
- fl

‘—1v—x‘
.‘~_,’-'

OVERDUE FINES:

25¢ per dew per in:

RETURNING LIBRARY MATERIALS:

Place in book return to renew

charge fro: circulation record:

THO EXTENSIONS TO THE ARCHITECTURE

OF THE CONTROL DATA CORPORATION 6000 SERIES

By

John Dykstra

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Department of Computer Science

1979

ABSTRACT

THO EXTENSIONS TO THE ARCHITECTURE

OF THE CONTROL DATA CORPORATION 6000 SERIES

By

John Dykstra

The computer architecture first developed for the

Control Data Corporation 6600 has not been modified in

subsequent members of the family. This thesis examines

two possible extensions to the 6000 architecture to

determine whether it is unusually resistant to

modification. One of the extensions considered provides

a virtual memory feature. The other supports operation

of the system in virtual machine mode. In addition, one

possible implementation of the virtual memory feature is

described at the register transfer level. No

significant problems are detected in the virtual memory

scheme, but the inclusion of peripheral processors in

the 6000 architecture makes the virtual machine

extension extremely awkward.

ACKNOWLEDGEMENTS

This thesis was prepared with the EASYDOC text

formatting program, written by David Roderick and

maintained by Douglas Nelson. Computer time for the use

of the program was supplied through the assistance of

Dr. Julian Kateley, Director of the MSU Computer

Laboratory.

Two people have contributed not only to the work

reported in this thesis, but also to the many other

‘important things in my life. Dr. Lewis Greenberg

changed the direction of my career with a job offer, and

since then has become a valued professional adviser and

personal friend. Pat Seger has helped in so many ways

to make each suceeding year of our friendship "better

and better." I offer to both of them my sincerest

thanks.

ii

TABLE OF CONTENTS

TABLE OF FIGURES

CHAPTER ONE: INTRODUCTION AND OBJECTIVES

CHAPTER THO: VIRTUAL MEMORY FEATURE

Benifits and Penalties

Basic Paging Operation

Page Tables

Page Size

Page Table Addressing

Fault Mechanism

Processor Usage

Inter-Address Space References

. Monitor-Mode Paging

2.10 ECS

2.11 Peripheral Processor Memory Accesses

2.12 Access Controls

‘
O
W
‘
J
O
U
‘
I
S
‘
W
N
-
b

N
N
N
N
N
N
N
N
N

CHAPTER THREE: VIRTUAL MEMORY IMPLEMENTATION

3.1 System Design

3.2 CPU Paging Mechanism

3.3 PP Paging Mechanism

CHAPTER FOUR: VIRTUAL MACHINE FEATURE

4.1 Benifits and Penalties

4.2 CPU Mode Extensions

4.3 CPU Memory Relocation and Protection

4.4 Virtual PP's

4.5 Virtual Operator's Console

4. Virtual Deadstart

CHAPTER FIVE: CONCLUSIONS

REFERENCES

iii

iv

Figure

Figure

Figure

Figure

Figure

Figure

TABLE OF FIGURES

The Hub Concept

Unmoddfied System

Modified System

CPU Paging Mechanism

PP Paging Mechanism

Mode Combinations

iv

26

52

54

56

61

67

EUAEIEB-Q!§

1518929QIIQ!-&Nfi-Q§1E£IIVES

Hhen the 6600 was introduced by Control Data Corporation

in 1964, it was by far the fastest computer available.

During the following decade-and-a-half, CDC has introduced

a number of successor systems in three different series,

all with the same basic architecture. During the same

period, the architectures of other major computer families

(DEC POP-11, IBM System 360/370) have undergone many

changes and extensions.

It is natural to ask why, through several changes in

implementation and realization, the architecture first

developed for the 6600 has remained essentially unchanged.

Several possible hypotheses can be advanced:

1. The original architecture was so good that there is

little that can be done to improve it;

2

2. The market served by this family is atypical in that

the users of the machine have not desired extensions;

3. There is a need and a desire for extensions, but the

architecture presents unusual obstacles to the

addition of these extensions;

4. The architecture is amenable to extension, but the

implementations and realizations used by CDC for the

family do not easily support these extensions;

5. CDC just hasn't had the corporate resources to design

a new CPU with extensions. This hypothesis is

supported by the length of time CDC stayed with the

cordwood CPU designs.

One of the objectives of this study was to test the

validity of hypothesis (3) by actually attempting (on

paper) to extend the architecture. The other objective

was to develop designs for two extensions which would

alleviate what the author considers to be serious

limitations of the present architecture.

The two extensions selected for detailed consideration are

provisions for "virtual memory” and "virtual machine"

Operation. The ways in which these extensions improve the

architecture under consideration are discussed in their

3

respective sections. They are appropriate for testing the

extensibility of the architecture because they affect many

areas of the architecture, including instruction set,

context switching and memory access.

CDC has marketed systems with this architecture under

three different names (6000-series, CYBER 70, CVBER 170),

and there is no commonly-accepted name for the family. In

this paper we shall call it the 6000 family, after the

first product line to incorporate the architecture.

Chapter Two of this thesis examines the changes neccessary

to add a virtual memory feature to the 6000 architecture,

and Chapter Three describes one possible implementation of

this extended architecture at the register-transfer level.

Chapter Four considers the virtual machine feature and its

impact on system architecture. Conclusions from this

study are presented in Chapter Five.

QEAEIEB-IHQ

[IEIQAL-!§!QBI-£§AIUBE

The term "virtual memory" has come to denote a memory

system which appears to the processors and I/O devices

connected to it to be much larger than it really is. The

"virtual” memory apparent to external devices is simulated

within the system by a smaller "real" memory through a

technique called "paging."

In the classic paging design, both virtual and real memory

are divided into blocks called "pages.” The real memory

of the system is used to hold various pages of the virtual

memory, without regard for the real addresses of the

pages. Virtual memory pages not currently resident in

primary memory are stored on random-access mass storage

devices.

'A part of the hardware called the "paging mechanism" maps

the virtual addresses generated by the processor onto the

pages of the real memory. If a virtual page referenced by

the processor is not currently present in primary memory,

the instruction in progress is interrupted, and a "page

fault" is generated. This page fault results in a call to

the Operating system, which reads the virtual page into

5

real memory from mass storage, and then restarts the

interrupted program. The instruction which caused the

page fault will complete normally, because its data is now

resident in primary memory.

2.1 BENEFITS AND PENALTIES

The possible benefits obtainable from adding a virtual

memory capability to the 6000 architecture include:

Permitting real memory in the system configuration to

exceed 262K. Probably the most serious drawback of

the current architecture is its limitation to this

quite small memory size. A virtual memory mechanism

is one, but not the only, way to evade this limit.

Permitting increased multiprogramming without

excessive main memory requirements or swapping

overhead. As memory sizes get larger, the proportion

of the data in memory that will be accessed before

the address space is swapped out gets smaller. This

useless swapping traffic ties up the swapping

device(s) and contributes to memory interference.

Capability of running all sizes of programs on any

machine that is available, or when large amounts of

7.

6

memory are defective or unavailable due to

maintenance.

Permitting sharing of data and program storage

between several jobs.

Possible support for a virtual machine capability

(see Chapter Four).

Capability of protecting memory and controlling its

usage at the page level.

Improved flexibility in re-configuring around failing

memory modules.

Possible sales advantage in matching features of

other manufacturer's machines.

Note that increasing the amount of real memory in a system

((1) above) will have no effect on the amount of memory

that can be accessed at any one time by a user job. This

is the processor address space, and is limited by the

width of the registers and instruction fields of the CPU.

Expanding this address space is a non-trivial task, and

outside the scape of this study.

Possible disadvantages of a virtual memory capability

include:

7

Slight increase in the memory access time due to the

paging hardware. At one time, any proposed increase

in access time would have been immediately rejected

on the grounds that the performance of "scientific"

computers is frequently limited by their memory

bandwidth, and that therefore every spare nanosecond

must be sqeezed out of the memory cycle time.

However, it is very possible that the benefits of a

virtual memory system would out-weigh the penalty of

additional memory access delays. A detailed

examination of the tradeoffs depends upon the details

of an actual implementation, and so will not be

attempted here.

Possible thrashing by programs that use a lot of

array space. There is an extensive literature on the

theoretical and empirical behavior of paging systems,

but only a few studies [for example, 1, pp. 405-415]

of systems whose memory references include extensive

accessing of array-structured data. It would seem

that some such programs could cause excessive paging

to occur. The studies mentioned above have

identified ways of reducing the severity of this

problem, but most of these techniques require

additional hardware. This topic strays from the

objectives of this thesis, and will not be considered

further.

S.

8

Paging is really advantagous only in a

multiprogramming system, where other useful work can

be done while a needed page is moved into real

memory. A sizable fraction of 6000 family

installations use their machines essentially

uniprogrammed, and many of the advantages given for

virtual memory would not apply to them. Notice,

however, that a uniprogrammed virtual memory system

would not show significantly poorer performance as

compared to a standard machine of the same real

memory size. This is because once all pages of the

program were in real memory they would stay there,

incurring no additional paging time. The only

performance penalty would be due to initial page

fetches, and the longer memory cycle time due to

paging.

Increased PP usage, central memory bandwidth

consumption and bank conflicts, due to the paging

traffic.

Increased hardware and operating system complexity

and cost.

In the 6000 architecture there are three sources of

references to central memory: the CPU, PP's, and ECS

control. (Although ECS control may be considered to be a

9

part of the CPU, its memory usage characteristics are

sufficiently different from those of the CPU for it to be

treated separately here.) The first sections of this

chapter will develop the design of the paging hardware

exclusively around CPU memory accesses. Later sections

will extend this design to handle memory references from

PP's and ECS.

5

2.2 BASIC PAGING OPERATION

The methodology used to develop the design will consist of

beginning with a conventional paging scheme, and modifying

it as needed to fit the unusual aspects of the 6000

architecture. The initial structure is similar to many

well-known commercial systems, and therefore will be

described only briefly.

The paging mechanism may be either enabled or disabled,

under the control of a (newly-allocated) bit in the

exchange package. when the mechanism is disabled, memory

references proceed exactly the way they do in the current

architecture. when it is enabled, all memory addresses

are interpreted according to a virtual address space

implemented by the paging mechanism.

10

To the program this address space appears contiguous, but

the hardware breaks it up into fixed-size blocks called

pages. Each page is either resident somewhere in real

central memory, resident on some random-access mass

storage device, or non-existent. In the later case, a

reference to it must be resolved by the operating system.

A memory reference to a page that is resident in main

memory is redirected to the proper real memory address by

the paging hardware. To locate the page in real memory it

uses a data base called the page table, which is kept in

real memory. (There is a one-to-one correspondence

between virtual address spaces and page tables.) The page

table also indicates which pages currently exist only on

secondary I/O devices. These are called "non-resident"

pages-

A reference to a non-resident page results in a “page

fault," which calls a portion of the operating system

called the "paging manager." This software moves the page

into real memory and restarts the interrupted program so

that the memory reference can be retried.

11

2.3 PAGE TABLES

A page table describes the mapping between virtual and

real pages for one virtual address space. Each entry in

the table corresponds to one page, and contains a flag

indicating whether the page is currently in real memory,

and if it is, a pointer to the first word of the page.

There may also be additional flags to record page usage

and limit the ways in which the page may be accessed. The

basic task of the paging hardware, given a virtual

address, is to select from the current page table the

entry for the page being referenced, and to generate the

real address of the referenced word from the pointer in

the entry and the original virtual address.

2.3.1 Organization

The first design decision to be made concerns how the page

table entries are to be organized, and by implication, how

the paging hardware will locate the proper page table

entry, given a virtual address. There are two common

schemes for page table organization, which here shall be

called "associative" and "indexed." Both begin by

partitioning the virtual address into two fields. One,

called the "page ID," specifies which page contains that

address. The other field, called the "word offset,"

specifies which word within that page should be

12

referenced. Typically, the low-order bits of the virtual

address are used as the word offset, so that a page will

contain a contiguous portion of the virtual memory.

In the associative paging scheme, each page table entry

contains its associated page ID. In most implementations

of this scheme, pages that are not in primary memory or

are non-existent have no entries in the page table, and

page table entries can be in any order. Given a virtual

address, the paging hardware generates the real address by

associatively searching the page table for an entry that

matches the page 10, and then adding the real address

contained in that entry to the word offset of the virtual

address. The virtual memory mechanism [2, pg. 4-46] of

the CDC STAR uses this scheme.

In the indexed scheme, the page table entries are arranged

in order of page 10's. The page ID field from the virtual

address is used as an index to select the proper entry.

From then on, the procedure is identical to that of the

associative scheme. There must be entries in the page

table for all pages, even those not in primary memory or

those that do not exist altogether (although if there is a

page table length register then there need not be entries

for non-existent pages at the high end of the address

space). Many commercial machines have used this scheme.

13

Perhaps the best known is the IBM System 370 [3, pp.

99-1301.

A paging mechanism must operate extremely quickly to avoid

degrading system performance, and several existing designs

incorporate features toward this end. For example, the

associative method as described above requires an

associative memory large enough to contain the entire page

table.‘ Unfortunately, memories this large are quite

expensive, and not exceedingly fast. Instead, the STAR

uses a linear search procedure to locate the proper page

table entry [2, P9. 4-53]. It compares the page ID field

from the virtual address with the contents of the

corresponding field from each page table entry in turn

until it finds a match or the end of the table is

encountered. If a match is found, that entry is moved to

the beginning of the page table, and the entries between

the first and the original position of the matching entry

are moved down one position. The entry is also used to

generate the real address for the reference. (To improve

efficiency, the STAR implementation keeps the tap 16 page

table entries in processor registers rather than memory.

This scheme essentially implements a cache whose

maintenance is automatically performed as part of the

overall paging mechanism.)

14

There is no clear-cut winner in comparisons between the

indexed and the associative schemes. The indexed approach

is fastest and easiest to implement, but it may require

large page tables, only a few of whose entries are

actually used. (This characteristic is not a serious

problem if the page tables themselves can be paged.) The

associative scheme is much more complicated to implement,

but will result in smaller page tables, especially if many

of the pages in the address space are non-existent or not

currently resident in real memory.

If a push-down algorithm like the STAR's is implemented,

it is simple for the operating system to identify the

least-recently-used page within that address space (not

across all system address spaces), simply by choosing the

last entry in the page table. This operation is necessary

when the paging manager must select a page to muve out to

secondary storage, and in the indexed scheme is usually

approximated through the use of page table entry flags.

There is, of course, a penalty for the convienience of the

push-down scheme, in the form of additional hardware

complexity. This algorithm might also very well be

inappropriate for implementations that provide an

associative cache for the page table.

As indicated above, the indexed method requires the least

amount of hardware, and its only disadvantages are larger

15

page tables, and the need for use-bits in the page table

entries for identification of seldom-used pages. These

disadvantages are less severe than those of the

associative method, which include additional hardware

complexity and unsuitability for some implementation

approaches. Therefore, the indexed scheme will be

selected for use in this design.

2.3.2 Page table entries

The most important component of each page table entry is,

of course, the real memory address of the page (assuming

that the page is currently resident in real memory).

Since one of the goals of this design effort is expanding

the allowable system configuration to include more than

262K of real memory, the page address field should be

wider than 18 bits. Two possible candidates for the size

are 24 bits (two PP bytes) and 30 bits (one-half of a

memory word). In the interests of maximum flexibility,

and since it is unlikely that PP's will do much

manipulation of page table entries, the later size will be

chosen.

As mentioned in the previous section, efficiency of the

paging mechanism is an important design goal. The paging

hardware would Operate much faster if the real address for

16

a memory reference could be formed by concatenating the

word offset from the virtual address with the page address

from the page table entry, rather than by doing an

addition. This is possible, of course, only if the

low-order bits of the page address corresponding to the

word offset are zero. If they are always to be zero,

there is no point in including them in the page table

entry. Thus, the 30 bit page address in the page table

entry will include only the high-order bits of the real

address of the page.

Each page table entry must also contain a flag which

indicates that the associated page is not currently in

real memory. This flag is called the fault flag. Note

that when this bit is set, the paging hardware will

immediately signal a page fault, and will not use the page

address field in any way. This field is therefore free

for the monitor software to use in any way that it sees

fit. One possible use is to contain the secondary memory

address of the page.

when the paging manager moves a page—out of real memory to

make room for another page, it is best to select a page

that will not be referenced again for some time in the

future. The best available approximation to this ideal is

selection of the least-recently-used (LRU) page.

Efficient implementation of this scheme requires the

17

paging hardware to maintain some information about page

references.

This information takes the form of use counts in each page

table entry. Every time a reference is made to a word

within a given page, the use count of the appropriate page

table entry is incremented by the paging hardware. If the

count was already as high as can be represented in the

count field, it is kept at that value, rather than

rolled-over to zero.

To approximate a LRU algorithm when selecting a page to

move out, the paging manager chooses the page whose use

count is lowest. It then resets all use counts in the

page table to zero, to prevent the counts from preserving

information about events in the distant past.

The correct size for the use count field in the page table

entries depends upon the page size selected for the design

and the page fault characteristics of the running system.

It seems sufficient at this time to allocate 12 bits for

the count, since this is far more space than will actually

be needed. Particular implementations can use only a part

of this field for the count, as long as the remainder is

kept zero.

18

As an additional aid to the paging manager, the hardware

should remember whether any word within a particular page

has been written into by the CPU. This function is

performed by the write flag, which is initialized as clear

when the page is first moved into real memory, and set by

the paging hardware if a write to that page takes place.

Hhen the paging manager selects this page to be moved out

it checks the state of the write flag. If the flag is

clear, and a copy of the page already exists in secondary

memory, there is no need to write out the page.

So far we have defined 44 bits within the page table

entry. ‘These fields all fit within a 60 bit memory word

with room left over, so the size of each page table entry

will be defined to be one memory word.

2.3.3 New CPU registers

Of course, the paging hardware must have some way of

finding the page table in memory. The obvious solution is

the addition to the CPU of a "page table pointer

register," which contains the address of the first word of

the page table. The paging hardware adds the page ID to

the contents of this register to find the address of the

proper page table entry.

19

CPU exchange jumps usually involve a change in address

space, so it is natural to include the page table pointer

register in the exchange package. Virtual memory makes

obsolete the function performed by the RA register, so its

space within the package can be reused for the pointer.

Most programs will use only a portion of the 262K word

virtual address space, and it is desirable to shorten the

page tables of these address spaces accordingly. A

straight-forward solution is to add a "page table length

register“ to the CPU. Each page ID is compared to the

contents of this register before the page table entry is

fetched. If the page ID is too large, a bounds error is

signaled and the reference abandoned. Thus, the page

table need have entries only up to the highest page in the

address space that will be referenced. The page table

length register is similar in purpose to, and can replace

in the exchange package, the FL register of the current

architecture.

2.4 PAGE SIZE

Page size is a design parameter that must be determined

through the resolution of performance tradeoffs. It is

usually chosen to be a power of two to facilitate the

partitioning of the virtual address, and the page size of

20

existing machines range from 64 words [4, pg. 150] to 65K

words (the larger of two possible page sizes in the CDC

STAR [2, pg. 4'463).

Expected addressing patterns are relevant to one

trade-off: If references are fairly sparse across the

address space within a moderate interval of time, a small

page size avoids the overhead (both in 110 traffic and in

real memory space) wasted by bringing in large pages, only

a few of whose words will be referenced before they are

moved out again.

Page size also affects the cost of the paging hardware.

For a given virtual address space size, a small page size

results in a large page ID field. It also reduces the

number of address bits that need not pass through the

paging mechanism, and are therefore immediately available

to the rest of the memory system. Use of these ”early"

bits can often improve the performance of an

implementation.

Quantitative analysis of these tradeoffs is beyond the

scape of this study. Therefore, a page size of 4096 words

will be chosen rather arbitrarily. This size does have

the advantage of corresponding to the 12-bit byte size of

the PP's, which might simplify some of the PP software.

21

2.5 PAGE TABLE ADDRESSING

Section 2.3.1 mentioned lengthy page tables as one

disadvantage of the indexed method, and proposed paging

the page table as a solution. However, the

moderately-large page size we have selected reduces the

significance of this problem. A 262K virtual field length

(the maximum allowed) will require only 64 page table

entries. Therefore, it is practical to keep the entire

page table in real memory.

Since page tables are so small, there is no need for the

page table length register described in Section 2.3.3. It

is quite practical for the system to use a fixed page

table size of 64 words for all address spaces, and simply

set the fault bit of all entries corresponding to

out-of-bounds entries. Eliminating the page table length

register also frees a 18 bit field in the exchange package

for other uses.

Section 2.3.3 described how the page table pointer

register is included in the exchange package, but left the

exact interpretation of the address contained in that

register unspecified. Since we have elected not to page

the page table, this address can simply be the real

address of the table. If the contents of this register

are to replace those of the FL register in the exchange

22

package, the register width will be limited to 18 bits.

Thus, all page tables would have to be located in the

first 262K of real memory.. There is space available in

the exchange package with which the register could be

widened somewhat, but to expand it to the 30 bit size of

the real address field in the page table entries would be

difficult. In any event, there is no real need to expand

this register beyond 18 bits, for it is unlikely that the

entire 262K space would ever be filled with page tables,

and with the virtual addressing scheme there is not much

else that must go there.

2.6 FAULT MECHANISM

Proper design of the interface between the paging hardware

and the monitor at page fault time is crucial to the

success of the project. It must be efficient, and it

should also promote good structuring of the monitor.

2.6.1 Exchange Address

In the current architecture, exchange jumps are already

used to signal other asynchronous events to the CPU, and

it seems natural to use this mechanism for page faults

too. The first question raised by this choice concerns

the exchange address; i.e., the location from which the

23

exchange package for the paging manager is loaded, and the

exchange package of the faulting program stored. This

location might be the same as used for other types of

exchange jumps (the Monitor Address), or could be separate

and reserved exclusively for page fault exchange jumps.

This question is closely related to decisions about the

structure of the monitor, because exchange packages are

equivalent to the entry and exit points of this software.

Having one exchange package implies that the monitor has a

single entry point, and appears (to user jobs, at least)

to be a single block of code. If there is a specialized

exchange package to be used after page faults, by

implication the system software is divided into two

parts--the paging manager and the remainder of the

monitor.

The two-exchange package scheme is initially attractive.

It isolates all of the support software for the virtual

memory feature (the paging manager) from the remainder of

the monitor. This would be especially useful if the

monitor itself was paged. In addition, page faults could

be processed quicker since the paging manager was entered

directly rather than through some intermediate code.

Despite these advantages, the single-exchange package

scheme will be chosen for this design. This choice is

24

based on an analysis of the best structure for the monitor

software.

2.6.2 The HUb

The code that makes up the CPU portion of the monitor can

be divided into several ”tasks." Each task is concerned

with a particular aspect of the monitor's Operation, and

typically maintains its own tables and local variables.

If this concept is expanded to include user job's as

tasks, all of the programs to which a CPU can be allocated

are tasks. The form of this allocation is either

subroutine-like, in which the task keeps the CPU until it

is completed, or coroutine-like, in which the task may

give up the CPU at various points in its execution, in

expectation of getting the CPU back at a later time.

The code that allocates the CPU's to various tasks has

several functions to perform besides the elementary one of

controiling the CPU's. First, this code implements the

various wait states that tasks may pass through as their

execution progresses, including waiting for a page fault

to be resolved. Secondly, since some monitor tasks may be

reentrant, the CPU allocation code must not create a new

incarnation of such a task if another incarnation of the

same task is waiting on a page fault. Thirdly, in a

ZS

multiple-CPU system the CPU allocation code is responsible

for implementing mutual exclusion between the various

CPU's through keeping the CPU away from a task until

another CPU is done with it.

Thus, the CPU allocation code controls the Operation of

the rest of the software, both user and system. It is

also one terminus for all transfers of control between the

various modules, as shown in Figure 1. This code will

therefore be called the "Hub."

Since the CPU allocation module implements software

interlocks, simulaneous execution of it by different CPU's

must be prevented. This can be achieved through use of

the monitor flag already included in the 6000

architecture. This hardware flag is cleared at deadstart

time, and toggled by each subsequent exchange jump. If

one CPU tries to do an exchange jump while another CPU's

monitor flag is set, the exchange jump is delayed until

the other's monitor flag is cleared.

If the monitor flag is set during execution of the CPU

allocation code, simultaneous execution by multiple CPU's

is prevented. Since the tasks called by the CPU

allocation code are protected through its software

interlock function, they can run with the monitor flag

P
a
g
i
n
g

O
t
h
e
r

H
a
n
a
n
:

M
o
n
i
t
o
r

1
.
3
3

T
a
s
k
s

l
/
o
R
e
q
u
e
s
t

T
a
s
k

T
h
o

l
l
u
h

m
Ju
l:

I
l
s
e
:

'
2

l
a
b
:

F
i
g
u
r
e

1
=
T
h
e

H
u
b
C
o
n
c
e
p
t

26

27

cleared. Thus, the amount of time that the Hub is

occupied by a CPU is minimized.

This results in the following structure: When a user job

is interrupted, the exchange jump begins execution of the

Hub, with the monitor flag set. The Hub then selects a

new task to execute, and calls that task with an exchange

jump, which clears the monitor flag. When the task is

completed, or is interrupted for any reason, the CPU

returns to the Hub, which selects a new task to run.

Thus, the Hub must be called by the page fault mechanism,

just as it is called after any event that causes a monitor

exchange jump. The Hub should have single entry point, so

page faults will use the same exchange package address as

other types of exchange jumps.

(Note: A variation of the Hub concept was independently

developed by Lawrence J. Kingsbury, et. al. [5, pg. 2].)

2.6.3 Provisions for Restart

Most processors that use paging execute their instruction

streams serially; i.e., each instruction's execution is

completed before the next's is begun. Memory reference

instructions also frequently include some sort of data

28

maniputation along with their memory reference function.

In such systems, an instruction that causes a page fault

must be interrupted, and restarted from its beginning when

the referenced page has been fetched from secondary

memory. This is easily accomplished in such systems by

setting the instruction pointer of the interrupted program

to point to the instruction that caused the page fault.

This method of restarting after a page fault is not

appropriate for the 6000 architecture, because this

architecture was designed from the beginning to support

parallel execution of instructions. By the time a page

fault is recognized, some implementations might have

already completed several of the instructions that follow

the memory reference in the instruction stream. If the P

register was reset after the page fault to point to the

faulting instruction, these instructions would be

re-executed, with disasterous results.

Fortunately, the parallel design of the processor implies

that only msm9£1-£sistsnsss, not insinustiens, need be

restarted. When a page fault occurs, the CPU can complete_

any non-memory reference instructions that it is currently

executing, and leave the P register in its exchange

package pointing to the next sequential instruction word.

In addition, the CPU must somehow identify in the exchange

package the memory reference that caused the page fault.

29

when this exchange package is reloaded into the CPU after

the page fault has been processed, that reference will be

restarted, and instruction execution resumed at the next

sequential instruction.

All that need be added to the exchange package to provide

this restart information is a "reissue” field of 7 bits,

each of which is associated with an AIX register pair.

(AD/x0 are not used for memory references, and therefore

need no flag bit.) A particular bit is set if a memory

reference from that register pair caused the page fault.

When the exchange package is reloaded into the CPU, the

memory reference is reissued, using the address and data

information still present in the A/x register pair.

There are several complications that force modifications

to this scheme. Most importantly, some parallel

implementations of the architecture may allow more than

one memory reference to be active at the time a page fault

is detected. Also, there may be more than one instruction

in a memory word. In the modified fault sequence, the CPU

finishes instructions that were in progress when the fault

was detected, but does not begin execution of any more. A

new two bit field in the exchange package is used to

indicate where (in the memory word pointed to by the P

register) execution should resume. The system then waits

for all outstanding memory references to be completed. If

30

any of these references cause additional page faults,

their reissue bits are set in the exchange package, along

with that of the reference that caused the original fault.

When there are no more active memory references, the page

fault exchange jump occurs.

when the exchange package is reloaded into the CPU, the

memory reference that caused the page fault will complete

normally, as will any other reissued references that

access the same page. If any of the reissued references

access another page, which is still not in primary memory,

another page fault will immediatly occur so that this page

can be fetched.

waiting for all memory references to complete before doing

the page fault exchange jump might be a serious waste of

time in some implementations. It can be avoided by

aborting all outstanding memory references when a page

fault is first discovered, and setting the reissue bits so

that they all are restarted when the exchange package is

ultimately reloaded into the CPU.

31

2.6.4 Supplying Fault Information

Once the page fault has occured, the paging manager must

be able to identify which page it should cOpy from

secondary storage into central memory. This information

could be presented in several different forms. The most

basic would be the virtual address that caused the fault.

Since the word offset is of no use to the paging manager,

this could be simplified to the page ID portion of the

address. The paging manager would add this to the address

of the page table (obtained from the user's exchange

package) to determine the address of the faulting page

table entry.

This, however, is exactly what has already been done by

the paging hardware, and if this address is provided to

the monitor by the hardware, the software can go directly

to the page table entry. This method will be chosen for

the design.

There are several possible methods for transmitting the

page table entry address to the paging manager software.

It could be placed in a particular CPU register when the

Hub's exchange package is loaded. This has the

disadvantage of possibly constraining the Hub software in

its use of registers. In addition, the Hub has no need

for the detailed information about the page fault: All it

32

needs to know is that a page fault has occured, so that it

can call the paging manager. If it must pass the detailed

information to the paging manager, the length of time the

monitor flag is set will increase. This could reduce the

performance of the system.

The alternative is providing a new CPU instruction, which

loads the address of the faulting page table entry into a

register specified by the instruction. Although this

method is slightly slower than automatically loading the

information into a register, it has none of that method's

disadvantages. If the instruction is executed when there

.is no page fault outstanding, the value loaded into the

register will be zero. Thus, the Hub can determine

whether a page fault has occured with a simple zero-test.

2.6.5 The CPU Error Sequence

The current architecture defines an error sequence that is

performed by the CPU when it detects an error in the

program it is executing (undefined operand, memory bounds

error, etc.). This sequence includes a write tp the first

word of the user address space to store information about

the error. This write presents a problem if the page

containing this word is not resident in real memory,

because there is no way to set the user's exchange package

33

so that the error will be repeated after the page fault is

serviced. It seems that the best way to handle this

problem is to require the monitor to keep in real memory

the first page of any user who is eligible for execution.

2.7 PROCESSOR USAGE

So far we have spoken of the paging manager as a part of

the monitor running in the CPU. However, the original

system concept for the 6000 family [6, pg. 4] put most of

the operating system functions into the PP's, and reserved

the CPU for user program execution. Since it is desirable

to minimize the amount of CPU time used in paging

overhead, and since page fault handling is mainly an I/O

operation anyway, it is reasonable to consider assigning

primary responsibility for servicing page faults to the

PP's.

The initial problem in implementing this scheme concerns

how to notify a PP that a page fault has occured. In the

current architecture there is no way to "interrupt“ a PP.

If such a mechanism was added, some method would have to

be developed for the hardware to determine which PP's were

busy with other tasks and which could be interrupted to

perform the paging. Complications such as this make this

approach unattractive.

34

The alternative is the method currently used by 6000

Operating systems to handle asynchronous external

events--dedicating a PP to watch for event to occur. The

falling cost of hardware probably makes this lavish use of

PP's acceptable.

Note, however, that not much is gained by handling page

faults in the PP's. If the page fault was caused by the

CPU (there will be other types of page faults-see

below--but the CPU is the most likely source), the CPU

might as well be exchange jumped by the fault signal,

since the job in execution will have to be blocked until

the paging I/O is completed anyway. Once the CPU is

exchange jumped into the monitor, it can probably notify

the paging service PP of the fault almost as quickly as a

direct hardware connection could. In addition, the CPU

could direct the paging request to whichever PP it chose.

In summary, there is no significant advantage to allowing

PP's to directly receive paging requests. Accordingly,

this design will direct the fault information to the CPU,

as described in the previous section.

35

2.8 INTER-ADDRESS SPACE REFERENCES

In the virtual memory system, pages belonging to user

address spaces are scattered over real memory, which may

exceed the 262K span that the CPU can reference using real

addresses, and some user pages may not be resident in real

memory at all. This presents a problem to the CPU and PP

portions of the monitor, who are often called upon to

reference various portions of a user address space in

performing monitor functions.

Although both the CPU and the PP portions of the monitor

need to reference user address spaces, there are

significant differences in the way that the two will

perform these references. The CPU portion of the

Operating system will be executing from its own address

space, and most of its data will be located there too.

The CPU's references to other address spaces will mostly

be limited to fetching and storing operands for system

action requests. On the other hand, the PP's execute out

of their own memories. They also reference system tables

in the monitor address space, but due to their function as

IID processors for the system, their references to user

memory frequently take the form of block transfers.

36

Due to these differences, this section will only consider

the CPU side of the problem. A later section will extend

the concepts developed herein to the PP's.

Hithout some assistance from the architecture, the CPU

monitor would face serious difficulties when it tried to

reference a user address space. Addresses given to the

monitor by the user or that the monitor maintains itself

would be in virtual form, and these would first have to be

translated to real addresses. As the program performed

the translation it wOuld have to ensure that the page was

currently in real memory, page it in if it was not, and

then lock it in primary memory to ensure that its real

address did not change. To perform the actual reference

the CPU would need several new instructions that would

accept real addresses larger than 18 bits. If the CPU

subsequently needed to reference additional words (perhaps

part of the same table), it would have to check to see if

these other words were in the same page, and repeat the

entire procedure if they were not.

If the monitor had to follow this procedure for every

reference to a user address space, the software would be

both complex and inefficient. The alternative is to use

the virtual memory mechanism for these references. This

requires some modifications to the Hub/paging manager

software discussed in Section 2.6.2, to process page

37

faults from monitor tasks. Once these modifications have

been made, entire monitor tasks, not just the user address

space references, can run in virtual memory mode, and this

will be assumed in the discussion that follows.

One possible scheme using the virtual memory mechanism

would consist of duplicating some of the user's page table

entries in the monitor's page table. Upon being given an

address in the user's address space, the monitor would

locate the corresponding entry in the user's page table,

and copy this entry into a pre-arrangefl location in the

monitor's page table. It would then be a simple matter

for the monitor to compute the address of the target word

in its own address space and perform the reference.

Such complications as non-resident pages would be

automatically handled by the usual virtual memory

mechanisms. If the monitor anticipated referencing more

than one word within the same area, it could simply copy

enough page table entries to assure that all references

would lie inside the block. It could then ignore the page

boundaries.

The above scheme would still require the CPU program to do

a significant amount of work to perform the cross-address

space access. This work could be entirely shifted to the

hardware through the implementation of a set of "alternate

38

address space” instructions. One of the operands of these

privileged instructions would be a pointer to the page

table of the address space the monitor wishes to access.

These instructions would execute similarly to the

increment instructions, but the value set into the A

register would be interpreted by the paging hardware using

the alternate page table. Both non-resident pages and

page boundaries would be handled automatically by the

paging hardware.

This is the scheme that shall be adapted for cross-address

space references. Further details of the alternate

address space instructions are simple to develop, and will

not be considered here.

2.9 MONITOR-MODE PAGING

The solution to the problem of inter-address space

references prOposed in the previous section requires that

the monitor tasks run with the virtual memory feature

enabled. However, it is not immediately obvious whether

this is practical, or what changes to the architecture

might be necessary to make it practical.

39

There are, of course, other advantages to using virtual

memory in the monitor besides facilitating inter-address

space references. Perhaps the most important benefit is

programming simplicity, since the monitor code can be

written with minimal concern for memory management or the

overlaying of program segments. An additional benefit is

a reduction in the amount of real memory consumed by the

monitor, since the size of the working set will almost

certainly be smaller than the storage required by an

equivalent non-paged monitor.

There will undoubtedly be some monitor tasks that cannot

run in virtual memory mode. Deadstart processing and

recovery from hardware failure are two of these. However,

the Multics operating system [7] has shown that an

Operating system can be written that normally uses only

virtual memory, so the number of these tasks should be

quite small.

One potential defect of a paged operating system is

inefficiency due to frequent waits for paging. The

harmful effects of paging can be minimized, however, by

keeping frequently used pages permanently resident in real

memory 0

Paging monitor tasks puts some new restraints on the

interface between these tasks and the Hub. These tasks

40

can now become unrunable for the duration of the paging

I/O, and it is up to the Hub to recognize this, and hold

subsequent calls to a blocked task until the first task

can be completed. Thus, no call to a task may assume that

the task will immediately be run.

If either the Hub or the paging manager caused a page

fault, there would be no way to process that fault without

falling into infinite recursion. Thus, both the paging

manager and the Hub, and all data referenced by these

modules, must kept resident in real memory at all times.

2.10 ECS

The CPU instruction that starts an ECS transfer uses two

addresses--one for central memory and one for extended

core storage. He shall leave the ECS addressing scheme as

it is, but must decide whether the CM addresses used in

ECS transfers will be real or virtual addresses when the

CPU is running in virtual mode.

Since ECS is controlled by CPU instructions, it seems most

consistent for it to use virtual addresses just as the

rest of the CPU instructions do. However, before we

accept this choice we must make sure that it does not

result in problems when ECS is used as a paging device.

41

It is true that when the page fault occurs there is no

page table entry pointing to the location to which the

page is to be read. However, such an entry must be

created by the paging manager anyway, to be inserted into

the page table of the faulting program. If the entry is

formed before the page is read in, it can be used for the

ECS transfer too.’ Thus, ECS can use the virtual memory

mechanism without problems.

Since ECS is so closely related to the CPU, it can share

the CPU's page table pointer register. ECS transfers

never overlap exchange jumps, so the addresses specified

by ECS instructions will always be interpreted according

to the proper address space.

The fault mechanism developed for the CPU can also be used

for ECS transfers. However, the current architecture

makes no provision for restarting an ECS transfer at the

point at which is was interrupted. Instead, after the

paging I/O is completed, the ECS transfer must start again

from its beginning. This situation results in two

problems. The first is that if a large transfer

encounters several page faults, it will have to be

restarted from the beginning several times, resulting in

much wasted memory traffic.

42

The second problem is a result of the first. There is the

possibility that the paging manager, in processing one

page fault, will remove a page from real memory that was

referenced earlier in the transfer. If the amount of real

memory available is smaller than the size of the transfer,

‘ the transfer can never complete without causing a page

fault, and therefore will lOOp forever.

A solution to the second problem is to prohibit ECS

transfers larger than the amount of real memory available

to the job. This may or may not be practical, depending

upon the design of the operating system. It also does

nothing about the waste of repeated transfers.

An alternative that solves both problems is to modify the

architecture so that interrupted ECS transfers can be

restarted from the place at which they were stopped. This

can be effected by adding a new field to the exchange

package to contain the number of words already transfered.

This field would have to be at least 18 bits wide to

accomodate the maximum word count that can be specified

for these instructions. Hhen the ECS transfer is

restarted, the contents of this field would be added to

the beginning central memory and ECS addresses to locate

the next word to be processed. These addresses would be

available in A0 and x0, and the final word count for the

43

transfer could be computed from the ECS transfer

instruction, pointed to by the P register.

This change in the architecture has benificial effects

aside from its connection with the virtual memory feature,

because other types of exchange jumps can now occur during

an ECS transfer. Thus, the responsiveness of the CPU part

of the system is improved, and possible wasted memory

traffic is eliminated.

2.11 PERIPHERAL PROCESSOR MEMORY ACCESSES

So far, it has been decided that both the CPU's and ECS

will use virtual addresses for normal memory accesses. It

is not immediately obvious whether the same policy should

be followed for the third source of memory accesses--the

peripheral processors.

The most compelling benefit of passing PP memory

references through the paging mechanism would be software

simplicity. The entire operating system could operate

with virtual addresses, and all real addresses would be

confined to the paging manager. The type of address

translation software described in Section 2.8 would be

unnecessary.

44

One of the tasks of the PP's is moving memory pages from

real memory to secondary memory and vice versa, and the

objection may be made that paging I/D cannot take place

using virtual addresses. This objection is similar to the

one made concerning ECS in the previous section, and as

described there, the virtual memory mechanism is no

obstacle.

On the whole, then, it appears advantagous for the PP's to

use the virtual memory mechanism. The next step is to see

whether any problems arise in adding this feature to the

architecture.

Each PP in the system can potentially be working with a

different address space (and thus a different page table)

at the same time. Thus, each PP must have its own page

table pointer register. Athough new PP instructions could

be defined to load and read this register, it is more

efficient to make use Of the large number of I/O channel

numbers that do not correspond to actual channels. Two of

these “pseudo-channels" (to accomodate the 18 bit page

table address-~see Section 2.5) could be used to both load

and read the page table pointer register with the existing

PP I/O instructions. To simplify the PP software, the

same channel numbers would be used by all PP's, but each

PP could reference only its own page table pointer

register.

45

As indicated in Section 2.9, there are undoubtely some

situations in which the monitor, including the PP's, must

run in real memory mode. Thus, there must be a hardware

flag to control which mode the PP's use for central memory

accesses. To provide maximum flexiblity, each PP can be

given its own flag, and this flag can be set and cleared

through the same pseudo-channels used to load the page

table pointer registers.

2.11.1 Page Fault Mechanism

It would be possible, of course, to establish the

convention that PP's could not reference pages that are

not in real memory, and thus could not cause page faults.

However, this would force the PP's to invoke the paging

manager by software to get the pages they needed to

reference. Thus, the paging manager would be invoked by

two very different paths to perform the same function.

This is bad software design, and should be avoided if

possible.

If PP's are to be allowed to cause page faults, it must be

decided how the hardware is to process these faults. One

approach would make each PP wholly responsible for

handling its own page faults. An error exit or indication

could be added to each instruction that accessed central

46

memory, which would be invoked if the referenced page was

not available. Unfortunately, it is quite difficult to

add error exits to the existing PP architecture, and any

such scheme would require major changes to existing

software.

Another alternative is to suspend any PP memory access

that referred to a non-resident page, and convey the fault

to another PP for processing. This scheme is essentially

the same as that discussed in Section 2.7, and the same

objections apply.

The third alternative seems to be by far the best. .It is

to handle page faults caused by PP memory accesses in

essentially the same way as page faults from the CPU or

ECS. Hhen a PP referenced a non-resident page, the

reference would be suspended, and the CPU exchange-jumped

to the paging manager, who would then fetch the page from

secondary memory in the usual way.

The only issue that remains to be decided concerns how a

PP.memory reference is to be suspended if it causes a page

fault. One alternative is retry the reference, perhaps

with a delay between tries, until the referenced page is

resident in real memory. Of course, the CPU would be

exchange-jumped only after the original try. This scheme

has the advantage of requiring minimal changes in the

47

architecture, but leads to two types of inefficiency. The

repeated tries are inefficient, because they increase the

workload of the paging hardware, and if there is a delay

inserted in the retry cycle, there will be wasted time

between when the page is made resident and the next retry.

The alternative requires the PP to wait for a signal from

the CPU before retrying the memory access. This signal

would be generated by a new instruction added to the CPU's

instruction set. Since more than one page fault could be

outstanding at any one time, this instruction would have

to specify which PP is to be restarted. This in turn

implies that the identity of the faulting PP is included

in the information passed to the CPU by the hardware when

the page fault occurs.

2.11.2 Alternate Address Space References

The PP's share with the CPU portion of the monitor a need

to reference two different address spaces--that of the

user, and that of the monitor. This requirement can be

satisfied with an adaptation of the alternate address

space instructions proposed for the CPU in Section 2.8.

Two new instructions must be added to the PP instruction

set to perform memory reads and writes to the alternate

address space. To permit block transfers, these

48

instructions operate similarly to the existing CRM and CUM

instructions rather than the CR0 and CH0 instructions.

Since the PP's only user-programmable register, the

accumulator, is already used by these instructions, the

page table of the alternate address space must be

specified by another page table pointer register, loaded

through I/D channels just as the primary one is.

2.12 ACCESS CONTROLS

A paging system provides the opportunity to control usage

of memory by the system on a page-by-page basis, through

access control flags in each page table entry. Access

modes that have been supported in commercial systems

include execute-only, data-only (no execute), and

read-only. In systems that share pages between address

spaces a write-only mode is also useful.

There are plenty of unused bits in the page table entries,

so it is simple to add access control flags to the

entries. The choice of CPU action after a violation of

the access controls, and how these controls should be

extended to ECS and the PP's, seems less clear.

Uhen the CPU violates the access controls, it could either

perform an error sequence similar to that executed after

49

mode errors, or it could cause a page fault exchange jump.

In either case, the hardware would have to provide some

way for the monitor to determine the cause of the error.

Since access violations would seem in most cases to be

valid errors rather than expected events, the error

sequence seems most appropriate. As part of the existing

error sequence the CPU stores information about the error

in memory, and there are sufficient unallocated bits in

this word to accomodate the additional error information.

Since ECS transfers are completely controlled by the CPU

program, it seems appropriate to apply access controls to

ECS also, and to follow the CPU error sequence if the

controts are violated. Access controls might pose a bit

of a problem to the paging manager if it used ECS for

swapping, since the manager should be able to read and

write user pages even if they are marked write-only or

execute only. However, the paging manager already has the

ability to modify the page table entries, and it can clear

these control bits before beginning the transfer. The

benefits of applying access controls consistently seems to

outweight this slight inconvienience.

It is significantly more difficult to apply access

controls to memory accesses from PP's, because these

processors do not have a hardware mechanism for aborting

50

their programs. Because of this difficulty, it appears

that PP's must excluded from memory access controls.

Execute-only mode usually implies read-only mode. In the

6000 architecture this results in difficulties for code

that includes subroutine entry points, because the RJ

subroutine call instruction stores its return pointer in

the first word of the called subroutine. However, it is a

simple matter to exempt this instruction from the

read-only restriction.

QUAEIER-IUBE§

IIBIUAL-EE!QBI-I!ELE!ENIAIIQN

A machine architecture is not of much value if it cannot

be implemented efficiently and economically. This chapter

will describe one possible implementation of the virtual

memory system described in Chapter Two. The description

will be at the register-transfer level, and will ignore

considerations related to technology and CPU design.

3.1 SYSTEM DESIGN

Figure 2 depicts the functional blocks of a

6000-architecture machine without the virtual memory

capability. All of these blocks have been mentioned

earlier except Central Memory Control, labeled as CMC in

the diagram. CHC accepts memory references from the CPU's

and PP's, and distributes them to the memory array.

The primary change which must be made in this system for

the virtual memory feature is the insertion of the paging

mechanism, which translates virtual addresses to real

addresses, somewhere in the path between each processor

and memory.

52

ECS

C MD PP's

Memory

Figure 2: Unmodified System

53

If the paging manager (which will be abrieviated PM) is

inserted between CMC and the memory, only one PM will be

needed for the entire system. This arrangement has two

primary difficulties. One is that all events in the

processors that might change their address spaces

(exchange jumps, loads of the PP page table pointer

registers, etc.) must be transmitted through CMC to the

PM. This increases the complexity of both the CMC and

connections to it. The second difficulty is that a

centralized PM will contain some components that must be

duplicated for each processor in the system. Since

different systems might be configured with different

numbers of processors, the PM would either have to be

customized for each system, or it would have to be

designed to accomodate the largest possible system.

Either alternative would increase the cost of the unit.

Instead, the arrangement (Figure 3) that will be

considered here provides a PM for each CPU, and another PM

that is shared by all PP's. Although it might be possible

to make all PM's in the system identical, we shall develop

different designs for the CPU and the PP PM's, to

correspond to the differing characteristics of the two

types of processors.

ECS

CPU CPU

PM PM

Memory PP's

Figure 3: Modified System

55

3.2 CPU PAGING MECHANISM

A register-transfer-level diagram of the PM to be

connected between CPU's and CMC is presented in Figure 4.

Connections to the CPU enter at the tap of the diagram,

and connections to CMC are at the bottom. Only the major

data paths are depicted; There are control signals that

connect all units within the diagram and the CPU and CMC.

The PM is organized around a high-speed memory of 65 words

by 60 bits, called the table memory. This memory is used

to contain a copy of the current page table, loaded at

exchange jump time. The 65 words of the table are

sufficient to contain the page table, plus one additional

word used for the alternate address space instructions

(see below).

3.2.1 Exchange Jump Sequence

when the CPU begins an exchange jump, the paging mechanism

must save the contents of the previous address space's

page table, contained in the table memory. Each word of

the table is sent to CMC with an address formed by adding

the page table address supplied by the CPU to the contents

of the counter. This counter is incremented for each

word. Since the real addresses accepted by the CMC are 42

CPll CPll CPll
Page Ta\l{le Adr. Address llata

Page ID E i [2 Vlord foset - x

“\ load Memory

«l

Table

Memory

(65 entries)

2 "so rum
COM" ”3'

L NRlTE>—v

Fault Detect Save Memory 4%

A
,1...

Access Control Page “m“ 39‘

ll

\\

24 w
Zeroes -

Page Table Entry Address ‘2

CTN]

Ila a

Fault Address

Figure l= CPll Paging Mechanism

57

bits wide (30 bit page pointer plus 12 bit word offset),

the output of the adder is concatenated with 24 zero bits.

After the old page table has been saved in memory, the CPU

examines the paging mode bit of the new exchange package.

If the bit is clear, the PM is disabled, and its part of

the exchange jump is finished. If the paging mode bit is

set, the PM reads the new page table into table memory.

The addresses send to CMC for each read are formed in the

way described in the last paragraph.

3.2.2 Normal Memory References

Normal memory references begin with the CPU supplying the

virtual address on the address bus, and if this is a write

operation, the data word on the data bus. The PM splits

the virtual address into its word offset and page ID

components, and the word offset is immediately sent to the

CMC. The page ID simultaneously goes to several

destinations.

The page ID is used to address one of the page table

entries contained in the table memory. The access control

bits from the entry are checked against the type of memory

reference in progress. Any access violation is signaled

to the CPU, and aborts the memory reference.

58

The fault bit from the page table entry is then checked.

If it is set, a page fault is signaled to the CPU. An

adder computes the address of the faulting page table

entry from the page ID and the contents of the page table

pointer register. This address is sent to the CPU over

the utility data path, and will ultimately be passed to

the paging manager software.

If none of these errors has been detected, the page

address field from the page table entry is sent to CMC.

This field, concatenated with the word offset, forms the

real address of the referenced memory word.

Two fields of the table memory word addressed by the page

ID are updated by every memory reference. The use count

is increased by one, assuming the maximum use count has

not already be reached. If the CPU memory reference was a

write, the write flag in the entry is set. If the CPU

memory reference was a read, the current value of the

write flag is retained.

3.2.3 Alternate Address Space References

The CPU alternate address space instructions do not use

the standard page table. Instead, during execution of

these instructions the CPU places on the utility data path

59

the address of the alternate page table, specified as an

operand of the instruction. Address and write data

information is transmitted from the CPU as for normal

memory references.

The word offset and write data from the CPU are

temporarily blocked from the CMC. Instead, a real address

formed by adding the page table address and the page 10 is

sent to the CMC with a read request. This fetches the

appropriate page table entry, which is returned on the

data bus. The PM stores this entry into the 65th word of

table memory. It then performs a normal memory reference

cycle, except that the page ID is ignored, and the 65th

table entry is always used.

Since the alternate address space instructions will

probably be used only by the monitor, it is not absolutely

necessary for the page table entry used by the alternate

address space instructions to be updated. If at a later

time it does become necessary, this update can be

performed through a simple extension of the above

mechanism.

60

3.3 PP PAGING MECHANISM

PP memory references will tend to be mOre localized within

an address space than CPU references. In addition, there

are far more PP's than CPU's in a system. For that

reason, a different paging mechanism (Figure 5) is used to

connect the PP's to CMC than is used by the CPU's.

The data received from the PP chassis for each memory

reference include the number of the PP originating the

reference, the contents of the page table pointer register

(normal or alternate) to be used, and the virtual address

and write data. The information sent to the CMC is

identical to that generated by the CPU PM; i.e., real

address and write data. There is also a path to carry the

addresses of faulting page table entries to the CPU.

The PM is organized around memories for the page table

pointers, page 10's and page table entries. These

memories contain one entry for each PP in the PP chassis,

and are addressed by the PP number. They are used to

remember the last page table entry used by each PP.

A memory reference begins by comparing the current page

table pointer and page ID aginst the contents of the

corresponding memory entries. If either does not match, a

new page table entry must be fetched. First, the entry

61

PP pp

Page T IrPe Adr. Number
Address Data

181 Y-—->(te all memones)
I Word '2 x

Ego Ill 9 Offset 4

load Memory

g

__Tl:_

Table Page

Pointer

Memory Memory

 l W
Save Memory ~

'3'" r m an .2:Detect age ress ‘ -

Page Table Entry Address

l
CPU

Fault Address

Figure 5: PP Paging Mechanism

62

currently contained in the memories is written back to

real memory, using an address formed by adding the current

contents of the page table pointer and the page ID

registers. The new values for page table pointer and page

ID are then written into their appropriate memory slots,

and a read request sent to CMC using an address formed

from the new contents of the two memories. The page table

entry returned by CMC is placed in the PM memory.

Uhether or not a new page table entry was fetched, the

next step in the memory reference is to examine the page

fault flag in the entry. If this bit is set, a page fault

signal is sent to the CPU, accompanied by the address of

the entry as computed by the adder. Otherwise, the real

address for the memory reference is formed by

concatenating the page address from the page table entry

with the word offset from the virtual address. This

address is sent with the write data to CMC to perform the

memory access.

SEAEIEB-EQUB

VIBIUAL-!A£EINE-EEAIUBE

A virtual machine system is one in which each user is

presented with an interface that in almost all aspects is

identical to that of a dedicated hardware system. The

resemblance between each user's virtual machine and a real

machine is close enough that the user can utilize a

standard operation system to control his virtual machine.

4.1 BENEFITS AND PENALTIES

Possible benefits of a virtual machine capability include:

1. Easing or eliminating the need for program conversion

between various Operating systems;

2. Atlowing system software to be develOped and tested

without tying up an entire machine;

3. Facilitating achievment of security and privacy goals

by providing a well-defined and easily-controllable

interface to user jobs. [8, pp. 270-278]

64

4. Matching features of other manufacturer's machines.

Some of the possible disadvantages of such an extension

include:

1. Additional hardware and software complexity.

(Software support for the I/O portion of a virtual

machine capability would be especially complex--see

below.)

2. Significantly increased system overhead;

3. Possible constraints on the characteristics of I/O

devices that could be attached to system (see section

on virtual I/O);

4. Difficulty in supporting the system console of

virtual machines.

Despite the similarity in names, it is not absolutely

necessary for a system with the virtual machine capability

described in this chapter to have the virtual memory

feature described in Chapter Two. However, as noted in

that chapter, a machine without the virtual memory feature

can have a maximum of 262K of memory. This limits both

the memory size that can be configured into a virtual

65

machine, and the number of virtual machine memories that

can be present in central memory at the same time. This

in turn impacts system peformance by reducing the level of

multiprogramming possible. In addition, a non-virtual

memory system requires that the memory of each virtual

machine be transfered in and out of central memory as a

whole. This is quite inefficient when only a small

portion of that memory may be accessed before the memory

is swapped out again.

Despite these considerations, the discussion that follows

will assume that neither the real machine or the virtual

machines to be simulated on it will have virtual memory.

This is done to avoid needless complexdty, and so that

both architectual extensions considered in this thesis

will begin from the same base machine. The modifications

needed for virtual memory are straight-forward.

The goal of virtual machine support features is to present

the full architecture to each virtual machine, while

protecting other virtual machines and the real machine's

monitor from all users. For the CPU, the extensions

consist primarily of memory relocation/protection and mode

extensions. The PP's require load/dump facilities,

virtual I/O support, and central memory

relocation/protection.

66

4.2 CPU MODE EXTENSIONS

Since it is intended to be capable of running standard

operating systems, the virtual CPU has both user and

monitor modes. There is also a mode under which the

software implementing the virtual machines can run, which

will be called "real monitor mode." To allow the hardware

to run unmodified operating systems in non-virtual mode,

there is also a mode, called "real user mode,“ which

operates identically to user mode in the current

architecture. (See Figure 6)

There are also two varieties of exchange jumps, differing

in purpose and in the contents of their exchange packages.

A virtual exchange jump moves the machine between virtual

user and virtual monitor modes. Since this exchange jump

implements part of the virtual machine architecture, its

exchange package is identical to that of the current

architecture. A real exchange jump moves the CPU between

virtual mode (either virtual user or virtual monitor) and

real monitor mode. Here the exchange package may be

extended to contain information relevant to the operation

of the virtual machine support features. An exchange jump

between real monitor and real user modes will be

considered to be a special case of the real exchange jump

in which the virtual machine information in the exchange

package defaults to zero.

67

Monitor llser

lleal Com atallle

Real MDlllIDT ser

Program Program

User‘s llser's

Virtual Monitor Problem

Program Program

Figure 6: Mode Comllinations

68

Relatively little state information need be added to the

CPU to implement this system of modes. Hithout

constraining actual implementations, a flip-flOp within

the CPU can be considered to indicate whether the

processor is in user or monitor mode (either virtual or

real). A virtual exchange jump complements the value of

this flag. Hhen a real exchange jump occurs, the old

value of the flag is stored as part of the exchange

package put into memory, and the flag is set according to

the contents of the new exchange package. This flag is

used to determine which form the CPU Central Exchange Jump

instruction takes.

There is also a "virtual" flip-flop which is set when the

CPU is in either virtual user or virtual monitor modes,

and cleared when the CPU is in either of the other two

modes. Its value is neither stored into nor set from an

exchange package, but is complemented by a real exchange

jump. This flag performs the CPU interlock function

assigned to the monitor mode flag in the current

architecture, i.e., only one CPU in a multiple-CPU

configuration can have its virtual mode flag cleared

simultaneously. The flag also controls Operation of the

memory relocation and protection circuitry.

69

4.3 CPU MEMORY RELOCATION AND PROTECTION

To allow efficient multi-programming of the real system,

it must be possible for more than one virtual machine's

memory to be present in real central memory at the same

time. In addition, the contents of each one of these

virtual memories must be protected from the actions of

other virtual machines. This implies that some sort of

additional relocation and protection mechanism must be

available to the real machine. The mechanism already

present in the architecture (implemented using the RA and

FL registers) cannot be used because it must remain

available for use by the virtual machines.

The most straight-forward solution to this problem

consists of adding another RA and another FL register to

the processor, and using these for all memory references

from a given virtual machine. These registers, which will

be referred to as the "super-RA" and “super-FL" registers,

are used as follows: If the machine is in real mode,

neither register is used. If the machine is in virtual

monitor mode, the contents of the super-FL register are

compared to each memory address. An out-of-bounds address

results in a real exchange jump. If the address is valid,

the contents of the super-RA register are added to the

memory address and the result is sent to real central

memory I

70

If the processor is in virtual user mode, the contents of

the FL register are compared to each memory address. If

the limit is exceeded, a virtual exchange jump results.

Otherwdse, the contents of the RA register are added to

the address, and the result compared to the contents of

the super-FL. Again, if this limit is exceeded, a real

exchange jump is generated. If the limit is not exceeded,

the contents of the super-FL register are added to the

result of the previous addition, and the final sum passed

on to real central memory as the reference address.

Since the contents of the super-FL and super-RA register ,

are associated with a given virtual machine, it is natural

to load and store them as part of the real exchange

package. There are two 18 bit fields available in the

exchange package for this purpose.

4.4 VIRTUAL PP'S

The 6000 architecture is rather unique in that a system

contains multiple processors of two quite different types.

This poses some difficult problems for the designer of a

virtual machine feature for this architecture. A similar

case is that of VM/370, whose channels can be considered

to be separate processors. Even though these processors

are quite limited in power, and execute out of the same

71 ,

memory as the CPU, their support in IBM's virtual machine

system requires a significant amount of software. For

example, virtual channel programs must be "translated"

before they can be executed by real channels. [3, pg.

124]

The goal of permitting all present 6000-family operating

systems to run without modification on a virtual machine

puts rather stringent restrictions on the implementation

of virtual PP's. The hardware cannot make any assumptions

about the contents or behavior of the PP software, for

example, nor significantly slow its execution.

The execution time requirement seems to rule out

interpretation of PP software by the CPU or another PP.

The only alternative remaining is direct execution of PP

software by real PP's, in a manner similar to that of

virtual CPU implementation. when a virtual machine is

scheduled for execution on the real machine, some of the

real PP's will be assigned to emulate the virtual

machine's PP's, just as the real CPU will be assigned to

emulate the virtual machine's CPU. Since one real PP is

needed to emulate each virtual PP, and the virtual machine

must have a full complement (10 or 20) of PP's, and since

the real machine must have some PP's left over for its own

use, the real machine must have a large number of PP's.

72

Many changes must be made to the PP architecture to

support virtual mode execution on PP's. First, the system

must have some way to load and store the contents of all

virtual PP memories, their A and P registers, and the

status of the channels, all without cOOperation from the

PP software. This mechanism will be used to swap a

virtual machine in and out of the real machine, and

simulate the deadstart sequence. The system must also

have some way to intercept transactions on the virtual I/D

channels and redirect and interpret them. Also needed is

relocation/protection hardware, similar to that used on

the CPU, to limit central memory references to this

virtual machine's central memory.

Each real PP must contain a virtual flag whose meaning is

similar to the CPU's virtual mode flag. Uhen set, this

flag indicates to the PP hardware that it should use the

hardware features added to support virtual operation.

4.4.1 Virtual PP Load/Dump Instructions

I

The dump and load operations are used to prepare the PP

portion of a virtual machine for execution on the real

machine, and to terminate that execution. The dump

operation stops execution of all PP's devoted to the

virtual machine (if they have not already been

73

stopped--see below), and saves the state of those PP's in

central memory. The load operation takes the information

saved by a dump and reloads it into real PP's. This

dump/load cycle must be invisible to the virtual PP

software.

The destination of the information from a PP dump could be

an I/O device or ECS. However, the most general design,

and also the one most consistent with the remainder of the

architecture, is for the transfer to reference a buffer in

central memory. From there the data can be moved to an

external I/O device if necessary.

An important question to be decided concerns how the dump

- operation is initiated. The CPU analog of the PP dump is

the exchange jump, since it too saves part of the state of

the virtual machine, and it therefore appears attractive

to link PP dumps with CPU exchange jumps. If a dump

operation was initated when a real exchange jump moved the

CPU from virtual to real mode, the entire processor state

of the virtual machine would be saved in a single

operation.

Unfortunately, many needless dump/load cycles would occur

if this approach was adopted. Many exchange jumps into

the real monitor would not result in a change in the

74

virtual machine, and would end with the same machine being

loaded and execution resumed.

These wasted dump/load cycles would harm system

performance in two ways. First, both the dump and the

load involve the transfer of a sizable amount of

information between the PP's and central memory, and thus

would reduce the memory bandwidth available to the rest of

the system. Secondly, while the dump operation could

presumably be overlapped in time with execution of the CPU

monitor program, it is doubtful that the load operation

could be. Thus, the duration of the load, which due to

the number of memory references required is not small,

would have to be added to the amount of time required for

a task switch. This would have a severe impact on the

efficiency of the system software.

The alternative of letting the CPU monitor invoke the dump

operation through execution of a new instruction seems to

avoid these difficulties. The major disadvantage of this

approach is that due to the delayed start of the dump

Operation (as compared with starting it with the monitor

exchange jump), the monitor may have to wait for the dump

to be completed before beginning the loading of a new

virtual machine. However, the duration of this delay

could probably be minimized through proper design of the

monitor program.

75

If a virtual machine's PP's are not automatically dumped

when a real CPU exchange jump occurs, that exchange jump

leaves the virtual system with its PP's still executing,

but its CPU effectively stalled. Most operating systems

that might be run on the virtual machine could tolerate

this state of affairs, but some, especially those that

assume that the CPU immediately responds to a PP-initiated

exchange jump, might fail. Since we cannot make any

assumptions about the software to be run on the virtual

machine, and since it is more consistent with the

architecture to do so, we will halt virtual PP execution

when a real exchange jump takes the CPU away from the

virtual machine, and resume PP execution when the CPU is

returned. This can easily be done by allowing virtual PP

execution only when the CPU's virtual mode flag is set.

Also to be decided is how the hardware locates the area in

memory to/from which the dump/load transfer is to be done.

Since the Operation is to be initiated by a CPU

instruction, it seems natural for that instruction to

specify the memory block as one of its Operands.

The format of the load/dump block is not a major concern.

The space occupied by one PP's record should probably be a

integer number of central memory words to simplify the job

of any program that must analyze these records. The data

to be included for each PP are the PP memory (4096 12-bit

76

bytes), the contents of the P register (12 bits) and the A

register (18 bits). For each virtual machine, the state

of the I/O channels (2 bits for active and full flags and

12 bits for contents per channel) and the contents of the

Status and Control Register must be saved.

4.4.2 Central Memory Relocation/Protection

The address space seen by the virtual PP should be the

same seen by the CPU in virtual mode. Therefore it is

natural to pass PP memory references through the

protection/relocation mechanism already used by the CPU.

Since virtual PP execution occurs only when the real CPU

is running in virtual mode, this presents no

implementation difficulties.

4.4.3 Virtual I/D

A virtual machine requires I/O devices for input, output

and mass storage. Since it is usually not practical to

dedicate an entire real I/O device to a single virtual

machine, these I/O devices must be virtual too. For

example, the real operating system might split a real disk

unit into many smaller virtual disks. Virtual unit-record

I/O might be spooled onto the real system's mass storage.

77

(Note that there are occasions on which a virtual machine

will operate dedicated real I/O devices. For example, a

virtuat machine might operate a graphic display unit or

line concentrator just as it would if it was‘executing in

real mode. Real devices dedicated to a virtual machine

must not share the I/O channel with devices used by other

virtual machines or the real monitor to avoid protection

problems.)

There are rather difficult problems to be overcome in

providing virtual I/O, because the PP software that will

be running on the virtual machine is rather intimately

involved in 110 operations. Transactions over the PP's

I/O channels are at a relatively low level, and the PP

software enforces strict timing constraints. To

”translate" these transactions into a form that can be

used by real I/O devices, the real system must intercept

the transactions sent over the virtual channels, piece

together the low-level transactions into higher-level

operations, and finally convert these operations into a

form that can be executed on the real machine. While the

real system is performing these operations, it must

simulate the timing that would be seen by the virtual PP

if a real device was actually doing the I/O.

There are several possible approaches to satisfying these

requirements. The one most similar to methods used by

78

other architectures is to intercept I/O transactions sent

over virtual channels, probably through a real PP external

to the virtual machine's PP set. (The "interception"

would resemble conventional inter-PP communication through

channels.) The I/O transactions are then redirected by

the "translator PP" to the real I/O device that is

simulating the virtual one.

4.4.3.1 Translator PP's

In considering the translator PP method, the first matter

to be decided concerns channel numbers. As noted above,

the easiest way for the translator PP to intercept the I/D

transactions of the virtual PP is for it to simply read

them off the channel. Unfortunately, the two PP's cannot

use the same number for this channel. The virtual PP's

will always do 110 on channels numbered in the low end of

the possible range, in order to be compatable with

existing software. For the same reason, real PP's will

have to use these channel numbers for real IIO to external

devices. Thus, the low-numbered virtual channels must be

mapped by the hardware to high numbers for the real PP's.

79

Only one addition must be made to the standard channel

design for this new usage. That is some way for the

translator PP to determine whether a full state on the

channel is due to a function or a data output. This could

be accomplished by using one of the unallocated PP

instruction opcodes for a conditional jump flag that tests

the function flag.

The dump operation discussed in Section 4.4.1 provides a

way for the state of the PP portion of the virtual machine

to be saved when the machine is removed from execution.

Similarly, some way must be found to save the I/O state

information maintained by the translator PP's. The most

obvious method is for the real operating system to send a

signal to the translator PP's (via one of the usual

software mechanisms) when the virtual machine is to be

suspended. The PP's would then write the information to

part of the central memory block reserved for the status

of this machine.

Unfortunately, this method is very inefficient. The

principal location of the inefficiencies is the translator

PP. The software in this processor would have to

constantly check for an idle-down request from the

Operating system. This checking would slow down the

time-critical code involved in simulating the virtual

devices.

80

In order to avoid having to check for idle-down between

every transaction with the virtual PP, the following

idle-down scheme must be used. Hhen the real operating

system wants to remove a virtual machine from execution,

it sets a flag notfying the translator PP's working on

that machine of the idle-down. As each translator reaches

a convenient stopping point, it checks this flag, writes

out the status of the virtual I/O devices it is handling

to the machine state block, and acknowledges the idle-down

request. The CPU and PP's of the virtual machine are not

stopped until the last translator PP has acknowledged the

idle-down. In this way, the virtual PP's can complete all

I/O operations in progress.

It would be attractive to do the saving of I/O status with

hardware. Unfortunately, it is quite difficult for

hardware to examine the memory of translator PP's and

separate virtual machine state information, which must be

saved and ultimately restored, from real machine state

information, which need not be saved, and must not be

restored.

Checking the idle-down flag will slow down the

time-dependent code in the translator PP. In addition,

this code has the usual interpretation characteristic of

requiring many instruction executions to simulate a single

virtual operation. In order to make such a system

81

practical, it seems obvious that the processors performing

as translator PP's must run at a much faster instruction

rate than the processors performing as virtual PP's. This

should be relatively easy to achieve, since the

instruction timings on which existing software is based

are the result of a long-outdated technology. The exact

execution time ratio between the virtual PP's and the

translator PP's is an implementation matter, but must

probably be at least 10:1.

4.4.3.2 Intelligent I/D Controllers

The falling cost of processing power has resulted in an

increasing level of intelligence being available to

peripheral controllers. This trend offers an attractive

alternative to the translator PP scheme presented above.

In this proposal, virtual PP's communicate directly with

actual IIO controllers, who take over the task of

translating the IIO requests into real IIO operations.

There is no need for support from real PP's during virtual

machine execution.

The channels of the real machine are divided into two

groups. The "fixed" channels are numbered and used

identically to the current 6000 architecture, and are

connected to all I/O devices. The "movable" channels are

82

used only for virtual IIO, and need only be connected to

the virtual PP's. Normally each movable channel is

connected only to one piece of equipment--one that has a

virtual IIO capability. The movable channels are so named

because, under control of the real operating system, they

can be mapped to any of the virtual channels. This

mapping is established when the configuration of the

virtual machine is first specified. More than one movable

channel may be mapped to the same virtual channel.

Hhen the virtual machine is readied for execution, the

real operating system loads the mapping between virtual

and movable channels into the hardware, and sends the

saved IIO state of the virtual machine to the controllers

over the fixed channels. As the virtual machine executes,

the controllers translate its virtual I/O requests into

real IIO operations: when the virtual machine is to be

removed from execution, an idle-down request is sent to

the controllers over the fixed channels. Hhen the

controllers finish the IIO operations in progress, they

send the updated I/O state of the virtual machine back

over the fixed channels, and prepare themselves for the

next virtual machine.

This scheme greatly improves the efficiency of virtual I/O

operations over the translator PP method. Unfortunately,

there is a significant hardware cost involved. First, of

83

course, there is the requirement for new device

controllers, each containing a rather high level of

processing power. In addition, there are many more

channels to connect the mainframe with these controllers,

and the mainframe must contain some sort of “switchboard"

to connect the movable channels to the virtual PP

channels.

A possible implementation of the real channels that would

minimize the impact of these requirements is based on a

fiber-optic communication path. This path would serve as

all of the fixed and movable channels through a

time-division-multiplexed scheme, and would be

daisy-chained to all of the IIO devices. The switcthard

mentioned above would be implemented by sending to each

controller the time-slot to which it should listen. Each

fixed channel and each virtual channel would be assigned a

fixed slot in which to broadcast and listen.

4.5 VIRTUAL DPERATOR'S CONSOLE

CDC machines are rather unique in the industry in having a

fully-interactive graphics terminal as their standard

console device, rather than a simple teletypewriter. This

presents problems when running virtual systems, each Of

84

which has its own virtual console, which must be

accessible to the user of the system.

If the user's console has graphics capabilities, then it ’

would probably be possible for the virtual system to

translate the output of the PP driving the virtUal console

(DSD) into a form that could instead drive the user's

terminal. Since this would be rather constraining, and

would require a high-bandwidth transmission path between

the system and each user, there would probably also have

to be software in the virtual system to allow any type of

terminal to examine simulated display screens and generate

type-in's. These requirements would add a significant

amount of overhead to the system. (Note that this

software would have to be responsive to the user even

while the virtual machine is swapped out.)

Another solution to this problem would require abandonment

of the customary Operation of a virtual system, in which

each user has his own virtual machine. Instead, there

would be only a few virtual machines running on the real

system, each supporting a number of users. Since there

are so few virtual machines, each could be assigned its

own real console, or a single console could be switched

among several machines. The primary advantages of a

virtual system (no need for operating system conversion,

and easy checkout of system software) would be retained.

85

4.6 VIRTUAL DEADSTART

Most of the implementation of deadstart on a virtual

machine is straight-forward. The primary question that

must be answered concerns how the virtual PP's are to be

put into their deadstart state. One alternative would be

to create a status block of a standard form which results

in the desired behavior, and then loading this block into

the PP's with the standard load operation. The

alternative is a hardware operation that sets the PP's

into the standard deadstart state, except that the

channels read by the PP's are virtual ones, not real ones.

The tradeoffs are fairly obvious. The first scheme takes

advantage of existing features of the architecture, but

requires extra central memory and CPU time for creation of

the state block. The second scheme requires a small

amount of additional hardware, but avoids the

disadvantages of the first. It would almost certainly be

faster, too.

These trade-offs are so closely matched that the choice

would have to be made on the basis of implementation

considerations. Perhaps the architectural features

implied by the second scheme could be made Optional, with

the real operating system adapting to the features of the

machine on which it is executing.

QUERIEB--£I¥§

QQNEEU§IQN§

The virtual memory and virtual machine designs presented

in the previous chapters were undertaken to evaluate the

flexibility of the 6000 architecture. The results were

mixed.

Design of the virtual memory feature was relatively

straight-forward. The only unusual aspects of the design

were the result of the parallel Operation of the CPU's,

and the presence of two different types of processors

(CPU's and PP's) referencing the same virtual memory.

However, neither of these unusual aspects made the

resulting design unworkable. The trial implementation

presented in Chapter Three confirmed this.

The design of the virtual machine feature was less

successful. The CPU portion of the 6000 architecture

adapted easily to the requirements of such a system, but

the PP's presented major problems. Most of these problems

arose from the simplicity of the I/O channels connected to

the PP's, and the resulting hardware dependence of the PP

software. Two approaches to the problem (translator PP's,

and the use of intelligent IIO controllers) were examined,

87

but both appeared to be unacceptably complex and

expensive. Due to these problems, a trial implementation

of the virtual machine feature was not attempted.

The use of programmable peripheral processors to control

IIO devices was an effective design choice in the early

1960's when the 6000 architecture was first developed.

However, the presence of these highly hardware-dependent

processors now poses the most serious obstacle to

expansion of the architecture to take advantage of

state-of-the-art technology.

E [
1
"

I
f
"

BENCEfi

Fischer, Patrick C., and Robert L. Probert. Storage

Reorganization Techniques for Matrix Computation in a

Paging Environment. Communications of the ACM, 22, 7

(JULY, 1979), ppm ‘05-‘15-

Control Data Corporation. antcgl-ggta-§IAR:1QQ

Camoutsc-§xstsm-flacdnace-8eteceuse-naoual-

Publication Number 60256000, Revision 5, 1973.

Parmelee, R. P., T. I. Peterson, C. C. Tillman, and

D. J. Hatfield. Virtual Storage and Virtual Machine

Concepts. IBM Systems Journal, 11, 2, pp. 99-130,

1972.

Digital Equipment Corporation. EDE:11L&§-E£9£:§§Q£

flandbssk- 1971-

Roderick, David K. CPUMTR. Michigan State

University Computer Laboratory 6000 SCOPE Memo 120,

1977.

Members of the Instructional Staff of the Control

Data Institute- 9999-§eciss-lotcoductieo-aod

Es:inbscal-£cessssens-Icaioios-nanual, Second

Edition, Publication Number 60250400, 1968.

Organick, Elliott Irving. 1hg_uultig§,§y§tem. MIT

Press, 1972.

Donovan, J. J. and S. E. Madnick. Virtual Machine

Advantages in Security, Integrity, and Decision

Support Systems. IBM Systems Journal, 15, 3, pp.

270-278, 1976.

89

HIGRN STRTE UINV.

IIIIIII IIIII3 III III IIIIIIIIIIIIIIIIIIII

