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ABSTRACT

APPLICATION OF COMPLEX MODAL DECOMPOSITION METHODS TO
DISPERSIVE MEDIA

By

Rickey Alfred Caldwell Jr.

Complex orthogonal decomposition (COD) is applied to an experimental beam to extract

the dispersive wave properties using response measurements. The beam is made of steel and

is rectangular with a constant cross section. One end of the beam is free and is hung by

a soft elastic cord. An impulse is applied to the free end. The other end is buried in

sand to absorb the wave as it travels from the impact site on the free-end; this effectively

prevents reflections of the wave off the buried end and emulates a semi-infinite beam. COD

is applied to the complex analytic displacement ensemble to obtain complex modal vectors

and associated complex modal coordinates. The spatial whirl rates of nearly harmonic modal

vectors are used to extract the modal wave numbers, and the temporal whirl rates of the

modal coordinates are used to estimate the modal frequencies. The relationship between the

frequencies and wave numbers are used to describe the dispersion relationships, which are

compared favorably to those of the theoretical infinite Euler-Bernoulli beam. Further efforts

are applied, and a new methodology is developed.

A novel method called smooth complex orthogonal decomposition (SCOD) is applied

to a simulated semi-infinite beam and the above instrumented experimental beam. These

measurements are converted into complex analytic displacements and velocities ensembles,

which are used to compute two correlation matrices. These correlation matrices form a

complex generalized eigenvalue problem whose eigenvalues and eigenvectors lead to the

extractions of the frequencies and wavenumbers of the constituent waves of the traveling



pulse. SCOD directly extracts the frequencies of the traveling waves from the eigenvalues.

SCOD can extract the geometric relationship, phase velocity, and group velocity and agrees

with analytical predictions. Applications of both methods are applied to a simulated infinite

mass chain.

The dispersion relationship of a discrete chain of masses is extracted from numerically

simulated data by applying complex modal decomposition. When an impulse excitation is

applied to one end of a semi-infinite mass-spring chain, a wave is generated and propagates

down the chain. This wave consists of various modes. The time record for the generated data

is limited such that the wave reflection does not return to the sensed masses. For example,

a 250-mass chain is simulated, and we consider (or sense) the time record of the first 100

masses. The data collected from the numerical simulation consists of the displacements

of each mass at each time step. This data is then used to extract complex modes using

COD and SCOD. The extracted complex modes accommodate modal traveling waves. We

then compute the frequencies and wave numbers from modal coordinates and mode shapes,

respectively. The amplitudes and frequencies of the modes are also estimated using Rayleigh

quotients. The COD extracted dispersion relationship matches the analytical prediction of

the dispersion curve for the linear mass chain.
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Chapter 1

Literature Review and Introduction

1.1 Literature Review

A great portion of this work focuses on waves traveling in infinite media, in particular,

infinite Euler-Bernoulli (EB) beams, semi-infinite EB beams, and a semi-infinite mass chain.

Euler first derived a model for beam oscillations in 1744 [1]. His work seemed to have

been motivated by the questions of Bernoulli and is documented in letters between the two

Swiss. Daniel Bernoulli published his works on the subject in 1751 [2] and today the EB

beam model is still in use. The EB model assumes small deflections, negligible shear, and

that planar cross sections remain plane. Another popular model is the Timoshenko beam

model [3] which allows for the warping of cross sections and shear. It was developed in the

early 20th century and is an extension of Euler’s and Bernoulli’s work.

Fourier was the first to derive the solution for the infinite EB beam with initial displacement

and zero initial velocity [4]. Three and one-half score years later Boussinesq [5] derived

a solution for the infinite EB beam with an initial velocity. Continuing in chronological

order from Fourier, Graff [6] notes that in 1822 Cauchy developed elastic theory and the

equations of motions for elastic solids. Efforts to find the original papers were thwarted by a

language barrier as most of Cauchy’s papers were in German. Graff also states the Poisson

1



published work describing waves in elastic media in 1828. Poisson (1828) [7] and Cauchy

were able to get similar results. Efforts to describe waves in solids continued. The next

noteworthy development relating to this subject was Pochammer’s who developed frequency

relationships for waves traveling in rods. Later, Rayleigh’s work on surface waves in 1885 [8]

predicted the existence of what are called Rayleigh-Lamb waves. Physically, these waves

travel near the surface of thick plates. A common example are earthquake waves. Lamb

published considerable works on group velocities and waves in plates [9, 10]. These works

were furthered by Pao and Mindlin [11] in the 1960’s.

Jumping back to the early 1940’s, work in statistics and fluid dynamics would lend

itself to structural analysis. Proper orthogonal decomposition (POD) is a statistical tool

developed independently by many different people from all over the globe spanning from

1943 to 1955; the progenitors include Kosambi, Karhunen, Pougachev, Oboukhov [12, 13]

and Lumley [14]. POD is a tool for statistically separating two independent variables

such as time and space. POD has equivalent formulations such as principal component

analysis, Karhunen-Loéve decomposition (KLD), empirical orthogonal function (EOF) [15],

and singular value decomposition (SVD) [13, 16]. POD was initially applied to characterize

spatial structures in fluid flows, particularly turbulent flows, turbulent flows around objects,

and turbulent flows near boundaries [14, 17–20], and now is used in many fields such as

controls [21–24], signal processing, thermo-fluids [25, 26], finance [27] and structures [28,

29]. Among the structural applications, modal analysis and nondestructive evaluation have

received a great deal of attention [29–31].

In the realm of modal analysis, POD is used to extract linear normal modes (LNMs)

from discrete and continuous systems [32–34] excited by a modal impact hammer or by
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random excitation [35]. Improvements were sought and other methods based on POD

were developed such as enhanced POD [33], reduce-order mass-weighted POD [33, 36], and

many more. New formulations with additional ensembles were developed such as smooth

orthogonal decoosition (SOD) by Chelidze and Zhou in 2006 [37] and similarly the smooth

Karhunen-Loeve decomposition (SKLD) in 2009 by Bellizzi and Sampaio [38]. A benefit of

SOD is that a priori knowledge of the mass matrix is not needed and mode shapes and

frequencies can be directly extracted [37, 39, 40]; and damping ratio if using SKLD [38].

This differs from POD in which requires computing the fast Fourier transform of the modal

coordinates to extract natural frequencies, and using logarithmic decrement on the modal

coordinates to extract damping.

The idea of POD in the complex plane was develop and published simultaneously by

Georgiou and Papadopoulos in 2006 [41], called C-POD, and by Feeny at the ASME IMECE

conference, later published and called the complex orthogonal decomposition (COD) in [42].

COD was used to decompose wave motion into its primary components and parameters

such as wavenumber, frequency, phase velocity, and group velocity. Additionally, with COD,

traveling and standing waves could be discerned, and the degree of traveling waves could

be quantified using the traveling or synchronicity index [43]. Feeny et al applied COD

to bio-locomotion of nematode worms [44] in 2009 and of fish in [45] and was able to

discern different mechanism used by the organism to travel forward, backwards, and to

turn. Esquivel [15] applied COD to simulated data and power system data to measure

fluctuations in power systems in 2009. COD is well suited to describe fluctuations in space

and time. When related to wave velocity this relationship is called the dispersion relationship.
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This research starts with the verification of [46] with a beam experiment and creates a new

formulation related to COD and SOD, which allows for the direct extractions of wavenumbers

and frequencies. This formulation is called smooth complex orthogonal decomposition

(SCOD) and is applied to a simulation, beam experiment, and to a simulated infinite mass

chain.

1.2 Introduction

Waves are ubiquitous. Pressure waves as sound and electromagnetic waves that we see as

light, are just of two examples of waves. Mechanical waves (like sound) and stress waves,

requires a medium to travel from point A to point B. These waves can be of great engineering

importance, and understanding how they propagate is critical. For example, waves from

explosions at construction sites and in mines are used to loosen and remove material from a

localized area. That same explosive force is used in improvised explosive devices (IEDs) or as

a tool for terrorist which can cause injury, death, and destruction of property. Efforts have

been made to understand how these blast waves interact with the human body, and how

to mitigate these waves to prevent damage to human tissue and property. However, waves

used for good can assist in such things as locating buried mines, in diagnostic devices in the

medical field (magnetic resonance imaging, X-rays, ultrasound), nondestructive evaluation

and testing, or in archaeologically to find buried ruins using ground penetrating radar. All

of these modern equipment are possible by understanding waves and how waves interact

with objects. The tools developed in this dissertation can be used to characterize how waves

interact with objects.
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The objective of this dissertation is to use measured responses to define the geometric

dispersion relation (GDR) in engineering structures. Dispersion relationships are equations

that describe the relationship between frequency (ω), wavenumber (k), geometry, and material

properties. Examples of different systems and their geometric relationships are in Table 1.1

below: (a) waves traveling through the Earth’s core [47], where Bs is the radial component

(cylindrical coordinate system) of the magnetic field, μ0 is permeability of free space, and ρ0

is the reference density. Example (b) describes ripples traveling on the surface of a shallow

pond [48], where μ =
h2
0

6λ2
0

is a non-dimensional parameter h0 is undisturbed water depth

and λ0 is the typical wavelength. Example (c) is light through a prism, where c is the speed

of light in a vacuum, and n is the refractive index. Example (d) is flexure waves in a beam,

where E is the modulus of elasticity, I is area moment of inertia of the cross-section, ρ is

the mass per unit length of the beam, and A is the cross-sectional area. Along with each

system is its GDR, from which the phase velocity and the group velocity can be determined.

The phase velocity, cp, is the velocity of a point on a single-harmonic wave in space, for

example, a single peak. The group velocity, cg, is the velocity of the envelope of a group of

waves. The equations for the two velocities are cp = ω/k and cg = dω/dk. Dispersion is a

characteristic where group or phase velocity is dependent on the frequency. Examples (a)

and (c) are non-dispersive example (b) and (d) are dispersive.

Specifically, we will use COD and SCOD to estimate the wavenumber, k, and frequency,

ω, of the constituent waves traveling in a simulated and experimental beam, and a 100 mass,

mass-chain system. From the wavenumbers and frequencies, we can determine the GDR,

the phase velocity, and group velocity of each system.
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Example Dispersion Relationship Phase velocity Group velocity

(a) ω = k

√
B2

s
μ0ρ0

cp =

√
B2

s
μ0ρ0

cg =

√
B2

s
μ0ρ0

(b) ω = k − 4π2μk3 cp = 1 − 4π2μk2 cg = 1 − 12π2μk2

(c) ω = ck cp = c/n cg = cω/(nω + ck)

(d) ω = k2
√

EI
ρA cp = k

√
EI
ρA cg = 2k

√
EI
ρA

Table 1.1: Examples of geometric dispersion equations, phase velocities, and group velocities,
in (a) waves traveling through the Earth’s core, (b) ripples on a pond, (c) light waves through
a prism, and (d) flexure in a uniform beam. In example (a) the phase and group velocity are
equal. In (c), the group velocity is slower than the phase velocity. In (d), the group velocity
is faster than the phase velocity.

To provide a foundational understanding a brief review of waves in a Euler-Bernoulli

beam, Rayleigh’s quotients, and proper orthogonal decomposition (POD) will be presented

first.

1.3 Background

A brief introductions to the major concepts and tools used in this research will be briefly

reviewed. First, the equations of motions for a uniform Euler-Bernoulli beam will solved

for simple harmonic waves. The results of this will lead to the dispersion relationship.

Examples of dispersion relationship for different types of systems will be presented as well

as parameters derived from the dispersion relationship call the group velocity and the phase

velocity. Together the dispersion relationship, group velocity, and phase velocity are the

properties this research seek to measure in using COD and SCOD.
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1.3.1 Waves in a Euler-Bernoulli Beam

The derivation of the Euler-Bernoulli beam equation is well known and can be found in most

vibration-theory textbooks such as [49], and will not be reviewed. The equation of motion

for a uniform Euler-Bernoulli beam (EB) is

ρAÿ(x, t) + EI
∂4

∂x4 [y(x, t)] = 0, (1.1)

where x is the position along the beam, t is time, y(x, t) is the transverse displacement, ρ

is the mass density, A is the area of beam’s cross-section, E is the modulus of elasticity,

and I is the area moment of inertia of the beam’s cross-section about the neutral axis. To

understand how traveling waves behave in an EB let’s substitute a solution to the wave

equation into the Euler-Bernoulli beam equation.

Following Graff [6], inserting

y(x, t) = ei(kx−ωt), (1.2)

which is a wave traveling in the positive x-direction, into Eqn. (1.1), and solving for ω, leads

to the geometric dispersion relationship

ω = ak2, (1.3)
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where

a =

√
EI

ρA
. (1.4)

In Eqn. (1.3) ω is the temporal frequency with units of rad/s, and k is the spatial frequency

measured in units of rad/m. This equation describes the relationship between the frequency

and wave number of a wave traveling through a uniform homogeneous Euler-Bernoulli beam.

The phase velocity and group velocity are derived from the geometric dispersion relationship.

The phase velocity is defined as cp = ω/k and for the Euler-Bernoulli beam that is equal

to c = ak. For the EB beam the speed of a propagating harmonic wave increases linearly

with its wave number. This phase velocity due to the dispersion relationship is quadratic.

Other systems may have constant phase velocity of the form c = a. The group velocity is

defined as cg = dω/dk. For the EB beam the group velocity is cg = 2ak. The group velocity

is twice the phase velocity for the EB beam. Phase and group velocities for different systems

can be equal, positive and unequal, or have opposite signs.

In solving the partial differential equation (PDE) in Eqn. (1.1) separation of variables

is used as a standard technique, which leads to an eigenvalue problem (EVP). Eigenvalue

problems (EVP) or a generalized eigenvalue problems (GEVP) are used extensively in this

work. They appear in the solving of Eqn. (1.1), POD, SOD, COD, and SCOD. Rayleigh’s

quotient is an import tool for making approximations based on an EVP. Therefore, a brief

overview of these topics follows.
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1.3.2 The Eigenvalue Problem and Rayleigh’s Quotient

A terse review of the properties of eigenvalue problems is needed. A eigenvalue problem

(EVP) has the form

Av = λv (1.5)

where A is a square matrix, v is called the eigenvector, and λ is a scalar called the eigenvalue.

The eigenvector is a characteristic vector of A with the property that when A operates on

v the output is a scalar multiple of v, as indicated in Eqn. (1.5). Geometrically, when A

performs a transformation on v the resulting transformation can only change v in length

and direction (sign, ±) and not the orientation of v. (In some cases, however, λ and v are

complex, and their real scaling property is not obvious in the real space, as the complex

action is reflected in real space as a rotation.)

Some properties of the EVP are discussed here. If A is real, then the eigenvalues are

real or have complex conjugate pairs. Each complex conjugate pair of eigenvalues have a

corresponding complex conjugate pair of eigenvectors. If A is symmetric (AT = A) and

positive semi-definite, its eigenvalues are λi ≥ 0. If the rank of A is full (positive definite

case) and the eigenvalues are distinct, then the eigenvectors form a basis for A. Also, if each

eigenvector is normalized to unit length, then the eigenvectors form an orthonormal basis

for A such that vivj = δij , where δij is the Kronecker delta. The eigenvectors plus v = 0

creates the eigenspace of A. If an eigenvalue is equal to 0 then the matrix is singular and

noninvertible.

9



Returning to the original EVP in Eqn. (1.5) for a particular eigenvalue vi, pre-multiplying

by vT
i leads to vT

i Avi = λiv
T
i vi such that

λi =
vT

i Avi

vT
i vi

. (1.6)

This ratio can be constructed using an arbitrary vector, ui, defining the Rayleigh’s quotient

(RQ) as

R(A,u) =
uTAu

uTu
.

Then it is clear from Eqn. (1.6) that λi = R(A,vi). It can be shown that the values of the

RQ are stationary in the neighborhoods of eigenvectors [50], and that value of the RQ is

bounded by the highest and lowest eigenvalues, such that min(λi) ≤ R(A,v) ≤ max(λi).

Thus the RQ is a good way to approximate eigenvalues given an assumed eigenvector.

A generalized EVP has the form,

λAv = Bv. (1.7)

Some properties of the GEVP we now review. If B is invertible then B−1Av = αv where

α = 1/λ. In this case, the GEVP will have all the properties of the EVP. Also, if A is

invertible then λv = A−1B. If A is real and symmetric and B is real, symmetric and

positive definite (although A−1B and B−1A are not symmetric) then all n eigenvalues are

real, and the eigenvectors are orthogonal through B so that viBvj = δij . The eigenvector is
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any vector that, when transformed by A and B, the resulting vectors of both transformations

are collinear. The RQ of a GEVP is defined as

λi = R(A,B,v) =
vT

i Bvi

vT
i Avi

. (1.8)

For both the EVP and the GEVP if A or B is complex then T, the transpose, is replaced

with H, the Hermitian operation, or the complex conjugate transpose.

1.3.3 Proper Orthogonal Decomposition

This thesis makes use of methods that are generalizations of proper orthogonal decomposition

(POD). Hence, POD is introduced here for background. POD was first used in mechanics

by Lumley to study turbulence in fluid dynamics [14]. Later Berkooz et al. [17] reviewed

the properties of POD for turbulence. POD was applied to structural dynamics [51–53],

and later to extract modal parameters [32,44,54,55]. POD is an important and widely used

tool. For example, an ISI citation search on November 2015, yields more than 2900 papers.

POD is equivalent to singular value decomposition (SVD) [16,55–57]. It has several different

variations for the extraction of different parameters of interest. These variations include

mass-weighted reduced order proper orthogonal decomposition [36,40], Ibrahim time-domain

decomposition [58], smooth orthogonal decomposition (SOD) [37,39,40], state-variable modal

decomposition (SVMD) [59] and, complex orthogonal decomposition (COD) [46,60].

To apply POD to a structure the experimenter senses a structure and captures response

signals (for example displacements) at different points simultaneously on the structure during
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its response to some type of excitation, for example an impulse [54]. Next an ensemble

matrix, X ∈ RM×N , is created from the sensor measurements, where M is the number of

sensors and N is the number of time samples taken. Specifically, X =
[
xT

1 xT
2 ∙ ∙ ∙xT

M

]T
,

where xi = [xi(0) xi(ΔT ) xi(2ΔT ) ∙ ∙ ∙xi((N − 1)ΔT )]T , such that each row of the ensemble

matrix is the data from one sensor and the index of each column is a single measurement

sample:

X =














x1(0) x1(Δt) ∙ ∙ ∙ x1((N − 1)Δt)

x2(0) x2(Δt) ∙ ∙ ∙ x2((N − 1)Δt)

...
...

. . .
...

xM (0) xM (Δt) ∙ ∙ ∙ xM ((N − 1)Δt)














Often the mean is subtracted from each sensor’s time history.

Next a correlation matrix, R =
XXT

N
, is computed, such that R ∈ RM×M . Finally, an

eigenvalue problem is formulated as Rv = λv. The eigenvectors are called proper orthogonal

modes (POMs) and for lightly damped structures vibrating in the linear elastic range with

a mass matrix proportional to the identity, the POMs converge to linear normal modes

(LNMs) [32, 55, 61]. The eigenvalues are called proper orthogonal values (POVs) and relate

to modal energy [17, 44]. The natural frequencies of the beam can be estimated from the

proper orthogonal modal coordinates (POC) defined as qi = vTX. Typically the fast Fourier

transform (FFT) of the POC are used to estimate the frequency of each mode.

Complex orthogonal decomposition and a complex version of smooth orthogonal decomposition

are to be applied in this research, and will be discussed later.
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1.4 Thesis Preview

There are six remaining chapters in this body of work. Chapter 2 describes the beam

experiment. The experimental setup is based on the prior work of Önsay and Haddow [62].

The goal of the experiment was to create a testing rig which allowed waves, generated from

an impact, to travel down a beam and not reflect off of one of the free ends. This was done

to emulate a semi-infinite beam. Chapter 3 introduces COD and the application of COD

to a beam experiment. Alternative formulations were sought to achieve direct computation

of wavenumbers and frequencies. In Chapter 4 a novel decomposition method was created

called the smooth complex orthogonal decomposition (SCOD). SCOD is formulated in the

time domain to directly compute frequencies. Then in Chapter 5, SCOD is cast in the spatial

domain to directly compute wavenumbers. Finally, chapter 6 applies both COD and SCOD

to a mass-chain system to explore their capability on linear mass chain.

1.5 Contributions

Contributions to the field covered in this thesis include applying COD to a beam experiment.

This reinforces the simulation done in prior work, and shows that COD can extract the

dispersion relationship from a beam in real world conditions on real systems. By developing

SCOD several contributions were made. First, a theoretical framework for SCOD has been

established. Second direct frequency estimation from an eigenvalue problem can be made.

COD and SCOD together are new tools for wave propagation analysis and contribute to

the state-of-the-art. The study on a mass chain system contributes the science of dispersion

in particles and lumped-mass systems, offers insights and a tool for extracting a dispersion

relationship in lattice system with application in meta materials.
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Chapter 2

Beam Experiment

This experiment is similar in setup to an experiment conducted by Önsay and Haddow [62]

in which they used a wavelet transform to extract the properties of a wave traveling in an

elastic medium. In this experiment one end of a beam was partially buried in coarse unpacked

sand and the other end of the beam was suspended freely with an elastic cord. The beam

was sensed with 31 accelerometers placed equidistantly on the unburied part of the beam.

The beam was struck with a mini impact hammer near the free end. As the impulse waves

traveled along the beam, starting at impact location near the free end and moved towards the

sandbox, the waves were sensed by each accelerometer as they propagated. Once the waves

reached the buried end, the sand absorbed the waves, which resulted in anechoic termination.

What follows is a detailed description of the experiment along with the purpose of the design.

2.1 Equipment

The data acquisition (DAQ) equipment is listed in Table 2.1. The National Instruments

DAQ system had 32 available channels, an express PCI card which was connected to a

DELL Inspiron laptop computer running a 32 bit Windows XP operating system, and was

linked to the NI Chassis via a controller card. Two DAQ cards were plugged into the chassis.

Each card had an 16 channel capacity. The sampling rate was set to 25 kHz based on the
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maximum measurable wavenumber (as explained in the section on data processing). The

maximum sampling rate of the DAQ system was 32 kHz. Thirty-one channels were used

for accelerometers, and one channel was used for the impact hammer. Although the impact

hammer was not used in any of the output only decomposition method computations, seeing

the impact data helped to ensure quality results by having the capability of inspecting for

bad impacts (for example, double taps, sliding, sensor saturation, and non-impulsive waves).

The number of channels limited the spatial resolution of the beam experiment.

Figure 2.1: Experimental setup.

Data Acquisition Equipment

Chassis NI PXI-1042Q
Cards

PCI express card NI PXI - 8360
DAQ card NI PXI - 4496
Controller card NI PXI - 8361

Accelerometer PCB 352B10
Accelerometer mass 0.0007 kg
Impact hammer PCB model 086C80
Hammer tips

Flat metal PCB model 084B03
Vinyl cap PCB model 085A07
Pointed metal cone unknown

Table 2.1: Data Acquisition System
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2.2 Beam

The experimental beam was made of carbon steel, and its dimensions are listed in Table 2.2.

The beam was cleaned with sandpaper and wiped down with acetone to remove rust and

chemical residues. One end of the beam was supported by an elastic cord and the other end

was buried in sand as shown in Figure 2.1. The sand was playground sand purchased at

Home Depot. The box that held the sand was made from 1/4 inch oriented strain board

(OSB) plywood boards. The dimensions of the box were 3 ft×1 ft×1 ft. A 1/2 inch slot was

cut into the 1 ft × 1 ft face of the box which was used to insert the beam into the sand. Care

was taken to ensure that the beam was suspended in the sand and did not touch the box.

The total beam length was 2.038 m of which 0.61 m was buried in the sand. The remaining

1.43 m unburied portion of the beam was sensed with accelerometers. The accelerometers

were attached with bee’s wax along the neutral axis of the beam, 0.0458 m apart, for a total

sensor network length of 1.42 m. The mass of each accelerometer was 0.0007 kg.

Experimental Beam Dimensions

Length 2.038 m
Base 0.069 m
Height 0.0045 m

Density 7870 kg/m3

Modulus of Elasticity 200 GPa

Table 2.2: Beam Dimensions

2.3 Procedure

The beam was tapped lightly with the mini impact hammer, such that the first bending mode

was not visibly detected with the naked eye. The impulse traveled down the beam, and the
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induced accelerations were detected and measured by the accelerometers and recorded by

the data acquisition system.

2.4 Data Processing

The data included 100 samples before the hammer impact and 300 samples after the impact

for a total of 400 samples. First, the data from each sensor was filtered forward and backward

with a high-pass filter with a cutoff frequency of 100 Hz. Second, the mean of each sensor’s

time history was subtracted from its samples using Matlab’s "detrend" with a "constant"

modifier. Third, any linear trends in time were removed using the same command as above

with a "linear" modifier. Fourth, the signals were translated on the time axis such that

the sample before the hammer impact had a time and force value of zero. Finally, the

first and last 100 samples were truncated leaving the start of the impact plus 200 samples.

Accelerations signals are shown in Figure 2.2 and Figure 2.3.

To get velocities, the signals were numerically integrated using the "cumtrapz" command.

The means were subtracted from the velocities, which were then high pass filtered to remove

low frequency integration drift, and integrated once more to get displacements. The velocities

are shown in Figure 2.4 and Figure 2.5. The means were subtracted from the displacements,

and the displacements were filtered for a final time. The displacements are pictured in

Figure 2.6 and Figure 2.7.

Based on the sampling rate of rate f = 25,000 Hz and time record of N/f = 0.008 s, the

maximum detectable frequency is fmaxt = 12,500 Hz and the minimum detectable frequency

17



is fmint
= 125 Hz. The minimum detectable wave number is defined by the span of sensors,

L, such that kmins =
2π

L
= 4.4 rad/m. The maximum detectable wave number is defined

by a spatial Nyquist criteria as kmaxs =
π

Δx
= 68.6 rad/m.

Making use of the dispersion relation ω = ak2, where k =
√

2πf/a, we find that the

temporal sampling parameters correspond to wavenumber limits of kmaxt = 109 rad/m and

kmint
= 10.9 rad/m. The total wave number limits are thus kmax = min(kmaxs , kmaxt) =

68.0 rad/m, and kmin = max(kmins , kmint
) = 10.9 rad/m. Thus, the upper limit on

extractable wavenumber (and hence frequency) is determined by the spatial sampling interval

Nyquist criterion, and the lower limit on extractable wavenumber is determined by the length

of the time record.

Figure 2.2: Acceleration data for all of the sensors.
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Figure 2.3: Accelerations from sensors 1, 16, and 31.

Figure 2.4: Velocity data for all of the sensors.

2.5 Discussion

The acceleration histories shown in . 2.2 show the ensemble signal energy decay as the

response propagates into the sand pit, presumably with a small damping effect in the exposed

beam as well. Figure 2.3 shows the acceleration history of sensor 1, 16, and 31. The plot

19



Figure 2.5: Velocities from sensors 1, 16, and 31.

Figure 2.6: Displacement data for all of the sensors.

shows that the wave hits sensor 1 first with a profile that resembles a pulse. The dispersive

wave hits sensor 16 next, with high frequencies arriving ahead of the low frequencies, as

higher frequencies propagate faster in dispersive beams. The frequencies spread out more
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Figure 2.7: Displacements from sensors 1, 16, and 31.

by the time the response reaches sensor 31. The residual high frequency wiggle was due to

the pulse reflecting back and forth through the width of the beam and a smaller amplitude

can be seen in the velocities plots as well. These trends were also observed by Önsay and

Haddow [62]. Various tips were used in the experiment: a metal pointed tip, metal flat tip,

and a nylon rounded tip. The both metal tips produced signals with much larger-amplitude

residual ringing. The pointed metal tip resulted in the most extreme ring, followed by the

flat metal tip. The nylon rounded tip provided the data shown in this paper. The frequency

of ringing matched the first mode of vibrations across the height of the beam when viewed

as a plate. This was also observed by Önsay and Haddow. Low pass filtering can also have

the effect of softer hammer tips.

In reality, the velocity and displacement should start at zero until the wave reaches the

sensor location. However, the removal of means, and linear trends using the "detrend"

command, leaves the velocity and displacement signals with this low-frequency distortion.
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Distortion of low frequencies outside the range used for the calculation of the dispersion

frequencies and wave numbers does not affect the characterization of the dispersion relation

in the frequency range of the calculation.
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Chapter 3

Complex Orthogonal Decomposition

of an Experimental Beam

3.1 Introduction

Complex orthogonal decomposition (COD) [63] is in the family of output-only modal decomposition

methods related to proper orthogonal decomposition (POD). POD was first used in mechanics

by Lumley to study turbulence in fluid dynamics [14]. Berkooz et al. [17] reviewed the

properties of POD for turbulence. POD has been applied to structural dynamics [51–53],

and later specifically to extract modal parameters [32, 44, 54, 55]. POD is equivalent to

singular value decomposition [16,55–57], and has several different variations for the extraction

of different parameters of interest. These variations include mass-weighted reduced-order

proper orthogonal decomposition (MWPOD) [36, 40], Ibrahim time-domain decomposition

[58], smooth orthogonal decomposition (SOD) [37,39,40], state-variable modal decomposition

(SVMD) [40,59] and, the topic of this paper, COD. To see the connection between POD and

COD, next, we will explain POD followed by COD.

First, to perform POD, the analyst captures measurement signals (for example displacements)

at different points simultaneously on the structure during its response to some type of
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excitation, for example, an impulse [54]. Next, an ensemble matrix, X ∈ RM×N , is created

from the sensor measurements, where M is the number of sensors and N is the number of

time samples taken. Specifically, X =
[
xT

1 xT
2 ∙ ∙ ∙xT

M

]T
, where

xi = [xi(0) xi(ΔT ) xi(2ΔT ) ∙ ∙ ∙ xi((N − 1)ΔT )]T , such that each row of the ensemble matrix

is the sampled data from one sensor and each column is a single time sample. Often the

mean is subtracted from each sensor signal. Next a correlation matrix, R =
XXT

N
, is

computed, such that R ∈ RM×M . Finally, an eigenvalue problem is formulated as Rv = λv.

The eigenvectors are called proper orthogonal modes (POMs). For lightly damped linear

vibration systems with a mass matrix proportional to the identity, these converge to linear

normal modes [32, 55]. The eigenvalues are called proper orthogonal values (POVs) and

relate to modal energy [17, 44]. MWPOD, SOD, SVMD, and COD all involve variations on

this algorithm. Each method extracts different modal parameters.

Complex orthogonal decomposition uses simultaneous measurements much like POD.

However we must extend these signals into complex analytic form. Such signals do not have

negative frequency content, and can be created by manipulation in the frequency domain or

by using the Hilbert transform [63, 64]. There are several parameter estimation algorithms

that take place in the complex domain, which have been used in the field of electromagnetics,

and use response ensembles and eigenvalue problem to estimate parameters, including MUSIC

[65] and ESPRIT [66]. The details of the COD algorithm are presented in the next section.

Thus far COD has been applied to nematode posturing [67], whiting fish locomotion [45], and

discerning traveling and standing modal waves [63]. COD has also been applied to extract

the dispersion relation from a simulated beam [46].
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In a follow up to the simulated beam study, this paper reports on the application of COD

to an experimental beam to extract the geometric dispersion relationship. In the following,

Section 3.2 gives a detailed overview of COD. Section 3.3 provides a brief background of

waves in an Euler-Bernoulli beam. Section 3.4 describes the experiment and data processing.

Section 3.5 shows the results of COD applied to a propagating wave in a beam, with

interpretations.

3.2 Complex Orthogonal Decomposition

Complex orthogonal decomposition is an extension of POD with a very similar computation,

with the notable exception that COD requires an analytic signal. First, a structure is

instrumented, for example with accelerometers distributed evenly on the structure. Next,

the structure is excited, in this experiment with an impact hammer, and the sensors are

sampled simultaneously. Once the measurement data is acquired the data is arranged in a

measurement ensemble X as described in Section 3.1, and then the analytic form of X is

computed to get Z.

To compute Z, the analytic form of X, first we take the fast Fourier transform (FFT) of

each row of X from the time domain to frequency domain to get X̃. The FFT ensemble in the

discrete frequency domain can be defined to roughly cover the spectrum from approximately

−ωny to ωny, more precisely as indexed from 1 to N/2 (for example in the case that N is

even). Each row of X̃ is the FFT of a sensor signal and each column is a frequency sample,

and the elements of X̃ are X̃ij with i = 1, ∙ ∙ ∙ ,M and j = −(N
2 − 1), ∙ ∙ ∙ , N/2. Then the

negative spectrum is nullified, and the positive spectrum is doubled, such that the elements
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of Z̃ij of Z̃ are

Z̃ij =






0 if j < 0

2X̃ij if j ≥ 0

. (3.1)

The complex analytic ensemble is obtained, using the inverse FFT (IFFT), as Z = IFFT(Z̃).

Now that the measurement ensemble data has been converted into analytic signals the

correlation matrix R is computed as R =
ZZH

N
, where superscript H denotes the Hermitian

operation (conjugate transpose). Once the correlation matrix is computed the eigenvalue

problem is formulated such that Rv = λv. v is a complex orthogonal mode (COM) and λ

is the corresponding complex orthogonal value. Indeed, the correlation matrix can also be

formed in the frequency domain as R̃ = Z̃Z̃H/N , to produce the same COMs [46].

The complex modal coordinate (COC) ensemble, Q, is computed such that Q = V−1Z,

where each column of V is an eigenvector v and V−1 = VH , if normalized, due to

orthogonality of the Hermitian eigenvalue problem. Each row qT
i of Q is a sampled COC,

such that Q = [q1 q2 ∙ ∙ ∙ qM ]T , Q ∈ CM×N . For nearly harmonic COCs, the rate of

change of the phase with respect to the time sample is equal to the frequency, ω, such that

the instantaneous frequency of the ith modal coordinate is ωi =
d

dt
{∠qi} where, in the

sampled case, the time derivative is applied numerically. Similarly, the COMs are complex

and the rate of change of the phase of nearly harmonic COMs with respect to the spatial

position, x, defines a local wave number of the ith mode as ki =
d

dx
{∠vi}. Using the COMs

and Q, the mean wave number, ki, and frequency, ωi, can be extracted for each mode i.

26



Before applying COD to the beam experiment we review the Euler-Bernoulli beam model.

3.3 Background

3.3.1 Euler-Bernoulli Beam

Applying a traveling wave solution to the Euler-Bernoulli beam equation provides a theoretical

framework for the experimental results. The equation of a uniform Euler-Bernoulli beam is

ρAÿ(x, t) + EI
∂4

∂x4 [y(x, t)] = 0, (3.2)

where x is the position along the beam, t is time, y(x, t) is the transverse bending displacement,

ρ is the mass density, A is the area of beam’s cross section, E is the modulus of elasticity,

and I is the area moment of inertia of the beam’s cross section about the neutral axis. An

infinite beam has boundary conditions of bounded displacement and slope.

Following Graff [6], inserting a traveling wave solution in complex harmonic form,

y(x, t) = ei(kx−ωt), (3.3)

into Eq. (3.2), and solving for ω, leads to the geometric dispersion relationship ω = ak2,

where

a =

√
EI

ρA
. (3.4)
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The phase velocity is then defined as c = ω/k = ak. Thus, for the Euler-Bernoulli beam, the

speed of an individually propagating harmonic wave increases linearly with its wavenumber.

The group velocity is cg = dω/dk = 2ak for the beam.

In the previous study [46], the COD was applied to a simulated response to an initial

Gaussian displacement distribution starting at rest [6]. The extracted traveling wave modes

could be related to a form that resembled Eq. (3.3), from which ω and k were extracted as

discussed above, and were shown to be consistent with the dispersion relation. This analysis

was robust to added sensor noise.

In this work, we apply this analysis to an experiment that emulates a semi-infinite beam

with an impulse excitation at the end. Transverse vibrations of a semi-infinite Euler-Bernoulli

beam with an end impact have been addressed by Graff [26] by means of Laplace and Fourier

transforms, resulting in an analytical expression of the displacement as a function of time.

Büssow [68] also treated the problem with slightly different boundary conditions to obtain

the displacement in the frequency domain. In the Background Section 3.3.2, we include

an analysis to express the displacement and acceleration responses as functions of space

and frequency, which can be used when evaluating the response data. We keep in mind

that our beam in the sand pit was set up with a focus on extracting the beam’s dispersion

behavior. Although the constraint of the sand on the beam deflection at large x could cause

some deviation between the responses of the ideal theory of [6], [68], and the Background

Section 3.3.2, from the experimental beam, even in the unconstrained regions of the beam,

we would expect some consistency in some aspects of the response behavior.
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Figure 3.1: Schematic diagram of experimental setup. Top view.

3.3.2 Euler-Beam Solution in the Fourier Domain

The semi-infinite Euler-Bernoulli beam excited with a impulse at x = 0 described by

F (0, t) = F̂ δ(t) is solved using the Fourier transform. The PDE and boundary conditions

(BCs) are listed below:

ρAÿ(x, t) + EI
∂4

∂x4 [y(x, t)] = 0

y′′(0, t) = 0

y′′′′(0, t) =
F̂ δ(t)

EI

(3.5)

for x ≥ 0, where the dots indicate partial derivatives with respect to t and the primes

indicate partial derivatives with respect to x, and with two additional conditions of bounded

displacements and waves that are only allowed to travel in the direction of the positive x-axis.
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Taking the Fourier transform of the PDE and BCs yields

−ω2Ỹ (x, ω) + α4Ỹ ′′′′(x, ω) = 0

Ỹ ′′(0, ω) = 0

Ỹ (0, ω) =
F̂

EI

where α4 = EI
ρA , while remembering the bounded displacements and one-directional wave

condition. Now we have an ODE of the form

Ỹ ′′′′ − βỸ = 0

where β =
ω2

α4 . Substituting in the standard trial solution Ỹ = erx and solving for r yields

r = ±
ω1/2

α
, ±

iω1/2

α
,

which leads to

Ỹ (x, ω) = A1e

√
ω

α x + A2 e−
√

ω
α x + A3 ei

√
ω

α x + A4 e−i
√

ω
α x .

Since the displacements are bounded, A1 = 0, and since waves can only travel in the positive

x direction, A3 = 0, which can be seen by considering that the inverse Fourier transform

combines these terms with eiωx . Applying the other two boundary conditions, A2 = A4 are
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determined, resulting in

Ỹ (x, ω) =
F̂

4√EI(ρA)3/4 ω3/2(i − 1)
(e−

√
ω

α x + e−i
√

ω
α x ). (3.6)

This provides the frequency domain description of the displacement response. A loosely

described derivation can be found in [68].

The acceleration response in the frequency domain is thus

Ã(x, ω) =
−ω2F̂

4√EI(ρA)3/4 ω3/2(i − 1)
(e−

√
ω

α x + e−i
√

ω
α x ). (3.7)

3.4 Experiment

3.4.1 Setup

The test specimen was a rectangular steel beam with a constant cross section. In effort to

emulate a semi-infinite free beam, the beam was suspended with elastic cords, such that one

end was free, and the other was embedded in a sand pit, as done by Önsay and Haddow [62].

The sand absorbs the wave and prevents reflections off the buried end of the beam. A

schematic of the experiment is shown in Figure 3.1. In this case, the sandbox was filled

with unpacked coarse sand. The beam had a 0.0045 m × 0.0698 m cross section. The

length of the beam was 2.04 m. The unburied part of the beam measured 1.43 m, such that

approximately 0.609 m was buried in the sand. The density and modulus of elasticity of the

beam were 7870 kg/m3 and 200 GPa, respectively, based on published values for steel. From

the geometry and material properties the theoretical value from Eq. (3.4) is a = 6.548 m2/s.
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The beam was sensed with 31 accelerometers placed at a distance Δx = 0.0458 m apart

over a distance of L = 1.4198 m and was sampled at f = 25, 000 Hz using a National

Instrument’s PXI data acquisition system. The beam was struck with a PCB model 086C80

mini impact hammer, lightly such that bending deflections were not visible to the naked eye.

3.4.2 Data Processing

The data included 100 samples before the hammer impact and 300 samples after the impact

for a total of 400 samples. We aim to integrate the acceleration data to obtain velocity and

displacement. Numerical integration can be problematic because an integration constant is

introduced, and low-frequency noise is amplified and can cause the integrated signal to drift.

To reduce these effects the following steps were taken. First the data was filtered forward

and backward with a high-pass filter with a cutoff frequency of 100 Hz. Second, the mean of

each sensor’s time history was subtracted from its samples using Matlab’s "detrend" with

a "constant" modifier. Third, any linear trends were removed using the same command as

above with a "linear" modifier. Fourth, the signals were translated on the time axis such

that the sample before the hammer impact had a time and force value of zero. The first and

last 100 samples were truncated leaving the start of the impact plus 200 samples.

Next, to get velocities, the signals were numerically integrated using the "cumtrapz"

command. The means were subtracted from the velocities, which were then high pass

filtered, and integrated once more to get displacements. The means were subtracted from

displacements and the displacements were filtered for a final time. These N = 200 samples

of displacements were then used for COD.
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The minimum detectable wavenumber defined by the span of sensors, L, is kmins =
2π

L
=

4.4 rad/m. The maximum detectable wavenumber is defined by a spatial Nyquist criterion as

kmaxs =
π

Δx
= 68.6 rad/m. Based on the sampling rate f = 25, 000 Hz and time record of

N/f = 0.008 s, the maximum detectable frequency is fmaxt = 12, 500 Hz and the minimum

detectable frequency is fmint
= 125 Hz.

Making use of the theoretical dispersion relation ω = ak2, or k =
√

2πf/a, we find

that the temporal sampling parameters correspond to theoretical wavenumber limits of

kmaxt = 109 rad/m and kmint
= 10.9 rad/m. The approximate total wavenumber limits

are thus kmax = min(kmaxs , kmaxt) = 68.6 rad/m, and kmin = max(kmins , kmint
) =

10.9 rad/m. Thus, the upper limit on extractable wavenumbers (and hence frequencies)

is determined by the spatial sampling interval Nyquist criterion, and the lower limit on

extractable wavenumbers is determined by the length of the time record.

3.5 Results and Discussions

The acceleration histories in Figure 3.2 show the ensemble signal energy decay as the response

propagates into the sand pit, presumably with a small damping effect in the exposed beam

as well. Figure 3.3 shows the acceleration history of sensors 1, 16, and 31. The plot shows

that the wave hits sensor 1 first with a profile that resembles a pulse. The dispersive wave

hits sensor 16 next, with high frequencies arriving ahead of the low frequencies, as higher

frequencies propagate faster in dispersive beams. The frequencies spread out more by the

time the response reaches sensor 31. The residual high frequency wiggle is due to the pulse

reflecting back and forth through the width of the beam. These trends were also observed
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Figure 3.2: Acceleration data vs position along the beam

by Önsay and Haddow [62].

Various tips were used in the experiment: a metal pointed tip, metal flat tip, and a nylon

rounded tip. The metal tips excited higher frequencies and thus produced signals with much

larger-amplitude residual ringing through the beam width. The pointed metal tip resulted in

the most extreme ring, followed by the flat metal tip. Our interest is in extracting behavior

predicted by the one-dimensional beam model, and hence we used a softer tip. The nylon

rounded tip generated the data shown in this thesis, and some ringing was still excited. The

frequency of ringing matched the first mode of vibrations across the height of the beam,

when viewed as a plate. Low pass filtering can also have the effect of softer hammer tips.

The accelerations were filtered and integrated twice, according to the process of Section 3.4.2,
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Figure 3.3: Accelerations from sensors 1,16, and 31

Figure 3.4: Displacements from sensors 1, 16, and 31

to produce the displacements in Figure 3.4, where sensors 1, 16, and 31, only, are shown for

clarity. In reality, the displacement should start at zero until the wave reaches the sensor

location. However, despite the high-pass filtering and removal of means and linear trends

together, the signals were left with some low-frequency distortion. This distortion, however,

is outside of the frequency range used for the calculation of the dispersion frequencies and

wavenumbers, and therefore does not affect the modal dynamics nor the characterization

of dispersion within this range of calculation. Nonetheless, we can see some key features

in Figure 3.3 carrying over to Figure 3.4, showing the high frequency components of wave
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Figure 3.5: Sensor 1

displacement arriving in sensors 16 and 31 ahead of lower-frequency components, consistent

with beam dispersion.

Black (dark) solid lines in Figs. 3.5 - 3.7 show the FFTs of accelerometers signals

for sensors 1, 16, and 31. The dotted lines show the scaled theoretical accelerations.

Figure 3.8 shows the FFT of the impact hammer signal. We can compare the responses

with the theoretical predictions. If we consider that the response of Eqn. (3.2) under an

end impact loading is Ỹ (x, ω) as given in Eqn. (3.6) in the background Section 3.3.2,

then H̃(x, ω) = Ỹ (x, ω)/F̂ can be considered as a unit impulse response function in the

frequency domain, that is, a frequency response function between the displacement y(x, t)

and the end input, such that for the case of an ideal impulse at the endpoint, where

F̃ (ω) = F̂ , then Ỹ (x, ω) results in the Eqn. (3.6). However, Figure 3.8 shows that the
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Figure 3.6: Sensor 16

impact is not ideal, and the associated input F̄ (ω) is confined to a finite bandwidth. The

response to this nonideal impact is Ȳ (x, ω) = H̃(x, ω)F̄ (ω). The acceleration response is

likewise Ā(x, ω) = Ã(x, ω)F̄ (ω)/F̂ , where Ã(x, ω) is given as Eqn. (3.7) in the background

Section 3.3.2.

We have evaluated |Ã(x, ω)| at the sensor locations xi, and at the frequencies of the

FFT, and then obtained |Â(xi, ω)| = |Ã(xi, ω)||F̄ (ω)|/F̂ with a normalized input signal

(“normalized” to optimize the accuracy for sensor 16). The results are the dotted lines in

the plots of Figures 3.5 - 3.7. Thus, relative to the normalized input, the results are in good

qualitative agreement. The magnitude of the plot for sensor 1 is very sensitive, as the theory

predicts a very steep change in response amplitude as x gets small. These plots show that,

although the beam is embedded in a sand pit down stream of the wave, the exposed region of
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Figure 3.7: Sensor 31

the beam behaves, in the bandwidth of our excitation, similarly as a if it were a semi-infinite

beam. It also shows that the analysis of the Euler-Bernoulli beam under an end impact

provides useful predictions of behavior in the frequency and space domains, particularly if

the input is quantified.

COD was applied, and some of the COMs (Figure. 3.9) and COCs (Figure 3.10) are shown

for illustration purposes. The COMs depicted in Figure 3.9 show the real and imaginary

parts of selected extracted complex modes, normalized such that each modal vector has unit

amplitude. The plots are parameterized in the sensor location index. Thus, there are 31

real and imaginary ordered pairs plotted and connected with straight lines. A perfect whirl

would indicate a purely spatially harmonic wave mode whose real and imaginary parts are

90 degrees out of phase. Thus, the spatially whirling extracted modes resemble harmonic
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Figure 3.8: FFT of the modal impact hammer signal.

wave modes, and the spatial whirling rate can then be used to estimate the complex modal

wave number, as long as the spatial sampling interval is small enough to accurately estimate

a wavenumber.

The COCs plotted in Figure 3.10 show the real and imaginary parts of corresponding

complex modal coordinates. The normalization of the complex modes, and the COC modal

energy (the COVs), define the amplitude of the complex modal coordinates. These plots

are parameterized in the time index. Thus, there are 200 points plotted in each graph,

connected with lines, such that the graphs appear rather smooth for the lower frequency

modes. In this time parameterization, the typical trend is that the modal coordinate begins

as a nearly harmonic oscillation, and then decays as the modal component travels off of the

measurement zone. Examples of the real parts as functions of time are shown in Figs. 3.11

and 3.12. Since the higher frequencies travel faster through the beam, the higher frequency

modal coordinates have shorter durations of nearly harmonic oscillation. This trend was

also observed in decompositions of numerically simulated waves [46]. In the experiment, the
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Figure 3.9: Selected COMs. Top left: 2nd modal COM. Top right: 6th COM which is less
circular than second. This trends continues and is illustrated in the lower left: 7th COM.
Lower right: 10th COM.

modes are not pure harmonics, and there is noise and modeling error that contribute to

some modal pollution apparent as a lower amplitude, lower frequency oscillation after the

strong harmonic has left the measurement zone. The interval of the strong nearly harmonic

oscillation is then used to extract the modal coordinate temporal whirl rate, which represents

the frequency of the mode. The mechanism for how experimental error leads to modal

pollution was analyzed previously [67].

The extracted geometric dispersion relationship is shown in Figure 3.13. In this figure,

values of ω and k are plotted in the ranges for which the mode shapes and modal coordinates

exhibited intervals of well defined whirls.

In Figure 3.13 it can be seen that the experimental data show good agreement with

theory. From theory we have ω = ak2 where a = 6.548 m2/s. A least squares (LSQ) fit
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Figure 3.10: Selected COCs. Top left: 2nd modal COC. Top right: 6th COC which shows
attenuation after some initial oscillations. This trends continues and is illustrated in the
lower left: 7th COC. Lower right: 10th COC

of the the geometric dispersion relation using COD extracted k and ω leads to a value

of afit = 6.4431 m2/s, which gives an underestimation of 1.61%. Based on regression

error analysis [69], the extracted valued of 6.44 m2/s leads to a mean squared error of

6.1667 × 104 rad/s, and its 95% confidence interval is a = [6.2638, 6.26224] m2/s. When

the data processing laid out in Section 3.4.2 was done without the high-pass filtering,

i.e. where the data just had the means subtracted followed by integration repeated as needed

to get displacements, the least squares estimate of a was afit = 6.8 m2/s, which was an

overestimation of 3.8%.

The phase velocity is shown in Figure 3.14, comparing the equation c = ak with c = ω/k

computed from COD-extracted ω and k. The solid line is theory and the circles are COD

extracted data points. Similarly, the group velocity is shown in Figure 3.15, from values that

were computed using forward differences on the COD extracted ω and k from Figure 3.13.
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Figure 3.11: Real part of complex orthogonal coordinate number 4.

Several things are worth noting at this point. We find that the COVs increase with

decreasing modal wavenumber (decreasing frequency). This may be sensible if we consider

that the impulse excitation is slightly stronger for lower frequencies (see Figure 3.8). Furthermore,

the higher frequencies propagate faster according to the beam theory, such that lower

frequency modes are active in the measurement zone for longer time intervals. The excitation

bandwidth and modal activity duration contribute to higher mean squared amplitudes

(COVs) for lower modes.

We also see that the extracted data in Figure 3.13 falls within the theoretical limits of

kmin, kmax, and ωmax determined by sampling parameters. Spatial resolution has a great

effect: approximately the lowest 1/3 of the COMs (those with highest COVs and lower

wavenumbers) have good whirl properties with high enough spatial sampling resolution to
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Figure 3.12: Real part of complex orthogonal coordinate number 8.

allow for good k extraction. The second COM shown in Figure 3.9 had the best circular

whirling. As the COVs decrease the COMs become less circular in the complex plane. This

is partly because the spatial resolution becomes coarse as the modal wave number increases.

However the COCs are effected to a lesser degree by resolution limitations than the COMs,

which makes sense because the spatial sampling distance and time record were found to be

the parameters that limited the accessible frequency range, and the temporal sampling was

thus abundantly fast, such that the accessible modal coordinates were smoothly sampled.

3.5.1 Using COCs to Extract Modal Amplitudes

It may be of interest to determine the amplitude of the wave traveling through the beam as

a function of frequency. To achieve this the fast Fourier transform (FFT) of the the COCs

were computed and the maximum magnitude and its frequency was recorded to derive COD
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Figure 3.13: Experimental results. Theoretical dispersion relationship for the Euler-Bernoulli
beam (Solid line). COD extracted data points (◦).

extracted |Ãcod(x, ω)| shown as the red circles in Figure 3.16. In order to compare this with

theory, Ã(x, ω) was computed for each sensor location i and then each Ã(xi, ω) was multiplied

by the FFT of the modal impact hammer signal shown in Figure 3.8 to get Ā(xi, ω) where

i = 1, ∙ ∙ ∙ , 31. A composite was created such that U(ω) =

∑
Ā(xi, ω)

M
was computed and is

shown as the solid line in Figure 3.16. U(ω) is simply the average of the scaled theoretical

acceleration for each sensor. The plot of the Ãcod(x, ω) (circles) and U(ω) (line) is shown in

Figure 3.16 and shows great agreement.

3.6 Conclusion

Experiments were performed on a thin beam suspended in the sand to emulate a semi-infinite

beam. The beam was instrumented with accelerometers, excited with an impulse, and

the measured responses were integrated into displacement signals and then analyzed using

44



Figure 3.14: Phase velocity

COD to extract the underlying complex modes. True to beam theory, higher frequency

wave components traveled faster, and thus remained active for shorter segments of the time

record, than lower frequency components. The measured acceleration responses also agreed

qualitatively with theoretical responses to the measured input pulse.

The lower-frequency extracted complex modes resembled harmonic complex waveforms.

The associated modal coordinates were dominantly harmonic during a time interval dictated

by the wave speed of the corresponding component of the wave form, and the length of

the measurement zone on the beam. The nearly harmonic nature of the decomposed mode

shapes and modal coordinates contained information on modal wavenumber and frequencies,

which could be estimated.

With this approach, we extracted the dispersion characteristics over a frequency and
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Figure 3.15: Group velocity

wavenumber interval, as well as the amplitude of the waves traveling through the beam. The

results were consistent with Euler-Bernoulli beam theory, and with a previous analysis of

simulated response data.

The work shows that COD is a fast and simple tool that can be used to extract the

geometric dispersion relationship between the frequency, phase velocity, or group velocity, the

wave number, and wave amplitudes for waves traveling in a semi-infinite uniform structure.
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Figure 3.16: COD extracted modal amplitude vs frequency (◦) compared to theory
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Chapter 4

Smooth Complex Orthogonal

Decomposition in the Time

Domain

4.1 Introduction

During the middle of the 20th century various researchers independently developed proper

orthogonal decomposition (POD) [14,17,70,71] which was applied to statistics and turbulent

fluid flows. POD later caught the interest of structural engineers and was used to extract

mode shapes from vibrating structures [58, 72–74]. Other generalizations of POD were

developed, such as the smooth orthogonal decomposition (SOD) for finding the natural

frequencies and linear normal modes [37, 39], and the state variable modal decomposition

(SVMD) [59] for finding natural frequencies, normal modes, and (in theory) modal damping.

Soon after POD was expanded for extracting traveling wave modes using complex orthogonal

decomposition [63]. Complex orthogonal decomposition (COD) [46] can extract nonsynchronous

and standing waves of vibrating structures, and when waves are traveling through an elastic

medium COD can be used to extract the wavenumbers, frequencies, and the dispersion
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relationship of the waves. In the application of COD the wavenumber is extracted from the

eigenvector, and the frequency is extracted from the modal coordinate.

A new generalization of COD and SOD is outlined here called the smooth complex

orthogonal decomposition (SCOD). It will be shown that with SCOD the wavenumber and

frequency can be extracted from the eigenvector and eigenvalue of the SCOD eigenvalue

problem (EVP). A mathematical development for SCOD will be covered in Section 4.2.

SCOD will be applied to a simulated infinite beam in Section 4.4, and experimentally to a

rectangular beam in Section 4.4.2. A primer for SOD is reviewed in the following subsection.

4.1.1 Primer of Smooth Orthogonal Decomposition

We will start by relating SOD [37] to the symmetric effective mass-spring system, following

[39]. Given the general undamped linear free vibration mass-spring equation

Mẍ + Kx = 0 (4.1)

and substituting in the assumed solution of x = φeiωt leads to the generalize eigenvalue

problem in the form of

λMφ = Kφ, (4.2)

where the eigenvalues λ = ω2 are modal frequencies squared, and the eigenvectors φ are the

mode shapes. In matrix form, we can write

MΦΛ = KΦ, (4.3)
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where Φ is a matrix consisting of columns φ
i

and Λ is a diagonal matrix whose elements

are ω2
i . We will show the relationship between the mass-spring system and the smooth

orthogonal decomposition.

SOD is defined by

λRψ = Sψ, (4.4)

or in matrix form,

RΨΛ = SΨ, (4.5)

where λ is a smooth orthogonal value (SOV), which will be seen to approximate the modal

frequency squared, Λ is a diagonal matrix whose elements are the λi, ψ is the smooth

orthogonal mode, and Ψ is a matrix consisting of columns ψi. SOD involves two correlation

matrices, R and S, where

R =
XXT

N
(4.6a)

S =
VVT

N
, (4.6b)

and where X is a measurement ensemble of displacements, and V is a measurement ensemble

of velocities. Typically the mean of the time history of each sensor is subtracted from each

of the data samples of that sensor. The general form of all ensembles used in this body of
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work is, for the example of the displacements,

X =














x1(0) x1(Δt) ∙ ∙ ∙ x1((N − 1)Δt)

x2(0) x2(Δt) ∙ ∙ ∙ x2((N − 1)Δt)

...
...

. . .
...

xM (0) xM (Δt) ∙ ∙ ∙ xM ((N − 1)Δt)














(4.7)

where M is the number of sensors and N is the number of samples. The time history for

each sensor is organized in rows, such that each column is a set of samples at each sampling

interval.

Starting with the SOD eigenvalue problem, as

RΨΛ = SΨ

and substituting in the expressions for R and S, leads to

XXTΨΛ = VVTΨ

Chedize and Zhou [37] used the approximation V ∼= XDT , and showed that XDDTXT ∼=

−XAT , where D is a matrix that performs a simple finite difference numerical derivative.

Hence, S = VVT ≈ −XAT . Hence, NS = VVT ≈ −XAT . Plugging this into S, the EVP

becomes

XXTΨΛ = −XATΨ.
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Now noting that A is an ensemble of accelerations, then from MA + KX = 0, we have

A = −M−1KX. Then

XXTΨΛ = X[M−1KTX]TΨ

or

XXTΨΛ = XXTKTM−TΨ.

Assuming XXT has full rank, and is invertible, we have

ΨΛ = KTM−TΨ.

The assumption that XXT is full rank corresponds to a fully multimodal motion with N =M

(or a sufficient noise level). Taking the inverse transpose of the above equation,

[
ΨΛ = KTM−TΨ

]−T

we have

KΨ−T = MΨ−TΛ. (4.8)

Comparing Eqn. (4.8) with Eqn. (4.3) we see that the SCOD eigenvalues represent the

structural eigenvalues, i.e. the modal frequencies squared, and that the matrix of SOD

eigenvectors, Ψ, and the linear normal modes (LNMs), Φ, of the mass spring system are

related as Φ = Ψ−T . These conclusions were reached in [37,75].

Another relationship worth noting can be shown if we step back to Eqn. (4.8) and let
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Ψ = MΦ. Then

K(MΦ)−T = M(MΦ)−TΛ

KM−TΦ−T = MM−TΦ−TΛ.

Using symmetry, we have

KM−1Φ−T = Φ−TΛ

M−1Φ−T = K−1Φ−TΛ.

Taking the inverse transpose of both sides of the equation and using symmetry,

MΦ = KΦΛ−1

MΦΛ = KΦ

Therefore, Ψ and Φ are related through M as

Φ = M−1Ψ. (4.9)

Another way to see this is to note that, by orthogonality in symmetric systems, ΦTMΦ = I,

which can be manipulated into the equation Φ−T = MΦ. By the previous conclusion, that

Ψ = Φ−T , we have Ψ = MΦ. This relationship will be important in the mathematical

development of SCOD.

In summary, for linear undamped, symmetric, multimodal free vibration systems, the
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two relationships for the eigenvectors of the mass spring system and smooth orthogonal

decomposition were just established as Ψ = Φ−T and Ψ = MΦ. Furthermore, the SOD

eigenvalues approximate the squares of the modal frequencies. These relationships will be

exploited in approximation in experiments, since agreement with the model is an idealization.

Smooth complex orthogonal decomposition will be formulated similarly. However, since we

will be working with complex analytic signals, the correlation matrices will be generalized

as

R =
XX̄T

N
, (4.10)

S =
VV̄T

N
, (4.11)

where the overbar denotes a complex conjugate. The subtle generalization, in comparison to

equations (4.6a) and (4.6b) is the use of the complex conjugate. Since we will be working with

a continuous beam, in a later section we will connect the SCOD formulation to distributed

parameter vibration models.

4.2 Application of Smooth Orthogonal Decomposition

The application of SCOD involves gathering state measurements. Accelerometers were used

in this body of work. After the accelerations are measured the data is post-processed to

derive velocities and displacements. The velocities are collected in a velocity ensemble, V ,

and displacements are organized in a ensemble matrix, X. The ensembles are organized so

each sensor is allocated to a row such that all the data from the ith sensor are in the ith row.

Measurement samples are then in each column. For example, Xij contains the ith sensor’s
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jth sample, for i = 1, ∙ ∙ ∙ ,M and j = 1, ∙ ∙ ∙ , N , where M is the number of sensors and n is

the number of time samples.

Typically, the mean of each row is subtracted from each element of that row. The two

ensembles are converted to analytic matrices, Z and ZV . Next, two correlation matrices are

computed, one from the analytic displacements R = ZZT /N and the other from analytic

velocities S = ZV ZT
V /N . Finally the SCOD eigenvalue problem in the time domain is posed

as RΨΛ = SΨ. Then Φ = Ψ−H provides an estimate of the modal matrix. The frequencies

are the square roots of the diagonals in Λ. The wavenumbers are computed from the Φ.

Each column of Φ is used to extract a wavenumber where the wavenumber is the gradient

of the phase angle.

4.3 Mathematical Development for Smooth Complex

Orthogonal Decomposition

In this section we will develop the framework for SCOD in the time domain for distributed

parameter systems. Starting with a linear self-adjoint partial differential equation (PDE) for

a one-dimensional medium, its eigenvalue problem will be expressed. The SCOD eigenvalue

problem will be defined, and then related to the PDE eigenvalue problem. As such, relationships

between the eigenvalues and eigenfunctions of SCOD and the PDE eigenvalue problem will

be uncovered. But first we will look at the correlation functions in the time domain and make

observations about the use of the difference operator in the associated discrete correlation

matrices.

55



Chelidze and Zhou [37] had approximated V ∼= XDT , where D is a simple finite difference

operator matrix, and had shown that, for SOD,

VVT ∼= XDDTXT ∼= −XAT .

With this we now turn to SCOD following Eqn. (4.11). Expanding S = VV̄
T
/N to create

the integral form of the correlation matrix starts with

S =
1

N










v1(t1) ∙ ∙ ∙ v1(tN )

...
...

vM (t1) ∙ ∙ ∙ vM (tN )



















v̄1(t1) ∙ ∙ ∙ v̄M (t1)

...
...

v̄1(tN ) ∙ ∙ ∙ v̄M (tN )










such that each element is

Sij =
1

N

N∑

k=1

vi(tk)v̄j(tk) =
1

NΔt

N∑

k=1

vi(tk)v̄j(tk)Δt.

Assuming Δt is small and N is large, the limiting integral form is

Sij =
1

T

∫ T

0
vi(t)v̄j(t) dt, (4.12)

where T = NΔT . Then integrating by parts yields

Sij =
1

T
ẋix̄j |

T
0 −

1

T

∫ T

0
ẍi(t)x̄j(t) dt. (4.13)
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Since the first term diminishes as T gets large, in the limit we have

Sij = −
1

T

∫ T

0
ẍi(t)x̄j(t) dt. (4.14)

The associated discrete form is

Sij = −
1

NΔt

N∑

k=1

ai(tk)x̄j(tk) Δt = −
1

N
AX̄T = −

1

N
XĀ

T
, (4.15)

the latter of which comes from symmetry in Eqn. (4.12) and the steps that follow.

This suggests that if T is large enough, the form of the difference operator D does not

matter, and generally VV̄
T

= −XĀ
T
. This also applies for distributed parameter systems.

Starting with the PDE for the beam equation in the linear operator form,

m(x)ü + Lu = 0 (4.16)

where m(x) is the mass per unit length and u = u(x, t) is a function of space and time. We

assume u(x, t) is complex and analytic with the form

u(x, t) = eiωt(c(x) + id(x)) = eiωtφ(x).

Taking the partial derivative of u(x, t) with respect to t twice,

∂2

∂t2
{u(x, t)} = −ω2eiωtφ(x ),
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and substituting it into Eqn. (4.16), leads to the continuous eigenvalue problem

Lφ(x) = ω2m(x)φ(x), (4.17)

where the eigenfunction φ(x) is a complex modal function.

Let u(x, t), u(y, t), v(x, t), and v(y, t) be complex analytic displacement and velocity

time signals evaluated at points x and y on the beam and sampled at times tk = kΔt for

k = 1, ∙ ∙ ∙ , N . We define

R(x, y) =
1

N

N∑

k=1

u(x, tk)ū(y, tk)

S(x, y) =
1

N

N∑

k=1

v(x, tk)v̄(y, tk)

where ū(y, tk) and v̄(y, tk) are the complex conjugates. Multiplying inside the summation

and dividing outside the summation by Δt gives

R(x, y) =
1

NΔt

∑

k

u(x, tk)ū(y, tk) Δt

S(x, y) =
1

NΔt

∑

k

v(x, tk)v̄(y, tk) Δt

Letting the Δt become infinitesimal while holding T = NΔt fixed results in

r(x, y) =
1

T

∫ T

0
u(x, t)ū(y, t) dt (4.18a)

s(x, y) =
1

T

∫ T

0
v(x, t)v̄(y, t) dt. (4.18b)
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Discretizing spatially, Rij = r(xi, yj) and Sij = s(xi, yj), and then temporally, leads back

to R and S, defined here for complex analytic signals as

R =
1

T

∫ T

0
u(xi, t)ū(yi, t) dt ∼=

1

N
UŪT (4.19a)

S =
1

T

∫ T

0
v(xi, t)v̄(yi, t) dt ∼=

1

N
VV̄T (4.19b)

where here U is the complex displacement ensemble matrix.

The SCOD EVP is λRψ = Sψ where ψ is a discrete eigenvector. We will show that ψ

approximates a discretization of the system modal functions. The EVP can be written as

λ
M∑

k=1

Rik ψ
k

Δy =
M∑

k=1

Sik ψ
k

Δy, (4.20)

where M is the number of measurement points. Eqn. (4.20) can be written as

λ
M∑

k=1

r(xi, yk) ψ(yk) Δy =
M∑

k=1

s(xi, yk) ψ(yk) Δy,

and then for a very high spatial resolution and infinitesimal time step, we approach the

continuum limit,

λ

∫
r(x, y)ψ(y) dy =

∫
s(x, y)ψ(y) dy, (4.21)

which is the continuous SCOD in the time domain. Substituting Eqns. (4.18a) and (4.18b)

into (4.21) leads to

λ

T

∫

y

(∫ T

0
u(x, t)ū(y, t) dt

)

ψ(y) dy =
1

T

∫

y

(∫ T

0
v(x, t)v̄(y, t) dt

)

ψ(y) dy. (4.22)
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It is desired to express the contents inside the right hand parenthesis as the product of

acceleration and displacement as was done in the derivation of discrete SOD. Evaluating x

and y at xi and yi in Eqn. (4.22) and referring to Eqn. (4.12), we note that the content

inside the parenthesis on the right hand side equates to Sij . Using Eqn. (4.14), we can write

Sij in terms of the desired product. Hence it is possible to recast Eqn. (4.21) and (4.22) as

λ

T

∫

y

(∫ T

0
u(x, t)ū(y, t) dt

)

ψ(y) dy = −
1

T

∫

y

(∫ T

0
ü(x, t) ū(y, t) dt

)

ψ(y) dy. (4.23)

A subtle but important point should be noted that in Eqn (4.23) the multiplicand has a

over-bar, for example the product here is v(x, t)v̄(y, t) and not vivj .

Using the symmetry mentioned after Eqn. (4.15), the content of the parenthesis on the

right hand side of equation is Hermitian in the continuous sense, such that

−
1

T

∫ T

0
ü(x, t) ū(y, t) dt = −

1

T

∫ T

0
u(x, t) ˉ̈u(y, t) dt.

Solving (4.16) for ü and substituting into (4.23) brings us to

λ

∫

y

(∫ T

0
u(x, t)ū(y, t) dt

)

ψ(y) dy =

∫

y

(∫ T

0
u(x, t)

Lū(y, t)

m(y)
dt

)

ψ(y) dy.

In the next step we will move everything onto one side of the equation, make
∫
y the inner
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integral, and move all the terms into the inner integral, yielding

∫ T

0

∫

y

(

λu(x, t) ū(y, t)ψ(y) − u(x, t)
1

m(y)
Lū(y, t) ψ(y)

)

dy dt = 0

∫ T

0
u(x, t)

(∫

y

[

λ ū(y, t)ψ(y) −
1

m(y)
Lū(y, t) ψ(y)

]

dy

)

dt = 0.

Applying the adjoint < Lq, p >=< q, L∗p > to move the linear operator, factoring out

ū(y, t), and moving all the terms back into the inner integral produces

∫ T

0

∫

y
u(x, t) ū(y, t)

(

λψ(y) − L∗
[

ψ(y)

m(y)

])

dy dt = 0. (4.24)

For this equation to have a non-trivial solution, the expression inside of the parenthesis

must be equal to zero, producing the following relationship:

λψ(y) = L∗
[

ψ(y)

m(y)

]

. (4.25)

If the system is self adjoint, L∗ = L, and Eqn. (4.25) is rewritten as

λψ(y) = L

(
ψ(y)

m(y)

)

. (4.26)

Now let

ψ(y) = m(y)φ(y) (4.27)
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to get

λm(y)φ(y) = Lφ(y). (4.28)

This shows that φ and ψ are related by the mass distribution.

4.4 Simulated Infinite Euler-Bernoulli Beam

The response of an infinite Euler-Bernoulli beam was simulated in the works of [6, 63]. The

initial conditions for the beam are

y(x, 0) = f0e

(
−x2

4b20

)

ẏ(x, 0) = 0

which is a Gaussian distribution on the initial displacement, where f0 = 1 mm and b0 =

0.01 m. The analytical solution to the Euler-Bernoulli beam with the initial condition given

above is [6]

y(x, t) =
f0

(1 + a2t2/b40)
1/4

e

(

−
x2b20

4(b40+a2t2)

)

cos

(
atx2

4(b40 + a2t2)
−

1

2
arctan

(
at

b20

))

. (4.29)

Simulated Beam Dimensions

Length ∞
Cross section 0.069 m × 0.0045 m

Density 7870 kg/m3

Modulus of elasticity 200 GPa

Table 4.1: Simulated Beam Dimensions

The sensor network on the simulated beam was designed to be the same as the beam
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experiment, with identical sensor spacing of Δx = 0.0461 m over a length of L = 1.42875 m,

where sensor 1 is located at the origin. However, the sample rate in the simulation was

100,000 Hz, whereas in the beam experiment the sampling rate was 25,000 Hz.

4.4.1 Data Processing

First displacements were computed from the analytical solution from Eqn. (4.29), and the

means were subtracted from each “sensor’s” time history. Next, using central difference,

the velocity ensemble, V, was computed and the means were removed. Central differencing

reduces the ensemble matrix dimensions by 2h, where h is the index interval used in the

central difference. So, in order to make each ensemble dimensionally compatible, the first

and last h rows of the time samples of displacement were removed from the ensemble. We

used h = 1. The resulting displacements for sensors 1, 16, and 31 are shown in Figure 4.1.

The same plots are also shown for velocities in Figure 4.2. Next, the signals were converted

into complex analytic signals by taking the FFT of each row, zeroing out the negative

frequencies and multiplying the remaining spectra by two. Finally, the IFFT was applied to

obtain the analytic form of X and V as Z and Zv respectively.

4.4.2 Results of Simulated Beam

The analytic measurement ensembles were used to create correlation matrices for the SCOD

EVP. The natural frequencies were extracted directly from SCOD’s eigenvalues, λ, instead

of modal coordinate histories as done in the application of COD [46, 76]. The complex

modal matrix was computed from the inverse Hermitian transpose of the eigenvector matrix

as Φ = Ψ−H . The wavenumbers were than computed with a numerical derivative as
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Figure 4.1: Displacements vs. time from the analytical solution for sensor 1, sensor 16, and
sensor 31.

ki = d∠φi/dx, where φi is a column of the matrix Φ. A forward difference was used

along the spatial index of the discretized modal vector in place of the the derivative d/dx.

The value of ki was chosen as the mean value from a spatial interval of uniform values in ki.

The computed modal frequencies versus modal wavenumbers are plotted in Figure 4.3. The

least squares fit of the data in Figure 4.3 to the equation ω = ak2 produced asim = 6.52 m2/s

compared to atheory = 6.56 m2/s, which is a 0.41% error.

4.5 Results of Beam Experiment

SCOD was applied to the beam experiment, and frequencies were directly computed from the

eigenvalues, which saves some computational effort when compared to COD for obtaining

frequency information. Samples of SCOMs are shown in Figure 4.4. SCOMs were not

whirling as cleanly as COMs for higher modes (see [76] and Chapter 5). The modal wave
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Figure 4.2: Velocities vs. time from finite difference numerical derivatives of the
displacements for sensor 1, sensor 16, and sensor 31

numbers were estimated from the whirl rates of the SCOMs, and paired with the associated

smooth complex orthogonal values, λ, to obtain the dispersion relationship.

It should be noted that spurious modes are produced when applying SCOD. This is a

result of computing the eigenvectors of the SCOD GEVP. Since R and S have dimensions

M ×M , M SCOMs will computed. We can generally expect at most M/2 modes. This can

be seen by considering a spatial Nyquist criterion if modes are nearly harmonic. Therefore

at least M/2 SCOMs are expected to be spurious. Furthermore, many modes typically have

amplitudes within the level of experimental noise. One can discern the actual modes from

the spurious modes by visual inspection. Actual modes will typically be tightly coiled circles

or ellipses, while spurious modes tend to look like noise.

Figure 4.4 shows SCOMs extracted from the experimental beam. The top left, top
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Figure 4.3: Geometric dispersion relation obtained using SCOD for a simulated infinite
Euler-Bernoulli beam.

right, and bottom left imagines depict actual SCOMs, the bottom right depicts a spurious

mode. SCOD extracts data over a smaller wavenumber range for the same data with similar

accuracy, when compared to COD. Figures 4.5, 4.6 and 4.7 show the extracted dispersion

relationships when SCOD was applied to the experimental beam data. The group velocities

plotted in Figure 4.7 were obtained from a finite difference applied to the dispersion data

plotted in Figure 4.5. The least squares approximation of a using the SCOD estimated ω and

k gives aSCOD = 6.72 m2/s, which is an error of 2.6% when compared to atheory = 6.56 m2/s.

4.6 Conclusions

This paper outlined the mathematical development and application of smooth complex

orthogonal decomposition to estimate complex modal characteristics. In using SCOD in
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Figure 4.4: Examples of smooth complex orthogonal modes (SCOMs) from the beam
experiment. The lower right plot illustrates and example of spurious mode.

the time domain one can directly compute frequencies from the eigenvalues. The complex

structural modes are computed from the inverse conjugate transpose of the SCOD eigenvector

matrix. For a nearly harmonic traveling complex mode, the wavenumber can be obtained

from the gradient of the phase of the mode shape. SCOD was shown to accurately extract

modal components of waves traveling through a simulated infinite beam, and an experimental

beam. From these modal components, the dispersion properties were accurately extracted.

Currently, efforts are being applied in which SCOD is applied spatially, where displacements

and slope or curvature is used, depending on the model’s PDE, to extract the parameters of

waves propagating in an elastic medium. In contrast to application in the time domain, in

which signals are summed (integrated) through time to produce cross correlations between

points in space, represented by R and S, spatial-domain SCOD will involve integrations

(sums) of signals through space to produce cross correlations between points in time. Applied
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Figure 4.5: Dispersion relationship derived from SCOD applied to an experimental beam.

spatially, in some systems wavenumbers are extracted directly from the eigenvalues and the

frequencies are extracted from the whirling rates of the temporal eigenvectors.
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Figure 4.6: Phase Velocity derived from SCOD applied to an experimental beam

Figure 4.7: Group Velocity derived from SCOD applied to an experimental beam
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Chapter 5

Exploration in Spatial Smooth

Complex Orthogonal

Decomposition

5.1 Introduction

COD and SCOD and have been applied to sampled displacements from structures with

complex-separable temporal and spatial characteristics. The M × N sampled ensemble

matrices have rows which are time samples of displacements at a certain point on a structure.

Thus, the horizontal dimension of the of the ensemble matrix contains the evolution in time,

and the vertical dimension contains variations in space. The applications in the previous

sections had temporal and spatial behaviors which, when isolated, were approximately

harmonic. The temporal application of the COD and complex SCOD involved ensemble

matrix products such as ZZ̄T /N . These matrix products essentially involve summations

through time and produce spatial cross correlations. The result of the COD or SCOD

are eigenvectors (modes) which represent spatial optimizations of signal strength (COD) or

signal frequency (SCOD), and eigenvalues which represent modal strength (COD) or modal

frequency (SCOD). Modal coordinates then contain the temporal modulations of the modes.
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In this section we consider inverting the roles of the temporal and spatial variations.

Thus, a spatial application of COD and/or SCOD (referred to here as COD-x and SCOD-x)

is envisioned such that matrix-product sums are made through space, producing spatial cross

correlations between instants in time. The decomposition would thus produce eigenvectors

that represent the temporal modulations, and eigenvalues that represent modal strength

(CODx) and modal wavenumber (SCODx). The spatial decomposition modal coordinates

would contain information about spatial modulation, akin to the usual notion of a mode.

To this end, in this chapter we will introduce smooth complex orthogonal decomposition

in the spatial variable domain through an example. In the prior chapter we discussed SCOD

in the time domain which provided the ability to directly compute the frequencies from the

eigenvalues of the SCOD generalized eigenvalue problem (GEVP). This chapter will illustrate

how to extract the wavenumbers directly from the GEVP by posing SCOD spatially. In the

next section SCOD will be applied spatially to a traveling pulse, with some mathematical

preface in order to illustrate proof of concept.

5.2 Traveling Pulse

SCOD will be applied to a traveling wave whose constituent waves have similar frequencies

such that the difference of the maximum and minimum frequencies are small, i.e. Δf =

fmax − fmin, is small, where f = ω/(2π). In the frequency domain the FFT of the traveling

pulse would have a narrow band qualitatively similar to Figure 5.1 [6].

The wave is constructed using y(x, t) =
∑M

i=1 Ai sin(ki(x − c0t)) where c0 is the wave

speed, ki = k0 + (i − 1)Δk, with k0 = 4 and Δk = 0.0472. The amplitudes Ai are chosen

such that the peak of the traveling wave has a value of 1.0. The narrow band traveling pulse
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Figure 5.1: Contrived example of the FFT of a narrow band traveling pulse

and the FFT of the traveling pulse at some ith time is shown in Figures 5.2 and 5.3.

An M ×N ensemble matrix was created where N is the number of time samples and M

is the number of spatial sensors. For this example N = M = 128. The displacement y(x, t)

and slope y′(x, t) are sampled to build ensembles Y and Yslope, which are converted into

analytic ensembles Z and ZV . R and S matrices are computed to produce N × N matrices

R =
Z̄TZ

M
(5.1)

S =
Z̄T

V ZV

M
. (5.2)
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Figure 5.2: Simulated narrow band traveling pulse

The generalized eigenvalue problem is formulated as

RVΛ = SV (5.3)

where the wavenumbers, ki, are the square roots of the magnitudes of the eigenvalues, which

are the diagonal elements of Λ, such that ki =
√
||Λii||. Equation (5.3) involves N × N

matrices, and yields N × 1 eigenvectors v, packaged in N ×N matrix V, and N eigenvalues.

The “temporal modes”, that is the characteristic temporal fluctuations, are represented by

columns of the N × N matrix

Φt = V̄−T = V−H , (5.4)

much like with the spatial modes from the conventional SCOD in Chapter 4. As such a

matrix of “modal coordinates” are calculated from the inverse conjugate transpose of the
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Figure 5.3: FFT of simulated narrow band traveling pulse

eigenvector V, from which the frequencies ωi can be extracted from the whirl rate of the

phase.

In Chapter 4, the complex modal coordinate ensemble was related to the modal matrix

and complex analytic displacement ensemble via Z = ΦQ, where Φ is M × M and Q is

M ×N . Similarly, in terms of the quantities from the SCODx approach, we expect to write

Z = QxΦt, (5.5)

where Qx is an M × N ensemble of “spatial modal coordinates”, and are seen as modal

coordinates in terms of the computation, but play the role of spatial characteristic shapes.

To obtain Qx, we perform

Qx = ZΦ−1
t = ZV̄T = ZVH (5.6)
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from equation (5.4). The “spatial modal coordinates” should have “spatial whirl rates”,

representing wave numbers, consistent with the eigenvalues of Equation (5.3). The “spatial

modal coordinates” Qx can be used in modal reduction or modal filtering, analogous to what

might be done with results from time-domain SCOD.

5.3 Results

SCODx was applied to waves with c0 = 1.5, 3, 6, and 12, and wavenumbers were obtained

from the eigenvalues while frequencies were obtained from the whirl rates of the eigenvectors.

A least squares fit was applied to the SCODx extracted ki and ωi to exact wave speeds of

1.499, 2.99, 5.99, and 11.97. Figures for the extracted dispersion relationship for c0 = 1.5

and c0 = 12 are shown in Figures 5.4 and 5.5.

Figure 5.4: Dispersion relationship for a traveling narrow band pulse with a speed of c0 = 1.5

It is believed that a smoother head and tail of the traveling pulse would allow for better

dispersion extraction. However the results suggest that for engineering practice with a
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Figure 5.5: Dispersion relationship for a traveling narrow band pulse with a speed of c0 = 12

non-smooth traveling wave, SCODx applied spatially to a narrow band traveling pulse can

accurately extract the dispersion relationship and wave speed. While this example is trivial

it is a proof-of-concept for SCODx.

5.3.1 Future Works

Future work in SCODx starts with a formulation for a string; SCODx is then to be applied

to a simulated string and possibly other structures. The partial differential equation for a

uniform string has the form

m
∂2u

∂t2
+ k

∂2u

∂x2 = 0 (5.7)

For the string, axial rod, and torsional rod, the differential operators and independent

variables are interchangeable. For example, you could relabel t as x, and x as t, and get the

equation

m
∂2

∂x2 + k
∂2

∂t2
u = 0. (5.8)
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Thus the theory that justified SCOD in the time domain, which included Eqn (5.7), also

includes Eqn (5.8), which amounts to SCOD applied in the spatial domain. The pair of

equations (5.7) and (5.8) may be a trivial motivating example since, with m and k being

constant, the system will not have interesting dispersion characteristics. But SCODx still

should work, at least for second-order operators. So a subsequent theory will inquire to

what extent this swap in domains” will enable the SCOD in the spatial domain, with a

useful interpretation for wave numbers and modal coordinate histories.
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Chapter 6

Linear Mass Spring System

6.1 Introduction

In this chapter we will apply complex orthogonal decomposition (COD) [46, 63, 77] and

smooth complex orthogonal decomposition (SCOD) [77] for the purpose of extracting the

parameters of harmonic complex structural waves traveling through a mass-chain system.

When applied, both methods use measurement ensembles to form correlation matrices.

COD uses an ensemble of analytic displacement measurements to compute a correlation

matrix R = ZZH/N , where Z is the analytic displacement ensemble, H is the Hermitian

or conjugate transpose, and N is the number of time samples. Next the COD eigenvalue

problem (EVP) is posed as Rφ = λφ, or in the matrix form RΦ = ΦΛ. Wavenumbers are

computed from the φ as the mean of ki of ki = d∠φ
i
/dx, and the frequencies are computed

from the modal coordinates, Q = Φ−1Z, as ωi = d∠qi/dt, where qi is a row of Q.

When using SCOD, a second correlation matrix, S, is built using an analytic ensemble

matrix from velocities Zv, such that S = ZvZv
H/N . A SCOD generalized EVP (GEVP) is

posed as RΨΛ = SΨ, where Λ is a diagonal matrix of eigenvalues, whose elements provide

an estimate of the modal frequencies squared, such that Λii = ω2
i . The wavenumbers are

computed similarly as with COD. However, they are computed from Ψ, where columns of
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Φ = Ψ−H approximate the mode shapes. The gradient of the angle of each column of Φ

approximates the associated modal wavenumber.

This paper will focus on applying COD and SCOD to a disturbance propagating through

a simulated mass-chain system. The extracted dispersion beavior will be compaed to that

predicted by theory. In Section 5.2 the dynamics of the mass-chain system will be summarized.

Section 5.3 will apply COD, Rayleigh quotient approximations, and SCOD to the linear mass

chain. Finally, we will conclude in Section 5.4.

6.2 Analytical Model for an Infinite Periodic Chain

The wave behavior in an infinite uniform linear mass-spring chain with stiffness α has been

studied in detail along with a nonlinear chain in [78,79]. Here, we show the derivation for a

linear chain shown in Figure 6.1.

Figure 6.1: Infinite mass chain. The relaxed position and displacement of mass mj are
denoted by x̃j and uj respectively. In this case the springs are linear with relaxed length h.

The mass-spring chain is arranged in a fashion such that each mass is separated by a

distance h from its nearest neighbor. h is also the relaxed length of each spring before any

deformation occurs. The relaxed position and displacement of mass mj are denoted by xj
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and uj respectively. We use the assumption that all the masses are equal (mj = m) and

only the nearest neighbors have direct effects on each other. As such, we consider a linear

spring force relative to the equilibrium state. The equations of motion (EOM) in physical

coordinates can then be written as

müj = α̃
[
(uj+1 − uj) − (uj − uj−1)

]
(6.1)

for j = ∙ ∙ ∙ ,−2,−1, 0, 1, 2, ∙ ∙ ∙ . Letting α = α̃
m we get

üj = α
[
(uj+1 − uj) − (uj − j − uj−1)

]
(6.2)

The non-dimensionalization is done by assuming x = x̃
h , which results in xj = j and

xj±1 = j ± 1. The non-dimensional wave number is denoted by μ. We assume a traveling

dispersive wave solution at frequency ω and wave number μ and plug into the equations of

motion. Let

uj(t) = Aei(μj−ωt) + Āe−i(μj−ωt). (6.3)

Substituting uj±1 = e±iμAei(μj−ωt) into the equations and balancing leads to

ω2 = 2α(1 − cos μ) (6.4)

for the required relationship between ω and μ. This is the dispersion relationship for the

linear chain. Thus for a linear chain, the dispersion is given as

ω =
√

2α(1 − cos μ) (6.5)
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Figure 6.2: Displacements for masses 1, 31, 61, and 91.

6.3 Modal Decomposition Applied to a Mass Chain

A 250 mass mass-spring chain was excited with a unit impulse on the left hand side. The

disturbance propagated toward the right. The response of the first 100 masses were recorded

as the disturbance passed the 100th mass but before reflections traveled backward to the

100th mass. Essentially, the time record was truncated at a time such that no reflections

were recorded. The means were subtracted from the displacements of each mass.

The displacements for four of the masses are shown in Figure 6.2. It can be seen here that

the lower frequency waves travel faster than the higher frequency waves, which is consistent

with the predicted dispersion behavior of a linear uniform chain. Velocities were also captured

for use in SCOD.
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Figure 6.3: Complex orthogonal values

Figure 6.4: Linear system’s geometric dispersion relationship using the mode from the 30
highest COVs initial velocity on the first mass = 1.0
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Figure 6.5: Linear dispersion relationship using Rayleigh quotient and SCOD

6.3.1 COD Applied to a Linear Mass Chain

The displacements are converted to complex analytic signals and then used to compute the

co-variance matrix, and the COD eigenvalue problem.

The COVs were used as a guide to discern which COMs contained extractable data

[44]. The COVs in Figure 6.3 show that about 33 of the extracted modes have significant

modal energy. Using the 30 highest COVs the dispersion relationship extracted is shown

in Figure 6.4. The COD extracted dispersion relationship correlates well to the theory

qualitatively. COD, like POD, has a hard time uniquely extracting modes, and hence

wavenumbers and frequencies, when the constituent waves have nearly the same eigenvalue

(COV). In order to improve on this we will use assumed modes and the generalized Rayleigh

quotient based on the smooth complex orthogonal decomposition, to be discussed next.
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6.3.2 SCOD Rayleigh Quotient

The SCOD Rayleigh quotient is based on the SCOD EVP, and is defined as

RQ(λ) =
ψH

a
Rψ

a

ψH
a

Sψ
a

. (6.6)

R and S are the correlation matrices from SCOD, ψ
a

are columns of a square matrix

Ψ = Φ−H , where columns of Φ are φa, and are assumed modes, for this work to be

chosen in the form φa = eikx . The value of k can be defined by the user. The Rayleigh

quotient will approximate an eigenvalue in the eigenspace of R and S when φ
a

used as an

approximate eigenvector. SCOD correlation matrices were used because the square root of

the SCOD eigenvalues are the frequencies of the traveling waves. The results of using the

SCOD Rayleigh quotient, in comparison to straight-forward SCOD, can be seen in Figure 6.5.

6.4 Conclusions

The dynamics of an infinite mass-chain were summarized including the dispersion relationship.

was solved using the method of multiple scales for a nonlinear mass-chain system. For this

work, the elements of φ
a

are chosen as φaj = e
ikxj , consistent with harmonic traveling waves.

The chain was simulated with an initial impulse applied to the end mass of a long finite chain.

First, COD was applied to the analytic displacements of the masses. COD was able to extract

a qualitatively good approximation to the dispersion relationship. SCOD was also applied to

obtain an approximation to the lower frequency and lower wavenumber part of the dispersion

relation. Improvements were sought by using assumed modes and the generalized Rayleigh

quotient. The predicted dispersion relationship using Rayleigh quotients was nearly exact.
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Slight deviation was seen near the the origin and near k = π. Current efforts are underway

to apply this method to the linear cubic mass-chain system.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Results

COD was successfully applied to a beam experiment with the goal of extracting the dispersion

relationship for the beam. The parameters of the beam, data acquisition equipment, and

signal processing were outlined so that individuals can repeat the experiment.

The window of minimum and maximum detectable wavenumbers and frequencies were

determined by the spatial and temporal Nyquist frequency and record time length criteria.

COD, once applied to the measured data, produced nearly harmonic complex waves and

modal coordinates within the sampling window. The spatial and temporal whirling rates

were obtained from the complex modes and modal coordinates and were used to extract

the modal frequencies and modal wavenumbers. From these the dispersion relationship was

extracted and matched the theoretical ω = ak2. Additionally, we were able to anticipate the

dispersion curve’s shape based on the beam parameters. The coefficient, a, was estimated

using a least square fit of the data and was found to be afit = 6.4431 m2/s, which gives an

underestimation of 1.61%. Spurious modes were produced by COD. Actual modes can be

discerned from spurious modes by visually inspecting of the whirling complex modes or by

the COVs. Spurious modes have very small COVs compared to actual modes.
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The mathematical framework for SCOD was outlined and SCOD was applied temporally

to both a simulated beam and an experimental beam (the same beam used above and

henced data from above). SCOD produced nearly harmonic complex mode and complex

eigenvalues. The wavenumbers were computed from the inverse of matrix whose columns

were the complex conjugate transpose of the complex modes. The modal frequencies were

computed directly from the eigenvalues. The modal frequencies and wave amplitudes can

be computed directly from the SCOC. Using the SCOD extracted modal wavenumbers and

modal frequencies the dispersion relationship was extracted. Least squares was used to

to approximate the coefficient, a. When applied to a simulated beam SCOD extracted

least squares fit estimated asim = 6.52 m2/s which is 0.41% error. SCOD applied to the

experimental beam yielded aSCOD = 6.72 m2/s, which is a error of 2.6% when compared to

theory.

An exploratory study suggests that it may be feasible to apply COD and SCOD in

the spatial domain. In a process referred to as SCODx, the spatial correlation matrices for

complex displacements and velocities were computed for the example of a narrow-band pulse.

The SCODx eigenvalue problem then produced temporal modes from the eigenvectors and

wavenumbers from the eigenvalues. Spatial modal coordinates were also computed to show

the strength of modal participation.

Finally, COD, SCOD, and the SCOD Rayleigh quotient were applied to an infinite mass

spring system. The chain consisted of 250 masses and only the data from the first 100 masses

were recorded. COD was able to extract the dispersion relationship from the mass chain for
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a linear system. However, due the the relative closeness of the frequencies of the waves in the

mass chain COD has a hard time distinguish the modes of the waves. SCOD was employed

and was slightly better at extracting the modes. The best results came from using SCOD

Rayleigh quotients with assumed modes.

7.2 Significance

This work presents for the first time an experimental verification of COD applied to a

semi-infinite beam. Successful experimental application shows the efficacy of the method,

and implies sufficient robustness for real applications.

A mathematical foundation for SCOD was presented showing that SCOD can be considered

as a tool for directly obtaining complex normal modes and modal frequencies. SCOD was

successfully applied to a simulated semi-infinte beam and an experimental beam. Finally,

COD, SCOD, and the SCOD Rayleigh quotient were applied to a mass-chain, which showed

COD and SCOD can be applied to a one-dimensional lattice.

This work has applications in sensing, material identification, material property identification,

range detection, non-destructive testing and evaluation, and meta-materials.

7.3 Future Works

Future works on these topics includes the application to longitudinal rods, plates, and more

complicated structures. These techniques will also be applied when wave reflections are

present to see if reflection coefficients and other acoustical boundary properties can be
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quantified. We also can consider expanding the method to measure wave attenuation.

CODx and SCODx will be formulated for a rigorous spatial application of modal decomposition

methods in systems with operators of justifiable orders. Conditions for the application

and interpretation of spatial CODx and SCODx will be understood from this rigorous

theoretical formulation. The aim of SCODx will be to generate wave numbers directly

from eigenvalues, in place of analyzing modal vectors for their spatial whirl rates. SCOD

and SCODx could be used in tandem to obtain, and crosscheck, complete temporal and

spatial wave characteristics.
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[62] Önsay, T., and Haddow, A. G., 1994. “Wavelet transform analysis of transient
wave-propagation in a dispersive medium”. Journal of the Acoustical Society of America,
95(3), pp. 1441–1449.

[63] Feeny, B. F., 2008. “A complex orthogonal decomposition for wave motion analysis”.
Journal of Sound and Vibration, 310(1–2), Feb, pp. 77–90.

[64] Oppenheim, A. V., and Schafer, R. W., 1989. Discrete-Time Signal Processing. Prentice
Hall, Englewood Cliffs, NJ.

[65] Schmidt, R., 1986. “Multiple emitter location and signal parameter estimation”.
Antennas and Propagation, IEEE Transactions on, 34(3), Mar, pp. 276–280.

[66] Roy, R., and Kailath, T., 1989. “ESPRIT-estimation of signal parameters via rotational
invariance techniques”. IEEE Transactions on Acoustics, Speech, and Signal Processing,
37(7), Jul, pp. 984–995.

[67] Feeny, B. F., Sternberg, P. W., Cronin, C. J., and Coppola, C. A., 2013. “Complex
orthogonal decomposition applied to nematode posturing”. Journal of Computational
and Nonlinear Dynamics, 8(4), p. 041010.

[68] Büssow, R., 2008. “Applications of the flexural impulse response functions in the time
domain”. Acta Acustica united with Acustica, 94(2), pp. 207–214.

[69] Beck, J., and Arnold, K., 1977. Parameter Identification in Engineering and Science.
John Wiley and Sons, New York.

[70] Kosambi, D., 1943. “Statistics in function space”. Journal of Indian Mathematical
Society, 7, pp. 76–88.

96



[71] Karhunen, K., 1946. “Zur Spektral Theorie Stochastischer Prozesse”. Ann. Acad. Sci.
Fennicae, A, pp. 1–34.

[72] Ibrahim, S. R., and Mikulcik, E. C., 1973. “A time domain modal vibration test
technique”. Shock and Vibration Bulletin, 34(4), pp. 21–37.

[73] Han, S., and Feeny, B. F., 2003. “Application of proper orthogonal decomposition
to structural vibration analysis”. Mechanical Systems and Signal Processing, 17(5),
pp. 989 – 1001.

[74] Brincker, R., Zhang, L., and Andersen, P., 2001. “Modal identification of output-only
systems using frequency domain decomposition”. Smart Materials and Structures,
10(3), pp. 441–445.

[75] Feeny, B. F., and Farooq, U., 2008. “A nonsymmetric state-variable decomposition for
modal analysis”. Journal of Sound and Vibration, 310(4-5), March, pp. 792 – 800.

[76] Caldwell, R. A., and Feeny, B. F., 2016. “Characterizing wave behavior in a beam
experiment by using complex orthogonal decomposition”. Journal of Vibration and
Acoustics, 138(4), p. 041007.

[77] Caldwell Jr, R. A., and Feeny, B. F., 2016. “Smooth complex orthogonal decomposition
applied to traveling waves in elastic media”. In Rotating Machinery, Hybrid Test
Methods, Vibro-Acoustics & Laser Vibrometry, Volume 8. Springer, pp. 281–293.

[78] Narisetti, R. K., Leamy, M. J., and Ruzzene, M., 2010. “A perturbation approach for
predicting wave propagation in one-dimensional nonlinear periodic structures”. ASME
Journal of Vibration and Acoustics, 132(3), p. 031001.

[79] Narisetti, R. K., Ruzzene, M., and Leamy, M. J., 2011. “A perturbation approach
for analyzing dispersion and group velocities in two-dimensional nonlinear periodic
lattices”. Journal of Vibration and Acoustics, 133(6), p. 061020.

97


