NON-MANHQLP FACTORE OF RUCHIDEAN SPACES

Thests for tha Dagreas of Ph. D. MCHIGAN STATE UNUVESIMY

Alfred John Boals
1967

This is to certify that the thesis entitled

presented by

has been accepted towards fulfillment
of the requirements for
Ph.D._degree in_Mathematics

Major professor

Date August 11, 1967

ABSTRACT

NON-MANIFOLD FACTORS OF EUCLIDEAN SPACES

by Alfred John Boals

This thesis is a study of a class C of decomposition spaces which are shown to be factors of Euclidean space.

Suppose A and B are disjoint compact subsets of E^{n}. Then we know it is possible to find disjoint compact sets A^{*} and B^{*} such that $A \subset$ int A^{*} and $B \subset$ int B^{*}. In Chapter I we give sufficient conditions for A and B to insure that A^{*} and B^{*} can be picked to be cells.

In Chapter II we define the class C of decomposition spaces and prove that the product of any member of C and a line is topologically E^{n} for some integer n.

In Chapter III we prove that the product of any two members of the class C is topologically E^{n+m} for suitably chosen integers n and m.

By

Alfred John Boals

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY
Department of Mathematics

1967

ACKNOWLEDGMENTS

The author wishes to express his gratitude to Professor K. W. Kwan for suggesting the problem and for his helpful suggestions and guidance during the research.

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS ii
INTRODUCTION 1
Notation and Terminology 2
CHAPTER
I. SEPARATION THEOREMS 4
II. A CLASS OF DECOMPOSITION SPACES 14
III. THE "DOGBONE SPACE" SQUARED IS E ${ }^{6}$ 29
LITERATURE CITED 36

LIST OF FIGURES

Figure Page
2.1 21
2.2 22
2.3 25

INTRODUCTION

In 1957 R. H. Bing [3] gave an example of a decomposition of E^{3} into tame arcs and points such that the associated decomposition (the "dogbone space") is not topologically E^{3}. In fact this space is not even a manifold (i.e. there exist points which do not have Euclidean neighborhoods). The "dogbone space" was constructed in answer to a question of G. T. Whyburn [8, p. 70] which asked: Is it true that if G is an upper semi-continuous decomposition of $\mathbf{E}^{\mathbf{3}}$ into point like compact continua, then the decomposition space is homeomorphic to E^{3} ?

In [5] Bing gave examples (i.e. "unused example" and "segment space") of two other decompositions of $\mathrm{E}^{\mathbf{3}}$ into tame arcs and points. The "unused example" is known to be distinct from E^{3}, however, whether or not the "segment space" is E^{3} is still unknown. Bing [4] proved that the product of the "dogbone space" and the line is 4-dimensional Euclidean space (E^{4}). It is reported [5] that John Hempel has proved that the product of the "segment space" and E^{1} is E^{4}. In [2] S. Armentrout asked if the same were true of Bing's "unused example". An affirmative answer is given to this question in Chapter II.

In proving that the product of a dogbone space and a line is E^{4}, Bing showed that E^{4} has non-manifold factors. J. J. Andrews and M. L. Curtis [1] gave another factorization of E^{4} into factors one of which is not Euclidean.

They proved that if α is an arc in E^{n} then $E^{n} / \alpha \times E^{1}$ is $\mathbf{E}^{\mathrm{n+1}}$. K. W. Kwun proved that if $\alpha \subset \mathrm{E}^{\mathrm{n}}$ and $\beta \subset \mathrm{E}^{\mathrm{m}}$ where α and β are arcs then $E^{n} / \alpha \times E^{m} / \beta$ is E^{n+m}. Thus Kwun has shown that E^{n} where $n \geq 6$ can be written as the product of two non-manifolds.

In view of the relationship of these last two results, it is natural to ask the following question. Is the product of dogbone spaces, unused examples, or segment spaces topologically E^{6} ? This question is answered in the affirmative in Chapter III.

Notation and Terminology

Suppose X is a topological space. A collection of subsets G of X will be called a decomposition of X if $U\{s \mid s \in G\}=X$ and $s_{1} \cap \mathbf{s}_{2}=\Phi$ for any two distinct elements of G. G will be called an upper semi-continuous decomposition of X if for any element $g \in G$ and any open set $U \subset X$ which contains g, there exists an open set $V \subset U$ such that $g \subset V$ and V is the union of elements of \mathbf{G}.

Suppose X is a topological space and G is a decomposition of X. The decomposition space associated with G, say Y, is defined as follows. The points of Y are the elements of G and a base for the topology of Y is the collection of sets of elements of G whose union in X is open. More information on decomposition spaces can be found in [8] and [6, Chap. 3].

A pseudo-isotopy of a topological space X into a topological space Y is a continuous function H on` $X \times I$ into Y such that $H_{t}(x)=H(x, t)$ is a homeomorphism for each $0 \leq t<1$.

Any subset of a topological space which is homeomorphic to I^{n} where $I=[0,1]$ will be called an n-cell. Any paracompact Hausdorff space in which every point has a neighborhood whose closure is an n-cell will be called an n-manifold.

SEPARATION THEOREMS

In proving that the product of the "dogbone space" and a line is E^{4} Sing was forced to give a rather lengthy construction of a sequence of 4-cells. Theorem 1.1 asserts the existence of suitable n-cells in a more general context. Theorem 1.1 is applied in proving the main result of Chapter II. Theorem 1.2, in addition to being of interest in itself, plays an important role in the proof of the main result of Chapter III.

Definition 1.1: If X is a topological space and $D \subset X$ then by int D is meant the set $X-\overline{X-D}$, where $\overline{\mathrm{X}-\mathrm{D}}$ is the set theoretic closure of $\mathrm{X}-\mathrm{D}$ in X .

Theorem 1.1: Let $C_{1}, C_{2}, \ldots, C_{p}$ be disjoint compact subsets of a Hausdorff space X. Let $D_{1}, D_{2}, \ldots, D_{p}$ be (not necessarily disjoint) n-cells such that for each $i=1,2, \ldots, p$

$$
C_{i} \subset \operatorname{int} D_{i}
$$

Then for any $[a, b] \subset E^{1}$ and $\varepsilon>0$ there exist disjoint $(n+1)$-cells $E_{1}, E_{2}, \ldots, E_{p}$ contained in $X \times(a-\varepsilon, b+\varepsilon)$ such that for each $i=1,2, \ldots, p$
(1) $c_{i} \times[a, b] \subset$ int E_{i}
(2) $\pi_{1} E_{i}=D_{i}$;
where π_{1} is the projection of $X \times E^{1}$ onto X.

Proof: Let $f:[-\varepsilon, r+\varepsilon] \rightarrow[a-\varepsilon, b+\varepsilon]$ be the homemorphism given by

$$
f(x)= \begin{cases}a+x & \text {; if } x \in[-\varepsilon, 0] \\ \left(\frac{b-a}{r}\right) x+a ; & \text { if } x \in[0, r] \\ b+x-r ; & \text { if } x \in[r, r+\varepsilon]\end{cases}
$$

Let $k:[-\varepsilon, r+\varepsilon] \xrightarrow{\text { onto }}[-\varepsilon, 2 p-1+\varepsilon]$ be the homeomorphism given by

$$
k(t)=\frac{2(p+\varepsilon)-1}{r+2 \varepsilon}(t+\varepsilon)-\varepsilon
$$

For each $j=1,2, \ldots, p$ let k_{j} be a homeomorphism of $[-\varepsilon, r+\varepsilon]$ onto $[-\varepsilon, 2 p-1+\varepsilon]$ with the properties:

1. $\mathrm{k}_{\mathrm{j}}(-\varepsilon)=-\varepsilon$ and $\mathrm{k}_{\mathrm{j}}(\mathrm{r}+\varepsilon)=(2 \mathrm{p}-1+\varepsilon)$
2. $k_{j}(0)=2 j-2$
3. $k_{j}(r)=2 j-1$.

Let $A=U_{i} D_{i} \subset X$ and note that since A is a compact Hausdorff space it is normal. $B d y A=A-\operatorname{int} A$ and C_{j} for $j=1, \ldots, p$ are closed sets. Thus there exist open sets U_{j} for $j=1,2, \ldots, p$ satisfying

1. $U_{i} \cap U_{j}=\Phi \quad$ if $i \neq j$,
2. $c_{i} \subset U_{i}$ for all $i=1,2, \ldots, p$,
3. $U_{i} \subset$ int A.

By the Urysohn lemma there exists a continuous function g mapping A onto $I=[0,1]$ such that

1. $g\left(\underset{i}{(} C_{i}\right)=1 \quad$ and
2. $g\left(A-\underset{i}{U} U_{i}\right)=0$.

Construct $h: A \times[-\varepsilon, r+\varepsilon] \rightarrow A \times[-\varepsilon, 2 p-1+\varepsilon]$ as follows: $h(x, t)=\left\{\begin{array}{l}\left(x, g(x) k_{j}(t)+(1-g(x)) k(t)\right) ; \text { on } \bar{U}_{j} \times[-\varepsilon, r+\varepsilon] \\ (x, k(t)) ; \text { on }\left(A-\underset{i}{U} U_{i}\right) \times[-\varepsilon, r+\varepsilon] .\end{array}\right.$ For each $j=1,2, \ldots, p h=i d \times k$ on $B d y \bar{U}_{j} \times[-\varepsilon, k+\varepsilon]$, hence h is well defined. h is continuous since g, k and k_{j} are all continuous. Suppose

$$
h\left(x_{1}, t_{1}\right)=h\left(x_{2}, t_{2}\right)
$$

then $x_{1}=x_{2}=x$.

Case 1:

$$
\begin{aligned}
& \text { If } x \in U_{j} \text { then } \\
& g(x) k_{j}\left(t_{1}\right)+[1-g(x)] k\left(t_{1}\right)=g(x) k_{j}\left(t_{2}\right)+[1-g(x)] k\left(t_{2}\right)
\end{aligned}
$$

or

$$
g(x)\left[k_{j}\left(t_{1}\right)-k_{j}\left(t_{2}\right)\right]+[1-g(x)]\left[k\left(t_{1}\right)-k\left(t_{2}\right)\right]=0
$$

But $g(x)$ and $1-g(x) \geq 0$ and both k and k_{j} are order preserving homeomorphisms, whence $\mathbf{k}_{j}\left(t_{1}\right)-\mathbf{k}_{j}\left(t_{2}\right)$ and $k\left(t_{1}\right)-k\left(t_{2}\right)$ are both positive, zero, or negative together. Therefore

$$
k\left(t_{1}\right)-k\left(t_{2}\right)=0
$$

and

$$
t_{1}=t_{2}
$$

Case 2:
If $x \in A-\underset{i}{U U_{i}}$ then $k\left(t_{1}\right)=k\left(t_{2}\right)$ and again $t_{1}=t_{2}$.

- Thus h is one-to-one and continuous hence a homeomorphism. h can be extended to a homeomorphism of $X \times[-\varepsilon, r+\varepsilon] \rightarrow X \times[-\varepsilon, 2 p-1+\varepsilon]$ by defining
$h(x, t)=(x, k(t))$ on $x-A$.
For each $j=1, \ldots, p$ let E_{j}^{\prime} be the $(n+1)$-cells defined by

$$
E_{j}^{\prime}=D_{j} \times\left[2 j-2-\frac{1}{4}, 2 j-1+\frac{1}{4}\right]
$$

Now define

$$
E_{j}=(i d \times f)\left[h^{-1}\left(E_{j}^{\prime}\right)\right]
$$

Clearly $E_{j} \cap E_{i}=\Phi$ if $i \neq j$ and $\pi_{1} E_{j}=D_{j}$. Moreover $\mathrm{E}_{\mathrm{i}} \subset$ int $A \times(\mathrm{a}-\varepsilon, \mathrm{b}+\varepsilon)$.

If $x \in C_{i} \times[a, b]$ then
$(i d \times f)^{-1}(x) \in C_{i} \times[0,2 r-1]$. and
$h \cdot(i d \times f)^{-1}(x) \in C_{i} \times[2 i-2,2 i-1]$.
But

$$
c_{i} \times[2 i-2,2 i-1] \subset \text { int }\left(D_{i} \times\left[2 i-2-\frac{1}{4}, 2 i-1+\frac{1}{4}\right]\right)
$$

whence
$(i d \times f) \cdot h^{-1} \cdot h \cdot(i d \times f)^{-1}(x) \in(i d \times f) h^{-1}\left(D_{i} \times\left[2 i-2-\frac{1}{4}, 2 i-1+\frac{1}{4}\right]\right)$ and $x \in E_{i}$. Thus the $E_{i} i=1,2, \ldots, p$ satisfy all the alaims of the theorem.

The above theorem will be applied in Chapter II in the following form.

Corollary 1.2: Let A be a compact n-manifold in E^{n} and $C_{1}, C_{2}, \ldots, C_{p}$ be disjoint compact sets in int A such that there exist (not necessarily disjoint) n-cells $D_{1}, D_{2}, \ldots, D_{p}$ with the property that $C_{i} \subset$ int $D_{i} \subset$ int A. Then for any $[a, b] \subset E^{1}$ and $\varepsilon>0$ there exist disjoint $(n+1)$-cells $E_{1}, E_{2}, \ldots, E_{p}$ contained in int $A \times$ $(a-\varepsilon, b+\varepsilon)$ such that $C_{i} \times[a, b] \subset$ int E_{i} and $\pi_{n} E_{i}=D_{i}$, where π_{n} is the projection of $E^{n} \times E^{1}$ onto E^{n}.

Theorem 1.3: Suppose B is a compact subset of int I^{n} and C is a compact subset of I^{n} disjoint from B. Similarly suppose D is a compact subset of int I^{m} and E is a compact subset of I^{m} disjoint from D. Then there exists an ($n+m$)-cell G with the following properties:
(1) $B \times D \subset$ int $G \subset G \subset$ int $I^{n} \times$ int I^{m}
(2) $G \cap[(B \times E) \cup(C \times D) \cup(C \times E)]=\Phi$.

Proof: Let $T \subset$ int I^{n} be an n-cell such that $T \cap(B \cup C)=\Phi$ and T is the product of its projections. Such an n-cell exists since $C \cap B=\varnothing$ and they are each closed. Similarly let $R \subset$ int I^{m} be an m-cell such that $R \cap(D \cup E)=\Phi$ and R is the product of its projections. Let $\pi_{i} T=\left[t_{i}, t_{i}^{\prime}\right]$ for each $i=1,2, \ldots, n$ and $\pi_{j} R=\left[r_{j}, r_{j}^{\prime}\right]$ for each $j=1,2, \ldots, m$, where π_{α} is the projection onto the α-th coordinate.

Let $\delta_{1}=\min \left(\right.$ distance from B to (Bdy $\left.I^{n} \cup C\right)$, distance from T to ($B \cup C \cup B d y I^{n}$)]. Let $\delta_{2}=\min [d i s-$ tance from D to ($B d y I^{m} \cup E$), distance from R to ($\mathrm{D} \cup \mathrm{E} \cup \mathrm{Bdy} \mathrm{I}^{\mathrm{m}}$)]. Set $\delta=\min \left(\delta_{1}, \delta_{2}\right)$. Let k, k_{1}, k_{2}, \ldots, k_{m} be homeomorphisms defined as follows,
$(1) \mathrm{k}:[0,1] \rightarrow[0,1]$ such that
$k(0)=0, k(1)=1 \quad$ and
$k[\delta / 2,1-\delta / 2]=[1 / 4,3 / 4]$.
(2) For each $i=1,2, \ldots, m$ let

$$
\begin{aligned}
& k_{i}:[0,1] \rightarrow[0,1] \text { such that } \\
& k_{i}(0)=0, k_{i}(1)=1 \text { and } \\
& k_{i}\left[r_{i}, r_{i}^{\prime}\right]=[1 / 4,3 / 4] .
\end{aligned}
$$

Let U_{n} be an open subset of $(\delta / 2,1-\delta / 2)^{n}$ such that $B \subset U_{n}$ and $U_{n} \cap C=\varnothing$. Set $W_{n}=I^{n}-[\delta / 3,1-\delta / 3]^{n}$. By the Urysohn Lemma there exists a continuous function $g: I^{n} \longrightarrow[0,1]$ such that

$$
\begin{aligned}
& g\left(B \cup B d y I^{n}\right)=1 \\
& g\left(I^{n}-\left(U_{n} \cup W_{n}\right)\right)=0 .
\end{aligned}
$$

Consider the following collection of maps
$h_{i}: I^{n} \times I^{m} \longrightarrow I^{n} \times I^{m}, i=1,2, \ldots, m$.
For $x \in I^{n}$ and $\left(y_{1}, \ldots, y_{m}\right) \in I^{m}$
$h_{i}\left(x,\left(y_{1}, \ldots, y_{m}\right)\right)=\left\{\begin{array}{l}\left(x,\left(y_{1}, \ldots, y_{i-1}, g(x) k\left(y_{i}\right)+\right.\right. \\ \left.[1-g(x)] k_{i}\left(y_{i}\right), y_{i+1}, \ldots, y_{m}\right) \text { for } \\ \left(x,\left(y_{1}, \ldots, y_{m}\right)\right) \in \bar{U}_{n} \times I^{m} . \\ \left(x,\left(y_{1}, \ldots, y_{i-1}, g(x) y_{i}+\right.\right. \\ \left.\left.[1-g(x)] k_{i}\left(y_{i}\right), y_{i+1}, \ldots, y_{m}\right)\right) \text { for } \\ \left(x,\left(y_{1}, \ldots, y_{m}\right)\right) \in \bar{W}_{n} \times I^{m} . \\ \left(x,\left(y_{1}, \ldots, y_{i-1}, k_{i}\left(y_{i}\right), y_{i+1}, \ldots, y_{m}\right)\right) \\ \text { for }\left(x,\left(y_{1}, \ldots, y_{m}\right)\right) \in\left[I^{n}-\left(W_{n} U U_{n}\right)\right] \times I^{m} .\end{array}\right.$
Each h_{i} is well defined since $\bar{U}_{n} \cap \bar{W}_{n}=\varnothing$,
$\pi_{j} h_{i} /$ BAy $U_{n} \times I^{m}=\pi_{j}$ for all $j \neq i$
$\pi_{i} h_{i} / B d y U_{n} \times I^{m}=k_{i} \pi_{i}$, where again π_{i} is the projection onto the i-th coordinate axis. And

$$
\begin{aligned}
& \pi_{i} h_{i} / \text { BAy } W_{n} \times I^{m}=\pi_{j} \quad \text { for all } \quad j \neq i \\
& \pi_{i} h_{i} / B d y W_{n} \times I^{m}=k_{i} \pi_{i} .
\end{aligned}
$$

clearly each h_{i} is continuous and onto $I^{n} \times I^{m}$. Suppose
for $x, x^{\prime} \in I$ and $\left(y_{1}, \ldots, y_{m}\right),\left(z_{1}, \ldots, z_{m}\right) \in I^{m}$

$$
h_{i}\left[x,\left(y_{1}, \ldots, y_{m}\right)\right]=h_{i}\left[x^{\prime},\left(z_{1}, \ldots, z_{m}\right)\right]
$$

then $x=x^{\prime}$ and $y_{j}=z_{j}$ for $j \neq i$.
Consider the three cases:
(1) $x \in U_{n}$,
(2) $x \in W_{n}$, or
(3) $x \in I^{n}-\left(U_{n} \cup W_{n}\right)$.

Case 1: $\quad g(x) k\left(y_{i}\right)+[1-g(x)] k_{i}\left(y_{i}\right)=g(x) k\left(z_{i}\right)+[1-g(x)] k_{i}\left(z_{i}\right)$
and

$$
g(x)\left[k\left(y_{i}\right)-k\left(z_{i}\right)\right]+[1-g(x)]\left[k_{i}\left(y_{i}\right)-k_{i}\left(z_{i}\right)\right]=0 .
$$

Note that $g(x)$ and $1-g(x) \geq 0$ also
$\left[k\left(y_{i}\right)-k\left(z_{i}\right)\right]\left[k_{i}\left(y_{i}\right)-k_{i}\left(z_{i}\right)\right] \geq 0$ since k and k_{i} preserve order. Thus $y_{i}=z_{i}$.

Similar arguments show that for cases 2 and $3 y_{i}=z_{i}$. Thus for each i, h_{i} is an injection consequently a homemorphism.

Define $H: I^{n} \times I^{m} \longrightarrow I^{n} \times I^{m}$ to be the homeomorphism $\mathrm{h}_{1} \cdot \mathrm{~h}_{2} \cdot \ldots \cdot \mathrm{~h}_{\mathrm{m}}$.

Set $J=[\delta / 2,1-\delta / 2]^{n} \times[1 / 4,3 / 4]^{m} \subset I^{n} \times I^{m}$.
If $(x, y) \in B \times D$ then $x \in U_{n}$ and $H(x, y) \in J$. Thus $H(B \times D) \subset J$. Let $(x, y) \in[C \times(D U E)]$ then $x \in I-U_{n}$ and there exists a j such that $\pi_{j}(y) \in I-\left[r_{j}, r_{j}^{\prime}\right]$. If $x \in W_{n}$ then $H(x, y) \notin J$. If $x \in I^{n}-\left(W_{n} \times U_{n}\right)$ then $\pi_{j} h_{j}(x, y) \in I-[1 / 4,3 / 4]$ and $H(x, y) \notin J$. Thus $\mathrm{H}[\mathrm{C} \times(\mathrm{D} \cup \mathrm{E})] \cap \mathrm{J}=\varnothing$.

Note that $H / B \times I^{m}=i d \times k^{*}$, where k^{*} is the m-fold product of k; (i.e. $k^{*}=(k \times k \times \ldots \times k)$ with m factors).

Thus it follows that $\pi_{m}^{*} H(B \times D)$ and $\pi_{m}^{*} H(B \times E)$ are disjoint compact subsets of $[1 / 4,3 / 4]^{m} \subset I^{m}$, where π_{m}^{*} is the projection of $I^{n} \times I^{m}$ onto I^{m}. Also $\pi_{m}^{*} H(B \times D)$ $\subset(1 / 4,3 / 4)^{m}$. Let $\gamma=\min \left(\right.$ distance from $\pi_{m}^{*} H(B \times D)$ to Bdy[1/4, 3/4 $\left.]^{m}, \delta / 2\right)$. Let U_{m} be an open set in $(1 / 4+\gamma / 2,3 / 4-\gamma / 2)^{m}$ such that $\pi_{m}^{*} H(B \times D) \subset U_{m}$ and and $U_{m} \cap \pi_{m}^{*} H(B \times E)=\Phi$. Let $W_{m}=[1 / 4,3 / 4]^{m}$ $[1 / 4+\gamma / 3,3 / 4-\gamma / 3]^{m}$. There exists a continuous function $f:[1 / 4,3 / 4]^{m} \rightarrow[0,1]$
such that
(1) $f / \pi_{m}^{*}\left[H(B \times D) \cup B d y[1 / 4,3 / 4]^{m}\right]=1$
(2) $f /[1 / 4,3 / 4]^{m}-\left(U_{m} \cup W_{m}\right)=0$

Let $\Psi, \Psi_{1}, \Psi_{2}, \ldots, \Psi_{n}$ be homeomorphisms defined as follows
(1) $\Psi:[\delta / 2,1-\delta / 2] \rightarrow[\delta / 2,1-\delta / 2]$ such that $\Psi(\delta / 2)=\delta / 2, \Psi(1-\delta / 2)=1-\delta / 2$
and

$$
\Psi[\delta / 2+\gamma / 2,1-\delta / 2-\gamma / 2]=[1 / 4,3 / 4]
$$

(2) For each $i=1,2, \ldots, n$ let

$$
\begin{aligned}
& \Psi_{i}:[\delta / 2,1-\delta / 2] \rightarrow[\delta / 2,1-\delta / 2] \text { such that } \\
& \Psi_{i}(\delta / 2)=\delta / 2, \Psi_{i}(1-\delta / 2)=1-\delta / 2
\end{aligned}
$$

and

$$
\Psi_{i}\left[t_{i}, \quad t_{i}^{\prime}\right]=[1 / 4,3 / 4]
$$

Consider the following collection of maps

$$
\theta_{i}: I^{n} \times I^{m} \longrightarrow I^{n} \times I^{m}, \quad i=1,2, \ldots, n
$$

For $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I^{n}$ and $y \in I^{m}$

$$
\theta_{i}\left[\left(x_{1}, \ldots, x_{n}\right), y\right]=\left\{\begin{array}{l}
\text { id for }\left(\left(x_{1}, \ldots, x_{n}\right), y\right) \in\left(I^{n} \times I^{m}\right) \text {-int } J \\
\left(\left(x_{1}, \ldots, x_{i-1}, f(y) \Psi\left(x_{i}\right)+\right.\right. \\
\left.\left.[1-f(y)] \Psi\left(x_{i}\right), x_{i+1}, \ldots, x_{n}\right), y\right) \text { for } \\
\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right), y\right) \in[\delta / 2,1-\delta / 2]^{n} \times U_{m} \\
\left(\left(x_{1}, \ldots, x_{i-1}, f(y) x_{i}+\right.\right. \\
\left.\left.[1-f(y)] \Psi_{i}\left(x_{i}\right), x_{i+1}, \ldots, x_{n}\right), y\right) \text { for } \\
\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right), y\right) \in[\delta / 2,1-\delta / 2]^{n} \times W_{m} \\
\left(\left(x_{1}, \ldots, x_{i-1}, \Psi_{i}\left(x_{i}\right), x_{i+1}, \ldots, x_{n}\right), y\right) \\
\text { on }[\delta / 2,1-\delta / 2]^{n} \times\left([1 / 3,3 / 4]^{m}-\left(U_{m} \cup W_{m}\right)\right)
\end{array}\right.
$$

Each θ_{i} is well defined since $\bar{W}_{m} \cap \bar{U}_{m}=\varnothing$,

$$
\begin{aligned}
& \pi_{j} \theta_{i} /[\delta / 2,1-\delta / 2]^{n} \times \text { Bdy } \quad U_{m}=\pi_{j} \quad \text { for } \quad i \neq j \\
& \pi_{j} \theta_{i}[\delta / 2,1-\delta / 2] \times \text { Bdy } \quad U_{m}=\Psi_{i} \pi_{i}
\end{aligned}
$$

and

$$
\pi_{j} \theta_{i} /[\delta / 2,1-\delta / 2]^{n} \times\left([\delta / 2,1-\delta / 2]^{m}-\left(U_{m} \cup W_{m}\right)\right) \quad \text { is } \quad \pi_{j} \quad \text { if }
$$

$j \neq i$ and $\Psi_{i} \pi_{i}$ if $j=i$. By an argument exactly like the one given above for h_{i}, each θ_{i} is a homeomorphism.
Define $\theta=\theta_{1} \cdot \theta_{2} \cdot \ldots \cdot \theta_{n}$. set $J^{\prime}=[1 / 4,3 / 4]^{n} \times$ $[1 / 4+\gamma / 2,3 / 4-\gamma / 2]^{m} \subset J$. If $(x, y) \in B \times D$ and $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{m}\right)$.
Then $\theta[H(x, y)]=\theta\left(x,\left[k\left(y_{1}\right), \ldots, k\left(y_{m}\right)\right]\right)$

$$
=\left[\left(\Psi\left(x_{1}\right), \ldots, \Psi\left(x_{n}\right)\right),\left(k\left(y_{1}\right) \cdot k\left(y_{2}\right), \ldots k\left(y_{m}\right)\right)\right]
$$

Thus $\theta \cdot H(B \times D) \subset J^{\prime} \cdot \operatorname{If}(X, Y) \in[(C \times D) \quad U(C \times E)]$ then $H(x, y) \notin J$ hence $\theta \cdot H(x, y) \notin J^{\prime} \cdot$ Suppose $(x, y) \in B \times E$ then $\pi_{m}^{*} H(x, y) \in[1 / 4,3 / 4]^{m}-U_{m}$ and there
exists a j such that $\pi_{j}(x) \notin\left[t_{j}, t_{j}^{\prime}\right]$. If $\pi_{m}^{*} H(x, y) \in W_{m}$ then $\theta \cdot H(x, y) \notin J^{\prime}$ since $\pi_{m}^{*} \theta \cdot H(x, y)=\pi_{m}^{*} H(x, y) \in W_{m}$ and $W_{m} \cap \pi_{m}^{*} J^{\prime}=\phi$. If $\pi_{m}^{*} H(x, y) \in: \pi_{m}^{*}(J)-W_{m}-U_{m}$ then

$$
\pi_{j} \pi_{m}^{*} \mathrm{H}(x, y) \notin[1 / 4,3 / 4] \quad \text { and } \theta \cdot \mathrm{H}(x, y) \notin J^{\prime} .
$$

Therefore $\theta \cdot H[(B \times E) \cup(C \times D) \cup(C \times E)] \subset I^{n} \times I^{m}-J^{\prime}$.
Define $G=H^{-1} \cdot \theta^{-1}\left(J^{\prime}\right) . G$ is the $(n+m)$-cell contained in int $\mathrm{I}^{\mathrm{n}} \times$ int I^{m} satisfying properties 1 and 2 of the theorem.

Note that $J{ }^{\prime}$ defined in the above proof is a product of cells. Thus a proof similar to that of Theorem 1.1 would prove the following corollary.

Corollary 1.4: Suppose $B_{i}, i=1,2, \ldots, p$, are disjoint compact subsets of int I^{n} and C is a compact subset of I^{n} disjoint from $\bigcup_{i} B_{i}=B$. Similarly suppose $D_{j}, j=1,2, \ldots, q$, are disjoint compact subsets of int I^{m} and E is a compact subset of I^{m} disjoint from $\bigcup_{i} D_{i}=D$. Then there exist $(n+m)$-cells $G_{i j}, i=1,2, \ldots, p$; $j=1,2, \ldots, q$, such that
(1) $G_{i j} \cap G_{r s}=\Phi \quad$ if $i \neq r$ or $j \neq s$,
(2) $B_{i} \times D_{j} \subset \operatorname{int} G_{i j} \subset G_{i j} \subset \operatorname{int}\left(I^{n} \times I^{m}\right)$,
(3) $G_{i j} \cap[(C \times D) \cup(B \times E) \cup(C \times E)]$.

CHAPTER II

A CLASS OF DECOMPOSITION SPACES

In this chapter we define a class of upper semicontinuous decompositions of E^{n} and prove that the associated decomposition spaces are factors of $\mathrm{E}^{\mathrm{n+1}}$. This class contains the decompositions for each of the spaces (a) "dogbone space", (b) "unused example" and (c) the "segment space" [see 5].

Definition 2.1: Suppose α is an arc in E^{n} (i.e. $\alpha=h[0,1]$ for some homeomorphism $h: I \longrightarrow E^{n}$) such that $P=\pi_{1} / \alpha$ is an injection, where π_{1} is the projection of E^{n} onto the 1 st coordinate. In this case α will be said to have property $Q S$.

Let α be an arc with property $Q S$ and assume that $\pi_{1} \mathrm{~h}(1)=\mathrm{b}$ and $\pi_{1} \mathrm{~h}(0)=\mathrm{a}$ with $\mathrm{a}<\mathrm{b}$. Define the continuous function $f: E^{\mathbf{1}} \longrightarrow \mathrm{E}^{\mathrm{n}}$ by

$$
f(t)= \begin{cases}P^{-1}(a) & \text { for } t \leq a \\ P^{-1}(t) & \text { for } a \leq t \leq b \\ P^{-1}(b) & \text { for } b \leq t\end{cases}
$$

Define the homeomorphism $k: E^{1} \times E^{n-1} \longrightarrow E^{1} \times E^{n-1}$ by $k(t, x)=(t, x-f(t))$. For any $\varepsilon>0$ let

$$
\begin{aligned}
& C_{1}=\left\{z \mid z \in E^{n},\|z-a\| \leq \varepsilon\right\} \\
& C_{2}=\left\{z \mid z \in E^{n},\|z-b\| \leq \varepsilon\right\} \\
& C_{3}=\left\{z \mid z \in E^{n}, a \leq \pi_{1} z \leq b \text { and }\left\|z-\pi_{1} z\right\| \leq \varepsilon\right\}
\end{aligned}
$$

then $Q_{\varepsilon}=C_{1} \cup C_{2} \cup C_{3}$ is an n-cell containing $\pi_{1}(\alpha)$. The n-cell $k^{-1}\left(Q_{\varepsilon}\right)$ shall be called an ε-radial neighborhood of α.

Remark 2.1: Note that if α is an arc with property QS then for any $\varepsilon>0$ the ε-radial neighborhood of α intersects the planes $\pi_{1}^{-1}(t)=R_{t}=\left\{(t, y) \mid(t, y) \in t \times E^{n-1}\right\}$ in the void set, a point, or an ($n-1$)-cell.

Remark 2.2: Suppose α is an arc which has property QS. Since the homeomorphism used to define radial neighborhood is uniformly continuous, it follows that for any $\varepsilon>0$ there exists a $\delta>0$ and a collection of planes $R_{i}=\pi^{-1}\left(t_{i}\right)$ with $t_{1}=a<t_{2}<\ldots<t_{p}=b$ such that the R_{i} cut the δ-radial neighborhood of α into $(p+1)$ n-cells $C_{i} ; i=0,1, \ldots, p$ and $\operatorname{diam} C_{i} \leq \varepsilon$.

Let A_{1}, A_{2}, \ldots be a sequence of compact n-manifolds (not necessarily connected) in E^{n} satisfying

P1. $A_{i+1} \subset$ int A_{i} for all $i=1,2,3, \ldots$
P2. Each component of $A_{\infty}=\bigcap_{i} A_{i}$ is an arc with property $Q S$.

Lemma 2.1: Suppose $\varepsilon>0$ and A_{i} and A_{∞} are as defined above, then there exists a finite collection of n-cells U_{i} satisfying

1. For each U_{i} there exists an arc $\alpha_{i} \subset A_{\infty} \cap$ int U_{i} such that the distance from x to the boundary of U_{i} is less than ε for all $x \in \alpha_{i}$.
2. There exists an integer m such that if A is a component of A_{m} then $A \subset$ int U_{j} for some j.

Proof: For each arc $\alpha \in A_{\infty}$ let N_{α} be the $\frac{\varepsilon}{2}$-radial neighborhood of α. For each N_{α} there exists a neighborhood $v_{\alpha} \subset N_{\alpha}$ with the property that if an arc $f \subset A_{\infty}$ intersects V_{α} non-trivially then $\beta \subset N_{\alpha}$. The existence of such V_{α} 's follows from the fact that the decomposition of E^{n} into the arcs of A_{∞} and the points of $E^{n}-A_{\infty}$ is an upper semi-continuous decomposition. The collection of sets $\left\{V_{\alpha} \mid \alpha \subset A_{\infty}\right\}$ is an open cover of the compact set A_{∞}. Thus there is a finite subcollection $v_{1}, V_{2}, \ldots, v_{p}$ which cover A_{∞}. Let $N_{1}, N_{2}, \ldots, N_{p}$ be the corresponding N_{α} 's. Note that by the choice of the V_{α} 's we have each arc $\alpha \subset A_{\infty}$ contained in the interior of at least one N_{i}. For each arc $\alpha \subset A_{\infty}$ there exists an integer $m(\alpha)$ such that

1. $\alpha \subset A_{m(\alpha)}^{\alpha} \subset A_{m(\alpha)}$, where $A_{m(\alpha)}^{\alpha}$ is the componext of $A_{m(\alpha)}$ containing α;
2. $A_{m(\alpha)}^{\alpha} \subset$ int N_{i}, for some $i=1,2, \ldots, p$.

The collection $\left\{\right.$ int $\left.A_{m(\alpha)}^{\alpha} \mid \alpha \subset A_{\infty}\right\}$ is an open cover of A_{∞}. Therefore there is a finite subcover. From this collection of $A_{m(\alpha)}^{\alpha}$'s there is one with largest subscript $m(\alpha) . m=m(\alpha)$ is the desired integer. Each N_{i} is the $\frac{\varepsilon}{2}$ radial neighborhood of some $\alpha \subset A_{\infty}$. Therefore the collection $U_{i}=N_{i}$ satisfies the claims of the Lemma.

Lemma 2.2: Suppose $A_{i}, i=1,2, \ldots$, are defined as above and A is a component of A_{r} for some r. Given $\varepsilon>0$ then there exist integers $\gamma(1), \gamma(2), \ldots, \gamma(m+1)$ and sets $K_{i j} \subset A \times E^{1} \quad i=1,2, \ldots, s ; j=1,2, \ldots m$, which satisfy the following conditions.

1. For each $i, K_{i o} i s$ an $(n+1)-c e l l$ and $K_{i j}$ is the disjoint union of ($n+1$)-cells $K_{i j k}$ ' $k=1,2, \ldots, \mu(i, j)$.
2. $K_{\text {io }} \cap K_{e o}=\Phi$ if i fe.
3. $\underset{i}{\cup} K_{i j} \subset\left(A_{\gamma}(j) \cap A\right) \times[j, 2 m+1-j]$ $\left(\operatorname{int} A_{\gamma}(j) \cap A\right) \times(j, 2 m+1-j) \supset \underset{i}{\cup} K_{i j+1}$ for each j
4. For each $i K_{i o}$ can be written as the union of $(n+1)$-cells $D_{i e}, e=0,1, \ldots, m$, such that $D_{i e} \cap D_{i v}=B d y D_{i e} \cap B d y D_{i v}$ is an n-cell if $|e-v|=1$ and is void if $|e-v|>1$.
5. Diameter of $\pi_{n}^{*}\left(D_{i e}\right)<\varepsilon$ for all ie, where π_{n}^{*} is the projection $E^{n} \times E^{1} \longrightarrow E^{n}$.
6. $D_{i e} \cap D_{i v} \cap K_{i j k}$ is either void or an n-cell.

Proof: Let the ε of Lemma 2.1 be the min (ε, distance from $A_{\infty} \cap A$ to $\left.B d y A\right)$ hence there exists a finite set of n-cells $K_{\text {io }}, i=1,2, \ldots, s$ and an integer $\gamma(1)$ satisfying:
a. K io \subset int A for all i.
b. If A^{\prime} is a component of $A_{\gamma(1)} \cap A$ then $A^{\prime} \subset$ int K_{i}^{\prime} for some i.

Note that the $\mathrm{K}_{\text {io }}$ may not be disjoint. By Remark 2.2 each n-cell $K_{i o}$ can be chosen so that there is a finite set of planes $R_{i j}, j=1,2, \ldots, m_{i}$ which cut $K_{\text {io }}$ into $\left(m_{i}+1\right) \quad n-c e l l s D_{i j}^{\prime}$ such that

$$
D_{i j}^{\prime} \cap D_{i v}^{\prime}=B d y D_{i j}^{\prime} \cap B d y D_{i v}^{\prime}
$$

is an $(n-1)$-cell if $|j-v|=1$ and is void if $|j-v|>1$. Without loss of generality assume $m_{i}=m$ for all i.

Similarly apply Lemma 2.1 to each component of $A_{\gamma(1)} \cap A$ to obtain an integer $\gamma(2)$ and sets $K_{i 1}$, where $K_{i 1}^{\prime}$ is the union of n-cells $K_{i 1 k}^{\prime}, k=1,2, \ldots \mu(i, 1)$, satisfying;
i. If A^{*} is a component of $A_{\gamma(2)} \cap A$ then $A^{*} \subset \operatorname{int} K_{i 1 k}^{\prime} \subset K_{i j k}^{\prime} \subset \operatorname{int} A^{\prime} \subset A^{\prime} \subset$ int $K_{i o}^{\prime}$ for some k and some component A^{\prime} of $A_{\gamma(1)^{n} A \text {. }}{ }^{n}$.
ii. $K_{i 1 k} \cap R_{i j}$ is either void or an ($n-1$-cell.

Condition ii actually follows from the proof of Lemma 2.1. Continue this procedure to obtain the integers $\gamma(3), \gamma(4)$. $\ldots, \gamma(m+1)$ and sets $K_{i j}^{\prime}$ and $n-c e l l s K_{i j k}$ satesflying conditions analogous to i and $i i$ above.

For each i and j define $w_{i j \ell}$ to be the union of the components of ${ }^{A}{ }_{\gamma(j+1)} \cap A$ which are contained in $K_{i j \ell}^{i}$ but not in Kip for any $p<\ell$. Note that $W_{i j \ell}$ are compact and $W_{i j k} \cap W_{i j \ell}=\Phi$ if $k \neq \ell$. Let $\left\{W_{\text {iO }}\right\}$ and $\left\{K_{i o}^{\prime}\right\}$ be respectively $\left\{C_{i}\right\}$ and $\left\{D_{i}\right\}$ of Theorem 1.1 and let $a-\varepsilon=0$ and $b+\varepsilon=2 m+1$. Then define $K_{i o}=E_{i}$ of Theorem 1.1. By the proof of Theorem 1.1 we see that $K_{\text {io }}$ can be written as the union of $(n+1)$-cells $D_{i \ell}$ such
that $\pi_{n}^{*} D_{i \ell}=D_{i \ell}^{\prime} . \quad$ Further the $D_{i \ell}$ satisfy condition 4. In general let $\left\{W_{i j k}\right\}$ and $\left\{K_{i j k}^{\prime}\right\}$ be respectively $\left\{C_{i k}\right\}$ and $\left\{D_{i k}\right\}$ of Theorem 1.1 and let $\varepsilon=\frac{1}{2}, a=j$ and $b=2 m+1-j$. If $K_{i j k}=E_{i k}$ of Theorem 1.1 and $K_{i j}=\bigcup_{k} E_{i k}$ then conditions 1 through 5 are clearly satisfied and condition 6 follows from ii above.

Remark 2.3: Note that if $i \neq r$ and A^{\prime} is a component of $A_{\gamma(j+1)} \cap A$ contained in $K_{r j}^{\prime}$ then $K_{i, j+1} \cap$ $A^{\prime} \times E^{1}=\varnothing$ since $K_{i j}^{\prime} \cap K_{r j}^{\prime} \subset A-A_{\gamma(j+1)}$. Also $K_{i j p}{ }^{n}$ $K_{i j q}=\phi$ if they are not contained in the same n-cell of $K_{i j-1}$.

The proof of the next lemma is based on the following known result.

Theorem: Suppose that A is an n-cell which is the union of two n-cells A_{1} and A_{2} with the properties that $A_{1} \cap A_{2}$ and $B d y A_{1} \cap B d y A_{2}$ are ($n-1$-cells and $A_{1} \cap A_{2} \subset$ $B d y A_{1} \cap B d y A_{2}$. If $B \subset A, B$ is compact and $B \cap B d y A \subset A_{2}$ then there exists a homeomorphism h of A onto A which is fixed on the $B d y A$ and such that $h(B) \subset A_{2}$.

Lemma 2.3: For $\varepsilon>0$ and A a component of A_{r} (where $A_{i} \quad i=1,2, \ldots$ are defined as above) let $\gamma(f), D_{i \ell}, K_{i j}$, and $K_{i j k}$ be defined as in Lemma 2.2 . Then there exists a homeomorphism $h: E^{n} \times E^{1} \longrightarrow E^{n} \times E^{1}$ such that the following hold.

1. $h=i d$ on the complement of $\underset{i}{U} K_{i 1}$.
2. $h=i d$ on the complement of

$$
\begin{aligned}
& \cup\left(\left[K_{i 1} \cap\left(D_{i o} \cup D_{i 1}\right)\right] \cup\left[K_{i 2} \cap\left(D_{i 1} \cap D_{i_{2}}\right)\right] \cup \ldots\right. \\
& \left.\cup\left[K_{i m} \cap\left(D_{i m-1} \cup D_{i m}\right)\right]\right)
\end{aligned}
$$

3. If $A^{\prime} \subset A_{\gamma(j+1)} \cap A$ and $K_{i j k} \supset A^{\prime} \times[j, 2 m+1-j]$ then

$$
\begin{aligned}
& h\left(\left(D_{i O} \cup \ldots \cup D_{i j}\right) \cap A^{\prime} \times([j, j+1] \cup[2 m-j, 2 m-j+1])\right) \\
& \subset D_{i \Psi} \cup D_{i \Psi+1}
\end{aligned}
$$

where $\Psi=\min \left(j, \max \left\{e \mid K_{i e k} \cap D_{i e} \neq \Phi, K_{i e k} \supset A^{\prime}\right\}\right)$.
Before reading the proof of Lemma 2.3 it may be helpful to look at Figures 1 and 2. The homeomorphism h will be obtained as the composition of homeomorphisms $h_{m-1} \cdot h_{m-2}$. $\ldots \cdot h_{1}$. Figure 1 illustrates how the h_{j} will be constructed. The shaded region of Figure 2 is that part of $A \times[0,2 m+1]$ which is not moved by h.

Proof: Let $h_{1}: E^{n} \times E^{1} \longrightarrow E^{n} \times E^{1}$ be a homeomorphism defined as follows
$h_{1}=i d$ on $E^{n} \times E^{1}-\underset{i}{U}\left(K_{i 1} \cap\left(D_{i o} \cup D_{i 1}\right)\right)$ For each i and A^{\prime} a component of $A_{\gamma(2)}$ with $A^{\prime} \times[1,2 m] \subset K_{i 1 k}$, then
a. If $K_{i 1 k} \cap D_{i o}=\Phi$ or $K_{i 1 k} \cap D_{i 1}=\Phi$ then $\mathrm{h}_{1}=\mathrm{id}$ on $\mathrm{K}_{\mathrm{i} 1 \mathrm{k}}$
b. If $K_{i 1 k} \cap K_{i o} \cap D_{i 1} \neq \Phi \quad$ then

$$
\begin{aligned}
& h_{1}=i d \text { on } B d y K_{i 1} \cap\left(D_{i o} \cup D_{i 1}\right) \\
& h_{1}\left(A^{\prime} \times[1,2 m] \cap\left(D_{i o} \cup D_{i 1}\right)\right) \subset D_{i 1}
\end{aligned}
$$

h_{1} as defined exists since $A^{\prime} \times[1,2 m]$ is compact,

Figure 2.
$K_{i 1 k} \cap\left(D_{i o} \cup D_{i 1}\right)$ is the union of two $(n+1)$-cells which intersect in an n-cell in their common boundary and $A^{\prime} \times[1,2 m] \cap \operatorname{Bdy}\left[K_{i j k} \cap\left(D_{i o} \cup D_{i 1}\right)\right]$ is contained in $D_{i 1}$ and $K_{i j k} \cap K_{i j \ell}=\phi$ if $k \neq \ell$.

Now proceed inductively to define h_{j} for $j=$ $2,3, \ldots, m-1$. As a notational aid define $L_{i j}=$ $\left(D_{i o} \cup D_{i 1} \cup \ldots \cup D_{i j}\right) \cap K_{i j} . \quad$ Define $h_{j}: E^{n} \times E^{1} \longrightarrow E^{n} \times E^{1} \quad$ as follows $h_{j}=i d$ on $E^{n} \times E^{1}-\left(h_{j-1} \cdot h_{j-2} \cdot \ldots \cdot h_{1}\left(U L_{i j}\right)\right)$ For each i and A^{\prime} a component of $A_{\gamma(j+1)} \cap A$ with $A^{\prime} \times[j, 2 m+1-j] \subset K_{i j k}$ then
a. If $H \cap D_{i j-1}=\Phi$ or $H \cap D_{i j}=\Phi$ then $h_{j}=i d$ on H where $H=\left(h_{j-1} \cdot h_{j-2} \cdot \ldots \cdot h_{1}\left(K_{i j k}\right)\right)$.
b. If $H \cap D_{i j-1} \cap D_{i j} \neq \Phi \quad$ then

$$
\begin{aligned}
h_{j}\left(h_{j-1} \cdot h_{j-2} \cdot\right. & \left.\left.\ldots \cdot h_{1}\left(A^{\prime} \times[j, 2 m+1-j] \cap D_{i j-1} \cup D_{i j}\right)\right)\right) \\
& \subset D_{i j} .
\end{aligned}
$$

h_{j} exists since $A^{\prime} \times[j, 2 m 1-j]$ is compact,
$h_{j-1} \cdot \ldots{ }^{\cdot} h_{1}\left(A^{\prime} \times[j, 2 m+1-j] \cap\left(D_{i j-1} \cup D_{i j}\right)\right)$ is the union of two ($n+1$-cells which intersect in an $n-c e l l$ in their common boundary and
$h_{j-1} \cdot \ldots \cdot h_{1}\left(A^{\prime} \times[j, 2 m+1-j]\right) \cap B d y\left(h_{j-1} \cdot \ldots \cdot h_{1}\left[k_{i j k} \cap\right.\right.$

$$
\left.\left.\left(D_{i j-1} \cup D_{i j}\right)\right]\right)
$$

is contained in $D_{i j}$.

$$
\text { Define } h: E^{n} \times E^{1} \rightarrow E^{n} \times E^{1} \text { as } h=h_{m-1} \cdot h_{m-2} \cdot \ldots \cdot h_{1}
$$

Clearly conditions 1 and 2 are satisfied by h. To see that condition 3 is satisfied let
$x \in\left(A_{\gamma(j+1)} \cap A\right) \times([j, j+1] \cup[2 m-j, 2 m+1-j])$.
There exists some component $A^{\prime} \subset A_{\gamma(j+1)} \cap A \quad$ such that $x \in A^{\prime} \times([j, j+1] \cup[2 m-j, 2 m+1-j])$ and a unique $k_{i j k}$ containing x. Let $\Psi=\min \left(j, \max \left\{e \mid K_{i e k} \cap D_{i e} \neq \varnothing, K_{i e k} \supset A^{\prime}\right\}\right)$.

Case 1. If $\Psi<j$ then

$$
h(x)=h_{m-1} \cdots h_{\Psi} \cdots h_{1}(x)=h_{\Psi} \cdots h_{1}(x) \subset D_{i \Psi} \cup D_{i \Psi+1} .
$$

Case 2. If $\Psi=j$ then

$$
\begin{gathered}
h(x)=h_{m-1} \cdots h_{j+1} \cdot h_{j} \cdots h_{1}(x)=h_{j+1} h_{j} \cdots h_{1}(x) \subset \\
D_{i j} \cup D_{i j+1}
\end{gathered}
$$

Lemma 2.4: Suppose $\varepsilon>0$ and A is a component of A_{r} (where $A_{i} i=1,2, \ldots$ are defined as above). Then there exists an integer N and a uniformly continuous homeomorphism $h: E^{n} \times E^{1} \longrightarrow E^{n} \times E^{1}$ which is the identity on $E^{n^{+1}}-\left(A \times E^{1}\right)$ and such that for each $\mathrm{w} \in \mathrm{E}^{\prime}$
(1) $\quad \pi_{n+1}(h(A \times w)) \subset[w-2 m-1, w+2 m+1]$.
(2) $\operatorname{diam}\left(\pi_{n}^{*}\left(A^{\prime} \times w\right)\right)<4 \varepsilon$,
where A^{\prime} is a component of $A_{n} \cap A, \pi_{n+1}$ is the projection of $E^{n} \times E^{1}$ onto E^{1}, and π_{n}^{*} is the projection onto E^{n} 。

Figure 3 shows how to apply Lemma 2.3 to prove Lemma 2.4. In Figure 3 only one sequence $k_{i 1 k}, K_{i 2 k}, \ldots, K_{i m+1} k$, containing a component of $A_{N} \cap A$, is shown. The ($n+1$)cells in the figure are shown as if they intersect each of the ($n+1$)-cells $D_{i o}, D_{i 1}, \ldots, D_{i m}$. This may not be the case, however, an analogous figure is obvious.

Proof: Apply Lemma 2.3 to $A \times E^{1}$ and integers m and $\gamma(m+1)$ and sets $D_{i \ell}, K_{i j}$ and $K_{i . j k}$. set $N=$ $\gamma(m+1)$ for $g=0, \pm 1, \pm 2, \ldots$ let

$$
\begin{array}{ll}
x_{g}=g(2 m+2) & x_{g}^{\prime}=x_{g}+m+1 \\
y_{g}=g(2 m+2)+2 m+1 & y_{g}^{\prime}=y_{g}+m+1
\end{array}
$$

Note that $D_{i \ell}, K_{i j}, K_{i j k} \subset A \times\left[x_{0}, Y_{0}\right]$, by suitable translations of E^{1} we get sets analogous to $D_{i \ell}, K_{i \ell}{ }^{\prime}$ and $K_{i j k}$ in $A \times\left[X_{g}, Y_{g}\right]$ for each g. Apply Lemma 2.3 to $A \times\left[X_{g}, Y_{g}\right]$ for each g. Define $\bar{D}_{i \ell}=D_{i m-\ell}$ and apply Lemma 2.3 to $A \times\left[x_{\ell}^{\prime}, y_{\ell}^{\prime}\right]$ using $\bar{D}_{i \ell}$ in place of $D_{i \ell}$. Thus there exists a homeomorphism $h: E^{n} \times E^{1} \rightarrow E^{n} \times E^{1}$ which is uniformly continuous. By the choice of X_{g}, Y_{g}, x_{g}^{\prime} and Y_{g}^{\prime} and Remark 2.3 there exist integers i and k such that

$$
\pi_{n}^{*} h\left(A^{\prime} \times w\right) \subset \pi_{n}^{*}\left(D_{i k} \cup D_{i k+1} \cup \bar{D}_{i m-k+2} \cup \bar{D}_{i m-k+3}\right)
$$

for each component $A^{\prime} \subset A \cap A_{N}$ and $w \in E^{1}$. Note that i and k depend on A^{\prime} and w. $\operatorname{Diam} \pi_{n}^{*}\left(D_{i \ell}\right)<\varepsilon$ for all i and ℓ. Thus condition 2 is satisfied. For $w \in E^{1}$ there exist $X_{g}, Y_{g}, x_{g+\delta}^{\prime}$ and $Y_{g+\delta}^{\prime}$, where $\delta=0,-1$, such that $w \in\left[x_{g}, Y_{g}\right] \cap\left[x_{g+\delta}^{\prime}, Y_{g+\delta}^{\prime}\right]$. Thus

$$
\pi_{n+1}\left(A^{\prime} \times w\right) \subset\left[x_{g}, y_{g}\right] \cup\left[x_{g+\delta}^{\prime}, y_{g+\delta}^{\prime}\right]
$$

ard condition 1 is satisfied.

Theorem 2.5: For each component $A \subset A_{r}$ (where A_{i}, $i=1,2, \ldots$ are as defined above) and each $\varepsilon>0$ there exists an integer N and an uniformly continuous homeomorphism $h: E^{n} \times E^{1} \longrightarrow E^{n} \times E^{1}$ such that

1. $h=$ id on $E^{n+1}-A \times E^{1}$
2. $\left|\pi_{n+1}[h(x)]-\pi_{n+1}(x)\right|<\varepsilon$
3. For each $w \in E^{1}$ diameter of each component of ${ }^{A_{N}} \times w$ is less than ε.

Proof: Let $\varepsilon^{\prime}=\frac{\varepsilon}{8}$ then by Lemma 2.4 there exists a uniformly continuous homeomorphism h_{1} and an integer N satisfying
a. $h_{1}=i d$ on $E^{n+1}-A \times E^{1}$
b. $\left|\pi_{n+1} h_{1}(x)-\pi_{n+1}(x)\right|<4 m+2$ for some positive integer m.
c. $\operatorname{diam} \pi_{n}^{*}\left(A^{\prime} \times w\right)<4 \varepsilon^{\prime}$
for all $w \in E^{1}$ and components $A^{\prime} \subset A_{N} \cap A$.
Let h_{2} be the homeomorphism $h_{2}: E^{N} \times E^{1} \rightarrow E^{n} \times E^{1}$ given by

$$
h_{2}(x, t)=\left(x, \frac{4 m+2}{\varepsilon^{\prime}} t\right)
$$

The homeomorphism $h=h_{2}^{-1} h_{1} h_{2}$ is the desired homemorphism.

The homeomorphism h is isotopic to the identity since the homeomorphisms of Lemmas 2.3 and 2.4 were.

Suppose $A_{i} i=1,2, \ldots$, be a sequence of manifolds as defined above (see page 15). Let G_{n} be the upper semi-continuous decomposition of E^{n} into the arcs of A_{∞} and the points of $E^{n}-A_{\infty}$. Denote the decomposition space of G_{n} by X_{n}.

Theorem 2.6: $X_{n} \times E^{1}=E^{n+1}$
This theorem follows from Theorem 2.1 and the following theorem which is due to R. H. Bing [4].

Theorem: Let $A_{i} i=1,2, \ldots$, and X_{n} be defined as above. Further suppose that for each i and $\varepsilon>0$ there is an integer N and an isotopy μ of E^{n+1} onto E^{n+1} such that μ_{0} is the identity μ_{1} is uniformly continuous and

1. $\mu_{t}=i d$ on $E^{n+1}-\left(A_{j} \times E^{1}\right)$
2. $\left|\pi_{n+1} \mu_{t}(x)-\pi_{n+1}(x)\right|<\varepsilon$ where π_{n+1} is the projection of E^{n+1} onto the ($n+1$)-st coordinate.
3. For each $w \in E^{1}$ the diameter of each component of $\mu_{1}\left(A_{N} \times w\right)$ is less than ε.
Then $X_{n} \times E^{1}=E^{n+1}$.

Remark 2.4: Note that there exists a countable collection of compact sets R_{i} such that

1. $A \times E^{1}=\underset{i}{U} R_{i}$.
2. $h\left(R_{i}\right) \subset R_{i}$ for all $i=1,2, \ldots$
3. $h / b d y R_{i}=i d$ for all $i=1,2, \ldots$
4. $\operatorname{diam}\left[\pi_{n+1}\left(R_{i}\right)\right]<\varepsilon / 8$.
5. $\left.\operatorname{diamh} h R_{i} \cap\left(A_{n} \times E^{1}\right)\right]<\varepsilon / 2$.

Where h is the homeomorphism of Theorem 2.5.

CHAPTER III

THE "DOGBONE SPACE" SQUARED IS E6

In [7] Kwun showed that there exists two non-manifolds whose product is E^{n} for $\mathrm{n} \geq 6$. In this chapter we give another factorization of E^{6} into non-manifold factors.

Let B_{i} be a collection of m-manifolds in E^{m} which are analogous to the A_{i} defined in Chapter II. That is B_{i} ($i=1,2, \cdots$) is a collection of compact manifolds in E^{m} satisfying $P 1$ and $P 2$ (see page 15) and $B_{\infty}=\bigcap_{i} B_{i}$.

Throughout this chapter let $A_{i}(i=1,2, \cdots)$ be as defined in Chapter II.

Lemma 3.1: Given A and B components of A_{r} and B_{s} respectively and $\varepsilon>0$ then there exists an integer $N>\max (r, s)$ and a homeomorphism $h: E^{n} \times E^{m} \rightarrow E^{n} \times E^{m}$ such that;

1. $h=i d$ on $E^{n+m}-(A \times B)$
2. $\operatorname{Diamh}\left(A^{\prime} \times B^{\prime}\right)<\varepsilon$ for each component

$$
A^{\prime} \subset A_{N} \cap A \quad \text { and } B^{\prime} \subset B_{N} \cap B
$$

Proof: By Lemma 2.1 there exists integers J and K, a set of n-cells $E_{1}, E_{2}, \cdots, E_{p}$, and a set of m-cells $F_{1}, F_{2}, \cdots, F_{q}$ such that

1. $E_{i} \subset$ int A for each $i=1,2, \cdots, p$.
2. $F_{j} \subset$ int B for each $j=1,2, \cdots, q$.
3. For each component $A^{\prime} \subset A_{J} \cap A$ there is at least one i such that $A^{\prime} \subset$ int E_{i}.
4. For each component $B^{\prime} \subset B_{K} \cap B$ there is at least one j such that $B^{\prime} \subset$ int F_{j}.

Let $N=\max (J, K)$ and note that for each component $A^{\prime} \times B^{\prime} \subset\left(A_{N} \times B_{N}\right) \cap(A \times B)$ there exist integers i and j such that $A^{\prime} \times B^{\prime} \subset$ int $E_{i} \times$ int F_{j}.

By Theorem 1.2 there exists a collection of ($n+m$)-cells $G_{1}, G_{2}, \ldots, G_{\ell}$ such that;

1. For each component $A^{\prime} \times B^{\prime}$ of $\left(A_{N} \times B_{N}\right) \cap(A \times B)$ there exists a unique k such that $A^{\prime} \times B^{\prime} C$ int G_{k} and $A^{\prime} \times B^{\prime} \cap G_{j}=\varnothing$ for all $j^{\prime} \neq k$.
2. $G_{k} \subset$ int $E_{i} \times$ int $F_{j} \subset A \times B$ for some i and j. Note that even though $i \neq j$ it may be the case that $\mathrm{G}_{\mathrm{i}} \cap \mathrm{G}_{\mathrm{j}} \neq \varnothing$. Since $\left(\underset{\mathrm{j} \neq \mathrm{i}}{ } \mathrm{G}_{\mathrm{i}}\right) \cap \mathrm{G}_{\mathrm{i}}$ is compact for each $i=1,2, \ldots, l$, there exists an $(n+m)-\operatorname{cell} Q_{i}=$ $\left\{z \in E^{m+n} /\left\|z-z_{i}\right\| \leq \delta\right.$, for some $z_{i} \in$ int G_{i} and $\left.\delta \leq \varepsilon / 2\right\}$ $\subset G_{i}$ such that $Q_{i} \cap G_{j}=\Phi$ for $i \neq j$. For each componext $A^{\prime} \times B^{\prime} \subset\left[\left(A_{N} \times B_{N}\right) \cap(A \times B)\right]$ there exists an integer i and a homeomorphism $h_{i}: E^{n+m} \longrightarrow E^{n+m}$ such that
3. $A^{\prime} \times B^{\prime} \subset G_{i}$
4. $h_{i}=i d$ on $E^{n+m}-G_{i}$
5. $h_{i}\left(A^{\prime} \times B^{\prime}\right) \subset Q_{i}$.

Define $h=h_{1} \cdot h_{2} \cdot \ldots \cdot h_{\ell}$. Even though the $G_{i}{ }^{\prime} s$ are not disjoint, h_{i} is the identity on $G_{j} \cap\left(A_{N} \times B_{N}\right)$
for $j \neq i$. Thus h satisfies conditions 1 and 2 of the theorem.

Remark 3.1: Since the homeomorphism h of Lemma 3.1 is the identity outside a compact set h is uniformly continuous and isotopic to the identity.

Theorem 3.2: Let $A_{i}, i=1,2, \ldots ; B_{j}, j=1,2, \ldots$ be defined as above then there exists a pseudo-isotopy $H: E^{n+m} \times I \longrightarrow E^{n+m}$ such that ;
a. $H(x, 0)=x$
b. If $H_{t}(x)=H(x, t)$ then for all $t<1 H_{t}$ is a homeomorphism of $\mathrm{E}^{\mathrm{n}+\mathrm{m}}$ onto itself which is the identity outside a compact set.
c. H_{1} maps E^{n+m} onto itself and maps each compoenc of $A_{\infty} \times B_{\infty}$ onto a distinct point.
d. If $x \in E^{m+n}-\left(A_{\infty} \times B_{\infty}\right)$ then

$$
\mathrm{H}_{1}^{-1}\left(\mathrm{H}_{1}(\mathrm{x})\right)=\mathrm{x}
$$

Proof: Let $\varepsilon_{0}=\operatorname{diam}\left(A_{1} \times B_{1}\right)$ and $\varepsilon_{i}=1 / 2^{i}$ for $i=1,2, \ldots$. A sequence of integers $1=N(1), N(2), \ldots$ and isotopies.

$$
H^{i}: E^{n+m} \times\left[\frac{i-1}{i}, \frac{i}{i+1}\right] \longrightarrow E^{n+m}
$$

for $i=1,2, \ldots$ which satisfy

1. $H^{1}(x, 0)=x$
2. $H^{i-1}\left(x, \frac{i-1}{i}\right)=H^{i}\left(x, \frac{i-1}{i}\right)$ for $i=2,3, \ldots$
3. diam $H^{i}\left(A^{\prime} \times B^{\prime}, \frac{i}{i+1}\right)<\varepsilon_{i}$ for each component

$$
\left.A^{\prime} \times B^{\prime} \subset A_{N(i+1}\right) \times B_{N(i+1)}
$$

4. $H^{i}(x, t)=H^{i-1}\left(x, \frac{i-1}{i}\right)$ for $x \in E^{n+m}-\left(A_{N}(i) \times B_{N}(i)\right)$ and $i=2,3, \ldots$.
5. $\left\|H^{i}(x, t)-H^{i}\left(x, t^{\prime}\right)\right\|<\varepsilon_{i-1}$ for all $x \in E^{n+m}$ and $t, t^{\prime} \in\left[\frac{i-1}{i}, \frac{i}{i+1}\right]$.
are defined inductively as follows. Let A_{r} and B_{s} of Lemma 3.1 be A_{1} and B_{1} respectively and let ε of Lemma 3.1 be ε_{1}. Then there exists a uniformly continuous isotopy

$$
h_{1}: E^{n+m} \times I \longrightarrow E^{n+m}
$$

and an integer $N(2)$ such that

$$
\mathrm{h}_{1}(\mathrm{x}, 0)=0,
$$

diam $h_{1}\left(A^{\prime} \times B^{\prime}, 1\right)<\varepsilon_{1}$ for each component

$$
\begin{aligned}
& A^{\prime} \times B^{\prime} \subset A_{N}(2) \times B_{N}(2)^{\prime} \\
& h_{1}(x, t)=x \text { on } E^{n+m}-\left(A_{1} \times B_{1}\right) .
\end{aligned}
$$

Define $H^{1}(x, t)=h_{1}(x, 2 t), 0 \leq t \leq \frac{1}{2}$.
Suppose H^{k} and N_{k+1} are defined. Since H_{W}^{k} is uniformly continuous for $w=\frac{k}{k+1}$ there exists a $\delta>0$ such that if the diameter of $\mathrm{V} \subset \mathrm{E}^{\mathrm{n}+\mathrm{m}}$ is less than δ then the diameter of $H_{W}^{k}(V)$ is less than ε_{k+1}. Lemma 3.1 implies the existence of an integer N_{k+2} and an isotopy such that

$$
\begin{aligned}
& h_{k+1}(x, 0)=x \quad \text { on } E^{n+m}, \\
& \left.h_{k+1}(x, t)=x \quad \text { on } E^{n+m}-\left[A_{N}(k+1) \times B_{N(k+1}\right)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \text { diam }\left(A^{*} \times B^{*}, 1\right)<\delta \text { for each component } \\
& A^{*} \times B^{*} \subset A_{N}(k+2) \times B_{N}(k+2)
\end{aligned}
$$

and h_{k+1} is uniformly continuous.
Define

$$
H^{k+1}(x, t)=H_{w}^{k} h_{k+1}\left[x,(k+1)(k+2)\left(t-\frac{k}{k+1}\right)\right]
$$

for $\frac{k}{k+1} \leq t \leq \frac{k+1}{k+2}$. Clearly 1 and 2 are satisfied.
Now

$$
H^{k+1}\left(x, \frac{k+1}{k+2}\right)=H_{w}^{k} h_{k+1}(x, 1)
$$

thus by choice of δ condition 3 is satisfied. $h_{k+1}(x, t)=x$ for $x \in E^{n+m}-\left[A_{N}(k+1) \times A_{N}(k+1)\right]$ hence condition 4 is satisfied. $h_{k+1}\left(A^{\prime \prime} \times B^{\prime \prime}, t\right) \subset A^{\prime \prime} \times B^{\prime \prime}$ for each component $A^{\prime \prime} \times B^{\prime \prime} \subset A_{N(k+1)} \times B_{N}(k+1)$. $\operatorname{Diam}\left[H_{w}^{k}\left(A^{\prime \prime} \times B^{\prime \prime}\right)\right]<\varepsilon_{k}$ by condition 3 thus condition 5 is satisfied.

Define

$$
\begin{aligned}
& H(x, t)=H^{i}(x, t) \text { on } E^{n+m} \times\left[\frac{i+1}{i}, \frac{i}{i+1}\right] \text { for } \\
& i=1,2, \ldots
\end{aligned}
$$

Define

$$
H_{1}(x)=\lim _{t \rightarrow 1} H(x, t) .
$$

$\mathrm{H}_{1}(\mathrm{x})$ is continuous map of $\mathrm{E}^{\mathrm{n}+\mathrm{m}}$ onto $\mathrm{E}^{\mathrm{n}+\mathrm{m}}$ by condition 5. Clearly 1 implies that a. is satisfied by H. Condition 4 along with the definition of H^{1} implies b. is satisfied by H. Suppose $\varepsilon>0$ and $\alpha \times \beta$ is a component of $A_{\infty} \times B_{\infty}$ then there exists an integer p such that $\frac{1}{2^{p}}=\varepsilon_{p}<\varepsilon$. For all $t>\frac{p}{p+1}$, diam $H\left(A^{*} \times B^{*}, t\right)<\varepsilon_{p}$
where $A^{*} \times B^{*}$ is the component of $A_{N(p)} \times B_{N(p)}$ contraining $\alpha \times \beta$. Thus $H(\alpha \times \beta, 1)$ is a point. Let $x \in$ $E^{n-m}-A_{\infty} \times B_{\infty}$ then there exists an integer $N(q)$ such that $x \in E^{n+m}-\left[A_{N}(q) \times B_{N(q)}\right]$ thus 4 implies that $H(x, t)=H\left(x, \frac{q-1}{q}\right)$ for all $t>\frac{q-1}{q} . H / E^{n+m} \times\left[0, \frac{q-1}{q}\right]$ is an isotopy thus $H_{1}^{-1}\left[H_{1}(x)\right]=x$ and d. is satisfied by H. Let $\alpha_{1} \times \beta_{1}$ and $\alpha_{2} \times \beta_{2}$ be distinct components of $A_{\infty} \times B_{\infty}$ then there exists an integer $N(j)$ such that $\alpha_{1} \times \beta_{1} \subset A^{\prime} \times B^{\prime}$ and $\alpha_{2} \times \beta_{2} \subset A^{\prime \prime} \times B^{\prime \prime}$, where $A^{\prime} \times B^{\prime}$ and $A^{\prime \prime} \times B^{\prime \prime}$ are distinct components of $A_{N(j)} \times B_{N(j)}$. Thus $H_{1}\left(\alpha_{1} \times \beta_{1}\right) \neq H_{1}\left(\alpha_{2} \times \beta_{2}\right)$ and c. is satisfied. Therefore H is the desired pseudo-isotopy.

Corollary 3.2: Suppose F is an upper semi-continuous decomposition of E^{n+m} consisting of the 2-cells $\alpha \times \beta$, where $\alpha \subset A_{\infty}$ and $\rho \subset B_{\infty}$, and the points of $E^{n+m}-\left(A_{\infty} X_{\infty}\right)$. If Z is the decomposition space associated with F then Z is topologically E^{n+m}. Moreover, there exists a uniformly continuous homeomorphism carrying z onto E^{n+m}.

Let G_{n} be the decomposition of E^{n} into the arcs of A_{∞} and points of $E^{n}-A_{\infty}$. Similarly let G_{m} be the decomposition of E^{m} into the arcs of B_{∞} and points of $E^{m}-B_{\infty}$. Suppose that $X_{i}(i=1,2)$ is the decomposilion space associated with $G_{i}(i=1,2)$.

Theorem 3.3: $X_{n} \times X_{m}$ is topologically E^{n+m}.

Proof: By Corollary 3.2 there exists a pseudo-isotopy H of E^{n+m} onto itself which shrinks each of the 2-cells $\alpha \times \beta$ for $\alpha \subset A_{\infty}$ and $\beta \subset B_{\infty}$. Let $f=H_{1}$. The proof will be completed by constructing a pseudo-isotopy K of $f\left(E^{n+m}\right)$ onto itself which shrinks each of the arcs $f(\alpha \times y)$, $f(z \times \beta)$ where α is an arc of A_{∞}, β is an arc of $B_{\infty}, z \in E^{n}$ and $y \in E^{m}$.

Let

$$
U_{1}=\underset{i}{U} f\left(\text { int } A_{i} \times\left[E^{m}-B_{i}\right]\right)
$$

and

$$
U_{2}=\bigcup_{i} f\left(\left[E^{n}-A_{i}\right] \times \operatorname{int} B_{i}\right)
$$

Note that each arc $f(\alpha \times y) \subset U_{1}$ and $f(z \times \beta) \subset U_{2}$. Also $\quad U_{1} \cap U_{2}=\Phi$.

The pseudo-isotopy K can be constructed by amending the construction of the pseudo-isotopy in [7] as follows.
(1) Replace the compact neighborhoods T_{i} and T_{i}^{\prime} with A_{i} and B_{i} respectively.
(2) In the proof of the Lemma replace Theorem 1 of [1] with Theorem 2.6 of this thesis. And further replace the R_{i}^{\prime} by R_{i} of Remark 2.4 .

LITERATURE CITED

[1] J. J. Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math. 75 (1962) 1-7.
[2] S. Armentrout, Monotone Decompositions of E^{3}, Topology Seminar Wisconsin, 1965, Princeton Press (1966) 1-25.
[3] R. H. Bing, A decomposition of E^{3} into points and tame arcs such that the decomposition space is topologically different from E^{3}, Ann. of Math. 65 (1957) 484-500.
[4] The cartesian product of a certain nonmanifold and a line is E^{4}, Ann. of Math. 70 (1959) 399-412.
[5]
[6] J. G. Hocking and G. S Young, Topology, AddisonWesley, 1961.
[7] K. W. Kwun, Product of euclidean spaces modulo an arc, Ann. of Math. 79 (1964) 104-107.
[8] G. T. Whyburn, On the structure of continua, Bull. Amer. Math. Soc. 42 (1936).
[9] _ Decomposition spaces, Topology of 3-manifolds and Related Topics, Prentice-Hall (1962) 2-4.

TICHIGAN STATE UNIV. LIBRARIES

31293101024663

