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ABSTRACT

COEFFICIENTS 0F BLOCH FUNCTIONS

By

John Joseph Neitzke

A Bloch function is a function analytic in the open unit disc D

which satisfies the restrictive growth condition that (1-|z|2)|f'(z)|

is bounded in D. The space of all Bloch functions is denoted by B.

The subspace of 8 consisting of those functions for which

(1-lzl2)|f'(z)| tends to zero as |z| + 1 is called 80. The Bloch

norm is defined by Hf|h3= |f(0)| + 228(1- |z| 2)|f' (z)|. With this

norm, the Bloch functions form a Banach space.

.In this dissertation, the coefficients of the power series

expansion E akzk of functions f in B and 30 are examined.

Conditions on the coefficients which imply that f is in B or in

B0 are given, as well as other conditions which are necessary for f

to be in B or in 80.

Certain facts concerning coefficients of Bloch functions are

known. If f is Bloch, the coefficients are bounded but need not

tend to zero. If f is in 80, the coefficientsndo converge to zero.

It can be shown that for Bloch functions, kzl klakl =0(n) and

Z Iakl2 is bounded. A natural place to search-for conditions

shich characterize Bloch functions is among expressions similar to

these.

’ n

Mathews [1] proved that Z kJ |ak| = 0(nJ) for some integer

k=1

3/2)
n

J 3_1 is sufficient, and Z klakl = 0(n is necessary for f to

k=1
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be a Bloch function, and that the first is also necessary if the

coefficients have arguments lying in an interval of length n/Z.

Mathews also gave an example of a Bloch function satisfying

E klakl = 0(np), for P between 1 and 3/2.

k-l In this dissertation, we extend one of Mathews' results, that

E klakl2 being bounded is sufficient for f to be Bloch, to accom-

Uate a wider class of functions. We then state and prove analogues

of Mathew's theorems for functions in 80. We show that if for some

J 3_1, E leakl = 0(nJ), then f is in 80, and if the arguments

of the cgefficients lie in an interval of length n/Z, this condition

is also necessary. We use this to prove that a Hadamard gap series

with coefficients tending to zero is in 80. We also show that

3/2)
n

X klakl = o(n is necessary for f to be in 80.

k=1

We then examine conditions involving sums from m to 2m. If

2m

all the ak are real and nonnegative, then 2 lakl g_M < a is

k=m

necessary and sufficient for f to be Bloch, and the convergence of

these partial sums to zero is necessary and sufficient for f to be

in 80. Without the real nonnegative restriction, we obtain a series

of results which parallel those for sums taken from 1 to n. We

prove that f is Bloch if 2%“ kJ'llakl = 0(m‘J'1) for some integer

J 3_1; with the arguments of the coefficients restricted to an interval

of length n/Z, this is also necessary. Without this restriction,

P-l/Z).
2m

a necessary condition is that 2 kp'llakl = 0(m For functions

k=m

in 30, these results hold with o in place of 0.

We give an example of a Bloch function which is bounded with

coefficients tending to zero, with the property that if the part of

the power series expansion of f from k = m to k = 2m is
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considered as a function, then for selected m, the sum of the

coefficients and the Bloch norm of the function both diverge to

infinity as m increases.

 

1. J. H. Mathews, Coefficients of uniformly normal-Bloch functions,

Yokahama Math. J. 25 (19735,_§7—31.
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I. PRELIMINARIES

The beginnings of Bloch functions date back to 1925, when André

Bloch [6] studied the class G of functions f holomorphic in the

unit disc D = {z : [2] < 1} with normalization f'(0) = 1. A

schlicht disc in the Riemann image surface W of f is an open

disc P in W such that there is an open connected set A in D

which f maps one-to-one onto P. Let df(z) denote the radius of

the largest schlicht disc in W, centered at f(z). Set

r(f) = sup df(z)

260

and

b = inf {r(f) : f c G}.

Bloch proved that b is positive.

Since then, the work of Bloch has prompted results of various

types. Bounds for b were calculated. Other mathematicians

generalized Bloch's result to Rn and C". Another group considered

the function-theoretic implications for the unit disc. More recently,

a Banach space of functions related to those examined by Bloch, called

the Bloch functions, has been studied [10].

The first activity following Bloch's paper was in the search for

bounds for b. Landau first proved that b > .396 [15]. Grunsky

and Ahlfors proved b<:.472 [2]. Ahlfors subsequently proved

b >%/§> .433 [1].

Generalizations of Bloch's result to Rn and Cn are found

in the papers of Bochner [7], Takahashi [25] and Sakaguchi [23].

Recently, applications have been found for Bloch functions

1



2

in the study of functions of bounded mean oscillation (BMOA) and

vanishing mean oscillation (VMOA).

Since much of the interest in Bloch functions has stemmed from

their position as a subset of the space of normal functions, we

will state the definition of normal function to show how it relates

to the definition of Bloch function.

A function f(z) meromorphic in the unit disc D is called

normal if the family F = {f(S(z))}Ses is a normal family in the

sense of Monte]; that is, every sequence of elements of F has a

subsequence which converges uniformly on compact subsets of D,

either to a function meromorphic in D or identically to infinity.

Here, 3 is the set of all conformal self-mappings of D,

S = {5(2) = u jail-: |a| < 1, [pl = 1}.

1+az

The following characterization is equivalent and could be used as a

definition: A function f(z) meromorphic in D is normal if and

only if there is a finite constant M, depending only on f(z),

such that

(1) sup (1-|z|2) M7 5. M [18].

1+|f(z)|

There are several alternative characterizations of Bloch func-

tions. We shall use only the second two below; we include the

others for reference.

1. A function f analytic in the unit disc D is a Bloch function

if and only if it is finitely normal; that is, if the family

F = {f(S(z)) - f(S(0))}SCS forms a normal family where the constant

infinity is not permitted as a limit [3].
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2. Equivalently, a function f analytic in D is a Bloch function

if and only if there is a finite constant M such that

(2) sup (1-|z|2)|f'(z)|.5_M [3].

One reason why (1-|z|2)|f'(z)| is used in (2) rather than,

say, (1-|z|)|f'(z)|, is that it is an "invariant" form of the

derivative: with S(,z) = 3::2- , where |a| < 1, the derivative

 

1+az

of f(S(z)) is

fl ( 3+2 ) 1'53

1+‘5‘z (152)?

with z = 0, this reduces to (1-lal2)|f'(a)|.

3. The preceding condition (2) may be replaced by

(3) lf'(z)| = 0((1-|z|)'1) as lzl + 1 [19].

4. Defining df(z) as previously, f(z) is a Bloch function if

and only if

sup df(z) < w [3].

5. f(z) is a Bloch function if and only if its indefinite integral

satisfies a certain smoothness condition: Let

¢(z) = 2"1 J; f(w) dw = RED ak(k+1)'lzk.

Then f(z) is a Bloch function if and only if ¢(z) is continuous

in |z| §_1 and

(4) lmax |¢(eitz) + ¢(e“'tz) - 2¢(z)| = om as t + o [3].

2 <1

6. Let G denote the complex linear space of all functions

8

'bnz" analytic in D for which

0

HQIU;= [9(0ll +257J0 I0 Ig'(re )| dr d6 < m.

9(2) =

n

"
M
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Then the space of Bloch functions is the dual of G [3].

Denote the space of all Bloch functions by 3. With the Bloch

norm, defined by

(5) Ilf||3= |wa + sup(1-|2|2)If'(z)l.
ZeD

B is a Banach space. It is clear from a comparison of the defini-

tions that the Bloch functions are contained in the space of normal

functions; however, since the sum of two normal functions need not

be normal [17], the normal functions are not even a linear space.

In the paper of Pommerenke [21] in which the Bloch functions

were defined, the definitions above included the additional re-

striction f(0) = 0. Anderson, Clunie and Pommerenke dropped this

assumption; the changes this entails are minor [3].

Let B0 denote the subspace of 8 consisting of all f(z)

for which

(5) (1-|z|2)|f'(z)| + o as |z| + 1.

As a subspace of B, B0 is separable, (strongly) closed, nowhere

dense, and is the closure of the polynomials in the Bloch norm [3].

We have the following alternative characterizations of 80:

f(z) is in 30 if and only if |f'(z)| = o((1-|z|)'1) as |z| + 1.

Equivalently, f(z) is in 30 if and only if df(z) has limit 0

as |z| + 1. Another characterization is that f(z)e:B0 if and

only if the maximum in (4) is equal to o(t) as t + 1 [3].

More recently, Bloch functions have been studied in connection

with BMOA and VMOA functions. BMOA, or "bounded mean oscillation"

denotes the space of functions f e H2 for which
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2
2 1 2 1- w

”in =—[ |f(z)| —L—1— ld2|
W 2 2‘" 30 W IZ'WIZ

is bounded for w in D, where we set

= .EEIL. -fw(s) f(1+fig) f(w) (s e o, w e o).

VMOA, or vanishing mean oscillation, denotes the subspace of functions

with llfwllz-r 0 as |w| + 1. It can be shown that BMOAC B and

VMOAC'B0 [22]. Campbell, Cima and Stephenson [8] gave an example

of a Bloch function which is in all HP classes, but not in BMOA.

As an analytic function in D, a Bloch function f(z) has a

no

power series expansion f(z) = Z anzn . The coefficients {an}

n=0

are known to satisfy several conditions. If f(z) e B, then the

coefficients are bounded but need not tend to zero. Hayman [14]

raised the question of finding further conditions which imply an + 0.

This was answered in part by Pommerenke [21]: If the Bloch function

f(z) has radial limits almost everywhere, then an-+ 0 as n +~mu

Pommerenke [21] gave an example of a Bloch function with radial

limits almost nowhere. Timoney [26] gave an example of a Bloch

function which has radial limits almost everywhere, but which is not

in any Hp space for 0 < p §_m.

Anderson, Clunie and Pommerenke [3] gave two results on power

series where the modului a of the coefficients are given but the
n

arguments a are independent random variables with the uniform
n

distribution on [0, 2n]. Set

f(z,a) = n20 anei(“n) 2".

As a first result, suppose that



6

1/2

{ E k2(a )2} = o(ntiog(n)>'1’2).
k=1 k

Then f(z,a) is a Bloch function with probability 1. In particular,

if 2 an log(n) < m, then f(z,a) is in 80 with probability 1.

n=1

In the other direction, given a decreasing sequence {pn} of

positive numbers, where pn +~0 as n +»w, there exists a sequence

{an} with a > O and Z an2 pn log(n) < m such that with proba-

n=1
n

bility 1, f(z,a) is not Bloch.

There is also the following characterization of the Bloch func-

tions by a quadratic form: Let f(z) = X anzn be a Bloch function.

n=1

Then

2
on 00 a °° IW

u+v+1 v

(6) ugo vgo UTV;T_- w" WV 'E' K v20 V+1 ,

where the wv are complex numbers for v = 1, 2, ... , and

K = 2|[fH3., The double sum converges if the right-hand sum does.

Conversely, (6) implies f is a Bloch function and IIflIB 12K [3].

Let f(z) = Z anzn be a Bloch function. By (2), there is a

n=0

number M < m such that |f'(z)|§_M/(1 - lzlz) for all z in D.

Then [3]

p 2n . p 2n

(7) I I |f'(re1e)|2 do r dr '1_I J M2 de r dr.

oo 00—7(1_r)2

Examining first the right side of (7), we find that it is equal to

2 JP ———7—”2 dTI r T' =-

0 (1 - r )2
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p
n MZ/(l - r2) I

o

«an/u- ph.

For the left side of (7), Parseval's formula gives

2n

2n k; k2 laklzr2“2 =( |f'(reie)|2 de.

0

Thus, the left side of (7) is

p w _
J 2n 2 kzlakl2 er 2 r dr

0 k=1

00 p -

2n 2 kzlakl2 I r2k 1 dr

k=1 0

2nk21k2|ak|2p2kl(2k)

, z klak [2p2“ [3].

k=1 -

Thus, (7) reduces toco

2 p2k

kil klakiP '< M292/(1--p2)

or equivalently

I klakl2 p2(k'1)(1-p2) :.M2-
k=1

Setting p2 = 1 - 1/n, we obtain

kEI klaki2(1 - 1/n)k-1 n-1 < M2

Since the partial sums of this series are increasing for fixed n,

and (1 - 1/n)"'1 5_(1 - 1/h)"'1 for k = 1, 2, ... , n,
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n n

(1 - 1/n)"'1 n"1 A klaklz 5 kzl klaklzfl - 1/n)"’1 n'l.

We have

n

(a) (1 - 1/n)"‘1 n'1 z klaklz 3M2.
k=1

Since (1 - 1/n)""'1 approaches e'1 from above as n +~w, (8)

yields

n

e"1 n"1 X klakl2 §_M2

k=1

or

(9) E kla |2 < neM2

k=1 k “

Since it is also true that

2m 2 2m 2

kgm klakl 5_ 2m kgmlakl ,

and all of the terms in the sum in (9) are positive, we also have

(10) 22'" laklz 3 2eM2.
k=m

We note that the last inequality is independent of m.

The two inequalities (9) and (10) are conditions on the

coefficients of a function which are necessary for that function to

be a Bloch function. A natural place to search for sufficient condi-

tions is among inequalities which are similar to but weaker than these

two. It is also of interest to see how far these inequalities can be

weakened and still remain necessary.

Mathews [19] gave conditions for which, as in (9), the summa-

tion is from 1 to n. He proved that
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n

(11) Z klakl= 0(n) as n +-m

k=1

is a sufficient condition, and

" 3/2
(12) X kla l = 0(n ) as n +'m

k=1 k

is a necessary condition for f(z) to be a Bloch function, and if

the coefficients are restricted to lie in one sector of the plane

with central angle n/Z, (11) is also necessary.

Theorem 1 of Chapter II is a consequence of Mathews result (11).

Using the Holder inequality, we establish that for 1 < q < m,

2 kq-llaqu < m

is a sufficient condition for f(z) to be a Bloch function. Two

examples follow, illustrating the use of the theorem.

In Chapter III, we prove a series of theorems which are the

analogues of Mathews' results for functions in 80. The first theorem

of the chapter shows that if for some integer J 3_1,

n

(13) z kJIakI = o(nJ),
k=1

then f(z) is in 80. Two consequences of this are proved. One

is the analogue of the theorem of Chapter II, the other is that a

Hadamard gap series with coefficients approaching zero as n +.m. is

in 80. Theorem 5 then shows that if the coefficients of f(z) are

constrained to lie in one sector of the plane with central angle n/Z,

then (13) is also necessary. An example demonstrates that there are

functions in 30 for which
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n

X klakl = o(np)

k=1

for 1 < p < 3/2. The last theorem of the chapter shows

n

z klakl = ocn3’2)
k=1

is a necessary condition, where the arguments of the ak's are not

restricted.

In Chapter IV, motivated by (10), we examine conditions on

"blocks" of coefficients, looking at sums taken from m to 2m. First

we prove that if all of the coefficients are real and nonnegative,

2m

then 2 ak 5_ K < m is a necessary and sufficient condition for

k=m 2m

f(z) to be Bloch, and Z ak -+ 0 is a necessary and sufficient

k=m

condition for f(z) to be in 80.

without the real nonnegative restriction on the coefficients,

we obtain a series of theorems which parallel those of Mathews and

of Chapter III. The change made from those theorems is, in general,

a substitution of the limits m to 2m for the limits 1 to n on

the finite sums, and removal of a factor of n from the bounds on

those sums.

In Chapter V, we give a single example of a bounded Bloch func-

tion, with coefficients summing to 1, for which the behavior of

sections of the power series from m to 2m is bad for selected

values of m: Considering this section of the power series as deter-

mining a function, as m increases, the sum of the coefficients and

the Bloch norm both diverge to infinity.

The last chapter contains a short list of open problems.



II. AN EXTENSION OF A THEOREM 0F MATHEWS

Mathews [19] proved that a sufficient condition for f(z) =

akz to be a Bloch function is: If there exists a fixed constant

C, C < m, such that

Z klakl2 5_ C.

k=1

The method of proof in Mathews' paper relies on the Cauchy - Schwarz

inequality. By using the Holder inequality, we can establish the

following:

Theorem 1: If X kq-llaqu i C , where 1< q < co and

k=1

C is a positive constant, then f(z) is a Bloch function.

Proof: Set p = q/(q - 1). Then 1 < p < m and p + q = pq.

By using the Holder inequality, we can show that

"
M
:

H

klakl , E k(p-1)/p k1/p lakl

k=1

1/p n 1/q

(k(P'1”P))p} - {kgl (kl/P)q Iaqu}

E1 kp'1}1/p - { E kq'1 laqu}1/q

[
A

A
P
’
h
fi

7
V

p
—
I

I
A

u

o
n

O

O
A

3
3

v

O

O

11
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for a suitable constant B. By [19, Theorem 2(i)], f(z) is a Bloch

function.

we remark that if q = 2, the preceding theorem is exactly the

theorem of Mathews quoted earlier.

Next, we will give two examples and use the preceding theorem to

show that each is indeed a Bloch function. The first uses a value

of q near 1, the second employs a large q.

Example 1: Let 8 > 0. Then

kE1 k-e/(1+e)(k1/k _ 1)k/(1+e) 2k

is a Bloch function.

Proof: Set q = 1 + e and ak = k(1/q)"1(k1/k - 1)k/q. Then

“ -1

kzl kq laqu

kE1 kq-1(k(1/q)-1(k1/k _ 1)k/q)q

kxl kQ‘l kl'q (kl/k _ 1)k

oo

2 (kl/k _ 1)k.

The last sum is bounded [20, p.219], so by the preceding theorem,

2 k(1/Q)-1(k1/k _ 1)k/q zk

k=1

is a Bloch function. Since 1/q - 1 = -e/(1 + a), this is exactly

what we wished to prove.
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Example 2: For any a > 0,

kzl (k(Iog(k))€)'1 2k

is a Bloch function.

Proof: We have

kEI kq‘l (<k(1og(k>)€)'1>q

= E (k<1ogck>>q8>'l.
k=1

This converges for q > 1/e [20, p.210], and by Theorem 1, we are

done.



III. CONDITIONS ON COEFFICIENTS FOR THE CLASS 30

In this chapter, we will adapt several results from Mathews'

paper, stated for Bloch functions, to functions in 80. In the theorem

following, we will give a proof, using Cauchy's formula, of the known

fact [3] that the coefficients of a function in 80 tend to zero.

Theorem 2: Let f(z) be a function in 80, f(z) = kio akzk.

Then ak + 0.

Proof: From Cauchy's formula,

f' z

 

1

lakL = §n1E I dz l

|z|=r 2

2n ie .

. 1 f' re . TB

5. EEE'IO ‘;£;iial"‘e d9
  

1 ( -1 1-k 2"| -i(k-1)el
ggfi' 0 (l-r) )r 0 e de

k'1 o((l-r)'1) r1"k

= o(k'l rl'k (1-r)'1).

The minimum value of the last term occurs for r 1 - k-l. Evaluating

for this r, we obtain

1?; <1 - %)1"‘ <-,1;>'1

which tends to e'1 as k +-m. Thus ak + 0.

In Theorem 3, we will establish conditions sufficient for a holo-

morphic function to be in the class 30. We will then investigate

necessary conditions.

14
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Theorem 3: We have the following sufficient conditions:

(i). Let f(z) = kE akzk. If there exists a fixed integer J,

=0

J 3_1, such that

n

X leakl = 0(nJ)a

k=1

then f(z) is in Bo.

(ii)- Let f(Z) = Z akzk. If there exists a p, 1 < p < m,

k=0

and a w, w < p - 1, such that

(14) E k(p-W)/(p-1) la lp/(p-l) = o(n(p-w-1)/(p-l)),

k=1 k

then f(z) is in 80.

(iii). Let a > 1, and let {kj} be a sequence for which

kj > akj_1. If akj + 0, then

on k3.

.2 akj (z) e 30

J=0

We shall need the following lemmas, which are extensions of a theorem

of Titchmarsh [28, 9.224].

Lemma 1: Let h(x) = Z akxk and g(x) = X bkxk, where

k=O k=O

ak 3_0, bk 3_0, and both series converge for |x| < 1 and diverge

for |x|_3 1. If ak = o(bk) as k +1w, then h(x) = o(g(x))

as x + 1.

Proof: Given a > 0, there exists an integer N such that

8

an < 2 bn_ for n 3_N. Then

” k
h(x) = Z a x =

k=0 k



II

M

O
!

X
’

X '+

x

ll

2
M

+ H

n
!

3
'

X

I
A

N
k e

X a x + —- X b x

k=0 k 2 k=N+1 k

N k e

kzo akx + 2- g(x).

I
A

Let N be fixed. Since g(x) +-w as xi+ 1, we may choose 6 > 0

k
N

so that kXO akx < §-9(x) for x > 1 - 6. Thus h(x) < eg(x) for

x > 1 - 6, or h(x)/g(x) < e for x > 1 -6 . Since 6 is arbitrary,

h(x) = o(g(x)) as x + 1.

Lemma 2: Let h(x) = Z a xk and g(x) = X b xk both
'---- _ k _ k

k-O k-O

n

converge for |x| < 1 and diverge for -|X|.Z 1, and set 5n = Z ak

k=O

n

and tn = Z bk' Suppose that 5n and tn are positive, is and

k=0 . "

{tn are divergent, and 5n = o(tn). Then h(x) = o(g(x)).

k
n

Proof: We have h(x) = (1 - x) X skx and

k=O

n

g(x) = (1 - x) Z thk. By the preceding lemma,

k=0

"£0 snxn = o(ngo tnxn),

and the result is immediate.

We remark that if, in particular, 5n = o(n), then

h(x) = o((1 - x)‘1).

We will now prove Theorem 3.

n

Proof’of (i1: Set 5 = Z k J

" k=1

J ak and tn = n . For J = 1,

5n = o(n), so by the remark above, with h(x) = kzl klaklxk and

x = [z], |f'(z)| = o((1 - Iz|)'1). For J > 1, we can show
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f‘d’<z> = o((l - IZIJ)'1).

Successive integration then completes the proof of part (i)

Proof of (ii): Suppose 1< p < co, p + q = pq, and w < p - 1.

Applying the Holder inequality,

5 I Ik a

k=1 k

E kw/p k(p-wllp Ia
l

k=1 k

< ( E (kW/P)p)1/P .( E (k(P'W)/P)q la IQ)1/q

'_ k=1 k=1 k

. (0(nw+1))1/p .( E k((p-w)/p)-(p/(p-1))Iaklp/<p-1))(p-1)/p

k=1

. 0(n(w+1)/p) .(kg k<P-W>/<P-1)laklp/<P-1>)(P-1)/P

1

= 0(n(W+1)/P) . (o(n(P'W’1)/(P'1)))(P‘1)/P

= 0(n(w+1)/p) . o("(p-w-lflp)

= o("(w+1)/p + (p-w-1)/p)

= o(n)

An application of the first part of this theorem now completes the

proof of part (ii).

We note that if p = 2 and w = 0, then f(z) e 80 if

n

2 k2 lakl2 = o(n).

k=1

1

 

Proof of(i11): Since ikj'l <:kj, we have kJ._1 ('3 kj, so

k3. - kj_1> kj - E k). = (1 - ;)kj. We also note that, writing 1((J)

instead of kj to make the formulas more readable,
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(1%) I<(1)Izl"‘(“')'1

< (k(j) - k(j-1)>IZIk(j)’1

< lzlk(j'1) + |z|k(j'1)+1 + ... + lzlk(j)-1-

Let s > 0, and let J be such that for j 3_J, ak(j) < g-(l - gi-

Then

J-l

jgl k(j) ak(j)

< zk(j)-1 km-I;

 

 

+ 1 km la -l|2I
3-:0 H1)

The second sum is bounded by

1 °° . k ' -1
gm '3) 3-1, km |z| (3’

 

 

< E-(1 - l) 1 |z|t

‘2- .“ t=kIJ-1) 1-51;

: g. X IZIt

t=k(J-I)

<§ 1 ,

l-IZI

Since the first sum is a polynomial of degree k(J-1)—1, it is

bounded, and hence is less than 5- 1

21-121

 

if |z| is sufficiently

near 1. Thus,

1
|f'(z)| < e

l-lzl

 

 for |z| near 1. Since a is arbitrary, |f'(z)| = o< 1| I)

' 1 - 2

as |z| + 1.

We note that the functions in (iii) are called Hadamard gap

series. If the coefficients converge to zero, the series is in 80.
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Next we consider necessary conditions on the coefficients. The

first theorem in this direction shows when the sufficient condition

of Theorem 3, with an additional condition on the arguments of the

coefficients, is also necessary.

Theorem 4: Let f(z) = Z akzk be in 80. If there is some

k=0

a such that for each k, a §_arg(ak) §_a + n/Z, then

n

2 klakl = o(n).

k=1

Proof: There is no loss of generality in assuming that a = 0.

Since f(z) is in 30’ we have

“4 mu-Inrh|f'(2)l

  

Z k a z

k=0 k

and

 

IPGH aux-uni»

 

 

Therefore,

N

l
l

kEI k Re(ak) k'l o((l - |2|)'1).

where 0 §_Re(ak). Similarly,

N

l
l

gIkap “1 uu-Idrh.

where 0 §_Im(ak). Thus,

=2uu Inrh=ou1-un4xz klaklzk'l

k=1   

k
By [12, Theorem 96], if ck 3_0, g(x) = kZO ckx and

g(x) = o((l - x)'1) as x + 1, then kZO ck = 0(n). Here, we set
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Ck-l = klakl and note that

"
M
S

W 9
’

W H

  

°° k

s. 2 kla I I2! .

k=1 "

Hence Z klakl = o(n).

Corollary: If F(z) = Z |ak|zk is in 80, then so is

k=0

f(z) = Z akzk.

k=O

Example 3: Let 1 < p < 3/2. There exists a function f(z)

n

in 80 for which 2 k ak = o(np). Let 6 > 0. Then

1
k=

m . 2p-2 '
f(2) = z kp-2-6 elk Zk

k=1

is the required function.

00 - . a

Proof: Hardy [13] has shown that if F(z) = Z k b e1k zk

' k=1

where O <<x< 1, then F is unbounded if 1 - b - %- > 0, and

1 .

IF(Z)I '1 0((1_ |z|)1-b-a/2) .

Set a = 2p - 2, and note that 1 < p < 3/2, so 0 < a < 1.

 

Then with b = 1 - p + 6,

m . 2p-2

F(z) = Z kp'l'6 e1k zk

k=1

and

 

1

‘ 0((1 - IzI)1‘5') _
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= o((1 - IzI)‘1).

Setting F(z) = zf'(z), it follows that f(z) is in 30. The

coefficients of this function are

. 2p-2
= kp-2-6 e1 k

ak

SD

n n

kzl kIakl = kzl kp 1'6 = 0(np'5) = o(np).

In the proofs of the following lemma and of Theorem 5, we will

use the following fact: It follows from an exercise in Titchmarsh

[28, D-242] that if a > 1, and the ak are real, ak 3_O, then for

_ m k _ -a
f(z) - Z ak z - (1 - z)- ,

k=1

a is asymptotic to k0"1 F(a) and f(z) is asymptotic to
k

Na.) 2 ka'lzk

k=0

as |Z| + 1.

For the proof of the next theorem, we will need the following

lemma, which is adapted from [11, p.45].

8

a 2n is analytic in D andLemma 3: If g(z) = n

"
M

On

g(z) = o((1 - lzl)'a), where a > 0, then for 3» < y <cx+ 1/2,

setting r = lzl, we have that

G(r) = Z n-Y|an| rn

n=1

satisfies

 

G(r) = o((1 _ r);-Y+1/2> .
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N _ k

Proof: Assume that y < 1/2. Set 5 = Z k Yla Ir . By the
—————- N k=1 k

Cauchy - Schwarz inequality,

N _ 1/2 N 1/2

sNg{zckh§ -{z unnhfi
k=1 k=1

_ 2 . 1/2

(0(n 21*1))1’2' {ii' [0",g(rele)|2 d9}

I
A

1/2

I
A

0(N'Yfl/2) - {-2-}; [ZNIOHI - r)'°‘)|2 d9}

= o<~‘Y+1/2) - o((1 - r)'a).

Thus

(1 - r) 2 5k rk

k=1

G(r)

= (1 - r) o((1 - r)'a)ok§ 0(k'YI’1/2) rk

=1

o((1 - r>1'“) . k2 k'**1’2 r“
=1

)1'a) . 2 k3/2 'Y-l rk

k=1

= o((1 r

= 0111 - r)1'“) 0((1 - r)"3/2'Y’)

= o((1 - r>1'“) o<<1 - r>Y'3/2)

= o((1 - rlY'“'1/2>.

For v.3 1/2, the result follows from the case when y < 1/2 by

successive_integration.

We now consider conditions on the coefficients which are necessary

for a function f(z) to be in 80.
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Theorem 5: Suppose that f(z) = Z ak zk is in 80. Then

k=1

for each fixed integer P 3_1, we have

n P P+1/2
kzl k lakl = o(n ).

3399:: Applying Lemma 3 with zf'(z) = 9(2), a = 1,

y = -P + 1, we obtain

” - +

2 kPIakI 121“ = o((1-IZI)(P1’2)).
k=1

Since the coefficients are all real and nonnegative,

n n n
P k k

IZI" ZklaI: 2 la! I2! 1 ZklaVIIZI
k=1 k k=1 k k=1 k

for all |z| and n. Taking |z| = e'lln, and noting that 1.- e'l/n

is asymptotic to l/n as n increases without bound,

n ,

e'l kzl kplakl = 0((1 - e'l/n)'(P+1/2)) = o(nP+1/2).



IV. CONDITIONS ON BLOCKS OF COEFFICIENTS

Let f(z) = Z ak zk. In this chapter we shall give several

k=1

results concerning "blocks" of coefficients for Bloch and 80

functions. We will consider the portion of the power series for f(z)

between k = m and k = 2m. The integer "2" of the upper bound is

not critical to the following analysis; simple revisions will accom-

odate any number exceeding 1. f

Define Bm = ii; lakl. We will first show that for functions

whose power series have real nonnegative coefficients, we can charac-

terize B and 80 by conditions on em.

00

Theorem 6: Suppose that f(z) = Z. ak 2k, where ak is real

k=1

and nonnegative for all k. Then f(z) is a Bloch function if and only

if there is a constant M < m. such that 8m'§_M for all m.

Erggjg_ Suppose that Bm‘§_M < m» for all M. By [19, Theo-

rem 2(i)], it is sufficient to show that there is a constant C such

n

that Z klakl 5_ Cn for all n. Fix n, and suppose that p is an

k=1

integer such that 2p 5_ n < 2p+1. Then

n n

kgl klakl = kgl kak

1 3 n

= kZI kak + kéz kak + ... + kgép kak .i

24



21 22 zp+1

g Zokak+ {lkak+ + Z kak

k 2 =2 k=2p

21 2 22 -1 2p+1

< 2 Z ak+2 Zakw‘...+2p Zak

k=2 k=21 k=2p

g(2+22+...+zp+1)M

_<_2p+2M

§_ 4Mn.

Taking C = 4M, we see that f(z) is a Bloch function.

Conversely, suppose that f(z) is a Bloch function. Since all

of the ak's are real nonnegative, all of the arguments are zero.

By a result of Mathews [19, Theorem 3], there is a constant C such

that

n

kgl k ak 5_ Cn

for all n. Then

2m 2m

m kzm ak < kém k ak < 2mC

so 2m

k; ak 5_ 2C

Theorem 7: Suppose f(z) = kEI ak zk with all ak real and

nonnegative. Then 8m + 0 as m-rm if and only if f(z) is in 80.

Proof: Suppose 8m + 0 as m +1w. To show that f(z) is in Bo,

- n

it will suffice to show that kf k ak = o(n), or that

=1

-1 n .

n 2 k ak + 0 as n + w.

k=1
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Let a > 0, and let N be large enough so that for p 3_N,

 
  

 

29*?

'Z ak’ < 6/8.

k=2p

We have

N
n 2 n

n"1 2 kak = n"1 X kak+n"1 Z kak

k=1 k=1 _ N
k-2 +1

2"

If n is large enough, say, n _>_ Q 2. 2N, then n'1 :21 kak < 8/2.

Let us now concentrate on the second sum. If 2r g-n < 2r+1’ then

n

n-1 X kak

=2"

_1 péNTI-l 2N+2-1 n

= n 2N kak + yN+1 kak + + Zrkak

L.k=2 k 2 k=2

-1 2N+1 2r+1

5_ n X kak + 4- X kak

Lk=2N =2r

T 2N+1 2Y‘+1

: n-1 2n+1 2 ak + +2r+1 Z 3k

_ k=2N k=2’

< e 2N+1 + 2N+2 + + 2r+1]

_ ..- ..O r

8 2r 2r 2

5_ g- (21+N‘r + ... + 2'2 + 2'1 + 1 + 2)

< §-.

n

Therefore, for n j? Q, n'1 X kak < 5. By Theorem 3(i), f(z)

k=1

TS in 80.

Conversely, if f is in 80, then by Theorem 4,



2m 2m
1 = m 1 1

2'Bm 2m kgm ak 5- 2m kém kak 5- 2m kgl kak +'o’

so Bm+ O.

If we now consider functions with coefficients not restricted

to be real nonnegative, we obtain several theorems which parallel the

results of Mathews [19], with conditions on the coefficients between

am and a2m’

Theorem 8: The following conditions are sufficient for

f(z) = 2k to be a Bloch function:Z a

k=0 k

(i). If there is a constant M* such that

2m

(15) 2 kJ‘lla | §_M*mJ'1,

k=m k

where J is an integer greater than or equal to 1.

(ii). If there is a constant C such that for some q

satisfying 1 < q < m, X kq'llaqu §_C.

k=1

Proof of (i): Suppose that equation (15) is satisfied and
 

2r §_n < 2r+1. Then

22 2r+1
n 2

2 kdlakl: 2 leakl + z kJIak|+m+ z leakl
k=1 k=1 k=2 _ r

k-2

21 Zrfl

1 21 1 k‘]"1|ak|+...+2'”+1 2 kJ'llakl

k=2° k=2”

5_ 2 M* (1 + 2J + 22d + ... + 2rd)

< 2 M* 2(r+1)J

:_ 2J+1 M* "J.

By [19, Theorem 2(i)], f(z) is a Bloch function.
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Proof of (ii): By part (i), with J = 2, it suffices to show
 

that

:Zm klakl_<

for some finite constant M*. The details of the proof, using the

Holder inequality, are similar to those of Theorem 1; we omit them.

The next theorem gives additional restrictions on the location

of the coefficients, under which the sufficient condition of Theorem 8

for J = 1, that the 8m are bounded, is also necessary.

Theorem 9: Let f(z) = X ak zk be a Bloch function. If

there exists an a such that a g_arg(ak) g_a + n/Z for all k,

then there is a constant C* such that 8m §_C* for all m.

3399:; By a theorem of Mathews [19], there exists a constant C

such that E klakl §_Cn for all n. Then

k=1 2m

mBm g_ kzm klak|_< 2Cm.

Hence Bm §_2C. Set C* = 2C.

We remark that an example used by Mathews [19] to illustrate

n

that a Bloch function f(z) may satisfy kzl klakl = 0(np) for

1 < p < 3/2 also satisfies 8m = 0(mp'1). For,

2m 2m p p

m X laklf. 2 klakl = 0((2m) ) = 0(m ),

k=m k=1

so

2m

= o ”'1 .kgmlakl (m )

Next, we consider necessary conditions.
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Theorem 10: Let f(z) = Z ak zk be a Bloch function. Then

k=0

#
for each fixed integer P 3_1 there is a constant C such that

2m
2 kP-llakl E. c# mP-l/Z.

k=m

2599:: By a theorem of Mathews [19], there is a constant C

such that

n
X kplakl iCflP+1/2.

k=1

Then

2m 2m 2m

m z kp’llakls z kplakl: z kplak|:C(2m)P+1/2.
k=m k=m k=1

Thus

2m
2 kP-lla l < 2P+1/2CmP-1/2.

k=m k '—

Setting C# = 2P+1/ZC, we are done.

We next turn our attention to functions in 30. These results

are similar to the preceding Theorems 8, 9 and 10. The proofs of

all but part of one of the following theorems are similar to those

of earlier theorems and will be omitted.

Theorem 11: The following are sufficient conditions for the

k
z

 

to be in B :function f(z) = X a

k=0 k 0

(i). If there is an integer J 3_1 such that

2m

2 kJ 1lakl = o(mJ 1).

k=m

(ii). If there is a number p, 1 < p < m, and a number

w < p - 1 such that
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@? k(p-w)/(p-1),ak,p/(p-1) g o(n(p-w-1)/(p-1)).

k=m

2m

Proof of (i): Let c > 0 be given, and set u(m) = 2 kJ'llakl.

k=m

. 2m J-1 J-1
Since k2 k lakl = o(m ), there is an increasing function s(j)

=m

.on the positive integers such that for m > 25(3),

2m .

z kJ'llakl < 52-(J+3)mJ-1.

k=m

If n is sufficiently large, say, n 3_N1. then

1-J 25( )

J-l
n X k la I < 8/2.

k=1 k

Let n be a fixed integer greater that N1, and p an integer

such that 25(9) §_n < 25<p+1). Then

3 kJI Ia

k=25(1) k

5(2) J 25(3) J n J

5. I k la l + Z k la l+ --. + I k la |-

k=2sm k k=25(2) k k=2st) k

For 1 §.j < p,

25(j+1)

Z leakl

k=2$(j)

25(j)+1 2s(J)+2 25(j+1)

5. I kalakl + z leakl + ... + z kJIakl
k=25(j) k=ZS(J)+1 k 25(J+1)'1

25(i)+1u(25(i)) + 25(j)+2u(25(j)+1) + ... + 25(j+1)u(25(i+1)-1)

[
A

_%:§_((zs(j))J + (25(3)+1)J + ... + (25(j+1)-1) ).

2

Dividing this by nJ gives a result less than that obtained by
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dividing by (25(j*1)'1)d, which is

 

E 2s(i) J 2sum-1 J

2j+1 2s(j+1)-1] I "° + 2s(j+1)-1

_ e ((Zs(j)-s(j+1)+1 J + ... + Z-J + l-J)

 

 

' 33:1

8

<

2J+1

T , .hUS 25(J+1)

n' 2 k la | < F

k=25(j) k 2J+1

A similar procedure shows that

-1 n J c

n 1 k la l < +

k=25(p) k P 1

It then follows that

-1 E Jl l e e e e:
n k a < -—- + -—- + ... + < —-.

_ s(1) k 22 23 2p+1 2
k-2

" J J
This shows that for n 3_N1, z k Iakl = o(n ), and so by

k 1

Theorem 3(i), f(z) is a Bloch function.

The proof of part (ii) of this theorem is similar to that of

Theorem 3(ii); we will omit it.

Theorem 12: Let f(z) be a function in 80. If there is an a
 

such that a 5_arg(ak) 5_a + n/2 for all k, then 3m + O as

Ill->00.

 

Theorem 13: Let f(z) be a function in Bo, and p an

integer, p 3_1. Then

2m
-1 _ -1 2

kgm kp lakl - o(mp / ).



V. A BOUNDED BLOCH FUNCTION OF WHICH

SECTIONS ARE ARBITRARILY LARGE

In this chapter we will give an example of a Bloch function with

real coefficients for which the sum of the coefficients is finite,

8m is large for selected values of m, and if the the same portion

of the power series from which the 3m are taken is considered as

a function gm(z), the Bloch norm of gm(z) increases without

bound as m +»m.

Landau [15] gave a theorem which shows that a function f(z),

analytic and bounded by 1 in D, satisfies sn g_Gn for all n,

k
where sn(z) = kgo ak z , = sn(1), and

5n

" 1-3- ... -(2k-1)]2.
 

G = z ( O O On k=0 2 4 ... 2k I

It is noted that Gn is asymptotic to %-log(n).

Landau also gave the following example of a function for which

5n = Gn:- Define

Kn(z) = E ('lk/z)(-z>k

 

 

k-O

_ 1 1.3 2 1-3- ... o(2n-1) n

'1*22*212‘+~ * 21.”.n Z

and set

” k
f (z) = Z a z
n k=0 n,k

z" Kn(z'1)

Kn(z)

32
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1-3- ... -(2n-1) 1 n-1 n

= 2-4- -2n + +22 I z

1+_1_z + +1'12‘3:4:.. '(ggal) zn
 

2

For this function, all the coefficients are real, a k > 0 for

n

0 5_k 5_n, kgo an,k = Gn’ |fn(z)|= 1 for |z| = 1, fn(1) = 1,

and |fn(z)| 5_1 for [z] 5_1. Since |fn(z)| is bounded by 1 on

the closed unit disc, fn(z) is a Bloch function with Bloch norm

”anB i 2 [3]. As a bounded Bloch function, the coefficients of

fn(z) satisfy a",k + O as k +»m» [21].

Ne inductively define a function n(i) on the positive integers

as follows: Set n(1) = 2. If n(j) has been defined for j < i,

let n(i) be an integer sufficiently large so that for k > n(i),

. . 2i
we have n(1) > 2n(1-1), Gn(i) 3_2 , and

a"(3).k-
n(j) S.(2n(i)

(n(i)+1)
)'1

for j=1, 2, co. , i-lo

Now, we define the function f(z) = Z dk zk by

k=2

f(z) = igl 2'1 zn(1) fn(i)(z)'

°° -i
If [2| = 1, then |f(z)| 5_ 1:1 2 |fn(i)(z)l = ‘1. For |z| 5_1,

|f(z)| 5_1. Thus f(z) is a Bloch function, with Bloch norm

||f||B _<_ 2 [21], [3]. Sumning the coefficients of f,

00 co -1

d = f(1) = 2 = 1.

kgz k igl

Let us now consider 8m for selected values of m, in particular

for m = n(i). For 1 5_j < i,
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2n(i) -j

-1 -0

k=g(i) 2 Ia"(3').k-n(j)l
S.("(1)+1)(ZN

(i)(n(i)+1)))
2 J

< Z'j/n(i)

so

1-1 2n(i) -j
0

i=1 min) 2 lan(.1).k-n(j)| <1/no).

We also have that

2n i) -i
-1 n(i)

kgéii) 2 lanci)’k'"(i)l
= 2 kgo an(i).k

= 2-1 Gn(i)

> 2i.

Thus, Bn(i) > 2‘ - 1/n(i), which is unbounded as i + m.

2n(i)

k=n{i)

right. We will show that the Bloch norm of gi(z) is unbounded

Consider next dk zk as a function 91(2) in its own

as i + m.

We may write

i-l -j 2n(i) k

(16) 91(2) = jgl 2 k=§(,) an(i),k-n(j) z I

. 2n(i)., k
2 k3L(i) an(i),k—n(i) 2 °

Differentiating

2n i)

2'J a . . zk

k=n i) "(J),k-D(J)

for j < i, we get

2n(i) k-1

2'3 k3,“, kan(.i).k-n(.i)z
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which in absolute value is less than

-j . 2n(i)

2 2 "(1) k=§(1) lan(j).k-n(j)l

: 21-3 n(i) (n(i)+1) <2n(i)(n(i)+1))'1

= 2'j.

Thus the value of the derivative of the double sum in (16) is

less than 1 in absolute value.

The second, single sum in (16) may be rewritten as

(17) Z'i z"(i) 13;: an(i),k 2k;

we will denote the sum in (17) by ti(z). This function is a poly-

nomial of degree n(i) with positive real coefficients, and hence

the maximum absolute value of (17) occurs for z = 1.

Differentiating 2'? z"(i) ti(z), we obtain

(18) 2" z“(‘)'1 n(i) ti(z) + 2'1 z"(" ti'(z).

All of the coefficients on ti'(z) are real nonnegative as well,

so [ti‘(z)l has a maximum at 1. We have

n(i)

kgO
ti'(1) k an(i),k

[
A

"(1) (ti(1) ' an(i),O)

§_n(i) ti(1)’

To find the Bloch norm of 91(2), we must find

sup (1 - |2|2)|9i'(z)|.

ch

Because of the bounds found earlier on the double sum in (16),
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Hal-(fills 1H2" 2"“) he)”, - 2.

Since the second term in (18) is positive, it will suffice for us

to show that

(19) (1 - IZIZ) 2" z""‘°"1 n(i) t,(z)

is bounded below on (0, 1) by a term which increases without bound

as i +»m. The expression in (19) is greater than

(1 . (2|) 2“ z"(‘)‘1 n(i) ti(z).

Set 2 =1 - 1/(4n(i)). Then

(1 - IzI) z"“"'1 n(i) 1/(4n(i))(1 - 1/(4n(i))>"“)'1 n(i)

1/4 (1 - 1/(4n(i)))"“"1.

-1/4
which approaches the limit 1/4 e as i, and hence n(i), tends

to infinity.

We also have

t,(1 - 1/(4n<i))) z.ti(1) - (1/(4n<i)))sup It,'(z)I
zeD

.: ti(1) - (1/(4n(i))) n(i) t1(1)

= 3/4 Gn(i)'

Thus, the expression in ( 19) is greater than the product of 2",

1 6-1/4
a term which tends to 4' as i ,.m, and a term which is

asymptotically greater than 3/4 Gn(i) 3_3/4(221) as i +-w, Hence

the Bloch norm of 91(2) is asymptotically greater than

-1/4
21"4 e , which increases without bound as i + m.



VI. OPEN PROBLEMS

We list some open problems concerning coefficients of Bloch

functions.

1. Mathews [19] gave an example of a holomorphic function with

bounded coefficients which is not normal. Does there exist a holo-

morphic function with coefficients tending to zero which is not

normal? 1

Let P be the family of univalent functions g(z) = z + ...

on D. Let 8 denote the family of functions

88 = {f(z) ='log(g'(2))}ger

S

It is known that

{f c B : ||f||B :1} c 3 c: {f c 3 : ||f||B '_<_'3}
3

Let BQ be the subclass of 83 coming from functions in F having

quasiconformal extensions to C. It is known that

{1’5 8 : ||f||B _<_1} C BQ [3].

2. Give conditions on the coefficients which characterize BS

and BQ.

3. Evaluate, or estimate,

sup sup |an| [3].

chS ll

4. Let f c B and (1 - |zn|2)|f'(z)| -+ 0 as n + m for every

sequence {zn} with |f(zn)| + w as n +.m. Is it true that

f is in so? [3], [14].

37
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5. In Theorem 9, we proved that if‘ f(z) = ak zk is a Bloch

function, and there is an a such that a §.arg(ak) g_a + n/2 for

all k, then there is a constant C* such that 6m 5_C* for all m.

Is this still true if the arguments of the coefficients within the

separate blocks satisfy a similar restriction? Specifically, suppose

that there is a sequence {aj} such that for Zj g_k :_2j+1-1, we

have aj 5_arg(ak) g_aj + n/2. Is

23+1-1

I , lakl

k=2J

uniformly bounded?
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