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ABSTRACT
THE LOW TEMPERATURE COOPERATIVE BEHAVIOR OF THE

RARE EARTH SALTS GdCl3 and PrCl3

By

Jan Paul Hessler

We have studied the three-dimensional ordered phases
of GdCl3 and PrCl3 with Cl nuclear magnetic resonance in
the temperature range 0.3 K to the transition temperature.
The resonance transition frequencies were measured with a
simple pulsed N.M.R. spectrometer to an accuracy of * 1 kHz.
Simple 3He and 4He systems were used to obtain the necessary
low temperatures. The absolute temperature was measured
to an accuracy of * 2 mK.

GdCl3 is an ionic ferromagnet with a Curie temperature
of 2.2 K. 1In the ordered state the internal field at the
chlorine site is along the principal X-axis of the electro-
static field gradient tensor. The method of energy moments
is used to determine the asymmetry parameter, n = 0.4265
0.0001. The nuclear quadrupole interaction Hamiltonian is
diagonalized and a chi squared analysis is used to deter-
mine the internal fields at the chlorine site, B(T). Both

35Cl and 37

Cl transition frequencies are observed and used
in the analysis.
In the critical region, T/Tc > 0.91, the internal

field follows the relationship B(T) = A(TC-T)B where
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A = (4368.4 + 31.1) gauss/K°, T_ = (2.214 * 0.0016) K, and

B = 0.3904 ¢+ 0.006. Below 1.0 K the internal field follows
B(T) = B, - (3,772 + A,1°/?)exp(-6/T) where

Bo = (4950.8 * 2.9) gauss, Al = (963.1 * 68.3) gauss/K3/2,

A, = -(90.7 + 41.6) gauss/K>/2, and 8 = (0.430 * 0.037) K.

The measured temperature dependence of the internal
field below 0.6 K is compared with the spin wave predict-
ions based on the exchange parameters measured by pair
spectra. There is a definite discrepancy. By comparing
the internal field measurements to the bulk measurements
of magnetization, we have calibrated the internal field in
terms of the magnetization. This indicates an anomalously
large zero-point magnetization defect. The magnetization
measurements are also compared to the molecular field and
Green function predictions. A possible mechanism and
experiments to test the mechanism are put forth to explain
the large zero-point magnetization defect.

The low temperature phase of PrCl T = 0.4 K,

3’ “critical”

was studied to determine the nature and symmetry of the
ordered state. In the paramagnetic region the asymmetry
parameter was determined by applying an external field along
the principal X-axis of the electric field gradient tensor
and using the method of energy moments. n was found to be
0.4937 + 0.0001. In the ordered state, the local magnetic
and electric field gradients were measured at the Cl site

by applying an external field perpendicular to the high
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symmetry axis, C3, and studying the symmetry and behavior
of the rotational spectrum.

The splitting of the pure quadrupole resonance line
at 0.4 K is attributed to an effective crystallographic
transition. The application of a 10 Kgauss field appears
to have no effect on the zero field splitting and on the
transition temperature. The crystal space group is lowered
from P63/m to P6 or P3. An interpretation of the observed
asymmetric line shape in the ordered state is presented
which implies that the three-fold symmetry is slightly

distorted.
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I. INTRODUCTION

Magnetism is a cooperative phenomenon. This fact makes
its study both interesting and challenging. Most attempts
to describe the cooperative behavior in ionic compounds
have assumed that we may use the concept of localized
moments and the description of these local moments as a
starting point. We then assume that a satisfactory approach
to the understanding of magnetic phenomena will follow from:
1) a knowledge of the localized magnetic ions, 2) a know-
ledge of the interactions between the localized ions, and
3) an accurate treatment of the statistical mechanics for
the implications of the above two models for the behavior
of the system.

Parts one and two of this approach have motivated the
idea of a spin Hamiltonian. The spin Hamiltonian is simply
a mathematical model which is sufficiently general to
account for all the experimental information observed in
one and two. It is in this sense that the spin Hamiltonian
is phenomenological. For a discussion of the derivation of
spin Hamiltonians see Stevens (1963). Of paramount impor-
tance is the assertion that the spin Hamiltonian describing
the interaction between two isolated spins plus the princi-
ples of statistical mechanics is sufficient to deduce the
cooperative many body behavior of magnetism.

A knowledge of the low lying states of the magnetic

ion is obtained by studying the configuration terms of the

1



free ion by optical methods (Judd, 1963). Paramagnetic
resonance is then used to study the effect of the
crystalline environment on the low lying levels (Hutchings,
1964). Figure 1.1 is a schematic representation of the
Pr3+ ion in the C3h symmetry of PrCl3 (Judd, 1957).

The interaction between the spins may also be studied
by paramagnetic resonance, and generally may be described
by a spin Hamiltonian of the form

B, =8, 3, 0 8, + 13,8, (1.1)
For a rather complete discussion of exchange see Anderson
(1963a, 1963b) and Wolf (1971). This form of the inter-
action has proved very useful, especially for the transition
metal ions. However, in the rare earths the 4f electrons
are shielded by the 552 and 5p6 shells, resulting in a
significantly smaller exchange interaction due to the
decreased overlap. Because of this reduction, competing
effects from the crystal fields and the spin-orbit coupling
contribution to the magnetic moment must also be considered.
This complicates the form of the exchange interaction and
allows other interactions to act as coupling mechanisms.

The best known coupling mechanism is the dipole-dipole
coupling, and it is the only one encountered classically.
From magnetostatics the magnetic dipole energy is given by
|3 (1.2)

> > > > -»> ->
E = (Ml-M2—3(Ml-f1) (1\/12-1?2—))/|rl—r2

where ﬁl and ﬁz are magnetic moments located at r. and ;2

1
respectively. For the special case of S state ions with
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(;1 - ;2) the axis of quantization, the spin Hamiltonian

simplifies to

_ 22
12 - 9 ¥Yp

- BSisg)/r123 ) (1.3)

H (8,8,
The well known exchange interaction was introduced by
Heisenberg (1926) and by Dirac (1929). Exchange effects
are a direct consequence of the Pauli principle. Dirac
showed that for the particular case of n electrons confined
to specific orthogonal orbits, the splitting of the energy
levels is the same as though we forgot about permutation

degeneracy and used the potential

v, = _iZj(l/z + 2§i°sj)Jij | (1.4)
where
J = [ dr.dr wf(r )w+(r ) ———jsi—- V. (r,)) . (ry) , (1.5)
ij IRSFACTEES RS Rk A jlr?vyte? ., L.
1l "2

and wi and wj are the orbital wave functions for the states
i and j respectively. Extensions of this idea have led to
equation (1.1).

A third type of coupling is due to the aspherical
charge distribution found in non S state ions. The moments
may be coupled via electric multipole moment interactions.
An example of this is the electric guadrupole-quadrupole
interaction obser&ed in CeCl3 (Birgeneau, Hutchings, and
Rogers, 1968).

A fourth coupling mechanism is virtual phonon
exchange. This interaction is similar to the above and
may be viewed in two ways. For non S state ions, the

electrostatic interactions in the form of the crystal field



and the interacting multipoles may be induced or modified
by the phonons. In the case of the S state ions the
exchange and dipole-dipole interaction coefficients Jij
and aij’ where aij « 1/rzj, are strong functions of
distance and can couple to the phonons. Although this is
generally considered a weak interaction, it is very impor-
tant in the case of non-Kramers orbital degeneracy. This
mechanism has been used to account for the antiferro-
magnetism.in UO2 (Allen, 1968).

An approach to studying magnetic systems is now
straightforward. From symmetry and other considerations,
we deduce the form and number of allowed interactions
necessary to construct an interaction Hamiltonian for the
system. We then experimentally determine the magnitude
and behavior of the interaction coefficients in the
Hamiltonian. With this information we apply the laws of
statistical mechanics to deduce the cooperative behavior
of the system. This behavior is measured, and we compare
our results to the theoretical prediction. If the effective
Hamiltonian is correct and the statistical mechanics has
been applied properly, we should expect agreement. Often
this is not the case. We are then left with three alterna-
tives: 1) the effective Hamiltonian is not accurate enough
and we must include additional information, 2) the statis-
tical mechanical treatment was inadequate and needs

improvement, or 3) the assumption that we can describe the



cooperative phenomena in terms of simple two-spin inter-
actions is not valid.

In this work we study the cooperative behavior of
two rare earth salts, GdCl3 and PrC13. We use the chlorine
nuclear magnetic resonance as a microscopic probe. This
will give us information about the magnetic field and the
electric field gradient at the chlorine site.

In chapter II we discuss the crystal preparation and
structure, along with the MN.M.R. measuring apparatus and
the low temperature apparatus. In chapter III we present
the single ion optical and paramagnetic resonance results
for the Gd3+ ion. The pair spectra in LaCl3 and EuCl3
along with the high temperature magnetic specific heat
results are discussed to arrive at an effective two-spin
interaction Hamiltonian. With these parameters we use the
cluster expansion technigque to derive the molecular field
approximation and the two-spin correction term. We discuss
the problems involved in evaluating the two-spin correction
term, and two approximate solutions. The Green function
formalism and the spin wave approximation are also briefly
discussed.

In chapter IV we set up the nuclear quadrupole inter-
action Hamiltonian and apply symmetry arguments to simplify
the analysis of the observed spectrum. The method of

energy moments is used to determine the asymmetry parameter,

and an exact diagonalization is used with a chi squared



analysis to determine the magnitude of the internal field
as a function of the observed transition frequencies.
Analytic expressions are found which describe the temper-
ature dependence of the internal field in the critical
region and in the spin wave region. The low temperature
measurements, T < 0.6 K, are compared to numerical calcula-
tions of the temperature dependence of the magnetization
based on a spin wave calculation and the measured exchange
parameters. Here there is a discrepancy which requires
further investigation.

The internal field measurements are also compared to
saturation magnetization measurements to calibrate the
internal field results in terms of saturation magnetization
results. With this we detect an anomalously large zero-
point magnetization defect. A possible mechanism to
explain this defect is presented along with some experi-
ments which should help our understanding of the low temper-
ature behavior. We also compare our measurements to the
molecular field and Green function calculations. Agreement
with the molecular field calculation is relatively poor,
and the Green function calculation is qualitatively correct.

In chapter V we present the optical and paramagnetic
resonance results for a single Pr3+ ion in LaCl3. The
axial pair spectra measurements are also reported, but no
conclusive statement can be made about the interaction
mechanism responsible for the three-~dimensional ordering

at 0.4 K.



In chapter VI we study the low temperature phase of
PrCl3 by applying an external magnetic field in the plane

perpendicular to the symmetry axis, C The symmetry of

3°
the rotation spectrum, and the behavior extrapolated to
zero applied field indicate that the phase transition at
0.4 K is effectively a crystallographic phase transition.
Studies in an applied field up to 10 Kgauss indicate that

a magnetic field has no effect on the zero field splitting
of the pure quadrupole resonance line nor on the transition
temperature. Symmetry arguments are used to show that the
effective crystallographic space group is either P6 or P3.
An analysis of the observed asymmetric line in the ordered
state is presented which indicates that the 3-fold symmetry
is also slightly distorted, although this is not verified
by an analysis of our rotation spectrum. The fact that
PrCl3 has a non-Kramers orbitally degenerate ground state
leads us to suspect that the ordering mechanism is

dominated by the lattice vibrations. We review the litera-

ture for evidence to this effect.



II. EXPERIMENTAL TECHNIQUE

A. Crystal Preparation

The anhydrous rare earth trichloride from Lindsay was
slowly melted under vacuum in a vertical quartz tube. The
polycrystalline sample was then transferred to a horizontal
distillation apparatus aﬁd distilled in vacuum into a 17 mm
diameter quartz tube. After distillation the tube was
sealed under vacuum, detached, and placed in a gradient
furnace. The lower tip of the tube was placed in the
gradient and observed until a single seed crystal was
produced. The tube was then slowly lowered through the
gradient, producing a clear single crystal.

Because the crystals are very hydroscopic, once they
were removed from the tube they were stored in mineral oil
when not in use and liberally coated with Apeizon N grease
during use. No analysis of the stoichiometry or impurity
content was attempted.

The crystals are uniaxial with the axis easily recog-
nized by observation of the striations that appear on the
cleavage planes which are parallel to the axis. The
crystals were cleaved, cut on a diamond saw, and ground

with a grinding wheel to a convenient size and shape.

B. Crystal Structure

Zachariasen (1948) has determined the structure for
the rare earth trichloride series lanthanum to gadolinium
and found it to be hexagonal with space group P63/m. There

9
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are two molecules per unit cell. The locations of the rare
earth ions are determined by symmetry as being t(%,%,%)
while the physically inequivalent chlorines are at

t(u, v, 1/4), (v, u-v, 1/4), (v-u, u, 1/4). Morosin (1968)
has recently determined the parameters u and v and the cell
dimensions for several of the anhydrous rare earth
trichlorides. Figure 2.1 shows the crystal structure.

The point symmetry for the rare earth ions is C3h' All

the rare earths and chlorines lie in the mirror plane.

C. N.M.R. Measurements

All transition frequency measurements were made using
a simple pulsed N.M.R. spectrometer developed by S. Parks
(1967). This spectrometer compares the applied rf signal
from a cw oscillator to the induced rf signal from the
spin system. The induced rf frequency is measured by
displaying the beat pattern between the two frequencies on
an oscilloscope and noting the frequency of the cw oscilla-
tor at the zero beat. For accurate measurements five
independent readings were taken for each frequency. The
standard deviation of these readings was generally less than
1 kHz. To minimize sample heating at low temperatures a
minimum amount of power was applied to the rf pulse by
varying the voltage on the transmitter stage of the
spectrometer. To assure thermal equilibrium, the line with
the largest dv/dT was measured at 10 to 20 minute intervals

while the temperature of the bath was maintained constant
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Q?

Figure 2.1 Structure of the Rare~Earth Trichlorides La to Gd.
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to within 1/4 mK. When two consecutive measurements of
frequency agreed to within 1/2 kHz the sample was assumed

to be in thermal equilibrium with the bath.

D. Temperature, Calibration and Measurement

All of the interesting phase transitions in the rare
earth trichlorides occur below 4 K. This necessitates the
use of liguid 4He and 3He as refrigerants. Experimental
techniques in this temperature range have been discussed
by White (1968).

For our experiments in the temperature range of 1.2 K
to 4.2 K the sample was immersed directly in the 4He bath.
A 200 ohm Manganin resistor was used as a heater for fine
control of the temperature below the lambda point and as a
stirrer above the lambda point. The 4He vapor pressure
(Brichwedde, 1970) was used as an absolute measure of
temperature throughout the entire temperature range. Above
a vapor pressure of 100 Torr a standard U-tube mercury
manometer was used to determine the vapor pressure. Below
100 Torr an MKS capacitance manometer operated in the
digital mode was used. This has a day-to-day reproduci-
bility of 0.02 Torr + 0.05% of the pressure reading.

Above 1.3 K this accuracy is well within the accuracy of.
the 1958 4He Scale of Temperatures.

Below the lambda point the temperature was regulated
by monitoring the vapor pressure and keeping it constant

to within 0.002 Torr. This corresponds to a temperature
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fluctuation of 0.45 mK at 1.2 K. The measured vapor
pressure and temperature were strongly coupled as indicated
by the fact that the resistance of a 33 ohm Ohmite carbon
resistor located at the sample site tracked the vapor
pressure with no visible lag in time.

For the temperature range of 0.3 to 1.2 K a conven-
tional 3He single shot cryostat was used. The design
follows closely that of Walton (1966). Figure 2.2 shows
the low temperature section of the cryostat.

rbove 0.6 K the 3He vapor pressure was used to deter-
mine the temperature (Sherman, Sydoriak, and Roberts, 1962).
To measure the vapor pressure a 1/4" o.d. stainless tube
was inserted inside the pumping line from the 1.2 K radiation
trap to approximately 1 cm above the surface of the liquid.
The tube was then increased to 3/8" o.d. and went independ-
ently to an MKS capacitance manometer at room temperature.
The day-to-day reproducibility when operated in the digital
mode is C.006 Torr + 0.05% of the pressure reading. To
achieve a desired temperature, the vapor pressure was calcu-
lated and the appropriate corrections for the manometer were
employed. The digital dials were then set and the tempera-
ture was obtained by monitoring the pumping speed of the 3He
gas with a series of valves. A pressure fluctuation corres-
ponding to a temperature fluctuation of 0.1 mK was calcula-
ted for each temperature and the pressure maintained constant

within these limits.
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Below 0.6 K the thermomolecular correction becomes
significant, even for our large tube (Freddi and Modena,
1968). Also dP/dT becomes small enough that pressure
monitoring and measurement are not sensitive enough to
keep temperature fluctuations on the order of 0.1 mK.
Therefore, below 0.6 K, we used a germanium resistor for
temperature measurement and a carbon resistor for tempera-
ture fluctuation monitoring.

Both resistances are measured independently by two
Wheatstone bridges using a PAR lock-in detector as a source
and as a null detector. A Triad G-10 "Geoformer" was used
to isolate the unbalanced signal from the preamp and the
PAR detector. To eliminate the effect of lead resistance
for the germanium resistor a three lead Wheatstone system
was used with an arm ratio of 1:1. With this method the
lead resistance of 200 ohms at room temperature was
effectively nulled to within 2 ohms.

To calibrate the germanium resistor at low temperatures
the magnetic temperature, T*, of ferric ammonium alum was
used as a standard. The mutual inductance technique
(Abel, Anderson, and Wheatley, 1964) was used to determine
the susceptibility. The coils were calibrated using the
vapor pressure of 3He as the temperature standard between
0.6 K and 1.2 K. The relationship between T* and T for
T > 0.2 K is

T* - T = 0.00548/T (2.1)
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to within 0.1 mK (Sydoriak and Roberts, 1957).
The resistance vs. temperature data for the germanium
resistor was then fitted to the equation

In(R) = a, + a,1ln(T) + az/T (2.2)

1
from 0.3 K to 1.2 K. Four different sets of the coeffi-
cients agr ay and a, were necessary to fit the data to
within 1 mK. At 0.7 K the resistance is 2239 ohms with
a dR/AT of -8.1 ohms/mK. Our Wheatstone bridge has a
sensitivity of approximately 1 ohm with a power level of

1072

Watts, thus we are able to detect temperature fluctu-
ations on the order of 0.2 mK at 0.7 K. The actual cali-

bration data and analysis are discussed in Appendix 2.



III. GdCl3 THEORY AND BACKGROUND

GdCl3 belongs to the small set of compounds which are

both insulating and ferromagnetic; this is the primary
reason for studying it so extensively. From the experi-
mental point of view it belongs to a rather large series
of isomorphic compounds which are easy to grow. This
allows the experimentalist the opportunity to study the

3+

G4 ion with many experimental techniques.

A, Gd3+ Ion Properties

The ground level of Gd3+ is 8S

1

7/2 with the only

(Piksis, Dieke, and

Crosswhite, 1967). The first excited level of Gd3+ in

LaCl, is 6P7/2 at 32100 cm Y. The Gd3% ions show the

least coupling with the crystal lattice of all the rare

structure of the order of 0.1 cm

earth ions. Superimposed crystal vibrations are generally
not observed in any lattice and the lines are reasonably
sharp even at room temperature.

Hutchinson Jr., Judd, and Pope (1957) and Hutchinson

Jr. and Wong (1958) have measured the paramagnetic

3+

resonance absorption of GA4d in LaCl, and CeCl.,. They

3 3
find a spin Hamiltonian of the form

3
Ho= ugliog-8 = g upu®s? + 9, g (B + w¥sY)  (3.1)

where gll =9, = 1.991 £ 0.001.

17



18

B. GdCl3 Bulk Properties

Wolf, Leask, Mangum, and Wyatt (1961) have measured

the susceptibility and magnetization of single crystals of
GdCl3 and find that the substance orders ferromagnetically
at 2.2 K. The specific heat (Wyatt, 1963) has a lambda-

like anomaly at 2.2 K, further substantiating the onset of

long range order.

C. Pair Spectra of Gd3+

Birgeneau, Hutchings, and Wolf (1967) and Hutchings,

Birgeneau, and Wolf (1968) have measured the pair spectra

3+

of Gd pairs in LaCl3 and EuCl,. They find the pair

3
spectra are adequately described by a Hamiltonian of the

form

. . — Z V4 - R . _ 2 _ 2
H{i,3) = -gugH(S] + S3) Jijgi §j oy (§i §j 3s7s%)

+ H (i) + #H

CEF cgp () - (3.2)

The axis of the pairs is the z-axis of quantization. J,

iy
is the isotropic exchange interaction and aij = gzug/rzj.

HCEF is the single ion crystal field Hamiltonian. Because

the lattice parameters of LaCl, and GdCl, differ signifi-

3 3

cantly, the variations of Jij and aij with respect to

temperature were studied in the LaCl_, case. From this the

3

dependence of Jij on ;ij was inferred, and extrapolations

to the GdCl3 lattice constants were made. The values of
Jij for each case are shown in Table 3.1. It is interesting
to note that the nearest-neighbor exchange is antiferro-

magnetic and weak while the next-nearest-neighbor exchange
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is ferromagnetic and approximately four times larger than
the nearest-neighbor exchange. There is no definitive

explanation for this at the present time.

D. Relation of Pair Exchange Constants to Bulk Properties

There is no a priori reason why the exchange constants
measured by pair spectra in a diamagnetic host should
determine the magnetic behavior of the bulk system., In
spite of this there is relatively good agreement between
the bulk properties and the pair exchange constants.
Marquard (1967) has developed a diagramatic technigue for
calculating the high-temperature expansion coefficients
for magnetic systems with arbitrary symmetric tensor
interactions between all pairs of spins. He has calculated
the first three coefficients for the specific case of GdC13.
Clover and Wolf (1968) have performed high frequency
susceptibility experiments to determine the magnetic
specific heat at 20.4 K and 77 K. Their results for the
exchange constants along with the pair results are shown

in Table 3.1.

Table 3.1 Exchange Constants for GdCl3

Specific Heat LaC13a EuCl

Jnn(K) -0.078 + 0.004 -0.033 + 0.004 -0.073 £ 0.004

+

nnn(K) 0.096 + 0.004 0.105 + 0,004 0.091 + 0.004

aExtrapolated to GdCl3 lattice parameters
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The relatively good agreement between the specific heat
results and the pair results for EuCl3 is encouraging.

The discrepancy in the LaCl., measurements is not under-

3
stood, although the extrapolation procedure may not be

correct.

E. Magnetization Calculations

Now that we have a relatively good idea of the para-
meters that go into a phenomenological Hamiltonian for
the spin systems we can use these parameters to predict
the behavior of the system. There are basically three
approaches used in calculating magnetization vs. tempera-
ture: the cluster series approximation, the double-time
temperature-dependent Green function formalism, and the
spin wave approximation.

1) Cluster Expansion (Molecular Field Approximation)

The oldest approximation method of treating the
Hamiltonian of a magnetic system is the molecular field
approximation. This has also had much success in predict-
ing the overall qualitative features of a magnetic system
such as: the lambda-like discontinuity in the specific
heat, the dependence of magnetization on temperature, the
magnetic susceptibility, and the existence of a critical
point.

The basic assumption in the molecular field approxima-
tion replaces all spin-spin interactions with a spin-

effective field interaction. This assumption therefore
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eliminates any spin-spin correlation effects. An extension
of the "effective field" concept to include correlation
effects was first used by Mayer and Mayer (1940) in
treating the problem of the non-ideal gas. This technique,
commonly called the cluster expansion, was used by Streib,
Callen, and Horwitz (1963) to derive a similar series for
the Heisenberg ferromagnet. This series has the molecular
field approximation as the leading term. We shall treat
our Hamiltonian with this technique, thereby reproducing
the standard molecular field results and showing how higher
order spin-spin correlations may be included, and the
difficulties involved.

Extending the pair Hamiltonian to a sum over all pairs

we have the Hamiltonian for the system:

N
Ho= -gugH ) s{ - 1 3,88, '
i=1 (i,3) 2 .2 s .2
3(S,°r..)(S.°r..)
+ (guB)2 1 lg {gi'gj - = 1%7 21y .
(l'J) rij rij
(3.3)

The first term is the Zeeman energy of the N gadolinium
ions, the second is the isotropic exchange interaction,
and the third is the dipole-dipole interaction. We assume

that the external field, H, is applied along the z-axis.

th

§i is the standard spin operator for the i ion. Because

the ground level is 857/2, S = 7/2 in this case. J,. is

1]
th

and jth

the isotropic exchange interaction between the i

th

ions and ;ij is the vector between the i and jth ions.
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The summation (i,j) extends over all pairs of ions in the
lattice, each pair being counted once.

First we transform the spin operators to the raising

and lowering operators, Si = Sz + iS{. The Hamiltonian
is then
? z z_.2z 1 + - -+
H=-gu,H ]} s - ) {A,.8/S + = B..(S.S. + S.S.)
B j=1 (i,3) 1j 13 2 i3 7173 173
+1 z_.- Z.- -1 z.+ +.z
[Cij (Sisj + Sjsi) + Cij (sisj + Sisj)]
+2 .- +2 _+_+
[Dij sisj *+ Dy sisj]} (3.4)

where the coefficients are given by

Aij = aij + Jij' (3.5a)
_ 2 2 _ 3
aij = (guB) (3cos eij 1)/rij' (3.5c)
+ _ 3 2 1 . tig., .
Cij 5 (guB) ;3— coseij51neij e ij , (3.54)
and 1J
2 _ 3 2 1 .2 +i2¢4. .
Dij = 1 (guB) ;3— sin eij e ij . (3.5e)
i3
rij’ eij, and ¢ij are the standard spherical coordinates.
From the symmetry for a pair we have ¢ij = ¢ji
and eji =7 - eij. This gives aij = aji which leads to
= - 1 _ _F1
Aij = Aji and Bij = Bji' We also have Cij = Cji and
+
Dig = Dgi. Because the Gd ions lie on a mirror plane, for

every ion above the plane at eij there exists an ion below

the plane with eij. =M - eij, and with ¢ij = ¢ij"
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Therefore we have

] 1 . 1 1
} Cix =101 (Cii+C:i,) = ]} (Ciy-C;s) =0.
(i3) 1] iy 1] 1] ij 1] 1]
(3.6)
All the ions on the mirror plane have Ci% = 0. Therefore
our Hamiltonian reduces to
? z z 2.2 1 + - -+
H = gu H ) 87 - {(A,.s7ST + = B..(S.S. + S.5.)1}
B jo1 (i5) 13 717) 2 7ij°717) 173
- 7 {p¥? s7sT + p72 s¥sty. (3.7)
ij "ivj3 ij "iv)

(ij)
We now divide the Hamiltonian into a perturbed and unper-

turbed part by introducing an expansion parameter 05

- & _ 2
o, = [ s; - (3.8)

The parameter § will be chosen to minimize the free energy.
This will somehow imbody the behavior of the ions outside
the cluster. The actual physical interpretation of S must
wait until after the analysis is complete. Our Hamiltonian

now becomes

H=E + Lizloi + H = Hj + H) (3.9)
where
_ = _ =2
EO = guBHNS NAOS ' (3.10a)
L = gugH + 2Ao§, (3.10b)
N-Z-l

A = A.. , (3.10c)
o 521 ij

and
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1 +.- -+
H, =- )} {A,.0,0. + 5 B,.(S.S. + S.S>)
1 (i5) 1173 2 Tij i 3j
+ pt2 s7sT + D72 stst . (3.104)
ij "i7j ij 7173

The total free energy, F, is given by

-BF = 1n Tr exp[-B(H0 + Hl)] (3.11)

where B = 1/kT. The unperturbed free energy, Fo, is given
by

—BFO = 1ln Tr exp[—BHO]. (3.12)

We may introduce a correction to the unperturbed free
energy, F', by

-RF' = -BF + BFO . (3.13)
To derive the molecular field approximation we simply
assume -BF' = 0. Corrections to the molecular field
approximation are obtained by expanding -BF' in a cluster
series.

Before we carry out the cluster expansion, we will
complete the derivation of the molecular field approxima-
tion. The unperturbed free energy is given by

2

-BFO = -BNAOS + N 1ln ¢i (3.14)

where

_ z
¢, = Tr exp[BLSi]. (3.15)

We calculate S by minimizing F, with respect to S.

Therefore

)
S = 3TBLY lIn Tr exp[sLSi] (3.16)

or
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S =5 BS(SBL) (3.17)

where Bs(x) is the Brillouin function defined by

25+1

!
BS (X) = ﬁ {(25+1)COth(T

)x - coth(ig)}. (3.18)

To evaluate the magnetization we have

aFo N 29 z
M= - SE - 8 5§ ln Tr exp[BLSi] (3.19)
or
_ 9 z
M = NguB m In Tr QXP[BLSi] ’ (3.20)

but from equation (3.16) we have

M = NguB§ . (3.21)
Therefore we identify S with <S?> and have the standard
molecular field results.

In comparing our results with the standard molecular

field equations, (Smart, 1966), we must remember that our

effective exchange interaction, Ao' is given by

A = z J.. + o,.
o 17 ij
]
_ 2 1 2 _
= J_ + (gup) § 3 (3 cos®e, ;- 1) (3.22)
where 1]
JO = zlJnn + zannn (3.23)
z, is the number of nearest-neighbors and z, the number of

2
next-nearest neighbors.

Returning to the correction term in the free energy,
-BF', we see
-BF' = 1n Tr exp[-—B(Ho + Hl)]

- 1n Tr exp[-BHO]. (3.24)
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This is expanded in a cluster series of the form
-BF' = 1n Tr p_ exp[}Q ] (3.25)
o

where

o exp[-BHo]/Tr exp[-BHO] (3.26)

o

and the index o numbers the pairs (i,j) or "links" in the
crystal. The expansion may then be written

-BF' = ) [-BF (3.27)

fol

where {a} denotes each topologically distinct cluster.

jat J

The correction term can be computed to any desired order,
and the parameter S is then chosen to minimize the total
free energy. A criticism of this approach has been raised
by Morita and Tanaka (1966). They point out that the
condition of minimizing the free energy with respect to S
is not justified from the basic principles of statistical
mechanics. Using a variational technique, they show that
this approach is valid for the pair approximation. We
can therefore extend our expansion up to the two-spin
approximation.

A problem occurs when carrying the expansion to two
spins due to the fact that Ho and Hl do not commute.

However, this can be overcome by applying the theorem

B

eBA e-B(A+B) = P exp[-/ B,di] (3.28)
0

where P is the Dyson ordering operator, and where

By = e Be . (3.29)
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We have derived the two-spin correction term and find

-BF'.,, = } 1n Tr exp[-BQ..] + single ion terms
v]
(3.30)
where
- =\ (2 A z.2
Qij = Qij(S)(Si + ”j) - AijSiS]
1 + -t
5 Bij(sis + Sisj)
+2 .- -2 _+ 4+
D1J sisj Dij slsj ’ (3.31)
and
— 1 -
Qij(S) = gugh + 2(Ao 5 Aij)S. (3.32)

Because of the dependence of Qi on ;ij and S, and the

j
necessity to carry out the summation over many ions to
adequately include the effect of the dipole-dipole term,

this calculation is untractable.

3+

Although Gd has a spin of 7/2, thereby making

Qij a 64 x 64 matrix, the calculation difficulties are

evident in the case of S = 1/2. We use as a basis set

the states |Sl,S ST,S§> where we adopt the convention

27
|sl,Sz,+1/2,+1/2> = |++> (3.33)
and
|51'Sz'+1/2"1/2> = |+-> (3.34)

Qij then has the form



| ++> | -=> | -+> | +->
1 -2
| +4> Qij(s) Y Aij Dij 0 0
+2 1
| --> D3 szij(S) T2 0 0
1 1
|-+> 0 0 *T Ry T3 By
+-> 0 0 Le. 4ia.. .
|
ij 4 ij
(3.35)

The coefficients Ai B.., and Dij are all of the

B &
same order of magnitude, therefore we cannot neglect the
off-diagonal terms nor can we apply perturbation theory.

All coefficients depend on rij' 0 and ¢ij' the spherical

ij
coordinates of the (i,j) pair, and Qij also depends on S.
Therefore we must diagonalize Qij for each pair in the
crystal and for each S.

We have carried out calculations in a very crude
approximation by neglecting the off-diagonal terms and only
considering the nearest-neighbor and next-nearest-neighbor
interactions. These calculations predict a transition
temperature slightly lower than the observed value, and a
temperature dependence of the magnetization which is
qualitatively correct. However, the crudity of this
approximation renders it invalid, and indicates that the

agreement is simply fortuitous.

An improved approximation would be to correctly treat
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the operator Qij for the nearest-neighbor and next-nearest-
neighbor pairs and include the effect of the other pairs
only in Ao' Although this is an improvement in terms of
an accurate treatment of the neighboring spins in the two-
spin approximation, the two-spin cluster, even when treated
correctly for all spins, does not satisfactorily treat the
cooperative phenomena. This is especially true because of
the antiferromagnetic nearest-neighbor interaction present
in GdCl3. For this reason this calculation was not
pursued further.

2) Green Function

A relatively recent approximation technique employs
the double-time temperature-dependent Green function

(Zubarev, 1960). The retarded double-time temperature-

dependent Green function is defined as

<<A(t);B(t')>> = - i6(t-t')<[A(t), B(t')]> (3.36)

where 86 (t-t') is the unit step function. <> denotes the
ensemble average and <<>> denotes the Green function.
A(t) and B(t') are quantum mechanical operators. The

equation of motion for the Green function is
i g5 <<A(t),B(t')>> = §(t-t")<[A(t),B(t")]>

+ <<[A(t),H]);B(t")>> . (3.37)
Taking the Fourier transform over the time variable into

the energy variable gives
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1
w<<A;B>>w = 57 <[A,B]> + <<[A,H];B>>w (3.38)

where # = 1.

Once the operators A and B have been chosen for the
problem, the solution of the Green function <<A7B>>m is
nontrivial since it is given in terms of a higher order
Green function <<[A1,H];B>>w which is also unknown. The
general technique is to approximate the higher order Green
function in terms of the lower order Green function. This
is called decoupling the equation of motion.

In magnetic systems the operators A and B are
generally S; and S;‘ The higher order Green functions
are generally of the form
F

z .t
lsj' Sr>>w . (3.39)

<<8
The random phase approximation decouples this by assuming

S%; S;>>

z
<S¢ j rw 2#j

<Sz><<s%; S$>> . (3.40a)
i’ r’w

With this assumption we are now in a position to solve

for

(3.40b)
w

<<S;; Si>> -

Becker and Plischke (1970) have used the Hamiltonian
(3.7) in the Green function formalism and solved the
problem using the random phase approximation. We will
compare our results to their calculation.

3) Spin Wave Calculation

Unlike the cluster expansion and Green function

approaches which apply to all temperatures, the spin wave
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approach applies to a restricted temperature range. In

the spin wave approximation we have sacrificed the large
temperature range for an exact quantum mechanical treatment.
The linear spin wave theory was first considered by Bloch
(1930, 1932), and later by Holstein and Primakoff (1940).
The spin operators in the Hamiltonian are replaced by
creation and annihilation operators, a+ and a respectively,

by the substitution

st + (25012, (3.41a)
s™ » (25)1/2,7 (3.41b)
s? + 5 - a+a (3.41c)

Only terms quadratic in the creation and annihilation
operators are retained. As long as the higher order terms
are not significant, i.e. as long as multiple scattering
processes are not important, the spin wave approximation
is valid.

Marquard and Stinchcombe (1967) have treated the
Hamiltonian in the spin wave approximation by generalizing
the interaction between the spin operators to include any
symmetric interaction. They have also treated the dipole-
dipole interaction exactly by using the Ewald technique

to evaluate the ﬁ-dependent dipole sums.



IV. Cl N.M.R. IN GdCl3: RESULTS AND DISCUSSION

A. N.M.,R. Hamiltonian

When a nucleus of spin I > 1 is located in a lattice,
the Hamiltonian describing the interactions between the
nucleus and the local environments at the nuclear site

due to the lattice may be written as
> >

H=- 78 - % 3:7% . (4.1)

The first term is the Zeeman interaction between the
nuclear dipole moments, ﬁ, and the internal field B.

The second term is the quadrupole interaction between the
<>

nuclear quadrupole moment tensor, 6, and the crystalline
>

electric field gradient (E.F.G.) tensor, VE. We use the
XYZ coordinate system which diagonalizes the field gradient

>
tensor, -($E)ij = V,.8 as our reference frame. The

ijrij’
Zeeman interaction is then written

>
Hy = = 9k 1B
_ 1+ - -+
= Qk[Isz + 5 (I B +IB)I] (4.2)
where
Q = YBj . (4.3)
Y is the nuclear gyromagnetic ratio.
The quadrupole interaction may be written
_ 2 .2 2 2 2
Hy = 6A[3I_ - I + n(I_ + Iy)]/h (4.4)
where
A = e®Qu__/41(21+1) = e®0q/41(21+1) (4.5)

and n is the field gradient asymmetry parameter,

32
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no= WV VMY, (4.6)

with the standard convention vaxl i.lvyyl < |sz|.

The matrix elements of the Hamiltonian are given by

<m|HM|m> = - Qm cos6, (4.7a)
Q i peld

<m|HM|m+l> = - 5 /{I-m) (I+m+I) sinbe " , (4.7Db)

<m|Hy|m> = Al3mZ - I(I+1)], (4.7c)

and

<m|HQ|m+2> = <m-2|HQ|m> =

/TTFm) (L= [T (T (T-m# 27 5 n.  (4.7d)
The angles 6 and ¢ are the polar and aximuthal angles
respectively of ﬁ in the XYZ principal axis system.

From the analysis of a nuclear resonance spectrum we
may determine: 1) the magnitude of the electric field
gradient, g, 2) the asymmetry parameter, n, and 3) the
direction and magnitude of an internal field B. All of
these parameters are determined at the nuclear site only.

Figure 4.1 shows the 35

Cl N.M.R. transition frequen-
cies in GdCl3 as a function of temperature below the
transition temperature of approximately 2.2 K. The facts
that we see only three transition frequencies in the
ordered state and that the chlorines lie on a mirror plane
indicate that the internal field at the Cl site must be

along C3. Also, because of the mirror plane one of the

principal axes of the E.F.G. must be parallel to C3. In
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Figure 4.1. 35C1 Transition Frequencies in GdCls3
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all the rare earth trichlorides lanthanum to gadolinium
we find this to be the X-axis.

We now use the fact that the X-axis of the E.F.G. and
the internal magnetic field coincide to simplify our

analysis of the N.M.R. spectrum.

B. Determine n by the Method of Moments

The asymmetry parameter is easily determined by the
method of energy moments (Brown and Parker, 1955). They
let the (2I + 1) eigenvalues of the Hamiltonian be equal
to An’ n=1, 2, ... (2I + 1). The moments of energy are

defined as

S, = ) A, o (4.8a)
n
s, =7 a2 (4.8b)
2 n '’ )
n
and
s, =7 3 (4.8¢c)
3 n b ! )

The first moment is equal to zero since the representation

is traceless. The second and third moments, 82 and S3,

can be regarded as experimentally determined quantities

if we can construct the energy level diagram from the

observed transition frequencies. This is possible if each

of the (2I + 1) levels is implicated in at least one

observed transition. Brown and Parker show that it follows

without approximation that
2 1

= 2

2

l\’ (4.9a)

and
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_ 2 2 2
S3 = P3C3 1 n") + 3P2C3v X
(3 c0526 -1+ ncosz¢sin26). (4.9b)

C3 is the pure quadrupole frequency interval with n = 0,
c, = 3 e’0a/21(21-1)h = 63, (4.10)
vV is the Larmor frequency of ﬁ in the field ﬁ,
v = uB/Ih. (4.11)

The coefficients p; are polynomials in I as follows:

P, = 2I(I + 1) (21 + 1)/3!, (4.12a)
Py, = 2I(I + 1) (2I - 1) (21 + 1) (21 +3)/3(5!), (4.12b)
and
Py = 2I(I+1) (21-3) (2I-1) (2I+41) (2I+3) (21+5)/3(7!).
(4.12c)
For our case of I = 3/2, the coefficients reduce to:

P1=5:P2=l:andp3=0.

For the case of n # 0 the observed pure quadrupole

resonance frequency, VQ, is given by
GeZQq(l + % nz)l/2
\)Q = N (4013)
4I1(2I - 1)h

Therefore we may express C3 as
= V
C3 Q/o (4.14)
where

p = (1 + % nz)l/2 . (4.15)

We now use the fact that the internal field, ﬁ, is
parallel to the X-axis to reduce the expressions for the

second and third moments. We find
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+ 5v (4.16a)

and

]
|
L@

3 5 (n-1) (4.16Db)

Since the magnitude of the internal field is a function of
temperature and still unknown, we solve equation (4.16a)
for vz and substitute into equation (4.16b) to get a

quadratic equation for n whose solutions are given by

D ¢ (D2 - 4AC)1/2

n = T (4.17)
where
- 9 2 _ 02, _ g2
A 55 vQ (S2 vQ) S3/3, (4.18a)
_ _ 2 g2
C=A-3583, (4.18b)
and
_ 2 .2
D = 2A + 3 S3 . (4.18c)

Figure 4.2 shows the energy level scheme for the Cl
nucleus in zero magnetic field and in a finite magnetic
field. Because we see three lines in the ordered state,
each going to the zero field pure quadrupole line at the
transition temperature, we may uniquely determine the
energy level diagram in terms of the observed frequencies
f2, f3, and f4. The relationships between the energy

levels and the transition frequencies are given by

4), = - £, - 3£, + 2f,, (4.19a)
4r, = - £, + 3£, - 2f,, (4.19b)
4ry = - £, + £+ 2f,, (4.19¢)

and
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Figure 4.2. Energy Levels for a Spin 3/2 Nucleus in a Crystal
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4\, = 3£, + £, - 2f (4.194)

4 2 3 4°

We are now in a position to determine n at any temper-
ature. All we require is a knowledge of the pure quadru-
pole resonance transition frequency, which we assume
remains constant through the phase transition. Table B.l
of Appendix B shows the average of the five independent
frequency measurements for all the observed transitions
and the standard deviation of the frequency measurements.
From the low temperature results we find

n =0.4265 * 0.0001 . (4.20)

C. Determine the Magnitude of the Internal Field

We could apply the method of moments to determine
the magnitude of the internal field as a function of
temperature; however, we do not always have the three
observed frequencies necessary to uniquely determine the
energy levels. An alternate approach, which will allow us
to determine the magnitude of the internal field with only
a single observed frequency, is to calculate the transition
frequencies in terms of the internal field magnitude and
then solve for the field magnitude.

The Hamiltonian written in matrix form from equation

(4.7) is



40

3A - % Q 0 Y3 An 0
0 -3A - 5 Q 0 V3 An
/3 An 0 -3A + 5 Q 0
3
0 /3 An 0 3a + 30 .
u 27
(4.21)
This is easily solved and gives
__9_1_/2 2 _ )
A= 3 2\/QQ + 4(Q 2vy/e) ' (4.22a)
-0 L 14/2 2 _ i
Q 1, /2 2 '
A3 =3 - 7\/CQ + 4(Q° + QvQ/p) ’ (4.22c)
and
9, 1./2 2 ’
Ay =3 ¢ 5\/QQ + 4(Q° + QvQ/p) . (4.224)
The transition frequencies are now given by
f2 = A4 - Az , (4.23Db)
f3 = A3 - Al ' (4.23c)
and f, = A3 - Ay . (4.234Q)

Since there are two isotopes of chlorine which have a

spin of 3/2, 3° 37

Cl, 75.4% abundant, and Cl, 24.6% abundant,
we observe two pure quadrupole resonance transitions in the
paramagnetic state at 5314 kHz and 4188 kHz respectively.

In the ordered state we see three lines for each isotope.
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The energy levels of the different isotopes will be
different because of the difference in the nuclear

quadrupole moments, given by

35v 35Q
Q _ _

Yy P 1.26878 (4.24)
vQ Q

and the differences in the nuclear gyromagnetic ratios

35
*

0.4172 kHz/gauss (4.25a)

and

37

¥ 0.3472 kHz/gauss (4.25b)

To take advantage of the additional data from the
two isotopes in determining the magnitude of the internal
field, we employ a chi squared analysis. We define x2 by

3 - ] 2
x2 _ (£7 (T) £/(B))

ZI
(N
=

i,] Af(lw)2 + Afg(sd)z (4.26)

where

35 or 37, an isotope label,

.
1

i=1, 2, ... (2I + 1), a line label,

N = the total number of observed lines at a given
temperature

fi(T) = the experimental average of five independent
frequency measurements on line i of isotope j,
at temperature T,

fg(B) = the calculated frequency of line i, j and is
a function of the internal field B only,
Af (lw) = the inherent uncertainty in the frequency

measurement due to the finite line width,
assumed independent of isotope and line
label, and
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Afi(sd) = the standard deviation for the five
independent frequency measurements.

A simple computer program for the CDC 6500 was used to
determine the value of B that minimizes xz. Because the
line width is very dependent on temperature and not
directly measured by our spectrometer, we varied the line
width in a systematic manner to force x2 to have a value
no greater than 2.0. The uncertainty in the calculated
field, B, was then determined by making a contour plot of

x2 vs. B in the vicinity of x2 From this contour the

min*®
uncertainty could be assigned by noting the value of B
for which x2 equaled Xiin + 1.0. Figure 4.3 shows the
results of the internal field vs. temperature for GdC13.
Table B.2 of Appendix B tabulates the results of the x2

analysis.

D. Comparison of Temperature Dependence to Theory

1) Calibration
Nuclear magnetic resonance in the absence of an applied
external field measures the local field at a nuclear site.

This field is given by

3(<8.>°%..)r.. <S8.>
2 = ] 1] 137 _ ]
B; = (qup) g { " =3 }
> 1] 1]

- (Ynk)-l ..+ < ) (4.27)

>
1] J
The first term is the field due to the moments of the Gd4d

ions, the second term is the transferred hyperfine field.
-+

X is the transferred hyperfine interaction tensor between
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the ith nucleus and the jth ion, and §j is the spin of
the jth Gd ion. The bracket, <>, denotes the thermal
average. The time necessary for thermal averaging is of
the order of the period of the phonon motion. This is
many orders of magnitude smaller than our sampling time,
therefore we may conside; <§j> as a temperature dependent
vector.

If the lattice parameters are independent of tempera-
ture and field, i.e. no thermal contraction or magneto-
striction, the dipolar contribution to ﬁi is proportional
to <3>. Similarly, if i is temperature and field independ-
ent, the total ﬁi is then directly proportional to <8>.

Because we have no easy and direct way of measuring
the temperature and field dependence of the lattice
constant and the term g, we make the usual assumption that
they are temperature and field independent.

Magnetization measurements are very difficult and
often inaccurate. Wyatt (1963) has measured the magnetiza-
tion vs. temperature for GdCl3 by noting the temperature
and field of the discontinuity in adiabatic isentropic
magnetization measurements. Unfortunately his thermometry
is only accurate to *4 mK, and he does not discuss the
accuracy of his field measurements. From his curve of
specimen temperature vs. applied field during isentropic
magnetization we can reasonably assume that the temperature

of the kink is known to *4 mK and the field to *+10 Oersteds.
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Using this as an estimate for the accuracy of his data,
we have superimposed our N.M.R. results onto his magneti-

zation results, using the relationship

M(e.m.u./cm3) = KB (gauss) (4.28)
where K = (0.1232 + 0.0027) emu/cm3-gauss. Figure 4.4
shows this comparison.

Wyatt has also measured the magnetization in applied
field using a vibrating sample magnetometer. Unfortunately
at an applied field, H, of about (1/2) NMs’ where N is the
demagnetizing factor and Ms is the spontaneous magnetiza-
tion, the magnetization deviates from the expression
M = H/N. If the law had held up to fields H = NMs then
the point of departure would have been sudden and the value
of the field would have been a measure of the spontaneous
magnetization. He estimates the spontaneous magnetization
by plotting H against the internal field, Hi’ and extrapo-
lates to Hi = 0. The results are shown in Figure 4.5
along with our results using a calibration constant,

K= (0.1137 + 0.0013) emu/cm3-gauss. Because of the
uncertainty in the extrapolation procedure and because of
the lack of agreement in the temperature dependence between
our measurements we will use the isentropic magnetization
measurements as a calibration.

We must keep in mind the limitations of this calibra-
tion. Whenever possible we will compare our results to
the temperature dependent part of a theory, thereby not

relying on the calibration. All fitting of our data to
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analytic expressions will be carried out using the internal
field data, and all coefficients will be quoted in the
appropriate units. When it is necessary to compare our
results to magnetization calculations, we will include

the above assumed error in the calibration.

One question which always arises when studying a
ferromagnet is whether the resonances are from the center
of the domains, or the domain walls. We have no conclusive
evidence to answer this question. We infer that the
resonance occurs in the domain rather than the domain wall.
Because of the strong dipole-dipole interaction we would
expect the domain resonance to be very broad, which we do
not observe. Wyatt (1963) assumes the domains have a very
small cross section with a wall thickness of one lattice
spacing. His magnetization measurements confirm this
assumption. If this is true, the precise meaning of a
domain wall resonance is doubtful. Measurements in an
applied field may shed some light on this question.

2) High Temperature Critical Behavior

Domb and Sykes (1962) and Fisher (1967) have pointed
out that magnetic systems may be characterized by a set
of "critical exponents" in the vicinity of the critical
temperature. For the magnetization one writes

M(T) = A(T_ - m)F (4.29)
where Tc is the critical temperature and B the critical

exponent.
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Figure 4.6 shows a plot of 1lnB(T) vs. ln(Tc—T) for
T > 1.980 K. The very striking linearity indicates a
behavior consistent with the critical exponent. Using

a non-linear least squares fitting program we find

B(T) = A(T_ - TP (4.30)
where

A =(4368 * 31.3) gauss/K , (4.31a)

Tc = (2.214 * 0.0016) K, (4.31Db)
and

B = 0.3904 + 0.006 . (4.31c)

2

The x~ for the thirteen point fit between 1.980 K and
2.170 K is 0.710. Table B.3 of Appendix B compares the
measured and calculated fields.

Although we do not have any data available for T/Tc >
0.985 this behavior is consistent with the specific heat
results of Landau (1971), which indicates that the
critical region extends to T/Tc ~ 0.91.

The value of B is consistent with measurements on
other systems. It is definitely not equal to 0.5, the
value predicted by both the molecular field theory and
the Green function random phase approximation calculation.
The small value of xz indicates that better data are
needed to actually detect a deviation from critical
behavior predictions. It is not impossible to improve on
our data. The most immediate improvement would be to keep

temperature fluctuations below 10 uK and measure the
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transition frequencies with a frequency modulated oscilla-
tor and record the absorption jjine, This may also extend
the data to a higher limit in T/T_, but one should not
be too optimistic. As we approach the transition tempera-
ture, the line width also follows a critical exponent
behavior and becomes very large. It is this inherent
limitation on the measurement of B(T) vs. T with N.M.R.
that cannot be eliminated.

We should also note that Landau (1971) has made high
resolution specific heat measurements on large single

crystals of GACl He finds that the asymptotic form for

3°

the specific heat is not singular. The transition is of

the "diffuse" type (Pippard, 1957). He finds that the

critical behavior of the specific heat ends at T/Tc ~ 0.999.
If microscopic imperfections are severe enough, they

may limit the maximum range of the correlations; the

result could be an effective subdivision of the sample

into an array of microcrystals. The microcrystals will

not be identical and could have slightly different order-

ing temperatures. In fitting his specific heat results

Landau has assumed a gaussian distribution for the fraction

of subsystems that order at a given Tc' He finds a half-

width of 1.5 mK will reproduce his experimental results

exactly. This distribtuion of critical temperatures will

greatly affect any measurements on B(T) in the vicinity

of T .
c



52

3) Low Temperature Behavior

As we mentioned in the previous chapter, the low
temperature behavior of the magnetization provides the
best comparison of theory and experiment because the
theoretical treatment of the Hamiltonian is exact over
a finite temperature range. In their calculations of
magnetization as a function of temperature, Marquard and

Stinchcombe (1967) have shown that for very low T

DAT!! @ T5/2 e_e/T (4.32)
o

where
AM = (Mo - AMO) - M(T). (4.33)

Mo is the saturation magnetization and AMO is the zero
point magnetization defect. The exponential term is
due to the fact that there is a gap in the magnon disper-

sion curve at kK = 0. The TS/2

behavior is unusual, and

it is unfortunate that the temperature necessary to observe
this behavior is estimated to be below 50 mK. To observe
the temperature dependence of the magnetization to the

5/2 behavior is almost

accuracy necessary to establish a T
impossible. Even with the high accuracy of the N.M.R.
measurements the changes in B(T) are so small that it is
not technically possible to measure and maintain the
temperature of the sample to the required accuracy.

Before comparing our results to the numerical calcula-

tions of Marquard and Stinchcombe for the magnetization vs.

temperature we will fit our results to an analytic
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3/2 gor T < 1.2 K.

expression. Figure 4.7 shows B vs. T
This suggests that we may fit our results to the analytic
expression
B(T) = B_ - a,13/2 ¢79%/T | (4.34)
o 1
Since the spin wave approximation is a series expansion

we have also fitted the data to

3/2 8/T

+ A2T5/2)e_ ) (4.35)

B(T) = Bo - (AlT
The results of these fits are shown in Table 4.l1l. The
low value for the sum of the squares indicates that within
our experimental accuracy we have a valid analytic
expression for B(T). Table B.4 of Appendix B compares
the measured and calculated field for both equations.

In comparing our results with the numerical calcula-
tions of Marquard and Stinchcombe (1967) we recall that
our calibration of the magnetization is uncertain, there-
fore we must compare the temperature dependence only.
From their numerical calculations we see that at T = 0.300K
they have M(T)/Ms = 0.99460, where Ms is the saturation
magnetization. If we force our B(0.3 K)/C to equal
0.99460 we have C = 4940.8 gauss. Using this constant
we can now compare the temperature dependence of the
magnetization. Figure 4.8 shows Marquard and Stinchcombe's
numerical results and our data normalized to agree at
0.3 K. The uncertainty in the data is the uncertainty
in B(T) deduced from the xz analysis. This shows there

is a definite discrepancy between the theory and the
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Table 4.1 Low Temperature Analysis

Egn. 4.34 Egqn. 4.35

Number of Data Points 20 20
Temperature Range 0.310 - 1.000 6.310 - 1.000
Bo(gauss) 4957.5 + 2.4 4950.8 + 2.9
A, (gauss/k>/?) 811.0 + 9.9 963.1 + 68.3
Az(gauss/Ks/z) - -90.7 * 41.6
8 (K) 0.343 + 0.015 0.430 +* 0.037
Sum of Squares 9.97 4.312
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experimental results.

Marquard and Stinchcombe have also estimated the
zero point magnetization defect by taking an unweighted
average over the whole Brillouin zone. Their result is
0.2%. Since the non-interacting spin wave approximation
is doubtful for large f, they feel, by analogy with the
antiferromagnetic ground state problem, that the "true"
value may be even smaller. Using the calibration from

Wyatt's data and the T = 0 value of our analytic

expression, Bo = (4950.8 * 2.9) gauss we have that
Mo = (609.9 * 13.7) emu/cm3. For complete alignment of
the 8

S7/2 ground state we would expect 7 uB/ion or
M° = 668 emu/cm3. We therefore have a zero point spin
deviation of (8.7 + 2.1)%. Although this result is very
tentative, it provides strong incentive for further
investigation of the zero point spin deviation.

4) Molecular Field and Green Function Comparison

From the derivation of the molecular field approxima-
tion we recall that including the dipole-dipole interaction
introduces an additional term into the expression of the

exchange strength. We have
2

- 2 1 -
A =J_+ (guB) Z T (3cos eij 1) (4.36)
j "ij
where
Iy = 2d + 2,0, (4.37)

zl is the number of nearest-neighbors, and z, the number

of next-nearest-neighbors. We have calculated the dipole
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sum term using the Ewald technique. For the lattice

o )
parameters ag = 7.3663 A and c, = 4.1059 A we have for a
spherical sample

3

] 2 (3cos®e. .- 1) = 0.03089 A~ (4.38)

> r
j Tij ]
Taking the value of g as 2.0, the effective exchange due to

the dipoles alone, Jdd' is 0.0764 K., Using the EuCl., exchange

3
constants, Jnn = -(0.,073 + 0.004) K and Jnnn = (0.091 + 0.004)K
we have Al = (0.476 *+ 0.032) K. The molecular field Curie
temperature, Tc, is given by

T, = A_S(S+1)/3k . (4.39)
Using our value for Ao we have Tc = (2.50 * 0.17) K.

The calculation of magnetization vs. temperature is

done by solving

% (+—)x = B (%) (4.40)
C

self consistently, where Bs(x) is the Brillouin function,

_ 2S8+1 2S5+1

B (X) coth —z—g—

s = =g X - f% coth 5% . (4.41)
T/Tc is the reduced temperature, often labeled Tr‘ The
reduced magnetization, Mr = M(T)/M(0), is given by Mr = Bs(x).
It is a simple matter to solve equation (4.40) for Bs(x)
as a function of Tr on a computer.

When comparing magnetization vs. temperature results,
all theoretical predictions look approximately the same.
Because the curve of Mr(Tr) is a universal curve for all

results in the molecular field approximation, we will not

compare the actual magnetization results, but the difference
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between the reduced magnetization in question and the
reduced magnetization in the molecular field approximation
as a function of reduced temperature.

We first normalize our experimental measurements of

temperature to Tr by dividing T by the Tc calculated in the

critical point discussion. Therefore Tr T(K)/2.214(K).
In normalizing our magnetization measurements we must first
convert our internal field measurements to magnetization.
We cannot simply normalize our B(T) by dividing B° because
this would eliminate the zero point magnetization defect.
We therefore convert our B(T) to M(T) by using

K= (0.1232 + 0.0027) emu/cm3-gauss, and then calculate Mr
by dividing by 668 emu/cm3. Thus we have our data in the
form of Mr vVS. Tr' We then use the computer to calculate
Mr(Tr) in the molecular field approximation and subtract
this from our measured results.

Figure 4.9 is a plot of Mr(data) - Mr(molecular field)
vs. Tr‘ The error bars on the data points are due to the
uncertainty in the calibration constant, K. As we see,
near Tc the magnetization rises faster than the molecular
field prediction. As the temperature is lowered the experi-
mental results fall below the molecular field prediction
because the molecular field does not predict a zero point
magnetization defect.

In the Becker and Plischke (1970) Green function calcu-

lation the predicted Curie temperature is (2.48 + 0.12) K.
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Using their preprint we have determined Mr(Tr) and

subtracted the molecular field prediction. This curve is
also shown in Figure 4.8. The curve has an accuracy of only
1% because of the uncertainty in measuring the distances on
the preprint graph. As we see, the Green function prediction
is qualitatively correct, although the correction near Tc

is far too much.

E. Conclusion

The measurement of internal field vs. temperature at
the C1 site is very accurate. The accuracy of the field
measurements ranges from 0.4% near Tc to 0.05% at the low
temperatures. The temperature measurements are within the
accuracy of the present temperature scales. With this
accuracy we conclude that our low temperature results do
not agree with the spin wave calculation. Whether this is
due to assumptions made in the calculation or an insuffic-
ient phenomenological Hamiltonian is not yet certain.

The tentative discrepancy between the zero point
magnetization defect predicted by the spin wave theory and
the experiment must be investigated further. We hope to
measure this more accurately by doing N.M.R. in an applied
field.

If the large value for the zero point magnetization
defect is indeed real, we must find a mechanism to explain

3+

this. Although Gd is an S state ion and the optical

spectra show no evidence of crystal field phonon interact-
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ions, it is possible there may be a strong phonon-magnon
coupling. Because the exchange integral is a strong
function of distance and because of the long range dipole
term we may expect significant phonon-magnon coupling.
Rives and Walton (1968) have measured the field
dependence of the thermal conductivity in MnC12'4H20 at
temperatures well below the Néel temperature. Here the
an+ ion is also an S state ion, although the dipolar
contribution to the exchange interaction is negligible.
In the antiferromagnetic state they find a very strong
dependence of the thermal conductivity on applied field,
resulting in a kink at the spin flop transition. Similar
experiments can and should be done on GdC13.
These two experiments will hopefully provide the

theorist with enough new information to again tackle the

theoretical problem of the magnetic behavior of GdC13.



V. PrCl3 THEORY AND BACKGROUND

The Pr3+ ion and PrCl3 in particular have proven to be
very interesting. The concentrated salt has two regions of
cooperative behavior. The first is a linear chain magnetic
behavior centered around 0.85 K, and the second is a phase
transition to a three-dimensional ordered state at 0.4 K.

We will be primarily concerned with the latter phase transi-

tion.

A. Pr3+ Ion Properties

3+

The absorption spectrum of the Pr ion shows the

3

ground level to be H4 (Judd, 1957). The point symmetry

in LaCl3 is C3h' which gives a non-Kramers degenerate ground

state, cos(0)]|4,*4> +sin(0) |4,+2>, with the notation |J,MJ>.

The first excited state is [4,3> and is 33.1 cm“1 above the
ground state.

Hutchinson Jr. and Wong (1958) have measured the para-

3+ 4n LaCl,. Their

results are summarized by the spin Hamiltonian

magnetic resonance absorption of Pr

- 2.2 XX YooY
H 9N HgH"S™ + gl.uB(H S™ + H¥S?) +

hcAs?1% + A s* + A Y. (5.1)
X y

The first two terms are the Zeeman interaction terms between

the electron spins and the applied field. The third term is
the transferred hyperfine interaction between the 141Pr

nucleus, I = 5/2, and the electron spins. The ground state

63
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of the C crystal field should not give rise to paramagnetic

3h
resonance since g = 0 and the transition from one state of

the doublet to the other does not contain either a AMJ =0

or a AMJ = *]1 transition. They have included the fourth
2)1/2
Y
crystal strains and distortions, and thermal fluctuations.

term, Axsx + AySy with A = (Ai + A to account for

Their results are g = 1.035 ¢ 0.005, g = 0.1 * 0.15,

2

A= (5.02 * 0.03) x 1072 cm Y, and A = 0.02 cm '. Later

Culvahouse, Pfortmiller, and Schinke (1968) have shown that
the microwave electric field is responsible for the magnetic
field dependent absorption of Pr3+ ions. They replace the

A term with a term of the form y(ExSx + Eysy) where

4 1

Yy = 6.0 x 10 (cm-l/statvolt. cm 7).

B. Pr3+ and Pair Resonance

The Hamiltonian for two interacting ions, each with an
effective spin of one-half, may be written in the form

(Culvahouse, Schinke, and Pfortmiller, 1969)

Qv

>
H=u_(fg, 8, + Hg,$

B + ) A (DT (IT 0 (S)) +

1 2) . mm
mm

1 2

(5.2)

The first two terms are the same as the single ion terms
discussed above. The last term is the interaction term
between the electron spins. The existence of an inversion

center between the spins and the fact that the axis joining
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the nearest-neighbor spins has a rotation symmetry of three

or higher reduces the Hamiltonian to the form

_ 2 ,.2 z X X X
H = 9 uBH (s1 + Sz) + 9, uB[H (s1 + sz) +

Y ;oY Yy 2.2 z2.2
H (sl + 52)] + A(Ilsl + Izsz) +
X . X X X YooY YooY
B(Ilsl + 1252 + Ilsl + 1252) +
","* 2.2.2
KoSl S, + K slsl . (5.3)

The interaction term may also be written

XX

Z2.2 _ Yo¥
JOOSlS2 Jl_l(sls2 + slSZ) (5.4a)
where
-_— Z=
K, = -J;_; and K Joo ¥ I1-1 ¢ (5.4Db)

Pfortmiller (1970) has measured the pair spectra of the

nearest-neighbor pairs of Pr3+ in La2(C H SO4)6‘9H 0, LaEs,

25

and in LaC13. His results are shown in Table 5.1.

2

In estimating the actual interaction mechanism for the

LaCl3 host lattice, Pfortmiller finds: 1) the error in Joo

is too large to actually confirm a non-dipolar contribution

to Jo , 2) exchange is a negligible source for Jl-l’ based

o
on arguments regarding the size of the exchange, and 3) an
enhancement factor of 10 is necessary to account for Ji-1
in terms of an electric quadrupole-gquadrupole interaction
alone. Finally he concludes, "Although large interactions

exist between the Pr3+

n.n. pairs, the dominant mechanisnm,
if indeed only one can be singled out, is not evident."

He also did not find any pair resonances that could
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definitely be attributed to the off-axis next-nearest-
neighbor pairs, although this does not preclude the

existence of strong next-nearest-neighbor pair interactions.

C. Bulk Properties

The pair spectra results indicate an interaction
between the Pr3+ ions along the chain. Colwell, Mangum
and Utton (1969) have measured the specific heat of PrCl3
from 0.2 K to 4.0 K. They find a broad peak in the specific
heat centered at 0.85 K which is consistent with a linear
chain interaction. They also find a sharp peak at 0.4 K
indicating the onset of long range ordering. Because the
pair spectra results do not give any information on the
interaction between the chains, and because the pure quadru-
pole resonance line splits at 0.4 K, the three-dimensional
critical temperature, we undertook an N.M.R. study in the
three-dimensional ordered state to determine the type and
symmetry of the low temperature phase. Figure 5.1 shows

35

the zero field quadrupole frequency of Cl as a function

of temperature (Colwell, Mangum and Utton, 1969).
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VI. Cl N.M.R. RESULTS FOR PrCl3

A. Paramagnetic Phase

Before we study the ordered phase of PrCl3 we determine

the asymmetry parameter, n, in the paramagnetic phase. The

pure quadrupole resonance frequencies in PrCl3 are 35v =

Q
4566.6 kHz and 37vQ = 3599.3 kHz. Figure 6.1 shows the
35Cl transition frequencies as a function of applied field

for the field parallel to C the X-axis of the electric

3!
field gradient tensor. With this data we apply the method
of moments discussed in chapter IV and determine n. We
find n = 0.4937. This is significantly different from the
value found by Hughes, Montgomery, Moulton, and Carlson
(1964) and may be attributed to the insensitivity of the
rotation diagram to n, which was the method they used to
find n.

35Cl transition frequencies as

Figure 6.2 shows the
a function of orientation in a constant applied field. The
field is rotated in the plane perpendicular to the C3 axis,
and has a value of 500 Oersteds. Because of the 3-fold
symmetry, applying a field at an angle 6 to the Z-axis of
one chlorine site is equivalent to applying the same field
at an angle 6' = 6 + 120° to the other two sites. We
therefore expect three identical resonance patterns shifted
by 120°, From the symmetry of the interaction Hamiltonian

we also expect the resonance pattern to have a periodicity

of 180°. Both of these effects are observed. The subscript
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on the axis labels are arbitrary and refer to the different

sites.

B. Low Temperature Phase, T < 0.4 K

Figure 6.3 shows the same rotation diagram in the
ordered state. The zero field splitting is about 60 kHz.
Note that this resonance pattern also has a period of 180°
and that the 3-fold symmetry is still present. Also, the
principal axes of the electric field gradient tensor have
not shifted.

Figure 6.4 shows the field dependence of the transition
frequencies for the applied field parallel to the Z-axis
of site (1). This orientation is 30° from the Y-axis of
both sites (2) and (3). At this location the transition
frequencies for site (3) are identical to those of site (2).
Of the twelve observed transition frequencies we are therefore
able to associate eight of them with site (2) and four of
them with site (1). Because the eight transition frequencies
of site (2) form two sets of four, each converging to one of

the zero field transition frequencies as H approaches

appl.
zero, we conclude that the zero field splitting below 0.4 K
is NOT due to a spontaneous internal magnetic field at the
chlorine site. If the splitting is due to an internal
field we would see at most two lines converging to the zero
field resonance frequencies. The four line convergence

indicates that the degeneracy of the quadrupole Hamiltonian

present in the paramagnetic state is not removed by the phase
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transition, therefore there is no internal magnetic field.
The zero field splitting is due to an effective lowering
of the crystal symmetry, thereby creating two non-
equivalent chlorine sites.

This conclusion is further substantiated by a calcula-
tion of the observed spectrum. The Hamiltonian of equation
(4.7) can be diagonalized exactly by a computer for an
arbitrary orientation and magnitude of B. We have calculated
the spectrum for a rotation identical to that of Figure 6.3.
The pure quadrupole resonance frequency was assumed to be
the zero field frequencies measured in the ordered state.
The asymmetry parameter is the same as that measured in the
high temperature phase, T > 0.4 K, and the magnitude of the
internal field is just the applied field of 500 Oersteds.
The calculated spectrum and observed spectrum agree to
within the uncertainties in the measured frequencies. The
measured and calculated frequencies are shown in Table C.1
of Appendix C.

To determine if the application of a magnetic field has
any effect on the ordered phase, we applied an external
magnetic field of up to 10 Kgauss along the Y-axis. The
results are shown in Figure 6.5. It appears that even a
10 Kgauss field does not alter the zero field splitting.

We have also been unable to detect any changes in the
transition temperature with the application of a magnetic

field.
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To determine the symmetry of the ordered phase we note
that the 3-fold symmetry present in the high temperature
phase is retained in the low temperature phase. The space
group of the high temperature phase is P63/m. This belongs
to the class 6/m or C6h in Schoenflies notation. The phase
transition lowers the symmetry, therefore the class of the
low temperature phase must be either 6/m or one of its
subclasses: 6, 6, 3, 3, 2/m, m, 2, 1, or 1. The subclasses
2/m, 2, 1, and 1 do not retain the 3-fold symmetry and may
be eliminated as possible candidates. The possible space
groups for each of the other four classes are listed in
Table 6.1 along with the reason for their being allowed or
not allowed.

The allowed space group P6 removes the symmetry element
of inversion and allows one set of three chlorines on a
mirror plane to move out and the other to move in. The
space group P3 also removes the mirror plane, therefore
allowing the Pr to move out of the plane of the chlorines.

Although we have not definitely established the exist-
ence of a real crystallographic phase transition, the actual
ordering mechanism should also remove these same symmetry
elements.

When the zero field lines are recorded with a cw
marginal oscillator and second derivative detection using
magnetic modulation we see the lines shown in Figure 6.6.

The upper line is from the high temperature phase and is
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Table 6.1. Analysis of Possible Space Groups for PrCl3

Class Space Group Reason

6/m P63/m Improper number of Cl positions

6/m P6/m Both Pr either in a plane or on
the same symmetry line.

[1 P6 Allowed

6 P63 Improper number of Cl positions

6 P6), Improper number of Cl positions

6 P6, Improper number of Cl positions

6 Pég Improper number of Cl positions

6 P6, Improper number of Cl positions

6 P6 Both Pr in the same plane

3 R3 Improper number of Cl positions

3 P3 Improper number of Cl positions

3 R3 Improper number of Cl positions

3 P35 Improper number of Cl positions

3 P3; Improper number of Cl positions

3 P3 Allowed




]
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symmetric down to the critical temperature. In the low
temperature phase the lines are asymmetric and change shape
as a function of temperature. This asymmetry is also
observed when frequency modulation is used. Since the low
temperature phase is of lower symmetry we have postulated
that the observed line is not necessarily due to a single
site.

If we assume that the absorption curve is a gaussian

of the form

A = —= gl T (6.1)
2m

where f is the frequency of the detecting oscillator, f°
is the resonance frequency of the line, and o is the line

width, we find that the observed line shape is given by

2
A" (£) = =4 {a(£-£2)2 - 2} o~ (F-£°) (6.2)
m
where we assume o = —l;-.
V2

We then assume that the observed line in the low
temperature phase is given by
2
N ey 2 - (f-£°)
A" (f) = Z 1 {4(f f;) e i
i=1 v/m

- 2} (6.3)

where N is the number of nearly equivalent sites. We can
reproduce the observed asymmetry if we let N = 3, and let
f, = f, =0 and f, = 1//2, or the line width. This calcula-
tion is shown in Figure 6.7. From this we may conclude that

the 3-fold symmetry is slightly removed. An attempt to
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Figure 6.7 Calculated Second Derivative of Absorption Curve.



82

measure the deviation from 3-fold symmetry using the

rotation spectrum was unsuccessful.

C. Conclusions

From the N.M.R. results, we conclude that the low

temperature phase transition in PrCl, is not to an anti-

3
ferromagnetic phase as previously assumed, but instead is

to an ordered state which effectively lowers the crystal
symmetry. The actual mechanism responsible for the ordering
can not be determined by N.M.R, Because the ground state

of the Pr3+

ion is a non-Kramers doublet we may assume that
a strong coupling to the lattice vibrations is present. If
the exchange constants are of the proper magnitude this will
allow a Jahn-Teller type distortion (Allen, 1968). Evidence
for a strong spin-phonon coupling is present from the unique
Cl spin-spin and spin-lattice relaxation times (Mangum and
Thorton, 1969), and from the phonon bottleneck predicted by
the electron spin lattice relaxation measurements (Bohan and
Stapelton, 1969). Cohen and Moos (1967) have also observed
very sharp lines in the vibronic spectra which are not
understood.

A complete description of the phase transition will
probably include the phonons, but before this is possible,
we must determine the exact nature of the low temperature

phase.
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APPENDIX A

CALIBRATION OF THE 3He SOLITRON GERMANIUM RESISTOR

The susceptibility coil calibration data are given in
Table A. 1. These data are fit to the equation
D = A(T*-l) + B. Using a normal least squares analysis
the result is

1

D = -(50824 * 81)T* ~ + (69692 * 101) (A.1)

Because the normal least squares analysis weights all
points equally, which is not our case as indicated by the
variation in AT* 1 of Table A.l, we also fit the data
using a least squares program of Williamson (1968) which

weights the datum points with the inverse square of the

standard deviation of each point, and allows for standard

deviations in both the T"_1 and D values of the datum. The
result of this fit is
D = -(50527 + 76)T* L + (69382 + 75) (A.2)

The low temperatures calculated using these two results agree
to within the uncertainty in the calculated temperatures.

We will use the latter result because our data do not fit

the criteria for the normal least squares analysis.

Table A. 3 shows the raw data for R vs. D for T < 0.6 K and
the calculated temperatures based on the Williamson analysis.
The uncertainty in the temperature is due to the uncertain-

ties in the coefficients A and B. Table A.4 shows the
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Table A.l. Susceptibility Coil Calibration Data

T(X) '}7 * (% A%" *x 10748 Regéiaigb RAe]a)jh?‘rlzg
1.200 0.8302 3.0 270k 20
1.121 0.8882 3.5 2L530 10
1.052 0.9459 4.5 21582 10
0.990 1.00L5 5.0 18600 10
0.936 1.0617 5.9 15693 10
0.887 1.1196 7.0 12935 10
0.8k42 1.1785 9.7 09898 10
0.802 1.2364 12.8 06889 20
0.766 1.2934 1k.1 03976 15
0.701 1.4108 2k.3 -01936 10
0.673 1.4681 31.9 -04900 10
0.647 1.5256 3L4.0 -07836 05
0.623 1.5828 45.1 ~10808 05
0.600 1.6417 56.1 -13873 10

& The uncertainty in ™-1 arises from the uncertainty in T which is
approximately constant for all temperatures.

b This is the dial reading on a Cryogenics mutual inductance bridge and
is directly proportional to the susceptibility.
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calibration data for R vs. T for the temperature range
0.3 K to 1.2 K. Below 0.6 K the temperature is taken

from Table A.3, above 0.6 K the temperature is determined
3

by measuring the vapor pressure of the “"He bath. These
data were fit to the equation
In(R) = aj + a; In(T) + az/T. (A.3)

Because the germanium resistor is so heavily doped we do
not expect it to follow a single equation over a large

temperature range. For this reason we have divided up the
temperature range from 0.3 K to 1.2 K into four sections

and fitted each section separately. The standard method
of least squares (Mack, 1966) was used to determine the
coefficients, agr s and a,. The results of this fit are
given in Table A.2. The last column in Table A.4 shows

(R

calc. Rmeas )/ (AR/AT) to show the effective temperature

deviation between the calculated and measured values.

Table A.2. Coefficients for 3He Solitron Ge Resistor
Temp. Range (K) a, a; a,
1.200 to 0.700 5.769325 -0.875580 1.142215
0.699 to 0.550 6.378414 -1.859392 0.470550
0.549 to 0.415 6.139522 -1.639297 0.675030
0.414 to 0.300 6.076923 -1,717617 0.664094
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Table A.3. Raw Data for Ge Resistor Calibration

Dial

Reading T(K) AT(mK) R(ohms)
-15097 0.589 1.5 3500 X 1
-16362 0.580 1.4 3650 X 1
-18232 0.567 1.4 3880 X 1
-19856 0.556 . 1.4 koo X 1
-21k07 0.5u47 1.3 4300 X 1
-23180 0.536 1.3 k550 X 1
-24851 0.526 1.3 4800 X 1
-26700 0.515 1.2 5100 X 1
-28500 0.505 1.2 5400 X 1
-30500 0.495 1.2 5750 X 1
-32390 0.L485 1.1 6100 X 1
-34437 0.475 1.1 6500 X 1
-36613 0.465 1.1 6950 X 1
-38900 0.k55 1.1 T4ST X 1
-41555 0.L43 1.0 8100 X 1
-44000 0.433 1.0 8700 X 1
-46917 0.k21 1.0 9500 X 1
-50180 0.ko9 0.9 1030 X 10
-52374 0.401 0.9 1100 X 10
-54517 0.394 0.9 1160 X 10
-58285 0.381 0.9 1300 X 10
-60812 0.373 0.8 1400 X 10
-6L4326 0.363 0.8 1550 X 10
-71293 0.343 0.8 1900 X 10
-T74810 0.334 0.7 2100 X 10
~79549 0.322 0.7 2400 X 10
-8L4L10 0.311 0.7 2750 X 10
-88900 0.301 0.7 3100 X 10
-93180 0.292 0.7 3507 X 10
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Table A.4L. R. vs. T Calibration Data and Deviation

T AT R (Re-Rp)/(4R/4T)

(k) (mK) (ohms) (mK)
1.172 1.0 T738.4 -0.29
1.150 1.0 765.3 0.05
1.106 1.0 823.4 -0.24
1.100 1.0 832.5 0.11
1.050 1.0 911.1 0.12
1.047 1.0 916.1 0.0k4
1.000 1.0 1004 .6 0.ko
0.995 1.0 101k .4 0.19
0.903 1.0 1240.6 -0.10
0.900 1.0 124k4.9 -1.63
0.850 1.0 1413.5 -0.61
0.827 1.0 1507.0 0.40
0.800 1.0 1623.2 -0.11
0.762 1.0 1818.0 -0.26
0.750 1.0 1891.5 0.30
0.707 1.0 2180.6 -0.32
0.700 1.0 2240.6 0.19
0.675 1.0 2453.8 -0.25
0.658 1.0 2615.6 -0.65
0.650 1.0 27T12.7 0.60
0.625 1.0 3002.0 0.4k
0.616 1.0 3110.4 -0.16
0.589 1.5 3500.0 -0.23
0.580 1.4 3650.0 -0.02
0.567 1.4 3880.0 0.06
0.556 1.4 4090.0 0.03
0.547 1.3 4300.0 0.73
0.536 1.3 4550.0 0.31
0.526 1.3 4800.0 0.06
0.515 1.2 5100.0 -0.19
0.505 1.2 5400.0 ~0.34
0.495 1.2 5750.0 0.16
0.485 1.1 6100.0 -0.24
0.475 1.1 6500.0 -0.22
0.465 1.1 6950.0 0.01
0.455 1.1 TU57.0 0.43
0.443 1.0 8100.0 0.23
0.433 1.0 8700.0 0.06
0.421 1.0 9500.0 -0.27
0.409 0.9 10300.0 0.L4s5
0.k01 0.9 11000.0 0.37
0.394 0.9 11600.0 -0.ko
0.381 0.9 13000.0 -0.52
0.373 0.8 14000.0 -0.47
0.363 0.8 15500.0 0.17
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Table A.L. (cont'd.)

T AT R (Re-Rp)/(4R/4T)

(k) (mK) (ohms) (mK)
0.343 0.8 19000.0 0.12
0.334 0.7 21000.0 0.32
0.322 0.7 24000.0 0.01
0.311 0.7 27500.0 0.29
0.301 0.7 31000.0 -0.29
0.292 0.7 35070.0 -0.04




APPENDIX B

GdCl3 TABLES OF DATA AND COMPARISONS

35

Table B.l1l shows the transition frequencies of Cl and

37Cl as a function of temperature in the ordered state.
The zero field paramagnetic state transition frequencies

3 37Cl. The recorded

are 5314 kHz for °Cl and 4188 kHz for
frequencies are the average of five independent readings
and the standard deviation, SD, is the statistical standard
deviation for the five readings. J is the isotope label and
I the line label discussed in the text. The uncertainty in
the temperature is the same as the uncertainty in the vapor
pressure tables, * 2mK. The table is in three sections,
one for each different data taking run.

Table B.2 shows the results of the chi squared analysis
used to determine the magnitude of the internal field.
Table B.3 shows the comparison between the measured internal
field and the analytic expression for the critical behavior.

Table B.4 shows the same comparison for the spin wave

region.
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Table B.1l Section 1 Cl Transition Frequencies in Gdcl,, “He Data

TEMP J I FREQ. SeDe
2.170
35 4 5708.81 «58
35 3 5120,00 ol
35 4 4876437 1.37
37 2 4521,57 o4l
37 3 4032.79 20
2.164
35 4 5735,58 «50
35 3 5115,83 07
35 4 4859,37 1.19
37 2 4545,87 87
37 3 4029,43 «30
2.149
35 2 5791,63 «63
35 3 5108,43 21
35 4 4822,07 X
37 2 4590,04 lela
37 3 4025,46 e 46
2.139
35 2 5824,74 48
35 3 5106.,01 «31
35 4 4803,96 «51
37 2 4622.03 1.60
37 3 4023,26 b4
37 4 3770.94 70
2.120
35 4 4770.45 31
37 4 3743,97 «87
2.110
35 3 5106,14 7.30
35 4 4755.94 24
37 4 3732.77 «55
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Table B.1l Section 1 (cont'd.)

TEMP J I FREQ. S.D.
2.100
35 2 5937,53 .85
35 3 5102.83 1.51
35 4 4742,56 bl
37 4 3722.28 43
2.091
35 2 5967.81 50
35 3 5105.14 20
35 4 4731.66 e15
37 3 4025,45 l.44
37 4 3713.69 35
2.069
35 2 6021,19 48
35 3 5108,.80 12
35 4 4708,90 «26
37 2 4788.06 3.24
37 3 4032,38 «33
37 4 3696,.62 «69
2.037
35 2 6097.52 18
35 3 5117.80 15
35 4 4680,.,30 19
37 2 4852,06 67
37 3 4041,11 24
37 4 3674.,63 «63
2.019
35 2 6136,14 19
35 3 512S5.44 25
35 4 4667,28 02
37 2 4884,25 «64
37 3 4046,93 43
37 4 3664,74 42



Table B.1l Section 1 (cont'd.)

TEMP

2.000

1.980

1,949

1.920

1.890
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35

35
37
37
37

35
35
35
37
37
37

35
35

37
37
37

35
35
35
37
37
37

35

35
37
37
37

SdUNBWN

SLWUNSWN SLUNSWN

SN WN

SLWNSWN

FREQ.

6177.27
5130.16
4654,43
4920,35
4054,02
3655,33

6214,34
5137.65
4643,86
4952,56
4061,.25
3646,49

6274,37
5150.35
4628,33
5002.42
4073.51
3636,03

6323,.92
5162.42
4616,49
5045,42
4085,88
3626.73

6373,93
5175.80
4605,54
5088,00
4098,70
3619,07

S.De

olb
ell
«09
24
o18
29

o4l
«20
32
35
36
56

17
«08

20
18
21

ol2
«09
«35
45
e19
e13

.28
o16
ell
40
ol4
16



Table B.l Section 1 (cont'd.)

TEMP

1.860

1.830

1.799

1.769

l.741

97

35
35
35
37
37
37

35
35
35
37
37

35
35
35
37
37

SWbWN SWHEWN SWNSWN SWNESWN

PP WN

FREQ.

6420,04
5188,.85
4597,.,46
5127.,30
4110,97
3613,.73

6465,27
5202,75
4590,20
5165.76
4124,10
3608.33

6509,08
5216,.83
4583,40
4137.77
3604,.08

6549,63
5230,73
4578.,00
4150,55

3600.92

6585,58
5243,51
4573,95
4162.66
3598.45

S.D.

53
«09
19
«06
ell
e19

20
13
40
23
10
26

«28
20
21
25
37

«39
«05
«07
«09
20

29
10
oll
13
70




Table B.1l Section 1 (cont'd.)

TEMP

l1.712

1.661

1.650

l1.618

1.594

98

J

35
35
35
37
37
37

35
35
35
37
37
37

35

35
37
37
37

PWNSWN

SUWUNSWN FWNSWN SWNSWUN

SUUNSWN

FREQ.

6623,19
5257.48
4569,99
5300,02
4175,62
3596.13

6683,39
5280.71
4565,01
5351,50
4197,12
3593,56

6694,67
5285,.10
4564,03
5360.99
4201,31
3593,38

6728,36
5298,77
4561,67
5389,72
4213.83
3592.17

6761,.12
S312.84
4559,89
5417.87
4226.86
3591.52

S.D.

24
12
07
e19
oll
«50

21
«06
13
«34
«03
.18

19
«08
«04
32
13
«30

32
07
«03
17
06
22

61
10
« 05
.22
«30
30




Table B.l Section 1 (cont'd.)

TEMP

1.550

1.500

1,450

l.431

1.350

99

35
35
35
37
37
37

35
35

37
37
37

SWNSWN SWNEWUN SWNSWUN SN WN

SWNSWN

FREQ.

6805,68
5331,.88
4558,00
5455,80
4244 ,24
3591,.02

6855.16
5354,.04
4556,52
5497.99
4264,38
3591,.33

6902,.29
5375.83
4555,76
5537.98
4284,.15
3592.19

6919.53
5383,.91
4555,57
5552,33
4291.59
3592.32

6989,14
5417,.01
4555,75
5611.45
4321.75
3594,38

S.D.

20
19
«09
43
«34
56

17
ol2
«03
24
«20
«38

17
ol2
« 06
31
07
55

«29
ell
«04
042
13
24

.21
«05

«33
15
19
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Table B.l Section 1 (cont'd.)

TEMP J 1 FREQ. SeDe
1.299
3s 2 7029,47 .Sl
s 3 5436.96 .05
3s 4 4556 .60 .08
37 2 5645,94 .15
37 3 4340.03 .28
37 4 3596,05 .18
1.251
35 2 7067.78 .27
3s 3 5456 .52 .08
35 " 4557,70 <06
37 2 5678441 <09
37 3 4357,57 .07
37 4 3598,04 .23
1.200°
35 2 7105.74 .21
3s 3 5475.79 .06
3s 4 4559,07 .02
37 2 5710.45 .38
37 3 4374.84 .15
37 4 3600.15 .23
1.025 2
3s 3 5541.18 .22
3s 2 7227.62 <39
37 2 5814422 .18
37 3 4633,67 <05
37 4 3609,07 .16

8 Not used because the uncertainty in the temperature

measurement ig too large.



Table B.l Section 2

TEMP

«599

«ST77

«530

«483

«450

«401

101

J

35
35

35
35
35

35
35
35

35
35
35

35
35

I

SWN SWN SWN SWN sUWN

SWN

3He Data of Feb 26, 1971

FREQ.

7458,.51
5673.84
4587,21

7468,63
5680.46
4588,72

7488,42
5691.71
4590,37

7507.51
5702.93
4592,.,49

7519,05
S7T11,.11
4593,95

7534,.75
5720.68
4596,.30

S.D.

31
27
25

84
45
°45S

«34
29
«64

75
«43
26

«59
«30
o4l

26
«51
22



Table B.l. Section 3

TEMP

l.222

1.200

1.150

1.100

1.050

1.000

«950

«900

102

35
35
35

35
35
35

35
35
35

35
35

SWN SWUN SWnN SN SWN SWN SN

sSWwN

FREQ.

7088,08
5466.97
4558,80

7103.62
5475.26
4557,.39

7140,45
5494,56
4559,10

7175,.26
5512.88
4561,75

7208,37
5531,00
4564 ,69

7241,.11
5548,96
4565.93

7272.01
5566.03
4567,.88

7301.64
5582.90
4570.,70

3
He Data of March 24, 25, and 26, 1971

S.D.

26
17
69

25
«09
38

20
oll
«50

13
23
«50

19
«09
50

23
ell
040

10
«07
o16

«09
«06
50



Table B.l Section 3 (cont'd.)

TEMP

«850

«800

.750°

.700P

.650 P

«550

500

s A

103

35
35
35

35
35

35
35
35

35
35
35

35
35
35

35S
35
37

35
35
37

35
35
37

NWN nNWwN SWN SWN SN SPWN SWN

NWN

FREQ.

7329.89
5599,.16
4573.,43

7357.90
5614,85
4576.40

7380,.89
5628.,17
4578,36

7407,.,10
5643.89
4581.06

7433,.57
5659.61
4583,20

T479,04
5686.83
6027.83

7499,.70
5699,.20
6045,.24

7509.74
5705.25
6053,.61

SeDe

ol2
17
50

24
15
50

15
ell
S0

ol2
07
«50

20
«08
«S0

12
el1
17

17
o4l
29

17
ol2
«20
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Table B.l Section 3 (cont'd.)

TEMP J I FREQ. S.D.
425

35 2 7526.88 19

35 3 S715,72 ol2

37 2 6068,65 59
400

35 2 7534,.41 15

35 3 5720.51 e16

37 2 6074,80 29
375

35 e 7542.10 19

35 3 5725,30 olé

37 2 6081,30 22
«350

35 2 7549.15 14

35 3 5729.55 ol4

37 2 6087.34 «09
«325

35 2 7554.64 19

35 3 5733,.05 012

37 2 6092,.26 12
«310

35 2 7559.08 06

35 3 5736.00 «03

37 2 6095,.98 22
293 €

35 2 7563.10 04

35 3 5738,.,23 17

37 2 6098.79 31

Thermal equilibrium difficult to obtain, these points not used.

€ Not used because its the lowest temperature point.
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Table B.2. Results of X2 Analysis for B(T).
T(K) B ABS X? ar(1-w)
(Kelvins) (gauss) (gauss) (kHz)
2.170 1290.3 3.0 AV —
2.164 1362.0 4.5 0.90 1.0
2.1k49 1505.0 3.5 1.0L4 0.7
2.139 1589.2 4.5 1.09 1.0
2.120 1735.8 4.5 1.27 1.0
2.110 1805.3 4.5 1.06 0.7
2.100 1872.4 5.0 0.72 1.0
2.091 1932.0 L.s 1.1k 1.0
2.069 2054.0 2.5 0.80 0.5
2.037 2224 .2 2.5 AV. -
2.019 2308.0 4.0 1.28 1.0
2.000 2396.4 2.0 AvV. -—
1.980 2475.9 2.5 AV. -
1.949 2599.5 2.5 AV. -——
1.920 2702.0 2.0 AV. -
1.890 2803.0 2.5 AV. —
1.860 2894.5 2.0 0.93 0.5
1.830 2983.2 2.0 1.30 0.5
1.799 3067.8 2.5 AV. -—
1.769 3145.7 2.0 0.82 0.5
1.7481 3214.0 1.5 AV. -
1.712 3285.7 2.0 AV. -
1.661 3398.4 1.5 0.92 0.5
1.650 3419.2 1.5 0.60 0.5
1.618 3481.5 1.5 0.92 0.5
1.594 3542.2 2.5 AV. ——
1.550 3622.9 2.0 0.87 0.5
1.500 3712.5 1.5 1.10 0.5
1.450 3796.7 1.5 0.93 0.5
1.431 3827.2 2.0 AV. ——
1.350 3949.8 1.5 0.79 0.5
1.299 4020.9 1.5 1.20 0.5
1.251 4087.3 1.5 1.10 0.5
1.2224 4121.4 0.5 0.55 0.0
1.200 4148.3 2.0 0.79 1.0
1.150 4211.5 2.0 0.69 1.0
1.100 4270.9 0.5 0.504 0.0
1.050 4L327.6 0.5 1.215 0.0
1.000 L4382.9 0.5 1.534 0.0
0.950 L434.8 1.5 AV. ——
0.900 LL4BY .7 1.0 AV. -
0.850 4532.0 1.0 AV. -—
0.800 L4578.4 0.5 0.084¢ 0.0
0.750¢ L616.5 0.5 0.326¢ 0.0
0.T700€e L660.4 0.5 AV. -—
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Table B.2. (cont'd.)

T(K) B AOB8 2 ar(1l-w)
(Kelvins) (gauss) (gauss) p 4 (kHz)
0.650¢€ 4704.1 1.0 AV. -
0.599 LTLL .6 1.0 AV. _—
0.577 L762.0 1.5 1.32 0.0
0.550 4780.1 2.0 1.30 1.0
0.530 L793.4 1.0 0.94 0.0
0.500 4813.7 2.0 1.17 1.0
0.483 4823.9 1.5 0.92 0.0
0.47h 4830.0 1.5 1.061 1.0
0.450 L8L4L .4 0.5 0.24¢ 0.0
0.k425 4858.1 2.5 1.46 0.0
0.401 L869.T 0.5 0.94 0.0
0.k4oo 4870.5 2.0 1.33 1.0
0.375 4883.1 2.0 1.31 1.0
0.350 4894 .6 2.0 1.47 1.0
0.325 4903.8 2.5 1.81 1.0
0.310 4911.0 2.0 1.69 1.0

& AB is estimated to within 0.5 gauss.

b 0nly values for Af(l-w) of 0.0, 1.0, 0.7, and 0.5 were used. When
the results for 0.0 and 1.0 differed by less than 0.5 gauss even though
y, & ranged from well below 1.0 to well above 1.0, an average between
the two values was taken.

C Increasing Af(1-w) will only make X2 smaller; this indicates a large
spurious standard deviation error.

d a1 temperatures 1.22 K and below used the 3He system.

€ This value was not used in the analysis; thermal equilibrium was
difficult to achieve and the temperature was difficult to measure.
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Table B.3. Comparison of B(T) with Analytiec Expression for T A T..
Temperature B(T) AB(T) Bp - B
(Kelvins) (gauss) (gauss) (gauss
2.170 1290.3 2.5 -2.330
2.16k4 1362.0 L.s 3.520
2.1k49 1505.0 3.5 0.550
2.139 1589.2 4.5 -1.kko
2.120 1735.8 L.5 -1.070
2.110 1805.3 L.5 -1.3k0
2.100 1872.4 .0 -0.051
2.091 1932.0 L.s 3.270
2.069 2054 .0 2.5 -2.510
2.037 2224 .0 2.0 1.400
2.019 2308.0 k.0 -0.370
2.000 2396.4 2.0 2.780
1.980 2k75.9 2.5 -2.610

The analytic expression is B(T)= A(T, - T)B where A = (4368.

gauss/kB , T, = (2.214 +0.0016) K, and

squared value is 0.T710.

+(0.3904 +0.006).

4 +31.3)

The chi
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Table B.4. Comparison of B(T) with Analytic Expression for T & 1.0 K.

T(K) B(T) AB(T) Bp - Be Bp - Be
(Kelvins) (gauss) (gauss) Set A Set B
0.310 ko11.0 2.0 -0.24 0.53
0.325 4903.8 2.5 -1.43 -0.91
0.350 L8T4.6 2.0 0.09 0.27
0.375 4883.1 2.0 0.18 0.10
0.400 4870.5 2.0 -0.01 -0.26
0.401 L869.7 0.5 -0.29 -0.55
0.425 4858.1 2.5 0.81 0.45
0.450 L8LL . L 0.5 1.09 0.69
0.47h 4830.0 1.5 0.81 0.k2
0.483 4823.9 1.5 0.17 -0.20
0.500 4813.7 2.0 0.5k4 0.21
0.530 4793.4 1.0 -0.33 -0.5h4
0.550 4780.1 2.0 -0.15 -0.25
0.577 L4762.0 1.5 0.60 0.66
0.599 LThh . 6 1.0 -0.90 -0.69
0.800% L5T78.4 0.5 -1.21 -0.1k4
0.850 4532.0 1.0 -1.06 -0.15
0.900 Lu84.7 1.0 -0.27 0.63
0.950 L434.8 1.5 0.58 0.37
1.000 4382.9 0.5 0.83 -0.42

Set A fitted to: B(T) = 4957.5 - 811.0 T3/2 exp(-0.343/T)

Set B fitted to: B(T) = 4950.8 -(963.1 T3/2 - 90.7 1°/2)  exp(-0.430/T)



APPENDIX C
PrCl3 DATA

Table C.l1l shows the measured frequencies as a function
of angle for an external field of 500 Oersteds applied in
the plane perpendicular to the C3 axis in the ordered state.
The angles are in the laboratory reference system. The
site label is arbitrary. LN is the line number which
defines the transition, 1 being the highest in frequency
and 4 lowest. The H and L refer to the High and Low zero
field lines respectively. Because the lines are weak and
were only measured once, the accuracy of the frequency
measurement is estimated at * 5 kHz., The calculated
frequency assumes H = 500 Oersteds, n = 0.4937,
vQ(H) = 4598.6 kHz, and vQ(L) = 4535.5 kHz. The location
of the Z-principal axis in the laboratory reference frame

= 290°, and z, = 50°.

is assumed to be: 2Z, = 350°, Z 3

1 2

109



Table C.1l.

110

Cl Transition Frequencies in PrCl,

Angle Site LN LocC Freq. Calc.
(deg) (kHz) (kHz)

SRR 1 i it 490 ] 49N 4960 ¢ 3H
P i a | +1n3.70 4190 eu 3
24, - - B @741, 70 474964,01
Aoy, - ’ | 473K, 20 47374913
Art. - 4 “ 4 397,590 4404 497
PR, - 3 ] 435A 40 434 ) ¢4
A, 4 c H 4AR1H .00 4R 1T
Ay 3 r \. 45k gN0 4Xahe 15
AMo, b ) | 4530,20 4360, 3N
g, I i ] GYY oM G IR g |
A, L 1 I 49 34,50 a497/bHeul
2, | “ " 4210460 4?22 3.76
2., S - B} aQy N gRI) 44 egh
2, s - I 4lal b0 4 TabH 5%
PISTIE /7 K H G InH eI 439] .43
A, ’ 4 | 433700 4 324,435
Y, 3 c “ 4hRR] o220 4AT3eHH
2Y., 3 ¢ . 4627.70 4h]1 069K
AN, 3 ) H YL LNAL 453K L0
2, 3 3 L 4unl 70 44796110
$ )i i | H SOi2e50 S007eR4
3 . 1 | | 495 3,9 4944 K7
30, | a - 494 472014 30
$uiie c h} | G439 34K0 430l et
REAREIN 3 I | 4hh {90 4hT72el
1, 5 ) H Qauaba )N 4478 .65
$50 | 4 I Qo) g9 44alsS.n7
$1: s . Is B 4193471 476733
s . /7 e I S a1l 4099 .70
i, Ve 3 H 4455,10 4439.5 3
31 ¢ . 3 ¢ 4 41944730 4783.91
31, i 4 | “4alle st INYL XY
37, - I " aful o9t 4714497
720 4 ’ % ) GFRG2 g ) YL N4
17 14 /2 A W Gq9n g0 HOUHH eI
70 < 3 | su4l el 4nPb 494
LEGR s ‘ i aRluag /0 44]10m,. 49
3o e 3 s . QinT 70 753,47
120, 3 4 H 439 4,70 L4399 41 Y
17 1 R | +337, 40 433067
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Table C.1. (cont'd.)
Angle Site LN LocC Freq. Calc.
(deg) (kHz) (kHz)
49 0. i ¢ H a4 7n%440 47he 33
14 1 c | 4710470 46099,7°6
34 1. i A - Gha. 35 4al) 4439 4,54
$4 0, ; - H gaal nn 4699, 33
14 . ’ r | G4LHS KO 484960 Y
Sy 7’ 3 + 4h99,AN LS4 7,11
140, c R | a4ubq a4l G4HG o DK
S, 1 - - G4 T9H A1) a790,.01
$i4 1, i c | 473810 47324914
Jar 1y i 3 H andlell 4404 497
401, )| ) t 4 Jaq 40 434 40
141, 4 - " 460 2N 4RV T/
St o 7 r \. 49h04 70 a4Sahe /b
3o, . R H G49%9 ,40 4599, 3A
19, bt 4 I 4K24 444 45306, 3>
st 3 i “ 49h6hH 430 4960435
b, 3 1 I 499 4 00 4R97 435
490, 1 c 4 GRUAGAI) 4rRNB .60 3
_— i p i 474490 4745455
39 . i 3 H 4 3RS0 439] .43
B, 1 3 | 4331400 4374, 35
3900, ¢ ’ H GRHS 20 G4AT 3,64
19 1, c - | an’3sli 4A10 497
4 v, ¢ 3 =] Qa2 H N[ S 38410
39 . / 3 ! aunl ) 44796 1V
im0, § 1 l. 4943, 00 492541
e, 3 - H 4213450 4223.7h
A9 3 m ). 4lSa,70 albe2/
Jeais, 1 P " atylelu G796.,01
in i, 1 c | a7l .60 4737,93
den00 1 3 |. 4 3qH gAI) ‘t“‘lo‘f@
§m 2 ‘ I G4RR 3,00 an?lqll
$63 1o 2 3 =] Gt 90 L4UTH 69
M. 3 | H HO16 40 5007 .84
TaXEIN 3 { 1. 44951 490 L4944 K7
3 1), 4 N Y 4192.,70 47201430
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Table C.1. (cont'd.)
Angle Site LN LoC Freq. Calc.
(deg) (kHz) (kHz)
1. 1 ¢ H 473K A0 a4ThP o33
1o L c l. 4h 93,70 4ARQ9 4K
). 1 2 %] Guiah g 30 G4 394549
1. i 3 | + 384,00 437k .4/
lte e c 2 479710 GTHE 49
[ e R] - aul 400 4476, 2"
ive ’ K] 1. 4355 ,90 4363,723
1, 3 1 I 4959, 00 4954 (KN
ite 3 4 ] 4 lryg 70 4188 ,.n0)
Al 1 I H 4705440 “T]la,97
2l i c I 4hahH 4,00 G4RY ) 4R T
e i 4 (=] G49R G TN GOHRH G99
il 1 3 L 44 364,710 44725 494
7. 7 r H 4R 6eni0) 48166139
7. 7 3 H sallllu 4399,19
Al 7 K] I 4334490 4336,727
2ie ) 1 H S0Z23.60 SN1H9Y
7 e 3 1 I 44956 (K0 4955 .91
3.1 4 1 c - 4he'I  T0 4h59 4 33
(IR 1 c | 4515 .50 4596,79
Ve i 3 - 4555490 4547411
11, 1 3 l. Qa9 o990 G484 o)™
3. 7 1 ! 4HnA R 4864431
30, Id 4 4 427950 a?rnlenl
i o 3 4 H “7‘7)“.5“ 476726 34
300, ] ’ . G704 440 4h99,2h
aiy, | -~ H GR’ L o HY ahiNIe T/
4, 1 r l. 49574170 G4abe Y
Doe | 3 4 4597,00 4’399, 3
) 1 3 I 457,20 453604 35
“n, I i H 49AT .00 4960435
97, I 1 | 4902, 70 4nVI7 4 35
TRRIN ’ 9 H 4241410 4”5 a4l
TSNIN R I = GRUYL gH G4liuna}
G, 3 c | 4733.,720 47374943
0, ) ) H 4408 4,9U Ghlia oh/
40, 3 4 l “+3a] 00 43g] o4
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Table C.1. (cont'd.)
Angle Site LN LOC Freq. Calc.
(deg) (kHz) (kHz)
p RN 1 ¢ H ‘-tf‘ﬁHh.‘#(l [-bf')73.“)R
I 1 ’ . 4bcb ey 4h10eH0
N i 1 H 45259 ,90 4534410
Yy, i 4 ! Gqunb 10 G496 10
S ’ { | 49”9, 70 492H .4l
S P + ] 42la,70 47223.2b
S, - <+ | G197 .00 4160.7°/7
9. 4 I - arti %0 4R0H.6H 3
IV 4 % { alal 20 4745 ,5%
TR 4 4 %] 4 3IYH 90 4639] 443
EWIN 3 4 L. 4331 ,00 4324435
e, 1 s " +7anr 00 473%5,11
"o, | % 1. 4HRG 6N 4nT772611
AR 1 4 H Glrraun 44TR G AS
troe A 1 2 Sula U X VI AP T
oy o 1 | 4948 ,50 4944 447
ne, ’ & H 4198,40 4201430
TN 3 ’ H 4792410 4796,01
-~y 4 - | Gl 3,90 G4732,94
0, 3 4 i 4 349,41 434] 44
[ | e 3] GTIT 490 4T8ARLY]
7, 1 3 H G T it 44726470
TETIN 1 K | 4394 4 U 433,24
7. -’ i I 44954 ,H 4954 K0
7Ta, ’ " - Glun, 30 G1HRH.nl
i, ¢ % | 4172550 4125e56h
(o, 3 I'd - “7")5.1() 47624 3%
[ 3 r . 46R"R1, 30 4A99 .70
[ 3 4 H 4452 N 4439,513
7. 3 3 I G43HHB T 437heul
A, { c 2 4H1HeH0 4R 66 49
RN 1 I i 4750 R0 479 4.,4°
oy, i ) H 439/(,00 4399 ,19
Mo 1 ) | 4343.,50 433h.2°7
EEEIN Py i \ 4Qav g9 4995494
RN P o " Glrsehil 4)1A34%49 3
e, - + 3 A ATl 4l2len?
Ho, 4 - H G7 e gl) 47 ae97
o, 3 ’ | 4h 38 .50 GRS L M7
e 3 3 - 450 440 UOHHA 99
A, $ 3 | 443410 G4ur2hH 94
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Table C.1. (cont'd)
Angle Site LN LocC Freq. Calc.
(deg) (kHz) (kHz)

9, L e " 4709 .,40 G4TRB Y1
(PIT 1 ’ ) 470900 477295494
v, 1 ) 9 G4a 3l a0 4ar’be
9 1 3 | a3l a0 4363.,73
e 4 ’ 4 G, 40 GRS 433
I, 3 ¢ L POV PR i) 4596,.29
Jo, 3 1 H ahnhe 10 a547,.1)
), 3 ) | aqIl S0 Larg 4UH
A, 1 1 H 497,20 43154 34
’n. | i l. syl 49]le 3
2, i “+ H 4275490 423744
2a, . I + axlUbe (1) GRS e 3Y
2N, 7 1% | 4740400 4742431
EIE / 3 H 4394 4,610 G394 479
AR, e 4 L 4 345,70 4131a71
PIT 34 - H 4hH 4,70 4hbl 473
PHY, 3 c l. 4H KUY S50 4578, 177
2Hn, 3 3 | 4q494,10 4505670
29, 1 l e HOuv6e B 4999 429
Y9, ] i { 4Ya() 461 493h 2K
2 1 o H 4202460 4?llelb
290, ’ c H a4rycleln GH(05S6 39
29, s l | 4738.20 G4la2e31
29, 3 c l. 4R52 .40 Gn4y ] 48R
2959, 3 3 H 449A,730 4S5y 1,97
P9I, 3 3 L 4433,40 4444 493
31, 1 i i S0cZhe 10 5019.44
3l i 1 . GYHH L) 449564739
315, 1 9 H GlH2 20 4IRS, 70
3l ve 2 I - 47 36,50 4739.94
31, 2 c | G4Q6T74,10 467beHH
i1, - 4 H 4473, 70 446 H/
11>, ) e H Gl 3,90 4R0OH .4 3
Il 3 3 H 4402.10 4407404
sl 4 3 | 4337,20 43444017
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Table C.1l. (cont'd)
Angle Site LN LOC Freq. Calc.
(deg) (kHz) (kHz)
s e 1 } | ‘4‘-)‘,‘)!).“”! 4953, 74
40 o i I - GlAngRN 41R86,.01
125, 1 9 L. 41249, 30 412295
irHe 2l I H 4610420 4687 484
iC. c c L 46149490 GH24 e Hut
/0. c 3 H 45726410 4517.25
3¢, c 3 I Q4hH R 4454421
3¢ e 3 c ~ 4RrR06 810 GROR .43
32 3 Id | 4746,10 4745 ¢ 45
3O 3 3 Y 4 398, 30 4407 .04
305 3 K) L 4346, 70 4344 4,07
345, 1 z H G719 ,99() 4781437
ERLW 1 ’ L 4721 .60 471H.25
3135, 1 3 H 44 10,00 0u]9,.,7/
3135, 1 3 L. 43514206 4350470
3in, l I H 4R T.,10 4hPY oY
339, Vs e l. 4555440 45hhH e/
13-, 2 R H 4S5KHL 10 4S7R.09
335, ’ 3 L 4525490 4515.06
33n, 3 J H 44952,10 494 3,95
339, 3 “ ] 4257430 42T ¢5"
49, 1 < H 4R06,00 41056 39
Ja v, i c | 4745,61() 4742431
sa, 1 4 H 4392,00 4394 ,79
Jan, 1 3 I 4334490 4331.71
da v, - 7 H 4G4RS .40 4Ry ) 73
Sy, / r' | 4994 K1) 4S8 TR, 77
A4, ’ 3 H 45954, 10 45614471
14y, ¢ 3 I 4495 .00 4505470
14, 3 i H 4Q9H 3470 4975, 34
14, 3 i | 4920430 49]124 34
d+ 0o 4 G4 2] G427 390 a? 3745
19 5. | c H 4rI2, 70 G4R05 4 39
$9 | ¢ l. 4739,30 47472431
39, 1 3 H 4396, 30 41394 ,1716G
9, | 4 | 4334 ,20 4331.71
39 v, e ’ w Gllu bl G704 e43 1
LR IR I c R 4ha5 .00 4ARG | 4R
4 v e v R 4 4auY9 Jhl) 4h07 .97
45, ‘ 3 I 4445 ,70 4444 4,94
99, 3 | i 4949 ] 40 4936,.,2/
15, 3 4 4 4200410 4?ll.14b
1949, 3 N | 4laid,no 4lad,15
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Table C.1. (cont'd)
Angle Site LN LocC Freq. Calc.
(deg) (kHz) (kHz)

e 3 1 4 YN R PR T} Sdla.01

Y. K] 1 L 494410 GUG{) ¢ 9H
e ) B - a4l H9,30 4193, 74
[ 1 o - 47 31 g9 4739,94
L v ] o L VYW AT anhleeH3
I~ 1 5) H 4a69, 30 LURP JRT
1 e e c H R4 90 4R ¢4 3
I e c 2 | G479 qul) G4 45
I - 3 | a 349,00 4344 .07
P e ¢ n 9 G LROLA0 GRG0
1 \ + | S ] 4l PP enh
$9 . l r B 4n] TRy GRLY o
V. i - | 4hn9Y 4 30 49hheh !
15, 1 3 4 4559 SR 4S5 7TH 109
i, 1 3 | anch, 0N 451,07
3a, ; 1 H 4999 .50 494 3,09hR
i, 4 c 2] G IR 3gHD 4 TH]e3’
37, 3 ’ I 472346010 allner’H
1) o 4 ) H G4 14 450 Gal9.77
I, 3 R \. G4 399 i) 4 35h 4 71
G 1 I H 4yl e 2N Y Y% B AR
o, i e I 4oHn, 70 4 (H8, 17
. L A " 4558 .61 456H,. 171
“, | 3 | 44949 gui) 4306 71
+ . 7 1 | 499,50 4912, 31
N, 4 H 4GP gD 4”237 o045

Ve s “ | 4 lnrg AN Gl faeut
+, Kl ’ - ar) 3,20 4r()He 39
4N, 3 ¢ | G lalyghu alq2 431
4, 3 4 | 43N] g G394 4 (Y
“, 4 3 | 4334430 4331471
vy, 1 /o - GRS e Gl M1
) Ve 1 3 ~ G444 4 (0 O T A
N, 1 4 I Y439 490 GhuG M4
. c i | YR AL 493606474
v, P - 4 4703470 a4’llelbp
Y o 7 5 [} G4 laagan Glarg
Y 3 4 = 4410 48096 39
RIS 3 - . a4l 3/7N Glacle il
. 3 4 — 4 3994 30 4394 4149
Yo 1 3 | G439, 10 43317
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Table C.1. (cont'd.)

Angle Site LN LOC Freq. Calc.
(deg) (kHz) (kHz)

(AN 1 e N W 1V] 4304443
7~ 1 c | 47700 4745 445
(e t 4 | 4340410 43464407
7. Kl ’ 413070 4739.94
[N 4 c L 4hhh a4 4hT6reRY
TH. s ) anl] ¢n 0 YN YN
M. 1 H 2SSV A R} 480H .43
. i , | Glarer') 4745445
Mo, 1 3 H “alg g0 447 e
=, 1 3 I G349 6344 ,07
M. 3 c H GA (D9 GHH [ o AN
A 1 c 1. (] 4624 .30
. 4 3 H 4Gl ,70 aQl/.2»
no 4 3 l aubl 20 444,21
. 1 ] e Pl 4R810) 497

. 1 2 4170 e%0 476 3.4

) e | R 44 lthatil) 43RH, )7
9. 3 c Y R VY 46729.69
9. Kl - 4996 AN 4Sb66 AT
Yo, § 3 4aRY L1 4578049
9, § K] anll el 45]15H400A
P o, ] " P g} 4?25 3,40
- 4 c SR/ G e 30 4A09e 17

1O v 3 ’ 4hGnG gHi) 4Q4h 475
. 3 ) Yl RN a4y 3/
1o 4 3 4G P2 al 45304 v
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