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ABSTRACT

CORRECTION FOR DEPENDENCE

IN TWO LEVEL NESTED DESIGNS

By

Suwatana Sookpokakit

A commonly used design in educational research involves hier-

archically nested data. Classrooms of students are randomly assigned

to receive one of two or more alternative educational treatments.

Since dependent variables in educational research are typically defined

on students, however, the design results in students nested within

classrooms and classrooms nested with treatments.

A fully specified model for the design includes sources of

variation for treatments, classrooms and students. Given the fully

specified model, the null hypothesis about treatments can be tested

There has been resistance on the part ofusing F = MST/MS
C:T C:T '

educational researchers to use the FC'T test statistic because for

these studies the test has few degrees of freedom for error and so

limited statistical power. As a result, researchers have sometimes

turned to a pooled model which ignores classroom variance. By

ignoring classroom variance the sources of variation become treat-

ments and students. The apparent test statistic for the treatment

null hypothesis is then F = MST/MSS°
S:T T '
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The test statistic, F for the pooled model requires that

S:T ’

observations on students be independent of each other. Violation of

the independence assumption when using F has been shown to yield
S:T

a test which can be either too liberal or too conservative (Glendening,

1977; Paull, 1950). What is needed, then, are analysis strategies

which have greater degrees of freedom error than the FC:T test

statistic and which are valid when there is dependence at level of

individuals among observations on the dependent variable.

Glendening and Porter (1974) suggested the possibility of using

ANCOVA to adjust for positive dependence. They pointed out that the

effects of positive dependence could be conceptualized as similar in

form to the problem created by confounding in quasi experiments.

Index of response is another adjustment strategy which is closely tied

to ANCOVA. Thus, index of response was.also considered in this

investigation.

Four possible situations of dependence were classified for an

experimental study that involves two level hierarchically nested data.

Dependence could arise because students were not randomly assigned to

classrooms (initial dependence) and/or class effects which occur

during the study (during-experiment dependence). Crossing these two

dichotomous possibilities defined the four situations, one of which

was independence.

Investigation of the utility of index of response and ANCOVA was

restricted to use of a pre test to adjust for initial dependence.
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Further, classroom populations were assumed to be normally distributed

on the dependent variable with a common variance but different means.

Results from the investigation indicated that index of response

is an appropriate analysis strategy when class effects on the

covariate are perfectly correlated with class effects on the dependent

variable. Under this condition, the pooled index of response model

provides a valid test statistic for the treatment hypothesis with

higher power than the F-test from the full index of response model.

With an additional stipulation of equality of functional regression

slopes at the class level and at the individual level, the pooled

ANCOVA model also provides correct adjustment for dependence and a

valid test with higher power than the F-test of the full ANCOVA model.

The gain in the power through the use of index of response and ANCOVA

models was primarily a function of larger degrees of freedom error.

Thus, both analysis of variance of index of response and analysis

of covariance can be used with a pooled model to provide a more

powerful test of the null hypothesis about treatments even when

initial dependence is present in post test results. For designs having

few classrooms per treatment condition, the increase in power is

substantial.
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INTRODUCTION

In experimental studies concerned with classroom learning and

classroom teaching, the sampling frame typically involves at least

two levels of nested data. This is a common characteristic of experi-

mental design in education. For example, in many studies individual

students are nested within classrooms, and classrooms in turn are

nested within treatments. One question often raised when dealing with

data from such hierarchically nested designs is what should be the

appropriate analysis procedure (Glendening & Porter, 1976; Hannan

& Young,-l976). This question is sometimes viewed as the problem

of selecting the appropriate unit of analysis (Cronbach, 1976;

Peckham, Glass, & Hopkins, 1969; Porter & Chibucos, 1975).

Consider a two—level balanced nested design with fixed treatment

effects and one dependent variable, as shown in Figure 1.1. In this

design, an equal number of students are nested within each classroom

and an equal number of classrooms are nested within each treatment.

One concern of the researcher is to test the hypothesis of no treat-

ment effects.

Within the context of analysis of variance, the appropriate

linear model for this two-level nested data is:



 

 

 

l 2

C1 C2 C3 “4 C5 c6

S11 S21 S31 341 s51 S61

S12 s22 S32 342 s52 S62

s13 S23 S33 543 s53 S63

314 $24 534 344 554 S64

315 S25 s35 345 S55 S65

T = treatment

c = class

3 = student

Figure 1.1:

A Data Matrix of a Two Level Balanced Nested Design

Y + +A,‘r +E i 12 t. =11 a. . .. a 9, ':

13k 1 ij ijk j s 1,2, . ,c

k . 1,2,. .,s

Where

Yijk is an observation of the outcome variable Y on

student k in class j receiving treatment 1,

u is the grand mean,

“1
is the effect of being in treatment 1,

*

A is the effect of being in class j which is nested

13

within treatment 1, and

E . is an individual error of student k.

ijk



*

In this model, u and oi are unknown constants, and Aij and Eijk

are random variables which are assumed to be independently, identi-

2

cally and normally distributed with zero means and variances o * and
A

o: , respectively.

This model, which will be referred to as the "full" model, is

considered fully specified because it accounts for both classroom

and student sources of variation in the two-level nested data. The

analysis of variance table under the "full" model is shown in

Figure 1.2. The hypothesis of no treatment effects can be stated as:

Under the hypothesis of no treatment effects, the expected mean square

of treatments is equal to the expected mean square of classes nested

within treatment or

2 2

a = 'kE(MST) E(Msc: ) soA + OE

T

Thus, from Figure 1.2, the ratio MST/MS (i.e., the ratio of mean
C:T

square for treatments over mean square for classrooms nested within

treatments) will be the apprOpriate test statistic for the no treat-

ment hypothesis given the assumptions of the model.

Although the full model is the appropriate model for the nested

data, in practice, researchers often assume a model that ignores the

classroom grouping variable. That kind of model is under specified

and gives misleading results. An example is Anderson's large scale

study (1941) of aptitude by treatment interaction. Two teaching

methods were compared: drills and meaningful emphasis. Though the



 

 

*

- = + +Model. . Yijk u + oi Aij Eijk

* 2*

Assumptions: Aij W NID (O, 0A )

2

’band Eijk NID (0, 0E)

Source of Variation d.f. E(MS) 2

2 2 t “i

Treatments (T) (t-l) o + so * + cs 2 ———-
E A . t-l

i=1

2 2

Classes (C:T) t(C-l) OE + SOA*

2

Students (S:CT) tc(S-l) OE

 

Treatments are f ixed;

Classrooms are random; and

Students are random.

 

Figure 1.2: ANOVA Table of the Full Model

methods were delivered in classrooms, Anderson's analysis disregarded

class membership and pooled all students within a treatment. Having

done so, Anderson found a significant interaction of the investi-

gated teaching methods with the aptitude variable. The interaction

was interpreted at the individual level. Cronbach and Webb (1978),

reanalyzed Anderson's data by adding the class membership variable.

They found that after controlling for the aptitude by treatment

interaction at the class level, the interaction at the individual

level was no longer significant. This inconsistency of conclusions



when analyzing the same set of data by different models or units of

analysis is a well known issue in educational evaluation. Discussion

of this issue can also be found in publications related to the

Follow Through Project (Porter, 1972; Porter & Chibucos, 1975).

Even when the appropriate unit of analysis has been recognized

there can be circumstances which prevent use of that unit. Porter

(1973) evaluated two teaching strategies, TABA and BASICS, that were

delivered in two different schools. Recognizing that the school

should be the unit of analysis, Porter chose to use students as the

unit of analysis. Porter explained that,

When identifying the unit of analysis for a study, a

crucial consideration is one of independence. This is

because all tests of significance are based on the

assumption that the units of analysis are independent

of each other. Since TABA and BASICS teacher training

took place in groups, and since group discussion is one

of the most important aspects of the two programs, it

follows directly that children in a school were not

exposed to the programs in a way such that their exposure

represented independent replications of the programs.

It could, however, be argued that multiple program

schools would have represented independent replications

of the program. Unfortunately, with only one program

school and one control school, using school as the

unit of analysis would have resulted in no tests of

significance, i.e., there would have been zero degrees

of freedom. (p. 25)

In both the Anderson and Porter examples, students and class-

rooms were grouped together within treatment levels. By ignoring the

natural grouping of students the model assumes that the treatment

effects are the only source of systematic variation among the data.

This model referred to as the "pooled" model is,



’ = l . t

Y.. - + +3.. 1 ’
13k u a 13k j=l,. .s

k = 1, .n

Where

Yijk , u and oi are defined as before, and

*

Eijk is an individual error on the outcome variable Y for

student k.

*

In this "pooled" model, Eijk is a random variable which is assumed to

be independently, identically and normally distributed with zero mean

and variance oE* .

The analysis of variance table for the "pooled" model is shown

in Figure 1.3. If the "pooled" model is assumed for the data, the

null hypothesis of no treatment effects is tested using FS:T a

MST/MSS:T' Given that the distributional assumptions for the "pooled"

model hold, that is, the observations on the students are independent,

identically and normally distributed the test statistic FS:T will have

a central F distribution with t-l and t(cs-l) degrees of freedom-under

the null hypothesis.

To test the hypothesis of no treatment effects, the choice of

the "full" model is analogous to choosing classrooms as the units

of analysis while the choice of the "pooled" model is analogous to

choosing students as the units of analysis (Glendening & Porter,

1976). For either conceptualization, the assumption of independence

cof observations for the students is the central issue. If this

:assumption can be met, the choice of the "pooled" model or students

as the units of the analysis will be the appropriate one. Otherwise,



 

 

*

: = + +Model Yijk u a1 Eijk

. * 2;,
Assumption. Eijk N NID (O, 0E )

Source of Variation d.f. E(MS)

2

2 o.

Treatments (T) (t-l) o * + cs £-—l-

E t-

i

2

Students (S:T) t(cs-l) oE*

 

Treatments are fixed, and

Students are random.

 

Figure 1.3: ANOVA Table of the Pooled Model

the "full" model using classrooms as the units of analysis will be

' the appropriate choice.

Independence of observations is one of three assumptions for

analysis of variance models. The other two assumptions are normality

and homogeneity of variances. Since assumptions are rarely met

exactly in real world situations, researchers must be aware of the

consequences of violating assumptions. Violations of the assumptions

of a model may affect both the significance level and the sensitivity

of a test (Cochran & Cox, 1957, p. 91). Though the F tests under-

lying analysis of variance may be robust with respect to violations

of the assumptions of normality and homogeneity of variances under

certain circumstances (Glass & Stanley, 1970), they are not robust



with respect to violation of the independence assumption (Glendening,

1977; Paull, 1950).

For the "pooled" model, the assumption of independence at the

individual level is equivalent to the assumption of no grouping

2
*

effects (i.e., 0A* = 0). That is, the individuals (E ) will be inde-
ijk

pendent if 0:* is zero. When class effects are present, however,

disturbances for each individual are correlated within a class. The

degree of correlation among individual units within a class can be

measured by an intraclass correlation coefficient. Similar to 02f ,

when the intraclass correlation coefficient is zero, the condition

of independence is met. Analytic and empirical results from

Glendening's (1977) work show that dependence affects the validity

of the FS:T test leaving the researchers no choice but the full

model or the FC:T test.

In comparing the test statistics from the full and pooled models,

a distinction in degrees of freedom can be made. While the degrees

of freedom for the numerators of both statstics are the same, (i.e.,

t-l) the degrees of freedom for the denominators are different. For

the FC:T ratio, the degrees of freedom for the denominator are

t(c-l), which is dependent on the number of treatment levels and

the number of classrooms nested within treatments. For the FS:T

ratio, the degrees of freedom for the denominator are t(cs-l) which

also depends on the number of students within each classroom. Except

for the extreme situation where there is only one student in each

classroom, t(cs-l) will always be greater than t(c-l).



Peckham et al. (1969) computed power estimates of the FC'T =

test under the condition ofMST/MS test and the F = MST/MS

C:T S:T S:T

individual independence. Their results, reproduced in Table 1.1,

showed that the power of the F test is higher than the F test.

C:T

test is largest when the treat-

S:T

The gain in power by using the FS'T

ment effect is small and/or the number of levels of the grouping

variable (e.g., classrooms) is small. Under independence, the FS'T

test has higher power than the F test, so the pooled model or
C:T

using individual as the unit is the better choice.

Table 1.1: Power Computations Using Groups and Individuals

as Unit of Analysis, Given Individuals are Independent

 

Power (a 8 .05)

Treatment Effect

(pl - uz in sigma unit)

 

 

d.f. of

Analysis Unit F-Test Denominator .25 .50 .75

Individuals FS'T 198 .42 .94 .991

Groups FC:T 6 .25 .82 .987

 

Since many experimental studies can afford only a few classrooms,

the difference in power between the full and pooled models is

typically substantial. Further, small treatment effects, if any, are

also not uncommon in educational research. Peckham et a1. (1969)

called researchers' attentions to the importance of power when

testing educational effects:
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Most studies in education assume that the individual is

the unit of statistical analysis. If this assumption is

seriously in error, one would find an abundance of signifi-

cant effects. (Indeed, there would be many instances of

contradictory significant effects if random differences

were being made "significant" through the utilization of

illegitimate power.) History suggests that this is not the

typical case. Significant effects related to different

methods of instruction are relatively rare, even when we

utilize the power afforded by treating the pupil as the

unit. All too frequently, rigor in statistical analysis

is defined as the avoidance of inaccurate probability

statements concerning a Type I error. A more comprehen-

sive notion of rigor would include a similar concern for

the avoidance of Type II errors and for the maximum use

of available data. (p. 345)

I

In conclusion, the two available test statistics, the F test

C:T

and the FS'T test, which underlie the full and the pooled models are

not always satisfactory. When treatment effects are small and there

are few classrooms, F lacks power. While F has greater
C:T S:T

degrees of freedom and so greater power, the test requires indepen-

dence at the student level.

The purpose of this study, then is to consider alternative

models which use individuals as the units of analysis and at the

same time account for the dependence that may exist in the data.

For an alternative model to have utility, the model must yield a

test statistic for the null hypothesis about treatments that has

a known sampling distribution and greater power than the FC:T test

from the full model. The investigation will proceed within the

context of a two-level balanced nested design where the available

number of classrooms is small. Independence among classrooms will

be assumed throughout. For example, the kinds of experimental

situations that are considered here are those where intact class-

rooms are assigned randomly to treatment levels.
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Before examining alternative models, however, one needs to

understand the conditions under which independence and dependence

may occur in an experimental study. Chapter II provides (1) an

operational definition of independence among individuals in the two—

1evel balanced nested design, (2) a discussion of an approach for

empirically testing the independence assumption, (3) a discussion

of an unsuccessful procedure for taking dependence into account, and

(4) discussions of index of response and analysis of covariance as

alternative models which might allow individuals to be the units of

analysis.

Chapter III presents a classification of independence and types

of dependence in experimental studies. A discussion of ways in which

dependence can occur is also provided. Finally, a particular type

of dependence is selected for investigating the utility of index of

response and analysis of covariance as alternative models which allow

individuals to be the units of analysis.

Chapter IV provides an examination of the index of response and

the analysis of covariance strategies. Chapter V presents summary

and conclusions.



CHAPTER II

REVIEW OF LITERATURE

An Operational Definition of Independence
 

Glendening (1977) investigated the independence assumption at

the individual level for two-level nested designs using an analysis

of variance model. Given independence at the group (classroom)

level, Glendening defined independence at the individual level to be

a condition where the variance of the group units could be predicted

from group size and the variance of the individual units. Conse-

quently, within the context of analysis of variance Glendening stated

the operational definition of independence as a condition where the

))expected mean square of classrooms nested within treatments (E(MSC'T

equals the expected mean square of students nested within classrooms

and treatments (E(MS Given classrooms as a random factor,

S:CT))'

this operational definition applies regardless of whether individuals

are a random factor (as shown in Figure 1.2) or a fixed factor (as

shown in Appendix A). Only when the individual effects are random,

however, is the condition of independence as defined by Glendening

2

equivalent to oA* being zero. It is this latter case, random

individual (student) effects, that is the focus of the present study.

2

Thus, a non-zero value Of 0A* implies dependence and a zero value of

2

oA* implies independence.

12
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Positive Dependence and Negative Dependence
 

Using the operational definition of independence that she

defined, Glendening (1977) classified two types of dependence:

positive and negative dependence. She defined positive dependence

to be a condition where the expected mean square of classrooms nested

within treatments is greater than the expected mean square of students

nested within classrooms and treatments (i.e., E(MSC'T) > E(MS )).

S:CT

Negative dependence, on the other hand, was defined as a condition

where the expected mean square of classrooms nested within treatments

is smaller than the expected mean square of students nested within

classrooms and treatments (i.e., E(MSC'T) < E(MS Glendening
S:CT))'

pointed out that positive dependence was possible whenever individual

effects were random. This can be seen from Figure 1.2 where

2 22

) = so * + o which is equal to or larger than E(MSS'CT) = E .E(MS A E
C:T

Negative dependence, however, can only occur when the individual

2

effects are fixed. That is from Appendix A, E(MS ) = soA* which may

2

E .

C:T

be lesser than E(MS ) = o
S:CT

Glendening studied analytically and empirically, the effects of

dependence on the sampling distributions of FC'T and FS'T test

statistics for the full and the pooled models respectively. Her

results showed that neither type of dependence among individuals

affected the validity of the FC’T test. However, both kinds of depen-

dence affected the validity of the FS'T test. Specifically, within

the context of analysis of variance, Glendening found that positive

dependence made the F test liberal and resulted in spuriously high

S:T

power. Negative dependence, on the other hand, made the FS°T test
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conservative and yielded spuriously low power. Since the sampling

distribution of the FS:T test was affected by degrees of dependence,

Glendening recommended the use of the full model when dependence was

suspected.

The definition of independence in terms of an equality of expected

mean squares is helpful in two respects. First, it is an operational

definition for the assumption of independence in analysis of variance

models. The degrees of dependence in a study can be easily estimated

C:T/MSS:T ratio.

Second, the definition allows for the possibility of either positive

from an analysis of variance table, using a MS

or negative dependence. Negative dependence is rarely discussed in

the literature.

Preliminary Testingvon the Full Model and Conditional Pooling
 

As has been said, the test statistic F is appropriate only

S:T

when the assumption of independence is met at the level of individuals.

The test statistic FC:T is correct even when individuals are depen-

dent, but the test suffers from low power. If a researcher could

decide when individuals are independent, for those situations the

best strategy would be to use F When dependence is present,

S:T'

however, the FC:T test must be used. Glendening's operational

definition of independence provides a test for dependence and so

might be used to guide the researcher in deciding between the pooled

and full models.

Preliminary testing for dependence and conditional pooling

results in a two-stage testing procedure. For a two-level
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nested design, as shown in Figure 1.1, the procedure starts with the

preliminary test (i.e., F = MS /MS ) for independence at the
C:T S:CT

individual level. The null hypothesis of the preliminary test is

Ho: E(MSC'T) = E(MS ) which is the same as the condition of
S:CT

independence defined by Glendening (1977). If the preliminary test

results in rejecting the independence hypothesis, the treatment

hypothesis is tested as if the independence assumption were not valid

using F If the preliminary test fails to reject the independence
C:T'

hypothesis, the treatment hypothesis is tested as if the independence

assumption is valid using F (i.e., the pooled model). Because the
S:T

choice of test statistic for the null hypothesis about treatments

depends on the decision made at the preliminary stage, the consequent

test of this two-stage procedure is conditional.

The preliminary test represents an attempt to avoid using a

pooled model when dependence is present. Peckham et a1. (1969)

warned researchers that the preliminary test is not an infallible

indication of whether or not independence exists (i.e., either Type I

or Type II errors are possible). Thus, they recommend the testing

and pooling procedure to be used only when a researcher has an

a priori notion that independence among individual observations

exists.

To be successful, the preliminary testing and conditional pooling

procedure must keep the actual alpha level of the conditional test

close to the nominal alpha level. Further, the power of the con-

ditional test must be greater than the power of the unconditional,

always correct, FC'T test.
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Paull (1950) studied factors that affect the distributional

properties of the conditional test when individuals are a random

factor. He showed that the distribution of the conditional test

involved three main contingencies. The contingencies were (1) mag-

nitude of the dependence (which he defined as E(MSC.T)/E(MS )),
S:CT

(2) probability of Type I error at the preliminary test and at the

consequent test, and (3) number of classes per treatment and number

of students per class.

2

Paull found that when oA* = 0, the preliminary test was effective

in making the power of the conditional test greater than the power of

the unconditional test. However, as o:* increased from zero, Paull

found that the observed alpha level of the conditional test increased

to a maximum and then decreased slowly to being equal to the nominal

alpha level. Thus, given positive dependence, Paull found that for a

fixed probability of a Type I error, the conditional test was generally

more liberal than the unconditional test, FC:T .

Paull also found that, given dependence, the number of classes

per treatment and the number of students per class affected the

discrepancy between the distributions of the conditional test and its

reference distribution. Paull found that a large number of classes

per treatment was desirable in two respects. First, as the number of

classes per treatment increased, the power of the preliminary test

increased, and pooling inappropriately happened less often. Second,

when pooling was prescribed, the pooled mean square was weighted in

favor of the correct mean square error, MSG'T . As the number of
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students per class increased, again the power of the preliminary test

increased. But when pooling was prescribed under the dependence

condition, the wrong mean square, MS T’ received greater weight.
S:C

Thus, the effect of class size to the distribution of the consequent

test was not simple and largely dependent on the value of positive

dependence.

Lastly, Paull examined the effect of increasing the nominal alpha

of the preliminary test. Increasing the nominal alpha level of the

preliminary test will increase its power and so decrease the frequency

of pooling. .Less frequent pooling should in turn result in less

liberalness of the conditional test under positive dependence. Paull,

however, found that increasing the alpha level of the preliminary

test did not always result in decreasing the liberalness of the con-

ditional test. From his finding, there was a critical alpha level

above which increasing the alpha level of the preliminary test

resulted in increasing the liberalness of the consequent test.

To stabilize the disturbances between the distributions of the

conditional and its reference distribution for a given amount of

positive dependence, Paull finally recommended 2F be used as the

50

critical value for the preliminary test. is the 50th percentile

(F50

in the central F distribution with (c-l) and tc(s-l) degrees of

freedom). However, it is not clear how 2F50 stabilizes the distur-

bances between the distribution of the conditional test and its

reference distribution under positive dependence. If the goal is to

increase the power of the preliminary test, Glendening (1977) pointed

out that "taking twice the critical value given a large alpha of .50
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had the same effect as selecting a small alpha level in the first

place."

Results from Paull's study indicated that positive dependence is

an important threat to the validity of the conditional test. Only

under the condition of independence and under extreme positive depen—

dence was the conditional test valid. Unfortunately, given an inter-

mediate value of positive dependence, the preliminary test can mis-

takenly prescribe pooling and make the validity of the conditional

test questionable.

Glendening (1977) examined the utility of preliminary testing and

conditional pooling under both positive and negative dependence.

Analytically and empirically, Glendening's findings opposed the use

of the procedure. Similar to Paull (1950), Glendening concluded that

given an intermediate value of dependence, the preliminary F test was

not sensitive enough to help a researcher guard against having an

undesirably distorted probability of Type I error for the conditional

F test.

The preliminary testing and conditional pooling procedure is not

likely to be useful in experimental studies in education since

effectiveness of the procedure is limited by its insensitivity to

moderate degrees of dependence. Degrees of dependence that occur

within educational research studies usually range from small to

moderate. Glendening (1977) investigated two research studies in

elementary schools. She found that on achievement scores, the degree

to which classroom variation accounted for total variation among

students ranged consistently from 20 to 50 percent.
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Analysis strategies that can account for moderate degrees of

dependence would be useful for analyzing nested data. The following

sections present discussions of such strategies. First the use of

a quasi-F ratio to correct for dependence is considered. The chapter

concludes by considering the possibility of using adjustment strategies

which rely on information provided by a covariate.

A Quasi-F Statistic
 

There is a class of factorial designs for which analysis of

variance does not provide direct tests of certain hypotheses even

when all assumptions of the model have been met (e.g., Kirk, 1968;

Winer, 1972). For example, the fixed main effect is not directly

testable in a completely crossed factorial design having one fixed

and two random factors with random replication in each cell of the

design. In such situations a quasi-F statistic is sometimes con-

structed to provide an appropriate test of the fixed main effect. As

will be seen, there was some reason to believe that a quasi-F test

might hold potential for providing a valid test statistic with greater

power than F in situations of positive dependence.

C:T

A linear combination of independent chi-square statistics is

distributed approximately as a chi-square distribution with degrees of

freedom estimated from a function of mean squares and degrees of

freedom (Satterthwaite, 1941, 1946). For example, let xil , x:2 and

xia be chi-square statistics which are independently distributed as

central chi-square distributions with v1, v2 and v3 degrees of freedom

respectively. Also, let M31, M82 and M33 be mean squares associated
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A quasi-F statistic is simply the ratio of two estimated vari-

ances, at least one of which has been formed through a linear combi-

nation of independent mean squares (Hudson & Krutchkoff, 1968; Galor &

Hopper, 1969). The potential utility of the quasi-F statistic in situ-

ations of positive dependence can be seen by returning to the FS'T

statistic and its inadequacies. Given positive dependence and the

null hypothesis for treatment,

2 2

E(MST) 8 oE + soA* ,

while

2 (c-l) 2

E(MSSeT) 0E + (cs-l) °A* ’

(Glendening, 1977). Applying the strategy of constructing a quasi-F

test the following ratio can be formed

MST ' Mscm + Mssmr

MSS:CT

F' =

The expected values of the numerator and the denominator of F' are

equal under the null hypothesis of no treatment effects. This

equality can be seen by recalling that

2

2 2 t a

E(MS ) = o + so * + sc 2 -3;-

T E A . t-l ,

i=1

2 2

E(MSC:T) = GB + soA* ,

d MS 2

a“ E( S:CT) ‘ OE .
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Thus, 2

2 t oi

.. + = _

E(MST “Sew Mss:cr) GE + 3° i=1 t-l

and so, under the null hypothesis of no treatment effects,

E(MST - MS

2

E .

C:T +1MSS:CT) and E(MSS:CT) estimate the same parameter,

0'

U

The apparent reference distribution for F is a central F distri-

bution with first and second degrees of freedom, u and v , provided

 

 

1 2

by

f) = MST ' MSC:T 4' M55:01~

1 2 2 2

(MST) + (-MSC:T) + (Mssw'r)

(t-l) t(c-l) tc(s-l)

and v2 = tc(s-l)

I

Unfortunately, F is not a legitimate quasi-F ratio. As can be

seen the complex variance of the numerator and the simple variance of

the denominator are not independent; MS is used in both places.
S:CT

'

The F statistic which appeared to hold promise as a test with greater

power than F in situations of dependence and with no cost of
C:T

additional information, has been found to lack a known distribution.

In the search for a more powerful test of treatment effects in

situations of dependence, two approaches have been considered. Both

the procedure of preliminary testing for dependence and conditional

pooling and the building of a quasi-F statistic have been seen to

yield test statistics with unknown distributions. As an alternative

to these two approaches, perhaps there exists ways to adjust the

individual observations for the dependence they reflect. This
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possibility is considered in the following section. For the approach

to be successful in correcting dependence, the approach must meet two

criteria: (1) provide adjustment that leads to the condition of

independence on the adjusted observations; and (2) provide a statis-

tical test that has a known sampling distribution and has higher

power than the FC:T test.

Using a Covariate to Adjust for Positive Dependence
 

Glendening and Porter (1974) suggested the possibility of using

analysis of covariance (ANCOVA) to adjust for positive dependence.

The effects of positive dependence, as they pointed out, can be con-

ceptualized as similar in form to the problem of confounding in quasi

experiments. Given positive dependence, the problematic variance of

2

the class effects (0A*) exists in the expected mean square for treat-

2

t (11 2 2 2

ments (i. e., E(MST) = sc 2 -—-+ so * + o . Thus o * might be
i_lt:-1 A E A

removed from E(MST) by ANCOVA procedures conceptually leaving the

adjusted observations free from positive dependence.

Glendening and Porter conjectured that removing positive depen-

dence from the individual observations was possible if (1) the

covariate, X, and the dependent variable, Y, have equal degrees of

dependence (1. e., E(MSx:H)/E(MS )= E(MS;T/E(MSY )), and (2)
S: CT 3: CT

the correlation of X and Y within classrooms was equal to one.

Following their lead, the present study investigated the possi-

bility of ANCOVA as an analysis strategy in situations of positive

dependence. Their rationale for ANCOVA, however, applies equally
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well to an index of response strategy (i.e., Z = Y - KX where Z is

the index of response). Conceptually, ANCOVA and index of response

are closely tied, the main difference being that ANCOVA estimates the

value of K while index of response requires that K be set a priori.

The investigation in this study started with an examination of the

potential of an index of response model. Only given a reasonable

solution using the index of response strategy would the utility of

ANCOVA be investigated. If no solutions for the dependence problem

is found using a model of index of response, it is unlikely that a

solution exists in the corresponded but more complex ANCOVA model.

Unlike the preliminary testing and conditional pooling strategy

or the quasi-F approach, the index of response and the ANCOVA

strategies require information in addition to observations on the

dependent variable. To examine the index of response and ANCOVA

strategies, it is important to distinguish between when and how

dependency may arise in a study. These distinctions facilitate

understanding the causes of dependence and so may help to inform

the selection of an appropriate covariable.

In summary, there were two main related tasks that this study

intended to accomplish:

(1) to classify situations of independence and dependence in

experimental studies that assume independence at the group level,

and

(2) to investigate the possibility of using an index of response

and its corresponded ANCOVA models to correct for positive dependence

among the individual units.



CHAPTER III

SITUATIONS OF INDEPENDENCE AND DEPENDENCE

As has been stated, the problems created by positive dependence

are analogous to the problem created by confounding variables in quasi

experiments. If there are no classroom effects in the two level

nested design under consideration, there is independence at the level

of individuals. Thus, an attempt to remove dependence from the data

can be viewed as an attempt to adjust classroom effects to zero. If

classrooms were confounded with treatments in a quasi experiment, the

same adjustment procedure which removed dependence would also remove

the confounding effect of classrooms in that quasi experiment.

Two essential assumptions to the success of an "adjustment"

strategy in removing confounding effects in a quasi-experiment are

correct specification of the covariable and proper specification of

the analytic model (Olejnik, 1977). Therefore, correct specification

of the covariate and appropriate specification of the analytic model

are also required in this study. The problems inherent in the general

assessment of these two assumptions are formidable (Cronbach, Pagosa,

Floden, & Price, 1977; Olejnik, 1977).

Importantly, to be successful in the adjustment, the two assump-

tions place the responsibility on the researcher. Beside being

knowledgeable in the substantive aspect of his experiment, a

24
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researcher must understand design problems that lead to situations of

dependence. When dealing with hierarchically nested data, it is

helpful for a researcher to understand "when" and "how" dependence

problems can arise in an experiment. Given this knowledge, the

researcher may be able to avoid problems of dependence through careful

design of his study. Further, when experimental control is not

possible for a certain type of dependence, the researcher will be in

a better position to specify and measure the dependence (i.e.,

correctly specify the covariate and analysis model).

The intention of this chapter is to provide better understanding

of correct specification of a covariate. The discussion starts with

a classification of independence and dependence situations in an

experimental study that involves two level hierarchically nested data.

As stated previously, independence at the class level is assumed. At

the outset of the study, two conditions are identified: with and

withggg random assignment of students to classrooms. During the

experimental period, an additional two conditions are identified:

.22 class effects and class effects. Together, these two dichotomous

dimensions classify four possible situations in an experimental study.

Each situation will be discussed to generate potential sources of

dependence (which in turn will be used to inform selection of

covariates).

Initial Dependence and Durinngxperiment Dependence

The following classification of situations of independence and

dependence in an experimental study is similar to how Porter (1972)

classifies situations of confounding variables in a quasi-experimental
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study. Two important questions are "when" and "how" the dependence

arises. Answers to these two questions can serve to inform the

design of an experiment involving hierarchically nested data.

When measurement of an outcome variable is taken immediately

after the intervention, there are two places where dependence can

arise, l) at the outset of the experiment and 2) during the experi-

ment. The first kind of dependence, initial dependence, is likely

to occur from the lack of random assignment of analysis units to

classrooms. To protect against initial dependence in a nested design,

random assignment to classrooms is essential.

The second type of dependence, occurring during the experiment,

may arise from interactions among analysis units while they receive

treatments (Cox, 1958). For example, when a treatment is delivered

to intact classrooms, common class experiences may reduce the

variability of students within the same class. Cronbach (1976)

suggested that unless a researcher is prepared to assume that

students within an intact classroom are treated independently by a

treatment and respond independently from each other, students are not

independent. While Cronbach's definition of dependence is in terms

of process, the process he identifies may also result in dependence

as it has been defined here in terms of observations on the dependent

variable. Since during—experiment dependence occurs after the start

of an experiment, it can exist even in a completely randomized

experiment.
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Four Possible Situations of Dependence and Independence

In summary, dependence can arise because students were not

randomly assigned to classrooms (initial dependence) and/or because

of classroom effects which occur during the study (during-experiment

dependence). Crossing these two dichotomous possibilities defines

four situations (Figure 3.1). Situation I is the only situation that

does not violate the assumption of independence. Situations II and

III suffer from initial and during-experiment dependence respectively.

In Situation IV, both types of dependence exist.

 

Before Experiment . DuringeExperiment
  

No Class Effects Has Class Effects
 

With random assignment

of students to classes I III

 

Without random assign-

ment of students to

classes II IV  
 

I - independence situation

II initial dependence situation

III - during-experiment dependence situation

IV initial plus during-experiment dependence situation

 

Figure 3.1: Four Possible Situations of Independence and

Dependence in a Two Level Hierarchically Nested Design
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Situation I: Independence. Situation I, the independence
 

situation, is possible when at the outset of an experiment students

are randomly assigned to classes and during the course of intervention

treatments are delivered independently to individual students. An

example of this kind of treatment might be a study of different types

of individualized instruction. While an experiment dealing with

individualized instruction might be conducted in classroom settings,

students might still be required to react individually to the instruc-

tional packets. Under Situation I, E(MSC'T) and E(MS ) are equal.
S:CT

An analysis of variance using the pooled model (FS'T) is the best

strategy for testing the no treatment effect hypothesis (Glendening,

1977; Cronbach, 1976).

Situation II: Initial Dependence. Situation II includes initial
 

dependence only. In this situation, common experience effects (i.e.,

class effects) during the experiment are controlled but students are

not randomly assigned to classrooms. When students are not randomly

assigned to classrooms, the samples of students within classes are

best thought of as coming from distinct populations (Cronbach et al.,

1977). In general, the class populations will have different distri-

butions on the dependent variable regardless of treatment effects.

Consequently, E(MSC°T) is greater than E(MS ), and one has the
S:CT

problem of positive dependence.

2

For Situation II, the value of oA* is solely a function of

initial dependence. If dependence is to be removed from the data

through index of response or ANCOVA strategies the covariable must
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reflect initial class differences that are predictive of class

differences in the dependent variable. For experiments which fit

Situation II, a pre test seems potentially the best covariable for

removing dependence. Nevertheless, the utility of a pre test for

removing dependence will be a function of the relationships between

the type of natural growth on the dimension measured by the pre and

post tests and the relationship between pre and post tests reflected

in the analytic model (Bryk & Wiseburg, 1977).

Situation III: During:Experiment Dependence. Situation III
 

suffers from dependence which occurs during the experiment. In this

situation, a researcher is able to randomly assign students to classes,

creating initial independence. However, the researcher may not be

able to eliminate, through design, effects of common class experiences

(i.e., class effects) that occur during the course of the intervention.

Webb (1977) perceived class effects as group process effects

that cause dependence on the outcome variable dimension. He explained

that knowledge of group processes in a particular class is crucial

for understanding and estimating the degrees of dependence in a class—

room. Since the knowledge of group processes would guide a researcher

as to where to look for potential covariate, Webb concluded that

studying group process may be the only way to get at this dependence.

Group process effects, however, are a function of complex and

global variables including effects due to subject matter, teacher

effectiveness, teaching strategies, student interactions and class-

room milieu which are not part of the treatment effects. For
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example, differences in teacher effectiveness may result in classroom

effects and so dependence at the level of individuals. But pre-

dicting differential teacher effectiveness is a substantive problem

in its own right (Dunkin & Buddle, 1974). In the literature of

research in classroom teaching and classroom learning, other group

process variables identified above have been placed in the black box

of classroom setting about which little is known (e.g., Bloom, 1976;

Duncan & Biddle, 1974).

Confusion in specifying the class effects to be removed to

create independence increases when one considers the possibility that

some class effects may also be part of treatment effects. For example,

a researcher investigating effects of teaching methods on achievement

of elementary students may include differences in instructional skills

(one kind of class effects) of teachers as a part of the treatment

effects. However, differences in management skills (another kind

of class effects) of which he may not be aware could cause dependence

among students within the same classrooms. Further, since during-

experiment dependence occurs within the same period as the treatments,

potential interactions between dependence and treatments must be

considered. Thus, in Situation III, it is important for a researcher

to understand and carefully describe what constitutes the treatment

effects and what may be nuisance variables that would induce depen-

dence among units of analysis. If class distinctions are not made

between treatment effects and nuisance variables, an adjustment to

create independence might at the same time remove part of the treat-

ment effects from the data as well.
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Clearly, the criteria for selecting covariates to remove depen-

dence in Situation III are quite different from the criteria for

Situation II. In Situation II, the covariate must predict initial

differences while, in Situation III, the covariate must predict

effects of classrooms that are not part of treatment effects. The

use of a pre test as an adjustment variable in Situation III is

unlikely to be helpful. As Porter (1972) stated:

Although I believe pre tests to be the best predictors

of initial differences it does not necessarily follow

that they are also the best predictors of differences

that occur in the dependent variable dimension during

program participation which are not a function of program

participation. My reasoning is that initial differences

are a function of all that has preceded the study in the

life of the child, while differences that occur during

the study other than due to program most likely are

primarily a function of the child's environment at that

time. (p. 19)

Situation IV: Initial and During-Experiment Dependence. The

last situation, Situation IV, is the most complicated. This situation

suffers from initial dependence and during-experiment dependence. An

experimental study that falls into this category has two design

problems. First, it lacks random assignment of students to classes,

and, second, it deals with treatments that are delivered in group

settings. Thus, both the magnitude of initial dependence and the

2

magnitude of during-experiment dependence are contained in oA* .

Specification of an appropriate covariable or covariables to adjust

2

oA* to zero (independence) is extremely complicated. Application of

structural equation strategies to classify important causal variables

in longitudinal data (Schmidt, 1975) may be helpful in identifying
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appropriate covariables in Situation IV. In addition to all the

difficulties identified for Situations II and III, a researcher in

Situation IV must not ignore the possibility of interactions between

initial differences and class process differences.

Having described three types of situations in which there is

dependence at the level of individuals the present study limits its

focus to the use of the index of response and ANCOVA models in

Situation II. There are two reasons for focusing on Situation II.

First, the problem of modeling dependence in a design is not well

understood in the literature. To be able to understand this modeling

problem, one should start with a simple case. Second, the initial

dependence problem, underlying Situation II, is comparable to the

initial confounding problem in a quasi-experimental study. The

literature contains a great deal of discussion about the utility of

index of response and ANCOVA for controlling the effects of con-

founding in quasi-experiments.



CHAPTER IV

CORRECTIONS FOR INITIAL DEPENDENCE USING INDEX OF RESPONSE

AND ANALYSIS OF COVARIANCE STRATEGIES

Given dependence among individuals the F statistic provides

C:T

a valid test of the null hypothesis about treatments but for most

educational research its power is low. The goal of this study is

to explore alternative tests for treatment effects when dependence

is present. These alternatives will be evaluated against the

criteria of an actual Type I error in agreement with the nominal

value and power that exceeds the FC:T test.

The review of literature in Chapter II provided two helpful

conceptions for the investigation. The first conception was an

operational definition of independence and dependence. Given a

*

ii

) are random, independence is defined

)two level balanced nested design where both the group effect (A

and the individual effect (Eijk

as the condition when oA* is equal to zero. Dependence is defined as

2

the condition when o * is greater than zero. The second conception

A

was to recast dependence as equivalent to the effect of confounding

at the class level. The reconceptualization suggests approaches to

analysis that use adjustment strategies comparable to those used to

remove the effects of confounding in quasi—experimental studies.

Two such adjustment strategies that are investigated here are index

of response and analysis of covariance.

33
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In dealing with adjustment strategies, both correct specification

of adjustment variables (covariables) and proper specification of the

analytic model are necessary. Chapter III provided a classification

of independence and dependence situations which could facilitate

proper specification of covariates. In this chapter the parameters

of the two analytic models are specified for the situation of initial

dependence.

Modeling Situation II Dependence
 

Situation II represents designs in which students were not

randomly assigned to classrooms. Thus as has been noted, each class-

room must be considered a separate population. Given normality,

these populations may differ in both means and variances. The set

of Situation 11 designs considered here is restricted, however, to

classroom populations which differ only in terms of means. A linear

'system of structural equations consistent with the above restriction

can be specified as follows:

Model:

Y + + A* + E ' 1 2 c= 11 O. .. .. 1 = s a a
i k i 1 1 k .

j J J j = 1,2,. .,c

X k - 1,2,.. ,3

Xijk ' u + Aij + Vijk

A* - B A + H

ij ' 1 ij ij

and Eijk = B2 Vijk + Gijk

where

Yijk is a post test score of individual k in class j receiving

treatment i;



ijk

ijk

A..
11

ijk

ij

ijk

and B

This

follows:
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is the grand mean of Y;

is the effect of treatment i;

is the effect (as measured by post test) of being in class

j which is nested in treatment 1;

is the specification error at post test;

is a pre test score of individual k in class j receiving

treatment 1;

is the grand mean of X;

is the initial effect (as measured by pre test) of being

in class j which is nested in treatment i;

is the specification error at pre test;

*

is the residual of Aij given Aij;

is the residual of Eijk given Vijk;

*

is the structural regression coefficient that predicts Aij

from Aij;

is the structural regression coefficient that predicts Vijk

from Eijk'

structural model can be represented by a causal diagram as

 

 

 

    



36

Additional distributional assumptions of the model are

A 2

ij m NID (0, 0A)

2

Hij W NID (O, OH)

V 2

ijk m NID (0, UV)

2

Gijk W NID (0, 0G)

and °AH = OVG = OAv = OAG = 0RV = one = o

2

where op denotes the variance of variable p and o q denotes the

covariance of variables p and q.

From the above assumptions of the model, the covariance structures

of Y, X and XY are in the form of super diagonal matrices. Specifi-

  

cally,

r q

MY ¢ ¢

Y '.

Y _ ¢ M '
Z - . ¢

Y

¢ ~ ¢ M J

where

Y . . . .

Z 18 the covariance matrix of Y with dimentions of tcs x tcs;

MX is the covariance matrix of students within a classroom only

with dimensions of s x s;

P

2 2 2 2 V

i: * *(0E + 0A ) 0A ... 0A

Y 2* . 2 2* * ‘2

M - oA ‘l_l_ + oEI = oA (oE + oA ) o *

: -. A

. 2* 2* 2 *+

LOA. . ' . CA (OE CA )L

d  
and o is a null matrix of s x 3 dimensions.
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MK .... .l

x 4» MY .3

Z = . . ¢

cp~~¢ Mxy
L J

where

Ex is the covariance matrix of X with dimensions of tcs x tcs;

MX is the covariance matrix of students within a class on X with

s x 3 dimensions.

  

- 1

2 2 2

(oA+ ov) oAv' oA

MK 2 1 1v 2 2 2 2 :2

- OA-—-—- + o I - 0A (0A + oV 0A

:2 2 ' 2 2

0’ o o o 0A (UA+ 0V)

L d

and _ .

“
5

i2

  
where

XY . . .
Z is the covariance matrix of the cross product XY with

dimensions tcs x tcs;

M is the covariance matrix of students within a classroom on

XY with dimensions 3 x s;

* * e -((GAA + GVE) 0AA , .. 0AA

: I

= * = * * *M 0AA 11 + oVEI 0AA (0AA + oVE) 0AA

* * *

.. .J  
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Dependence is reflected in non zero covariances among students

within a class. Given the structural models under consideration,

these non zero covariances are seen to equal o:* which is the class

effect. For simplicity, the structural model made the restriction

that every class be characterized by the same covariance structure.

Since classrooms are assumed to be independent, the covariance of

any two individuals from different classrooms is zero. Consequently,

the covariance matrix of Y, ZY , is a super diagonal matrix. Further,

given initial dependence, where X is a pre test, the covariance

matrices of X and XY (IX and ZXY) are also super diagonal matrices.

2

A* is zero and M? is a diagonal matrix.Given independence, 0

Consequently, the ZY matrix becomes diagonal. Thus, to appropriately

adjust for dependence an analysis strategy must have a linear model

with a residual term that has a subject by subject diagonal

covariance matrix.

Index of Response Strategy

One alternative to using the full model for analysis of

variance (ANOVA) of the two level nested design, is analysis of

variance of index of response using the pooled model. An index of

response is defined by:

Z = Y = KX

where

Z is the index of response;

Y is the post test observation;

X is the pre test observation;

and K is a known constant.
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Using Z as the dependent variable in ANOVA the linear model is

Z Z Z

= +

Zijk “ + “i Eijk

where

uz is the grand mean of index of response,

a: is the treatment i effect,

Z . . . .
and Eijk 18 the spec1f1cation error.

Since for the set of designs under investigation classrooms are

randomly assigned to treatments, a treatment effect on Z is equal to

a treatment effect on Y. A treatment effect on Z is defined

Since Z is a linear composite of X and Y,

z_ x
ui - ”i Kui

and

Z X

u = u - Ku

so that by substitution

X X

- “i - u - K(ui - u )

OZ

1

But, given random assignment of classrooms to treatments

= = = =3

U1 u2 ' 11t u

and

oz = - = a

i 11i u i

regardless of the value of K.

Thus, the null hypothesis for treatment effects can be stated

t 2

Z a = O .

=1
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Given the assumptions of the model F = MST/MS§°T can be used to test

the null hypothesis. Of particular concern here is the assumption

of independence which can be stated

Z 2

E1.k m NID (0 , cEz I)

tcsxl tcsxl tcsxtcs

Returning to the linear model for z and restating in terms of para-

meters of X and Y

Z.. = u - Kux + a

*

+ A.. - KA . + E - KV
ijk. 13i ij ijk ijk

Using the relationships in the structural model under consideration

this becomes

G

X
= p - Kp + a. + B - K A.. + H . + -k 1 ( 1 ) 13 13 (32 K) Vijk + ijk

Z..

13

The Covariance Matrix of Z

The covariance structure of Z has the form of a super diagonal

matrix

Mz <1: 9?

z ¢ M2

2 g. . ¢

tcsxtcs : ‘

¢ ¢ MZ   
where the within-class covariance matrix MZ is

M2 --M¥ + K2 Mx - 2mXY .

sxs exs sxs sxs

In terms of the parameters of My , MA and MXY , M2 can be expressed

as
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-MZ 2* 22 2 * r 2 22

— (oA + K oA - KoAA ) 1_1_ + (oE + K ov - 2KoVE)I

The diagonal element of M2 is

22 2 222

s - A _(oA + K oA 2KoAA ) + (oE + K oV 2KoEV) ,

and the off diagonal element is

2 22

* - *
(oA + K oA 2KoAA ) .

For independence to exist at the level of individuals for Z,

22 must be diagonal. The 22 matrix will be a diagonal if MZ is

diagonal. To make Mz diagonal,

22 2

_ * *=
K oA 2KoAA + oA O ,

(a gradratic equation in K).

To solve for K,

2

* _/ * *
2oAA (2oAA )2 --4o2AoA

 

 

 

 

 

K:

20A

Define

0' *

0* = AA

*
A A oA oA

Then,

* = * A

0AA 9 °A°A ’

J/fz 2 2 2*?

K_2°AA AA 4‘)AA AA 4AA

20A

* 2 2 2

+ * * *- * o - pAA oA oA

‘0AA ““0 T-T

A o o
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+ *—

o pAA ‘ pAA 1

The absolute value of the correlation coefficient, IpAA*I , ranges

from zero to one. If IpAA*I is less than one, K will be an imaginary

number. Thus, the only real solution of K is when *I is one andloAA

=3 * * =
K oA /oA . But, ipAA I 1 only when the class effects on X, Aij’

*

are perfectly correlated with the class effects on Y, A . This

11
*

ij and Aij dictates the specification

errors at the class level in the structural model, i.e.,

perfect relationship between A

Hij , be

zero. Thus, the revised structural model that is appropriate for

the index of response strategy must be

*

Yijk — u + oi + Aij + Eijk

= +
xijk “ + Aij Vijk

A* B A
ij ‘ 1 ij

Eijk ' BZVijk + Gijk '

It is this structural model that is used through the rest of this

study.

In conclusion, when there is perfect correlation between class

effects for X and class effects for Y and K = oA /oA , ANOVA of

*

index of response correctly adjusts for dependence among individuals.

Since K must be known a priori, it is useful to explore different

ways of thinking about the ratio oA /oA . Since from the revised

*

structural model,
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*

B1 is the regression coefficient of Aij on A

ij °

It can also be shown that under certain conditions the common

within treatment regression coefficient, 8 for Y on X is equal

 

 

S:T’

*to oA /oA .

Co (x - X)(Y - )
_ V 11k “1 ijk “i

BS:T- x
Var (Xijk - ui)

Under the structural model BS°T can be expressed as

2 2

B o + B o .

BS'T = l 2 g V (See Appendix B).

oA + oV

If B1 = B2, then

BS:T B B1

Since

= *
B1 oA /oA ,

B ' o */o
S:T- A A'

Thus, in addition to perfect correlation of the class effects when

the structural regression coefficients at the class level, B , and

1

at the individual level, 32, are equal, the common within treatment

regression coefficient, 8 is a correct adjustment coefficient to
S:T

create independence.

Further, it should be noted that for two level nested data,

if B1 = B2 then
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Define

8

Then,

Given B

Define

C:T

Then

BC:T 3

Given Bl

Define

Tot

Then,

Tot

Given B1

(The above

S:CT ‘

S:CT ‘
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— BC:T = 8s T = BTot = Bl

Cov(X -ux)(Y '11)

_ ilk ii, 113, ii

x
Var (Xijk - uij)

2

_ B2 GV_ __7___

OV

B2 ’ BS:CT = Bl '

 

 

8Tot = B1 '

illustrations use information from Appendices C and D.)
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Test Statistic
 

The test statistic for testing the treatment hypothesis can be

developed from the analysis of variance table of Z as shown in

Figure 4.1. From Figure 4.1, the expected mean square of treatments,

E(MSi), and the expected mean square of students pooled within treat-

2 2Z 2

ments, E(MSS:T)’ estimate the same parameter, (Bz-Bl) oV + oG ,

under the null hypothesis of no treatment effects. Given the

Z Z Z .

assumptions about Vijk and Gijk , the FS:T — MST/ MSS:T ratio is

distributed as a central F distribution with t-l and t (cs-1) degrees

of freedom under the null hypothesis of no treatment effects.

The power of the F2 test is higher than the F test. The
S:T C:T

power of the FS°T test is a function of the probability of Type I

error, the size of the treatment effects (oi), E(MS§.T) and degrees

of freedom (t-l, and t(cs-l)). Since treatment effects are identical

for the two tests and the probability of Type I error can be held

constant, differences in power are only a function of the last two

factors.

The degrees of freedom for the error terms of F and FZ are

S:T C:T

t(cs-l) and t(c-l) respectively. Thus, everything else held constant,

F: has higher power than F because of higher degrees of freedom.
:T C:T

The effects on power of the two error terms is not straight-

forward. Recall that

z 2 2 2

S:T) (32 ' B ° + 0GE(MS 1) v

and

N N

- *E(Msc:T) soA + oE .
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Model

2.. =Y.. -KX. i=1,2, ,t
ijk ijk ijk j=l,2,. ,c

k = 1,2, ,8

X

= - + + - +
°r Zijk (“ B1“ ) “i (32 Bl) Vijk Gijk

Assumptions

2

Vijk % NID (0, ov)

2

Gijk % NID (0, oc)

oVG = 0

Source of Sum Mean

Variation d.f. Square Square E(MS)

2

Z

T t t(T)t1 2(2 2 2 M2 m1+13 22rea men sc1 i..'- ..) ST SCE:I ( 2-31) 0V

2
+O'G

d 2 z 2 2

Stu ent (S.T) t(cs-l) 2 (Zijk - 21..) MSS:T (B2 - Bl) ov + oG

ijk

Ms;
Given Ho: a1 = 0 , Z N F

MS t-l, t(cs-l)

S:T

 

Figure 4.1: ANOVA Table for the Index of Response Model

Using Individual Students as the Units of Analysis
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E(MSC'T) can be expressed as

2 22 2

E(MSC:T) = soA* + BzoV + oG .

When B2 = 31’ E(MS§:T) is clearly smaller than E(MSC:T)° Also, if B1

and 32’ have the same sign, E(Msng) is smaller than E(MSC:T)' But,

when B1 and B2 have different signs, the magnitude of dependence and

class size must be taken into consideration. Thus, generally the

F§:T test has smaller error variance than the FC:T test.

Given that data on a covariate exist for building an index of

response, the power of the FZ test might more appropriately be
S:T

compared to the power of F2 ' * = =C:T . Given that pA A 1.0 and K

o */o
A A ’

z _ z
E(Msc:T) - E(MSS: )

T

(The analysis of variance table for index of response using the full

model is reported in Appendix E.) Since the two test statistics,

FS'T and FC'T , have equal expected mean square errors, their

difference in power is solely a function of their difference in

degrees of freedom. Thus, because of greater degrees of freedom

F2 has greater power than F

S:T C:T '

In conclusion, index of response is a useful method of analysis

for two level nested data when the class effects on the covariate

are perfectly correlated with the class effects on the dependent

*

1Aij . Given that A1:] = BlAij

adjustment coefficient K which must be known a priori is equal to

*

variable: i.e., Aij = B , the

a ratio of oA* over oA . Under this condition, another test can
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be developed by using classroom as the unit of analysis, i.e.,

Z Z Z
. FFC:T The S:T and the FC:T statistics test the correct treatment

hypothesis. The power of Fi'T is higher than FC'T because of larger

degrees of freedom and a generally smaller error term. When

Z Z Z

comparing FS:T to FC:T , the gain in the power by using FS:T is a

function of the gain in the degrees of freedom alone.

Analysis of Covariance
 

When the adjustment coefficient K = oA*/oA is not know a priori,

an alternative strategy that allows the coefficient to be estimated

from data would be helpful. One such strategy is analysis of

covariance (ANCOVA).

Consider a one way ANCOVA. The linear model involving a random

covariable is

Yijk = “ + a“: + BS:T (Xijk ’ “)8 + *3ij

where

Y is the post test,

BS:T is the common bivariate regression slope of Y on X,

u is the grand mean of Y,

W is used to denote adjustment by covariate X,

a: is the adjusted treatment i effect,

X is the pre test,

“X is the grand mean on post test, and

Egjk is the error term.

The null hypothesis is stated
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i=1

For the model, a treatment effect is defined

aw:

i “i

x x

- ” - 88:13 (“i ' u ) '

But given random assignment

X: X: = X: X

”i “i -.. ut u ,

and

ow = - = a

1 pi u 1

regardless of the value of 8 Therefore, when the pooled model

S:T'

ANCOVA is applied to data considered in this study, treatment effects

are unbiased and the correct treatment hypothesis is tested.

An F test of the null hypothesis about treatments can be provided

given the assumptions that

Ew N NID (9- oZW I )
_ '

9
o

tcsxliJk tCSXl E tcsxtcs

In addition, ANCOVA assumes that the within treatment slopes are

equal across all values of i and that Y and X are bivariate normal.

These assumptions are the same as those for classical ANCOVA except

that the covariable is random. In using ANCOVA when X is random,

one can still obtain unbiased estimaters and valid confidence inter-

vals and tests from the usual analysis. The only difference from

the classical result is that the variances of the estimators are

larger. Discussion of a random covariate in ANCOVA can be found

in DeGracie (1968), Winer (1971), and Huitema (1980).



50

The Covariance Matrix of EW
 

The pooled model ANCOVA can be expressed in terms of parameters

in the structural model as follows:

X

Yijk = “ ' BS:T “ + “i + (Bl ' Bs:r) Aij + (32 ’ BS:T) Vijk + Gijk

where

Ew =(B-B )A +(B-B )V +G .
ijk l S:T ij 2 S:T ijk ijk

Under the independence assumption, the covariance matrix of Egjk must

be diagonal. From the assumptions of the structural model

0AV 2 0AG = OVG = 0 '

Therefore,

W 2 2

2E = (Bl - BS'T) 2A + (32 - BS'T) 2V + 2G .

tcsxtcs ° tcsxtcs ' tcsxtcs tcsxtcs

¢
2A

tcsxtcs ' ‘

  
where

2 v

MA=0A1 _1_
sxs sxl lxs

But XV and 2G are diagonal, i.e.,

V_2

2 - ovI

and

G 2
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Thus,

F w 2

E

M ¢ 2" ¢

W .

A ¢ ME 2

z = . - ¢

tcsxtcs - i.

' W

E
¢ ... ¢ M

- 1

EW

where the diagonal matrix of 2 is

W 2 2
E _ _ _ V G

M - (Bl BS:T) MA + (32 BS:T) M + M

sxs sxs sxs sxs

2 2 v 2 2 2

’ (B1- 8S:T) "Ail +(Hz-Barr) OVI+OGI '

EW

The diagonal element of M is

2 2 2 2 2

(Bl - BS:T) oA + (B2 - BS:T) o + o ,

and the off diagonal element is

2 2

O .

(B S:T) A
1 - 8

W

For independence to exist at the level of individuals, ME must be

diagonal.

Given the structural model considered in this study and given

B = B , it was shown that

l 2

B =3A_=B
o * °

S.T oA 1

EW

When B1 = BS'T , the off diagonal elements of M are zero, and 2

becomes a diagonal matrix.

-W
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Test Statistic
 

Given the structural model and the further restrictions that

pA*A = 1 and B1 = B2 , the pooled model ANCOVA provides a valid

test of the null hypothesis about treatments. The test statistic is

W W W

FS:T = MST/MSS:T m Ft-l, t(cs-l)

To be a useful analysis strategy, however, F:°T must also have

greater power than the test statistic for the full model. The most

appropriate comparison is to the test statistic for the full model

ANCOVA, FU'T , since the use of a covariate will in general provide

a more powerful test statistic than the full model ANOVA.

9

MSW

FW =._____ W F

C:T MSW t-l, t(c-l)

C:T

where the prime is used to distinguish the treatment mean square of

the full model ANCOVA from the treatment mean square of the pooled

model ANCOVA.

A treatment effect defined by the pooled ANCOVA model is

W _ _ _ X _ X

”1 - “i u BS:T (111 u )

A treatment effect defined by the full ANCOVA model is

I

OLu: _ _B x x

i “i “ C:T

Treatment effects for the pooled and the full ANCOVA models are

8 . Theidentical under the condition that B = B since 8 C'T
1 2

estimates of treatment effects for the two models differ only in

S:T a

the estimates of slopes. Under the null hypothesis for treatments,
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E(MS¥) = E(Ms:,T) = 06 ( t(cs_l) _ 2)

and ' ' 2

E(Msi) = E(Msgzr) = S ‘35— ( 1 + :(c-l) - 2)

2 1

= 0G (1 + ETEjij—jip

Then, '

E(MS}; ) = (1 + ice-1) - 2) E(Msg)

(1 + t(cs-l) - 2)

Therefore, E(Msg) > E(Msg) . Similarly, E(MSU'T) > E(MSW )

S:T

gain in power by using the pooled ANCOVA model instead of the full

The

ANCOVA model is a function of increased degrees of freedom and a

slightly smaller mean square error.



CHAPTER V

SUMMARY AND CONCLUSIONS

A commonly used design in educational research involves hier-

archically nested data. Classrooms of students are randomly assigned

to receive one of two or more alternative educational treatments.

Since dependent variables in educational research are typically defined

on students, however, the design results in students nested within

classrooms and classrooms nested with treatments.

A fully specified model for the design includes sources of

variation for treatments, classrooms, and students. Given the fully

specified model, the null hypothesis about treatments can be tested

using F = MST/MS There has been resistance on the part of
C:T C:T '

educational researchers to use the FC:T test statistic because for

these studies the test has few degrees of freedom for error and so

limited statistical power. For example, a design comparing two

treatments and having three classrooms per treatment might include

over 100 students and still have only four degrees of freedom error

for the FC:T test statistic.

As a result, researchers have sometimes turned to a pooled model

which ignores classroom variance. By ignoring classroom variance

the sources of variation become treatments and students. The

apparent test statistic for the treatment null hypothesis is then

54
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F = MST/MS The motivation for the pooled model can be
S:T S:T '

illustrated with the previous example. What had been four degrees of

freedom error for F becomes more than 100 degrees of freedom
C:T ’

rr r .e o for FS:T

The test statistic, F for the pooled model requires that

S:T ’

observations on students be independent of each other. Violation of

the independence assumption when using F has been shown to yield

S:T

a test which can be either too liberal or too conservative (Glendening,

1977; Paull, 1950). What is needed, then, are analysis strategies

which have greater degrees of freedom error than the FC:T test

statistic and which are valid when there is dependence at level of

individuals among observations on the dependent variable.

The search for more powerful tests of treatment effects in

hierarchically nested data began with an operational definition of

independence. Given balanced designs with two levels of nested

data, Glendening (1977) defined independence as equivalent to when

the expected values of classrooms and students mean squares are

equal. If students are considered a random factor in the design,

as they were in the present investigation, dependence occurs when

there are classroom effects which make the expected value of the

mean square for classroom exceed the expected value of the mean

square for students. Glendening labeled this situation as positive

dependence. Glendening also considered the possibility of negative

dependence which can result when students are a fixed factor in the

design. Under positive dependence, the F test is too liberal and
S:T
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so has spurious power (Glendening, 1977; Paull, 1950). The first

analysis strategy posed as a solution to the problem which dependence

creates for the FS:T statistic, involves a preliminary test for

independence. Based on the outcome of this preliminary test, either

the full model or the pooled model is used to test the null hypothesis

about treatments (Glendening, 1977; Paull, 1950; Peckham, et al.,

1969).

To be successful, the preliminary test and conditional pooling

procedure must keep the actual alpha level of the consequent test

(the conditional test) close to the nominal alpha level. Further,

-in order that the strategy be useful, the power of the conditional

test must be greater than the power of the unconditional FC:T test.

Glendening (1977) examined the validity of the preliminary

test and conditional pooling strategy. Analytically and empirically,

Glendening's findings opposed the use of the procedure. Glendening

concluded that given a moderate value of dependence, which is often

the case, the preliminary F test is not sensitive enough to help a

researcher guard against having a distorted probability of Type I

error for the conditional F test. This conclusion was consistent

with Pau11(1950).

Since a preliminary test for independence and conditional

pooling does not result in a valid test of the treatment hypothesis,

the present investigation considered additional alternatives. First,

the use of a quasi-F ratio to correct for dependence was considered

(Satterthwaite, 1941, 1946). The potential utility of the quasi-F
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statistic in situations of positive dependence can be seen in the

following ratio.

 

' _ MST " MSC:T + Mssmr

F ' MS
S:CT

Under the null hypothesis of treatment effects E(MST - MSC’T + MSS'CT)

2

and E(MSS°CT) estimate the same parameter, oE . The apparent

'

reference distribution for F is F where v was t(cs-l) and v

2 l ’v1,v2

could be computed from a formula provided by Satterthwaite. But,

the complex variance of the numerator and the simple variance of the

demoninator are not independent. Thus, the F. statistic which appeared

to hold promise as a test with greater power than FC:T in situations

of dependence and with no cost of additional information lacks a

known distribution.

Glendening and Porter (1974) suggested the possibility of using

ANCOVA to adjust for positive dependence. They pointed out that the

effects of positive dependence could be conceptualized as similar in

form to the problem created by confounding in quasi experiments. They

speculated that ANCOVA would remove the problematic variance of the

class effects (o:*) from both E(MSC:T) and E(MST) . Conceptually,

this would be equivalent to the ANCOVA procedures creating adjusted

observations that are free from positive dependence.

Index of response is another adjustment strategy which is closely

tied to ANCOVA. Thus, index of response was also considered in this

investigation.
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To consider the utility of index of response and ANCOVA

strategies, it became important to understand the possible causes of

dependence. Distinctions among when and how dependence can arise in

an experimental study could help to inform the selection of an

appropriate covariable.

Two main related tasks, then, were set for the investigation

of this study: (1) to classify situations of independence and depen-

dence in experimental studies; and (2) to investigate the possibility

of using an index of response and ANCOVA models to correct for positive

dependence among individual units.

As a result of the first task, four possible situations were

classified for an experimental study that involves two level hier-

archically nested data. Dependence could arise because students were

not randomly assigned for classrooms (initial dependence) and/or

class effects which occur during the study (during-experiment depen-

dence). Crossing these two dichotomous possibilities defined the four

situations (Figure 3.1).

Situation 1, independence, occurs when students are randomly

assigned to classrooms and there are no class effects. Analysis of

variance using the pooled model is the best analysis strategies

for testing the no treatment effect hypothesis (Glendening, 1977;

Cronbach, 1976).

Situation II includes dependence due solely to students not

being randomly assigned to classrooms. When students are not

randomly assigned to classrooms, each classroom represents a popu-

lation that could have a different distribution on the dependent
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variable. To the extent that classroom populations have different

means, there will be a classroom effect and so dependence among

observations taken on individual students. If index of response or

ANCOVA are to have potential for creating an adjustment which

eliminates dependence, the covariate must reflect the dependence

present at the outset of the experiment. A pretest would seem to

hold the greatest potential.

Situation III includes dependence which occurs during the

experiment. Common class experinces or class effects are the causes

of this dependence. Possible class effects are complex and global:

they might include effects due to subject matter, teacher effective-

ness, teaching strategies, student interactions and classroom milieu

which are not part of the definitions of treatments. Defining

covariables which reflect during—experimental dependence and which

might be used in index of response or ANCOVA is a substantive issue

worthy of study in its own right.

In Situation IV, both initial and during—experiment dependence

occur together. Under the simplest case when initial dependence and

during—experiment dependence do not interact with each other or with

treatments, the resulting classroom effects could be thought of as

having two additive parts, one for each type of dependence. To adjust

for Situation IV dependence the researcher would need to identify a

set of covariables reflecting initial dependence and a second set

of covariables reflecting during—experiment dependence.

In this investigation the utility of index of response and

ANCOVA for adjusting for dependence was restricted to use of a
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pre test in Situation II conditions. Further, classroom populations

were assumed to be normally distributed on the dependent variable

with a common variance but different means. In order for either

approach to be judged as having utility, their resulting test

statistics of the null hypothesis about treatments must have: 1)

a known sampling distribution, and 2) greater power than the test

statistics which results from the full model.

The structural model, assumed for the dependent variable, Y,

the covariable, X, and their interrelationship is given

*

Yijk = u + oi + Aij + Eijk

xijk= u +AiJ +Vijk

A* B A + H

ij " 1 ij 13

13k ' B2 Vijk + 013k

Assumptions

2

13 m NID (0, 0A)

2

Hij‘ m NID (O, on)

2

Vijk m NID (0, ov)

2

Gijk N NID (0, oc)

and

o = o = o - o - o - o = 0

Under dependence, the covariance structure of Y, X and XY (i.e.,

Xx , ZY and ZXY) are the form of super diagonal matrices. The diagonal
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matrices of Y, X, and XY (i.e., My , Mx and M ) are within class

covariance matrices and are expreSSed as

Y 2 I 2

M = o * 1 l + o I
A ._ _

Mx 2 v 2

- oA‘l_l_ + o I

MXY A '— oAA l_l_ + oEVI

Under independence, 2X , ZY and ZXY are diagonal matrices. Thus, an

analysis strategy that correctly adjusts for dependence will yield

a linear model with specifications errors that have a diagnonal

covariance matrix.

Given the structural model, it was discovered that an index of

response would only adjust for dependence when class effects on X

and Y are perfectly correlated (i.e., *l = 1.0) . Given thisIOAA

condition, an index of response

Z=Y-;A—X,

A

was seen to yield observations that are independent at the level of

individuals. The covariance matrix of Z was found to be

Z 2 2 2

2 = ((32 - K) ov + oG)I

Thus, a pooled model which uses Z as the dependent variable provides

a valid test statistic for the treatment null hypothesis, FS°T =

The FZ S'T test has greater power than the F2 test
S:T ' C:T

statistic from the full model using the same index of response because

2
MST/MS
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S'T test provides greater power

than the FC'T test from the full model using the dependent variable

of greater degrees of freedom. The F

both because of greater degrees of freedom and because the error

term for the FS'T test will generally be smaller than the error term

for the FC:T test.

Investigation of the pooled model ANCOVA revealed a valid test

for the treatment null hypothesis given the structural model for

X, Y and their interrelationship only when pA*A = 1.0 and B1 = B2

When B1 = B2 , it was seen that BS'T , the pooled within slope of

Y on X, was equal to the constant used to define the correct index

of response (i.e., B oA*/oA). Under this condition the ANCOVA
S:T =

pooled model yielded specification errors which have a diagonal

covariance matrix

2

2W = oGI ,

and the test statistic Fw = MSW/MSw . Fw was seen to have

S:T. T S:T S:T

greater power than the full model ANCOVA test statistic, FU:T ,

because of larger degrees of freedom and a smaller mean square error.

The key to the success of index of response and ANCOVA strategies

was the structural model and the further condition that class effects

on Y be completely accounted for by the class effects on X; i.e.,

Aij = B1 Aij . Index of response did not require any correlation

between X and Y for individuals within classrooms. ANCOVA, however,

required that the constant specifying the relationship between X

and Y at the level of individuals be equal to the constant that

specified the relation between class effects. Nevertheless, it was
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seen that the correlation between X and Y for individuals within

classrooms need not be perfect. ANCOVA was seen to adjust for

dependence when there was specification error in Y that was not

accounted for by specification error in X.

In general, then the results of this investigation supported

and expanded upon the conjecture by Glendening and Porter (1974)

about the utility of ANCOVA for adjusting for dependence. However,

their suggestion that X and Y must be perfectly correlated can be

relaxed to a requirement that the classroom effects be perfectly

correlated.
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*

Model: Yijk = u + oi + Aij + Eijk

* 2

Assumptions: A , m NID (o, UA*)

 

 

 

 

13

Source of Variation d.f. E(MS)

2

csiai

- *Treatments (T) (t 1) soA + t-l

2

Classes (C:T) t(c-l) soA*

2

XXX Eijk

. - _11_k____
Students (S.CT) tc(s 1) tc(s-1)

 

Treatments are fixed;

Classrooms are random; and

Students are fixed.
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THE REGRESSION SLOPE OF THE POOLED ANCOVA MODEL

Define 83° to be:

 

 

 

 

T

Cov (x — ux) (Y - u )
B = ijk 1 11k 1

S:T X

Var (Xijk - pi)

c A +v )(3 +2 )
= 0V ( ij ijk 11g, ijk

Var (Aij + vijk

0' *

= AA + oVE

2 2—

oA + oV

From

A* - B A
ij ‘ 1 ij

Eijk = B2 Vijk + Gijk

and oVG = 0 ,

* 2

0AA ’ B1°A

2

and oVE = Bzov .

Then, 2

- BloA + Bzo

BSoT 2 1.7

' o +'o

A v

If Bl = B2 ’ BS:T ' Bl
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Model:

Y - + + A* +
ijk " “ “i ij Eijk

x = X + A + v
ijk “ ij ijk

Assumptions:

. * 2*

Aij m NID (0, oA ) ,

2

Eijk W NID (0, GE) ,

2

Aij % NID (0, oA) ,

2

* = = * = =and oA E oAV oA V oAE 0

Define:

“i ’ u + 01

- + +A*1113 - LI 0-1 i'

x = x
111 11

X

- + A

“13' “ ij
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Expected

Variable Model Value Variance

* 2 2

+ *

Yijk “i ij Eijk O 0A + 0E

2

Yijk “ij ijk 0 GE

2

_ * __ 2 0'

.. u. .. + E.. 0 o * + E

13. 1 13 13. A. -;;-

i: 2

* +Yijk p i + Aij + Eijk (xi CA G

X 2 2

+ +
Xijk “i ij Vijk 0 0A °

X 2

Xijk “ij ijk 0 0v

2

_' X +lV' 0 o2 + 0V

ij. “1 ij ij. A.. -;;—

X 2 2

+ +
Xijk “ ij Vijk 0 ° °
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COVARIANCE COMPONENTS OF DEVIATED SCORES

Model:

Y - + + A* + E
ijk ’ “ “i ij ijk

= +
Xijk “ Aij + Vijk

Assumptions:

* 2*

Aijk W NID (0, 0A ) ,

2

Eijk m NID (O, oE) ,

2

Aij m NID (0, 0A) .

2

Vijk N NID (0, 0V) ,

* = = * = =
and oA E oAV oA V oEV 0

Define: “i = u + oi

+ +A*
“ij ‘ “ “1 ij

X = X

Hi 11

X

and uij - u + Aij
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Model:

2 =Y -K§ 1312000t

i . i’. i‘. ’ ’ ’
j J J j I 1,2,.. .,c

kgl’Z’OfiOO

or 2 =(u-Bux)+a+(B-B)V +6
ij. 1 i 2 l ij. ij.

Assumptions:

_ 2

ij. % NID (0, oV/s)

_ 2

ij. W NID (0, oG/s)

CIVG=0

Source of Sum of Mean

Variation d.f. Square Square E(MS)

t 2

_. _- 2 z scilo1

Treatment t-l scE(Z -Z...) MS _1 +
(T) i i.. T t

 

2 2

Classroom t(c-l) s 2 (Z1.-j .) MS€°T (B 1) 0V + o

(C:T) j,k °

MST
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