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ABSTRACT

THE LOW TEMPERATURE COOPERATIVE BEHAVIOR OF THE

RARE EARTH SALTS GdCl3 and PrCl3

BY

Jan Paul Hessler

We have studied the three-dimensional ordered phases

of GdCl3 and PrCl3 with Cl nuclear magnetic resonance in

the temperature range 0.3 K to the transition temperature.

The resonance transition frequencies were measured with a

simple pulsed N.M.R. spectrometer to an accuracy of i 1 kHz.

Simple 3He and 4He systems were used to obtain the necessary

low temperatures. The absolute temperature was measured

to an accuracy of i 2 mK.

GdCl3 is an ionic ferromagnet with a Curie temperature

of 2.2 K. In the ordered state the internal field at the

chlorine site is along the principal X—axis of the electro-

static field gradient tensor. The method of energy moments

is used to determine the asymmetry parameter, n = 0.4265 i

0.0001. The nuclear quadrupole interaction Hamiltonian is

diagonalized and a chi squared analysis is used to deter-

mine the internal fields at the chlorine site, B(T). Both

35Cl and 37C1 transition frequencies are observed and used

in the analysis.

In the critical region, T/Tc > 0.91, the internal

field follows the relationship B(T) = A(TC-T)B where
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A = (4368.4 i 31.1) gauss/KB, Tc = (2.214 i 0.0016) K, and

B = 0.3904 1 0.006. Below 1.0 K the internal field follows

B(T) = BO - (AlT3/2 + A2T5/2)exp(-6/T) where

B0 = (4950.8 1 2.9) gauss, A1 = (963.1 i 68.3) gauss/K3/2,

A2 = -(90.7 i 41.6) gauss/KS/z, and e = (0.430 t 0.037) K.

The measured temperature dependence of the internal

field below 0.6 K is compared with the spin wave predict-

ions based on the exchange parameters measured by pair

spectra. There is a definite discrepancy. By comparing

the internal field measurements to the bulk measurements

of magnetization, we have calibrated the internal field in

terms of the magnetization. This indicates an anomalously

large zero-point magnetization defect. The magnetization

measurements are also compared to the molecular field and

Green function predictions. A possible mechanism and

experiments to test the mechanism are put forth to explain

the large zero-point magnetization defect.

The low temperature phase of PrCl T - 0.4 K,

3’ critical—

was studied to determine the nature and symmetry of the

ordered state. In the paramagnetic region the asymmetry

parameter was determined by applying an external field along

the principal X-axis of the electric field gradient tensor

and using the method of energy moments. n was found to be

0.4937 1 0.0001. In the ordered state, the local magnetic

and electric field gradients were measured at the Cl site

by applying an external field perpendicular to the high
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symmetry axis, C3, and studying the symmetry and behavior

of the rotational spectrum.

The Splitting of the pure quadrupole resonance line

at 0.4 K is attributed to an effective crystallographic

transition.

to have no

transition

from P63/m

asymmetric

The application of a 10 Kgauss field appears

effect on the

temperature.

to P6 or P3.

line shape in

zero field Splitting and on the

The crystal space group is lowered

An interpretation of the observed

the ordered state is presented

which implies that the three-fold symmetry is slightly

distorted.
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I. INTRODUCTION

Magnetism is a cooperative phenomenon. This fact makes

its study both interesting and challenging. Most attempts

to describe the c00perative behavior in ionic compounds

have assumed that we may use the concept of localized

moments and the description of these local moments as a

starting point. We then assume that a satisfactory approach

to the understanding of magnetic phenomena will follow from:

1) a knowledge of the localized magnetic ions, 2) a know—

ledge of the interactions between the localized ions, and

3) an accurate treatment of the statistical mechanics for

the implications of the above two models for the behavior

of the system.

Parts one and two of this approach have motivated the

idea of a spin Hamiltonian. The spin Hamiltonian is simply

a mathematical model which is sufficiently general to

account for all the experimental information observed in

one and two. It is in this sense that the spin Hamiltonian

is phenomenological. For a discussion of the derivation of

spin Hamiltonians see Stevens (1963). Of paramount impor-

tance is the assertion that the spin Hamiltonian describing

the interaction between two isolated spins plus the princi-

ples of statistical mechanics is sufficient to deduce the

cooperative many body behavior of magnetism.

A knowledge of the low lying states of the magnetic

ion is obtained by studying the configuration terms of the

l



free ion by Optical methods (Judd, 1963). Paramagnetic

resonance is then used to study the effect of the

crystalline environment on the low lying levels (Hutchings,

1964). Figure 1.1 is a schematic representation of the

3+

Pr ion in the C symmetry of PrCl3 (Judd, 1957).
3h

The interaction between the spins may also be studied

by paramagnetic resonance, and generally may be described

by a spin Hamiltonian of the form

+

_ + . + . - , 2
H12 — S1 012 32 + 3(§1 32) (1.1)

For a rather complete discussion of exchange see Anderson

(1963a, 1963b) and Wolf (1971). This form of the inter-

action has proved very useful, eSpecially for the transition

metal ions. However, in the rare earths the 4f electrons

are shielded by the 552 and 5p6 shells, resulting in a

significantly smaller exchange interaction due to the

decreased overlap. Because of this reduction, competing

effects from the crystal fields and the spin-orbit coupling

contribution to the magnetic moment must also be considered.

This complicates the form of the exchange interaction and

allows other interactions to act as coupling mechanisms.

The best known coupling mechanism is the dipole-dipole

coupling, and it is the only one encountered classically.

From magnetostatics the magnetic dipole energy is given by

E |3(Ml-M2-3(Ml°f1)(Mz'f2))/Irl-r2 (1.2)

+ + , + +

where M1 and M2 are magnetic moments located at r1 and r2

respectively. For the special case of S state ions with
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+

(rl - f2) the axis of quantization, the spin Hamiltonian

simplifies to

_ 2 2 + .+ _ z z 3
312 — g “B(Sl 32 35152)/r12 . (1.3)

The well known exchange interaction was introduced by

Heisenberg (1926) and by Dirac (1929). Exchange effects

are a direct consequence of the Pauli principle. Dirac

showed that for the particular case of n electrons confined

to Specific orthogonal orbits, the Splitting of the energy

levels is the same as though we forgot about permutation

degeneracy and used the potential

vex = -igj(1/2 + ZSi'Sj)Jij ‘ (1.4)

where

J =fdrdrw+(r)w+(r)—£:—W(r)w (r) (15)
ij 12ilj2+_+iZjl"

r1 r2

and 11 and wj are the orbital wave functions for the states

i and j respectively. Extensions of this idea have led to

equation (1.1).

A third type of coupling is due to the aspherical

charge distribution found in non S state ions. The moments

may be coupled via electric multipole moment interactions.

An example of this is the electric quadrupole—quadrupole

interaction observed in CeCl3 (Birgeneau, Hutchings, and

Rogers, 1968).

A fourth coupling mechanism is virtual phonon

exchange. This interaction is Similar to the above and

may be viewed in two ways. For non S state ions, the

electrostatic interactions in the form of the crystal field



and the interacting multipoles may be induced or modified

by the phonons. In the case of the S state ions the

exchange and dipole-dipole interaction coefficients Jij

and aij' where aij a l/rij, are strong functions of

distance and can couple to the phonons. Although this is

generally considered a weak interaction, it is very impor—

tant in the case of non-Kramers orbital degeneracy. This

mechanism has been used to account for the antiferro-

magnetism in UO (Allen, 1968).
2

An approach to studying magnetic systems is now

straightforward. From symmetry and other considerations,

we deduce the form and number of allowed interactions

necessary to construct an interaction Hamiltonian for the

system. We then experimentally determine the magnitude

and behavior of the interaction coefficients in the

Hamiltonian. With this information we apply the laws of

statistical mechanics to deduce the c00perative behavior

of the system. This behavior is measured, and we compare

our results to the theoretical prediction. 'If the effective

Hamiltonian is correct and the statistical mechanics has

been applied properly, we Should expect agreement. Often

this is not the case. We are then left with three alterna-

tives: l) the effective Hamiltonian is not accurate enough

and we must include additional information, 2) the statis-

tical mechanical treatment was inadequate and needs

improvement, or 3) the assumption that we can describe the



COOperative phenomena in terms of Simple two-spin inter—

actions is not valid.

In this work we study the COOperative behavior of

two rare earth salts, GdCl3 and PrCl3. We use the chlorine

nuclear magnetic resonance as a microscopic probe. This

will give us information about the magnetic field and the

electric field gradient at the chlorine Site.

In chapter II we discuss the crystal preparation and

structure, along with the N.M.R. measuring apparatus and

the low temperature apparatus. In chapter III we present

the Single ion optical and paramagnetic resonance results

for the Gd3+ ion. The pair Spectra in LaCl3 and EuCl3

along with the high temperature magnetic Specific heat

results are discussed to arrive at an effective two-Spin

interaction Hamiltonian. With these parameters we use the

cluster expansion technique to derive the molecular field

approximation and the two-spin correction term. We discuss

the problems involved in evaluating the two—Spin correction

term, and two approximate solutions. The Green function

formalism and the spin wave approximation are also briefly

discussed.

In chapter IV we set up the nuclear quadrupole inter-

action Hamiltonian and apply symmetry arguments to simplify

the analysis of the observed spectrum. The method of

energy moments is used to determine the asymmetry parameter,

and an exact diagonalization is used with a chi squared



analysis to determine the magnitude of the internal field

as a function of the observed transition frequencies.

Analytic expressions are found which describe the temper-

ature dependence of the internal field in the critical

region and in the Spin wave region. The low temperature

measurements, T < 0.6 K, are compared to numerical calcula-

tions of the temperature dependence of the magnetization

based on a spin wave calculation and the measured exchange

parameters. Here there is a discrepancy which requires

further investigation.

The internal field measurements are also compared to

saturation magnetization measurements to calibrate the

internal field results in terms of saturation magnetization

results. With this we detect an anomalously large zero-

point magnetization defect. A possible mechanism to

explain this defect is presented along with some experi—

ments which should help our understanding of the low temper-

ature behavior. We also compare our measurements to the

molecular field and Green function calculations. Agreement

with the molecular field calculation is relatively poor,

and the Green function calculation is qualitatively correct.

In chapter V we present the optical and paramagnetic

resonance results for a single Pr3+ ion in LaC13. The

axial pair Spectra measurements are also reported, but no

conclusive statement can be made about the interaction

mechanism responsible for the three-dimensional ordering

at 0.4 K.



In chapter VI we study the low temperature phase of

PrCl3 by applying an external magnetic field in the plane

perpendicular to the symmetry axis, C The symmetry of3.

the rotation spectrum, and the behavior extrapolated to

zero applied field indicate that the phase transition at

0.4 K is effectively a crystallographic phase transition.

Studies in an applied field up to 10 Kgauss indicate that

a magnetic field has no effect on the zero field splitting

of the pure quadrupole resonance line nor on the transition

temperature. Symmetry arguments are used to Show that the

effective crystallographic Space group is either P6 or P3.

An analysis of the observed asymmetric line in the ordered

state is presented which indicates that the 3-fold symmetry

is also slightly distorted, although this is not verified

by an analysis of our rotation Spectrum. The fact that

PrCl3 has a non-Kramers orbitally degenerate ground state

leads us to suspect that the ordering mechanism is

dominated by the lattice vibrations. We review the litera-

ture for evidence to this effect.



II . EXPERIMENTAL TECHNIQUE

A. Crystal Preparation
 

The anhydrous rare earth trichloride from Lindsay was

slowly melted under vacuum in a vertical quartz tube. The

polycrystalline sample was then transferred to a horizontal

distillation apparatus and distilled in vacuum into a 17 mm

diameter quartz tube. After distillation the tube was

sealed under vacuum, detached, and placed in a gradient

furnace. The lower tip of the tube was placed in the

gradient and observed until a single seed crystal was

produced. The tube was then Slowly lowered through the

gradient, producing a clear single crystal.

Because the crystals are very hydroscopic, once they

were removed from the tube they were stored in mineral oil

when not in use and liberally coated with Apeizon N grease

during use. No analysis of the stoichiometry or impurity

content was attempted.

The crystals are uniaxial with the axis easily recog-

nized by observation of the striations that appear on the

cleavage planes which are parallel to the axis. The

crystals were cleaved, cut on a diamond saw, and ground

with a grinding wheel to a convenient size and Shape.

B. Crystal Structure

Zachariasen (1948) has determined the structure for

the rare earth trichloride series lanthanum to gadolinium

and found it to be hexagonal With space group P63/m. There

9



10

are two molecules per unit cell. The locations of the rare

earth ions are determined by symmetry as being i(%,%,%)

while the physically inequivalent chlorines are at

:(u, v, 1/4), (V, u-v, 1/4), (v-u, E, 1/4). Morosin (1968)

has recently determined the parameters u and v and the cell

dimensions for several of the anhydrous rare earth

trichlorides. Figure 2.1 shows the crystal structure.

The point symmetry for the rare earth ions is C3h' All

the rare earths and chlorines lie in the mirror plane.

C. N.M.R. Measurements

All transition frequency measurements were made using

a Simple pulsed N.M.R. spectrometer developed by S. Parks

(1967). This Spectrometer compares the applied rf Signal

from a cw oscillator to the induced rf signal from the

spin system. The induced rf frequency is measured by

displaying the beat pattern between the two frequencies on

an oscilloscope and noting the frequency of the cw oscilla-

tor at the zero beat. For accurate measurements five

independent readings were taken for each frequency. The

standard deviation of these readings was generally less than

1 kHz. To minimize sample heating at low temperatures a

minimum amount of power was applied to the rf pulse by

varying the voltage on the transmitter stage of the

spectrometer. To assure thermal equilibrium, the line with

the largest dv/dT was measured at 10 to 20 minute intervals

while the temperature of the bath was maintained constant
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Figure 2.1 Structure of the Rare-Barth Trichlorides La to Gd.
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to within 1/4 mK. When two consecutive measurements of

frequency agreed to within l/2 kHz the sample was assumed

to be in thermal equilibrium with the bath.

D. Temperature, Calibration and Measurement
 

All of the interesting phase transitions in the rare

earth trichlorides occur below 4 K. This necessitates the

use of liquid 4He and 3He as refrigerants. Experimental

techniques in this temperature range have been discussed

by White (1968).

For our experiments in the temperature range of 1.2 K

to 4.2 K the sample was immersed directly in the 4He bath.

A 200 ohm Manganin resistor was used as a heater for fine

control of the temperature below the lambda point and as a

stirrer above the lambda point. The 4He vapor pressure

(Brichwedde, 1970) was used as an absolute measure of

temperature throughout the entire temperature range. Above

a vapor pressure of 100 Torr a standard U-tube mercury

manometer was used to determine the vapor pressure. Below

100 Torr an MKS capacitance manometer Operated in the

digital mode was used. This has a day-to-day reproduci—

bility of 0.02 Torr + 0.05% of the pressure reading.

Above 1.3 K this accuracy is well within the accuracy of.

the 1958 4He Scale of Temperatures.

Below the lambda point the temperature was regulated

by monitoring the vapor pressure and keeping it censtant

to within 0.002 Torr. This corresponds to a temperature



l3

fluctuation of 0.45 mK at 1.2 K. The measured vapor

pressure and temperature were strongly coupled as indicated

by the fact that the resistance of a 33 ohm Ohmite carbon

resistor located at the sample Site tracked the vapor

pressure with no visible lag in time.

For the temperature range of 0.3 to 1.2 K a conven—

tional 3He single shot cryostat was used. The design

follows closely that of Walton (1966). Figure 2.2 Shows

the low temperature section of the cryostat.

Above 0.6 K the 3He vapor pressure was used to deter-

mine the temperature (Sherman, Sydoriak, and Roberts, 1962).

To measure the vapor pressure a 1/4" o.d. stainless tube

was inserted inside the pumping line from the 1.2 K radiation

trap to approximately 1 cm above the surface of the liquid.

The tube was then increased to 3/8" o.d. and went independ-

ently to an MKS capacitance manometer at room temperature.

The day-to-day reproducibility when operated in the digital

mode is 0.006 Torr + 0.05% of the pressure reading. To

achieve a desired temperature, the vapor pressure was calcu-

lated and the appropriate corrections for the manometer were

employed. The digital dials were then set and the tempera-

ture was obtained by monitoring the pumping speed of the 3He

gas with a series of valves. A pressure fluctuation corres-

ponding to a temperature fluctuation of 0.1 mK was calcula-

ted for each temperature and the pressure maintained constant

within these limits.
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Below 0.6 K the thermomolecular correction becomes

significant, even for our large tube (Freddi and Modena,

1968). Also dP/dT becomes small enough that pressure

monitoring and measurement are not sensitive enough to

keep temperature fluctuations on the order of 0.1 mK.

Therefore, below 0.6 K, we used a germanium resistor for

temperature measurement and a carbon resistor for tempera-

ture fluctuation monitoring.

Both resistances are measured independently by two

Wheatstone bridges using a PAR lock—in detector as a source

and as a null detector. A Triad G-lO "Geoformer" was used

to isolate the unbalanced signal from the preamp and the

PAR detector. To eliminate the effect of lead resistance

for the germanium resistor a three lead Wheatstone system

was used with an arm ratio of 1:1. With this method the

lead resistance of 200 ohms at room temperature was

effectively nulled to within 2 ohms.

To calibrate the germanium resistor at low temperatures

the magnetic temperature, T*, of ferric ammonium alum was

used as a standard. The mutual inductance technique

(Abel, Anderson, and Wheatley, 1964) was used to determine

the susceptibility. The coils were calibrated using the

vapor pressure of 3He as the temperature standard between

0.6 K and 1.2 K. The relationship between T* and T for

T 1 0.2 K is

T* - T = 0.00548/T (2.1)
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to within 0.1 mK (Sydoriak and Roberts, 1957).

The resistance vs. temperature data for the germanium

resistor was then fitted to the equation

ln(R) = a0 + alln(T) + az/T (2.2)

from 0.3 K to 1.2 K. Four different sets of the coeffi-

cients a0, a1 and a2 were necessary to fit the data to

within 1 mK. At 0.7 K the resistance is 2239 ohms with

a dR/dT of -8.1 ohms/mK. Our Wheatstone bridge has a

sensitivity of approximately 1 ohm with a power level of

-9
10 Watts, thus we are able to detect temperature fluctu-

ations on the order of 0.2 mK at 0.7 K. The actual cali-

bration data and analysis are discussed in Appendix A.



III. GdCl3 THEORY AND BACKGROUND

GdCl3 belongs to the small set of compounds which are

both insulating and ferromagnetic; this is the primary

reason for studying it so extensively. From the experi-

mental point of view it belongs to a rather large series

of isomorphic compoundswhich are easy to grow. This

allows the experimentalist the opportunity to study the

Gd3+ ion with many experimental techniques.

A. Gd3+ Ion Properties
 

The ground level of Gd3+ is 88

1

7/2 with the only

(Piksis, Dieke, and

Crosswhite, 1967). The first excited level of Gd3+ in

is 6P at 32100 cm’l. The Gd3+ ions Show the

structure of the order of 0.1 cm-

LaCl3 7/2

least coupling with the crystal lattice of all the rare

earth ions. Superimposed crystal vibrations are generally

not observed in any lattice and the lines are reasonably

sharp even at room temperature.

Hutchinson Jr., Judd, and POpe (1957) and Hutchinson

Jr. and Wong (1958) have measured the paramagnetic

3+
in LaCl and CeCl . Theyresonance absorption of Gd 3 3

find a spin Hamiltonian of the form

H-g-s = g" “BHZSZ + IL “B(Hxsx + HySy) (3.1)

91 = 1.991 1 0.001.where gH =

17
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B. GdC13_Bulk PrOpertieS

Wolf, Leask, Mangum, and Wyatt (1961) have measured

the susceptibility and magnetization of single crystals of

GdCl3 and find that the substance orders ferromagnetically

at 2.2 K. The specific heat (Wyatt, 1963) has a lambda-

1ike anomaly at 2.2 K, further substantiating the onset of

long range order.

C. Pair Spectra of Gd3+
 

Birgeneau, Hutchings, and Wolf (1967) and Hutchings,

Birgeneau, and Wolf (1968) have measured the pair spectra

3+

of Gd pairs in LaCl and EuCl . They find the pair
3 3

Spectra are adequately described by a Hamiltonian of the

form

. . _ _ z z _ . . _ z z

H(l,]) - guBH(si + sj) Jijsi §j + aij(§i sj 3sisj)

+ H (i) + HCEF CEF(j). (3.2)

The axis of the pairs is the z-axis of quantization. J..

1]

is the isotrOpic exchange interaction and aij = gzug/rij.

HCEF is the single ion crystal field Hamiltonian. Because

the lattice parameters of LaCl and GdCl differ Signifi-
3 3

cantly, the variations of Jij and aij with respect to

temperature were studied in the LaCl case. From this the
3

dependence of Jij on gij was inferred, and extrapolations

to the GdCl3 lattice constants were made. The values of

Jij for each case are Shown in Table 3.1. It is interesting

to note that the nearest—neighbor exchange is antiferro-

magnetic and weak while the next-nearest-neighbor exchange
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is ferromagnetic and approximately four times larger than

the nearest-neighbor exchange. There is no definitive

explanation for this at the present time.

D. Relation of Pair Exchange Constants to Bulk Properties
 

There is no a priori reason why the exchange constants

measured by pair Spectra in a diamagnetic host should

determine the magnetic behavior of the bulk system. In

spite of this there is relatively good agreement between

the bulk prOperties and the pair exchange constants.

Marquard (1967) has developed a diagramatic technique for

calculating the high-temperature expansion coefficients

for magnetic systems with arbitrary symmetric tensor

interactions between all pairs of Spins. He has calculated

the first three coefficients for the specific case of GdCl3.

Clover and Wolf (1968) have performed high frequency

susceptibility experiments to determine the magnetic

specific heat at 20.4 K and 77 K. Their results for the

exchange constants along with the pair results are shown

in Table 3.1.

Table 3.1 Exchange Constants for GdCl
 

 

 

3

Specific Heat LaCl3a EuCl3

Jnn(K) -0.078 t 0.004 -0.033 t 0.004 -0.073 t 0.004

+

(K) 0.096 t 0.004 0.105 t 0.004 0.091 _ 0.004
nnn

    
aExtrapolated to GdCl3 lattice parameters
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The relatively good agreement between the Specific heat

results and the pair results for EuCl3 is encouraging.

The discrepancy in the LaCl3 measurements is not under-

stood, although the extrapolation procedure may not be

correct.

E. Magnetization Calculations
 

Now that we have a relatively good idea of the para-

meters that go into a phenomenological Hamiltonian for

the Spin systems we can use these parameters to predict

the behavior of the system. There are basically three

approaches used in calculating magnetization vs. tempera-

ture: the cluster series approximation, the double-time

temperature—dependent Green function formalism, and the

spin wave approximation.

1) Cluster Expansion (Molecular Field Approximation)

The oldest approximation method of treating the

Hamiltonian of a magnetic system is the molecular field

approximation. This has also had much success in predict-

ing the overall qualitative features of a magnetic system

such as: the lambda-like discontinuity in the Specific

heat, the dependence of magnetization on temperature, the

magnetic susceptibility, and the existence of a critical

point.

The basic assumption in the molecular field approxima—

tion replaces all Spin-spin interactions with a spin-

effective field interaction. This assumption therefore
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eliminates any Spin-Spin correlation effects. An extension

Of the "effective field" concept to include correlation

effects was first used by Mayer and Mayer (1940) in

treating the problem Of the non-ideal gas. This technique,

commonly called the cluster expansion, was used by Streib,

Callen, and Horwitz (1963) to derive a Similar series for

the Heisenberg ferromagnet. This series has the molecular

field approximation as the leading term. We Shall treat

our Hamiltonian with this technique, thereby reproducing

the standard molecular field results and Showing how higher

order Spin-spin correlations may be included, and the

difficulties involved.

Extending the pair Hamiltonian tO a sum over all pairs

we have the Hamiltonian for the system:

 

N

H = ‘9“BH.2 5: ' .2. Jijgi'gj -
1=1 (1,3) g + § +

3( .'r..)( .‘r..)

+ (911B)2 .X. l3 {Si'Sj - 1 1%~ 11_.} .

(1'3) rij rij

(3.3)

The first term is the Zeeman energy of the N gadolinium

ions, the second is the isotrOpic exchange interaction,

and the third is the dipole-dipole interaction. We assume

that the external field, H, is applied along the z-axis.

th
Si is the standard spin Operator for the i ion. Because

the ground level is 887/2, S = 7/2 in this case. J.. is

13

th
and jththe isotropic exchange interaction between the i

th
ions and fij is the vector between the i and jth ions.
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The summation (i,j) extends over all pairs Of ions in the

lattice, each pair being counted once.

First we transform the Spin Operators to the raising

and lowering Operators, Si = s: i isg. The Hamiltonian

is then

§ 2 1 z z 1 + - - +

H=-gu H S. - {A..S.S. +—-B..(S.S. +S.S.)

B i=1 1 (i,j) 13 1 j 2 13 1 j 1 j

[€11 (5737 + 5337) + cTi (3681 + 3156)]
l] l J J 13 l J 1 J

- [01? 5757 + of? 5181]} (3.4)
13 1 3 13 1 j

where the coefficients are given by

A.. = a.. + J.., (3.5a)

1] 13 13

Bij = Jij - aij/Z, (3.5b)

_ 2 2 _ 3
aij — (guB) (3cos eij l)/rij' (3.5e)

1| = 3 2 l . 110..
Cij 2 (guB) :3— coseij31n0ij e 13 , (3.5d)

and l]

:2 _ 3 2 l . 2 3120..
Dij - 4 (guB) :3— Sln eij e 13 . (3.5e)

ij

rij’ eij, and ¢ij are the standard spherical coordinates.

From the symmetry for a pair we have ¢ij = ¢ji

and eji = n — eij. This g1ves aij = aji wh1ch leads to

A.. = A.. and B.. = B... We also have CI; = -CII and

13 31 11 31 13 11
4.

0;: = Dgi. Because the Gd ions lie on a mirror plane, for

every ion above the plane at eij there exists an ion below

the plane w1th eij. = n — eij, and With ¢ij = ¢ij'°
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Therefore we have

i1 il :1 :1 :1
C..= (C..+C.. = (C..-C.. =0.

(1%) 13 E gj. 1) 13') Ej 1) 13)

(3.6)

All the ions on the mirror plane have Ci; = 0. Therefore

our Hamiltonian reduces to

N
z z z 1 + - — +

H = gu H X s. - ) {A..S.S. + — B..(S.S. + s.s.)}
B i=1 1 (ij) 1] 1 j 2 1] 1 j 1 j

- X (of? 3737 + 07? 5151}. (3.7)
(ij) 1] 1 j 13 1 3

We now divide the Hamiltonian into a perturbed and unper-

turbed part by introducing an expansion parameter oi,

o. = S - S? . (3.8)

The parameter S will be chosen tO minimize the free energy.

This will somehow imbody the behavior Of the ions outside

the cluster. The actual physical interpretation of S must

wait until after the analysis is complete. Our Hamiltonian

now becomes

H = E0 + Ligloi + H1 = HO + H1 (3.9)

where

_ _ — _ —2
EO — guBHNS NAOS , (3.10a)

L = ngH + 2AO§, (3.10b)

Nil

A = A.. , (3.10c)

O j=l 13

and



l + - - +
H = - Z {A..o.o. + — B..(S.S. + 5.3.)

.. 2l. (1]) 13 1.] 13 1 3 3

+ D1? 5787 + D7? sis? } . (3.10d)

1] l J l] l 3

The total free energy, F, is given by

-BF = 1n Tr exp[-B(HO + H1)] (3.11)

where B = l/kT. The unperturbed free energy, F0, is given

by

—BFO = ln Tr exp[—BHO]. (3.12)

We may introduce a correction tO the unperturbed free

energy, F', by

-8F' = -BF + BFO . (3.13)

TO derive the molecular field approximation we simply

assume —BF' = 0. Corrections to the molecular field

approximation are Obtained by expanding -BF' in a cluster

series.

Before we carry out the cluster expansion, we will

complete the derivation Of the molecular field approxima-

tion. The unperturbed free energy is given by

2
~8FO = -BNAOS + N In 41 (3.14)

where

_ z
¢i — Tr explBLSi]. (3.15)

We calculate S'by minimizing Fo with respect tO S.

Therefore

a
S = STSLI-ln Tr exp[BLS:] (3.16)

or
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S = s BS(SBL) (3.17)

where Bs(x) is the Brillouin function defined by

ZS+1

ZS

 BS (x) = 76' {(28+l)coth( )x - coth(-2-)Si)}. (3.18)

TO evaluate the magnetization we have

_ _. _9 _ F. .1 zM — 8H — 8 8H ln Tr exp[BLSi] (3.19)

or

_ 8 2

M —- NgUB m In Tr €Xp[BLSi] p (3.20)

but from equation (3.16) we have

M = NguBS . (3.21)

Therefore we identify S with <Sz> and have the standard

molecular field results.

In comparing our results with the standard molecular

field equations, (Smart, 1966), we must remember that our

effective exchange interaction, A0, is given by

A = Z J.. + d..
O . 13 13

J

= J + (gUB)2 Z —%—-(3 c0520.j- l) (3.22)

j r..

where 13

J0 = zlJnn + ZZJnnn (3.23)

21 is the number Of nearest-neighbors and 22 the number Of

next-nearest neighbors.

Returning tO the correction term in the free energy,

—BF', we see

-BF' = ln Tr exp[--B(HO + H1)]

- 1n Tr exp[-BHO]. (3.24)
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This is expanded in a cluster series of the form

'BF' = ln Tr p0 exp[ZQa] (3.25)

a

where

po = expl-BH01/Tr exp[-BHO] (3.26)

and the index a numbers the pairs (i,j) or "links" in the

crystal. The expansion may then be written

-BF' = ‘E‘I'BFgatl (3.27)

where |a) denotes each topologically distinct cluster.

The correction term can be computed to any desired order,

and the parameter § is then chosen to minimize the total

free energy. A criticism of this approach has been raised

by Morita and Tanaka (1966). They point out that the

condition of minimizing the free energy with respect to §

is not justified from the basic principles of statistical

mechanics. Using a variational technique, they show that

this approach is valid for the pair approximation. We

can therefore extend our expansion up to the two-spin

approximation.

A problem occurs when carrying the expansion to two

spins due to the fact that Ho and H1 do not commute.

However, this can be overcome by applying the theorem

- B

eBA e B(A+B’ = p exp[-f BAdA] (3.28)

o

where P is the Dyson ordering operator, and where

BA 5 e B e . (3.29)
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We have derived the two-Spin correction term and find

-BF(2 = 2 1n Tr exp[-BQ..] + single ion terms
) (i .) 1]

r]

(3.30)

where

_ _, z z z 2
..:-Q.. t. .... -Q13 13(S)(<l + J) AlJSlSJ

- % B..(sTsT + s"s+)
z 13 1 3 1 3

- 0+2 573" - T? s+sf , (3.31)

13 l 3 1] 1 J

and

Q (s) = gu H + 2(A — l-A )§ (3 32)
ij ‘ B o 2 ij ' '

. on 3.. and §, and the

J 1]

necessity to carry out the summation over many ions to

Because of the dependence of Qi

adequately include the effect of the dipole-dipole term,

this calculation is untractable.

Although Gd3+ has a Spin of 7/2, thereby making

Qij a 64 x 64 matrix, the calculation difficulties are

evident in the case of S = 1/2. We use as a basis set

the states ISI,SZ,S§,S§> where we adopt the convention

Isl,sz,+1/2,+1/2> ‘ |++> (3.33)

and

+1/2,-1/2> |+—> (3.34)2’

Qij then has the form

Isl,s



  

|++> |--> |’+> |+‘>

|++> F. Qij(S)-%»Aij
—D;§

0 0 -

|--> -91“? Qij(S)--1; A1]. 0 0

|-+> 0 0 +%'Aij ’% Bi]

..-. o 0 +31]. +3.3]. .

(3.35)

The coefficients Ai" B.., and Dij are all of the

3 1]

same order of magnitude, therefore we cannot neglect the

off-diagonal terms nor can we apply perturbation theory.

All coefficients depend on r.., 613 and ¢ij' the Spherical

ij

coordinates of the (i,j) pair, and Qij also depends on §.

Therefore we must diagonalize Qij for each pair in the

crystal and for each §.

We have carried out calculations in a very crude

approximation by neglecting the off-diagonal terms and only

considering the nearest-neighbor and next-nearest-neighbor

interactions. These calculations predict a transition

temperature slightly lower than the observed value, and a

temperature dependence of the magnetization which is

qualitatively correct. However, the crudity of this

approximation renders it invalid, and indicates that the

agreement is simply fortuitous.

An improved approximation would be to correctly treat
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the Operator Qij for the nearest-neighbor and next-nearest-

neighbor pairs and include the effect of the other pairs

only in A0. Although this is an improvement in terms of

an accurate treatment of the neighboring Spins in the two-

spin approximation, the two-spin cluster, even when treated

correctly for all spins, does not satisfactorily treat the

cooperative phenomena. This is especially true because of

the antiferromagnetic nearest-neighbor interaction present

in GdC13. For this reason this calculation was not

pursued further.

2) Green Function

A relatively recent approximation technique employs

the double-time temperature-dependent Green function

(Zubarev, 1960). The retarded double-time temperature-

dependent Green function is defined as

<<A(t);B(t')>> = - iB(t-t')<[A(t), B(t')]> (3.36)

where B(t-t') is the unit step function. <> denotes the

ensemble average and <<>> denotes the Green function.

A(t) and B(t') are quantum mechanical operators. The

equation of motion for the Green function is

i 3%- <<A(t),B(t')>> = 6(t-t')<[A(t).B(t')1>

+ <<[A(t),H];B(t')>> . (3.37)

Taking the Fourier transform over the time variable into

the energy variable gives
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N a
n
d

w<<A;B>>w = <[A,B]> + <<[A,H];B>>w (3.38)

where h-= 1.

Once the operators A and B have been chosen for the

problem, the solution of the Green function <<A;B>>w is

nontrivial since it is given in terms of a higher order

Green function <<[A1,H];B>>w which is also unknown. The

general technique is to approximate the higher order Green

function in terms of the lower order Green function. This

is called decoupling the equation of motion.

In magnetic systems the operators A and B are

generally 5: and 5:. The higher order Green functions

are generally of the form

;

21s» 339)
£Sj' r w ' ( '

<<s

The random phase approximation decouples this by assuming

2 i. $ 2 i. 1

(Sj' Sr>>w £¢j <S ><<Sj, Sr>>w . (3.40a)<<s

With this assumption we are now in a position to solve

for

(<33’ gf>>w , (3.40b)

Becker and Plischke (1970) have used the Hamiltonian

(3.7) in the Green function formalism and solved the

problem using the random phase approximation. We will

compare our results to their calculation.

3) Spin Wave Calculation

Unlike the cluster expansion and Green function

approaches which apply to all temperatures, the spin wave
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approach applies to a restricted temperature range. In

the spin wave approximation we have sacrificed the large

temperature range for an exact quantum mechanical treatment.

The linear spin wave theory was first considered by Bloch

(1930, 1932), and later by Holstein and Primakoff (1940).

The spin operators in the Hamiltonian are replaced by

creation and annihilation operators, a+ and a respectively,

by the substitution

s+ + (ZS)l/2a (3.41a)

s" + (28)l/2a+ (3.4lb)

S2 + S - a+a (3.4lc)

Only terms quadratic in the creation and annihilation

operators are retained. As long as the higher order terms

are not significant, i.e. as long as multiple scattering

processes are not important, the spin wave approximation

is valid.

Marquard and Stinchcombe (1967) have treated the

Hamiltonian in the spin wave approximation by generalizing

the interaction between the Spin operators to include any

symmetric interaction. They have also treated the dipole-

dipole interaction exactly by using the Ewald technique

to evaluate the k-dependent dipole sums.



IV. Cl N.M.R. IN GdCl3: RESULTS AND DISCUSSION

A. N.M.R. Hamiltonian

When a nucleus of spin I Z l is located in a lattice,

the Hamiltonian describing the interactions between the

nucleus and the local environments at the nuclear site

due to the lattice may be written as

+++
_).

H = - u‘g - %6:§E . (4.1)

The first term is the Zeeman interaction between the

nuclear dipole moments, E, and the internal field E,

The second term is the quadrupole interaction between the

4.

nuclear quadrupole moment tensor, 5, and the crystalline

++

electric field gradient (E.F.G.) tensor, 9%. We use the

XYZ coordinate system which diagonalizes the field gradient

++
+

tensor, -(VE)ij — Vijéij' as our reference frame. The

Zeeman interaction is then written

++

HM — - 9% I B

__ _1_ +— —+
— thIsz + 2 (I B + I B )] (4.2)

where

Q = yBO , (4.3)

Y is the nuclear gyromagnetic ratio.

The quadrupole interaction may be written

_ 2 _ 2 2 2 2
HQ - GAIBIZ I + n(IX + Iy)]/h (4.4)

where

A = eZQsz/4I(ZI+1) = eZQq/4I(ZI+1) (4.5)

and n is the field gradient asymmetry parameter,

32
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n = (Vxx - VYYVVzz (4.6)

 
with the standard convention IV _.|VxxI i-lvyyl 22

The matrix elements of the Hamiltonian are given by

 

<mlHMlm> = - 9m cose, (4.7a)

Q . i¢
<mIHMIm+1> = - 5 /(I-m)(I+m+l) Sinee , (4.7b)

2
<m|HQIm> = A[3m - I(I+1)], (4.70)

and

<m|HQ|m+2> = <m-2IHQIm> =

 

./(I+mflI—m+1) (I+m-1) (I—m+27 52"- n. (4.7a)

The angles 0 and ¢ are the polar and aximuthal angles

respectively of g in the XYZ principal axis system.

From the analysis of a nuclear resonance spectrum we

may determine: 1) the magnitude of the electric field

gradient, q, 2) the asymmetry parameter, n, and 3) the

direction and magnitude of an internal field H. All of

these parameters are determined at the nuclear Site only.

35
Figure 4.1 Shows the Cl N.M.R. transition frequen-

cies in GdCl3 as a function of temperature below the

transition temperature of approximately 2.2 K. The facts

that we see only three transition frequencies in the

ordered state and that the chlorines lie on a mirror plane

indicate that the internal field at the Cl site must be

along C3. Also, because of the mirror plane one of the

principal axes of the E.F.G. must be parallel to C3. In
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Figure h.l. 35C1 Transition Frequencies in GdCl3
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all the rare earth trichlorides lanthanum to gadolinium

we find this to be the X-axis.

we now use the fact that the X-axis of the E.F.G. and

the internal magnetic field coincide to simplify our

analysis of the N.M.R. spectrum.

B. Determine ngby the Method of Moments
 

The asymmetry parameter is easily determined by the

method of energy moments (Brown and Parker, 1955). They

let the (ZI + l) eigenvalues of the Hamiltonian be equal

to A , n = l, 2, ... (21 + l). The moments of energy are

defined as

S1 = Z An , (4.8a)

n

s =sz (48b)
2 n ' '

n

and

S = X A3 (4 8c)
3 n n ’ '

The first moment is equal to zero since the representation

is traceless. The second and third moments, S2 and S3,

can be regarded as experimentally determined quantities

if we can construct the energy level diagram from the

observed transition frequencies. This is possible if each

of the (ZI + 1) levels is implicated in at least one

observed transition. Brown and Parker Show that it follows

without approximation that

2 1 2
1V (4.9a)2)+p

and
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_ 2 _ 2 2
S3 — P3C3 (l n ) + 3P2C3V X

(3 c0320 - l + ncosZ¢Sin26). (4.9b)

C3 is the pure quadrupole frequency interval with n = 0,

c3 = 3 eZQq/ZI(ZI-l)h = 6A, (4.10)

v is the Larmor frequency of K in the field H,

v = pB/Ih. (4.11)

The coefficients pi are polynomials in I as follows:

p1 = 2I(I + 1)(21 + 1)/3!, (4.12a)

p2 = 21(1 + 1)(2I — 1)(21 + 1)(2I +3)/3(5!), (4.12b)

and

p3 = 21(I+l)(ZI-3)(21-1)(2I+l)(21+3)(2I+5)/3(7!).

(4.12c)

For our case of I = 3/2, the coefficients reduce to:

p1 = 5, p2 = 1, and p3 = 0.

For the case of n # O the observed pure quadrupole

 

resonance frequency, V0, is given by

6ezoq(1 + § n2)l/2
VQ = . (4.13)

4I(2I - l)h

Therefore we may express C3 as

C3 = VQ/p (4.14)

where

1 2)1/2
O = (1 + 3 n . (4.15)

We now use the fact that the internal field, H, is

parallel to the X-axis to reduce the expressions for the

second and third moments. We find
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+ 5v

(4.16a)

and

U
) ll

1
0

(n-l) (4.16b)
 

Since the magnitude of the internal field is a function of

temperature and still unknown, we solve equation (4.16a)

for v2 and substitute into equation (4.16b) to get a

quadratic equation for n whose solutions are given by

D t (02 — 4AC)1/2
 

n = 2A (4.17)

where

_ 2 _ 2 _ 2

A — 25 VQ (82 v0) 53/3, (4.18a)

_ _ 2 2

c — A 3 s3 , (4.18b)

and

_ 2 2

D — 2A + -3- S3 . (4.18C)

Figure 4.2 Shows the energy level scheme for the Cl

nucleus in zero magnetic field and in a finite magnetic

field. Because we see three lines in the ordered state,

each going to the zero field pure quadrupole line at the

transition temperature, we may uniquely determine the

energy level diagram in terms of the observed frequencies

f2, f3, and f4. The relationships between the energy

levels and the transition frequencies are given by

411 = - f2 — 3f3 + 2f4, (4.19a)

412 = — £2 + 3f3 — 254, (4.19b)

413 = - £2 + £3 + 2E4, (4.19c)

and
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4A4 = 3f2 + f3 - 2f4. (4.19d)

We are now in a position to determine n at any temper-

ature. All we require is a knowledge of the pure quadru-

pole resonance transition frequency, which we assume

remains constant through the phase transition. Table B.1

of Appendix B shows the average of the five independent

frequency measurements for all the observed transitions

and the standard deviation of the frequency measurements.

From the low temperature results we find

n = 0.4265 i 0.0001 . (4.20)

C. Determine the Magnitude of the Internal Field
 

We could apply the method of moments to determine

the magnitude of the internal field as a function of

temperature; however, we do not always have the three

observed frequencies necessary to uniquely determine the

energy levels. An alternate approach, which will allow us

to determine the magnitude of the internal field with only

a single observed frequency, is to calculate the transition

frequencies in terms of the internal field magnitude and

then solve for the field magnitude.

The Hamiltonian written in matrix form from equation

(4.7) is



4O

  

 

 

 

 

3A - % a o /3'An o

0 -3A — - (2 o f3'An

/3 An 0 -3A + % Q o

L o /'3' An 0 3A + -23-() .

This is easily solved and gives

_ _ g _ 1 2 2 _ ‘7
A1 - 2 2\/CQ + 4(9 QvQ/p) , (4.22a)

_ _ g 1 2 2 _ *7
A2 — 2 + Z‘VAQ + 4(9 QvQ/o) , (4.22b)

_ Q _ 1 2 2 '
A3 — ?- vaiQ + 4(9 + QVQ/p) I (4.22C)

and

_ Q 1 2 2 7
A4 - 2 + §\/QQ + 4(9 + QvQ/o) . (4.22a)

The transition frequencies are now given by

fl = A4 - A1 , (4.23a)

f3 = A3 - A1 , (4.23c)

and f4 = A3 - A2 . (4.23d)

Since there are two isotOpes of chlorine which have a

Spin of 3/2, 3Sc1, 75.4% abundant, and 37c1, 24.6% abundant,

we observe two pure quadrupole resonance transitions in the

paramagnetic state at 5314 kHz and 4188 kHz respectively.

In the ordered state we see three lines for each isotope.
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The energy levels of the different isotopes will be

different because of the difference in the nuclear

quadrupole moments, given by

35v 35Q

Q - _
57—— — 37— — 1.26878 (4.24)

v0 Q

and the differences in the nuclear gyromagnetic ratios

35
* 0.4172 kHz/gauss (4.25a)

and

37
¥ 0.3472 kHz/gauss (4.25b)

To take advantage of the additional data from the

two isotOpeS in determining the magnitude of the internal

field, we employ a chi squared analysis. we define x2 by

1' _ 3' 2
x2 = (fi(T) fi(B))

2
|

I
H

|
'
-
'

 

i,j Af(1w)2 + Afg(sd)2 (4'26)

where

35 or 37, an isotOpe label,

(
.
1
.

ll

i = l, 2, ... (21 + 1), a line label,

N = the total number of observed lines at a given

temperature

fi(T) = the experimental average of five independent

frequency measurements on line i of isotope j,

at temperature T,

fi(B) = the calculated frequency of line i, j and is

a function of the internal field B only,

Af(lw) = the inherent uncertainty in the frequency

measurement due to the finite line width,

assumed independent of isotope and line

label, and
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Afj(sd) = the standard deviation for the five

independent frequency measurements.

A simple computer program for the CDC 6500 was used to

determine the value of B that minimizes x2. Because the

line width is very dependent on temperature and not

directly measured by our Spectrometer, we varied the line

width in a systematic manner to force x2 to have a value

no greater than 2.0. The uncertainty in the calculated

field, B, was then determined by making a contour plot of

x2 vs. B in the vicinity of Xiin' From this contour the

uncertainty could be assigned by noting the value of B

for which x2 equaled xiin + 1.0. Figure 4.3 shows the

results of the internal field vs. temperature for GdClB.

Table 3.2 of Appendix B tabulates the results of the x2

analysis.

D. Comparison of Temperature Dependence to Theory

1) Calibration

Nuclear magnetic resonance in the absence of an applied

external field measures the local field at a nuclear Site.

This field is given by

 

+ 3(<§j>‘§ij)fij <§.>

Bi = (guB) Z { r5 - -—%— }

3 1 ij rij

- ()rm1lt)-1 Xij - <§j> . (4.27)

The first term is the field due to the moments of the Gd

ions, the second term is the transferred hyperfine field.

+

A is the transferred hyperfine interaction tensor between
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the ith nucleus and the jth ion, and Sj is the spin of

the jth Gd ion. The bracket, <>, denotes the thermal

average. The time necessary for thermal averaging is of

the order of the period of the phonon motion. This is

many orders of magnitude smaller than our sampling time,

therefore we may consider <§j> as a temperature dependent

vector.

If the lattice parameters are independent of tempera-

ture and field, i.e. no thermal contraction or magneto-

striction, the dipolar contribution to Bi is proportional

to <S>. Similarly, if i is temperature and field independ-

ent, the total Bi is then directly proportional to <§>.

Because we have no easy and direct way of measuring

the temperature and field dependence of the lattice

constant and the term i, we make the usual assumption that

they are temperature and field independent.

Magnetization measurements are very difficult and

often inaccurate. Wyatt (1963) has measured the magnetiza-

tion vs. temperature for GdCl3 by noting the temperature

and field of the discontinuity in adiabatic isentropic

magnetization measurements. Unfortunately his thermometry

is only accurate to :4 mK, and he does not discuss the

accuracy of his field measurements. From his curve of

Specimen temperature vs. applied field during isentropic

magnetization we can reasonably assume that the temperature

of the kink is known to $4 mK and the field to ilO Oersteds.
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Using this as an estimate for the accuracy of his data,

we have superimposed our N.M.R. results onto his magneti-

zation results, using the relationship

M(e.m.u./cm3) = KB(gauss) (4.28)

where K = (0.1232 i 0.0027) emu/cmB-gauss. Figure 4.4

shows this comparison.

Wyatt has also measured the magnetization in applied

field using a vibrating sample magnetometer. Unfortunately

at an applied field, H, of about (1/2) NMS, where N is the

demagnetizing factor and MS is the spontaneous magnetiza—

tion, the magnetization deviates from the expression

M = H/N. If the law had held up to fields H = NMs then

the point of departure would have been sudden and the value

of the field would have been a measure of the Spontaneous

magnetization. He estimates the spontaneous magnetization

by plotting H against the internal field, Hi’ and extrapo-

lates to Hi = 0. The results are Shown in Figure 4.5

along with our results using a calibration constant,

K = (0.1137 2 0.0013) emu/cm3-gauss. Because of the

uncertainty in the extrapolation procedure and because of

the lack of agreement in the temperature dependence between

our measurements we will use the isentrOpic magnetization

measurements as a calibration.

We must keep in mind the limitations of this calibra-

tion. Whenever possible we will compare our results to

the temperature dependent part of a theory, thereby not

relying on the calibration. All fitting of our data to
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analytic expressions will be carried out using the internal

field data, and all coefficients will be quoted in the

apprOpriate units. When it is necessary to compare our

results to magnetization calculations, we will include

the above assumed error in the calibration.

One question which always arises when studying a

ferromagnet is whether the resonances are from the center

of the domains, or the domain walls. we have no conclusive

evidence to answer this question. We infer that the

resonance occurs in the domain rather than the domain wall.

Because of the strong dipole-dipole interaction we would

expect the domain resonance to be very broad, which we do

not observe. Wyatt (1963) assumes the domains have a very

small cross section with a wall thickness of one lattice

Spacing. His magnetization measurements confirm this

assumption. If this is true, the precise meaning of a

domain wall resonance is doubtful. Measurements in an

applied field may Shed some light on this question.

2) High Temperature Critical Behavior

Domb and Sykes (1962) and Fisher (1967) have pointed

out that magnetic systems may be characterized by a set

of "critical exponents" in the vicinity of the critical

temperature. For the magnetization one writes

M(T) = A(Tc - mg (4.29)

where TC is the critical temperature and B the critical

exponent.
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Figure 4.6 shows a plot of 1nB(T) vs. ln(TC-T) for

T > 1.980 K. The very striking linearity indicates a

behavior consistent with the critical exponent. Using

a non-linear least squares fitting program we find

B(T) = A(TC - '1')8 (4.30)

where

A =(4368 i 31.3) gauss/K , (4.31a)

TC = (2.214 1 0.0016) K, (4.31b)

and

B = 0.3904 1 0.006 . (4.310)

2
The x for the thirteen point fit between 1.980 K and

2.170 K is 0.710. Table B.3 of Appendix B compares the

measured and calculated fields.

Although we do not have any data available for T/TC >

0.985 this behavior is consistent with the Specific heat

results of Landau (1971), which indicates that the

critical region extends to T/Tc ~ 0.91.

The value of B is consistent with measurements on

other systems. It is definitely not equal to 0.5, the

value predicted by both the molecular field theory and

the Green function random phase approximation calculation.

The small value of x2 indicates that better data are

needed to actually detect a deviation from critical

behavior predictions. It is not impossible to improve on

our data. The most immediate improvement would be to keep

temperature fluctuations below 10 uK and measure the
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transition frequencies with a frequency modulated oscilla-

tor and record the absorption line. This may also extend

the data to a higher limit in T/Tc, but one should not

be too Optimistic. As we approach the transition tempera-

ture, the line width also follows a critical exponent

behavior and becomes very large. It is this inherent

limitation on the measurement of B(T) vs. T with N.M.R.

that cannot be eliminated.

we should also note that Landau (1971) has made high

resolution Specific heat measurements on large Single

crystals of GdCl He finds that the asymptotic form for3.

the specific heat is not singular. The transition is of

the "diffuse" type (Pippard, 1957). He finds that the

critical behavior of the Specific heat ends at T/TC ~ 0.999.

If microscopic imperfections are severe enough, they

may limit the maximum range of the correlations; the

result could be an effective subdivision of the sample

into an array of microcrystals. The microcrystals will

not be identical and could have slightly different order-

ing temperatures. In fitting his Specific heat results

Landau has assumed a gaussian distribution for the fraction

of subsystems that order at a given Tc' He finds a half-

width of 1.5 mK will reproduce his experimental results

exactly. This distribtuion of critical temperatures will

greatly affect any measurements on B(T) in the vicinity

of T .

c
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3) Low Temperature Behavior

As we mentioned in the previous chapter, the low

temperature behavior of the magnetization provides the

best comparison of theory and experiment because the

theoretical treatment of the Hamiltonian is exact over

a finite temperature range. In their calculations of

magnetization as a function of temperature, Marquard and

Stinchcombe (1967) have shown that for very low T

a! a T5/2 e‘e/T (4.32)

0

where

AM 2 (Mo - AMO) - M(T). (4.33)

M0 is the saturation magnetization and AMO is the zero

point magnetization defect. The exponential term is

due to the fact that there is a gap in the magnon disper-

5/2 behavior is unusual, andSion curve at k = 0. The T

it is unfortunate that the temperature necessary to observe

this behavior is estimated to be below 50 mK. To observe

the temperature dependence of the magnetization to the

5/2 behavior is almostaccuracy necessary to establish a T

impossible. Even with the high accuracy of the N.M.R.

measurements the changes in B(T) are so small that it is

not technically possible to measure and maintain the

temperature of the sample to the required accuracy.

Before comparing our results to the numerical calcula-

tionS of Marquard and Stinchcombe for the magnetization vs.

temperature we will fit our results to an analytic
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3/2 for T < 1.2 K.expression. Figure 4.7 shows B vs. T

This suggests that we may fit our results to the analytic

expression

B(T) = B — A TV2 e"e/T . (4.34)
o 1

Since the spin wave approximation is a series expansion_

we have also fitted the data to

3/2 G/T
+ A2T5/2)e' . (4.35)B(T) = BO - (All'

The results of these fits are shown in Table 4.1. The

low value for the sum of the squares indicates that within

our experimental accuracy we have a valid analytic

expression for B(T). Table B.4 of Appendix B compares

the measured and calculated field for both equations.

In comparing our results with the numerical calcula—

tions of Marquard and Stinchcombe (1967) we recall that

our calibration of the magnetization is uncertain, there-

fore we must compare the temperature dependence only.

From their numerical calculations we see that at T = 0.300K

they have M(T)/MS = 0.99460, where MS is the saturation

magnetization. If we force our B(0.3 K)/C to equal

0.99460 we have C = 4940.8 gauss. Using this constant

we can now compare the temperature dependence of the

magnetization. Figure 4.8 shows Marquard and Stinchcombe's

numerical results and our data normalized to agree at

0.3 K. The uncertainty in the data is the uncertainty

in B(T) deduced from the x2 analysis. This shows there

is a definite discrepancy between the theory and the
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Table 411 Low Temperature Analysis

 

 

Eqn. 4.34 Eqn. 4.35

Number of Data Points 20 20

Temperature Range 0.310 - 1.000 0.310 - 1.000

Bo(gauss) 4957.5 1 2.4 4950.8 1 2.9

A1(gauss/K3/2) 811.0 a 9.9 963.1 a 68.3

A2(gauss/K5/2) - -90.7 i 41.6

0(K) 0.343 t 0.015 0.430 t 0.037

Sum of Squares 9.97 4.312  
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experimental results.

Marquard and Stinchcombe have also estimated the

zero point magnetization defect by taking an unweighted

average over the whole Brillouin zone. Their result is

0.2%. Since the non-interacting Spin wave approximation

is doubtful for large k, they feel, by analogy with the

antiferromagnetic ground state problem, that the "true"

value may be even smaller. Using the calibration from

Wyatt's data and the T = 0 value of our analytic

expression, B0 = (4950.8 i 2.9) gauss we have that

Mo = (609.9 1 13.7) emu/cm3. For complete alignment of

the 887/2 ground state we would expect 7 uB/ion or

Mo = 668 emu/cm3. We therefore have a zero point Spin

deviation of (8.7 i 2.1)8. Although this result is very

tentative, it provides strong incentive for further

investigation of the zero point spin deviation.

4) Molecular Field and Green Function Comparison

From the derivation of the molecular field approxima-

tion we recall that including the dipole-dipole interaction

introduces an additional term into the expression of the

exchange strength. We have

2_ 2 1 _
Ao — JO + (guB) Z r.. (3cos eij 1) (4.36)

J 13

where

Jo = zlJnn + ZZJnnn , (4.37)

21 is the number of nearest-neighbors, and 22 the number

of next-nearest-neighbors. we have calculated the dipole
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sum term using the Ewald technique. For the lattice

O 0

parameters a0 = 7.3663 A and c0 = 4.1059 A we have for a

Spherical sample

A l 2 _ 0-3

X -—-(3cos e..- 1) - 0.03089 A (4.38)

3 rij 13

Taking the value of g as 2.0, the effective exchange due to

the dipoles alone, Jdd’ is 0.0764 K. Using the EuCl exchange
3

constants, J = -(0.073 t 0.004) K and J = (0.091 i 0.004)K
nn nnn

we have A0 = (0.476 t 0.032) K. The molecular field Curie

temperature, Tc’ iS given by

TC = AOS(S+l)/3k . (4.39)

Using our value for A0 we have Tc = (2.50 i 0.17) K.

The calculation of magnetization vs. temperature is

done by solving

§§%.( %_,)x = Bs(x) (4.40)

C

self consistently, where Bs(x) is the Brillouin function,

B ( ) _ 28+l ZS+l l

s x _ _2S— _—°°th ‘ES’ X ‘ 28
coth 5% . (4.41)

T/TC is the reduced temperature, often labeled Tr' The

reduced magnetization, Mr = M(T)/M(0), is given by Mr = Bs(x).

It is a simple matter to solve equation (4.40) for Bs(x)

as a function of Tr on a computer.

When comparing magnetization vs. temperature results,

all theoretical predictions look approximately the same.

Because the curve of Mr(Tr) is a universal curve for all

results in the molecular field approximation, we will not

compare the actual magnetization results, but the difference
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between the reduced magnetization in question and the

reduced magnetization in the molecular field approximation

as a function of reduced temperature.

We first normalize our experimental measurements of

temperature to Tr by dividing T by the TC calculated in the

critical point discussion. Therefore Tr = T(K)/2.214(K).

In normalizing our magnetization measurements we must first

convert our interna1.field measurements to magnetization.

We cannot Simply normalize our B(T) by dividing Bo because

this would eliminate the zero point magnetization defect.

We therefore convert our B(T) to M(T) by using

K = (0.1232 i 0.0027) emu/cm3—gauss, and then calculate Mr

by dividing by 668 emu/cm3. Thus we have our data in the

form of Mr vs. Tr’ We then use the computer to calculate

Mr(Tr) in the molecular field approximation and subtract

this from our measured results.

Figure 4.9 is a plot of Mr(data) - Mr(molecular field)

vs. Tr' The error bars on the data points are due to the

uncertainty in the calibration constant, K. AS we see,

near Tc the magnetization rises faster than the molecular

field prediction. As the temperature is lowered the experi-

mental results fall below the molecular field prediction

because the molecular field does not predict a zero point

magnetization defect.

In the Becker and Plischke (1970) Green function calcu-

lation the predicted Curie temperature is (2.48 i 0.12) K-
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Using their preprint we have determined Mr(Tr) and

subtracted the molecular field prediction. This curve is

also Shown in Figure 4.8. The curve has an accuracy of only

1% because of the uncertainty in measuring the distances on

the preprint graph. As we see, the Green function prediction

is qualitatively correct, although the correction near TC

is far too much.

E. Conclusion
 

The measurement of internal field vs. temperature at

the Cl Site is very accurate. The accuracy of the field

measurements ranges from 0.4% near TC to 0.05% at the low

temperatures. The temperature measurements are within the

accuracy of the present temperature scales. With this

accuracy we conclude that our low temperature results do

not agree with the Spin wave calculation. Whether this is

due to assumptions made in the calculation or an insuffic-

ient phenomenological Hamiltonian is not yet certain.

The tentative discrepancy between the zero point

magnetization defect predicted by the Spin wave theory and

the experiment must be investigated further. We hope to

measure this more accurately by doing N.M.R. in an applied

field.

If the large value for the zero point magnetization

defect is indeed real, we must find a mechanism to explain

3+

this. Although Gd is an S state ion and the optical

spectra Show no evidence of crystal field phonon interact-
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ions, it is possible there may be a strong phonon-magnon

coupling. Because the exchange integral is a strong

function of distance and because of the long range dipole

term we may expect significant phonon-magnon coupling.

Rives and Walton (1968) have measured the field

dependence of the thermal conductivity in MnC12°4H20 at

temperatures well below the Néel temperature. Here the

Mn2+ ion is also an 8 state ion, although the dipolar

contribution to the exchange interaction is negligible.

In the antiferromagnetic state they find a very strong

dependence of the thermal conductivity on applied field,

resulting in a kink at the Spin flop transition. Similar

experiments can and Should be done on GdCl3.

These two experiments will hopefully provide the

theorist with enough new information to again tackle the

theoretical problem of the magnetic behavior of GdC13.



V. PrCl3 THEORY AND BACKGROUND

The Pr3+ ion and PrCl3 in particular have proven to be

very interesting. The concentrated salt has two regions of

c00perative behavior. The first is a linear chain magnetic

behavior centered around 0.85 K, and the second is a phase

transition to a three-dimensional ordered state at 0.4 K.

we will be primarily concerned with the latter phase transi-

tion.

A. Pr3+ Ion Properties
 

The absorption spectrum of the Pr3+ ion Shows the

3
ground level to be H4 (Judd, 1957). The point symmetry

in LaCl3 is C3h’ which gives a non-Kramers degenerate ground

state, cos(0)|4,i4>-+Sin(0)|4,i2>, with the notation IJ,MJ>.

The first excited state is |4,3> and is 33.1 cm“1 above the

ground state.

Hutchinson Jr. and Wong (1958) have measured the para-

3+ in LaC13. Their

results are summarized by the spin Hamiltonian

magnetic resonance absorption of Pr

H = 9N u stz
xx yy

B +g-LIIB(HS+HS)+

hcASzIz + AXSX + AySy. (5.1)

The first two terms are the Zeeman interaction terms between

the electron Spins and the applied field. The third term is

the transferred hyperfine interaction between the 141Pr

nucleus, I = 5/2, and the electron Spins. The ground state

63
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of the C crystal field Should not give rise to paramagnetic
3h

resonance Since 9 = 0 and the transition from one state of

the doublet to the other does not contain either a AMJ = 0

or a AM = :1 transition. They have included the fourth
J

x y . _ 2 2 1/2
term, AXS + AyS With A — (AX + Ay)

crystal strains and distortions, and thermal fluctuations.

to account for

Their results are g = 1.035 1 0.005, g = 0.1 i 0.15,

2 1
A = (5.02 t 0.03) x 10’ cm’l, and A = 0.02 cm— . Later

Culvahouse, Pfortmiller, and Schinke (1968) have Shown that

the microwave electric field is responsible for the magnetic

field dependent absorption of Pr3+ ions. They replace the

A term with a term of the form y(ExSx + Eysy) where

4 l).
y = 6.0 x 10- (cm-1/statvo1t. cm-

B. Pr3+ and Pair Resonance
 

The Hamiltonian for two interacting ions, each with an

effective spin of one-half, may be written in the form

(Culvahouse, Schinke, and Pfortmiller, 1969)

1 l H 92 S2 mm' mm'( )Tlm(Il)Tlm' 1

0
4
"
)

H — (fi'

Amm'(2)Tlm(Iz)T1m'(SZ) + Jmm'(1’2)Tlm(sl)Tlm'(SZ)‘

(5.2)

The first two terms are the same as the Single ion terms

discussed above. The last term is the interaction term

between the electron spins. The existence of an inversion

center between the Spins and the fact that the axis joining
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the nearest—neighbor spins has a rotation symmetry of three

or higher reduces the Hamiltonian to the form

_ z z z x x x

H — g" uBH (31 + $2) + gl.uB[H (81 + $2) +

y y y z z z 2

H (81 + 52)] + A(Ils1 + 1252) +

XX XX yy yy

B(IlSl + 1252 + 1181 + 1232) +

+,'* 222

K051 52 + K 5151 . (5.3)

The interaction term may also be written

2 z _ x x y y

where

Pfortmiller (1970) has measured the pair Spectra of the

O, LaES,nearest-neighbor pairs of Pr3+ in La2(C2HSSO4)6‘9H2

and in LaC13. His results are shown in Table 5.1.

In estimating the actual interaction mechanism for the

LaCl3 host lattice, Pfortmiller finds: l) the error in JOO

is too large to actually confirm a non-dipolar contribution

to JO , 2) exchange is a negligible source for J based
1-1'

on arguments regarding the size of the exchange, and 3) an

O

enhancement factor of 10 is necessary to account for Jl-l

in terms of an electric quadrupole-quadrupole interaction

alone. Finally he concludes, "Although large interactions

3+ 0 I O

n.n. pairs, the dom1nant mechan1sm,exist between the Pr

if indeed only one can be singled out, is not evident."

He also did not find any pair resonances that could



T
a
b
l
e

5
.
1
.

S
p
i
n
-
S
p
i
n

I
n
t
e
r
a
c
t
i
o
n

P
a
r
a
m
e
t
e
r
s

f
o
r

P
r
3

A
x
i
a
l

P
a
i
r
s

A
1
1

i
n
t
e
r
a
c
t
i
o
n

p
a
r
a
m
e
t
e
r
s

h
a
v
e

e
n
e
r
g
y

u
n
i
t
s

o
f

c
m
'
1

 

E
x
p
e
r
i
m
e
n
t
a
l

N
o
n
-
B
i
p
o
l
a
r

P
a
r
a
m
e
t
e
r
s

C
o
n
t
r
i
b
u
t
i
o
n
s

,
p

n
.
d
.

.
d
.

e

L
a
t
t
i
c
e

x
0

x
i
x
?

J
8
3
?

J
1
_
1

J
0
0

J
?
_
1

g
Z
X
P

A
e
x
P

g
s
z

A
e
x
p

 

L
a
E
S

+
0
.
4
6
7

-
o
.
4
7
4

-
0
.
0
0
7
3

-
o
.
4
6
7

-
0
.
0
0
0
4

-
0
.
4
6
7

1
.
6
6
5

.
0
8
1
5

0
.
0
0
7

0
.
0
0
0
1

1
.
0
0
1

1
.
0
0
1

1
.
0
0
0
3

1
.
0
0
1

1
.
0
0
0
3

1
.
0
0
1

1
.
0
0
2

1
.
0
0
0
5

1
.
0
0
2

1
.
0
0
0
1

L
a
C
1
3

+
1
.
9
8
3

-
1
.
9
0
5

+
0
.
0
7
7

-
1
.
9
8
3

+
0
.
0
8
4

-
1
.
9
8
3

0
.
8
2
7

.
0
4
0
9

0
.
2
0
4

0
.
0
0
9
4

+
.
1
0

1
.
0
0
2

+
.
1
0

+
.
1
0

+
.
1
0

+
.
1
0

1
.
0
0
3

1
.
0
0
0
5

1
.
0
0
3

1
.
0
0
0
1

 
 

 
 

T
h
e

s
i
g
n
s

o
f

t
h
e

i
n
t
e
r
a
c
t
i
o
n

p
a
r
a
m
e
t
e
r
s

h
a
v
e

n
o
t

b
e
e
n

d
e
t
e
r
m
i
n
e
d

e
x
p
e
r
i
m
e
n
t
a
l
l
y
,

b
u
t

r
e
f
l
e
c
t

t
h
e

s
i
g
n

o
f

t
h
e

c
a
l
c
u
l
a
t
e
d

E
Q
Q

i
n
t
e
r
a
c
t
i
o
n

p
a
r
a
m
e
t
e
r

f
o
r

J
1
-
1
.

N
o
t
e

a
d
d
e
d

i
n

p
r
o
o
f
:

t
h
e

S
i
g
n

o
f

J
1
_
1

l
i
s
t
e
d

i
n

t
h
e

t
a
b
l
e

w
a
s

e
x
p
e
r
i
m
e
n
t
a
l
l
y

v
e
r
i
f
i
e
d
.

66



67

definitely be attributed to the off-axis next-nearest-

neighbor pairs, although this does not preclude the

existence of strong next-nearest-neighbor pair interactions.

c. Bulk Properties
 

The pair spectra results indicate an interaction

between the Pr3+ ions along the chain. Colwell, Mangum

and Utton (1969) have measured the Specific heat of PrCl3

from 0.2 K to 4.0 K. They find a broad peak in the specific

heat centered at 0.85 K which is consistent with a linear

chain interaction. They also find a sharp peak at 0.4 K

indicating the onset of long range ordering. Because the

pair Spectra results do not give any information on the

interaction between the chains, and because the pure quadru-

pole resonance line Splits at 0.4 K, the three-dimensional

critical temperature, we undertook an N.M.R. study in the

three-dimensional ordered state to determine the type and

symmetry of the low temperature phase. Figure 5.1 Shows

35
the zero field quadrupole frequency of Cl as a function

of temperature (Colwell, Mangum and Utton, 1969).
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VI. Cl N.M.R. RESULTS FOR PrCl3

A. Paramagnetic Phase
 

Before we study the ordered phase of PrCl3 we determine

the asymmetry parameter, n, in the paramagnetic phase. The

pure quadrupole resonance frequencies in PrCl3 are 3500 =

4566.6 kHz and 37v = 3599.3 kHz. Figure 6.1 shows the
Q

35Cl transition frequencies as a function of applied field

for the field parallel to C the X-axis of the electric3:

field gradient tensor. With this data we apply the method

of moments discussed in chapter IV and determine a. We

find n = 0.4937. This is significantly different from the

value found by Hughes, Montgomery, Moulton, and Carlson

(1964) and may be attributed to the insensitivity of the

rotation diagram to n, which was the method they used to

find n.

35Cl transition frequencies asFigure 6.2 shows the

a function of orientation in a constant applied field. The

field is rotated in the plane perpendicular to the C3 axis,

and has a value of 500 Oersteds. Because of the 3-fold

symmetry, applying a field at an angle 0 to the Z-axis of

one chlorine site is equivalent to applying the same field

at an angle 0' = 8 1 120° to the other two Sites. We

therefore expect three identical resonance patterns Shifted

by 120°. From the symmetry of the interaction Hamiltonian

we also expect the resonance pattern to have a periodicity

of 180°. Both of these effects are observed. The subscript
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on the axis labels are arbitrary and refer to the different

Sites.

B. Low Temperature Phase, T < 0.4 K
 

Figure 6.3 shows the same rotation diagram in the

ordered state. The zero field Splitting is about 60 kHz.

Note that this resonance pattern also has a period of 180°

and that the 3-fold symmetry is still present. Also, the

principal axes of the electric field gradient tensor have

not shifted.

Figure 6.4 shows the field dependence of the transition

frequencies for the applied field parallel to the Z-axis

of site (1). This orientation is 30° from the Y-axis of

both sites (2) and (3). At this location the transition

frequencies for site (3) are identical to those of Site (2).

Of the twelve observed transition frequencies we are therefore

able to associate eight of them with site (2) and four of

them with site (1). Because the eight transition frequencies

of site (2) form two sets of four, each converging to one of

the zero field transition frequencies as H approaches
appl.

zero, we conclude that the zero field Splitting below 0.4 K

is NOT due to a Spontaneous internal magnetic field at the

chlorine site. If the Splitting is due to an internal

field we would see at most two lines converging to the zero

field resonance frequencies. The four line convergence

indicates that the degeneracy of the quadrupole Hamiltonian

present in the paramagnetic state is not removed by the phase
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transition, therefore there is no internal magnetic field.

The zero field splitting is due to an effective lowering

of the crystal symmetry, thereby creating two non-

equivalent chlorine sites.

This conclusion is further substantiated by a calcula-

tion of the observed Spectrum. The Hamiltonian of equation

(4.7) can be diagonalized exactly by a computer for an

arbitrary orientation and magnitude of B. We have calculated

the Spectrum for a rotation identical to that of Figure 6.3.

The pure quadrupole resonance frequency was assumed to be

the zero field frequencies measured in the ordered state.

The asymmetry parameter is the same as that measured in the

high temperature phase, T > 0.4 K, and the magnitude of the

internal field is just the applied field of 500 Oersteds.

The calculated spectrum and observed spectrum agree to

within the uncertainties in the measured frequencies. The

measured and calculated frequencies are shown in Table C.l

of Appendix C.

To determine if the application of a magnetic field has

any effect on the ordered phase, we applied an external

magnetic field of up to 10 Kgauss along the Y-axis. The

results are Shown in Figure 6.5. It appears that even a

10 Kgauss field does not alter the zero field Splitting.

We have also been unable to detect any changes in the

transition temperature with the application of a magnetic

field.
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To determine the symmetry of the ordered phase we note

that the 3-fold symmetry present in the high temperature

phase is retained in the low temperature phase. The Space

group of the high temperature phase is P63/m. This belongs

to the class 6/m or C6h in Schoenflies notation. The phase

transition lowers the symmetry, therefore the class of the

low temperature phase must be either 6/m or one of its

subclasses: 6, 6, 3, 3, 2/m, m, 2, I, or 1. The subclasses

2/m, 2, I, and 1 do not retain the 3-fold symmetry and may

be eliminated as possible candidates. The possible Space

groups for each of the other four classes are listed in

Table 6.1 along with the reason for their being allowed or

not allowed.

The allowed Space group P6 removes the symmetry element

of inversion and allows one set of three chlorines on a

mirror plane to move out and the other to move in. The

spaCe group P3 also removes the mirror plane, therefore

allowing the Pr to move out of the plane of the chlorines.

Although we have not definitely established the exist-

ence of a real crystallographic phase transition, the actual

ordering mechanism Should also remove these same symmetry

elements.

When the zero field lines are recorded with a cw

marginal oscillator and second derivative detection using

magnetic modulation we see the lines shown in Figure 6.6.

The upper line is from the high temperature phase and is
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Table 6.1. Analysis of Possible Space Groups for PrCl3

 

 

Class Space Group ' Reason

6/m P63/m ImprOper number of Cl positions

6/m P6/m Both Pr either in a plane or on

the same symmetry line.

6' P6' Allowed

6 P63 ImprOper number of Cl positions

6 P6h Improper number of Cl positions

6 P62 Impr0per number of Cl positions

6 P65 Impr0per number of Cl positions

6 P61 Improper number of C1 positions

6 P6 Both Pr in the same plane

3' R3' Improper number of Cl positions

- P3. Improper number of Cl positions

3 R3 Improper number of Cl positions

3 P32 Improper number of 01 positions

3 P31 Improper number of C1 positions

3 P3 Allowed
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symmetric down to the critical temperature. In the low

temperature phase the lines are asymmetric and change shape

as a function of temperature. This asymmetry is also

observed when frequency modulation is used. Since the low

temperature phase is of lower symmetry we have postulated

that the observed line is not necessarily due to a Single

site.

If we assume that the absorption curve is a gaussian

of the form

.1 1 _ (f—f°)2

A(f) = ——- —-e 2 (6.1)

0 20

{Zn

where f is the frequency of the detecting oscillator, f°

is the resonance frequency of the line, and a is the line

width, we find that the observed line Shape is given by

o 2

A"(f) = —l— {4(f-f°)2 - 2}.e'(f"f ) (6.2)
y;

where we assume 0 = —l;-.

/2

We then assume that the observed line in the low

temperature phase is given by

2
- - o

2 (f fi)
N 1 {4(f-f3) - 2} e (6.3)A"(f) = Z __

i=1 /F

where N is the number of nearly equivalent sites. We can

reproduce the observed asymmetry if we let N = 3, and let

f3 = f2 = 0 and f1 = l//2, or the line width. This calcula-

tion is Shown in Figure 6.7. From this we may conclude that

the 3-fold symmetry is slightly removed. An attempt to
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Figure 6.7 Calculated Second Derivative of Absorption Curve.
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measure the deviation from 3-fold symmetry using the

rotation Spectrum was unsuccessful.

C. Conclusions
 

From the N.M.R. results, we conclude that the low

temperature phase transition in PrCl3 is not to an anti-

ferromagnetic phase as previously assumed, but instead is

to an ordered state which effectively lowers the crystal

symmetry. The actual mechanism responsible for the ordering

can not be determined by N.M.R. Because the ground state

of the Pr3+ ion is a non-Kramers doublet we may assume that

a strong coupling to the lattice vibrations is present. If

the exchange constants are of the proper magnitude this will

allow a Jahn-Teller type distortion (Allen, 1968). Evidence

for a strong Spin-phonon coupling is present from the unique

C1 spin-Spin and Spin-lattice relaxation times (Mangum and

Thorton, 1969), and from the phonon bottleneck predicted by

the electron spin lattice relaxation measurements (Bohan and

Stapelton, 1969). Cohen and Moos (1967) have also observed

very sharp lines in the vibronic spectra which are not

understood.

A complete description of the phase transition will

probably include the phononS, but before this is possible,

we must determine the exact nature of the low temperature

phase.
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APPENDIX A

CALIBRATION OF THE 3He SOLITRON GERMANIUM RESISTOR

The susceptibility coil calibration data are given in

Table A. 1. These data are fit to the equation

D = A(T*-1) + B. Using a normal least squares analysis

the result is

l
D = -(50824 i 81)T*- + (69692 1 101) (A.1)

Because the normal least squares analysis weights all

points equally, which is not our case as indicated by the

variation in AT‘”.1 of Table A.1, we also fit the data

using a least squares program of Williamson (1968) which

weights the datum points with the inverse square of the

standard deviation of each point, and allows for standard

1
deviations in both the T*- and D values of the datum. The

result of this fit is

1
D = -(50527 t 76)T*- + (69382 x 75) (A.2)

The low temperatures calculated using these two results agree

to within the uncertainty in the calculated temperatures.

We will use the latter result because our data do not fit

the criteria for the normal least squares analysis.

Table A. 3 shows the raw data for R vs. D for T < 0.6 K and

the calculated temperatures based on the Williamson analysis.

The uncertainty in the temperature is due to the uncertain-

ties in the coefficients A and B. Table A.4 shows the

87



88

Table A.1. Susceptibility Coil Calibration Data

 

 

T(K) % 14% A'I' *X lO-l‘a Regciiiaigb 1:213:15;

1.200 0.8302 3.0 27hoh 20

1.121 0.8882 3.5 2h530 10

1.052 0.9h59 h.5 21582 10

0.990 1.00h5 5.0 18600 10

0.936 1.0617 5.9 15693 10

0.887 1.1196 7.0 12935 10

0.8h2 1.1785 9.7 09898 10

0.802 1.236h 12.8 06889 20

0.766 1.2930 1h.1 03976 15

0.701 1.h108 24.3 -01936 10

0.673 1.h681 31.9 -0h900 10

0.6h7 1.5256 3h.0 .07836 05

0.623 1.5828 h5.1 -10808 05

0.600 1.6h17 56.1 -13873 10     
a The uncertainty in T*‘1 arises from the uncertainty in T which is

approximately constant for all temperatures.

b This is the dial reading on a Cryogenics mutual inductance bridge and

is directly pr0portional to the susceptibility.
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calibration data for R vs. T for the temperature range

0.3 K to 1.2 K. Below 0.6 K the temperature is taken

from Table A.3, above 0.6 K the temperature is determined

by measuring the vapor pressure of the 3He hath. These

data were fit to the equation

ln(R) = a0 + a1 ln(T) + az/T. (A.3)

Because the germanium resistor is so heavily doped we do

not expect it to follow a single equation over a large

temperature range. For this reason we have divided up the

temperature range from 0.3 K to 1.2 K into four sections

and fitted each section separately. The standard method

of least squares (Mack, 1966) was used to determine the

coefficients, a0, a1, and a2. The results of this fit are

given in Table A.2. The last column in Table A.4 shows

(R - Rmeas )/(dR/dT) to show the effective temperature
calc.

deviation between the calculated and measured values.

Table A.2. Coefficients for 3He Solitron Ge Resistor
 

 

Temp. Range (K) a a1 a2

 

1.200 to 0.700 5.769325 -0.875580 1.142215

0.699 to 0.550 6.378414 -1.859392 0.470550

0.549 to 0.415 6.139522 -1.639297 0.675030

0.414 to 0.300 6.076923 -1.717617 0.664094
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Table 14.3. Raw Data for Ge Resistor Calibration

 

 

Dial

Reading T(K) AT(mK) B(ohms)

_15097 0.589 1.5 3500 x 1

-16362 0.580 1.4 3650 x 1

-18232 0.567 1.4 3880 x 1

-19856 0.556, 1.4 4090 x 1

-21407 0.547 1.3 4300 x 1

-23180 0.536 1.3 4550 x 1

-24851 0.526 1.3 4800 x 1

—26700 0.515 1.2 5100 x 1

-28500 0.505 1.2 5400 x 1

-30500 0.495 1.2 5750 x 1

-32390 0.485 1.1 6100 x 1

-34437 0.475 1.1 6500 x 1

-36613 0.465 1.1 6950 x 1

-38900 0.455 1.1 7457 x 1

-41555 0.443 1.0 8100 x 1

-44000 0.433 1.0 8700 x 1

-46917 0.421 1.0 9500 x 1

-50180 0.409 0.9 1030 x 10

-52374 0.401 0.9 1100 x 10

-54517 0.394 0.9 1160 x 10

-58285 0.381 0.9 1300 x 10

-60812 0.373 0.8 1400 X 10

-64326 0.363 0.8 1550 x 10

-71293 0.343 0.8 1900 x 10

—74810 0.334 0.7 2100 x 10

-79549 0.322 0.7 2400 x 10

-84410 0.311 0.7 2750 x 10

-88900 0.301 0.7 3100 x 10

-93180 0.292 0.7 3507 x 10    



9].

Table A.4. H. vs. T Calibration Data and Deviation

 

 

  

T AT R (Re-Rm)/(dR/dT)

(K) (mK) (ohms) (mK)

1.172 1.0 738.4 -0.29

1.150 1.0 765.3 0.05

1.106 1.0 823.4 -0.24

1.100 1.0 832.5 0.11

1.050 1.0 911.1 0.12

1.047 1.0 916.1 0.04

1.000 1.0 1004.6 0.40

0.995 1.0 1014.4 0.19

0.903 1.0 1240.6 -0.10

0.900 1.0 1244.9 -1.63

0.850 1.0 1413.5 -0.61

0.827 1.0 1507.0 0.40

0.800 1.0 1623.2 -0.11

0.762 1.0 1818.0 -0.26

0.750 1.0 1891.5 0.30

0.707 1.0 2180.6 -0.32

0.700 1.0 2240.6 0.19

0.675 1.0 2453.8 -0.25

0.658 1.0 2615.6 -0.65

0.650 1.0 2712.7 0.60

0.625 1.0 3002.0 0.44

0.616 1.0 3110.4 -0.16

0.589 1.5 3500.0 -0.23

0.580 1.4 3650.0 -0.02

0.567 1.4 3880.0 0.06

0.556 1.4 4090.0 0.03

0.547 1.3 4300.0 0.73

0.536 1.3 4550.0 0.31

0.526 1.3 4800.0 0.06

0.515 1.2 5100.0 -0.19

0.505 1.2 5400.0 —0.34

0.495 1.2 5750.0 0.16

0.485 1.1 6100.0 -0.24

0.475 1.1 6500.0 -0.22

0.465 1.1 6950.0 0.01

0.455 1.1 7457.0 0.43

0.443 1.0 8100.0 0.23

0.433 1.0 8700.0 0.06

0.421 1.0 9500.0 -0.27

0.409 0.9 10300.0 0.45

0.401 0.9 11000.0 0.37

0.394 0.9 11600.0 -0.40

0.381 0.9 13000.0 -0.52

0.373 0.8 14000.0 -0.47

0.363 0.8 15500.0 0.17 
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Table 14.4. (cont'd.)

 

 

T AT R (RC-Rm)/(dR/dT)

(K) (mK) (ohms) mm

0.343 0.8 19000.0 0.12

0.334 0.7 21000.0 0.32

0.322 0.7 24000.0 0.01

0.311 0.7 27500.0 0.29

0.301 0.7 31000.0 -o.29

0.292 0.7 35070.0 -0.04   
 



APPENDIX B

GdCl3 TABLES OF DATA AND COMPARISONS

35
Table B.1 shows the transition frequencies of C1 and

37C1 as a function of temperature in the ordered state..

The zero field paramagnetic state transition frequencies

35 37C1. The recordedare 5314 kHz for C1 and 4188 kHz for

frequencies are the average of five independent readings

and the standard deviation, SD, is the statistical standard

deviation for the five readings. J is the isotope label and

I the line label discussed in the text. The uncertainty in

the temperature is the same as the uncertainty in the vapor

pressure tables, 1 2mK. The table is in three sections,

one for each different data taking run.

Table B.2 shows the results of the chi squared analysis

used to determine the magnitude of the internal field.

Table B.3 shows the comparison between the measured internal

field and the analytic expression for the critical behavior.

Table B.4 shows the same comparison for the Spin wave

region.
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Table 8.1 Section 1 C1 Transition Frequencies in GdC13, 4He Data

TEMP

2.170

2.164

2.149

2.139

2.120

2.110

94

J

35

35

35

37

37

35

35

35

37

37

35

37

35

37

#
U
N
P
U
N

U
N
¥
U
~

U
N
4
‘
U
N

U
N
O
U
N

#
9

#
#
U

FREQ.

5708.81

5120.00

4876.37

4521.57

4032.79

5735.58

5115.83

4859.37

4545.87

4029.43

5791.63

5108.43

4822.07

4590.04

4025.46

5824.74

5106.01

4803.96

4622.03

4023.26

3770.94

4770.45

3743.97

5106.14

4755.94

3732.77

5.0.

.58

.41

1.37

.44

.20

.50

.07

1.19

.87

.30

.63

.21

.43

1.14

.46

.48

.31

.51

1.60

.44

.70

.31

.87

7.30

.24

.55



Table 8.1 Section 1 (cont'd.)

TEMP

2.100

2.091

2.069

2.037

2.019

95

J

35

35

35

37

35

35

35

37

37

35

35

37

37

#
U
t
h
J
N

#
U
é
U
N

#
#
U
N

#
U
N
b
U
N

«
F
U
N
4
‘
U
N

FREQ.

5937.53

5102.83

4742.56

3722.28

5967.81

5105.14

4731.66

4025.45

3713.69

6021.19

5108.80

4708.90

4788.06

4032.38

3696.62

6097.52

5117.80

4680.30

4852.06

4041.11

3674.63

6136.14

5125.44

4667.28

4884.25

4046.93

3664.74

5.0.

*.85

1.51

.41

.43

.50

.20

.15

1.44

.35

.48

.12

.26

3.24

.33

.69

.18

.15

.19

.67

.24

.63

.19

.25

.02

.64

.43

.42



Table B.1 Section 1 (cont'd.)

TEMP

2.000

1.980

1.949

1.920

1.890

96

35

35

37

37

37

35

35

35

37

37

35

35

35

37

37

37

35

35

37

37

37

8
0
0
1
0
8
0
1
0

9
U
N
§
U
N

#
U
N
v
t
‘
U
N

b
U
N
l
-
‘
U
N

#
U
N
4
‘
U
N

FREQ.

6177.27

5130.16

4654.43

4920.35

4054.02

3655.33

6214.34

5137.65

4643.86

4952.56

4061.25

3646.49

6274.37

5150.35

4628.33

5002.42

4073.51

3636.03

6323.92

5162.42

4616.49

5045.42

4085.88

3626.73

6373.93

5175.80

4605.54

5088.00

4098.70

3619.07

5.0.

.14

.11

.09

.24

.18

.29

.41

.20

.32

.35

.36

.56

.17

.08

.25

.20

.18

.21

.12

.09

.35

.45

.19

.13

.28

.16

.11

.40

.14

.16



Table 8.1 Section 1 (cont'd.)

TEMP

1.860

1.830

1.799

1.769

1.741

97

35

35

35

37

37

37

35

35

35

37

37

b
t
d
¢
W
t
h

#
0
9
9
4
d
h
9

#
L
Q
N
4
>
U
I
V

#
(
d
fl
h
k
h
J
N

b
t
d
#
%
d
h
0

FREQ.

6420.04

5188.85

4597.46

5127.30

4110.97

3613.73

6465.27

5202.75

4590.20

5165.76

4124.10

3608.33

6509.08

5216.83

4583.40

4137.77

3604.08

6549.63

5230.73

4578.00

4150.55

3600.92

6585.58

5243.51

4573.95

4162.66

3598.45

SOD.

.53

.09

.19

.06

.11

.19

.20

.13

.40

.23

.10

.26

.28

.20

.21

.25

.37

.39

.05

.07

.09

.20

.29

.10

.11

.13

.70

 



Table 8.1 Section 1 (cont'd.)

TEMP

1.712

1.661

1.650

1.618

1.594

98

J

35

35

35

37

37

37

35

35

35

37

37

37

35

35

35

37

37

37

35

35

37

37

37

b
u
m
b
d
w

«
P
U
N
‘
P
U
N

P
U
N
P
U
N

F
U
N
‘
P
U
N

é
U
N
P
U
N

FREQ.

6623.19

5257.48

4569.99

5300.02

4175.62

3596.13

6683.39

5280.71

4565.01

5351.50

4197.12

3593.56

6694.67

5285.10

4564.03

5360.99

4201.31

3593.38

6728.36

5298.77

4561.67

5389.72

4213.83

3592.17

6761.12

5312.84

4559.89

5417.87

4226.86

3591.52

5.0.

.24

.12

.07

.19

.11

.50

.21

.06

.13

.34

.03

.18

.19

.08

.04

.32

.13

.30

.32

.07

.03

.17

.06

.22

.61

.10

.05

.22

.30

.30



Table 8.1 Section 1 (cont'd.)

TEMP

1.550

1.500

1.450

1.431

1.350

99

35

35

35

37

37

37

35

35

35

37

37

37

#
U
N
P
U
N

#
U
N
P
U
N

#
U
N
F
U
N

«
P
U
N
k
U
N

#
U
N
P
U
N

FREQ.

6805.68

5331.88

4558.00

5455.80

4244.24

3591.02

6855.16

5354.04

4556.52

5497.99

4264.38

3591.33

6902.29

5375.83

4555.76

5537.98

4284.15

3592.19

6919.53

5383.91

4555.57

5552.33

4291.59

3592.32

6989.14

5417.01

4555.75

5611.45

4321.75

3594.38

5.0.

.20

.19

.09

.43

.34

.56

.17

.12

.03

.24

.20

.38

.17

.12

.06

.31

.07

.55

.29

.11

.04

.42

.13

.24

.21

.05

.03

.33

.15

.19
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Table 8.1 Section 1 (cont'd.)

TEMP J 1 FREQ. 5.0.

1.299

35 2 7029.47 .51

35 -3 5436.96 .05

35 4 4556.60 .08

37 2 5645.94 .15

37 3 4340.03 .28

37 4 3596.05 .18

1.251

35 2 7067.78 .27

35 3 5456.52 .08

35 4 4557.70 .06

37 2 5678.41 .09

37 3 4357.57 .07

37 4 3598.04 .23

1.2008

35 2 7105.74 .21

35 3 5475.79 .06

35 4 4559.07 .02

37 2 5710.45 .38

37 3 4374.84 .15

37 4 3600.15 .23

1.025‘El

35 3 5541.18 .22

35 2 7227.62 .39

37 2 5814.22 .18

37 3 4433.67 .05

37 4 3609.07 .14

a Net used because the uncertainty in the temperature

measurement is too large.



Table 8.1 Section 2

TEMP

.599

.577

.530

.483

.450

.401

101

35

35

35

35

35

35

35

35

35

35

35

35

#
U
N

#
U
N

«
P
U
N

b
u
m

#
U
N

b
U
N

3He Data of Feb 26, 1971

FREQ.

7458.51

5673.84

4587.21

7468.63

5680.46

4588.72

7488.42

5691.71

4590.37

7507.51

5702.93

4592.49

7519.05

5711.11

4593.95

7534.75

5720.68

4596.30

5.0.

.31

.27

.25

.84

.45

.45

.34

.29

.64

.75

.43

.26

.59

.30

.41

.26

.51

.22



Table B.1. Section 3

TEMP

1.222

1.200

1.150

1.100

1.050

1.000

.950

.900

102

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

b
U
N

#
U
N

#
U
N

#
1
)
“
)

5
0
h
)

P
U
N

#
‘
U
N

P
U
N

FREQ.

7088.08

5466.97

4558.80

7103.62

5475.26

7140.45

5494.56

4559.10

7175.26

5512.88

4561.75

7208.37

5531.00

4564.69

7241.11

5548.96

4565.93

7272.01

5566.03

4567.88

7301.64

5582.90

4570.70

3

He Data of March 24, 25, and 26, 1971

5.0.

.26

.17

.69

.25

.09

.38

.20

.11

.50

.13

.23

.50

.19

.09

.50

.23

.11

.40

.10

.07

.16

.09

.06

.50

V
"
I
"
—
—
-
r
-

~
—



Table B.1 Section 3 (cont'd.)

TEMP

.850

.800

.750b

.700b

.650b

.550

.500

.474

103

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

35

37

35

35

37

35

35

37

N
U
N

M
U
N

P
U
N

#
U
N

J
-
‘
U
N

s
u
m

b
U
N

N
U
N

FREQ.

7329.89

5599.16

4573.43

7357.90

5614.85

4576.40

7380.89

5628.17

4578.36

7407.10

5643.89

4581.06

7433.57

5659.61

4583.20

7479.04

5686.83

6027.83

7499.70

5699.20

6045.24

7509.74

5705.25

6053.61

5.0.

.12

.17

.50

.24

.15

.50

.15

.11

.50

.12

.07

.50

.20

.08

.50

.12

.11

.17

.17

.41

.29

.17

.12

.20
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Table 8.1 Section 3 (cont'd.)

TEMP J I FREQ. S.D.

.425

35 2 7526.88 .19

35 3 5715.72 .12

37 2 6068.65 .59

.400

35 2 7534.41 .15

35 3 5720.51 .16

37 2 6074.80 .29

.375

35 2 7542.10 .19

35 3 5725.30 .14

37 2 6081.30 .22

.350

35 2 7549.15 .14

35 3 5729.55 .14

37 2 6087.34 .09

.325

35 2 7554.64 .19

35 3 5733.05 .12

37 2 6092.26 .12

.310

35 2 7559.08 .06

35 3 5736.00 .03

37 2 6095.98 .22

.293c

35 2 7563.10 .04

35 3 5738.23 .17

37 2 6098.79 .31

Thermal equilibrium difficult to obtain, these points not used.

c Not used because its the lowest temperature point.
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Table B.2. Results of')[2 Analysis for B(T).

 

 

    

T(K) B A138‘ 712 Af(l-w)

(Kelvins) (gauss) (gauss) (kHz)

2.170 1290.3 3.0 Av? -—-

2.164 1362.0 4.5 0.90 1.0

2.149 1505.0 3.5 1.04 0.7

2.139 1589.2 4.5 1.09 1.0

2.120 1735.8 4.5 1.27 1.0

2.110 1805.3 4.5 1.06 0.7

2.100 1872.4 5.0 0.72 1.0

2.091 1932.0 4.5 1.14 1.0

2.069 2054.0 2.5 0.80 0.5

2.037 2224.2 2.5 AV. ---

2.019 2308.0 4.0 1.28 l 0

2.000 2396.4 2.0 AV. ---

1.980 2475.9 2.5 AV. ---

1.949 2599.5 2.5 AV. ---

1.920 2702.0 2.0 AV. ---

1.890 2803.0 2.5 AV. ---

1.860 2894.5 2.0 0.93 0 5

1.830 2983.2 2.0 1.30 0.5

1.799 3067.8 2.5 AV. ---

1.769 3145.7 2.0 0.82 0 5

1.741 3214.0 1.5 AV. ---

1.712 3285.7 2.0 Av. ---

1.661 3398.4 1.5 0.92 0.5

1.650 3419.2 1.5 0.60 0 5

1.618 3481.5 1.5 0.92 0.5

1.594 3542.2 2.5 AV. ---

1.550 3622.9 2.0 0.87 0.5

1.500 3712.5 1.5 1.10 0.5

1.450 3796.7 1.5 0.93 0.5

1.431 3827.2 2.0 A7. ---

1.350 3949.8 1.5 0.79 0.5

1.299 4020.9 1.5 1.20 0.5

1.251 4087.3 1.5 1.10 0.5

1.222d 4121.4 0.5 0.55 0.0

1.200 4148.3 2.0 0.79 1.0

1.150 4211.5 2.0 0.69 1.0

1.100 4270.9 0.5 0.504 0.0

1.050 4327.6 0.5 1.215 0.0

1.000 4382.9 0.5 1.534 0.0

0.950 4434.8 1.5 AV. ---

0.900 4484.7 1.0 A7. ---

0.850 4532.0 1.0 AV. ---

0.800 4578.4 0.5 0.084c 0.0

0.750e 4616.5 0.5 0.326c 0.0

0.700e 4660.4 0.5 AV. ---
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Table B.2. (cont'd.)

 

 

    

T(K) B 2189 2 Af(l-w)

(Kelvins) (gauss) (gauss) x (kHz)

0.650e 4704.1 1.0 A7. ---

0.599 4744.6 1.0 AV. ---

0.577 4762.0 1.5 1.32 0.0

0.550 4780.1 2.0 1.30 1.0

0.530 4793.4 1.0 0.94 0.0

0.500 4813.7 2.0 1.17 1.0

0.483 4823.9 1.5 0.92 0.0

0.474 4830.0 1.5 1.061 1.0

0.450 4844.4 0.5 0.24c 0.0

0.425 4858.1 2.5 1.46 0.0

0.401 4869.7 0.5 0.94 0.0

0.400 4870.5 2.0 1.33 1.0

0.375 4883.1 2.0 1.31 1.0

0.350 4894.6 2.0 1.47 1.0

0.325 4903.8 2.5 1.81 1.0

0.310 4911.0 2.0 1.69 1.0

 

(3B is estimated to within 0.5 gauss.

b Only values for £5f(l-w) of 0.0, 1.0, 0.7, and 0.5 were used. When

the results for 0.0 and 1.0 differed by less than 0.5 gauss even though

I 2 ranged from well below 1.0 to well above 1.0, an average between

the two values was taken.

‘3 Increasing Af(1-w) will only make 12 smaller; this indicates a large

spurious standard deviation error.

d All temperatures 1.22 K and below used the 3He system.

This value was not used in the analysis; thermal equilibrium was

difficult to achieve and the temperature was difficult to measure.
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squared value is 0.710.

Table B.3. Comparison of B(T) with Analytic Expression for TaNITc.

Temperature B(T) lLB(T) 8m - B

(Kelvins) (gauss) (gauss) (gauss

2.170 1290.3 2.5 -2.330

2.164 1362.0 4.5 3.520

2.149 1505.0 3.5 0.550

2.139 1589.2 4.5 -l.440

2.120 1735.8 4.5 -1.070

2.110 1805.3 4.5 —1.340

2.100 1872.4 5.0 -0.051

2.091 1932.0 4.5 3.270

2.069 2054.0 2.5 -2.510

2.037 2224.0 2.0 1.400

2.019 2308.0 4.0 -0.370

2.000 2396.4 2.0 2.780

1.980 2475.9 2.5 -2.610

The analytic expression is B(T)= A(Tc - T)8 where A " (4368.4 :31.3)

gauss/K9 , Tc= (2.214 :0.0016) K, and 140.3904 :0.006). The chi
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Table 8.4. Comparison of B(T) with Analytic Expression for T <,1.0 K.

T(K) B(T) AB(T) Bm - Bc Bm - 13c

(Kelvins) (gauss) (gauss) Set A Set B

0.310 4911.0 2.0 -0.24 0.53

0.325 4903.8 2.5 -1.43 -O.91

0.350 4874.6 2.0 0.09 0.27

0.375 4883.1 2.0 0.18 0.10

0.400 4870.5 2.0 -0.01 -0.26

0.401 4869.7 0.5 -0.29 -0.55

0.425 4858.1 2.5 0.81 0.45

0.450 4844.4 0.5 1.09 0.69

0.474 4830.0 1.5 0.81 0.42

0.483 4823.9 1.5 0.17 -o.20

0.500 4813.7 2.0 0.54 0.21

0.530 4793.4 1.0 -o.33 -0.54

0.550 4780.1 2.0 .0.15 -0.25

0.577 4762.0 1.5 0.60 0.66

0.599 4744.6 1.0 -0.90 —0.69

0.800a 4578.4 0.5 -1.21 -0.14

0.850 4532.0 1.0 -l.06 -0.15

0.900 4484.7 1.0 -0.27 0.63

0.950 4434.8 1.5 0.58 0.37

1.000 4382.9 0.5 0.83 -0.42

Set A fitted to: B(T) = 4957.5 - 811.0 T3/2 exp(-0.343/T)

Set B fitted to: B(T) = 4950.8 —(963.1 T3/2 - 90.7 T5/2) exp(-0.430/T)



APPENDIX C

PrCl3 DATA

Table C.l shows the measured frequencies as a function

of angle for an external field of 500 Oersteds applied in

the plane perpendicular to the C3 axis in the ordered state.

The angles are in the laboratory reference system. The

site label is arbitrary. LN is the line number which

defines the transition, 1 being the highest in frequency

and 4 lowest. The H and L refer to the High and Low zero

field lines respectively. Because the lines are weak and

were only measured once, the accuracy of the frequency

measurement is estimated at t 5 kHz. The calculated

frequency assumes H = 500 Oersteds, n = 0.4937,

vQ(H) = 4598.6 kHz, and vQ(L) = 4535.5 kHz. The location

of the Z-principal axis in the laboratory reference frame

= 290°, and z = 50°.is assumed to be: Z = 350°, Z 3
1 2

109



Table C.1.

110

Cl Transition Frequencies in PrCl3

 

 

Angle Site LN LOC Freq. Calc.

(deg) (kHz) (kHz)

5'. l I H 49hl.qn 4960.35

94», 1 4 I 4143.70 4190.41

)4». y / H 47M/.7“ 4795.U1

240, w z 1 471H.20 4712.93

28:. a i 4 4147.50 4404.52

2H,, / 3 l 4356.30 4341.44

2s», 3 r 4 4615.00 4609.]?

2a”. 3 2 L 4H/h.so uth./5

Ant. .3 3 | 4S30.dh 453h.5b

R W‘. l 1 .1 “13u;5.H11 4+9}h&.t+l

#91. l l 1 4954.50 4925.4l

89-. 1 4 H 4210.h0 4221.26

HIM. 9 K H 4800.HU 4905.67

’”'- F C L 4741.50 4745.54

29:. g 4 H 43HH.QU 4191.43

24., / s I 4337.00 4128.35

H94. 3 r 4 4681.20 4673.58

Run. 1 a L 4627.70 4610.5H

29:. 3 s H 4522.70 4538.10

241,. 3 3 L 414137.711 447501”

137. 1 1 H 5018.50 5001.44

*V'- l 1 I 4953.90 4944.42

1H1. ] u H QIQH.QU 4?Ul.1”

$00. / 3 1 4353.60 4341.44

504. s r l 4hh7.90 4678.11

1“ . ‘ ‘ H 4464.00 447H.hh

105. a 1 L 4407.90 4415.6!

110. r r 4 4755.20 47h/.33

sl«. 2 r L 4692.80 4099-3“
11‘. g g 4 4455.10 4439.55

11’. 1 K H 4794.30 4788.91

115. 1 4 H 4411.30 4486.20

520. x r H 4/0l.90 4714.92

140. K n l 4&42.40 4651.H/

421. a A H 449H.40 44HH.99

3x». a 3 1 4448.10 4425.94

121. 1 7- H 4416,20 a41n,va

1/2. 1 r‘ L «+757./H 44753.4/

1)). ‘1 .4 H 439$./0 4399.17

12». i 3 1 4137.40 433h.8/
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Table C.1. (cont'd)

Angle Site LN LOC Freq. Calc.

(deg) (kHz) (kHz)

9;. L / H 47DQ.4U 47HH.91

”I. 1 g [ 47UH.HO 4725.9*

4.. 1 4 H 4457.4U 447ho?“

w,, 1 d I “Klfi.4h 4%63.25

“I. ‘ K H 4549.5” 4h59.3$

an, 5 a L 4Hn3.4n 4496.34

4.. 1 3- .4 4HhU.lf1 4847.11

Wu. 1 1 L 4497.50 44H4.UH

/«H. I l H 49H7.2U 4QYH.34

2n». l i L 49¢].IH 401d.34

awn. 1 4 H 4a/H.HU 4?JI.4H

HAW. / r H 4HUb./U 4RU5.3W

34». a ( 1 474H.Hn 4745.31

243. / 5 $4 4394.h0 4194.79

24.. 2 4 L 431%.?!) 4'Hl.7l

94w. j r H 4hh+.7u 4541.13

RHfi. 3 r L 45HU.HU 4§78.Id

8H5. J 5 L 4494.10 4905.!”

29w. 1 1 H bOUfi.RU 4099.89

24%. l l L 4u4u.au 403n.?H

a4». 1 4 H 4202.h0 4Pll.lh

294. a t H 4408.!” 4H05.39

99‘. K a l 4753.20 4742.31

29w. 3 a L 4h58.4u 4441.8H

ass, 5 J H 4496.30 4501.92

)9“. 3 J L 4433.40 4444.93

3]». l l H bnflh.10 5019.44

31w. b I L 495H.UO 4q5h.39

51%. l 4 H 41Hd.20 4185.7”

i1». 2 r H 4746.50 4739.94

11., 8 f L 4hh7.10 467h.8H

ilw. / 4 H 4473.7u 44h2.HI

#1“. i K H 4H11.QU 480H.43

31w. 3 J H 4402.10 4407.04

51w. 'c A l “557.cW’ 4344.0!
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