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ABSTRACT
COEFFICIENTS OF BLOCH FUNCTIONS
By
John Joseph Neitzke

A Bloch function is a function analytic in the open unit disc D
which satisfies the restrictive growth condition that (l-lzlz)lf'(z)l
is bounded in D. The space of all Bloch functions is denoted by B.
The subspace of B consisting of those functions for which
(1-|zl2)|f'(z)| tends to zero as |z| » 1 is called By The Bloch
norm is defined by ||f|[z= |f(0)] + izg(l-lz|2)|f'(z)|. With this
norm, the Bloch functions form a Banach space.

~In this dissertation, the coefficients of the power series

k of functions f in B and B0 are examined.

expansion kzo .z
Conditions on the coefficients which imply that f is in B or in
B0 are given, as well as other conditions which are necessary for f
to be in B or in Bo.

Certain facts concerning coefficients of Bloch functions are
known. If f is Bloch, the coefficients are bounded but need not
tend to zero. If f is in BO’ the coefficientsndo converge to zero.

It can be shown that for Bloch functions, Z klakl2 = 0(n) and
) Iakl2 is bounded. A natural place to searcﬁ-%or conditions
5;?ch characterize Bloch functions is among expressions similar to
these.

L J
I Kk |a | = 0(n") for some integer

Mathews [1] proved that

n
J > 1 is sufficient, and kz k|ak| = 0(n3/2) is necessary for f to
=1
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be a Bloch function, and that the first is also necessary if the
coefficients have arguments lying in an interval of length /2.
Mathews also gave an example of a Bloch function satisfying

g klakl = O(nP), for P between 1 and 3/2.

! In this dissertation, we extend one of Mathews' results, that

E klakl2 being bounded is sufficient for f to be Bloch, to accom-
ggie a wider class of functions. We then state and prove analogues

of Mathew's theorems for functions in By- We show that if for some
Jd>1, E kdlakl = o(nJ), then f is in B,, and if the arguments
of the cg;%ficients lie in an interval of length #/2, this condition
is also necessary. We use this to prove that a Hadamard gap series
with coefficients tending to zero is in Bo. We also show that

2 klakl = o(n3/2) is necessary for f to be in B,.

! We then examine conditions involving sums from m to 2m. If
¢ are real and nonnegative, then %? lag| <M<= is

k=m
necessary and sufficient for f to be Bloch, and the convergence of

all the a

these partial sums to zero is necessary and sufficient for f to be
in BO' Without the real nonnegative restriction, we obtain a series
of results which parallel those for sums taken from 1 to n. We
prove that f is Bloch if ?? kJ'llakl = O(mJ'l) for some integer
J > 1; with the arguments oka:e coefficients restricted to an interval
of length =/2, this is also necessary. Without this restriction,
a necessary condition is that %? kp'llakl = O(mp'llz). For functions
in BO’ thgse results hold witt-mo in place of O.

We give an example of a Bloch function which is bounded with
coefficients tending to zero, with the property that if the part of

the power series expansion of f from k=m to k =2m is
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considered as a function, then for selected m, the sum of the
coefficients and the Bloch norm of the function both diverge to

infinity as m increases.

1. J. H. Mathews, Coefficients of uniformly normal-Bloch functions,

Yokahama Math. J. 25 (1973), 27-31.
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I. PRELIMINARIES

The beginnings of Bloch functions date back to 1925, when André
Bloch [6] studied the class G of functions f holomorphic in the
unit disc D= {z : |z| < 1} with normalization f'(0) = 1. A
schlicht disc in the Riemann image surface W of f 1is an open
disc T in W such that there is an open connected set A in D
which f maps one-to-one onto T. Let df(z) denote the radius of
the largest schlicht disc in W, centered at f(z). Set

r(f) = sup df(z)
zeD
and
b =inf {r(f) : f € G}.
Bloch proved that b is positive.

Since then, the work of Bloch has prompted resulfs of various
types. Bounds for b were calculated. Other mathematicians
generalized Bloch's result to R" and Cc". Another group considered
the function-theoretic implications for the unit disc. More recently,
a Banach space of functions related to those examined by Bloch, called
the Bloch functions, has been studied [10].

The first activity following Bloch's paper was in the search for
bounds for b. Landau first proved that b > .396 [15]. Grunsky
and Ahlfors proved b< .472 [2]. Ahlfors subsequently proved
b > /3> .433 [10.

Generalizations of Bloch's result to R" and C" are found
in the papers of Bochner [7], Takahashi [25] and Sakaguchi [23].

Recently, applications have been found for Bloch functions

1
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in the study of functions of bounded mean oscillation (BMOA) and
vanishing mean oscillation (VMOA).

Since much of the interest in Bloch functions has stemmed from
their position as a subset of the space of normal functions, we
will state the definition of normal function to show how it relates
to the definition of Bloch function.

A function f(z) meromorphic in the unit disc D is called
normal if the family F = {f(S(z))}g ¢ is a normal family in the
sense of Montel; that is, every sequence of elements of F has a
subsequence which converges uniformly on compact subsets of D,
either to a function meromorphic in D or identically to infinity.

Here, S 1is the set of all conformal self-mappings of D,

s={s(z)=u—ai_£: la] <1, |u|=1}.
1+az

The following characterization is equivalent and could be used as a
definition: A function f(z) meromorphic in D is normal if and
only if there is a finite constant M, depending only on f(z),

such that

(1) sup (1-[z(%) LU < W (el

1+|f(z)]

There are several alternative characterizations of Bloch func-
tions. We shall use only the second two below; we include the
others for reference.

1. A function f analytic in the unit disc D 1is a Bloch function
if and only if it is finitely normal; that is, if the family
F={f(S(z)) - f(S(O))}Ses forms a normal family where the constant
infinity is not permitted as a limit [3].
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2. Equivalently, a function f analytic in D 1is a Bloch function
if and only if there is a finite constant M such that
(2) sup (1-]z|%)|f'(2)] <M [31.
One reason why (1-|z|2)|f'(z)| is used in (2) rather than,
say, (1-]z|)|f'(z)|, ds that it is an "invariant" form of the

derivative: with S(z) =-3%§-, where |a] <1, the derivative

1+az
of f(S(z)) is
f.(a+z ) 1-aa
143z) (1+432)°

with z = 0, this reduces to (l-Ialz)If'(a)I.
3. The preceding condition (2) may be replaced by
(3) I£'(z)] = 0((1-]z])"1) as |z| + 1 [19].
4. Defining df(z) as previously, f(z) 1is a Bloch function if
and only if
sup df(z) <o [3].
5. f(z) 1is a Bloch function if and only if its indefinite integral
satisfies a certain smoothness condition: Let

o(z) = 271 J; f(w) dw = kEO ak(k+1)‘1zk.

Then f(z) is a Bloch function if and only if ¢(z) is continuous
in |z| <1 and

(4) o, lo(eit2) + o(e”it2) - 2¢(2z)| = O(t) as t -0 [3].
21<

6. Let G denote the complex linear space of all functions

8

'bnz" analytic in D for which
n=0

gl = |9(0)|+'2‘,;J0 jo 19" (re'®)] dr do < w.

g(z) =

I~
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Then the space of Bloch functions is the dual of G [3].

Denote the space of all Bloch functions by B. With the Bloch
norm, defined by
(5) IFllg= 170 + sup(i-l21)If (2)].

B 1is a Banach space. It is clear from a comparison of the defini-
tions that the Bloch functions are contained in the space of normal
functions; however, since the sum of two normal functions need not
be normal [17], the normal functions are not even a linear space.
In the paper of Pommerenke [21] in which the Bloch functions
were defined, the definitions above included the additional re-
striction f(0) = 0. Anderson, Clunie and Pommerenke dropped this
assumption; the changes this entails are minor [3].
Let By denote the subspace of B consisting of all f(z)
for which
(6) (1-1z|%)|f'(2)| 0 as |z| » 1.
As a subspace of B, By is separable, (strongly) closed, nowhere
dense, and is the closure of the polynomials in the Bloch norm [3].
We have the following alternative characterizations of BO:
f(z) is in By if and only if |f'(z)] = o((1-|z|)'1) as |z| - 1.
Equivalently, f(z) is in By if and only if df(z) has limit 0
as |z| = 1. Another characterization is that f(z)e;B0 if and
only if the maximum in (4) 1is equal to o(t) as t-+1 [3].
More recently, Bloch functions have been studied in connection
with BMOA and VMOA functions. BMOA, or "bounded mean oscillation"

denotes the space of functions f ¢ H2 for which
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2
2 1 2 l-iw
1613 = & [ 16,17 LM e
w'2 2n 3D w lz-wl?

is bounded for w in D, where we set

= f{ S\ _
f,(s) f(1+W§) f(w) (s €D, we D).

VMOA, or vanishing mean oscillation, denotes the subspace of functions
with |[f [l,> 0 as [w] + 1. It can be shown that BMOAC B and
VMOAC'Bo (22]. Campbell, Cima and Stephenson [8] gave an example
of a Bloch function which is in all HP classes, but not in BMOA.

As an analytic function in D, a Bloch function f(z) has a

a z". The coefficients {an}

power series expansion f(z) = n
n=0

e~ 8

are known to satisfy several conditions. If f(z) € B, then the
coefficients are bounded but need not tgnd to zero. Hayman [14]
raised the question of finding further conditions which imply a, 0.
This was answered in part by Pommerenke [21]: If the Bloch function
f(z) has radial 1imits almost everywhere, then a, + 0 as n =+ =,

Pommerenke [21] gave an example of a Bloch function with radial
limits almost nowhere. Timoney [26] gave an example of a Bloch
function which has radial limits almost everywhere, but which is not
in any HP space for 0 < p < =,

Anderson, Clunie and Pommerenke [3] gave two results on power
series where the modului a_. of the coefficients are given but the

n

arguments a_ are independent random variables with the uniform

n
distribution on [0, 2n]. Set
f(z,a) = | a ellog) 0,
n=0 "

As a first result, suppose that
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{k§1 a2} = on(iog(n) /2.

Then f(z,a) 1is a Bloch function with probability 1. In particular,
if J a, log(n) < =, then f(z,a) is in B, with probability 1.
n=1

In the other direction, given a decreasing sequence {pn} of

positive numbers, where Py 0 as n -+ =, there exists a sequence

2

{an} with a >0 and ) a,” p, log(n) < = such that with proba-
n=1

bility 1, f(z,a) is not Bloch.

There is also the following characterization of the Bloch func-

tions by a quadratic form: Let f(z) = § anzn be a Bloch function.
n=1
Then
2
[ ) o a - ) lw I
utv+l v

where the w, are complex numbers for v=1,2, ... , and

K = 2]|fHB. The double sum converges if the right-hand sum does.
Conversely, (6) implies f 1is a Bloch function and ||f“3 <2k [3].

Let f(z) = ] anzn be a Bloch function. By (2), there is a
n=0

number M < o such that |f'(z)|< M/(1 - [z]%) for all z in D.

Then [3]
p orm . p (em

(7) I j 1£' (re')|2 do r dr 5,I j M2 de r dr.
0’0 0 1. 122

Examining first the right side of (7), we find that it is equal to

2 fp s d
T rdr =
0 (1-r%)2



p
x M2/(1 - ¢d) l
0

" M p 2/(1 - )

For the left side of (7), Parseval's formula gives
2m
2 z k2 Ja, |2 r2k-2 f 1 (re’®) |2 do.
0
Thus, the left side of (7) is

P @ -
J 2 S kzlakl2 rek-2 v gp
0 k=1

oo p _
v ) k2|ak|2 J 2kl gp
k=1 0

2 Z k¥|a, |2 p2¥/(2x)

n ] kla |% % I3,
k=1 -

Thus, (7) reduces to

2 2k
Z k|ak|

< M2p2/ (1-p%)
or equivalently
1 kla 2 p2k1 (12 < w2,
k=1
Setting p2 =1-1/n, we obtain

kZI k|ak|2(1 - l/n)k-1 n-l < M2

Since the partial sums of this series are increasing for fixed n,

and (1 - 1/n)"! < (1- %1 for k=1,2,...,n,
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(1 - 1/n)"1 p7d kzl k|ak|2 < kzl klaklz(l - ame-l gl

We have
n
(8) (1-1m™Lal T okla)? < W2
k=1
Since (1 - l/n)n"1 approaches el from above as n - o, (8)
yields
n
el nl ) klakl2 §_M2
k=1
or
(9) T klay|? < nen?
k1 KT
Since it is also true that
2m 2m
2 2
kla | < 2m § Ja,|°,
kZm I kl - k=m. k

and all of the terms in the sum in (9) are positive, we also have
(10) T la, |Z < 2en?.
k=m

We note that the last inequality is independent of m.

The two inequalities (9) and (10) are conditions on the
coefficients of a function which are necessary for that function to
be a Bloch function. A natural place to search for sufficient condi-
tions is among inequalities which are similar to but weaker than these
two. It is also of interest to see how far these inequalities can be
weakened and still remain necessary.

Mathews [19] gave conditions for which, as in (9), the summa-

tion is from 1 to n. He proved that
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n
(11) ) kla |= 0(n) as no>w
k=1
is a sufficient condition, and
n 3/2
(12) I kla | =0(n""7) as n+=
k=1 K

is a necessary condition for f(z) to be a Bloch function, and if
the coefficients are restricted to lie in one sector of the plane
with central angle =/2, (11) 1is also necessary.

Theorem 1 of Chapter II is a consequence of Mathews result (11).
Using the HGlder inequality, we establish that for 1 < q < =,
5 kK9 ja ]9 < =
is a sufficient condition for f(z) to be a Bloch function. Two
examples follow, illustrating the use of the theorem.

In Chapter III, we prove a series of theorems which are the
analogues of Mathews' results for functions in BO' The first theorem

of the chapter shows that if for some integer J > 1,
n

(13) I Kyl = o),
k=1

then f(z) is in BO. Two consequences of this are proved. One

is the analogue of the theorem of Chapter II, the other is that a
Hadamard gap series with coefficients approaching zero as n + » is
in By. Theorem 5 then shows that if the coefficients of f(z) are
constrained to 1ie in one sector of the plane with central angle /2,
then (13) is also necessary. An example demonstrates that there are

functions in Bo for which
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n
) k]akl = o(nP)
k=1

for 1 < p < 3/2. The last theorem of the chapter shows

n
I kla,| = otn*/?)
k=1

is a necessary condition, wherg the arguments of the ak's are not
restricted.

In Chapter IV, motivated by (10), we examine conditions on
“blocks" of coefficients, looking at sums taken from m to 2m. First

we prove that if all of the coefficients are real and nonnegative,

2m
then § a, < K<o 1s a necessary and sufficient condition for
k=m 2m
f(z) to be Bloch, and ] a, + 0 is a necessary and sufficient
k=m

condition for f(z) to be in BO.

Without the real nonnegative restriction on the coefficients,
we obtain a series of theorems which parallel those of Mathews and
of Chapter III. The change made from those theorems is, in general,
a substitution of the limits m to 2m for the limits 1 to n on
the finite sums, and removal of a factor of n from the bounds on
those sums.

In Chapter V, we give a single example of a bounded Bloch func-
tion, with coefficients summing to 1, for which the behavior of
sections of the power series from m to 2m is bad for selected
values of m: Considering this section of the power series as deter-
mining a function, as m increases, the sum of the coefficients and
the Bloch Aorm both diverge to infinity.

The last chapter contains a short 1ist of open problems.



II. AN EXTENSION OF A THEOREM OF MATHEWS

Mathews [19] proved that a sufficient condition for f(z) =

)) a,z" to be a Bloch function is: If there exists a fixed constant

C, C < o, such that
) klakl2 < C.
k=1

The method of proof in Mathews' paper relies on the Cauchy - Schwarz
inequality. By using the HBlder inequality, we can establish the
following:

Theorem 1: If J kq'llaklq < C,where 1<q<= and
k=1

C is a positive constant, then f(z) 1is a Bloch function.
Proof: Set p=q/(q-1). Then 1<p<e and p+ q = pq.
By using the Hdolder inequality, we can show that

ne-13

n
- 1
k=1 k=1

1/p
{E (k(p-l)/p))p} . {E (k1/Pya Iaqu}
k=1 k=1

{ gl kp-l}l/p ] {kgl (9-1 laqu}l/q

1/q

A

]
—~
o
o~
3
o
A
—
SN
©
L]
—~A—
~
nes-1s
x
o0
1
—
‘o
)
——
O

In "
(=4 o
O ~—~
3 =]
S

L]

(]
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for a suitable constant B. By [19, Theorem 2(i)], f(z) is a Bloch
function.

We remark that if q = 2, the preceding theorem is exactly the
theorem of Mathews quoted earlier.

Next, we will give two examples and use the preceding thearem to
show that each is indeed a Bloch function. The first uses a value
of q near 1, the second employs a large q.

Example 1: Let e > 0. Then

kzl kel (1+e) ( Uk _ yk/ (1) K

is a Bloch function.
Proof: Set q=1+¢ and a, = k(l/q)'l(kllk - l)k/q. Then

@

-1
) k9 Iaqu

kzl W1 (/a1 17k _ yk/aya

The last sum is bounded [20, p.219], so by the preceding theorem,

7 k{/a)-1gl/k _qyk/a k
k=1
is a Bloch function. Since 1/q - 1 = -¢/(1 + €), this is exactly

what we wished to prove.
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Example 2: For any ¢ > 0,

T (k(log(k))$)™! X
k=1

is a Bloch function.

Proof: We have

I (ttog0)) 7

- T (k(log(k))%)L,
k=1

This converges for q > 1/e [20, p.210], and by Theorem 1, we are

done.



IIT. CONDITIONS ON COEFFICIENTS FOR THE CLASS By

In this chapter, we will adapt several results from Mathews'
paper, stated for Bloch functions, to functions in BO. In the theorem
following, we will give a proof, using Cauchy's formula, of the known
fact [3] that the coefficients of a function in B0 tend to zero.

Theorem 2: Let f(z) be a function in By, f(z) = kzo akzk.
Then a, - 0.

Proof: From Cauchy's formula,

1 [
ol = [ [ B e |
|z|=r z
2 ie .
| f'(re . 16
< 7k fo ‘;é;TFEL rle | do

?%F o((1-r)"1)pl-k Izﬂle'i(k'l)e' de

k'L o((1-r)7L) plok
= o(k! p1k (1-r)7hy.

The minimum value of the last term occurs for r =1 - k'l. Evaluating

for this r, we obtain
- e
which tends to el as k. Thus a, » 0.
In Theorem 3, we will establish conditions sufficient for a holo-
morphic function to be in the class BO. We will then investigate

necessary conditions.

14



15
Theorem 3: We have the following sufficient conditions:

(i). Let f(z) = ZO akzk

If there exists a fixed integer J,

J >1, such that
n
I Klal = o),
k=1
then f(z) 1is in By-

P k
ii). Llet f = .
(i) e (2) kgo a2

If there exists a p, 1<p<w=,

and a w, w<p-1, such that

(14) k'z'l P/ (p-1) o PI(P-1) g (P-w-1)/(p-1))

then f(z) is in 80.
(iii). Let o > 1, and let {kj} be a sequence for which
ki > ok; ;. If a, >0, then

X ak (2) J € B,

We shall need the following lemmas, which are extensions of a theorem
of Titchmarsh [28, p.224].

Lemma 1: Let h(x) = Z a x€  and g(x) = Z bkx » where
k=0 k=0

>0, by >0, and both series converge for |x] <1 and diverge

a
k
for |[x| > 1. If a = o(bk) as k »«, then h(x) = o(g(x))
as x -+ 1.
Proof: Given € > 0, there exists an integer N such that

€
a, < §'bn_ for n > N. Then

s k
h(x) = § ax =
k=0 K
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N o

k k
I oax +

kso K k=§+1

o

N

k , €
! ax +5 J bx
k0 K % jehe1 K

k

I

b g akxk + %‘ a(x).
k=0

Let N be fixed. Since g(x) = as x -+ 1, we may choose § > 0

k

N
so that ] ax < %-g(x) for x>1-65. Thus h(x) < eg(x) for
k=0

x>1-68, or h(x)/g(x) <e for x >1-8§. Since e is arbitrary,

h(x) = o(g(x)) as x =+ 1.
Lemma 2: Let h(x) = } akxk and g(x) = } bkxk both
0

k= k=0

n
converge for |x| < 1 and diverge for . |x| > 1, and set Sy = kzo a,

and t = Z b,. Suppose that s ~and t are positive, an and

Ztn are divergent, and Sp = o(tn). Then h(x) = o(g(x)).
n

k

Proof: We have h(x) = (1 - x) 7} sk and

n
g(x) = (1 -x) } thk. By the preceding lemma,
k=0

nZO snxn = o(nzo tnxn),
and the result is immediate.
We remark that if, in particular, Sy~ o(n), then
h(x) = o((1 - x)7}).
We will now prove Theorem g.
J

) K a and t =n". For J =1,

Proof of (i): Set s =
N k=1

Sy = o(n), so by the remark above, with h(x) = kzl klakak and

x=|z|, [f'(z)] = o((1 - ]zl)'l). For J> 1, we can show
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#9(z2) = o((1 - [21D)7Y).
Successive integration then completes the proof of part (i)

Proof of (ii): Suppose 1<p<e, p+q=pq, and w< p - 1.

Applying the Hélder inequality,

7 Kla, |
kla
k=1 K

n
kzl e (p-w)/p ™

|A

(I aW/PPR/E (| lPpya g ja)1/s
k=1 k=1 k

= (o(n"*1))1/p .(kgl k((P'W)/P)‘(P/(P°1))Iaklp/(P-l))(p-l)/p

o(n(w+1)/p) .(kgl P/ (p-1) g [P/ (B-1)) (p-1)/p

o(n(W+1)/P) . (o(n(P'W‘l)/(P'l)))(P'l)/P
O(n(WI)/p) . o(n(P"W"l)/P)
= o(n("*1)/p + (p-w-1)/p,

o(n)
An application of the first part of this theorem now completes the
proof of part (ii).

We note that if p=2 and w=0, then f(z) ¢ Bo if

n
kzl k¥ 1a % = o(n).

1
Proof of (iii): Since ak;_y <kys we have ky_; <ki SO

> ke - Lk, = (1 -L)k,. We also note that, writing k(j)
J o d a J ’

kj - kj‘l

instead of kj to make the formulas more readable,
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(1- 3y k(g2 k-1

< (k(3) - k(3-1)) |z|*(9)-
< Izlk(j‘l) + lzlk(j'l)"’l ...+ |z|k(j)'1.

let € >0, and let J be such that for j > J, 3 (3) < %-(1 - %0.
Then

<

J-1 .
. k(j)-1
PREOENE

T k(s K(3)-1.
+ 1 k(3) lagsyllz] .
=J k(J)
The second sum is bounded by

1, T /s k(j)-1
Fa-3 3 K jz<

<cfan-Y 7§ L_ gt
-z o t=k§d-1) 1-2
- £ ) 12|t

t=k(J-1)
g 1

1- |z|

Since the first sum is a polynomial of degree k(J-1)-1, it is

bounded, and hence is less than £ 1
2 1- e

if |z| is sufficiently

near 1. Thus,

1£'(2)| < e —2
1 - |z|

for |z| near 1. Since e is arbitrary, |[f'(z)| = o< ll I)
. 1- |z
as |z| - 1.
We note that the functions in (iii) are called Hadamard gap

series. If the coefficients converge to zero, the series is in BO.
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Next we consider necessary conditions on the coefficients. The
first theorem in this direction shows when the sufficient condition
of Theorem 3, with an additional condition on the arguments of the
coefficients, is also necessary.

k

Theorem 4: Let f(z) = ] a,z° be in By. If there is some
k=0

a such that for each k, o < arg(a ) < a+ /2, then
n
) k|ak| = o(n).
k=1

Proof: There is no loss of generality in assuming that o = 0.

Since f(z) is in Bys We have

o((1 - [z])7H

Ika 21 = £ ()

and

3 XY = [£1@)] = ol(1 - 27D,

~
\

Therefore,

N
]

kcil k Re(a,) k-1 - o((1 - 127D,

where 0 < Re(a,). Similarly,

N
!

I kmla) &7 = ot - jz)™h,
where 0 5_Im(ak). Thus,

=20((1 - |27 = o(1 - |zD7H.

) klaklzk-l
k=1

By [12, Theorem 961, if ¢, >0, g(x) = kzo ¢ Xk and

g(x) = o((1 - x)'l) as x -+ 1, then kEO Cy = o(n). Here, we set
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Cp-1 = klakl and note that

k

k-1 s
< I kla| |z
k=1 K

If'(2)] <

) ka z
k=1 K

n
Hence } kla | = o(n).

Corollary: If F(z) = ]} Iaklzk is in Bj, then so is
k=0

f(z) = } akzk.
k=0
Example 3: Let 1 < p < 3/2. There exists a function f(z)

n

in By for which kz ka, = o(nP). Let &> 0. Then
=1

w ., 2p=2 '
f(z) = } kP-2-8 ik K

is the required function.

[+ ] - s1,0
Proof: Hardy [13] has shown that if F(z) = J k2 e’k 2K
— - k=1

where 0 <a< 1, then F is unbounded if 1 -b - %-a > 0, and

1
lF(Z)l = 0<¥1 - Izl)l-b-0/2> .

Set a=2p -2, and note that 1 <p < 3/2, so O0<a< 1.

Then with b=1-p + 3§,
o .1, 2p=2
F(z) = ) kP-1-8 ik ZK
k=1

and

1
IF(Z)[ 0((1 _ Izl)l-(l-p+6)-(2p-2)/2 )

- o1 Iz})l"") )
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= o((1 - |z])7}).
Setting F(z) = zf'(z), it follows that f(z) is in Bo. The

coefficients of this function are )
o . 2p-2
a, = kP-2-8 ik
so

n n
Lo Klgl = kPO = 0P = o(nf).

In the proofs of the following lemma and of Theorem 5, we will
use the following fact: It follows from an exercise in Titchmarsh

[28, p.242] that if o > 1, and the a, are real, a, > 0, then for
fz) = § a 2X=(1-27,
k=1

a, 1is asymptotic to ko"1 r'(a) and f(z) is asymptotic to

k
ra) § k12X
k=0
as |z| » 1.
For the proof of the next theorem, we will need the following

lemma, which is adapted from [11, p.45].

8

a_ z" s analytic in D and

Lemma 3: If g(z) = n
n=0

il

g(z) = o((1 - |z|)™®), where a > 0, then for -» <y <a+ 1/2,
setting r = |z|, we have that

6(r)= ] nVa | "
n=1

satisfies

G(r) = o((1 _ r)i-yﬂ/z) .
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N k
Proof: Assume that y < 1/2. Set s, = J k™¥|a |r*. By the

Cauchy - Schwarz inequality,

{kgl (k-y)2}1/2. {kgl (laklrk)z}llz

sy <
2m 1/2
-2y+1y,1/2 1 i9,,2
< B2 L [ Clatre) 2 ao)
2r 1/2
y+1/2y . [1 gy 2
< o0 A L ([ Tlotta - )2 e}
= oN2y L o1 - ).
Thus
G(r) = (1 -r) ) Sy rK

= (1-r)o((1- r)‘a).k°f1 o(k™Y* /2y (k

1]

o((1 -1 - L KT
k=

-+

= o((1-mt% . 3
k=1

k3/2 -y-1 rk

= o((1 - n®) o1 - r)73/2Y))
= o((1 - M o((1 - )32
o((1 - r)Y@-1/2),

For y > 1/2, the result follows from the case when y < 1/2 by

successive integration.

We now consider conditions on the coefficients which are necessary

for a function f(z) to be in BO.
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Theorem 5: Suppose that f(z) = ] a 2 is in By. Then

for each fixed integer P > 1, we have

n
1 iyl = o),

Proof: Applying Lemma 3 with zf'(z) = g(z), o« =1,

y = -P + 1, we obtain
I KPlagl 121® = o((1 - |2))~(P*1/2)),
k=1

Since the coefficients are all real and nonnegative,

n n n
n P k k
2" 3 lal < T lad l2l€ s 1 Klalz]

1/n 1/n

for all |z| and n. Taking [z] = e */", and noting that 1.- e~

is asymptotic to 1/n as n increases without bound,

n .
e-l kzl kplakl = 0((1 - e‘l/")'(P"’l/Z)) = 0(np+1/2).



IV. CONDITIONS ON BLOCKS OF COEFFICIENTS

Let f(z) = kz a, zk. In this chapter we shall give several
=1

results concerning "blocks" of coefficients for Bloch and Bo
functions. We will consider the portion of the power series for f(z)
between k =m and k = 2m. The integer "2" of the upper bound is
not critical to the following analysis; simple revisions will accom-
odate any number exceeding 1.

Define Bp = :g; Iakl. We will first show that for functions

whose power series have real nonnegative coefficients, we can charac-

terize B and B0 by conditions on Bm.

o

Theorem 6: Suppose that f(z) = ) ay zk, where a, is real
k=1

and nonnegative for all k. Then f(z) is a Bloch function if and only
if there is a constant M <~ such that g <M for all m.

Proof: Suppose that B <M <~ for all M. By (19, Theo-
rem 2(i)], it is sufficient to show that there is a constant C such

n
that | kla | < Cn for all n. Fix n, and suppose that p is an
k=1

integer such that 2P < n«< 2P*1 . Then

n n
kzl k[ak| = kzl kay
1 3 n
= kzl ka, + kzz ka, + ...+ kj%p ka, <

24



21 22 2P*1
< I ka + 21 ka, + + I ka
k=2 k=2 k=2P
1 2 p+l
2 2 2
<2 7 ak+22 J a, +..+2P17y a,
k=20 k=2! k=2P

< (2+2%24 .. +2P ]y

< 2Py
< 4Mn.
Taking C = 4M, we see that f(z) is a Bloch function.
Conversely, suppose that f(z) is a Bloch function. Since all
of the ak's are real nonnegative, all of the arguments are zero.

By a result of Mathews [19, Theorem 3], there is a constant C such

that
n

kgl ka < Cn

for all n. Then
2m 2m
m kzm 3 < kzm ka < 2nC

) 2m

Zm a < 2

Theorem 7: Suppose f(z) = kzl ay zk with all a, real and

nonnegative. Then g - 0 as m->w» if and only if f(z) is in By-

Proof: Suppose g -+ 0 as m-«. To show that f(z) is in By»
; n
it will suffice to show that kz k a, = o(n), or that
=1

-1 " v
n ] ka >0 as no>o,
k=1
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Let ¢ > 0, and let N be large enough so that for p > N,

2P+l
I a, <el/s.
k=2P
We have
N
n 2 n
n! 7 ka, = n! ] ka, +n Ly .
k=1 K k=1 K N, K
k=2"+1
2N
If n is large enough, say, n > Q 2 2N then n! kzl ka, < e/2.
Let us now concentrate on the second sum. If 2" <n< 2r+1’ then
-1 N
n ZN ka,
k=2
= n ka, + ka, + + ka
k k k
L k=2 k=g&+1 k=2"
» [N+l ortl
< n I ka +...+ [ ka
N _or
bk-z k-2
B 2N+1 2r+1
< n~l | M1 I a +...+ ol DT
L k=N k=2"
N+1 N+2 r+l
- 2" 2" 2
<5 EMr L 222l 14 2)
€
< -2- . n
Therefore, for n > Q, n! ! ka < €. By Theorem 3(i), f(z)
k=1
is 1in BO'

Conversely, if f 1is in BO’ then by Theorem 4,



] - p 2m p 2m
'Z'Bm=Z_mkgmakiz_mkgmkakf-z—mkzlkak >0,
SO Bm + 0.

If we now consider functions with coefficients not restricted
to be real nonnegative, we obtain several theorems which parallel the
results of Mathews [19], with conditions on the coefficients between

an and P

Theorem 8: The following conditions are sufficient for
f(z) = ) akzk to be a Bloch function:
k=0

(i). If there is a constant M* such that
2m

J-1
(15) Y k" T|a | < M*m
k=m k

J-1

where J 1is an integer greater than or equal to 1.
(ii). If there is a constant C such that for some q

satisfying 1< q<e, ]} kq'llaklq < C.

Proof of (i): Suppose that equation (15) is satisfied and

2" < n< 2™ Then
2 r+1
n 2 2 2
J J J J
I klal < 1 Klal + I Koal+ ...+ T KT a]
k1 K T ksl K e K o
1 o+
<2t 7 kg e+ 2™ ey
k=2 k=2"
<oamr 1+ 42+ 2
< 2w (1)

< 291 e 9.

By [19, Theorem 2(i)], f(z) 1is a Bloch function.
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Proof of (ii): By part (i), with J = 2, it suffices to show

that
2m
) klakl < Mm
k=m

for some finite constant M*. The details of the proof, using the
Hblder inequality, are similar to those of Theorem 1; we omit them.
The next theorem gives additional restrictions on the location
of the coefficients, under which the sufficient condition of Theorem 8
for J =1, that the B, are bounded, is also necessary.
k
z

Theorem 9: Let f(z) = be a Bloch function. If

) a
k=0 K
there exists an o such that « g_arg(ak) <a+a/2 forall Kk,
then there is a constant C* such that B8 < C* for all m.

Proof: By a theorem of Mathews [19], there exists a constant C

n
such that ] k|a | < Cn for all n. Then
k=1
T «lay
mg < kla, | < 2Cm.
m k=m k

Hence B8 < 2C. Set C* = 2C.

We remark that an example used by Mathews [19] to illustrate
n

that a Bloch function f(z) may satisfy § kla | = 0(nP) for

1 < p<3/2 also satisfies g = O(mp'l). For,
2m 2m p p
m J Iaklg_ ) k|ak| = 0((2m)") = 0(m"),
k=m k=1

>0 2m
-1
la,| = 0(mP™?).
kzm k

Next, we consider necessary conditions.



29

Theorem 10: Let f(z) = ) ay zk be a Bloch function. Then
k=0

#

for each fixed integer P > 1 there is a constant C" such that

2m
) kP-llakI < c# mP-1/2.
k=m

Proof: By a theorem of Mathews [19], there is a constant C

such that
n
Z kplakl 5_CnP+1/2.
k=1
Then
2m 2m 2m
m ] el e T Klal e 1 Klal < cem™2
k=m k=m k=1
Thus
2m
2 kP-lla I < 2P+1/2Cﬂ1p-1/2-
k=m k' =
Setting C# = 2P+1/2C, we are done.

We next turn our attention to functions in 80. These results
are similar to the preceding Theorems 8, 9 and 10. The proofs of
all but part of one of the following theorems are similar to those
of earlier theorems and will be omitted.

Theorem 11: The following are sufficient conditions for the
X

function f(z) = ] a to be in B;:
k=0

(i). If there is an integer J > 1 such that

2m
J-1 _ J-1
kzm K" a, | = o(m" ™).
(ii). If there is a number p, 1 < p < =, and a number

W<p-1 such that
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:§‘ ((Pw)/(B-1) . [P/(B-1) _ o (P-w-1)/(p-1))
=m

Proof of (i): Let e > 0 be given, and set u(m) = ¥ kJ'llakl.

N J-1
Since J k la | = o(m™""), there is an increasing function s(j)
k=m

on the positive integers such that for m > 25(3);

2 .
] ke ) < ez (33001,

k=m

If n 1is sufficiently large, say, n Z.Nl’ then

2s(l)

J J-1
Y Y ke, < e2.
k=1 k

Let n be a fixed integer greater that Nl’ and p an integer

such that 25(P) < n < 25(P*1)  qpen

D Kyl
a
OV
s(2) 2s(3) n 5
< k“|a, | + k' |a, |+ ... + Y kY]a,|.
k=2§(1) k k=§5(2) k S
For 1<j<p,
o5 (j+1)
I kgl
k=25 (3)
os(3)+1 ,s(J)+2 5 p5(3+1) 5
< ! kJIakI + ) Kol | + ...+ ) k™| a|
k=25(‘]) k=25(‘])+1 k=25(J+1)‘1

25(3)+1u(25(j)) + ZS(j)+2u(25(j)+1) + ...+ 25(j+1)u(25(j+1)-1)

IA

o 2o (28004 STy (sUHL))
J

Dividing this by nJ gives a result less than that obtained by
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s(I+1)-1)J  hich is

dividing by (2

i ps() 17 ps(3+1)-1] ¥
ST ||| Tt | ST

- 55%T ((25(3)-S(J+1)+1 N l'J)
€
< L]
2J'*'l
n- ) k“la, | < —=
k=25(j) k 2J+1
A similar procedure shows that
-1 E J €
kK“la | < =
(N
It then follows that
-1 n J € € € €
n Y ka < 5 + 5 +... 4 < 5.
k 2 3 p+l 2
k=25 (1) 2 2 2
LN J
This shows that for n > N,, Y Kk la | = o(n"), and so by
k=1

Theorem 3(i), f(z) 1is a Bloch function.

The proof of part (ii) of this theorem is similar to that of
Theorem 3(i1); we will omit it.

Theorem 12: Let f(z) be a function in By. If there is an o
such that o < arg(a ) <o + n/2 for all k, then g -0 as
m-> o,

Theorgm 13: Let f(z) be a function in By» and p an
integer, p > 1. Then

2m
1 g | = omP1/?).
k=m



V. A BOUNDED BLOCH FUNCTION OF WHICH
SECTIONS ARE ARBITRARILY LARGE

In this chapter we will give an example of a Bloch function with
real coefficients for which the sum of the coefficients is finite,
Bn is large for selected values of m, and if the the same portion
of the power series from which the B, are taken is considered as
a function g _(z), the Bloch norm of gm(z) increases without
bound as m » .

Landau [15] gave a theorem which shows that a function f(z),
analytic and bounded by 1 in D, satisfies Sn S-Gn for all n,

o0y oA koo
where sn(z) = kgo a2, S, sn(l), and

2

n
i} 1.3 ... (2k-1))
G, = kgo( . ey

It is noted that G  is asymptotic to %-log(n).

Landau also gave the following example of a function for which

s = Gn:' Define

n
n
-1/2 k
6,2 = 1 (V)2
n kZO k
_ 1 1.3 .2 1.3. . «(2n-1) _n
=lrygztogz + v n ¢
and set
_ k
- fn(z) = kZO a, 2
" Kn(z'l)

32
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1:3- ... -(2n-ll+
2¢4 ... *2n

1 13 ... *(2n-1) _.n
ltgzt .ot g0y ¢

1 _n-1 n
+§Z +2

For this function, all the coefficients are real, an K >0 for
n >

0O<k<n, ¥ a, | =6 Ifn(z)|= 1 for |z| =1, fn(l) =1,

and |fn(z)| <1 for |z| < 1. Since |fn(z)| is bounded by 1 on
the closed unit disc, f (z) 1is a Bloch function with Bloch norm
”fn”B <2 [3]. As a bounded Bloch function, the coefficients of
fn(z) satisfy k> 0 as k>« [21].

We inductively define a function n(i) on the positive integers
as follows: Set n(l) = 2. If n(j) has been defined for j < i,
let n(i) be an integer sufficiently large so that for k > n(i),

. . 2i
we have n(i) > 2n(i-1), Gn(i) > 2", and

. . -1
n(§) k-n(g) < (n(1)(n(i)1))
fOr j = 1, 2, cee 9 i-lo
Now, we define the function f(z) = J d X by
k=2 K

fla) = g 2 ") ¢ 4.

T -
If |z| =1, then |f(z)]| < 1212 lfn(i)(z)l = 1. For |z] <1,

|f(z)| < 1. Thus f(z) is a Bloch function, with Bloch norm
Ifllg <2 [21], [3]. Summing the coefficients of f,

d = f(1) =
kzzk (1)

2l - .

e~ 8

i=1
Let us now consider B for selected values of m, in particular

for m=n(i). For 1<j<i,
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2n(i)

k=§(i) z-jla"(j).k-n(j)l < (n(i)+1)(2n(1)(n(i)+1))) 1273
< 279/n(4)
S0
i-1  2n(i) ; .
j=1 k=§(1) 2 |an(j),k-n(j)| < 1/n(i).

We also have that

2n(i) - 4 i)
k=};i) 2" ap (1) k-n(i)| = 2 :Zo (i) ,k

= 2-1

> 21.

Gn(1')

Thus, Bn(i) > 21 - 1/n(i), which is unbounded as i + .
2n(i) K

Consider next d, z as a function g.(z) in its own

k=n(1i) k 1
right. We will show that the Bloch norm of gi(z) is unbounded
as i+ o,

We may write

i-1 _; 2n(i) k
(16) 9i(2) = 1 2% Lo An@)ken(@) &
-1 2n(1) k

by D ken(d)
Differentiating

2n(i)
_j k
2 k=:§i) n(3),k-n(3)

for j < i,-we get

2n(i) k-1

27y K G ken(s) 2
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which in absolute value is less than

- ] 2n(i)

2= 2n) Lo 1) ken(3) |
< 279 n(4) (n(1)+1) (2n(i)(n(i)+1))7}
- 27,

Thus the value of the derivative of the double sum in (16) is
less than 1 in absolute value.

The second, single sum in (16) may be rewritten as
(17) 21 (1) :éi: 3n(1) .k 2X;
we will denote the sum in (17) by ti(z). This function is a poly-
nomial of degree n(i) with positive real coefficients, and hence
the maximum absolute value of (17) occurs for z = 1.
Differentiating 2'1 zn(i) ti(z), we obtain
(18) 21 zn(i)’1 n(i) ti(z) + 271 z"(i) ti'(z).

A11 of the coefficients on ti'(z) are real nonnegative as well,
so |t;'(z)| has a maximum at 1. We have
n(i)
k=0

ty' (1) k'apii),k

IA

n(i) (t'i(l) = an(i)’o)

< n(i) t,(1).

To find the Bloch norm of gi(z), we must find

sup (1 - IZIZ)Igi'(z)I.
zeD

Because of the bounds found earlier on the double sum in (16),
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”g'i(Z)”B 1”2-1 zn(i) t‘i(z)"B - 2.

Since the second term in (18) 1is positive, it will suffice for us
to show that
(19) (1- 1213 271 "1 a) t02)
is bounded below on (0, 1) by a term which increases without bound
as i > o. The expression in (19) is greater than
(1 - 12D 27 M1 gy ¢ (a).
Set z=1-1/(4n(i)). Then
(1 - 1z1) 2" ni) = @aniNQ - 17N 1)

1/4 (1 - 1/(4n(i)))"1)-1,
1/4

which approaches the limit 1/4 e~ as i, and hence n(i), tends
to infinity.
We also have

£,(1 - 1/(4n(3))) 2 t,(1) - (1/(an(i)))sup |t,"(2)]

zeD
2 t4(1) - (1/(4n(1))) n(i) t;(1)
= 3/4 Gn(i)'
Thus, the expression in (19) is greater than the product of 2'1,
a term which tends to 47> e"/% as i >w, and a term which is

asymptotically greater than 3/4 Gn(i) 3_3/4(221) as i + o, Hence

the Bloch norm of gi(z) is asymptotically greater than

21'4 e'1/4, which increases without bound as 1 + «,



VI. OPEN PROBLEMS

We list some open problems concerning coefficients of Bloch
functions.
1. Mathews [19] gave an example of a holomorphic function with
bounded coefficients which is not normal. Does there exist a holo-
morphic function with coefficients tending to zero which is not
normal? |

Let T be the family of univalent functions g(z) = z + ...

on D. Let B

S denote the family of functions

Bg = {f(z) = log(g'(2))}cp
It is known that

(feB:|fllg <1} C By C {feB:|fllg <3}

S

Let BQ be the subclass of BS coming from functions in T having
quasiconformal extensions to C. It is known that

{feB : ||f|lB <1} BQ [3].
2. Give conditions on the coefficients which characterize BS
and BQ.

3. Evaluate, or estimate,

sup sup |an| [3].
feBs n

4, lLet feB and (1 - |zn|2)|f'(z)l + 0 as n -+ for every
sequence {z.} with If(zn)l +® as n->», Is it true that

f isin By? [3], [14].

37
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5. In Theorem 9, we proved that if f(z) = § a, X s a Bloch

k=0
function, and there is an o such that « 5_arg(ak) <at+n/2 for
all k, then there is a constant C* such that B < C* for all m.
Is this still true if the arguments of the coefficients within the
separate blocks satisfy a similar restriction? Specifically, suppose
that there is a sequence {a;} such that for 29 k<2, we
have o g_arg(ak) < aj + x/2. Is

231
L, Iakl
k=2"

uniform]y bounded?
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