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ABSTRACT

ESTIMATION OF STATISTICAL NETWORK AND REGION-WISE
VARIABLE SELECTION

By
Sayan Chakraborty

Network models are widely used to represent relations between actors or nodes. Recent
studies of the network literature and graph model revealed various characteristics of the
actors and how they influenced the characteristics of neighboring actors.

The first methodology is motivated by formulating a large network through the Expo-
nential Random Graph Model and applying a Bayesian approach through the reference prior
technique to control the sensitivity of the inference and to get the maximum information
from the model. We consider a large Amazon product co-purchasing network (customers
who bought this item also bought other products), and the purpose is to show how the
blending of the Exponential Random Graph Model and Bayesian Computation efficiently
handles the estimation procedure and calculates the probability of certain graph structures.

The second methodology we discuss is an approach to a network problem where the
network adjacency structure remains unobserved, and instead we have a nodal variable that
inherits a hidden network structure. The key assumption in this method is that the nodes
are assumed to have a specific position in an Euclidean social space.

The main analysis is based on three big U.S. auto manufacturers and their suppliers, and
recent research has explored the differences of the financial markets and an emphasis has
been given to reveal the strategic interactions among companies and their industry rivals
and suppliers, all of which have important implications for some fundamental questions in

the financial economics. Economic shocks are transmitted through the customer supplier



network and the whole industry could be affected by these shocks as they can move through
the links of the actors in an industry. We developed an algorithm that captures the latent
linkages between firms based on sales and cost data that influence various financial decision-
making issues and financial strategies.

Finally, we extend the problem of network estimation to Bayesian variable selection
whereby an observed adjacency structure between different regions has been considered.
The main idea is to select relevant variables region-wise. We investigate this problem using
a Bayesian approach by introducing the Bayesian Group LASSO technique with a bi-level se-
lection that not only selects the relevant variable groups but also selects the relevant variables
within that group. We use spike and slab priors, along with the Conditional Autoregressive
structure among the model coefficients, which validates the spatial interaction among the
covariates. Median thresholding is used instead of posterior mean to have exact zeros for
the variables that are not relevant. We finally implement the problem in the auto industry
data and incorporate more variables to see whether the estimated adjacency structure helps

us to indicate the relevant variables over different manufacturers and suppliers.
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Chapter 1

Introduction



1.1 Social Networks

Social nertwork modeling has become increasingly popular in past few years due it’s ability
to find causal links between nodes and for explaining those links in probabilistic terms. It
is very important to model irregular social behavior that lies beyond the regular variability
and brings stochasticity in the model. Moreover in a complex social environment, it is very
important to not only have a probabilistic explanation of the edges but also to explain some
specific structure to explore some interesting social interactions.

A statistical network is a representation of relational data in the form of a mathematical
graph where each node represents an individual and a relation between a pair of nodes is
represented by an edge between those two nodes. Network data typically consist of a set of
N nodes and a relational tie y;; measured on each ordered pair of nodes. This framework
has many applications in social network literature. The simplest situation is when y;; is a
dichotomous variable that indicates the presense or absense of some relation of interest. The
data are often represented by an N x N socio matrix or the adjacency matrix Y. Various
probabilistic models of network relations have been developed within past few years.

A statistical network is a graph consists of a set of N nodes (or Vertices)= {ny,no,
...,ny}. and a set of L edges (or connections) = {ly, o, ..., 1, } that denotes the links between
nodes. An Adjacency or Sociomatrix Y of dimension N x N can be used to represent the

network by,

(

1 if edge exists from node n; to
Yij = node nj, (1.1)

0 Otherwise.

\



Holland and Leinhardt (1981) includes the parameters for the propensity of ties to be
reciprocal, as well as parameters for the number of ties and individual tendencies to give or
receive ties. Although this model assumes the (g) dyads to be independent and known as
p1 model. Frank and Strauss (1986), Pattison and Wasserman (1999) and Wasserman and
Pattison (1996) have generalized the idea of p; model to p* model through dyad dependency
assumption.

Wang and Wong (1987) developed a stochastic block model where nodes (firms) belong
to some prespecified groups. Nowicki and Snijders (2001) present a model where group
membership is unobserved and the dyads in a social network are conditionally independent
given the latent class membership of each actor. In the spatial context, Castro et al. (2015)
developed a model where latent group membership is inferred using spatial clustering with
an unknown number of clusters. Likewise, in the classical spatial econometrics literature,
Bhattacharjee and Holly (2013) develop GMM methods to infer on a latent network of
members in a committee; for related classical inferences on latent spatial networks, see also

Bhattacharjee and Jensen-Butler (2013), Bailey et al. (2015) and Bhattacharjee et al. (2015).

1.1.1 Exponential Random Graph Model

Frank and Strauss (1986) characterized the exponential random graph model (ERGM) that
allows an estimation of various graphical structures through an assumption of dyad depen-

dence. The typical form of exponential random graph model (ERGM) is given by,

(1.2)



where, S(y) is a known vector of graph configuration, 6 is the parameter corresponding to
the configuration S(y), c¢(0) is the normalizing constant.

ERGM is very important in the sense that it goes beyond the idea of discovering the
link probability between a pair of nodes by considering some graphical characteristic among
a set of nodes. That is, S(y) can represent different network configurations, if we observe
{y34,v43} and {y12,y21}, as means we can expect to have some reciprocating characteristic
between the nodes, which means if node ¢ is linked with node j, then we can expect j will
also be linked with i. A typical example of such links can be a friendship network. But this
configuration might not be true in all instances. For example, we can think an electricity
power supply network that is unusual to be reciprocated. The corresponding parameter
estimates the frequency of appearance of the specific configuration present in the network.

The main issue that the Maximum Likelihood Estimation of the ERGM model faces is

t
to calculate ¢(f). Suppose G denotes all possible graphs of Y. Hence, ¢() = E e? 5W).
G

Now G consists of 2(3) possible undirected graphs and it is extremely difficult to evaluate
the normalizing constant even for moderately small graphs.

To deal with the complex issues of computation intensity with ERGM for even moderate
sized network, Besag (2000), Handcock (2000), Snijders (2002) have developed a likelihood-
based inference based on MCMC algorithms. Although, Monte Carlo maximum likelihood
estimation suffers from the problem of model degeneracy as we get a very poor estimate of
the normlizing constant if the initiatial value of @ lies in the degenerate region. Approxi-
mate maximum likelihood approaches have been developed by Frank and Strauss (1986). A
pseudolikehood approach is proposed by Strauss and Tkeda (1990) and Wassarman and Pat-
terson (1996). But the statistical properties of pseudolikelihood estimators in this context

have been criticized by Besag (2000) and Snijders (2002). Recent development on ERGM

4



has led to new specification that have been discussed by Hunter and Handcock (2006), called

the curved ERGM.

1.1.2 Bayesian ERGM

A Bayesian extention to the Exponential Random Graph Model has been discussed in Caimo
and Friel (2011) where they have considered 7(6 | y) = Py(y)m(0), where a prior distribution
7(0) is placed on # and interest is in the posterior m(6 | y). Such a Bayesian treatment
easily solves the problem of evaluating the value of normalizing constant in the likelihood
estimation case. A Bayesian treatment aslo solves the problem of model degeneracy for
MCMC maximum likelood technique. Although, the posterior of this Bayesian problem
becomes “doubly intractable” due to the intractibility of sampling directly from the posterior
distribution but also due to the intractibility of the likelihood within the posterior. A simple
implementation of Metropolis-Hastings algorithm proposing to move from 6 to 6* would

require the calculation of the ratio,

69*'S<y>w<e*) c(6)
Swr) <0

which is unworkable due to the normalizing constant ¢(6) and ¢(6%).
To handle the “doubly intractable” posterior, Murray et al. (2006) and Caimo and Friel

(2011) proposed an exchange algorithm with samples from an augmented distribution.

T(0%, 4", 0 | y) o< Py(y)m(6)n(6" | 6)Pp+(y") (1.3)

where Py« (y*) is the same distribution as the original distribution on which the data y is



defined. h(6* | €) is the proposal distribution. Clearly marginal distribution of @ is the
posterior distribution of interest.

The steps for exchange algorithm are as follows:
1. Draw 6* ~ h(x | 0)
2. Draw y* ~ Py« (x)

3. Propose the exchange move from 6 to 6* with probability

/ /
0 SW*) r(0* )™ S(y)
a:min(l,e 7 Y (@ )h(0|9)e/ y)
e SWr(0)h(0* | 9)ef™ ST

1.1.3 Latent Space Model

In a highly influential paper, Hoff et al. (2002) developed a latent variable model where node
is assigned with a latent position z; in the social space. The idea is that the probability of
a relational tie between two individuals (or nodes) are higher if these individuals are similar
in the unobserved characteristic space. In this context the social space refers to a space of
unobserved latent characteristics that represent potential transitive tendencies in network
relations. The resulting networks are probabilistically transitive since © — j and 7 — k
suggests ¢ and k are probably not far apart in the social space. Most recently, handcock and
Raftery (2007) developed a model based clustering of social networks where they modeled
the latent positions as a mixtures of multivariate normals.

The latent space model takes a conditional independence approach to modeling by as-

suming the presence or absence of a tie between two nodes that independent of all other ties,



given the unobserved positions in the latent space of the two nodes.

P(Y | Z7Xa 0) = Hp(yl,j ’ zivzjaxi,jvg)
]
Here X and x; ; are observed characteristic that are dyad specific and may be vector

valued and # and Z are respectively parameters and the unknown latent positions.

Consider a logistic regression model as below,

nij = logodds(y; j = 1| 2, 2,z j, v, )

/
=a+Bwi;— f(z, %)

The function f is chosen to be simple which represents the forms of network dependence.

Here we assume,

215e-y2n ~ Normal (0, 022)

The latent space model is inherently reciprocal and transitive. If ¢ — j ihen it means the
distance between node ¢ and node j is small, which makes j — ¢ more probable. Again i — j
and 7 — k impliy the distance between node 7 and node k is not two large, which makes the
event j — k more probable.

f(zi,2) can be replaced by any arbitrary set of distances d; ; satisfying the triangle
inequality. In general, we prefer to model the d; ;’s as distances in some low-dimentional

Euclidean space for reasons of parsimony and ease of model interpretablity.



We say a set of distances d; j represents the network Y if

{dij > cVi,j:y;; =0}

and

{di»j <c Vi,j “Yig = 1} (1.4)

We say that a network is dj, representable if 3 points z; € R such that the distances d; ;
satisfy (1.4). Hence, dj, representability is equivalent to being able to find a set of points
for the actors such that ¢ ~ j iff 7 and j lie within k dimnetional unit balls centered around
each other.

Given a network data Y = y; ; and possible covariates of the model X = z; ;, the goal is
to estimate the unknown parameters of the model, denoted as . The parameter 6 includes
the regressor coefficients «, 8 and the variance of the random positions of the nodes in the
latent space.

We take a Bayesian approach for estimation using a prior probability distribution p(0).

Conditional distribution of the parameters given the information in the data is

p(0 1Y) =p(Y | 6) xp(6)/p(Y)

The MCMC based inference constructs a dependent sequence of 6 values as follows:

e Sample a parameter 6* from a proposal distribution h(0 | 6});



e Compute the acceptance probability

I

e a3, L5, 1)
Y TOp@)E" [ )

o Set 01 = 0" with probability r and 0, = 6 with probability 1 — .

This algorithm produces a sequence of # values having a distribution which is approxi-
mately equal to the target distribution p(6 | Y). A point estimate of  is often taken to be

the posterior mean, which is approximted by the average of the sampled 6 values.

1.2 Bayesian Variable Selection

Recent developments in statistical literature put a huge emphasis on variable selection for
the explosive sample space due to the increase in dimention, nice frameworks have been
developed to handle the variable selection procedure in the Bayesian framework.

Liang, Song and Yu(2013) introduced the idea of Bayesian Subset Regression (BSR)
starting with a subset model and taking Gaussian priors on the model coefficients BZ{S and
they showed that if the true model becomes sparse, i.e., lim;, oo Zﬁl | B; |< oo where Py,
is the model dimention, BSR reduces to EBIC. Under some mild conditions, they have also
shown the posterior consistency of the model. They have also proposed a variable screening
procedure based on the marginal inclusion probability of the predictors and they have shown
that it has the same property of Sure Independence Screening (SIS) where we rank predictors
according to their marginal utility and then selects a subset of the predictors of the marginal
utility exceeding some predifined threshold.

Bondell and Reich (2012) proposed a variable selection criterion based on the posterior



credible region. Here they first fit the full model using all predictors and then used the
highest posterior density region of 5 to have a sparse estimate. This sparse vector then
determines the selected model.

Penalized regression is a method that not only selects the relevant variables but also
estimates the regression coefficients simultaneously. LASSO regression (Tibshirani, 1996)
provides a decent solution by putting upper bound on the Lj-norm. Suitably selecting the
penalty parameter can provide an exact zero estimate for the corresponding irrelavant vari-
ables. Tibshirani (1996) pointed out that the LASSO estimator can be interpreted as the
maximum apostiriori (MAP) estimator when the regression parameters have independent
and identical Laplace priors. Least Angle Regression (LARS) provides more attractive so-
lution since it follows the full LASSO solution path with the cost of only one least square
estimation (Efron et al., 2004).

Park and Casella (2008) introduced the LASSO in a similar Bayesian context where they
introduced a laplace prior on the penalty parameter that boils down the whole problem in to a
Bayesian context. They have also used the fact that the laplace distribution can be expressed
as a gamma scaled mixture of Normal that facilitates the posterior computaion. A major
advantage of using Bayesian LASSO over Frequetist LASSO is it provides reliable standard
error over the non-Bayesian method (Knight and Fu, 2000; Chatterjee and Lahiri, 2001;
Tibshirani, 1996). More specifically, the LASSO estimator is equivalent to the posterior mode
with independent laplace priorfor the coefficients. Using the fact that laplace distribution
can be represented as a scale mixture of normals, Park and Casella (2008) developed a fully
Bayesian hierarchical model and efficient Gibbs sampler for the posterior compuations.

For large n small P regression, Liang, Truong, Wong (2001) established an explicit re-

lationship between the Bayesian approach and the penalized likelihood approach for linear

10



regression. They showed empirically that Bayesian Subset Regression (BSR) that is choosing
priors such that the resulting negative log-posterior probability of the subset model can be
approximately reduced to frequentists subset model selection statistic upto a multiplicative
constant.

Selecting relevant variables in a high-dimentional setup is a very common feature in
various Bayesian and econometric applications. In an additive model, a set of continuous
predictor may be represented as group of predictors. Huang et al. (2012) provides a nice
insight for the application of group variable selection. Yuan and Lin (2006) proposed a group
LASSO method that provides a group variable selection.

Bayesian group LASSO technique has been developed by Kyung et al. (2010) and Ramen
et al. (2009) that handles the problem of selecting the variables at the group level only. If

we consider a linear regression model of the following form,

p
Yi= Z XgBg +e
g=1

where € ~ N(0,0%Iy), Bg is a coefficient vector and X is the covariate matrix for the

corresponding gth group and consider the minimization problem as (Simon et al; 2012),

p p
mﬁin (Hgi = " XBlls + MBI+ A2 D Hég\lfz,)
2 g=1

g=1

then the second penalty term induces a variable selection in the group level and the first
penalty term induces a variable selection within group level. It can easily shown that the
laplace prior corresponding to above minimization problem can be expressed as a scale

mixture of normals and hence a full Bayesian implementation would be easy.

11



A mixture prior with a point mass at zero is a very effective tool to have a controled
amount of shrinkage in the variable selection technique. Spike and Slab priors (Ishwaran
and Rao, 2005) and zero inflated mixture priors (Mitchell and Beauchamp, 1988) are very
effective technique for Bayesian Variable Selection.

We set up the following hierarchical model as:

yilzi 8,07 ~ N(QQZ-@GQ)
Brldns i ~ N(0, ¢77)

Ok | pvo ~ (1= p)oug () + por(.)
702 | b1, by ~ Gamma((ay, az)
p~U[0,1]

0% ~ Gamma(by, by)
Hence, the above hiearchical model implies:
Brlisp ~ (1= p)N(0,007) + pN (0, 77) (1.5)

The selection of 85 can be controled by the two normals as the shrinkage effect vy pulls
the first normal around 0 (spike) and the significance of f, is controled through the second
normal.

Zero inflated normal mixture priors in the hierarchical formulation for variable selection
have been used in the linear regression model (George and McCulloch, 1997). Point mass
mixture priors are also studied by Johnstone and Silverman (2004) and Xu and Ghosh

(2015) for estimation of possibly sparse sequence of Gaussian observations with an emphasis

12



on using the posterior median instead of the Posterior mean, which has been proven to be
more effective. A very strong result has been shown in Johnstone and Silverman (2004) and
Yuan and Lin (2005) where they have combined the power of point mass mixture priors and
double exponential distribution and the resulting empirical bayes estimator is closely related
to LASSO estimator. Lykou and Ntzoufras (2013) proposed a similar approach by specifying
a shrinkage parameter A through Bayes factor and Zhang et al. (2014) generalizes this
prior for group LASSO technique and proposed a hierarchical structured variable selection

technique.
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Chapter 2

Reference Prior Development in

Exponential Random Graph Model
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2.1 Main Idea

The key difference in Bayesian literature from the frequentist is that Bayesian uses prior
information on the model parameters that, in some sense, makes the model more robust
and protects it from being carried out by sampling errors or through a lack of samples.
Some complex computational issues that arises in the frequesntist approach can also be
overcomed through the implementation Bayesian techniques. It is therefore important to
have a strong knowledge about the prior distribution of the model’s parameters. In many
situations, we may not have a strong hold on the priors and a stringent informative prior
may drive the problem to produce some unrealistic estimates of the parameters. So it is
sometimes necessary to be non-informative about the prior knowledge.

The key idea of a Bayesian problem is to choose a prior in such a way that it does not
become very stringent and can produce the estimates in a data-driven fashion. The problem
is then to figure out a non-informative prior that can extract the maximized information
to build the posterior. (Bernardo 1979), Berger and Bernardo (1989, 1991a, 1991b) have
developed the idea of reference prior that can maximize the information between the prior
and the posterior for a given problem through Kullbeck-Libeler (K — L) divergence.

Suppose we have data Y parameterized by © with sufficient statistic 7'= T(Y").

Definition. A reference prior is a prior that maximizes K — L divergence from the posterior

(0| t) averaged over the distribution of T i.e., we want to maximize

[0,7) = / / p(B)7(0 | t)zog”;i g)t)dedt (2.1)

over all (0).
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The reference prior satisfying equation (2.1) maximizes the posterior information ob-
tained from the class of all the default priors. In this case, we are looking for such a prior so
that our data can have its maximum impact on the posterior estimates. Moreover, posterior
distribution becomes highly sensitive with the choice of the informative prior. If we intro-
duce more covariates in the model, the sensitivity increases. We would then like to use the
virtue of the default priors that do not put any prior information on the parameter estimates
and relies on the fact that it optimizes the posterior estimates in a data-driven information
theoretic technique.

ERGM model faces a key theoritical issue of working with a single sample. In a typical
ERGM problem, we work with one observed instance of the adjacency structure. Hence,
technically, ERGM operates in a limited data atmosphere where the data driven information
is very limited. Hence, it is very important to have a procedure that can optimize the

extraction of the available information.

2.2 Reference Prior for One Parameter Erdos-Reyni

Model

The main purpose of this chapter is to implement the reference prior technique for Bayesian
ERGM. Note that the main purpose of introducing the reference prior for an ERGM model is
that we can resolve the problem of the sensitivity of the posterior estimates caused through
the informative priors as well as provide the posterior estimations that are optimized in a
information theoretic sense.

The simplest example of one parameter ERGM model is the Erdos-Reyni network model.

In this modeling scenario, we assume the edges are independent with fixed edge probability
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6 (Erdos and Reyni, 1959). The model can be written as,

fylo)=T[¢%ia-0'"Y o0<o<1 (2.2)

i#]
This model concentrates on the existence of the single possible edge configuration y;;,
which is parameterized by 6. Here 6 is called the edge density parameter. Reparameterization

of (2.2) gives,

Fyln) ~exp{nd v} (2.3)
i#]

So this is an Exponential Random Graph Model. Reference prior is defined in terms of
mutual information, and since the mutual information is itself invariant, the reference priors
become invariant under reparameterization. So we can calculate reference prior either for 0
or for n.

Suppose z be the vector of observations from the model and g(k) = (z1,29,...,2}) be a
vector of independent replicates of the vector observations from the model.

Let ¢, = ty(z1, 22, ...,x) € 73, be any sufficient statistics of the replicated observations.

Let us define,

and,

$26) = con( [ plti | Ologl” (6 | 1)t
Tk
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Theorem (Berger, Bernardo, and Sun; 2009). Assume a standard model M = {p(z |
0),z € X,0 € © C R} and P is the standard class of candidate priors. Let 7*(0) be a
continuous strictly positive function such that the corresponding formal posterior 7*(0 | t;.)

1s proper and asymptotically consistent. Define for any interior point 6y of ©,

w0
J0) =1 7 @)

1. If each f1.(0) is continuous and, for any fized 6 and sufficiently large k,

{f1(0)/ f1.(60)} is either monotonic in k or bounded above by some h(0) which is inte-

gratable on any compact set, and,

2. f(0) is a permissible prior function,
then f(0) is a reference prior for this model M and prior class P.

Since the analytical derivation of a reference prior may be technically demanding due to
a complex model, we can use the following algorithm for the 1-parameter family of distribu-

tions.

Algorithm (Berger, Bernardo, Sun, 2009).

1. Initial values:

Choose a moderate value for k; Choose an arbitrary positive function 7*(6);

Choose the number m of samples to be simulated.

2. For any given 0, repeat, for j =1,2,...,m:
Simulate a random sample {1, x9j, ..., 1} of size k from p(z | 0);
Compute numerically the integral c; = [g sz:l p(xij | 0)7*(0)do;
evaluate 1 (0) = log(Hle p(zij | 0)7*(0)/c)).
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3. Compute 7(0) = exp{m 1 Z;nzl 7;(0)} and store the pair {0,7(0)}.
4. Repeat routines (2) and (3) for all 0 values for which the pair {0, m(0)} is required.

For the 1-parameter Erdos-Reyni ERGM model, we can compute the reference by using
the notion of maximizing the K — L divergence principle. Figure (2.1) shows the reference
prior for 6 in the Erdos-Reyni model. Now the Jeffrey’s prior for # in the one parameter

n

Erdos-Reyni model is given by () = 5(1-0)

. It is then interesting to see the resemblance
between the Jeffrey’s prior and the reference prior # in the 1-parameter model. It is also a
nice example to see that the reference prior in one parameter model is nothing but Jeffrey’s

prior under certain regularity conditions.

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 2.1: Reference Prior for 6 in 1-Parameter (Erdos-Reyni) network Model

2.2.1 ’Sampson’s Monk Data’ Implementation

We implement the reference prior approach for one parameter, Erdos-Reyni Model to Samp-
son’s Monk dataset, which provides an adjacency structure representing the interaction be-

tween 18 monks in a monastery. Our target is to get the posterior estimate of the model
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parameter 7. Since the purpose of this paper is to catch the sensitivity due to informative
priors, we compare the posterior through the reference prior with a non-informative uniform
prior and with normal priors with a 0 mean and four different values for the standard de-
viation. The output shows the sensitivity of the posterior due to the informative normal
priors.

It is important to address prior sensitivity in such a simple one-parameter modeling
situation. If we incorporate more parameters in the model by introducing more complex
structures in the network, we expect the sensitivity to increase further. The use of non-
informative priors, such as a uniform prior, will resolve the issue of prior sensitivity, but it

is not guaranteed to provide the maximized information with respect to the prior.

Uniform Prior Reference Prior Normal Prior

Figure 2.2: Posterior density of 1 for monk dataset with respect to Uniform prior, Reference
prior and normal prior with o = 0.01
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Uniform Prior Reference Prior Normal Prior
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Figure 2.3: Posterior density of 17 for monk dataset with respect to Uniform prior, Reference
prior and normal prior with o = 0.1

Normal Prior Reference Prior Normal Prior
z o z z
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— T e e T
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Figure 2.4: Posterior density of 17 for monk dataset with respect to Uniform prior, Reference
prior and normal prior with ¢ =1

Uniform Prior Reference Prior Normal Prior
z z z "
HIEE &« H
—— — — T
20 18 -16 -14 12 -10 20 18 -16 14 -12 -10 20 18 16 14 -12 10

Figure 2.5: Posterior density of 17 for monk dataset with respect to Uniform prior, Reference
prior and normal prior with ¢ = 100
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2.3 Reference Prior for Two Parameter Dyadic inde-

pendent network Model

To introduce a two-parameter dyadic independent network model, we first decompose Y into
(g‘) dyads of pairs, D;; = (y;;,yj;) for i < j. To describe the joint distribution, we extend
our independence assumption from the edge independent Erdos-Reyni model up to dyads.
Here, we consider reciprocated edges along with single edges. We can then write our model

as,

Fy | 01,02) ~ exp(61> yij+ 02> yijuji) (2.4)
i#] i<j

Here, Z yi; denotes the number of edges in the network and Z Yijyji denotes the
i#] i<j
number of mutual ties. In this modeling scenario, we define #; as the edge density parameter
and 9 as the reciprocity parameter.

We can extend the one-parameter reference prior idea to a two-parameter case through the
sequential scheme (Berger and Bernardo, 1992). That means we first arrange our parameters
in terms of their inferential importance; in particular, the first parameter should be the
parameter of interest. For the dyadic independent model, obviously our parameter of interest
would be 5. Since the normalizing constant is unknown and hard to calculate for the dyadic
independent model, we try to solve the problem in a Bayesian setup. Now the computation of
a reference prior requires a closed form expression of the likelihood function that is intractable

in a ERGM setup even for a moderately large network. Therefore, to facilitate the reference

prior computation, we approximate the likelihood function through a pseudo-likehood that
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is given by,

PL(61.02 1Y) =[P =11v;)
i#]
| P 25
275_] 1 +e 1 2 ]
where yijC denotes the network Y, except nodes i and j. A theoretical validation of this
approximation can be followed from Strauss & Ikeda (1990) and Besag (1974, 1975) where

they have shown that likelihood maximization of (2.4) is equivalent to the maximization of

(2.5).

2.3.1 Methodology for Derivation

We first consider the fact that a two-parameter dyadic ERGM is asymptotically normally
distributed since it is nothing but a two-parameter exponential family.

Suppose © = {01,651 —o00 < 0] < 00;—00 < 69 < o0} is the parameter space of the
two-parameter dyadic independent model.

Let us consider a nested sequence of {©'} of compact subsets of © such that U, ol =e.
The key technique relies on the fact that we arrange the model parameters by importance

with respect to the model. We calculate the density 7TZ2 (01 ] 02), as

wh(61 | 02)
x cap{ 3" p(Y | 61, 62)logp(01 | Y, 05)} (2.6)
Y
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and,

7t (01, 09)

w0 | 6)eap{ Y p(Y | 62)logp(Ba | Y) } (27)
Y

The key advantage here is the pseudo-likelihood approximation and since we have the
assumption of conditional independence over the dyads, the single observed network of size
n induces a dyadic model with (g) replications. In a sequential set up, we will be considering
the distribution of 81 for fixed 09 and also distribution of 9. For a fixed 09, and each term of
(2.5) is an exponential function of #1 and hence it is twice continuously differentiable w.r.t

01. Hence we have,

In[[ PL(61 + 661 | yij, 62)
ij
OlnPL(01 + 001 | y;5,02)
lnHPL 01 | yij, 0) + Z
00
,] \/_ !
" O2InPL(6y + 661 | yij,ez)

+% ) 06,00,
2,]

where, 0, = \/Lﬁ Now the second term is asymptotically normal by Central Limit Theorem
and the third term converges to fisher information matrix 7(§) in probability. Hence, by
LeCam (1960) we have the pseudolikelihood is locally asymptotically normal and hence
regular which means pseudolikehood is asymptotically normal.

Similarly, each term of (2.5) is twice differentiable as a function of 5.
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Suppose I(#) be the Fisher information matrix where,

82
I;;(0) = _E9<89i69jlogf<Y | 91,92)>

Now,
2 2 01402y
M _ Z{ ylje 1] }
002 Z e J1702vi5)2
and
9’PL ef1+02 ef1 ef1+02
E<_ 2>:”W_1) o+0 { o 7 9}
907 (14e1702) L1461 14 01702
Similarly,
E< 82PL> ( 1){ 01 . ef1+02 }{ 1 . ef1+02 }n(n—l)—l
003 (14+e1)2 (14 ef1102)2) L1 L ef1 1 4 01102
and,

( 92PI ) ( 1) 691+02 { 601 . 691+02 }n(n—l)
062001/ (1+ef1102)2 L1 4 ef1 14 01102

Therefore we get

ef1 ef1+02 }Qn(n—l)—Q 1102 ef1

1(6 :nQn—12{ +
10 = - DA T R
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Now we set, S(6) = (1(8))~L.
In a two-parameter setup, we can set S(f) = {((a;;)) : 1 <i<2,1 <5 <2},
Now suppose S; be the upper-left j x j corners of S and set H; = S;l. Now if 7;(0) be

the lower-right j x j corner of H;, then we have

{ 691 691+02 }n(n—l)—l

1 0 01+06

h1(9) _ - n<n i 1) 1+e”1 1+e21 2 .
ail (1+691+92) (1+e91)

691 +09 + 691

and

601 691+92

601 691+92
. YR
(1+ef)? (14 eh1702)2 L4 el 1401702

ho(6) = a1 = n(n — 1){ }”(”—1)—1

The above formulation gives the explicit result for the probabilities given by equations

(2.5) and (2.7) by,

\h2(9)!1/2[ ol (o )(91)

5(01 | 0 2.8
7T2( 1| 2) f@l ‘hQ 1/2d91 ( )
and,
i (01, 09)
mh(01 | O2)cxp{E'[(1oglh1 (O))I02]} Igi g, g, (02)
Jot (o, o) {3 EL [(Tog|h1 (0)])]02]d62}
where,

E1[9(0)]62) = (0)7h(61 | 62)d6;

/ g
{01:(01,09)€0!}
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Typically, we determine the reference prior for the two-parameter dyadic independent

model as,

(2.9)

where, 0* is any fixed point on © for which, the following condition satisfies,

EY D 0]Y),7(0]Y)) — 0 as | — oo

where D(g, h) defines the K — L divergence between densities g and h.

Figure 2.6: Reference Prior Heatmap for a Two-Parameter Dyadic Independent Model
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2.4 Simulation Study for Dyadic Independent Model

In this section, we will be using a simulated network with node size N = 50. We restrict our
simulation to a sparse network as most of the real-world examples generate sparse networks
and the idea is to check how the reference prior can utilize its virtue of maximizing the
information from the data to get the posterior estimates.

The key feature of Exponential Random Graph Model is that the specific structure is
inherent in the model through specific parameters. In our application, we will try to see a
graph where we believe that it has a dyadic feature, which means the network is directed and
we are not going to see the network features beyond two nodes. In the current progress in
network literature and computer science, the key issue is to estimate a large sparse network
where most of the dyads are empty. This creates difficulty in the mixing of the MCMC
chain since the chain involves most of its time to linking the empty dyads in case of a sparse
network. The usual remedy (see Hunter et al., 2008) is to use a default “tie no tie” (TNT)
sampler where we divide the whole set of dyads into two sets, one with all the links and
another with no links, and then we pre-assign probabilities for these two sets and draw dyads
from these two sets instead of drawing randomly from the whole network. The advantage
of this technique is that most of the real-world networks are sparse and the sampler gives
more chances to the set with edges to play most of the part in the MCMC chain. Moreover,
we can tune the probability of the two sets to gain a better mixing since we try to control
the degree of sparsity of the estimated network. In this technique, our computation does
not depend on the size N of the whole network, but instead our computational complexity
becomes O(m) where m is the sample size to be selected from the two sets at each iteration

step.
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2.4.1 Scenario 1

In the first scenario, We set 81 = —3 and #9 = 3. We ran the iteration 40,000 times with
a burn-in period of 20,000. We took a proposal distribution of N (0, (0.25)2), which makes
the acceptance rate of the MCMC sampler stay around 20%. The posterior output of the
MCMC chain, along with the auto-correlation plot and the MCMC iterations, is shown from
Figure 2.7 to Figure 2.12b. We compute the posterior using two different default priors,
first with U(—o00, 00) and the second with the reference prior for the two-parameter dyadic
independent model. For decreasing the autocorrelation between the MCMC samples, we

apply a thinning process with n = 5.

MCMC iterations

th1
7 -
[EEEEN

I T T T I
0 5000 10000 15000 20000

iterations

MCMC iterations

th2
1 4 7
LLrrrdld

I T T T I
0 5000 10000 15000 20000

iterations

Figure 2.7: Scenario 1: MCMC iterations for #; and #9 with uniform prior
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Figure 2.8: Scenario 1: Histogram for posterior distribution of 61 & 65 with unoiform prior
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Figure 2.9: Scenario 1: Auto-correlation plot for the MCMC iteration of 1 & 09 with uniform
prior

30



MCMC iterations

th1
4 2
L1 11

T T T T T
0 5000 10000 15000 20000

iterations

MCMC iterations

T T T T T
0 5000 10000 15000 20000

iterations

Figure 2.10: Scenario 1: MCMC iterations for 1 and 69 with Reference prior
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Figure 2.11: Scenario 1: Histogram for posterior distribution of 81 & 6 with reference prior
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Figure 2.13: Scenario 2: Histogram for posterior distribution of #; & 69 with unoiform prior

2.4.2 Scenario 2

In the second scenario, we set #; = —5 and 69 = 5. We ran the iteration 40,000 times with
a burn-in period of 20,000. We took a proposal distribution of N(0,(0.3)?), which makes
the acceptance rate of the MCMC sampler stay around 20%. The posterior output of the
MCMC chain, along with the auto correlation plot and the MCMC iterations, is shown from
Figure 2.13a to Figure 2.16b. We compute the posterior using two different default priors,
first with U(—o00, 00) and the second with the reference prior for the two-parameter dyadic
independent model. For decreasing the autocorrelation between the MCMC samples, we
apply a thinning process with n = 5.

It can be seen comparing the different prior setup in the two different scenarios that
the autocorrelation for the MCMC iterations after thinning is decreasing faster (at around
lag 50 in the first scenario and at around 100 in the second scenario) in the reference prior

setup than the uniform setup (at around lag 100 at the first scenario and at around 150 in
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Figure 2.14: Scenario 2: Auto-correlation plot for the MCMC iteration of 61 & 0o with
uniform prior

theta_1 theta_2
o
o _ —
S .
@
o
3 L
o -
S | &
o —
N —
o
o |
Q =]
o N
S
N —
— 5 g
g 8 § B 7
3 g - =1 —
T 9 E2
e - 13
w I
o
f=1 o |
o _| o
S ]
3
o
8 S
wn n
o - L o

“10 -8 -6 -4 -2 2 4 6 8 10

Figure 2.15: Scenario 2: Histogram for posterior distribution of #; & 69 with reference prior
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Figure 2.16: Scenario 2: Auto-correlation plot for the MCMC iteration of 61 & 9 with

reference prior

Table 2.1: Table for Posterior Mean and Standard Deviation

H Scenario’s H Parameters Posterior-Mean Posterior-SD H

SCENARIO 1

Uniform Prior 01 -3.672 0.982
0o 3.619 0.974

Reference Prior 01 -2.530 0.922
0o 2.548 0.936

SCENARIO 2

Uniform Prior 01 -5.229 1.560
09 5.220 1.551

Reference Prior 01 -4.490 1.464
0o 4.510 1.448

the second scenario). Thus, we need more iterations compared to reference prior setup in

uniform setup to achieve effectively independent draws.
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2.5 Discussion

This paper is dedicated to developing a default prior setup in a Bayesian modeling scenario
that not only overcomes the issue of sensitivity of the informative priors but also integrates
to optimize the posterior estimates through an information theoretic setup. Although the
paper has developed a two-parameter dyadic independent network model, it can also be
extended to more complicated network models.

The Metropolis-Hastings algorithm in ERGM setup is much more challenging since
ERGM suffers from the problem of model degeneracy where the iterations can converge
to a full or empty graph. Poor choice of the initial values of the model parameters can lead
the iterations to a full or empty network. To avoid this situation, we have used a weak
thresholding for the number of edges of the network.

We have discussed that the Bayesian technique applied to a large network data can
be effective since we can easily avoid the problem of obtaining the normalizing constant.
Moreover, the application of the Tie-No-Tie algorithm in a large network becomes effective
since it uses a random sample from the set of edges and empty dyads that are assumed to
be a sub-sample of the observed network and are distributed as the proposed model. So
TNT provides a strong theoretical background of an alternative to the traditional MCMC
iteration. Along with that, it makes the MCMC iterations way faster since it always considers
a subsample to perform each iterations no matter how big the network is. Our analysis also
shows that use of a reference prior provides an added benefit by generating the independent

samples from the posterior distribution faster than the other default priors.
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Chapter 3

Big Data Application of ERGM

through Reference Prior
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3.1 Big Data Network

Recent advancements in computer, Internet and social media highlight the very important
aspects of accessing and analyzing the user data for future developments. Network literature
has broadened the area of user interfaces where not only can a user obtain his preferred
products based on his inputs but also the manufacturers get an idea about what path they
need to follow to get their product closer to each individual customer. For example, an
Amazon purchaser can see the recommended product based on the product he has viewed or
purchased. A probabilistic determination of the links is therefore important to optimize the
sales of certain companies as well as to optimize the utility of the products of the purchasers.

Developments in online trading, shopping, and media services in the past few years have
opened a gateway to analyze the characteristics of individual users through a massive data
atmosphere. Careful analysis and handling of so much data is a challenging task that requires
massive space and time and is still not applicable in many circumstances.

Network estimation through good statistical properties of the estimates is a popular
field of study in recent years. One of the important network models that can structurally
model the network through nice statistical properties is the Exponential Random Graph
Model (ERGM). Although a moderately large network can create trouble in estimation of
parameters in ERGM model, Bayesian estimation can overcome this issue through bypass-
ing the calculation of the normalizing constant. But since the estimation procedure involves
MCMC iterations through the Metropolis-Hastings technique, the estimation procedure be-
comes very slow and a good mixing becomes challenging even for a sparse network of size
500 x 500.

Not much work has been done to handle large sparse networks in an ERGM setup.

38



Thiemichen and Kauermann (2016) have proposed an ERGM model with non-parametric
components to estimate large networks through subsampling techniques, but this method is
limited to dense networks only. He and Zheng (2015) proposed an estimating technique of
large social network through graph limits for ERGM, but their method also fails for large
sparse networks where it is shown that the graph limit tends to zero in a sparse situation.
This chapter is dedicated to estimate a sparse Big Data Amazon co-purchasing network
with 262111 nodes through the application of TN'T procedure and through tuning the proba-
bility of edge set and empty dyad set. We implement the reference prior technique as we have
seen that the ACF function drops faster in the reference prior scenario and so we obtained

the random samples from the posteriors faster than the other prior case.

3.2 Data and Model

For a Big Data implementation of ERGM, we consider an Amazon co-purchasing network
from the Stanford SNAP data repository where the network is based on the ” Customers Who
Bought This Item Also Bought” feature of the Amazon website. We consider 262111 nodes,
and it can be considered as a sparse network since the observed network has 1048575 directed
links and 562240 reciprocated links. The main idea of the Amazon recommendations is to
pick buyers for similar types of items. For the purpose of the data analysis, we to assign
a probability to each possible link based on the observed adjacency structure. That means
if a buyer purchases or visits some item webpage, then the system would incorporate the
information from the other buyers to pick an item similar to what they have purchased to
show in the recommendation list.

For the implementation purposes of the ERGM model, we introduce the dyadic indepen-
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dent ERGM model where the one directional and the reciprocated link are being captured.
That means a pair of items listed on Amazon to be considered under modeling and direc-
tional and reciprocated links between them is going to be estimated. The influence of any
third item will be considered to be conditionally independent of these two.

Hence consider the model,

FOY | 01,02) ~ exp(01) wij + 02 Y vijusi) (3.1)
oy i<

where y;; being the observed adjacency between ith and j*" item listed on Amazon. 6 is
the single link parameter and 69 is the reciprocation parameter. Hence, Z y;j = 1048575
i#]

and > " y;5yj; = 562240.
i<j

3.3 Estimation
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Figure 3.1: Adjacency plot for first 20,000 nodes for the observed Amazon Co-Purchasing
network
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Table 3.1: Table for Posterior Mean and SD for Amazon Data

H Parameters H Posterior-Mean Posterior-SD H

0, 76.581 0.229
05 6.582 0.231

The key advantage of the TNT procedure is that it uses a small subset of the observed
network at each MCMC iteration instead of observing the whole network, which makes the
whole computation time much faster than the traditional MCMC. This method is applicable
to large networks and facilitates good estimates based on information theoretic sense along
with faster computation.

We divided the dyads into two sets, as we discussed before, and assigned equal probability
to the set with edges and to the set of empty dyads. This specific assignment gives a decent
level of mixing with a sparse estimate of the network. We take 5,000 MCMC iterations
with a burn-in period of 4,000. We set our proposal distribution to be N(0, (0.075)2). The

posterior mean of 1 is given by —6.581 and the posterior mean of #5 is 6.582.
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Figure 3.2: Density Plot for Dyadic independent Network Model parameters to estimate the
Amazon Co-purchasing Network through Reference Prior
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A key feature of the ERGM model is the nodes are considered equivalent. To check
whether the sparseness of the observed network is sustained in the estimate, the idea is
to randomly pick dyads from the network and try to re-assign or drop the edges based on
the estimated model. For that purpose, we picked 100000 dyads and tried to reassign the
directed and the reciprocated edges. When we tried to reassign those edges, we saw that
the error rate in terms of sparsity was 5.233% for the directed edges and 5.226% for the
reciprocated edges.

Although the network has 262111 nodes, which means the adjacency matrix can have
262111 x 262111 edges, the computation time was very fast compared to the size of the
adjacency matrix. Although we had to choose the size of the sample, we needed to select
at each iteration step, as a moderate size of samples gives a good mix along with fast
computation time. In our example, we ran the iterations by taking 1000 random sample of
dyads at each step and assigning equal probability to the edges set and the empty dyad set.
We also can tune the probability based on the degree of sparsity, along with our predefined

value of the sample to be chosen at each iteration that might have better mixing.

3.4 Discussion

It is important to observe that such a low estimate of 61 shows the sparsity property of the
network is valid for the assumed family. Also we observed a high value for the estimate of
0o, which meant most of the estimated directional links were essentially reciprocating and if
ith the item is being shown in the recommendation for the jth item, then it is true in the
other way, which makes sense in a product recommendation scenario.

This idea can be extended to more complex parameter situation where we bring more
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structural ties in the model. Bringing some interesting ties between the node can explore
a detailed social characteristics of the buyer and help to decide the optimized recommen-
dations for him. In our modeling scenario, a low value of the directional edge parameter
indicates some specific tendencies of the buyers and it reveals that a set of buyer can easily
be separated into various categories of the products and random recommendations can be
irrelevant according to the nuyers choice. For example, recommending kids toys could be
irrelevant to a student who bought books or a laptop in his last couple of purchases.

Again a very high value of reciprocating parameter is very meaningful in the sense that
it can help clustering a group of buyers who are buying different kind of products of similar
categories. For example, Buyerl who bought a desktop computer in his last purchase may
end up buying a printer of it. Also, Buyer2 who bought a printer in his last purchase might
have an old computer and he may be interested in replacing his old computer and may
be interested in the computer that Buyerl purchased. Hence Buyerl and Buyer2 may be
purchasing different products on that day but the network characteristic reveals that they
belong to the same cluster of buyers who are buying computer related products. Hence, a
very simple two parameter dyadic independent model gives us a direction for the companies
need to make to optimize their product recommendation. Hence, inclusion of more complex
graphical structure could be benificial for optimizing the sells for the manufacturers as well
as the product utilities for the buyers.

The key advantage of applying the TNT algorithm in the ERGM and reference prior is
that it makes the computation fast since, even for a large sparse matrix, the computation
mostly depends the size of the random samples drawn from the two sets as well as the pre-
specified probabilities for these two sets. Allowing us to tune the set probabilities helps with

the controling the mixing of the MCMC chain since the chain does not spend most of its time
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on the empty sets by being sparse. Although it is very challanging to obtain the optimized
value of the sample size of the dyads at each iteration steps along with the optimized value
of the tunning probability that makes the posterior MCMC samples closest to the actual
posterior and makes the computation very fast.

Although the nodes are considered equivalent in ERGM, the key advantage of the im-
plementation of the ERGM technique is that we can pre-specify the graph structure we are
interested in and can determine if a specific structure is dominating or has no influence in

the formation of the links.
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Chapter 4

Latent Space Network for three US

Auto Manufacturing Giant
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4.1 Main Idea and Methodology

There is growing interest in the use of network models to represent relations between actors
or nodes. In social networks, these actors are individuals, while in the inter-firm linkages
context, they are firms. Sometimes the two come together, for example, in the literature
on director networks; for a recent discussion from a more general context, see Borgatti et
al. (2009). This paper examines interfirm networks in the US automobile industry, focusing
on the 3 manufacturing giants - Chrysler, Ford and General Motors - and 21 of the most
prominent intermediaries in the sector. The analysis is based on a model of operating
leverage (Bhattacharjee et al. 2014), asking the question: how much do firms benefit (or
lose) from network externalities in sharing firm-specific financial risk? The results point
to a combination of explanations: corporate governance linkages, supply chain networks
and potentially demand side linkages as well. Therefore, this chapter suggests a wholistic
approach in the analysis if inter-firm networks, combining a number of channels (or drivers)
and disciplinary approaches.

Recent studies on inter-firm networks have revealed various characteristics of the firms,
its managers and its ownership, and how this influences it’s neighboring firms. In turn,
neighborhood has been captured by linkages along the supply chain (Hertzel et al., 2008;
Wang, 2012; Ahern and Harford, 2014; Itzkowitz, 2015), director networks (Renneboog and
Zhao, 2011, 2014), or joint ventures and investment syndication (Wang and Wang, 2012).
Questions have been asked about whether supply-side or demand-side linkages drive inter-
actions between firms (Ellis and McGuire, 1993; Venables 1996), and about the nature of
the networks themselves - whether cohesive networks of socially embedded ties or sparse

networks rich in structural holes (Grandori and Soda 1995; Hite and Hesterly 2001). Recent
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research in finance has explored the functioning of the financial market placing emphasis on
strategic interactions between firms and their industry rivals and suppliers. In this setting,
economic or financial shocks are transmitted through the customer supplier network and the
whole industry can be affected by those shocks since these can move through the links of
firms in that industry, and beyond; see, for example, Ahern and Harford (2014). In partic-
ular, Vickery et al. (1999) and Narasimhan and Jayram (1998) argue that sales volatility,
disruptions and opportunities in the firm’s supply and demand environments are important
aspects of the financial market.

In terms of methodology, network methods based on graph theoretic frameworks have
helped document a positive link between network structures and firm performance (Geletka
nycz and Boyd 2011; Larcker et al., 2013). The key mechanism is that a strong network
provides better access to information which then brings benefits to a firm in its decision mak-
ing (Larcker and Tayan, 2010; Omer et al., 2012). Then, this framework helped researchers
reveal previously hidden relationships between the connection of the corporate elite and
board room issues such as decision making on managerial compensation, investments, and
hiring and firing of top management. Rebbeboog and Zhao (2011) and Horton et al. (2012)
demonstrated that a CEQ’s direct and indirect connections affect his power and the value
of his information-connections, which is reflected in higher remuneration.

Indeed, a relationship between inter-firm linkages and business performance has been
the focus of many studies. Vickery et al. (1999) found significant relationships between
supply chain flexibility and different measures of performance in the US furniture industry.
Likewise, Vonderembse and Tracy (1999) observed a link between supplier selection criteria
and manufacturing performance. Narasimhan and Jayram (1998) argued that research in

supply chain management tends to focus on the individual functions and fails to examine
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the causal linkages that comprise the supply side of the economy. Swaminathan et al. (1998)
emphasized the importance of demand forcasting in the supply chain dynamics.

In this paper we develop a method based on network data that captures the latent
linkages between firms based on a model of operating leverage, and which then influences
various financial decision making issues and financial strategies for those firms. Network
data typically consist of a set of N nodes and a relational tie y;; measured on each ordered
pair of nodes. This framework has many applications in social network literature. The most
simplest situation is when y;; is a dichotomous variable indicating the presense or absense of
some connection between nodes (in our case, firms) ¢ and j. The data are often represented
by an NV x N social-interaction matrix or the adjacency matrix W.

In our proposed model, the adjacency structure of the network with N firms is not
observed but it depends on the latent positions Z = (21, 29, ..., z)y). Following Bhattacharjee
et al. (2014), we apply a model of financial leverage where a firm can anticipate part of
the variation in its sales turnover and the reaction of costs to these fluctuations in sales.
This is because there is an equilibrium profit margin and an error correction model that
captures partial adjustment to this equilibrium. We estimate this panel error correction
model and extract residuals which in turn capture the reaction to an unanticipated change
in sales. What remains in the error after systematic effects have been removed are the effect
of inter-firm linkages that bring positive or negative risk management externalities to the
firm. Then, in the second step, we use the covariance structure of these errors between
firms to implement the latent space algorithm. We implement our model to estimate the
network structure between the US auto industry firms, where our data constitute the costs
and sales turnover for Ford, GM and Chrysler, together with 21 suppliers. The objective is

to estimate the operational linkages between the three automobile manufacturers and their
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main independent suppliers. In effect, we go beyond the regression modelling approach of
Ramcharran (2001) to infer on interactions between firms using their latent positions in
two dimentional Euclidean space. The results provide exciting new evidences on inter-firm
networks that can then be interpreted based on the operating financial, organizational and
governance structures of these firms.

The US automobile industry is large and consists of hundreds of firms, a small nuber of
which are auto-manufacturers, and the vast majority auto-ancilliaries that supply various
components. Our empirical objective is to analyze the structure and interaction between
firms in the industry focusing on the latent inter-firm network. Following Ramcharran (2001),
we focus attention on 3 major manufacturers - Chrysler, Ford and General Motors, together
with the top 21 suppliers that were listed most frequently in the various issues of Ward’s
Automotive Yearbook. Annual data on sales turnover and costs (of sales) are collected for
the period of 1950 through 2013 from the Compustat database. These constitute the basic
data for our empirical work. In addition, we also use information from Bloomberg SPLC
database on the supply chain network for Ford.

Economic links of manufactures to their suppliers and customers constitutes our baseline
characterization of inter-firm networks. Inter-firm linkages influence the actions of suppliers
and customers of firms in distress (Hertzel et al., 2008; Wang, 2012). Suppliers can impose
costs by failing supply trade credit, backing away from entering into long term contracts,
delaying shipments, sourcing new customers or shifting sales away from the distressed firm
and existing customers. Likewise, inter-firm links through corporate governance channels
(for example, director networks) can enhance or reduce credit constraints on firms (Ren-
neboog and Zhao, 2011, 2014). Many important aspects of the auto industry market can be

influenced by the corporate policies by the firms which could be driven by the latent linkages
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between the firms. Firms financial decisions can be a direct consequence by a negative or
positive links they have with the other firms.

Inter firm linkages can also influence the suppliers to switch to different customers and
also can have a significant stock price effect when industry rivals have a positive link with
the same customer. Finally, inter-firm networks can be related to dividend policies (Wang,

2012) and relationship specific investment (Wang and Wang, 2012).

4.1.1 Error Correction Model

We have the cost of goods sold data Y;; observed for ¢« = 1,2,..., N companies and ¢ =
1,2, ..., K years. Xj; is the sales turnover for the company ¢ for ¢t = 1,2, ..., K years. To

handle the non-stationarity of the data, consider the panel error correction model,
AYjr = a; + NAXg + (1= X)) (V-1 — 0; X5 4-1) + 0t (4.1)

= w'ne + e (4.2)

!/
where W = (w’l, w’Q, e w'N) is a symmetric adjacency matrix with w;; = 1 if node ¢ and

J has edge between them and 0 otherwise, with w;; = 0 for 1 <4,j < N and (I — W) being
singular. The parameter (1 — )\;) determines the speed at which the system corrects back to
the equilibrium relationship Y; ;1 — 6;X; ;1 after a sudden shock. We assume the errors

€;+ are iid across time. Under the non-singularity assumption of (I — W) we have,
Elnn) = (I - W)7Is(1 — W)L

/
where E(e €) = diag(c12, 092, ...,052).
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Under the spatial error model described by (4.1) and (4.2), the population spatial au-
tocovariance matrix £ (77,77) is unknown and positively definite with probability one. There
exists a consistent estimator, f‘, of the population spatial auto covariance matrix E(n/n).

Thus, Bhattacharjee and Jensen-Butler (2013) has made an estimation method for the
underlying regression model. Based on the residual from these estimates, a consistent esti-
mator for the spatial auto-covariance matrix is first obtained. This estimator is then used
to estimate the spatial weight matrix. They showed that under the previous assumptions,

the matrix

111
V= (- W)"(-, N —>
o1 09 oN

is consistently estimated up to an orthogonal transformation by
~—1/2 o~ a—1/2, ]
o BATE

where E and A contain the eigenvectors and the eigen values respectively, of the estimated
spatial autocovariance matrix T
After getting an estimate of the spatial weight matrix, we use it to generate Bootstrap

samples for the spatial weight matrix to perform the following multiple testing problem:
Hyjj:|wij =0 wvs Hyg:lwg|=1 ¥V 1<i<j<N. (4.3)

We use this as an initial estimate of W for implementing the latent space model.
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4.1.2 Latent Space Model

In the second stage, to assign a latent position for each company in the Euclidean space, we
take a conditional independence approach to modeling by assuming the presence or absence
of a tie between two nodes is independent of all other ties, given the unobserved positions

in the latent space of the two nodes.

P(W | Z1, a1, 81,7m) = [[P(wij | 215 215, 01, B1. 1)
i,J

Here Z is the unknown latent positions.

We fit a logistic regression model as below,

logodds(w; j =1 215, 215, a1, B1,m1) = ea = Bf(nj, ny) — nf (210, 215)

f(zi,2) can be replaced by any arbitrary set of distances d; ; satisfying the triangle
inequality. In general, we prefer to model the d; ;’s as distances in some low-dimensional
Euclidean space for reasons of parsimony and ease of model interpretability.

The latent position model is inherently reciprocal and transitive. If ¢ — j and j — k
then d;; and d; are not too large, which implies the event j — i (reciprocity) and i — k
(transitivity).

Here we set our distance model as,
logodds(| wij [= 11215 215, a1, 1,7) =1 =Bl —nj [l = [ 210 =215 1 (4.4)

Here aq is the additive constant. The model implies that reducing the latent distance
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between node ¢ and j will increase the log odds of node 7 and j to be connected. Similarly,
reducing the Euclidean distance between the model errors of node ¢ and j will increase the log
odds of node i and j to be connected. 31 and 1 are the scaling factors for the corresponding
distance measures.

To identify the positive and the negative linkages among the significant links, we set up
a nested model where we assume having a positive and negative connection between two
nodes is independent of all other ties, given the latent positions of the two nodes and on the

significance of the linkages. We can write,

logodds(w; j = 1| 23, 205, 2, B2, 72, | wij |= 1) = ag—=B2 [| j—n; [| =72 | 22i—225 | (4.5)

4.2 Estimation

Distances between a set of points in Euclidean space are invariant under rotation, reflection,
and transition. Hence, an infinite number of latent positions Z give the same log-likelihood.
Specifically, logP(W | Z,0) = logP(W | Z*,0) for any Z* that is equivalent to Z under the
operations of reflection, rotation, or transition. This creates an identifiability issue of for
the latent positions. Our model involves a one-dimensional Euclidean space, but since each
dimension is being identified separately through two different models, we need to fix two z;’s
to overcome the reflection, rotation, or transition issue for the latent positions.

We assume,

Zi1yerZin ~ G0.d N(0,02,) Vi = 1,2
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We formulate mutually independent priors for aq, a9, 51, 52, 71, V2, 0212, 0222 as,

0422
o
m(a;) = 1600‘% — 00 < @ < 00 Vi=1,2
(3 \/% 1 )
52
11 o2
W(Bz)zé\/%e Bi 0< B <00 Vi=1,2
1 1
7T(%)_i\/ﬁe E 0< 7 <oo Vi=1,2
%
70,2 = e 2% g, V172 7.2 >0 Vi=1,2
A F(Tl) 1 A

The detailed Gibbs steps for the posterior computations are given in section 4.5.

4.3 Data Analysis

We consider COMPUSTAT data for past 64 years starting from 1950 to 2013. The data
consists of Cost of Goods Sold and Sales Turnover for three major U.S.-based auto manu-
facturers: (1) GM, (2) Ford, and (3) Chrysler and their 20 major suppliers.

We first divide the two variables with the corresponding consumer price index to remove
the scale factors of dollar values over the years. We then implement the error correction
model (4.1) and extract the model errors and use the errors to calculate the correlation
matrix (shown in Figure 4.1), and then we use the correlation matrix to calculate a bootstrap
sample from W. We need to get the bootstrap since we have to test for each element of
the W matrix. We assign 0 to w;; if we fail to reject the z'jth test and 1 otherwise. We

use this estimated W as the adjacency structure between the companies for our latent space
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model. For the issues of rotation, reflection, and transition, we keep the latent position of
GM and Ford to be fixed to some predefined values. We Run the Gibbs update for the
parameter values for 3,000 times with a burn-in period of 2,000. We achieved an overall nice
convergence at around 1,000 iterations.

Figure 4.2 shows the probability of having no connection (shown in blue), a positive
connection (shown in green), and a negative connection (shown in red) by the three major
auto manufacturers and their key suppliers. Here a link between company i and j signifies
the business impact of gth company and jth company either ways with respect to the auto
industry market. It is evident from Figure 4.2 that the network that the three big man-
ufacturers have with their suppliers is moderately dense with a high probability of being
connected with their suppliers. Also, a similarity between Chrysler and Ford can be seen
with respect to their connectedness. This is evident in Figure 4.3, which provides the latent
positions of the companies, and it can be seen that Ford and Chrysler are close to each other
in the latent space. The probabilities for GM imply that, although having the same set of
suppliers as Ford or Chrysler, GM relies on a select number of suppliers with respect to the
auto industry market with a very large probability of being disconnected from a few of these
suppliers.

A careful inspection of the latent positions of the suppliers and three major companies
reveals an important aspect of the auto industry market. If we look at the position of Ford
and Chrysler, they are sitting in the middle of their suppliers and moderately depend on
almost all of them with respect to their business. Again, the position of GM in the latent

space reveals that GM has a specific subset of suppliers that it relies on for its business.
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Figure 4.2: Probability of linkages for Chrysler, Ford, and GM with their Suppliers
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4.4 Conclusion

The current literature in corporate finance highlights the importance of inter-firm networks
in financial management of firms. Such networks can be based on supply chains, but equally
may reflect director networks, joint ventures or demand side linkages. Hence, analysis of
network structure requires a broad perspective that allows each of these potential drivers of
network interactions to act and interact. We develop new Bayesian methodology to analyze
latent inter-firm networks. Applied to data on the US auto industry, the estimated inter-firm
networks reflect a strong influence of the supply chain, but also governance links between
firms. Importantly, the estimated networks also point to both positive (complementary)
and negative (competitive) interactuions between the firms. A lot of interesting questions

emerge, relating to the impact of inter-firm networks on corporate finance issues.

4.5 Some Posterior Calculations

We set initial values for the parameters as agq1, g2, 501, /802,701,702,00Z12,00222 and we

update the parameters according to the following Gibbs steps.

59



4.5.1 (s+ 1)th Gibbs Step for updating («q, 51,71):

The full conditional distribution of aq, 51,71 is given by:

Play, B | 03, Z1, W)

(=Bl —njll=71lz1i =215 Dlwij] —(
. ( ) ‘e

€
H. o =Bl —njll=r1lz15—21;l
>) 1+e B

=K
a1751771 |0-%1 ’Z17W>T/

which is not a closed form expression of any distribution. Hence we need to perform
Metropolis-Hastings with a symmetric proposal distribution for aq, 51,71. The r-th step

for the Metropolis-Hastings algorithm is given by,

1. Generate aqs"* from N(a1s" 1, opmet), f1s™ from N(ﬁlsr_l,amet) and v1"* from

DJOH5T717Uth)

2. Calculate:

K r—1
047:[: aﬁ{:a’Y{: |02215 72137W777

K _
r—1 gr—1 _r—1, 2r—1
alS 7618 ’718 |0-2le aZ]_sawan

%

3. Set af, = af,

Bls = Bl Vs = V1. With probability u otherwise continue with the
value of step r — 1 with probability 1 — u.
4. Repeat the above steps ny,e+ times.

Hence, we get nyet simulated samples from the distribution of aq, 51,71 | ng AP
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W, 7. We can use this simulated distribution update aqg, 815,715 to O (541)»

B1(s+1)> M (s+1)-

4.5.2 (s+ 1)th Gibbs Step for updating (as, 52,72):

The full conditional distribution of ag, 59, y2 is given by:

P(O[Q,ﬁQ,’YQ | 0-227Z27 {wZ] :| Wi |: 1}777)

o2 @2 2
(g —Palln;—n;ll—2l22; =225 ) (1+w;;) /2 —(—% 5—+-5)
«(II <e
11 ag—PBolln;—njll—r2lz2;—22;l
1> 1+e B

=K
042,/327’)/2 |022 7227W>77

which is not a closed form expression of any distribution. Hence we need to perform
Metropolis-Hastings with a symmetric proposal distribution for a9, 82,75. The r-th step

for the Metropolis-Hastings algorithm is given by,

1. Generate ah} from N(a28 s Omet), Bry from N(ﬁ2s , Omet) and 757 from N(’ygs_l,

Umet)-

2. Calculate:

0‘23 7525 ;'72*|U 298 aZQ W

u = K
—1 pr—1 _r—1, 97— W
ags aﬂgs ’,}/58 |J2225 72257 )1

3. Set ahy = aby, By, = Bha, Vhe = Vha With probability u otherwise continue with the

value of step r — 1 with probability 1 — w.
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4. Repeat the above steps 1t times.

Hence, we get ny,et simulated samples from the distribution of o, 89,72 | o

2
298>

Z2S7Wa

1. We can use this simulated distribution to update aag, 525, 725 tO 9(511) 52(8+1),

V2(s+1)-

4.5.3 (s+1)th Gibbs Step for updating o2 :

2

7 is given by,

The posterior distribution of o

N

o2 | Z1~ (O 21 + Dinvx®y 44
i=1

o2

" )
21 (s+1) Can be generated from the conditional 0% | Z1s

4.5.4 (s+ 1)th Gibbs Step for updating o2 :

The posterior distribution of a§2 is given by,

N
2 2 )
0y | Z2 ~ (Z 29i” + 1)invx"y, 14
i1

2

Tzg(s+1)

can be generated from the conditional 022 | Zog
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4.5.5 (s+ 1)th Gibbs Step for updating 7, Zs:

The full conditional distribution of zy; is given by:

2

P(z1; | 1, B1:7m,02,7, W, )
2

(r-Billng—ngll-mleri— Dol

XX X e

0'21

(&
H a1—Blni—n;ill-11l21—214l
Jj#i 1+e 4 4 J

=K
ZlilO&l,,@l,’Yl,O’zl 2aWa77)

which is not a closed form expression of any distribution. Hence we need to perform
Metropolis-Hastings with a symmetric proposal distribution for zy;. The r-th step for the
Metropolis-Hastings algorithm is given by,

L. Generate 277, from N(z{i;l, o2 0).

2. Calculate:

% 2
les|a1(5+1) 7ﬁ1(5+1) 7’71(54,1)’0'21(8_’_1) 7W3n)

u =

r—1 9
s 191 (511) B1(541) T 5+1) 724 (s1p1) W)

3. Set z{,, = 2{j, with probability u otherwise continue with the value of step r — 1 with

probability 1 — w.
4. Repeat the above steps ny,e+ times.

Hence, we get n,,e+ simulated samples from the distribution of,
2
21 | 041(s+1)>51(s+1)>’71(s+1)7%1(3+1)7W7”
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We can use this simulated distribution update z1;5 to Z1i(s+1)-

We can update z9;, similarly.
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Chapter 5

Region Wise Variable Selection with

Bayesian Group LASSO
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5.1 Region-wise Variable Selection

In various spatial-economic analyses, the problem is to select variables that are located
spatially. Sometimes the interest lies on estimating the relevance of individual variable over
different locations where a Bayesian framework can be really effective provided the fact
that we have the idea of the adjacency structure or rather the network structure between
the location. Hence, the main idea is to incorporate the adjacency structure between the
nodes (locations) so that we can incorporate this fact that relevance of a variablein a certain
location is influenced on its status on the adjacent locations. For example, if we can assume
that annual snowfall rate is a key factor on deciding the auto insurance premium rates in
Michigan, then it would also be relevant or would have some impact on deciding the auto
insurance rates in Ohio or Indiana. It is very important to select variables that are relevant
to each location and the the problem becomes a bi-level selection where we not only select
the variable overall but we also inspect whether it is significant to each location.

Spatial or cross-sectional dependency is a common feature in present econometric appli-
cations. To capture spatial dependency, a popular approach is to introduce a spatial weight
matrix W containing the spatial weights over its elements (Giacomini and Granger, 2004).
There are various ways to retrieve the spatial weights: from geographic distances, notions of
economic distances(Conley, 1999; Pesaran, 2004; Holly et al., 2010), socio-cultural distances
(Conley and Topa, 2002; Bhattacharjee and Jensen-Butler, 2005) etc. An alternative and
increasingly popular approach is to estimate spatial panel regression models under multi-
factor error structures. Factor models are potentially powerful in the sense that they do not
require strong and unverifiable assumptions on the nature of spatial dependence.

In a location variable selection problem, it is important to consider the variable selection

66



procedure to be dependent spatially. Consider the following model for each location i €
{1,2,...,N}:

yi = XiBi + & (5.1)

where y; is a (12 x 1) vector of response variables, X; is the (R X p) design matrix containing
p variables, 3; is the (p x 1) coefficient vector and ¢ ~ N(0, o?I).

Smith and Kohn (1996), Smith and Fahrmeir (2015) have considered the variable selection
problem by attaching an indicator vector v; = (Vils Y52y -+ %.p)/ corresponding to 3; where

we set 3;; = 0if 755 = 0 and set 3;; # 0 if v;; = 1.

The above model can alternatively be expressed as:

yi = Xi(73)Bi (%) + &

To undertake the posterior computation, Kohn et al. (2001) have considered a proper con-

ditional prior by setting it proportional to the likelihood:

/

Bi(%) | yir 0%, i ~ N(B.(yi, Ro*(Xi(7) Xi(3)) ™)

~1

where,

If we assume,
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then by Smith and Kohn ((1996), we can show that P(v; | y;) o< P(y; | vi)P(7:)

We need to set a prior distribution on 7; to estimate the above model. After we decide
on the prior knowledge, we can run the MCMC sampling schemes (Smith and Kohn, 1996)
and the Metropilos-Hastings technique to figure out the posterior estimates.

Smith and Fahrmeir (2015) have considered the fact that the variable selection procedure
should have a spatial impact, and they addressed this issue by introducing the Ising prior

technique where for 1G) = (V155725 -+ 'yNj), they have considered the prior knowledge on

v as, P(y) = ?:1 P(y(;)); where,

N
P(y)) o 69010{ > i+ D Oinjwind (ij = 'ij)}
i=1 ik

Here, I(-) is an indicator function, w;j is the pre-specified weight due to adjacency be-
tween location i and j. The term » ;i 05 wir ! (7Vij = Vi) evaluates the interaction between
the effects of the elements 1) for all pairwise neighboring sites.

A critical issue of this technique is to specify the external field sz\il @;j7;j where the
parameter «;; is fixed apriori. The usual technique is to use a pre-estimate of «;; which
depends on the type of the problem, and the posterior estimates are much sensitive over the
choice of a;;’s (see Smith and Fahrmeir, 2015).

This paper is focused on proposing an alternative technique of the location-wise variable
selection that not only involves the impact of the adjacency structure on the variable selection
but also overcomes the ambiguity of pre-specification of the hyper-parameters. The variable
selection process is carried out by implementing the Bayesian Group Lasso technique where
we put an emphasis on a similar bi-level variable selection approach that incorporates a

cross-sectional dependency among the coefficients over the various locations. We use the
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spike and slab prior on the group level and within the group level where a group means
the model covariates over several locations. Our purpose is to select within group level,
while keeping in mind that the relevance of a covariate in a certain location depends on
its relevance on the other locations. We introduce a conditional autoregressive structure
among the model covariates to incorporates this fact. The median thresholding technique
(Xu and Ghosh, 2015) facilitates having exact zero estimates of the non-relevant variables
for the corresponding locations since it has a slightly better model selection accuracy as well
as a better prediction performance than the traditional LASSO method. The key factor of
the technique introduced by Xu and Ghosh (2015)is to use the posterior median estimator
that derives that under an orthogonal design and works as a soft thresholding estimator,
and the median thresholding is consistent in model selection and has an optimal asymptotic

estimation rate.

5.2 Region-wise Variable Selection with Bayesian

Group LASSO

Suppose we observe responses y;;- on @ = 1,2,..., N locations and on r = 1,2, ..., R indepen-

dent replications. We setup the following linear regression model as:
Yir :‘Xiréi_}'ei?“ 1=1,2,... N r=1,2,...,R. (52)

where X, is a p X 1 vector of predictors for the ith location and for rt" replicate. 3; =
/
(Bi1, Bi2, -+, Bip) is a vector of model coefficients corresponding to the ith location.

We assume the spatial errors are independently and identically distributed (i.i.d) over
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. . . /
time and a homoscedastic structure across locations as E(ere,.) = o2I,,.

Now to divide the set of coefficients in to different group, we can rewrite our model (5.2)

as,

p
QTZZXW@égng , r=12_.,R (5.3)
g=1

/
where y, = (Y1r, y2rs - YNy) is the response vector at replicate r over N locations, X g4 =

(T1gr, T2gr, ...,xngr)/ and B¢ = (814, B2g; ...,BNg)/ Vg=1,2,...,pand Vr = 1,2, ..., R.

The purpose of this paper is to perform a variable selection where spatial dependence is
driven by observed structural interactions. Since our model involves a variable selection over
a fixed set of covariates in multiple locations, we propose the group LASSO method that
generalizes the LASSO in order to select the grouped variables for accurate prediction of re-
gression. The group LASSO estimator can be obtained by solving the following minimization

problem,

R p p
min (Z(ng = X @ Bl + MlIBl + A2 H§g|l2)> (5.4)
1 g=1

r= g9=1

The Bayesian formulation provides shrinkage of the coefficients in the group and within
the group’s level. But the classical group LASSO technique does not provide exact zero
estimates for the coefficients that are not relevant. Thus, we introduce sparsity at the
group and within the group level by assuming spike and slab prior for the model covariate
that brings sparsity in the model coefficients. Johnstone and Silverman (2004) showed that
posterior median with a random thresholding estimator provides good estimate along with
some desirable properties under spike and slab priors for normal means. We use the posterior

median instead of the posterior mean as our posterior estimates of the model coefficients.
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5.2.1 Spike and Slab Prior for Model Coefficients

We propose the following Bayesian hierarchical model that we refer to as Bayesian Sparse

group LASSO to enable shrinkage both at group level and within a group.

p

yr | 81,82, . Bgro ~ N Xgr @ By, 0°1y) (5.5)
g=1

Bg | 19,0~ N(O,02Vg) g=1,2,...,p (5.6)

Here Vy/? = diag{ry1, .. Tyn}, 79 = 0, 9 = 1,2, op; j = 1,2, .., N.

Xu and Ghosh (2015) have introduced a sparse group LASSO modeling where they have
represented the model coefficients as a scaled version of a sparse diagonal matrix that helps
to select variables within group level along with the group selection.

To introduce sparsity in the model and to select relevant variables at the group and

within the group level, we reparametrize the coefficient vectors as,
1/2
By = Vb, (5.7)

Here by, when nonzero has a 0 mean and dispersion matrix Iy. The diagonal elements
of V;/ 2 control the magnitude of elements of §4. A hierarchical Bayesian modeling using
Spike and Slab prior have been introduced by Inswaran and Rao (2005) in which they have
considered an inflated probability structure at 0 that helps bringing sparsity in the model.
One key advantage of the Spike Slab model is we can show that the prior variance can be
dependent on the sample size and hence an appropriate shrinkage level can be achieved and
a strong selection consistency can be shown (Narisetty, 2014).

To have a sparse estimate of the model coefficients, we define the following multivariate
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spike and slab prior to selecting variables at group level:

-
by~ (1 — )N (0, Iy) + modo(bg), g =1,2,...,p (5.8)

Note that when 7,; = 0, 8, is dropped out of the model even when b,; # 0, which
means Tg drives a within group level selection for a selected group of S4. Now selecting
the elements of J; means selecting the g!" covariate over N different locations. Here, we
use the fact that importance of the gth variable on the i location should depend on the
relevance of the gth variable on the adjacent location. Consider a spatial adjacency structure
among the N spatial locations that can be represented through a known spatial weight matrix
W = ((w;j)), i=1,2,.., Nandi=1,2,.., N. Here, w;; is the weight corresponding to the
strength of adjacency between location ¢ and j.

For the prior selection of the within group, we assume a spatial cross-sectional dependence
is convoluted within the covariate structure of the model. We would use this fact later on
to define the prior structure of the model’s coefficients.

To perform a group lasso variable selection in the above model, we need to consider a
proper prior for the beta that considers the spatial relationships among the covariates. We
therefore assumed a Conditional Autoregressive Prior for the prior on 7 as,

N wi; 2

ng Tgi t #] ~ (1_7T1>N+( Z ] Tgia__)+ﬂ5O<ng)7 g = ]-727"‘7p; j = 1727 7N
i=lizj At Wit

(5.9)
Here w; = sz\il Wi

where N1 denotes a folded normal towards the positive side of the real line.
Remarks. In chapter 4, we have considered a Spatial Error Correction Model where the
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adjacency structure W is unobserved. The chapter shows an estimation technique of the link
probabilities in a two-step procedure where an error correction model is considered to have
a pre-estimate of the W martix and then the latent metwork model is incorporated where
a Bayesian estimate of a connection (positive or negative) or no connection is obtained.
The above modeling technique can also be carried out with an unobserved structure of the
W and then a two-step variable selection technique by estimating W and using that W as
observed in our model to consider it for the variable selection purpose. We will be following
a similar technique in the data analysis part of this paper where we will consider the W to

be pre-estimated.

Instead of specifying fixed values for hyperparameters, we set,

o’ ~ IG(a,y), a=0.1,v=0.1 (5.10)
79 ~ Beta(ay, as), 71 ~ Beta(ey, c2) (5.11)
s ~ IG(1, k) (5.12)

5.3 Hellinger Consistency for the Posterior Distribu-

tion of B

In this section, we will show that the posterior density of 34; i.e. (Bg; | rest) = (74; |
rest) - (by; | rest) is Hellinger consistent under a true density is Py. Suppose the true

value of the i jth model coefficient is ﬁ% We will apply the Schwartz theorem to show that
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(Bg;j | rest) is consistent for the true density under BY.

Theorem (Due to ’Schwartz (1965)°). Let the model P = {f( | B,0): BeRN*P 5 >
0} be totally bounded relative to the Hellinger metric H and let y;1,vy;92, ..., y;r be wd Py =

{f( | Bo,0) 0> 0} for some Py € P. If 11 is a Kullback-Leibler prior, i.e., for all 6 > 0

P
H(P € P: —Rlogr- < 5) >0
0

then the posterior is Hellinger consistent at Py, that 1s,

H<H(P, Py) > €| yi1, vz, -~-7yiR) — 0.
POa.S

An equivalent formulation of totally bounded model can be found in LeCam (1986) where
it has been shown involving an unbiased test for testing Hy : 8 = Bg vs Hy : B € U€ for
every neighbourhood U of By. More generally, existance of uniformly consistent test for
Hy: B =By vs Hy : B € U° implys Hellinger consistency at fBg.

Let us assume 7(K¢(Bg)) > 0 V € > 0, where K¢(fp) is the K — L neighborhood of Sy

denoted by {B: K(By,B) < €} and K(-,-) is the K — L divergence.
Lemma 1. Suppose U be the € neighbourhood around By. If,

1. By is in the K — L support of .

2. [\/fa(W)fgy(y)dy <& ¥ B eU".
/g(®)
3. ﬁs;goc f«/wdy— S/ T8W) fgy (y)dy

Yi1, Yi2, - YiR as R — oo.

— 0 a.s. under the joint distribution of
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then, there exists a uniformly consistent test for Hy : B = By vs H1 : B € U® (see Van

De Geer (1993); Choi and Ramamoorthi (2008)).

The proof of Lemma 1 is given in section 5.9.

Lemma 2. Suppose B is a normal with mean pug and a standard deviation of op, and
suppose T is a positive normal with mean pup and a standard deviation of op. Then the

distribution of Z ='TB s given by

A 2] 2P
€ 2 2 4 4
/)= —— YK, —Yo K — YK
f(2) B (pg) 0 0+(p1+02)Z! oK1 + (p1 + p3) o oafe +
where,
_ _%2
y
K\(2) = 5(5) 0 ° R dy
o1 = U and py = 1,

_ p102Z | (p1p2%)*
Yr(ppeZ) =1+ 557 + (r+2) @2 +o
with (r + k)*) = (r + k)(r + k= 1)...(r + 1).
Here, K~(Z) is called the modified Bessel function of second kind.

The proof of Lemma 2 is given in section 5.9.

Sparsity Assumption. If we have a sparsity assumption for a large network, as well as on
the model, then we can approzimate the prior mean of 74; close to 0. This would be our key
assumption to show the Hellinger consistency. That means we would assume that each node
has a very small number of edges with respect to the whole set of nodes, and we set most of
the 74;’s at 0 ending up with a very small number of significant covariates. In other words, if
we set lim SN e 0, th have a large N, the pri for by =0
N—300 22i=1,i] wj+7—gl = 0, then we have a large N, the prior mean for by; = 0,

K, .
and prior mean for 74; & 0. It is shown that the prior distribution of Bg; 1s %ﬁg;)')
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Lemma 3. Suppose B is a normal with mean pg and standard deviation og and suppose T
1s a positive normal with mean up and standard deviation op. Then the mean of Z = TB

15 given by

@(Z—;) 0 or

Hr 9

_ [ or HT g HT et
[y = + uBHT (C-)expy =53
arT UT

The Proof of Lemma 3 is given in section 5.9.

Thus, it is easy to observe that the prior distribution of fg; has a mean of 0 and so a
sparsity assumption of 74, gives the prior mean of 75; ~ 0, and so we have K, = 0. As the
prior distribution of beta is a modified Bessel function of second kind, the Lemma 2 shows

it is symmetric around 0.

Proof (Theorem). According to Lemma 1, prior density of Bgj = T4;bgj 1s given by

w(5) = 1o Fug) + (1~ ) - ) (5,13

where lg =1 — (1 —7)(1 —71) and py = Zif]ig;“ifgi.

Set é? be the true value of B;. According to Schwartz’s Theorem, we calculate,

N
lJ_V[ [lizi /0,
- f 0 g N ~
i=1 EZ 7 HZ:I fééo
I 0N 2 2 I 0N 2
1 1 i vir — 2,897 1 i Yir — 2B Yir — 2,8
T ovan b 2= o 2~ o o
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Suppose there exists an €1 for which the KL condition does not holds, i.e.,

/

Yir— "/LT,@? R N i i
Wﬁ{ﬁ:e—%Zf;lZZN: (5 ? [ZZ(y ~zr6>
r=1i=1
0\ 2
_Zz(yzr ~zrﬁ > ] <€2}:0
r=1i=1

(Here, eg = e1 - 2(0) B (v2m) B2 > O)
" 50
R e )
)

r—=1i=1 0

R N /.. " 50\ 2
“"_~i7“6i
(Here, @,zeyexp[%Z 1<% ]
R N D R N »p 5
= Wﬂ{ﬁ:QZZyztszT(ﬁ Bzg) ZZZZE%T(&% _Bij2)<€3}:0

where, €5 = —§64 <0 anda;j; = Zﬁ:l YirZijr- The above inequality inside ﬂﬁi{ﬁi : } holds

. N R
since Y g Z?:l Bzzj 2 r=1 xlzjr > 0.

Hence,

B: ZZ%% > €t ZZ%%
o -

1=1j=1 1=1j=1
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N »p
e H H Wﬁij{ﬁij D Bijaij > €6 + ﬁ?jaz‘j} =0 (5.14)

i=1j=1
where eg = e5/Np < 0.

Equation (5.14) is true since

N p N »p
{ﬂijaz'j>€6+ﬁ?ja¢j,Vi21,j21} - {ZZBijaij>€5+ZZﬁ?jaij}

i=1 j=1 i=1 j=1

Equation (5.14) means thatV i € {1,2,..., N} and j € {1,2,...,p} and for § > 0 there ezists
an a;j 2 a;j =90 (OR, aj; = =) where %6 =—M (OR, i—% = M ) where M 1is a large positive

integer with | M| > ﬁ?j (we can assume) such that,

Wﬁw{ﬂ” ﬁl] > —M—i-ﬁzoj} =0 (5.15)

<OR, Wﬁw{ﬁw : BZJ < M—i-ﬂ%} :O>

K ..
Now (5.15) is a contradiction since B ~ lgdo(Bi;) + (1 — lﬁ)%, 0<lg<1and

Lemma 2 shows the density of Bi; is symmetric with respect to zero and lg > 0.
5.4 Posterior Distributions and Gibbs Sampling for

Group LASSO

Let us denote X, = (X1, Xop, ..., Xpr).

The joint posterior of b = {b; : i = 1,2,...,p}, 72 = {Tfj ci=1,2,...,p;7=1,2,...,N},
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o2 T, 71, s2 conditional on the observed data is:

P(b7T270-2a7T077T1782 | gTaxT;T =1,2, 7R)
1 ) 1/2
2\—NR/2 2
SR EPS ST SRA LN,
r=1 =1

<1 [(1 - 7?0)(27T)—N/26:pp{ - %Q/gb,g}j(bg #0) + 7T050(bg)]

g=1
ws s
p N (797 — 2L, ')2
2\-1/2 9 wig 9
X H H [(1 —71)2(2%) / e:r:p{ — 2£ }I(ng > 0) —|—7T05()(ng)]
g=1j=1 w; 1
x(0?)~@ 1exp—§

5.4.1 Gibbs Sampler

e The posterior distribution of b, conditional on everything else is given by:

by | rest ~ 1y8o(by) + (1 — Lg) N (j1g, ) (5.17)

where [; is the posterior probability of bgbeing equal to Q given the other parameters,

i.e.

lg  =P(by=0|rest)
o

1/2 1/2 < 1/2
mo + (1 — 770)’29‘1/265”1’{#”29/ (Zﬁ:l Vg/ th(%r - Xr(g) ® V(g/) b(g)))H%}
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Where, X?"(g) = (2{7«1, "”‘Xr(gfl) X (ngl) er),

/ / AN

/
= (bys by 15D g5 by)

b 12g—1%g+1

9)
Similarly V(g) = diag(V1,..., Vg—1, Vg1, ..., Vp) matrix after deleting the gth

and ¢ column. Also,

R
1 12 1/2
- ngZ;{ / <3/T_X (g )®V(/) b(g))}

-1
2, <1N+ 22{ 1/2®)~(;gxrg®vl/2}>

e The conditional posterior of 74; is given by,

i | et~ dyyfol7g) + (1= ag)N igjov)s 9= 120pi = 12 N (515)

where,

2 R 2
v W ..
9] 1/2 Vg Wit Wig
Ugj = 2 Z(ZZT — X (gj) ® V(gj)g(gy))xrgﬂbgj T2 Z w9
r=1 it T
w bQ. R
2 i+ | "gj 2 \—1
97 (32 +ﬁzxm])
r=1
T
Vit 1
T 4 2(1 — mp ) L= exp{7% ;(Z#] wHTg, )2} (5 93
97

Here we define Xr(gj)? V( gj)’ lg(gj) similarly by removing the corresponding gjth ele-

ment.

o 02 | rest ~ [G(%+Oé,%zq{%:1 lyr — X ®,BH%+7)

/ AN
HeI‘e Xr == (2\{7’-1’ 5 ...,er), ﬁ == <§17§p> .
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o m | rest ~ beta(#(bg = 0) + a1, #(bg # 0) + a2)
o 1 | rest ~ beta(#(74; = 0) + c1, #(74; # 0) + c2)

N wij 12
o 5% [ rest ~ IG(L+ 3#(rg5 = 0),t + 3 201 3050 [7 = Digj 7] )

We consider our posterior values of the model coefficients over the Gibbs sampler to be
ng = (gJ | rest) - (745 | rest). To have our posterior estimate of the §,;, we use the same
approach followed by Xu and Ghosh (2015) who have used the posterior median instead
of the posterior mean. They have shown in a paper that the posterior median works as a
random thresholding estimator that satisfies the oracle property with a faster convergence

than the general group LASSO estimator under an orthogonal design.

5.5 Variable Selection for Temporal Data

Variable selection for spatially dependent data can be carried out along the method we
discussed in the last few sections. But we have ignored the fact that the temporal dependence
might also effect in the sense of having dependency over the responses that are closer with
respect to time. Assume we have response vector for N locations yt over time points t =

1,2,...,T. Consider the spatial-temporal regression model as,

p
gtIQQt—1+Zth®§g &t (5.13)
g=1

where,

® = diag(¢1, 92, ..., ON)
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The model we considered under equation (5.13) is nothing but the AR(1) process. Station-
arity of the AR(1) process requires the assumption: |¢;| < 1, V1 <i < N. The reason that
we have chosen AR(1) over higher-order autoregressive processes is that we want to avoid
the abstract restrictions on the autoregressive model parameters due to the stationarity of
the process. AR(1) process allows the temporal dependence to decrease gradually as the
time lag increases.

We consider the autoregressive component parameters ¢; to be independently uniform

between —1 and 1, i.e.,

5.5.1 Posterior Distribution of ¢,

We can write the posterior probability of ¢;;i = 1(1)N | rest as,

P(¢;;1=1(1)N | rest)
T

N
x eapf - QQZHyt @ytl—zxwv 2|2} TTU(-1.1)

g=1 1=1

T p
ocexp{—%z yt ZX t®Vg/bg (yt — ZX t®V1/2bg)
g=1 g=1

—ZZ@mztyt 1Z+Z¢ YT }

1/2

Here, mj; is the i row of (yt — Zg 1 X gt ® Vg Thy).

Hence,
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P(¢;;i=1(1)N | rest)

LN T T
x exp{ - @Z [ =200 > miyr; + ¢z22,yj—ﬁz}}
i=1

T 2 N r o f——
D=2 Y =2 WitYi—T; 2
X ea:p{—Z Z (gbz — ) ) }
o , Yo yt—
1=1 =221,
S miy, 2
Hence,¢i|rest~N< t}g Z;t L 5 Vi<i<N
Yi—o¥iy;  Li=2Yiy

5.5.2 Gibbs Sampler

Gibbs’ sampling steps for the spatio-temporal model would be similar to the situation for
the spatial modeling. We would follow the same update procedure along with the update
of autoregressive component matrix ®. We would replace y with ys — @y, for the Gibbs

Sampler steps in section (5.4.1).

5.6 Simulation Study

5.6.1 A Sample Simulation with Prefixed

In this setting, we preselect some values for (;;s and we compare the BGL-SS-CAR with
the simple BGL-SS and the variable selection with ISING prior based on the RMSE and the
TPR/FPR values. We set p = 5, T' = 10, and N = 7. The comparison is done based on
only one simulation. We will increase the number of simulations in the subsequent section
to have a better view of the prediction error measurement.

It is evident from table 5.1 and table 5.2 that when a CAR structure is being considered
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Table 5.1: RMSE, TPR and FPR comparison for BGL-SS, Ising and BGL-SS-CAR model

Methods H BGL-SS ISING BGL-SS-CAR
RMSE 0.868 1.12 1.06
TPR 1 0.83 0.81
FPR 0.368 0.26 0.21
Table 5.2: BGL-SS and BGL-SS-CAR estimates for prefixed [’s
‘ Methods ‘ True ‘ BGL-SS ‘ ISING ‘ BGL-SS-CAR
B11 0 0.15 0.30 0.38
D21 2.5 1.63 1.11 1.92
B31 -2.25 -0.70 -1.06 -0.84
Ba1 0 0.19 0 0
B51 3 2.30 1.33 0.81
Be1 0 0.33 0.10 0.36
B -1 -1.57 0.36 0
B12 0 0.17 0 0
529 0 0 0 0
B32 0 0 0 0
Ba2 0 0 0 0
B52 0 0 0 0
Be2 0 0.99 0.37 0
Bro 0 0 0 0
B13 2 0.16 1.28 0.34
B23 2 2.89 2.23 1.50
B33 -3 -0.96 -2.58 -2.43
Ba3 3 1.31 1.78 1.01
B53 1.5 0 0.96 0.71
Be3 1 0.16 0 0
B3 -2 -1.79 0.88 0
B14 0 0 0 0
Bo4 0 0 0 0
B34 0 0 0 0
B4 0 0 0 0
B4 0 0 0 0
D64 0 0 0 0
B4 0 0 0 0
B15 0 0.19 0.64 0.38
Ba5 2 1.05 0.88 0.25
Bas 1 212 11.92 -1.35
Bas -3 -2.08 1.68 0.65
Bs5 0 0 047 0.23
Be5 2 0 0 1.82
Brs -1.5 -1.75 0 -2.65
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within the model coefficients, it is clearly out-performing the regular Sparse Group LASSO

and ISING modeling technique both in terms of RMSE as well as in terms of FPR or TPR.

5.6.2 Scenario 1: N=7,p=5and T =10

In the first scenario, we take a simulated data over 7 spatial location with a pre-specified
adjacency structure (W). We take 5 variables for each of the locations, and we take the data
over 10 time points. We set ¢ in to three specified values: ¢ = 0.5, c =1 and 0 = 3. We
ran the Gibbs iterations for 10,000 times and we took the burn-in period to be 8,000. We

replicated the simulation 20 times to have a better measure of errors.
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Figure 5.1: Gibbs iterations of 3’s for the first scenario under BGL-SS-CAR when ¢ = 0.5
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Figure 5.2: Posterior Distribution of o2 for the first scenario underBGL-SS-CAR when the
true o2 is 0.25
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5.6.3 Scenario 2: N =14, p=15 and T = 50

In the second scenario, we take a simulated data over 14 spatial locations with a pre-specified
adjacency structure (W). We take 10 variables for each of the locations, and we take the
data over 50 time points. We set o to three specified values:c = 0.5, ¢ = 1 and o = 3.
We ran the Gibbs iterations 10,000 times, and we took the burning period to be 8,000. We
replicate the simulation 20 times.
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Figure 5.3: Posterior Distribution of ¢2 for the second scenario underBGL-SS-CAR when
the true o2 is 0.25

In table 5.3, we are comparing simple Bayesian Sparse Group Lasso and ISING model
vs the Bayesian Sparse Group Lasso with a CAR structure. The comparison is being done
using the False Positive Rates and the True Positive Rates as the two methods based on the
two scenarios we considered before.

It can be observed from the tables above is Bayesian sparse group LASSO technique is
mostly outperforming the simple sparse group LASSO as well as the ISING model in terms of
the RMSE and TPR. Which means when a spatial data is considered and when it is known or
expected for the variables to have a dependency structure convoluted in the joint distribution

of the covariates, we can expect that a CAR structure an catch the relevant variable more
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Table 5.3: Table for RMSE and True / False Positive Rates

Scenario 1 Scenario 2
Methods || BGL-SS ISING BGL-SS-CAR || BGL-SS ISING BGL-SS-CAR

oc=0.5

RMSE 1.02 0.92 0.80 0.42 0.31 0.28
TPR 0.56 0.70 0.62 0.71 0.78 0.77
FPR 0.08 0.06 0.01 0.13 0.15 0.04
c=1

RMSE 0.70 0.72 0.60 0.71 0.76 0.51
TPR 0.61 0.66 0.71 0.68 0.68 0.72
FPR 0.20 0.10 0.03 0.23 0.07 0.02
o=2

RMSE 1.03 0.75 0.78 0.95 1.08 0.92
TPR 0.69 0.61 0.73 0.72 0.82 0.88
FPR 0.18 0.15 0.03 0.31 0.10 0.07

efficiently than the other competative methods and is better in terms of lowering the model
errors. An advantage of using BGL-SS-CAR over ISING model in terms of computations is
that unlike the ISING model it is free from the ambiguity of prespecifying values for some
hyperparameter. Also, a bi-level shrinkage brings more control on the sparsity of the model
through the two acting variabilities, one between group levels and another within group
levels.

It is also very interesting to observe that incorporating the CAR structure in the prior
setup of the Bayesian sparse group LASSO technique results in a very efficient variable
selection in terms of the False positive rates. We can see from table 5.3 that FPR is close to
zero in all the simulation scenarios and also very low compared to the other two competative
methods. This means bringing CAR structure in the modeling scenario for a spatially related
data allows the model to be very efficient in identifying the covariates which are not relevant

for a given location.
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5.7 Data Analysis

In this section, we consider compustat data over the U.S. auto industry market. The data
consist of 20 U.S. auto manufacturers and the suppliers, including three 3 U.S. auto manu-
facturing giants GM, Ford, and Chrysler. The data span from 1960 to 1987 and include data
for nine variables that consist of some key factors of the manufacturing industry like actual
costs, cost of goods sold, total sales figures, revenue total etc. In chapter 4, we have consid-
ered this data to determine the latent network structure within the U.S. auto manufacturing
industry.

The method discussed in chapter 4 is dedicated to obtaining the probability of a con-
nection or no connections between the companies, i.e., existence of a connection between
company ¢ and company j means w;; = 1 and w;; = 0 stands for no connection between
company ¢ and j.

In our application, we will consider the estimated adjacency matrix from chapter 4 to be
the observed W and the purpose is to run a variable selection among the available model
covariates. A key thing to note is that in chapter 4, we have used revenue total as the
response and sale as the covariate since those two are theoretically the key factors for finding
the actual relationships among the companies. In our problem here, we consider 8 covariates,
and we ran a variable selection to see which variables are most important.

The data might have the issue of non-stationarity over time since we are not considering
a time parameter to handle the dependence over time. Instead, we use the first difference of

the response and the covariate as out actual model response and the covariates, i.e.,

Aln(y;) = ®AIn(y—1) + Aln(X) 57 +e¢ i =1,2,.., N t=2,3,..,T.
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where Aln(yit) = In(yir) — In(yir—1) and Aln(zi;) = In(wij) — In(wi—15)-

Table 5.4: Coeflicient estimates through BGL-SS-CAR for Auto Industry Data

‘ Ticker H act ‘ at ‘ cogs ‘ gp ‘ Ict ‘ It ‘ ppegt ‘ sale ‘
AL.1 || 0(0.03) | 0(0.12) | 0.28 (0.13) | 0.08 (0.07) | 0 (0.03) | 0 (0.10) | 0 (0.11) | 0.62 (0.26)
HON || 0(0.11) | 0 (0.05) | 0.16 (0.06) | 0.04 (0.03) | 0 (0.03) | 0 (0.11) | 0 (0.08) | 0.81 (0.38)
ARV | 0(0.03) | 0(0.4) | 0.50 (0.44) | 0.12 (0.10) | 0 (0.03) | 0 (0.02) | 0 (0.01) | 0.37 (0.22)

C.3 0 (0.11) | 0 (0.04) | 0.40 (0.33) | 0.03 (0.03) | 0 (0.02) | 0 (0.01) | 0 (0.09) | 0.51 (0.32)
CTB || 0(0.01) | 0(0.06) | 0.61 (0.34) | 0.08 (0.12) | 0 (0.05) | 0 (0.06) | 0 (0.05) | 0.28 (0.13)
DAN | 0(0.09) | 0(0.09) | 0.41 (0.19) | 0.12 (0.11) | 0 (0.04) | 0 (0.08) | 0 (0.03) | 0.43 (0.26)

DE 0 (0.05) | 0 (0.04) | 0.27 (0.15) | 0.06 (0.04) | 0 (0.10) | 0 (0.07) | 0 (0.05) | 0.66 (0.51)
ETN ] 0(0.03) | 0(0.05) | 0.26 (0.19) | 0.11 (0.09) | 0 (0.05) | 0 (0.04) | 0 (0.11) | 0.63 (0.46)

F 0 (0.18) | 0 (0.07) | 0.41 (0.28) | 0.08 (0.13) | 0 (0.06) | 0 (0.11) | 0 (0.04) | 0.41 (0.20)

GE 0 (0.11) | 0 (0.09) | 0.30 (0.23) | 0.14 (0.9) | 0 (0.10) | 0 (0.05) | 0 (0.04) | 0.57 (0.56)
GM 0 (0.11) | 0 (0.09) | 0.35 (0.17) | 0.08 (0.06) | 0 (0.08) | 0 (0.12) | 0 (0.08) | 0.55 (0.07)
SPXC || 0(0.07) | 0(0.13) | 0.33 (0.17) | 0.09 (0.11) | 0 (0.05) | 0 (0.08) | 0 (0.09) | 0.55 (0.54)

GR 0 (0.13) | 0 (0.10) | 0.20 (0.14) | 0.07 (0.05) | 0 (0.06) | 0 (0.09) | 0 (0.03) | 0.73 (0.47)

GT 0 (0.10) | 0 (0.06) | 0.19 (0.11) | 0.07 (0.05) | 0 (0.02) | 0 (0.10) | 0 (0.05) | 0.72 (0.41)
JCL ]/ 0(0.07) | 0(0.05) | 0.33 (0.35) | 0.14 (0.12) | 0 (0.13) | 0 (0.08) | 0 (0.12) | 0.53 (0.45)
ANV.1 || 0(0.07) | 0 (0.06) | 0.36 (0.29) | 0.21 (0.09) | 0 (0.11) | 0 (0.08) | 0 (0.12) | 0.37 (0.21)

ocC 0 (0.11) | 0 (0.06) | 0.25 (0.17) | 0.10 (0.05) | 0 (0.01) | 0 (0.04) | 0 (0.16) | 0.64 (0.49)
PPG | 0(0.05) | 0(0.07) | 0.32 (0.25) | 0.13 (0.09) | 0 (0.08) | 0 (0.13) | 0 (0.10) | 0.52 (0.45)
AOS || 0(0.06) | 0 (0.09) | 0.47 (0.23) | 0.07 (0.05) | 0 (0.10) | 0 (0.07) | 0 (0.10) | 0.43 (0.45)
UTXx || 0(0.05) | 0(0.09) | 0.31 (0.14) | 0.12 (0.10) | 0 (0.03) | 0 (0.12) | 0 (0.04) | 0.56 (0.40)

We consider modeling the data using 'revt’ (Revenue Total) as our response and use the
other 8 variables as our model covariates to perform a variable selection. We consider the
spatio-temporal modeling (BGL-SS-CAR) by considering an AR(1) process over time. Table
5.4 shows the variable selection along with the posterior median estimates of the coefficients.
The table corresponds to the BGL-SS-CAR modeling scenario. The "Ticker’ symbol shows
the company tickers in the US stock market. Our model includes 8 covariates are ’act’,
‘at’, 'cogs’ etc. The three U.S. auto manufacturing giants are given by C.3 = Chrysler,
F = Ford, GM = General Motors. Values in the brackets showing the standard errors
of the estimates. It is clear to see from the table above according to our Bayesian Group
LASSO model that 'cogs’= Cost of Goods Sold, gp’ = Gross Profit Loss Property, Plant and

Equipment - Total (Gross) and 'Sale’ = Sales total is coming out to be significant variables.
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which are heuristically and theoretically make sense and go consistently with the selected

covariates in chapter 4.
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Figure 5.4: Posterior Distribution of o2 for the Data

5.8 Discussion

The topic presented in this chapter uses a variable selection technique that takes information
from the spatially located covariates as well as the spatial adjacency structure among the
nodes that facilitate in selecting the covariates over several spatial locations.

Since this paper uses the spatial adjacency structure among the nodes, it is important
to have reliable information on the adjacency structure among the nodes. Since the data
is observed in a spatio-temporal fashion, it is important to undergo the test if there is any
spatial or temporal non-stationarity. In practice, we take the first difference of the responses
to be our initial data to remove the non-stationarity.

Assumption of a CAR structure among the covariates is an important assumption in this
paper. This not only facilitates the variable selection technique through a betterment of the

RMSE or the TPR but it also provides a profound heuristic and theoretical validation since
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it is must be expected that the variable selection in a spatial situation must depend on its
neighboring spatial locations.

Since the posterior mean does not provide an exact 0 estimate for the non-relevant covari-
ates, Geweke (1994), Kuo and Mallick (1998), and George and McCullough (1997) suggested
the highest posterior probability Model via Gibbs sampling calculates the highest poste-
rior probability around 0 and rejects those variables that have a very significant posterior
probability around 0. FDR-based variable selection has been proposed to select variables if
marginal inclusion probability is larger than some pre-controlled threshold. The posterior
estimation is distinctive in the sense that it directly gives the zero or non-zero estimates

without going to a second-step estimation.

5.9 Proof of the Lemmas

5.9.1 Proof of Lemma 1

Let us consider, w.l.g, y ~ N(z3,02). Let us assume 3 € (8y — €, By + €)°

Now we have,

[ rswigdy  en{ - 526 - %)

1
< exp{ — §$262} =

For the second part of the proof, let us assume y € (—M, M) where M is a large positive

integer so that we can truncate the distribution in (—M, M). Let us take R replicates of y
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as Yi1, Yi2, -, YiR- S0, we have,
/ fa(yi, yi2, -, YiRr) dy  ~ ( o >R<€M_6—M>Re—7]§$2(52—502)
fﬂo Yil> Yi2; - 7y7,R) x(ﬁ - ﬁ())

T R R _R_2.502
I T = (5) () e B e
0 112929997

Hence sup
peUc

2
So, for each ¢, if we assume M =~ %exp{%(ﬁ(ﬂ + Qxﬁo)}, then we can show,

/ fa(Wits yios - YiR) dy
fﬁo Yi1, Yi2s - YiR)

sup
pselUc

—0 as R—

Again,

/\/fﬁ(yu,yﬂ, o Yir) [y Wits iz, - yip)dy - = %p{ — §$2(5 - 50)2}

So, Bsup ‘f \/fﬁ(yﬂ,ym o Yir) f 8y Wits Yiz, - Yir)dy = 6$p{ - §I262} for fixed R.
cU

Now from triangle inequality,

fa3Wit, vi2, - ViR) /
sup dy — (Uit Yins s Ui R) L8 (Uil Yins oo Ui R )Y
peUc¢ /\/fﬂo y217y227- ayzR) \/ ﬂ( ! ‘ ZR) ﬁ()( il 5 ZR)
f8(Wit, iz, - YiR)
g T | N ey r—"
BeUe \/fﬁo(yu,yn,.u,ym) Belre \/ 5(iL, vi ir) 5y (Wi, yi iR)

—0 as R—

5.9.2 Proof of Lemma 2

Consider a random variable Z = T'B and set Z/ = B.

T.B
’/): !

The Jacobian of transformation is J( 7.
7.7 Z
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Hence the pdf of Z is given by,

/ A 2
\[(Z-pB\? | (Z—FT
L eod () (B
2y = / Lz
o 2mBaT<I>(§—§) 7'
2 2
I I
exp _%(_ng_g) r2 /
B °B T /Ooexp 1| Z -2Zup
QWUBUT(I)(Z—;) —0 2 023
2
2 27,
77z 1.
+ 5 —dZ
o 7

Set,

Hence,

f(Z): o

o0 y a7 0 47
(Z, 7 —+/ w(z, 7).
/O 2.2 2.2

—00

Hence we have the similar setting as of Craig (1936). Hence using the same technique we
can show that the above function has a closed form expression with an infinite polynomial

function of | Z| with the coefficients are being a scaled version of the Bessel function of second

kind.
€ 2 92 92 VA 4 4 A
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where,
Z2

Yy
Ky(Z) = %(%)7 0OO ‘ y7+1_dy

p1 = L and py = 1T,
Z 7)?
Sr(p1paZ) = 1+ 5L + 0200

(7’—1—2)(2) :
with (r + k) = (r + k) (r + k — 1)...(r 4 1).

5.9.3 Proof of Lemma 3

SR -5 (S5
M B/ —c oT 7 dtdb
r5(¢ / / 03\/2% CI)(I;—;)O'T\/QW

b 2 — 2
! / / 3 () -+ () —2¢0]
QWCI)G—TO'TUB

Now,

b—pup\2 t—pr\2
( )"+ ( p- )" —2¢th

oB
B 0%62 — QbJ%uB + u%a% — 20%0%{756 + 0%(252 + —2tpur + M%")
- 02,02
BT
- - 02 {0202 + 2b(02 g + o B202Et) + (0Rpp + o B202et)?
BT

—(o2up + 0B2o2et)? + B0 + o (12 + —2tup + 1)}

_ b= (up+ oB&t)12  (orpp + oporél)® — uhor — ot — 2y + pi)
o2 ] o307,
. U%MB&LMT
b= (up + o%Et) 12 A 1-02,0262 /12 (U%MBé* + MT)Q
- =+ or T2

~“B72
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(5.10)

Hence,

o a%uBf-i-uT ) 1(U%LLB§+LLT)2 1“23

2 32 2 2.9\ 2 2

P il
o (L) (1 - o%o2e2)1/2

Now the first moment of Z can be obtained from the first derivative of Mpp(¢§) at £ = 0:

0 M (f)’ gb(‘gg:) ar MT(I)(NT) 1”%
8§ TB £=0 (I)(/;—;) g mpHT o7 o p 20_%

5.10 Some Posterior Calculations

5.10.1 Posterior Calculation for b,

P(by | rest)
| R P Vs
x exp{ - 2—22 lyr — Z)fgr ® Vg byHQ}
g r=1 g=1
p
_ 17
X H {(1 — 7o) (27) N/Qexp{_§~g[2g}l(bg #0) + Woég(gg)}
g=1

= 613]9{ - % Z(yr - XTV1/2,IZ) (gr - XTV1/2,I?,)}

!

R
+ew{ = S - X V) (g - X VY2 }WO%(Qg)



Wherea XT = (,@),17“7;@27"7 "'7£pr)nxp7 b,: (Q&?b,;a "'7!2;?)np><17
V = diag(V1, Vo, ..., Vp)npxnp

Hence,

1/2 / 1/2

R /2 _ 1/2
& pg = %229 2r=1 Vg/ ® Xrg (:yf B XT(Q)V(Q/) Q(g))
So,
P(by | rest)

1
=(1- 7T0)|Eg\1/2N(#gaZg)@xp{ - ﬁ”?j‘ - Xr(g)v(g)b«g"%

R
1 / /
o242 VI Xl — X Vi %) B <10 £ 0

r=1

R
1
+7roexp{ ~ 5,2 > llyr — XrV1/2QH%}7To5o(bg)[(Qg #0)
r=1
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5.10.2 Posterior Calculation for 7,

P(7y; | rest)

R p
1 1/2; 112
O(exp{——QUQE:ngr—z rg®V/ ||2}
r=

1=1

W
p N (17 — S ips —L7:)?
_ 1\7gj i#] wiy 9
X H H(l - 7r1)2(27r52) 1/2e:1:p{ —3 oy ot }I(ng > 0) + m100(7g5)
i=1j=1 "
R
B 1 1/2 ! 1/2
= ew{ = 507 2.0 = Xo(g) @ Vi) (ur = Kog) @V %j))}
r=1
1 & 1/2
eiﬁp{ﬁ Z(?Jf - X r(g7) X V b( )))N(rnggjbgj
r=1
. R 1/ 2 2 R w
g +
+202 Z XrgjTgibej(yr — Xr(gj) @ ng Q(QJ 9 {_2 Z :
r=1 =1
N, g g2
Tgj Zz;éj wHng _ (Zz;éj wi+7—91) (1 _ >2<27TS2)71/2[(7_ S O)
52 Jw; 252 Jw; VA 97
i+ 1+ (o
R
1 /
e = gy 3l X 9V (- X0 £ VD Y
r=1

/

rgi = (0,0,.. owwﬁ,ﬂm.

-1
2 _ 9.7
Set, Vg = ( § ng)

2
v R 1/2
tgj = %Zr:l(,yj’ Xr(gj) @ Vg / by >Xrgjbgj+ ? ZZ#J wz—l— 79

Here, X
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Hence,

R
B 1 1/2 ! 1/2
= efvp{ ~ 52 ;@r = Xi(g) ® Vignlion) Wr = X)) ® V(gj>ﬁ<gj>>}
2
1 Wij 2 L%;
exp{ - _Q(Z , ng) + _T}
20 oy Wiy 2 Ui
Uu
O~ )N (ugy,v2)) 2mv2 )2 (1 — mp)2(20%) 721 (75 > 0)

5.10.3 Posterior Calculation for s>

P(s? | rest)
188 2)-1/2 (79 — ij wijTgj)*
x H H {(1 —71)2(27s”) exp{ — 52 M (745 > 0)
g=1j=1

—|—7T150(ng):| X t(82)_261‘p{ - ;_2}
(M 1 1&e Wi
- (82) (5 +2)exp{ — 3_2[t+ 5 ZZ(TQJ — Zﬁng)Q}}

where, M = #(14; #0) V g=1,2,...,p & j=1,2,..,N.

5.11 Some Details for Data Analysis
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Table 5.5: Company names with corresponding ticker

’ Ticker H Company Names ‘
AL1 ALCAN INC (RIO TINTO)
HON HONEYWELL INTERNATIONAL INC
ARV ARVIN INDUSTRIS INC (MERITOR)

C.3 CHRYSLER

CTB || COOPER TIRE & RUBBER COMPANY
DAN DANA HOLDING CORP

DE DEERE & CO

ETN EATON CORP PLC

F FORD

GE GENERAL ELETRIC CO

GM GENERAL MOTORS
SPXC SPX CORP

GR GOODRICH CORP

GT GOODYEAR TIRE & RUBBER CO
JCL JOHNSON CONTROLS INC
ANV AEROQUIP-VICKERS INC

ocC OWENS CORNING

PPG PPG INDUSTRIES INC

AOS SMITH (A O) CORP

Urx UNITED TECHNOLOGIES CORP
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Table 5.6: Covariate List

Covariate Code H Covariate Name
act CURRENT ASSETS - TOTAL
at ASSETS - TOTAL
cogs COST OF GOODS SOLD
qgp GROSS PROFIT (LOSS)
let CURRENT LIABILITIES - TOTAL
It LIABILITIES - TOTAL
ppegt PROPERTY, PLANT AND EQUIPMENT - TOTAL (GROSS)
sale SALES / TURNOVER (NET)

Table 5.7: Response Variable

’ Response Code H Response Name ‘
| revt | REVENUE TOTAL |
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