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ABSTRACT 

 

EVALUATION OF ENZYME FUNCTION VIA HIGH-THROUGHPUT SEQUENCE TO 

FUNCTION MAPPING 

 

By 

 

Justin Ryan Klesmith 

 

 The motivation of this work is to comprehend and overcome challenges in understanding 

and in design of optimal heterologous metabolic pathways that lead to production of biofuels and 

other valued biochemicals in microbial hosts. I specifically address the problem that within a 

designed pathway, introduced enzymes are often inefficient leading to a reduction of metabolic 

flux and consequently product yield. This enzymatic underperformance can be attributed to 

either poor catalytic fitness or poor soluble expression in the host. To help develop technologies 

that remedy these inefficiencies, the field of metabolic engineering was surveyed for current 

approaches that identify an optimal pathway variant and the limitations thereof. I identified 

numerous inadequacies in current isogenic and high-throughput pathway screening and 

optimization methods. Specifically, the amount of time and the number of unique variants tested 

in current methods is limiting. With the advent of high-throughput deep sequencing technologies, 

large population-based studies are now feasible which reduce the amount of time and increase 

the total number of unique variants tested. Therefore, this work set out to utilize this promising 

new approach to test unique enzyme variants in a pathway. 

 I developed a new deep sequencing approach to study the enzyme levoglucosan kinase 

(LGK) from L. starkeyi that was introduced into E. coli. LGK converts levoglucosan into 

glucose-6-phosphate which is then used for microorganism growth. A growth selection was 

developed such that growth on levoglucosan as a sole carbon source was dependent on an active 

LGK enzyme, and the change in growth was correlated to the change in enzymatic activity. This 



 

method was able to quantify the effect of over 8,000 single point mutations on specific 

levoglucosan flux. The datasets were able to predict whether a beneficial mutation improved 

stability or catalytic efficiency. Combining computational modelling with these datasets aided 

the creation of nine enzyme designs. One enzyme design incorporating 38 mutations was 

crystallized to learn the structural basis of the beneficial mutations. The best enzyme design had 

a 15-fold improvement in growth rate and 24-fold improvement in pathway activity. 

 Developing this deep sequencing method illuminated a number of problems and 

opportunities: 1) growth selections are difficult to design and may not be feasible for enzymes in 

secondary metabolism, 2) improving the soluble expression of an enzyme is potentially an easy 

avenue to increase specific flux however, 3) stabilizing mutations often have small trade-offs in 

catalytic fitness. Therefore, the second project set out to extend the original deep sequencing 

method to improve soluble expression of enzymes without trading-off catalytic fitness in the 

absence of a growth selection. Using three solubility screens: yeast surface display, GFP fusion, 

and Tat export, I screened two enzymes, TEM-1 beta-lactamase and LGK. Deep sequencing was 

used to quantify the effect of all single point mutations on soluble enzyme production. Classifiers 

were developed to identify solubility-enhancing mutations from these datasets that maintain 

wild-type catalytic fitness with an accuracy of 90%. 

 The final project was a small extension of the solubility work where I developed 

analytical equations for converting the enrichment of a variant to a fitness metric for plate-based 

screens like the Tat export pathway. Using isogenic and mixed cultures I show that growth rates 

and survival percentages correlate for plate selections. This will help further deep sequencing-

based studies for interpretation of the datasets.  
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Introduction 

Sections of the chapter were adapted from the publication “High-throughput evaluation of 

synthetic metabolic pathways” in Technology 4:9-14 by Justin R. Klesmith and Timothy A. 

Whitehead. 
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ABSTRACT 

 A central challenge in the field of metabolic engineering is the efficient identification of a 

metabolic pathway genotype that maximizes specific productivity over a robust range of process 

conditions. Here I review current methods for optimizing specific productivity of metabolic 

pathways in living cells. New tools for library generation, computational analysis of pathway 

sequence-flux space, and high-throughput screening and selection techniques are discussed. 
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INTRODUCTION 

Microorganisms have the potential to produce many chemicals of use to society1, 2. In 

some cases, production from heterologous microorganisms is more sustainable than purifying the 

chemical from natural sources. Examples include harvesting Pacific yew trees or Chinese 

wormwood for taxol3 or the anti-malarial artemisinin4, respectively. Additionally, the ability to 

create renewable and sustainable biofuels and biochemicals is increasingly attractive given 

concerns about climate change and peak oil5.  

An organism producing a desired product may not exist, or a given strain may not be 

suitable for required economical processing conditions. Because of this, reconstructed pathways 

are often implanted into chassis microorganisms5. Some of these pathways include those specific 

for biofuels (ethanol5, isobutanol6, 1-butanol7, 1,4-butanediol8), polymer monomers (polylactic 

acid9, isoprene10, 3-hydroxypropionic acid11), and pharmaceutically active ingredients 

(precursors for taxol3 or opioids12). However, in many cases product toxicity or transport limits 

end titers, product recovery from aqueous fermentation broths is inefficient, or the volumetric 

productivity is below that required for a cost-effective process. Combined, these limitations 

temper the promise of sustainable replacement of the palette of petrochemicals and naturally 

extracted specialty chemicals currently in use by society.  

In particular, the specific productivities of most engineered metabolic pathways are far 

below what is needed for industrial production. Some implanted pathways have limited flux 

because of substantial thermodynamic reversibility at key steps13. Additionally, pathway 

enzymes transplanted into heterologous hosts often have poor performance because of weak 

catalytic efficiency14, poor protein solubility, or membrane targeting issues12, 15. Host-specific 

problems include cofactor accessibility16, siphoning of pathway intermediates, intermediate 
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toxicity, and post-translational flux regulation of key precursors12, 17, 18. Furthermore, the 

performance of a specific engineered metabolic pathway may differ between host strains19, 

media formulations12, temperatures, and oxygen conditions20.  

A grand challenge in the field of metabolic engineering is the accurate and efficient 

identification of a pathway genotype that maximizes specific productivity over a robust range of 

process conditions. Attempts to improve specific productivity have largely focused on screening 

individual pathway enzymes for activity or balancing gene expression by testing libraries of 

elements like promoters and ribosome binding sites (RBS)21-24. Error-prone PCR mutagenesis of 

pathway enzymes has also been used to find activity-improving mutations17, 18. However, 

pathway optimization by total enumeration becomes unwieldy, as balancing activity at multiple 

nodes leads to a combinatorial explosion. Consider a plasmid-encoded pathway composed of a 

series of expression elements (e.g. promoters, ribosome binding sites (RBS), terminators) and 

pathway gene variants (Figure 1.1a). A pathway library comprised of a single enzyme of 

average length25 driven by ten alternative promoters and ten alternative RBS sequences can be 

covered by testing 102 variants. A library containing the above gene expression genotypes with 

all possible single non-synonymous mutations to the enzyme now contains 6x105 variants. 

Testing the same number of variants using a two-enzyme pathway requires a theoretical 

coverage of 3.6x1011 variants, which is too large a sequence space to cover under most 

conditions. The combinatorial problem only becomes more acute with more pathway enzymes.  

To partially circumvent this combinatorial intractability, modular pathway design has been used 

to partition individual enzymatic steps into reaction groups. Then the expression of the resulting 

enzyme groups is balanced12, 26-28 (Figure 1.1b). Alternative ways to explore sequence-flux 
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space include computational predictions from small training sets29-31 (Figure 1.1c) or high-

throughput screening or selection techniques32-36 (Figure 1.1d). 

 

Figure 1.1: There are three main strategies to sample sequence-flux space in metabolic 

pathways.  a) A model pathway. Each arrow represents a different reaction chemistry used to 

convert an initial substrate into a value-added product. Expression elements like promoters and 

ribosome binding sites facilitate expression of the enzyme-encoding genes. b) Individual reaction 

chemistries are grouped into modules. Expression of these modules is varied, reducing the 

combinatorial search space. c) Given a training set of different sequences with a given output, 

models can be harnessed to predict optimal pathway expression levels. d) Advanced DNA 

assembly methods can be used to create unique pathway variants that are then assessed using 

high-throughput screens or selections. 

 

The focus of this introduction is on new technologies that identify highly productive and 

robust synthetic metabolic pathways. This introduction will not cover continuous evolution37, 

whole genome engineering38, or computational pathway design39 – the interested reader can find 
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excellent reviews on some of these topics elsewhere40-43. I begin by describing pathway 

evaluation of isogenic cultures. I next describe computational approaches to predict high 

performing genotypes with a limited training set of pathway variants. Next, I consider high-

throughput methods to assess metabolic pathways, including population-based screens or 

selections. New enabling techniques for DNA library construction, sequencing, and evaluation 

will be described throughout. 

 

EVALUATION OF ISOGENIC CULTURES 

One way to evaluate pathway variants is through the use of isogenic cultures. In a typical 

set-up, a combinatorial library of expression elements or enzyme variants is created, and clonal 

variants are tested individually. Lu et al. optimized a xylose fermentation pathway in 

Saccharomyces cerevisiae by shuffling promoters of various strength in front of each pathway 

enzyme44. Different promoter combinations were made and tested individually for ethanol 

productivity and enzymatic activity. Solomon et al. tested different expression levels of 

glucokinase (Glk) and galactose permease (GalP) to enable glucose uptake in Escherichia coli 

independent of the phosphotransferase system45. Carbon flux was modulated by controlling 

expression of Glk and GalP under control of synthetic constitutive promoters. Juminaga et al. 

constructed a pathway for L-tyrosine production in E. coli MG1655 by modifying plasmid copy 

numbers, promoter strength, gene codon usage, and placement of genes in operons46. The best 

pathway variant had a volumetric productivity of 55 mg L-tyrosine/L/hr. Ajikumar et al. 

optimized a pathway for overproduction of taxadiene, a key taxol precursor3. The authors used a 

modular approach by separating the pathway into two operons, with one encoding the 

methylerythritol-phosphate pathway and the other containing genes encoding the downstream 
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terpenoid-producing enzymes. The promoter strength in front of each operon was systematically 

varied and taxadiene product measured. Notably, the taxadiene production landscape was highly 

non-linear in response to operon expression.  

Similar isogenic approaches can be used to engineer key rate-determining enzymes or 

transporters in implanted metabolic pathways. Zhang et al. used site-directed mutagenesis of 

active site residues of the enzymes KivD and LeuA47. Fermentations of E. coli harboring 

pathways with different combinations of KivD/LeuA variants were tested by quantification of 

desired alcohol products. Leonard et al. generated combinatorial mutations in the enzymes 

geranylgeranyl diphosphate synthase and levopimaradiene synthase to tune the selectivity and 

increase the productivity of levopimaradiene production in E. coli48. The best strain had a 

maximum volumetric productivity of 7.3 mg levopimaradiene per L per h.  Lee et al. improved 

xylose utilization in S. cerevisiae by directed evolution of xylose isomerase49. After three rounds 

of error-prone PCR and screening they isolated a mutant with a 61-fold improvement in aerobic 

growth rate and an 8-fold improvement in ethanol production and xylose consumption. 

Screening pathway variants is not only limited to enzymes. Young et al. demonstrated the 

tunability of yeast sugar transporters through a combination of motif-based design and saturation 

mutagenesis50. This approach was used to identify xylose-specific fungal molecular transporters, 

which when expressed improved xylose utilization by S. cerevisiae.  

 

COMPUTATIONAL PREDICTIONS USING EMPIRICAL TRAINING SETS 

Adjusting the right balance of enzyme specific activities within a pathway is crucial as 

the fitness cost of protein expression51, catabolism of pathway intermediates, and off-product 

reactions can all lower specific productivities. While there have been many admirable attempts to 
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forward engineer biological systems and parts22, 24, 52-54 and analytical equations describing 

pathway flux have been formulated55, tuning metabolic pathways is largely still an empirical 

exercise. Because of this, computational models have been used to predict high productivity 

portions of sequence-flux space given sparse flux datasets resulting from testing isogenic 

cultures. Lee et al. used a linear regression model trained on empirical data to relate enzyme 

expression levels to product titers in a violacein biosynthetic pathway29. This simple model could 

accurately predict promoter combinations resulting in the production of violacein or one of the 

three alternative products. Another approach to computationally model and improve pathway 

performance is to correlate targeted proteomics and metabolite data. George et al. generated 

isopentenol pathway variants with differing promoters, operon organization, and codon-usage30. 

They then used HPLC and LC-MS to quantify glucose, organic acids, and pathway intermediates 

and used mass spectrometry to quantify all proteins in their pathway. Spearman rank correlations 

were calculated from values of protein area and metabolite concentrations. Based on these 

relationships, individual variants were reconstructed and tested in time-course experiments to test 

model predictions. While this method may not capture complex regulatory interactions like 

feedback inhibition, other methods like 13C metabolic flux analysis studies are more capable to 

do so56, 57. One example is Feng et al. where the authors tested different xylose reductase, xylitol 

dehydrogenase, and xylulose kinase variants in a yeast xylose pathway and used 13C metabolic 

flux analysis to determine if the different cofactor requirements of the different enzyme variants 

had any effect on growth and ethanol production58. They found that production of ethanol wasn’t 

affected by the cofactor requirements of the xylose pathway however the cofactor-balanced 

xylose pathway allowed growth under more conditions. Farasat et al. developed a sequence-

expression-activity mapping method to find optimal expression conditions with desired activity 
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for a carotenoid biosynthetic pathway31. In a first step, an RBS calculator is used to make a 

library that spans a large range of protein expression space. Next, a subset of the library is tested 

for activity and used as a training set for a computational model. A new library is then 

constructed with targeted expression within a narrow window specified by the model. Zelcbuch 

et al. performed an iterative assembly of three fluorescent reporters, each with an associated 

RBS, into an operon59. This initial search reduced the expression search space for a balanced 

astaxanthin pathway. In a clever approach, they were able to haplotype the individual non-local 

RBS sequences included within the operon by sequencing a downstream barcode built using 

iterative restriction and ligation steps.  

 

ENABLING DNA CONSTRUCTION METHODS 

New genetic modification methods like DNA Assembler60, Golden Gate assembly61, 

Gibson cloning62, sequence and ligase independent cloning (SLIC)63, site-specific recombination, 

or versatile genetic assembly system (VEGAS)64 enable efficient construction of pathway 

variants with an array of different enzymes, promoters, and RBS sequences. Smanski et al. 

utilized Gibson cloning62 and Golden Gate assembly61 to refactor the Klebsiella oxytoca nitrogen 

fixation gene cluster32 by systematically varying the expression levels of individual genes in the 

complete 16-gene pathway. Performance of their clusters was assessed by RNA-seq for 

expression levels and nitrogenase activity assays. The best of the 122 full-length pathways tested 

resulted in recovery of 57% of the wild-type activity. Layton and Trinh used Gibson cloning to 

make ester fermentative pathways in E. coli33. The modular design of their pathway allowed 

quick replacement of RBS and promoter sequences. Oliver et al. improved 2,3-butanediol 

production in cyanobacteria by using SLIC to swap different RBS sequences in front of each 
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pathway enzyme34. Colloms et al. used serine integrase site-specific recombination to rank gene 

order and RBS sites for more efficient production of violacein and lycopene35. Du et al. used S. 

cerevisiae native homologous recombination to swap promoters of various expression strength in 

front of relevant genes65. This was used to improve xylose and cellobiose utilization pathways. 

Kim et al. used a similar approach to balance the flux of a xylose utilizing pathway for biofuel 

production36. Importantly, the optimal pathway was strongly dependent on both the host 

genotype but also the sugar composition of the growth medium. Latimer et al. combinatorially 

tested promoters of the eight gene pathway for xylose utilization in Saccharomyces cerevisiae20. 

Library plasmids were made with Golden Gate assembly. Similar to results above, they found 

that the enrichment of specific yeast promoters in their library after selection was dependent on 

the number of genes expressed, the culture media conditions, and the cofactor dependence of the 

enzymes.  

 

ALTERNATIVE HIGH-THROUGHPUT SCREENING METHODS 

Many of the above examples utilized medium-throughput plate-based screening or a 

growth based selection in order to sort variants. There have been recent developments to utilize 

fluorescence activated cell sorting (FACS) or microfluidic sorting technology in cases without an 

observable growth phenotype. For example, Wang et al. cultured xylose consuming strains in 

droplets and microfluidic sorting based on the fluorescence of oxidized extracellular metabolites 

66. Michener et al. utilized FACS to screen improved variants of caffeine demethylase using a 

designed RNA biosensor67. The RNA biosensor is a combination of ribozyme and aptamer 

located in the 3’ UTR of a fluorescent reporter gene. When the aptamer is bound to a desired 

ligand, the ribozyme misfolds leading to lower RNA cleavage rates and increasing the 
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fluorescent output. Tang et al. utilized FACS to screen for E. coli clones with enhanced triacetic 

acid lactone (TAL) production using a an engineered TAL fluorescent reporter68. Jha et al. used a 

FACS screen to identify E. coli clones with increased enzymatic production of 3,4 dihydroxy 

benzoate 69. In these above examples, the limitation is developing a fluorescent reporter that is 

coupled to intracellular concentrations of a target metabolite.  

 

POPULATION-BASED MEASUREMENTS 

One limitation of high-throughput screening is the inability to haplotype a unique 

pathway sequence to an output phenotype. Typically, only a few “winners” of the selection are 

sequenced. This is sub-optimal for two reasons. First, the winner variants depend strongly on the 

exact selection or screening conditions used, and so a selection must be repeated for each change 

of fermentation condition or host genotype. Secondly, high-throughput methods do not allow 

coverage of a complete sequence-flux space for even moderate-length pathways, and losing 

crucial genotypic information of the pathway makes it impossible to use the powerful 

computational analyses and prediction tools that have been demonstrated for low-throughput 

pathways. I envision population-based measurements that can more thoroughly search sequence-

flux space and also identify Pareto optimal genotypes that are robust to different processing 

conditions (Figure 1.2). In this document I use the definition of Pareto optimality as the state 

where it is impossible to make one condition better without making other conditions worse. An 

example of identifying Pareto optimal genotypes is covered in Chapter 3 of this dissertation. 
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Figure 1.2: Population-based measurements of pathways enable thorough search of flux 

space. a) DNA barcoding methods allow long DNA constructs to be uniquely identified by short 

sequences. b) Deep mutational scanning quantifies the enrichment of individual DNA variants 

after a selection. The enrichment relating the change in frequency of an individual variant can be 
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Figure 1.2 (cont’d) related to specific productivity. c) Comparing the fitness of individual 

variants between different selection conditions allows one to find Pareto optimal pathway 

sequences. This enables the identification of pathways supporting high specific productivity 

under robust processing conditions. 

 

Recent advances in deep sequencing technology allow the ability to track tens of 

thousands of pathway variants in a high throughput screen. Most of such methods rely upon 

“barcoding” individual cells with a short unique identifier DNA sequence (Figure 1.2a). A 

growth selection is performed, and these populations are deep sequenced at the barcode locus. 

The change in frequency of an individual barcode can be related to the fitness of that unique 

variant70, 71. While in principle such techniques could be used to track individual metabolic 

pathway variants, most demonstrations have been for studies on evolution. Smith et al. 

developed a barcode sequencing method (Bar-seq), which they validated by performing growth 

selections of a mixed culture containing yeast deletion strains72. The barcode abundance after 

selection was determined for each deletion strain by deep sequencing the entire population. More 

recently, Levy et al. barcoded 500,000 lineages of Saccharomyces cerevisiae and used a growth 

selection to track time-dependent changes in fitness among the population73. Chubiz et al. 

introduced FREQ-Seq, a method to barcode and determine allele frequencies from a mixed 

population70. FREQ-Seq was used to map seven variants of the enzyme Tet(X2), conferring 

tetracycline resistance, in ten different evolving populations74. 

Frequency analysis of variants within a population can be used to assess if a single 

variant improves, reduces, or has no effect on function. This approach has been used for 

evaluation of yeast translation initiation sites75 and bacterial promoter strengths21 by coupling 

these upstream elements to fluorescent reporter proteins. Subsequently, populations are sorted by 

FACS. In fact, massively parallel sequence-function mapping is now commonplace in 
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determining the sequence effects on function for proteins76. For example, this methodology has 

been used to improve the affinity of engineered protein binders to Influenza77. The question 

remains how to leverage impressive deep sequencing technology to improve implanted 

metabolic pathways.  

In principle, high-throughput sequence-function mapping can be used to determine 

metabolic pathways supporting higher or lower flux, provided that it is coupled to a selectable 

phenotype like growth. I developed a new approach called FluxScan, detailed in Chapter 2, that 

maps the sequence determinants of flux in living cells (Figure 1.2b). First, a selection is 

designed to allow growth if and only if flux is routed through the implanted pathway. A 

mutational library is then created and transformed into the strain of interest. After a growth 

selection is performed for 4-10 generations, the entire population is deep sequenced and 

compared with the population before selection. The frequency change of each variant can be 

calculated and converted to a flux value. To demonstrate this method, I determined the effect of 

flux for over 8,000 single point mutants in a pyrolysis oil catabolic pathway78. One designed 

pathway incorporating fifteen beneficial mutations identified from FluxScan supported a 15-fold 

improvement in growth rate on levoglucosan, a chief pyrolysis oil constituent.  

One significant technical challenge with FluxScan and related deep sequencing 

approaches is the inability to cover the complete length of metabolic pathways: current long read 

lengths of the Illumina platform are approximately 300 bp, whereas full operons can exceed 10 

kb. One method to escape this limitation is to sequence small contiguous regions of sequence (a 

gene tile) able to fit on a single read. This “tiling” is then repeated along the length of the entire 

gene encoding sequence79. Other potential solutions to extend deep sequencing include coupling 

a predefined barcode sequence to a given pathway variant using clever DNA construction 
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approaches32, 59 or to utilize the next generation of long-read, highly accurate haplotype 

sequencing technologies80, 81. 

The ideal outcome of any experiment should be to find Pareto optimal pathway 

sequences that are robust and transferrable to any process condition. Single isogenic culturing 

conditions are not suited for this task as each pathway variant would individually have to be 

tested under each process condition to determine the resulting phenotype. Therefore high-

throughput population-based measurements are more capable to resolve the fitness of each 

sequence variant under each process condition (Figure 1.2c) provided that they are performed 

under diverse conditions. Sequence variants from current high-throughput genomic methods that 

originate from different process conditions highlight this open problem. Gall et al. used the 

SCALEs method to map the gene expression in E. coli that conferred an advantage in the 

presence of 1-naphthol82. They show that genes with enhanced expression depend on the type of 

culturing method used. Only 25% of clones that were reproducibly enriched in serial transfer 

cultures were similarly enriched in single batch cultures. Similarly, Warner et al. used TRMR 

and found differential gene expression depending on the four (valine, D-fucose, methylglyoxal, 

and saliciin) growth conditions tested83. Badarinarayana et al. used DNA microarrays to find 

genes with enhanced expression in E. coli when grown in Luria-Bertani or glucose minimal 

media84. They found that under poor media conditions genes that are biosynthetic for missing 

media nutrients were significantly enriched over cultures in rich media. While these examples 

highlight gene expression on the genomic scale, the problem also applies to expression and gene 

variants on the individual pathway level. An example of this is from the aforementioned 

FluxScan study where the enrichment of individual mutations from the enzyme levoglucosan 

kinase was strongly dependent on the biophysical properties of the starting enzyme variant from 
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each selection78. Being able to measure the pathway phenotype from different expression 

elements and individual gene variants under different growth conditions should allow the 

elucidation of pathway sequences that are optimal over a range of diverse conditions and 

determine why other sequences fail when these conditions change. These high-throughput 

population-based measurements can help train computational models by providing empirical data 

and similarly computational models can help reduce the sequence search space for a more 

targeted population-based screen. 

 

OUTLOOK 

In the near future I believe that robust, high performing pathways can be efficiently 

identified. New DNA assembly technologies allow for construction of large libraries of pathway 

variants covering a large range of protein expressions and activities. The number of unique 

pathway variants that can be made far exceeds that which can be accurately validated using 

existing technology. In this introduction I have covered current methods to reduce the search 

space. There is no general method that can assess any metabolic pathway, as there are limitations 

to each of the main approaches. There are two practical limitations that must be surmounted. 

First, the relationship between gene expression and pathway flux is highly non-linear. Second, a 

specific genotype may only support high productivity in a narrow range of process conditions. I 

suggest that marrying computational modeling with empirical datasets resulting from population-

based measurements will allow a more efficient discovery of Pareto optimal gene encoding, 

expression, or regulatory sequences. 
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Comprehensive sequence-flux mapping of a Lipomyces starkeyi levoglucosan kinase in E. 

coli 

This chapter is adapted with permission from “Comprehensive sequence-flux mapping of a 

levoglucosan utilization pathway in E. coli” in ACS Synthetic Biology 4:1235-1243 by Justin R. 

Klesmith, John-Paul Bacik, Ryszard Michalczyk, and Timothy A. Whitehead. Copyright 2015 

American Chemical Society. John-Paul Bacik and Ryszard Michalczyk carried out the protein 

crystallization at Los Alamos National Laboratory. 
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ABSTRACT 

Synthetic metabolic pathways often suffer from low specific productivity, and new 

methods that quickly assess pathway functionality for many thousands of variants are urgently 

needed. Here I present an approach that enables the rapid and parallel determination of sequence 

effects on flux for complete gene-encoding sequences. I show that this method can be used to 

determine the effects of over 8,000 single point mutants of a pyrolysis oil catabolic pathway 

implanted in Escherichia coli. Experimental sequence-function datasets predicted whether 

fitness-enhancing mutations to the enzyme levoglucosan kinase resulted from enhanced catalytic 

efficiency or enzyme stability. A structure of one design incorporating 38 mutations elucidated 

the structural basis of high fitness mutations. One design incorporating fifteen beneficial 

mutations supported a 15-fold improvement in growth rate and greater than 24-fold improvement 

in enzyme activity relative to the starting pathway. This technique can be extended to improve a 

wide variety of designed pathways. 
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INTRODUCTION 

Production of advanced fuels and chemicals from renewable carbon is a fundamental 

priority for future societal needs. While metabolic routes have been demonstrated for many 

important molecules1, in many cases the specific productivity through these desired pathways is 

far below that needed for a commercially relevant process. Pathway flux can be increased 

experimentally using targeted genetic insertions, optimal strain selection2, promoter or plasmid 

copy number variation3, screening of homologous enzymes governing key reactions within the 

pathway4, or enzyme engineering5, 6. There have also been several published examples of 

balancing gene expression in multi-gene pathways using libraries of gene-modifying expression 

cassettes and, in some cases, performing regression analysis for pathway optimization7-11. 

However, for many of these examples, pathway assembly and functional validation have been 

low throughput. Accordingly, improving activity by high-throughput screening of pathway 

enzyme variants is a relatively underutilized strategy6, 12, 13, and progress on this front awaits the 

development of a high-throughput way to couple genotype to flux. 

Recently, deep sequencing methods have been developed that can assess the fitness 

contribution of thousands of genotypes in a massively parallel fashion14, 15. Such methods 

involve deep sequencing of an entire population before and after a screen or selection16. This 

approach allows, for each variant in the population, quantification of its frequency change, which 

can be related to an underlying function (e.g. binding affinity, catalytic turnover). While such 

techniques have been previously applied to many different protein systems17-19, high-throughput 

mapping of enzymes has been limited to those involved in antibiotic resistance20-22. In principle, 

high-throughput sequence-function mapping can be used to identify metabolic pathway variants 

supporting higher or lower flux, provided that it is coupled to a selectable phenotype like growth. 
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However, until this point deep sequencing-aided interrogation of synthetic pathways has been 

demonstrated only on regulatory sequences involved in transcription and translation23, 24.  

In this work I describe a new method, FluxScan, which enables the mapping of sequence 

determinants to pathway flux on a massive scale.  I show that FluxScan can be used to identify 

scores of mutations that improve the specific levoglucosan (LG) consumption rate (which I refer 

to throughout as “flux”) of a designed levoglucosan catabolic pathway in E. coli. Under certain 

pyrolysis conditions, the 1,6-anhydrosugar levoglucosan is the most abundant molecule formed25, 

26. Efficient LG utilization via microbial fermentation is an essential component of hybrid 

thermochemical/biochemical approaches to deconstruct woody biomass to advanced biofuels27, 28. 

My model pathway utilizes the enzyme levoglucosan kinase (LGK) to convert LG to the 

glycolytic intermediate glucose-6-phosphate in an ATP-dependent reaction29, 30. LGK has low 

thermal stability and relatively poor catalytic efficiency limiting LG consumption when 

expressed in heterologous organisms29-31. Beneficial mutations in LGK identified through 

sequence-function datasets were combined into a single construct, which afforded at least a 24-

fold improvement in enzyme activity compared to the starting construct. The growth rate of the 

final strain was improved by 15-fold over the starting strain in minimal growth media with 4 g/L 

levoglucosan. 

 

RESULTS 

A schematic of FluxScan is shown in Figure 2.1a. First, a selection is developed such 

that microbial growth occurs if and only if flux is routed through a desired pathway. Ideally, 

changes in pathway flux should result in concomitant changes in growth rates. The specific 

growth rate of the initial population should be less than that of the maximum possible growth 
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rate in order to allow elucidation of variants supporting increased or decreased function. Next, 

pathway variants are created by mutagenesis and transformed into the specific strain used in the 

experiment. Growth selections are performed for 6-12 generations, and samples of the starting 

and final populations are deep sequenced. The resulting data allow calculation of the frequency 

change of each member of the library after selection, which can then be related to a growth rate 

relative to the starting sequence16. The end result is a comprehensive portrait of the effect of 

thousands of mutants on flux. 

 

Figure 2.1: FluxScan method overview. a) Schematic of FluxScan. The first step is to create a 

library of metabolic pathway variants. Next, the entire population is subjected to a growth 

selection under conditions in which a flux increase through the metabolic pathway results in an 
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Figure 2.1 (cont’d) increased growth rate. The frequency change of each variant in the 

population after selection is determined by deep sequencing. These frequencies are used to 

calculate a variant-specific fitness metric, a proxy for relative growth rate. b) Levoglucosan 

utilization pathway. After transport across cell membrane, LG kinase converts LG to glucose-6-

phosphate in an ATP-dependent reaction. c) Specific growth rates of E. coli Tuner 

pJK_proJK1_LGK (black squares) and pJK_proJK1_LGK-D212A (blue diamonds) as a function 

of levoglucosan concentration. Error bars represent one standard deviation of experiments 

repeated at least two times. A sigmoidal fit is plotted to guide the eye. (Inset) A Western blot of 

supernatant lysates is shown for Tuner expressing plasmids pJK_proJK1_LGK and 

pJK_proJK1_LGK-D212A. d) Mean catalytic efficiency (kcat/Km) of LGK and LGK-D212A 

measured at 30C. Error bars represent one standard deviation (n≥6). e) Fitness metric values for 

biological replicates of 8,056 LGK variants. The theoretical estimation (see Note A 2.2) of error 

between replicates is plotted at two standard deviations (solid red lines). 

 

To demonstrate the utility of the method, I aimed to improve a levoglucosan utilization 

pathway in E. coli. In this pathway, LG is actively transported inside of the cell by an unknown 

mechanism. Levoglucosan is found in the environment via release from wood burning in forest 

wild-fires32. Next, LGK converts LG into glucose-6-phosphate, the first intermediate in 

glycolysis (Figure 2.1b). Levoglucosan kinase from Lipomyces starkeyi is a 439 residue enzyme 

of the hexokinase family32. The closest natural homolog to LGK is the Gram-negative bacteria 

peptidoglycan recycling enzyme AnmK33. Both enzymes share a similar fold and sequence 

homology in addition to a similar mechanism for substrate hydrolysis and phosphorylation32.  

Under conditions where transport is not limiting, increasing LGK activity results in 

increasing growth rates. I first established a plasmid-based selection system where a strong 

synthetic constitutive promoter34, 35 drives expression of a codon-optimized LGK from 

Lipomyces starkeyi (pJK_proJK1_LGK). When E. coli Tuner pJK_proJK1_LGK was grown in 

M9 salts supplemented with LG as the sole carbon source, increasing concentrations of LG 

increased the specific growth rate of the strain (Figure 2.1c). Western blots showed soluble 

expression of LGK (Figure 2.1c). E. coli Tuner expressing the catalytic knockout LGK-D212A30 

was unable to support growth on any concentration of LG tested (Figure 2.1c, 2.1d), confirming 
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that expression of active LGK was responsible for the LG growth phenotype. Finally, I 

hypothesized that in this system LG consumption rate was determined by LGK activity, not 

transport rate. To validate this hypothesis, I determined LGK activity using cell lysate assays and 

compared these with theoretical predictions necessary to support cell growth for two different 

growth conditions. In both cases, experimental measurements closely matched their respective 

theoretical predictions, confirming that growth rates are primarily limited by LGK activity rather 

than transport of LG into the cell (Note A 2.1, Table A 2.1). 

I then used PFunkel mutagenesis36 to produce a comprehensive single-site saturation 

mutagenesis library of LGK, transformed the library into E. coli Tuner cells, and grew the 

population for approximately ten average population doublings at 37oC using 10 g/L LG as the 

sole carbon source. The entire LGK variant population was deep sequenced before and after 

selection, and this information was used to determine a fitness metric (a proxy for relative 

growth rate; see Materials and Methods) of each LGK variant via an established deep sequencing 

pipeline16. Biological replicates of the selection showed strong reproducibility, with the 

difference between replicates consistent with counting errors inherent in the deep sequencing 

quantification pipeline (Figure 2.1e, Note A 2.2). Using this method, I was able to recover the 

fitness of 8,056 out of 8,780 (91.8%) possible single nonsynonymous mutations in the protein 

encoding sequence (Figure 2.2a, Figure A 2.1, Table A 2.2). For additional verification, I 

measured the growth rates of twelve individual variants, and the rank ordering of growth rates 

matched those measured by the deep sequencing method (Figure 2.2b). LG activity measured by 

lysate assays increased relative to the starting sequence for all five improved variants that were 

tested (Figure 2.2c), supporting the hypothesis that pathway flux can be coupled to growth rates.  
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Figure 2.2: Demonstration of FluxScan. a) A fitness metric heatmap for 35/439 LGK residues 

in an LG utilization pathway. Columns represent residue identity while rows denote mutations. 

Red shading indicates an increased fitness metric, while reduced fitness is shown in blue. Gray 

indicates a mutation with less than five counts in the unselected library and was excluded from 

further analysis. 1st shell indicates residues that contact active site ligands. b) A bar graph of 

fitness metric (gray, left) and specific growth rate of isogenic cultures (red, right) for selected 

variants. Error on fitness is two s.d. and the specific growth rate is one s.d. (n≥2). c) A bar graph 

of fitness metric (gray, left) and LGK lysate activity of isogenic cultures (red, right) for selected 

variants. Error on the lysate flux is one s.d. (n=2 cultures, n=3 assay replicates). d) LGK    
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Figure 2.2 (cont’d) structure (PDB: 4ZLU) showing the locations of each residue with a 

mutation that improves relative growth rate by at least 20% (red). The ADP and LG ligands are 

shown as sticks, while magnesiums are shown as orange spheres. The gray line traces the other 

LGK subunit in the homodimer. e) View of the active site of LGK. Residues shown in red have 

mutations that result in increased relative growth rate. Residue Gly359 is indicated in blue. f) 

Relative catalytic efficiency plotted against the apparent melting temperature (Tm,app) for 

improved variants. The line is a linear fit of the dataset, with error bars representing one standard 

deviation (n≥3). LGK-His6 is indicated in red and G359R is shown in blue. 

 

In all, 86 (1.0%) point mutants showed improved growth rates greater than 50% relative 

to the starting sequence, and 215 (2.7%) were able to improve the growth rates greater than 20% 

(Table A 2.2). Analysis of the native crystal structure of LGK30 showed that these 215 gain-of-

function mutations were scattered throughout the structure (Figure 2.2d,e): 8 (3.7%) were 

located in the 1st shell of the active site (G27A, N217C/M/T, Y331K/N, and T268A/C), 34 

(15.8%) were found in the 2nd shell, 33 (15.3%) were located at the homodimer interface, 26 

(12.0%) were found at the surface of the protein, 93 (43.2%) were at buried positions with less 

than 25% accessible surface area in the apo LGK structure, and 45 were within 10 residues of the 

N- or C- terminus. 

An individual variant can support increased pathway flux relative to the starting sequence 

by a number of mechanisms. For example, changes near the 5’ untranslated region could change 

the stability of the mRNA transcript, resulting in a higher concentration of enzyme within 

individual cells. Alternatively, changes at the protein level could result in a more catalytically 

efficient enzyme, higher in vivo expression yields, or some combination of the two. Since LGK-

His6 has a low apparent melting temperature (Tm,app) of 33.8 ± 0.7C (Table 2.1), activity may be 

partially limited by enzyme stability. In such a case, higher thermostability is known to result in 

a lower degradation rate in vivo37, 38, resulting in higher concentration of active enzyme.  

To understand the functional basis for the improved variants, I produced a select number 

of gain of function variants and tested their in vitro catalytic efficiency and thermostability 
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(Table A 2.3). I found that most of these variants were modestly stabilized relative to LGK-His6, 

with a median increase in Tm,app of 2.1oC (range 0-9.8oC). While no tested variant showed 

significant enhancement in Km, four out of twelve tested variants showed statistically significant 

improvements in the turnover rate (kcat) relative to LGK-His6. In particular, a variant with the 

mutation G359R (Figure 2.2e,f), which is adjacent to two residues coordinating an active site 

Mg2+, had nearly double the turnover rate of LGK-His6. Interestingly, there was a negative 

correlation between Tm,app and relative catalytic efficiency (Figure 2.2f), suggesting competing 

stability/efficiency trade-offs consistent with previous observations39-41. However, LGK G359R 

showed increased specific activity without corresponding decrease in stability, showing that for 

some mutations there is not a trade-off (Figure 2.2f). 

Table 2.1: Number of mutations, apparent Tm and relative catalytic efficiency of LGK 

designs. The amount of introduced beneficial mutations in total and between certain fitness 

metric values in each selection for each enzyme design. The Tm apparent measured by the 

thermal shift assay, error is 1 s.d. And the catalytic efficiency relative to wild-type, error is 1 s.d. 

    Selection 

Number of mutations with 

fitness values     

Design 

Total 

number of 

mutations 

1st ≥0.15 ≥0.15 ≥0.15 <0.00 

Tm,apparent 

[°C]    

Relative Catalytic 

Efficiency  

2nd ≥0.15 

-0.15 

to 

0.15 

≤-0.15 ≥0.15 
kcat/Km [M-1 s-1]/ 

kcat,wt/Km,wt [M
-1 s-1] 

LGK 0 
 

- - - - 33.8 ± 0.7 1.00 

LGK.1 3 
 

0 3 0 0 38.9 ± 0.1 1.07 ± 0.08 

LGK.2 4 
 

0 3 1 0 42.1 ± 0.1 0.46 ± 0.07 

LGK.3 38 

 

5 24 9 0 81.6 ± 0.6 0.00 ± 0.00 

LGK.4 35 

 

3 27 5 0 69.2 ± 0.8 0.00 ± 0.00 

LGK.5 57a 

 

2 44 6 0 65.4 ± 0.1 0.00 ± 0.00 

LGK.6 23 

 

0 3 0 20 NDb NDb 

LGK.7 18 

 

13 5 0 0 47.7 ± 0.0 0.30 ± 0.03 

LGK.8 26 

 

8 4 0 14 33.4 ± 0.0 1.06 ± 0.37 

LGK.9 15   5 4 0 6 41.0 ± 0.3 2.12 ± 0.13 
aFive mutations in LGK.5 were not found in the second selection. 
bLGK.6 was not determined as it was not expressed as a soluble enzyme. 
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In light of the above results, I reasoned that repeating the selection with a stabilized 

variant would uncover additional mutations that improve catalytic efficiency. Accordingly, I 

constructed two variants, LGK.1 and LGK.2, containing a handful of mutations distant from the 

active site. Both LGK.1 (L140I, S142A, A373C) and LGK.2 (V11P, M257H, T268C, A373C) 

had an improved Tm,app and a catalytic efficiency close to the starting enzyme (Table 2.1). In the 

same genetic background, these variants supported much higher flux and, consequently, were 

able to support much higher growth rates at low initial concentrations of LG, with LGK.1 

performing slightly better than LGK.2. However, LGK.1 was not able to support growth at 

higher concentrations of LG, possibly due to overflow metabolism or imbalances in the 

adenylate energy charge42, 43 (Table A 2.4). Consequently, I screened weaker constitutive 

promoters16 to reduce basal protein expression to a level where LGK.1 can support half-maximal 

growth in 4 g/L LG (Figure 2.3a). The decreased protein load of LGK.1 necessary to drive 

pathway flux resulted in a higher basal growth rate in M9 minimal media supplemented with 

glucose34. I then constructed comprehensive single site saturation mutant libraries using this 

improved variant as the background construct and performed a growth selection for a total of 

twelve average population doublings. I was able to recover the fitness of 8,312 out of 8,780 

(94.7%) possible nonsynonymous mutations in the protein encoding sequence (Table A 2.2, 

Figure A 2.2), with biological replicates showing reproducibility between experimental datasets 

(Figure A 2.3). 
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Figure 2.3: Starting with the more stable LGK.1 changes the fitness landscape. a) 

Comparisons of growth rates in different media for E. coli TUNER expressing LGK (gray 

squares) or the more stable LGK.1 (red diamonds). The growth rate of cultures expressing 

LGK.1 from the weaker promoter proNR2 was half-maximal at 4 g/L LG. The mean and 

standard deviation are from at least five samples taken on different days. b) The frequency of 

mutations that improved relative growth rates >20% is binned for each 4 Å shell as a function of 

distance from active site ligands in the first selection (gray) and the second selection (red). A 

higher frequency of beneficial mutations was found in the first selection. c) Comparison of the 

fitness metric between the first and second selections. The red dashed lines delineate the 20% 

improvement or reduction in growth rate. Tested mutants with improvements in stability but 

reduction in catalytic efficiency are indicated with blue triangles, whereas tested mutants with a 

catalytic efficiency greater than LGK are indicated with green squares. 

 

In stark contrast to the first selection under the wild-type LGK background, only 54 

(0.6%) point mutants improved growth rates greater than 20% relative to the starting sequence, 

and none improved growth rates by more than 50% (Table A 2.2). Additionally, mutations with 

improved fitness were depleted near the active site (Figure 2.3b). In fact, only two variants with 

mutations near the 1st or 2nd shell (G359L/R) supported improved growth rates greater than 20%, 

and both were uncovered in the original selection. However, there was a significant decrease in 
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beneficial mutations at buried positions compared to the first selection (Table A 2.5), possibly 

because such mutations primarily enhance thermostability, which does not result in increased 

fitness in the more stable LGK.1 background.  

I next asked to what extent mutations identified from FluxScan could be combined to 

improve performance of the levoglucosan pathway. Ideally, high-fitness designs with multiple 

pooled mutations could be constructed without exhaustively testing all possible combinations. 

However, some fitness-enhancing mutations result in lower catalytic efficiency, and combining 

many of these mutations may result in a design with lower flux, and hence fitness. Intersection of 

the two different selections (Figure 2.3c) could provide insight into the biophysical basis of 

individual mutations. For example, I hypothesize that mutations that are enriched in the first 

selection but show decreased fitness in the second selection using the more stable LGK.1 should 

improve thermostability at the expense of catalytic efficiency. By contrast, variants supporting 

higher fitness in the second selection but lower fitness in the first selection improve catalytic 

efficiency at the expense of thermostability. Mutations enriched in both selections improve 

fitness without a compensatory trade-off. In support of this hypothesis, nine variants had in vitro 

properties consistent with predictions from their respective fitness values (Figure 2.3c). 

I constructed three designs to test the hypothesis that designs incorporating fitness-

enhancing mutations from the first selection and decreased fitness in the second selection will 

result in thermostable, catalytically inactive proteins. LGK.3 and LGK.4 were designed by hand, 

and LGK.5 was designed by RosettaDesign44 in fixed backbone mode. The designs incorporated 

35-57 mutations from the starting sequence (sequences are listed in Table A 2.6), were 

expressed in E. coli and assayed in vitro as purified enzymes. Consistent with the hypothesis, all 

three designs showed large enhancements in Tm,app, with LGK.3 having a Tm,app of 81.6±0.6oC 
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(Table 2.1). However, all three designs were catalytically inactive under the conditions tested. A 

single residue was not responsible for the loss of catalytic activity, as these designs each contain 

a number of unique mutations. Backcrossing experiments using LGK.3 and LGK resulted in 

recovery of less than 10% relative activity for a construct incorporating 17/38 possible LGK.3 

mutations (Table A 2.7). These results suggest that the trade-off of catalytic efficiency for 

thermostability is gradual and the loss of catalytic activity is not the result of a single mutation.   

To understand the structural basis of thermostability of the LGK designs, the crystal 

structure of LGK.3 (PDB: 4ZXZ) was determined to a resolution of 2.2 Å. The LGK.3 structure 

coordinates can be superposed to native LGK with bound ADP (PDB: 4YH530) to a RMSD of 

0.62Å (Figure 2.4a). I found that most mutations improved stability by making very modest 

changes to core packing. For example, P75L improves hydrophobic packing interactions with 

residues Leu78, Ile117, and Leu132 at the homodimer interface (Figure 2.4b). As another 

example, C194T (Figure 2.4c) forms a hydrogen bond with Asp171 to aid in backbone 

stabilization while preserving the same van der Waals interactions formed by the cysteine 

sulfhydryl. This stabilization is energetically important, as LGK C194T has a 6C higher Tm,app 

than LGK (Table A 2.3). 
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Figure 2.4: The structural basis for the improved stability and inactivity of the LGK.3 

design. a) Superposition of wild-type LGK bound to ADP (green lines; PDB: 4YH5) and LGK.3 

(blue lines, PDB: 4ZXZ). The RMSD between structures is 0.62Å. b) View of residue 75 in LGK 

(blue) and LGK.3 (grey). Mutation Pro75Leu in LGK.3 enhances hydrophobic packing with 

residues L78, I117, and L132 at the homodimer interface. c) View of residue 194 in LGK (blue) 

and LGK.3 (grey). Mutation C194T forms a new hydrogen bond with Asp171 to aid in main 

chain stabilization. d) Water bonding arrangements near the levoglucosan binding site. In LGK.3 

(top), several of the waters appear to be displaced or are absent when compared to the wild type 

structure (middle, PDB: 4YH5). When levoglucosan is bound in the wild-type enzyme (bottom) 

two of the substrate hydroxyls take the place of the conserved water positions (PDB: 4ZLU). e) 

View of mutation I167H in LGK.3 (gray) and LGK (blue). The two waters near this mutation 

were not found in the LGK.3 structure providing further support that a disrupted water network 

could reduce activity. f) View of mutations L56W and H88T in LGK.3 (grey) compared to LGK 

(blue). The mutations appear to cause a large shift of the loop that coordinates nucleotide binding. 

 

Next, I evaluated the LGK.3 structure to identify structural reasons responsible for 

LGK.3 inactivity. With the large number of mutations it is difficult to assess from the structure 

any single point mutant that compromises activity. Native active site residues thought to 

participate in catalysis are in the same rotameric conformations as in native LGK, including the 

catalytic aspartate, Asp212. In all of the native LGK structures the water structure is highly 
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conserved30. By contrast, for LGK.3 several of the waters appear to be displaced or are absent, 

although this may be partially explained by the lower resolution of this structure (Figure 2.4d). 

A I167H mutation appears to be a candidate for diminishing activity since it is very close to the 

LG binding site and also to Glu362, which binds magnesium (Figure 2.4e). Indeed, kinetic 

analysis of the I167H recombinant point mutant showed a reduced relative catalytic efficiency of 

0.17 ± 0.01 (Table A 2.3) compared to the wild-type enzyme. Addition of multiple mutations 

also can cause structural changes that are not existent in point mutants.  For example, L56W 

appears to cause a large main chain shift directly adjacent to the ATP binding site, which may be 

exacerbated by the nearby mutation of H88T, thereby affecting the enzymes ability to bind ATP 

(Figure 2.4f).  

To improve the function of LGK in the catabolic pathway, I next tested four designs 

harboring 15-26 mutations from the starting LGK.1 sequence (Table 2.1, Table A 2.5). Designs 

were constructed by randomly choosing mutations identified from intersection of the two 

selections. Potential designs were modeled by Rosetta44, 45 using the LGK structure as a template. 

Structures with unresolved steric clashes were discarded. In general, designs had mutations that 

were distributed throughout the protein but depleted near the active site (Figure A 2.4). LGK.6 

primarily contained mutations with increased fitness in second selection but decreased fitness in 

the first selection. Consistent with the hypothesis that these mutations negatively impact 

thermostability, I was unable to solubly express LGK.6. LGK.7 contained mutations that were 

beneficial in both selections. I found that this design was improved in stability but showed a 

reduction in catalytic efficiency, possibly because some unknown combination of mutations 

showed negative epistasis. The final two designs (LGK.8 and LGK.9) combined mutations from 

LGK.6 and LGK.7. Design LGK.8 had a Tm,app and a relative catalytic efficiency similar to wild-



42 

type LGK, while LGK.9 showed significant improvements in stability and activity at double the 

catalytic efficiency of LGK (Table 2.1).  

To test whether LGK.9 improves LG utilization by E. coli, I expressed LGK.9 from the 

same plasmid (pJK_proNR2) used for the LGK.1 selection. E. coli Tuner expressing LGK.9 

showed at least a 24-fold improvement in flux over the starting sequence and 2.7-fold higher flux 

over LGK.1 at 4 g/L LG when measured by lysate activity assays (Figure 2.5a). The strain 

expressing LGK.9 showed a 15-fold improvement in growth rate over the starting sequence at 4 

g/L LG. However, LGK.9 showed only a 1.3-fold improvement in growth rate over LGK.1 

(Figure 2.5b), indicating that LG transport into the cell, rather than enzyme activity, may be 

limiting growth under these conditions. While future engineering efforts should focus on 

identifying and improving the molecular transporter(s) responsible for LG influx, I conclude that 

FluxScan is able to markedly improve the performance of enzymes within engineered metabolic 

pathways. 

 
 

Figure 2.5: Design LGK.9 improves utilization and growth rate using LG as the sole carbon 

source. a) Enzyme activity assays of lysates of E. coli Tuner strains expressing different LGK 

variants. Strains were grown on M9 salts with the specified LG concentration as the sole carbon 

source. LGK.9 had greater than a 24-fold improvement of lysate activity compared to the starting 

construct at 4 g/L LG (n ≥ 2 cultures, n = 3 assays per culture). b) Specific growth rates for E. 

coli Tuner strains expressing the three designs. Cultures were grown aerobically at 37C in M9 

salts with the specified LG concentration as the sole carbon source.  pJK_proNR2_LGK.9 

supported a 15-fold improvement of the specific growth rate over the starting variant at 4 g/L LG. 

The bars represent the mean and the error bars SD of cultures grown on different days (n≥4). 
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DISCUSSION 

In this work I have demonstrated a new method that can be utilized to map the sequence 

determinants to flux through metabolic pathways in living cells. I have shown that it is possible 

to determine the flux of thousands of pathway variants in a single experiment and that mutations 

resulting in flux enhancements can be rationalized from biophysical considerations of the 

pathway enzyme. Further, I show that gain-of-function mutations can be combined in a rational 

manner to create enzymes with improved stability and/or catalytic efficiencies. Using mutations 

identified by FluxScan, I engineered an improved levoglucosan catabolic pathway allowing a 15-

fold improvement in growth compared to the starting synthetic pathway. This engineered 

enzyme should increase the efficiency of utilization of anhydrosugars produced from 

thermochemical processing of renewable biomass. 

FluxScan is advantageous because it allows short selection times (on the order of one 

day), and it uses liquid cultures as the selection medium. Liquid culture selections facilitate over-

sequencing to generate fewer false positives than plate-based selections. This over-sequencing 

provides resolution of variants with a 10% change in relative growth rate. Whereas current 

metabolic engineering techniques to enhance activity are focused largely on improving 

expression elements, FluxScan can be used to directly improve the donated pathway enzymes. 

Compared to recombineering or continuous evolution selections that result in a handful of 

winners relevant only under the specific selection conditions (strain type, expression level, media 

formulations), the fine resolving power of FluxScan allows identification of scores of mutations 

that are able to improve pathway specific productivity. These datasets can then be coupled to 

other approaches such as structure-guided rational design to narrow the search space for 

phenotypic improvements.  
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In the demonstrated implementation, I identified the relative growth rate for nearly all 

possible single point mutants in an enzyme. I demonstrated that these single point mutants could 

be combined to generate better performing designs. I tested five designs that were expected to 

improve flux. Of these, four showed improved thermostability relative to LGK, while only one 

had significantly higher catalytic efficiency. Additional work will further our understanding of 

factors that can contribute to the design of more stable and efficient enzymes using the sequence-

flux relationships generated by the method. 

While I have demonstrated the power of FluxScan to improve a LG utilization pathway, 

there are several limitations of the current method. For example, even in the simple one-enzyme 

system developed in this work there was not a monotonic relationship between growth rate and 

flux. The LGK.1 design, when placed under the same strong promoter as LGK, was unable to 

support growth. This effect is attributed to imbalances in adenylate energy charge at the 

beginning of glycolysis42, 43. Next, the method is well suited for improving flux when the rate-

determining step is known. In the last sets of designs tested, transport limitations become flux-

determining as further improvements to the enzyme did not result in corresponding 

improvements in growth rate using LG as the sole carbon source. The requirement for a growth-

based selection currently precludes transferability to fermentative pathways. Finally, a truly 

transformative approach would be to modulate several rate-determining enzymes and 

transporters at a single time. However, technical challenges of resolving mutations over kb-

length distances by deep sequencing currently limits approaches to, at most, two enzymes.  

Future work to improve the utility of FluxScan should focus on extending the method to 

cover fermentative pathways and to demonstrate modulation of multiple pathway enzymes in a 

single experiment. With regards to fermentative pathways, one approach to couple flux to growth 
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is by introducing genetic deletions into a host strain such that an organism grows anaerobically 

only if flux is routed through the desired fermentative pathway46, 47. Additionally, such a method 

can easily be adapted to couple pathway activity to fluorescence48, with cells screened using 

fluorescence activated cell sorting or other approaches. A primary limitation of the methodology 

is that next generation sequencing read lengths limit interrogation of sequence changes to several 

hundred contiguous nucleotides. Longer, more complicated pathways await development of 

sequencing technologies able to map long DNA stretches with unprecedented accuracy49, 50. I 

anticipate such improvements in deep sequencing capability, allowing the use of FluxScan for 

resolving haplotypes of coupled mutations spread over complete synthetic operons.  

 

MATERIALS AND METHODS 

Reagents 

All chemicals were purchased from Sigma-Aldrich, unless otherwise noted. All DNA 

primers were ordered from IDT. Genetic constructs were sequence verified by Genewiz. Selected 

plasmid constructs have been deposited in the AddGene plasmid repository (www.addgene.org). 

 

Plasmid construction and verification 

The plasmid pJK_proJK1_LGK was created by inserting a codon-optimized gene 

encoding levoglucosan kinase (LGK) (Genscript, Piscataway, NJ) with LEHHHHHH as the C-

terminal tag into a pJK-series plasmid using the NdeI/XhoI restriction sites. The pJK plasmid was 

created by modifying the promoter and antibiotic resistance gene of pET-29b(+) (Novagen). A 

variant of the proB promoter sequence35 was ordered as a gBlock (IDT) and cloned into pET-

29b(+) between the BglI and XbaI restriction sites using standard techniques. On pET-29b(+) the 
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lacI gene, lacO gene, and the T7 promoter were removed between these restriction sites. The 

antibiotic resistance gene on pET-29b(+) was swapped to TEM-1 BLA (AmpR) from pET-

22b(+) (Novagen) using Gibson assembly51. The ribosome binding site (sequence AGGAG), 

pMB1 ori, and the T7 terminator were not modified during the creation of the base plasmid. The 

plasmid pET29b_LGK-His6x was created by subcloning LGK-His6x into unmodified pET-29b 

(Novagen) from pJK_proJK1_LGK by NdeI/XhoI digestion. Individual point mutants were 

created using Kunkel mutagenesis52. The proJK1 promoter sequence is -35:TTTATG and -

10:TATAAT, and the proNR2 promoter sequence is -35:CTTACG and -10:TAATAT. LGK 

designs were constructed from gBlocks (IDT) and cloned into plasmids using Gibson assembly51. 

All protein and nucleic acid sequences of LGK variants tested are listed in Note A 2.3. 

 

Comprehensive single-site mutagenesis library preparation 

Comprehensive single-site saturation mutagenesis was performed on the LGK protein 

encoding region of plasmids pJK_proJK1_LGK-WT and pJK_proNR2_LGK.1 using PFunkel 

mutagenesis36 essentially as described in Kowalsky et al.16. Next, 10 ng of library plasmid DNA 

was transformed into electrocompetent E. Coli Tuner and plated overnight on Nalgene BioAssay 

plates (245mm X 245mm X 25 mm) with LB Agar and carbenicillin (Sigma-Aldrich). Controls 

were run to limit double plasmid transformation artifacts16. The next day, cells were scraped and 

used to inoculate a 50 mL TB culture with carbenicillin at an initial OD600 of 0.01. After 7 hours 

of growth at 37°C and 250 rpm this culture was pelleted and washed with 1X M9 salts solution 

(47.6 mM Na2HPO4, 22 mM KH2PO4, 8.54 mM NaCl, 18.68 mM NH4Cl, pH 7.0) three times. 

These washed cells were used to inoculate a 50 mL culture of M9 minimal media with 4 g/L 

glucose with carbenicillin at a starting OD600 of 0.05. After 16 hours of growth at 37°C at 250 
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rpm, the cells were washed and resuspended in fresh 1X M9 salts solution at an OD600 of 0.45. 

DMSO was then added to the cell suspension at a final concentration of 7% (v/v), and 1 mL 

aliquots were flash frozen with liquid nitrogen. 

 

Growth selections 

Each frozen cell stock was thawed on ice for 45 minutes and then centrifuged for 5 

minutes at 10,000xg. The storage media was aspirated, and the stock was re-centrifuged for 5 

minutes at 10,000xg. Pellets were washed three times with 1 ml of 1x M9 salts solution and 

resuspended to an OD600 of 0.03 in M9 minimal media + 4 g/L glucose + carbenicillin. This 

culture was grown for 17.5 hours at 37°C and 250 rpm. Cultures were then pelleted at 6000xg for 

5 minutes. The growth media was aspirated and the cell pellet was washed three times with 1 mL 

of 1X M9 salts solution. Cells were resuspended in 1X M9 salts solution and used to inoculate at 

M9 minimal media with carbenicillin and levoglucosan (10 g/L for the initial selection on LGK 

and 4 g/L for LGK.1) at an initial OD600 of 0.02. Unused cell pellets were stored at -80°C for 

comparison as the unselected population. Cultures were grown for 4.5-5 generations, pelleted 

and washed with 1X M9 salts solution, and used to inoculate another Hungate tube (ChemGlass) 

with fresh media for another 4.5 to 5 of generations of growth. At the end of the selection the 

cells were pelleted at 10,000xg for 5 min and media removed by pipette. Cell pellets were stored 

at -80°C for sequencing as the selected population. 

 

Deep sequencing analysis 

Libraries were prepared for deep sequencing according to Kowalsky et al.16 using the 

primers sets listed in Table A 2.8. Deep sequencing was performed on an Illumina MiSeq in 150 
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bp PE and 300 bp PE reads. Enrich53 was used to process the deep sequencing files to determine 

the counts and enrichment of each mutation. The fitness metric for a variant i (I ) is defined as 

the binary logarithm of growth rate of the variant i relative to the growth rate of the starting 

sequence16: 

   (1) 

where i is the enrichment ratio of the variant, wt is the enrichment ratio of the starting sequence, 

and gp is the average number of population doublings in the selection. Enrichment and fitness 

metric error were then calculated using equations in Note A 2.2. Custom python scripts used to 

calculate the fitness metric and statistics are at Github [user: JKlesmith] (www.github.com). The 

specific command lines used and description of flags are in Note A 2.4. The full deep sequencing 

datasets are provided at figshare (www.figshare.com). 

 

Biochemical characterization 

LGK variants cloned in pET-29(+) were expressed in BL21*(DE3) using Studier auto-

induction54 at 37ºC for eight hours then 18ºC overnight. Cell pellets were resuspended in 50 mM 

HEPES pH 7.6 buffer and were sonicated with a 120 W, 20 kHz FB120 sonicator (Fisher 

Scientific) with a 1/4" sonicator horn using the settings: 2:30 m total on time, cycled for 30 s on, 

30 s off, 37% amplitude. Sonicated cell lysate was applied to a buffer equilibrated Ni-NTA 

agarose column and subsequently washed and eluted from the column. LGK was desalted using 

PD-10 columns (GE Healthcare). Purified protein was quantified using the Synergy H1 

spectrophotometer by measuring A280 over the calculated extinction coefficient of 39,880 M-1 

cm-1 (ExPASy ProtParam). 
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A coupled glucose-6-phosphate dehydrogenase (G6PD) assay was used to determine the 

catalytic parameters of the recombinant LGK55. The final concentration of each component in a 

total of 100 µL is 55 mM HEPES pH 7.6, 99 mM NaCl, 1.5 mM NAD+, 2 mM ATP, 20 mM 

MgCl2, and 0.8 units of recombinant glucose-6-phosphate dehydrogenase from Leuconostoc 

mesenteroides suspended in water (Sigma-Aldrich). Levoglucosan (Carbosynth, UK) was added 

to each assay well in a 1:2 serial dilution of final concentrations from 550 mM to 17.2 mM. 

Assay components were sealed and incubated on a 30°C pebble bath for 5 minutes prior addition 

of 10 µl purified LGK enzyme for a final enzyme concentration of 0.1 µM. Absorbance was 

monitored at A340 by a Synergy H1 spectrophotometer using a kinetic read method every 21 

seconds at 30ºC for 20 minutes. Gen5 software was used to correct the pathlength to 1 cm, 

subtract blank assay wells, and divide by the extinction coefficient of NADH of (6,220 M-1 cm-1). 

The time versus NADH concentration data was exported and the velocity was calculated from 

the initial slope until a NADH concentration of 0.3 mM or 6 minutes. Prism 6 (GraphPad) was 

used to non-linearly fit substrate velocity versus levoglucosan concentration using the Michaelis-

Menten equation to calculate Km and Vmax. 

Apparent melting temperatures of protein variants were assessed using a modified 

SYPRO Orange thermal-shift assay56, 57. 45 L of 5 M purified enzyme was added to 5 L of 

200x SYPRO Orange (Life Technologies) in 50 mM pH 7.6 sodium phosphate buffer for a total 

volume of 50 L. A Bio-Rad CFX96 Real-Time PCR (Bio-Rad) measured fluorescence (ex: 470 

nm, em: 570 nm) while the temperature increased from 25C to 99C at a gradient of 0.5oC per 

30 s. A Boltzmann sigmoidal fit was used to determine the Tm,app
56. All samples were tested in 

triplicate. 
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Growth rate and lysate flux measurements of clonal variants 

Cells were prepared as above, except that cells were freshly transformed. 0.05 mL of the 

washed cells were added to 2.95 mL of M9 media with carbenicillin and levoglucosan 

concentrations ranging from 0 g/L to 24 g/L in 14 mm inner diameter Hungate tubes. Biological 

replicates were grown aerobically at 37°C at 250 rpm in an I26 Shaker (New Brunswick). 

Optical density measurements were taken using a Genesys 20 Spectrophotometer (Thermo 

Fisher Scientific) at approximately 1-hour time intervals until the culture reached an OD600 of 0.6. 

Specific growth rates were calculated by taking the slope of the natural log transformed OD600 

readings during exponential growth. 

LGK activity of cell lysates was assayed using cell lysate preparation procedures adapted 

from Bienick et al.34. Strains were grown aerobically at 37C at 250 rpm in M9 minimal media 

with levoglucosan and carbenicillin. Cultures were sampled at an OD600 between 0.15 and 0.3 

and then were centrifuged at 10,000 xg for 5 min and washed with PBS twice then resuspended 

in 50 mM HEPES pH 7.6 and 90 mM NaCl. Cells were lysed with a 120 W, 20 kHz FB120 

sonicator (Thermo Fisher Scientific) with a 1/8″ sonicator horn using the settings: 39 s total on 

time, cycled 3 s on, 15 s off at 37% amplitude. The lysate was clarified at 10,000 xg for 5 

minutes in a microcentrifuge. After lysing the cell culture, 10 L of cell lysate was added to the 

assay to measure the turnover of LG by LGK within the lysate. This rate was then normalized to 

gDCW using the M9 media OD600 to gDCW conversion factor of 0.56 (gDCW/L)-cm/OD600
34. 

 

Crystallization, data collection and structure determination 

 

pET-29b_LGK.3-His6x was transformed in to E. coli strain BL21(DE3) GOLD cells 

(Invitrogen). A 5 ml overnight culture of recombinant E. coli BL21(DE3) GOLD cells was added 



51 

to 500 mL of Overnight Express Instant LB Medium (Novagen) supplemented with 1% v/v 

glycerol and 35 g/mL kanamycin. The culture was then incubated for 20 hours at 30°C with 

shaking (300 rpm). Cells were pelleted by centrifugation and stored at -80°C. Pellets were 

thawed in 20 mL of ice-cold lysis buffer (0.5 M NaCl, 20 mM Tris-HCl pH 7.5, 2 mM 

imidazole) and lysed using sonication. The lysate was clarified by centrifugation and mixed with 

2 mL of TALON metal affinity resin (Clontech) with gentle shaking for 30 minutes at room 

temperature. The talon beads were centrifuged and re-suspended in binding buffer (500 mM 

NaCl, 20 mM Tris pH 7.5, 0.5 mM TCEP) before being poured into a 20 ml gravity column. The 

column was washed with 20 mL of binding buffer supplemented with 5 mM imidazole, followed 

by 20 mL of binding buffer supplemented with 10 mM imidazole. The LGK.3 protein was eluted 

from the column with 10 mL of binding buffer supplemented with 250 mM imidazole. The 

protein was further purified by Superdex 200 gel filtration column in crystallization buffer (20 

mM Tris pH 7.5, 50 mM NaCl, 0.5 mM TCEP) prior to concentration using an Amicon Ultra-15 

concentrator with a 10,000 Da cut-off (Millipore).  Chromatographic steps were performed using 

an AKTA FPLC (GE Healthcare).  

LGK.3 crystals were grown at room temperature using the hanging drop vapor-diffusion 

method by mixing 3 µl volumes of reservoir buffer containing 18% PEG3350 and 500 mM 

ammonium tartrate and 3 µl  LGK.3 (21.5 mg/mL) in crystallization buffer. The resulting crystal 

was mounted in a glass capillary and a room temperature X-ray diffraction data were collected 

using a Rigaku X-ray diffractometer. The data were integrated using MOSFLM58 and scaled and 

merged using SCALA59. Phase estimates for the structure were obtained by molecular 

replacement using PHASER60 and the native LGK structure as a search model (PDB identifier: 

4YH5). The model was subsequently rebuilt using the PHENIX autobuild routine61. Further 
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iterative model building and refinement of the protein structures were performed using Coot and 

PHENIX62. The stereochemical quality of the final models was assessed using MolProbity61. 

Refinement statistics are presented in Table A 2.9.  

 

Computational design using RosettaDesign 

RosettaDesign44 was used on a prepacked45 PDB in fixed backbone mode to pick the 

optimal residue from the set of mutations that showed improvement. A resfile was created such 

that the default was NATAA (default behavior to allow only the natural amino acid) and residues 

with beneficial mutations were then mutated to the best identity using PIKAA (allowing 

mutations to specified amino acids) to either the wild-type identity or any of the beneficial 

mutations found at that position. 
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APPENDIX 

 

 

Note A 2.1: Determination of transport limitations in LG system.  

 

Consider growth of a microorganism using levoglucosan as the sole carbon source [LG]. 

Extracellular LG is transported inside of the cell at a flux Jtransport, where the enzyme 

levoglucosan kinase (LGK) acts on intracellular LG at a flux JLGK. The resulting product 

glucose-6-phosphate (G6P) is fixed into biomass at a flux JBiomass: 

 

[𝐿𝐺]𝑒𝑥𝑡
𝐽𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡
→        [𝐿𝐺]𝑖𝑛𝑡

𝐽𝐿𝐺𝐾
→    [G6P] 

𝐽𝐵𝑖𝑜𝑚𝑎𝑠𝑠
→       Biomass    (1) 

  

Under the condition of balanced growth: 

 

𝐽𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 𝐽𝐿𝐺𝐾 = 𝐽𝐵𝑖𝑜𝑚𝑎𝑠𝑠     (2) 

 

Biomass flux can be experimentally determined by the molar yield coefficient of biomass 

(Y’X|LG), the molecular weight of biomass (MWB), and the exponential growth rate (): 

 

𝐽𝐵𝑖𝑜𝑚𝑎𝑠𝑠 =
𝜇

Y𝑋|𝐿𝐺
′ MW𝐵

      (3) 

 

Assuming E. coli aerobic growth and that the yield coefficient for growth on LG is the same as 

glucose63 results in the equation:  

 

𝐽𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 16.1 𝜇 [
𝑚𝑚𝑜𝑙 𝐿𝐺

𝑔 𝐷𝐶𝑊−ℎ𝑟
]      (4) 

 

Where growth rate is expressed in units of inverse hours.  

 

With the simplifying assumption that LG concentration is much lower than the Michaelis 

constant, we can relate LGK flux to Michaelis-Menten kinetics (Vmax, KM),: 

 

𝐽𝐿𝐺𝐾 =
𝑉𝑚𝑎𝑥

𝐾𝑀
[𝐿𝐺]𝑖𝑛𝑡     (5) 

 

Which can be rewritten as: 

𝐽𝐿𝐺𝐾 = {
𝑉𝑚𝑎𝑥

𝐾𝑀
[𝐿𝐺]𝑒𝑥𝑡} {

[𝐿𝐺]𝑖𝑛𝑡

[𝐿𝐺]𝑒𝑥𝑡
}     (6) 

 

Or, alternatively:  

𝐽𝐿𝐺𝐾 = {𝐽𝐿𝐺𝐾,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑} {
[𝐿𝐺]𝑖𝑛𝑡

[𝐿𝐺]𝑒𝑥𝑡
}     (7) 

 

Here, JLGK,measured is the flux that can be experimentally determined from lysate assays. We can 

combine equations (2), (4), and (7) to arrive at the desired result:  
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Note A 2.1 (cont’d) 

{
[𝐿𝐺]𝑖𝑛𝑡

[𝐿𝐺]𝑒𝑥𝑡
} =  

16.1𝜇

𝐽𝐿𝐺𝐾,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
     (8) 

 

Measuring the growth rate of a culture and the specific reactant turnover in the lysate assay can 

determine the degree of transport limitation in the selection system: ideally, if the system was 

reaction limited, the ratio of internal to external [LG] should approach unity. Severe transport 

limitations to growth would occur if the measured LGK flux is much greater than the flux 

necessary to support aerobic growth. 
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Note A 2.2: Error approximation for fitness values calculated from digital counting. 

 

An important consideration in deep sequencing of biomolecular libraries is the effect of counting 

errors on the quantification of individual variant frequencies. In this note we quantify the 

expected variance of the measured enrichment ratio and fitness metric as functions of depth of 

coverage of the population library.  

 

Starting from a definition of the enrichment ratio (i) for a given clone i16: 

 

    (9) 

 

Here, xfi and xoi are the individual sequencing counts of clone i in the selected and unselected 

populations, respectively.  

 

The variance for any given enrichment ratio (𝜎𝜀𝑖) can be found by propagation of errors: 

 

𝜎𝜀𝑖
2 = 𝜎𝑥𝑓𝑖

2 𝛿𝜀𝑖

𝛿𝑥𝑓𝑖

2
+ 𝜎𝑥𝑜𝑖

2 𝛿𝜀𝑖

𝛿𝑥𝑜𝑖

2
       (10) 

 

Because the minimum error associated with counting sequences approximates Poisson noise16, 17: 

 

 𝜎𝑥𝑓𝑖
2 = 𝑥𝑓𝑖        (11) 

 

We can write the variance for i as: 

 

𝜎𝜀𝑖
2 = (log2 𝑒)

2[
1

𝑥𝑓𝑖
+

1

𝑥𝑜𝑖
]       (12) 

 

To estimate the variance for all clones in the population, let us assume that the counts given in 

the unselected population approximate <xo>, the average sequenced depth of coverage. We can 

then write xfi, the number of sequencing counts for a given clone i as: 

𝑥𝑓𝑖 = 2
𝜀𝑖 < 𝑥𝑜 >

∑𝑥𝑓𝑖

∑𝑥𝑓𝑜
       (13) 

 

Substituting this into relation (4) yields the desired relationship: 

 

𝜎𝜀𝑖
2 = (log2 𝑒)

2 < 𝑥𝑜 >
−1 [2−𝜀𝑖

∑𝑥𝑓𝑖

∑𝑥𝑓𝑜
+ 1]         (14) 

 

We can write this as the standard deviation for clone i: 

 

𝜎𝜀𝑖 = (log2 𝑒) < 𝑥𝑜 >
−1/2 [2−𝜀𝑖

∑𝑥𝑓𝑖

∑𝑥𝑓𝑜
+ 1] 1/2     (15) 

 

2 2log log
fi fi

i

oi oi

x x

x x
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Note A 2.2 (cont’d) Here, the standard deviation is proportional to the inverse square root of the 

depth of coverage of the unselected library. Because the frequencies of variants in unselected 

library are log-normally distributed (Figure A 2.5), it is more appropriate to calculate the depth 

of coverage as the median, not the mean value.  

 

Practically speaking, this derivation shows: (i.) the median depth of coverage for the unselected 

library should be high (in our lab’s hands, >50); and (ii.) to minimize errors for variants with 

lower growth rates, the selected library should be sequenced to a higher depth of coverage 

compared to the unselected library. 

 

We can apply similar principles to derive the standard deviation for the fitness metric (Fi): 

𝜎𝑓𝑖 = (log2 𝑒)
2 < 𝑥𝑜 >

−
1

2 [
∑𝑥𝑜𝑖

∑𝑥𝑓𝑖
2
−(𝑔𝑝(2

𝑓𝑖(
𝜀𝑤𝑡
𝑔𝑝
+1)−1))

+ 1]

1

2

(2𝑓𝑖(𝜀𝑤𝑡 + 𝑔𝑝))
−1   (16) 

 

Here, gp is the number of average population doublings and wt is the enrichment value for the 

starting sequence.  
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Note A 2.3: Protein and nucleic acid sequences of tested LGK designs. 

 

> LGK-His6x  

MPIATSTGDNVLDFTVLGLNSGTSMDGIDCALCHFYQKTPDAPMEFELLEYGEVPLAQPI

KQRVMRMILEDTTSPSELSEVNVILGEHFADAVRQFAAERNVDLSTIDAIASHGQTIWLL

SMPEEGQVKSALTMAEGAILASRTGITSITDFRISDQAAGRQGAPLIAFFDALLLHHPTKL

RACQNIGGIANVCFIPPDVDGRRTDEYYDFDTGPGNVFIDAVVRHFTNGEQEYDKDGA

MGKRGKVDQELVDDFLKMPYFQLDPPKTTGREVFRDTLAHDLIRRAEAKGLSPDDIVA

TTTRITAQAIVDHYRRYAPSQEIDEIFMCGGGAYNPNIVEFIQQSYPNTKIMMLDEAGVP

AGAKEAITFAWQGMEALVGRSIPVPTRVETRQHYVLGKVSPGLNYRSVMKKGMAFGG

DAQQLPWVSEMIVKKKGKVITNNWALEHHHHHH 

 

> LGK-His6x  

ATGCCGATTGCGACCTCAACGGGTGATAATGTTCTGGACTTTACGGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACTGCGCACTGTGTCATTTCTATCAGAAA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGCTGGCG

CAGCCGATTAAACAACGTGTCATGCGCATGATCCTGGAAGATACCACGAGCCCGTC

TGAACTGTCAGAAGTCAACGTGATTCTGGGTGAACATTTTGCGGATGCCGTCCGTCA

GTTCGCGGCCGAACGCAATGTGGATCTGTCAACCATTGACGCAATCGCTTCGCACGG

CCAGACGATTTGGCTGCTGAGTATGCCGGAAGAAGGTCAAGTGAAATCCGCCCTGA

CCATGGCAGAAGGCGCTATCCTGGCGAGTCGTACGGGTATTACCTCCATCACGGATT

TCCGTATTTCCGACCAGGCAGCTGGTCGTCAAGGTGCACCGCTGATCGCATTTTTCG

ATGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGTA

TCGCCAATGTGTGTTTTATTCCGCCGGATGTTGACGGCCGTCGCACCGATGAATATT

ACGATTTTGACACGGGTCCGGGCAACGTGTTCATCGACGCAGTGGTTCGTCATTTTA

CCAATGGTGAACAGGAATATGATAAAGACGGTGCTATGGGCAAACGCGGTAAAGTC

GATCAGGAACTGGTGGATGACTTTCTGAAAATGCCGTATTTCCAACTGGACCCGCCG

AAAACCACGGGCCGTGAAGTTTTTCGCGATACCCTGGCACATGACCTGATTCGTCGC

GCGGAAGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCACGACCCGTATTAC

GGCACAGGCTATCGTTGATCACTATCGTCGCTACGCGCCGTCACAAGAAATTGACGA

AATCTTCATGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCAGCA

ATCGTACCCGAACACCAAAATTATGATGCTGGATGAAGCAGGTGTCCCGGCAGGTG

CAAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAAGCCCTGGTTGGTCGTAGC

ATCCCGGTTCCGACCCGTGTCGAAACGCGCCAGCACTATGTGCTGGGCAAAGTTAGC

CCGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCGATGCT

CAGCAACTGCCGTGGGTTTCTGAAATGATCGTGAAGAAAAAAGGCAAAGTTATCAC

CAACAACTGGGCGCTCGAGCACCACCACCACCACCAC 
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Note A 2.3 (cont’d) 

>LGK.1  

MPIATSTGDNVLDFTVLGLNSGTSMDGIDCALCHFYQKTPDAPMEFELLEYGEVPLAQPI

KQRVMRMILEDTTSPSELSEVNVILGEHFADAVRQFAAERNVDLSTIDAIASHGQTIWLL

SMPEEGQVKSALTMAEGAIIAARTGITSITDFRISDQAAGRQGAPLIAFFDALLLHHPTKL

RACQNIGGIANVCFIPPDVDGRRTDEYYDFDTGPGNVFIDAVVRHFTNGEQEYDKDGA

MGKRGKVDQELVDDFLKMPYFQLDPPKTTGREVFRDTLAHDLIRRAEAKGLSPDDIVA

TTTRITAQAIVDHYRRYAPSQEIDEIFMCGGGAYNPNIVEFIQQSYPNTKIMMLDEAGVP

AGAKEAITFAWQGMECLVGRSIPVPTRVETRQHYVLGKVSPGLNYRSVMKKGMAFGG

DAQQLPWVSEMIVKKKGKVITNNWALEHHHHHH 

 

>LGK.1  

ATGCCGATTGCGACCTCAACGGGTGATAATGTTCTGGACTTTACGGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACTGCGCACTGTGTCATTTCTATCAGAAA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGCTGGCG

CAGCCGATTAAACAACGTGTCATGCGCATGATCCTGGAAGATACCACGAGCCCGTC

TGAACTGTCAGAAGTCAACGTGATTCTGGGTGAACATTTTGCGGATGCCGTCCGTCA

GTTCGCGGCCGAACGCAATGTGGATCTGTCAACCATTGACGCAATCGCTTCGCACGG

CCAGACGATTTGGCTGCTGAGTATGCCGGAAGAAGGTCAAGTGAAATCCGCCCTGA

CCATGGCAGAAGGCGCTATCATAGCGGCTCGTACGGGTATTACCTCCATCACGGATT

TCCGTATTTCCGACCAGGCAGCTGGTCGTCAAGGTGCACCGCTGATCGCATTTTTCG

ATGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGTA

TCGCCAATGTGTGTTTTATTCCGCCGGATGTTGACGGCCGTCGCACCGATGAATATT

ACGATTTTGACACGGGTCCGGGCAACGTGTTCATCGACGCAGTGGTTCGTCATTTTA

CCAATGGTGAACAGGAATATGATAAAGACGGTGCTATGGGCAAACGCGGTAAAGTC

GATCAGGAACTGGTGGATGACTTTCTGAAAATGCCGTATTTCCAACTGGACCCGCCG

AAAACCACGGGCCGTGAAGTTTTTCGCGATACCCTGGCACATGACCTGATTCGTCGC

GCGGAAGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCACGACCCGTATTAC

GGCACAGGCTATCGTTGATCACTATCGTCGCTACGCGCCGTCACAAGAAATTGACGA

AATCTTCATGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCAGCA

ATCGTACCCGAACACCAAAATTATGATGCTGGATGAAGCAGGTGTCCCGGCAGGTG

CAAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAATGCCTGGTTGGTCGTAGC

ATCCCGGTTCCGACCCGTGTCGAAACGCGCCAGCACTATGTGCTGGGCAAAGTTAGC

CCGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCGATGCT

CAGCAACTGCCGTGGGTTTCTGAAATGATCGTGAAGAAAAAAGGCAAAGTTATCAC

CAACAACTGGGCGCTCGAGCACCACCACCACCACCAC 

 

>LGK.2  

MPIATSTGDNPLDFTVLGLNSGTSMDGIDCALCHFYQKTPDAPMEFELLEYGEVPLAQPI

KQRVMRMILEDTTSPSELSEVNVILGEHFADAVRQFAAERNVDLSTIDAIASHGQTIWLL

SMPEEGQVKSALTMAEGAILASRTGITSITDFRISDQAAGRQGAPLIAFFDALLLHHPTKL

RACQNIGGIANVCFIPPDVDGRRTDEYYDFDTGPGNVFIDAVVRHFTNGEQEYDKDGA

MGKRGKVDQELVDDFLKHPYFQLDPPKTCGREVFRDTLAHDLIRRAEAKGLSPDDIVA

TTTRITAQAIVDHYRRYAPSQEIDEIFMCGGGAYNPNIVEFIQQSYPNTKIMMLDEAGVP

AGAKEAITFAWQGMECLVGRSIPVPTRVETRQHYVLGKVSPGLNYRSVMKKGMAFGG

DAQQLPWVSEMIVKKKGKVITNNWALEHHHHHH 
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Note A 2.3 (cont’d) 

>LGK.2  

ATGCCGATTGCGACCTCAACGGGTGATAATCCTCTGGACTTTACGGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACTGCGCACTGTGTCATTTCTATCAGAAA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGCTGGCG

CAGCCGATTAAACAACGTGTCATGCGCATGATCCTGGAAGATACCACGAGCCCGTC

TGAACTGTCAGAAGTCAACGTGATTCTGGGTGAACATTTTGCGGATGCCGTCCGTCA

GTTCGCGGCCGAACGCAATGTGGATCTGTCAACCATTGACGCAATCGCTTCGCACGG

CCAGACGATTTGGCTGCTGAGTATGCCGGAAGAAGGTCAAGTGAAATCCGCCCTGA

CCATGGCAGAAGGCGCTATCCTGGCGAGTCGTACGGGTATTACCTCCATCACGGATT

TCCGTATTTCCGACCAGGCAGCTGGTCGTCAAGGTGCACCGCTGATCGCATTTTTCG

ATGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGTA

TCGCCAATGTGTGTTTTATTCCGCCGGATGTTGACGGCCGTCGCACCGATGAATATT

ACGATTTTGACACGGGTCCGGGCAACGTGTTCATCGACGCAGTGGTTCGTCATTTTA

CCAATGGTGAACAGGAATATGATAAAGACGGTGCTATGGGCAAACGCGGTAAAGTC

GATCAGGAACTGGTGGATGACTTTCTGAAACATCCGTATTTCCAACTGGACCCGCCG

AAAACCTGCGGCCGTGAAGTTTTTCGCGATACCCTGGCACATGACCTGATTCGTCGC

GCGGAAGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCACGACCCGTATTAC

GGCACAGGCTATCGTTGATCACTATCGTCGCTACGCGCCGTCACAAGAAATTGACGA

AATCTTCATGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCAGCA

ATCGTACCCGAACACCAAAATTATGATGCTGGATGAAGCAGGTGTCCCGGCAGGTG

CAAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAATGCCTGGTTGGTCGTAGC

ATCCCGGTTCCGACCCGTGTCGAAACGCGCCAGCACTATGTGCTGGGCAAAGTTAGC

CCGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCGATGCT

CAGCAACTGCCGTGGGTTTCTGAAATGATCGTGAAGAAAAAAGGCAAAGTTATCAC

CAACAACTGGGCGCTCGAGCACCACCACCACCACCAC 

 

>LGK.3  

MPIATSTGDNPLDFTVLGLNSGTSMDGIDLALCHFYQKTPDAPMEFELLEYGEVPWAQP

IKQRVMRMIQEDTTSLSELSEVNVILGETFADAVHQFAAERNVDLSTIDAIGSHGQTIWL

NSMPEEGQVKSCLTMGEGAIIAARTGITTITDFRISDIAAGRQGAPLHAFFDALLLHHPTK

LRACQNIGGIANVTFIPPDVDGRLTDEYYDFDTGPGTVMIDAVVRHFTNGEQEYDKDGE

MGKRGKVDQELVDDFLKHPYFQLDPPKTCGREVFRDSLAHDLIRRAEAKGLSPDDIVAT

VTRITAQSIVDAYRRYAPSQEIDEIFLCGGGAYNPNIVEFIQQAYPNTKIMMLDEAGIPAR

AKEAITFAWLGMECLVGRSIPVPSRVETRQGYVLGKISPGLNYRSVMKKGMAFGGDAQ

QLPPVSEMIVKKKGKVITNNWDLEHHHHHH 
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Note A 2.3 (cont’d) 

>LGK.3  

ATGCCGATTGCGACCTCAACGGGTGATAATCCGCTGGACTTTACGGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACCTGGCACTGTGTCATTTCTATCAGAAA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGTGGGC

GCAGCCGATTAAACAACGTGTCATGCGCATGATCCAGGAAGATACCACGAGCCTGT

CTGAACTGTCAGAAGTCAACGTGATTCTGGGTGAAACCTTTGCGGATGCCGTCCATC

AGTTCGCGGCCGAACGCAATGTGGATCTGTCAACCATTGACGCAATCGGTTCGCACG

GCCAGACGATTTGGCTGAACAGTATGCCGGAAGAAGGTCAAGTGAAATCCTGCCTG

ACCATGGGGGAAGGCGCTATCATTGCGGCACGTACGGGTATTACCACGATCACGGA

TTTCCGTATTTCCGACATCGCAGCTGGTCGTCAAGGTGCACCGCTGCATGCATTTTTC

GATGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGT

ATCGCCAATGTGACCTTTATTCCGCCGGATGTTGACGGCCGTCTGACCGATGAATAT

TACGATTTTGACACGGGTCCGGGCACCGTGATGATCGACGCAGTGGTTCGTCATTTT

ACCAATGGTGAACAGGAATATGATAAAGACGGTGAAATGGGCAAACGCGGTAAAG

TCGATCAGGAACTGGTGGATGACTTTCTGAAACATCCGTATTTCCAACTGGACCCGC

CGAAAACCTGTGGCCGTGAAGTTTTTCGCGATTCTCTGGCACATGACCTGATTCGTC

GCGCGGAAGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCGTGACCCGTATT

ACGGCACAGAGCATCGTTGATGCATATCGTCGCTACGCGCCGTCACAAGAAATTGA

CGAAATCTTCCTGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCA

GCAAGCTTACCCGAACACCAAAATTATGATGCTGGATGAAGCAGGTATTCCGGCAC

GCGCAAAAGAAGCGATTACGTTCGCCTGGTTAGGCATGGAATGTCTGGTTGGTCGTA

GCATCCCGGTTCCGAGCCGTGTCGAAACGCGCCAGGGTTATGTGCTGGGCAAAATTA

GCCCGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCGATG

CTCAGCAACTGCCGCCTGTTTCTGAAATGATCGTGAAGAAAAAAGGCAAAGTTATC

ACCAACAACTGGGACCTCGAGCACCATCACCATCACCAC 

 

>LGK.4  

MPIATSTGDNPLDFTVLGLNSGTSMDGIDLALCHFYQKTPDAPMEFELLEYGEVPMAQS

IKQRVMRMIQEETTSLSELSEVNVILGETFADAVHQFAAEKNVDLSSIDAIGSHGVTIWL

NSMPEEGQVKSALTMGEGAIIAARTGITSITDFRISDIAAGRQGAPLIAFFDALLLHHPTKL

RACQNIGGIANVTFIPPDVDGRKSDEYYDFDTGPGTVMIDAVVRHFTNGEQEYDKDGE

MGKRGKVDQELVDDFLKHPYFQLDPPKTTGREVFRDSLAHDLIRRAEAKGLSPDDIVAT

VTRITAQAIVDHYRRYAPSQEIDEIFLCGGGAYNPNIVEFIQQAYPNTKIMMLDEAGVPA

DAKEAITFAWQGMECLVGRSIPVPTRVETRQHYVLGKISPGLNYRSVMKKGMAFGGDA

QQLPPVSEMIVKKKGKVITNGGALEHHHHHH 
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Note A 2.3 (cont’d) 

>LGK.4  

ATGCCGATTGCGACCTCAACGGGTGATAATCCGCTGGACTTTACGGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACCTTGCACTGTGTCATTTCTATCAGAAA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGATGGC

GCAGTCCATTAAACAACGTGTCATGCGCATGATCCAAGAAGAGACCACGAGCCTTT

CTGAACTGTCAGAAGTCAACGTGATTCTGGGTGAAACCTTTGCGGATGCCGTCCATC

AGTTCGCGGCCGAAAAAAATGTGGATCTGTCAAGTATTGACGCAATCGGTTCGCAC

GGCGTTACGATTTGGCTGAACAGTATGCCGGAAGAAGGTCAAGTGAAATCCGCCCT

GACCATGGGAGAAGGCGCTATCATCGCGGCTCGTACGGGTATTACCTCCATCACGG

ATTTCCGTATTTCCGACATTGCAGCTGGTCGTCAAGGTGCACCGCTGATCGCATTTTT

CGATGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGG

TATCGCCAATGTGACCTTTATTCCGCCGGATGTTGACGGCCGTAAATCCGATGAATA

TTACGATTTTGACACGGGTCCGGGCACGGTGATGATCGACGCAGTGGTTCGTCATTT

TACCAATGGTGAACAGGAATATGATAAAGACGGTGAAATGGGCAAACGCGGTAAA

GTCGATCAGGAACTGGTGGATGACTTTCTGAAACATCCGTATTTCCAACTGGACCCG

CCGAAAACCACGGGCCGTGAAGTTTTTCGCGATTCCCTGGCACATGACCTGATTCGT

CGCGCGGAAGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCGTTACCCGTAT

TACGGCACAGGCTATCGTTGATCACTATCGTCGCTACGCGCCGTCACAAGAAATTGA

CGAAATCTTCCTGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCA

GCAAGCGTACCCGAACACCAAAATTATGATGCTGGATGAAGCAGGTGTCCCGGCAG

ATGCAAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAATGCCTGGTTGGTCGT

AGCATCCCGGTTCCGACCCGTGTCGAAACGCGCCAGCACTATGTGCTGGGCAAAAT

CAGCCCGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCG

ATGCTCAGCAACTGCCGCCCGTTTCTGAAATGATCGTGAAGAAAAAAGGCAAAGTT

ATCACCAACGGTGGCGCGCTCGAGCACCATCACCATCACCAC 

 

>LGK.5  

MPIATSTGDNSLDFTVLGLNSGTSMDGIDCALCHFYQENPTAPMEFELLEYGEVPLPKEI

KKRVMRMIQTNRTSPQELAEVNVLLGEHFADAVRIFAKERNVSLSTIDAIASHGQCIWL

QSMPGEGQVKSALTMGEGAIIAARTGITAITDFRISDQAAGRQGAPLQAFFDALLLHHPT

KLRACQNIGGIANVTFIPPCVDGRMTDEYFDFDTGPGMIFIDAVVRHFTNGEQEYDKDG

EMGARGKVDQELVDDFLKHPYFQLDPPKTTGREVFRDSLAYDLIRKAEAKGLSPEDIVA

TTTRITAQAIVDHYKRYAPSQDIDEIFLCGGGANNPNIVEFIQQAYPNTKIMMLDEAGVP

ARAKEAITFAWQGMEALVGRSIPVPTRVETRKPCVLGKISPGKNYRKVMKKGMAFGGD

AQQLPWVSEMIVKKNGKVITNKWDLEHHHHHH 
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Note A 2.3 (cont’d) 

>LGK.5  

ATGCCGATTGCGACCTCAACGGGTGATAATTCCCTGGACTTTACGGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACTGCGCACTGTGTCATTTCTATCAGGAA

AACCCGACCGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGCTGCC

GAAAGAGATTAAAAAGCGTGTCATGCGCATGATCCAGACCAATCGTACGAGCCCGC

AGGAACTGGCGGAAGTCAACGTGTTGCTGGGTGAACATTTTGCGGATGCCGTCCGTA

TTTTCGCGAAAGAACGCAATGTGTCCCTGTCAACCATTGACGCAATCGCTTCGCACG

GCCAGTGTATTTGGCTGCAAAGTATGCCGGGGGAAGGTCAAGTGAAATCCGCCCTG

ACCATGGGCGAAGGCGCTATCATTGCGGCTCGTACGGGTATTACCGCGATCACGGAT

TTCCGTATTTCCGACCAGGCAGCTGGTCGTCAAGGTGCACCGCTGCAGGCATTTTTC

GATGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGT

ATCGCCAATGTGACGTTTATTCCGCCGTGCGTTGACGGCCGTATGACCGATGAATAT

TTTGATTTTGACACGGGTCCGGGCATGATCTTCATCGACGCAGTGGTTCGTCATTTTA

CCAATGGTGAACAGGAATATGATAAAGACGGTGAGATGGGCGCCCGCGGTAAAGTC

GATCAGGAACTGGTGGATGACTTTCTGAAACACCCGTATTTCCAACTGGACCCGCCG

AAAACCACGGGCCGTGAAGTTTTTCGCGATTCCCTGGCATATGACCTGATTCGTAAG

GCGGAAGCCAAAGGTCTGAGCCCGGAGGACATCGTGGCCACCACGACCCGTATTAC

GGCACAGGCTATCGTTGATCACTATAAACGCTACGCGCCGTCACAAGATATTGACGA

AATCTTCCTTTGCGGCGGTGGCGCCAATAACCCGAATATTGTGGAATTTATCCAGCA

AGCGTACCCGAACACCAAAATTATGATGCTGGATGAAGCAGGTGTCCCGGCACGTG

CAAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAAGCCCTGGTTGGTCGTAGC

ATCCCGGTTCCGACCCGTGTCGAAACGCGCAAACCATGCGTGCTGGGCAAAATTAG

CCCGGGTAAGAATTACCGCAAAGTGATGAAAAAAGGCATGGCATTTGGTGGCGATG

CTCAGCAACTGCCGTGGGTTTCTGAAATGATCGTGAAGAAAAACGGCAAAGTTATC

ACCAACAAGTGGGACCTCGAGCACCATCACCATCACCAC 

 

>LGK.6  

MPIATSTGDNVLDFRVLGLNSGTSMDGIDCALCHFYQKTPDAPMEFELKEYGEVPLQQP

IKQRVMRMILEDTTSPSELSEVNVILGEHFADAVGQFAAECGVDLRTIDAIASHGQTIWL

LSMPEEGQVKSALTMAEGAIIAARTGITSITDFRISDQAAGRQGAPLIAFFDALLLHHPTK

LRACQNIGGIANVCFIPPDVDGRRTDEYYDFDTGPGNVFIDAVVRHFTNGECEYDKDGA

MGKRGVVDQELVDDFLKMPYFQLDPPKTTGREVFRDTLAHDLIRRAQAKGLSPDDIVA

TTTRITAQAIVDHYRRFAPSQEIDEIFMCGGGAYNPNIVEFIQQKYPNTKIIMLDECGVPA

GAKEAITFAWQGMECLVGRSIPVPTRVETRQHYVLGKVSPGLNYRSVMKKGMAFGGD

ANQLPWVSAMVVKKEGKVKHNNWKLEHHHHHH 
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Note A 2.3 (cont’d) 

>LGK.6  

ATGCCGATTGCGACCTCAACGGGTGATAATGTTCTGGACTTTAGAGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACTGCGCACTGTGTCATTTCTATCAGAAA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGCTGCAG

CAGCCGATTAAACAACGTGTCATGCGCATGATCCTGGAAGATACCACGAGCCCGTC

TGAACTGTCAGAAGTCAACGTGATTCTGGGTGAACATTTTGCGGATGCCGTCGGGCA

GTTCGCGGCCGAATGTGGCGTGGATCTGCGCACCATTGACGCAATCGCTTCGCACGG

CCAGACGATTTGGCTGCTGAGTATGCCGGAAGAAGGTCAAGTGAAATCCGCCCTGA

CCATGGCAGAAGGCGCTATCATAGCGGCTCGTACGGGTATTACCTCCATCACGGATT

TCCGTATTTCCGACCAGGCAGCTGGTCGTCAAGGTGCACCGCTGATCGCATTTTTCG

ATGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGTA

TCGCCAATGTGTGTTTTATTCCGCCGGATGTTGACGGCCGTCGCACCGATGAATATT

ACGATTTTGACACGGGTCCGGGCAACGTGTTCATCGACGCAGTGGTTCGTCATTTTA

CCAATGGTGAATGCGAATATGATAAAGACGGTGCTATGGGCAAACGCGGTGTGGTC

GATCAGGAACTGGTGGATGACTTTCTGAAAATGCCGTATTTCCAACTGGACCCGCCG

AAAACCACGGGCCGTGAAGTTTTTCGCGATACCCTGGCACATGACCTGATTCGTCGC

GCGCAGGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCACGACCCGTATTAC

GGCACAGGCTATCGTTGATCACTATCGTCGCTTTGCGCCGTCACAAGAAATTGACGA

AATCTTCATGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCAGCA

AAAATACCCGAACACCAAAATTATCATGCTGGATGAATGCGGTGTCCCGGCAGGTG

CAAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAATGCCTGGTTGGTCGTAGC

ATCCCGGTTCCGACCCGTGTCGAAACGCGCCAGCACTATGTGCTGGGCAAAGTTAGC

CCGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCGATGCT

AACCAACTGCCGTGGGTTTCTGCAATGGTCGTGAAGAAAGAAGGCAAAGTTAAACA

TAACAACTGGAAGCTCGAGCACCATCACCATCACCAC 

 

>LGK.7  

MPIATSEGDNVLDFTVLGLNSGTSMDGIDCALCHFYQATPDAPMEFELLEYGEVPLAQPI

KQRVMRMILEDSTSPSELSEVNVILGEHFADAAHQFAAERNVDLATIDAIASHGQTIWLN

SMPEEGQVKSALTMAEGAIIAARTGITCITDFRISDQAAGRQGAPLIAFFDALLLHHPTKL

RACQNIGGIANVCFIPPDVDGRLTDEYYDFDTGPGNVFIDAVVRHYTNGEQEYDKDGA

MGKRGKVDQELVDDFLKMPYFQLDPPKTTGREVFRDTLAWDLIRRAEAKGLSPDDIVA

TVTRITAQAIVDHYRRYAPSQEIDEIFMCGGGAYNPNIVEFIQQSYPNTKIMMLDEAGVP

ARAKEAITFAWQGMECLVGRSIPVPTRVETRQPYVLGKVSPGLNYRSVMKKGMAFGG

DAQQLPWVSEMIVKKKGKVITNNWELEHHHHHH 
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Note A 2.3 (cont’d) 

>LGK.7  

ATGCCGATTGCGACCTCAGAAGGTGATAATGTTCTGGACTTTACGGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACTGCGCACTGTGTCATTTCTATCAGGCA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGCTGGCG

CAGCCGATTAAACAACGTGTCATGCGCATGATCCTGGAAGATTCCACGAGCCCGTCT

GAACTGTCAGAAGTCAACGTGATTCTGGGTGAACATTTTGCGGATGCCGCGCATCAG

TTCGCGGCCGAACGCAATGTGGATCTGGCGACCATTGACGCAATCGCTTCGCACGGC

CAGACGATTTGGCTGAATAGTATGCCGGAAGAAGGTCAAGTGAAATCCGCCCTGAC

CATGGCAGAAGGCGCTATCATAGCGGCTCGTACGGGTATTACCTGCATCACGGATTT

CCGTATTTCCGACCAGGCAGCTGGTCGTCAAGGTGCACCGCTGATCGCATTTTTCGA

TGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGTAT

CGCCAATGTGTGTTTTATTCCGCCGGATGTTGACGGCCGTCTGACCGATGAATATTA

CGATTTTGACACGGGTCCGGGCAACGTGTTCATCGACGCAGTGGTTCGTCATTATAC

CAATGGTGAACAGGAATATGATAAAGACGGTGCTATGGGCAAACGCGGTAAAGTCG

ATCAGGAACTGGTGGATGACTTTCTGAAAATGCCGTATTTCCAACTGGACCCGCCGA

AAACCACGGGCCGTGAAGTTTTTCGCGATACCCTGGCATGGGACCTGATTCGTCGCG

CGGAAGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCGTGACCCGTATTACG

GCACAGGCTATCGTTGATCACTATCGTCGCTACGCGCCGTCACAAGAAATTGACGAA

ATCTTCATGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCAGCAA

TCGTACCCGAACACCAAAATTATGATGCTGGATGAAGCAGGTGTCCCGGCACGTGC

AAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAATGCCTGGTTGGTCGTAGCA

TCCCGGTTCCGACCCGTGTCGAAACGCGCCAGCCGTATGTGCTGGGCAAAGTTAGCC

CGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCGATGCTC

AGCAACTGCCGTGGGTTTCTGAAATGATCGTGAAGAAAAAAGGCAAAGTTATCACC

AACAACTGGGAACTCGAGCACCATCACCATCACCAC 

 

>LGK.8  

MPIATSEGDNVLDFTVLGLNSGTSMDGIDCALCHFYQATPDAPMEFELLEYGEVPLAQPI

KQRVMRMILEDSTSPSELSEVNVILGEHFADAAHQFAAERNVDLATIDAIASHGQTIWLN

SMPEEGQVKSALTMAEGAIIAARTGITCITDFRISDQAAGRQGAPLIAFFDALLLHHPTKL

RACQNIGGIANVCFIPPDVDGRLTDEYYDFDTGPGNVFIDAVVRHFTNGECEYDKDGAM

GKRGVVDQELVDDFLKMPYFQLDPPKTTGREVFRDTLAHDLIRRAQAKGLSPDDIVATT

TRITAQAIVDHYRRFAPSQEIDEIFMCGGGAYNPNIVEFIQQKYPNTKIIMLDECGVPAGA

KEAITFAWQGMECLVGRSIPVPTRVETRQHYVLGKVSPGLNYRSVMKKGMAFGGDAN

QLPWVSAMVVKKEGKVKHNNWKLEHHHHHH 
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Note A 2.3 (cont’d) 

>LGK.8  

ATGCCGATTGCGACCTCAGAAGGTGATAATGTTCTGGACTTTACGGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACTGCGCACTGTGTCATTTCTATCAGGCA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGCTGGCG

CAGCCGATTAAACAACGTGTCATGCGCATGATCCTGGAAGATTCCACGAGCCCGTCT

GAACTGTCAGAAGTCAACGTGATTCTGGGTGAACATTTTGCGGATGCCGCGCATCAG

TTCGCGGCCGAACGCAATGTGGATCTGGCGACCATTGACGCAATCGCTTCGCACGGC

CAGACGATTTGGCTGAATAGTATGCCGGAAGAAGGTCAAGTGAAATCCGCCCTGAC

CATGGCAGAAGGCGCTATCATAGCGGCTCGTACGGGTATTACCTGCATCACGGATTT

CCGTATTTCCGACCAGGCAGCTGGTCGTCAAGGTGCACCGCTGATCGCATTTTTCGA

TGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGTAT

CGCCAATGTGTGTTTTATTCCGCCGGATGTTGACGGCCGTCTGACCGATGAATATTA

CGATTTTGACACGGGTCCGGGCAACGTGTTCATCGACGCAGTGGTTCGTCATTTTAC

CAATGGTGAATGCGAATATGATAAAGACGGTGCTATGGGCAAACGCGGTGTGGTCG

ATCAGGAACTGGTGGATGACTTTCTGAAAATGCCGTATTTCCAACTGGACCCGCCGA

AAACCACGGGCCGTGAAGTTTTTCGCGATACCCTGGCACATGACCTGATTCGTCGCG

CGCAGGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCACGACCCGTATTACG

GCACAGGCTATCGTTGATCACTATCGTCGCTTTGCGCCGTCACAAGAAATTGACGAA

ATCTTCATGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCAGCAA

AAATACCCGAACACCAAAATTATCATGCTGGATGAATGCGGTGTCCCGGCAGGTGC

AAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAATGCCTGGTTGGTCGTAGCA

TCCCGGTTCCGACCCGTGTCGAAACGCGCCAGCACTATGTGCTGGGCAAAGTTAGCC

CGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCGATGCTA

ACCAACTGCCGTGGGTTTCTGCAATGGTCGTGAAGAAAGAAGGCAAAGTTAAACAT

AACAACTGGAAGCTCGAGCACCATCACCATCACCAC 

 

>LGK.9  

MPIATSTGDNVLDFRVLGLNSGTSMDGIDCALCHFYQKTPDAPMEFELLEYGEVPLQQP

IKQRVMRMILEDTTSPSELSEVNVILGEHFADAVGQFAAECGVDLRTIDAIASHGQTIWL

LSMPEEGQVKSALTMAEGAIIAARTGITSITDFRISDQAAGRQGAPLIAFFDALLLHHPTK

LRACQNIGGIANVCFIPPDVDGRRTDEYYDFDTGPGNVFIDAVVRHYTNGEQEYDKDGA

MGKRGKVDQELVDDFLKMPYFQLDPPKTTGREVFRDTLAWDLIRRAEAKGLSPDDIVA

TVTRITAQAIVDHYRRYAPSQEIDEIFMCGGGAYNPNIVEFIQQSYPNTKIMMLDEAGVP

ARAKEAITFAWQGMECLVGRSIPVPTRVETRQPYVLGKVSPGLNYRSVMKKGMAFGG

DAQQLPWVSEMIVKKKGKVITNNWELEHHHHHH 
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Note A 2.3 (cont’d) 

>LGK.9  

ATGCCGATTGCGACCTCAACGGGTGATAATGTTCTGGACTTTAGAGTTCTGGGCCTG

AATAGCGGTACGAGTATGGATGGTATTGACTGCGCACTGTGTCATTTCTATCAGAAA

ACCCCGGATGCTCCGATGGAATTTGAACTGCTGGAATACGGCGAAGTTCCGCTGCAG

CAGCCGATTAAACAACGTGTCATGCGCATGATCCTGGAAGATACCACGAGCCCGTC

TGAACTGTCAGAAGTCAACGTGATTCTGGGTGAACATTTTGCGGATGCCGTCGGGCA

GTTCGCGGCCGAATGTGGCGTGGATCTGCGCACCATTGACGCAATCGCTTCGCACGG

CCAGACGATTTGGCTGCTGAGTATGCCGGAAGAAGGTCAAGTGAAATCCGCCCTGA

CCATGGCAGAAGGCGCTATCATAGCGGCTCGTACGGGTATTACCTCCATCACGGATT

TCCGTATTTCCGACCAGGCAGCTGGTCGTCAAGGTGCACCGCTGATCGCATTTTTCG

ATGCTCTGCTGCTGCATCACCCGACCAAACTGCGCGCGTGCCAGAACATTGGCGGTA

TCGCCAATGTGTGTTTTATTCCGCCGGATGTTGACGGCCGTCGCACCGATGAATATT

ACGATTTTGACACGGGTCCGGGCAACGTGTTCATCGACGCAGTGGTTCGTCATTATA

CCAATGGTGAACAGGAATATGATAAAGACGGTGCTATGGGCAAACGCGGTAAAGTC

GATCAGGAACTGGTGGATGACTTTCTGAAAATGCCGTATTTCCAACTGGACCCGCCG

AAAACCACGGGCCGTGAAGTTTTTCGCGATACCCTGGCATGGGACCTGATTCGTCGC

GCGGAAGCCAAAGGTCTGAGCCCGGATGACATCGTGGCCACCGTGACCCGTATTAC

GGCACAGGCTATCGTTGATCACTATCGTCGCTACGCGCCGTCACAAGAAATTGACGA

AATCTTCATGTGCGGCGGTGGCGCCTATAACCCGAATATTGTGGAATTTATCCAGCA

ATCGTACCCGAACACCAAAATTATGATGCTGGATGAAGCAGGTGTCCCGGCACGTG

CAAAAGAAGCGATTACGTTCGCCTGGCAGGGCATGGAATGCCTGGTTGGTCGTAGC

ATCCCGGTTCCGACCCGTGTCGAAACGCGCCAGCCGTATGTGCTGGGCAAAGTTAGC

CCGGGTCTGAATTACCGCTCTGTGATGAAAAAAGGCATGGCATTTGGTGGCGATGCT

CAGCAACTGCCGTGGGTTTCTGAAATGATCGTGAAGAAAAAAGGCAAAGTTATCAC

CAACAACTGGGAACTCGAGCACCATCACCATCACCAC 
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Note A 2.4: Python scripts used for deep sequencing normalization and statistics. 

Script: QuickNormalize.py 

Version: 1.9, Build: 20150527 

This script normalizes a growth selection or a FACS screen. 

Dependencies: Enrich 0.2, Python 2.7 or higher 

 

Inputs: Command line: 

python QuickNormalize.py –n [growth or FACS] –s [start residue] –l [tile length] –g [growth: 

gp] –d [FACS: std dev] –c [FACS: percent collected] –p [path to enrich output directory] –t 

[significant unselected counts threshold (default: 5)] –w [path to wild-type AA sequence 

(default: ./WTSeq)] –o [Output a separate heatmap csv (default: True)] 

 

Flag inputs: 

-n String: growth or FACS 

-s Integer: Example: 0, this is the start residue of your tile counting from zero 

-l Integer: Example: 40, this is the length of the tile in amino acids 

-g Float: Example: 10.0, this is the number of doublings of your selection 

-d Float: Example: 0.6, this is the standard deviation for a FACS sort 

-c Float: Example: 0.05, this is the percent collected for a FACS sort 

-p String: ./output/ (Tailing slash is needed), Path to the enrich output directory 

-t Integer: 5 (Default: 5), Number of unselected counts to be significant 

-w String: ./wt_seq.txt (Default: ./WTSeq), A file of the wild-type amino acid sequence 

-o String: True or False (Default: True), Output a CSV heatmap? 

 

Example command line for growth: 

python QuickNormalize.py –n growth –s 0 –l 40 –g 10.0 –p ./1/data/output/ > Tile1Normed 

 

Example command line for FACS: 

python QuickNormalize.py –n FACS –s 0 –l 76 –d 0.6 –c 0.05 –p ./tile/data/output/ -

w ./wt_seq.txt > Tile1Normed 

 

Help command: 

python QuickNormalize.py –h 
 

Notes: 

It is highly recommended to direct the output to a file using > [file name] such that there is a 

saved copy of the normalization output. The output includes column and csv heatmap data used 

by other scripts for further analyses (stats, replicate errors). The output heatmap csv will be 

named heatmap_startresi_#.csv with # being the number given for the start residue. The wild-

type amino acid sequence file is a single line ASCII file with the wild-type amino acid sequence. 

This file must be stripped of special characters hidden with rich-text editors. GNU nano can be 

used to edit this file and strip special hidden characters. 

 
Script: QuickStats.py 

Version: 1.1, Build: 20150428 

Version note: v1.1 and higher is for use with QuickNormalize.py v1.7 and higher. 
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Note A 2.4 (cont’d) This script calculates the reportable statistics for a deep sequencing run. 

Dependencies: Enrich 0.2, Python 2.7 or higher 

 

Command line: 

python QuickStats.py –f [path to file with normalized output] –p [path to root enrich tile 

directory] 

 

Flag inputs: 

-f String: ./Tile1Normed (File from QuickNormalize output) path to the quicknormalize output 

-p String: ./tile/ (Tailing slash is needed), path to the root directory of your tile data for enrich 

 

Example command line: 

python QuickStats.py –f ./Tile1Normed –p ./tile/ > Tile1Stats 

 

Help command: 

python QuickStats.py –h 

 

Enrich files used: 
data/output/counts_sel_example_F_N_include_filtered_B_DNA_qc 

data/output/counts_unsel_example_F_N_include_filtered_B_DNA_qc 

data/output/counts_unsel_example_F_N_include_filtered_B_DNA_qc.m1 

data/output/counts_unsel_example_F_N_include_filtered_B_DNA_qc.m2 

data/output/counts_unsel_example_F_N_include_filtered_B_PRO_qc 

data/output/counts_unsel_example_F_N_include_filtered_B_PRO_qc.m1 

input/example_local_config 

 

Notes: 

Normalization of the dataset is required to run this script. Additionally, the script uses the 

<translate_start> tag from the example_local_config file. Therefore, the enrich patch is needs to 

be applied. Unlike the normalization and other scripts, this script needs the root directory of the 

tile (i.e. the directory with the data and input directories). It is highly recommended to direct the 

output to a file using > [file name] such that there is a saved copy of the stats output. The script 

outputs all reportable statistics. This file assumes a certain naming scheme for the enrich output 

(listed above). 

 



70 

 
Figure A 2.1: Heatmap of first selection. 
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Figure A 2.1 (cont’d) 
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Figure A 2.1 (cont’d) 
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Figure A 2.1 (cont’d) 

 
  

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

I V D H Y R R Y A P S Q E I D E I F M C G G G A Y N P N I V E F I Q Q S Y P N T K I M M L D E A G V P

STOP *

F

W

Y

P

START M

I

L

V

A

G

C

S

T

N

Q

D

E

H

K

R

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408

A G A K E A I T F A W Q G M E A L V G R S I P V P T R V E T R Q H Y V L G K V S P G L N Y R S V M K K

STOP *

F

W

Y

P

START M

I

L

V

A

G

C

S

T

N

Q

D

E

H

K

R

h
yd

ro
p

h
o

b
ic

aromatic

non-polar aliphatic

small

h
yd

ro
p

h
ili

c polar uncharged

negatively charged

positively charged

h
yd

ro
p

h
o

b
ic

aromatic

non-polar aliphatic

small

h
yd

ro
p

h
ili

c polar uncharged

negatively charged

positively charged



74 

Figure A 2.1 (cont’d) 
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Figure A 2.2: Heatmap of second selection. 

  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

 M P I A T S T G D N V L D F T V L G L N S G T S M D G I D C A L C H F Y Q K T P D A P M E F E L L E Y

STOP *

F

W

Y

P

START M

I

L

V

A

G

C

S

T

N

Q

D

E

H

K

R

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

G E V P L A Q P I K Q R V M R M I L E D T T S P S E L S E V N V I L G E H F A D A V R Q F A A E R N V

STOP *

F

W

Y

P

START M

I

L

V

A

G

C

S

T

N

Q

D

E

H

K

R

h
yd

ro
p

h
o

b
ic

aromatic

non-polar aliphatic

small

h
yd

ro
p

h
ili

c polar uncharged

negatively charged

positively charged

h
yd

ro
p

h
o

b
ic

aromatic

non-polar aliphatic

small

h
yd

ro
p

h
ili

c polar uncharged

negatively charged

positively charged



76 

Figure A 2.2 (cont’d) 
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Figure A 2.2 (cont’d) 
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Figure A 2.2 (cont’d) 
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Figure A 2.2 (cont’d) 
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Figure A 2.3: Reproducibility of replicate fitness from second selection. Vertical and 

horizontal blue lines are used to aid the eye. The red lines demarcate the theoretically predicted 

error at two standard deviations. 
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Figure A 2.4: LGK structure (PDB: 4ZLU) showing the locations of each residue mutated 

in design LGK.9 (red). The ADP and LG ligands are shown as sticks, while magnesiums are 

shown as orange spheres. The gray line traces the other LGK subunit in the homodimer. 
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Figure A 2.5: Frequency distribution of mutation counts within the unselected libraries in 

the 1st selection (top) and 2nd selection (bottom). Dashed vertical lines indicate the median 

(red) and mean (blue) read coverage of the library. 
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Table A 2.1: Growth rates, lysate activity, and theoretical flux for cultures expressing 

pJK_proJK1_LGK on 8 and 10 g/L levoglucosan in M9 minimal media with carbenicillin 

aerobically at 37C. Error is reported at one standard deviation (growth rate n≥4, lysate activity 

assay n=3 from two biological replicates).  

 

LG concentration 

[g/L] 

Growth 

Rate [h-1] 

Measured flux 

[mmol LG hr-1 

gDCW-1] 

Theoretical flux^ 

[mmol LG hr-1 

gDCW-1] 

[LG]i/[LG]e* 

8 0.16 ± 0.05 3.04 ± 0.29 2.58 0.85 

10 0.21 ± 0.01 3.70 ± 0.21 3.38 0.91 

^ Theoretical flux is the calculated glycolytic flux required to support the measured growth rate. 

*Calculation of ratio of internal to external LG concentrations. This value should approach unity 

for reaction-limited reactions.  
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Table A 2.2: Statistics for read coverage of the combined LGK SSM libraries for the first 

selection and second selection. 

 1st Selection 2nd Selection 

Unselected population DNA reads post filter 1,626,972 1,993,785 

Selected population DNA reads post filter 3,305,210 4,045,218 

Number of single nonsynonymous mutations above a 

fitness metric of: 

  

0.00 323 417 

0.10 244 99 

0.15 215 54 

0.30 151 7 

0.50 86 0 

1.00 1 0 

Number of unselected mutations above 5 counts 8,056 8,312 

Number of mutations retained in the selected population 7,674 6,039 

Percent of possible codon substitutions observed:   

1-base substitution 99.7% 99.9% 

2-base substitutions 96.8% 97.2% 

3-base substitutions 93.5% 94.6% 

All substitutions 95.8% 96.5% 

Percent of reads in unselected library with:   

No nonsynonymous mutations 22.8% 34.6% 

One nonsynonymous mutation 67.5% 57.7% 

Multiple nonsynonymous mutations 9.7% 7.7% 

Coverage of single nonsynonymous mutations: 91.8% 94.7% 
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Table A 2.3: Summary of thermostability, kinetic parameters, specific growth rates, and lysate flux for selected LGK variants. 

Mean and SD for apparent melting temperatures (Tm,app) of selected LGK variants were measured in 50 mM sodium phosphate buffer 

pH 7.6 using a SYPRO Orange thermal shift assay (n=3). The kinetic parameters of purified protein variants were measured using a 

coupled glucose-6-phosphate dehydrogenase assay. Wild-type LGK: kcat: 24 ± 1 s-1, Km 119 ± 12 mM. Error values are propagated 

from the standard deviation of three assays from two different experiments. Mean and SD for specific growth rates of isogenic E. coli 

Tuner cultures expressing the specific LGK variant in M9 minimal media with 10 g/L LG and carbenicillin at 37C at 250 rpm (n≥2). 

Lysate flux is the in vitro activity of culture lysate tested with 10 g/L LG at 30C. Mean and SD are reported from three assays 

performed on each culture grown in 10 g/L LG (4 g/L glucose for LGK.1 and LGK.2) in M9 minimal media and carbenicillin (n=2 

cultures). ND = not determined. 

Variant Tm,app (°C) 
kcat (s-1)/ 

kcat,wt (s-1) 

Km (mM)/ 

Km,wt (mM) 

kcat/Km (M-1 s-1)/ 

kcat,wt/Km,wt (M-1 s-1) 

Specific 

Growth Rate 

(h-1) 

Lysate Flux 

(mmol LG 

gDCW-1 hr-1) 

1st 

Selection 

Fitness 

LGK 33.8 ± 0.7 1.00 1.00 1.00 0.21 ± 0.00 3.70 ± 0.21 0.00 

V11P 33.9 ± 0.1 1.11 ± 0.14 1.08 ± 0.32 1.06 ± 0.19 0.53 ± 0.04 ND 0.90 

P75L 35.2 ± 0.2 ND ND ND ND ND 1.02 

R94H 35.7 ± 0.2 1.15 ± 0.15 1.06 ± 0.24 1.10 ± 0.12 0.49 ± 0.07 16.72 ± 0.92 0.92 

H113G 38.7 ± 0.1 0.02 ± 0.00 2.13 ± 0.22 0.01 ± 0.00 0.37 ± 0.01 ND 0.49 

A135G 36.4 ± 0.8 ND ND ND ND ND 0.82 

L140I 36.0 ± 0.1 0.88 ± 0.10 0.80 ± 0.19 1.11 ± 0.15 0.49 ± 0.04 9.99 ± 0.25 0.86 

S142A 34.6 ± 0.4 0.95 ± 0.10 0.77 ± 0.16 1.26 ± 0.14 0.50 ± 0.05 11.70 ± 1.20 0.86 

I167H 43.6 ± 0.1 0.22 ± 0.03 1.27 ± 0.24 0.17 ± 0.01 ND ND 0.99 

I167N 35.9 ± 0.1 0.04 ± 0.00 3.86 ± 0.20 0.01 ± 0.00 ND ND -0.13 

C194T 39.8 ± 0.4 0.95 ± 0.16 1.39 ± 0.42 0.70 ± 0.11 0.53 ± 0.08 ND 0.90 

D212A 35.2 ± 0.0 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 -0.63 

N217T 32.9 ± 0.9 0.84 ± 0.06 0.87 ± 0.13 1.00 ± 0.10 0.49 ± 0.02 ND 0.82 

N217S 34.4 ± 0.1 0.50 ± 0.06 1.15 ± 0.23 0.44 ± 0.04 0.03 ± 0.01 ND -0.19 

M257H 33.4 ± 0.7 1.31 ± 0.09 0.92 ± 0.10 1.43 ± 0.08 0.45 ± 0.02 17.28 ± 0.95 0.90 

T268C 37.8 ± 0.0 0.39 ± 0.04 1.11 ± 0.23 0.35 ± 0.04 0.49 ± 0.06 ND 0.84 

A306S 34.9 ± 0.2 ND ND ND ND ND 0.78 

H310A 33.2 ± 1.0 ND ND ND ND ND 0.80 
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Table A 2.3 (cont’d)      

G359R 34.9 ± 0.1 1.63 ± 0.08 0.88 ± 0.07 1.86 ± 0.10 ND ND 0.73 

Q369L 37.2 ± 0.2 0.08 ± 0.01 0.90 ± 0.13 0.09 ± 0.01 ND ND 0.69 

A373C 34.3 ± 0.1 1.23 ± 0.11 0.93 ± 0.13 1.33 ± 0.09 0.56 ± 0.00 14.43 ± 1.14 0.83 

LGK.2 42.1 ± 0.1 0.63 ± 0.05 1.38 ± 0.31 0.46 ± 0.07 - 5.12 ± 2.69 - 

LGK.1 38.9 ± 0.1  0.89 ± 0.07 0.84 ± 0.13 1.07 ± 0.08 - 30.91 ± 3.43 - 
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Table A 2.4: Specific growth rates of E. coli Tuner expressing plasmid pJK_proJK1_LGK versus pJK_proJK1_LGK.1. 

Isogenic cultures were grown aerobically at 37C in M9 minimal media with carbenicillin with the specified LG concentration. After a 

certain point the specific growth rate of the culture expressing LGK.1 was uncoupled to flux as the LG within the growth media was 

increased. Data represent mean and SD (n≥2). ND = Not determined. 

 

LG 

Concentration 

(g/L) 

pJK_proJK1_LGK 

(h-1) 

pJK_proJK1_LGK.1  

(h-1) 

2 0.00 ± 0.00 0.38 ± 0.00 

4 0.02 ± 0.02 0.55 ± 0.00 

10 0.21 ± 0.01 0.04 ± 0.00 

20 ND 0.02 ± 0.00 

24 0.40 ± 0.01 ND 
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Table A 2.5: Number of residues with mutations that improve growth rates equal to or greater than 20% relative to the 

starting sequence as a function of the fraction ASA buried.  The analysis excludes the first nine residues as they are not present 

within the crystal structure.  Fraction ASA buried was calculated by calculating the DSSP ACC area64 and dividing by the individual 

residue tripeptide ASA65. 

Fraction ASA Buried Total Number of Residues Improved in 

First Selection 

Improved in 

Second Selection 

0.00-0.35 37 8 10 

0.36-0.75 110 35 19 

0.76-1.00 283 50 9 
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Table A 2.6: List of mutations in each LGK design. 

Design LGK.3 LGK.3.1 LGK.3.2 LGK.3.3 LGK.3.4 LGK.4 LGK.5 LGK.6 LGK.7 LGK.8 LGK.9 

WT Residue 

and Number 

Mutation 

T7         E E  

V11 P P P P  P S     

T15        R   R 

C30 L L L L  L       

K38             E  A A  

T39             N     

D41             T     

L56 W W W   M       

A57             P Q   Q 

P59           S E     

Q62             K     

L69 Q Q Q Q  Q Q     

E70             T     

D71           E N     

T72             R  S S  

P75 L L L L  L       

S76             Q     

S79             A     

I84             L     

H88 T T T T  T       

V93         A A  

R94 H H H H  H   G H H G 

Q95             I     

A98             K     

R100           K   C   C 

N101        G   G 
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Table A 2.6 (cont’d)         

D103             S     

S105        R A A R 

T106           S       

A111 G G G G  G       

Q115           V       

T116             C     

L120 N N N N  N Q  N N  

E124             G     

A131 C C C C          

A135 G G G   G G     

L140 I I I I  I I I I I I 

S142 A A A A  A A A A A A 

S148 T T T T    A  C C  

Q157 I I I I  I       

I167 H H H     Q     

C194 T T T   T T     

D199             C     

R204 L L L L  K M  L L  

T205           S       

Y209             F     

N217 T T T T  T M     

V218             I     

F219 M M M M  M       

F227         Y  Y 

Q232        C  C  

A239 E E E E E E E     

K242             A     

K245        V  V  

M257 H H H H H H H     
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Table A 2.6 (cont’d)           

T268 C  C  C         

T276 S S S S S S S     

H279             Y  W  W 

R284             K     

E286        Q  Q  

D293             E     

T299 V V V V V V    V  V 

A306 S S S S S         

H310 A A A A A         

R312             K     

Y314        F  F  

E319             D     

M325 L L L L L L L     

Y331             N     

S342 A A A A A A A K  K  

M349        I  I  

A354        C  C  

V356 I I I I I         

G359 R R R R R D R  R  R 

Q369 L L  L L         

A373 C C C C C C   C C C C 

T383 S S S S S         

Q389             K     

H390 G G G G G   P  P  P 

Y391             C     

V396 I I I I I I I     

L400             K     

S404             K     

Q417        N  N  



92 

Table A 2.6 (cont’d)           

W421 P P P P P P       

E424        A  A  

I426        V  V  

K430             N E  E  

I434        K  K  

T435        H  H  

N437           G K     

W438           G       

A439 D D D D D   D K E K E 
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Table A 2.7: Relative activity of LGK backcross designs removing mutations from design 

LGK.3. Back cross variants of design LGK.3 were tested for activity in cellular lysates after 

autoinduction. Activity was compared to a cellular lysate of a control culture expressing wild-

type LGK. Each construct was expressed in a minimum of 8 cultures each. LGK.3.4 was purified 

and tested against purified LGK in vitro. All assays were tested with a LG concentration of 550 

mM. 

 

Variant Total number 

of mutations 

Relative Activity 

 

LGK.3.1-His6 37 No Activity 

LGK.3.2-His6 37 No Activity 

LGK.3.3-His6 33 No Activity 

LGK.3.4-His6 18 <10% activity of wild-type 
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Table A 2.8: PCR primers used to amplify out gene tiles for deep sequencing. The gene was 

segmented into 11 separate tiles for the 1st selection and 6 separate tiles for the 2nd selection. 

Sequence Name Sequence 

TILE1_FWD GTTCAGAGTTCTACAGTCCGACGATCTTAACTTTAAGAAGGAGATATACAT 

TILE1_REV CCTTGGCACCCGAGAATTCCATCCATCGGAGCATC 

TILE2_FWD GTTCAGAGTTCTACAGTCCGACGATCCTATCAGAAAACCCCG 

TILE2_REV CCTTGGCACCCGAGAATTCCACCAGAATCACGTTGAC 

TILE3_FWD GTTCAGAGTTCTACAGTCCGACGATCCGTCTGAACTGTCAGAA 

TILE3_REV CCTTGGCACCCGAGAATTCCACTTCTTCCGGCATACT 

TILE4_FWD GTTCAGAGTTCTACAGTCCGACGATCCGATTTGGCTGCTG 

TILE4_REV CCTTGGCACCCGAGAATTCCAGGTGCACCTTGACG 

TILE5_FWD GTTCAGAGTTCTACAGTCCGACGATCCCAGGCAGCTGGT 

TILE5_REV CCTTGGCACCCGAGAATTCCACGACGGCCGTC 

TILE6_FWD GTTCAGAGTTCTACAGTCCGACGATCCCGCCGGATGTT 

TILE6_REV CCTTGGCACCCGAGAATTCCACCGCGTTTGCC 

TILE7_FWD GTTCAGAGTTCTACAGTCCGACGATCGATAAAGACGGTGCTATG 

TILE7_REV CCTTGGCACCCGAGAATTCCACGCGACGAATCAG 

TILE8_FWD GTTCAGAGTTCTACAGTCCGACGATCCCCTGGCACATGAC 

TILE8_REV CCTTGGCACCCGAGAATTCCAGCACATGAAGATTTCGTC 

TILE9_FWD GTTCAGAGTTCTACAGTCCGACGATCGCCGTCACAAGAAATT 

TILE9_REV CCTTGGCACCCGAGAATTCCAGAACGTAATCGCTTCTTT 

TILE10_FWD GTTAGAGTTCTACAGTCCGACGATCCGGCAGGTGCA 

TILE10_REV CCTTGGCACCCGAGAATTCCAATCACAGAGCGGTAATT 

TILE11_FWD GTTCAGAGTTCTACAGTCCGACGATCAGCCCGGGTCTG 

TILE11_REV CCTTGGCACCCGAGAATTCCATGGTGGTGCTCGAG 
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Table A 2.9: Crystallographic data processing and model refinement statistics for LGK.3 

(PDB: 4ZXZ). 

 

Data Collection  

Space group P212121 

Unit cell (Å) a = 85.18; b = 88.95, c = 139.46 

α = β = γ = 90.00 

Wavelength (Å) 1.54180 

Resolution range (Å) 46.13 – 2.20 (2.32 – 2.20) 

Total observations 178822 

Total unique observations 49339 

I/σI 6.9 (1.6) 

Completeness (%) 90.9 (79.0) 

Rmerge 0.147 (0.765) 

Rpim 0.082 (0.506) 

Multiplicity 3.6 (2.9) 

Refinement Statistics  

Resolution (Å) 46.13-2.20 

Reflections (total) 49264 

Reflections (test) 2505 

Total atoms refined 7034 

Solvent 394 

Rwork (Rfree) 0.17 (0.21) 

RMSDs  Bond lengths (Å) / angles (º) 0.009/1.128 

Ramachandran plot  Favored/allowed (%) 98.1/1.9 

Mean B values (Å2; chain A/B) 30.0/29.8 
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Trade-offs between enzyme fitness and solubility illuminated by deep mutational scanning 

John-Paul Bacik and Ryszard Michalczyk carried out the protein crystallization in this work at 

Los Alamos National Laboratory. 

  



104 

ABSTRACT 

Proteins are marginally stable, and an understanding of the sequence determinants for 

improved protein solubility is highly desired. For enzymes, it is well known that many mutations 

that increase protein solubility decrease catalytic activity. These competing effects frustrate 

efforts to design and engineer stable, active enzymes without laborious high-throughput activity 

screens. To address the trade-off between enzyme solubility and activity, I performed deep 

mutational scanning using three different, complementary solubility screens/selections for two 

full-length enzymes. I assayed a TEM-1 beta lactamase variant and levoglucosan kinase using 

yeast surface display screening, GFP fusion screening, and a twin-arginine translocation pathway 

selection. I then compared these scans with previously determined experimental fitness 

landscapes. There was significant correlation between solubility and fitness datasets, although 

the correlation coefficients were very low. 5-10% of all single missense mutations improve 

solubility, matching theoretical predictions of global protein stability. For a given solubility-

enhancing mutation, the probability that it would retain wild-type fitness was correlated with 

evolutionary conservation and distance to active site, and anti-correlated with contact number. 

Hybrid classification models were developed that could predict solubility-enhancing mutations 

that maintain wild-type fitness with an accuracy of 90%. The downside of using such 

classification models is the removal of rare, Pareto optimal mutations that improve both fitness 

and solubility. In order to reveal the biophysical basis of enhanced protein solubility and 

function, the crystallographic structure of one such LGK mutant was determined. Beyond 

fundamental insights into trade-offs between stability and activity, these results have potential 

biotechnological applications.  
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INTRODUCTION 

Solubility is a fundamental biophysical property of proteins. In this work I define 

solubility as a function of the protein aggregation propensity1, 2 and thermodynamic stability. 

Understanding the distribution of solubility-modulating mutations can sharpen biophysical 

models undergirding evolutionary theories combining molecular evolution and population 

genetics. There are also a number of biotechnological applications: improving protein solubility 

can enhance the total turnover number for biocatalysts, increase expression yield of enzymes 

needed in biomanufacturing, or bolster formulation stability of therapeutic proteins. From this 

applied perspective, general approaches are desired to identify mutations that improve the 

solubility of a protein whilst maintaining function. 

Computational approaches have been used to evaluate and design thermodynamic 

stability3-5 and aggregation propensity6-10. There also exist several high-throughput experimental 

screens that can be used to increase soluble protein expression and protein solubility11-17. A 

major challenge for the above approaches is that solubility-enhancing mutations often reduce the 

specific activity of enzymes18-22. Additionally, because the stabilizing effect of most beneficial 

mutations is modest10, 23, 24, many mutations from the starting sequence are typically needed to 

increase solubility over wild type. Together, these facts necessitate running a secondary screen 

for activity for positive hits from the solubility screen25, increasing time and effort. 

Comprehensive evaluation of the trade-off between enzyme activity and solubility could 

identify classifiers used to predict whether a given solubility-enhancing mutation is deleterious 

for enzyme activity. For example, earlier directed evolution experiments have shown that 

solubility-enhancing mutations are enriched at or near active site residues – most such mutations 

are deleterious for activity26-28. Additionally, a powerful enzyme engineering approach is to 
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choose only those mutations that have been oversampled in the evolutionary history of the 

protein family29-31. This ‘back-to-consensus’ strategy rests on the supposition that mutations to 

the consensus sequence of the protein family maintain enzyme function and improve stability. 

Other classifiers beyond the above two may exist.  

In this work I used deep mutational scanning32-39 to assess the sequence determinants of 

solubility for two different full-length enzymes. Enzymes with known fitness landscapes using 

experimentally derived functional selections18, 36 were studied, allowing a direct comparison 

between protein fitness and solubility. Three existing complementary in vivo high-throughput 

solubility screens/selections were assessed for the ability to identify mutations that confer 

solubility. For one enzyme the fraction of solubility-enhancing mutations was between 4-5%, 

which is in line with theoretical predictions40. Several limitations in commonly used in vivo 

screens were identified, which should reduce false positives and false negatives in future high-

throughput datasets. Classification methods were developed to select mutations that improve 

solubility without impacting fitness with an accuracy of 90%. Notably, these classifiers do not 

require a high-resolution protein structure or homology model. A structure of a Pareto optimal 

enzyme variant was solved to show the biophysical basis of enhanced solubility and function. 

Together, these results provide experimental illustration of the trade-off between enzyme 

solubility and function, and provide a means by which active, stable mutants can be uncovered 

without a high throughput activity screen. 
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RESULTS 

Deep Mutational Scanning for Solubility 

Deep mutational scanning was performed on two full-length enzymes: a 263-residue 

TEM-1 beta-lactamase variant and a 439-residue levoglucosan kinase (LGK) using different in 

vivo high-throughput solubility screens/selections (Figure 3.1). For TEM-1 BLA, catalytic 

activity was abolished by mutating the active site residue Ser70 to Ala because one selection 

involves growth on beta-lactam antibiotics. The destabilizing mutation D179G27, 41 was 

introduced because TEM-1 is stable at the selection and screening temperatures of 30-37oC. I 

refer to this resulting construct (TEM-1 S70A, D179G) as TEM-1.1 in the remainder of the 

work. Comprehensive single-site saturation mutagenesis libraries were constructed in all genetic 

backgrounds using Nicking Mutagenesis42, and libraries were harvested, prepared, and deep 

sequenced in a standardized pipeline43 (Figure B 3.1). 

I tested three previously developed solubility screens (Figure 3.1). In yeast surface 

display (YSD)44, proteins are fused in-frame with a C-terminal epitope tag and an N-terminal 

Aga2p domain that localizes the fusion protein to the outer cell surface. Binding with a 

fluorescently conjugated anti-epitope antibody allows discrimination of variants that express on 

the cell surface from ones that cannot. I used fluorescence activated cell sorting (FACS) to 

collect a reference population of all yeast and the top 5% of displaying population determined by 

fluorescence intensity. For the second FACS-based screen I fused LGK to fluorescent protein 

variant mGFPmut345, induced fusion protein expression by IPTG in E. coli, and sorted the 

library by fluorescence intensity. Sort statistics are given in Table B 3.1.   
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Figure 3.1: Overview of solubility deep mutational scans for TEM-1.1 and LGK.  The first 

column shows different screens used in the present work. In yeast surface display (YSD) the 

protein is exported to the surface and labeled by a florescent antibody that is specific for a c-

terminal epitope tag. The top 5% of cells by fluorescence intensity are collected by FACS. For 

TAT export, a protein is fused to a C-terminal beta-lactamase that requires periplasm localization 

for activity. Variants are selected on plates containing high antibiotic concentrations. In the last 

screen, a GFP variant is fused to the protein of interest, expression induced in bacteria, and the 

top 5% of cells by fluorescence intensity are screened by FACS. The second and third columns 

show heatmaps of solubility scores for selected residues of TEM-1.1 and LGK. Active site 
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Figure 3.1 (cont’d) residues are indicated by (*), interface residues by (I), and residues proximal 

to the C-terminus by (C). 

 

I also performed a twin-arginine translocation (Tat) export selection46. A protein of 

interest is fused in-frame with a N-terminal ssTorA Tat periplasmic export signal peptide and a 

C-terminal, TEM-1 BLA with a deleted Sec export signal sequence46. E. coli expressing this 

fusion protein will survive in the presence of beta-lactam antibiotics if the fusion protein is 

present in the periplasm, as TEM-1 BLA activity is dependent on formation of a disulfide bond. I 

prepared a selection plasmid using a codon-swapped C-terminal Δ4-25 TEM-1 designed to 

minimize recombination during experiments performed on TEM-1.1.  

There was on average 93.2% (4,918/5,260 (TEM-1.1) and 7,952/8,560 (LGK)) coverage 

of single non-synonymous mutations identified across all libraries. 5,466 (67.2%) single amino 

acid mutations were present in all three LGK screens, while 3,690 (73.8%) single amino acid 

substitutions were shared in both TEM-1 screens. Enrichment ratios calculated from deep 

sequencing were converted to a solubility score centered about a wild-type score of zero. The 

per-position scores are visualized in heatmaps shown in Figure 3.1 and Figures B 3.2-3.6. 

Detailed statistics for each deep mutational scan are in Tables B 3.2-3.4. 

 

Validation of solubility datasets 

I evaluated the ability of the screens to select for higher solubility variants and deplete 

low solubility mutants in several ways. First, all five solubility datasets showed statistically 

significant reductions in nonsense compared with missense mutations (p<0.0001; Figure 3.2a, 

Figure B 3.7). Second, I reasoned that there would be correlation between these solubility scores 

and existing deep mutational scanning fitness datasets for LGK18 and TEM-136, as enzyme 

fitness is subject to the biophysical constraints of folding. The correlation between solubility and 
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fitness datasets were statistically significant (p < 10-17 in all cases) but the overall correlation 

coefficients were very low (Figures B 3.8-3.9). Third, the fraction of tolerable residues at each 

position (see Methods) was negatively correlated with contact number (average number of 

neighboring residues – a measure of packing density)47 for LGK and a subset of the TEM-1.1 

datasets (positions 61-215 using the Ambler sequence convention - see below for justification) 

(Figure 3.2b, Figure B 3.10). 

 

Figure 3.2: Validation of solubility datasets. a) Nonsense vs. missense solubility scores for 

YSD (LGK, TEM-1.1) and GFP fusion (LGK). b) The fraction of beneficial mutations above the 

lower bounds versus contact number for LGK and TEM-1.1 (residues 61 to 215). c,d) Known 

stabilizing mutations (yellow) mapped onto (c) TEM-1.1 (PDB ID: 1M40) and (d) LGK (PDB: 

4ZLU). Insets show the structural basis of the stabilizing mutations, shown as yellow sticks, 

along with the corresponding solubility scores identified by deep sequencing. 
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I also evaluated the ability of the solubility deep mutational scans to identify known 

stabilizing mutations in TEM-1 (Figure 3.2c, Table B 3.5) and LGK (Figure 3.2d, Table B 3.6) 

that are located at the surface, core, and, for LGK, at the homodimer interface. I identified a 

mutation as solubility enhancing if its solubility score was above 0.15 – for screens utilizing 

FACS this value corresponds to a mean fluorescence intensity of 10% above the wild-type 

sequence. For TEM-1, 15/19 mutations with an in vitro characterized change in melting 

temperature (Tm) ≥ 1oC were recorded as solubility enhancing in the YSD dataset (Fisher’s 

exact test p-value <0.0001). For the LGK datasets, the GFP fusion screens identified 9/12 of 

these mutations (p-value <0.0001) whereas YSD identified 6/11 (p-value <0.0001). 11/12 of the 

false negatives from the YSD and GFP fusion screens were just below the significance cut-off 

used. The notable exception was LGK C194T, which had a very low YSD solubility score (Fig. 

3.2d). Since there is an ASN at position 192 that is surface exposed but in the catalytic active 

site, THR194 introduces a potential N-linked glycosylation site. I speculate that this aberrant 

glycosylation at the active site results in misfolded protein that would be retained in the ER. I 

conclude that YSD and GFP fusion solubility screens are able to identify gain of thermodynamic 

stability variants. 

By contrast, in my hands the TAT selection solubility datasets identify 3/10 (p-value 

0.42) TEM-1 and 1/12 (p-value 0.32) LGK known stabilizing mutations, although it is noted that 

the very stabilizing mutations TEM-1 M182T (Tm=5oC) and LGK C194T (Tm=6oC) were 

strongly enriched. The inability of the TAT screen to enrich known stability-enhancing 

mutations may reflect the fact that the selection criteria for TAT export are not dominated by 

protein thermal stability.  
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Distribution of Solubility Scores 

What is the distribution of solubility scores for the two enzymes? Here, I restricted my 

analysis to GFP and YSD screens because of the number of false negatives observed for the TAT 

pathway selection. The distributions for LGK and TEM-1.1 are multi-modal with the mean value 

below the wild-type solubility score of zero (Figure 3.3a). For the LGK datasets, 4.5% (YSD) 

and 6.0% (GFP) of possible single missense mutations were above a fitness metric of 0.15. 

However, 14.5% of mutations were identified in the TEM-1.1 dataset using the same criteria. 

The numbers reported above may overestimate the percentage of solubility-enhancing mutations 

if the number of false positives outweighs the number of false negatives, and vice versa.  

 

Figure 3.3: Distribution of solubility-enhancing mutations. a) Frequency of mutations for 

TEM-1.1 YSD (blue), LGK YSD (black), and LGK GFP (green) found at each fitness metric 

level. Each dataset is fit with a cubic spline to help guide the eye. b) Positions with more than 10 

beneficial mutations in TEM-1.1 YSD dataset are shown as yellow sticks. These false positives 

are predicted to disrupt the C-terminal helix, presumably to promote accessibility of the c-myc 

epitope tag. c) The percentage of mutations with solubility scores above a 10% (hatched fill) and 

50% increase (solid fill) in function for TEM-1.1 YSD (blue), LGK YSD (gray), and LGK GFP 

(green). TEM-1.1 YSD* covers residues 61 to 215 to remove the section with false positives 

indicated in panel B. 

 

To identify potential false positives/negatives in the LGK solubility datasets, I compared 

results from GFP and YSD screens. While only 20% (113/574) of solubility-enhancing 

mutations were shared between the GFP and YSD screens, most mutations beneficial for one 

selection were slightly below the cutoff in the other selection (Figure B 3.11). However, there 
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were outliers. 22 mutations (4%) were positive in YSD and strongly negative in GFP fusion 

screen, with 36 (6%) for the reverse case. No statistically significant single metric was found for 

these outliers except that the mutations negative in YSD and positive in GFP fusion screen were 

more buried than all beneficial mutations (average 95% SASA burial; Fisher’s exact test p-

value=4.6x10-15). These outliers were, on average, strongly deleterious in fitness according to a 

previous deep mutational scanning dataset18. Based on this consideration, I speculate that these 

outliers are false positives resulting from the GFP fusion screen.  

Given that the percentage of solubility-enhancing mutations observed in TEM-1.1 dataset 

exceeds theoretical estimates for purely thermodynamically stabilizing mutations40, I diagnosed 

potential problems with the screens. In the YSD screen, most positions that allow ten or more of 

these substitutions map to the C-terminus (Figure 3.3b). Because the N- and C-termini are so 

close to one another, and I did not include a linker region between the C-terminus and the myc 

epitope tag, I speculate that mutations enriched from this screen destabilized the helix 

positioning to avoid steric clashes between the fluorescently conjugated anti-myc antibody and 

either the N-terminal Aga2p or TEM-1.1. Thus, the YSD screen awards mutations that enhance 

antibody binding at the expense of core destabilization. Restricting analysis to portions of the 

protein not affected by this set of false positives (Ambler positions 61-215) results in 10.3% of 

fitness enhancing mutations, still higher than the theoretical estimates but closer to the solubility 

score distributions found in the LGK dataset (Figure 3.3c).  

Restricting mutational search space to variants represented in the evolutionary history of 

the enzyme family is a proven stabilization strategy in protein engineering (“back-to-consensus”) 

29-31. I calculated the proportion of solubility and fitness-maintaining hits that could be uncovered 

by back-to-consensus using previously published near-comprehensive experimental fitness 
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landscapes for TEM-136 and a thermally stabilized LGK18. In both cases these experimental 

fitness landscapes were determined for enzymes stable in their genetic background. Thus, most 

neutral or beneficial mutations maintain similar catalytic efficiencies to wild type. I first 

classified the experimental fitness values into neutral (≥80% of wild-type), slightly deleterious 

(>50% and <80%) and deleterious (<50%) bins. It is important to note that the “neutral” bin also 

includes those mutations that improve fitness. The tolerance for a mutation at a given position as 

determined by evolutionary history was evaluated using a position-specific scoring matrix 

(PSSM). Whereas 32% of all TEM-1 mutations are neutral, 69% of mutations with a PSSM 

score of ≥ 3 were neutral (Table B 3.7). For LGK, 28% of all mutations were neutral but 57% of 

conserved (PSSM ≥ 3) mutations were neutral (Table B 3.7). Using a less restrictive cut-off 

(PSSM ≥ 0) does not appreciably change the findings. While these results suggest that including 

evolutionary history increases the probability of finding a mutation that improves stability and 

does not reduce the activity of the enzyme, I also note that the probability of an evolutionary 

sampled deleterious or moderately deleterious mutation is 31% (TEM-1) to 43% (LGK) (Table 

B 3.7). Thus, choosing mutations solely through evolutionary conservation is insufficient to 

engineer stable, active enzymes without a secondary activity screen.  

 

Classification methods improve chances of finding soluble, active enzyme variants 

Many solubility-enhancing mutations decrease enzyme specific activity. For example, it 

is well known that catalytically active residues are poorly optimized for solubility5, 18, 26, 27. 

Additionally, false positives like those observed in the TEM-1.1 datasets are often deleterious for 

fitness. Thus, additional metrics are needed to identify mutations that impart solubility and do 

not decrease activity.   
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Figure 3.4: Classification methods improve probabilities of selecting mutations conferring 

solubility and activity but remove rare, globally optimal mutations. a,b) Classifier 

probabilities for YSD deep mutational scan for a) TEM-1.1 and b) LGK. n is the total number of 

mutations found in a given bin, and PSSM is the site-specific preferences found in the 

evolutionary history of the enzyme. c) Classification methods improve probabilities of selecting 

neutral mutations. d) Principal component analysis of the four experimental LGK deep 

mutational scanning datasets. PC1 correlates with enzyme fitness, while PC2 correlates with 

enzyme solubility. Beneficial mutations from YSD screen are shown as circles colored by 

whether they pass (Red) or fail (Gray) the multiple filter classification method. Pareto optimal 

mutation G359R (boxed) fails the filtering due to its close distance to the active site, low 

evolutionary conservation, and high contact number. e) Crystal structure of LGK G359R. G359R 

makes direct and water-mediated hydrogen bonds with ADP near the active site. A chloride ion 
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Figure 4 (con’d) also appears to be coordinated in this region, possibly also contributing to the 

stability of the enzyme. Carbon atoms are shown in gray or yellow for the protein and ligand 

carbon atoms, respectively. Nitrogen, oxygen and phosphorous atoms are shown in blue, red, and 

orange. Waters and the chloride are shown as red and cyan spheres, respectively. The 2mFo-DFc  

electron density map is contoured to 1. Bond distances are in angstroms. For clarity, the 

magnesiums in the active site have been omitted from the figure. 

 

For this analysis, I used previously published near-comprehensive experimental fitness 

landscapes for TEM-136 and a thermally stabilized LGK18 using the same classification bins 

(neutral, slightly deleterious, deleterious) as above. For the datasets developed in this work, the 

probability of finding a deleterious mutation among the list of solubility-enriched variants ranges 

between 15% (LGK-YSD) and 55% (TEM-1.1-YSD) (Figure 3.4a-b, Table B 3.8). To improve 

my chances of finding solubility-enhancing mutations of neutral fitness, I assessed mutations 

according to size, chemical type, contact number of the original residue, distance to active site as 

determined by C distance to nearest active site ligand, and evolutionary conservation as 

quantified by PSSM. 

I first addressed whether PSSM improves the identification of active mutations. 

Solubility-enhancing mutations with a PSSM ≥ 3 are more likely to maintain fitness and are less 

likely to be deleterious (Figure 3.4a-b). For example, only 12% of solubility-enhancing 

mutations with a PSSM ≥ 3 observed from the TEM-1.1 YSD datasets are deleterious with 

regards to fitness. In contrast, non-conserved solubility-enhancing mutations are likely to be 

deleterious for fitness, with probabilities ranging from 22% for LGK-YSD to 73% for TEM-1.1 

YSD.  

Other classifiers yielded similar results. For example, distance to active site was 

correlated with increased probability of finding a neutral mutation, whereas contact number was 

anti-correlated (Figure 3.4a-b). However, mutations sorted by size and chemical type did not 
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show improvements in classifications across all selections (Table B 3.9), with the exception of 

mutations to or from proline, which are generally disfavored.  

Next, I tested different classification methods to improve the chances of finding 

solubility-enhancing mutations conferring neutral fitness. I looked at filtering, naïve Bayes 

classification, and a hybrid method combining filtering on PSSM (≥ 3) with Bayes analysis on 

the remaining classifiers (Figure 3.4c, Table B 3.10). One filter was strictly on PSSM, whereas 

multiple filtering included PSSM (≥ 0), distance to active site (≥ 15Å), contact number (≤ 16), 

and no mutations involving a proline. The multiple filter classification performed best in all three 

datasets: for the YSD datasets the probability of finding a neutral mutation is 90% with only a 

2% (TEM-1.1) or 3% (LGK) chance of uncovering a deleterious mutation. The hybrid Bayes 

method was next, with a 77-87% chance of finding a neutral mutation and a 3-4% chance of a 

deleterious mutation for the YSD datasets. However, increased accuracy using multiple filtering 

is at the expense of number of mutations identified, as the hybrid Bayes method identified 

approximately 3-fold more mutations than the multiple filtering method (mean 130 for hybrid 

Bayes versus 43 for filtering). 

The trade-off with strict filtering is the removal of rare, globally beneficial mutations. 

This balance can best be visualized by taking a principal component analysis of the four 

experimentally determined LGK fitness datasets. PC1 maps mostly to enzyme fitness as 

determined by growth competition, with PC2 correlating more strongly with enzyme solubility 

(Figure 3.4d). In this case, the multiple filtering method removes the Pareto optimal mutation48 

G359R that is enriched in all four datasets (Figure 3.4d). In vitro, LGK G359R shows an 

increased ΔTm of 1.1ºC and improves the kcat over wild-type by approximately 60%18. G359R 

was removed from consideration because it is not evolutionarily conserved, it is close to the ATP 
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binding cleft, and Gly359 is in a relatively packed portion of the protein. To evaluate the 

structural basis for this globally beneficial mutation, the structure of this mutant in the presence 

of ADP and magnesium (Figure 3.4e) was solved. The additional hydrogen bonding interactions 

from the Arg359 side-chain to the nucleotide in the active site may lead to stronger binding of 

ATP during the catalytic reaction and possibly have polarizing effects that enhance phosphate 

transfer. From this regard it is also interesting to note that a strong electron density peak near 

Arg359 and ADP, modeled as a chloride ion, may also affect electrostatic interactions of the 

required reactants and promote catalysis.  

 

DISCUSSION 

Deep mutational scanning has previously been used to evaluate enzyme function on a 

massive scale18, 36, 37, 49. In the present work deep mutational scanning was combined with 

existing solubility screens for two different full-length enzymes. The addition of mutational 

solubility data produces a more complete picture of the fitness landscape for an enzyme. For 

example, the LGK datasets show that 4-5% of mutations are beneficial for solubility, which is 

consistent with theoretical predictions (Figure 3.3c). However, for the TEM-1.1 YSD dataset the 

fraction of solubility-enhancing mutations was 10.3% after removing known false positives, still 

higher than theoretical predictions but closer to the LGK dataset. Further experiments on 

different enzymes are needed to evaluate the level of concordance with current theories. In the 

present work I find at least 40% of given solubility-enhancing mutation result in enzymes with 

impaired fitness. While this trade-off has generally been modeled as solubility-reducing residues 

in the active site of the enzyme26, a significant number of mutations occur at distances up to 15Å 

away from any active site residues for all datasets.  
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There are limitations to consider when applying each screen/selection to a new enzyme. 

Deep mutational scanning using the GFP fusion in the bacterial cytoplasm is much faster than 

YSD, but cytoplasmic expression will not work for proteins requiring disulfide bonds (like TEM-

1) or additional posttranslational modifications to fold. In my hands the TAT export selection 

was not able to identify known thermally stabilizing mutations compared with the other screens. 

These results could be explained by the fact that export through the TAT pathway does not select 

for thermally stabilizing mutations, as previously shown (25). On the other hand, YSD screening 

can be used for most homo-oligomeric enzymes, including ones that contain disulfides or 

glycosyl groups. 

Applying simple classification methods to the deep mutational scanning screens increases 

the probability of selecting soluble, active mutants. Evolutionary conservation by itself is a 

strong predictor of solubility-enhancing mutations. However, other classification methods are 

still needed, as the probability of finding a stable, active mutation solely by PSSM alone is 52-

66% using the back-to-consensus approach commonly used in protein engineering (Table B 3.7). 

Filtering on multiple classifiers gives a probability of selecting a deleterious mutation of 2-3% 

(Figure 3.4c, Table B 3.11); this is a low enough error rate for 10-20 mutations to be combined 

additively and still maintain activity. However, strict filters remove rare, Pareto optimal 

mutations like G359R that improve both stability and catalytic efficiency. 

From a protein engineering and design perspective, the next step is to test the generality 

of the approach to find active solubility-enhancing mutations. There are a number of 

considerations that make this deep mutational scanning approach attractive. First, there exist 

multiple screens shown to identify gain of stability mutations. Second, even already stable 

enzymes can be scanned using the recursive destabilizing approach developed by Bradbury and 
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colleagues41. In fact, I used this approach in the present work by destabilizing the robust TEM-1 

using the known D197G mutation. Finally, the classifiers used were designed so that high-

resolution structures are not necessary. PSSM and type of mutation do not require structural 

information, while contact number and distance to active site can be approximated even with 

crude homology models. The remaining step is to automate a design process to combine many 

solubility-enhancing mutations simultaneously. To that end, excellent results have already been 

demonstrated on the LGK system18 and in the presence of a solved structure using the PROSS 

method10. I anticipate, since the mutations are already known, that all-atom design using Rosetta 

or similar software packages will prove successful even using crude homology models. I 

anticipate the use of this suggested approach to improve the solubility of difficult proteins 

involved in biomanufacturing and metabolic engineering.  

 

MATERIALS AND METHODS 

Reagents 

All DNA primers were ordered from IDT and genetic constructs were sequence verified 

by Genewiz. All chemicals and plates were purchased from Sigma-Aldrich. 

 

Plasmid construction 

The pSALECT and pETConNK plasmid backbones were used as previously described42. 

In short, a ΔS4-A25 truncation using the Ambler consensus numbering system50 of TEM-1.1 

BLA (Notes B 3.1 and 3.2) was cloned in-between the NdeI and XhoI sites of the two backbones 

to create the pSALECT-TEM1.1/csTEM1 and pETConNK- TEM1.1 plasmids. The codon 
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optimized DNA sequence for LGK18 was cloned in-between the NdeI and XhoI sites of the two 

backbones to create the pSALECT-LGK/csTEM1 and pETConNK-LGK plasmids. 

The plasmids pET29b-TEM1.1/mGFPmut3 and pET29b-LGK/mGFPmut3 were created 

by cloning genes between NdeI and XhoI sites. Overhang PCR was used to add a 5’ XhoI site 

and a 3’ His6x, stop codon, BbvCI site to mGFPmut3 from a plasmid based from 

pJK_proB_GFP45. Similarly, overhang PCR was used to add a BbvCI site to pET29b just after 

the stop codon already present in the plasmid. The mGFPmut3 construct was cloned between the 

XhoI and BbvCI sites using standard techniques to make the fusion construct LGK-Leu-Glu-

mGFPmut3-His6x. Plasmids and full maps are freely available on AddGene (www.addgene.org).  

 

Library construction 

Comprehensive single-site mutagenesis was performed on the gene encoding sequences 

for LGK and TEM-1 within the three plasmid backbones using Nicking Mutagenesis42. 

Mutagenic primers encoding degenerate bases (NNN) were used for residues G8 to T435 for 

LGK and H26 to W290 for TEM-1.1. Plasmids were transformed into E. coli XL1-Blue and 

plasmids were extracted using a Qiagen miniprep kit the following day. 

For generation of YSD libraries, chemically competent EBY100 yeast was transformed 

with 5 µg of pETConNK based library plasmid DNA and grown in 50 mL SDCAAps (Synthetic 

complete media supplemented with amino acids, 2% (w/v) dextrose, and 10,000 u/mL 

penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA))44 for 24 hours at 30ºC. The cells were 

passaged into fresh 50 mL SDCAAps media and grown for another 24 hours. Yeast were stored 

in yeast storage buffer (20 mM HEPES 150 mM NaCl pH 7.5, 20% (w/v) glycerol) 51 at -80ºC in 

1 mL aliquots at an OD600=1.0  (1 yeast OD600 = 2x107 cells/mL). 
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10 ng of pSALECT based library plasmid DNA was transformed into electrocompetent 

E. coli MC4100 (Coli Genetic Stock Center, New Haven, CT) and grown on a Nunc Bioassay 

Plate (245 mm X 245 mm X 25 mm) at 30ºC overnight. Transformation controls were performed 

to limit double plasmid transformation 43. Cells were scraped and used to inoculate a 100 mL LB 

culture with 34 µg/mL chloramphenicol at an initial OD600 of 0.05 and grown at 30ºC and 250 

rpm. When the cultures reached mid-log (OD600 0.40 to 0.60) DMSO was added at a final 

concentration of 7% (v/v), and 1 mL aliquots were flash frozen in liquid nitrogen. The same 

approach was taken for pET29b based GFP fusion DNA libraries, except that 50 ng of pET29b 

library plasmid DNA was transformed into electrocompetent E. coli BL21*(DE3). 

 

Screening procedures 

Yeast display library cell stocks were thawed at room temperature and were used to 

inoculate a 1 mL SDCAAps at 30ºC at an initial OD600 of 1.0 then grown for 6 to 8 hours. These 

cells were used to start a 1.1 mL culture in SGCAAps media (Synthetic complete media 

supplemented with amino acids, 2% (w/v) galactose, and 10,000 u/mL penicillin/streptomycin 

(Invitrogen, Carlsbad, CA, USA)) at an initial OD600 of 1.0 and grown at 30ºC for 18 hours. The 

next day cells were spun down at top speed for 30 sec and the media pipette removed. Cold 

PBSF (137 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 2 mM KH2PO4 with 1 g/L BSA) was 

added to the pellets to an OD600 of 2. The cells were washed with chilled PBSF, suspended to a 

concentration of 2x106 cells per mL PBSF, and labeled with 1 L of anti-c-myc-FITC (Miltenyi 

Biotec, San Diego, CA) per 2x105 cells. Cell sorting and collection was done on a BD Influx cell 

sorter (Becton Dickinson, Franklin Lakes, NJ). FSC/SSC (gate 1), FSC/FITC (gate 2), and FITC 

(gate 3) gates were set. Two populations were collected: an unselected population with gate 1, 



123 

and a top 5% display population containing all three gates. Complete sorting statistics can be 

found in Table B 3.1. Following sorting the cells were grown in 10 mL of SDCAAps at 30ºC for 

24 hours and were stored at -80ºC in yeast storage buffer at a concentration of 4x107 cells per 

mL. DNA was extracted from the yeast and prepared for sequencing using previously published 

protocols43. 

GFP fusion library cell stocks were thawed on ice for 45 minutes prior to washing with 

fresh sterile TB media. For each library, 3 mL cells were inoculated in Hungate tubes at an initial 

OD600 of 0.003. The cultures were grown at 37ºC and 250 rpm aerobically until an OD600 of 

0.05-0.06, at which time IPTG was added to a final concentration of 250 µM. The cells were 

collected when the cultures reached an OD600 between 0.28-0.30. Each culture was pelleted at 

10,000xg and washed with cold sterile PBS twice. Cell sorting and collection were done on a BD 

Influx with two sorting gates (FSC/SSC (gate 1), and FL-1 with a 530/40 filter [488 nm] (gate 

2)). Two populations were collected: a reference population with gate 1, and the top 5% of cells 

by fluorescent intensity set by gate 2. Complete sorting statistics can be found in Table B 3.1. 

The collected cells were added to 10 mL of fresh TB media with kanamycin and grown 

aerobically at 25ºC until mid-exponential phase. The cultures were then washed with PBS, 

pelleted at top speed, and the DNA was extracted using a Qiagen miniprep kit. 

TAT export library cell stocks were thawed on ice for 45 minutes prior to washing with 

fresh LB media. The washed cells were used to start a 5 mL culture containing LB with 34 

µg/mL chloramphenicol inoculated at an initial OD600 of 0.05. The cells were grown aerobically 

at 30ºC and 250 rpm until a culture OD600 of 0.8. The unselected library was prepared by 

pelleting 1 mL culture at 17,000xg for 2 min and storing the pellet at -20oC. Libraries were 

plated on 100 (TEM-1.1) or 200 µg/mL (LGK) carbenicillin plates.  
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The LGK libraries were plated at 0.1 OD600/mL on two 100 mm diameter Petri plates, 

while the TEM-1 libraries were plated at 3.2 OD600/mL on Nunc Bioassay Plates (245 mm X 245 

mm X 25 mm). The number of cells plated was sufficient to support a 200-fold coverage of the 

theoretical DNA library in viable cells. Plates were cultured at 30ºC in a humidified incubator for 

12 hours. The following day the plates were scraped with 1x PBS, pelleted, and a Qiagen 

miniprep kit was used to extract DNA from saved cell pellets. 

 

Deep sequencing and data analysis 

Libraries were prepared for deep sequencing using a previously developed two step PCR 

method43 with PCR primers listed in Table B 3.11. The pooled library was extracted and cleaned 

with a Qiagen gel cleanup kit. Deep sequencing was performed using an Illumina MiSeq in 300 

bp paired-end mode. Sequencing data were processed using Enrich52 to quantify the amount and 

enrichment of each mutation. Deep sequencing statistics are listed in Tables B 3.2-3.4. For the 

yeast display and GFP fusion experiments the solubility score for a variant i (i ) is defined as: 

𝜁𝑖 = 𝑙𝑜𝑔2(
𝐹𝑖

𝐹𝑤𝑡
)      (1) 

Where Fi is the mean fluorescence of variant i, and Fwt is the mean fluorescence of the 

wild type sequence. This solubility score is calculated using experimental observables in the 

deep sequencing experimental pipeline according to: 

𝜁𝑖 =  log2(𝑒)√2 𝜎′ (𝑒𝑟𝑓−1(1 − 𝜙2(𝜀𝑤𝑡+1)) − 𝑒𝑟𝑓−1(1 − 𝜙2(𝜀𝑖+1))) (2) 

where i is the enrichment ratio of the variant, wt is the enrichment ratio of the starting sequence, 

σ is the standard deviation of the population, and ϕ is the percent of cell collected of the gating 

population43. For the TAT experiments the enrichments of variant i was normalized to the 

starting sequence by the equation: 
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𝜁𝑖 =  𝜀𝑖 − 𝜀𝑤𝑡            (3) 

where i is the enrichment ratio of the variant and wt is the enrichment ratio of the starting 

sequence. Python scripts to calculate solubility scores are publically available at Github [user: 

JKlesmith] (www.github.com). Processed deep sequencing datasets are deposited at figshare 

(www.figshare.com). 

 

PSSM Analysis 

The PSSM analysis was performed closely following Goldenzweig et al.10. In short, a 

blastp search53 of the nonredundant database for LGK and TEM-1 was performed with an e-

value cut-off of 10-4 and filtered to the top 20,000 results. Synthetic or engineered constructs 

were excluded from the hits. Hits were also excluded if they covered less than 85% of the query 

sequence or if their sequence identity was less than 34% for LGK or 40% for TEM-1. Cd-hit54 

was used at 98% clustering threshold and default parameters. MUSCLE55 was then used to 

produce a multiple sequence alignment of the top 700 clusters. DSSP56 was then used to identify 

residues that are a part of loops and a part of secondary structure elements. Insert sequences in 

loop regions were removed such that the alignment has no gaps in the wild-type sequence. An 

alignment of sequences without any frameshifts was then independently extracted from each 

structured and non-structured region. PSI-BLAST57 was then used on each region with the wild-

type sequence as the query sequence. 

 

LGK G359R expression and purification 

Recombinant E. coli BL21(DE3) GOLD cells harboring plasmid pET29b_LGK-G359R 

were grown to an OD600 of ~ 0.5 at 37 °C, with shaking, in 500-ml volumes of LB medium 
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supplemented with 35 g/ml kanamycin. Expression of LGK was induced with 1 mM IPTG for 

3 h at 30 °C, with shaking. Cells were pelleted by centrifugation and stored at -80 °C. Pellets 

were thawed in 20 ml of ice-cold lysis buffer (0.5 M NaCl, 20 mM Tris-HCl pH 7.5, 0.1 mM 

PMSF, 2 mM imidazole) and lysed using a sonicator (Ameco). The lysate was clarified by 

centrifugation and mixed with 2 ml of TALON metal affinity resin (Clontech) with gentle 

shaking for 30 min. at room temperature. The TALON beads were centrifuged and re-suspended 

in binding buffer (500 mM NaCl, 20 mM Tris pH 7.5, 0.5 mM TCEP) before being poured into a 

20 ml gravity column. The column was washed with 20 ml of binding buffer supplemented with 

5 mM imidazole (Sigma), followed by 20 ml of binding buffer supplemented with 10 mM 

imidazole. The LGK protein was eluted from the column with 10 ml of binding buffer 

supplemented with 250 mM imidazole. The protein was further purified by gel filtration (HiPrep 

26/60 Sephacryl S-200 HR) in 20 mM Tris pH 7.5, 50 mM NaCl, 0.5 mM TCEP prior to 

concentration using an Amicon Ultra-15 concentrator with a 10,000 Da cut-off (Millipore). 

Chromatographic steps were performed using an AKTA FPLC (GE Healthcare).  

 

LGK crystallization, data collection and structure determination 

LGK crystals were grown at room temperature using the hanging drop vapor-diffusion 

method by mixing equal volumes of reservoir buffer (22% polyethylene glycol (PEG) 3350, 0.2 

M KSO4, 100 mM Tris pH 6.8) and LGK (23 mg/ml) in crystallization buffer (50 mM NaCl, 2 

mM ADP, 4 mM MgCl2, 0.5 mM TCEP, 20 mM Tris pH 7.5). Crystals were cryoprotected by 

dragging them through a drop containing cryoprotectant solution, reservoir buffer supplemented 

with 9% sucrose (w/v), 2% glucose (w/v), 8% glycerol (v/v), 8% ethylene glycol (v/v)), prior to 

being flash-cooled in liquid nitrogen. Data were collected at the Stanford Synchrotron Radiation 
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Lightsource beamline BL7-1, integrated using MOSLFM58 and scaled and merged using 

SCALA. 

Structure was determined using rigid body refinement using (PDB identifier: 5BSB) as 

the starting model followed by iterative model building and refinement performed using Coot 

and PHENIX59. The stereochemical quality of the final models was assessed using MolProbity60. 

Refinement statistics are presented in Table B 3.12. All structural figures were prepared using 

PyMOL61. 
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APPENDIX 

 
 
Note B 3.1: The amino acid sequence for TEM-1.1. Mutations S70A and D179G are 

underlined in red highlight. 

 

HPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMATFKVLLCGAVLSRV

DAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIG

GPKELTAFLHNMGDHVTRLDRWEPELNEAIPNDERGTTMPAAMATTLRKLLTGELLTL

ASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVI

YTTGSQATMDERNRQIAEIGASLIKHW 

 

Note B 3.2: The DNA sequence for TEM-1.1. 

 

CACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGT

GGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGA

AGAACGTTTTCCAATGATGGCCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCC

CGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGA

CTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAA

GAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTC

TGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGAT

CATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGA

CGAGCGTGGCACCACGATGCCTGCAGCAATGGCAACAACGTTGCGCAAACTATTAA

CTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGG

ATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTG

ATAAATCTGGAGCAGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCA

GATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATG

GATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGG 
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Figure B 3.1: Deep sequencing pipeline. A target protein is first mutagenized such that a DNA 

library encodes all possible amino acids. Next, a high-throughput selection or screen is 

performed to enrich beneficial mutants and deplete deleterious mutations. Deep sequencing is 

used to count each mutation to allow the frequency of that mutation in the population to be 

calculated. Finally, the frequencies are normalized to a solubility score for each mutation. 
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Figure B 3.2: Heatmap of solubility score of TEM-1.1 variants screened by yeast display. 
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Figure B 3.2 (cont’d) 
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Figure B 3.3: Heatmap of solubility score of TEM-1.1 variants screened by TAT export. 
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Figure B 3.3 (cont’d) 
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Figure B 3.4: Heatmap of solubility score of LGK variants screened by yeast display. 
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Figure B 3.4 (cont’d) 
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Figure B 3.5: Solubility score heatmap of LGK variants screened by GFP fusion. 
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Figure B 3.5 (cont’d) 
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Figure B 3.6: Heatmap of solubility score of LGK variants selected by TAT export. 
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Figure B 3.6 (cont’d) 
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Figure B 3.7: Distribution of nonsense versus missense distributions for the TAT selection. 

An unpaired t-test with Welch’s correction was performed between the fitness metrics for 

nonsense and missense mutations of each enzyme (n=331 and 6386 for nonsense and missense 

mutations in LGK respectively, n=227 and 3976 for nonsense and missense mutations in TEM-

1.1 respectively). 
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Figure B 3.8: Linear regressions of solubility versus functional datasets for LGK. The 

second selection using LGK.1 as the starting construct from Klesmith et. al. 18 was used as the 

functional dataset comparison for the solubility screens (denoted as “Selection Two” on the X-

axis). 
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Figure B 3.9: Linear regressions of solubility versus functional datasets for TEM-1.1. Log2 

transformed fitness values derived from Firnberg et. al.36 were used for the functional dataset 

comparison for the solubility screens. 

 

  



144 

        TEM-1.1 (Residues 61-215) TAT Export           LGK TAT Export 

 
 

Figure B 3.10: Fraction of mutations above lower bounds versus contact number for TAT 

export. An unpaired t-test with Welch’s correction was performed between bins. 
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Figure B 3.11: Linear regression of LGK YSD versus GFP solubility screens. 
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Table B 3.1: Sorting statistics for LGK and TEM-1.1 libraries. 

 

 
  

Enzyme
Tile 

Number
Method

Tile Length 

(AA)

Events 

Collected

Percent 

Sorted 

(Display)

Percent 

Sorted 

(Top)

Theoretical 

DNA 

Library 

Diversity

Fold Oversampling

LGK 1 Yeast Display 103 600,000 23.7 7.7 6,592 91

LGK 2 Yeast Display 110 700,000 25.8 5.2 7,040 99

LGK 3 Yeast Display 110 700,000 21.8 6.8 7,040 99

LGK 4 Yeast Display 105 700,000 19.6 4.6 6,720 104

TEM-1.1 1 Yeast Display 87 500,000 43.0 5.4 5,568 90

TEM-1.1 2 Yeast Display 88 500,000 48.4 6.2 5,632 89

TEM-1.1 3 Yeast Display 88 500,000 50.3 6.0 5,632 89

LGK 1 GFP Fusion 103 700,000 68.6 4.8 6,592 106

LGK 2 GFP Fusion 110 700,000 80.6 4.8 7,040 99

LGK 3 GFP Fusion 110 700,000 80.7 4.3 7,040 99

LGK 4 GFP Fusion 105 700,000 82.7 4.3 6,720 104
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Table B 3.2: Deep sequencing library statistics for the yeast display screens. 

 
  

Screen

Enzyme

Tile Number

Sort Population Display Top Display Top Display Top Display Top Display Top Display Top Display Top

Number of mutated codons

Reference sequencing 

reads post quality filter

Selected sequencing reads 

post quality filter
363,962 512,699 322,740 254,035 329,005 333,191 199,535 288,638 288,082 355,306 491,648 660,166 531,726 441,713

Percent of mutant 

codons with:

1-bp substitution

2-bp substitution

3-bp substitution

All substitutions

Percent of reads with:

No nonsynonymous 

mutations

One nonsynonymous 

mutation

Multiple nonsynonymous 

mutations

Coverage of possible 

single nonsynonymous 

mutations

Yeast Display

LGK TEM-1.1

1 2 3 4 1 2 3

88

607,904 469,478 396,561 259,784 307,817 417,079 413,919

103 110 110 105 87 88

99.7

69.1 79.8 78.6 82.0 81.2 88.0 83.4

100.0 100.0 99.7 99.7 99.6 99.7

77.4

71.3 78.1 78.5 81.7 81.2 86.0 83.1

63.8 69.2 71.4 75.5 75.0 79.5

30.2

47.3 41.7 51.5 53.6 50.0 58.3 60.1

46.5 45.3 40.1 35.1 43.4 29.2

9.7

89.5 90.5 90.5 91.8 91.2 96.9 96.3

6.1 13 8.3 11.3 6.6 12.5
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Table B 3.3: Deep sequencing library statistics for the TAT pathway selections. 

 
  

Screen

Enzyme

Tile Number 1 2 3 4 1 2 3

Number of mutated codons 103 110 110 105 87 88 88

Reference sequencing 

reads post quality filter
512,321 453,663 491,970 167,053 458,755 490,299 402,030

Selected sequencing reads 

post quality filter
437,570 367,820 514,209 110,898 469,768 450,252 525,271

Percent of mutant 

codons with:

1-bp substitution 99.9 100.0 99.9 99.4 99.7 99.6 99.1

2-bp substitution 88.0 96.2 92.0 84.2 86.0 83.6 79.4

3-bp substitution 84.2 93.7 86.4 78.4 80.8 75.0 72.3

All substitutions 88.1 95.7 90.7 83.8 85.8 82.2 79.2

Percent of reads with:

No nonsynonymous 

mutations
38.7 35.1 37.6 35.0 28.2 28.3 27.1

One nonsynonymous 

mutation
51.8 53.9 52.2 52.4 61.2 63.9 62.1

Multiple nonsynonymous 

mutations
9.5 11.1 10.2 12.6 10.5 7.8 10.7

Coverage of possible 

single nonsynonymous 

mutations

96.6 99.4 94.8 85.4 93.3 92.6 90.7

Tat pathway

LGK TEM-1.1
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Table B 3.4: Deep sequencing library statistics for the GFP fusion screens. 

 
  

Screen

Enzyme

Tile Number

Sort Population Display Top Display Top Display Top Display Top

Number of mutated codons

Reference sequencing 

reads post quality filter

Selected sequencing reads 

post quality filter
327,144 351,624 350,090 394,152 358,669 469,545 329,904 370,472

Percent of mutant 

codons with:

1-bp substitution

2-bp substitution

3-bp substitution

All substitutions

Percent of reads with:

No nonsynonymous 

mutations

One nonsynonymous 

mutation

Multiple nonsynonymous 

mutations

Coverage of possible 

single nonsynonymous 

mutations

LGK

GFP Fusion

103 110 110 105

1 2 3 4

99.5 99.9 100.0 99.9

395,070 305,924 432,015 289,306

78.2 85.1 86.9 83.8

82.1 91.9 92.2 88.9

35.3 38.6 36.3 40.8

82.9 90.1 91.0 88.3

93.0 94.5 95.6 93.3

8.8 8.8 8.8 7.3

55.9 52.6 54.9 51.8
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Table B 3.5: Known stabilizing mutations in TEM-1. 

 

Position Mutation ΔTm (°C) 
Solubility 

Score YSD 

Solubility 

Score TAT Reference  

31 V31R 3.2 0.19 -0.31 62 

60 F60Y 2.6 0.64 0.21 62 

62 P62S 1 0.27 -0.01 63 

78 G78A 1.5 0.29 1.42 62 

82 S82H 2.2 0.32 -0.21 62 

92 G92D 4.1 0.41 0.00 62 

104 E104K 1.7 0.07 -0.39 64 

120 R120G 1.8 -0.09 -0.94 29 

147 E147G 2.6 0.12 -0.43 29 

153 H153R 3.3 0.23 0.09 29 

182 M182T 5 0.43 5.10 29 

201 L201P 1.4 0.26 -0.19 29 

208 I208M 1.1 0.22 -0.32 65 

224 A224V 3.1 0.21 -0.38 63 

235 S235A 1.7 -0.06 -0.42 66 

265 T265M 1.6 0.30 -0.70 65 

275 R275L 5 0.59 -0.04 63 

275 R275Q 2 0.50 0.21 65 

276 N276D 1.3 0.29 0.24 65 
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Table B 3.6: Known stabilizing mutations in LGK. All mutations and associated biophysical 

data come from18. NS – mutation is not seen in the dataset. 

 

Position Mutation ΔTm (°C) 
Solubility 

Score YSD 

Solubility 

Score GFP 

Solubility 

Score TAT 

75 P75L 1.4 0.36 -0.05 -0.50 

94 R94H 1.9 -0.10 0.09 -0.72 

113 H113G 4.9 0.07 1.71 -0.75 

135 A135G 2.6 -0.17 0.32 -0.75 

140 L140I 2.2 NS 0.26 -0.55 

167 I167H 9.8 0.16 1.10 -0.58 

194 C194T 6.0 -0.43 0.79 1.50 

212 D212A 1.4 0.11 -0.39 -0.67 

268 T268C 4.0 0.32 0.85 -0.75 

306 A306S 1.1 0.72 0.44 -0.25 

359 G359R 1.1 0.15 0.70 -0.71 

369 Q369L 3.4 0.15 1.49 -0.75 
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Table B 3.7: PSSM classifier probabilities independent of a solubility screen. 

 

 
 

 

  

n Neutral Slightly Deleterious Deleterious

TOTAL 4997 32% 12% 56%

≥3 187 69% 11% 20%

≥0 1076 66% 14% 20%

TOTAL 7701 28% 45% 27%

≥3 377 57% 33% 10%

≥0 1966 52% 37% 12%

Classifier Probabilities

PSSM (TEM-1.1)

PSSM (LGK)
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Table B 3.8: Classifier probabilities for LGK GFP fusion screen. 

 
 

  

n Neutral Slightly Deleterious Deleterious

Overall Library 421 37% 41% 22%

≥ 3 49 71% 22% 6%

< 3 & ≥ 0 125 49% 41% 10%

< 0 247 24% 45% 31%

< 10 Å 159 20% 49% 31%

10-14 Å 114 32% 45% 23%

15-19 Å 87 53% 33% 14%

> 20 Å 61 66% 26% 8%

≤ 16 65 75% 22% 3%

17-24 189 37% 44% 19%

≥ 25 167 22% 46% 32%

To/From PRO 21 43% 19% 38%

Contact Number

Mutation

LGK GFP Classifier Probabilities

PSSM

Distance 
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Table B 3.9: Classifier probabilities for chemical changes and size changes. 

 

 
 

 
 

 
  

n Neutral

Slightly 

Deleterious Deleterious

Overall Library 637 37% 8% 55%

Polar/Charged to Polar/Charged 195 52% 11% 37%

Charge Reversal 25 40% 16% 44%

Polar/Charge to Hydrophopic/Aromatic 121 44% 6% 50%

Hydrophobic/Aromatic to Polar/Charged 170 16% 6% 78%

To/From Proline 64 13% 5% 83%

Hydrophobic/Aromatic to Hydrophobic/Aromatic 62 63% 8% 29%

Big to Big 184 41% 5% 54%

Big to Small 175 30% 11% 59%

To/From Proline 64 13% 5% 83%

Small to Big 120 49% 8% 43%

Small to Small 94 47% 9% 45%

Classifier Probabilities (TEM-1 YSD)

Chemical Change

Size Change

n Neutral

Slightly 

Deleterious Deleterious

Overall Library 309 57% 28% 15%

Polar/Charged to Polar/Charged 132 70% 19% 11%

Charge Reversal 9 33% 56% 11%

Polar/Charge to Hydrophopic/Aromatic 69 59% 25% 16%

Hydrophobic/Aromatic to Polar/Charged 42 33% 38% 29%

To/From Proline 14 29% 29% 43%

Hydrophobic/Aromatic to Hydrophobic/Aromatic 43 53% 42% 5%

Big to Big 78 51% 32% 17%

Big to Small 82 55% 26% 20%

To/From Proline 14 29% 29% 43%

Small to Big 57 60% 26% 14%

Small to Small 78 69% 26% 5%

Classifier Probabilities (LGK-YSD)

Chemical Change

Size Change

n Neutral

Slightly 

Deleterious Deleterious

Overall Library 421 37% 41% 22%

Polar/Charged to Polar/Charged 150 43% 35% 22%

Charge Reversal 11 27% 45% 27%

Polar/Charge to Hydrophopic/Aromatic 89 26% 46% 28%

Hydrophobic/Aromatic to Polar/Charged 102 28% 52% 20%

To/From Proline 21 43% 19% 38%

Hydrophobic/Aromatic to Hydrophobic/Aromatic 48 54% 40% 6%

Big to Big 96 38% 45% 18%

Big to Small 125 36% 40% 24%

To/From Proline 21 43% 19% 38%

Small to Big 83 29% 43% 28%

Small to Small 96 43% 43% 15%

Classifier Probabilities (LGK-GFP)

Chemical Change

Size Change
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Table B 3.10: Filters and Bayes analyses for LGK YSD and GFP screens. 

 
  

Basal PSSM ≥3 PSSM Filter Naïve Bayes Bayes + Filter

n = 309 39 58 242 125

Neutral 57% 82% 90% 66% 77%

Slightly Deleterious 28% 13% 7% 26% 19%

Deleterious 15% 5% 3% 8% 4%

Basal PSSM ≥3 PSSM Filter Naïve Bayes Bayes + Filter

n = 421 49 34 265 125

Neutral 37% 71% 71% 51% 60%

Slightly Deleterious 41% 22% 26% 40% 33%

Deleterious 22% 6% 3% 9% 7%

LGK - YSD

LGK - GFP
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Table B 3.11: Inner PCR tile primers. Illumina outer PCR attach point sequences are 

underlined. 

 

Name Sequence 

pETCONNKFWD GTTCAGAGTTCTACAGTCCGACGATCAGGGTCGGCTAGC 

pETCONNKREV CCTTGGCACCCGAGAATTCCAAAGCTTTTGTTCGGATC 

pSALECTFWD GTTCAGAGTTCTACAGTCCGACGATCACGTGCGACTGCG 

pSALECTREV CCTTGGCACCCGAGAATTCCATTAACCAGGGTCTCCG 

pET29BGFPFWD GTTCAGAGTTCTACAGTCCGACGATCTTAACTTTAAGAAGGAGATATACAT 

pET29BGFPREV CCTTGGCACCCGAGAATTCCATTCTCCTTTACGCTCGAG 

LGKTILE1REV CCTTGGCACCCGAGAATTCCAGCCGTGCGAAGC 

LGKTILE2FWD GTTCAGAGTTCTACAGTCCGACGATCACCATTGACGCAATC 

LGKTILE2REV CCTTGGCACCCGAGAATTCCACGAACCACTGCGTC 

LGKTILE3FWD GTTCAGAGTTCTACAGTCCGACGATCGGCAACGTGTTCATC 

LGKTILE3REV CCTTGGCACCCGAGAATTCCACCACAATATTCGGGTTATA 

LGKTILE4FWD GTTCAGAGTTCTACAGTCCGACGATCCGGTGGCGCC 

TEMTILE1REV CCTTGGCACCCGAGAATTCCACATGCCATCCGTAAG 

TEMTILE2FWD GTTCAGAGTTCTACAGTCCGACGATCCCAGTCACAGAAAAGCAT 

TEMTILE2REV CCTTGGCACCCGAGAATTCCATGCCGGGAAGCTAG 

TEMTILE3FWD GTTCAGAGTTCTACAGTCCGACGATCATTAACTGGCGAACTACTTACT 
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Table B 3.12: Crystallographic data processing and refinement statistics for LGK G359R 

crystallographic structure (values in parentheses refer to the high-resolution shell). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Data Collection  

Space group P41212 

Unit cell (Å) a = b = 70.06, c = 261.77 

α = β = γ = 90.00 

Wavelength (Å) 0.9795 

Resolution range (Å) 46.33 – 1.80 (1.90 – 1.80) 

Total observations 411319 

Total unique observations 61638 

I/σI 9.4 (1.7) 

Completeness (%) 99.9 (100.0) 

Rmerge 0.133 (1.045) 

Rpim 0.056 (0.428) 

Redundancy 6.7 (6.9) 

 

Refinement Statistics 

 

Resolution (Å) 43.08-1.80 

Reflections (total) 61556 

Reflections (test) 3097 

Total atoms refined 3832 

Solvent 467 

Rwork (Rfree) 0.17 (0.21) 

RMSDs  Bond lengths (Å) / angles (º) 0.007/0.828 

Ramachandran plot  

(Favored/allowed(%)) 

97.4/2.3 

Average B, all atoms (Å2) 24.0 
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Interpreting deep mutational scanning data resulting from selections on solid media 

Sarah Thorwall was an undergraduate researcher who performed plate assays in this work. 
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ABSTRACT 

Deep mutational scanning is now used in directed evolution experiments to quantify the 

change in frequency of a cellular variant in a mixed population. A key concern is the extent to 

which the enrichment of a variant in a population corresponds to a fitness metric like relative 

growth rate or survival percentage. Analytical equations converting the enrichment of a variant 

to fitness metrics for plate-based selections are presented here. Using isogenic and mixed 

cultures I show that growth rates and survival percentages correlate for antibiotic plate-based 

selections. These results are important for proper interpretation of data resulting from deep 

sequencing. 
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INTRODUCTION 

Deep sequencing has emerged as a powerful, enabling tool for protein engineering1-4. 

Deep sequencing-based measurements allow one to estimate the frequency of each mutational 

variant in a population to be screened or selected5, 6. The end-point measurement is an 

enrichment ratio (εi), defined as the base 2 logarithm of the frequency change of the variant i in 

the selected population compared to a reference population. A key question in such deep 

mutational scanning experiments is the extent to which this enrichment ratio corresponds to a 

fitness value or phenotype7, 8. 

Many directed evolution experiments involve selections on solid media. Typically, a 

population of cells expressing the mutated protein of interest is plated on a solid support 

containing selective media, and the selected hits are colonies that survive or are larger than other 

colonies after a set amount of time. A major problem with plate-based selections is that the 

output is binary – a hit or not a hit. To remedy this, several groups have used deep sequencing to 

determine an analog fitness for each variant9-12 where the resulting fitness metric is usually 

normalized to the enrichment ratio of the starting sequence. However, the fitness metric 

calculated from enrichment ratios should depend strongly on whether the relative growth rates 

between variants differ, whether a variant survives the initial plating condition differentially, and 

the initial and final biomass concentrations. To that end, the objective of this work is to present 

analytical equations converting enrichment ratios to unambiguous fitness metrics for plate-based 

selections, and to supply experimental validation using an existing genetic selection with TEM-1 

bla for an antibiotic-based selection.   
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THEORY 

On solid media, growth of bacterial biomass follows exponential behavior during the 

growth phase13. Importantly, the specific growth rate during exponential phase and the final 

density is independent of the plating density13. Therefore, for our model it can be assumed that 

the growth model for each variant i can be written as: 

𝑋𝑖 = 𝑋𝑜𝑓𝑖𝑒
𝜇𝑖(𝑡−𝑡𝑙𝑎𝑔)     (1)  

where Xo is the initial biomass for variant i, Xi is the biomass of variant i evaluated at time t, tlag 

is the lag time, µi is the specific growth rate, and fi is the fraction of variant i that survives the 

initial selection at t=0. Based on work from van Heerden et al, it can be assumed that the lag time 

is the same for all variants14. Equation (1) does not capture the characteristic sigmoidal shape of 

microbial growth curves – this is neglected for simplicity. Note that the inflection point on 

microbial growth curves typically occurs within 1 or 2 average population doublings of the 

maximum biomass concentration. Thus, the error resulting from this simplification is likely to be 

minimal.  

Using the above exponential growth model, it can be shown for conditions where t is 

greater than tlag and Xi is less than Xmax that the enrichment ratio of a given clone in the 

population can be determined by µi and fi:  

𝜀𝑖 = 𝑔𝑝 (
𝜇𝑖

�̅�
− 1) + 𝑙𝑜𝑔2(

𝑓𝑖

𝑓̅
)     (2) 

here �̅� and 𝑓 ̅are the population-averaged values, and gp is the population-averaged number of 

doublings. Importantly, these three parameters are experimentally measurable and, furthermore, 

common to all variants. Equation (2) shows that a given variant is enriched in the population if 

the specific growth rate is faster than the population average and/or if the fraction of surviving 

colonies is higher than the population average.  



169 

There are two limiting cases. If the fraction of growing cells is the same for each variant, 

as may be the case for selections coupling growth with flux through primary metabolism2 then 

the fitness equation becomes8: 

𝑙𝑜𝑔2 (
𝜇𝑖

𝜇𝑤𝑡
) = 𝑙𝑜𝑔2(

𝜀𝑖
𝑔𝑝

+1

𝜀𝑤𝑡
𝑔𝑝

+1
)     (3) 

At the other limit, if the exponential growth rates are equivalent between all variants, the 

enrichment ratios can be normalized to a fitness metric defined as: 

𝑙𝑜𝑔2 (
𝑓𝑖

𝑓𝑤𝑡
) = (

𝜀𝑖

𝜀𝑤𝑡
)       (4)  

Here the wt subscript refers to the values from the wild-type sequence. While it is often 

implicitly assumed that equation (4) is the appropriate fitness metric for selections10, it could be 

the case that both the fraction of surviving variants and the relative growth rates vary between 

variants in the selection. In this case, time points must be taken over a time interval in order to 

calculate the specific growth rate and the surviving fraction for each variant.  

To evaluate the appropriate form of the normalization expressions for antibiotic-based 

selections, I evaluated a genetic selection exploiting the twin-arginine translocation (TAT) 

pathway in Gram-negative bacteria15. In this selection a protein of interest is fused between an 

N-terminal ssTorA Tat periplasmic export signal peptide and a truncated, active C-terminal 

TEM-1 beta-lactamase. Because the TAT pathway is thought to export only folded proteins, 

TEM-1 will be differentially exported to the periplasm based on the protein of interest in the 

fusion construct. Thus, mutations conferring enhanced fusion protein periplasmic localization 

can be selected on solid media containing different amounts of beta-lactam antibiotics.  
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RESULTS 

I first evaluated selection-specific growth parameters for a ΔS4-A25 TEM-1 bla with the 

activity abrogating mutation S70A. I modified the TAT selection plasmid pSALECT-EcoBam 

(Addgene: #59705)9 by fusing a codon-swapped TEM-1 bla ΔS4-A25 in-frame after the XhoI 

restriction site. This active codon-swapped TEM-1 bla is used to avoid recombination with the 

N-terminal TEM-1 bla S70A. E. coli strain MC4100 harboring this plasmid was plated on LB-

agar plates containing 50, 100, or 200 µg/mL carbenicillin. 

Colonies from a fresh transformation of E. coli MC4100 with the plasmid pSALECT-

TEM-1(S70A)/csTEM-1 were used to start a culture in liquid LB media with 34 µg/mL 

chloramphenicol. This culture was grown at 30ºC at 250 rpm for 10 hours. Fresh LB agar plates 

with 50, 100, or 200 µg/mL carbenicillin were made the day of the transformation and poured at 

a constant volume of agar per plate. The OD600 of the culture was measured after the 10 hour 

growth period to determine the cell density. The cells were diluted such that between 12-21 

hours the cells were in exponential growth phase and plated. This initial plating density is 

different for each antibiotic concentration and was determined by control experiments. 150 µL of 

the diluted culture was spread onto the desired LB agar + carbenicillin plates. Plates were then 

placed into a humidified 30ºC incubator and grown for 12, 15, 18, and 21 hours. At these time 

points a plate was taken out, and 1 mL of phosphate buffered saline was added onto the plate. All 

of the cells were scraped off of the agar plate and resuspended in this phosphate buffered saline. 

The final OD600 was then measured to determine the final cell mass. The specific growth rate 

was calculated from the natural log transformed cell densities at different time points. This 

experiment was repeated at least twice.  
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The fraction of surviving clones was determined by making serial dilutions of a culture 

with an OD600 of 1.0 ranging from 10-3 to 10-7 onto the selective LB agar + carbenicillin plates 

and LB agar + 34 µg/mL chloramphenicol plates. Plates were incubated at 30ºC in a humidified 

incubator and the number of distinct colonies recorded at each dilution. The fraction of surviving 

clones was calculated by dividing the number of distinct colonies on each carbenicillin plate by 

the number on the chloramphenicol plate. This was done with at least three biological replicates 

per antibiotic concentration. 

For TEM-1 (S70A) the specific growth rate decreases at higher antibiotic concentrations 

(Figure 4.1a). This decreased growth rate correlates with low viability, although the growth rate 

plateaus at approximately half of the specific growth rate under conditions of high viability 

(Figure 4.1a). I performed the same experiment on a destabilized, catalytically inactive variant 

TEM-1 bla with mutations S70A, D179G16. As expected, the negative change in cellular 

viability is much greater than with TEM-1(S70A) (Figure 4.1b). Similar to TEM-1(S70A), the 

growth rate decreases and plateaus to around half that of the high viability growth rate (Figure 

4.1b). 
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Figure 4.1: Specific growth rate (circles) and fraction viable (diamonds) of E. coli MC4100 

expressing TEM-1 or LGK variants. a) TEM-1(S70A), b) TEM-1(S70A,D179G), c) LGK, and 

d) LGK(D212A,I307Y). Error bars are 1 standard deviation of biological replicates (growth 

rates) or triplicates (fraction viable). 

 

I performed the same set of experiments on a different enzyme system to confirm my 

initial observations. I used a codon optimized levoglucosan kinase (LGK) from L. starkeyi2 

(Figure 4.1c); and a destabilized, catalytically inactive variant LGK with mutations D212A, 

I307Y (Figure 4.1d). Similar results were seen for both strains where the growth rate decrease is 

independent of viability, the growth rate plateaus to half maximum for the destabilized variant, 

and viability has a more substantial decrease than growth rate. Therefore, both the growth rate 

and cellular viability impact enrichment ratios for plate based selections. From these results I 

predict that within a population the enrichment ratios for beneficial variants should increase with 
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population size, and this effect should be accounted for in the analysis of deep mutational 

scanning experiments.  

To evaluate gain of function mutations on a larger scale, nicking mutagenesis17 was used 

to create a single-site saturation mutagenesis library for residues 331-435 in LGK. A TAT 

selection was performed where 100 µL of a culture of MC4100 E. coli at an OD600 of 1.0 with 

the LGK library was plated on two 100 mm diameter Petri plates with LB agar and 200 µg/mL 

carbenicillin per time point. Dilutions were also plated at 200 µg/mL carbenicillin and 34 µg/mL 

chloramphenicol to measure library viability. The plates were incubated in parallel at 30ºC in a 

humidified incubator, and the cellular mass was scraped and collected at time-points of 12, 14, 

16, and 18 hours. The two replicates at each time point were pooled in equal volumes. The 

plasmids extracted from each time point were deep sequenced using an Illumina MiSeq in 300 

bp paired-end mode using previously developed library preparation procedures8. Enrich18 was 

then used to calculate enrichment ratios for each variant at a given time-point relative to t = 0 

hours. 1,220 single point mutants with at least 15 read counts in the reference were observed 

(unselected; t = 0 hours) population. Library statistics for the selections are shown in Table 4.1. 

Processed deep sequencing datasets are freely available at figshare (www.figshare.com). 
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Table 4.1: Library statistics, cellular densities, and fraction viable of time points. 

Enzyme LGK 

Number of mutated codons 105 

Reference sequencing reads post quality filter 167,053 

Selected sequencing reads post quality filter   

12 hours 110,898 

14 hours 184,418 

16 hours 186,130 

18 hours 182,375 

Percent of mutant codons with:   

1-bp substitution 99.4 

2-bp substitution 84.2 

3-bp substitution 78.4 

All substitutions 83.8 

Percent of reads with:   

No nonsynonymous mutations 35.0 

One nonsynonymous mutation 52.4 

Multiple nonsynonymous mutations 12.6 

Coverage of possible single nonsynonymous 

mutations 
85.4 

Biomass (OD600-mL):   

0 hours 0.1 0.1 

12 hours 26.2 28.4 

14 hours 43.1 42.8 

16 hours 52.0 58.0 

18 hours 75.4 85.2 

Fraction viable:   

12 hours 0.0074 

14 hours 0.0126 

16 hours 0.0145 

18 hours 0.0153 

 

For each variant the enrichment ratio as a function of the observed average number of 

population doublings was plotted (Figure 4.2a). From this plot two parameters were calculated: 

an enrichment ratio slope (slopeer) as well as an average enrichment ratio (averageer), defined 

here as the enrichment ratio at the midpoint of the best-fit linear regression line joining the four 
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experimental data-points. The correlation coefficient between slopeer and averageer is only 0.38 

(Figure 4.2b). However, there is a statistically significant relationship between the sign of 

slopeer and averageer (Fisher’s exact test binary classification p<0.0001). That is, if the slopeer is 

positive, the averageer is much more likely to be positive, and vice versa. 

 

Figure 4.2: Enrichment ratio versus average population doublings and the relationship 

between the change in enrichment ratio and average enrichment ratio. a) Enrichment ratio 

versus average population doublings of example variants showing an increase, neutral, or 

decrease in their enrichment over time. b,c): relationship between the change in enrichment ratio 

(slopeer) and average enrichment ratio (averageer) for (b) all variants above 15 read counts; and 

(c) all the subset of “high confidence” variants. Wild-type is indicated with an open square. 

 

I reasoned that intrinsic counting error resulting from counting small numbers of variants 

could impact accurate determination of slopes. To test this assumption, the above analysis was 

performed again on the subset of variants with over 100 read counts in the reference population 
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(t = 0 hours) and at least 50 read counts on average in the four subsequent timepoints. For these 

resulting 142 variants, a much stronger relationship emerged between slopeer and averageer 

(Figure 4.2c), with the correlation coefficient now 0.80. 

 

CONCLUSION 

The above results show that enrichment ratios vary with respect to average number of 

population doublings for the plate-based TAT genetic selection in E. coli. I speculate enrichment 

ratios will vary for most coupled selections involving beta-lactam antibiotic resistance. For this 

particular antibiotic-based selection, these results are consistent with growth rate being a non-

linear function of cell viability as shown here for isogenic cultures. While viability and growth 

rate may or may not be coupled for other types of plate-based selections, the above results have 

strong implications in the interpretation of deep mutational scanning data resulting from 

selections on solid media. In particular, implicit assumptions about the conversion of enrichment 

ratios to a fitness metric should be experimentally demonstrated. Furthermore, accurate 

determination of the slope is only apparent with variants well sampled in the population. As a 

practical matter, more depth of coverage for many deep mutational scanning experiments may be 

warranted. 
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PERSPECTIVE 

 My dissertation provides an approach to comprehensively study the effect of thousands of 

mutations on the function of enzymes in a designed metabolic pathway. It also provides an 

approach to improve their soluble expression in the absence of a growth selection. These studies 

provide a framework for additional investigations by other researchers. Below, I provide a 

summary of my results with greater perspective and describe broader impact of the work. 

 At the time of developing the method described in Chapter 2, this work was the first 

example of applying population-based deep sequencing to study an enzyme in a designed 

pathway. The only other examples were enzymes that confer antibiotic resistance through a 

plate-based selection1, 2. The present work studied levoglucosan kinase from L. starkeyi which 

converts levoglucosan, a anhydrosugar from fast pyrolysis, into glucose-6-phosphate3. This is a 

potential route to convert woody biomass deconstructed by fast pyrolysis into biochemicals of 

choice via fermentation3-5. To introduce this enzyme into E. coli a synthetic promoter collection 

was created and searched6, 7 such that growth was possible on minimal media with levoglucosan 

as the sole carbon source. Because of the poor kinetics and thermodynamic stability of 

levoglucosan kinase, only strong synthetic promoters were able to support weak growth at 37ºC 

in E. coli showing a clear need to improve the enzyme itself. 

This work detailed the development and the requirements that a growth selection needs to 

satisfy for a population-based growth study: 1) that an active enzyme is required for growth, 2) 

the selection can resolve changes in growth rate, and 3) the change in enzyme activity changes 

the cellular growth rate. These requirements are generally applicable to other enzymes and 

should serve as guidelines for further research by outside labs. Using this growth selection 

combined with deep mutational scanning8, 9, it was possible to quantify the enrichment of over 
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8,000 single point mutations of levoglucosan kinase in this designed pathway. Using analytical 

equations that I provided assistance on10, the enrichments were converted into growth rates to be 

used in a fitness metric. The method was validated by deep sequencing biological replicates of 

the population, and testing that the fitness metric correlates with growth rates and lysate enzyme 

activity of single isogenic cultures. From the first selection, over 200 beneficial mutations were 

identified scattered spatially throughout the enzyme structure. This number would not be 

typically found from studies using current practices by the field as outlined in Chapter 1. 

Computational design combined with deep sequencing datasets enabled the creation of 

enzyme designs that incorporated 35 to 57 beneficial mutations which increased the Tm,app by 

47.8ºC in the best case. However, all designs were inactive and the solved crystal structure of 

one was globally alignable to the wild-type structure and no change was observed to the active 

site residues. Single variants were tested in vitro for their catalytic efficiency and thermodynamic 

stability which indicated that there is a general tradeoff between the two. Furthermore, 

improvement of stability was the primary reason for being enriched in the population as the wild-

type enzyme has a Tm below the selection temperature. A more modest enzyme design, LGK.1, 

was made with only three mutations and had wild-type catalytic fitness and improved stability. 

Cells expressing this enzyme supported higher growth rates and metabolic flux which required 

weaker expression. Comprehensive datasets starting from this enzyme compared to the original 

datasets predicted beneficial mutations that did not trade off catalytic fitness for stability. This 

predictive ability was used to make the final enzyme design, LGK.9, which supported a 15-fold 

improvement in growth rate and over 24-fold improvement in lysate activity over wild-type 

levels. A key take-away from this work is that metabolic pathway performance can be 

significantly improved just by increasing the soluble expression of the enzyme alone (in the case 
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of LGK.1 and partially LGK.9). A second lesson from this project is that more modest additions 

of mutations increase the chance of not inactivating the enzyme, however a non-trivial amount is 

still required to be incorporated to see significant performance improvements. These two 

takeaways drive the project outlined in Chapter 3.  

 Chapter 3 addressed the problem of improving stability while retaining catalytic activity. 

The method outlined in Chapter 2 works extremely well for enzymes in primary metabolism that 

are required for growth. However, there is a particular interest to improve enzymes from plants 

or other organisms that are incorporated into secondary metabolism in production hosts. For 

these enzymes a growth selection that requires active enzyme may not exist. The project in 

Chapter 3 set out to address this problem utilizing the lessons from the project in Chapter 2. 

Three complementary screens that have been used to improve soluble expression of proteins 

were tested on two enzymes with comprehensive functional datasets1, 11. In particular, yeast 

surface display12, GFP fusion screening13, and Tat export14 were used for TEM-1 beta-lactamase1 

and LGK11. Problems of each screening method were diagnosed and are outlined for future 

applications. In particular, accessibility of the c-myc epitope for yeast surface display and the 

fusion to the c-terminal beta-lactamase for Tat export lead to false positives in the dataset. 

 Classifiers were developed and trained on the functional datasets to allow identification 

of mutations beneficial for solubility improvements that retain wild-type catalytic fitness. 

Furthermore, these classifiers were built such that a rough homology model could be used as 

many difficult to express enzymes do not have solved crystal structures. It was found that a 

combination of PSSM (a method using existing genomic datasets)15, contact number (the average 

number of amino acid contacts in a defined distance)16, distance to active site, and mutation type 

was able to identify solubility enhancing mutations that retained wild-type catalytic fitness with 
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90% accuracy. Alternately, the rate of picking a mutation that is strongly deleterious for catalytic 

fitness is 2%, which is a low enough for 10 to 20 mutations to be incorporated into an enzyme 

design and maintain activity. However, the problem with strict classification filters leads to 

culling Pareto optimal variants as introduced in Chapter 1. One example of this was LGK G359R 

which was near the active site and the solved structure indicates it interacts with the ATP/ADP 

moiety. Future work from this method should be to apply the solubility screens and classifiers on 

enzymes that do not have solved structures and are part of important secondary metabolic 

pathways.  

 The final project in Chapter 4 is an extension of the solubility screening project. Early in 

my career I contributed to another project to create fitness metrics for liquid media growth 

selections and FACS (used here in Chapter 2 and Chapter 3 respectively)10. However, equations 

did not exist for plate-based selections like the Tat export screen. Therefore, the final project set 

out to develop equations to convert the enrichment of a variant to a fitness metric. Isogenic 

cultures expressing variants of TEM-1 beta-lactamase and LGK were measured for their specific 

growth rate on solid media and their fraction of survival. And a population-based time course 

study was performed with LGK. Both the population study and isogenic cultures are in 

agreement that the specific growth rate and surviving fraction after plating are important when 

converting the enrichment of a variant to a fitness metric. This study should provide a framework 

for other plate-based deep mutational scanning studies when calculating fitness of variants. 

 In total, my results have led to significant advances in methodological approaches to 

study enzymes and discovery of general biophysical features to improve enzyme performance. 

Nevertheless, many questions about enzyme function remain to be answered and new research to 
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enhance our understanding of these vital proteins remain an exciting area for many generations 

to come.  
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