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ABSTRACT

ESTIMATION OF STATISTICAL NETWORK AND REGION-WISE
VARIABLE SELECTION

By

Sayan Chakraborty

Network models are widely used to represent relations between actors or nodes. Recent

studies of the network literature and graph model revealed various characteristics of the

actors and how they influenced the characteristics of neighboring actors.

The first methodology is motivated by formulating a large network through the Expo-

nential Random Graph Model and applying a Bayesian approach through the reference prior

technique to control the sensitivity of the inference and to get the maximum information

from the model. We consider a large Amazon product co-purchasing network (customers

who bought this item also bought other products), and the purpose is to show how the

blending of the Exponential Random Graph Model and Bayesian Computation efficiently

handles the estimation procedure and calculates the probability of certain graph structures.

The second methodology we discuss is an approach to a network problem where the

network adjacency structure remains unobserved, and instead we have a nodal variable that

inherits a hidden network structure. The key assumption in this method is that the nodes

are assumed to have a specific position in an Euclidean social space.

The main analysis is based on three big U.S. auto manufacturers and their suppliers, and

recent research has explored the differences of the financial markets and an emphasis has

been given to reveal the strategic interactions among companies and their industry rivals

and suppliers, all of which have important implications for some fundamental questions in

the financial economics. Economic shocks are transmitted through the customer supplier



network and the whole industry could be affected by these shocks as they can move through

the links of the actors in an industry. We developed an algorithm that captures the latent

linkages between firms based on sales and cost data that influence various financial decision-

making issues and financial strategies.

Finally, we extend the problem of network estimation to Bayesian variable selection

whereby an observed adjacency structure between different regions has been considered.

The main idea is to select relevant variables region-wise. We investigate this problem using

a Bayesian approach by introducing the Bayesian Group LASSO technique with a bi-level se-

lection that not only selects the relevant variable groups but also selects the relevant variables

within that group. We use spike and slab priors, along with the Conditional Autoregressive

structure among the model coefficients, which validates the spatial interaction among the

covariates. Median thresholding is used instead of posterior mean to have exact zeros for

the variables that are not relevant. We finally implement the problem in the auto industry

data and incorporate more variables to see whether the estimated adjacency structure helps

us to indicate the relevant variables over different manufacturers and suppliers.



ACKNOWLEDGMENTS

As a PhD student of the Department of Statistics and Probability at Michigan State Univer-

sity, I feel very fortunate in having the opportunity to work with some amazing professors

in the past few years. First, my advisor Professor Tapabrata Maiti, who has helped me a

lot, and without his endless support and encouragement in my research, it would have been

really tough to reach my research goals. I’m thankful to him that he had faith in me.

I’m also thankful to my research committee members, Professor Chae Young Lim, Pro-

fessor Srinivas Talluri and Professor Jongeun Choi who gave me an opportunity to work with

them and to prosper in my learning process, which also helped me a lot in looking towards

my research career. I also had opportunity to work with Prof. Arnab Bhattacharjee from

Hariot-Watt University and I’m thankful to him for his significant help in my research.

I’m also thankful to the Department of Statistics and Probability at Michigan State

University for providing me with funding support so that I could continue my research. I’m

thankful to the other professors in our department who contributed to my wonderful years

here through their courses and helpful discussion sessions.

I’m thankful to Dell Inc., and specifically to Dr. Thomas Hill, for providing me with a

Research Assistantship for spring, 2016, which made it easier for me focus on my research

as I was relieved from TA duties.

I also have to mention the help received from some of my friends who are also graduate

students in the department as I benefited from nice discussions and brain-storming. Person-

ally, I feel proud to be a part of such a prestigious department, and I’m thankful to everyone

in the department for supporting me in reaching my objectives.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Exponential Random Graph Model . . . . . . . . . . . . . . . . . . . 3
1.1.2 Bayesian ERGM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Latent Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Bayesian Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Reference Prior Development in Exponential Random Graph
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Main Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Reference Prior for One Parameter Erdos-Reyni Model . . . . . . . . . . . . 16

2.2.1 ’Sampson’s Monk Data’ Implementation . . . . . . . . . . . . . . . . 19
2.3 Reference Prior for Two Parameter Dyadic independent network Model . . . 22

2.3.1 Methodology for Derivation . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Simulation Study for Dyadic Independent Model . . . . . . . . . . . . . . . . 28

2.4.1 Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Big Data Application of ERGM through Reference Prior . . . 37
3.1 Big Data Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Data and Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4 Latent Space Network for three US Auto Manufacturing Giant 45
4.1 Main Idea and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Error Correction Model . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Latent Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Some Posterior Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 (s+ 1)th Gibbs Step for updating (α1, β1, γ1): . . . . . . . . . . . . . 60
4.5.2 (s+ 1)th Gibbs Step for updating (α2, β2, γ2): . . . . . . . . . . . . . 61
4.5.3 (s+ 1)th Gibbs Step for updating σ2

z1
: . . . . . . . . . . . . . . . . . 62

v



4.5.4 (s+ 1)th Gibbs Step for updating σ2
z2

: . . . . . . . . . . . . . . . . . 62

4.5.5 (s+ 1)th Gibbs Step for updating Z1, Z2: . . . . . . . . . . . . . . . 63

Chapter 5 Region Wise Variable Selection with Bayesian Group LASSO 65
5.1 Region-wise Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Region-wise Variable Selection with Bayesian

Group LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.1 Spike and Slab Prior for Model Coefficients . . . . . . . . . . . . . . . 71

5.3 Hellinger Consistency for the Posterior Distribution of βββ 73
5.4 Posterior Distributions and Gibbs Sampling for

Group LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Variable Selection for Temporal Data . . . . . . . . . . . . . . . . . . . . . . 81
5.5.1 Posterior Distribution of φi . . . . . . . . . . . . . . . . . . . . . . . 82
5.5.2 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.1 A Sample Simulation with Prefixed β . . . . . . . . . . . . . . . . . . 83
5.6.2 Scenario 1: N = 7, p = 5 and T = 10 . . . . . . . . . . . . . . . . . . 85
5.6.3 Scenario 2: N = 14, p = 15 and T = 50 . . . . . . . . . . . . . . . . . 86

5.7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.9 Proof of the Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.9.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.9.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.10 Some Posterior Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.10.1 Posterior Calculation for b˜g . . . . . . . . . . . . . . . . . . . . . . . 95
5.10.2 Posterior Calculation for τgj . . . . . . . . . . . . . . . . . . . . . . . 97

5.10.3 Posterior Calculation for s2 . . . . . . . . . . . . . . . . . . . . . . . 98
5.11 Some Details for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 98

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vi



LIST OF TABLES

Table 2.1: Table for Posterior Mean and Standard Deviation . . . . . . . . . . 35

Table 3.1: Table for Posterior Mean and SD for Amazon Data . . . . . . . . . 41

Table 5.1: RMSE, TPR and FPR comparison for BGL-SS, Ising and BGL-SS-
CAR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 5.2: BGL-SS and BGL-SS-CAR estimates for prefixed β’s . . . . . . . . 84

Table 5.3: Table for RMSE and True / False Positive Rates . . . . . . . . . . . 87

Table 5.4: Coefficient estimates through BGL-SS-CAR for Auto Industry Data 89

Table 5.5: Company names with corresponding ticker . . . . . . . . . . . . . . 99

Table 5.6: Covariate List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Table 5.7: Response Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



LIST OF FIGURES

Figure 2.1: Reference Prior for θ in 1-Parameter (Erdos-Reyni) network Model . 19

Figure 2.2: Posterior density of η for monk dataset with respect to Uniform prior,
Reference prior and normal prior with σ = 0.01 . . . . . . . . . . . . 20

Figure 2.3: Posterior density of η for monk dataset with respect to Uniform prior,
Reference prior and normal prior with σ = 0.1 . . . . . . . . . . . . 21

Figure 2.4: Posterior density of η for monk dataset with respect to Uniform prior,
Reference prior and normal prior with σ = 1 . . . . . . . . . . . . . 21

Figure 2.5: Posterior density of η for monk dataset with respect to Uniform prior,
Reference prior and normal prior with σ = 100 . . . . . . . . . . . . 21

Figure 2.6: Reference Prior Heatmap for a Two-Parameter Dyadic Independent
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.7: Scenario 1: MCMC iterations for θ1 and θ2 with uniform prior . . . 29

Figure 2.8: Scenario 1: Histogram for posterior distribution of θ1 & θ2 with un-
oiform prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.9: Scenario 1: Auto-correlation plot for the MCMC iteration of θ1 & θ2
with uniform prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.10: Scenario 1: MCMC iterations for θ1 and θ2 with Reference prior . . 31

Figure 2.11: Scenario 1: Histogram for posterior distribution of θ1 & θ2 with ref-
erence prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.12: Scenario 1: Auto-correlation plot for the MCMC iteration of θ1 & θ2
with reference prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 2.13: Scenario 2: Histogram for posterior distribution of θ1 & θ2 with un-
oiform prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.14: Scenario 2: Auto-correlation plot for the MCMC iteration of θ1 & θ2
with uniform prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

viii



Figure 2.15: Scenario 2: Histogram for posterior distribution of θ1 & θ2 with ref-
erence prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.16: Scenario 2: Auto-correlation plot for the MCMC iteration of θ1 & θ2
with reference prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.1: Adjacency plot for first 20,000 nodes for the observed Amazon Co-
Purchasing network . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.2: Density Plot for Dyadic independent Network Model parameters to
estimate the Amazon Co-purchasing Network through Reference Prior 41

Figure 4.1: Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.2: Probability of linkages for Chrysler, Ford, and GM with their Suppliers 57

Figure 4.3: Position of the 24 companies in the latent space . . . . . . . . . . . 58

Figure 5.1: Gibbs iterations of β’s for the first scenario under BGL-SS-CAR when
σ = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.2: Posterior Distribution of σ2 for the first scenario underBGL-SS-CAR
when the true σ2 is 0.25 . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 5.3: Posterior Distribution of σ2 for the second scenario underBGL-SS-
CAR when the true σ2 is 0.25 . . . . . . . . . . . . . . . . . . . . . 86

Figure 5.4: Posterior Distribution of σ2 for the Data . . . . . . . . . . . . . . . 90

ix



Chapter 1

Introduction
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1.1 Social Networks

Social nertwork modeling has become increasingly popular in past few years due it’s ability

to find causal links between nodes and for explaining those links in probabilistic terms. It

is very important to model irregular social behavior that lies beyond the regular variability

and brings stochasticity in the model. Moreover in a complex social environment, it is very

important to not only have a probabilistic explanation of the edges but also to explain some

specific structure to explore some interesting social interactions.

A statistical network is a representation of relational data in the form of a mathematical

graph where each node represents an individual and a relation between a pair of nodes is

represented by an edge between those two nodes. Network data typically consist of a set of

N nodes and a relational tie yij measured on each ordered pair of nodes. This framework

has many applications in social network literature. The simplest situation is when yij is a

dichotomous variable that indicates the presense or absense of some relation of interest. The

data are often represented by an N × N socio matrix or the adjacency matrix Y. Various

probabilistic models of network relations have been developed within past few years.

A statistical network is a graph consists of a set of N nodes (or Vertices)= {n1, n2,-

..., nN}. and a set of L edges (or connections) = {l1, l2, ..., lL} that denotes the links between

nodes. An Adjacency or Sociomatrix Y of dimension N × N can be used to represent the

network by,

yij =



1 if edge exists from node ni to

node nj ,

0 Otherwise.

(1.1)
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Holland and Leinhardt (1981) includes the parameters for the propensity of ties to be

reciprocal, as well as parameters for the number of ties and individual tendencies to give or

receive ties. Although this model assumes the
(n

2

)
dyads to be independent and known as

p1 model. Frank and Strauss (1986), Pattison and Wasserman (1999) and Wasserman and

Pattison (1996) have generalized the idea of p1 model to p∗ model through dyad dependency

assumption.

Wang and Wong (1987) developed a stochastic block model where nodes (firms) belong

to some prespecified groups. Nowicki and Snijders (2001) present a model where group

membership is unobserved and the dyads in a social network are conditionally independent

given the latent class membership of each actor. In the spatial context, Castro et al. (2015)

developed a model where latent group membership is inferred using spatial clustering with

an unknown number of clusters. Likewise, in the classical spatial econometrics literature,

Bhattacharjee and Holly (2013) develop GMM methods to infer on a latent network of

members in a committee; for related classical inferences on latent spatial networks, see also

Bhattacharjee and Jensen-Butler (2013), Bailey et al. (2015) and Bhattacharjee et al. (2015).

1.1.1 Exponential Random Graph Model

Frank and Strauss (1986) characterized the exponential random graph model (ERGM) that

allows an estimation of various graphical structures through an assumption of dyad depen-

dence. The typical form of exponential random graph model (ERGM) is given by,

Pθ(Y = y) =
eθ
tS(y)

c(θ)
(1.2)
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where, S(y) is a known vector of graph configuration, θ is the parameter corresponding to

the configuration S(y), c(θ) is the normalizing constant.

ERGM is very important in the sense that it goes beyond the idea of discovering the

link probability between a pair of nodes by considering some graphical characteristic among

a set of nodes. That is, S(y) can represent different network configurations, if we observe

{y34, y43} and {y12, y21}, as means we can expect to have some reciprocating characteristic

between the nodes, which means if node i is linked with node j, then we can expect j will

also be linked with i. A typical example of such links can be a friendship network. But this

configuration might not be true in all instances. For example, we can think an electricity

power supply network that is unusual to be reciprocated. The corresponding parameter θ

estimates the frequency of appearance of the specific configuration present in the network.

The main issue that the Maximum Likelihood Estimation of the ERGM model faces is

to calculate c(θ). Suppose G denotes all possible graphs of Y. Hence, c(θ) =
∑
G

eθ
tS(y).

Now G consists of 2(n2) possible undirected graphs and it is extremely difficult to evaluate

the normalizing constant even for moderately small graphs.

To deal with the complex issues of computation intensity with ERGM for even moderate

sized network, Besag (2000), Handcock (2000), Snijders (2002) have developed a likelihood-

based inference based on MCMC algorithms. Although, Monte Carlo maximum likelihood

estimation suffers from the problem of model degeneracy as we get a very poor estimate of

the normlizing constant if the initiatial value of θ lies in the degenerate region. Approxi-

mate maximum likelihood approaches have been developed by Frank and Strauss (1986). A

pseudolikehood approach is proposed by Strauss and Ikeda (1990) and Wassarman and Pat-

terson (1996). But the statistical properties of pseudolikelihood estimators in this context

have been criticized by Besag (2000) and Snijders (2002). Recent development on ERGM

4



has led to new specification that have been discussed by Hunter and Handcock (2006), called

the curved ERGM.

1.1.2 Bayesian ERGM

A Bayesian extention to the Exponential Random Graph Model has been discussed in Caimo

and Friel (2011) where they have considered π(θ | y) = Pθ(y)π(θ), where a prior distribution

π(θ) is placed on θ and interest is in the posterior π(θ | y). Such a Bayesian treatment

easily solves the problem of evaluating the value of normalizing constant in the likelihood

estimation case. A Bayesian treatment aslo solves the problem of model degeneracy for

MCMC maximum likelood technique. Although, the posterior of this Bayesian problem

becomes “doubly intractable” due to the intractibility of sampling directly from the posterior

distribution but also due to the intractibility of the likelihood within the posterior. A simple

implementation of Metropolis-Hastings algorithm proposing to move from θ to θ∗ would

require the calculation of the ratio,

eθ
∗′S(y)π(θ∗)

eθ
′
S(y)π(θ)

× c(θ)

c(θ∗)

which is unworkable due to the normalizing constant c(θ) and c(θ∗).

To handle the “doubly intractable” posterior, Murray et al. (2006) and Caimo and Friel

(2011) proposed an exchange algorithm with samples from an augmented distribution.

π(θ∗, y∗, θ | y) ∝ Pθ(y)π(θ)h(θ∗ | θ)Pθ∗(y
∗) (1.3)

where Pθ∗(y∗) is the same distribution as the original distribution on which the data y is

5



defined. h(θ∗ | θ) is the proposal distribution. Clearly marginal distribution of θ is the

posterior distribution of interest.

The steps for exchange algorithm are as follows:

1. Draw θ∗ ∼ h(∗ | θ)

2. Draw y∗ ∼ Pθ∗(∗)

3. Propose the exchange move from θ to θ∗ with probability

α = min

(
1,
eθ
′
S(y∗)π(θ∗)h(θ | θ∗)eθ∗

′
S(y)

eθ
′
S(y)π(θ)h(θ∗ | θ)eθ∗

′
S(y∗)

)

1.1.3 Latent Space Model

In a highly influential paper, Hoff et al. (2002) developed a latent variable model where node

is assigned with a latent position zi in the social space. The idea is that the probability of

a relational tie between two individuals (or nodes) are higher if these individuals are similar

in the unobserved characteristic space. In this context the social space refers to a space of

unobserved latent characteristics that represent potential transitive tendencies in network

relations. The resulting networks are probabilistically transitive since i → j and j → k

suggests i and k are probably not far apart in the social space. Most recently, handcock and

Raftery (2007) developed a model based clustering of social networks where they modeled

the latent positions as a mixtures of multivariate normals.

The latent space model takes a conditional independence approach to modeling by as-

suming the presence or absence of a tie between two nodes that independent of all other ties,

6



given the unobserved positions in the latent space of the two nodes.

P(Y | Z,X, θ) =
∏
i,j

P(yi,j | zi, zj , xi,j , θ)

Here X and xi,j are observed characteristic that are dyad specific and may be vector

valued and θ and Z are respectively parameters and the unknown latent positions.

Consider a logistic regression model as below,

ηi,j = logodds(yi,j = 1 | zi, zj , xi,j , α, β)

= α + β
′
xi,j − f(zi, zj)

The function f is chosen to be simple which represents the forms of network dependence.

Here we assume,

z1,...,zn ∼ Normal(0, σz
2)

The latent space model is inherently reciprocal and transitive. If i → j ihen it means the

distance between node i and node j is small, which makes j → i more probable. Again i→ j

and j → k impliy the distance between node j and node k is not two large, which makes the

event j → k more probable.

f(zi,zj) can be replaced by any arbitrary set of distances di,j satisfying the triangle

inequality. In general, we prefer to model the di,j ’s as distances in some low-dimentional

Euclidean space for reasons of parsimony and ease of model interpretablity.

7



We say a set of distances di,j represents the network Y if

{di,j > c ∀i, j : yi,j = 0}

and

{di,j < c ∀i, j : yi,j = 1} (1.4)

We say that a network is dk representable if ∃ points zi ∈ < such that the distances di,j

satisfy (1.4). Hence, dk representability is equivalent to being able to find a set of points

for the actors such that i ∼ j iff i and j lie within k dimnetional unit balls centered around

each other.

Given a network data Y = yi,j and possible covariates of the model X = xi,j , the goal is

to estimate the unknown parameters of the model, denoted as θ. The parameter θ includes

the regressor coefficients α, β and the variance of the random positions of the nodes in the

latent space.

We take a Bayesian approach for estimation using a prior probability distribution p(θ).

Conditional distribution of the parameters given the information in the data is

p(θ | Y) = p(Y | θ)× p(θ)/p(Y)

The MCMC based inference constructs a dependent sequence of θ values as follows:

� Sample a parameter θ∗ from a proposal distribution h(θ | θk);

8



� Compute the acceptance probability

r = max

(
1,
p(Y | θ∗)p(θ∗)h(θk | θ∗)
p(Y | θ)p(θ)h(θ∗ | θk)

)
;

� Set θk+1 = θ∗ with probability r and θk+1 = θk with probability 1− r.

This algorithm produces a sequence of θ values having a distribution which is approxi-

mately equal to the target distribution p(θ | Y). A point estimate of θ is often taken to be

the posterior mean, which is approximted by the average of the sampled θ values.

1.2 Bayesian Variable Selection

Recent developments in statistical literature put a huge emphasis on variable selection for

the explosive sample space due to the increase in dimention, nice frameworks have been

developed to handle the variable selection procedure in the Bayesian framework.

Liang, Song and Yu(2013) introduced the idea of Bayesian Subset Regression (BSR)

starting with a subset model and taking Gaussian priors on the model coefficients β′is and

they showed that if the true model becomes sparse, i.e., limn→∞
∑Pn
i=1 | βi |<∞ where Pn

is the model dimention, BSR reduces to EBIC. Under some mild conditions, they have also

shown the posterior consistency of the model. They have also proposed a variable screening

procedure based on the marginal inclusion probability of the predictors and they have shown

that it has the same property of Sure Independence Screening (SIS) where we rank predictors

according to their marginal utility and then selects a subset of the predictors of the marginal

utility exceeding some predifined threshold.

Bondell and Reich (2012) proposed a variable selection criterion based on the posterior
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credible region. Here they first fit the full model using all predictors and then used the

highest posterior density region of β to have a sparse estimate. This sparse vector then

determines the selected model.

Penalized regression is a method that not only selects the relevant variables but also

estimates the regression coefficients simultaneously. LASSO regression (Tibshirani, 1996)

provides a decent solution by putting upper bound on the L1-norm. Suitably selecting the

penalty parameter can provide an exact zero estimate for the corresponding irrelavant vari-

ables. Tibshirani (1996) pointed out that the LASSO estimator can be interpreted as the

maximum apostiriori (MAP) estimator when the regression parameters have independent

and identical Laplace priors. Least Angle Regression (LARS) provides more attractive so-

lution since it follows the full LASSO solution path with the cost of only one least square

estimation (Efron et al., 2004).

Park and Casella (2008) introduced the LASSO in a similar Bayesian context where they

introduced a laplace prior on the penalty parameter that boils down the whole problem in to a

Bayesian context. They have also used the fact that the laplace distribution can be expressed

as a gamma scaled mixture of Normal that facilitates the posterior computaion. A major

advantage of using Bayesian LASSO over Frequetist LASSO is it provides reliable standard

error over the non-Bayesian method (Knight and Fu, 2000; Chatterjee and Lahiri, 2001;

Tibshirani, 1996). More specifically, the LASSO estimator is equivalent to the posterior mode

with independent laplace priorfor the coefficients. Using the fact that laplace distribution

can be represented as a scale mixture of normals, Park and Casella (2008) developed a fully

Bayesian hierarchical model and efficient Gibbs sampler for the posterior compuations.

For large n small P regression, Liang, Truong, Wong (2001) established an explicit re-

lationship between the Bayesian approach and the penalized likelihood approach for linear
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regression. They showed empirically that Bayesian Subset Regression (BSR) that is choosing

priors such that the resulting negative log-posterior probability of the subset model can be

approximately reduced to frequentists subset model selection statistic upto a multiplicative

constant.

Selecting relevant variables in a high-dimentional setup is a very common feature in

various Bayesian and econometric applications. In an additive model, a set of continuous

predictor may be represented as group of predictors. Huang et al. (2012) provides a nice

insight for the application of group variable selection. Yuan and Lin (2006) proposed a group

LASSO method that provides a group variable selection.

Bayesian group LASSO technique has been developed by Kyung et al. (2010) and Ramen

et al. (2009) that handles the problem of selecting the variables at the group level only. If

we consider a linear regression model of the following form,

y˜i =

p∑
g=1

Xgβ˜g + ε˜
where ε˜ ∼ N(0, σ2IN ), β˜g is a coefficient vector and Xg is the covariate matrix for the

corresponding gth group and consider the minimization problem as (Simon et al; 2012),

min
β˜
(
||y˜i −

p∑
g=1

Xgβ˜g||22 + λ1||β˜||1 + λ2

p∑
g=1

||β˜g||2
)

then the second penalty term induces a variable selection in the group level and the first

penalty term induces a variable selection within group level. It can easily shown that the

laplace prior corresponding to above minimization problem can be expressed as a scale

mixture of normals and hence a full Bayesian implementation would be easy.
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A mixture prior with a point mass at zero is a very effective tool to have a controled

amount of shrinkage in the variable selection technique. Spike and Slab priors (Ishwaran

and Rao, 2005) and zero inflated mixture priors (Mitchell and Beauchamp, 1988) are very

effective technique for Bayesian Variable Selection.

We set up the following hierarchical model as:

yi|x˜i, β˜, σ2 ∼ N(x˜′iβ˜, σ2)

βk|φk, τ2
k ∼ N(0, φkτ

2
k )

φk | ρ, v0 ∼ (1− ρ)δv0(.) + ρδ1(.)

τ−2
k | b1, b2 ∼ Gamma((a1, a2)

ρ ∼ U [0, 1]

σ2 ∼ Gamma(b1, b2)

Hence, the above hiearchical model implies:

βk|τ2
k , ρ ∼ (1− ρ)N(0, v0τ

2
k ) + ρN(0, τ2

k ) (1.5)

The selection of βk can be controled by the two normals as the shrinkage effect v0 pulls

the first normal around 0 (spike) and the significance of βk is controled through the second

normal.

Zero inflated normal mixture priors in the hierarchical formulation for variable selection

have been used in the linear regression model (George and McCulloch, 1997). Point mass

mixture priors are also studied by Johnstone and Silverman (2004) and Xu and Ghosh

(2015) for estimation of possibly sparse sequence of Gaussian observations with an emphasis
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on using the posterior median instead of the Posterior mean, which has been proven to be

more effective. A very strong result has been shown in Johnstone and Silverman (2004) and

Yuan and Lin (2005) where they have combined the power of point mass mixture priors and

double exponential distribution and the resulting empirical bayes estimator is closely related

to LASSO estimator. Lykou and Ntzoufras (2013) proposed a similar approach by specifying

a shrinkage parameter λ through Bayes factor and Zhang et al. (2014) generalizes this

prior for group LASSO technique and proposed a hierarchical structured variable selection

technique.
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Chapter 2

Reference Prior Development in

Exponential Random Graph Model
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2.1 Main Idea

The key difference in Bayesian literature from the frequentist is that Bayesian uses prior

information on the model parameters that, in some sense, makes the model more robust

and protects it from being carried out by sampling errors or through a lack of samples.

Some complex computational issues that arises in the frequesntist approach can also be

overcomed through the implementation Bayesian techniques. It is therefore important to

have a strong knowledge about the prior distribution of the model’s parameters. In many

situations, we may not have a strong hold on the priors and a stringent informative prior

may drive the problem to produce some unrealistic estimates of the parameters. So it is

sometimes necessary to be non-informative about the prior knowledge.

The key idea of a Bayesian problem is to choose a prior in such a way that it does not

become very stringent and can produce the estimates in a data-driven fashion. The problem

is then to figure out a non-informative prior that can extract the maximized information

to build the posterior. (Bernardo 1979), Berger and Bernardo (1989, 1991a, 1991b) have

developed the idea of reference prior that can maximize the information between the prior

and the posterior for a given problem through Kullbeck-Libeler (K − L) divergence.

Suppose we have data Y parameterized by Θ with sufficient statistic T = T (Y ).

Definition. A reference prior is a prior that maximizes K−L divergence from the posterior

π(θ | t) averaged over the distribution of T i.e., we want to maximize

I(Θ, T ) =

∫∫
p(t)π(θ | t)logπ(θ | t)

π(θ)
dθdt (2.1)

over all π(θ).
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The reference prior satisfying equation (2.1) maximizes the posterior information ob-

tained from the class of all the default priors. In this case, we are looking for such a prior so

that our data can have its maximum impact on the posterior estimates. Moreover, posterior

distribution becomes highly sensitive with the choice of the informative prior. If we intro-

duce more covariates in the model, the sensitivity increases. We would then like to use the

virtue of the default priors that do not put any prior information on the parameter estimates

and relies on the fact that it optimizes the posterior estimates in a data-driven information

theoretic technique.

ERGM model faces a key theoritical issue of working with a single sample. In a typical

ERGM problem, we work with one observed instance of the adjacency structure. Hence,

technically, ERGM operates in a limited data atmosphere where the data driven information

is very limited. Hence, it is very important to have a procedure that can optimize the

extraction of the available information.

2.2 Reference Prior for One Parameter Erdos-Reyni

Model

The main purpose of this chapter is to implement the reference prior technique for Bayesian

ERGM. Note that the main purpose of introducing the reference prior for an ERGM model is

that we can resolve the problem of the sensitivity of the posterior estimates caused through

the informative priors as well as provide the posterior estimations that are optimized in a

information theoretic sense.

The simplest example of one parameter ERGM model is the Erdos-Reyni network model.

In this modeling scenario, we assume the edges are independent with fixed edge probability
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θ (Erdos and Reyni, 1959). The model can be written as,

f(y | θ) =
∏
i6=j

θ
yij (1− θ)1−yij , 0 < θ < 1 (2.2)

This model concentrates on the existence of the single possible edge configuration yij ,

which is parameterized by θ. Here θ is called the edge density parameter. Reparameterization

of (2.2) gives,

f(y | η) ∼ exp{η
∑
i6=j

yij} (2.3)

So this is an Exponential Random Graph Model. Reference prior is defined in terms of

mutual information, and since the mutual information is itself invariant, the reference priors

become invariant under reparameterization. So we can calculate reference prior either for θ

or for η.

Suppose x˜ be the vector of observations from the model and x˜(k) = (x˜1, x˜2, ..., x˜k) be a

vector of independent replicates of the vector observations from the model.

Let tk = tk(x˜1, x˜2, ..., x˜k) ∈ τk be any sufficient statistics of the replicated observations.

Let us define,

π∗(θ | tk) =
p(tk | θ)π∗(θ)∫

Θ p(tk | θ)π∗(θ)dθ

and,

fk(θ) = exp
(∫

τk

p(tk | θ)log[π∗(θ | tk)]dtk

)
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Theorem (Berger, Bernardo, and Sun; 2009). Assume a standard model M ≡ {p(x˜ |
θ), x˜ ∈ X, θ ∈ Θ ⊂ R} and P is the standard class of candidate priors. Let π∗(θ) be a

continuous strictly positive function such that the corresponding formal posterior π∗(θ | tk)

is proper and asymptotically consistent. Define for any interior point θ0 of Θ,

f(θ) = lim
k→∞

fk(θ)

fk(θ0)

1. If each fk(θ) is continuous and, for any fixed θ and sufficiently large k,

{fk(θ)/fk(θ0)} is either monotonic in k or bounded above by some h(θ) which is inte-

gratable on any compact set, and,

2. f(θ) is a permissible prior function,

then f(θ) is a reference prior for this model M and prior class P.

Since the analytical derivation of a reference prior may be technically demanding due to

a complex model, we can use the following algorithm for the 1-parameter family of distribu-

tions.

Algorithm (Berger, Bernardo, Sun, 2009).

1. Initial values:

Choose a moderate value for k; Choose an arbitrary positive function π∗(θ);

Choose the number m of samples to be simulated.

2. For any given θ, repeat, for j = 1, 2, ...,m:

Simulate a random sample {x1j , x2j , ..., xkj} of size k from p(x | θ);

Compute numerically the integral cj =
∫

Θ

∏k
i=1 p(xij | θ)π∗(θ)dθ;

evaluate rj(θ) = log(
∏k
i=1 p(xij | θ)π∗(θ)/cj).
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3. Compute π(θ) = exp{m−1∑m
j=1 rj(θ)} and store the pair {θ, π(θ)}.

4. Repeat routines (2) and (3) for all θ values for which the pair {θ, π(θ)} is required.

For the 1-parameter Erdos-Reyni ERGM model, we can compute the reference by using

the notion of maximizing the K − L divergence principle. Figure (2.1) shows the reference

prior for θ in the Erdos-Reyni model. Now the Jeffrey’s prior for θ in the one parameter

Erdos-Reyni model is given by I(θ) =
√

n
θ(1−θ) . It is then interesting to see the resemblance

between the Jeffrey’s prior and the reference prior θ in the 1-parameter model. It is also a

nice example to see that the reference prior in one parameter model is nothing but Jeffrey’s

prior under certain regularity conditions.
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Figure 2.1: Reference Prior for θ in 1-Parameter (Erdos-Reyni) network Model

2.2.1 ’Sampson’s Monk Data’ Implementation

We implement the reference prior approach for one parameter, Erdos-Reyni Model to Samp-

son’s Monk dataset, which provides an adjacency structure representing the interaction be-

tween 18 monks in a monastery. Our target is to get the posterior estimate of the model
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parameter η. Since the purpose of this paper is to catch the sensitivity due to informative

priors, we compare the posterior through the reference prior with a non-informative uniform

prior and with normal priors with a 0 mean and four different values for the standard de-

viation. The output shows the sensitivity of the posterior due to the informative normal

priors.

It is important to address prior sensitivity in such a simple one-parameter modeling

situation. If we incorporate more parameters in the model by introducing more complex

structures in the network, we expect the sensitivity to increase further. The use of non-

informative priors, such as a uniform prior, will resolve the issue of prior sensitivity, but it

is not guaranteed to provide the maximized information with respect to the prior.
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Figure 2.2: Posterior density of η for monk dataset with respect to Uniform prior, Reference
prior and normal prior with σ = 0.01
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Figure 2.3: Posterior density of η for monk dataset with respect to Uniform prior, Reference
prior and normal prior with σ = 0.1
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Figure 2.4: Posterior density of η for monk dataset with respect to Uniform prior, Reference
prior and normal prior with σ = 1
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Figure 2.5: Posterior density of η for monk dataset with respect to Uniform prior, Reference
prior and normal prior with σ = 100
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2.3 Reference Prior for Two Parameter Dyadic inde-

pendent network Model

To introduce a two-parameter dyadic independent network model, we first decompose Y into(n
2

)
dyads of pairs, Dij = (yij , yji) for i < j. To describe the joint distribution, we extend

our independence assumption from the edge independent Erdos-Reyni model up to dyads.

Here, we consider reciprocated edges along with single edges. We can then write our model

as,

f(y | θ1, θ2) ∼ exp(θ1

∑
i 6=j

yij + θ2

∑
i≤j

yijyji) (2.4)

Here,
∑
i 6=j

yij denotes the number of edges in the network and
∑
i≤j

yijyji denotes the

number of mutual ties. In this modeling scenario, we define θ1 as the edge density parameter

and θ2 as the reciprocity parameter.

We can extend the one-parameter reference prior idea to a two-parameter case through the

sequential scheme (Berger and Bernardo, 1992). That means we first arrange our parameters

in terms of their inferential importance; in particular, the first parameter should be the

parameter of interest. For the dyadic independent model, obviously our parameter of interest

would be θ2. Since the normalizing constant is unknown and hard to calculate for the dyadic

independent model, we try to solve the problem in a Bayesian setup. Now the computation of

a reference prior requires a closed form expression of the likelihood function that is intractable

in a ERGM setup even for a moderately large network. Therefore, to facilitate the reference

prior computation, we approximate the likelihood function through a pseudo-likehood that
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is given by,

PL(θ1, θ2 | Y ) =
∏
i6=j

P(yij = 1 | yijC)

=
∏
i6=j

e
θ1+θ2yij

1 + e
θ1+θ2yij

(2.5)

where yij
C denotes the network Y, except nodes i and j. A theoretical validation of this

approximation can be followed from Strauss & Ikeda (1990) and Besag (1974, 1975) where

they have shown that likelihood maximization of (2.4) is equivalent to the maximization of

(2.5).

2.3.1 Methodology for Derivation

We first consider the fact that a two-parameter dyadic ERGM is asymptotically normally

distributed since it is nothing but a two-parameter exponential family.

Suppose Θ = {θ1, θ2 : −∞ ≤ θ1 ≤ ∞;−∞ ≤ θ2 ≤ ∞} is the parameter space of the

two-parameter dyadic independent model.

Let us consider a nested sequence of {Θl} of compact subsets of Θ such that
⋃∞
l=1 Θl = Θ.

The key technique relies on the fact that we arrange the model parameters by importance

with respect to the model. We calculate the density πl2(θ1 | θ2), as

πl2(θ1 | θ2)

∝ exp
{∑

Y

p(Y | θ1, θ2)logp(θ1 | Y, θ2)
}

(2.6)
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and,

πl1(θ1, θ2)

∝ π(θ2 | θ1)exp
{∑

Y

p(Y | θ2)logp(θ2 | Y)
}

(2.7)

The key advantage here is the pseudo-likelihood approximation and since we have the

assumption of conditional independence over the dyads, the single observed network of size

n induces a dyadic model with
(n

2

)
replications. In a sequential set up, we will be considering

the distribution of θ1 for fixed θ2 and also distribution of θ2. For a fixed θ2, and each term of

(2.5) is an exponential function of θ1 and hence it is twice continuously differentiable w.r.t

θ1. Hence we have,

ln
∏
i,j

PL(θ1 + δθ1 | yij , θ2)

≈ ln
∏
i,j

PL(θ1 | yij , θ2) +
1√
n

∑
i,j

∂lnPL(θ1 + δθ1 | yij , θ2)

∂θ1

+
1

2n

n∑
i,j

∂2lnPL(θ1 + δθ1 | yij , θ2)

∂θ1∂θ∗

where, θ∗ = 1√
n

Now the second term is asymptotically normal by Central Limit Theorem

and the third term converges to fisher information matrix I(θ˜) in probability. Hence, by

LeCam (1960) we have the pseudolikelihood is locally asymptotically normal and hence

regular which means pseudolikehood is asymptotically normal.

Similarly, each term of (2.5) is twice differentiable as a function of θ2.
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Suppose I(θ) be the Fisher information matrix where,

Iij(θ˜) = −Eθ
( ∂2

∂θi∂θj
logf(Y | θ1, θ2)

)

Now,

∂2PL

∂θ2
1

= −
∑
i6=j

{ y2
ije

θ1+θ2yij

(1 + e
θ1+θ2yij )2

}

and

E
(
− ∂2PL

∂θ2
1

)
= n(n− 1)

eθ1+θ2(
1 + eθ1+θ2

){ eθ1

1 + eθ1
+

eθ1+θ2

1 + eθ1+θ2

}

Similarly,

E
(
− ∂2PL

∂θ2
2

)
= n(n− 1)

{ eθ1

(1 + eθ1)2
+

eθ1+θ2

(1 + eθ1+θ2)2

}{ eθ1

1 + eθ1
+

eθ1+θ2

1 + eθ1+θ2

}n(n−1)−1

and,

E
(
− ∂2PL

∂θ2∂θ1

)
= n(n− 1)

eθ1+θ2

(1 + eθ1+θ2)2

{ eθ1

1 + eθ1
+

eθ1+θ2

1 + eθ1+θ2

}n(n−1)

Therefore we get

| I(θ˜) |= n2(n− 1)2
{ eθ1

1 + eθ1
+

eθ1+θ2

1 + eθ1+θ2

}2n(n−1)−2 eθ1+θ2

(1 + eθ1+θ2)2

eθ1

(1 + eθ1)2
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Now we set, S(θ) = (I(θ))−1.

In a two-parameter setup, we can set S(θ) = {((aij)) : 1 ≤ i ≤ 2, 1 ≤ j ≤ 2}.

Now suppose Sj be the upper-left j × j corners of S and set Hj = S−1
j . Now if hj(θ) be

the lower-right j × j corner of Hj , then we have

h1(θ) =
1

a11
= n(n− 1)

{
eθ1

1+eθ1
+ eθ1+θ2

1+eθ1+θ2

}n(n−1)−1

(
1+eθ1+θ2

)2
eθ1+θ2

+

(
1+eθ1

)2
eθ1

and

h2(θ) = a11 = n(n− 1)
{ eθ1(

1 + eθ1
)2 +

eθ1+θ2(
1 + eθ1+θ2

)2}{ eθ1

1 + eθ1
+

eθ1+θ2

1 + eθ1+θ2

}n(n−1)−1

The above formulation gives the explicit result for the probabilities given by equations

(2.5) and (2.7) by,

πl2(θ1 | θ2) =
|h2(θ)|1/2I

Θl(θ2)
(θ1)∫

Θl(θ2)
|h2(θ)|1/2dθ1

(2.8)

and,

πl1(θ1, θ2)

=
πl2(θ1 | θ2)exp{1

2E
l[(log|h1(θ)|)|θ2]}I

Θl(θ1,θ2)
(θ2)∫

Θl(θ1,θ2)
exp{1

2E
l
1[(log|h1(θ)|)|θ2]dθ2}

where,

E1[g(θ)|θ2] =

∫
{θ1:(θ1,θ2)∈Θl}

g(θ)πl2(θ1 | θ2)dθ1
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Typically, we determine the reference prior for the two-parameter dyadic independent

model as,

π(θ) = lim
l

πl1(θ)

πl1(θ∗)
(2.9)

where, θ∗ is any fixed point on Θ for which, the following condition satisfies,

EYl D(πl1(θ | Y), π(θ | Y)) −→ 0 as l −→∞

where D(g, h) defines the K − L divergence between densities g and h.
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Figure 2.6: Reference Prior Heatmap for a Two-Parameter Dyadic Independent Model
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2.4 Simulation Study for Dyadic Independent Model

In this section, we will be using a simulated network with node size N = 50. We restrict our

simulation to a sparse network as most of the real-world examples generate sparse networks

and the idea is to check how the reference prior can utilize its virtue of maximizing the

information from the data to get the posterior estimates.

The key feature of Exponential Random Graph Model is that the specific structure is

inherent in the model through specific parameters. In our application, we will try to see a

graph where we believe that it has a dyadic feature, which means the network is directed and

we are not going to see the network features beyond two nodes. In the current progress in

network literature and computer science, the key issue is to estimate a large sparse network

where most of the dyads are empty. This creates difficulty in the mixing of the MCMC

chain since the chain involves most of its time to linking the empty dyads in case of a sparse

network. The usual remedy (see Hunter et al., 2008) is to use a default “tie no tie” (TNT)

sampler where we divide the whole set of dyads into two sets, one with all the links and

another with no links, and then we pre-assign probabilities for these two sets and draw dyads

from these two sets instead of drawing randomly from the whole network. The advantage

of this technique is that most of the real-world networks are sparse and the sampler gives

more chances to the set with edges to play most of the part in the MCMC chain. Moreover,

we can tune the probability of the two sets to gain a better mixing since we try to control

the degree of sparsity of the estimated network. In this technique, our computation does

not depend on the size N of the whole network, but instead our computational complexity

becomes O(m) where m is the sample size to be selected from the two sets at each iteration

step.
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2.4.1 Scenario 1

In the first scenario, We set θ1 = −3 and θ2 = 3. We ran the iteration 40,000 times with

a burn-in period of 20,000. We took a proposal distribution of N(0, (0.25)2), which makes

the acceptance rate of the MCMC sampler stay around 20%. The posterior output of the

MCMC chain, along with the auto-correlation plot and the MCMC iterations, is shown from

Figure 2.7 to Figure 2.12b. We compute the posterior using two different default priors,

first with U(−∞,∞) and the second with the reference prior for the two-parameter dyadic

independent model. For decreasing the autocorrelation between the MCMC samples, we

apply a thinning process with n = 5.
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Figure 2.7: Scenario 1: MCMC iterations for θ1 and θ2 with uniform prior
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Figure 2.8: Scenario 1: Histogram for posterior distribution of θ1 & θ2 with unoiform prior
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Figure 2.9: Scenario 1: Auto-correlation plot for the MCMC iteration of θ1 & θ2 with uniform
prior
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Figure 2.10: Scenario 1: MCMC iterations for θ1 and θ2 with Reference prior
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Figure 2.11: Scenario 1: Histogram for posterior distribution of θ1 & θ2 with reference prior
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Figure 2.12: Scenario 1: Auto-correlation plot for the MCMC iteration of θ1 & θ2 with
reference prior
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Figure 2.13: Scenario 2: Histogram for posterior distribution of θ1 & θ2 with unoiform prior

2.4.2 Scenario 2

In the second scenario, we set θ1 = −5 and θ2 = 5. We ran the iteration 40,000 times with

a burn-in period of 20,000. We took a proposal distribution of N(0, (0.3)2), which makes

the acceptance rate of the MCMC sampler stay around 20%. The posterior output of the

MCMC chain, along with the auto correlation plot and the MCMC iterations, is shown from

Figure 2.13a to Figure 2.16b. We compute the posterior using two different default priors,

first with U(−∞,∞) and the second with the reference prior for the two-parameter dyadic

independent model. For decreasing the autocorrelation between the MCMC samples, we

apply a thinning process with n = 5.

It can be seen comparing the different prior setup in the two different scenarios that

the autocorrelation for the MCMC iterations after thinning is decreasing faster (at around

lag 50 in the first scenario and at around 100 in the second scenario) in the reference prior

setup than the uniform setup (at around lag 100 at the first scenario and at around 150 in

33



0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  th1.thin

(a) θ1

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  th2.thin

(b) θ2

Figure 2.14: Scenario 2: Auto-correlation plot for the MCMC iteration of θ1 & θ2 with
uniform prior
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Figure 2.15: Scenario 2: Histogram for posterior distribution of θ1 & θ2 with reference prior
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Figure 2.16: Scenario 2: Auto-correlation plot for the MCMC iteration of θ1 & θ2 with
reference prior

Table 2.1: Table for Posterior Mean and Standard Deviation

Scenario’s Parameters Posterior-Mean Posterior-SD

SCENARIO 1
Uniform Prior θ1 -3.672 0.982

θ2 3.619 0.974
Reference Prior θ1 -2.530 0.922

θ2 2.548 0.936

SCENARIO 2
Uniform Prior θ1 -5.229 1.560

θ2 5.220 1.551
Reference Prior θ1 -4.490 1.464

θ2 4.510 1.448

the second scenario). Thus, we need more iterations compared to reference prior setup in

uniform setup to achieve effectively independent draws.
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2.5 Discussion

This paper is dedicated to developing a default prior setup in a Bayesian modeling scenario

that not only overcomes the issue of sensitivity of the informative priors but also integrates

to optimize the posterior estimates through an information theoretic setup. Although the

paper has developed a two-parameter dyadic independent network model, it can also be

extended to more complicated network models.

The Metropolis-Hastings algorithm in ERGM setup is much more challenging since

ERGM suffers from the problem of model degeneracy where the iterations can converge

to a full or empty graph. Poor choice of the initial values of the model parameters can lead

the iterations to a full or empty network. To avoid this situation, we have used a weak

thresholding for the number of edges of the network.

We have discussed that the Bayesian technique applied to a large network data can

be effective since we can easily avoid the problem of obtaining the normalizing constant.

Moreover, the application of the Tie-No-Tie algorithm in a large network becomes effective

since it uses a random sample from the set of edges and empty dyads that are assumed to

be a sub-sample of the observed network and are distributed as the proposed model. So

TNT provides a strong theoretical background of an alternative to the traditional MCMC

iteration. Along with that, it makes the MCMC iterations way faster since it always considers

a subsample to perform each iterations no matter how big the network is. Our analysis also

shows that use of a reference prior provides an added benefit by generating the independent

samples from the posterior distribution faster than the other default priors.
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Chapter 3

Big Data Application of ERGM

through Reference Prior
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3.1 Big Data Network

Recent advancements in computer, Internet and social media highlight the very important

aspects of accessing and analyzing the user data for future developments. Network literature

has broadened the area of user interfaces where not only can a user obtain his preferred

products based on his inputs but also the manufacturers get an idea about what path they

need to follow to get their product closer to each individual customer. For example, an

Amazon purchaser can see the recommended product based on the product he has viewed or

purchased. A probabilistic determination of the links is therefore important to optimize the

sales of certain companies as well as to optimize the utility of the products of the purchasers.

Developments in online trading, shopping, and media services in the past few years have

opened a gateway to analyze the characteristics of individual users through a massive data

atmosphere. Careful analysis and handling of so much data is a challenging task that requires

massive space and time and is still not applicable in many circumstances.

Network estimation through good statistical properties of the estimates is a popular

field of study in recent years. One of the important network models that can structurally

model the network through nice statistical properties is the Exponential Random Graph

Model (ERGM). Although a moderately large network can create trouble in estimation of

parameters in ERGM model, Bayesian estimation can overcome this issue through bypass-

ing the calculation of the normalizing constant. But since the estimation procedure involves

MCMC iterations through the Metropolis-Hastings technique, the estimation procedure be-

comes very slow and a good mixing becomes challenging even for a sparse network of size

500× 500.

Not much work has been done to handle large sparse networks in an ERGM setup.
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Thiemichen and Kauermann (2016) have proposed an ERGM model with non-parametric

components to estimate large networks through subsampling techniques, but this method is

limited to dense networks only. He and Zheng (2015) proposed an estimating technique of

large social network through graph limits for ERGM, but their method also fails for large

sparse networks where it is shown that the graph limit tends to zero in a sparse situation.

This chapter is dedicated to estimate a sparse Big Data Amazon co-purchasing network

with 262111 nodes through the application of TNT procedure and through tuning the proba-

bility of edge set and empty dyad set. We implement the reference prior technique as we have

seen that the ACF function drops faster in the reference prior scenario and so we obtained

the random samples from the posteriors faster than the other prior case.

3.2 Data and Model

For a Big Data implementation of ERGM, we consider an Amazon co-purchasing network

from the Stanford SNAP data repository where the network is based on the ”Customers Who

Bought This Item Also Bought” feature of the Amazon website. We consider 262111 nodes,

and it can be considered as a sparse network since the observed network has 1048575 directed

links and 562240 reciprocated links. The main idea of the Amazon recommendations is to

pick buyers for similar types of items. For the purpose of the data analysis, we to assign

a probability to each possible link based on the observed adjacency structure. That means

if a buyer purchases or visits some item webpage, then the system would incorporate the

information from the other buyers to pick an item similar to what they have purchased to

show in the recommendation list.

For the implementation purposes of the ERGM model, we introduce the dyadic indepen-
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dent ERGM model where the one directional and the reciprocated link are being captured.

That means a pair of items listed on Amazon to be considered under modeling and direc-

tional and reciprocated links between them is going to be estimated. The influence of any

third item will be considered to be conditionally independent of these two.

Hence consider the model,

f(Y | θ1, θ2) ∼ exp(θ1

∑
i6=j

yij + θ2

∑
i≤j

yijyji) (3.1)

where yij being the observed adjacency between ith and jth item listed on Amazon. θ1 is

the single link parameter and θ2 is the reciprocation parameter. Hence,
∑
i 6=j

yij = 1048575

and
∑
i≤j

yijyji = 562240.

3.3 Estimation

Figure 3.1: Adjacency plot for first 20,000 nodes for the observed Amazon Co-Purchasing
network
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Table 3.1: Table for Posterior Mean and SD for Amazon Data

Parameters Posterior-Mean Posterior-SD

θ1 -6.581 0.229
θ2 6.582 0.231

The key advantage of the TNT procedure is that it uses a small subset of the observed

network at each MCMC iteration instead of observing the whole network, which makes the

whole computation time much faster than the traditional MCMC. This method is applicable

to large networks and facilitates good estimates based on information theoretic sense along

with faster computation.

We divided the dyads into two sets, as we discussed before, and assigned equal probability

to the set with edges and to the set of empty dyads. This specific assignment gives a decent

level of mixing with a sparse estimate of the network. We take 5,000 MCMC iterations

with a burn-in period of 4,000. We set our proposal distribution to be N(0, (0.075)2). The

posterior mean of θ1 is given by −6.581 and the posterior mean of θ2 is 6.582.
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Figure 3.2: Density Plot for Dyadic independent Network Model parameters to estimate the
Amazon Co-purchasing Network through Reference Prior
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A key feature of the ERGM model is the nodes are considered equivalent. To check

whether the sparseness of the observed network is sustained in the estimate, the idea is

to randomly pick dyads from the network and try to re-assign or drop the edges based on

the estimated model. For that purpose, we picked 100000 dyads and tried to reassign the

directed and the reciprocated edges. When we tried to reassign those edges, we saw that

the error rate in terms of sparsity was 5.233% for the directed edges and 5.226% for the

reciprocated edges.

Although the network has 262111 nodes, which means the adjacency matrix can have

262111 × 262111 edges, the computation time was very fast compared to the size of the

adjacency matrix. Although we had to choose the size of the sample, we needed to select

at each iteration step, as a moderate size of samples gives a good mix along with fast

computation time. In our example, we ran the iterations by taking 1000 random sample of

dyads at each step and assigning equal probability to the edges set and the empty dyad set.

We also can tune the probability based on the degree of sparsity, along with our predefined

value of the sample to be chosen at each iteration that might have better mixing.

3.4 Discussion

It is important to observe that such a low estimate of θ1 shows the sparsity property of the

network is valid for the assumed family. Also we observed a high value for the estimate of

θ2, which meant most of the estimated directional links were essentially reciprocating and if

ith the item is being shown in the recommendation for the jth item, then it is true in the

other way, which makes sense in a product recommendation scenario.

This idea can be extended to more complex parameter situation where we bring more
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structural ties in the model. Bringing some interesting ties between the node can explore

a detailed social characteristics of the buyer and help to decide the optimized recommen-

dations for him. In our modeling scenario, a low value of the directional edge parameter

indicates some specific tendencies of the buyers and it reveals that a set of buyer can easily

be separated into various categories of the products and random recommendations can be

irrelevant according to the nuyers choice. For example, recommending kids toys could be

irrelevant to a student who bought books or a laptop in his last couple of purchases.

Again a very high value of reciprocating parameter is very meaningful in the sense that

it can help clustering a group of buyers who are buying different kind of products of similar

categories. For example, Buyer1 who bought a desktop computer in his last purchase may

end up buying a printer of it. Also, Buyer2 who bought a printer in his last purchase might

have an old computer and he may be interested in replacing his old computer and may

be interested in the computer that Buyer1 purchased. Hence Buyer1 and Buyer2 may be

purchasing different products on that day but the network characteristic reveals that they

belong to the same cluster of buyers who are buying computer related products. Hence, a

very simple two parameter dyadic independent model gives us a direction for the companies

need to make to optimize their product recommendation. Hence, inclusion of more complex

graphical structure could be benificial for optimizing the sells for the manufacturers as well

as the product utilities for the buyers.

The key advantage of applying the TNT algorithm in the ERGM and reference prior is

that it makes the computation fast since, even for a large sparse matrix, the computation

mostly depends the size of the random samples drawn from the two sets as well as the pre-

specified probabilities for these two sets. Allowing us to tune the set probabilities helps with

the controling the mixing of the MCMC chain since the chain does not spend most of its time
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on the empty sets by being sparse. Although it is very challanging to obtain the optimized

value of the sample size of the dyads at each iteration steps along with the optimized value

of the tunning probability that makes the posterior MCMC samples closest to the actual

posterior and makes the computation very fast.

Although the nodes are considered equivalent in ERGM, the key advantage of the im-

plementation of the ERGM technique is that we can pre-specify the graph structure we are

interested in and can determine if a specific structure is dominating or has no influence in

the formation of the links.
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Chapter 4

Latent Space Network for three US

Auto Manufacturing Giant
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4.1 Main Idea and Methodology

There is growing interest in the use of network models to represent relations between actors

or nodes. In social networks, these actors are individuals, while in the inter-firm linkages

context, they are firms. Sometimes the two come together, for example, in the literature

on director networks; for a recent discussion from a more general context, see Borgatti et

al. (2009). This paper examines interfirm networks in the US automobile industry, focusing

on the 3 manufacturing giants - Chrysler, Ford and General Motors - and 21 of the most

prominent intermediaries in the sector. The analysis is based on a model of operating

leverage (Bhattacharjee et al. 2014), asking the question: how much do firms benefit (or

lose) from network externalities in sharing firm-specific financial risk? The results point

to a combination of explanations: corporate governance linkages, supply chain networks

and potentially demand side linkages as well. Therefore, this chapter suggests a wholistic

approach in the analysis if inter-firm networks, combining a number of channels (or drivers)

and disciplinary approaches.

Recent studies on inter-firm networks have revealed various characteristics of the firms,

its managers and its ownership, and how this influences it’s neighboring firms. In turn,

neighborhood has been captured by linkages along the supply chain (Hertzel et al., 2008;

Wang, 2012; Ahern and Harford, 2014; Itzkowitz, 2015), director networks (Renneboog and

Zhao, 2011, 2014), or joint ventures and investment syndication (Wang and Wang, 2012).

Questions have been asked about whether supply-side or demand-side linkages drive inter-

actions between firms (Ellis and McGuire, 1993; Venables 1996), and about the nature of

the networks themselves - whether cohesive networks of socially embedded ties or sparse

networks rich in structural holes (Grandori and Soda 1995; Hite and Hesterly 2001). Recent
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research in finance has explored the functioning of the financial market placing emphasis on

strategic interactions between firms and their industry rivals and suppliers. In this setting,

economic or financial shocks are transmitted through the customer supplier network and the

whole industry can be affected by those shocks since these can move through the links of

firms in that industry, and beyond; see, for example, Ahern and Harford (2014). In partic-

ular, Vickery et al. (1999) and Narasimhan and Jayram (1998) argue that sales volatility,

disruptions and opportunities in the firm’s supply and demand environments are important

aspects of the financial market.

In terms of methodology, network methods based on graph theoretic frameworks have

helped document a positive link between network structures and firm performance (Geletka

nycz and Boyd 2011; Larcker et al., 2013). The key mechanism is that a strong network

provides better access to information which then brings benefits to a firm in its decision mak-

ing (Larcker and Tayan, 2010; Omer et al., 2012). Then, this framework helped researchers

reveal previously hidden relationships between the connection of the corporate elite and

board room issues such as decision making on managerial compensation, investments, and

hiring and firing of top management. Rebbeboog and Zhao (2011) and Horton et al. (2012)

demonstrated that a CEO’s direct and indirect connections affect his power and the value

of his information-connections, which is reflected in higher remuneration.

Indeed, a relationship between inter-firm linkages and business performance has been

the focus of many studies. Vickery et al. (1999) found significant relationships between

supply chain flexibility and different measures of performance in the US furniture industry.

Likewise, Vonderembse and Tracy (1999) observed a link between supplier selection criteria

and manufacturing performance. Narasimhan and Jayram (1998) argued that research in

supply chain management tends to focus on the individual functions and fails to examine
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the causal linkages that comprise the supply side of the economy. Swaminathan et al. (1998)

emphasized the importance of demand forcasting in the supply chain dynamics.

In this paper we develop a method based on network data that captures the latent

linkages between firms based on a model of operating leverage, and which then influences

various financial decision making issues and financial strategies for those firms. Network

data typically consist of a set of N nodes and a relational tie yij measured on each ordered

pair of nodes. This framework has many applications in social network literature. The most

simplest situation is when yij is a dichotomous variable indicating the presense or absense of

some connection between nodes (in our case, firms) i and j. The data are often represented

by an N ×N social-interaction matrix or the adjacency matrix W.

In our proposed model, the adjacency structure of the network with N firms is not

observed but it depends on the latent positions Z = (z1, z2, ..., zN ). Following Bhattacharjee

et al. (2014), we apply a model of financial leverage where a firm can anticipate part of

the variation in its sales turnover and the reaction of costs to these fluctuations in sales.

This is because there is an equilibrium profit margin and an error correction model that

captures partial adjustment to this equilibrium. We estimate this panel error correction

model and extract residuals which in turn capture the reaction to an unanticipated change

in sales. What remains in the error after systematic effects have been removed are the effect

of inter-firm linkages that bring positive or negative risk management externalities to the

firm. Then, in the second step, we use the covariance structure of these errors between

firms to implement the latent space algorithm. We implement our model to estimate the

network structure between the US auto industry firms, where our data constitute the costs

and sales turnover for Ford, GM and Chrysler, together with 21 suppliers. The objective is

to estimate the operational linkages between the three automobile manufacturers and their
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main independent suppliers. In effect, we go beyond the regression modelling approach of

Ramcharran (2001) to infer on interactions between firms using their latent positions in

two dimentional Euclidean space. The results provide exciting new evidences on inter-firm

networks that can then be interpreted based on the operating financial, organizational and

governance structures of these firms.

The US automobile industry is large and consists of hundreds of firms, a small nuber of

which are auto-manufacturers, and the vast majority auto-ancilliaries that supply various

components. Our empirical objective is to analyze the structure and interaction between

firms in the industry focusing on the latent inter-firm network. Following Ramcharran (2001),

we focus attention on 3 major manufacturers - Chrysler, Ford and General Motors, together

with the top 21 suppliers that were listed most frequently in the various issues of Ward’s

Automotive Yearbook. Annual data on sales turnover and costs (of sales) are collected for

the period of 1950 through 2013 from the Compustat database. These constitute the basic

data for our empirical work. In addition, we also use information from Bloomberg SPLC

database on the supply chain network for Ford.

Economic links of manufactures to their suppliers and customers constitutes our baseline

characterization of inter-firm networks. Inter-firm linkages influence the actions of suppliers

and customers of firms in distress (Hertzel et al., 2008; Wang, 2012). Suppliers can impose

costs by failing supply trade credit, backing away from entering into long term contracts,

delaying shipments, sourcing new customers or shifting sales away from the distressed firm

and existing customers. Likewise, inter-firm links through corporate governance channels

(for example, director networks) can enhance or reduce credit constraints on firms (Ren-

neboog and Zhao, 2011, 2014). Many important aspects of the auto industry market can be

influenced by the corporate policies by the firms which could be driven by the latent linkages
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between the firms. Firms financial decisions can be a direct consequence by a negative or

positive links they have with the other firms.

Inter firm linkages can also influence the suppliers to switch to different customers and

also can have a significant stock price effect when industry rivals have a positive link with

the same customer. Finally, inter-firm networks can be related to dividend policies (Wang,

2012) and relationship specific investment (Wang and Wang, 2012).

4.1.1 Error Correction Model

We have the cost of goods sold data Yit observed for i = 1, 2, ..., N companies and t =

1, 2, ..., K years. Xit is the sales turnover for the company i for t = 1, 2, ..., K years. To

handle the non-stationarity of the data, consider the panel error correction model,

∆Yit = αi + λi∆Xit + (1− λi)(Yi,t−1 − θiXi,t−1) + ηit (4.1)

ηt˜ = w˜ ′ηt + εt˜ (4.2)

where W = (w˜ ′1, w˜ ′2, ..., w˜ ′N )
′

is a symmetric adjacency matrix with wij = 1 if node i and

j has edge between them and 0 otherwise, with wii = 0 for 1 ≤ i, j ≤ N and (I −W) being

singular. The parameter (1− λi) determines the speed at which the system corrects back to

the equilibrium relationship Yi,t−1 − θiXi,t−1 after a sudden shock. We assume the errors

εit are iid across time. Under the non-singularity assumption of (I −W) we have,

E(η˜.η˜′) = (I −W)−1ΣΣΣ(I −W)−1
′

where E(ε
′
ε) = diag(σ1

2, σ2
2, ..., σN

2).
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Under the spatial error model described by (4.1) and (4.2), the population spatial au-

tocovariance matrix E(η
′
η) is unknown and positively definite with probability one. There

exists a consistent estimator, Γ̂ΓΓ, of the population spatial auto covariance matrix E(η
′
η).

Thus, Bhattacharjee and Jensen-Butler (2013) has made an estimation method for the

underlying regression model. Based on the residual from these estimates, a consistent esti-

mator for the spatial auto-covariance matrix is first obtained. This estimator is then used

to estimate the spatial weight matrix. They showed that under the previous assumptions,

the matrix

V = (I −W)
′
(̇

1

σ1
,

1

σ2
, ...,

1

σN

)

is consistently estimated up to an orthogonal transformation by

Γ̂ΓΓ
−1/2

= Ê
(
Λ̂ΛΛ
−1/2)

Ê
′

where Ê and Λ̂ΛΛ contain the eigenvectors and the eigen values respectively, of the estimated

spatial autocovariance matrix Γ̂ΓΓ.

After getting an estimate of the spatial weight matrix, we use it to generate Bootstrap

samples for the spatial weight matrix to perform the following multiple testing problem:

H0ij :| wij |= 0 vs H1ij :| wij |= 1 ∀ 1 ≤ i < j ≤ N. (4.3)

We use this as an initial estimate of W for implementing the latent space model.
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4.1.2 Latent Space Model

In the second stage, to assign a latent position for each company in the Euclidean space, we

take a conditional independence approach to modeling by assuming the presence or absence

of a tie between two nodes is independent of all other ties, given the unobserved positions

in the latent space of the two nodes.

P(W | Z1, α1, β1, γ1) =
∏
i,j

P(wi,j | z1i, z1j , α1, β1, γ1)

Here Z is the unknown latent positions.

We fit a logistic regression model as below,

logodds(wi,j = 1 | z1i, z1j , α1, β1, γ1) = α1 − β1f(ηi˜ , ηj˜ )− γ1f(z1i, z1j)

f(zi,zj) can be replaced by any arbitrary set of distances di,j satisfying the triangle

inequality. In general, we prefer to model the di,j ’s as distances in some low-dimensional

Euclidean space for reasons of parsimony and ease of model interpretability.

The latent position model is inherently reciprocal and transitive. If i → j and j → k

then dij and djk are not too large, which implies the event j → i (reciprocity) and i → k

(transitivity).

Here we set our distance model as,

logodds(| wi,j |= 1 | z1i, z1j , α1, β1, γ1) = α1 − β1 || ηi˜ − ηj˜ || −γ1 | z1i − z1j | (4.4)

Here α1 is the additive constant. The model implies that reducing the latent distance
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between node i and j will increase the log odds of node i and j to be connected. Similarly,

reducing the Euclidean distance between the model errors of node i and j will increase the log

odds of node i and j to be connected. β1 and γ1 are the scaling factors for the corresponding

distance measures.

To identify the positive and the negative linkages among the significant links, we set up

a nested model where we assume having a positive and negative connection between two

nodes is independent of all other ties, given the latent positions of the two nodes and on the

significance of the linkages. We can write,

logodds(wi,j = 1 | z2i, z2j , α2, β2, γ2, | wi,j |= 1) = α2−β2 || ηi˜−ηj˜ || −γ2 | z2i−z2j | (4.5)

4.2 Estimation

Distances between a set of points in Euclidean space are invariant under rotation, reflection,

and transition. Hence, an infinite number of latent positions Z give the same log-likelihood.

Specifically, logP (W | Z, θ) = logP (W | Z∗, θ) for any Z∗ that is equivalent to Z under the

operations of reflection, rotation, or transition. This creates an identifiability issue of for

the latent positions. Our model involves a one-dimensional Euclidean space, but since each

dimension is being identified separately through two different models, we need to fix two zi’s

to overcome the reflection, rotation, or transition issue for the latent positions.

We assume,

zi1,...,zin ∼ i.i.d N(0, σzi) ∀i = 1, 2
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We formulate mutually independent priors for α1, α2, β1, β2, γ1, γ2, σz1
2, σz2

2 as,

π(αi) =
1√
2π
e
−αi

2

σ2
αi −∞ < αi <∞ ∀i = 1, 2

π(βi) =
1

2

1√
2π
e

−βi
2

σ2
βi 0 ≤ βi <∞ ∀i = 1, 2

π(γi) =
1

2

1√
2π
e
− γi

2

σ2
γi 0 ≤ γi <∞ ∀i = 1, 2

π(σzi
2) =

2−
ν1
2

Γ(
ν1
2 )
e
− 1

2σzi
2
σzi
−ν1−2 σzi

2 > 0 ∀i = 1, 2

The detailed Gibbs steps for the posterior computations are given in section 4.5.

4.3 Data Analysis

We consider COMPUSTAT data for past 64 years starting from 1950 to 2013. The data

consists of Cost of Goods Sold and Sales Turnover for three major U.S.-based auto manu-

facturers: (1) GM, (2) Ford, and (3) Chrysler and their 20 major suppliers.

We first divide the two variables with the corresponding consumer price index to remove

the scale factors of dollar values over the years. We then implement the error correction

model (4.1) and extract the model errors and use the errors to calculate the correlation

matrix (shown in Figure 4.1), and then we use the correlation matrix to calculate a bootstrap

sample from W. We need to get the bootstrap since we have to test for each element of

the W matrix. We assign 0 to wij if we fail to reject the ijth test and 1 otherwise. We

use this estimated W as the adjacency structure between the companies for our latent space
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model. For the issues of rotation, reflection, and transition, we keep the latent position of

GM and Ford to be fixed to some predefined values. We Run the Gibbs update for the

parameter values for 3,000 times with a burn-in period of 2,000. We achieved an overall nice

convergence at around 1,000 iterations.

Figure 4.2 shows the probability of having no connection (shown in blue), a positive

connection (shown in green), and a negative connection (shown in red) by the three major

auto manufacturers and their key suppliers. Here a link between company i and j signifies

the business impact of ith company and jth company either ways with respect to the auto

industry market. It is evident from Figure 4.2 that the network that the three big man-

ufacturers have with their suppliers is moderately dense with a high probability of being

connected with their suppliers. Also, a similarity between Chrysler and Ford can be seen

with respect to their connectedness. This is evident in Figure 4.3, which provides the latent

positions of the companies, and it can be seen that Ford and Chrysler are close to each other

in the latent space. The probabilities for GM imply that, although having the same set of

suppliers as Ford or Chrysler, GM relies on a select number of suppliers with respect to the

auto industry market with a very large probability of being disconnected from a few of these

suppliers.

A careful inspection of the latent positions of the suppliers and three major companies

reveals an important aspect of the auto industry market. If we look at the position of Ford

and Chrysler, they are sitting in the middle of their suppliers and moderately depend on

almost all of them with respect to their business. Again, the position of GM in the latent

space reveals that GM has a specific subset of suppliers that it relies on for its business.
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Figure 4.1: Correlation Matrix
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Figure 4.2: Probability of linkages for Chrysler, Ford, and GM with their Suppliers
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4.4 Conclusion

The current literature in corporate finance highlights the importance of inter-firm networks

in financial management of firms. Such networks can be based on supply chains, but equally

may reflect director networks, joint ventures or demand side linkages. Hence, analysis of

network structure requires a broad perspective that allows each of these potential drivers of

network interactions to act and interact. We develop new Bayesian methodology to analyze

latent inter-firm networks. Applied to data on the US auto industry, the estimated inter-firm

networks reflect a strong influence of the supply chain, but also governance links between

firms. Importantly, the estimated networks also point to both positive (complementary)

and negative (competitive) interactuions between the firms. A lot of interesting questions

emerge, relating to the impact of inter-firm networks on corporate finance issues.

4.5 Some Posterior Calculations

We set initial values for the parameters as α01, α02, β01, β02, γ01, γ02, σ0z1
2, σ0z2

2 and we

update the parameters according to the following Gibbs steps.
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4.5.1 (s+ 1)th Gibbs Step for updating (α1, β1, γ1):

The full conditional distribution of α1, β1, γ1 is given by:

P (α1, β1, γ1 | σ2
z1
, Z1,W, η)

∝

(∏
i>j

e
(α1−β1||ηi˜−ηj˜ ||−γ1|z1i−z1j |)|wij |

1 + e
α1−β1||ηi˜−ηj˜ ||−γ1|z1i−z1j |

)
× e
−(

α2
1

2σ2
α1

+
β2

1
2σ2
β1

+
γ2
1

2σ2
γ1

)

= K
α1,β1,γ1|σ2

z1
,Z1,W,η

which is not a closed form expression of any distribution. Hence we need to perform

Metropolis-Hastings with a symmetric proposal distribution for α1, β1, γ1. The r-th step

for the Metropolis-Hastings algorithm is given by,

1. Generate α1s
r∗ from N(α1s

r−1, σmet), β1s
r∗ from N(β1s

r−1, σmet) and γ1s
r∗ from

N(γ1s
r−1, σmet).

2. Calculate:

u =

K
αr∗1s,β

r∗
1s ,γ

r∗
1s |σ

2r−1
z1s

,Z1s,W,η

K
αr−1

1s ,βr−1
1s ,γr−1

1s |σ
2r−1
z1s

,Z1s,W,η

3. Set αr1s = αr∗1s, β
r
1s = βr∗1s , γr1s = γr∗1s with probability u otherwise continue with the

value of step r − 1 with probability 1− u.

4. Repeat the above steps nmet times.

Hence, we get nmet simulated samples from the distribution of α1, β1, γ1 | σ2
z1s

, Z1s,
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W, η. We can use this simulated distribution update α1s, β1s, γ1s to α1(s+1),

β1(s+1), γ1(s+1).

4.5.2 (s+ 1)th Gibbs Step for updating (α2, β2, γ2):

The full conditional distribution of α2, β2, γ2 is given by:

P (α2, β2, γ2 | σ2
z2
, Z2, {wij :| wij |= 1}, η)

∝

(∏
i>j

e
(α2−β2||ηi˜−ηj˜ ||−γ2|z2i−z2j |)(1+wij)/2

1 + e
α2−β2||ηi˜−ηj˜ ||−γ2|z2i−z2j |

)
× e
−(

α2
2

2σ2
α2

+
β2

2
2σ2
β2

+
γ2
2

2σ2
γ2

)

= K
α2,β2,γ2|σ2

z2
,Z2,W,η

which is not a closed form expression of any distribution. Hence we need to perform

Metropolis-Hastings with a symmetric proposal distribution for α2, β2, γ2. The r-th step

for the Metropolis-Hastings algorithm is given by,

1. Generate αr∗2s from N(αr−1
2s , σmet), β

r∗
s2 from N(βr−1

2s , σmet) and γr∗2s from N(γr−1
2s ,

σmet).

2. Calculate:

u =

K
αk∗2s ,β

r∗
2s ,γ

r∗
2s |σ

2r−1
z2s

,Z2,W,η

K
αr−1

2s ,βr−1
2s ,γr−1

2s |σ
2r−1
z2s

,Z2s,W,η

3. Set αr∗2s = αr∗2s, β
r
2s = βr∗2s , γr∗2s = γr∗2s with probability u otherwise continue with the

value of step r − 1 with probability 1− u.
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4. Repeat the above steps nmet times.

Hence, we get nmet simulated samples from the distribution of α2, β2, γ2 | σ2
z2s

, Z2s,W,

η. We can use this simulated distribution to update α2s, β2s, γ2s to α2(s+1), β2(s+1),

γ2(s+1).

4.5.3 (s+ 1)th Gibbs Step for updating σ2
z1

:

The posterior distribution of σ2
z1

is given by,

σ2
z1
| Z1 ∼ (

N∑
i=1

z1i
2 + 1)invχ2

ν1+4

σ2
z1(s+1)

can be generated from the conditional σ2
z1
| Z1s

4.5.4 (s+ 1)th Gibbs Step for updating σ2
z2

:

The posterior distribution of σ2
z2

is given by,

σ2
z2
| Z2 ∼ (

N∑
i=1

z2i
2 + 1)invχ2

ν1+4

σ2
z2(s+1)

can be generated from the conditional σ2
z2
| Z2s
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4.5.5 (s+ 1)th Gibbs Step for updating Z1, Z2:

The full conditional distribution of z1i is given by:

P (z1i | α1, β1, γ1, σz1
2,W, η)

∝

(∏
j 6=i

e
(α1−β1||ηi˜−ηj˜ ||−γ1|z1i−z1j |)|wij |

1 + e
α1−β1||ηi˜−ηj˜ ||−γ1|z1i−z1j |

)
× e

z2i
σ2
z1

= K
z1i|α1,β1,γ1,σz1

2,W,η)

which is not a closed form expression of any distribution. Hence we need to perform

Metropolis-Hastings with a symmetric proposal distribution for z1i. The r-th step for the

Metropolis-Hastings algorithm is given by,

1. Generate zr∗1is from N(zr−1
1is , σ

2
met).

2. Calculate:

u =

K
zr∗1is|α1(s+1),β1(s+1),γ1(s+1),σ

2
z1(s+1)

,W,η)

K
zr−1
1is |α1(s+1),β1(s+1),γ1(s+1),σ

2
z1(s+1)

,W,η)

3. Set zr1is = zr∗1is with probability u otherwise continue with the value of step r− 1 with

probability 1− u.

4. Repeat the above steps nmet times.

Hence, we get nmet simulated samples from the distribution of,

z1i | α1(s+1), β1(s+1), γ1(s+1), σ
2
z1(s+1),W, η
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We can use this simulated distribution update z1is to z1i(s+1).

We can update z2is similarly.
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Chapter 5

Region Wise Variable Selection with

Bayesian Group LASSO
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5.1 Region-wise Variable Selection

In various spatial-economic analyses, the problem is to select variables that are located

spatially. Sometimes the interest lies on estimating the relevance of individual variable over

different locations where a Bayesian framework can be really effective provided the fact

that we have the idea of the adjacency structure or rather the network structure between

the location. Hence, the main idea is to incorporate the adjacency structure between the

nodes (locations) so that we can incorporate this fact that relevance of a variablein a certain

location is influenced on its status on the adjacent locations. For example, if we can assume

that annual snowfall rate is a key factor on deciding the auto insurance premium rates in

Michigan, then it would also be relevant or would have some impact on deciding the auto

insurance rates in Ohio or Indiana. It is very important to select variables that are relevant

to each location and the the problem becomes a bi-level selection where we not only select

the variable overall but we also inspect whether it is significant to each location.

Spatial or cross-sectional dependency is a common feature in present econometric appli-

cations. To capture spatial dependency, a popular approach is to introduce a spatial weight

matrix W containing the spatial weights over its elements (Giacomini and Granger, 2004).

There are various ways to retrieve the spatial weights: from geographic distances, notions of

economic distances(Conley, 1999; Pesaran, 2004; Holly et al., 2010), socio-cultural distances

(Conley and Topa, 2002; Bhattacharjee and Jensen-Butler, 2005) etc. An alternative and

increasingly popular approach is to estimate spatial panel regression models under multi-

factor error structures. Factor models are potentially powerful in the sense that they do not

require strong and unverifiable assumptions on the nature of spatial dependence.

In a location variable selection problem, it is important to consider the variable selection

66



procedure to be dependent spatially. Consider the following model for each location i ∈

{1, 2, ..., N}:

y˜i = Xiβ˜i + ε˜i (5.1)

where y˜i is a (R×1) vector of response variables, Xi is the (R×p) design matrix containing

p variables, β˜i is the (p× 1) coefficient vector and ε˜i ∼ N(0, σ2I).

Smith and Kohn (1996), Smith and Fahrmeir (2015) have considered the variable selection

problem by attaching an indicator vector γ˜i = (γi1, γi2, ..., γip)
′

corresponding to β˜i where

we set βij = 0 if γij = 0 and set βij 6= 0 if γij = 1.

The above model can alternatively be expressed as:

y˜i = Xi(γi˜ )β˜i(γi˜ ) + ε˜i
To undertake the posterior computation, Kohn et al. (2001) have considered a proper con-

ditional prior by setting it proportional to the likelihood:

β˜i(γi˜ ) | y˜i, σ2, γ˜i ∼ N(β̂˜i(γ˜i, Rσ2(Xi(γi˜ )
′
Xi(γi˜ ))−1)

where,

β̂˜i(γ˜i) = (Xi(γi˜ )
′
Xi(γi˜ ))−1Xi(γi˜ )

′
y˜i

If we assume,

P (σ2 | γ˜i) ∝ 1

σ2
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then by Smith and Kohn ((1996), we can show that P (γ˜i | y˜i) ∝ P (y˜i | γ˜i)P (γ˜i)
We need to set a prior distribution on γi˜ to estimate the above model. After we decide

on the prior knowledge, we can run the MCMC sampling schemes (Smith and Kohn, 1996)

and the Metropilos-Hastings technique to figure out the posterior estimates.

Smith and Fahrmeir (2015) have considered the fact that the variable selection procedure

should have a spatial impact, and they addressed this issue by introducing the Ising prior

technique where for γ˜(j) = (γ1j , γ2j , ..., γNj), they have considered the prior knowledge on

γγγ as, P (γγγ) =
∏p
j=1 P (γ˜(j)), where,

P (γ˜(j)) ∝ exp
{ N∑
i=1

αijγij +
∑
i∼k

θikjwikI(γij = γkj)
}

Here, I(·) is an indicator function, wij is the pre-specified weight due to adjacency be-

tween location i and j. The term
∑
i∼k θikjwikI(γij = γkj) evaluates the interaction between

the effects of the elements γ˜(j) for all pairwise neighboring sites.

A critical issue of this technique is to specify the external field
∑N
i=1 αijγij where the

parameter αij is fixed apriori. The usual technique is to use a pre-estimate of αij which

depends on the type of the problem, and the posterior estimates are much sensitive over the

choice of αij ’s (see Smith and Fahrmeir, 2015).

This paper is focused on proposing an alternative technique of the location-wise variable

selection that not only involves the impact of the adjacency structure on the variable selection

but also overcomes the ambiguity of pre-specification of the hyper-parameters. The variable

selection process is carried out by implementing the Bayesian Group Lasso technique where

we put an emphasis on a similar bi-level variable selection approach that incorporates a

cross-sectional dependency among the coefficients over the various locations. We use the
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spike and slab prior on the group level and within the group level where a group means

the model covariates over several locations. Our purpose is to select within group level,

while keeping in mind that the relevance of a covariate in a certain location depends on

its relevance on the other locations. We introduce a conditional autoregressive structure

among the model covariates to incorporates this fact. The median thresholding technique

(Xu and Ghosh, 2015) facilitates having exact zero estimates of the non-relevant variables

for the corresponding locations since it has a slightly better model selection accuracy as well

as a better prediction performance than the traditional LASSO method. The key factor of

the technique introduced by Xu and Ghosh (2015)is to use the posterior median estimator

that derives that under an orthogonal design and works as a soft thresholding estimator,

and the median thresholding is consistent in model selection and has an optimal asymptotic

estimation rate.

5.2 Region-wise Variable Selection with Bayesian

Group LASSO

Suppose we observe responses y˜ir on i = 1, 2, ..., N locations and on r = 1, 2, ..., R indepen-

dent replications. We setup the following linear regression model as:

yir = X˜ irβ˜i + εir i = 1, 2, ..., N r = 1, 2, ..., R. (5.2)

where X˜ ir is a p × 1 vector of predictors for the ith location and for rth replicate. β˜i =

(βi1, βi2, ..., βip)
′

is a vector of model coefficients corresponding to the ith location.

We assume the spatial errors are independently and identically distributed (i.i.d) over
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time and a homoscedastic structure across locations as E(ε˜rε˜′r) = σ2In.

Now to divide the set of coefficients in to different group, we can rewrite our model (5.2)

as,

y˜r =

p∑
g=1

X˜ gr ⊗ β˜g + ε˜r , r = 1, 2, ..., R (5.3)

where y˜′r = (y1r, y2r, ..., yNr) is the response vector at replicate r over N locations, X˜ gr =

(x1gr, x2gr, ..., xngr)
′

and β˜g = (β1g, β2g, ..., βNg)
′ ∀g = 1, 2, ..., p and ∀r = 1, 2, ..., R.

The purpose of this paper is to perform a variable selection where spatial dependence is

driven by observed structural interactions. Since our model involves a variable selection over

a fixed set of covariates in multiple locations, we propose the group LASSO method that

generalizes the LASSO in order to select the grouped variables for accurate prediction of re-

gression. The group LASSO estimator can be obtained by solving the following minimization

problem,

min
β

(
R∑
r=1

(||y˜r −
p∑
g=1

X˜ ∗gr ⊗ β˜g||+ λ1||β˜||1 + λ2

p∑
g=1

||β˜g||2)

)
(5.4)

The Bayesian formulation provides shrinkage of the coefficients in the group and within

the group’s level. But the classical group LASSO technique does not provide exact zero

estimates for the coefficients that are not relevant. Thus, we introduce sparsity at the

group and within the group level by assuming spike and slab prior for the model covariate

that brings sparsity in the model coefficients. Johnstone and Silverman (2004) showed that

posterior median with a random thresholding estimator provides good estimate along with

some desirable properties under spike and slab priors for normal means. We use the posterior

median instead of the posterior mean as our posterior estimates of the model coefficients.
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5.2.1 Spike and Slab Prior for Model Coefficients

We propose the following Bayesian hierarchical model that we refer to as Bayesian Sparse

group LASSO to enable shrinkage both at group level and within a group.

y˜r | β˜1, β˜2, ..., β˜g, σ ∼ N(

p∑
g=1

X˜ gr ⊗ β˜g, σ2IN ) (5.5)

β˜g | τ˜g, σ ∼ N(0, σ2Vg) g = 1, 2, ..., p (5.6)

Here V
1/2
g = diag{τg1, ..., τgN}, τgj ≥ 0, g = 1, 2, ..., p; j = 1, 2, ..., N .

Xu and Ghosh (2015) have introduced a sparse group LASSO modeling where they have

represented the model coefficients as a scaled version of a sparse diagonal matrix that helps

to select variables within group level along with the group selection.

To introduce sparsity in the model and to select relevant variables at the group and

within the group level, we reparametrize the coefficient vectors as,

β˜g = V
1/2
g b˜g (5.7)

Here b˜g, when nonzero has a 0 mean and dispersion matrix IN . The diagonal elements

of V
1/2
g control the magnitude of elements of β˜g. A hierarchical Bayesian modeling using

Spike and Slab prior have been introduced by Inswaran and Rao (2005) in which they have

considered an inflated probability structure at 0 that helps bringing sparsity in the model.

One key advantage of the Spike Slab model is we can show that the prior variance can be

dependent on the sample size and hence an appropriate shrinkage level can be achieved and

a strong selection consistency can be shown (Narisetty, 2014).

To have a sparse estimate of the model coefficients, we define the following multivariate
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spike and slab prior to selecting variables at group level:

b˜g iid∼ (1− π0)Nn(0, In) + π0δ0(b˜g), g = 1, 2, ..., p (5.8)

Note that when τgj = 0, βgj is dropped out of the model even when bgj 6= 0, which

means τ˜g drives a within group level selection for a selected group of β˜g. Now selecting

the elements of β˜g means selecting the gth covariate over N different locations. Here, we

use the fact that importance of the gth variable on the ith location should depend on the

relevance of the gth variable on the adjacent location. Consider a spatial adjacency structure

among the N spatial locations that can be represented through a known spatial weight matrix

W = ((wij)), i = 1, 2, ..., N and i = 1, 2, ..., N . Here, wij is the weight corresponding to the

strength of adjacency between location i and j.

For the prior selection of the within group, we assume a spatial cross-sectional dependence

is convoluted within the covariate structure of the model. We would use this fact later on

to define the prior structure of the model’s coefficients.

To perform a group lasso variable selection in the above model, we need to consider a

proper prior for the beta that considers the spatial relationships among the covariates. We

therefore assumed a Conditional Autoregressive Prior for the prior on τ as,

τgj | τgi : i 6= j ∼ (1−π1)N+(
N∑

i=1,i6=j

wij
wj+

τgi,
s2

wi+
)+πδ0(τgj), g = 1, 2, ..., p; j = 1, 2, ..., N

(5.9)

Here wj+ =
∑N
i=1wij .

where N+ denotes a folded normal towards the positive side of the real line.

Remarks. In chapter 4, we have considered a Spatial Error Correction Model where the
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adjacency structure W is unobserved. The chapter shows an estimation technique of the link

probabilities in a two-step procedure where an error correction model is considered to have

a pre-estimate of the W martix and then the latent metwork model is incorporated where

a Bayesian estimate of a connection (positive or negative) or no connection is obtained.

The above modeling technique can also be carried out with an unobserved structure of the

W and then a two-step variable selection technique by estimating W and using that W as

observed in our model to consider it for the variable selection purpose. We will be following

a similar technique in the data analysis part of this paper where we will consider the W to

be pre-estimated.

Instead of specifying fixed values for hyperparameters, we set,

σ2 ∼ IG(α, γ), α = 0.1, γ = 0.1 (5.10)

π0 ∼ Beta(a1, a2), π1 ∼ Beta(c1, c2) (5.11)

s2 ∼ IG(1, k) (5.12)

5.3 Hellinger Consistency for the Posterior Distribu-

tion of βββ

In this section, we will show that the posterior density of βgj i.e. (βgj | rest) = (τgj |

rest) · (bgj | rest) is Hellinger consistent under a true density is P0. Suppose the true

value of the ijth model coefficient is β0
ij . We will apply the Schwartz theorem to show that
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(βgj | rest) is consistent for the true density under βββ0.

Theorem (Due to ’Schwartz (1965)’). Let the model P =
{
f(· | β, σ) : β ∈ RN×p, σ >

0
}

be totally bounded relative to the Hellinger metric H and let yi1, yi2, ..., yiR be iid P0 ={
f(· | β0, σ) : σ > 0

}
for some P0 ∈ P. If Π is a Kullback-Leibler prior, i.e., for all δ > 0

Π
(
P ∈ P : −P0log

dP

dP0
< δ
)
> 0

then the posterior is Hellinger consistent at P0, that is,

Π
(
H(P, P0) > ε | yi1, yi2, ..., yiR

)
−−−−→
P0a.s

0.

An equivalent formulation of totally bounded model can be found in LeCam (1986) where

it has been shown involving an unbiased test for testing H0 : βββ = β0β0β0 vs H1 : βββ ∈ Uc for

every neighbourhood U of βββ0. More generally, existance of uniformly consistent test for

H0 : βββ = β0β0β0 vs H1 : βββ ∈ Uc implys Hellinger consistency at β0β0β0.

Let us assume π(Kε(β0β0β0)) > 0 ∀ ε > 0, where Kε(β0β0β0) is the K − L neighborhood of β0β0β0

denoted by {βββ : K(β0β0β0,βββ) < ε} and K(·, ·) is the K − L divergence.

Lemma 1. Suppose U be the ε neighbourhood around β0β0β0. If,

1. β0β0β0 is in the K − L support of π.

2.
∫ √

fβββ(y)fβ0β0β0
(y)dy < δ ∀ βββ ∈ Uc.

3. sup
βββ∈Uc

∣∣∣∣∣∫
√

fβββ(y)

fβ0β0β0
(y)
dy −

∫ √
fβββ(y)fβ0β0β0

(y)dy

∣∣∣∣∣ −→ 0 a.s. under the joint distribution of

yi1, yi2, ..., yiR as R −→∞.
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then, there exists a uniformly consistent test for H0 : βββ = β0β0β0 vs H1 : βββ ∈ Uc (see Van

De Geer (1993); Choi and Ramamoorthi (2008)).

The proof of Lemma 1 is given in section 5.9.

Lemma 2. Suppose B is a normal with mean µB and a standard deviation of σB, and

suppose T is a positive normal with mean µT and a standard deviation of σT . Then the

distribution of Z = TB is given by

f(Z) =
e−

ρ2
1+ρ2

2
2

πΦ(ρ2)

[
Σ0K0 + (ρ2

1 + ρ2
2)
|Z|
Z!

Σ2K1 + (ρ4
1 + ρ4

2)
|Z|2

4!
Σ4K2 + ...

]

where,

Kγ(Z) = 1
2(Z2 )γ

∫∞
0

e
−y−Z

2
4y

yγ+1 dy

ρ1 =
µB
σB and ρ1 =

µT
σT

,

Σr(ρ1ρ2Z) = 1 +
ρ1ρ2Z
r+1 +

(ρ1ρ2Z)2

(r+2)(2)2!
+ ...

with (r + k)(k) = (r + k)(r + k − 1)...(r + 1).

Here, Kγ(Z) is called the modified Bessel function of second kind.

The proof of Lemma 2 is given in section 5.9.

Sparsity Assumption. If we have a sparsity assumption for a large network, as well as on

the model, then we can approximate the prior mean of τgj close to 0. This would be our key

assumption to show the Hellinger consistency. That means we would assume that each node

has a very small number of edges with respect to the whole set of nodes, and we set most of

the τgj’s at 0 ending up with a very small number of significant covariates. In other words, if

we set limN→∞
∑N
i=1,i 6=j

wij
wj+

τgi = 0, then we have a large N , the prior mean for bgj = 0,

and prior mean for τgj ≈ 0. It is shown that the prior distribution of βgj is
K0(|βgj |)
πΦ(ρ2)

.

75



Lemma 3. Suppose B is a normal with mean µB and standard deviation σB and suppose T

is a positive normal with mean µT and standard deviation σT . Then the mean of Z = TB

is given by

µZ =

{
φ(
µT
σT

)

Φ(
µT
σT

)

σT
µB

+ µBµT

}
µT
σT

Φ(
µT
σT

)exp

{
− 1

2

µ2
T

σ2
T

}

The Proof of Lemma 3 is given in section 5.9.

Thus, it is easy to observe that the prior distribution of βgj has a mean of 0 and so a

sparsity assumption of τgj gives the prior mean of τgj ≈ 0, and so we have µβgj = 0. As the

prior distribution of beta is a modified Bessel function of second kind, the Lemma 2 shows

it is symmetric around 0.

Proof (Theorem). According to Lemma 1, prior density of βgj = τgjbgj is given by

π(βij) = lβδ0(βgj) + (1− lβ)
K0(|βij |)
πΦ(ρ2)

(5.13)

where lβ = 1− (1− π0)(1− π1) and ρ2 =

∑
i 6=j wijτgi

s2
.

Set β˜0
i be the true value of β˜i. According to Schwartz’s Theorem, we calculate,

−
N∏
i=1

f
β˜0
i ,σ
log

∏N
i=1 fβ˜0

i ,σ∏N
i=1 fβ˜,iσ

=
1

σ
√

2π
exp

{
− 1

2

N∑
i=1

yir − x˜′irβ˜0
i

σ

}2

· 1

2

N∑
i=1

{(
yir − x˜′irβ˜i

σ

)2

−

(
yir − x˜′irβ˜0

i

σ

)2}
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Suppose there exists an ε1 for which the KL condition does not holds, i.e.,

πβββ

{
βββ : e−

1
2
∑R
t=1

∑N
i=1

(yir−x˜′irβ˜0
i

σ

)2
·

[
R∑
r=1

N∑
i=1

(
yir − x˜′irβ˜i

σ

)2

−
R∑
r=1

N∑
i=1

(
yir − x˜′irβ˜0

i

σ

)2]
< ε2

}
= 0(

Here, ε2 = ε1 · 2(σ)R(
√

2π)R/2 > 0
)

=⇒ πβββ

{
βββ :

R∑
r=1

N∑
i=1

{(yir − x˜′irβ˜i
σ0

)2
−
(yir − x˜′irβ˜0

i

σ0

)2}
< ε3

}
= 0

(
Here, ε3 = ε2 · exp

[
1

2

R∑
r=1

N∑
i=1

(
yir − x˜′irβ˜0

i

σ

)2])

=⇒ πβββ

{
βββ : 2

R∑
r=1

N∑
i=1

yit

p∑
j=1

xijr(β
0
ij − βij)−

R∑
r=1

N∑
i=1

p∑
j=1

x2
ijr(β

0
ij

2 − βij2) < ε3

}
= 0

=⇒ πβββ

{
βββ :

N∑
i=1

p∑
j=1

[
β2
ij

R∑
r=1

x2
ijr +

2

p
(β0
ij − βij)

R∑
r=1

yirxijr

]
< ε4

}
= 0

(Where, ε4 = ε3 +
N∑
i=1

p∑
j=1

β0
ij

2
R∑
r=1

x2
ijr > 0)

=⇒ πβββ

{
βββ :

N∑
i=1

p∑
i=1

(βij − β0
ij)aij) < ε5

}
= 0

where, ε5 = −p2ε4 < 0 and aij =
∑R
r=1 yirxijr. The above inequality inside πβ˜i

{
β˜i : ·

}
holds

since
∑N
i=1

∑p
j=1 β

2
ij

∑R
r=1 x

2
ijr > 0.

Hence,

πβββ

{
βββ :

N∑
i=1

p∑
j=1

βijaij > ε5 +
N∑
i=1

p∑
j=1

β0
ijaij

}
= 0
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=⇒
N∏
i=1

p∏
j=1

πβij

{
βij : βijaij > ε6 + β0

ijaij

}
= 0 (5.14)

where ε6 = ε5/Np < 0.

Equation (5.14) is true since

{
βijaij > ε6 + β0

ijaij ,∀i ≥ 1, j ≥ 1

}
=⇒

{
N∑
i=1

p∑
j=1

βijaij > ε5 +
N∑
i=1

p∑
j=1

β0
ijaij

}

Equation (5.14) means that ∀ i ∈ {1, 2, ..., N} and j ∈ {1, 2, ..., p} and for δ > 0 there exists

an aij : aij = δ (OR, aij = −δ) where
ε6
δ = −M (OR,

ε6
−δ = M) where M is a large positive

integer with |M | > β0
ij (we can assume) such that,

πβij

{
βij : βij > −M + β0

ij

}
= 0 (5.15)(

OR, πβij

{
βij : βij < M + β0

ij

}
= 0

)

Now (5.15) is a contradiction since βij ∼ lβδ0(βij) + (1 − lβ)
K0(|βij |)
πΦ(ρ2)

, 0 < lβ < 1 and

Lemma 2 shows the density of βij is symmetric with respect to zero and lβ > 0.

5.4 Posterior Distributions and Gibbs Sampling for

Group LASSO

Let us denote Xr = (X˜ 1r, X˜ 2r, ..., X˜ pr).
The joint posterior of b = {b˜i : i = 1, 2, ..., p}, τττ2 = {τ2

ij : i = 1, 2, ..., p; j = 1, 2, ..., N},
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σ2, π0, π1, s
2 conditional on the observed data is:

P (b, τττ2, σ2, π0, π1, s
2 | y˜r,Xr; r = 1, 2, ..., R)

∝ (σ2)−NR/2exp

{
− 1

2σ2

R∑
r=1

||y˜t −
p∑
i=1

X˜ gr ⊗V
1/2
g b˜g||22

}

×
p∏
g=1

[
(1− π0)(2π)−N/2exp

{
− 1

2
b˜′gb˜g

}
I(b˜g 6= 0˜) + π0δ0(b˜g)

]

×
p∏
g=1

N∏
j=1

[
(1− π1)2(22)−1/2exp

{
−

(τgj −
wij
wi+

τgi)
2

2 s2
wi+

}
I(τgj > 0) + π0δ0(τgj)

]

×(σ2)−α−1exp−γ
2

×πa1−1
0 (1− π0)a2−1

×πc1−1
1 (1− π0)c2−1

×k(s2)−2exp

{
− k

s2

}

5.4.1 Gibbs Sampler

� The posterior distribution of b˜g conditional on everything else is given by:

b˜g | rest ∼ lgδ0(b˜g) + (1− lg)N(µ˜g,ΣΣΣg) (5.17)

where lg is the posterior probability of bgbeing equal to 0˜ given the other parameters,

i.e.

lg = P (b˜g = 0 | rest)

=
π0

π0 + (1− π0)|ΣΣΣg|1/2exp
{

1
2σ4 ||ΣΣΣ

1/2
g (

∑R
r=1V

1/2
g X˜ ′

tg(y˜r −Xr(g) ⊗V
1/2
(g) b(g)))||22

}
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where, Xr(g) = (X˜ r1, ..., X˜ r(g−1), X˜ r(g+1), ..., X˜ rp),
b(g) = (b˜′1, ..., b˜′g−1, b˜′g+1, ..., b˜′p)′ .
Similarly V(g) = diag(V1, ...,Vg−1,Vg+1, ...,Vp) matrix after deleting the gth row

and gth column. Also,

µ˜g =
1

σ2
ΣΣΣg

R∑
r=1

{
V

1/2
g ⊗X˜ ′rg(y˜r −Xr(g) ⊗V

1/2
(g)

b(g))

}

ΣΣΣg =

(
IN +

1

σ2

R∑
r=1

{
V

1/2
g ⊗X˜ ′rgX˜ rg ⊗V

1/2
g

})−1

� The conditional posterior of τgj is given by,

τgj | rest ∼ qgjδ0(τgj) + (1− qgj)N+(ugj , v
2
gj), g = 1, 2, ..., p; j = 1, 2, ..., N (5.15)

where,

ugj =
v2
gj

σ2

R∑
r=1

(y˜r −Xr(gj) ⊗V
1/2
(gj)

b˜(gj))xrgjbgj +
v2
gjwi+

s2

∑
i 6=j

wij
wi+

τgi

v2
gj = (

wi+
s2

+
b2gj

σ2

R∑
r=1

x2
rgj)
−1

qgj =
π1

π1 + 2(1− π1)
vgj
√
wi+
s exp

{1
2

µ2
gj

v2
gj
− wi+

2s2
(
∑
i6=j

wij
wi+

τgi)2
}

Φ(
ugj
vgj

)

Here we define Xr(gj),V(gj), b˜(gj) similarly by removing the corresponding gjth ele-

ment.

� σ2 | rest ∼ IG(NR2 + α, 1
2

∑R
r=1 ||y˜r −Xr ⊗ βββ||22 + γ)

Here Xr = (X˜ r1, , ..., X˜ rp), βββ = (β˜′1..., β˜′p)′ .
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� π0 | rest ∼ beta(#(bg = 0) + a1,#(bg 6= 0) + a2)

� π1 | rest ∼ beta(#(τgj = 0) + c1,#(τgj 6= 0) + c2)

� s2 | rest ∼ IG(1 + 1
2#(τgj = 0), t+ 1

2

∑p
g=1

∑N
j=1

[
τgj −

∑
i 6=j

wij
wi+

τgi
]2

).

We consider our posterior values of the model coefficients over the Gibbs sampler to be

β̂gj = (
¯
gj | rest) · (τgj | rest). To have our posterior estimate of the βgj , we use the same

approach followed by Xu and Ghosh (2015) who have used the posterior median instead

of the posterior mean. They have shown in a paper that the posterior median works as a

random thresholding estimator that satisfies the oracle property with a faster convergence

than the general group LASSO estimator under an orthogonal design.

5.5 Variable Selection for Temporal Data

Variable selection for spatially dependent data can be carried out along the method we

discussed in the last few sections. But we have ignored the fact that the temporal dependence

might also effect in the sense of having dependency over the responses that are closer with

respect to time. Assume we have response vector for N locations y˜t over time points t =

1, 2, ..., T . Consider the spatial-temporal regression model as,

y˜t = ΦΦΦy˜t−1 +

p∑
g=1

X˜ gt ⊗ β˜g + ε˜t (5.13)

where,

ΦΦΦ = diag(φ1, φ2, ..., φN )
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The model we considered under equation (5.13) is nothing but the AR(1) process. Station-

arity of the AR(1) process requires the assumption: |φi| ≤ 1, ∀1 ≤ i ≤ N . The reason that

we have chosen AR(1) over higher-order autoregressive processes is that we want to avoid

the abstract restrictions on the autoregressive model parameters due to the stationarity of

the process. AR(1) process allows the temporal dependence to decrease gradually as the

time lag increases.

We consider the autoregressive component parameters φi to be independently uniform

between −1 and 1, i.e.,

π(φi) =
N∏
i=1

I(−1 ≤ φi ≤ 1)

5.5.1 Posterior Distribution of φi

We can write the posterior probability of φi; i = 1(1)N | rest as,

P (φi; i = 1(1)N | rest)

∝ exp
{
− 1

2σ2

T∑
t=2

||y˜t −ΦΦΦy˜t−1 −
p∑
g=1

X˜ gt ⊗V
1/2
g b˜g||2

} N∏
i=1

U(−1, 1)

∝ exp
{
− 1

2σ2

T∑
t=2

[
(y˜t −

p∑
g=1

X˜ gt ⊗V
1/2
g b˜g)′(y˜t −

p∑
g=1

X˜ gt ⊗V
1/2
g b˜g)

−2
N∑
i=1

φim˜ ityt−1i +
N∑
i=1

φ2
i y

2
t−1i

]}

Here, m˜ it is the ith row of (y˜t −∑p
g=1X˜ gt ⊗V

1/2
g b˜g).

Hence,
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P (φi; i = 1(1)N | rest)

∝ exp
{
− 1

2σ2

N∑
i=1

[
− 2φi

T∑
t=2

m˜ ity˜t−1i + φ2
i

T∑
t=2

y˜2
t−1i

]}

∝ exp
{∑T

t=2 y˜2
t−1i

σ2

N∑
i=1

(
φi −

∑T
t=2m˜ ity˜t−1i∑T
t=2 y˜2

t−1i

)2}

Hence, φi | rest ∼ N
(∑T

t=2m˜ ity˜t−1i∑T
t=2 y˜2

t−1i

, σ2∑T
t=2 y˜2

t−1i

)
∀1 ≤ i ≤ N

5.5.2 Gibbs Sampler

Gibbs’ sampling steps for the spatio-temporal model would be similar to the situation for

the spatial modeling. We would follow the same update procedure along with the update

of autoregressive component matrix ΦΦΦ. We would replace y˜t with y˜t −ΦΦΦy˜t−1 for the Gibbs

Sampler steps in section (5.4.1).

5.6 Simulation Study

5.6.1 A Sample Simulation with Prefixed β

In this setting, we preselect some values for βijs and we compare the BGL-SS-CAR with

the simple BGL-SS and the variable selection with ISING prior based on the RMSE and the

TPR/FPR values. We set p = 5, T = 10, and N = 7. The comparison is done based on

only one simulation. We will increase the number of simulations in the subsequent section

to have a better view of the prediction error measurement.

It is evident from table 5.1 and table 5.2 that when a CAR structure is being considered
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Table 5.1: RMSE, TPR and FPR comparison for BGL-SS, Ising and BGL-SS-CAR model

Methods BGL-SS ISING BGL-SS-CAR

RMSE 0.868 1.12 1.06
TPR 1 0.83 0.81
FPR 0.368 0.26 0.21

Table 5.2: BGL-SS and BGL-SS-CAR estimates for prefixed β’s

Methods True BGL-SS ISING BGL-SS-CAR

β11 0 0.15 0.30 0.38
β21 2.5 1.63 1.11 1.92
β31 -2.25 -0.70 -1.06 -0.84
β41 0 0.19 0 0
β51 3 2.30 1.33 0.81
β61 0 0.33 0.10 0.36
β71 -1 -1.57 0.36 0
β12 0 0.17 0 0
β22 0 0 0 0
β32 0 0 0 0
β42 0 0 0 0
β52 0 0 0 0
β62 0 0.99 0.37 0
β72 0 0 0 0
β13 2 0.16 1.28 0.34
β23 2 2.89 2.23 1.50
β33 -3 -0.96 -2.58 -2.43
β43 3 1.31 1.78 1.01
β53 1.5 0 0.96 0.71
β63 1 0.16 0 0
β73 -2 -1.79 0.88 0
β14 0 0 0 0
β24 0 0 0 0
β34 0 0 0 0
β44 0 0 0 0
β54 0 0 0 0
β64 0 0 0 0
β74 0 0 0 0
β15 0 0.19 0.64 0.38
β25 2 1.05 0.88 0.25
β35 -1 -2.12 -1.92 -1.35
β45 -3 -2.08 1.68 0.65
β55 0 0 0.47 0.23
β65 2 0 0 1.82
β75 -1.5 -1.75 0 -2.65
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within the model coefficients, it is clearly out-performing the regular Sparse Group LASSO

and ISING modeling technique both in terms of RMSE as well as in terms of FPR or TPR.

5.6.2 Scenario 1: N = 7, p = 5 and T = 10

In the first scenario, we take a simulated data over 7 spatial location with a pre-specified

adjacency structure (W). We take 5 variables for each of the locations, and we take the data

over 10 time points. We set σ in to three specified values: σ = 0.5, σ = 1 and σ = 3. We

ran the Gibbs iterations for 10,000 times and we took the burn-in period to be 8,000. We

replicated the simulation 20 times to have a better measure of errors.
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Figure 5.1: Gibbs iterations of β’s for the first scenario under BGL-SS-CAR when σ = 0.5
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Figure 5.2: Posterior Distribution of σ2 for the first scenario underBGL-SS-CAR when the
true σ2 is 0.25
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5.6.3 Scenario 2: N = 14, p = 15 and T = 50

In the second scenario, we take a simulated data over 14 spatial locations with a pre-specified

adjacency structure (W). We take 10 variables for each of the locations, and we take the

data over 50 time points. We set σ to three specified values:σ = 0.5, σ = 1 and σ = 3.

We ran the Gibbs iterations 10,000 times, and we took the burning period to be 8,000. We

replicate the simulation 20 times.
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Figure 5.3: Posterior Distribution of σ2 for the second scenario underBGL-SS-CAR when
the true σ2 is 0.25

In table 5.3, we are comparing simple Bayesian Sparse Group Lasso and ISING model

vs the Bayesian Sparse Group Lasso with a CAR structure. The comparison is being done

using the False Positive Rates and the True Positive Rates as the two methods based on the

two scenarios we considered before.

It can be observed from the tables above is Bayesian sparse group LASSO technique is

mostly outperforming the simple sparse group LASSO as well as the ISING model in terms of

the RMSE and TPR. Which means when a spatial data is considered and when it is known or

expected for the variables to have a dependency structure convoluted in the joint distribution

of the covariates, we can expect that a CAR structure an catch the relevant variable more
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Table 5.3: Table for RMSE and True / False Positive Rates

Scenario 1 Scenario 2
Methods BGL-SS ISING BGL-SS-CAR BGL-SS ISING BGL-SS-CAR

σ = 0.5
RMSE 1.02 0.92 0.80 0.42 0.31 0.28
TPR 0.56 0.70 0.62 0.71 0.78 0.77
FPR 0.08 0.06 0.01 0.13 0.15 0.04

σ = 1
RMSE 0.70 0.72 0.60 0.71 0.76 0.51
TPR 0.61 0.66 0.71 0.68 0.68 0.72
FPR 0.20 0.10 0.03 0.23 0.07 0.02

σ = 2
RMSE 1.03 0.75 0.78 0.95 1.08 0.92
TPR 0.69 0.61 0.73 0.72 0.82 0.88
FPR 0.18 0.15 0.03 0.31 0.10 0.07

efficiently than the other competative methods and is better in terms of lowering the model

errors. An advantage of using BGL-SS-CAR over ISING model in terms of computations is

that unlike the ISING model it is free from the ambiguity of prespecifying values for some

hyperparameter. Also, a bi-level shrinkage brings more control on the sparsity of the model

through the two acting variabilities, one between group levels and another within group

levels.

It is also very interesting to observe that incorporating the CAR structure in the prior

setup of the Bayesian sparse group LASSO technique results in a very efficient variable

selection in terms of the False positive rates. We can see from table 5.3 that FPR is close to

zero in all the simulation scenarios and also very low compared to the other two competative

methods. This means bringing CAR structure in the modeling scenario for a spatially related

data allows the model to be very efficient in identifying the covariates which are not relevant

for a given location.
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5.7 Data Analysis

In this section, we consider compustat data over the U.S. auto industry market. The data

consist of 20 U.S. auto manufacturers and the suppliers, including three 3 U.S. auto manu-

facturing giants GM, Ford, and Chrysler. The data span from 1960 to 1987 and include data

for nine variables that consist of some key factors of the manufacturing industry like actual

costs, cost of goods sold, total sales figures, revenue total etc. In chapter 4, we have consid-

ered this data to determine the latent network structure within the U.S. auto manufacturing

industry.

The method discussed in chapter 4 is dedicated to obtaining the probability of a con-

nection or no connections between the companies, i.e., existence of a connection between

company i and company j means wij = 1 and wij = 0 stands for no connection between

company i and j.

In our application, we will consider the estimated adjacency matrix from chapter 4 to be

the observed W and the purpose is to run a variable selection among the available model

covariates. A key thing to note is that in chapter 4, we have used revenue total as the

response and sale as the covariate since those two are theoretically the key factors for finding

the actual relationships among the companies. In our problem here, we consider 8 covariates,

and we ran a variable selection to see which variables are most important.

The data might have the issue of non-stationarity over time since we are not considering

a time parameter to handle the dependence over time. Instead, we use the first difference of

the response and the covariate as out actual model response and the covariates, i.e.,

∆ln(yit) = ΦΦΦ∆ln(y˜t−1) + ∆ln(X˜ it)β˜∗i + εit i = 1, 2, ..., N t = 2, 3, ..., T.
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where ∆ln(yit) = ln(yit)− ln(yit−1) and ∆ln(xitj) = ln(xitj)− ln(xit−1j).

Table 5.4: Coefficient estimates through BGL-SS-CAR for Auto Industry Data

Ticker act at cogs gp lct lt ppegt sale

AL.1 0 (0.03) 0 (0.12) 0.28 (0.13) 0.08 (0.07) 0 (0.03) 0 (0.10) 0 (0.11) 0.62 (0.26)
HON 0 (0.11) 0 (0.05) 0.16 (0.06) 0.04 (0.03) 0 (0.03) 0 (0.11) 0 (0.08) 0.81 (0.38)
ARV 0 (0.03) 0 (0.4) 0.50 (0.44) 0.12 (0.10) 0 (0.03) 0 (0.02) 0 (0.01) 0.37 (0.22)
C.3 0 (0.11) 0 (0.04) 0.40 (0.33) 0.03 (0.03) 0 (0.02) 0 (0.01) 0 (0.09) 0.51 (0.32)
CTB 0 (0.01) 0 (0.06) 0.61 (0.34) 0.08 (0.12) 0 (0.05) 0 (0.06) 0 (0.05) 0.28 (0.13)
DAN 0 (0.09) 0 (0.09) 0.41 (0.19) 0.12 (0.11) 0 (0.04) 0 (0.08) 0 (0.03) 0.43 (0.26)
DE 0 (0.05) 0 (0.04) 0.27 (0.15) 0.06 (0.04) 0 (0.10) 0 (0.07) 0 (0.05) 0.66 (0.51)
ETN 0 (0.03) 0 (0.05) 0.26 (0.19) 0.11 (0.09) 0 (0.05) 0 (0.04) 0 (0.11) 0.63 (0.46)
F 0 (0.18) 0 (0.07) 0.41 (0.28) 0.08 (0.13) 0 (0.06) 0 (0.11) 0 (0.04) 0.41 (0.20)
GE 0 (0.11) 0 (0.09) 0.30 (0.23) 0.14 (0.9) 0 (0.10) 0 (0.05) 0 (0.04) 0.57 (0.56)
GM 0 (0.11) 0 (0.09) 0.35 (0.17) 0.08 (0.06) 0 (0.08) 0 (0.12) 0 (0.08) 0.55 (0.07)
SPXC 0 (0.07) 0 (0.13) 0.33 (0.17) 0.09 (0.11) 0 (0.05) 0 (0.08) 0 (0.09) 0.55 (0.54)
GR 0 (0.13) 0 (0.10) 0.20 (0.14) 0.07 (0.05) 0 (0.06) 0 (0.09) 0 (0.03) 0.73 (0.47)
GT 0 (0.10) 0 (0.06) 0.19 (0.11) 0.07 (0.05) 0 (0.02) 0 (0.10) 0 (0.05) 0.72 (0.41)
JCL 0 (0.07) 0 (0.05) 0.33 (0.35) 0.14 (0.12) 0 (0.13) 0 (0.08) 0 (0.12) 0.53 (0.45)
ANV.1 0 (0.07) 0 (0.06) 0.36 (0.29) 0.21 (0.09) 0 (0.11) 0 (0.08) 0 (0.12) 0.37 (0.21)
OC 0 (0.11) 0 (0.06) 0.25 (0.17) 0.10 (0.05) 0 (0.01) 0 (0.04) 0 (0.16) 0.64 (0.49)
PPG 0 (0.05) 0 (0.07) 0.32 (0.25) 0.13 (0.09) 0 (0.08) 0 (0.13) 0 (0.10) 0.52 (0.45)
AOS 0 (0.06) 0 (0.09) 0.47 (0.23) 0.07 (0.05) 0 (0.10) 0 (0.07) 0 (0.10) 0.43 (0.45)
UTX 0 (0.05) 0 (0.09) 0.31 (0.14) 0.12 (0.10) 0 (0.03) 0 (0.12) 0 (0.04) 0.56 (0.40)

We consider modeling the data using ′revt′ (Revenue Total) as our response and use the

other 8 variables as our model covariates to perform a variable selection. We consider the

spatio-temporal modeling (BGL-SS-CAR) by considering an AR(1) process over time. Table

5.4 shows the variable selection along with the posterior median estimates of the coefficients.

The table corresponds to the BGL-SS-CAR modeling scenario. The ’Ticker’ symbol shows

the company tickers in the US stock market. Our model includes 8 covariates are ’act’,

’at’, ’cogs’ etc. The three U.S. auto manufacturing giants are given by C.3 = Chrysler,

F = Ford, GM = General Motors. Values in the brackets showing the standard errors

of the estimates. It is clear to see from the table above according to our Bayesian Group

LASSO model that ′cogs′= Cost of Goods Sold, ′gp′ = Gross Profit Loss Property, Plant and

Equipment - Total (Gross) and ′Sale′ = Sales total is coming out to be significant variables.
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which are heuristically and theoretically make sense and go consistently with the selected

covariates in chapter 4.

Histogram of sigma2.post[8000:10000]
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Figure 5.4: Posterior Distribution of σ2 for the Data

5.8 Discussion

The topic presented in this chapter uses a variable selection technique that takes information

from the spatially located covariates as well as the spatial adjacency structure among the

nodes that facilitate in selecting the covariates over several spatial locations.

Since this paper uses the spatial adjacency structure among the nodes, it is important

to have reliable information on the adjacency structure among the nodes. Since the data

is observed in a spatio-temporal fashion, it is important to undergo the test if there is any

spatial or temporal non-stationarity. In practice, we take the first difference of the responses

to be our initial data to remove the non-stationarity.

Assumption of a CAR structure among the covariates is an important assumption in this

paper. This not only facilitates the variable selection technique through a betterment of the

RMSE or the TPR but it also provides a profound heuristic and theoretical validation since
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it is must be expected that the variable selection in a spatial situation must depend on its

neighboring spatial locations.

Since the posterior mean does not provide an exact 0 estimate for the non-relevant covari-

ates, Geweke (1994), Kuo and Mallick (1998), and George and McCullough (1997) suggested

the highest posterior probability Model via Gibbs sampling calculates the highest poste-

rior probability around 0 and rejects those variables that have a very significant posterior

probability around 0. FDR-based variable selection has been proposed to select variables if

marginal inclusion probability is larger than some pre-controlled threshold. The posterior

estimation is distinctive in the sense that it directly gives the zero or non-zero estimates

without going to a second-step estimation.

5.9 Proof of the Lemmas

5.9.1 Proof of Lemma 1

Let us consider, w.l.g, y ∼ N(xβ, σ2). Let us assume β ∈ (β0 − ε, β0 + ε)c

Now we have,

∫ √
fβ(y)fβ0

(y)dy exp
{
− 1

8
x2(β − β0)2

}
< exp

{
− 1

8
x2ε2

}
= δ

For the second part of the proof, let us assume y ∈ (−M,M) where M is a large positive

integer so that we can truncate the distribution in (−M,M). Let us take R replicates of y
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as yi1, yi2, ..., yiR. So, we have,

∫ √
fβ(yi1, yi2, ..., yiR)

fβ0
(yi1, yi2, ..., yiR)

dy ≈
( σ2

x(β − β0)

)R(
eM − e−M

)R
e−

R
2 x

2(β2−β02
)

Hence sup
β∈Uc

∣∣∣∣∣∫
√

fβ(yi1,yi2,...,yiR)

fβ0
(yi1,yi2,...,yiR)

dy

∣∣∣∣∣ =
(
σ2
xε

)R(
eM − e−M

)R
e−

R
2 x

2(β02
+2εβ0) for fixed R.

So, for each ε, if we assume M ≈ (xε)
1
σ

2 exp
{
x2

2σ (β02
+ 2xβ0)

}
, then we can show,

sup
β∈Uc

∣∣∣∣∣
∫ √

fβ(yi1, yi2, ..., yiR)

fβ0
(yi1, yi2, ..., yiR)

dy

∣∣∣∣∣ −→ 0 as R −→∞

Again,

∫ √
fβ(yi1, yi2, ..., yiR)fβ0

(yi1, yi2, ..., yiR)dy = exp
{
− R

8
x2(β − β0)2

}

So, sup
β∈Uc

∣∣∣∫ √fβ(yi1, yi2, ..., yiR)fβ0
(yi1, yi2, ..., yiR)dy = exp

{
− R

8 x
2ε2
}

for fixed R.

Now from triangle inequality,

sup
β∈Uc

∣∣∣∣∣
∫ √

fβ(yi1, yi2, ..., yiR)

fβ0
(yi1, yi2, ..., yiR)

dy −
∫ √

fβ(yi1, yi2, ..., yiR)fβ0
(yi1, yi2, ..., yiR)dy

∣∣∣∣∣
= sup
β∈Uc

∣∣∣∣∣
√

fβ(yi1, yi2, ..., yiR)

fβ0
(yi1, yi2, ..., yiR)

dy

∣∣∣∣∣+ sup
β∈Uc

∣∣∣∣∫ √fβ(yi1, yi2, ..., yiR)fβ0
(yi1, yi2, ..., yiR)dy

∣∣∣∣
−→ 0 as R −→∞

5.9.2 Proof of Lemma 2

Consider a random variable Z = TB and set Z
′

= B.

The Jacobian of transformation is J( T,B
Z,Z
′ ) = 1

Z
′ .
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Hence the pdf of Z is given by,

f(Z) =

∫ ∞
−∞

exp

{
− 1

2

[(
Z
′
−µB
σB

)2
+
( Z′
Z −µT
σT

)2]}
2πσBσTΦ(

µT
σT

)

1

Z
′ dZ
′

=

exp

{
− 1

2

(µ2
B
σ2
B

+
µ2
T
σ2
T

)}
2πσBσTΦ(

µT
σT

)

∫ ∞
−∞

exp

{
− 1

2

[
Z
′2 − 2Z

′
µB

σ2
B

+

Z2

Z
′2 − 2 Z

Z
′ µT

σ2
T

]}
1

Z
′ dZ
′

Set,

Ψ(Z,Z
′
) = exp

{
− 1

2

[
Z
′2 − 2Z

′
µB

σ2
B

+

Z2

Z
′2 − 2 Z

Z
′ µT

σ2
T

]}

Hence,

f(Z) =

exp

{
− 1

2

(µ2
B
σ2
B

+
µ2
T
σ2
T

)}
2πσBσTΦ(

µT
σT

)

[∫ ∞
0

Ψ(Z,Z
′
)
dZ
′

Z
′ +

∫ 0

−∞
Ψ(Z,Z

′
)
dZ
′

Z
′

]

Hence we have the similar setting as of Craig (1936). Hence using the same technique we

can show that the above function has a closed form expression with an infinite polynomial

function of |Z| with the coefficients are being a scaled version of the Bessel function of second

kind.

f(Z) =
e−

ρ2
1+ρ2

2
2

πΦ(ρ2)

[
Σ0K0 + (ρ2

1 + ρ2
2)
|Z|
Z!

Σ2K1 + (ρ4
1 + ρ4

2)
|Z|2

4!
Σ4K2 + ...

]
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where,

Kγ(Z) = 1
2(Z2 )γ

∫∞
0

e
−y−Z

2
4y

yγ+1 dy

ρ1 =
µB
σB and ρ1 =

µT
σT

,

Σr(ρ1ρ2Z) = 1 +
ρ1ρ2Z
r+1 +

(ρ1ρ2Z)2

(r+2)(2)2!
+ ...

with (r + k)(k) = (r + k)(r + k − 1)...(r + 1).

5.9.3 Proof of Lemma 3

MTB(ξ) =

∫ ∞
−∞

∫ ∞
0

eξtb
1

σB
√

2π
e
−1

2

(b−µB
σB

)2
1

Φ(
µT
σT

)σT
√

2π
e
−1

2

( t−µT
σT

)2
dtdb

=
1

2πΦ(
µT
σT

)σTσB

∫ ∞
−∞

∫ ∞
0

e
−1

2

[(b−µB
σB

)2
+
( t−µT
σT

)2−2ξtb
]

Now,

(b− µB
σB

)2
+
(t− µT

σT

)2 − 2ξtb

=
σ2
T b

2 − 2bσ2
TµB + µ2

Bσ
2
T − 2σ2

Bσ
2
T ξtb+ σ2

B(t2 +−2tµT + µ2
T )

σ2
Bσ

2
T

=
1

σ2
Bσ

2
T

{σ2
T b

2 + 2b(σ2
TµB + σB2σ2

T ξt) + (σ2
TµB + σB2σ2

T ξt)
2

−(σ2
TµB + σB2σ2

T ξt)
2 + µ2

Bσ
2
T + σ2

B(t2 +−2tµT + µ2
T )}

=
[b− (µB + σ2

Bξt)

σ2
B

]2
−

(σTµB + σ2
BσT ξt)

2 − µ2
Bσ

2
T − σ

2
B(t2 − 2tµT + µ2

T )

σ2
Bσ

2
T

=
[b− (µB + σ2

Bξt)

σB

]2
+
µ2
T

σ2
T

+
[t− (

σ2
T µBξ+µT

1−σ2
Bσ

2
T ξ

2 )

σT√
1−σ2

Bσ
2
2ξ

2

]2
−

(σ2
TµBξ + µT )2

σ2
T (1− σ2

Bσ
2
T ξ

2)
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(5.10)

Hence,

MTB(ξ) =

Φ(
σ2
T µBξ+µT

σT

√
1−σ2

Bσ
2
T ξ

2
)

Φ(
µT
σT

)
·
exp

{
1
2

(σ2
T µBξ+µT )2

σ2
T (1−σ2

Bσ
2
T ξ

2)
− 1

2

µ2
B
σ2
B

}
(1− σ2

Bσ
2
T ξ

2)1/2

Now the first moment of Z can be obtained from the first derivative of MTB(ξ) at ξ = 0:

∂

∂ξ
MTB(ξ)|ξ=0 =

{
φ(
µT
σT

)

Φ(
µT
σT

)

σT
µB

+ µBµT

}
µT
σT

Φ(
µT
σT

)exp

{
− 1

2

µ2
T

σ2
T

}

5.10 Some Posterior Calculations

5.10.1 Posterior Calculation for b˜g
P (b˜g | rest)
∝ exp

{
− 1

2σ2

R∑
r=1

||y˜r −
p∑
g=1

X˜ gr ⊗V
1/2
g b˜g||22

}

×
p∏
g=1

[
(1− π0)(2π)−N/2exp{−1

2
b˜′gb˜g}I(b˜g 6= 0˜) + π0δ0(b˜g)

]

= exp

{
− 1

2σ2

R∑
r=1

(y˜r −XrV
1/2b˜)(y˜r −XrV

1/2b˜)
}

×(1− π0)(2π)−p/2exp
{
− 1

2
b˜′gb˜g

}
I(b˜g 6= 0˜)

+exp

{
− 1

2σ2

R∑
r=1

(y˜r −XrV
1/2b˜)(y˜r −XrV

1/2b˜)
}
π0δ0(b˜g)
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where, Xr = (x˜1r, x˜2r, ..., x˜pr)n×p, b˜= (b˜′1, b˜′2, ..., b˜′p)np×1,

V = diag(V1,V2, ...,Vp)
np×np

Hence,

P (b˜g | rest)
= exp

{
− 1

2σ2

R∑
r=1

||y˜r −Xr(g)V
1/2
(g)

b˜(g)||
2
2

+
1

2σ2

R∑
r=1

(y˜r −Xr(g)V
1/2
(g)

b˜(g))
′
Xrg ⊗V

1/2
g b˜g

+
1

2σ2

R∑
r=1

b˜gV1/2
g
′
⊗X˜ ′rg(y˜r −Xr(g)V(g)b˜(g))

′

−1

2
b˜g
(

Ip −
1

σ2

∑
g

V
1/2
g ⊗X˜ ′rgX˜ rg ⊗V

1/2
g

)
b˜′g
}

×(1− π0)(2π)−p/2I(b˜g 6= 0˜)
+exp

{
− 1

2σ2

R∑
r=1

||y˜r −XrV
1/2b˜||22π0δ0(b˜g)I(b˜g 6= 0˜)

}

Set ΣΣΣg =

(
Ip − 1

σ2

∑
g V

1/2
g ⊗X˜ ′rgX˜ rg ⊗V

1/2
g

)
& µµµg = 1

σ2ΣΣΣg
∑R
r=1 V

1/2
g
′ ⊗X˜ ′rg

(
y˜r −Xr(g)V

1/2
(g)

b˜(g)

)
So,

P (b˜g | rest)
= (1− π0)|ΣΣΣg|1/2N(µµµg,ΣΣΣg)exp

{
− 1

2σ2
||y˜r −Xr(g)V(g)b˜g||22

+
1

2σ4
||ΣΣΣ1/2

g

( R∑
r=1

V
1/2
g
′
⊗X˜ ′rg(y˜r −Xr(g)V

1/2
g b˜g)

)
||22
}
× I(b˜g 6= 0˜)

+π0exp

{
− 1

2σ2

R∑
r=1

||y˜r −XrV
1/2b˜||22

}
π0δ0(b˜g)I(b˜g 6= 0˜)
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5.10.2 Posterior Calculation for τgj

P (τgj | rest)

∝ exp

{
− 1

2σ2

R∑
r=1

||y˜r −
p∑
i=1

Xrg ⊗V
1/2
g b˜g||22

}

×
p∏
i=1

N∏
j=1

(1− π1)2(2πs2)−1/2exp

{
− 1

2

(τgj −
∑
i6=j

wij
wi+

τgi)
2

s2/wi+

}
I(τgj > 0) + π1δ0(τgj)

= exp

{
− 1

2σ2

R∑
r=1

(y˜r −Xr(gj) ⊗V
1/2
gj b˜(gj))′(y˜r −Xr(gj) ⊗V

1/2
gj b˜(gj))

}

exp

{
1

2σ2

R∑
r=1

(y˜r −Xr(gj) ⊗V
1/2
gj b˜(gj))X˜ rgjτgjbgj

+
1

2σ2

R∑
r=1

X˜ rgjτgjbgj(y˜r −Xr(gj) ⊗V
1/2
gj b˜(gj))− τ2

gj

2

[
b2gj

σ2

R∑
r=1

x2
rgj +

wi+
s2

]

+
τgj
∑
i6=j

wij
wi+

τgi

s2/wi+
−

(
∑
i6=j

wij
wi+

τgj)
2

2s2/wi+

}
(1− π1)2(

2πs2

wi+
)−1/2I(τgj > 0)

+exp

{
− 1

2σ2

R∑
r=1

(y˜r −Xr ⊗V1/2b˜)′(y˜r −Xr ⊗V1/2b˜)
}
π1δ0(τgj)

Here, X˜ rgj = (0, 0, ..., 0, xrgj , 0, ..., 0)
′
.

Set, v2
gj =

(
wi+
s2

+
b2gj

σ2

∑R
r=1 x

2
rgj

)−1

ugj =
v2
gj

σ2

∑R
r=1(y˜r −X˜ r(gj) ⊗ V 1/2

gj bgj)X˜ rgjbgj +
v2
gjwi+

s2

∑
i 6=j

wij
wi+

τgj
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Hence,

P (τgj | rest)

= exp

{
− 1

2σ2

R∑
r=1

(y˜r −Xr(gj) ⊗V
1/2
(gj)

b˜(gj))′(y˜r −Xr(gj) ⊗V
1/2
(gj)

b˜(gj))
}

exp

{
− 1

2σ2
(
∑
i 6=j

wij
wi+

τgi)
2 +

1

2

u2
gj

v2
gj

}
Φ(
ugj
vgj

)N+(ugj , v
2
gj)(2πv

2
gj)

1/2(1− π1)2(2π2)−1/2I(τgj > 0)

+exp

{
− 1

2σ2

R∑
r=1

(y˜r −Xr ⊗V1/2b˜)′(y˜r −Xr ⊗V1/2b˜)
}
π1δ0(τgj)

5.10.3 Posterior Calculation for s2

P (s2 | rest)

∝
p∏
g=1

N∏
j=1

[
(1− π1)2(2πs2)−1/2exp

{
−

(τgj −
∑
i 6=j wijτgj)

2

2s2

}
I(τgj > 0)

+π1δ0(τgj)

]
× t(s2)−2exp

{
− t

s2

}
∝ (s2)−(M2 +2)exp

{
− 1

s2

[
t+

1

2

p∑
g=1

N∑
j=1

(τgj −
∑
i 6=j

wij
wi+

τgj)
2]}

where, M = #(τgj 6= 0) ∀ g = 1, 2, ..., p & j = 1, 2, ..., N .

5.11 Some Details for Data Analysis
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Table 5.5: Company names with corresponding ticker

Ticker Company Names

AL.1 ALCAN INC (RIO TINTO)
HON HONEYWELL INTERNATIONAL INC
ARV ARVIN INDUSTRIS INC (MERITOR)
C.3 CHRYSLER
CTB COOPER TIRE & RUBBER COMPANY
DAN DANA HOLDING CORP
DE DEERE & CO
ETN EATON CORP PLC
F FORD
GE GENERAL ELETRIC CO
GM GENERAL MOTORS
SPXC SPX CORP
GR GOODRICH CORP
GT GOODYEAR TIRE & RUBBER CO
JCL JOHNSON CONTROLS INC
ANV.1 AEROQUIP-VICKERS INC
OC OWENS CORNING
PPG PPG INDUSTRIES INC
AOS SMITH (A O) CORP
UTX UNITED TECHNOLOGIES CORP
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Table 5.6: Covariate List

Covariate Code Covariate Name

act CURRENT ASSETS - TOTAL
at ASSETS - TOTAL
cogs COST OF GOODS SOLD
gp GROSS PROFIT (LOSS)
lct CURRENT LIABILITIES - TOTAL
lt LIABILITIES - TOTAL

ppegt PROPERTY, PLANT AND EQUIPMENT - TOTAL (GROSS)
sale SALES / TURNOVER (NET)

Table 5.7: Response Variable

Response Code Response Name

revt REVENUE TOTAL
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