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ABSTRACT

CRYSTALLOGRAPHIC SYMMETRY OF THE

MAGNETICALLY ORDERED STATE

By

Krishna Kumari Yallabandi

For a crystal in a magnetically ordered state, the general

symmetry behavior of its internal magnetic field - considered as

a time-averaged classical axial vector field - and the general

symmetry behavior of the Fourier components of the field in

reciprocal lattice space are properties of interest in nuclear

magnetic resonance and neutron diffraction experiments. In this

thesis, general procedures based on the theory of finite groups

are developed which allow the behavior of the internal field and

of its Fourier components to be deduced from the magnetic space

group (Shubnikov group) of the crystal. The procedures are

illustrated through application to seven particular magnetic space

groups belonging to the tetragonal system.
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CHAPTER I

INTRODUCTION

It is an experimental fact that at sufficiently low temperatures

most paramagnetic crystals become magnetically ordered.1’ 2

Under an interaction which tends to make the ionic or atomic

magnetic moments line up parallel, the paramagnetic substance becomes

ferromagnetic at a temperature characteristic of the material, called

the Curie temperature. Such an interaction may be discussed in terms

of an effective uniform internal magnetic field, called the Weiss

field2 or the exchange field, and the interaction energy of a spin

magnetic moment with the Weiss field must be of the order of magnitude

of the thermal energy of the magnetic ion at the Curie point. Below

the Curie point, the exchange field interaction is able to overcome

the disorder due to thermal energy of the ions, and neighboring spins

will tend to align in parallel even in the absence of an external

magnetic field. In this way a cooperative process is set up which

results in spontaneous magnetization of the material.

The exchange coupling mechanism has no classical analog. It is a

quantum mechanical effect which has its origin in the Pauli exclusion

principle. It is very sensitive to relative spin alignment and it is



only for a very small range of spin separation that the energy is a

minimum when the neighboring spins are parallel. In most cases the

exchange energy turns out to be smallest when neighboring spins are

antiparallel. The alignment of the spins in an antiparallel array is

also a cooperative effect which spontaneously sets in at a definite

temperature known as the Neel temperature, and this phenomenon is

known as antiferromagnetism.

Whereas many substances are magnetically ordered at room

temperature or above, there is also considerable low-temperature

interest in this phenomenon. The reason for this is that if one has

a system of magnetic ions, then, however small the exchange interaction

may be, there must exist some temperature low enough for a

cooperative alignment to take place.

Above the transition temperature the crystal structure is

invariant under a group H of unitary spatial operators which is the

space group of the crystal. In the paramagnetic state the crystal is

also invariant under the time reversal operation T, and the products

of T with the elements of H since we assume that in this state the

crystal possesses a vanishing time-averaged magnetic moment density.

Below the transition temperature, however, the crystal exhibits a

non-vanishing magnetic moment density which reverses direction under

the time reversal operation. Although such crystals cannot therefore

then be invariant with respect to time inversion, they may be

invariant with respect to a product of time inversion and a particular



set of spatial symmetry operations. The full symmetry of such crystals

must therefore be investigated by considering the proper combinations

of time inversion and space group operations. As will be discussed

in Chapter II, introduction of the time-reversal operator leads to a

generalization of the 32 ordinary crystallographic point groups to

122 magnetic crystallographic point groups, and to a corresponding

generalization of the 230 ordinary crystallographic space groups to

1651 magnetic crystallographic space groups.

In this dissertation we shall investigate the following problems:

(a) what is the symmetry of the most general time-averaged classical

internal magnetic field §(£) allowed by a given magnetic space group,

and (b) what is the character of neutron scattering from such a

field'§(£).



CHAPTER II

MAGNETIC CRYSTAL GROUPS

Classical crystallography allocates all possible crystal

morphologies to one of 32 crystal classes (point groups), the

symmetry being characterized by the existence of planes, axes,

and centers of symmetry. If the crystalline lattice is considered

to be of infinite extent, then the crystal also possesses

translational symmetry. The inclusion of this translational

symmetry increases the number of distinguishable geometrical

forms to 230. These 230 ordinary space groups or Fedorov groups

are appropriate for the characterization of the charge density

€(E) in a crystal which is of interest in the analysis of x-ray

diffraction data.3 However, to characterize, in addition, the

symmetries of distribution of internal current densities 1(3),

internal magnetic fields §(£), or magnetization densities 5(5),

a still more general system of symmetry operations is required,

because the time-averaged non-vanishing l<£): §(£), or fi(£) are

not invariant under time reversal. Hence for these cases, the

time reversal operation has non-trivial consequences, and inclusion

4



of the time-inversion operator produces a generalization of the 230

ordinary space groups to the magnetic space groups (Shubnikov

groups) which are 1651 in number.

In 1930, HeeschS broadened the concept of symmetry by introducing

non-spatial double-valued attributes such as sign, color, or even

more general qualities. In 1951, Shubnikov4 developed the theory

of symmetry groups in which an operation interchanging black and

white colors is considered in addition to the usual spatial operators.

This color change can be identified as the time reversal operation

and can therefore be interpreted as producing a reversal in the

direction of the internal current, magnetic field, and magnetic

density. By adding this non-spatial operation in the 32 ordinary

point groups, one obtains 122 magnetic point groups (HeeschS’ 6

groups).

In the magnetic groups there exist two types of elements:

"uncolored" elements gi which do not include time reversal, and

H II = 0

colored elements Tgk gk which do include time reversal. The

. ' 7
latter are referred to as antioperators as they are antiunitary

operators. The time reversal operator T commutes with all spatial

. . 2

operators and it is of order two, i.e., T = E, where E is the

identity operator. Hence, the product of two colored or two un-

colored operators is uncolored, and the product of a colored with

-)an uncolored operator is colored. Thus suppose that (g1, gj,

is a set of uncolored elements and (gk', gl', ...) a colored set.



Then,

gigk' = gi'gk = gl'; gigk = gi'gk' = g1. (2.1)

One distiguishes three types of magnetic point groups.8 The

first type is the set of 32 ordinary point groups with no anti-

unitary operators. These are called uncolored point groups.

The second type of point group is the set of 32 formed from an

uncolored group by adding to the uncolored elements those which are

formed by adjoining the time reversal operator to £222 of these

elements, i.e., for all gi in a group G, gi is also in the group

which leads to the fact that T itself is an element of the group,

since TE = T. These groups are called grey groups and they are

denoted by G1' in the international notation. It is clear that

T cannot be a symmetry operation in a magnetically ordered crystal,

since it would reverse the sign of all magnetic moments in the

crystal. Hence the grey space groups are applicable only to dia-

magnetic or paramagnetic crystals which have no time-averaged

non-zero magnetic moments. However, Tiig a possible point group

operation in an antiferromagnetic crystal if it always appears in

combination with a translation connecting two antiparallel spins

in identical chemical environments.

The third type of magnetic point group is that which contains

T only in combination with a spatial rotation or reflection. These

groups, 58 in number, cannot include elements of the type gk' ' Tgk

n

if gk is of odd order n, since that would give (gk') = T.



The following properties of G = {gi, gki}, with G one of the S8

colored groups, can be proved9 with ease: (a) no element gi occurs

both with and without T, i.e., the set {gig is always distinct from

the set {g1}; (b) if T is replaced by E in the colored group G, i.e.,

if the set %= igi, g7; is formed, then is one of the 32 ordinary

k

point groups; (c) if we consider the group G “{gi, gki}, then all

the uncolored elements H = {gi} of G form.an invariant unitary sub-

group of G which again is one of the 32 ordinary point groups; (d)

the number of uncolored elements of G is equal to the number of

colored elements of G, i.e., H is an invariant subgroup of index two.

Considering the above properties of G, one can devise a simple

method for constructing all 122 magnetic point groups starting with

the 32 ordinary point groups. The procedure is as follows. After

choosing an ordinary point group G, one finds all its invariant

subgroups H of index two. For each H one then constructs the

i 1

corresponding magnetic group Gi = H. + T(G-H ). By successively

1 i

considering all 32 groups one finds all 58 colored groups G , and

i

adjoining T to all elements of G, one obtains the 32 grey groups.

Thus, with the addition of the 32 colorless point groups, the total

number of magnetic point groups is 58 + 32 + 32 = 122.

For example, let us construct all magnetic point groups that

derive from the ordinary point group mm2 (in international notation).

This is an abelian group of order four, containing the identity



element E, a two-fold z-axis of rotation 22, and the two perpendicular

reflection planes containing the z-axis, mx and my. These elements form

a group as can be seen from the group multiplication table, Table I.

Now let us consider the colored groups. One is mm'Z' and the

other is m'm'2. Their group multiplication tables are given as

Tables II and III, respectively. From these tables it is seen that

these two groups are also abelian which is not, however, generally

true for colored groups. The grey group is mle' which consists of

eight elements four of which are colored and four are uncolored. It

is also an abelian group which follows from the fact that T commutes

with all spatial operators and mm2 itself is an abelian group.

Specifically we have that, e.g.,

m 'm ' = m 'm ' = 2 , (2.2)

x Y y x z

m 'm = m m ' = m 'm = m m ' = 2 ', etc. (2.3)

x Y Y X Y X X Y 2

In order to construct all possible magnetic space groups, it is

. . . . 11
necessary to derive the appropriate Bravais lattices. This can be

done4, 9, 12
by starting with the Bravais lattices of the Fedorov

groups and by adding colored translations along the edges, diagonals

of the faces, and spatial diagonals of the unit cell. In addition to

the fourteen uncolored Bravais lattices, one obtains 22 colored

translational lattices for the Shubnikov groups. Joining these

lattices in all possible combinations of uncolored and colored

elements of symmetry, one arrives at the 1651 Shubnikov groups. If

S stands for a Shubnikov group S = {F +-Di}, then the uncolored



Table I. Group Multiplication Table for Point Group mm2

 

 

 

mm2 E 2 m m

z x y

E E 2 m m

z X Y

2 2 E m m

z z y x

m m m E 2

x x y z

m m m 2 E

Y Y X Z

 

Table II. Group Multiplication Table for Point Group mm'2'

 

 

 

mlz' E 2' m' m

z x Y

E E 2' m' m

z x y

2 ' 2 ' E m m '

Z Z y X

m ' m ' m E 2 '

x x y 2

my m m ' 2 ' E

y x z
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Table III. Group Multiplication Table for Point Group m'm'2

 

 

 

m'm'2 E 2 m ' m '

z x y

E E 2 m ' m '

z x y

2 2 E m ' m '
z z y X

m ' m ' m ' E 2

x x y z

m ' m ' m ' 2 E

y y x z

 

elements F of S always form one of the 230 ordinary space groups, and

also constitute an invariant subgroup of index two. In fact for any

space group, the set of all its pure translational symmetry operations

is an invariant subgroup of index two. If in S one replaces T by E,

forming the set €f= {F + D}, thenagfis also one of the 230 ordinary

space groups. Thus the algorithm for constructing the magnetic space

groups is similar to that for the magnetic point groups. As an

example, magnetic space groups derivable from the uncolored space

group P4222 will be discussed in Chapter III.

Table IV lists the way in which the number of point and space

groups allocates among the seven crystal systems.
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Table IV. The Number of Ordinary and Magnetic Point and

Space Groups for the Seven Crystal Systems

 

 

 

 

Number of Number of

Crystal Ordinary Groups Magnetic Groups

System

Point Space Point Space

Cubic 5 36 16 149

Hexagonal 7 27 31 164

Trigonal 5 25 16 108

Tetragonal 7 68 31 570

Orthorhombic 3 59 12 562

Monoclinic 3 13 11 91

Triclinic 2 2 5 7

Total 32 230 122 1651     
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An axial vector such as, for example, the magnetic field vector

§(£) at two positions £1 and E in the magnetic crystal which are

0

related by the equation

_i = «Si-:0 +2; (2.4)

13
is given by

sci) = 91-13%). (2.5)

where the rotation matrix oi acts on the components of the polar

vector E: and the rotation matrix 9i acts on the components of the

axial vector B. The translationfE; is the vector sum of translational

components (as in glide planes and screw axes) and the location of the

element in the magnetic unit cell. The relationship between éi’ 9i,

andfigg on the one hand, and the elements (sirga) of the magnetic

space group of the crystal on the other hand was first studied by

Donnay and Donnay.14 From their work it is possible to develop the

results summarized in Table V in which n stands for n-fold rotation,

n' stands for n-fold antirotation,'fi stands for n-fold reflection-

rotation, and-3' stands for n-fold antireflection-rotation. Thus,

for a particular choice of a Shubnikov operation (birgk), Table V

gives the corresponding operations oi, 91, andfiE;

of (2.4) and (2.5) specify the behavior of B under that Shubnikov

which with the aid

operation.

The set of elements {$1PEE} generated by a given Shubnikov

group constitutes an ordinary space group C(61LEQ) which is often
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Table V. Relation between the Operations (sikyi), (¢.rflé), and 91

1

 

 

Description of the Operation Operation Operation

Operations 3, 51 ¢. 9,

1 1 1

n-fold rotation n n n

n-fold antirotation n' n ‘3

n-fold reflection-rotation fi' '3' n

n-fold antireflection-rotation 'fi" 7? ‘7?

 

(but not necessarily) the chemical space group of the crystal or one

of its subgroups. If all‘Eé are set equal to zero in the corresponding

group G(oirE;), one obtains the so-called "underlying point group"

{d£} which is one of the ordinary 32 point groups. It can be shown

that the set {9;} also forms a point group, called the "aspect group"

denoted by C(91).13

All point group operations in the crystallographic point groups

belong either to 6/mmm or to m3m.11 Thus, enumeration of the

operations of 6/mmm and m3m produces the complete catalog of {¢i§. To

specify the rotation matrix (oi) of the operation di, we write

(£1) = («51) (30). (2.6)
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or more explicitly,

xi $11 0512 $13 X0

Y1 = d21 622 623 yo (2'7)

zi c‘31 ‘32 ‘33 zo

All possible rotation matrices (di) are listed in condensed notation

in Tables VI and VII (in which the operations are given in the Schoenr

flies notation). For example, the matrix for the operation 02 (two-

2

fold rotation around z-axis) is given as'xyz which in the form of

(2.7) is to be understood as

‘i -1 O O x .

7 = o -1 o y (2.8)

2 0 0 1 2

Two more complicated examples are provided by the following: the

5

operation 86 3 IC3 (three-fold rotation followed by inversion) for

which Table VI gives x-y,x:; which stands for

x-y 1 -1 O x ,

x = 1 0 O y (2.9)

E? O O -1 z

and the operation 842 = 1042 (four-fold rotation around z-axis

followed by inversion) for which Table VII gives ya; which stands for

y 0 1 0 x . (2 .10)

:
4 I
I

I

H O O

‘
4

N
I

0 O

I

0
—
“

N
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Table VI. Elements of D6h (6/mmm) and the Corresponding

Matrices (di) in Condensed Notation

xyz E 'y,x-y,z C3 y-x,§,z C32

§§z C22 y,y-X,z C65 x-y,x,z C6

xyz 5’22 —y',x-y,'z' S3 y-x,§,? $3-1

Ry; I y,y-x;E S65 x-y,x,z S6

YXE C2. (1) x,y-x,'i' C2. (2) x-y,y,':7:' C2' (3)

3;; C2" (1) X.X’Y:E C2" (2) y-x,y,z C2"(3)

73:2 63'“) x,x-y,z G’Z'Q) Y’X2Y92 62.6)

yxz 6‘2"(1) x,y-x,z $2" (2) x-y,-y—,z 6}"(3)  
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Table VII. Elements of Oh (m3m) and the Corresponding

Matrices ($1) in Condensed Notation

 

xyz : E zxy : C3(l) yzx : C3(l')

x92 : C2X 'Exy : C3(2) ‘72? : C3(2')

Eyz : 02y 232'}? : c3 (3) ‘y‘zx : c3 (3')

'xyz : C22 Ex? : C3(4) yEE' : C3(4')

36E? : I ER? : 86(1) 'yzi' : 86(1')

xyz 65g Exy : 86(3) yzx : 86(4')

x'y’z 62y z'xy : S6 (4) y'z’x : S6 (2')

xy'g :6’22 zxy : 36(2) yzY : 86(3')

RE? deI ny : Cydl 'yiz Czdl

xzy de2 zyx : Cydz yxE‘ : Czdz

xzy : C4x 'ny : C4y yxz : C42

xzy : C4x' zyx’ : C4y' yEz : C42,

xzy xdl zyx : ngl yxz : szl

x-}7 cxdz ‘z‘yx : Gde Viz cgdz

'iz? 84x 2?; : 84y y'z : S42

TrEy : S4x' 3.x S4y' 37x? S42.   



CHAPTER III

SYMMETRY OF THE INTERNAL MAGNETIC FIELD

In the magnetically ordered crystal, the internal magnetic field

vector §(£) exhibits a repetition pattern governed by the magnetic

space group of the crystal, and it is therefore a periodic function

of the position vector 3. Since §(£) is an axial vector, the most

general §(£) allowed by the symmetry at position E in the crystal

should be determinable from the groups C(éilfé) and C(91) that are

associated with the magnetic space group S(sir§&) of the crystal.

The position vector r is said to be invariant under an operation

(é,r§:) if é}.§ +f§L - E +IE, where t is any lattice translation,

1 1 1 1

i.e., E _ n13 + n b + n3g, where a, b, and g are unit vectors of the

2

magnetic unit cell, and n1, n2, and n3 are any set of integers. The

11

set {6 PTO} of G which keeps r invariant forms a group , G'(¢‘rf')'

1 “'1 - 1 1.1

From this and (2.5) it follows that B at E has to satisfy

B(¢$.-r +rd) = snag) (3.1)
_ 1 _ —i 1 _

for all elements of G,(¢.rU ).

1 1‘1

An immediate consequence of (3.1) is that if G, contains T, then

1

B 2.0, since for T,’§TT) = O, and Tables V and VII give 6(T) = (xyz)

l7
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and 9(T) = (Ed/‘2). With these (3.1) gives B(_1;) = ‘§(£): hence BE 0.

As another example, if G. is the group of order two containing

1

E and 2 , then 6(E) = (xyz), 6(2 ) = (RYZ), 9(E) = (xyz), 9(22)

2 z

= (3672) and '_C_/(E) ='_'d_(22) = 0. With these, (3.1) gives Bx = B = O:

y

and only B may be non-zero at 3' Finally, if G, is the group of

z 1

order one (containing only E), then all three components of B(£) may

be non-zero, hence B is arbitrary at £° In this manner the behavior

of B can be determined at all points of the magnetic cell.

The set Sk of points (ER, E .) is said to be a set of
1,

equivalent positions with respect to a given magnetic space group

S(s,r§1) of the crystal if each point of Sk is related to all the

1 1

other points of Sk by a set of operations {oil’ffi of C(éil’gi), i.e.,

for every pair Bk, r1 of SR there exists at least one operation

(OOPEE) of G such that for that operation (difgg), Ek’ and E satisfy

1 1

‘61. Ek +1931 = E1'

Thus for every point ER in the crystal, one can find the group of

(3.2)

operations G,(¢.r2&) under which rk is invariant, and hence the

1 1 -

set of operations [C(é.rtl) - G (d,rv,i] under which r generates

1'—1 i 1 “1 ’k

the set Sk of equivalent positionS. In this way the symmetry of the

internal magnetic field can be specifically determined for all points

of Sk from (3.1), and the interrelation between the components of B

at all points of SR is taken into account through (2.5).



19

We now proceed to illustrate the above method with the seven

magnetic space groups that derive from the ordinary space group

P4222 which belongs to the tetragonal system.3 The chemical unit

cell is primitive with vectors a1, a1, and CB, where i, i, and B

are the Cartesian unit vectors along the x, y, and 2 directions,

respectively. The seven magnetic space groups are listed by Shubnikov

and Belov4 as tetragonal groups No. 119, 121 - 126, and are denoted

by P4222, P42'22', P42'2'2, P422'2', PC4222, P04222, and P14222.

All of them are antiferromagnetic except P422'2' which is ferro-

magnetic. Tetragonal group No. 120 is the grey space group which

we omit. In Table VIII we list the elements of P4222 (with origin3

at 4221). We introduce a running index number for these elements

in order to have a more concise alternate designation.

In the magnetic space groups P42'22', P42'2'2, and P422'2' some

of the elements of P4222 become colored, and in Table IX these are

designated by priming the corresponding running index number.

The magnetic space groups PC4 22, PC4222, and P14222 are obtained

2

from P4222 by adding, respectively, the antitranslation (EIEO' with

?= 35cB along the c-edge, the antitranslation (EI’EIY with’g’l

= %a(ifj) along the diagonal of the c-face, and the antitranslation

(Ef$;)' with’Bé = %a(ifi) + %cB along the space-diagonal. These three

magnetic space groups thus contain not only the elements of P4222, but

also these elements joined with the corresponding antitranslations.

The additional elements of these three groups are given in Table X.
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Table VIII. The Elements of the Space Group P4222

Running Element Description of the element

1 (BIG) Identity operator

2 (22(0) Counterclockwise rotation about z-axis

through 180°

3 (4 f2) Counterclockwise rotation about z-axis

z

0

through 90 followed by translation’Zf

== Lie-1:

4 (42-133 clockwise rotation about z-axis through

0

90 followed by translation‘E/= %cl<_

5 (2 l0) Counterclockwise rotation about x-axis

x

0

through 180

6 (2yl0) Counterclockwise rotation about y-axis

0
through 180

7 (2 r!) Counterclockwise rotation about (ifi) axis

a

through 1800 followed by translationfigv'

8 (2brgb Counterclockwise rotation about (£51) axis

0

through 180 followed by translationfE/   
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Table IX. The Elements of P42'22', P42'2'2, and P422'2'

 

 

Running index Group Group Group

of P4222 P42'22' P42'2'2 P422'2'

1 1 1 1

2 2 2 2

3 3' 3' 3

4 4' 4' 4

5 5 5' 5'

6 6 6' 6'

7 7' 7 7'

8 8' 8 8'

    



Table X.
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The Additional Elements of PC4222, PC4 22, and P14 22

 

 

 

2 2

Group PC4222 Group PC4222 Group P14222

Running Running Running

Element Element Element

index index index

1C (Em' 1C (Blip 11 (EIE’ZV

2c (22"§)' 2.C (zzl'g’lr 2I (zzlfiofzr

3C “‘2' 0>' 3C (azl I+_'c_’1>' 3I (azlziz’zr

4C (42'1|0)' 4C (az'll‘fitc/lr 41 (4z-lg-yg)‘

5C (2J’g’)' 5C (zxyg’lr SI (2x1£2)'

6C (2yl'g’)' 6C (2y|3’1)' 6I gym/2).

7C (2&1 o>' 7C (2a|{+;c’l)' 7I (zaréz’zr

8c (213' O) ' 8c: “bi/9:51). 81 (2b|’§+12)'     
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Given the magnetic space group, one can find the corresponding

group C(é'kgi) from Table V, and then one can write down all possible

1

sets of equivalent positions S for that group C<¢1l£&)' In Table XI,
k

the coordinates of all equivalent positions are given for each set

Sk for the seven groups under discussion. The symbols x,y, and z

are here used for the general coordinates expressed as fractions

of the unit cell edge lengths along the corresponding x, y, and

z~axes. Special points like (%, %, %) are read as the vector

E = %ai + kai +'%cB for our tetragonal system examples. One sees

from Table V that the groups G(oir§£) and Gi(éiizé) that derive from

the four groups P4 22, P4 '22', P4 '2'2, and P4 2'2' are identical.
2 2 22

Thus the sets of equivalent positions for these four groups are those

3

of P4222 as given in the International Tables. Here we have listed

these positions in Table XI and we have designated them as S1

through 816'

Additional equivalent positions in Table XI are those generated

by the translations'ES 23, and If: respectively, in the three magnetic

2

space groups PC42 I 2

set generated from 810 by operating on every position of $10 with

22, PC4222, and P 4 22. For example, SlO'(PC) is the

(E‘V ), S '(P ) is the set generated from S by operating on every
-1 10 1 10

position of S
° . i I

10 With (E 3%). The sets 89 (PC) and 89 (PC) turn out

to be identical sets and are simply designated by 89'.

All points in the magnetic unit cell can be covered in terms of

sets of equivalent positions, starting with the points of highest
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Table XI (cont'd.)

 

 

Set Equivalent positions (Origin at 4221)

Slo'(PC) (%+X.%.0). (t-X.%.0). (%.%+X.%). (%.%-X.%)

SIO'(PI) (%+X.%.%). (t-x,%,%). (%.%+X.0). (%.%-X.0)

811'(PC) (%+X.0.%). (k-X.0.%). (0.%+X.0), (0.%-X.0)

s11'(PI> (%+x,0,0), ($-x.0.0). (0,%+x,%). (o,%-x.r>

$12'(PC) = Slo'(PI)

312'(P1) = S10 (PC)

313'(PC) = Sll'(PI)

313'(PI> = s11'(PC>

Sl4'(PC) (%+X.%+X.%). (i-x,%-X.%). (t-X.%+x,3/4). (%+X.%-x,3/4)

$14'(PI) (%+X.%+x,3/4). (t-X.%-X.3/4). (t-X.%+X.%). (%+X.%-X.%)

$15'(PC) = 514'(P1)

$15'(PI) = 314'(PC)

$16'(PC) (X.y,’5+2). (Eritfi), @992). @5132). (X.'3'.%-2). 630.55%)

(y,x,'z’), 63,3)

316'(PC) (%+X.%+y.2). (t-X.%-y.2). (k-y.%+X.%+2). (%+y.%-X.%+2).

(%+X.%-y55). (t-X.%+YIE). (%+y,%+X.%-2). (k-y.%-X.%-2)

Sl6'(PI) (%+X.%+y.%+z). (k-X.%-y.%+2). (t-y.%+X.z). (%+y.%-X.Z). (’]§+x:}5'y:%'z)a (k'x:%+}'a%'z)9 (£Ws%fia.z)s (k'y:%'xa-z.)
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symmetry and proceeding through points of intermediate symmetry to the

general point (x,y,z). The number of equivalent positions in the set

which contains the general point (x,y,z) is equal to the order of the

Shubnikov group, and the number of equivalent positions in all other

sets must be less than the order of the group and is, in fact, an

integral divisor of the order of the group.

For every set of equivalent positions one can find from (3.1) the

Shubnikov subgroups with elements (81.2%) of the given magnetic space

group which reduce, with T set equal to E, to the groups Gi(¢ir2£)

under which the equivalent positions remain invariant. These Shubnikov

subgroup operations are given in Tables XII, XIII, and XIV. The first

column gives the sets of equivalent positions, the subsequent column(s)

list the elements (31 23) of the subgroups under which the equivalent

positions of each set remain invariant, and the last column gives the

number of points in the set. All the points in a given set may not be

associated with the same subgroup in all cases. This occurs in Table

XII for the sets 810 through 815. For example, for the sets 810

13

group with elements 1, 5', and the second two points are associated

through S of P42'2'2 the first two points are associated with the

with the group with elements 1, 6'. In Table XII, this is indicated

as: l, 5'; 1, 6'. Similar remarks apply to Tables XIII and XIV.

After determining the groups Gi(éi‘3§) one can find Gi(91) from

Table V for each set of equivalent positions. With this, as discussed

at the beginning of this chapter, one can finally determine the
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Table XIII.

28

Equivalent-Position Subgroups of PC4222

 

 

Sets of No. of

equivalent PC4222 points

positions in set

31’ 82, S3, S4 1, 2, 3c’ 4C, 5, 6, 7c’ 8c 2

SS, 36 1, 2, 3c’ 4c, 5C, 6C, 7, 8 2

S7, 88 l, 2, 3C, 4C 4

39+59' 1, 2 8

S10+312’ 11 13 1’ 5; 1’ 6 8

814+615 1, 7; 1, 8 8

3 +5 ' 1 16   
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Table XIV. Equivalent-Position Subgroups of PC4222 and P14222

 

 

Sets of No. of

equivalent PC4222 P14222 points

positions in set

Sf$2,85$4 1,2,5, l,2,5,6 4

354's6 1, 2, 7, l, 2, 7, 8 4

Sf$8 1,2 1,2 8

39+sg' 1, 2 --- 8

$9 --- 1, 2, 31, 4

s is ', 3 +5 '
10 10 11 11 1, 5; 1, 1, 5; 1’ 6 8

I I

S12"312 ’ S13+513

314+814', 315+Sls' 1, 7; 1, 1, 7; l, 8 8

3 +3 ' 1 1 16

16 16     



3O

allowed components of B at each point of these sets and the relation

between these components of B at all points in the set. The results

of these determinations for all sets of equivalent positions and for

all seven groups are given in Tables XV, XVI, and XVII. The x, y, and

z-components of the internal magnetic field B(£) are denoted by u, v,

and w, respectively, and‘fi'stands for -u, etc. The entries list the

components of the field which symmetry allows to be non-vanishing, and

these components at the various points of a given set are listed in

the same order as the points in Table XI. A zero entry designates

that symmetry does not allow non-vanishing B at any point of the set.

Use of Tables XV, XVI, and XVII is best described with the aid of two

examples:

(1) The entries of Table XV for the set of equivalent positions

S7 should be understood to designate the followin :

For P4222,

Bz(0,0,z) = -BZ(O,O,E) = Bz(0,0,35+2) = -Bz(O,O,35-z); (3.3)

for P42'22',

BZ(O,O,z) = -Bz(o,o,‘z’) = -Bz(0,0,l,+z) = Rz(o,o,!5-z); (3.4)

for P42'2'2,

BZ(O,O,z) = Bz(o,0,’z) = -Bz(o,o,1;+z) = -Bz(o,0,15-z); (3.5)

and for P422'2',

BZ(O,O,z) = Bz(o,o,‘z) = Bz(o,o,15+z) = Bz(o,o,5-z). (3.6)

The x and y-components were determined to be vanishing and are not listed.
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Table XVI. The Components of §(£) for P 4222

c

 

 

Sets of

equivalent PC4222

positions

S through S O

l 8

Sg'PSg' w,w,w,w,w,w,w,w

8104612, 811+S13 u,T1',v,V,F,u,‘v',v

814+815 O

' I

sl6+sl6 816' same as for P4222

1, -
J 816 . as for P4222 with

opposite sign 
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Table XVII. The Components 0f.§CE) for PC4222 and P14222

 

 

Sets of

equivalent PC4222 P14222

positions

, S +3 S +5 0 O

Sf$2 3 4’ 5 o

S7+S8 w,w,w,w,w,w,w,w w,w,w,w,w,w,w,w

S ' 0

_. _. —. 9'

S +59' w,w,w,w,w,w,w,w

9 39': not defined

3 +3 ', 8 +3 '

10 10' 11 11' u,'fi,v,‘\7,'1I,u,‘\7,v u,fi',v,V,'fi,u,V,v

S +5 S +5
12 12 ’ 13 13

' ' 0 0

S14+S14 ’ S15+515

816' same as for P4222 816' same as for P4222

v 1, - I ,
Sl6+Sl6 816 . as for P4222 with $16 . as for P4222 with

opposite sign  opposite sign
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(2) As another example, consider 810 of P42'2'2 from Table XIV.

This entry explicitly stands for:

B (x.0,0> = ~13 (mm = B (Once) -B (03.3). (3.7)
Y y x x

and

B (x,0,0) = B (§,0,0) = -B (0,X,%) “B (O,§3%). (3.8)

2 z z 2

It is also indicated from Table XV that the components of the field at

. I I

the p01nts of $11 (or $12, or $13) of P42 2 2 obey a set of relations

similar to (3.7) and (3.8), i.e., for $11 one has

B (X9%9%) = '3 5935335) = B ($5,150) = 'B (gs-£30): (309)

Y y x x

and

Bz (Xs‘li‘a’li) = Bz &:%a%) = '32 (%,X,O') = "'32 (Is-£30). (3°10)

It is important to note, however, that the above magnitudes of the

components of B'in the set 811 cannot, from symmetry alone, be related

to the magnitudes of the components of B in the set 310' This applies,

of course, generally in that the allowed components of B within any.

given set of equivalent positions cannot, from symmetry alone, be

related to the allowed components of B in any other set of equivalent

positions.

We have now completed the description of the solution of the

first problem posed in Chapter I, viz., what is the symmetry of the

most general time-averaged internal magnetic field §(E) allowed by a

given magnetic space group, and we have given examples for purposes of

illustration.



CHAPTER IV

NEUTRON SCATTERING FROM THE INTERNAL MAGNETIC FIELD

In order to study the scattering of a monochromatic beam of

neutrons from the internal field B(£), a knowledge of the behavior of

the Fourier components of this field is required. We therefore write

in) = Erwexpur-n. (4.1)

t

where B(B) is the axial vector amplitude of the k-th Fourier component

of B(£), and B_is a vector in the reciprocal lattice which can be

* *

2flR1§*4mB*+ng*), where 3*, b , and g. are the latticewritten as B

vectors of the reciprocal magnetic unit cell and are related to g, B,

and g which were defined in Chapter III as

are." = 11'2" = as." = 1. ((1-2)

and l, m, and n are any set of integers.

If an incoming monochromatic neutron wave interacts with the

internal magnetic field B(£) and is scattered elastically into an

outgoing wave, then the matrix element of the interaction is given

by<+1péntl LPf) , where xint = -F.°B(_1;), and/4.13 the neutron

magnetic moment vector. If the incoming neutron has momentum/fiki, and

35
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the outgoing neutron wave has momentum 1315f, then 4115f =‘H(Bi-B), and

‘fiekiz/ZM =‘HQBf2/2M, where M is the mass of the neutron. If the spin

state of the neutron is specified by spin index<§2 and the state of

the scattering system by an index n, then a state of the total system

can be written as |_lgon>. Hence the matrix element (411' qui +f>

takes the general form

((121.43; =<5151n11 75c» yr)‘ tfoifnf)

Representing incoming and outgoing neutrons by plane waves,

<filitx2nqrff>'

=<°£nrlfi'#<£"§ 2w expire-warden?

= (51111. -fv-E' Eg'flexp -i@-.1§')‘£ dfl‘éné ’

where the integration is taken over the volume V of the magnetic unit

cell. Carrying out the integration we obtain

“amen? -v<6.n.I;-r-®I 61-9- M

The intensity of the neutron beam scattered into a final state with a

particular polarization with an associated change in wave vector

B = Bi-Bf is Proportional tol<¢ian¢9Ia hence by (4.3) it is

proportional to'<6"1§-lfy£@)'6fnt>‘ 2, If, for given B, all three

components of BLk) vanish, then <q’i'aeinth’f> = 0, and there will

be no scattered beam.If two components of B(B) vanish, the scattered

beam may be linearly polarized, and if one component of B(B) vanishes,

the scattered beam may be partially polarized.



37

We now wish to relate B(B) to the macroscopic magnetization M(£)

of the crystal. We start with the well-known relation of classical

electromagnetic theory

a = 11 + W14. (4.4)

where §,15 the magnetic induction field, B is the magnetic field, and

M is the magnetization (magnetic moment per unit volume). For the

Fourier expansion of the magnetization we can write

111(5) = 2 31¢) expfik'fi). (4.5)

k

and by Fourier inversion,

as) =. <1/v>fat) epoer) dd. (4.6)

with the integration taken over the volume of the magnetic unit cell.

Since all internal currents are described in terms of the magnetization

ME).

va = O (4.7)

which allows B,to be written as the gradient of a scalar function 0,

g = -v0. (4.8)

From (4.4),

we = +41Yv-u '5 v-g. (4.9)

and since the divergence of the magnetic induction always vanishes,

we obtain

4va = -v.1_1, (4.10)

and hence from (4.6) and (4.8),

v20 = non = 41:32 192$) exp(iB-£). ' (4.11)

k
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From this it follows by integrating over the volume of the magnetic

unit cell that

o = «1’12 [E-a(h>/E°k]exp(il$°£): (4.12)
k

and thus _

fl = we) = «(S Ln~e<1>/1<.2]exp(iR-r>. (4.13)
k

and hence

g = 4112 [I - (Q/Rzfl-gg) exp(iB-£), (4.14)

k

where I is the unit dyadic. By comparison of (4.14) with (4.1) we find

that

IQ) = 47([1 - @klszfl-aQ) (4.15)

which is the desired relation between the Fourier components of the

magnetic induction field and the Fourier components of the

magnetization.

We now proceed to the study of the Shubnikov symmetry of B(k).

The Fourier inversion of (4.1) is

£05) = (unfit) exp(-ik°g) cm“. (4.16)

from which we have that

91°B(B) = (l/VXfOi~B(£)exp(-iB{£) d1§ (4.17)

and with the aid of (2.5) we can write

914(5) = (l/V)J‘B(¢Sio£+3’i) exp(-iB°£) d’d (4.18)

Now we set

(6:; +’£’].L = g' . (4.19)
1
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and hence

g = éi-l-Q' - i.). (4.20)
1

Thus with the use of (4.20), (4.18) can be written

91'§®= (UVJEQ') exp(-il<_:¢91-l:£') exp(11<_-éi"-1’,> cm (4.21)

Replacing B_by B'éi-l and £.bY Ed in (4.16), we obtain

2(3-61") = (1/v)f§@) exp(-iB'¢$i-lo£') (11’, (4.22)

16

and using this in (4.21) we get

191.3(5) = exp(iB'éi-1-'§i) gg-oi‘l). (4.23)

We now consider the set of operations {6 ‘23) of the magnetic
,l

space group S(sjr§3) of the crystal that transform the reciprocal

vector Bi such that

-1 =

51.31 151. (4.24)

This set of operations {ojria} for which (4.24) is valid, i.e., the

operations under which B is invariant, and the corresponding set of

10

i

operations {Oj} of the magnetic space group S(sj|3%) form groups

which we denote, respectively, by 1(6TEO and2?$9). For each group

1(étE) for which (4.24) holds, (4.23) takes the form

[1:81) - exp<-lti-€_¢’j) 931%,) = o, (4.25)

or

[I - exp(-iBi°’Ej) Oj].B(Bi) = o, (4.26)

where Oj and (éjl’i’j) belong to 31(9) andZ/iwlz), respectively. The

equation (4.26) must be satisfied for each element of 39de and

for every corresponding element ofi;{(9). The most restricted common
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solution of (4.26), i.e., the "intersection" of the common solutions

of the scattering amplitude equation (4.26), will represent the most

general solution compatible with the symmetry of the crystal for the

three components of B(B).

Since (4.26) is a matrix equation, the number of linearly

independent solutions depends10 on the rank r of the coefficient

matrix A = I - exp (-iBio'_t’j) Qj. The order of the matrix A is three,

thus the number of linearly independent solutions will be (3-r). If

A is non-singular, its rank is three,'and then B(Bi) must vanish

identically. For this Bi, there will be no scattered beam. If only

one component of B(Bi) is non-vanishing for given Bi, e.g., Fz(Bi) =7L,

and Fx(Bi) = Fy(Bi) = 0, then the corresponding linear polarization

of the scattered neutrons is to be expected. If only one component

of B(Bi) vanishes, then the corresponding direction of polarization

is expected to be absent from the scattered beam.

It is found that only a few types of symmetry operations of

Shubnikov groups will satisfy (4.24). These are n-fold rotation or

antirotation which keep invariant the vector B along the axis of

rotation or antirotation, and any twofold reflection-rotation or

antireflection-rotation which keep invariant the vector B,in the

plane of reflection or antireflection-rotation. In case 8(81'21) con-

tains an antitranslation (Ek§)', B must satisfy

exp (iB-Z) = -l (4.27)
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in addition to satisfying the invariance condition (4.24). For in

this case one must have

2%) = 'PQ‘FE): (4°28)

and thus from (4.1)

2‘. fly) exposur) = ~23 3(5') expEi£'-(r+_'9]o (4.29)

k' y

Multiplying both sides by exp(-iB{£) and integrating over the volume

of the magnetic unit cell, one obtains (4.27).

The condition (4.27) has an important consequence,as may be seen

from the following. Suppose ’E’= 35(B+B+g) and B = 21f(1§_*+mB*+ng*). Then,

from (4.27) one obtains

exp[21‘1’i (1g*+mg*+ng_*)- kQfi-tgfl = -1 (4.30)

which requires (1+m+n) to be an odd integer. Thus, for example, if

flr= £2, then n must be odd and hence one cannot choose B along the

a-axis or b-axis since that would require n to be zero. Thus, in case

of magnetic space groups containing an antitranslation, (4.27)

represents restrictive conditions on the choice of B which are

additional to those demanded by (4.24).

We now present all possible solutions of the scattering amplitude

equation for the Shubnikov group operations which satisfy (4.24) in

general, i.e., without taking into account possible antitranslations.

We take all symmetry operations as passing through the origin, and we

choose the z-axis (c-axis) as the n-fold rotation and antirotation
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axis and also as the twofold reflection-rotation and antireflection-

rotation axis. The complete catalog of such operations is given in

Table XVIII, and the solutions B(B) of (4.26) for the specific

operations in Table XVIII are given in Tables XIX, XX, XXI, XXII,

and XXIII. The details of calculation of such results will be

illustrated in the next chapter.

As an example of how to use Tables XIX through XXIII, consider

the first row of Table XIX which states that (a) the operations

2z and (zzl'g) for even n, and the operation (2219' for odd n, with

33= £2, keep invariant the vector B'= 2flhg*; and that (b) the most

general solution B@) of (4.26) is given by F" (B) =X, and FL(B)

= (0,0), i.e., the component of B(B) parallel to the z-axis (c-axis)

is equal to a constant 34 and the components ole(B) perpendicular

to the z-axis are zero. Other entries can be understood along the

same lines.
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Table XVIII. All Possible Shubnikov Group Operations which Satisfy

Equation (4.24) and the Corresponding Invariant Reciprocal Vector

 

 

Shubnikov group Possible translational part‘zg' Invariant

operation with the elements passing reciprocal vector

. 4/ . . * * *
(w1th —i=0) through the origin 'B = 2fl11§_+mB +ng )

, *

2 , 2 0, to h = 2117119.
z z

0. ’53. 352. kg

- _ * *

22, 22' ten), 950342). H9131). #(eflfi's) t = 21112 we)

teth). 2&12). Meta). hereto)

3Z 0, 3/3, 23/3 1; = zn‘ng"

*

42’ 42' 0» 342’ ’52: 32/4 E = Mug

*

62, 62' O, g/6, 9/3, £3, 23/3, 53/6 B '= ang   
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Table XIX. Solutions B@) of Equation (4.26) for the

Operations (22,21) and (2 27'

z

 

 

o a ' *

Operat1on 2z Operat1on 22 321an )

’El= O, for all n N

g = 1,3, for odd n En® =34 131(5) = (0,0)

?= $53, for even n

E/= O, for all n

'{= ‘EC, for odd n (B) = O; F @) = (OCP)

- - _ "II “J.

10,- kg, for even n   
 



Table XX.
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Operations (EZIZ) and (21%).

Solutions £05) of Equation (4.26) for the

 

 

Operation '52 Operation 72' 1: [211’(1§_*+m_19_*)]

El= 153, %@+_c_). 1 even ‘§= 353, get), 1 odd

= 35k: “2+9: I“ even = $52, mm). m odd

= 0, all values of 1, m = Mafia), %(§+t+g), Fug) = (0,0),

= ewe), more), (Hm) (Hm) odd 11%) = g
even

————————-————q

El= 152. May's). 1 odd

= $2. kQ‘i‘g), 111 odd

35 @fil) . is (a_+1>_+2) a

(1+m) odd

%(£t§): 1 even

= 32;@:E), m even

= %@th), lliéthts).

(11m) even

'§= 119:3), 1 odd

= th£)9 m Odd

= kEtE). %@t123£).

(lim) odd

‘_'(:= 5551, 5Q+EL 1 even

kgtg), 1 even

%;(lrt£). m even

kath), Mathis).

(ltm) even

____________ .1

= 352, 3EQ‘l‘g), m even

% (3.42) : AIQ'HIE) ,

(l-hn) even

0, all values of 1, m

%Qt§): 1 Odd

= 35&1‘2), m odd

= Math) . fights) .   (ltm) odd

F" e) = (coil).

11¢) = o
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Table XXI. Solutions yg) of Equation (4.26)

for the Operations (32"9

 

*

Operation 3z EQ'R’ng )

 

?= 0, all values of n

= 2/3, 23/3, n = 3N, Fug) x, 11(5) = (0,0)

(N any integer)

 

_____________L.._______.____._

’L/= c/3, n - 3N+l F" (13) — O

_ 1913;: :12. _ 1 i193: Efi<i+f:>;13__
’Q’= c/3, n - 3N+2 F"@) = 0

= 2c/3, n — 3N+l 1:L (1;) = [31}(1- 53,1]

 



Table XXII.
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Operations (azl’g’) and (42,141):

Solutions 2%) of Equation (4.26) for the

 

 

*

Operation 42 Operation 42' _If_(21’n_c_)

’_d= 0, all n ?= 83, odd n

= $53, even n =3 kg, 32/4, :1 = 4N+2 Fug) =5)

= 349, 33/4, n = 4N, F‘LQ) = (0,0)

(N any integer)

____________ 1__________-__.___________

ZJ= 352, odd n '5= 0, all n

= kg, 32/4, 11 = 41*“? - '59, even n 13$) = O

= fl, 353/4, n 4N

____________ +--—_--—-—_-—'l'_—_-—--—--

§=%§,n=4u+1 {=ag,n=4u+3 F"@)=o

= 33/4, :1 = 4N+3 - 3c/4, n = 4N+1 1103) -p(1,1)

_____________1.---—___.___.._+.__..._______

15= Aze, n = 4N+3 ’§= 542, n = 4N+1 Fug) = o

=4N+1 =3_c_/4, n =4N+3 F1@)=o((1.i)  
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Table XXIII. Solutions £313) of Equation (4.26) for the

Operations (6z Z) and (62,15):

Operation 6Z Operation 62' 301133")

:C’= 0, all n El $3, odd n

= £3, even n 3/6, 53/6, n = 3N+3 Fug) = g

= _c_/3, 23/3, n = 3N, lug) = (0,0)

(N any integer)

= _C_/6, 53/6, n = 6N

?= %C: odd n If 0, all n

= 3/3, 23/3, n = 3N+1, $3, even n

3N+2 3/3, 23/3, n = 3N EQ‘.) = O

= 3/6, 53/6, n = 6N+2, 3/6, 53/6, n = 6N,

6N+3, 6N-h4 6N+l, 6N+5 L

:L/= c/6, n = 6N+S E/ 3/3, n = 3N+l

= 53/6, n = 6N+1 23/3, n = 3N+2 Fug) = O

3/6, n = 6N+2 F4(§)

53/6, n = 6N+4 =0([1,%(1+J§i)]

_____________ 1_______________________

E" 3/6, n - 6N+1 E, 3/3, 11 - 3N+2

= 5c/6, n - 6N+5 23/3, n = 3N+l F“ 05) = 0

3/6, n = 6N+4 rL(5) 53/6, 11 = 6N+2 = «flea-61>] 
 



CHAPTER V

ILLUSTRATION OF THE CALCULATION OF THE FOURIER COMPONENTS

OF THE INTERNAL FIELD

In this chapter we present all possible solutions of the neutron

scattering amplitude equation (4.26) for the seven tetragonal magnetic

space groups P4222 through P14222 introduced in Chapter III, and we

give some examples of how these solutions were calculated.

Since the elements of the magnetic space groups under discussion

consist only of rotations and antirotations followed by translations,

one expects that the reciprocal vector which will be invariant in

these magnetic space groups should lie along the axes of rotation

and antirotation. In case of PC4222, PC4222, and P14222, the

reciprocal vector 5 = Zflklgf4m3*+n3*) should further satisfy (4.27).

The latter means that 3 must lie along the z-axis with n odd for

PC4222, along the x and y-axes with l and m odd in case of PC4222,

and along the x, y, and z-axes with l, m, and n odd in case of

P14222, taking the a, b, and c-axes, respectively, as the x, y, and

z-axes. In Table XXIV are listed the reciprocal vectors‘ki and the

elements of the corresponding groups 1(ér35 for which thehi

satisfy (4.26) and, if applicable, (4.27). The elements of the

corresponding group32}i(9) can be determined from Table V.

49



T
a
b
l
e

X
X
I
V
.

R
e
c
i
p
r
o
c
a
l

V
e
c
t
o
r
s
g
i

a
n
d

t
h
e

E
l
e
m
e
n
t
s

o
f

t
h
e

C
o
r
r
e
s
p
o
n
d
i
n
g

G
r
o
u
p
s
é
;
i
(
é
r
z
s

 

R
e
c
i
p
r
o
c
a
l
v
e
c
t
o
r

 

P
4

2
2
,

P
4
2
'
2
2
'
,

2
P

4
2
2

P
4
-
2
2

P
4

2
2

k
i
n

c
o
m
p
o
n
e
n
t

P
4
2
'
2
'
2
,

P
4
2
2
'
2
'

c
2

C
2

I
2

f
o
r
m

 

k
2
fl
k
1
,
o
,
0
)

1
,

5
-
-

1
,

5
,

1
'
,

5
'
,

1
,

5
,

1
'
,

5
'
,

2
fl
1
1
,
-
1
,
0
)

1
,

s
-
-
-

-
-
-

-
-
-

 
 

 
 
 

 

SO



51

Thus we have available all quantities needed to solve the

amplitude equation (4.26) for the seven magnetic space groups.

Suppose, as an example, that we start with the reciprocal vector

31 = Zfi13* and the elements of the groupé?fkér§3 which are given

to be element 1 which is E, the identity, and element 5 which is

2x, the two-fold rotation around the x-axis. These are the only

two operations under whichlg1 is invariant for the group P42'22'.

From Table VII one has that

E = l 0 O ,

O l O

and

x

O -1 0

0 O -1

. 1! “I * ,

and u51ng d = E, 2x; 9 = E, 2x; _’= O, O; and 3 = 2 l3 in (4.26), one

obtains

(E - E)~£(§) E 0 (5.1)

and

(E - 2x>§(k)'-.EO. (5.2)

The equation (5.1) allows all components of 2(5) to be arbitrary.
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However, (5.2) gives

'1 o o - 1 0 0T Fx(21l/l_a_*) = o,

o 1 o o -1 o Fy(2fl3*) o

hho o 1 o o -1_ Fz(21rlg*) 0

or

o o 0 FX = o (5.3)

o 2 o Fy o

o o 2 F2 0

O O O

O 2 O

O O 2

is two, and thus there exists only one non-trivial solution of (5.3).

It is found by multiplying out the matrix equation (5.3) which gives

OFx = O; 2Fy = 0; and 2Fz = O. (5.4)

This means that Fx =a(or the parallel component of 3(3), i.e., Fug),

is arbitrary; and Fy = Fz = O, or the perpendicular component of

‘§(§), i.e., EL(§), is zero; Such a result will be designated by

E@) = (060.0). (5.5)

*

As a more complicated example, considerg3 = 2flh3 and the

invariant groupfiwlg with elements 1 which is E, 2 which is 22,

3 which is (42'), and 4 which is (az'lré), for the same magnetic

=E,
space group P42'22'. The corresponding groupé}§(9) consists of 91



92 = 22, 93 = 42, and
4

9 =2 (where? -
z Z

We substitute these values in (4.26) and thereby obtain the following

equations:

(E - E)°§@) = 0:

(E - 22mg) = 0

Es - exp (~2fl’in_c*o

and

fie - exp(-211’ing*-

More explicitly these

0001:X

y

ooor
Z

100-

010

L001

 

 

and

'1 o o -

Ho 1 o

L0 o 1

153) ZZJ'EQ) = O:

’52) ZZ'IJ-ifls) = 0-

equations read:

= 0 ’

exp ("Trim 0 l O

exp(-Ifin) o -1 o

l O O

0 O -l

 

v
1
1

r
1
1

r
1
1

'
1
1

F

F

(5.6)

(5.7)

(5.8)

(5.9)

(5.6a)

(5.7a)

(5.8a)

(5.9a)

The solutions thus depend on the value of n, and we first choose n to
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be even and obtain

OF = OF = OF = o, (5.
X y z

2F = 2F = OF = o, (5.
x y z

- = + = =
(Fx Fy) (Fx Fy) 2Fz O, (5.

and

+ = - + = = .
0(FX Fy) ( Fx Fy) 2Fz 0 (5

The only common solution for these four sets of equations is

2(5) = 0- (5.

*

Thus, if n is even and §_= 2flh3 , then 3(5) = 0.

Now we take n to be odd, and then we obtain:

0F = OF = 0F = O, (5.

x y z

2F = 2F = OF = 0, (5.
X y 2

(F +F ) = (-F +F ) = OF = O, (5,

x y x y z

and

(F -F ) = (F +F ) = OF = O. (5.

x y X y z

The common solution is thus Fz =¥ with garbitrary, and Fx = F =

Y

i.e., F"(§) is arbitrary and FL(§) is zero. Such a solution will be

designated by

2(5) = (0,0,X), n odd. (5,

In a similar manner, all the solutions of the scattering

amplitude equation can be obtained for the seven Shubnikov groups

6b)

7b)

8b)

9b)

10)

6c)

7C)

BC)

9c)

0.

ll)
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and for the five types of reciprocal vectors, and the results are

given in Table XXV. The first row of Table XXV gives the reciprocal

vectors 31 and the subsequent rows give the solutions to (4.26)

for our seven tetragonal groups.
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CHAPTER VI

SUMMARY

Inclusion of time inversion as a possible symmetry operation

for the study of crystallographic structure leads to interesting and

significant generalizations of the ordinary crystallographic point

and space groups. As a symmetry operation, time inversion may occur

by itself or in combination with the spatial rotations, reflections,

and translations. The resulting generalized point and space groups,

the Heesch groups and the Shubnikov groups, respectively, are useful

for the study of magnetically ordered crystallographic states.

We considered the time-averaged internal magnetic field of the

ordered state to be a classical axial vector field. When the

Shubnikov group of the magnetic state is given, it is possible to

develop for all points of the unit cell the symmetry behavior of the

internal field, as well as that of its Fourier components in

reciprocal lattice space. The former is of most direct interest in

nuclear magnetic resonance experiments, and the latter in elastic

neutron scattering experiments.

In this dissertation the general theory for this problem is

developed and discussed, and the procedure is illustrated through

57
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application to seven different Shubnikov groups all of which belong to

the same chemical space group of the tetragonal system. The general

theory is developed in sufficient detail to permit similar

calculations to be made with ease for any of the 1651 possible

Shubnikov groups.

If for a given chemical space group all possible Shubnikov

groups are studied in this way, it will then be possible from the

results of such a study to predict whether a unique assignment of

the Shubnikov symmetry can be made from the available nmr or neutron

diffraction data, or if not, what additional data one would have to

attempt to produce to make the aséignment unique.
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