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ABSTRACT

CONTROL OF HYBRID DYNAMICS WITH APPLICATION TO A

HOPPING ROBOT

By

Frank Benton Mathis

Control of dynamic motion is an important subject of study in robotics as it is desirable

for robots to have a specific motion pattern rather then moving to a set point. The motions

of robots also involve changing dynamic behaviors due to interaction with the environment,

such as during contact, and this leads to hybrid system dynamics. A popular example of

a hybrid dynamical system is a legged robot; the hybrid dynamics is due to the periodic

switching of swing and stance legs and impulsive dynamics due to ground contacts. Legged

robots require control of a dynamic trajectory defined by the walking gait or running motion.

For legged robots, the spring loaded inverted pendulum (SLIP) model is commonly used to

describe the dynamic motion in a simplified manner. The SLIP model has also been used for

control of hopping robots and a fundamental limitation of the model is that it fails to account

for impact with the ground; this is due to its single degree-of-freedom in the vertical direction.

We investigate the control of a hopping robot starting from a more general two-mass model

and then expand the theory to planar multi-link robot systems. The investigation involves

two ground contact models, rigid and elastic, for the objective of apex height control. In

the rigid case, the ground is assumed to provide an impulsive force to the hopping robot

resulting in an inelastic collision. A hybrid control strategy is designed to deal with the

hybrid dynamical system: a continuous controller based on partial feedback linearization is

used in conjunction with a discrete controller that updates a control parameter at each hop to

achieve the control objective. In the elastic case, the ground acts as a massless spring, which



deflects as the robot exerts a force upon contact. In this case, we show that a continuous

controller based on the backstepping algorithm can ensure asymptotic convergence to the

desired apex height. Several robot configurations are considered, and for each configuration

the complete hybrid dynamics is taken into account while designing the controller. The

controllers compensate for the impulsive dynamics as well as higher order dynamics that

are ignored in simplified models such as the SLIP model. Experimental validation of apex

height control of a two-mass hopping robot on a rigid foundation is provided.
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Chapter 1

Introduction

A hybrid dynamic system is one whose dynamics changes according to discrete events. Such

systems are ubiquitous in robotics since a robot is frequently expected to interact with its

environment causing either a discrete change in mass due to it picking up or dropping an

object, or a change in kinematics due to contact with a surface such as the ground. Moreover,

the dynamic motion of robots inspired by biological design, such as swimming with a tail

or walking with legs, is not only hybrid in nature but also requires control to a periodic

operating point. Here we will investigate the hopping motion of a robot which is inspired by

running and waking in legged robotic systems.

The earliest work on hopping robots can be credited to Raibert [26], [14]. In his work,

Raibert used a single mass on a hydraulic piston and experimentally demonstrated a hopping

gait; the control design utilized a spring like motion in the piston and a stabilizing torque

at the hip joint. Schwind and Koditchek [30] proposed a lossless model of Raibert’s planar

hopper for the purpose of controlling its forward velocity. A closed form of the return map

of a hop was derived and a controller was proposed for improving upon the gait of Raibert’s

hopper. Saranli et al. [28] introduced the SLIP (spring loaded inverted pendulum) model of

the hopper and argued its equivalence to the higher degree-of-freedom AKH (ankle-knee-hip)

leg model. A deadbeat controller, which varied the spring parameters of the SLIP model

at each hop, was designed to produce stable periodic motion. The spring loaded inverted

pendulum (SLIP) model was later shown to be an accurate representation of running and
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hopping in biological systems [5], [8].

Following the work by Schwind and Koditchek [30] and Saranli et al. [28], the SLIP model

became very popular in the research community. Hyon used a combination of hydraulic

actuators and springs to apply Raibert’s control method to a kneed robot [16]. Kajita

used a resolved momentum approach to control a legged robot to a desired trajectory [18].

Ghigliazza et al. [12], [11] and Holmes et al. [15] investigated passive stability of the

SLIP model for various parameters. Poulakakis and Grizzle [24], [25] investigated the SLIP

model with an asymmetric mass and compared its behavior with that of a three-link hopper.

Altendorfer et al. [6], [7] studied the return map of the non-integrable SLIP dynamics and

investigated the stability of the map. Seipel and Holmes [31], [32] investigated the stability

of the SLIP model for a three-dimensional system. Hamed and Grizzle [13] later proposed

a robust event-based control method to improve stability of the controlled legged system.

Although the analysis of the SLIP model is useful and provides the basis for the design of

effective controllers, it is incomplete since it does not account for the impulsive dynamics

associated with foot-ground interaction.

The SLIP model is not capable of accounting for the impulsive forces that are generated

at the time of impact with the ground. To account for these impulsive forces and model the

dynamics of the hopper more accurately, it is necessary to model the leg as a mass rather

than a massless spring. Saitou et al. [27] and Ishikawa et al. [17] proposed a two-mass

system for a hopping robot in an effort to obtain a more accurate model of the robot in

the flight phase. Saitou et al. [27] used optimal control methods to maximized the jumping

height of the robot in the presence of control constraints. Ishikawa et al. [17] used a port-

controlled Hamiltonian method to control the energy of the two mass system to a desired

level to maintain a maximum jumping height. In both instances, the ground is modeled as
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a spring and the impulsive effect of ground impact is neglected.

Here we investigate a class of hopping robots with two masses, three links, and four

links. The control objective for each hopping robot is the achieve a desired maximum value

of the center of mass during each hop, or apex height. All of which utilize a form a chaotic

control strategies as the method for stabilizing the apex height. We begin in Chapter 2

with a two-mass hopping robot undergoing inelastic collision with a rigid ground at each

hop. We use feedback linearization methods to stabilize the internal dynamics with different

control parameters. The periodic nature and stability characteristics of the resulting hybrid

dynamic system was analyzed [9] and “chaos control” [29] was used to discretely adjust a

system parameter and converge the apex height to its desired value. Experimental results

are presented in Chapter 2.6 using a voice coil actuator to prove the efficacy of the control

method.

In Chapter 3, we extend the control method utilized on the two-mass hopping robot

on an rigid ground to contol the apex height of a four-link hopping robot which undergoes

inelastic collision with a rigid ground. Generalizing the control method from a two-mass

robot to a four-link robot shows the applicability of the control to a more humanoid inspired

system, as well as provides insights as to the method of extending the control method to

system with higher degrees of freedom. The control method for the four-link hopping robot,

as with the two mass hopping robot, utilizes feedback linearization to stabilize the system,

and then a discrete change in a parameter each hop to converge the apex height to a chosen

desired value.

Chapter 4 investigates the issues of applying the control strategy, which was developed

for hopping on a rigid ground, to the case with the elastic ground. We then develop a

new control method for controlling the two-mass hopper on the elastic ground. The control
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method utilizes a continuous control method based on backsetpping. The backstepping

method controls the energy of the system to a desired level while simultaneously controlling

the distance between the two masses to a constant value. The hybrid dynamics are then

stabilized utilizing a discrete change in the control parameters each hop.

Finally, in Chapter 5 we extend the control method used for the two-mass robot to a

three-link robot hopping on an elastic ground. Similar to the two-mass hopping robot the

hybrid controller utilizes a continuous control strategy based on backstepping to control the

energy of the robot. Then the control parameters are discretely changed at each hop to

stabilize the system to the desired apex height.

The results of simulations show that the presented control strategies are capable of achiev-

ing a repeated apex height for each hopping robot. Furthermore, the experimental results

show the control strategy is capable of achieving the desired apex height even in the pre-

science of uncertainty. In Chapter 6 we present the conclusions.
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Chapter 2

Two-Mass Hopping Robot on a Rigid

Foundation

During normal walking and running, a humanoid robot must interact with the ground. The

most common ground is considered to be rigid, i.e. it does not deform when the robot makes

contact with it. The rigid ground assumption also implies that the robot makes inelastic

contact with the ground, i.e. the velocity of the point of contact of the robot immediately

matches that of the ground and goes to zero upon contact

We begin with a simplified model of a hopping legged robot, a two-link prismatic joint

robot. The two-link robot effectively acts as two masses connected through an applied for.

The addition of the lower mass allows you to account for the loss of energy due to impact.

The control objective is to achieve a motion which produces a desired value of the center of

mass at the highest point of the hop, or apex height. A hybrid control strategy consisting

of a continuous and discrete controller is implemented in order to achieve the the objective

of a desired apex height. Experiments are presented to validate the control strategy. The

control method for the two-mass robot is then extended for use with a four link robot.

The two mass hopping robot utilizes two masses with an actuated force between them.

This is slightly more complicated than the inverted pendulum models which instead allow

for application of the force directly at the point of contact at the base rather than the base
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mass. The control method presented follows the results of Mathis and Mukherjee [21] and

[22].

2.1 Dynamics

2.1.1 Coordinate System Description

Consider the hopping robot shown in Fig. 2.1. It is comprised of two masses, m1 and m2

(first and second mass, respectively), which are connected by a linkage. The force applied

by the linkage on the two masses, denoted by F , can be actively controlled. The height of

second mass with respect to the ground is denoted by x, and the height of the first mass

with respect to the second mass is denoted by y. Both x and y are assumed positive in the

vertically upward direction. The force applied by the ground on the mass is denoted by Fext;

datum datum

m1m1

m2m2

g

x

x0

y F

Fext

Figure 2.1: Two-mass hopping robot
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in the flight phase Fext = 0. The equations of motion of the hopping robot are

ẍ = − 1

m2
F − g +

1

m2
Fext

ÿ =
m1 +m2

m1m2
F − Fext

m2
(2.1)

The values x and ẋ are measured with respect to the ground making it impractical for

measurement during flight. Thus, It is assumed that only the variables y, ẏ, and Fext can

be measured, and our objective is to control the height of the center of mass to a desired

value. The hybrid dynamics of the hopping robot is comprised of three distinct phases: the

flight phase, the inelastic impact, and the contact phase.

2.1.2 Flight Phase

During the flight phase, the system is not in contact with the ground and therefore

x > x0, Fext = 0 (2.2)

2.1.3 Inelastic Impact

At the instant when the second mass comes in contact with the ground the system moves

from x > 0 to x = 0. At this instant we assume the following to hold true:

Assumption 1. The impact between the second mass with the ground results in an instan-

taneous change in the velocities of the system, ẋ and ẏ. The impulsive force applied by the

ground on the second mass is denoted by

Fext = Fimp (2.3)
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Assumption 2. The control force F is not impulsive in nature.

Assumption 3. The collision of the second mass with the ground is inelastic.

If tc denotes the time in which the second mass comes in contact with the ground,

assumption 3 implies

lim
t→t+c

ẋ(t) = 0 (2.4)

Using the dynamics given in Eq.(2.1) and assumptions 1 and 2, we get

Fimp = lim
t→t−c

m2ẋ(t) (2.5)

and

lim
t→t+c

ẏ = lim
t→t−c

[ẏ + ẋ] (2.6)

from Eq.(2.4) and (2.6) The impulsive dynamics can be described by the mapping

lim
t→t+c























y

ẏ

x

ẋ























= S lim
t→t−c























y

ẏ

x

ẋ























, S ,























1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 0























(2.7)

2.1.4 Contact Phase

The contact phase defines the period of time during which the second mass remains in contact

with the ground. For the contact phase we make the following assumptions

Assumption 4. The external force exerted on the system acts in the positive direction only
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(the ground is not sticky), and therefore

Fext ≥ 0 (2.8)

Assumption 5. The environment is rigid and therefore,

x ≡ x0 (2.9)

Using assumptions 4 and 5, Fext can be computed as

Fext = m2g + F ≥ 0 (2.10)

Substituting Eq.(2.10) into (2.1) we obtain the dynamics of contact phase:

ÿ = −g + 1

m1
F

ẍ = 0 (2.11)

At the instant when the system switches from the contact phase to the flight phase, Fext

crosses zero and therefore

Fext = F +m2g = 0 (2.12)
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2.2 Continuous Control of the Height of the

Center-of-Mass

2.2.1 Feedback Linearization

If z denotes the height of the center of mass of the hopping robot, we can write

z = x+ x0 +mfy, mf ,
m1

m1 +m2
(2.13)

Since the measurement of x is not available, we define the height of the center of mass relative

to the second mass by r which can be written as

r = (z − x− x0) = mfy (2.14)

Differentiating Eq.(2.14) twice, we get

r̈ =
1

m2
[F −mfFext] (2.15)

To control the value of r we choose the control input F as follows

F = mfFext +m2v (2.16)

where v will be chosen later. Substitution of Eq.(2.16) into Eq.(2.15) results in

r̈ = v (2.17)
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The choice of v for the flight phase and the contact phase is discussed next.

2.2.2 Flight Phase

The dynamics of the hopping robot during flight phase is given by the relations

z̈ = −g

r̈ = v (2.18)

We seen from Eq.(2.18) that the dynamics of z is independent of the control force and is

therefore uncontrollable. To control the position of the relative center of mass, we choose v

as follows

v = −K(r − rd)−Dṙ (2.19)

where rd > 0 is some constant, and K and D are constant proportional and derivative gains.

The choice of v in (2.19) results in the dynamics

r̈ +Dṙ +K(r − rd) = 0 (2.20)

which implies that the equilibrium (r, ṙ) = (rd, 0) is asymptotically stable.

2.2.3 Contact Phase

During the contact phase, x ≡ x0 and therefore

z = r

r̈ = v (2.21)
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Since x ≡ 0, the dynamics of the system is reduced from order 4 to order 2. To emulate a

natural hopping motion we design v as follows

v =











−K(r − rd)−Dṙ ṙ ≤ 0

−K(r − rd)− νDṙ ṙ > 0

(2.22)

where D chosen as follows

0 < D < 2
√
K (2.23)

Such a choice of D allows the first mass to behave as an under-damped oscillator during its

downward motion. By choosing ν < 0 we ensure that the first mass behaves like a negatively

damped oscillator and energy can be added to the system during its upward motion. The

amount of energy added will depend on the choice of ν and this will be determined based on

the desired maximum height of z and its current value. This will be discussed in the section

on discrete control.

2.2.4 Hybrid Dynamics of Closed-Loop System

The hybrid dynamics of the closed-loop system can be summarized as follows:

Flight Phase: Substituting Eqs.(2.16), (2.18), and (2.19) into (2.1) and setting Fext = 0,

we have

ẍ=K
[

mfy − rd
]

+Dmf ẏ − g

ÿ=−K
[

y − 1

mf
rd

]

−Dẏ (2.24)

Impact: The impulsive dynamics is described by the mapping in Eq.(2.7)

12



Contact phase: Substituting Eqs.(2.10), (2.16), (2.21), and (2.22) into (2.1), we have

x ≡ x0

ÿ = −K(y − 1

mf
rd)− µDẏ (2.25)

where

µ =











1 ṙ ≤ 0

ν ṙ > 0

(2.26)

2.3 Poincaré Map

2.3.1 Construction of First Return Map

We define the first return as the mapping over a single hop starting from liftoff and ending

at the next liftoff. Without loss of generality, we consider the time of first liftoff to be t = 0,

and ∆t1, ∆t2, and ∆t3 to be the durations of the flight phase, contact phase with downward

velocity of the first mass, and contact phase upward velocity of the first mass respectively.

For convenience, we define

T1 = ∆t1

T2 = ∆t1 +∆t2

T3 = ∆t1 +∆t2 +∆t3 (2.27)

and the state vector as follows

X(t) = [y(t), ẏ(t), x(t), ẋ(t)]T (2.28)
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Using Eq.(2.24), the states of the system at the end of the flight phase can be obtained as

follows

X(T1) =







e
Af∆t1 0

−mf e
Af∆t1 0






X(0) +Bf (2.29)

where Af and Bf are given by the relations

Af =







0 1

−K −D






Bf =







Bf1

−Bf1 +Bf2






(2.30)

and Bf1 and Bf2 are given by

Bf1 =

∫ ∆t1

0
e
Af (∆t1−τ)

K
1

mf
R dτ

Bf2 =







mf [y(0) + ẏ(0)∆t1]− 1
2g(∆t1)

2

mf ẏ(0)∆t1 − g∆t1






(2.31)

and R is given by

R = [0 rd 0 0]T (2.32)

Immediately following the flight phase the system impacts the ground and the states change

according to Eq.(2.7). Following the impact the first mass descends downward in the contact

phase. The states of the system, when the first mass has reached the lowest vertical position,

are obtained from Eqs.(2.25) and (2.26) as follows

X(T2) = eAc∆t2SX(T1) +Bc (2.33)
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where Ac and Bc are given by the relations

Ac =























0 1 0 0

−K −D 0 0

0 0 0 1

0 0 0 0























(2.34)

Bc =

∫ T2

T1

eAc(T2−τ)K
1

mf
R dτ (2.35)

Using Eqs.(2.25) and (2.26) again, the states at liftoff are obtained as

X(T3) = eAp∆t3X(T2) +Bp (2.36)

where Ap and Bp are given by the relations

Ap =























0 1 0 0

−K −νD 0 0

0 0 0 1

0 0 0 0























(2.37)

Bp =

∫ T3

T2

eAp(T3−τ)K
1

mf
R dτ (2.38)
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Substituting Eqs.(2.29) and (2.33) into Eq.(2.36) gives the mapping for the configuration of

the first mass over one hop. This mapping is given bellow







y(T3)

ẏ(T3)






= P [X(0),∆t1,∆t2,∆t3] (2.39)

2.3.2 Period One Orbits

Equation (2.39) gives the first return map for one hop. Indexing each hop by an integer we

may write without loss of generality

χ(0) =







y(0)

ẏ(0)






(2.40)

and

χ(1) =







y(T3)

ẏ(T3)






= P [X(0),∆t1,∆t2,∆t3] (2.41)

The discrete dynamics of the hopping motion is therefore

χ(k + 1) = P [χ(k)] (2.42)
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where the dependence on (∆t1,∆t2,∆t3) has been dropped since they all depend on χ(k). In

particular, for the first hop, ∆t1, ∆t2, and ∆t3 can be solved using the following equations:

x(T1) = x0

ẏ(T2) = 0

−K[y(T3)−
1

mf
rd]− νDẏ(T3) +

g

mf
= 0 (2.43)

The meaning of the first two equations above are clear. The third equation is obtained

by setting Fext = 0 at the time of liftoff. A period-one hop of the system correspond to

equilibrium point of the discrete system in equation (2.42) which are the points χ which

satisfy

χ(k + 1) = χ(k) = P [χ(k)] (2.44)

Equation (2.43) and (2.44) may then be solved numerically to find all the period one orbits

of the system for a given ν value.

2.3.3 Stability Analysis of First Return Map

Once the periodic point for each ν value are determined, it is necessary to determine the

stability of each point. To do so we linearize the discrete system in equation (2.42) about a

given periodic point, denoted by χ∗, giving

χ(k + 1) ≈ P (χ∗) +
dP (χ)

dχ
|χ=χ∗(χ(k)− χ∗) (2.45)

17



where the Jacobian matrix
dP (χ)
dχ

is obtained by implicit differentiation of Eq.(2.43). By

defining the error between the current point of liftoff with the periodic point as

E(k) = χ(k)− χ∗ (2.46)

we have the linearized equation of the discrete dynamics:

E(k + 1) ≈ dP (χ)

dχ
E(k) (2.47)

The periodic point is asymptotically stable if and only if

ρ

[

dP (χ)

dχ

]

< 1 (2.48)

where ρ[•] is the spectral radius.

2.4 Discrete Control

2.4.1 Mapping Between Apex Height and Liftoff Configuration

The height to which the hopper will jump (the maximum value of z denoted here by h)

depends on the value of y and ẏ, or alternatively r and ṙ, at the time of lift off, i.e.,

h = h(χ). To find this functional representation we realize that the total energy (kinetic

plus potential) of the center of mass remains constant during the flight phase, i.e.

E(χ) =
1

2
(m1 +m2)ż

2 + (m1 +m2)g z = const. (2.49)
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Note that z and ż are identical to r and ṙ at the time of lift-off. The second equation needed

to determine the value value of h is Fext = 0 at lift-off. Defining the map T (χ∗, ν∗) as

T (χ∗, ν) =







1
(m1+m2)g

E(χ∗)

Fext(χ
∗, ν∗)






=







h

0






(2.50)

we can solve for χ∗ for a given value of h as follows

χ∗ = T−1(h, ν∗) (2.51)

Note that ν is the only variable over which we have control. Therefore, our objective is to

determine the right value of ν = ν∗ that will make the hopper jump to the desired height.

2.4.2 Stabilizing the Liftoff Configuration

Equations (2.44) and (2.51) produce a set of points (χ∗, ν∗) which are periodic and have a

hopping height h. To ensure asymptotic convergence of the hopper to the desired periodic

point, or equivalently to the desired hopping height, we change ν to a different constant

value for each hop. Linearizing the discrete dynamics in Eq.(2.44) about the periodic point

(χ∗, ν∗) gives

χ(k + 1) = P (χ∗, ν∗) +
dP (χ, ν)

dχ
|χ=χ∗,ν=ν∗(χ(k)− χ∗)

+
dP (χ, ν)

dν
|χ=χ∗,ν=ν∗(ν(k)− ν∗) (2.52)

19



where the Jacobian matrices
dP (χ,ν)

dχ
and

dP (χ,ν)
dν

are determined by implicit differentiation

of Eq.(2.43). Defining the error and control input states E(k) and U(k) as

E(k) = χ(k)− χ∗

U(k) = ν(k)− ν∗ (2.53)

and using equation (2.44) we may write the linearized dynamics as

E(k + 1) =
dP (χ, ν)

dχ
|χ=χ∗,ν=ν∗E(k)

+
dP (χ, ν)

dν
|χ=χ∗,ν=ν∗U(k) (2.54)

Choosing the control action to be

U(k) = CE(k) ⇒ ν(k) = ν∗ + CE(k) (2.55)

where C is a constant matrix. We find the choice of the matrix C such that

ρ

[

dP

dχ
|χ=χ∗,ν=ν∗ +

dP

dν
|χ=χ∗,ν=ν∗C

]

< 1 (2.56)

asymptotically stabilizes the system to the desired periodic point.
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2.5 Simulations

The two masses of the hopper are assumed to be

m1 = 50 kg m2 = 20 kg (2.57)

The desired height h and rd are chosen as

h = 2 m rd = 1.071 m (2.58)

Note that the value of r = 1.071 corresponds to a value of y = 1.5. We assume the ground

height to be

x0 = 0.2 m (2.59)

This results in resting height of the center-of-mass of the hopper to be 1.271 meters above

the datum. The continuous control gains K and D are chosen to be

K = 1500 N/(kg m) D = 10 Ns/(kg m) (2.60)

The values of K and D satisfy D < 2
√
K discussed earlier. For the parameters presented,

Fig.2.2 provides numerical solutions for the hopping height associated with period one orbits,

i.e., solutions to Eqs.(2.44) in terms ν. Note that there are multiple heights associated with a

given value of ν, and this makes the choice of a ν associated with the desired height difficult.

We see that there appears to be a minimum value of h for a given ν. This is understood as

there is a minimum height that the center of mass must reach in order for the system to hop

and thus produce a return map.
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Figure 2.2: Apex height h corresponding to periodic orbits of the system for a given ν∗ value

For the desired height of h = 2 we used Fig.(2.3) to determine

ν∗ = −1.95 (2.61)

A discrete LQR problem was solved to determine the control gains in Eq.(2.55). These gains

are given below

C = [−0.0780 − 0.1618] (2.62)

The given ν∗ and desired height h determine the lift off values x∗, and the gains C asymptot-

ically stabilize the system to the given x∗ and thus the desired height. The initial conditions,
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without loss of generality, were assumed to be

x(0) = 0.2 m ẋ(0) = 0 m/s

y(0) = 1.5835 m ẏ(0) = 6 m/s (2.63)
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Figure 2.3: Error between desired lift-off states χ∗ and actual lift-off states at the kth-hop
χ(k)

Figure 2.3 plots the error between the desired periodic point χ∗, and the actual lift-off point

χ(k) for each hop. The system converges in approximately 8 hops. However, we note that

the control results in steady state error. This is due to inexact estimation of ν∗ from Fig.2.2.

Figure 2.4 shows the height of the first mass, second mass, and center of mass above the

ground. We see that the peak height of the center of mass converges to approx. 2 meters as

prescribed by the control objective.

From the simulations we see that efficacy of the control algorithm. However, to further
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Figure 2.4: Absolute height of the two masses m1 and m2, and center-of-mass height are
plotted as a function of time

investigate the robustness and applicability of the control algorithm, it behooves us to exper-

imentally test the control method. Therefore, in the next section we will discuss the design,

application, and results of a two mass hopping robot experiment.

2.6 Two-Mass Hopper Experiments

In Chapter 2, section 2 we presented a method of controlling the apex height of a two mass

hopping robot. To expand of the efficacy of the presented algorithm, we will now investigate

an experimental robot that is controlled via the presented algorithm.
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2.6.1 Description of Experimental Hardware

In the experimental setup, the two-mass hopper is comprised of a voice-coil actuator and two

linear guides - see Fig.2.5. One linear guide is connected to the coil housing of the voice-coil

actuator and together they make up the lower mass of the hopper. The other linear guide is

connected to the cylindrical permanent magnet of the voice-coil actuator and together they

make up the upper mass of the hopper. Both linear guides are mounted to the vertical rail;

this constrains the upper and lower masses to move in the vertical direction and prevents

collision between them. The voice-coil actuator is a product of Moticont [1]; it serves as

a linear motor, and for a commanded input current it outputs a force between the upper

and lower masses with a gain of 10.6 N/A. It has a stroke length of 0.1334 m and has the

capability to apply a continuous force of 21.5 N and an intermittent force of 68.1 N (10%

duty cycle). The position of the two masses are measured by two linear encoders whose scale

is mounted on the other vertical member; the encoders are a product of US Digital [4] and

they have a resolution of 120 lines/inch. The current in the voice-coil is provided by a motor

controller [2] powered by a 80 volt power supply. A DS1104 dSpace board [3], residing in

a host personal computer, is used for data acquisition and real-time control. The mass and

length parameters of the hopper are given by.

m1 = 2.668 kg, m2 = 0.808 kg, ℓ = 0.059 m (2.64)

2.6.2 Control Implementation in Experiments

The continuous controller defined by (2.16), (2.24), (2.25) and (2.26) requires the knowledge

of the external force Fext during the contact phase. The external force can be measured
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directly using a force sensor but such a sensor is not present in our experimental hardware.

To overcome this problem, we substitute (2.9) and (2.1) into (2.16) to rewrite the control

force in the contact phase as follows

F = mf(F +m2g) +m2v

⇒ F =
m2(mfg + v)

1−mf
(2.65)

It can be verified from (2.13) that mf < 1; the force in (2.65) is therefore non-singular. The

parameters of the continuous controller were chosen to be the same as those in simulation

which are given in (2.71). The choice of the value of rd = 0.0979 m can be explained as
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Figure 2.5: Schematic (left) and photograph (right) of the experimental hardware.
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follows: In the shortest length configuration, the upper and lower masses of the voice-coil

are separated by a distance of ymin = 0.064 m. The maximum stroke length of the voice-coil

is 0.1334 m but the force decays rapidly at the end of its stroke. The active stroke length

of the voice-coil is the length over which the force can be accurately controlled; this is equal

to smax = 0.127 m as per the specifications of the manufacturer [1]. By choosing half the

stroke length as the desired neutral position of the hopper, the value of rd is determined as

rd , mf yd =
m1

(m1 +m2)
(ymin +

1

2
smax) = 0.0979

The desired apex height was chosen to be

hdes = 0.213 m (2.66)

The fixed point (ξ∗, ν∗) and gain C for the discrete controller were chosen from the

simulation.

2.6.3 Poincaré Map Reduction

The Poincare map, P (χ, ν) depends on the states (χ, ν) where the states χ are given by

χ ∈ Ω, Ω = {(y, ẏ) ∈ R
2 | x = 0, ẋ = 0, Fext = 0} (2.67)

Which implies that the Poincare map is a homeomorphism on R3. However, We note

that at the instant of liftoff, the forces F and Fext are given by
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F = mfFext +m2v

v = −K
[

mfy − rd
]

− νDmf ẏ

Fext = F +m2g = 0 (2.68)

Combining Eqns.(2.68) and solving for y gives

y =
g − νDmf ẏ

Kmf
+

rd
mf

(2.69)

Equation (2.69) means that the dimensionality of the return map may be reduced. Namely

that we may write P (ξ, ν) where

ξ ∈ Λ, Λ = {ẏ ∈ R | x = 0, ẋ = 0, Fext = 0, y =
g − νDmf ẏ

Kmf
+

rd
mf

} (2.70)

From Eqn.(2.70) we see that the Poincare map, P (ξ, ν) is actually a homeomorphism on R
2.

The the experimental application we will use the the map on (ξ, ν) rather than the map on

(χ, ν).

2.6.4 Simulation Results with Hardware Parameters

The mass and length parameters of the hopper were assumed to be the same as those in our

experimental setup - see (2.64).

28



The parameters of the continuous controller were chosen as

K = 600 s−2, D = 5 s−1, rd = 0.0979 m (2.71)

The choice of rd is the same as that used in experiments and will be explained later in section

2.6.2.
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(0.213,−4.55)

Figure 2.6: Apex height h corresponding to periodic orbits of the system obtained with
different values of ν.

The discrete controller parameter ν requires us to choose a nominal value ν∗, where ν∗

corresponds to the fixed point (ξ∗, ν∗). A numerical search was used to find as many fixed

points (ξ∗, ν∗) as possible. Each fixed point corresponds to a unique value of h = h(ξ∗, ν∗)

and Fig.2.6 plots these fixed points in the h-ν plane. This plot is useful for choosing ν∗ for

a desired value of h = hdes. Our desired apex height is given in (2.66)
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From Fig.2.6, this corresponds to

ν∗ = −4.55 (2.72)

For these values of hdes and ν
∗, the value of ξ∗ was

ξ∗ = ẏ = 0.76 m/s (2.73)
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k

(ẏ
−

ẏ
∗
)
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/s
)

Figure 2.7: Simulation results: Error between the actual lift-off state ξ = ẏ and the desired
lift-off state ξ∗ = ẏ∗ at the beginning of the k-th hop, k = 1, 2, · · · , 9.

The gain of the discrete controller was chosen to place the pole at 0.1; the gain was found

to be

C = −1.08 (2.74)

The initial conditions1 were assumed to be

x1(0) = 0.149 m, ẋ1(0) = 0.0 m/s

x2(0) = 0.059 m, ẋ2(0) = 0.0 m/s (2.75)

and the results are shown here in Figs.2.7, 2.8 and 2.9. Figure 2.7 plots the errors between

1These initial conditions are the same as those used in experiments. The value of x2(0) was chosen to be
equal to ℓ = 0.059 m and the value of x1(0) corresponds to y(0) = 0.09 m.
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Figure 2.8: Simulation results: Plot of the height of the upper mass x1, the lower mass x2,
and the center-of-mass z, as a function of time.
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Figure 2.9: Simulation Results: Plot of the force F applied by the actuator.

the actual lift-off state ξ = ẏ and desired lift-off state ξ∗ = ẏ∗ as a discrete function of

time; the hops are sequentially numbered using the integer variable k and the errors at the
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x2, and the center-of-mass z, as a function of time.

beginning of each hop are plotted for k = 1, 2, · · · , 9. It can be seen that the errors become

negligible after three hops, i.e., for k ≥ 4. The positions of the upper mass, lower mass, and

center-of-mass of the robot are plotted as a continuous function of time in Fig.2.8. The time

intervals during which x2 remains constant at its lowest value of ℓ = 0.059 m indicate the

contact phases. The robot lift-offs the ground at the end of each contact phase; the discrete

instants of time corresponding to k = 1, 2, · · · , 9 in Fig.2.7 are marked by “•” in Fig.2.8. It

is clear from Fig.2.8 that the apex height of the robot h (maximum value of z during flight

phase) converges to its desired value hdes = 0.213 within three hops.

The force applied by the actuator F , defined by (2.16), is shown in Fig.2.9. It can be

seen that the actuator force increases significantly during the contact phase. Each contact

phase is marked by “c” and the maximum value of the actuator force reaches approximately

200 N, which is slightly larger than 7.5 times the weight of the upper mass m1. In each

contact phase, the upper mass changes direction from downward motion to upward motion.
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This change in direction results in the non-smooth control action described by (2.26), which

is discernible from Fig.2.9. In the flight phase, the relative motion of the masses is designed

to emulate the motion of an under-damped mass-spring damper system; this explains the

oscillatory nature of the actuator force. At the beginning of the flight phase, the actuator

force is negative since the upper mass lifts the lower mass off the ground.

2.6.5 Comparison of Experimental Results with Simulations
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Figure 2.11: Experimental Results: Plot of the force F applied by the actuator.

The experimental results are shown in Figs.2.10 and 2.11 for the same initial conditions

as those used in simulations, namely (2.75). Figure 2.10 shows the positions of the upper

mass, lower mass, and center-of-mass of the hopper as a continuous function of time; it

can be seen that the apex height converges to its desired value in two hops. The control

objective is achieved but there are differences between simulation and experimental results.

A comparison of Figs.2.8 and 2.10 indicate difference in transient behavior. The apex height

gradually increases to its desired value in simulations whereas it overshoots and converges
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to its desired value in experiments. The time-period for each hop is also different. In a

period of 3 sec, the hopper completes seven hops in experiments but is on its ninth hop in

simulations. This is due to the difference in the duration of the contact phases. For example,

the contact phase prior to the sixth hop2 is approx. 0.174 sec in simulation but approx. 0.239

sec in experiment. This is due to the saturation of the actuator force in experiments. A

comparison of Figs.2.9 and 2.11 indicate that the peak actuator force is 200 N in simulation

but only 150 N in experiments. Since the maximum actuator force is lower in experiments,

it is applied for a longer duration in the contact phase such that the hopper can reach the

same apex height.

From the experiment we see the validity of the control algorithm presented in Chapter

2.2. Utilizing these results we will next extend the control algorithm from the simplified two

mass model to a 4 linked model hopping in a plane.

2At the time of the sixth hop, the transient phase is over and the hopper exhibits steady-state hopping
behavior in both simulations and experiments.
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Chapter 3

Four-Link Hopping Robot on a Rigid

Foundation

From the simulation and experimental results of the two-mass hopper in Chapter 2 we see

that the control method on rigid ground is capable of achieving a desired apex height for

the simplified two-mass system. We now generalize the control methodology to a multi-dof

linked robot system. To this end we consider the apex height control of a four-link hopping

robot. The choice of a four-link hopping robot is to more closely resemble a humanoid robot.

The control is designed following a similar structure in Chapter 2. Additional consider-

ation is given during both the continuous and discrete phases to account for the additional

degrees-of-freedom in the system. The results presented in the chater follow the work of

Mathis and Mukherjee [21].

3.1 Dynamics

Consider the four-link, monoped, hopping robot shown in Fig.3.1. Let x and y be the

Cartesian coordinates of the base of the foot of the robot (point O) relative to the fixed

ground reference. For i = 1, 2, 3, 4, the mass, moment of inertia, and length of each link are

denoted by mi, Ii, and li respectively. The angular displacement of the ith link is denoted

by θi and the distance to its center of mass is denoted by di - see Fig.3.1. The states are
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defined as

q =

[

x y θ1 θ2 θ3 θ4

]T

(3.1)

The equations of motion of the hopper are given by

M(q)q̈ +N(q, q̇) = AT + Fext (3.2)

whereM(q) is the mass matrix, N(q, q̇) is the vector of Coriolis, centrifugal, and gravitational

forces, A ∈ R
6×3 is the matrix given below

A =















0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1















T

, (3.3)

T is the vector of input torques

T =

[

τ1 τ2 τ3

]T

, (3.4)

and Fext it the force applied by the ground on the robot given by

Fext =

[

Fx Fy 0 0 0 0

]T

(3.5)

In Eq.(3.5), Fx and Fy denote the x and y components of the force applied to the robot by

the ground at point O. The dynamics of the hopper may be separated into three phases:

the flight phase for which y > 0; the impact phase, which occurs at the first instant when

y = 0; and the contact phase, which occurs for the duration in which the foot remains in
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Figure 3.1: Four-link hopping robot

contact with the ground, y ≡ 0. The phases mirror those of the two-mass hopper.

3.1.1 Flight Phase

During the flight phase Fext = 0. Furthermore, the dynamics in Eq.(3.2) result in the non-

holonomic constraint due to conservation of angular momentum about the center of mass of

the hopper.

3.1.2 Impact

At the time of impact we assume:

Assumption 1: The applied torques T are not impulsive.

Assumption 1 does not imply that the torques T cannot be discontinuous; it simply
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implies that the torques cannot produce discrete jumps in the states.

Assumption 2: The hopper’s foot comes in contact with the ground only at point O.

Assumption 2 can be enforced through proper choice of control gains.

Assumption 3: At the instant the foot contacts the ground (y = 0), the ground applies an

impulsive force that results in ẋ = ẏ = 0 instantaneously.

Assumption 3 simply implies inelastic impact.

Taking the integral over the infinitesimal period of time in which the impact occurs we

have
∫ t0+ǫ

t0

q̈dt =

∫ t0+ǫ

t0

M−1(q) [AT −N(q, q̇) + Fext] dt (3.6)

q̇+ = q̇− +M−1(q)Fext (3.7)

where q̇+ and q̇− are the right and left limits in time of q̇. This follows from our earlier work

[10]. Partitioning q according to

q = [x y | θ]T (3.8)

where θ is given by

θ = [θ1 θ2 θ3 θ4]
T (3.9)

results in the corresponding partition of M−1(q) given by

M−1(q) =









(M−1)11 (M−1)12

(M−1)21 (M−1)22









(3.10)
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Solving Eq.(3.7) results in the following change in the state variables:

q+ = q−

ẋ+ = 0

ẏ+ = 0

θ̇+ = θ̇− − (M−1)21[(M
−1)11]

−1







ẋ−

ẏ−






(3.11)

3.1.3 Contact Phase

During the contact phase, Fext is such that ÿ = 0.

Assumption 4: The friction force Fx is always sufficiently large such that ẍ = 0 during the

contact phase.

During the contact phase, the dynamics of the hopper is given by

DM(q)DTDq̈ +DN(q, q̇) = DAT (3.12)

where D is the matrix

D =























0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1























(3.13)

The contact phase transitions to the flight phase when

Fy = 0 Ḟy < 0 (3.14)
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3.2 Continuous Control

Similar to the two-mass case, in order to achieve a desired apex height we design a continuous

controller that regulates the center-of-mass posistion relative to that base of the robot, point

O. To control the center-of-mass, we define r to be the vector from the base of the foot to

the center-of-mass of the hopper. If rx and ry denote the horizontal and vertical components

of r, we can write

r =







rx

ry






=







fx(q)

fy(q)






(3.15)

where fx(q) and fy(q) are given by

fx(q) = a1 cos(θ1) + a2 cos(θ1 + θ2) +

a3 cos(θ1 + θ2 + θ3) +

a4 cos(θ1 + θ2 + θ3 + θ4) (3.16)

fy(q) = a1 sin(θ1) + a2 sin(θ1 + θ2) +

a3 sin(θ1 + θ2 + θ3) +

a4 sin(θ1 + θ2 + θ3 + θ4) (3.17)
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In Eq.(3.16) and (3.17), the constants have the expressions

a1 =
m1d1 + (m2 +m3 +m4)l1

m

a2 =
m2d2 + (m3 +m4)l2

m

a3 =
m3d3 +m3l3

m

a4 =
m4d4
m

m = m1 +m2 +m3 +m4 (3.18)

Differentiating with respect to time gives

ṙ =







ṙx

ṙy






=







Jx(q)

Jy(q)






Dq̇ (3.19)

where Jx(q) and Jy(q) are Jacobian matrices.

In addition to the control of the center of mass position r, we wish to control the angle

of the first link, θ1. To this end we define the desired equilibrium point of the system as

follows:

(rx, ry, θ1, ṙx, ṙy, θ̇1) = (0, yd, θd, 0, 0, 0) (3.20)

3.2.1 Contact Phase

The continuous controller used during the contact phase is defined on the position of the

center of mass, r, the angle of the foot, and the angular momentum about the foot. The

center of mass positions are chosen since during contact phase, the relative center of mass

position is the total center of mass position. The angular momentum is chosen as it will
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determine the total angular momentum during the flight phase, and the angle of the foot

is chosen to help ensure that only the point O is in contact with the ground. During the

contact phase the system dynamics are described by Eq.(3.12). To transform this dynamics

to normal form [20], we use the transformations in Eqs.(3.15),(3.19), and

η = ψ1(q)

ζ1 = ψ2(q, q̇) = − 1

mg
CDM(q)DTDq̇ (3.21)

where the matrix C is given by

C =

[

1 0 0 0

]

(3.22)

In addition, ζi, i ∈ [2, 7], are defined as

ζ2 = rx ζ3 = ry − yd ζ4 = θ1 − θd

ζ5 = ṙx ζ6 = ṙy ζ7 = θ̇1

(3.23)

It can be shown

η̇ =
∂ψ1(q)

∂q
q̇ = f(η, ζ)

ζ̇1 =
∂ψ2(q, q̇)

∂q
q̇ +

∂ψ2(q, q̇)

q̇
q̈

=
−CD
mg

[

AT−N(q, q̇) +Ṁ(q)DTDq̇
]

=ζ2 (3.24)
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and

[

ζ̇2, ζ̇3, ζ̇4

]T
= [ζ5, ζ6, ζ7]

T = J(q)Dq̇ (3.25)

[

ζ̇5, ζ̇6, ζ̇7

]T
= J(q)Dq̈ + J̇(q)Dq̇ (3.26)

where J(q) is given by

J(q) =















Jx(q)

Jy(q)

C















(3.27)

The expression ζ̇1 = ζ2 follows intuitively from mgζ1 being the angular momentum of the

hopper about its foot, and mgζ2 being the resulting torque about the foot due to gravity.

The dynamics in Eq.(3.12) are described by Eqs.(3.24), and (3.26) in the region where

the transformations in Eq.(3.21) and (3.23) are diffeomorphic. Substituting Eq.(3.12) into

(3.26) gives















ζ̇5

ζ̇6

ζ̇7















=J(q)(DMDT )−1D [AT −N(q, q̇)] + J̇(q)Dq̇ (3.28)

Define the vector of torques T to be

T = [J(q)(DM(q)DT )−1DA]#[vg

+J(q)(DM(q)DT )−1DN(q, q̇)− J̇(q)Dq̇] (3.29)

where (·)# is the right pseudo-inverse of (·). To prevent a singularity condition, we make
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the following assumption:

Assumption 4: The Jacobean matrix J(q) is full row rank over the duration that the torque

T is applied.

Substituting (3.29) into (3.28) results in

[

ζ̇5, ζ̇6, ζ̇7

]T
= vg (3.30)

We choose vg to the be given by

vg =















−K1ζ1 −K2ζ2 −K5ζ5

−K3ζ3 − αK6ζ6

−K4ζ4 −K7ζ7















(3.31)

with α defined as

α =











1 ζ6 ≤ 0

ν ζ6 > 0

(3.32)

and the gains Ki chosen such that Ki > 0 ∀i and

K6 < 2
√

K3 (3.33)

This ensures asymptotic convergence of trajectories to the manifold

M = {ζ ∈ R
7|(ζ1, ζ2, ζ4, ζ5, ζ7) = (0, 0, 0, 0, 0)} (3.34)
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On M, the trajectories of the system obey







ζ̇3

ζ̇6






=







0 1

−K3 −αK6













ζ3

ζ6






(3.35)

which represents a ”mass spring damper” whose damping is positive or negative based on

the value of ν. By modulating ν we will increase or decrease the energy of the system and

achieve apex height control.

3.2.2 Flight Phase

During the flight phase, the position of the foot relative to the center of mass is controlled

in order to achieve a desired foot placement at the time of touchdown. In this phase the

system has the additional dynamics of x, ẋ, y, and ẏ, which were not present in the contact

phase. We define the states as.

d = x+ rx, h = y + ry

ḋ = ẋ+ ṙx, ḣ = ẏ + ṙy (3.36)

where d and h represent the horizontal and vertical component of the center of mass in the

inertial frame of reference. Using Eq.(3.2) we can show

d̈ = 0, ḧ = −g (3.37)
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Additionally, the angular momentum of the system about its center of mass is conserved.

The angular momentum about the center of mass is given by

Hc =
4
∑

i=1



ri ×miṙi + Ii

i
∑

j=1

θ̇j



 (3.38)

Substituting Eqs.(3.21) and (3.23) into (3.38) gives

Hc = −m[gζ1 + (ζ3 + yd)ζ5 − ζ2ζ6] (3.39)

sovling Eq.(3.39) for ζ1 gives

ζ1 =
1

mg
[mζ2ζ6 −m(ζ3 + yd)ζ5 −Hc] (3.40)

This shows ζ1 is related to ζ2, ζ3, ζ5, and ζ6 via an algebraic relationship. The dynamics of

ζ2, ζ3, and ζ4 are the same as in Eq.(3.25), whereas the dynamics of ζ5, ζ6, and ζ7 can be

obtained by substituting Eq.(3.2) into Eq.(3.26):















ζ̇5

ζ̇6

ζ̇7















= J(q)DM−1 [AT −N(q, q̇)] + J̇(q)Dq̇ (3.41)

Defining the vector of torques T to be

T = [J(q)DM−1(q)A]#[vf

+J(q)DM−1(q)N(q, q̇)− J̇(q)Dq̇] (3.42)
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results in
[

ζ̇5, ζ̇6, ζ̇7

]T
= vf (3.43)

We choose vf as follows:

vf =















−K2ζ2 −K5ζ5

−K3ζ3 −K6ζ6

−K4ζ4 −K7ζ7















(3.44)

where Ki > 0 ∀i ∈ [2, 7]. This guarantees that the variables ζi i ∈ [2, 7] will asymptotically

converge to zero. Additionally, if Hc = 0, ζ1 will asymptotically converge to zero. Since the

angular moment Hc cannot be controlled in the flight phase, our objective is to bring it to

zero during the contact phase.

3.2.3 Hybrid Dynamics of Closed-Loop System

The hybrid dynamics of the system over one hop is summarized as follows:

The system begins with the Flight Phase. The dynamics during flight phase is described

by














d̈

ḧ

η̇















=















0

−g

f(η, ζ)















,















ζ̇2

ζ̇3

ζ̇4















=















ζ5

ζ6

ζ7















(3.45)















ζ̇5

ζ̇6

ζ̇7















=















−K2ζ2 −K5ζ5

−K3(ζ3 − yd)−K6ζ6

−K4(ζ4 − θd)−K7ζ7















(3.46)

and the non-holonmic constraint given by Eq.(3.40) for ζ1.

Following the flight phase the system undergoes Impact. The hopper makes contact with
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the ground when y = 0 or h− ζ3− yd = 0. The impulse due to impact is given by Eq.(3.11).

Following the Impact, the system is in Contact Phase. From Eqs.(3.24), (3.26), (3.30)

and (3.31), and ẍ = ÿ = 0 the dynamics during contact phase are given by































η̇

ζ̇1

ζ̇2

ζ̇3

ζ̇4































=































f(η, ζ)

ζ2

ζ5

ζ6

ζ7































,















ζ̇5

ζ̇6

ζ̇7















=















−K1ζ1 −K2ζ2 −K5ζ5

−K3(ζ3 − yd)− αK6ζ6

−K4(ζ4 − θd)−K7ζ7















(3.47)

where

α =











1 ζ6 ≤ 0

ν ζ6 > 0

(3.48)

and the states h and ḋ are given by

h ≡ ζ3 + yd, ḋ ≡ ζ5 (3.49)

The contact phase ends at the instant Fy in Eq.(3.5) is equal to 0, that is

Fy = mζ̇6 +mg = 0 ⇒ ζ̇6 = −g (3.50)
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3.3 Periodic Behavior

Hopping is described by consecutive sequences of flight phase, impact, and contact phase.

To describe a single hop, we define the state χ

χ ∈ Ω, Ω = {(θ, θ̇) | ζ̇6(θ, θ̇) + g = 0} (3.51)

which define the configuration of the hopper at the time of transition from the contact to

the flight phase. The configuration χ does not include d since the objective of this paper is

to control only the height. The first return map between the kth hop and the (k+ 1)th hop

is defined as

χ(k + 1) = P (χ(k)) (3.52)

where P (χ(k)) is the solution of the closed-loop hybrid dynamics.

3.3.1 Period One Orbits

For a period-one orbit [9] we have

χ(k)− P (χ(k)) = 0 (3.53)

Let χ∗ to be any value of χ that satisfies Eq.(3.53). Note that χ lies in a 7 embedded

manifold of R8. Let V to be the matrix of linearly independent unit vectors

V = [v1, v2, . . . v7] vi ∈ R
8, |vi| = 1, i ∈ [1, 7] (3.54)
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where

span(V ) = Ω (3.55)

Linearization of Eq.(3.52) about the periodic point χ∗ gives

χ(k + 1) ≈ P (χ∗) +
7
∑

i=1

[

∂P (χ)

∂vi
vTi |χ=χ∗(χ(k)− χ∗)

]

(3.56)

where ∂P (χ)/∂vi is given by

∂P (χ)

∂vi
= lim

h→0

P (χ+ hvi)− P (χ)

h
(3.57)

It follows that Eq.(3.56) is asymptotically stable iff

ρ

(

7
∑

i=1

[

∂P (χ)

∂vi
vTi |χ=χ∗

]

)

< 1 (3.58)

where ρ(·) is the spectral radius.

3.3.2 Chaos Control

A periodic orbit defined by χ∗ may not be stable for a given set of system parameters.

However, we note that P (χ) is dependent on the variable ν. By defining ν∗ to be the value

of ν that satisfies Eq.(3.53) for χ = χ∗, we will vary the value of ν to ensure asymptotic

stability of χ∗.
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To design the input ν(k), first define the vector v as

v =







a

b






|v| = 1, a ∈ R

8, b ∈ R− {0} (3.59)

where a satisfies Eq.(3.50). Defining the error E and the input u as

E(k) = χ(k)− χ∗

u(k) = ν(k)− ν∗ (3.60)

we have the linearized equation of Eqn. (3.53):

E(k + 1) = AE(k) +Bu(k) (3.61)

where A and B are given by

A =

7
∑

i=1

[

∂P (χ)

∂vi
vTi

]

+
∂P (χ(k))

∂v
aT

B =
∂P (χ(k))

∂v
b (3.62)

and where the directional derivatives ∂P (χ)/∂vi and ∂P (χ)/∂v are evaluated at (χ∗, ν∗).

For asymptotic stability, u(k) is designed as

u(k) = GE(k) (3.63)
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where G is chosen such that

ρ(A +BG) < 1 (3.64)

3.4 Simulations

For the four-link hopper, the masses are assumed to be

m1 = 2.5 kg, m2 = 5 kg, m3 = 10 kg, m4 = 20 kg (3.65)

The length of the links of the hopper are assumed to be

l1 = 0.1 m, l2 = l3 = l4 = 0.3 m (3.66)

and the distance to the center of mass of each link - see Fig.3.1 are assumed to be

d1 = 0.05 m, d2 = d3 = d4 = 0.15 m (3.67)

The moment of inertia of each link is computed as

Ii =
1

12
mil

2
i ∀i ∈ [1, 4] (3.68)

The gains used for the continuous control are

K1 = 12000 K2 = 8000 K3 = 300 K4 = 300

K5 = 120 K6 = 10 K7 = 8

(3.69)
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and the set points yd and θd for the continuous control are

yd = 0.4967 m θd =
π

2
− 0.1 (3.70)

The value of yd is 0.14 m below the maximum height of the center of mass relative to the

foot.

We choose the desired apex height of the center of mass to be 0.65 meters and compute

the periodic point, (χ∗, ν∗) to be given by

χ∗1 = 1.579 χ∗2 = −0.407 χ∗3 = 1.135

χ∗4 = −1.178 χ∗5 = −6.696 χ∗6 = 11.659

χ∗7 = −10.360 χ∗8 = 8.960 ν∗ = −0.607

(3.71)

with all values given in rad and rad/s where appropriate. The periodic point is computed

numerically via a regression algorithm. The algorithm uses an initial guess for the periodic

values (χ∗, ν∗). The algorithm restricts the guesses to the manifold which satisfy the desired

apex height. It then uses a regressive minimization algorithm to minimize the difference

between the guessed lift-off values and the values for the resulting values from letting the

system progress for a single hop.

The stabilizing control gains G for the periodic point in Eq.(5.73) are by solving the

discrete LQR problem:

G1 = −0.023 G2 = 0.025 G3 = −0.005

G4 = 0.011 G5 = −0.051 G6 = −0.030

G7 = 0.005 G8 = −0.027

(3.72)
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We choose the initial configuration of the system is assumed to be

(x(0), ẋ(0), y(0), ẏ(0)) = (0.00, 0.00, 0.03, 0.00)

θ(0) = [1.65, −0.50, 1.07, −0.94]T

θ̇(0) = [0.00, 0.00, 0.00, 0.00] (3.73)

where the units are in meters, rad, and rad/sec. These initial conditions were chosen such

that the center of mass of the hopper lies vertically above the point of support. The initial

value of the discrete control input is chosen to be

u(0) = 0 ⇒ ν(0) = ν∗ (3.74)

Figure 3.2 shows the height of the center of mass as a function of time. It can be seen

that the center of mass converges to the desired height in approximately 4 hops. Figure 3.3

displays the inputs torques τ1, τ2, and τ3. The sharp peaks indicate the discontinuous jumps

in the torques immediately following impact.

From the simulations we see the efficacy of the control method as applied to a four-linked

hopping robot. We note that all results of this chapter are for robots that are interacting with

a rigid ground, namely ground surfaces whose rigidity is sufficiently high as to consider them

to not deform under the applied forces of the robot. However, it behooves us to investigate

the motion of hopping robots when the their contact is an elastic surface instead of a rigid

one, namely a surface which does deform under the mass of the robot. To this end, we will

investigate both a two mass hopping robot, and a three-link hopping robot when interacting

with and elastic ground.
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Figure 3.2: Center of mass height above the ground for the four-link hopper
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Figure 3.3: Input torques for the four-link hopper
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Chapter 4

Two-Mass Hopping Robot on an

Elastic Foundation

Unlike with the rigid ground interaction, and elastic ground interaction assumes that the

ground does deform under the mass of the robot. For this purpose we model the interaction

of the elastic ground as an interaction with a massless spring. Similarly with the rigid

foundation, we begin with the analysis of a simplified two-mass hopping robot before moving

on to the analysis of a three-link hopping robot.

As with Chapter 2, We start the analysis of a linked hopping robot on an elastic foun-

dation with the analysis and control of a simplified 2 mass robot hopping on an elastic

foundation. We begin with a discussion of the dynamics of the two mass system hopping on

an elastic foundation and the discuss the necessity of changing the control algorithm from the

rigid foundation case. We then discuss a hybrid control algorithm which uses backstepping

[19] to stabilize the dynamics of the robot in the flight and contact phases. The periodic

nature of the hybrid dynamic system is then analyzed using a Poincare map [9] and the

OGY1 method of chaos control [29] is used to adjust a parameter discretely and converge to

the desired apex height. The results in the chapter follow the results presented by Mathis

and Mukherjee [23].

1A method introduced by Ott, Grebogi and Yorke for achieving stabilization of a periodic orbit [29].
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4.1 Dynamics

4.1.1 System Description

Consider the two-mass robot in Fig.4.1 (a), which is hopping on a massless elastic foundation

of stiffness Kext. It is comprised of an upper mass m1 and a lower mass m2. The upper

and lower masses are connected by a prismatic joint. The force applied by the actuator in

the prismatic joint on the two masses is denoted by F ; it is assumed that this force can be

actively controlled. The positions of the center-of-mass of m1 and m2 from the datum are

denoted by x1 and x2. The position of the center-of-mass of m1 relative to that of m2 is

denoted by y and the height of the center-of-mass of m2 from the base of m2 is denoted by

ℓ. The force of interaction between the lower mass and the elastic foundation is denoted by

Fext.

4.1.2 Flight Phase

During the flight phase, the following conditions hold:

x2 > ℓ Fext = 0 (4.1)

The equations of motion of the robot are as follows:

ẍ1 = −g + F

m1
ẍ2 = −g − F

m2
(4.2)

Using the relative displacement y , (x1−x2) to replace x1, an alternate form of the equations
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of motion are

ÿ =

[

mt

m1m2

]

F ẍ2 = −g − F

m2
(4.3)

where the total mass of the system is

mt , (m1 +m2) (4.4)

4.1.3 Contact Phase

For the contact phase, we make the following assumptions:

Assumption 1 : The elastic foundation has no mass and behaves like a spring.

Assumption 2 : The force exerted by the elastic foundation on mass m2 is non-negative, i.e.,

(a) (b)

undeformed
configuration
of spring

datum

x1

x2

m1

Fext

m2

F

g

ℓ

Kext

y

m1g

m2g

Figure 4.1: (a) Two-mass robot hopping on an elastic foundation (b) free-body diagrams of
the two masses at an instant when the lower mass is in contact with the elastic foundation.
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Fext ≥ 0.

From the free-body diagrams, the equations of motion of the robot can be obtained as

follows:

ẍ1 = −g + F

m1
ẍ2 = −g + (Fext − F )

m2
(4.5)

In y and x2 coordinates, these equations can be written as

ÿ =

[

mt

m1m2

]

F − Fext
m2

ẍ2 = −g + (Fext − F )

m2
(4.6)

In (4.5) and (4.6), Fext is given by the expression

Fext = −Kext(x2 − ℓ) (4.7)

4.1.4 Apex Height

If z denotes the height of the center-of-mass of the hopping robot, we have

z =
m1x1 +m2x2
m1 +m2

= x2 +mf y, mf , (m1/mt) (4.8)

For each flight phase, the apex height is defined as the maximum value of z, and is denoted

by h.

4.2 Motivation for Different Control Strategy

From Chapter 2.2 we have the dynamics of the closed loop system are given by:
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ẍ = K[mf y − rd] +Dmf ẏ − g + λ
m2

Fext

ÿ = −K
[

y − 1
mf

rd

]

− νDẏ
(4.9)

The convergence of the algorithm relies on the use of the gradient of the trajectories with

respect to gain ν around the periodic point. This works in the case of the rigid foundation

because of the change in momentum due to the impulse during ground impact ensures that

the periodic orbit does not satisfy ẏ ≡ 0.

However, the external force creates a conservative system in the elastic foundation. This

produces the periodic orbit

ẍ = −g + λ
m2

Fext

ÿ ≡ ẏ ≡ 0

(4.10)

We not that this periodic trajectory sets the apex height based on the initial condition and

is independent of the value ν. Furthermore, this From this we see that the gradient of the

periodic trajectory with respect to ν is 0 since ẏ ≡ 0 during these periodic points. This

means that the previous method will not work for these points since the control has no effect

at any periodic orbit. Therefore, we must utilize a new closed loop method which utilizes

parameter variations which have non-zero gradient at the periodic orbit.
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4.3 Hybrid Control Strategy

4.3.1 Control Problem Definition

We first define r to be the height of the center-of-mass of the robot relative to that of the

lower mass m2. Using (4.8), it can be shown

r , (z − x2) = mf y (4.11)

Next, we define e as

e = (r − rd) (4.12)

where rd > 0 is some desired value of r. From (4.11) and (4.12) it can be verified that

e ≡ 0 → ė ≡ 0 → ẏ ≡ 0, which implies no relative motion between the two masses.

If there is no relative motion of the masses, the total energy of the system is the sum of

the kinetic and potential energies of the center-of-mass plus the potential energy stored in

the elastic foundation. The potential energy of the center-of-mass is defined relative to the

datum z = zd, where

zd , z |(x2=ℓ,r=rd)
= (rd + ℓ)

In the absence of relative motion of the masses, the total energy can be written as

E = mt

[

1

2
ż2 + g(z − zd)

]

+
1

2
λKext (z − zd)

2 (4.13)
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where

λ =











0 : x2 ≥ ℓ − Flight Phase

1 : x2 < ℓ − Contact Phase

(4.14)

The second term on the right-hand side of (4.13) represents the potential energy stored in

the spring when the two masses are in their nominal position relative to one another. For

the robot to reach its desired apex height hd, the total energy should be equal to

E ≡ Edes = mt g(hd − zd) (4.15)

in addition to e ≡ 0. The desired equilibrium configuration is therefore given by

(E − Edes, e, ė) = (0, 0, 0) (4.16)

4.3.2 Continuous Controller Design for Stabilization in Flight and

Contact Phases

4.3.3 Feedback Linearization

For the convenience of control design, we rewrite the dynamics of the hybrid system in terms

of variables z and e. Using (4.4), (4.6), (4.7), (4.8), (4.11) and (4.12), the hybrid dynamics

of the robot can be described by the relations

z̈ = −g − λ
1

mt
Kext(x2 − ℓ) (4.17)

ë =
1

m2
[F − λmfFext] (4.18)
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where λ is defined in (4.14). The following choice of the control input F

F = λmfFext +m2v (4.19a)

= −λmfKext(x2 − ℓ) +m2v (4.19b)

results in the hybrid dynamics

z̈ = −g − λ
1

mt
Kext(x2 − ℓ) (4.20)

ë = v (4.21)

where v is the new control input. Note that the control input F can be chosen according to

(4.19a) or (4.19b) depending on whether the external force Fext or the position of the lower

mass x2 is available for measurement.

4.3.4 Backstepping

With the objective of stabilizing the equilibrium in (4.16), we first define the Lyapunov

function candidate

V1 =
1

2
ke (E −Edes)

2 (4.22)

where ke is a positive constant. It should be noted that V1 is a function of λ (since E is a

function of λ) but it is continuously differentiable in both the flight phase and contact phase.

The Lyapunov function candidates introduced below be used for our analysis of stability in

both phases and therefore we treat λ as constant and do not make any distinction between

the two phases in our derivation. Using (4.12), (4.20), (4.13), and (4.22), V̇1 can be computed

64



as

V̇1 = ke (E −Edes) Ė

= ke (E −Edes) ż [mt(z̈ + g) + λKext(z − zd)]

= ke (E −Edes) λKextże (4.23)

By choosing

e = {−λke (E − Edes) ż} , φ1 (4.24)

we can make V̇1 negative semi-definite; therefore, integrator backstepping is introduced by

defining the new variable

q1 = e+ λke (E −Edes) ż = (e− φ1) (4.25)

and the composite Lyapunov function

V2 = V1 +
1

2
q21 =

1

2
ke (E −Edes)

2 +
1

2
q21 (4.26)

where where k1 is a positive constant. Differentiating V2 and substituting (4.23) and (4.25),

we get

V̇2 = ke (E − Edes)λKextże + q1q̇1

= ke (E − Edes)λKextż [q1 − λke (E −Edes) ż] + q1q̇1

= −λ2k2eKext (E −Edes)
2 ż2

+ q1 [q̇1 + ke (E − Edes)λKextż] (4.27)
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By choosing k1 > 0 and

q̇1 = {−λkeKext (E −Edes) ż − k1q1} , φ2 (4.28)

we can make V̇2 negative semi-definite. We introduce integrator backstepping again by

defining the new variable

q2 = (q̇1 − φ2) (4.29)

and the composite Lyapunov function

V3 = V2 +
1

2
q22

=
1

2
ke (E − Edes)

2 +
1

2
q21 +

1

2
q22 (4.30)

Differentiating V3 and substituting (4.27) and (4.29), we get

V̇3 = −λ2k2eKext (E −Edes)
2 ż2

+ q1 [q̇1 + λkeKext (E −Edes) ż] + q2q̇2

= −λ2k2eKext (E −Edes)
2 ż2

+ q1 [q̇1 − φ2 − k1q1] + (q̇1 − φ2)(q̈1 − φ̇2)

= −λ2k2eKext (E −Edes)
2 ż2 − k1q

2
1

+ q2

[

q̈1 − φ̇2 + q1

]

(4.31)
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Our choice of

q̈1 = φ̇2 − q1 − k2q2, k2 > 0 (4.32)

results in a negative semi-definite V̇3 and yields the controller

v = φ̈1 + φ̇2 − q1 − k2q2 (4.33)

The above equation was obtained from (4.32) by substituting (4.21) and (4.25). From the

definition of φ1 in (4.24), it is clear that φ̈1 will involve the third derivative of z. This is not

a problem since the third derivative of z can be computed easily from (4.20) as

...
z = −λ 1

mt
Kextẋ2 (4.34)

The complete control law is given by (4.33) and (4.19a) or (4.19b).

4.3.5 Stability Analysis

Using (4.11), (4.12), (4.13), (4.17), (4.25) and (4.29) it can be shown that

(E − Edes, e, ė) = (0, 0, 0) ⇔ (E − Edes, q1, q2) = (0, 0, 0)

Therefore, V3 in (4.30) is a candidate Lyapunov function for investigating the stability of

the equilibrium in (4.16).

In the flight phase, λ = 0. For the control law given by (4.33), the derivative of the
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Lyapunov function in (4.31) can be shown to be

V̇3 = −k1q21 − k2q
2
2 ≤ 0 (4.35)

Therefore, (E − Edes, q1, q2) = (0, 0, 0) is stable.

In the contact phase, λ = 1. For the control law given by (4.33), the derivative of the

Lyapunov function in (4.31) is

V̇3 = −keKext (E −Edes)
2 ż2 − k1q

2
1 − k2q

2
2 ≤ 0 (4.36)

Therefore, (E − Edes, q1, q2) = (0, 0, 0) is stable.

Remark 1. The stability of (E − Edes, q1, q2) = (0, 0, 0) in the flight and contact phases do

not guarantee its stability for the hybrid dynamics.

4.3.6 Discrete Controller for Stabilization of Hybrid Dynamics

To investigate the stability of the hybrid dynamic system, we use a Poincare map with the

Poincare section defined by the instant when the system transitions from the contact phase

to the flight phase. The Poincare section is defined as

Z :=
{

X ∈ R
3| x2 = ℓ, ẋ2 > 0

}

⇒ Z :=
{

X ∈ R
3| z = e+ zd, ż > ė

}

(4.37)

where X is defined as

X =

[

ż e ė

]T
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To use the same set of variables used in the Lyapunov analysis, namely, (E − Edes), q1

and q2, we define the Poincare section using the coordinates Ψ, where Ψ is defined by the

coordinate transformation H(·) : R3 ⇒ R
3, as follows

Ψ =

[

(E −Edes) q1 q2

]T

= H(X) (4.38)

It can be shown that the map H(·) is a local homeomorphism and therefore locally topo-

logically conjugate [9]; this implies that the stability of the Poincare maps in Ψ and X

coordinates are equivalent. The Poincare map P (Ψ) and the sequence of points Ψk ∈ H(Z)

satisfy

Ψk+1 = P (Ψk), P (Ψ) : H(Z) 7→ H(Z) (4.39)

with periodic point Ψ∗ defined as

Ψ∗ = P (Ψ∗) (4.40)

For the elastic foundation, the periodic point which achieves the desired apex height is given

by

Ψ∗ =

[

0 0 0

]T

(4.41)

We define the error state ηk as

ηk = (Ψk −Ψ∗) = Ψk

By linearizing the Poincare map about Ψ∗, we have the approximate discrete dynamics given

by

ηk+1 = Aηk A ,
dP (Ψ)

dΨ

∣

∣

∣

∣

Ψ=Ψ∗
(4.42)
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The periodic point will be asymptotically stable if and only if

ρ(A) < 1 (4.43)

where ρ(A) is the spectral radius of A. Since the condition in (4.43) may not be satisfied,

we design a discrete controller to stabilize the closed-loop system; the discrete controller is

discussed next.

To design the discrete controller, we redefine Ψ as follows

Ψ = Φ +

[

1 0 0

]T

u (4.44)

Φ ,

[

(E − Ed) q1 q2

]T

, u , (Ed − Edes)

where Ed is desired level of energy for a given hop. The new Poincare map P̄ (Φ, u) and the

sequence of points Φk ∈ H(Z) satisfy

Φk+1 = P̄ (Φk, uk), P̄ (Φ, u) : H(Z)× R 7→ H(Z) (4.45)

with periodic point Φ∗ defined as

Φ∗ = P̄ (Φ∗, u∗) (4.46)

For the elastic foundation, the periodic point which achieves the desired apex height is given

by

Φ∗ =

[

0 0 0

]T

, u∗ = 0 (4.47)
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We define the error state η̄k as

η̄k = (Φk − Φ∗) = Φk

By linearizing the Poincare map about (Φ∗, u∗), we have the approximate discrete dynamics

given by

η̄k+1 = Ā η̄k + B̄uk (4.48)

Ā ,
dP̄ (Φ, u)

dΦ

∣

∣

∣

∣

Ψ=Ψ∗,u=u∗
, B̄ ,

dP̄ (Φ, u)

du

∣

∣

∣

∣

Ψ=Ψ∗,u=u∗

For our choice of input

uk = Kη̄k (4.49)

the closed-loop system dynamics takes the form

η̄k+1 = (Ā + B̄K)η̄k

If {Ā, B̄} is controllable, we can choose K such that

ρ(Ā+ B̄K) < 1 (4.50)

and the hybrid dynamical system is asymptotically stable.

Remark 2. If the condition in (4.43) is not satisfied and the discrete controller in (4.49) is

implemented, the continuous controller will have to modified. In particular, the fixed desired
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value of the energy Edes will have to be replaced by the desired value of energy for each hop

Ed to account for the change in the Poincare map from P (Ψ) to P̄ (Φ, u).

4.4 Simulation Results

The mass and length parameters of the robot and the stiffness of the elastic foundation are

provided below:

m1 = 2.668 kg, m2 = 0.808 kg

ℓ = 0.059 m, Kext = 11560 N/m

The value of rd and the desired apex height were chosen as

rd = 0.0979 m, hd = 0.2 m (4.51)

The parameters of the continuous controller were chosen as

ke = 0.001, k1 = 600, k2 = 18 (4.52)

The value of ke was chosen to be much smaller than those of k1 and k2 to reduce the

dominance of terms involving Kext, which is O(104). The matrix A, defined in (4.42),

was found to have eigenvalues: 0.0003, −0.0017 and −0.3678; the condition in (4.43) was

therefore satisfied. A discrete controller was nevertheless designed and the gain matrix K in
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Figure 4.2: Simulation results: Plot of the height of the upper mass x1, the lower mass x2,
and the center-of-mass z, as a function of time.

(4.49) was chosen as follows

K =

[

0.1000 0.0900 0.0189

]

(4.53)

This results in the closed-loop system eigenvalues: 0.0003, −0.0641 and 0.2000. The gains

in (4.53) were chosen to move the eigenvalue with the largest magnitude from -0.3678 to

0.2000. The initial conditions were assumed to be

x2(0) = 0.056 m, y(0) = 0.088 m

ẋ2(0) = 0.0 m/s, ẏ(0) = 0.0 m/s (4.54)

and the results are shown in Figs.4.2 and 4.3. The displacements of the upper mass, lower
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mass, and center-of-mass are plotted in Fig.4.2. The intervals of time during which x2 ≤

ℓ = 0.059 m indicate the contact phases. The value of x2(0) = 0.056 m indicates that the

spring is initially compressed due to the weight of the robot. It is clear from Fig.4.2 that the

apex height of the robot converges to its desired value in two hops. The discrete states Ψ are

plotted in Fig.4.3; they correspond to the values of (E−Edes), q1 and q2 at the beginning of

the k-th hop, k = 1, 2, · · · , 7, and they converge to zero prior to the third hop. The discrete

instants of time corresponding to k = 1, 2, · · · , 7 in Fig.4.3 are marked by “•” in Fig.4.2.

From the simulations we see the efficacy of the modified control method for to two mass

hopping robot on an elastic foundation. We next investigate the application of the control

method on elastic ground to a multi-link system. The multi-link system is chosen as a more

accurate representation of a humanoid system.
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Figure 4.3: Simulation results: Errors in the discrete states (E − Edes), q1 and q2 at the
beginning of the k-th hop, k = 1, 2, · · · , 7.
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Chapter 5

Three-link Hopping Robot on an

Elastic Foundation

From the simulation results of the two-mass hopper in Chapter 4 we see that the control

method on elastic ground is capable of achieving a desired apex height for the simplified

two-mass system. We now generalize the control methodology to a multi-dof linked robot

system. To this end we consider the apex height control of a three-link hopping robot.

The choice of a three-linked hopping robot is such that it provides the smallest dimen-

sional system to achieve the full control dimensions, as opposed to the four-link, which

required additional objectives for the extra digrees of freedom.

The control is designed following a similar structure in Chapter 3. Additional consider-

ation is given during both the continuous and discrete phases to account for the additional

degrees-of-freedom in the system.

5.1 Dynamics

5.1.1 System Description

Consider the three-linked robot in Fig.5.1 (a), which is hopping on a massless elastic foun-

dation of stiffness Kext. It is comprised of three links of length l1, which each have mass mi
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for i ∈ 1, 2, 3. A controllable torque is applied at the joints comprising the intersection of

each link. The distance of the center-of-mass of each link is from the end of the previous link

and is given by di. The Cartesian location of the base of the first link, point o, relative to

the ground datum is given by x and y. We denote the relative angle of the ith link relative

to the previous link by θi - see Fig.5.1. The states are defined as

q =

[

x y θ1 θ2 θ3

]T

(5.1)

The equations of motion of the hopper are given by

M(q)q̈ +N(q, q̇) = AT + Fext (5.2)

where M(q) is the mass matrix; and N(q, q̇) is the vector of Coriolis, centrifugal, and gravi-

tational forces; and A ∈ R
6×3 is the matrix give below

A =







0 0 0 1 0

0 0 0 0 1







T

, (5.3)

T is the vector of input torques

T =

[

τ1 τ2

]T

, (5.4)

and Fext it the force applied by the ground on the robot given by

Fext =

[

Fx Fy 0 0 0

]T

(5.5)
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In Eq.(5.5), Fx and Fy denote the x and y components of the force applied to the robot by

the ground at point O. The dynamics of the hopper may be separated into three phases:

the flight phase for which y > 0; the impact phase, which occurs at the instant y = 0; and

the contact phase, which occurs for the duration in which the foot remains in contact with

the ground, y ≡ 0. The phases mirror those of the two-mass hopper.

x

y

θ1

θ2
θ3

X

Y

O

g

Kext

ith link

di

li

Figure 5.1: Three-link hopping robot on an elastic foundation
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5.1.2 Flight Phase

During the flight phase, the following conditions hold:

y > 0 Fx = Fy = 0 (5.6)

The equations of motion during the flight phase are given by

M(q)q̈ +N(q, q̇) = AT (5.7)

where the matrix M(q) ∈ R
5×5 is the mass matrix and N(q, q̇) ∈ R

5 is the non-linear

gravitational and Coriolis effects. The matrix A represents the mapping of torques to the

relative states, and the vector of torques, T , it is given by

T =

[

τ1, τ2

]T

(5.8)

5.1.3 Impact

At the time of impact we assume:

Assumption 1: The applied vector of torques T are not impulsive.

Assumption 1 does not imply that the vector of torques T cannot be discontinuous; it

simply implies that the torques cannot produce discrete jumps in the states.

Assumption 2: The hopper’s foot comes in contact with the ground only at point O.

Assumption 2 can be enforced through proper choice of control gains.

Assumption 3: At the instant the foot contacts the ground (y = 0), the ground applies an

impulsive force that results in ẋ = 0.
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Assumption 3 simply implies inelastic impact in the X direction. It can be noted that

assumption 3 is not entirely physical. This is because in a physical system, the lateral force

Fx is dependent on the friction force; and, thus its model or models are chosen to represent

said friction. To alleviate the need of additional analysis of the model, the force is assumed

to hold the point O in the x direction for the entire duration of the contact phase.

Taking the integral over the infinitesimal period of time in which the impact occurs we

have
∫ t0+ǫ

t0

q̈dt =

∫ t0+ǫ

t0

M−1(q) [AT −N(q, q̇) + Fext] dt (5.9)

q̇+ = q̇− +M−1(q)Fext (5.10)

where q̇+ and q̇− are the right and left limits in time of q̇. This follows from our earlier work

[10]. Partitioning q according to

q = [x | y θ]T (5.11)

where θ is given by

θ = [θ1 θ2 θ3]
T (5.12)

results in the corresponding partition of M−1(q) given by

M−1(q) =









(M−1)11 (M−1)12

(M−1)21 (M−1)22









(5.13)
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Solving Eq.(5.10) results in the following change in the state variables:

q+ = q−

ẋ+ = 0






ẏ+

θ̇+






=







ẏ−

θ̇−






− (M−1)21[(M

−1)11]
−1ẋ− (5.14)

5.1.4 Contact Phase

For the contact phase, we make the following assumptions:

Assumption 1 : The elastic foundation has no mass and behaves like a spring.

Assumption 2 : Only the point O contacts the elastic surface.

Assumption 3 : The vertical force exerted by the elastic foundation on the point O is non-

negative, i.e., Fy ≥ 0.

Assumption 4 : The horizontal force of the ground on the point O is such that it prevents

motion in the X direction of point O.

During the contact phase, we may write the dynamics of the hopper which are given by

DM(q)DTDq̈ +DN(q, q̇) = DAT +DFext (5.15)

where D is the matrix

D =























0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1























(5.16)
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With the external force Fy given by

Fy = −Kexty (5.17)

From Eqn.(5.17), the contact phase transitions to the flight phase when

y = 0 ẏ > 0 (5.18)

Equation (5.15) during contact is identical to Eqn. (5.2), but is presented as an alternative

to having to solve for Fx, or to be used for control if Fx cannot be measured.

5.1.5 Apex Height

Similar to the two-mass case, we wish to control the position of the center of mass of the

hopper relative to that base of the robot, point O. To control the center of mass, we define

r to be the vector from the base of the foot to the center of mass of the hopper. If rx and

ry denote the horizontal and vertical components of r, we can write

r =







rx

ry






=







fx(q)

fy(q)






(5.19)

where fx(q) and fy(q) are given by

fx(q) = a1 cos(θ1) + a2 cos(θ1 + θ2) +

a3 cos(θ1 + θ2 + θ3) (5.20)
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fy(q) = a1 sin(θ1) + a2 sin(θ1 + θ2) +

a3 sin(θ1 + θ2 + θ3) (5.21)

in Eq.(5.20) and (5.21), the constants have the expressions

a1 =
m1d1 + (m2 +m3)l1

m

a2 =
m2d2 +m3l2

m

a3 =
m3d3
m

m = m1 +m2 +m3 (5.22)

If z denotes the height of the center-of-mass of the hopping robot, we have

z = y + ry (5.23)

For each flight phase, the apex height is defined as the maximum value of z, and is denoted

by h.

Differentiating r with respect to time gives

ṙ =







ṙx

ṙy






=







Jx(q)

Jy(q)






q̇ (5.24)

where Jx(q) and Jy(q) are Jacobian matrices.

From the equations of motion in Eqn.(5.2) we find that dynamics of z may be given by

mz̈ = −mg + Fy (5.25)
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5.2 Hybrid Control Strategy

5.2.1 Feedback Linearization

The control of the three-link, hopping robot is defined based on the relative center of mass,

given by r in Eqn. (5.19). To do this, we define the error states e to be given by

e =







ex

ey






= r − rd =







rx − rd,x

ry − rd,y






(5.26)

where rd,x = 0 and rd,y s a constant defined based as the desired resting height of the center

of mass relative to the base o. Differentiating Eqn. (5.26) and substituting Eqn. (5.24) gives

ė = J(q)q̇ =







Jx(q)

Jy(q)






q̇ (5.27)

Differentiating a second time we find the dynamics of e to be given by

ë = J(q)q̈ + J̇(q)q̇ (5.28)

Substituting Eqn. (5.2) into Eqn. (5.28) gives

ë = J(q)M−1(q) [AT + Fext −N(q, q̇)] + J̇(q)q̇ (5.29)

Defining the vector of torques T to be given by

T =
[

J(q)M−1(q)
]# {

vg + J(q)M−1(q)[N(q, q̇)− Fext]− J̇ q̇
}

(5.30)

where (·)# is the right pseudo-inverse of (·), results in
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ë =







ex

ey






= vg =







vx

vy






(5.31)

5.2.2 Controller Design in X Direction

For the control of the system in the X we see that we desire to have ex → 0, which will

prevent any lateral motion. We further see that when ex ≡ 0 that the impulse dynamics

given in Eqn.(5.14) result in an impulse of magnitude 0 as there is no linear momentum to

cancel at the time of impact. Designing vx to be given by

vx = −Kxex −Kd,xėx (5.32)

where Kx and Kd,x are positive constants, results in asymptotic convergence of e→ 0 during

the continuous phases.

5.2.3 Control Problem Definition for Y Direction

It can be verified that, as with the two-mass system, e ≡ 0 → ė ≡ 0, which implies no

relative motion of the center of mass.

If there is no relative motion of the center of mass, the total energy of the system is

the sum of the kinetic and potential energies of the center-of-mass plus the potential energy

stored in the elastic foundation. The potential energy of the center-of-mass is defined relative

to the datum z = zd, where

zd , z |(rY =rd,y)
= rd,y
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In the absence of relative motion of the center of mass, the total energy can be written as

E = m

[

1

2
ż2 + g(z − zd)

]

+
1

2
λKext (z − zd)

2 (5.33)

where

λ =











0 : y ≥ ℓ − Flight Phase

1 : y < ℓ − Contact Phase

(5.34)

The second term on the right-hand side of (5.33) represents the potential energy stored in

the spring when the two masses are in their nominal position relative to one another. For

the robot to reach its desired apex height hd, the total energy should be equal to

E ≡ Edes = mg(hd − zd) (5.35)

in addition to e ≡ 0. The desired equilibrium configuration is therefore given by

(E − Edes, e, ė) = (0, 0, 0) (5.36)

5.2.4 Continuous Controller Design for Y Direction, Backstepping

For the controller design in the Y direction we will assume that ex ≡ 0. This is a fair

assumption as the convergence of the dynamics in the X direction are independent of the

control in the Y direction. With the objective of stabilizing the equilibrium in Eq. (5.36),
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we first define the Lyapunov function candidate

V1 =
1

2
ke (E −Edes)

2 (5.37)

where ke is a positive constant. It should be noted that V1 is a function of λ (since E is

a function of λ), but it is continuously differentiable in both the flight phase and contact

phase. The Lyapunov function candidates introduced below can be used for our analysis

of stability in both phases; and, therefore, we treat λ as constant and do not make any

distinction between the two phases in our derivation. Using Eqs.(5.26), (5.25), (5.33), and

(5.37), V̇1 can be computed as

V̇1 = ke (E −Edes) Ė

= ke (E −Edes) ż [m(z̈ + g) + λKext(z − zd)]

= ke (E −Edes)λKextżey (5.38)

By choosing

e = {−λke (E − Edes) ż} , φ1 (5.39)

we can make V̇1 negative semi-definite; therefore, integrator backstepping is introduced by

defining the new variable

ζ1 = e+ λke (E − Edes) ż = (e− φ1) (5.40)
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and the composite Lyapunov function

V2 = V1 +
1

2
q21 =

1

2
ke (E − Edes)

2 +
1

2
ζ21 (5.41)

where where k1 is a positive constant. Differentiating V2 and substituting Eq.(5.38) and

Eq.(5.40), we get

V̇2 = ke (E − Edes)λKextżey + ζ1ζ̇1

= ke (E − Edes)λKextż [ζ1 − λke (E − Edes) ż] + ζ1ζ̇1

= −λ2k2eKext (E − Edes)
2 ż2

+ ζ1

[

ζ̇1 + ke (E −Edes) λKextż
]

(5.42)

By choosing k1 > 0 and

ζ̇1 = {−λkeKext (E −Edes) ż − k1ζ1} , φ2 (5.43)

we can make V̇2 negative semi-definite. We introduce integrator backstepping again by

defining the new variable

ζ2 = (ζ̇1 − φ2) (5.44)

and the composite Lyapunov function

V3 = V2 +
1

2
ζ22

=
1

2
ke (E − Edes)

2 +
1

2
ζ21 +

1

2
ζ22 (5.45)

87



Differentiating V3 and substituting Eq.(5.42) and Eq.(5.44), we get

V̇3 = −λ2k2eKext (E −Edes)
2 ż2

+ ζ1

[

ζ̇1 + λkeKext (E − Edes) ż
]

+ ζ2ζ̇2

= −λ2k2eKext (E −Edes)
2 ż2

+ ζ1

[

ζ̇1 − φ2 − k1ζ1

]

+ (ζ̇1 − φ2)(ζ̈1 − φ̇2)

= −λ2k2eKext (E −Edes)
2 ż2 − k1ζ

2
1

+ ζ2

[

ζ̈1 − φ̇2 + ζ1

]

(5.46)

Our choice of

ζ̈1 = φ̇2 − ζ1 − k2ζ2, k2 > 0 (5.47)

results in a negative semi-definite V̇3 and yields the controller

vy = φ̈1 + φ̇2 − ζ1 − k2ζ2 (5.48)

The above equation was obtained from Eq.(5.47) by substituting Eqs.(5.31) and (5.40). From

the definition of φ1 in Eq.(5.39), it is clear that φ̈1 will involve the third derivative of z. This

is not a problem since the third derivative of z can be computed easily from Eq.(5.25) as

...
z = −λ 1

m
Kextẏ (5.49)

The complete control law is given by Eqs.(5.48), (5.32), (5.31), and (5.30).

88



5.2.5 Stability Analysis

Assuming ex ≡ 0, and using Eqs.(5.19), (5.23), (5.33), (5.25), (5.40) and (5.44) it can be

shown that

(E − Edes, ey, ėy) = (0, 0, 0) ⇔ (E −Edes, ζ1, ζ2) = (0, 0, 0)

Therefore, V3 in Eq.(5.45) is a candidate Lyapunov function for investigating the stability

of the equilibrium in Eq.(5.36).

In the flight phase, λ = 0. For the control law, given by Eq.(5.48), the derivative of the

Lyapunov function in Eq.(5.46) can be shown to be

V̇3 = −k1ζ21 − k2ζ
2
2 ≤ 0 (5.50)

Therefore, (E − Edes, ζ1, ζ2) = (0, 0, 0) is stable.

In the contact phase, λ = 1. For the control law given by Eq.(5.48), the derivative of the

Lyapunov function in Eq.(5.46) is

V̇3 = −keKext (E − Edes)
2 ż2 − k1ζ

2
1 − k2ζ

2
2 ≤ 0 (5.51)

Therefore, (E − Edes, ζ1, ζ2) = (0, 0, 0) is stable.

Remark 3. The stability of (E−Edes, ζ1, ζ2) = (0, 0, 0) in the flight and contact phases does

not guarantee its stability for the hybrid dynamics.
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5.2.6 Discrete Controller for Stabilization of Hybrid Dynamics

To investigate the stability of the hybrid dynamic system, we use a Poincare map with the

Poincare section defined by the instant when the system transitions from the contact phase

to the flight phase. The Poincare section is defined as

Z :=
{

X ∈ R
8| y = 0, ẏ > 0, ẋ = 0

}

⇒ Z :=
{

X ∈ R
8| z = ey + zd, ż > ėy, ẋ = 0

}

(5.52)

where X is defined as

X =

[

x ż θ1 θ̇1 θ2 θ̇2 θ3 θ̇3

]T

From the system dynamics, we can find that the Poincare map may be considered inde-

pendent of the variable x as it only places a translation on the initial conditions of the

section without effecting the dynamics. We therefore define the Poincare section using the

coordinates Ψ, where Ψ is defined by the reduced coordinates

Ψ =

[

ż θ1 θ̇1 θ2 θ̇2 θ3 θ̇3

]T

(5.53)

Defining the reduced section L as

L :=
{

X ∈ R
7| y = 0, ẏ > 0, ẋ = 0

}

⊂ Z (5.54)
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The Poincare map P (Ψ) and the sequence of points Ψk ∈ L satisfy

Ψk+1 = P (Ψk) (5.55)

with periodic point Ψ∗ defined as

Ψ∗ = P (Ψ∗) (5.56)

For the elastic foundation, the periodic points of interest satisfy

Ψ∗ ∈ {X ∈ L | E = Edes, e = 0, ė = 0} (5.57)

We define the error state ηk as

ηk = (Ψk −Ψ∗)

By linearizing the Poincare map about Ψ∗, we have the approximate discrete dynamics given

by

ηk+1 = Aηk A ,
dP (Ψ)

dΨ

∣

∣

∣

∣

Ψ=Ψ∗
(5.58)

The periodic point will be asymptotically stable if and only if

ρ(A) < 1 (5.59)

where ρ(A) is the spectral radius of A. Since the condition in Eq.(5.59) may not be satisfied,

we design a discrete controller to stabilize the closed-loop system; the discrete controller is

discussed next.

To design the discrete controller, we define the additional state Ed as the desired energy
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input to backstepping controller. To this end we define the discrete input u(k) to be given

by

u(k) , (Ed −Edes) (5.60)

We see that at the periodic point Ψ∗, that

u(k) = u∗ = 0 (5.61)

The new Poincare map P̄ (Ψ, u) satisfies

Ψk+1 = P̄ (Ψk, uk) (5.62)

with periodic point Φ∗ defined as

Ψ∗ = P̄ (Ψ∗, u∗) = P̄ (Ψ∗, 0) (5.63)

We define the error state η̄k as

η̄k = (Ψk −Ψ∗)

and linearizing the Poincare map about (Φ∗, u∗), we have the approximate discrete dynamics

given by

η̄k+1 = Ā η̄k + B̄uk (5.64)

Ā ,
dP̄ (Φ, u)

dΦ

∣

∣

∣

∣

Ψ=Ψ∗,u=u∗
, B̄ ,

dP̄ (Φ, u)

du

∣

∣

∣

∣

Ψ=Ψ∗,u=u∗
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For our choice of input

uk = Kη̄k (5.65)

the closed-loop system dynamics takes the form

η̄k+1 = (Ā + B̄K)η̄k

If {Ā, B̄} is controllable, we can choose K such that

ρ(Ā+ B̄K) < 1 (5.66)

and the hybrid dynamical system is asymptotically stable.

Remark 4. If the condition in Eq.(5.59) is not satisfied and the discrete controller in Eq.(5.65)

is implemented, the continuous controller will have to be modified. In particular, the fixed

desired value of the energy Edes will have to be replaced by the desired value of energy for

each hop Ed to account for the change in the Poincare map from P (Ψ) to P̄ (Φ, u).

5.3 Simulation Results

For the three-link hopper, the masses are assumed to be

m1 = 2 kg, m2 = 2 kg, m3 = 2 kg (5.67)
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The length of the links of the hopper are assumed to be

l1 = l2 = l3 = 0.3 m (5.68)

and the distance to the center of mass of each link - see Fig.3.1 are assumed to be

d1 = d2 = d3 = 0.15 m (5.69)

The moment of inertia of each link is computed as

Ii =
1

12
mil

2
i ∀i ∈ [1, 4] (5.70)

The gains used for the continuous control are

Kx = 8000 Kd,x = 300 ke = 0.01 k1 = 300

k2 = 10

(5.71)

and the set point yd for the continuous control is

yd = 0.38 m (5.72)

We choose the desired apex height of the center of mass to be 0.65 meters and compute
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the periodic point, (χ∗, ν∗) to be given by

χ∗1 = 0.0547 χ∗2 = 0.0 χ∗3 = −0.4361

χ∗4 = 0.0 χ∗5 = 1.6828 χ∗6 = 0.0

E∗
d = 1.5892

(5.73)

with all values given in rad and rad/s where appropriate. The stabilizing control gains K

for the periodic point in Eq.(5.65) are by solved by usng the discrete LQR problem

K1 = 0.1 K2 = −0.03 K3 = 0.1

K4 = −0.04 K5 = −0.1 K6 = 0.003

(5.74)

We choose the initial configuration of the system is assumed to be

(x(0), ẋ(0), y(0), ẏ(0)) = (0.00, 0.00, 0.05, 0.00)

θ(0) = [0.2041, −0.6979, 1.1537]T

θ̇(0) = [0.00, 0.00, 0.00] (5.75)

where the units are in meters, rad, and rad/sec. These initial conditions were chosen such

that the center of mass of the hopper lies vertically above the point of support. The initial

value of the discrete control input is chosen to be

u(0) = 0 ⇒ Ed(0) = E∗
d (5.76)

Figure 5.2 shows the height of the center of mass as a function of time. It can be seen

that the center of mass converges to the desired height in approximately 4 hops. Figure 5.3
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Figure 5.2: Center of mass height and relative center of mass for the three-link hopper

displays the input torques τ1, τ2, and τ3. The sharp peaks indicate the discontinuous jumps

in the torques immediately following impact.
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Figure 5.3: Input torques for the three-link hopper
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Chapter 6

Conclusions

Presented first was a method of controlling a two-mass hopping robot interacting with rigid

ground. The contact between the lower mass and the ground was considered to be inelastic

which results in an impulsive reaction when the mass contacts the rigid ground. The control

utilizes feedback linearization to stabilize the system during continuous motion. A discrete

feedback controller on the control parameters provides stability to a desired apex height.

Efficacy of the control method is initially shown through simulation. Then the robustness

and applicability are tested through experiments. The experiments utilize a voice coil linear

actuator to provide the force between the two-masses and a linear guide to measure the

distance between the masses as well as the height. From the experiments, we saw the

convergence of the algorithm, although the maximum height was restricted by the maximum

force able to be applied by the voice coil.

From the control results of the two-mass hopper on rigid ground, a control method for a

four-link hopping robot interacting with rigid ground it presented. Following the strategy of

the two-mass hopper, feedback linearization is used in continuous time to stabilize the four-

link hopper. Discrete variations of a control parameter are then used to ensure asymptotic

stability to a desired apex height. Simulation results are then presented to show the efficacy

of the control algorithm.

Following the control of the four-link hopper, investigation of the control method on

an elastic foundation was conducted. Through a simple investigation with a two-mass,
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hopping robot, it was shown that modification of the control method used when interacting

with rigid ground was required. To this end, a modified control method was proposed. The

control method utilized backstepping to produce a continuous stabilizing controller. Discrete

variations of the control parameters were used with each hop to stabilize the system to a

desired apex height. Simulation results are presented to show the efficacy of the control

method.

From the control of a two-mass robot on elastic ground, the control method is extended for

the control of a three-link hopper interacting with elastic ground. The control method uses

backstepping for continuous stabilization. Then a discrete variation of a control parameter is

used to stabilize the system to a desired apex height. The control method is verified through

simulation results.

From this thesis we see the use of chaos control in the use of a hybrid dynamic system

to achieve period orbits. The control relies on the construction of continuous controllers to

ensure internal stability during the continuous portion of the orbit, and the discrete chaos

controller provides stability of the whole of the orbit. Alternate methods were presented

here for different hopping robots with different surface interactions.

Further works include investigation of a system with lateral motion, as well as system

with multiple legs.

99



BIBLIOGRAPHY

100



BIBLIOGRAPHY

[1] Linear Voice Coil Motor Actuator, Model LCVM-051-165-01. www.moticont.com/lvcm-
051-165-01.htm. accessed 20-Nov-2014.

[2] Servo drives - brushed, analog, panel mount, Model 25A8. www.a-m-c.com. accessed
20-Nov-2014.

[3] Single-board real-time hardware, Model DS1104. www.dspace.com. accessed 20-Nov-
2014.

[4] Transmissive optical encoder module, Model EM1-0-120-N.
www.usdigital.com/products/encoders/incremental/modules/EM1. accessed 20-
Nov-2014.

[5] R Alexander. Three uses for springs in legged locomotion. The International Journal
of Robotics Research, 9(2):53–61, 1990.

[6] R. Altendorfer, D.E Koditschek, and P. Holmes. Towards a factored analysis of legged
locomotion models. In IEEE International Conference on Robotics and Automation,
volume 1, pages 37–44. IEEE, 2003.

[7] R. Altendorfer, D.E Koditschek, and P. Holmes. Stability analysis of legged locomo-
tion models by symmetry-factored return maps. The International Journal of Robotics
Research, 23(10-11):979–999, 2004.

[8] R. Blickhan. The spring-mass model for running and hopping. Journal of biomechanics,
22(11):1217–1227, 1989.

[9] N. Boccara. Modeling complex systems. Springer Verlag, 2004.

[10] Louis L Flynn, Rouhollah Jafari, and Ranjan Mukherjee. Active synthetic-wheel biped
with torso. IEEE Transactions on Robotics, 26(5):816–826, 2010.

[11] RM Ghigliazza, R. Altendorfer, P. Holmes, and D. Koditschek. A simply stabilized
running model. SIAM review, 2:519–549, 2005.

101



[12] RM Ghigliazza, Richard Altendorfer, Philip Holmes, and D Koditschek. A simply
stabilized running model. SIAM Journal on Applied Dynamical Systems, 2(2):187–218,
2003.

[13] K.A. Hamed and JW Grizzle. Robust event-based stabilization of periodic orbits for
hybrid systems: Application to an underactuated 3d bipedal robot. In Proceedings of
the 2013 American Control Conference, 2013.

[14] J.K. Hodgins and MN Raibert. Adjusting step length for rough terrain locomotion.
Robotics and Automation, IEEE Transactions on, 7(3):289–298, 1991.

[15] P. Holmes, R.J. Full, D. Koditschek, and J. Guckenheimer. The dynamics of legged
locomotion: Models, analyses, and challenges. Siam Review, 48:207–304, 2006.

[16] SH Hyon, T. Emura, and T. Mita. Dynamics-based control of a one-legged hopping
robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering, 217(2):83–98, 2003.

[17] M. Ishikawa, A. Neki, J.I. Imura, and S. Hara. Energy preserving control of a hopping
robot based on hybrid port-controlled Hamiltonian modeling. In Control Applications,
2003. CCA 2003. Proceedings of 2003 IEEE Conference on, volume 2, pages 1136–1141.
IEEE, 2003.

[18] S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, and K. Tanie. A hop towards running
humanoid biped. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, volume 1, pages 629–635. IEEE, 2004.

[19] H. K. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2002.

[20] HK Khalil. Nonlinear Systems. Prentice Hall, New Jersey, 2002.

[21] Frank B Mathis and Ranjan Mukherjee. Apex height control of a two-mass hopping
robot. In Proc. 2013 IEEE International Conference on Robotics and Automation
(ICRA), pages 4785–4790, Karlsruhe, Germany, 2013.

[22] Frank B Mathis and Ranjan Mukherjee. Apex height control of a two-mass robot
hopping on a rigid foundation. Mechanism and Machine Theory, 105:44–57, 2016.

[23] Frank B Mathis and Ranjan Mukherjee. Two-mass robot hopping on an elastic foun-
dation: Apex height control. In 2016 IEEE First International Conference on Control,
Measurement and Instrumentation (CMI), pages 167–171. IEEE, 2016.

102



[24] I. Poulakakis and JWGrizzle. Formal embedding of the spring loaded inverted pendulum
in an asymmetric hopper. In Proceedings of the European Control Conference, 2007.

[25] I. Poulakakis and J.W. Grizzle. The spring loaded inverted pendulum as the hybrid
zero dynamics of an asymmetric hopper. Automatic Control, IEEE Transactions on,
54(8):1779–1793, 2009.

[26] M.H. Raibert. Legged Robots that Balance. The MIT Press, Cambridge, MA, 1985.

[27] Y. Saitou, T. Nagano, T. Seki, M. Ishikawa, and S. Hara. Optimal high-jump control
of linear 1-dof trampoline robot. In SICE 2002. Proceedings of the 41st SICE Annual
Conference, volume 4, pages 2527–2530. IEEE, 2002.

[28] U. Saranli, W.J. Schwind, and D.E. Koditschek. Toward the control of a multi-jointed,
monoped runner. In Robotics and Automation, 1998. Proceedings. 1998 IEEE Interna-
tional Conference on, volume 3, pages 2676–2682. IEEE, 1998.

[29] E. Scholl and H.G. Schuster. Handbook of chaos control. Wiley-VCH, Weinheim, 2008.

[30] W.J. Schwind and D.E. Koditschek. Control of forward velocity for a simplified planar
hopping robot. In Robotics and Automation, 1995. Proceedings., 1995 IEEE Interna-
tional Conference on, volume 1, pages 691–696. IEEE, 1995.

[31] J.E Seipel and P. Holmes. Running in three dimensions: Analysis of a point-mass
sprung-leg model. The International Journal of Robotics Research, 24(8):657–674, 2005.

[32] J.E. Seipel and P. Holmes. Three-dimensional translational dynamics and stability of
multi-legged runners. The International Journal of Robotics Research, 25(9):889–902,
2006.

103


