
siti	10	9E-	0.1	01	09	74	cThermoleophilia;
ve	50	05	75	8	4	1	oSolirubrobacterales; f; g; s
	11			0.0	0.0	0.0	
Ро	18	1.9		34	13	84	kBacteria; pProteobacteria;
siti	80	2E-		86	91	68	cAlphaproteobacteria; oRhizobiales;
ve	9	05	0.1	9	3	2	f_Hyphomicrobiaceae; g_Devosia; s
	11			0.1	0.0	0.1	kBacteria; pActinobacteria;
Ро	19	6.2		26	78	97	cThermoleophilia;
siti	03	8E-	0.2	12	11	33	oSolirubrobacterales;
ve	1	05	75	5	2	2	f_Solirubrobacteraceae; g_; s
			0.1	0.0	0.0	0.1	
Ро	11	4.3	83	84	46	47	
siti	34	6E-	33	10	44	55	kBacteria; pTM7; cTM7-3; o;
ve	05	05	3	3	8	9	f; g; s
	11	_		0.0	0.0	0.0	
Ро	37	2.4		44	19	97	kBacteria; pBacteroidetes;
siti	88	4E-	_	80	84	99	cCytophagia, oCytophagales;
ve	8	05	0.1	2	7	7	f_Cytophagaceae; g_; s_
	, .		0.0	0.0	0.0		
Ро	11	1.6	83	29	11	0.0	kBacteria; pActinobacteria;
siti	62	7E-	33	99	18	77	cActinobacteria; oActinomycetales;
ve	2	05	3	8	3	97	fFrankiaceae; g; s

Table 7.b: (cont'd)

							k Bacteria; p Actinobacteria;
				0.0	0.0	0.0	c Actinobacteria;
Ро	12	1.7		32	12	81	o Actinobacteria,
siti	93	9E-		42	52	33	f Pseudonocardiaceae;
			0.1				· · · · · · · · · · · · · · · · · · ·
ve	4	05	0.1	5	6	2	g_Pseudonocardia; s_
	4.4	7.0	0.3	0.1	0.1	0.2	kBacteria; pProteobacteria;
Po	14	7.6	80	58	03	34	cBetaproteobacteria;
siti	47	9E-	33	28	72	03	oBurkholderiales;
ve	40	05	3	1	7	4	fComamonadaceae; g; s
				0.0	0.0	0.1	
Ро	15	5.0		97	56	64	kBacteria; pProteobacteria;
siti	03	0E-	0.2	84	52	10	cAlphaproteobacteria;
ve	28	05	25	1	3	8	o_Rhizobiales; f_Rhizobiaceae
	15			0.1	0.0	0.2	kBacteria; pActinobacteria;
Po	46	7.0		43	91	17	cActinobacteria;
siti	87	5E-	0.2	54	86	33	oActinomycetales;
ve	9	05	75	4	6	7	fMicromonosporaceae; g; s
							kBacteria; pProteobacteria;
	15		0.1	0.0		0.1	cAlphaproteobacteria;
Po	53	2.9	41	54	0.0	11	oSphingomonadales;
siti	20	5E-	66	97	26	23	f Sphingomonadaceae;
ve	4	05	7	8	33	4	g_Sphingomonas
	18		0.2	0.1	0.1	0.2	
Po	07	7.5	83	55	01	30	kBacteria; pBacteroidetes;
siti	56	6E-	33	31	32	69	c_[Saprospirae]; o_[Saprospirales];
ve	1	05	3	9	8	3	f_Chitinophagaceae; g; s
							k Bacteria; p Actinobacteria;
			0.3	0.1	0.1		c Actinobacteria;
Ро	19	8.2	41	70	13	0.2	o Actinomycetales;
siti	16	1E-	66	19	45	47	f Mycobacteriaceae;
ve	98	05	7	6	3	4	g_Mycobacterium; s_
							k Bacteria; p Proteobacteria;
				0.0	0.0		c Alphaproteobacteria;
Ро	21	1.6		29	11	0.0	o Rhizobiales;
siti	54	7E-		99	18	77	f Hyphomicrobiaceae;
ve	23	05	0.1	8	3	97	g Rhodoplanes; s
10	20	0.0	0.1	0.9	0.8	0.9	k Bacteria; p Proteobacteria;
Ро	22	0.0		30	70	63	c Alphaproteobacteria;
siti	71	56	0.9	60	54	95	o Rhizobiales; f Rhizobiaceae;
ve	91	5	75	6	2	93 7	g Rhizobium; s leguminosarum
٧C	ונ	0.0	13	0.2		0.3	9_1\filizobiuiii, sicguiiiiiosaiuiii
Ро	23	0.0		83	0.2	70	k Ractoria: n Protochactoria:
			0.4				kBacteria; pProteobacteria;
siti	98	12	0.4	66	10	04	cAlphaproteobacteria;
ve	19	9	75	4	7	9	oRhizobiales

Table 7.b: (cont'd)

Р		1.	0.0						k Bacteria; p Bacteroidetes;
os		15	66		0	.00	0.0	6	c_[Saprospirae];
iti	243	E-	66	0.02		329	43		o[Saprospirales];
ve	118	05	7	45		8		7	fChitinophagaceae; g; s
Р		1.	0.0						k Bacteria; p Proteobacteria;
os	256	15	66		0	.00	0.0	6	c Betaproteobacteria;
iti	866	E-	66	0.02		529	43		o Rhodocyclales;
ve	3	05	7	45		8		7	f_Rhodocyclaceae; g_ ; s_
Р		0.							k_Bacteria; p_Proteobacteria;
os	267	00					0.9	1	c Alphaproteobacteria;
iti	575	04	0.9	0.86	0 0	.78	16		o Rhizobiales; f Rhizobiaceae;
ve	2	6	5	89		773		6	gRhizobium; sleguminosarum
									k Bacteria; p Proteobacteria;
Р		1.	0.0						c Alphaproteobacteria;
os		28	83		0	.00	0.0	6	o Rhizobiales;
iti	273	E-	33	0.02	2 7	743	77	'9	f Hyphomicrobiaceae;
ve	185	05	3	81	4	9		2	g Devosia; s
Р		0.	0.9						
os		00	91		0	.91	0.9	8	kBacteria; pProteobacteria;
iti	275	06	66	0.96	2 1	135	43	8	c Alphaproteobacteria;
ve	052	5	7	20	7	2		8	o Rhizobiales, f Rhizobiaceae
Р		4.							k_Bacteria; p_Proteobacteria;
os		10			0	.04	0.1	4	cDeltaproteobacteria;
iti	279	E-	0.1	0.07	8 2	256	09	4	oMyxococcales;
ve	206	05	75	6	9	9		9	f_Haliangiaceae; g; s
									kBacteria; pProteobacteria;
Р		1.	0.0						cBetaproteobacteria;
os		79	83		0	.01	0.0	8	oBurkholderiales;
iti	287	E-	33	0.03	2 2	252	13	3	f_Burkholderiaceae;
ve	547	05	3	42	5	6		2	g_Burkholderia; s_
Р		2.	0.1						
os	298	69	16		0	.02	0.1	0	
iti	401	E-	66	0.04	9 3	302	46	2	kBacteria; pChloroflexi;
ve	4	05	7	8	6	5		1	cTK10; oB07_WMSP1
Р		5.	0.2						
os		51	58		0	.06	0.1	7	
iti	324	E-	33	0.10	9 2	194	73	7	kBacteria; pProteobacteria;
ve	252	05	3	03	3	3		8	cBetaproteobacteria
Р	37		0.1	0.0				k	Bacteria; pProteobacteria;
os	98	2.44	33	44	0.01	I 0	.09	C	Alphaproteobacteria;
iti	90	E-	33	80	984	1 ·	799	0	· ·
ve	2	05	3	2	7	7	7	f_	_Methylocystaceae; g; s

Table 7.b: (cont'd)

			0.2	0.0	0.0	0.1	
Ро	40	4.3	08	84	46	47	kBacteria; pBacteroidetes;
siti	07	6E-	33	10	44	55	c_[Saprospirae]; o_[Saprospirales];
ve	3	05	3	3	8	9	f Chitinophagaceae
	41		0.0	0.0	0.0	0.0	- Critinophagassas
Ро	78	1.9	91	34	13	84	k_Bacteria; p_Acidobacteria;
siti	57	2E-	66	86	91	68	c_Solibacteres; o_Solibacterales;
ve	5	05	7	9	3	2	f_Solibacteraceae; g; s
	42			0.0	0.0	0.1	k Bacteria; p Proteobacteria;
Ро	61	4.3		84	46	47	cAlphaproteobacteria;
siti	88	6E-	0.2	10	44	55	o Sphingomonadales;
ve	0	05	25	3	8	9	f_Sphingomonadaceae
	42	0.0		0.3	0.2		k_Bacteria; p_Proteobacteria;
Ро	95	00		20	44	0.4	c Alphaproteobacteria;
siti	04	14		86	01	08	o Caulobacterales;
ve	3	5	0.5	1	5	82	f_Caulobacteraceae; g; s
							k Bacteria; p Actinobacteria;
	43		0.0	0.0	0.0	0.0	c Actinobacteria;
Ро	03	1.1	66	20	06	64	o Actinomycetales;
siti	16	5E-	66	45	29	35	f Nocardioidaceae;
ve	1	05	7	3	8	7	g_Propionicimonas; s_
	43			0.0	0.0	0.0	
Ро	03	2.3		42	18	94	kBacteria; pBacteroidetes;
siti	53	1E-		29	30	67	cCytophagia; oCytophagales;
ve	0	05	0.1	6	9	8	fCytophagaceae; g; s
	43		0.1	0.0	0.0	0.1	kBacteria; pActinobacteria;
Ро	14	2.8	41	52	24	07	cAcidimicrobiia;
siti	39	2E-	66	41	66	92	oAcidimicrobiales; fEB1017; g;
ve	1	05	7	2	2	9	S
	43		0.5	0.4	0.3		kBacteria; pBacteroidetes;
Ро	21	0.0	33	27	42	0.5	cSphingobacteriia;
siti	86	00	33	19	30	16	oSphingobacteriales;
ve	4	19	3	9	6	61	f_Sphingobacteriaceae; g_; s_
	43		0.1	0.0		0.0	kBacteria; pBacteroidetes;
Ро	27	2.0	80	37	0.0	88	cSphingobacteriia;
siti	90	5E-	33	32	15	02	oSphingobacteriales;
ve	6	05	3	9	34	2	f_Sphingobacteriaceae; g_; s_
	43				0.0	0.1	kBacteria; pProteobacteria;
Ро	29	4.2		0.0	44	44	cAlphaproteobacteria;
siti	09	3E-	0.1	81	49	25	oRhizobiales; fRhizobiaceae;
ve	3	05	75	39	8	3	gAgrobacterium; s

Table 7.b: (cont'd)

	43			0.1	0.0	0.1	k Bacteria; p Proteobacteria;
Ро	44	6.2		26	78	97	c Alphaproteobacteria;
siti	24	8E-	0.2	12	11	33	o Rhizobiales; f Phyllobacteriaceae;
ve	1	05	25	5	2	2	g Mesorhizobium; s
	43			0.1	0.0		k_Bacteria; p_Proteobacteria;
Ро	48	5.6		11	67	0.1	cAlphaproteobacteria;
siti	17	4E-		85	09	80	o_Rhizobiales; f_Rhizobiaceae;
ve	2	05	0.3	7	4	7	gRhizobium; sleguminosarum
	43			0.0	0.0	0.1	kBacteria; pProteobacteria;
Ро	65	5.0		97	56	64	cDeltaproteobacteria;
siti	53	0E-	0.2	84	52	10	oMyxococcales; fPolyangiaceae;
ve	3	05	25	1	3	8	<u>g</u> ; s
	43	0.0	0.4	0.3	0.3	0.4	
Ро	71	00	91	91	80	80	kBacteria; pProteobacteria;
siti	51	17	66	29	64	68	cDeltaproteobacteria;
ve	7	4	7	6	6	9	o_Myxococcales; f; g; s
	43			0.0		0.1	kBacteria; pProteobacteria;
Ро	76	2.9		54	0.0	11	cAlphaproteobacteria;
siti	88	5E-	0.1	97	26	23	oRhizobiales; fRhizobiaceae;
ve	5	05	75	8	33	4	g_Rhizobium; s_leguminosarum
	43		0.2	0.0	0.0	0.1	kBacteria; pProteobacteria;
Ро	76	5.0	58	97	56	64	cAlphaproteobacteria;
siti	88	0E-	33	84	52	10	oRhizobiales; fRhizobiaceae;
ve	6	05	3	1	3	8	g_Rhizobium; s_leguminosarum
	43		0.0	0.0	0.0		
Ро	90	8.9	58	15	04	0.0	kBacteria; pBacteroidetes;
siti	89	7E-	33	78	20	57	c[Saprospirae]; o[Saprospirales];
ve	1	06	3	2	5	4	f_Chitinophagaceae; g_; s
	43			0.1	0.0		kBacteria; pBacteroidetes;
Ро	91	5.6		11	67	0.1	cSphingobacteriia;
siti	31	4E-	0.2	85	09	80	oSphingobacteriales;
ve	8	05	5	7	4	7	f_Sphingobacteriaceae; g_; s_
	43			0.1		0.1	
Ро	94	5.1		00	0.0	67	kBacteria; pProteobacteria;
siti	92	3E-	0.2	62	58	42	cBetaproteobacteria; oEllin6067;
ve	2	05	25	3	6	3	f_;g_;s
	43		0.3	0.1	0.0	0.2	kBacteria; pProteobacteria;
Ро	96	6.5	80	31	82	03	cAlphaproteobacteria;
siti	48	4E-	33	89	63	99	oRhizobiales; fRhizobiaceae;
ve	1	05	3	7	5	5	g_Rhizobium; s_leguminosarum

Table 7.b: (cont'd)

	44			0.0	0.0	0.0	
Ро	00	2.4		44	19	97	k Bacteria; p Bacteroidetes;
siti	32	4E	0.1	80	84	99	c_Sphingobacteriia;
ve	8	-05	25	2	7	7	oSphingobacteriales; f; g; s
10	44		0.2	0.0	0.0	0.1	k_Bacteria; pProteobacteria;
Ро	08	4.8	16	95	54	60	cAlphaproteobacteria;
siti	89	7E	66	07	46	79	oRhizobiales;
ve	0	-05	7	1	7	5	f Hyphomicrobiaceae; g ; s
VC	44	0.0	0.3	0.2	,	0.2	k_Bacteria; p_Proteobacteria;
Ро	12	00	58	15	0.1	97	c Gammaproteobacteria;
siti	14	10	33	67	51	46	o Xanthomonadales;
ve	1	10	3	3	52	4	fXanthomonadaceae; g; s
VE	44	ı	0.1	0.0	0.0	0.0	Xantinomonadaceae, g, s
Ро	17	2.1	0.1	39	16	91	k Pactoria: n Protochactoria:
siti	47	2. i 8E	33	80		35	kBacteria; pProteobacteria;
		o⊏ -05	აა 3	5	80 6	3	cAlphaproteobacteria;
ve	5	-05	3	ິວ	O	3	o_Rhizobiales; f; g; s
	4.4		0.4	0.0		0.4	kBacteria; pProteobacteria;
Da	44	٥.	0.1	0.0	0.0	0.1	cAlphaproteobacteria;
Po	18	2.5	16	47	0.0	01	oSphingomonadales;
siti	69	6E	66	32	21	31	f_Sphingomonadaceae;
ve	5	-05	7	4	42	1	g_Sphingomonas
	44	0.0	0.4	0.2		0.2	kBacteria; pProteobacteria;
Po	24	00	66	15	0.1	97	cAlphaproteobacteria;
siti	55	10	66	67	51	46	oRhizobiales; fRhizobiaceae;
ve	3	1	7	3	52	4	g_Kaistia; s_
							kBacteria; pProteobacteria;
	44		0.1	0.0		0.0	cAlphaproteobacteria;
Po	27	2.0	16	37	0.0	88	oRhizobiales;
siti	86	5E	66	32	15	02	fHyphomicrobiaceae;
ve	1	-05	7	9	34	2	g_Rhodoplanes; s_elegans
	44			0.0	0.0	0.0	kBacteria; pProteobacteria;
Ро	29	1.5		27	09	74	cAlphaproteobacteria;
siti	88	4E		58	88	59	oRhizobiales; fBradyrhizobiaceae;
ve	4	-05	0.1	6	5	5	g; s
	44			0.0	0.0	0.0	kBacteria; pAcidobacteria;
Ро	30	1.9		34	13	84	cAcidobacteriia;
siti	56	2E	0.1	86	91	68	oAcidobacteriales;
ve	8	-05	25	9	3	2	fAcidobacteriaceae; g; s
	44		0.1	0.0	0.0	0.0	
Ро	34	2.3	16	42	18	94	kBacteria; pAcidobacteria;
siti	88	1E	66	29	30	67	cSva0725; oSva0725; f; g;
ve	9	-05	7	6	9	8	s_

Table 7.b: (cont'd)

Po		44			0.0		0.0	
siti 43 5E 0.1 9 34 2 C_[Saprospirae]; o_[Saprospirales]; ve 2 -05 0.1 9 34 2 C_Isaprospirae]; o_[Saprospirales]; ve 44 0.0 </td <td>Po</td> <td></td> <td>2.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td>k Bacteria n Bacteroidetes</td>	Po		2.0			0.0		k Bacteria n Bacteroidetes
ve 2 -05 0.1 9 34 2 f Chitinophagaceae; g ; s Po 56 2.4 44 19 97 0 Bacteria; p Proteobacteria; siti 11 4E 80 84 99 f Comamonadaceae; g Rhodoferax; ve 3 -05 0.1 2 7 7 8 Po 58 1.9 91 34 13 84 C_Actinobacteria; ve 4 -0.5 7 9 3 2 f Nocardioidaceae; g ; s siti 21 2E 66 86 91 68 -Actinobacteria; ve 4 -0.5 7 9 3 2 f Nocardioidaceae; g ; s siti 76 9E 33 42 52 33 -Actinobacteria; siti 76 9E 33 42 52 3 -Actinobacteria; siti 76 9E 33								
Notation Notation				0 1				
Note	VC		-03	0.1	9	J +		
Po		11			0.0	0.0	0.0	· · · — · · · · · · · · · · · · · · · ·
siti 11 4E 80 84 99 f_Comamonadaceae; g_Rhodoferax; ve 3 -05 0.1 2 7 7 s Po 58 1.9 91 34 13 84 c_Actinobacteria; s ve 4 -05 7 9 3 2 f_Nocardioidaceae; g_; s_ ve 4 -05 7 9 3 2 f_Nocardioidaceae; g_; s_ Po 63 1.7 83 32 12 81 c_Actinobacteria; ve 4 0.0 0.0 0.0 0.0 k_Bacteria; p_Actinobacteria; ve 7 05 3 5 6 2 f_Nocardioidaceae; g_; s_ ke 4 0.0 0.0 0.0 c_Actinobacteria; c_Actinobacteria; ve 7 05 3 5 6 2 f_Nocardioidaceae; g_; s_ k_Bacteria; p_Proteobacteria; k_Bacteria; p_Proteobacteria; </td <td>D-</td> <td></td> <td>0.4</td> <td></td> <td></td> <td></td> <td></td> <td></td>	D-		0.4					
ve 3 -05 0.1 2 7 7 s_ Po 58 1.9 91 34 13 84 c_Actinobacteria; p_Actinobacteria; siti 21 2E 66 86 91 68 o_Actinomycetales; ve 4 -05 7 9 3 2 f_Nocardioidaceae; g_; s 44 0.0 0.0 0.0 0.0 k_Bacteria; p_Actinobacteria; ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s ve 7 -05 3 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Nocardioidaceae; g ; s Sateria; p Actinobacteria; Sateria; p Actinobacteria; Sateria; Sateria;				0.4				
Po	ve		-05					
siti 21 2E 66 86 91 68 o_Actinomycetales; ve 4 -05 7 9 3 2 f_Nocardioidaceae; g_; s_ Po 63 1.7 83 32 12 81 C_Actinobacteria; ve 7 95 3 42 52 33 0_Actinomycetales; ve 7 -05 3 42 52 33 0_Actinomycetales; ve 7 -05 3 42 52 33 0_Actinomycetales; ve 7 -05 3 42 52 33 OActinomycetales; ve 7 -05 3 42 52 33 OActinomycetales; ve 7 -05 3 42 52 43 Nocardioidaceae; g_; s_ Lad 0.0 0.0 0.0 Calphaproteobacteria; Calphaproteobacteria; ve 1 0.6 8.9 58 15								· · · · · · · · · · · · · · · · · · ·
ve 4 -05 7 9 3 2 f_Nocardioidaceae; g_; s_ Po 63 1.7 83 32 12 81 c_Actinobacteria; siti 76 9E 33 42 52 33 o_Actinomycetales; ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s_ ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s_ ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s_ ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s_ k Bacteria; p_Proteobacteria; c_Alphaproteobacteria; c_Alphaproteobacteria; c_Alphaproteobacteria; c_Alphaproteobacteria; ve 8 -06 3 2 5 4 g_Kaistobacter; s_ ve 1 -06 3 2 5 4 g_Kaistobacter; s_ ve 1 -06 3								
A44	siti							
Po 63 1.7 83 32 12 81 c_Actinobacteria; siti 76 9E 33 42 52 33 o_Actinomycetales; ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s_ Po 65 8.9 58 15 04 0.0 o_Sphingomonadales; siti 15 7E 33 78 20 57 f_Sphingomonadaceae; ve 8 -06 3 2 5 4 g_Kaistobacter; s_ ve 8 -06 3 2 5 4 g_Kaistobacter; s_ siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; siti 08 8E 33 80	ve	4	-05	7	9	3	2	fNocardioidaceae; g; s
siti 76 9E 33 42 52 33 o_Actinomycetales; ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s_ Po 65 8.9 58 15 04 0.0 0_Sphingomonadales; siti 15 7E 33 78 20 57 f_Sphingomonadaceae; ve 8 -06 3 2 5 4 g_Kaistobacter; s_ Po 65 8.9 58 15 04 0.0 c_Alphaproteobacter; s_ we 8 -06 3 2 5 4 g_Kaistobacter; s_ Po 65 8.9 58 15 04 0.0 c_Alphaproteobacteria; siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_;s_ Po 76 2.1		44		0.0	0.0	0.0	0.0	kBacteria; pActinobacteria;
ve 7 -05 3 5 6 2 f Nocardioidaceae; g ; s Po 65 8.9 58 15 04 0.0 o_Sphingomonadales; siti 15 7E 33 78 20 57 f_Sphingomonadales; ve 8 -06 3 2 5 4 g_Kaistobacter; s ve 8 -06 3 2 5 4 g_Kaistobacter; s ve 8 -06 3 2 5 4 g_Kaistobacter; s ve 8 -06 3 2 5 4 g_Kaistobacter; s ve 1 -06 3 2 5 4 g_Kaistobacter; s we 1 -06 3 2 5 4 g_Kaistobacter; s we 1 -06 3 2 5 4 g_Fortheap siti 44 0.1 0.0 0.0 0	Po	63	1.7	83	32	12	81	cActinobacteria;
ve 7 -05 3 5 6 2 f_Nocardioidaceae; g_; s_ 44 0.0 0.0 0.0 c_Alphaproteobacteria; Po 65 8.9 58 15 04 0.0 o_Sphingomonadales; siti 15 7E 33 78 20 57 f_Sphingomonadaceae; ve 8 -06 3 2 5 4 g_Kaistobacter; s 44 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; ve 1 -06 3 2 5 4 g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; ve 9 <	siti	76	9E	33	42	52	33	o_Actinomycetales;
44 0.0 0.0 0.0 0.0 c_Alphaproteobacteria; PO 65 8.9 58 15 04 0.0 o_Sphingomonadales; siti 15 7E 33 78 20 57 f_Sphingomonadaceae; ve 8 -06 3 2 5 4 g_Kaistobacter; s_ 44 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_sti Methylocystaceae; ve 1 -06 3 2 5 4 g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; ve 9 -05 3 5 6 3 C_alphaproteobacteria; ve 9 -05 3 5 6 3 Eacteria; p_Prote	ve	7	-05	3	5	6	2	f Nocardioidaceae; g ; s
44 0.0 0.0 0.0 c_Alphaproteobacteria; Po 65 8.9 58 15 04 0.0 o_Sphingomonadales; siti 15 7E 33 78 20 57 f_Sphingomonadaceae; ve 8 -06 3 2 5 4 g_Kaistobacter; s_ Po 65 8.9 58 15 04 0.0 c_Alphaproteobacteria; siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_;s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; ve 1 -06 3 2 5 4 g_;s_ siti 08 8E 33 80 80 35 o_Caulobacteriae; ve 9 -05 3 5 6 3 f_Caulobacteria;								
Po 65 8.9 58 15 04 0.0 o_Sphingomonadales; siti 15 7E 33 78 20 57 f_Sphingomonadaceae; ve 8 -06 3 2 5 4 g_Kaistobacter; s_ Po 65 8.9 58 15 04 0.0 c_Alphaproteobacteria; siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_; s_ 44 0.1 0.0 0.0 0.0 Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; ve 9 -05 3 5 6 3 f_Caulobacteraceae; g_; s_ 44 0.0 0.2 0.1 0.3 rack		44		0.0	0.0	0.0		
siti 15 7E 33 78 20 57 fSphingomonadaceae; ve 8 -06 3 2 5 4 gKaistobacter; s Po 65 8.9 58 15 04 0.0 cAlphaproteobacteria; siti 43 7E 33 78 20 57 oRhizobiales; fMethylocystaceae; ve 1 -06 3 2 5 4 g; s 44 0.1 0.0 0.0 0.0 kBacteria; pProteobacteria; Po 76 2.1 08 39 16 91 cAlphaproteobacteria; siti 08 8E 33 80 80 35 oCaulobacteraceae; g; s 44 0.0 0.2 0.1 0.3	Po	65	8.9				0.0	
ve 8 -06 3 2 5 4 g_Kaistobacter; s_ Po 65 8.9 58 15 04 0.0 c_Alphaproteobacteria; siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_; s_ ve 1 -06 3 2 5 4 g_; s_ Po 76 2.1 08 39 16 91 c_Alphaproteobacteria; siti 08 8E 33 80 80 35 o_Caulobacterales; ve 9 -05 3 5 6 3 f_Caulobacteraceae; g_; s_ 44 0.0 0.2 0.1 0.3 0.2 0.1 0.3 Po 76 00 55 86 40 k_Bacteria; p_Proteobacteria; siti 54 11 0.4 75								
Po 44 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 76 2.1 08 39 16 91 c_Alphaproteobacteria; siti 08 8E 33 80 80 35 o_Caulobacteraceae; g_; s_ ve 9 -05 3 5 6 3 Caulobacteraceae; g_; s_ 44 0.0 0.2 0.1 0.3 Caulobacteria; p_Proteobacteria; ve 8 8 5 5 86 40 k_Bacteria; p_Proteobacteria; ve 8 8 5 5 9 3 0_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Po 65 8.9 58 15 04 0.0 cAlphaproteobacteria; siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_; s_ Po 76 2.1 08 39 16 91 cAlphaproteobacteria; siti 08 8E 33 80 80 35 o_Caulobacteraceae; g_; s_ ve 9 -05 3 5 6 3 f_Caulobacteraceae; g_; s_ 44 0.0 0.2 0.1 0.3 cAlphaproteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Proteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 0.0 R_Bacteria; p_Bacteria; p_Bacteroidetes; siti 41 4E							•	
siti 43 7E 33 78 20 57 o_Rhizobiales; f_Methylocystaceae; ve 1 -06 3 2 5 4 g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 76 2.1 08 39 16 91 c_Alphaproteobacteria; ve 9 -05 3 5 6 3 Caulobacteraceae; g_; s_ ve 9 -05 3 5 6 3 Foalus Caulobacteraceae; g_; s_ Po 76 00 55 86 40 k_Bacteria; p_Proteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 0.0 Phylobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; Phyllobacteriaceae 44 0.1 0.0	Po		8 Q				0.0	
ve 1 -06 3 2 5 4 g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 76 2.1 08 39 16 91 c_Alphaproteobacteria; siti 08 8E 33 80 80 35 o_Caulobacterales; ve 9 -05 3 5 6 3 f_Caulobacteraceae; g_; s_ 44 0.0 0.2 0.1 0.3 Po 76 00 55 86 40 k_Bacteria; p_Proteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 0.0 Rescteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 Chitinophagaceae; g_; s_								
Po 76 2.1 08 39 16 91 c_Alphaproteobacteria; siti 08 8E 33 80 80 35 o_Caulobacterales; ve 9 -05 3 5 6 3 f_Caulobacteraceae; g_; s_ Po 76 00 55 86 40 k_Bacteria; p_Proteobacteria; siti 54 11 0.4 75 11 54 c_Alphaproteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 Po 78 4.7 91 92 52 57 k_Bacteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 0.0								
Po 76 2.1 08 39 16 91 cAlphaproteobacteria; siti 08 8E 33 80 80 35 oCaulobacteraceae; g; s ve 9 -05 3 5 6 3 fCaulobacteraceae; g; s 44 0.0 0.2 0.1 0.3	VE		-00					
siti 08 8E 33 80 80 35 o_Caulobacterales; ve 9 -05 3 5 6 3 f_Caulobacteraceae; g_; s_ 44 0.0 0.2 0.1 0.3 Po 76 00 55 86 40 k_Bacteria; p_Proteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 Po 78 4.7 91 92 52 57 k_Bacteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 C_Alphaproteobacteria; si	Do		2.4					
ve 9 -05 3 5 6 3 f_Caulobacteraceae; g_; s_ 44 0.0 0.2 0.1 0.3 Po 76 00 55 86 40 k_Bacteria; p_Proteobacteria; siti 54 11 0.4 75 11 54 c_Alphaproteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 Po 78 4.7 91 92 52 57 k_Bacteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 Alphaproteobacteria; <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Po 76 00 55 86 40 k_Bacteria; p_Proteobacteria; siti 54 11 0.4 75 11 54 c_Alphaproteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 Po 78 4.7 91 92 52 57 k_Bacteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 f_Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 c_Alphaproteobacteria; siti 02 1E 33 29 30 67 o_Sphingomonadales;								
Po 76 00 55 86 40 k_Bacteria; p_Proteobacteria; siti 54 11 0.4 75 11 54 c_Alphaproteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 Po 78 4.7 91 92 52 57 k_Bacteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 c_Alphaproteobacteria; siti 02 1E 33 29 30 67 o_Sphingomonadales;	ve			3				rCaulobacteraceae; g; s
siti 54 11 0.4 75 11 54 c_Alphaproteobacteria; ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 Po 78 4.7 91 92 52 57 k_Bacteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 f_Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 c_Alphaproteobacteria; siti 02 1E 33 29 30 67 o_Sphingomonadales;								
ve 8 8 5 5 9 3 o_Rhizobiales; f_Phyllobacteriaceae 44 0.1 0.0 0.0 0.1 Po 78 4.7 91 92 52 57 k_Bacteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 f_Chitinophagaceae; g_; s_ ve 3 -05 7 1 1 4 f_Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 c_Alphaproteobacteria; siti 02 1E 33 29 30 67 o_Sphingomonadales;								· · · · · · · · · · · · · · · · · · ·
Po 78 4.7 91 92 52 57 k_Bacteria; p_Bacteroidetes; siti 41 4E 66 31 43 48 c_[Saprospirae]; o_[Saprospirales]; ve 3 -05 7 1 1 4 f_Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 c_Alphaproteobacteria; siti 02 1E 33 29 30 67 o_Sphingomonadales;								
Po 78 4.7 91 92 52 57 kBacteria; pBacteroidetes; siti 41 4E 66 31 43 48 c[Saprospirae]; o[Saprospirales]; ve 3 -05 7 1 1 4 fChitinophagaceae; g; s 44 0.1 0.0 0.0 0.0 kBacteria; pProteobacteria; Po 80 2.3 08 42 18 94 cAlphaproteobacteria; siti 02 1E 33 29 30 67 oSphingomonadales;	ve		8					oRhizobiales; fPhyllobacteriaceae
siti 41 4E 66 31 43 48 c[Saprospirae]; o[Saprospirales]; ve 3 -05 7 1 1 4 fChitinophagaceae; g; s 44 0.1 0.0 0.0 0.0 kBacteria; pProteobacteria; Po 80 2.3 08 42 18 94 cAlphaproteobacteria; siti 02 1E 33 29 30 67 oSphingomonadales;				0.1		0.0	0.1	
ve 3 -05 7 1 1 4 f_Chitinophagaceae; g_; s_ 44 0.1 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 c_Alphaproteobacteria; siti 02 1E 33 29 30 67 o_Sphingomonadales;	Po	78	4.7	91	92	52		
ve 3 -05 7 1 1 4 fChitinophagaceae; g; s 44 0.1 0.0 0.0 0.0 kBacteria; pProteobacteria; Po 80 2.3 08 42 18 94 cAlphaproteobacteria; siti 02 1E 33 29 30 67 oSphingomonadales;	siti	41	4E	66	31	43	48	c[Saprospirae]; o[Saprospirales];
44 0.1 0.0 0.0 0.0 k_Bacteria; p_Proteobacteria; Po 80 2.3 08 42 18 94 c_Alphaproteobacteria; siti 02 1E 33 29 30 67 o_Sphingomonadales;	ve	3	-05	7	1	1	4	
Po 80 2.3 08 42 18 94 cAlphaproteobacteria; siti 02 1E 33 29 30 67 oSphingomonadales;		44		0.1	0.0	0.0	0.0	
siti 02 1E 33 29 30 67 o_Sphingomonadales;	Ро	80	2.3					
IVO I E I VOI OI OI OI OII ODIIIIUVIIIVIIIUUUCUU	ve	2	-05	3	6	9	8	f_Sphingomonadaceae

Table 7.b: (cont'd)

			0.0	0.0	0.0	0.0	
Ро	49	1.0	66	18	0.5	60	k Bacteria; p Proteobacteria;
siti	43	3E-	66	10	21	89	c Alphaproteobacteria;
ve	67	05	7	9	8	5	o Rhizobiales; f Rhizobiaceae
VE	07	03	0.0	0.0	0.0	0.0	OINIIZODIAIES, IINIIZODIACEAE
Ро	54	1.5	91	27	0.0	74	k Bacteria; p Bacteroidetes;
siti	34	4E-	66	58	88	59	· · · · · · · · · · · · · · · · · · ·
			7				cCytophagia; oCytophagales;
ve	57	05	1	6	5	5	f_Cytophagaceae; g_; s_
			0.1	0.0	0.0	0.0	kBacteria; pProteobacteria;
		4.0	0.1	0.0	0.0	0.0	cGammaproteobacteria;
Po	56	1.9	16	34	13	84	oXanthomonadales;
siti	74	2E-	66	86	91	68	fXanthomonadaceae;
ve	86	05	7	9	3	2	gDokdonella; s
							kBacteria; pArmatimonadetes;
			0.0	0.0	0.0	0.0	c[Fimbriimonadia];
Ро	57	1.5	91	27	09	74	o[Fimbriimonadales];
siti	71	4E-	66	58	88	59	f[Fimbriimonadaceae];
ve	3	05	7	6	5	5	gFimbriimonas; s
							kBacteria; pProteobacteria;
			0.0	0.0	0.0		cAlphaproteobacteria;
Ро	61	8.9	58	15	04	0.0	o Rhizobiales;
siti	04	7E-	33	78	20	57	f_Hyphomicrobiaceae;
ve	18	06	3	2	5	4	g Rhodoplanes; s
			0.2	0.1	0.0	0.1	· <u> </u>
Ро	62	6.0	91	20	73	90	kBacteria; pProteobacteria;
siti	84	3E-	66	38	65	67	c Alphaproteobacteria;
ve	00	05	7	9	4	4	o Rhizobiales; f Rhizobiaceae
							k_Bacteria; p_Proteobacteria;
		0.0		0.5	0.4	0.6	c Alphaproteobacteria;
Ро	65	00		13	24	00	o Caulobacterales;
siti	41	22	0.6	09	65	71	f Caulobacteraceae;
ve	55	8	75	4	5	9	g Phenylobacterium; s
VC	- 55	0	0.2	0.1	0.1	0.2	gi nenylobacteriam, s
Ро	65	7.5	66	55	0.1	30	k Bacteria; p Chloroflexi;
siti	68	6E-	66	31	32	69	c Chloroflexi; o [Roseiflexales];
			7		32 8	3	
ve	9	05	1	9	0	ა	<u>,,,</u>
			0.4	0.0	0.0	0.4	kBacteria; pProteobacteria;
D-	00	2.7	0.1	0.0	0.0	0.1	cDeltaproteobacteria;
Po	66	3.7	41	70	36	31	oBdellovibrionales;
siti	68	2E-	66	66	92	04	fBdellovibrionaceae; gBdellovibrio;
ve	83	05	7	6	6	2	S

Table 7.b: (cont'd)

		0.0			0.4	0.0	Is Doctorios a Drotochoctorios
		0.0			0.1	0.3	kBacteria; pProteobacteria;
Ро	76	00		0.2	56	04	cBetaproteobacteria;
siti	71	10	0.3	21	75	11	oBurkholderiales;
ve	42	4	25	81	9	8	fComamonadaceae
			8.0	0.7	0.7	8.0	kBacteria; pProteobacteria;
Ро	79	0.0	91	87	05	50	c Alphaproteobacteria; o Rhizobiales;
siti	20	00	66	17	63	90	f Rhizobiaceae; g Rhizobium;
ve	73	39	7	8	4	6	s_leguminosarum
			0.2	0.1		0.1	
Ро	80	5.3	58	06	0.0	74	kBacteria; pActinobacteria;
siti	06	8E	33	21	62	05	c Acidimicrobiia; o Acidimicrobiales;
ve	71	-05	3	9	81	8	f_C111; g; s
				0.0	0.0	0.1	,
Ро	81	4.3		84	46	47	k_Bacteria; p_Actinobacteria;
siti	51	6E	0.1	10	44	55	c_Actinobacteria; o_Actinomycetales;
ve	02	-05	75	3	8	9	f_Nocardioidaceae; g_ ; s_
10	02	00	70	0.0	0.0	0.1	11400d1d101dd0cdc, g, 5
Ро	81	3.7		70	36	31	kBacteria; pProteobacteria;
siti	77	3.7 2E	0.1	66	92	04	c Deltaproteobacteria;
	14	-05	5	6	6	2	
ve	14	-05					o_Myxococcales; f_ ; g_ ; s_
Da	0.0	4 -	0.0	0.0	0.0	0.0	le Dostovia v Dostovajdetas
Po	86	1.5	83	27	09	74	kBacteria; pBacteroidetes;
siti	95	4E	33	58	88	59	cSphingobacteriia;
ve	13	-05	3	6	5	5	o_Sphingobacteriales; f; g; s
			0.3	0.1	0.1	0.2	kBacteria; pActinobacteria;
Po	99	8.7	41	82	23	60	cActinobacteria; oActinomycetales;
siti	37	2E	66	21	37	76	fPseudonocardiaceae;
ve	11	-05	7	2	2	7	gPseudonocardia; s

Figure 1: Trifolium species used in this study.
A) *Trifolium bifidum*, B) *Trifolium barbigerum*, C) *Trifolium macraei*, D) *Trifolium microdon*, E) *Trifolium fucatum*, F) *Trifolium wormskioldii*

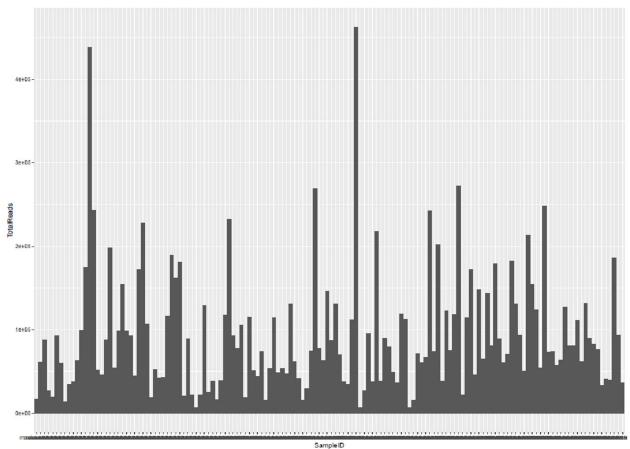


Figure 2a: Distribution of reads across samples – Basic.

This graph represents the distribution of reads across all 144 samples. X axis has the sample names and Y axis show the total number of reads.

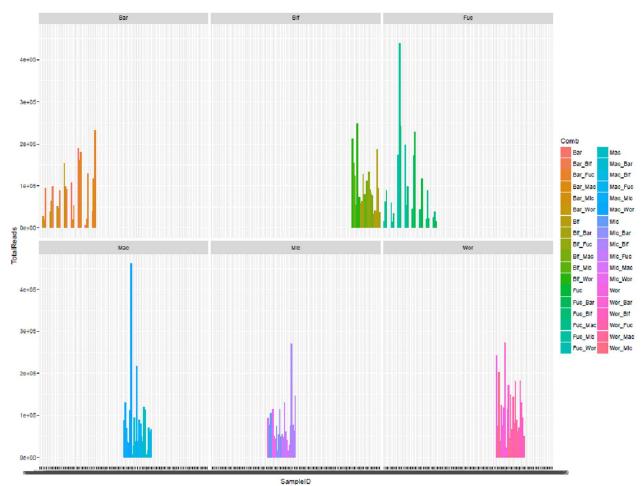


Figure 2b: Distribution of reads: Coloured.

This graph represents the distribution of reads across all 144 samples, coloured by the different growing combinations. X axis has the sample names and Y axis show the total number of reads.

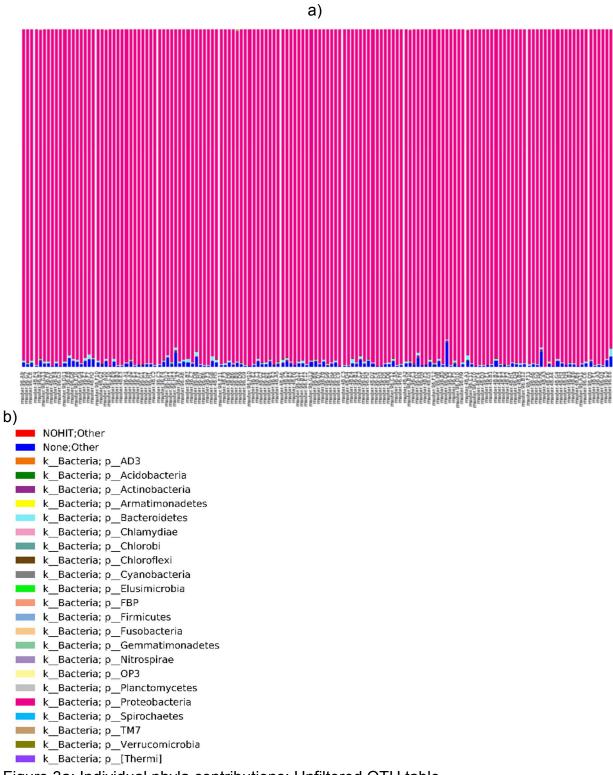


Figure 3a: Individual phyla contributions: Unfiltered OTU table

This graph represents the distribution of different phyla across the 144 samples.

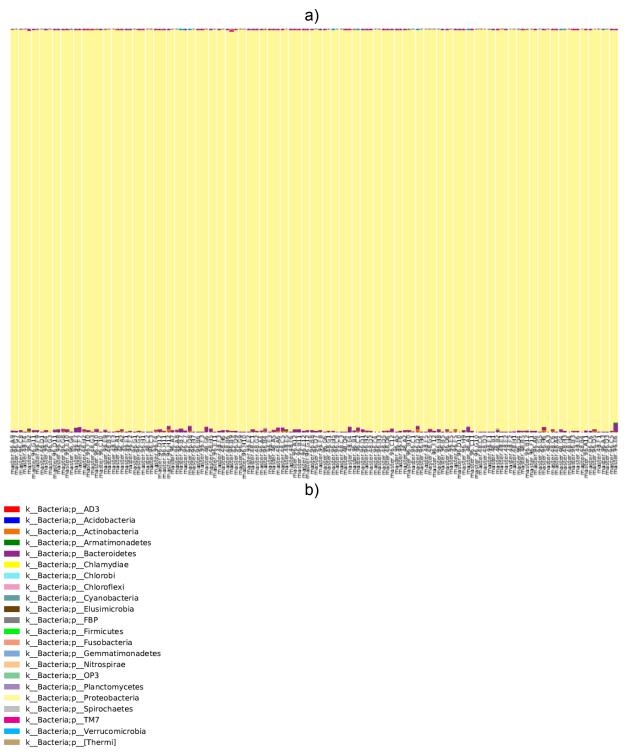


Figure 3b: Individual phyla contributions: Complete filtered OTU table.

This graph represents the distribution of different phyla across the 144 samples. Table is filtered to remove bad taxonomic assignments.

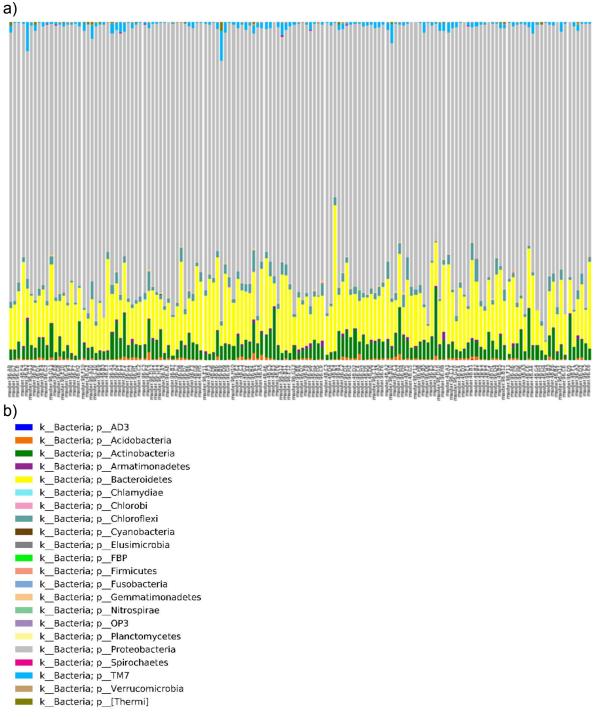


Figure 3c: Individual phyla contributions: Rare OTU table.

This graph represents the distribution of different phyla across the 144 samples. Table is filtered to remove bad taxonomic assignments and OTUs belonging to the "Rhizobiales" group.

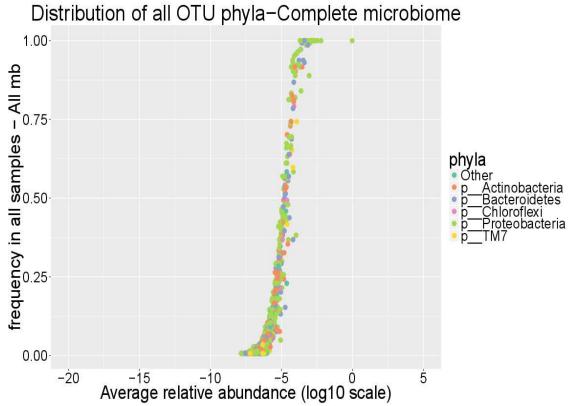


Figure 4a: Top five phyla contributions: Complete OTU table.

This graph represents how many OTUs are present in high frequency across samples. Here the image shows that the order Proteobacteria is not only the dominant order present in high abundance but also in high frequency across samples. Log scale along x axis is log10

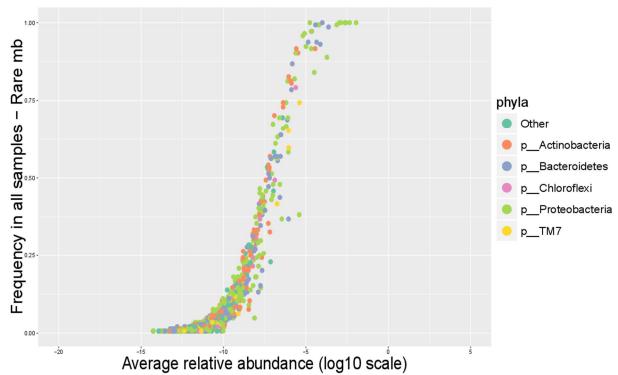


Figure 4b: Top five phyla contributions: Rare OTU table.

This graph represents how many OTUs are present in high frequency across samples. Here the image shows that no single phylum is present in all samples. Thus the abundance within the rare microbiome is more variable. The order Proteobacteria and Bacteriodetes is not only the dominant order present in high abundance but also in high frequency across samples. Log scale along x axis is log10

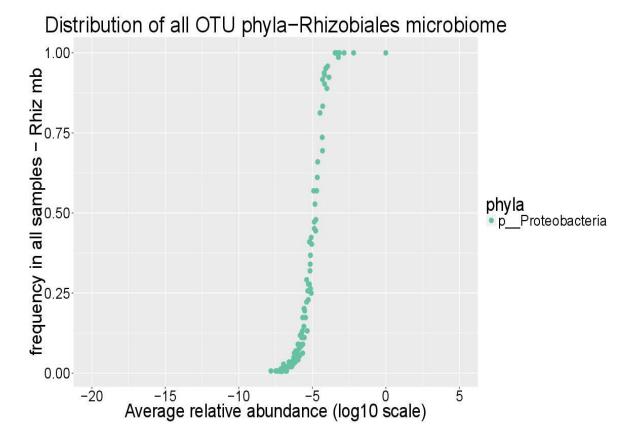


Figure 4c: Top five phyla contributions: Abundant OTU table.

This graph represents how many OTUs are present in high frequency across samples for the abundant (Rhizobiales) OTU table. Log scale along x axis is log10

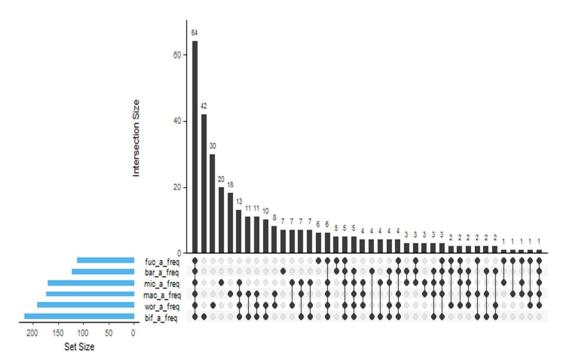


Figure 5a: Number of OTUs identified as core within at least 2 home samples.

The plot is built using presence absence data from OTUs present in at least 2 of the 4 native samples. Blue bars on the left indicate number of OTUs identified as core in the corresponding sample while the black histogram bars indicate number of intersecting OTUs.

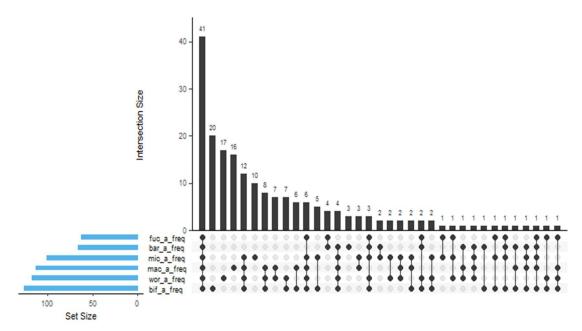


Figure 5b: Number of OTUs identified as core within at least 3 home samples.

The plot is built using presence absence data from OTUs present in at least 3 of the 4 native samples. Blue bars on the left indicate number of OTUs identified as core in the corresponding sample while the black histogram bars indicate number of intersecting OTUs.

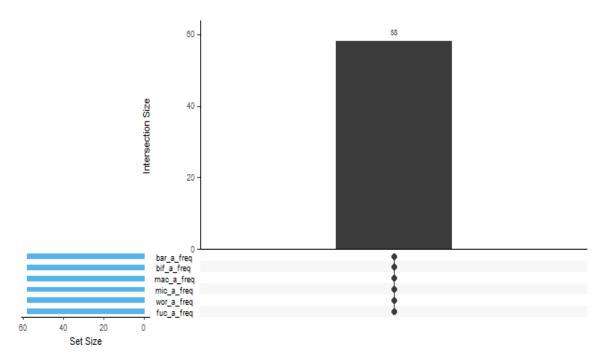


Figure 5c: Number of OTUs identified as core within at least 2 home samples and an abundance threshold of 0.00001%.

Blue bars on the left indicate size of the library while the black histogram bars indicate number of intersecting OTUs. Abundance threshold: the above mentioned threshold was used as this seemed to be the faint cut off between abundance vs presence. Any higher abundance and I select only OTUs belonging to Rhizobiales and there isn't a comparison.

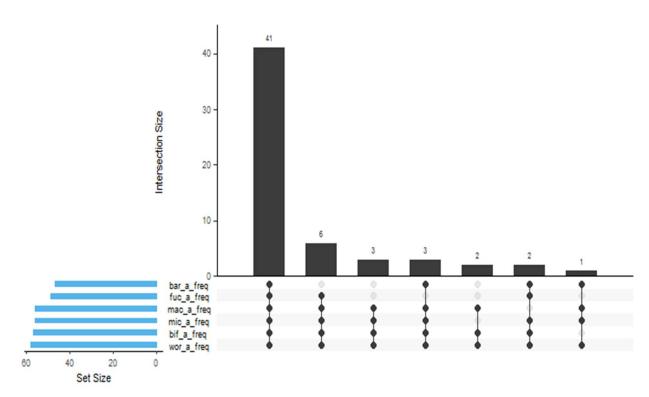


Figure 5d: Number of OTUs identified as core within at least 3 home samples and an abundance threshold of 0.00001%.

Blue bars on the left indicate size of the library while the black histogram bars indicate number of intersecting OTUs.

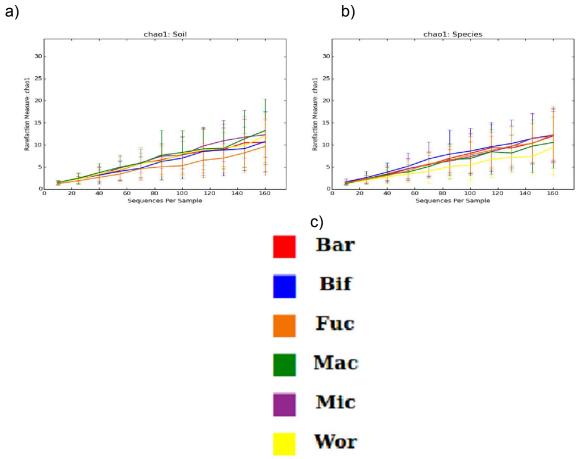


Figure 6a: Rarefaction at 160reads/ sample using the complete OTU table.

This figure shows rarefaction curves for species richness when all home samples are subsampled to 160 sequences each. Metric for species richness is Observed species and rarefaction curves are colored by a) "Soil" followed by b) "Species" c) legend for the colored rarefaction curves.

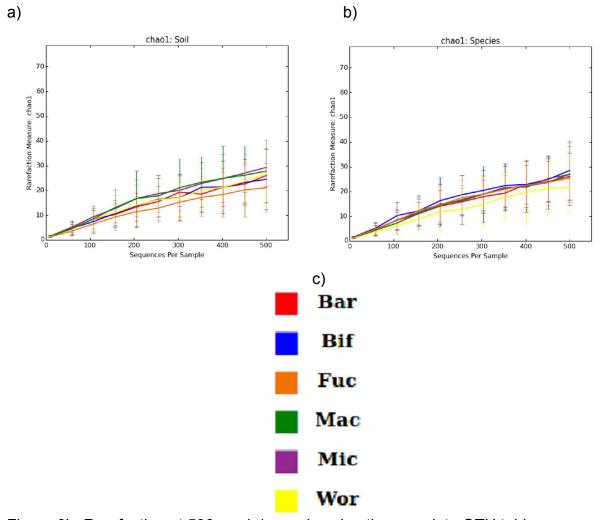


Figure 6b: Rarefaction at 500 reads/ sample using the complete OTU table.

This figure shows rarefaction curves for species richness when all home samples are subsampled to 500 sequences each. Metric for species richness is Observed species and rarefaction curves are colored by a) "Soil" followed by b) "Species" c) legend for the colored rarefaction curves.

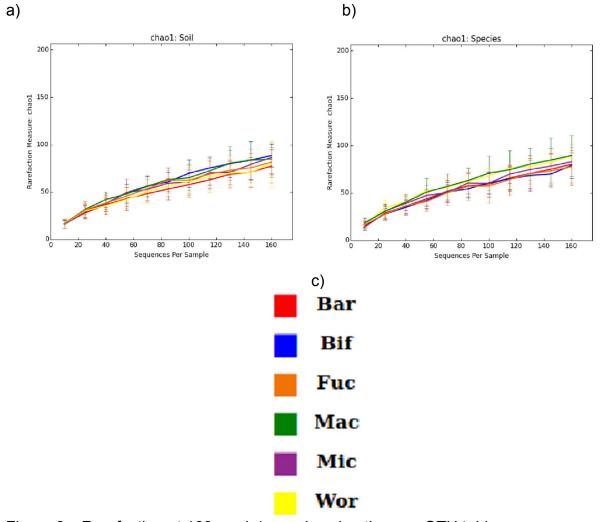


Figure 6c: Rarefaction at 160 reads/ sample using the rare OTU table.

This figure shows rarefaction curves for species richness when all home samples are subsampled to 160 sequences each. Metric for species richness is Observed species and rarefaction curves are colored by a) "Soil" followed by b) "Species" c) legend for the colored rarefaction curves.

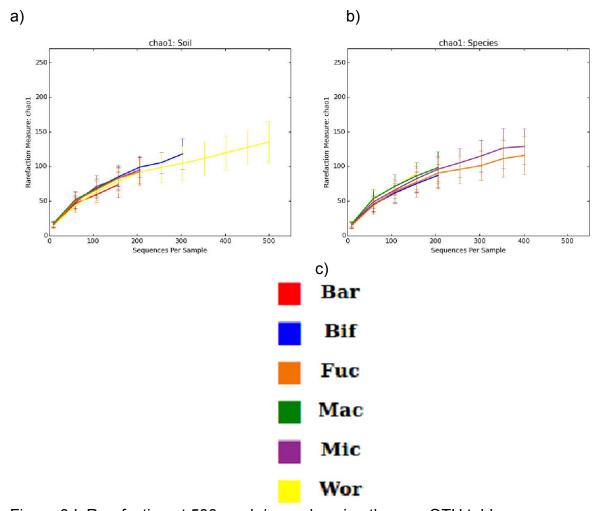


Figure 6d: Rarefaction at 500 reads/ sample using the rare OTU table.

This figure shows rarefaction curves for species richness when all home samples are subsampled to 500 sequences each. Metric for species richness is Observed species and rarefaction curves are colored by a) "Soil" followed by b) "Species" c) legend for the colored rarefaction curves. Both graphs show incomplete rarefaction curves indicating that these samples did not have sufficient read depth to rarefy to 500 reads/ sample.

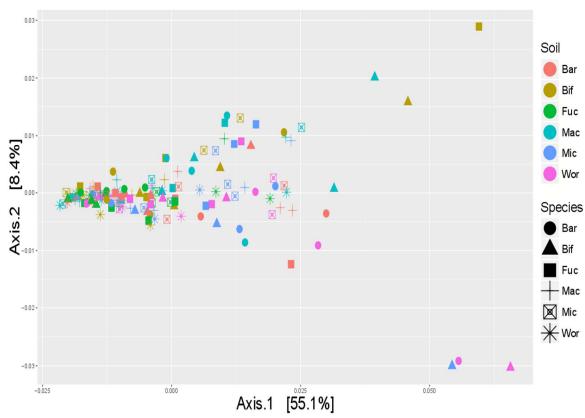


Figure 7a.i: PCoA ordination using the complete filtered OTU table

This graph a principal coordinate analysis performed using the complete OTU table rarefied and normalized to 6500 reads/ sample (586 OTUs detected). Samples are coloured by Soil factor and shaped by Species factor to represent all the combinations used in the study. Samples group along a single, dominant axis. One possible reason this could happen in the abundance of the OTUs belonging to the Rhizobiales category

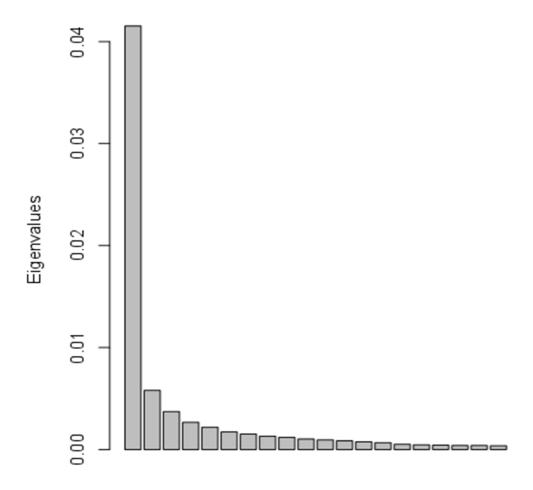


Figure 7a.ii) Scree plot for the PCoA ordination using the complete OTU table.

Notice large eigenvalue first axis is also seen in the scree plot, indicating that one dominant factor is driving the relationship.

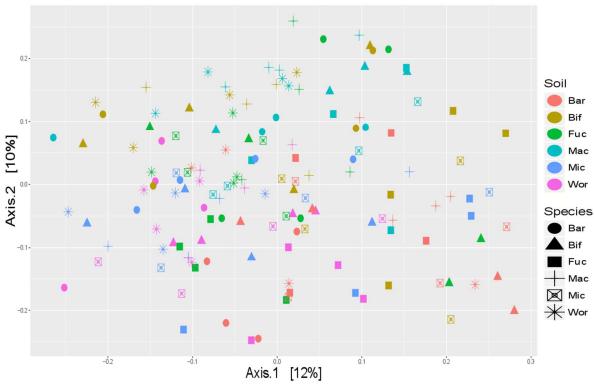


Figure 7b.i: PCoA ordination using the rare OTU table

Rare table was rarefied and then normalized to 163 reads/ sample (513 OTUs identified). Removing the abundant taxa also removes the grouping along a single axis. However, there still seems to be an overall clustering by the Soil factor. Samples are coloured by Soil factor and shaped by Species factor to represent all the combinations used in the study.

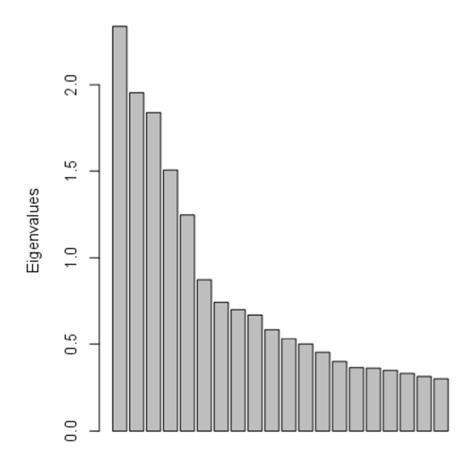


Figure 7b.ii:) Scree plot for the PCoA ordination using the rare OTU table

Removing the dominant taxa also removes the single dominant eigen value we see in the complete OTU PCoA plot. This could indicate that a single factor is pushing the grouping that we see earlier.

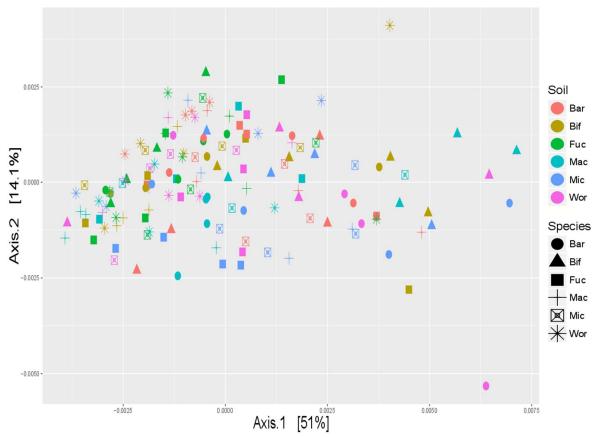


Figure 7c.i PCoA ordination using the abundant OTU table (comprising of 75 OTUs)

Rhizobiales OTU table was rarefied and then normalized to 6250 reads/sample. Samples tend to group towards the left half go the ordination, similar to the complete OUT.table.

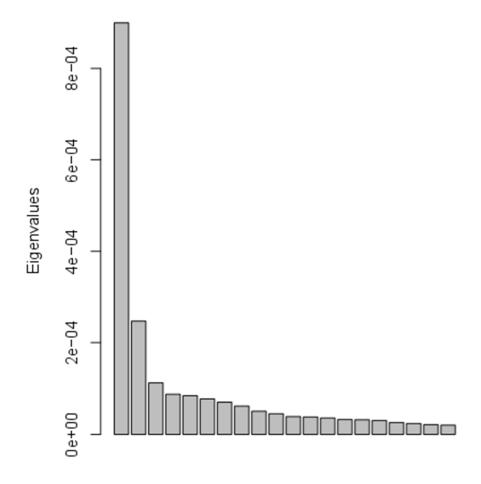


Figure7c.ii:) Scree plot for the PCoA ordination using the abundant OTUtable.

Samples again have the large single dominant axis also seen when looking at the scree plot for complete OTU table, which is absent in the rare microbiome table. This indicates that samples grouping along a single axis are driven by the dominant taxa.

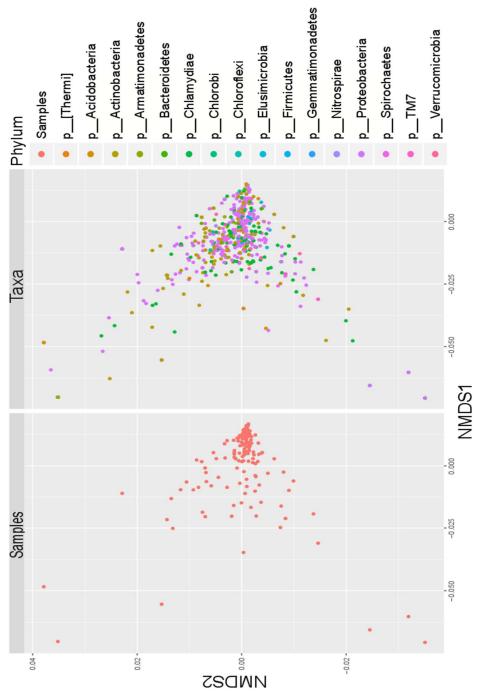


Figure 8a: NMDS plot performed on the complete OTU table.

Samples are represented on the left and their corresponding microbial communities on the right. This plot explores how clustering of samples relates to clustering of microbial community members. Samples tend to cluster along a single axis.

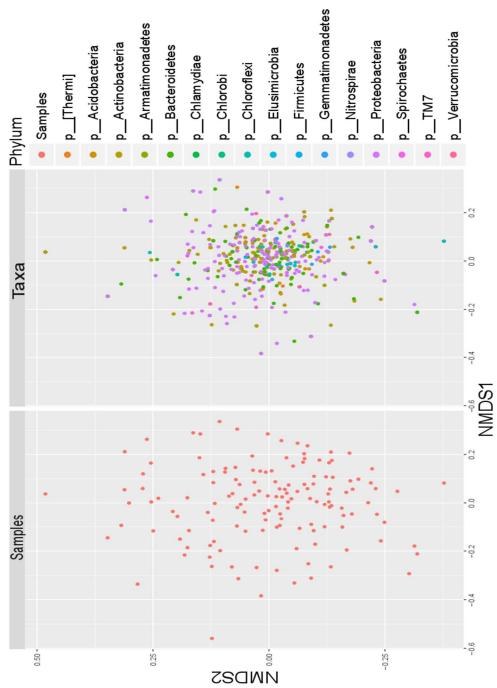


Figure 8b: NMDS plot performed on the rare OTU table

Samples are represented on the left and their corresponding microbial communities on the right. This plot explores how clustering of samples relates to clustering of microbial community members. Here we do not see the close grouping in the center that we see for both the samples and microbial communities of the complete table. The close the points are, the most similar the samples and microbiome. This graph gives further evidence that the rare OTUs are more variable than the complete OTUs.

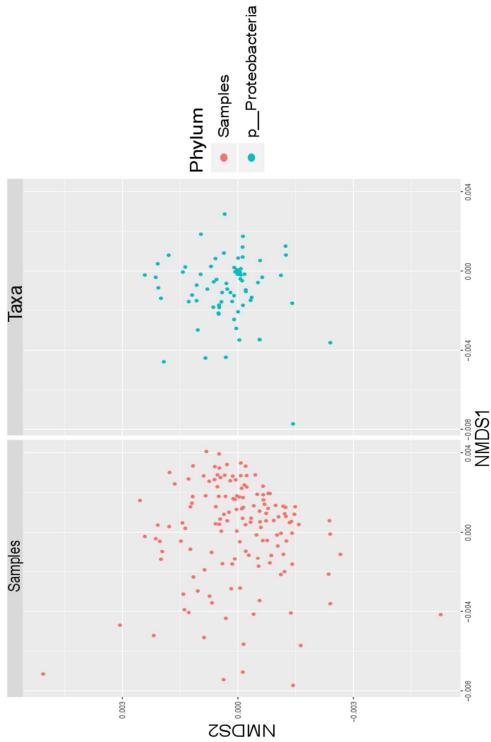
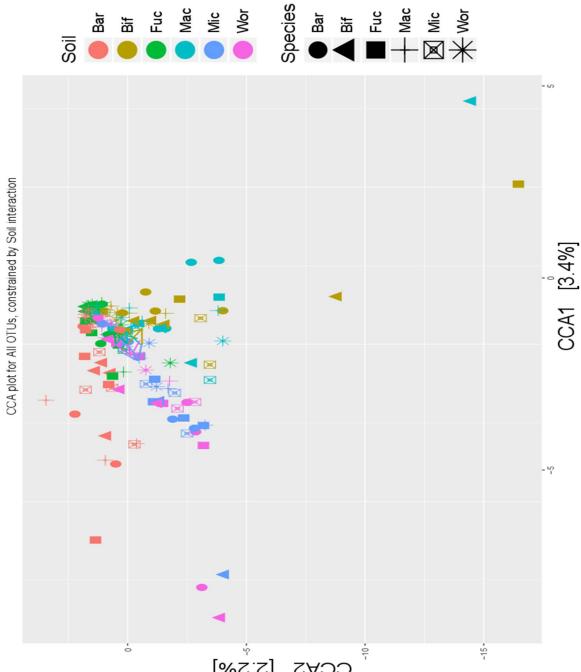



Figure 8c: NMDS plot performed on the abundant OTU table.

Samples are represented on the left and their corresponding microbial communities on the right. Sample grouping overlaps with abundant taxa of microbial community specifically with the abundant members: Agrobacterum and leguminosarum.

This plot shows that all samples are highly similar to each other when Soil factor is constrained. This means that the variation explained by the other factors is pretty small. This could indicate that either the relationships are driven by the dominant taxa or communities are highly similar when removing the soil factor. The arrows are coloured by the corresponding Soil factor.

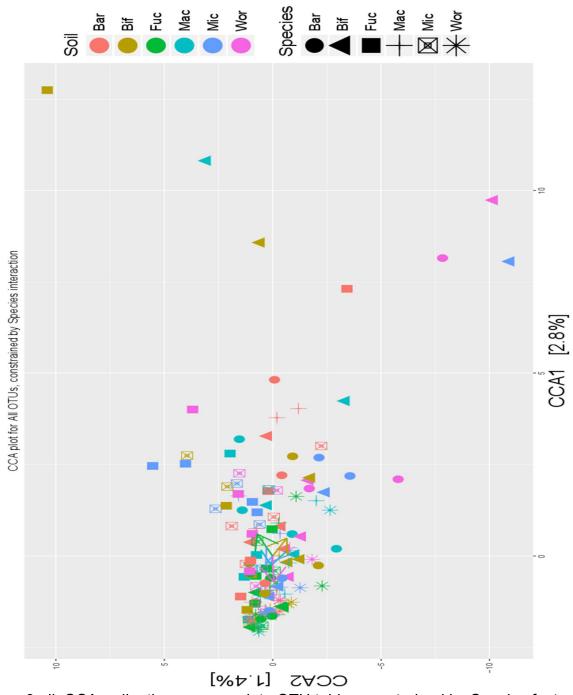


Figure 9a.ii: CCA ordinations on complete OTU tables constrained by Species factor.

This plot too shows that all samples are highly similar to each other when Species factor is constrained. However, we see larger eigenvalues for the CCA axis when Soil factor (CCA1: 3.4%) is constrained compared to species factor (2.8%). This means that the variation explained by the other factors is pretty small and relationships are driven by the dominant taxa. The arrows are coloured by the corresponding Species factor.

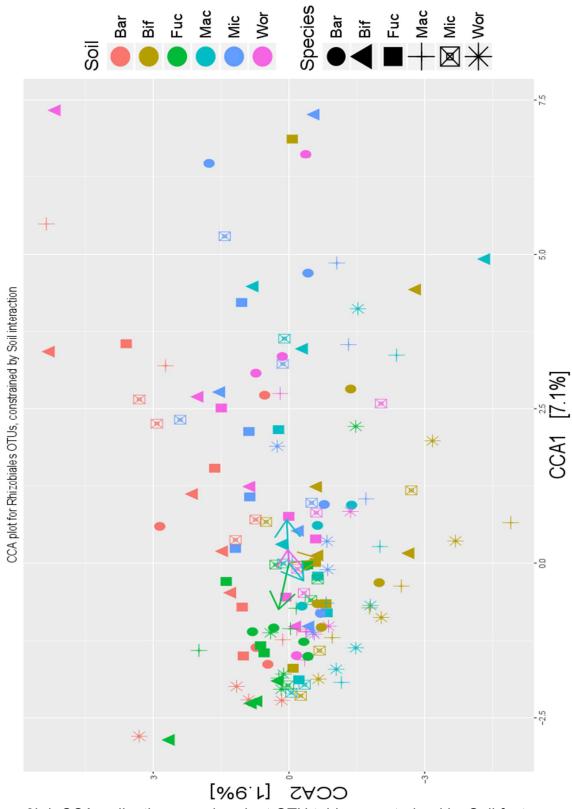
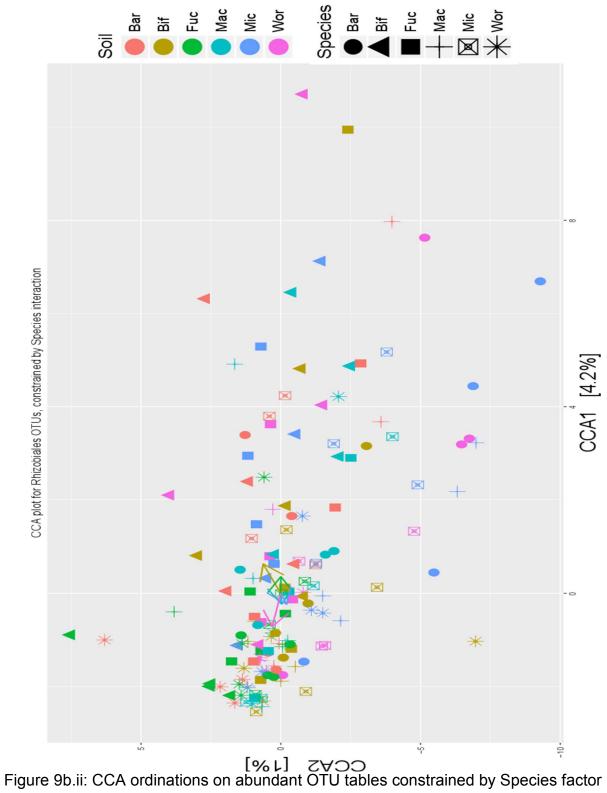



Figure 9b.i: CCA ordinations on abundant OTU tables constrained by Soil factor

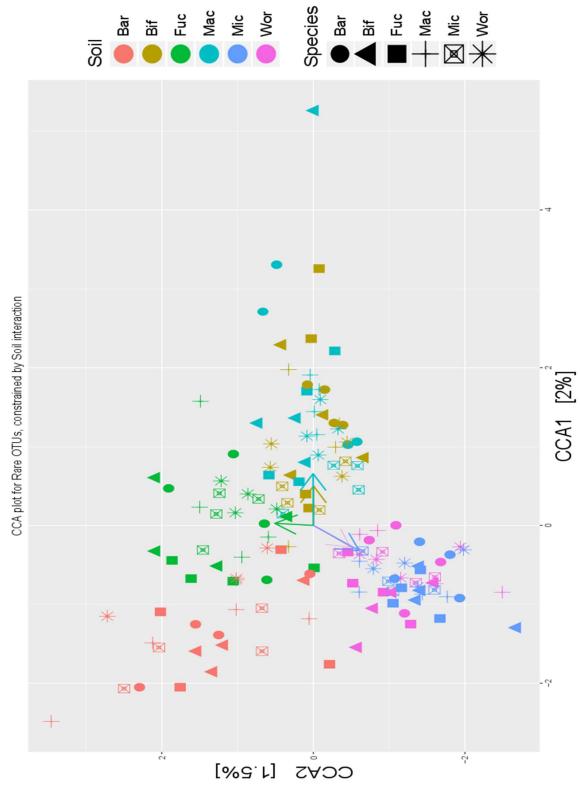
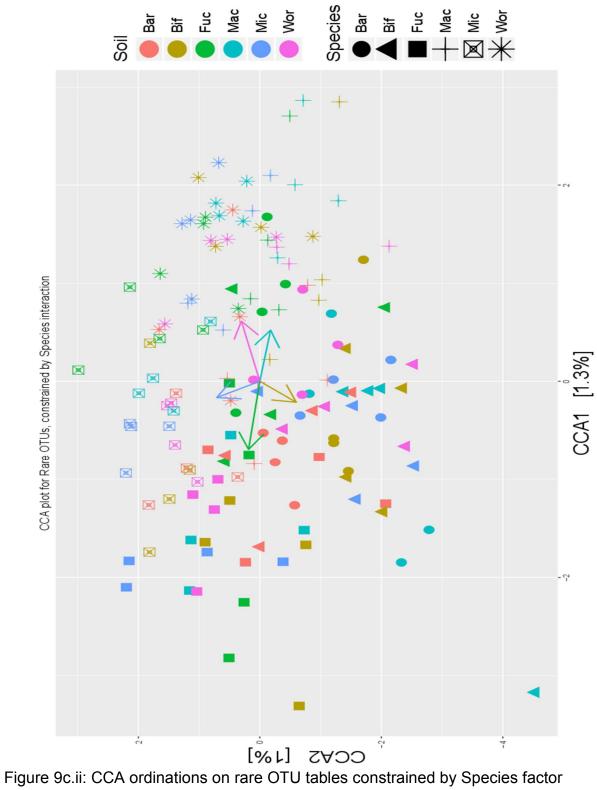



Figure 9c.i: CCA ordinations on rare OTU tables constrained by Soil factor

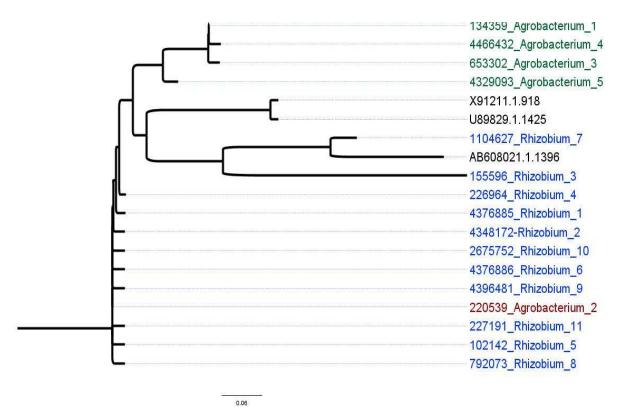


Figure 10: Phylogenetic tree of Agrobacterium and Rhizobium.

The tree represents a phylogeny between agrobacterium OTUs and rhizobium OTUs from our samples. The agrobacterium coloured in red is the one that is present in high abundance within our samples (~85-95% of OTUs). Labels in black are reference rhizobium sequences.

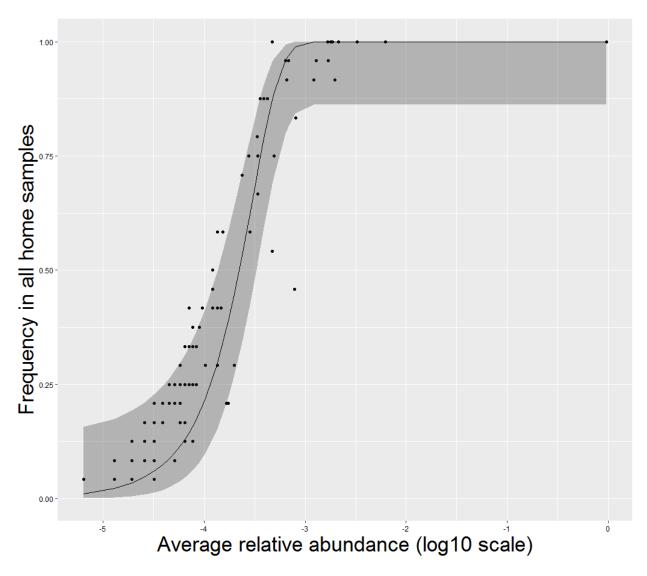


Figure 11.a: Fit of neutral model for home samples

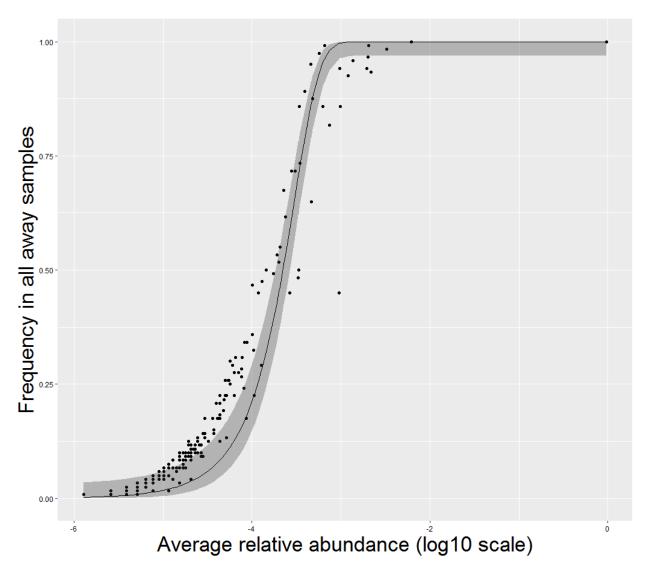


Figure 11.b: Fit of neutral model for away data

APPENDIX 3: Main script

This script is used to process the OTU table received from QIIME. The script runs a filtering step, diversity analysis, ordinations and Adonis models.

```
#required libraries
library("RColorBrewer")
library("ggplot2")
library("plyr")
library("vegan")
library("reshape2")
library("ape")
library("phyloseq")
library("data.table")
library("biome")
#otu files
otu all = "../Desktop/nod mb/R files/otus.biom"
m=read.csv("../Desktop/nod mb/R files/nodule map new.txt", row.names=1)
file<-import biom(otu all)
map = sample data(m)
comp <-merge phyloseq(file,map)</pre>
head(sample data(comp))
colnames(tax_table(comp)) <- c(k = "Kingdom", p = "Phylum", c = "Class", o = "Order", f
= "Family", g = "Genus", s = "Species")
taxa sums(comp)
#complete otu mb
comp
#removing low quality taxa matches and normalize
mb all= subset taxa(comp, Kingdom!="None" & Kingdom!="NOHIT")
norm all = transform sample counts(mb all, function(x) x/sum(x))
taxa sums(mb all)
mb_all
df all = as(sample data(norm all), "data.frame")
d all = phyloseq::distance(norm all, "bray")
norm all
#only rhiz and normalize
mb rhiz= subset taxa(mb all, Order=="o Rhizobiales")
norm rhiz = transform sample counts(mb rhiz, function(x) x/sum(x))
df rhiz = as(sample data(norm rhiz), "data.frame")
d_rhiz = phyloseq::distance(norm_rhiz, "bray")
```

#take rare as a percentage of the reads => OTUS <0.01% in abundance is "rare" #only rare and normalize #get OTUs x = names(sort(taxa sums(mb rhiz), decreasing = TRUE)) y = names(sort(taxa_sums(mb_all), decreasing = TRUE)) select rare <- setdiff(y, x) #subsample and normalize mb rare= prune taxa(select rare, mb all) norm rare = transform sample counts(mb rare, function(x) x/sum(x)) df rare = as(sample data(norm rare), "data.frame") d rare = phyloseq::distance(norm rare, "bray") taxa <- tax table(mb all) otus <- otu table(mb all) write.table(otus, file='otus-genus.txt') write.table(taxa, file='taxa.txt') taxa_rhiz <- tax table(mb rhiz) otus rhiz <- otu table(mb rhiz) write.table(otus rhiz, file='otus-rhiz.txt') write.table(taxa rhiz, file='taxa-rhiz.txt') taxa rare <- tax table(mb rare) otus rare <- otu table(mb rare) write.table(otus rare, file='otus-rare.txt') write.table(taxa rare, file='taxa-rare.txt') #rarefy tables to same depth even depth <- function(ss no, otu table){ #set.seed(3336) rarefied <- rarefy even depth(otu table, sample.size = ss no) return(rarefied) } set.seed(123) mb rare <- even depth(163, mb rare) mb rhiz <- even depth(6200, mb rhiz) mb all <- even depth(6500, mb all) #read distribution readsumsdf all = data.frame(nreads = sort(sample_sums(mb_all),TRUE), sorted =

1:nsamples(mb_all), type = "Samples")

range(readsumsdf all\$nreads)

```
readsumsdf rhiz = data.frame(nreads = sort(sample sums(mb rhiz),TRUE), sorted =
1:nsamples(mb all), type = "Samples")
range(readsumsdf rhiz$nreads)
readsumsdf rare = data.frame(nreads = sort(sample sums(mb rare), TRUE), sorted =
1:nsamples(mb all), type = "Samples")
range(readsumsdf rare$nreads)
#plot read counts
sdt = data.table(as(sample data(mb all), "data.frame"), TotalReads =
sample sums(mb all), keep.rownames = TRUE)
setnames(sdt, "rn", "SampleID")
ggplot(sdt, aes(x=SampleID,y=TotalReads,fill=Comb)) + geom bar(stat="identity",
position=position dodge()) +facet wrap(facets = ~Soil)
ggplot(sdt, aes(x=Soil,y=TotalReads,fill=Comb)) + geom bar(stat="identity")
+facet wrap(facets = ~Soil)
ggplot(sdt, aes(x=SampleID,y=TotalReads)) + geom bar(stat="identity")
#save file
read_dist <- subset(sdt, select=c("SampleID", "Soil", "Species", "Comb", "TotalReads"))
write.table(read dist,file="../Desktop/read dist.txt")
#otu abundances and frequencies
abund val <- function(normalized){
 otu.abun = apply(otu table(normalized),1,mean)
 # Calculate the frequency of each OTU across all samples
 otu.freq = rowSums(otu table(normalized) != 0)/144
 # Reassign names of phyla so we only color by the top 5 phyla and mark all others as
"other"
 phyla = as.vector(data.frame(tax_table(normalized))$Phylum)
 levels(phyla) = c(levels(phyla), "other")
 keephyla = c("p Bacteroidetes", "p Proteobacteria", "p Actinobacteria",
"p Chloroflexi", "p TM7")
 phyla[!(phyla %in% keephyla)] = "Other"
 phyla = as.vector(phyla)
 phyla=as.factor(phyla)
 otuabun = cbind.data.frame(abundance=log(otu.abun).frequency=otu.freq.phyla)
 return(otuabun)
}
#get values to plot chart
abun all <- abund val(norm all)
abun rhiz <- abund val(norm rhiz)
abun rare <- abund val(norm rare)
# Use color brewer to pick a color scheme for the phyla
```

```
brew = brewer.pal(6, "Set1")
# Create a scatterplot of OTUs showing their average relative abundance and frequency
ggplot(abun all, aes(x=abundance,y=frequency,color=phyla)) + geom point(size=3) +
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - All
mb") + scale colour brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Complete microbiome")+ xlim(-20, 5)
ggplot(abun rare, aes(x=abundance,y=frequency,color=phyla)) + geom point(size=3) +
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - Rare
mb") + scale colour brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Rare microbiome")+ xlim(-20, 5)
ggplot(abun rhiz, aes(x=abundance,y=frequency,color=phyla)) + geom point(size=3) +
xlab("Average relative abundance (log scale)") + ylab("frequency in all samples - Rhiz
mb") + scale colour brewer(palette="Set2")+labs(title="Distribution of all OTU phyla-
Rhizobiales microbiome")+ xlim(-20, 5)
#bar plots needed for rare and rhizobiales taxa
#distribution of phylums
abudance cal <- function(normalized otu, Taxa sel){
 bar table <- plot bar(normalized otu, fill="Phylum")
 bar table <- bar table$data[bar table$data$Abundance>0,]
 bar taxa <- bar table[bar table$Phylum==Taxa sel,]
 bar taxa <- bar taxa[c(2,3,17)]
 sum prot <- ddply(bar taxa, .(Sample), summarize, Sum=sum(Abundance))
 return(sum prot)
prot all <- abudance_cal(norm_all, "p__Proteobacteria")
bact_all <- abudance_cal(norm_all, "p__Bacteroidetes")</pre>
act all <- abudance cal(norm all, "p Actinobacteria")
prot rare <- abudance cal(norm rare, "p Proteobacteria")
bact rare <- abudance cal(norm rare, "p Bacteroidetes")
act rare <- abudance cal(norm rare, "p Actinobacteria")
#Richness
adiv anova <- function(ss no, otu table, outf){
 mlist <- factor(c("Observed", "Shannon", "Chao1"))
 set.seed(3336)
 rarefied <- rarefy even depth(otu table, sample.size = ss no)
 richness <- estimate richness(rarefied, measures=mlist)
 richness <- richness[-3]
 sdata <- sample data(rarefied)
 for ( i in 1:3){
  aov facs <- aov(richness[[i]]~ sdata$Soil*sdata$Species)</pre>
  capture.output(summary(aov facs), file=outf, append=T)
```

```
}
adiv anova(160, mb all, "ALL 160.txt")
adiv anova(500, mb all, "ALL 500.txt")
adiv_anova(1000, mb_all, "ALL_1000.txt")
adiv anova(160, mb rhiz, "Rhiz 160.txt")
adiv_anova(500, mb_rhiz, "Rhiz_500.txt")
adiv anova(1000, mb rhiz, "Rhiz 1000.txt")
adiv anova(160, mb rare, "Rare 160.txt")
adiv anova(500, mb rare, "Rare 500.txt")
adiv anova(1000, mb rare, "Rare 1000.txt")
#One more for nod size
adiv anova ns <- function(ss no, otu table, outf){
 mlist <- factor(c("Observed", "Shannon", "Chao1"))
 set.seed(3336)
 rarefied <- rarefy even depth(otu table, sample.size = ss no)
 richness <- estimate richness(rarefied, measures=mlist)
 richness <- richness[-3]
 sdata <- sample data(rarefied)
 for ( i in 1:3){
  aov facs <- aov(richness[[i]]~ sdata$nod size)
  capture.output(summary(aov facs), file=outf, append=T)
adiv anova ns(160, mb all, "ALL 160 ns.txt")
adiv anova ns(500, mb all, "ALL 500 ns.txt")
adiv anova ns(160, mb rhiz, "Rhiz 160 ns.txt")
adiv_anova_ns(500, mb_rhiz, "Rhiz_500_ns.txt")
adiv anova ns(160, mb rare, "Rare 160 ns.txt")
adiv anova ns(500, mb rare, "Rare 500 ns.txt")
#Ordinations: PCoA principal
mb.pcoa.rare <- ordinate(norm_rare, d_rare, method="PCoA")
pcoa.rare<-plot ordination(norm rare, mb.pcoa.rare, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for rare OTUs")
pcoa.rare
plot scree(mb.pcoa.rare, "Scree plot for PCoA with bray-curtis distance")
```

```
mb.pcoa.rhiz <- ordinate(norm rhiz, d rhiz, method="PCoA")
pcoa.rhiz<-plot ordination(norm rhiz, mb.pcoa.rhiz, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for Rhizobales OTUs")
pcoa.rhiz
plot_scree(mb.pcoa.rhiz, "Scree plot for PCoA with bray-curtis distance")
mb.pcoa.all <- ordinate(norm all, d all, method="PCoA")
pcoa.all<-plot ordination(norm all, mb.pcoa.all, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="PCoA plot for all OTUs")
pcoa.all
plot scree(mb.pcoa.all, "Scree plot for PCoA with bray-curtis distance")
#Ordination: CCA constrained by species soil interaction
#seems like most are along a single axis now.. not sure how to communicate this
result?
mball.cca <- ordinate(mb all, method= "CCA", formula=norm all~Soil)
all cca <- plot ordination(norm all, mball.cca, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="CCA plot for All OTUs, constrained
by Species interaction")
all cca
arrowmat = vegan::scores(mball.cca, display = "bp")
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat)</pre>
# Define the arrow aesthetic mapping
arrow map = aes(xend = CCA1, yend = CCA2, x = 0, y = 0, shape = NULL, color =
NULL,
         label = labels)
label map = aes(x = 1.2 * CCA1, y = 1.2 * CCA2, shape = NULL, color = NULL,
         label = labels)
# Make a new graphic
arrowhead = arrow(length = unit(0.05, "npc"))
p1 = all cca+ geom segment(arrow map, size = 0.2, data = arrowdf, color = "black",
                arrow = arrowhead) + geom text(label map, size = 2, data = arrowdf)
p1
#########CCA with rare otu table
mbrare.cca <- ordinate(mb rare, method= "CCA", formula=norm rare~Species)
rare cca <- plot ordination(norm rare, mbrare.cca, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="CCA plot for Rare OTUs,
constrained by Species interaction")
rare_cca
arrowmat = vegan::scores(mbrare.cca, display = "bp")
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat)</pre>
```

```
# Define the arrow aesthetic mapping
arrow_map = aes(xend = CCA1, yend = CCA2, x = 0, y = 0, shape = NULL, color =
NULL,
         label = labels)
label_map = aes(x = 1.2 * CCA1, y = 1.2 * CCA2, shape = NULL, color = NULL,
         label = labels)
# Make a new graphic
arrowhead = arrow(length = unit(0.05, "npc"))
p1 = rare cca+ geom segment(arrow map, size = 0.2, data = arrowdf, color = "black",
                 arrow = arrowhead) + geom text(label map, size = 2. data = arrowdf)
p1
######################CCA with rhizobiaes otu table
mbrhiz.cca <- ordinate(mb rhiz, method= "CCA", formula=norm rhiz~Soil)
rhiz cca <- plot ordination(norm rhiz, mbrhiz.cca, color="Soil",
shape="Species")+geom_point(size=5)+labs(title="CCA plot for Rhizobiales OTUs,
constrained by Soil interaction")
rhiz cca
arrowmat = vegan::scores(mbrhiz.cca, display = "bp")
arrowdf <- data.frame(labels = rownames(arrowmat), arrowmat)</pre>
# Define the arrow aesthetic mapping
arrow_map = aes(xend = CCA1, yend = CCA2, x = 0, y = 0, shape = NULL, color =
NULL,
         label = labels)
label map = aes(x = 1.2 * CCA1, y = 1.2 * CCA2, shape = NULL, color = NULL,
         label = labels)
# Make a new graphic
arrowhead = arrow(length = unit(0.05, "npc"))
p1 = rhiz cca+ geom segment(arrow map, size = 0.2, data = arrowdf, color = "black",
                 arrow = arrowhead) + geom_text(label_map, size = 2, data = arrowdf)
p1
#NMDS visualize the distance between the points themselves.
nmds ordinations <- function(mb otu, norm otu, d otu, title){
mb.nmds<- ordinate(norm otu, d otu, method="NMDS", "bray")
 plot ordination(norm otu, mb.nmds, type = "taxa", color = "Phylum", title = "taxa")
nmds ordinations(mb all,norm all, d all, "ALL")
nmds ordinations(mb rhiz,norm rhiz, d rhiz, "Rhizobiales")
nmds ordinations(mb rare, norm rare, d rare, "Rare")
#adonis
#beta div -- adonis rare using distances identified above
#rare
```

```
set.seed(123)
ads1<-adonis(d rare ~ Native, df rare, permutations = 999) # not imp
ads2<-adonis(d rare ~ Species, df rare, permutations = 999) # imp 8
ads3<-adonis(d rare ~ Soil, df rare, permutations = 999) #
ads4<-adonis(d rare ~ nod size, df rare, permutations = 999) #
ads5<-adonis(d_rare ~ Soil+Species, df_rare, permutations = 999)
ads6<-adonis(d rare ~ Soil:Species, df rare, permutations = 999)
ads7<-adonis(d rare ~ Soil*Species, df rare, permutations = 999)
ads8<-adonis(d rare ~ X18s PD, df rare, permutations = 999) #
ads9<-adonis(d rare ~ trna PD, df rare, permutations = 999) #
ads10<-adonis(d rare ~ elison PD, df rare, permutations = 999) #
ads11<-adonis(d rare ~ Soil * Species * nod size, df rare, permutations = 999) #
#rhiz
set.seed(123)
ads1<-adonis(d rhiz ~ Native, df rhiz, permutations = 999) # not imp
ads2<-adonis(d rhiz ~ Species, df rhiz, permutations = 999) # imp 8
ads3<-adonis(d rhiz ~ Soil, df rhiz, permutations = 999) #
ads4<-adonis(d rhiz ~ nod size, df rhiz, permutations = 999) #
ads5<-adonis(d rhiz ~ Soil+Species, df rhiz, permutations = 999)
ads6<-adonis(d rhiz ~ Soil:Species, df rhiz, permutationads1s = 999)
ads7<-adonis(d rhiz ~ Soil*Species, df rhiz, permutations = 999)
ads8<-adonis(d rhiz ~ Native*nod size, df rhiz, permutations = 999)
ads9<-adonis(d rhiz ~ nod size*Soil*Species, df rhiz, permutations = 999)
 ads10<-adonis(d rhiz ~ X18s PD, df rhiz, permutations = 999) # ads11<-
adonis(d rhiz ~ trna PD, df rhiz, permutations = 999) #
ads12<-adonis(d rhiz ~ elison PD, df rhiz, permutations = 999) #
ads13<-adonis(d rhiz ~ Soil+Species+Soil:Species+nod size, df rhiz, permutations =
999)#
#all
set.seed(123)
ads1<-adonis(d all ~ Native, df all, permutations = 999) # not imp
ads2<-adonis(d all ~ Species, df all, permutations = 999) # imp 8
ads3<-adonis(d all ~ Soil, df all, permutations = 999) #
ads4<-adonis(d all ~ nod size, df all, permutations = 999) #
ads5<-adonis(d all ~ Soil*Species, df all, permutations = 999)
ads6<-adonis(d all ~ Soil:Species, df all, permutations = 999)
ads7<-adonis(d all ~ Soil*Species, df all, permutations = 999)
ads8<-adonis(d all ~ Soil*Species*nod size, df all, permutations = 999)
ads10<-adonis(d all ~ X18s PD, df all, permutations = 999) #
ads11<-adonis(d all ~ trna PD, df all, permutations = 999) #
ads12<-adonis(d all ~ elison PD, df all, permutations = 999) #
```

APPENDIX 4: Core microbiome calculations

```
library(UpSetR)
bar= subset_samples(mb_all, Comb=="Bar")
bif= subset samples(mb all, Comb=="Bif")
mac= subset samples(mb all, Comb=="Mac")
mic= subset samples(mb all, Comb=="Mic")
wor= subset samples(mb all, Comb=="Wor")
fuc= subset samples(mb all, Comb=="Fuc")
abun freg <- function(otu table){
 otu table = filter taxa(otu table, function(x) mean(x) > 0, TRUE)
 norm cat <- transform sample counts(otu table, function(x) x/sum(x))
 otu.abun = apply(otu table(norm cat),1,mean)
 otu.freq = rowSums(otu table(otu table) != 0)/nsamples(otu table)
 otuabun = cbind.data.frame(abundance=otu.abun,frequency=otu.freq)
 return(otuabun)
bar a<- abun freq(bar)
bif a<- abun freq(bif)
fuc a<- abun freq(fuc)
wor a<- abun freq(wor)
mac a<- abun freg(mac)
mic a<- abun freq(mic)
trial <- merge(otu_table(mb all),mac a, by="row.names", all=T)
rownames(trial) <- trial$Row.names
trial <- trial[,c(146:147)]
trial <- merge(trial,mic a, by="row.names", all=T)
rownames(trial) <- trial$Row.names
trial <- trial[,-c(1)]
trial <- merge(trial, wor a,by="row.names", all = T)
rownames(trial) <- trial$Row.names
trial <- trial[,-c(1)]
trial <- merge(trial, fuc a,by="row.names", all = T)
rownames(trial) <- trial$Row.names
trial <- trial[,-c(1)]
trial <- merge(trial, bif a,by="row.names", all = T)
```

```
rownames(trial) <- trial$Row.names
trial <- trial[,-c(1)]
trial <- merge(trial, bar a,by="row.names", all = T)
rownames(trial) <- trial$Row.names
trial <- trial[,-c(1)]
colnames(trial) <- c("mac_a_abun", "mac_a_freq", "mic_a_abun", "mic_a_freq",
"wor_a_abun", "wor_a_freq", "fuc_a_abun", "fuc_a_freq", "bif_a_abun",
"bif a freq", "bar a abun", "bar a freq")
trial[is.na(trial)] <- 0
mat freq <- trial[,c(2,4,6,8,10,12)]
mat comp <- trial
#presence/absence core of us
half freq <- mat freq
half freq[half freq<0.5] <- 0
half freq[half freq>=0.5] <- 1
third freq <- mat freq
third freg[third freg<0.75] <- 0
third freq[third freq>=0.75] <- 1
full freq <- mat freq
full freq[full freq<1] <- 0
full freq[full freq>=1] <- 1
write.table(half freq, file="half freq.txt")
write.table(third freq, file="third freq.txt")
write.table(full freq, file="full freq.txt")
#Upset plots
upset(half_freq, sets=c("fuc_a_freq", "wor_a_freq", "mic_a_freq", "mac_a_freq"
"bif a freq", "bar a freq"), sets.bar.color = "#56B4E9", order.by = "freq",
upset(third freq, sets=c("fuc a freq", "wor a freq", "mic a freq", "mac a freq"
"bif a freq", "bar a freq"), sets.bar.color = "#56B4E9", order.by = "freq"),
upset(full_freq, sets=c("fuc_a_freq", "wor_a_freq", "mic_a_freq", "mac_a_freq"
"bif a freq", "bar a freq"), sets.bar.color = "#56B4E9", order.by = "freq"),
#complete the taxonomy table
get ids <- function(frequency tab, out file){
```

```
row sub = apply(frequency tab, 1, function(row) all(row !=0 ))
 taxa_tab <- merge(frequency_tab[row_sub,], tax_table(mb all), by="row.names")
 return(table(taxa tab$Phylum))
# write.table(taxa tab,file=out file)
get ids(half freq, "half taxa.txt")
get ids(third freq, "third taxa.txt")
get_ids(full_freq, "full_taxa.txt")
###abundance
head(mat comp)
#add in abundace threshold.
abun.00001 <- mat comp[mat comp[,"mac a abun"]>=0.00001 &
mat comp[,"mic a abun"]>=0.00001& mat comp[,"fuc a abun"]>=0.00001&
mat comp[,"wor a abun"]>=0.00001& mat comp[,"bif a abun"]>=0.00001&
mat comp[,"bar a abun"]>=0.00001,]
#half <- abun.00001[abun.00001[,"mac a freq"]>=0.5 &
abun.00001[,"mic a freq"]>=0.5& abun.00001[,"fuc a freq"]>=0.5&
abun.00001[,"wor a freq"]>=0.5& abun.00001[,"bif a freq"]>=0.5&
abun.00001[,"bar a freq"]>=0.5,]
abund freq <- abun.00001[,c(2,4,6,8,10,12)]
half abun <- abund freq
half abun[half abun<0.5] <- 0
half abun[half abun>=0.5] <- 1
upset(half abun, sets=c("fuc a freq", "wor a freq", "mic a freq", "mac a freq"
."bif a freq", "bar a freq"), sets.bar.color = "#56B4E9", order.by = "freq")
third abun <- abund freq
third abun[third abun<0.75] <- 0
third abun[third abun>=0.75] <- 1
upset(third_abun, sets=c("fuc_a_freq", "wor_a_freq", "mic_a_freq", "mac_a_freq"
"bif a freq", "bar a freq"), sets.bar.color = "#56B4E9", order.by = "freq",
full abun <- abund freq
full abun[full abun<1] <- 0
full abun[full abun>=1] <- 1
upset(full_abun, sets=c("fuc_a_freq", "wor_a_freq", "mic_a_freq", "mac_a_freq"
"bif a freq", "bar a freq"), sets.bar.color = "#56B4E9",order.by = "freq",
write.table(half abun, file="half abun.txt")
write.table(third abun, file="third abun.txt")
write.table(full abun, file="full abun.txt")
```

get_ids(half_abun, "half_abun_taxa.txt") get_ids(third_abun, "third_abun_taxa.txt") get_ids(full_abun, "full_abun_taxa.txt")

```
#Adam Burns - 2/10/2015
#aburns2@uoregon.edu
#Fits the neutral model from Sloan et al. 2006 to an OTU table and returns several
fitting statistics. Alternatively, will return predicted occurrence frequencies for each OTU
based on their abundance in the metacommunity when stats=FALSE.
sncm.fit <- function(spp, pool=NULL, stats=TRUE, taxon=NULL){
 require(minpack.lm)
 require(Hmisc)
 require(stats4)
 options(warn=-1)
 #Calculate the number of individuals per community
 N <- mean(apply(spp, 1, sum))
 #Calculate the average relative abundance of each taxa across communities
 if(is.null(pool)){
  p.m <- apply(spp, 2, mean)
  p.m <- p.m[p.m != 0]
  p <- p.m/N
 } else {
  p.m <- apply(pool, 2, mean)
  p.m <- p.m[p.m != 0]
  p <- p.m/N
 #Calculate the occurrence frequency of each taxa across communities
 spp.bi <- 1*(spp>0)
 freq <- apply(spp.bi, 2, mean)
 freq <- freq[freq != 0]
 #Combine
 C <- merge(p, freq, by=0)
 C \leftarrow C[order(C[,2]),]
 C <- as.data.frame(C)
 C.0 <- C[!(apply(C, 1, function(y) any(y == 0))),] #Removes rows with any zero (absent
in either source pool or local communities)
 p <- C.0[,2]
 freq <- C.0[,3]
 names(p) <- C.0[,1]
 names(freq) \leftarrow C.0[,1]
```

```
#Calculate the limit of detection
 d = 1/N
 ##Fit model parameter m (or Nm) using Non-linear least squares (NLS)
 m.fit <- nlsLM(freq ~ pbeta(d, N*m*p, N*m*(1-p), lower.tail=FALSE), start=list(m=0.1))
 m.ci <- confint(m.fit, 'm', level=0.95)
 ##Fit neutral model parameter m (or Nm) using Maximum likelihood estimation (MLE)
 sncm.LL <- function(m, sigma){</pre>
  R = freq - pbeta(d, N*m*p, N*m*(1-p), lower.tail=FALSE)
  R = dnorm(R, 0, sigma)
  -sum(log(R))
 m.mle <- mle(sncm.LL, start=list(m=0.1, sigma=0.1), nobs=length(p))
 ##Calculate Akaike's Information Criterion (AIC)
 aic.fit <- AIC(m.mle, k=2)
 bic.fit <- BIC(m.mle)
 ##Calculate goodness-of-fit (R-squared and Root Mean Squared Error)
 freq.pred <- pbeta(d, N*coef(m.fit)*p, N*coef(m.fit)*(1-p), lower.tail=FALSE)
 Rsgr <- 1 - (sum((freg - freg.pred)^2))/(sum((freg - mean(freg))^2))
 RMSE <- sqrt(sum((freq-freq.pred)^2)/(length(freq)-1))
 pred.ci <- binconf(freq.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson",
return.df=TRUE)
 ##Calculate AIC for binomial model
 bino.LL <- function(mu, sigma){
  R = freq - pbinom(d, N, p, lower.tail=FALSE)
  R = dnorm(R, mu, sigma)
  -sum(log(R))
 bino.mle <- mle(bino.LL, start=list(mu=0, sigma=0.1), nobs=length(p))
 aic.bino <- AIC(bino.mle, k=2)
 bic.bino <- BIC(bino.mle)
 ##Goodness of fit for binomial model
 bino.pred <- pbinom(d, N, p, lower.tail=FALSE)
 Rsqr.bino <- 1 - (sum((freq - bino.pred)^2))/(sum((freq - mean(freq))^2))
 RMSE.bino <- sqrt(sum((freq - bino.pred)^2)/(length(freq) - 1))
 bino.pred.ci <- binconf(bino.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson",
return.df=TRUE)
```

```
##Calculate AIC for Poisson model
 pois.LL <- function(mu, sigma){</pre>
  R = freq - ppois(d, N*p, lower.tail=FALSE)
  R = dnorm(R, mu, sigma)
  -sum(log(R))
 pois.mle <- mle(pois.LL, start=list(mu=0, sigma=0.1), nobs=length(p))
 aic.pois <- AIC(pois.mle, k=2)
 bic.pois <- BIC(pois.mle)
 ##Goodness of fit for Poisson model
 pois.pred <- ppois(d, N*p, lower.tail=FALSE)
 Rsqr.pois <- 1 - (sum((freq - pois.pred)^2))/(sum((freq - mean(freq))^2))
 RMSE.pois <- sqrt(sum((freq - pois.pred)^2)/(length(freq) - 1))
 pois.pred.ci <- binconf(pois.pred*nrow(spp), nrow(spp), alpha=0.05, method="wilson",
return.df=TRUE)
 ##Results
 if(stats==TRUE){
  fitstats <- data.frame(m=numeric(), m.ci=numeric(), m.mle=numeric(),
maxLL=numeric(), binoLL=numeric(), poisLL=numeric(), Rsqr=numeric(),
Rsgr.bino=numeric(), Rsgr.pois=numeric(), RMSE=numeric(), RMSE.bino=numeric(),
RMSE.pois=numeric(), AIC=numeric(), BIC=numeric(), AIC.bino=numeric(),
BIC.bino=numeric(), AIC.pois=numeric(), BIC.pois=numeric(), N=numeric(),
Samples=numeric(), Richness=numeric(), Detect=numeric())
  fitstats[1,] <- c(coef(m.fit), coef(m.fit)-m.ci[1], m.mle@coef['m'], m.mle@details$value,
bino.mle@details$value, pois.mle@details$value, Rsqr, Rsqr.bino, Rsqr.pois, RMSE,
RMSE.bino, RMSE.pois, aic.fit, bic.fit, aic.bino, bic.bino, aic.pois, bic.pois, N, nrow(spp),
length(p), d)
  return(fitstats)
 } else {
  A <- cbind(p, freq, freq.pred, pred.ci[,2:3], bino.pred, bino.pred.ci[,2:3])
  A <- as.data.frame(A)
  colnames(A) <- c('p', 'freq', 'freq.pred', 'pred.lwr', 'pred.upr', 'bino.pred', 'bino.lwr',
'bino.upr')
  if(is.null(taxon)){
   B \leftarrow A[order(A[,1]),]
  } else {
   B <- merge(A, taxon, by=0, all=TRUE)
   row.names(B) <- B[,1]
   B <- B[,-1]
   B <- B[order(B[,1]),]
  return(B)
```

```
}
#required libraries
library("RColorBrewer")
library("ggplot2")
library("plyr")
library("vegan")
library("reshape2")
library("ape")
library("phyloseq")
library("data.table")
library("biome")
library("metagenomeSeq")
#otu files
otu all = "../Desktop/Thesis files/R files/otus.biom"
m=read.csv("../Desktop//Thesis files/R files/nodule map new.txt", row.names=1)
file<-import biom(otu all)
map = sample data(m)
comp <-merge phyloseq(file,map)
head(sample_data(comp))
colnames(tax_table(comp)) <- c(k = "Kingdom", p = "Phylum", c = "Class", o = "Order", f
= "Family", g = "Genus", s = "Species")
taxa sums(comp)
#complete otu mb
comp
#removing low quality taxa matches and normalize
mb all= subset taxa(comp, Kingdom!="None" & Kingdom!="NOHIT")
norm all = transform sample counts(mb all, function(x) x/sum(x))
taxa sums(mb all)
mb_all
#rarefy tables to same depth
even depth <- function(ss no, otu table){
 #set.seed(3336)
 rarefied <- rarefy even depth(otu table, sample.size = ss no)
 return(rarefied)
home= subset samples(mb all, Native=="yes")
away= subset samples(mb all, Native=="no")
set.seed(24)
```

```
home mb <- even depth(6500, home)
away mb <- even depth(6500, away)
tab home <- t(otu table(home mb))
tab away <- t(otu table(away mb))
tax <- read.table("../Desktop//Thesis files/tax tab.txt", head=T, sep="\t")
tax <- tax[c(2,1)]
mod stats home <-sncm.fit(spp=tab home, stats=TRUE)
mb table home <- sncm.fit(spp=tab home, stats=FALSE)
otu home <- cbind(row.names(mb table home), mb table home$freq)
mod stats away <-sncm.fit(spp=tab away, stats=TRUE)
mb table away <- sncm.fit(spp=tab away, stats=FALSE)
#otu away <- cbind(row.names(mb table away),mb table away$freq)
ggplot(mb table home, aes(log10(p), freq)) +
 geom point() +
 geom ribbon(data=mb table home,aes(ymin=pred.lwr,ymax=pred.upr),alpha=0.3)+
 geom line(data=mb table home,aes(y = freq.pred))+
 xlab("Average relative abundance (log10 scale)") + ylab("Frequency in all home
samples") +
 theme(axis.title = element text(size = 26),axis.text = element text(colour = "black"))
ggplot(mb table away, aes(log10(p), freq)) +
 geom point() +
 geom ribbon(data=mb table away,aes(ymin=pred.lwr,ymax=pred.upr),alpha=0.3)+
 geom line(data=mb table away,aes(y = freq.pred))+
 xlab("Average relative abundance (log10 scale)") + ylab("Frequency in all away
samples") +
 theme(axis.title = element_text(size = 26),axis.text = element_text(colour = "black"))
home lwr <- ifelse(mb table home$freg<mb table home$pred.lwr.
row.names(mb table home),0)
home upr <- ifelse(mb table home$freq>mb table home$pred.upr,
row.names(mb table home),0)
table(home lwr)
table(home upr)
as <- away upr %in% row.names(mb table away)
away u <- mb table away[as,]
away u$OTU.ID <- row.names(away u)
```

```
as <- away lwr %in% row.names(mb table away)
away I <- mb table away[as,]
away I$OTU.ID <- row.names(away I)
as <- home lwr %in% row.names(mb_table_home)
home I <- mb table home[as,]
home I$OTU.ID <- row.names(home I)
as <- home upr %in% row.names(mb table home)
home u <- mb table home[as,]
home u$OTU.ID <- row.names(home u)
au <- merge(away u, tax, by="OTU.ID")
al <- merge(away I, tax, by="OTU.ID")
hu <- merge(home u, tax, by="OTU.ID")
hl <- merge(home I, tax, by="OTU.ID")
away lwr <- ifelse(mb table away$freq<mb table away$pred.lwr,
row.names(mb table home),0)
away upr <- ifelse(mb table away$freq>mb table away$pred.upr,
row.names(mb table home),0)
table(away lwr)
table(away upr)
## fishers exact test for OTU presence between home and away samples
otu fish <- matrix(c(5,14,15,88,251,459),2,3)
fisher.test(otu fish)
otu test <- merge(otu home, otu away, by=1, all=T)
write.table(au, "away upr.txt")
write.table(al, "away_lwr.txt")
write.table(hu, "home_upr.txt")
write.table(hl, "home lwr.txt")
h ot <- read.table("../Desktop/Thesis files/home otus.txt", head=T)
a ot <- read.table("../Desktop/Thesis files/away otus.txt", head=T)
h <- merge(h ot, tax, by="OTU.ID")
a <- merge(a ot, tax, by="OTU.ID")
```

REFERENCES

REFERENCES

- 1. Ai, C., Liang, G., Sun, J., Wang, X., He, P., Zhou, W., & He, X. (2015). Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biology and Biochemistry, 80, 70–78. doi:10.1016/j.soilbio.2014.09.028
- 2. **Amann, R., & Fuchs, B. M. (2008).** Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Reviews. Microbiology, 6(5), 339–48. doi:10.1038/nrmicro1888
- 3. **Berg, G., & Smalla, K. (2009).** Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1–13. doi:10.1111/j.1574-6941.2009.00654.x
- 4. **Bever, J. D., Platt, T. G., & Morton, E. R. (2012).** Microbial population and community dynamics on plant roots and their feedbacks in plant communities. Annual Review of Microbiology, 66(131), 265–283. doi:10.1146/annurev-micro-092611-150107.Microbial
- 5. **Bever, J. D., Westover, K. M., & Antonovics, J. (1997).** Incorporating the Soil Community into Plant Population Dynamics: The Utility of the Feedback" British Ecological Society: http://www.jstor.org/sta, 85(5), 561–573.
- Bell G (2001). Neutral Macroecology. Science, 293(5539) 10.1126/science.293.5539.2413
- 7. **Brakhage, A. A., & Schroeckh, V. (2011).** Fungal secondary metabolites Strategies to activate silent gene clusters. Fungal Genetics and Biology, 48(1), 15–22. doi:10.1016/j.fgb.2010.04.004
- 8. Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K., & Vivanco, J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Applied and Environmental Microbiology, 74(3), 738–744. doi:10.1128/AEM.02188-07
- Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807–38. doi:10.1146/annurevarplant-050312-120106
- 10. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336.

- 11. Chaparro, J. M., Badri, D. V., Bakker, M. G., Sugiyama, A., Manter, D. K., & Vivanco, J. M. (2013). Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions. PLoS ONE, 8(2), 1–10. doi:10.1371/journal.pone.0055731
- 12. Chase J.M. and Leibold M.A. (2003). Linking Classical and Contemporary Approaches. University of Chicago Press: Chicago, IL, USA.
- 13. **Chesson, P. (2016).** Mechanisms of Maintenance of Species Diversity.31(2000), 343–358.
- 14. Checcucci, A., Azzarello, E, Bazzicalupo M., Galardini M., Lagomarsino A., Mancuso S., Marti L., Marzano M. C., Mocali S., Squartini A., Zanardo M., Mengoni A.(2016). Mixed Nodule Infection in Sinorhizobium meliloti–Medicago sativa symbiosis suggest the presence of cheating behavior. Frontiers in Plant Science. doi:10.3389/fpls.2016.00835
- 15. Cho, I., & Blaser, M. J. (2012). The human microbiome: at the interface of health and disease. Nature Reviews Genetics, 13(4), 260–270. doi:10.1038/nrg3182
- 16. Cipollini, D., Rigsby, C. M., & Barto, E. K. (2012). Microbes as Targets and Mediators of Allelopathy in Plants. Journal of Chemical Ecology, 38(6), 714–727. doi:10.1007/s10886-012-0133-7
- 17. Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP& Tringe S (2016). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist 209(2), 798-811. doi: 10.1111/nph.13697
- 18. **Cummings, S. (2009).** The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems. Environmental Biotechnology, 5(2), 43–50.
- 19. **Denison R.F., Kiers E.T. (2004).** "Lifestyle alternatives for rhizobia: mutualism, parasitism, and forgoing symbiosis." FEMS Microbiol. Lett. 237 187–193. 10.1016/j.femsle.2004.07.013
- 20. **Denison**, **R. F. (2000)**. Legume sanctions and the evolution of symbiotic cooperation by rhizobia. *American Naturalist* 156:567–576.
- 21. Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Franche, C., Narayanan, K. K., & Laplaze, L. (2013). Use of frankia and actinorhizal plants for degraded lands reclamation. BioMed Research International, 2013. doi:10.1155/2013/948258

- 22. Ding, J., Jiang, X., Ma, M., Zhou, B., Guan, D., Zhao, B., Li L., Cao F, Li, J. (2016). Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Applied Soil Ecology, 105, 187–195. doi:10.1016/j.apsoil.2016.04.010
- 23. Dohrmann, A. B., Küting, M., Jünemann, S., Jaenicke, S., Schlüter, A., & Tebbe, C. C. (2013). Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties. The ISME Journal, 7(1), 37–49. doi:10.1038/ismej.2012.77
- 24. Doty, S. L., Sher, A. W., Fleck, N. D., Khorasani, M., Bumgarner, R. E., Khan, Z., DeLuca, T. H. (2016). Variable Nitrogen Fixation in Wild Populus. Plos One, 11(5), e0155979. doi:10.1371/journal.pone.0155979
- 25. **Dybzinski**, **R.**, & **Tilman**, **D.** (2007). Resource use patterns predict long-term outcomes of plant competition for nutrients and light. The American Naturalist, 170(3), 305–318. doi:10.1086/519857
- 26. **Edgar, R. C. (2010).** Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461. doi:10.1093/bioinformatics/btq461
- 27. Elton, C. (1927). Animal Ecology. Sidgwick and Jackson, London, UK.
- 28. Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM, et al. (2010) Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl Environ Microbiol. 2010;76(14):4744–9. Epub 2010/05/25. AEM.03025-09 [pii] doi: 10.1128/AEM.03025-09.
- 29. **Fattah**, **Q. A.** (2005)"Plant resources for human development." Third international botanical conference.
- 30. Favier, C. F., Vaughan, E. E., De Vos, W. M., & Akkermans, A. D. L. (2002). Molecular monitoring of succession of bacterial communities in human neonates. Applied and Environmental Microbiology, 68(1), 219–226. doi:10.1128/AEM.68.1.219-226.2002
- 31. Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 626–631. doi:10.1073/pnas.0507535103
- 32. Finney, J. C., Pettay, D. T., Sampayo, E. M., Warner, M. E., Oxenford, H. A., & Lajeunesse, T. C. (2010). The relative of host-habitat, depth, significance and speciation and geography on the ecology, in the genus Symbiodinium of coral endosymbionts. Microbial Ecology, 60(1), 250–263. doi:10.1007/s00248-0
- 33. Fitzsimons, M. S., & Miller, R. M. (2010). The importance of soil

- microorganisms for maintaining diverse plant communities in tallgrass prairie. American Journal of Botany, 97(12), 1937–1943. doi:10.3732/ajb.0900237
- 34. Frey, S. D., Knorr, M., Parrent, J. L., & Simpson, R. T. (2004). Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 196(1), 159–171. doi:10.1016/j.foreco.2004.03.018
- 35. Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E (2011). Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst. 2011;42(1):23–46.
- 36. **Garbeva**, **P.**, **van Veen**, **J. A. a**, **& van Elsas**, **J. D. D. (2004)**. Microbial diversity in soil: Selection of Microbial Populations by Plant and Soil Type and Implications for Disease Suppressiveness. Annual Review of Phytopathology, 42(1), 243–270. doi:10.1146/annurev.phyto.42.012604.135455
- 37. **Gause, G. F. (1934).** Experimental Analysis of Vito Volterra's Mathematical Theory of the Struggle for Existence. Science (New York, N.Y.), 79(2036), 16–17. doi:10.1126/science.79.2036.16-a
- 38. **Hardin, G. (1960).** The competitive exclusion principle. Science. doi:10.1126/science.131.3409.1292
- 39. **Hardy, W. F., & Burns, R. C. (1968).** Biological nitrogen fixation. doi: 10.1146/annurev.pp.17.060166.001103
- 40. Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: A review. Annals of Microbiology, 60(4), 579–598. doi:10.1007/s13213-010-0117-1
- 41. **Heath, K. D., & Tiffin, P. (2007).** Context dependence in the coevolution of plant and rhizobial mutualists. Proceedings. Biological Sciences / The Royal Society, 274(1620), 1905–12. doi:10.1098/rspb.2007.0495
- 42. Hirsch, P. R., & Mauchline, T. H. (2012). Who's who in the plant root microbiome? Nature Biotechnology, 30(10), 961–962. doi:10.1038/nbt.2387
- 43. **Hoffmeister, D., & Keller, N. P. (2007).** Natural products of filamentous fungi: enzymes, genes, and their regulation. Natural Product Reports, 24(2), 393–416. doi:10.1039/b603084j
- 44. Inceoğlu, Ö., Al-Soud, W. A., Salles, J. F., Semenov, A. V., & van Elsas, J. D. (2011). Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE, 6(8). doi:10.1371/journal.pone.0023321

- **45. Karadeniz, A., Topcuoğlu, Ş. & İnan, S.(2006).** Auxin, Gibberellin, Cytokinin and Abscisic Acid Production in Some Bacteria. World J Microbiol Biotechnol 22: 1061. doi:10.1007/s11274-005-4561-1
- 46. **Kim, J., & Rees, D. C. (1994).** Nitrogenase and biological nitrogen fixation. Biochemistry, 33(2), 389–397. doi:10.1021/bi00168a001
- 47. Kim, J.-G., Park, B. K., Kim, S.-U., Choi, D., Nahm, B. H., Moon, J. S., Hwang, I. (2006). Bases of biocontrol: sequence predicts synthesis and mode of action of agrocin 84, the Trojan horse antibiotic that controls crown gall. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8846–8851. doi:10.1073/pnas.0602965103
- 48. **Klironomos**, **J. N. (2002).** Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417(6884), 67–70. doi:10.1038/417067a
- 49. **Koeppel A.F., Wu, M. (2016).** Species matter: the role of competition in the assembly of congeneric bacteria. ISME J., 8 (2014), pp. 531–540.
- 50. **Kucey**, **R. M. N. (1988)**. Alteration of Size of Wheat Root Systems and Nitrogen-Fixation by Associative Nitrogen-Fixing Bacteria Measured under Field Conditions. Canadian Journal of Microbiology, 34(6), 735–739.
- 51. Lagier, J. C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, Raoult, D. (2012). Microbial culturomics: Paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 18(12), 1185–1193. doi:10.1111/1469-0691.12023
- 52. Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40(9), 2407–2415. doi:10.1016/j.soilbio.2008.05.021
- 53. **Length, F. (2013).** Antimicrobial activity of soil actinomycetes Isolated from Alkharj, KSA. International Research Journal of Microbiology, 4(1), 12–20.
- 54. Lou, Y., Clay, S. A., Davis, A. S., Dille, A., Felix, J., Ramirez, A. H. M., Yannarell, A. C. (2014). An Affinity-Effect Relationship for Microbial Communities in Plant-Soil Feedback Loops. Microbial Ecology, 67(4), 866–876. doi:10.1007/s00248-013-0349-2
- 55. Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S., Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86–90. doi:10.1038/nature11237

- 56. Lynch, M. D. J., & Neufeld, J. D. (2015). Ecology and exploration of the rare biosphere. Nature Reviews. Microbiology, 13(4), 217–229. doi:10.1038/nrmicro3400
- 57. Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, P. A., Donia, M. S., Spormann, A., Sonnenburg, J. L. (2013). A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. The ISME Journal, 7(10), 1933–43. doi:10.1038/ismej.2013.89
- 58. Marilley, L., Vogt, G., Blanc, M., & Aragno, M. (1998). Bacterial diversity in the bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as revealed by PCR restriction analysis of 16S rDNA. Plant and Soil, 198(2), 219–224. doi:10.1023/A:1004309008799
- 59. **McMurdie, P. J., & Holmes, S. (2014).** Waste Not, Want Not: Why Rarefying Microbiome Data Is Inadmissible. PLoS Computational Biology, 10(4). doi:10.1371/journal.pcbi.1003531
- 60. Mitchell, S. D., Bernard, E., Longo, A., Garcia, A., Hutchinson, M., & Causey, R. (2016). The use of PLFA analysis to detect differences in microbial activity in compost from horses treated with and without antibiotics. Journal of Equine Veterinary Science, 39, S5. doi:10.1016/j.jevs.2016.02.010
- 61. **Moora, M., & Zobel, M. (1996).** Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia, 108(1), 79–84. doi:10.1007/bf00333217
- 62. Peiffer, J. A., Spor, A., Koren, O., Jin, Z., Green, S., & Dangl, J. L. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. doi:10.1073/pnas.1302837110/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1302837110
- 63. Pester, M., Bittner, N., Deevong, P., & Wagner, M. (2015). Europe PMC Funders Group Europe PMC Funders Author Manuscripts A " rare biosphere " microorganism contributes to sulfate reduction in a peatland, 4(12), 1591–1602. doi:10.1038/ismej.2010.75.A
- 64. **Preston, F. W. (1948)** The Commonness, And Rarity, of Species Ecological Society of America http://dx.doi.org.proxy1.cl.msu.edu/10.2307/1930989
- 65. Reinhold-Hurek, B., Bünger, W., Burbano, C. S., Sabale, M., & Hurek, T. (2015). Roots Shaping Their Microbiome: Global Hotspots for Microbial Activity. Annual Review of Phytopathology, 53(1), 403–424. doi:10.1146/annurev-phyto-082712-102342
- 66. Rettedal, E. A., Gumpert, H., & Sommer, M. O. A. (2014). Cultivation-based

- multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nature Communications, 5, 4714. doi:10.1038/ncomms5714
- 67. Rodrigo Mendes, Marco Kruijt, Irene de Bruijn, Ester Dekkers, Menno van der Voort, Johannes H. M. Schneider, Yvette M. Piceno, Todd Z. DeSantis, Gary L. Andersen, Peter A. H. M. Bakker, Jos M. Raaijmakers. (2011). Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science, 332(December 2011), 1097–1100. doi:10.1126/science.1203980
- 68. Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E., Previtali, F., Gerbino, R., Pierotti Cei, F., Borin, S., Sorlini, C., Zocchi, G. and Daffonchio, D. (2015). Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17(2), 316–331. doi:10.1111/1462-2920.12439
- 69. Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G., Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 4(10), 1340–1351. doi:10.1038/ismej.2010.58
- 70. Saikkonen, K., Faeth, S., Helander, M., & Sullivan, T. (1998). Fungal Endophytes: A Continuum of Interactions with Host Plants. Annual Review of Ecology and Systematics, 29, 319-343. Retrieved from http://www.jstor.org/stable/221711
- 71. **Schloss, P. D.**, *et al.* (2009). Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541. doi:10.1128/AEM.01541-09
- 72. **Seringe**, **N. C. (1825).** "Trifolium." de Candolle AP, Prodromus Systematis Naturalis Regni Vegetabilis
- 73. **Shendure, J., & Ji, H. (2008).** Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135–1145. doi:10.1038/nbt1486
- 74. **Society, T. A., & Press, C. (2016).** Homage to Santa Rosalia or Why Are There So Many Kinds of Animals? The American Naturalist, Vol. 93, No. 870 (May Jun., 1959), pp. 145-159.
- 75. **Sørensen J., Sessitsch A.(2006).** Plant-associated bacteria lifestyle and molecular interactions J.D. van Elsas (Ed.), *et al.*, Modern Soil Microbiology (2nd edn), CRC Press, pp. 211–236

- 76. Sprent, J. I. (2001). Nodulation in legumes. Kew, UK: Royal Botanic Gardens.
- 77. **Stachowicz J.J. (2001).** Mutualism, facilitation and structure of ecological communities. BioScience (2001) 51 (3): 235-246. doi: 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
- 78. **Steenhoudt, O., & Vandereyden, J. (2000).** Azospirillum, fee-living nitrogen fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, 24(4), 487–506. doi:10.1111/j.1574-6976.2000.tb00552.x
- 79. **Tilman D.(2016).** Constraints and Tradeoffs: Toward a Predictive Theory of Competition and Succession. (2016), 58(1), 3–15.
- 80. **Tilman, D. (1982).** Resource competition and community structure. Monographs in Population Biology, Princeton University Press, Princeton, New Jersey, USA
- 81. **Thompson J.N. (2005).** The Geographic Mosaic of Coevolution. University of Chicago Press: Chicago, IL, USA.
- 82. Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-liggett, C., Knight, R., & Gordon, J. I. (2007). The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature, 449(7164), 804–810. doi:10.1038/nature06244.The
- 83. **Turner**, **T. R.**, **James**, **E. K.**, **& Poole**, **P. S.** (2013). The plant microbiome. Genome Biology, 14(6), 209. doi:10.1186/gb-2013-14-6-209
- 84. Turner, T. R., Ramakrishnan, K., Walshaw, J., Heavens, D., Alston, M., Swarbreck, D., Poole, P. S. (2013). Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants, 7(12), 2248–2258. doi:10.1038/ismej.2013.119
- 85. **Union, A. O., & Auk, T. (2016).** The Niche-Relationships of the California. American Ornithologists 34(4), 427–433.
- 86. **Upadhyay, S. K., Singh, D. P., & Saikia, R. (2009**). Genetic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Rhizospheric Soil of Wheat under Saline Condition. Current Microbiology, 59(5), 489–496. doi:10.1007/s00284-009-9464-1
- 87. **Uroz, S., Buée, M., Murat, C., Frey-Klett, P., & Martin, F. (2010).**Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Microbiology Reports, 2(2), 281–288. doi:10.1111/j.1758-2229.2009.00117.x

- 88. Van der Putten, W. H., Klironomos, J. N., & Wardle, D. A. (2007). Microbial ecology of biological invasions. The ISME Journal, 1(1), 28–37. doi:10.1038/ismej.2007.9
- 89. Vance, C. P. (2016). Update on the State of Nitrogen and Phosphorus Nutrition Symbiotic Nitrogen Fixation and Phosphorus Acquisition. Plant Nutrition in a World of Declining Renewable Resources, 127(October), 390–397. doi:10.1104/pp.010331.390
- 90. Weinert, N., Piceno, Y., Ding, G. C., Meincke, R., Heuer, H., Berg, G., Smalla, K. (2011). PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: Many common and few cultivardependent taxa. FEMS Microbiology Ecology, 75(3), 497–506. doi:10.1111/j.1574-6941.2010.01025.x
- 91. White, D. C., et al (1997). "Chemical and molecular approaches for rapid assessment of the biological status of soils." Biological indicators of soil health. (1997): 371-396.
- 92. Wieland, G., Neumann, R., & Backhaus, H. (2001). Variation of Microbial Communities in Soil, Rhizosphere, and Rhizoplane in Response to Crop Species, Soil Type, and Crop Development Variation of Microbial Communities in Soil, Rhizosphere, and Rhizoplane in Response to Crop Species, Soil Type, an. Applied and Environmental Microbiolgy, 67(12), 5849–5854. doi:10.1128/AEM.67.12.5849
- 93. **Zelles, L. (1999).** Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils, 29(2), 111–129. doi:10.1007/s003740050533