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ABSTRACT
NON-MANIFOLD FACTORS OF EUCLIDEAN SPACES

by Alfred John Boals

This thesis is a study of a class C of decomposition
spaces which are shown to be factors of Euclidean space.

Suppose A and B are disjoint compact subsets of
E". Then we know it is possible to find disjoint compact
sets A* and B* such that A C int A* and B C.int B*¥. 1In
Chapter I we give sufficient conditions for A and B to
insure that A* and B* can be picked to be cells.

In Chapter II we define the class C of decomposition
spaces and prove that the product of any member of C and
a line is topologically E" for some integer n.

In Chapter III we prove that the product of any two

members of the class C is topologically En+m for suitably

chosen integers n and m.
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INTRODUCTION

In 1957 R. H. Bing [3] gave an example of a decomposi-
tion of E3 into tame arcs and points such that the associ-
ated decomposition (the "dogbone space") is not topologically
E3. In fact this space is not even a manifold (i.e. there
exist points which do not have Euclidean neighborhoods).

The "dogbone space" was constructed in answer to a question
of G. T. Whyburn [8, p. 70] which asked: 1Is it true that
if G is an upper semi-continuous decomposition of E3
into point like compact continua, then the decomposition
space is homeomorphic to E3?

In [5]) Bing gave examples (i.e. "unused example" and
"segment space") of two other decompositions of E3 into
tame arcs and points. The "unused example" is known to be
distinct from E3, however, whether or not the "segment
space" is E3 is still unknown. Bing [4] proved that the
product of the "dogbone space" and the line is 4-dimensional
Euclidean space (E4). It is reported [5] that John Hempel
has proved that the product of the "segment space" and E!
is E4. 1In [2] S. Armentrout asked if the same were true of
Bing's "unused example". An affirmative answer is given to
this question in Chapter II.

In proving that the product of a dogbone space and a
line is E4, Bing showed that E4 has non-manifold fac-
tors. J. J. Andrews ana M. L. Curtis [1] gave another fac-
torization of E4 into factors one of which is not Euclidean.
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They proved that if o is an arc in E" then E"/a X El
is e, K. W. Kwun proved that if a C E" and B C E"
where o and B are arcs then E‘/a x EV/B is E"'™.
Thus Kwun has shown that E® where n > 6 can be written
as the product of two non-manifolds.

In view of the relationship of these last two results,
it is natural to ask the following question. 1Is the product
of dogbone spaces, unused examples, or segment spaces top-

ologically E®? This question is answered in the affirma-

tive in Chapter III.

Notation and Terminology

Suppose X is a topological space. A collection of

subsets G of X will be called a decomposition of X if

U(s|s e G} =X and s; N s; = ¢ for any two distinct ele-

mentSof G. G will be called an upper semi-continuous de-

composition of X if for any element g € G and any open
set U C X which contains g, there exists an open set
V CU such that g Cc v and V is the union of elements
of G.
Suppose X 1is a topological space and G is a decompo-

sition of X. The decomposition space associated with G,

say Y, is defined as follows. The points of Y are the
elements of G and a base for the topology of Y 1is the
collection of sets of elements of G whose union in X is

open. More information on decomposition spaces can be found

in [8] and [6, Chap. 3].



3

A pseudo-isotopy of a topological space X into a

topological space Y is a continuous function H on'X X I
into Y such that Ht(x) = H(x,t) is a homeomorphism for
each 0 = t < 1.

Any subset of a topological space which is homeomorphic
to I where I = [0,1] will be called an n-cell. Any
paracompact Hausdorff space in which every point has a
neighborhood whose closure is an n-cell will be called an

n-manifold.



CHAPTER I
SEPARATION THEOREMS

In proving that the product of the "dogbone space"
and a line is E4 Bing was forced to give a rather lengthy
construction of a sequence of 4-cells. Theorem 1.1 asserts
the existence of suitable n-cells in a more general con-
text. Theorem 1.1 is applied in proving the main result
of Chapter II. Theorem 1.2, in addition to being of inter-
est in itself, plays an important role in the proof of the

main result of Chapter III.

Definition 1.1: If X is a topological space and

D CX then by int D is meant the set X - X - D, where

X - D is the set theoretic closure of X - D in X.

Theorem 1.1: Let Cy, Cg, ..., cp be disjoint com-
pact subsets of a Hausdorff space X. Let D;, Dg, ..., Dp
be (not necessarily disjoint) n-cells such that for each
i=1,2, ..., p

C;, < int D, .
Then for any [a,b] CE! and ¢ > 0 there exist disjoint
(n + 1)-cells E;, Ep, ..., Ep contained in X x (a-g, b+eg)

such that for each i =1,2, ..., p
(1) c; x [a,b] Cint E;

4
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where m; 1is the projection of X x E! onto X.

Proof: Let f:[-g, r+g] —> [a-g, b+e] be the homeo-

morphism given by

a + x ; if x € [-€.,0]
b - a .
f(x) = ( = )x + a; if x € [0,r]
b+x-r ; if x € [r,r+e]
onto

Let k:[-g,r+e] ——> [-e,2p-1+¢] be the homeomorphism
given by

k(e) = 22l =1 (¢ 4 ¢) - ¢

For each j =1,2, ..., p let kj be a homeomorphism

of [-e,r+e] onto [=~eg,2p-1+eg] with the properties:

1. kj(-e) = -g and kj(r +e)=(2p -1+ ¢)
2. k;(0) =23 -2
3. ky(r) =2j-1.

Let A =UD, CX and note that since A is a compact
i
Hausdorff space it is normal. Bdy A = A - int A and Cj

for j =1, ..., p are closed sets. Thus there exist open
sets Uj for j =1,2, ..., p satisfying

1. u;n Uj =¢ if i # 3,

2. ci C Ui for all i =1,2,..., p,

3. U. C int A.
By the Urysohn lemma there exists a continuous function g
mapping A onto I = [0,1] such that

1. g(;.J c,)=1 and

i
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Construct h:A X [-e, r+e] —> A x [-eg, 2p-1+¢g] as follows:
(x, ng)kj(t) + (1-g(x))x(t); on ﬁs X [-g., r+el
h(x,t) =

| (x, k(t)); on (A - l_JUi) x [-e, r+el.
1

For each j =1,2, ..., p h=1id xk on Bdy 65 x [-e, k+e],
hence h 1is well defined. h is continuous since g, k and
kj are all continuous. Suppose

h(x;, t1) = h(xz, tj)

Case 1:

If x € Uj then

g(x)kj(tl) + [1-g(x)]k(ty) = g(x )kj(t2)+[1-g(x )1k (ty)
or

g(x)[kj(t1)-kj(tz)]+[1-9(x)][k(t1)-k(tz)] =0
But g(x) and 1-g(x) 2 0 and both k and kj are order
preserving homeomorphisms, whence kj(tl) - k.(tg) and

J
k(ty) - k(ty) are both positive, zero, or negative together.

Therefore
k(ty) - k(tg) =0
and t; = ty.
Case 2:

If x e A - UU; then k(ty) = k(ty) and again
i _
Thus h is one-to-one and continuous hence a homeo-
morphism. h can be extended to a homeomorphism of

X X [-e, r+e] —> X X [-e, 2p-1+¢g] Dby defining
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h(x, t) = (x, k(t)) onXx - A.

For each j =1, ..., p let E3 be the (n+l)-cells
defined by |
E} =Dy x [25 - 2 - 225 -1+3.
Now define

Ey = (id x f)[h-l(Eé)]
Clearly Ej NE, =¢ if i # 3 and FlEj ='Dj; Moreover
E; C int AXx (a-¢€e, b+eg).

If x € Cix [a,b] then

(id x £)"Y(x) e c, x [0, 2r-1]. and

h - (id x £)7}(x) « c, x [2i -2, 2i - 1].

But
C. x [2i - 2, 2i - 1] C int (D. x [2i-2-%, 2i-1+%])
i ! i 4’ 4
whence
, -1 , -1 . -1 . o d
(id x £)*h  *h-(id x £) (x) € (id x £)h (Di x[2i-2-7,
and x € E,. Thus the E; i=11,2, ..., p satisfy all

the qlaims of the theorem.
The above theorem will be applied in Chapter II in the

following form.

Corollary 1.2: Let A be a compact n-manifold in E"

and C31,Cq, ..., cp be disjoint compact sets in int A

such that there exist (not necessarily disjoint) n-cells
Dy.Dg, ..., Dp with the property that C;, © int D, C int A.
Then for any [a,b] CE! and ¢ > 0 there exist disjoint

(n + 1)-cells E;,Ez, ..., Ep contained in int A X

(a - €,b + g) such that C; x [a,b] C int E; and 7 E, =D,,

where 7 is the projection of E" x E! onto E".

. 1
21_1+Z])
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Theorem 1.3: Suppose B is a compact subset of

int I and c is a compact subset of 1 disjoint from
B. Similarly suppose D is a compact subset of int ) o
and E 1is a compact subset of ™ disjoint from D. Then
there exists an (n + m)-cell G with the following
properties:

(1) B xDcint G cG C int I” x int I"

(2) 6N [(BXE)UI( xD) U (CXE)] =o.

Proof: Let T C int 1" be an n-cell such that
TN (BUC) =¢ and T is the product of its projections.
Such an n-cell exists since C N B = ¢ and they are each
closed. Similarly let R C int I™ be an m-cell such that
RN (DUE) =¢ and R is the product of its projections.
Let ;T = [ty, ti] for each‘ i=1,2, ..., n and
TR = [rj, ré] for each j = 1,2, ..., m, where T  is
the projection onto the a-th coordinate.

Let &, = min[distance from B to (Bdy I" U C),
distance from T to (B U C U Bdy 1")]. Let 63 = min[dis-
tance from D to (Bdy ™ v E), distance from R to
(DUE UBdy I™)]. Set & = min(b;, 863). Let %, ky, kg,
ooy km be homeomorphisms defined as follows,

(1) x : [0,1] —> [0,1] such that

k(0) =0, k(1) =1 and
x[(6/2, 1-6/2] = [1/4, 3/4].

(2) For each i =1,2, ..., m let
ki : [0,1)] —> [0,1] such that
ki(O) = o, k{l) =1 and
ki[ri,ri] = (1/4, 3/4].
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Let U  be an open subset of (6/2, 1 - 6/2)™ such
that BCU_ and U NC=6. Set wh = 1"-[5/3, 1 - 5/31".
By the Urysohn Lemma there exists a continuous function
g : 1% —> [0,1] such that
g(B UBdy I%) =1 and
g(I” - (U, UW)) = 0.

Consider the following collection of maps

hi=InXIm >InXImli=1121 e e, M.
For x ¢ I" and (Ye. «--. ym) e 1™
(xl(YII"°OYi_1'g(x)k(Yi) +
[1-g(x)1k; (y; )iy, v ---r¥y) for
= m
(%, (y1.--e0yg)) e U x I,

hy (%, (1, -0y ))= J (% (yas e euyy oa(x)y, +
[1-g(x)1k; (v;) /Y5400 ---1¥y,)) for

(%, (Y1 e--0yy)) € W x I

(%0 (Y20 e oYy X (¥3)o¥s g oo eryy))
n m
|for (% (yar--euyp)) e [T°-(W, U U )IxT™.
Each hi is well defined since Un n Wn = ¢,

m . .
vjhi/de U, x1I 5 for all j # i

m;hy/Bdy U X 1™ = k.7, , where again T, is the

i'i i
projection onto the i-th coordinate axis. And

m _ : .
vihi/de W, X I =y for all j # i

m
vihi/de WoxI kT -

Clearly each hi is continuous and onto 1" x I™. Suppose
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for x’ x. € I and (yl, o e o ym)l(zl'ooo, Zm) € Im
hi[x'(yl, e o ym)] = hi[x.’(ZI' e o o, zm)]
then x = x' and Yy = 2y for j # i.
Consider the three cases:
(1) x € U,
(2) x ¢ W or

(3) x e 1 - (Un n

case 1: g(x)k(y;)+[1-g(x)1k;(y;)=g(x)k(z;)+[1-g(x)1k; (z;)

and  g(x)[k(y;)-k(z;)1+[1-g(x)] [k, (v;) -k, (z;)] = O.

Note that g(x) and 1 - g(x) >0 also

[k(yi) - k(zi)][ki(yi) - ki(zi)] 2 0 since k and k.
preserve order. Thus y; = 2;-

Similar arguments show that for cases 2 and 3 Y; = 2%;-
Thus for each 1i, hi is an injection consequently a homeo-
morphism.

Define H : I" x I" —> I” x I" to be the homeomorphism
hy" hgs ... - hm‘

set J = [6/2, 1- 5/21™ x [1/4, 3/4]™ c 1" x 1™.
If (x,y) €e BxD then x ¢ U, and H(x,y) € J. Thus
H(B xD) cJ. Let (x,y) ¢ [Cx (D UE)] then x ¢ I - U
and there exists a j such that vj(y) € I-[rj,r;]. If
x € W then H(x,y) ¢ 3. If x ¢ ) (W, x Un) then

vjhj(x,y) € I - [1/4,3/4] and H(x,y) ¢ J. Thus

H[C x (D UE)] nJ = ¢.
Note that H/B Xx ™ = id X k*, where k* is the m-fold

product of k; (i.e. k* = (k xk X ... x k) with m factors).
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Thus it follows that v; H(B x D) and n; H(B x E) are
disjoint compact subsets of [1/4, 3/4]™ c 1™, where v;
is the projection of I x I™ onto I™. Also W; H(B % D)
c (1/4, 3/4)™. Let <y = min(distance from w; H(B x D) to
Bdy[1/4, 3/41™, 5/2). Let U, be an open set in
(1/4 + y/2, 3/4 - v/2)™ such that v; H(B x D) C u, and
and U 07t H(B xE) = ¢. Let W_ = [1/4, 3/4]" - |
[1/4 + y/3, 3/4 - y/3]™. There exists a continuous function
£ : [1/4, 3/4)™ —> [0,1]

such that

(1) £/ [H(B x D) U Bdy[1/4, 3/41™ =1

(2) £/[1/4.3/41™ - (U UW) =0

Let Y, Y3, Y3, ...; ¥, be homeomorphisms defined as
follows

(1) v : [6/2, 1-8/2] —> [6/2, 1-5/2] such that
v(6/2) = 6/2 , v(1-86/2) = 1-6/2

and
v[(6/2 + y/2, 1-6/2-y/2] = [1/4, 3/4)
(2) For each i = 1,2, ..., n let
¥, o [6/2, 1-6/2] —> [6/2, 1-6/2] such that
%ﬁ6/2)‘= 6/2 . ¥;(1-6/2) = 1-5/2
and

Y. [ty ti] = [1/4, 3/4].

Consider the following collection of maps

6, : I" x 1" — 1" x 1", i=1,2, ..., n.

n

For (X3, Xz, ..., x ) € I" and y ¢ ™
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(ia  for ((xl,...,xn),y) e (I"x1™)-int J

(ks ooy £(0)20x;) +
(1-£(y)1¥(x;) x,
((x1.%g,....% ).y) € [6/2,1-8/21" x U,

,...,xn),y) for

9.[(x1,...,xn),y]= 4 ((%g,....,x%

i f(y)xi +

i-1’
[l-f(y)]Yi(xi),xi+1,...,xn),y) for

((x1.%z,---.% ) y) € [6/2,1-5/21" x W

((xl,...,xi_l,Yi(xi),xi+1,...,xn),y)

on [8/2,1-6/2]1"x((1/8,3/41"-(u_ U W_))
u

Each ei is well defined since Wh n

(@
o |
]
e

n - . .
vjei/[é/2,1—6/2] x Bdy U = ;5 for i # 3

vjei [6/2,1-86/2] x Bdy U, = ¥m,

and

vjei/[é/Z,l-é/Z]nx ([6/2,1-6/21"-(u_ U W )) is T, Aif

j # i and ¥,m, if j = i. By an argument exactly like
the one given above for hi’ each ei is a homeomorphism.
Define 6 = 63763 ... 6, . Set J' = (1/4,3/41" x

[1/4 + y/2, 3/4 - y/21™ cJ. 1f (x,y) € B xD and

X = (X1, eeer % )0 ¥ T (YeiYa, oo ¥ )-

6(x, [k(ya), -+ K(yg)])

[(E0x2) -+ ¥ 0x)) s (k(y2) K (¥a) - K(y))T -

Thus 6 - H(B xD) cJ'. If (x,y) ¢ [(¢c xD) U (C X E)]

Then 6[H(x,y)]

then H(x,y) ¢ J hence 6 - H(x,y) ¢ J'. Suppose

(x,y) € B X E then v; H(x,y) ¢ [1/4, 3/4]™ - U, and there
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. . ! *
exists a j such that vj(x) ¢ [tj, tj]. If rmH(x,y) €W
then 6 - H(x,y) ¢ J' since v&e'H(x,y) = W;H(x,y) €W,
L * - - -
and W N mJ ¢. 1If va(x,y) € ,wm(J) W, -U  then

vjv;H(x,y) ¢ [1/4, 3/4]) and 6°-H(x,y) ¢ J.

Therefore 6-H[(B x E) U (¢ xD) U (¢ xE)] c 1" x 1™ - J'.
Define G = H '.67!(J'). G is the (n + m)-cell
contained in int I" x int I™ satisfying properties 1 and

2 of the theorem.

Note that J' defined in the above proof is a product
of cells. Thus a proof similar to that of Theorem 1.1 would

prove the following corollary.

Corollary 1.4: Suppose Bi’ i=12, ..., p, are

disjoint compact subsets of int 1 and c is a compact

subset of 1" disjoint from U B, = B. Similarly suppose

i
Dj' j =1,2, ..., q, are disjoint compact subsets of int ™
and E is a compact subset of ™ disjoint from U D, =D.
i
Then there exist (n + m)-cells Gij' i=1,2, ..., p:;
j =1,2, ..., q, such that
(1) Gjy N Gpg = ] if i#r or j #s,

: . n m
(2) B, X Dj C int Gij c Gij C int(1I" x 1),

(3) Gj4 N [(c xD) U(BXE)U(CXE)].



CHAPTER 1II
A CLASS OF DECOMPOSITION SPACES

In this chapter we define a class of upper semi-
continuous decompositions of E® and prove that the
associated decomposition spaces are factors of En+1.
This class contains the decompositions for each of the

spaces (a) "dogbone space", (b) "unused example" and

(c) the "segment space" [see 5].

Definition 2.1: Suppose o is an arc in E" (i.e.

a = h[0,1] for some homeomorphism h : I —> En) such
that P = m;/a is an injection, where m; is the pro-
jection of E" onto the 1st coordinate. 1In this case a

will be said to have property QS.

Let o be an arc with property QS and assume that
my h(1) = b and w; h(0) = a with a <b. Define the

continuous function f : E! —> E" by

P 1(a) for t = a
£(t) = { P *(t) for alt b
P 1(p) for b Xt .
Define the homeomorphism k : El x "' —s E1 x BT

by k(t,x) = (t, x - £(t)). For any ¢ > 0 let

Cc, = (z|z ¢ E®, || z - a|| 2 ¢)

<

cg = (z|z ¢ E®, || z -b|] Z¢)

Cs = (z]|z € E", a Zmz =b and ||z - mz|| =€)
14
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then Q_ =C; UCz UCs is an n-cell containing T1(a).
The n-cell k-l(Qe) shall be called an g-radial neigh-

borhood of ¢ .

Remark 2.1: Note that if q is an arc with property

QS then for any € > 0 the g-radial neighborhood of ¢
1

)

intersects the planes wpl(t) = R, = ((t.y)|(t,y)e t x ENT

in the void set, a point, or an (n-1)-cell.

Remark 2.2: Suppose a is an arc which has property

QS. Since the homeomorphism used to define radial neigh-
borhood is uniformly continuous, it follows that for any

e >0 there exists a &6 > 0 and a collection of planes

R, =7 ' (t)) with t3 =a <tz < ... <t, =b such that
the R, cut the é-radial neighborhood of a into (p + 1)

n-cells ¢, ; i =0,1,..., p and diam ci:e.

Let Ay, A, ... be a sequence of compact n-manifolds
(not necessarily connected) in " satisfying

Pl. Ai+1 C int Ai for all i =1,2,3, ...

P2. Each component of A, T NA, is an arc with
i

property QS.

Lemma 2.1: Suppose ¢ > 0 and Ai and Aoo are as
defined above, then there exists a finite collection of
n-cells U, satisfying

1. For each Ui there exists an arc ay; C‘Aa> N int Ui

such that the distance from x to the boundary of

Ui is less than g for all x € a -
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2. There exists an integer m such that if A 1is a

component of AL then A C int Uj for some j.

Proof: For each arc a € A let N, be the %—radial
neighborhood of a. For each ‘Na there exists a neighbor-
hood Vﬁ C Na with the property that if an arc g CA
intersects VQ non-trivially then g C Na' The existence
of such Va's follows from the fact that the decomposition
of E" into the arcs of A and the points of " QIAOO
is an upper semi-continuous decomposition. The collection
of sets {Vala C'AOD] is an open cover of the compact set
A - Thus there is a finite subcollection V3, Vg, ..., V

p

which cover A - Let Ny, Nz, ..., Np be the correspond-

ing Na's. Note that by the choice of the Va's we have
each arc a C A contained in the interior of at least one
Ni' For each arc ¢ C:AOD there exists an integer m(a)
such that

a .
CA . Wwhere Am(a) is the compo-

(a) m (a)
nent of Am(q) containing aq;

Qa
1. QCAm

2. a C i . , for some i =1,2, ..., .
Am(a) int Nl P

. . Q .
The collection (int Am(a)la C Aoo] is an open cover of

Aoo‘ Therefore there is a finite subcover. From this col-

lection of A;(a)'s there is one with largest subscript

m(a). m = m(a) is the desired integer. Each N, is the

%—radial neighborhood of some q C‘Aoo' Therefore the col-

lection Ui = Ni satisfies the claims of the Lemma.
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Lemma 2.2: Suppose Ai' i=1,2, ..., are defined as
above and A is a component of AL for some r. Given
e > 0 then there exist integers vy(1), v(2), ..., y(m+l)

and sets Kij cAxE i=1,2, ...,s8; 3=1,2, ..., m,
which satisfy the following conditions.
1. For each i , K;  is an (n+1)-cell and Kij is
the disjoint union of (n+l)-cells Kijk’
xk=1,2, ...,u(i,3).

2. Kio N Ko, = @ if i # e.

3. UK.. C (A . n A i, 2m+1-7
int A . A ), 2m+1-j > U .
( n (J) n ) X (J m J) - K 54

for each j

4. For each 1i Kio can be written as the union of
(n+1)-cells Dio +©€=0,1, ..., m, such that
Die n Div = Bdy Die N Bdy Div is an n-cell if
le - v| =1 and is void if | e - v| > 1.

. % . *
5. Diameter of vn(Die) < e for all i,e , where 7
is the projection E" x El —> E".

6. Die n Div n Kijk is either void or an n-cell.

Proof: Let the ¢ of Lemma 2.1 be the min (g, distance
from Aoon A to Bdy A) hence there exists a finite set of
n-cells Kio , 1= 1,2, ..., 8 and an integer vy(1) sat-
isfying;

a. Kio C int A for all 1i.

b. If A' 1is a component of A N A then

Y (1)

A' C int‘Kio for some 1i.
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Note that the Kj{, may not be disjoint. By Remark 2.2

each n-cell Kio can be‘chosen so that there is a finite
A . . .
set of planes Rij’ j 1,2, ..., m, which cut Kio into

(m; + 1) n-cells D!. such that
i ij

] L} -— ] 1
D;, N D'y, = Bdy Di; N Bdy D,
is an (n - 1)-cell if |j - v| =1 and is void if [j - v| > 1.

Without loss of generality assume m, =m for all 1i.

Similarly apply Lemma 2.1 to each component of
Ay(l) N A to obtain an integer v(2) and sets Ki1 ., where

Ki{, is the union of n-cells K! ,k=1,2,...u(i,1),

i1k

satisfying;
i. If A* is a component of Ay(z) N A then

A* C int K|

1 : (] ] . L]
i1k C Ki1k C int A' CA' C 1nt Kio

for some k and some component A' of Ay(I)n A.

ii. K!

ik N Ryy is either void or an (n - 1)-cell.

Condition ii actually follows from the proof of Lemma 2.1.
Continue this procedure to obtain the integers v(3), y(4).

cee, ¥Y(m + 1) and sets K!; and n-cells K| satis-

3 ijk
fying conditions analogous to i and ii above.

For each i and j define wijz to be the union of

the components.of A N A which are contained in K!

y(3+1) ijg
3 ]
but not in Kijp for any p < f. Note that wijz are
compact and wijk n wijz = ¢ if k # f. Let [inI] and

[Kio] be respectively {Ci} and [Di} of Theorem 1.1 and

let a - g =0 and b + g =2m + 1. Then define Kio = Ei

of Theorem 1.1. By the proof of Theorem 1.1 we see that

K,, can be written as the union of (n + 1)-cells Diz such
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2 = Diz' Further the Diz

In general let (wijk] and [Kijk] be respectively

that v; D, satisfy condition 4.

[Cik} and [Dik] of Theorem 1.1 and let g = %, a =3

and b =2m + 1 - j. 1If K, = E, of Theorem 1.1 and

jk ik

K, = UE; then conditions 1 through & are clearly

ij X k
satisfied and condition 6 follows from ii above.

Remark 2.3: Note that if i # r and A' 1is a com-

n

ponent of A N A contained in K;j then K,

y(j+1) i, j+1

A' X E! = ¢ since K!. NK'. CA -A_ ,. . Also K!.
ij rj v(j+1) ijp

Kijq = ¢ if they are not contained in the same n-cell

]
of Kij—l'

n

The proof of the next lemma is based on the follow-

ing known result.

Theorem: Suppose that A is an n-cell which is the
union of two n-cells A; and A, with the properties that
A; N Ap and Bdy A; N Bdy A, are (n-1l)-cells and A; N Ag C
Bdy A; N Bdy Ag. If B CA, B is compact and B N Bdy A C A,
then there exists a homeomorphism h of A onto A which

is fixed on the Bdy A and such that h(B) C Aj.

Lemma 2.3: For ¢ >0 and A a component of Ar
(where A, i=1,2,... are defined as above) let
y(£), Dy Ky and Kijk be defined as in Lemma 2.2.
Then there exists a homeomorphism h : E®? x El —> E” x E!

such that the following hold.

1. h =id on the complement of U Kiy -
i
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2. h = id on the complement of

;J([Kil N (O, UD; )] UK, n (D;, N D, )] U ...
U IR N Dy UD;0T)
3. I1If A! C‘Ay(j+1) N A and Kijk :?A'x [7.2m+1-7]
then
h((Dio U ... U Dij) NA" x ([j,j+1] U [2m-j,2m-j+1]))
CDjy YDjysy

where V¥ = min(3j, max{eIKiek N D, Z 0, K, ex DA'}).

Before reading the proof of Lemma 2.3 it may be help-
ful to look at Figures 1 and 2. The homeomorphism h will
be obtained as the composition of homeomorphisms hm-l'hm-z.

* hy. Figure 1 illustrates how the hj will be con-
structed. The shaded region of Figure 2 is that part of

A X [0,2m+1] which is not moved by h.

Proof: Let h; : E" x E1 —> E" x E! be a homeomor-
phism defined as follows
= i n 1 _
For each i and A' a component of Ay(z) with
1
A' x [1,2m] C Ki1k' then
a. If Kilk n Dio = ¢ or Kilk n Di1 = ¢ then
hy = id on Ki1k
b. If K, . NK,_ND #0 then

h; =id on Bdy K, N (Dio U Di1)

h,(A' x [1,2m] n (Dyg Y Dil)) c Dy,

h; as defined exists since A' x [1,2m] is compact,
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a,

P-/Kilu,l

St 127

Kizuz

Kisu,

— dJ—K.
—— 14p4

Figure 1.
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K N (Dio U Di1) is the union of two (n + 1)-cells which

intersect in an n-cell in their common boundary and

A' x [1,2m] n Bdy [Kijk n (D, U Di1)] is contained in D,

io
and Kijk n Kijz =¢ if kX #£ 2.

Now proceed inductively to define hj for j =

2,3, ..., m-1. As a notational aid define Lij =
(D, YDy, U -.. U Dij) nK - Define

hj : E" x E? > E? x E! as follows

h, =id on E" x E! - (h, - h ces *hy (U Lg4))

j-1 "j-2 i i3

For each i and A' a component of A N A with

y(3+1)

a. If HN Di ¢ or HN Dij = ¢ then h. = id

j=1 J
on H where H = (hj_l' hj-a. ce. t hl(Kijk))‘

b. 1If HND, n Dij # o then

j-1
. - . ' 3 - A
hj(h. h. ...*hy A'x[j.2m+1-3] n Dij-lu Dij)))

CcD...
1]

hj exists since A' X [j,2m 1-j] is compact,

hj_l' ‘hy;(A' X [§.2m+1-3] n (Dij_1 U Dij)) is the union
of two (n + 1)-cells which intersect in an n-cell in their

common boundary and

hy_y -+ 'hy(A' x [3.2m+1-3]) N0 Bdy(hy_, “ - halk g 0

UD..)l)

(Dij-l ij

is contained in Dij'
. . n 1 n 1 = . .
Define h : E° X E > E" X E* as h hm-l hm-z ..
Clearly conditions 1 and 2 are satisfied by h. To see

.*hy.

that condition 3 1is satisfied let
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X € (Ay(j+1) NA) x ([§,53+1] U [2m-3j,2m+1-5]).
There exists some component A' C;Ay(j+1) N A such that
x € A' x ([§,j+1] U [2m-j,2m+1-j]) and a unique kijk con-

taining x. Let VY = mln(j,max[e|Kiek N D, # &K o SDA'}).

Case 1. If VY < j then

h(x) = h ...h,...hy(x) = h

m-1 y hl(X) C D, U

iv Y Djysy -

Case 2. If V¥ = 3j then

Lemma 2.4: Suppose ¢ >0 and A is a component of

Ar (where Ai i=1,2, .... are defined as above). Then

there exists an integer N and a uniformly continuous
homeomorphism h : E® x E! —> E” x E! which is the
identity on En+1 - (A x E) and such that for each
w e E'

(1) = (h(Aa xw)) C[Ww=-2m - 1,w+ 2m + 1].

n+1
(2) diam (77 (A' x w)) < 4e,

where A' 1is a component of An NA, is the projec-

n+1
tion of E" x E! onto E!, and v; is the projection onto

ED.

Figure 3 shows how to apply Lemma 2.3 to prove Lemma
2.4. In Figure 3 only one sequence Ki1k' Kizk' ...,Kim+1 X,
containing a component of AN NA, is shown. The (n + 1)-
cells in the figure are shown as if they intersect each of
the (n + 1)-cells D,,+ Dyy+ +--+ Dy - This may not be the
case, however, an analogous figure is obvious.
[
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Proof: Apply Lemma 2.3 to A X E! and integers m
and 7vy(m+l) and sets Digr Ky and K; 5k Set N =
y(m+1l) for g =0, *1, *2, .... let

Xg = g(2m + 2) x' = Xg +m+ 1

y g(2m + 2) + 2m + 1 y! = Yg tm o+ 1.

g9
Note that Diz' Kij’ Kijk CA X [xX¢9: Yol Dby suitable

translations of E! we get sets analogous to Diz’ Kiz’
and Kijk in A X [xg, yg] for each g. Apply Lemma 2.3

to A X [xg, yg] for each g. Define Diz = Dim-z and
)

apply Lemma 2.3 to A X [xz, yk] using Biz in place of

Diz' Thus there exists a homeomorphism h:E” x El—> E" x E!

which is uniformly continuous. By the choice of xg, yg.

xé and yé and Remark 2.3 there exist integers i and
k such that

U D,

' -
T* h(a' x w) C ”ﬁ(Dik UDbD UDbD im-k+s

ik+1 im-k+2 )
for each component A' CA NAy and W e El. Note that
i and kX depend on A' and w. Diam ";(Dig) < ¢ for
all i1 and J. Thus condition 2 is satisfied. For

1 : [
w € E there exist x and Yg+6' where

g’ Yg' *g+s
6 = 0, -1, such that w ¢ [xg, yg] n [xé+6, yg+6]' * Thus
Toea (A' X W) C Ixg, Yol U [XL, o0 vl ]

ard condition 1 is satisfied.

Theorem 2.5: For each component A CA_ (where A,

i =1,2,... are as defined above) and each ¢ > 0 there
exists an integer N and an uniformly continuous homeomorph-

ism h : E® x E! —> E™ x E! such that
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1. h=1id on E'- A xE!
2. fmp, () - (k)] < e

3. For each w ¢ E! diameter of each component of

AN X w 1is less than €.

Proof: Let ¢g' = % then by Lemma 2.4 there exists
a uniformly continuous homeomorphism h; and an integer
N satisfying

a. h; =id on E"'- a x E?
- vn+1(x)l < 4m + 2 for some positive

integer m.

c. diam v;(A' X W) < 4¢'
for all w ¢ E! and components A' C Ag NA.

Let hy; be the homeomorphism hy : EN x E! — E" x E!
given by

hy(x,t) = (x, 222

The homeomorphism h = h;1h1 h, is the desired homeo-
morphism.

The homeomorphism h is isotopic to the identity since
the homeomorphisms of Lemmas 2.3 and 2.4 were.

Suppose Ai i=1,2, ..., be a sequence of manifolds
as defined above (see page 15). Let G, be the upper
semi-continuous decomposition of E" into the arcs of Aoo
and the points of " - A, - Denote the decomposition space

of G, by X.n.
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Theorem 2.6: X, X gl = g™

This theorem follows from Theorem 2.1 and the follow-
ing theorem which is due to R. H. Bing [4].

Theorem: Let Ai i=1,2,..., and Xn be defined
as above. Further suppose that for each i and ¢ > 0

L] s 3 1
there is an integer N and an isotopy u of En+ onto

1
™t such that o is the identity u; is uniformly con-

tinuous and

n+1

1. = id on E - (Aj x E1)

M

2. |vn+1 ut(x) - vn+1(x)| < ¢ where T4, IS the

D+l onto the (n+l)-st coordin-

projection of E
ate.

3. For each w ¢ El the diameter of each component
of ul(AN X w) is less than ¢.

Then X  x El = gt

Remark 2.4: Note that there exists a countable col-

lection of compact sets Ri such that

1. AxE1=URi.
i

2. h(Ri) (- Ri for all i 1,2, ...
3. h/bdy R, = id for all i =1,2, ...
4. diam [7r__ (R;)] < e/8.

5. diam h[R; N (A x E!)] < e/2.

Where h is the homeomorphism of Theorem 2.5.



CHAPTER III
THE "DOGBONE SPACE" SQUARED IS ES6

In [7] Kwun showed that there exists two non-manifolds

whose product is E? for n > 6. 1In this chapter we give

e into non-manifold factors.

another factorization of E
Let Bi be a collection of m-manifolds in Em which

are analogous to the A, defined in Chapter II. That is B,

(1 =1,2,--+) is a collection of compact manifolds in E"
satisfying Pl and P2 (pee page 15) and B, =N B, .
i
Throughout this chapter let Ai (i=1,2, ---) Dbe

as defined in Chapter II.

Lemma 3.1: Given A and B components of A and
Bg respectively and € > 0 then there exists an integer
N > max(r,s) and a homeomorphism h: E" x E® —> E® x EM
such that;

1. h=3id on E™ - (a x B)

2. piamh(A' x B') < ¢ for each component

A' C AN NA and B' C BN N B.
Proof: By Lemma 2.1 there exists integers J and K,

a set of n-cells E;, Eg, *--, Ep, and a set of m-cells
Fi. Fg, ---,Fq such that

1. E, C int A for each i =1,2, ---, p

2. Fj C int B for each j =1,2, *--, q.

29
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3. For each component A"C:AJ N A there is at

least one 1 such that A' C int Ei’

4. For each component B' C BK N B there is at

least one j such that B' C int Fj'

Let N = max(J,K) and note that for each component
A' X B' C (AN X BN) N (A x B) there exist integers i and
j such that A' x B' C int Ei X int Fj.

By Theorem 1.2 there exists a collection of (n+m)-cells

Gy, Gg, ..., G such that;

£
1. For each component A' x B' of (AN X BN) n (A x B)

there exists a unique k such that A' x B' C

int G, and A' xB' N Gj = ¢ for all j # k.

2. G C int Ei X int Fj CA XB for some i and j.
Note that even though i # j it may be the case that

G, NG, # ¢. Since (U Gj) n G, is compact for each
. # i .

J
i=1,2, ...,4, there exists an (n+m)-cell Qi =

(z € Em+n/Hz - zilLi 6, for some z, € int G, and § Z e/2)

C G; such that Q. N Gj = ¢ for i # j. For each compo-

nent A' X B' C [(AN X BN) N (A x B)] there exists an

n+m +m

integer i and a homeomorphism hi : E —> EO such

that

Define h =h; * hyg * ...° h Even though the Gi's

P

are not disjoint, h, is the identity on G5 n (AN X BN)
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for j #i. Thus h satisfies conditions 1 and 2 of

the theorem.

Remark 3.1: Since the homeomorphism h of Lemma 3.1

is the identity outside a compact set h is uniformly con-

tinuous and isotopic to the identity.

Theorem 3..2: Let Ai, i=1,2, ...; Bj’ j =1,2, ...
be defined as above then there exists a pseudo-isotopy
H:E™x1—> "™ such that ;

a. H(x,0) = x

t

a homeomorphism of E"™ onto itself which is the

b. If Ht(x) = H(x,t) then for all t <1 H, is

identity outside a compact set.

c. H; maps E"™ onto itself and maps each compon-

ent of A, XB onto a distinct point.

(¢ o]

m+n
d. If x € E -(ACD XBCD) then

H;I(H1(X)) = X.

Proof: Let ¢g¢ = diam(A; X By) and €y < 1/2l for
i=1,2, ... . A sequence of integers 1 = N(1), N(2), ...

and isotopies.

i n+m i-1 i n+m
H : E X[i li+1] > E
for i =1,2, ... which satisfy
1. H}(x,0) = x
2. Hi—l(x,ifl) = Hl(x,iil) for i =2,3, ...
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3. diam H'(A' x B', iil) < g; for each component
] )
AT X B CRAy(i41) X By(i+1)
4. HY(x,t) = Hi-l( i3y for x e EMMM (AL/:y X B_/:y)
' i N(i) N(i)

and i =2,3, ...

5. [lHi(x,t) - Hi(x,t')l[< €;_, for all xe gt

1

and t,t' € [iiluszl,

are defined inductively as follows. Let Ar and Bg of
Lemma 3.1 be A; and B; respectively and let ¢ of
Lemma 3.1 be ¢;. Then there exists a uniformly continuous

isotopy

hy; : En+m x I —> E"

+m

and an integer N(2) such that
hl(x,O) = 0,
diam h,(A' x B',1) < g; for each component
A' x B' CAN(Z) XBN(z)'

h,(x,t) = x on gt _ (A;y x Byp).

Define H(x,t) = hy(x,2t) , 0 2 t :w% .

. . k
. Suppose ﬁb and Nk+1 are defined. Since Hw

is uniformly continuous for w = E%T there exists a

& > 0 such that if the diameter of V C En+m is less

. k .
than &6 then the diameter of Hw(V) is less than ¢

Lemma 3.1 implies the existence of an integer Ny o and

an isotopy such that

(x,0) = x on En+m,'

hk+1

<+
ey (€)= % on Mo fay ) xoBype )]
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diam (A* x B*, 1) < & for each component

A* X B¥* CAn(k+z) X BN(k+2)'

and hk+1 is uniformly continuous.

Define

x,t) = HY by, [x, (k1) (k+2) (t - 325401

k < < k+1 . .
for el — t - %+2 ° Clearly 1 and 2 are satisfied.

Hk+1 (

Now
k+1 k+1, _ _k
HY (x0iag) = By Iy, (001)

thus by choice of & condition 3 is satisfied.

[AN(k+1) X AN(k+1)] hence

condition 4 is satisfied. hk+1(A" x B",t) c A" x B"

_ n+m
hk+1(x,t) =x for x € E

for each component A" X B C:AN(k+1) X BN(k+1)'

Diam[Hi(A" x B")] < €x by condition 3 thus condition §

is satisfied.

Define
I n+m i+l i
H(x,t) = H (x,t) on E x [=T= 1571 for
i=1,2, ... .
Define
H,(x) = lim H(x,t).
t—>1
H;(x) is continuous map of "™ onto EM™ by condition

5. Clearly 1 implies that a. is satisfied by H. Con-
dition 4 along with the definition of H! implies b, is
satisfied by H. Suppose g€ >0 and o X B is a component

of A, X BOO then there exists an integer p such that

1 p .
-5 = p < g. For all t »> ST diam H(A* x B*, t)< €p



34
where A* x B* 1is the component of A X B con-
P N(p) * °N(p)
taining o X B. Thus H(a X B, 1) is a point. Let x ¢
n-m

E - A X B_ then there exists an integer N(q) such

that x ¢ E*™ - f X B thus 4 implies that
Ax(a)

N(q)]
H(x,t) = H(x, Qél) for all t > Sél . H/EM™ [O,Qél] is
an isotopy thus HII[Hl(x)] = x and d., is satisfied by H.
Let a3 X B3y and ag X By be distinct components of

A X B then there exists an integer N(j) such that

a3 X p1 CA' X B' and qg X Bg CA" X B", where A' X B'
and A" x B" are distinct components of AN(j)ﬂx BN(j)’
Thus Hj (a3 X B1) # Hy(ag X Pg) and c. is satisfied.

Therefore H is the desired pseudo-isotopy.

Corollary 3.2: Suppose F is an upper semi-continuous

+m

decomposition of " consisting of the 2-cells a X B,

where g C ACD and 5(:BOO, and the points of En+m

—(AooxBoo).
If Z is the decomposition space associated with F then
Z 1is topologically g, Moreover, there exists a uni-

formly continuous homeomorphism carrying 2 onto En+m.

Let G, be the decompoéition of E" into the arcs
. n .
of Aoo and points of E - Aoo' Similarly let Gm be
the decomposition of E" into the arcs of B, and points
of E™ - B, - Suppose that xi (i = 1,2) is the decomposi-

tion space associated with G, (i =1,2).

Theorem 3.3: X, X Xm is topologically g,
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Proof: By Corollary 3.2 there exists a pseudo-isotopy
H of E™™ onto itself which shrinks each of the 2-cells
a Xp for a C Aoo and B C Boo‘ Let £ = Hy. The proof

will be completed by constructing a pseudo-isotopy K of

f(En+m) onto itself which shrinks each of the axcs f(a X y),
f(z x Bp) where a 1is an arc of AOO, B is an arc of
Bo' 2 € E" and y € E".
Let
Uy = U £(int A, x [E" - B;])
i

and

Ug =

- C

n .
. £([E” - A;] X int B,).

Note that each arc f(a X y) CU; and f(z x B) C U,.
Also Uy N Uz = ¢.
The pseudo-isotopy K can be constructed by amending
the construction of the pseudo-isotopy in [7] as follows.
(1) Replace the compact neighborhoods T, and Ti
with A, and B, respectively.
(2) In the proof of the Lemma replace Theorem 1 of
[1] with Theorem 2.6 of this thesis. And further

replace the R! by R, of Remark 2.4.
i i
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