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ABSTRACT

THEORY OF SPLINE REGRESSION WITH APPLICATIONS TO TIME
SERIES, LONGITUDINAL, AND CATEGORICAL DATA, AND DATA

WITH JUMPS

By

Shujie Ma

Modern technological advances have led to the explosion in the collection of complex data

such as functional/longitudinal, nonlinear time series, and mixed data, and data with jumps.

In recent years, there has been a growing interest in developing statistical tools to analyze

these data primarily due to the fact that traditional parametric methods are unrealistic in

applications. Non- and semi- parametric methods as alternatives have been widely recognized

as powerful tools for complex data analysis, which relax the usual assumptions of parametric

methods and enable us to explore the data more flexibly so as to uncover data structure that

might otherwise be missed.

This dissertation develops statistical theories and methods in spline regression for those

complex data mentioned before, with applications to medical science, finance and economics.

In Chapter 2, procedures to detect jumps in the regression function via constant and

linear splines are proposed based on the maximal differences of the spline estimators among

neighboring knots. Simulation experiments corroborate with the asymptotic theory, while

the computing is extremely fast. The detecting-procedure is illustrated in analyzing the

thickness of pennies data set.

In Chapter 3, asymptotically simultaneous confidence bands are obtained for the mean

function of the functional regression model, using piecewise constant spline estimation. Sim-

ulation experiments corroborate the asymptotic theory. The confidence band procedure is



illustrated by analyzing CD4 cell counts of HIV infected patients.

A spline-backfitted kernel smoothing method is proposed in Chapter 4 for partially linear

additive autoregression model. Under assumptions of stationarity and geometric mixing,

the proposed function and parameter estimators are oracally efficient and fast to compute.

Simulation experiments confirm the asymptotic results. Application to the Boston housing

data serves as a practical illustration of the method.

Chapter 5 considers the problem of estimating a relationship nonparametrically using

regression splines when there exist both continuous and categorical predictors. The resulting

estimator possesses substantially better finite-sample performance than either its frequency-

based peer or cross-validated local linear kernel regression or even additive regression splines

(when additivity does not hold). Theoretical underpinnings are provided and Monte Carlo

simulations are undertaken to assess finite-sample behavior.
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Chapter 1

Introduction

1.1 Nonparametric Regression

Regression analysis is one of the most widely used tools in data analysis. Regression anal-

ysis models and analyzes the relationship between a dependent variable Y and a vector

of independent variables X. Most commonly, regression analysis estimates the conditional

expectation of the dependent variable given the independent variables. Classic parametric

models, although their properties are very well established, need restrictive assumptions,

which have encountered various limitations in applications. Mis-specification in parametric

models could lead to large bias. Nonparametric modelling as an alternative reduces modeling

bias by imposing no specific model structure and enables people to explore the data more

flexibly.

We begin by considering the nonparametric regression model

Y = m (X) + ϵ, (1.1)

1



where the error term ϵ contributes a roughness to the raw data, and functional form m (·) is

unknown and satisfies m (x) = E (Y |X = x).

In many cases, the unknown function m (·) is a smooth function, then we can estimate

it nonparametrically by such methods as kernel and spline smoothing. For example, Figure

(1.1) shows a nonparametric smoothing curve fitted by quadratic polynomial spline as well

as the data points for a fossil data. The data contains ratios of strontium isotopes found in

fossil shells millions of years ago, which can reflect global climate.

In other cases, however, the unknown function m (·) is not smooth. Ignoring possible

jumps in the regression function m (·) may result in a serious error in drawing inference

about the process under study. In Chapter 2, we propose procedures to detect jumps in the

regression function m (·) via constant and linear spline estimation methods in a random-

design nonparametric regression model for i.i.d. case. The detecting procedure is illustrated

by simulation experiments and by analyzing a thickness of pennies data set.

In Chapter 3, we consider a sparse functional data case which has the form
{
Xij, Yij

}
,

1 ≤ i ≤ n, 1 ≤ j ≤ Ni, in which Ni observations are taken for the ith subject, with Xij

and Yij the jth predictor and response variables, respectively, for the ith subject, and Ni’s

are i.i.d. copies of an integer valued positive random variable. Asymptotically simultaneous

confidence bands are obtained for the mean function m (·) of the functional regression model,

using piecewise constant spline estimation. For illustration, Figure (1.2) shows a confidence

band and confidence interval at 95% confidence level, and the estimated function by piecewise

constant spline for a spinal bone mineral density data set.
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Figure 1.1: Spline estimate plot for the regression function of the fossil data

Note: the quadratic spline estimator (solid line) and the data points (circle) for ratios of
strontium isotopes over time. For interpretation of the references to color in this and all
other figures, the reader is referred to the electronic version of this dissertation.
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Figure 1.2: Confidence band plot for spinal bone mineral density

Note: the constant spline estimator (middle curve), the confidence band (solid line) and
the confidence interval (thin line) at confidence level 95% for spinal bone mineral density
over age.
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1.2 Partially Linear Additive Models

Nonparametric modeling imposes no specific model structure and enables one to explore

the data more flexibly, but it does not perform well when the dimension of the covariates

is high, and the variances of the resulting estimates tend to be unacceptably large due

to the sparseness of data, which is the so-called ”curse of dimensionality”. To overcome

these difficulties, many different semi-parametric models have been proposed and developed,

among which partially linear additive model is becoming very popular in data analysis, which

are important multivariate semiparametric models by allowing linearity in some variables.

A partially linear additive model (PLAM) is given as

Yi = m
(
Xi,Ti

)
+ σ

(
Xi,Ti

)
εi,m(x, t) = c00 +

∑d1
l=1

c0ltl +
∑d2

α=1
mα (xα) (1.2)

in which the sequence
{
Yi,X

T
i ,T

T
i

}n
i=1

=
{
Yi,Xi1, ..., Xid2

, Ti1, . . . Tid1

}n
i=1

. The func-

tions m and σ are the mean and standard deviation of the response Yi conditional on the

predictor vector {Xi,Ti}, and εi is a white noise conditional on {Xi,Ti}.

From equation (1.2) we observe that a PLAM consists of a linear part and a nonpara-

metric additive part, which retains the merits of both additive and linear models, see Stone

(1985) and Hastie and Tibshirani (1990) for additive models. It is much more flexible than

parametric models, since it eschews many assumptions, such as finitely many unknown pa-

rameters imposed on the model and presumed distribution structure set on the data, and

meanwhile it is more interpretable than nonparametric regression surfaces. It avoids the

so-called ”curse of dimensionality” for high dimensional models, since the unknown func-

tions are one-dimensional. Moreover, PLAMs are more parsimonious and flexible and easier

5



interpretable than purely additive model by allowing a subset of the independent variables

to be discrete, while additive models only admit continuous predictors, as well as allowing

the intersection terms among the elements of the additive part to enter as the linear part of

the model.

In Chapter 4, we extend the ”spline-backfitted kernel smoothing” (SBK) of Wang and

Yang (2007) to partially linear additive autoregression models. It establishes the uniform

oracle efficiency of the estimators by ”reducing bias via undersmoothing (step one) and

averaging out the variance (step two)” via the joint asymptotic properties of kernel and

spline functions. The proposed SBK estimators satisfy (i) computationally expedient; (ii)

theoretically reliable; and (iii) intuitively appealing.

1.3 Polynomial Splines

Polynomial splines have been widely accepted as an appealing and effective tool for non-

parametric regression estimation because of its great flexibility, fast computation, simple

implementation and explicit expression, and they have been applied to a wide range of sta-

tistical problems such as hazard regressions, derivative estimation, semi-parametric models,

longitudinal, functional and high dimensional data analysis, jump detection, etc. In this

section, I will introduce polynomial spline functions.

Without loss of generality, we take the range of X a univariate predictor to be [0, 1]. To

introduce the spline functions, divide the finite interval [0, 1] into (N +1) equal subintervals

χJ =
[
tJ , tJ+1

)
, J = 0, ...., N − 1, χN =

[
tN , 1

]
. A sequence of equally-spaced points

6



{
tJ
}N
J=1, called interior knots, are given as

t0 = 0 < t1 < · · · < tN < 1 = tN+1, tJ = Jh, J = 0, ..., N + 1,

in which h = 1/ (N + 1) is the distance between neighboring knots. We denote by G(p−2) =

G(p−2) [0, 1] the space of functions that are polynomials of degree p− 1 on each χJ and has

continuous (p− 2)-th derivative. For example, G(−1) denotes the space of functions that

are constant on each χJ , and G(0) denotes the space of functions that are linear on each

χJ and continuous on [0, 1].

Denote by ∥ϕ∥2 the theoretical L2 norm of a function ϕ on [0, 1], ∥ϕ∥22 = E
{
ϕ2 (X)

}
=∫ 1

0 ϕ
2 (x) f (x) dx =

∫ 1
0 ϕ

2 (x) dx, and the empirical L2 norm as ∥ϕ∥22,n = n−1∑n
i=1 ϕ

2 (Xi).
Corresponding inner products are defined by

⟨ϕ, φ⟩ =
∫ 1

0
ϕ (x)φ (x) f (x) dx =

∫ 1

0
ϕ (x)φ (x) dx = E {ϕ (X)φ (X)} ,

⟨ϕ, φ⟩n = n−1∑n
i=1 ϕ

(
Xi
)
φ
(
Xi
)
, for any L2-integrable functions ϕ, φ on [0, 1]. Clearly

E ⟨ϕ, φ⟩n = ⟨ϕ, φ⟩. We now introduce the B-spline basis
{
bJ,1 (x) , 1− p ≤ J ≤ N

}
of

G(p−2), the space of splines of order p, for theoretical analysis. The B-spline basis of G(−1),

the space of piecewise constant splines, are indicator functions of intervals χJ , bJ,1 (x) =

IJ (x) = IχJ (x), 0 ≤ J ≤ N . The B-spline basis of G(0), the space of piecewise linear

splines, are
{
bJ,2 (x)

}N
J=−1

bJ,2 (x) = K

(
x− tJ+1

h

)
, − 1 ≤ J ≤ N, for K (u) = (1− |u|)+ .

7



In Chapters 2, 3, and 4, polynomial spline techniques are applied in different circum-

stances.

1.4 Tensor Product Splines

In section 1.3, we introduced spline smoothing and B-spline functions for univariate variables.

In this section, we generalize B-spline to functions of multivariate variables by the tensor

product construction.

Let X =
(
X1, . . . , Xq

)T be a q-dimensional vector of continuous predictors. Assume for

1 ≤ l ≤ q, eachXl is distributed on a compact interval
[
al, bl

]
, and without loss of generality,

we take all intervals
[
al, bl

]
= [0, 1]. Let Gl = G

(
ml−2

)
l

be the space of polynomial splines

of order ml and pre-select an integer Nl = Nn,l. Divide [0, 1] into
(
Nl + 1

)
subintervals

IJl,l
=
[
tJl,l

, tJl+1,l

)
, Jl = 0, . . . , Nl − 1, INl,l

=
[
tNl,l

, 1
]
, where

{
tJl,l

}Nl
Jl=1

is a

sequence of equally-spaced points, called interior knots, given as

t−
(
ml−1

)
,l
= · · · = t0,l = 0 < t1,l < · · · < tNl,l

< 1 = tNl+1,l = · · · = tNl+ml,l
,

in which tJl,l
= Jlhl, Jl = 0, 1 . . . , Nl + 1, hl = 1/

(
Nl + 1

)
is the distance between

neighboring knots. Then Gl consists of functions ϖ satisfying (i) ϖ is a polynomial of

degree ml − 1 on each of the subintervals IJl,l
, Jl = 0, . . . , Nl; (ii) for ml ≥ 2, ϖ is ml − 2

times continuously differentiable on [0, 1]. Let Kl = Kn,l = Nl+ml, where Nl is the number

of interior knots and ml is the spline order, Bl
(
xl
)
=
{
BJl,l

(
xl
)
: 1−ml ≤ Jl ≤ Nl

}T
be

a basis system of the space Gl. We define the space of tensor-product polynomial splines by

8



G = ⊗q
l=1

Gl. It is clear that G is a linear space of dimension Kn =
∏q
l=1

Kl. Then

B (x) =

[{
BJ1,...,Jq (x)

}N1,...,Nq
J1=1−m1,...,Jq=1−mq

]
Kn×1

= B1 (x1)⊗· · ·⊗Bq
(
xq
)
(1.3)

is a basis system of the space G, where x =
(
xl
)q
l=1

.

In Chapter 5, tensor product splines and categorical kernel functions which will be in-

troduced in this chapter are applied to study nonparametric regression with multivariate

continuous and categorical variables.

9



Chapter 2

A Jump-detecting Procedure based

on Polynomial Spline Estimation

2.1 Introduction

This chapter is based on Ma and Yang (2011a). In application of regression methods, ignoring

possible jump points may result in a serious error in drawing inference about the process

under study. Whenever there is no appropriate parametric method available, one may start

from nonparametric regression. Two popular nonparametric techniques are kernel and spline

smoothing. For properties of kernel estimators in the absence of jump points, see Mack and

Silverman (1982), Fan and Gijbels (1996), Xia (1998) and Claeskens and Van Keilegom

(2003), and for spline estimators, see Zhou, Shen and Wolfe (1998), Huang (2003) and Wang

and Yang (2009a).

One is often interested in detecting jump points and estimating regression function with

jumps. We assume that observations
{(
Xi, Yi

)}n
i=1 and unobserved errors

{
εi
}n
i=1 are

10



i.i.d. copies of (X,Y, ε) satisfying the regression model

Y = m (X) + σε, (2.1)

where the joint distribution of (X, ε) satisfies Assumptions (A3) and (A4) in Section 2.2.

The unknown mean function m (x), defined on interval [a, b], may have a finite number of

jump points.

Jump regression analysis started in the early 1990s and has become an important research

topic in statistics. See for instance, Qiu, Asano and Li (1991), Müller (1992), Wu and

Chu (1993), Qiu (1994) and Qiu and Yandell (1998) for procedures that detect the jumps

explicitly before estimating the regression curve, Kang, Koo and Park (2000) for comparing

two estimators of the regression curve after the jump points are detected, Qiu (2003) and

Gijbels Lambert and Qiu (2007) for jump-preserving curve estimators, Joo and Qiu (2009) for

jump detection in not only the regression curve but also its derivatives. For a comprehensive

view on jump regression, see Qiu (2005).

Jump detection has been tackled with many techniques, including local polynomial

smoothing [Qiu (2003) and Gijbels et al. (2007)], smoothing spline [Shiau (1987)], wavelet

methods [Hall and Patil (1995), Wang (1995) and Park and Kim (2004, 2006)], and for two-

dimensional cases, see Qiu (2007). We propose a spline smoothing method to detect jumps

by solving one optimization problem over the range of x instead of each point, which is com-

putationally more expedient than kernel-type method in Müller (1992). Spline method was

also discussed in Koo (1997), which proposed estimating discontinuous regression function

without providing theoretical justifications. In contrast, asymptotic distributions in Theo-

rem 2.1 are established by using the strong approximation results in Wang and Yang (2009a),

11



Normal Comparison Lemma in Leadbetter, Lindgren and Rootzén, H. (1983), and a conve-

nient formula from Kılıç (2008) for inverting tridiagonal matrix. The automatic procedures

proposed for detecting jumps are based on implementing the asymptotics of Theorem 2.1.

This chapter is organized as follows. Section 2.2 states main theoretical results based

on (piecewise) constant and linear splines. Section 2.3 provides steps to implement the

procedure based on the asymptotic result. Section 2.4 reports findings in both simulation

and real data studies. All technical proofs are contained in Appendices.

2.2 Main Results

We denote the space of the p-th order smooth functions as C(p) [a, b] =
{
φ
∣∣∣φ(p) ∈ C [a, b]

}
,

for p = 1, 2. Without loss of generality, we take the range of X to be [0, 1]. We use the spline

functions introduced in Section 1.3 of Chapter 1. Define the spline estimator based on data{(
Xi, Yi

)}n
i=1 drawn from model (3.3) as

m̂p (x) = argmin
g∈G(p−2)[0,1]

∑n

i=1

{
Yi − g

(
Xi
)}2 , p = 1, 2. (2.2)

The unknown function m (x) in (3.3) may be smooth, or have jump points
{
τi
}k
i=1, for

0 = τ0 < τ1 < · · · < τk < τk+1 = 1. Technical assumptions are listed as follows:

(A1) There exists a function m0 (x) ∈ C(p) [0, 1] and a vector c =
(
c1, ..., ck

)
of jump

magnitudes such that the regression function m (x) = cl +m0 (x) , x ∈
[
τ l, τ l+1

)
, for

l = 1, · · · k − 1,m (x) = m0 (x) , x ∈ [τ0, τ1) ,m (x) = ck +m0 (x) , x ∈
[
τk, τk+1

]
.

(A2) The number of interior knots N = o
(
n1/(2p+1)+ϑ

)
for any ϑ > 0 while N−1 =

o
(
n−1/(2p+1)/ log n

)
.

12



(A3) X is uniformly distributed on interval [0, 1], i.e. the density function of X is f (x) =

I (0 ≤ x ≤ 1).

(A4) The joint distribution F (x, ε) of random variables (X, ε) satisfies the following:

(a) The error is a white noise: E (ε |X = x) = 0, E
(
ε2 |X = x

)
= 1.

(b) There exists a positive value η > 1 and finite positive Mη such that E|ε|2+η < Mη

and supx∈[0,1]E
(
|ε|2+η |X = x

)
< Mη.

Assumption (A1) is similar to Müller and Song (1997). Assumption (A2) is similar to

the undersmoothing condition in Claeskens and Van Keilegom (2003), thus the subinterval

length h = o
(
n−1/(2p+1)/ log n

)
while h−1 = o

(
n1/(2p+1)+ϑ

)
for any ϑ > 0. A uniform

distribution of X in Assumption (A3) is for the simplicity of proofs, which can be relaxed to

any distribution with continuous and positive density function on [0, 1]. Assumption (A4)

is identical with (C2) (a) of Mack and Silverman (1982). All are typical assumptions for

nonparametric regression, with Assumption (A4) weaker than the corresponding assumption

in Härdle (1989).

We use the B-spline basis introduced in Section 1.3 of Chapter 1 for theoretical analysis.

Define next the theoretical norms of spline functions

cJ,n =
∥∥∥bJ,1∥∥∥22 =

∫ 1

0
I2J (x) dx =

∫ 1

0
IJ (x) dx = h, 0 ≤ J ≤ N,

dJ,n =
∥∥∥bJ,2∥∥∥22 =

∫ 1

0
K2

(
x− tJ+1

h

)
dx =


2h/3, 0 ≤ J ≤ N − 1

h/3, J = −1, N

,

⟨
bJ,2, bJ ′,2

⟩
=

∫ 1

0
K

(
x− tJ+1

h

)
K

(x− t
J ′+1
h

)
dx =


h/6,

∣∣∣J − J ′
∣∣∣ = 1

0,
∣∣∣J − J ′

∣∣∣ > 1

(2.3)

13



We introduce the rescaled B-spline basis
{
BJ,p (x)

}N
J=1−p

, for G(p−2),

BJ,p (x) ≡ bJ,p (x)
∥∥∥bJ,p∥∥∥−1

2
, J = 1− p, ..., N. (2.4)

The inner product matrix V of the B-spline basis
{
BJ,2 (x)

}N
J=−1

is denoted as

V =
(
v
J ′J

)N
J,J ′=−1

=
(⟨
B
J ′,2, BJ,2

⟩)N
J,J ′=−1

=



1
√
2/4 0

√
2/4 1 1/4

1/4 1
. . .

. . . . . . 1/4

1/4 1
√
2/4

0
√
2/4 1


(N+2)×(N+2)

=
(
lik
)−1
(N+2)×(N+2)

,

(2.5)

which computed via (2.3). Denote the inverse of V by S and for J = 1, ..., N , 3× 3 diagonal

submatrices of S are expressed as

S =
(
s
J ′J

)N
J,J ′=−1

= V−1, SJ =


s(J−2),(J−2) s(J−2),(J−1) s(J−2),J

s(J−1),(J−2) s(J−1),(J−1) s(J−1),J

sJ,(J−2) sJ,(J−1) sJJ

 .

(2.6)

To detect jumps in m, one tests the hypothesis H0: m ∈ C(p) [0, 1] vs H1: m /∈ C [0, 1].

Denote by ∥c∥2 =
(
c21 + · · ·+ c2k

)1/2
, the Euclidean norm of the vector c of all the k jump

14



magnitudes, then under Assumption (A1), one can write alternatively H0 : ∥c∥2 = 0 vs

H1 : ∥c∥2 > 0. For m̂p (x) given in (2.2), p = 1, 2, define the test statistics

T1n = max0≤J≤N−1 δ̂1J , δ̂1J =
∣∣m̂1

(
tJ+1

)
− m̂1

(
tJ
)∣∣ /σn,1,

T2n = max1≤J≤N δ̂2J , δ̂2J =
∣∣∣{m̂2

(
tJ+1

)
+ m̂2

(
tJ−1

)}
/2− m̂2

(
tJ
)∣∣∣ /σn,2,J ,

(2.7)

where σ2n,1 = 2σ2/ (nh) , σ2n,2,J = σ2 (8nh/3)−1 ζT SJζ, ζ =


1

−2

1

 (2.8)

with SJ defined in (2.6). To state our main results, denote

dN (α) = 1− {2 logN}−1
[
log

{
−1

2
log (1− α)

}
+

1

2
{log log (N) + log 4π}

]
. (2.9)

Theorem 2.1. Under Assumptions (A1)-(A4) and H0,

limn→∞ P
[
Tpn > {2 log (N − 2p+ 2)}1/2 dN−2p+2 (α)

]
= α, p = 1, 2.

A similar result by kernel smoothing with fixed-design regression model exists in Theorem

3 of Wu and Chu (1993). The proof of that result, however, does not contain sufficient details

for us to further comment. It is feasible to derive similar asymptotic result for Tpn under

H1 but that is beyond the scope of this chapter so we leave it to future work.
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2.3 Implementation

In this section, we describe how to implement in XploRe (Härdle, Hlávka and Klinke (2000))

the jump points detection procedures by using the results in Theorem 2.1.

Given any sample
{(
Xi, Yi

)}n
i=1 from model (3.3), denote Xmin = min (X1, ..., Xn) and

Xmax = max (X1, ..., Xn). Then we transform
{
Xi
}n
i=1 onto interval [0, 1] by subtracting

each Xi from Xmin, then dividing by Xmax − Xmin. The definition of m̂p (x) in (2.2)

entails

m̂p (x) ≡
∑N

J=1−p λ̂
′
J,pbJ,p (x) , p = 1, 2, (2.10)

where coefficients
{
λ̂
′
1−p,p, ..., λ̂

′
N,p

}T
are solutions of the following least squares problem

{
λ̂
′
1−p,p, ..., λ̂

′
N,p

}T
= argmin{

λ1−p,p,...,λN,p
}
∈RN+p

n∑
i=1

{
Yi −

∑N

J=1−p λJ,pbJ,p
(
Xi
)}2

.

By Assumption (A2), the number of interior knotsN is taken to beN =
[
n1/3 (log n)2 /5

]
for constant spline (p = 1), and N =

[
n1/5 (log n)2 /5

]
for linear spline (p = 2), in which

[a] denotes the integer part of a. Denote the estimator for Yi by Ŷi,p = m̂p
(
Xi
)
, for

i = 1, · · · , n, with m̂p given in (2.10), and define the estimator of σ as

σ̂p =

{∑n

i=1

(
Yi − Ŷi,p

)2
/ (n−N − p)

}1/2
.

Basic spline smoothing theory as in Wang and Yang (2009a) ensures that σ̂2p →p σ2, as n→

∞, hence Theorem 2.1 holds if one replaces σ by σ̂p. The asymptotic p-value pvalue,p are

obtained from solving the equation Tpn = {2 log (N − 2p+ 2)}1/2 dN−2p+2

(
pvalue,p

)
,
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p = 1, 2 with Tpn defined in (2.7) and estimated by replacing σ2 with σ̂2p, then

pvalue,p = 1− exp
[
−2 exp

[
2 log (N − 2p+ 2)

{
1− {2 log (N − 2p+ 2)}−1/2 Tpn

}
−2−1 {log log (N − 2p+ 2) + log 4π}

]]
. (2.11)

When the p-value is below a pre-determined α, one concludes that there exist jump

points in m. The jump locations and magnitudes are estimated as follows. We use the

BIC criteria proposed in Xue and Yang (2006) to select the ”optimal” N , denoted N̂opt,

from
[[
4n1/3

]
+ 4,min

([
10n1/3

]
, [n/2]− 1

)]
, which minimizes the BIC value BIC (N) =

log
(
σ̂21

)
+ (N + 1) × log (n) /n. By letting p = 1 and replacing T1n with δ̂1J , for 0 ≤

J ≤ N − 1 in (2.11), we obtain the p-value pvalue,1,J for each δ̂1J . The jump locations

τi, 1 ≤ i ≤ k are estimated by τ̂ i =
(
tli

+ tli+1

)
/2, for pvalue,1,li

< α, with ĉi =

m̂1

(
tli+1

)
− m̂1

(
tli

)
as the estimated jump magnitudes, for 0 ≤ l1, . . . , lk ≤ N − 1. It is

apparent that for τi ∈
[
tli
, tli+1

]
, τ̂ i → τi, 1 ≤ i ≤ k, as n→ ∞.

2.4 Examples

2.4.1 Simulation example

Here, we examine the finite-sample performance of the procedure described in Section 2.3

where m (x) has at most one jump. The data set is generated from model (3.3) with

X ∼ U [−1/2, 1/2] , ε ∼ N (0, 1), and with m (x) = sin (2πx) + c × I(τ1 ≤ x ≤ 1/2),

for τ1 =
√
2/4. The noise level σ = 0.2, 0.5, sample size n = 200, 600, 1000 and sig-

nificant level α = 0.05, 0.01. Let ns be the number of replications. Denote the asymp-

totic powers based on constant and linear splines by β̂p (c), p = 1, 2, calculated from

17



c σ sample size n β̂2 (c) β̂2 (c) β̂1 (c) β̂1 (c)
α = 0.05 α = 0.01 α = 0.05 α = 0.01

200 0.100 0.032 0.640 0.280
0.2 600 0.062 0.014 0.390 0.140

0 1000 0.046 0.010 0.220 0.050
200 0.058 0.012 0.220 0.070

0.5 600 0.054 0.006 0.180 0.040
1000 0.050 0.010 0.120 0.030
200 1.000 0.998 1.000 1.000

0.2 600 1.000 1.000 1.000 1.000
2 1000 1.000 1.000 1.000 1.000

200 0.942 0.776 0.890 0.680
0.5 600 1.000 0.980 1.000 0.970

1000 1.000 1.000 1.000 1.000

Table 2.1: Power calculation for the simulated example in Chapter 2

Note: powers calculated from the test statistic Tpn defined in (2.7) by constant and linear
splines, respectively, over ns = 500 replications.

β̂p (c) =
∑ns
q=1 I

[
Tn,p,q > {2 log (N − 2p+ 2)}1/2 dN−2p+2 (α)

]
/ns, where Tn,p,q is the

q-th replication of Tpn, with Tpn given in (2.7), and dN (α) given in (2.9), for p = 1, 2.

Table 2.1 shows values of β̂p (c) for c = 0 and c = 2.

In Table 2.1, β̂p (2), p = 1, 2 approach to 1 rapidly. Meanwhile β̂2 (0) approaches α as

the sample size increase, which shows very positive confirmation of Theorem 2.1, in contrast

to β̂1 (0), the convergent rate of which is much slower, indicating that the linear spline

method outperforms the constant spline method. Table 2.1 also shows the noise level has

more influence on the constant spline method than the linear spline method. Table 2.2 shows

the average computing time (in seconds) of generating data and detecting jump by constant

and linear spline methods, which are comparable.

There are 500 replications for n = 200, 600 satisfying pvalue,2 < α = 0.05, with pvalue,2
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sample size n constant linear

200 0.04 0.06
600 0.21 0.30
1000 0.55 0.60

Table 2.2: Computing time for simulated example in Chapter 2

Note: computing time (in seconds) per replication over ns = 500 replications of generating
data and detecting jump by constant and linear spline methods.

given in (2.11), when c = 2, ns = 500. Figures 2.1 and 2.2 show the kernel estimators of

the densities of τ̂1 and ĉ1 given in Section 2.3 with sample size n = 200 (thick lines) and

n = 600 (median lines) at σ = 0.2.

The vertical lines at
√
2/4 and 2 are the standard lines for comparing τ̂1 to τ1 and ĉ1 to

c1 respectively. One clearly sees that both of the centers of the density plots are going toward

the standard lines with much narrower spread when the sample size n is increasing. The

frequencies over 500 replications for τ1 falling between tl1
and tl1+1 described in Section

2.3 are 0.994 and 1 for n = 200 and 600 respectively.

For visual impression of the actual function estimates, at noise level σ = 0.2 with sample

size n = 600, we plot the spline estimator m̂2 (x) (solid curves) for the true functions m (x)

(thick solid curves) in Figures 2.3 and 2.4. The spline estimators seem rather satisfactory.

2.4.2 Real data analysis

We apply the jump detection procedures in Section 2.3 to the thickness of pennies data

set given in Scott (1992), which consists of measurements in mils of the thickness of 90 US

Lincoln pennies. There are two measurements taken as the response variable Y each year,
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Figure 2.1: Kernel density plots of τ̂1 in Chapter 2

Note: kernel density plots of τ̂1 over 500 replications of sample size n = 200 (thick solid)
and n = 600 (solid) for which H0 is rejected.
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Figure 2.2: Kernel density plots of ĉ1 in Chapter 2

Note: kernel density plots of ĉ1 over 500 replications of sample size n = 200 (thick solid)
and n = 600 (solid) for which H0 is rejected.
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n=600,  c=0
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Figure 2.3: Plots of the spline estimator for c = 0 in Chapter 2

Note: plots of the true function m (x) (thick solid curve), spline estimator m̂2 (x) (solid
curve) and the data scatter plots at σ = 0.2.
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n=600,  c=2
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Figure 2.4: Plots of the spline estimator c = 2 in Chapter 2

Note: plots of the true function m (x) (thick solid curve), spline estimator m̂2 (x) (solid
curve) and the data scatter plots at σ = 0.2.
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from 1945 through 1989. Penny thickness was reduced in World War II and restored to its

original thickness sometime around 1960 and reduced again in the 70’s. The asymptotic

p-value pvalue,2 < 10−20. Two jump points are detected with the p-values 0.014468 and

0.00077337, located around the year 1958 with increased magnitude 2.80, and around the

year 1974 with decreased magnitude 3.75, respectively, which confirms the result in Gijbels

et al. (2007). Figure 2.5 depicts the data points and the spline estimator m̂2 (x) (solid

line), which confirms visually these findings. Findings from both simulated and real data

demonstrate the effectiveness of our approach in detecting the existence of jumps. The plots

of m̂2 (x) in Figures 2.3 and 2.5 give an outline of the true function, without breaking the

curve at the jumps. Obtaining jump-preserving spline estimator of the true non-smooth

function is beyond the scope of this chapter, but makes an interesting topic for further

research.

2.5 Appendix A

2.5.1 Preliminaries

Denote by ∥·∥∞ the supremum norm of a function r on [0, 1], i.e. ∥r∥∞ = supx∈[0,1]

|r (x)|. We denote by the same letters c, C, any positive constants without distinction. The

following extension of Leadbetter, Lindgren and Rootzén, H. (1983), Theorem 6.2.1 is a key

result on the absolute maximum of discrete time Gaussian processes.

Lemma 2.1. Let ξ
(n)
1 , ..., ξ

(n)
n have jointly normal distribution with Eξ

(n)
i ≡ 0, E

(
ξ
(n)
i

)2
≡

1, 1 ≤ i ≤ n and there exists constants C > 0, a > 1, r ∈ (0, 1) such that the corre-

lations rij = r
(n)
ij = Eξ

(n)
i ξ

(n)
j , 1 ≤ i ̸= j ≤ n satisfy

∣∣∣rij∣∣∣ ≤ min
(
r, Ca−|i−j|

)
for
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Figure 2.5: Spline estimator for the thickness of pennies data

Note: the thickness of pennies data (points) and the spline estimator m̂2 (x).
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1 ≤ i ̸= j ≤ n. Then the absolute maximum Mn,ξ = max

{∣∣∣∣ξ(n)1

∣∣∣∣ , ..., ∣∣∣∣ξ(n)n

∣∣∣∣} satisfies for

any τ ∈ R, P
(
Mn,ξ ≤ τ/an + bn

)
→ exp

(
−2e−τ

)
, as n→ ∞, where an = (2 log n)1/2,

bn = an − 1
2a

−1
n (log log n+ log 4π).

Proof. Take ε > 0 such that (2− ε) (1 + r)−1 = 1 + δ, for some δ > 0. Let τn =

τ/an + bn, then τ2n/ (2 log n) → 1, as n → ∞, so for large n, τ2n > (2− ε) log n. By

the condition
∣∣∣rij∣∣∣ ≤ min

(
r, Ca−|i−j|

)
< 1 for i ̸= j, one has

∣∣∣rij∣∣∣ (1− ∣∣∣rij∣∣∣2)−1/2
≤

Ca−|i−j|
(
1− r2

)−1/2
. Let Mn,η = max {|η1| , . . . , |ηn|}, where η1, . . . , ηn are i.i.d.

copies of N (0, 1). By Leadbetter, Lindgren and Rootzén (1983), Theorem 1.5.3,

P
(
Mn,η ≤ τn

)
→ exp

(
−2e−τ

)
, as n→ ∞. The Normal Comparison Lemma (Leadbetter,

Lindgren and Rootzén, H. (1983), Lemma 11.1.2) entails that

∣∣∣∣P (−τn < ξ
(n)
j ≤ τn for j = 1, . . . , n

)
− P

(
−τn < ηj ≤ τn for j = 1, . . . , n

)∣∣∣∣
≤ (4/2π)

∑
1≤j<i≤n

∣∣∣rij∣∣∣ (1− ∣∣∣rij∣∣∣2)−1/2
exp

{
−τ2n/

(
1 + rij

)}
.

∣∣∣P (Mn,ξ ≤ τn

)
− P

(
Mn,η ≤ τn

)∣∣∣ ≤ 4

2π

∑
1≤i<j≤n

Ca−|i−j|
(
1− r2

)−1/2
exp

(
−τ2n
1 + r

)

≤ (4/2π)C
(
1− r2

)−1/2∑
1≤j<i≤n a

−(i−j) exp
{
− (2− ε) (1 + r)−1 log n

}
= (4/2π)C

(
1− r2

)−1/2∑n−1

k=1
(n− k) a−kn−1−δ ≤ Cn−δ → 0, as n→ ∞,

for large n, hence P
(
Mn,ξ ≤ τn

)
→ exp

(
−2e−τ

)
, as n→ ∞.

We break the estimation error m̂p (x)−m (x) into bias and noise. m̂p (x) defined in (2.2)

can be written as m̂p (x) ≡
∑N
J=1−p λ̂J,pBJ,p (x), where coefficients

{
λ̂1−p,p, ..., λ̂N,p

}T
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are solutions of the following least squares problem

{
λ̂1−p,p, ..., λ̂N,p

}T
= argmin{

λ1−p,p,...,λN,p
}
∈RN+p

n∑
i=1

Yi −
N∑

J=1−p
λJ,pBJ,p

(
Xi
)

2

.

(2.12)

Projecting the relationship in model (3.3) leads to the following decomposition in G(p−2)

m̂p (x) = m̃p (x) + ε̃p (x) , (2.13)

m̃p (x) =
∑N

J=1−p λ̃J,pBJ,p (x) , ε̃p (x) =
∑N

J=1−p ãJ,pBJ,p (x) . (2.14)

The vectors
{
λ̃1−p,p, ..., λ̃N,p

}T
and

{
ã1−p,p, ..., ãN,p

}T
are solutions to (2.12) with Yi

replaced by m
(
Xi
)
and σεi respectively.

Next lemma is from de Boor (2001), p. 149 and Theorem 5.1 of Huang (2003).

Lemma 2.2. There are constants Cp > 0, p ≥ 1 such that for any m ∈ C(p) [0, 1], there exists

a function g ∈ G(p−2) [0, 1] such that ∥g −m∥∞ ≤ Cp

∥∥∥m(p)
∥∥∥∞ hp and m̃ (x) defined in

(2.14), with probability approaching 1, satisfies
∥∥m̃p (x)−m (x)

∥∥∞ = O (hp).

2.5.2 Proof of Theorem 2.1 for p = 1

For x ∈ [0, 1], define its location and relative position indices J (x) , δ (x) as J (x) = Jn (x) =

min {[x/h] , N} , δ (x) =
{
x− tJ(x)

}
h−1. It is clear that tJn(x)

≤ x < tJn(x)+1, 0 ≤

δ (x) < 1,∀x ∈ [0, 1) , and δ (1) = 1. Since
⟨
B
J ′,1,BJ,1

⟩
n
= 0 unless J = J ′, for BJ,1 (x)

given in (2.4). ε̃1 (x) in (2.14) can be written as

ε̃1 (x) =
∑N

J=0
ε∗J,1BJ,1 (x)

∥∥BJ∥∥−2
2,n , ε

∗
J,1 = n−1

∑n

i=1
BJ,1

(
Xi
)
σεi.
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Let ε̂1 (x) =
∑N
J=0 ε

∗
J,1BJ,1 (x), it is easy to prove that E {ε̂1 (x)}2 = σ2/ (nh) and for 0 ≤

J ≤ N−1, E
{
ε̂1
(
tJ+1

)
− ε̂1

(
tJ
)}2 = 2σ2/ (nh), which is σ2n,1 defined in (2.8). Define for

0 ≤ J ≤ N−1, ξ̃n,1,J = σ−1
n,1

{
ε̃1
(
tJ+1

)
− ε̃1

(
tJ
)}

, ξ̂n,1,J = σ−1
n,1

{
ε̂1
(
tJ+1

)
− ε̂1

(
tJ
)}

.

Lemma 2.3. Under Assumptions (A2)-(A4), as n → ∞, sup
0≤J≤N−1

∣∣∣ξ̃n,1,J − ξ̂n,1,J

∣∣∣ =
Oa.s

(
n−1/2h−1/2 log n

)
= oa.s (1).

Lemma 2.4. Under Assumptions (A2)-(A4), there exist

{
ξ̂
(k)
n,1,J

}N−1

J=0
, k = 1, 2, 3 such that

as n → ∞, sup0≤J≤N−1

∣∣∣∣ξ̂n,1,J − ξ̂
(1)
n,1,J

∣∣∣∣ + sup0≤J≤N−1

∣∣∣∣ξ̂(2)n,1,J − ξ̂
(3)
n,1,J

∣∣∣∣ = oa.s (1).{
ξ̂
(1)
n,1,J

}N−1

J=0
has the same probability distribution as

{
ξ̂
(2)
n,1,J

}N−1

J=0
, and

{
ξ̂
(3)
n,1,J

}N−1

J=0

is a Gaussian process with mean 0, variance 1, and covariance

cov

{
ξ̂
(3)
n,1,J , ξ̂

(3)

n,1,J ′

}
=


−1/2, for

∣∣∣J − J ′
∣∣∣ = 1

0, for
∣∣∣J − J ′

∣∣∣ > 1

.

Lemmas 2.3 and 2.4 follow from Appendix A of Wang and Yang (2009a).

Proof of Theorem 2.1 for p = 1: It is clear from Lemma 2.4 that the Gaussian process{
ξ̂
(3)
n,1,J

}N−1

J=0
satisfies the conditions of Lemma 2.1, hence as n→ ∞,

P

{(
sup0≤J≤N−1

∣∣∣∣ξ̂(3)n,1,J
∣∣∣∣ ≤ τ/aN + bN

)}
→ exp

(
−2e−τ

)
.

By letting τ = − log {− (1/2) log (1− α)}, and using the definition of aN , bN and dN (α)
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we obtain

limn→∞ P

{
sup0≤J≤N−1

∣∣∣∣ξ̂(3)n,1,J
∣∣∣∣ ≤ − log {− (1/2) log (1− α)} (2 logN)−1/2

+ (2 logN)1/2 − (1/2) (2 logN)−1/2 (log logN + log 4π)
}
= 1− α.

limn→∞ P

{
sup0≤J≤N−1

∣∣∣∣ξ̂(3)n,1,J
∣∣∣∣ ≤ (2 logN)1/2 dN (α)

}
= 1− α.

By Lemmas 2.3 and 2.4, we have

lim
n→∞P

{
sup

0≤J≤N−1

∣∣∣ξ̃n,1,J ∣∣∣ ≤ (2 logN)1/2 dN (α)

}
= 1− α,

which implies for 0 ≤ J ≤ N − 1

lim
n→∞P

{
dN (α)−1 (2 logN)−1/2 σ−1

n,1 sup
0≤J≤N−1

∣∣ε̃1 (tJ+1
)
− ε̃1

(
tJ
)∣∣ ≤ 1

}
= 1− α.

Lemma 2.2 entails that under H0 sup0≤J≤N−1
∣∣m̃1

(
tJ
)
−m

(
tJ
)∣∣ = Op (h) and

sup0≤J≤N−1
∣∣m (tJ+1

)
−m

(
tJ
)∣∣ = Op (h) ,

which imply that

σ−1
n,1 (logN)−1/2 sup

0≤J≤N−1

∣∣m (tJ+1
)
−m

(
tJ
)∣∣

= Op

{
(nh)1/2 (logN)−1/2 h

}
= op

{
(log n)−2

}
.

By (2.13), m̂1
(
tJ+1

)
− m̂1

(
tJ
)
=
{
m̃1
(
tJ+1

)
−m

(
tJ+1

)}
−
{
m̃1
(
tJ
)
−m

{
tJ
}}

+
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{
m
(
tJ+1

)
−m

(
tJ
)}

+
{
ε̃1
(
tJ+1

)
− ε̃1

(
tJ
)}

, then for dN (α) defined in (2.9),

limn→∞ P
{
sup0≤J≤N−1

∣∣m̂1
(
tJ+1

)
− m̂1

(
tJ
)∣∣ ≤ σn,1 (2 logN)1/2 dN (α)

}
=

limn→∞ P
{
sup0≤J≤N−1

∣∣ε̃1 (tJ+1
)
− ε̃1

(
tJ
)∣∣ ≤ σn,1 (2 logN)1/2 dN (α)

}
= 1− α. �

2.6 Appendix B

2.6.1 Preliminaries

The following lemma from Wang and Yang (2009a) shows that multiplication by V defined

in (2.5) behaves similarly to multiplication by a constant. We use |T | to denote the maximal

absolute value of any matrix T .

Lemma 2.5. Given matrix Ω = V + Γ, in which Γ =
(
γ
jj′
)N
J,J ′=−1

satisfies γ
jj′ ≡ 0 if∣∣∣J − J ′

∣∣∣ > 1 and |Γ| p→ 0. Then there exist constants c, C > 0 independent of n and Γ, such

that with probability approaching 1

c |ξ| ≤ |Ωξ| ≤ C |ξ| , C−1 |ξ| ≤
∣∣∣Ω−1ξ

∣∣∣ ≤ c−1 |ξ| , ∀ξ ∈ RN+2. (2.15)

To prove Theorem 2.1 for p = 2, we need the result below (Corollary 16 of Kılıç (2008)),

which gives explicit formula for the inverse of symmetric tridiagonal matrix.

Lemma 2.6. For any symmetric tridiagonal matrix Gn =



x1 y1

y1 x2
. . .

. . . . . . yn−1

yn−1 xn


, the
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inverse of the matrix Gn, G
−1
n =

[
wij

]
is given by

wij =


(
Cbi

)−1
+
∑n
k=i+1

(
Cbk

)−1∏k−1
t=i

(
Cbt

)−2
y2t , i = J

(−1)i+J
{∏i−1

t=J

(
Cbt

)−1
yt

}
wii, i > J

in which Cb1 = x1, C
b
n = xn −

(
Cbn−1

)−1
y2n−1, n = 2, 3, ....

Lemma 2.7. There exists a constant Cs > 0, such that
∑N
J=−1

∣∣∣sJ ′J ∣∣∣ ≤ Cs, and 17/16 ≤

sjj ≤ 5/4, where s
J ′J , 0 ≤ J, J ′ ≤ N − 1, is the element of S defined in (2.6).

Proof. By (2.15), let ξ̃
J ′ =

{
sgn

(
s
J ′J

)}N
J=−1

, then
∑N
J=−1

∣∣∣sJ ′J ∣∣∣ ≤ ∣∣∣Sξ̃J ′∣∣∣ ≤ Cs

∣∣∣ξ̃J ′∣∣∣ =
Cs,∀J ′ = −1, 0, ..., N . Applying Lemma 2.6 to V with x−1 = · · · = xN = 1, y−1 =

yN−1 =
√
2/4, y0 = · · · = yN−1 = 1/4, sjj =

(
CbJ

)−1
+

N∑
k=J+1

(
Cbk

)−1 k−1∏
t=J

(
Cbt

)−2
y2t .

By mathematical induction, one obtains that 9/10 ≤ CbJ ≤ 1, for 0 ≤ J ≤ N − 1. So,

1 ≤
(
CbJ

)−1
≤ 10/9, and for 0 ≤ J ≤ N − 1,

sjj ≥ 1 +
∑N

k=J+1

∏k−1

t=J
y2t ≥ 1 +

∑N

k=J+1
(16)−(k−J) ≥ 17/16,

sjj ≤ 10/9 + (10/9)
∑N

k=J+1
(1/9)k−J ≤ 5/4.

2.6.2 Variance calculation

Vector ã2 =
(
ã−1,2, ..., ãN,2

)T
given in (2.14) solves the normal equations,

(⟨
BJ,2, BJ ′,2

⟩
n

)N
J,J ′=−1

ã2 =
(
n−1

∑n

i=1
BJ,2

(
Xi
)
σεi

)N
J=−1

,
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for BJ,2 (x) in (2.4). In other words, ã2 =
(
V + B̃

)−1 (
n−1∑n

i=1BJ,2
(
Xi
)
σεi

)N
J=−1

,

where B̃ =
(⟨
BJ,2, BJ ′,2

⟩
n

)N
J,J ′=−1

−V satisfies
∣∣∣B̃∣∣∣ = Op

(√
n−1h−1 log (n)

)
accord-

ing to Subsection B.2 of the supplement to Wang and Yang (2009a).

Now define â2=
(
â−1,2, ..., âN,2

)T
by replacing

(
V + B̃

)−1
with V−1 = S in above

formula, i.e., â2 =
(∑N

J=−1 sJ ′Jn
−1∑n

i=1BJ,2
(
Xi
)
σεi

)
J ′=−1,..,N

, and define for

x ∈ [0, 1]

ε̂2 (x) =
∑N

J=−1
âJ,2BJ,2 (x) =

∑N

J,J ′=−1
sJ ′Jn

−1
∑n

i=1
BJ,2

(
Xi
)
σεiBJ ′,2 (x) ,

ξ̂2,J =
{
ε̂2
(
tJ+1

)
+ ε̂2

(
tJ−1

)}
/2− ε̂2

(
tJ
)
, 2 ≤ J ≤ N − 1, (2.16)

D =



0 1 −2 1 0 0

...
. . . . . . . . .

...

...
. . . . . . . . .

...

0 0 1 −2 1 0


(N−2)×(N+2)

. (2.17)

Lemma 2.8. With S and D given in (2.6) and (2.17),
{
ξ̂2,J

}N−1

J=2
has covariance matrix

[
cov

(
ξ̂2,J , ξ̂2,J ′

)]N−1

J,J ′=2
= σ2 (8nh/3)−1DSDT . (2.18)
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Proof. For 0 ≤ J, J ′ ≤ N+1, ε̂2
(
tJ
)
=
∑N
k,k′=−1

s
k′kn

−1∑n
i=1Bk,2

(
Xi
)
σεiBk′,2

(
tJ
)

= σ
∑N

k=−1
n−1

∑n

i=1
Bk,2

(
Xi
)
εis(J−1),kB(J−1),2

(
tJ
)
.

E
[
ε̂2
(
tJ
)
ε̂2

(
tJ ′
)]

= σ2E

[∑N

k=−1
n−1

∑n

i=1
Bk,2

(
Xi
)
εisJ−1,kBJ−1,2

(
tJ
)]

×
[∑N

k′=−1
n−1

∑n

i=1
B
k′,2

(
Xi
)
εisJ ′−1,k′BJ ′−1,2

(
t
J ′
)]

= σ2n−1
∑N

k,k′=−1
BJ−1,2

(
tJ
)
B
J ′−1,2

(
t
J ′
)
sJ−1,ksJ ′−1,k′EBk,2 (X)B

k′,2 (X)

= σ2n−1
∑N

k,k′=−1
BJ−1,2

(
tJ
)
B
J ′−1,2

(
t
J ′
)
sJ−1,ksJ ′−1,k′vk,k′

= σ2n−1BJ−1,2
(
tJ
)
B
J ′−1,2

(
t
J ′
)∑N

k′=−1
s
J ′−1,k′

∑N

k=−1
sJ−1,kvk,k′

= σ2n−1BJ−1,2
(
tJ
)
B
J ′−1,2

(
t
J ′
)∑N

k′=−1
s
J ′−1,k′δJ−1,k′

= σ2n−1BJ−1,2
(
tJ
)
B
J ′−1,2

(
t
J ′
)
s
J ′−1,J−1 = σ2n−1d

−1/2
J−1,nd

−1/2

J ′−1,n
s
J ′−1,J−1.

By definitions of ξ̂2,J , dJ,n in (2.16), (2.3), for 2 ≤ J, J ′ ≤ N − 1, E
(
ξ̂2,J ξ̂2,J ′

)
is

σ2 (8nh/3)−1
(
s
J ′,J + s

J ′−2,J − 2s
J ′−1,J + s

J ′,J−2 + s
J ′−2,J−2

−2s
J ′−1,J−2 − 2s

J ′,J−1 − 2s
J ′−2,J−1 + 4s

J ′−1,J−1

)

= σ2 (8nh/3)−1
(

1 −2 1

)


s
J ′−2,J−2 s

J ′−2,J−1 s
J ′−2,J

s
J ′−1,J−2 s

J ′−1,J−1 s
J ′−1,J

s
J ′,J−2 s

J ′,J−1 s
J ′,J


(

1 −2 1

)T
.

Therefore, for 2 ≤ J, J ′ ≤ N − 1,
[
cov

(
ξ̂2,J , ξ̂2,J ′

)]N−1

J,J ′=2
= σ2 (8nh/3)−1DSDT .
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Lemma 2.9. For 2 ≤ J ≤ N − 1, σ2n,2,J defined in (2.8) satisfies that cσ (8nh/3)−1 σ2 ≤

σ2n,2,J ≤ Cσ (8nh/3)−1 σ2, for cσ = (65/8) (17/16), Cσ = 100/9.

Proof. It follows from (2.18) that σ2n,2,J = Eξ̂
2
2,J . Then by Lemmas 2.6 and 2.8, for

2 ≤ J ≤ N − 1,
{
σ2 (8nh/3)−1

}−1
σ2n,2,J is

sJ,J − 4sJ,J−1 + 2sJ,J−2 + 4sJ−1,J−1 − 4sJ−1,J−2 + sJ−2,J−2

= sJ−2,J−2 + 4

{(
CbJ−2

)−1
yJ−2 + 1

}
sJ−1,J−1+{

2
(
CbJ−2C

b
J−1

)−1
yJ−2yJ−1 + 4

(
CbJ−1

)−1
yJ−1 + 1

}
sJ,J ,

thus, σ2n,2,J ≤ {1 + 4 (1/3 + 1) + (2/9 + 4/3 + 1)} (5/4)σ2 (8nh/3)−1

= (100/9) (8nh/3)−1 σ2,

σ2n,2,J ≥ {1 + 4 (1/4 + 1) + (2/16 + 1 + 1)} (17/16)σ2 (8nh/3)−1

= (65/8) (17/16) (8nh/3)−1 σ2.

2.6.3 Proof of Theorem 2.1 for p = 2

Several lemmas will be given below for proving Theorem 2.1 for p = 2. With ε̃2 (x), ξ̂2,J

and σn,2,J defined in (2.14), (2.16) and (2.8), define for 2 ≤ J ≤ N − 1

ξ̃n,2,J = σ−1
n,2,J

[{
ε̃2
(
tJ+1

)
+ ε̃2

(
tJ−1

)}
/2− ε̃2

(
tJ
)]
, ξ̂n,2,J = σ−1

n,2,J ξ̂2,J , (2.19)
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Lemma 2.10. Under Assumptions (A2)-(A4), as n → ∞, sup
2≤J≤N−1

∣∣∣ξ̂n,2,J − ξ̃n,2,J

∣∣∣ =
Oa.s

(√
log n/ (nh)

)
= oa.s (1).

Lemma 2.11. Under Assumptions (A2)-(A4), there exist

{
ξ̂
(k)
n,2,J

}N−1

J=2
, k = 1, 2, 3, such

that as n→ ∞, sup2≤J≤N−1

∣∣∣∣ξ̂n,2,J − ξ̂
(1)
n,2,J

∣∣∣∣+sup2≤J≤N−1

∣∣∣∣ξ̂(2)n,2,J − ξ̂
(3)
n,2,J

∣∣∣∣ = oa.s (1).

ξ̂
(1)
n,2,J has the same probability distribution as ξ̂

(2)
n,2,J .

{
ξ̂
(3)
n,2,J

}
is a Gaussian process with

mean 0, variance 1, covariance r
ξ
J,J ′ = cov

(
ξ̂
(3)
n,2,J , ξ̂

(3)

n,2,J ′

)
= σ−1

n,2,Jσ
−1
n,2,J ′E

(
ξ̂2,J ξ̂2,J ′

)
for which there exist constants 0 < C, 0 < r < 1 such that for large n,∣∣∣∣rξJ,J ′

∣∣∣∣ ≤ min

(
r, C3

−
∣∣∣J−J ′∣∣∣)

, 2 ≤ J, J ′ ≤ N − 1.

Proof. We only prove

∣∣∣∣rξJ,J ′
∣∣∣∣ ≤ min

(
r, C3

−
∣∣∣J−J ′∣∣∣)

. Lemma 2.10 and the rest of Lemma

2.11 follow from Appendix B of the supplement to Wang and Yang (2009a). By (2.18),

σ−2 (8nh/3)−1E
(
ξ̂2,J ξ̂2,J ′

)
= s

J ′,J + s
J ′−2,J − 2s

J ′−1,J + s
J ′,J−2 + s

J ′−2,J−2

−2s
J ′−1,J−2 − 2s

J ′,J−1 − 2s
J ′−2,J−1 + 4s

J ′−1,J−1.

By Lemma 2.6, for −1 ≤ J ′ < J ≤ N , s
J,J ′ = (−1)J+J

′ J−1∏
t=J ′

(
Cbt

)−1
ytsjj , then for
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2 ≤ J, J ′ ≤ N − 1 and J − J ′ > 2, by Lemma 2.7,

{
σ2 (8nh/3)−1

}−1 ∣∣∣E [ξ̂2,J ξ̂2,J ′]∣∣∣
=

∣∣∣∣(−1)J+J
′ {(

Cb
J ′−2

)−1
y
J ′−2 + 2

(
Cb
J ′−1

)−1
y
J ′−1 + 1

}
×
{
sJ−2,J−2 + 2

(
CbJ−2

)−1
yJ−2sJ−1,J−1+

(
CbJ−2C

b
J−1

)−1
yJ−2yJ−1sJ,J

} J−3∏
t=J ′

(
Cbt

)−1
yt

∣∣∣∣∣∣
≤ (5/4) (1/3 + 2/3 + 1)

{
1 + 2/3 + (1/3)2

}
3
−
(
J−J ′−2

)
≤ 40× 3

−
(
J−J ′

)
.

By Lemma 2.9,
{
σ2 (8nh/3)−1

}−1
σ2n,2,J ≥ (65/8) (17/16), for 2 ≤ J ≤ N −1. Therefore,

for 2 ≤ J, J ′ ≤ N − 1 and J − J ′ > 2,

∣∣∣∣rξJ,J ′
∣∣∣∣ ≤ C3

−
(
J−J ′

)
≤ r < 1, with C =

40 (8/65) (16/17) and r = 40 (8/65) (16/17) /33 < 1. For J − J ′ = 1, 2, the result can be

proved following the same procedure above.

Proof of Theorem 2.1 for p = 2: It is clear from Lemma 2.11 that the Gaussian

process

{
ξ̂
(3)
n,2,J

}N−1

J=2
satisfies the conditions of Lemma 2.1, hence as n→ ∞,

P

(
sup2≤J≤N−1

∣∣∣∣ξ̂(3)n,2,J
∣∣∣∣ ≤ τ/aN + bN

)
→ exp

(
−2e−τ

)
.

By Lemmas 2.10, 2.11, with τ = − log {− (1/2) log (1− α)} and definitions of aN and bN ,

limn→∞ P
(
sup2≤J≤N−1

∣∣∣ξ̃n,2,J ∣∣∣ ≤ {2 log (N − 2)}1/2 dN−2 (α)
)
= 1− α,

for any 0 < α < 1, ξ̂n,2,J and dN (α) defined in (2.19) and (2.9). By (2.13) and (2.16),
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{
m̂2
(
tJ+1

)
+ m̂2

(
tJ−1

)}
/2− m̂2

(
tJ
)
is

{
m̃2
(
tJ+1

)
−m

(
tJ+1

)}
/2 +

{
m̃2

(
tJ−1

)
−m

(
tJ−1

)}
/2−

{
m̃2
(
tJ
)
−m

(
tJ
)}

+
[{
m
(
tJ+1

)
+m

(
tJ−1

)}
/2−m

(
tJ
)]

+ ξ̂2,J+1

Now Lemma 2.2 implies that under H0, ∥m̃2 −m∥∞ = Op

(
h2
)
, hence

(nh)1/2 {log (N − 2)}−1/2×

sup
2≤J≤N−1

∣∣∣{m̃2
(
tJ+1

)
−m

(
tJ+1

)}
/2 +

{
m̃2

(
tJ−1

)
−m

(
tJ−1

)}
/2

−
{
m̃2
(
tJ
)
−m

(
tJ
)}∣∣ = Op

[
(nh)1/2 {log (N − 2)}−1/2 h2

]
= op

{
(log n)−3

}
.

By Taylor expansion, sup2≤J≤N−1

∣∣∣{m (tJ+1
)
+m

(
tJ−1

)}
/2−m

(
tJ
)∣∣∣ = Op

(
h2
)

under H0, as n→ ∞. Hence

(nh)1/2 {log (N − 2)}−1/2 sup
2≤J≤N−1

∣∣∣{m (tJ+1
)
+m

(
tJ−1

)}
/2−m

(
tJ
)∣∣∣

= Op

[√
nh {log (N − 2)}−1/2 h2

]
= op

{
(log n)−3

}
.

By above results, for T2n defined in (2.7),

limn→∞ P
{
T2n ≤ {2 log (N − 2)}1/2 dN−2 (α)

}
= 1− α. �
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Chapter 3

A Simultaneous Confidence Band for

Sparse Longitudinal Regression

3.1 Introduction

This chapter is based on Ma, Yang and Carroll (2011). Functional data analysis (FDA)

has in recent years become a focal area in statistics research, and much has been published

in this area. An incomplete list includes Cardot, Ferraty, and Sarda (2003), Cardot and

Sarda (2005), Ferraty and Vieu (2006), Hall and Heckman (2002), Hall, Müller, and Wang

(2006), Izem and Marron (2007), James, Hastie, and Sugar (2000), James (2002), James and

Silverman (2005), James and Sugar (2003), Li and Hsing (2007), Li and Hsing (2010), Morris

and Carroll (2006), Müller and Stadtmüller (2005), Müller, Stadtmüller, and Yao (2006),

Müller and Yao (2008), Ramsay and Silverman (2005), Wang, Carroll, and Lin (2005), Yao

and Lee (2006), Yao, Müller, and Wang (2005a), Yao, Müller, and Wang (2005b), Yao (2007),

Zhang and Chen (2007), Zhao, Marron, and Wells (2004), and Zhou, Huang, and Carroll
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(2008). According to Ferraty and Vieu (2006), a functional data set consists of iid realizations{
ξi (x) , x ∈ X

}
, 1 ≤ i ≤ n, of a smooth stochastic process (random curve) {ξ (x) , x ∈ X}

over an entire interval X . A more data oriented alternative in Ramsay and Silverman (2005)

emphasizes smooth functional features inherent in discretely observed longitudinal data, so

that the recording of each random curve ξi(x) is over a finite number of points in X , and

contaminated with noise. This second view is taken in this chapter.

A typical functional data set therefore has the form
{
Xij, Yij

}
, 1 ≤ i ≤ n, 1 ≤ j ≤ Ni,

in which Ni observations are taken for the ith subject, with Xij and Yij the jth predictor

and response variables, respectively, for the ith subject. Generally, the predictor Xij takes

values in a compact interval X = [a, b]. For the ith subject, its sample path
{
Xij, Yij

}
is

the noisy realization of a continuous time stochastic process ξi(x) in the sense that

Yij = ξi

(
Xij

)
+ σ

(
Xij

)
εij, (3.1)

with errors εij satisfying E
(
εij

)
= 0, E(ε2ij) = 1, and

{
ξi(x), x ∈ X

}
are iid copies of a

process {ξ(x), x ∈ X} which is L2, i.e., E
∫
X ξ2(x)dx < +∞.

For the standard process {ξ(x), x ∈ X}, one defines the mean function m(x) = E{ξ(x)}

and the covariance function G
(
x, x′

)
= cov

{
ξ(x), ξ(x′)

}
. Let sequences

{
λk
}∞
k=1,{

ψk(x)
}∞
k=1 be the eigenvalues and eigenfunctions of G

(
x, x′

)
, respectively, in which

λ1 ≥ λ2 ≥ · · · ≥ 0,
∑∞
k=1 λk < ∞,

{
ψk
}∞
k=1 form an orthonormal basis of L2 (X )

and G
(
x, x′

)
=
∑∞
k=1 λkψk(x)ψk

(
x′
)
, which implies that

∫
G
(
x, x′

)
ψk

(
x′
)
dx′ =

λkψk(x).
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The process
{
ξi(x), x ∈ X

}
allows the Karhunen-Loève L2 representation

ξi(x) = m(x) +
∑∞

k=1
ξikϕk(x), (3.2)

where the random coefficients ξik are uncorrelated with mean 0 and variances 1, and the

functions ϕk =
√
λkψk. In what follows, we assume that λk = 0, for k > κ, where κ is a

positive integer, thus G(x, x′) =
∑κ
k=1 ϕk(x)ϕk

(
x′
)
. Based on (3.2), the data generating

process is now written as

Yij = m
(
Xij

)
+
∑κ

k=1
ξikϕk

(
Xij

)
+ σ

(
Xij

)
εij. (3.3)

The sequences
{
λk
}κ
k=1 ,

{
ϕk(x)

}κ
k=1 and the random coefficients ξik exist mathematically,

but are unknown and unobservable.

Two distinct types of functional data have been studied. Li and Hsing (2007), and Li

and Hsing (2010) concern dense functional data, which in the context of model (3.1) means

min1≤i≤n Ni → ∞ as n → ∞. On the other hand, Yao, Müller, and Wang (2005a),

Yao, Müller, and Wang (2005b), and Yao (2007) studied sparse longitudinal data for which

Ni’s are i.i.d. copies of an integer-valued positive random variable. Pointwise asymptotic

distributions were obtained in Yao (2007) for local polynomial estimators of m(x) based on

sparse functional data, but without uniform confidence bands. Nonparametric simultaneous

confidence bands are a powerful tool of global inference for functions, see Claeskens and

Van Keilegom (2003), Fan and Zhang (2000), Hall and Titterington (1988), Härdle (1989),

Härdle and Marron (1991), Huang, Wang, Yang, and Kravchenko (2008), Ma and Yang

(2010), Song and Yang (2009), Wang and Yang (2009), Wu and Zhao (2007), Zhao and
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Wu (2008), and Zhou, Shen, and Wolfe (1998) for its theory and applications. The fact

that a simultaneous confidence band has not been established for functional data analysis

is certainly not due to lack of interesting applications, but to the greater technical difficulty

in formulating such bands for functional data and establishing their theoretical properties.

Specifically, the strong approximation results used to establish the asymptotic confidence

level in nearly all published works on confidence bands, commonly known as “Hungarian

embedding”, are unavailable for sparse functional data.

In this chapter, we present simultaneous confidence bands for m(x) in sparse functional

data via a piecewise-constant spline smoothing approach. While there exist a number of

smoothing methods for estimating m(x) and G
(
x, x′

)
such as kernels (Yao, Müller and,

Wang (2005a); Yao, Müller, and Wang (2005b); Yao (2007)), penalized splines (Cardot,

Ferraty, and Sarda (2003); Cardot and Sarda (2005); Yao and Lee (2006)), wavelets Morris

and Carroll (2006), and parametric splines James (2002), we choose B splines (Zhou, Huang,

and Carroll (2008)) for simple implementation, fast computation and explicit expression, see

Huang and Yang (2004), Wang and Yang (2007), and Xue and Yang (2006) for discussion

of the relative merits of various smoothing methods.

We organize this chapter as follows. In Section 3.2 we state our main results on confi-

dence bands constructed from piecewise constant splines. In Section 3.3 we provide further

insights into the error structure of spline estimators. Section 3.4 describes the actual steps

to implement the confidence bands. Section 3.5 reports findings of a simulation study. An

empirical example in Section 3.6 illustrates how to use the proposed confidence band for

inference. Proofs of technical lemmas are in the Appendix.
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3.2 Main Results

For convenience, we denote the modulus of continuity of a continuous function r on [a, b]

by ω (r, δ) = max
x,x′∈[a,b],

∣∣x−x′∣∣≤δ ∣∣∣r(x)− r
(
x′
)∣∣∣. Denote the empirical L2 norm as

∥g∥22,NT
= N−1

T
∑n
i=1

∑Ni
j=1 g

2
(
Xij

)
, where we denote the total sample size by NT =∑n

i=1Ni. Without loss of generality, we take the range of X, X = [a, b], to be [0, 1]. For

any β ∈ (0, 1], we denote the collection of order β Hõlder continuous function on [0, 1] by

C0,β [0, 1] =

ϕ : ∥ϕ∥0,β = sup
x ̸=x′,x,x′∈[0,1]

∣∣∣ϕ(x)− ϕ
(
x′
)∣∣∣∣∣x− x′

∣∣β < +∞

 ,

in which ∥ϕ∥0,β is the C0,β-seminorm of ϕ. Let C [0, 1] be the collection of continuous

function on [0, 1]. Clearly, C0,β [0, 1] ⊂ C [0, 1] and, if ϕ ∈ C0,β [0, 1], then ω (ϕ, δ) ≤

∥ϕ∥0,β δ
β .

We use the piecewise constant spline functions introduced in Section 1.3 of Chapter 1

with the number of interior knots denoted as Ns. Let hs = 1/ (Ns + 1) be the distance

between neighboring knots. The mean function m(x) is estimated by

m̂(x) = argmin

g∈G(−1)

∑n

i=1

∑Ni
j=1

{
Yij − g

(
Xij

)}2
. (3.4)

The technical assumptions we need are as follows

(A1) The regression function m(x) ∈ C0,1 [0, 1].

(A2) The functions f(x), σ(x), and ϕk(x) ∈ C0,β [0, 1] for some β ∈ (2/3, 1] with f(x) ∈[
cf , Cf

]
, σ(x) ∈ [cσ, Cσ] , x ∈ [0, 1], for constants 0 < cf ≤ Cf <∞, 0 < cσ ≤ Cσ <

∞.
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(A3) The set of random variables
(
Ni
)n
i=1 is a subset of

(
Ni
)∞
i=1 consisting of inde-

pendent variables Ni, the numbers of observations made for the i-th subject, i =

1, 2, ..., with Ni v N , where N > 0 is a positive integer-valued random variable

with E{N2r} ≤ r!crN , r = 2, 3, ... for some constant cN > 0. The set of ran-

dom variables
(
Xij, Yij, εij

)n,Ni
i=1,j=1

is a subset of
(
Xij, Yij, εij

)∞,∞
i=1,j=1

in which(
Xij, εij

)∞,∞
i=1,j=1

are iid. The number κ of nonzero eigenvalues is finite and the ran-

dom coefficients ξik, k = 1, ..., κ, i = 1, ...,∞ are iid N (0, 1). The variables
(
Ni
)∞
i=1,(

ξik
)∞,κ
i=1,k=1

,
(
Xij

)∞,∞
i=1,j=1

,
(
εij

)∞,∞
i=1,j=1

are independent.

(A4) As n → ∞, the number of interior knots Ns = o
(
nϑ
)

for some ϑ ∈ (1/3, 2β − 1)

while N−1
s = o

{
n−1/3 (logn)−1/3

}
. The subinterval length hs ∼ N−1

s .

(A5) There exists r > 2/ {β − (1 + ϑ) /2} such that E |ε11|r <∞.

Assumptions (A1), (A2), (A4) and (A5) are similar to (A1)–(A4) in Wang and Yang

(2009), with (A1) weaker than its counterpart. Assumption (A3) is the same as (A1.1),

(A1.2), and (A5) in Yao, Müller, and Wang (2005b), without requiring joint normality of

the measurement errors εij .

We use the B-spline basis of G(−1), the space of piecewise constant splines, denoted as{
bJ (x)

}Ns
J=0 for theoretical analysis. Define

cJ,n =
∥∥bJ∥∥22 =

∫ 1

0
bJ (x)f(x)dx, J = 0, ..., Ns, (3.5)

σ2Y (x) = var(Y |X = x) = G (x, x) + σ2(x),∀x ∈ [0, 1] ,
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σ2n(x) = c−2
J(x),n

{nE(N1)}
−1

E {N1 (N1 − 1)}
EN1

κ∑
k=1

∫
χJ(x)

ϕk (u) f (u) du

2

+

∫
χJ(x)

σ2Y (u) f (u) du

 . (3.6)

In addition, define QNs+1 (α) = bNs+1 − a−1
Ns+1log{−(1/2)log(1− α)},

aNs+1 = {2log (Ns + 1)}1/2 , bNs+1 = aNs+1 −
log
(
2πa2Ns+1

)
2aNs+1

, (3.7)

for any α ∈ (0, 1). We now state our main results.

Theorem 3.1. Under Assumptions (A1)-(A5), for any α ∈ (0, 1) ,

lim
n→∞P

{
supx∈[0,1] |m̂(x)−m(x)| /σn(x) ≤ QNs+1 (α)

}
= 1− α,

lim
n→∞P

{
|m̂(x)−m(x)| /σn(x) ≤ Z1−α/2

}
= 1− α,∀x ∈ [0, 1],

where σn(x) and QNs+1 (α) are given in (3.6) and (3.7), respectively, while Z1−α/2 is the

100 (1− α/2)th percentile of the standard normal distribution.

The definition of σn(x) in (3.6) does not allow for practical use. The next proposition

provides two data-driven alternatives

Proposition 3.1. Under Assumptions (A2), (A3), and (A5), as n→ ∞,

sup
x∈[0,1]

{∣∣∣σ−1
n (x)σn,IID(x)− 1

∣∣∣+ ∣∣∣σ−1
n (x)σn,LONG(x)− 1

∣∣∣} = O
(
h
β
s

)
,
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in which for x ∈ [0, 1], σn,IID(x) ≡ σY (x) {f(x)hsnE(N1)}−1/2 and

σn,LONG(x) ≡ σn,IID(x)

{
1 +

E {N1 (N1 − 1)}
EN1

hs
G (x, x) f(x)

σ2Y (x)

}1/2
.

Using σn,IID(x) instead of σn(x) means to treat the (Xij, Yij) as iid data rather than as

sparse longitudinal data, while using σn,LONG(x) means to correctly account for the longi-

tudinal correlation structure. The difference of the two approaches, although asymptotically

negligible uniformly for x ∈ [0, 1] according to Proposition 3.1, is significant in finite sam-

ples, as shown in the simulation results of Section 3.5. For similar phenomenon with kernel

smoothing, see Wang, Carroll, and Lin (2005).

Corollary 3.1. Under Assumptions (A1)-(A5), for any α ∈ (0, 1), as n→ ∞, an asymp-

totic 100 (1− α)% simultaneous confidence band for m(x), x ∈ [0, 1] is

m̂(x)± σn(x)QNs+1 (α) ,

while an asymptotic 100 (1− α)% pointwise confidence interval for m(x), x ∈ [0, 1], is m̂(x)±

σn(x)Z1−α/2.

3.3 Decomposition

In this section, we decompose the estimation error m̂(x)−m(x) by the representation of Yij

as the sum of m
(
Xij

)
,
∑κ
k=1 ξikϕk

(
Xij

)
, and σ

(
Xij

)
εij .

We introduce the rescaled B-spline basis
{
BJ (x)

}Ns
J=0 for G(−1), which is BJ (x) ≡
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bJ (x)
∥∥bJ∥∥−1

2 , J = 0, ..., Ns. Therefore,

BJ (x) ≡ bJ (x)
{
cJ,n

}−1/2
, J = 0, ..., Ns. (3.8)

It is easily verified that
∥∥BJ∥∥22 = 1, J = 0, 1, . . . , Ns,

⟨
BJ,BJ ′

⟩
≡ 0, J ̸= J ′.

The definition of m̂(x) in (3.4) means that

m̂(x) ≡
∑Ns

J=0
λ̂
′
JbJ (x), (3.9)

with coefficients
{
λ̂
′
0, ..., λ̂

′
Ns

}T
as solutions of the least squares problem

{
λ̂
′
0, ..., λ̂

′
Ns

}T
= argmin{

λ0,...,λNs

}
∈RNs+1

∑n

i=1

∑Ni
j=1

{
Yij −

∑Ns
J=0

λJbJ

(
Xij

)}2
.

Simple linear algebra shows m̂(x) ≡
∑Ns
J=0 λ̂JBJ (x), where the coefficients

{
λ̂0, ..., λ̂Ns

}T
are solutions of the least squares problem

{
λ̂0, ..., λ̂Ns

}T
= argmin{

λ0,...,λNs

}
∈RNs+1

∑n

i=1

∑Ni
j=1

{
Yij −

∑Ns
J=0

λJBJ

(
Xij

)}2
.

(3.10)

Projecting the relationship in model (3.3) onto the linear subspace of RNT spanned by{
BJ

(
Xij

)}
1≤j≤Ni,1≤i≤n,0≤J≤Ns

, we obtain the following crucial decomposition in

the space G(−1) of spline functions:

m̂(x) = m̃(x) + ẽ(x) = m̃(x) + ε̃(x) +
∑κ

k=1
ξ̃k(x), (3.11)
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m̃(x) =
∑Ns

J=0
λ̃JBJ (x), ε̃(x) =

∑Ns
J=0

ãJBJ (x),

ξ̃k(x) =
∑Ns

J=0
τ̃ k,JBJ (x). (3.12)

The vectors {λ̃0, ..., λ̃Ns}
T,
{
ã0, ..., ãNs

}T
, and

{
τ̃ k,0, ..., τ̃k,Ns

}T
are solutions to (3.10)

with Yij replaced by m
(
Xij

)
, σ
(
Xij

)
εij , and ξikϕk

(
Xij

)
, respectively. We cite next

an important result concerning the function m̃(x). The first part is from de Boor (2001), p.

149, and the second is from Theorem 5.1 of Huang (2003).

Theorem 3.2. There is an absolute constant Cg > 0 such that for every ϕ ∈ C [0, 1], there

exists a function g ∈ G(−1) [0, 1] that satisfies ∥g − ϕ∥∞ ≤ Cgω (ϕ, hs). In particular, if

ϕ ∈ C0,β [0, 1] for some β ∈ (0, 1], then ∥g − ϕ∥∞ ≤ Cg ∥ϕ∥0,β h
β
s . Under Assumptions

(A1) and (A4), with probability approaching 1, the function m̃(x) defined in (3.12) satisfies

∥m̃(x)−m(x)∥∞ = O (hs) .

The next proposition concerns the function ẽ(x) given in (3.11).

Proposition 3.2. Under Assumptions (A2)-(A5), for any τ ∈ R, and σn(x), aNs+1, and

bNs+1 as given in (3.6) and (3.7),

lim
n→∞P

{
supx∈[0,1]

∣∣∣σn(x)−1ẽ(x)
∣∣∣ ≤ τ/aNs+1 + bNs+1

}
= exp

(
−2e−τ

)
.

3.4 Implementation

In this section, we describe procedures to implement the confidence bands and intervals

given in Corollary 3.1. Given any data set
(
Xij, Yij

)Ni,n
j=1,i=1

from model (3.3), the spline

estimator m̂(x) is obtained by (3.9), and the number of interior knots in (3.9) is taken
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to be Ns = [cN
1/3
T (logn)], in which [a] denotes the integer part of a and c is a positive

constant. When constructing the confidence bands, one needs to evaluate the function σ2n(x)

by estimating the unknown functions f(x), σ2Y (x), and G (x, x), and then plugging in these

estimators: the same approach is taken in Wang and Yang (2009).

The number of interior knots for pilot estimation of f(x), σ2Y (x), and G (x, x) is taken

to be N∗
s =

[
n1/3

]
, and h∗s = 1/

(
1 +N∗

s
)
. The histogram pilot estimator of the density

function f(x) is

f̂(x) = {
∑n

i=1

∑Ni
j=1

bJ(x)(Xij)}/{(
∑n

i=1
Ni)h

∗
s }.

Defining the vector R ={Rij}T1≤j≤Ni,1≤i≤n
=

{(
Yij − m̂(Xij)

)2}T
1≤j≤Ni,1≤i≤n

, the

estimator of σ2Y (x) is σ̂2Y (x) =
∑N∗

s
J=0 ρ̂J bJ (x), where the coefficients {ρ̂0, ..., ρ̂N∗

s
}T are

solutions of the least squares problem:

{
ρ̂0, ..., ρ̂N∗

s

}T
= argmin{

ρ̂0,...,ρ̂N∗
s

}
∈RNs+1

∑n

i=1

∑Ni
j=1

{
Rij −

∑N∗
s

J=0 ρJbJ

(
Xij

)}2
.

The pilot estimator of covariance function G
(
x, x′

)
is

Ĝ
(
x, x′

)
= arg min

g∈G(−1)⊗G(−1)

∑n

i=1

∑Ni
j,j′=1,j ̸=j′

{
Cijj′ − g

(
Xij,Xij′

)}2
,

where C
ijj′ =

{
Yij − m̂

(
Xij

)}{
Y
ij′ − m̂

(
X
ij′
)}

, 1 ≤ j, j′ ≤ Ni, 1 ≤ i ≤ n. The
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function σn(x) is estimated by either σ̂n,IID(x) ≡ σ̂Y (x)
{
f̂(x)hsNT

}−1/2
or

σ̂n,LONG(x) ≡ σ̂n,IID(x)

{
1 +

(∑n

i=1
N2
i /NT − 1

) Ĝ (x, x)

σ̂2Y (x)
f̂(x)hs

}1/2
.

We now state a result. That is easily proved by standard theory of kernel and spline

smoothing, as in Wang and Yang (2009).

Proposition 3.3. Under Assumptions (A1)-(A5), as n→ ∞

supx∈[0,1]
{∣∣∣σ̂n,IID(x)σ−1

n,IID(x)− 1
∣∣∣+ ∣∣∣σ̂n,LONG(x)σ−1

n,LONG(x)− 1
∣∣∣}

= Oa.s.

(
h
β
s + n−1/2N−1

s (logn)1/2
)
.

Proposition 3.1, about how σn,IID(x) and σn,LONG(x) uniformly approximate σn(x),

and Proposition 3.3 together imply that both σ̂n,IID(x) and σ̂n,LONG(x) approximate

σn(x) uniformly at a rate faster than
(
n−1/2+1/3 (logn)1/2−1/3

)
, according to Assump-

tion (A5). Therefore as n→ ∞, the confidence bands

m̂(x)± σ̂n,IID(x)QNs+1 (α) , (3.13)

m̂(x)± σ̂n,LONG(x)QNs+1 (α) , (3.14)

with QNs+1 (α) given in (3.7), and the pointwise intervals m̂(x)±σ̂n,IID(x)Z1−α/2, m̂(x)±

σ̂n,LONG(x)Z1−α/2 have asymptotic confidence level 1− α.
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3.5 Simulation

To illustrate the finite-sample performance of the spline approach, we generated data from

the model

Yij = m
(
Xij

)
+
∑2

k=1
ξikϕk

(
Xij

)
+ σεij, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n,

with X ∼ Uniform[0, 1], ξk ∼ Normal(0, 1), k = 1, 2, ε ∼ Normal(0, 1), Ni having a discrete

uniform distribution from 25, · · · , 35, for 1 ≤ i ≤ n, and m(x) = sin {2π (x− 1/2)} , ϕ1(x) =

−2 cos {π (x− 1/2)} /
√
5, ϕ2(x) = sin {π (x− 1/2)} /

√
5, thus λ1 = 2/5, λ2 = 1/10. The

noise levels were σ = 0.5, 1.0, the number of subjects n was taken to be 20, 50, 100, 200, the

confidence levels were 1−α = 0.95, 0.99, and the constant c in the definition of Ns in Section

3.4 was taken to be 1, 2, 3. We found that the confidence band (3.13) did not have good

coverage rates for moderate sample sizes, and hence in Table 3.1 we report the coverage

as the percentage out of the total 200 replications for which the true curve was covered by

(3.14) at the 101 points {k/100, k = 0, . . . , 100}.

At all noise levels, the coverage percentages for the confidence band (3.14) are very close

to the nominal confidence levels 0.95 and 0.99 for c = 1, 2, but decline for c = 3 when

n = 20, 50. The coverage percentages thus depend on the choice of Ns, and the dependency

becomes stronger when sample sizes decrease. For large sample sizes n = 100, 200, the effect

of the choice of Ns on the coverage percentages is insignificant. Because Ns varies with Ni,

for 1 ≤ i ≤ n, the data-driven selection of some ”optimal” Ns remains an open problem.

We next examine two alternative methods to compute the confidence band, based on

the observation that the estimated mean function m̂(x) and the confidence intervals are
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Table 3.1: Uniform coverage rates in Chapter 3

σ n 1− α c = 1 c = 2 c = 3

20
0.950
0.990

0.920
0.990

0.930
0.990

0.800
0.900

0.5 50
0.950
0.990

0.960
0.995

0.965
0.995

0.910
0.965

100
0.950
0.990

0.955
1.000

0.955
1.000

0.955
0.985

200
0.950
0.990

0.950
0.985

0.965
0.985

0.975
0.990

20
0.950
0.990

0.935
0.990

0.930
0.990

0.735
0.870

1.0 50
0.950
0.990

0.975
0.995

0.960
0.995

0.895
0.980

100
0.950
0.990

0.950
0.995

0.940
0.990

0.935
0.990

200
0.950
0.990

0.940
0.985

0.965
0.995

0.960
0.995

Note: uniform coverage rates from 200 replications using the confidence band (3.14). For
each sample size n, the first row is the coverage of a nominal 95% confidence band, while
the second row is for a 99% confidence band.

step functions that remain the same on each subinterval χJ , 0 ≤ J ≤ Ns. Follwing an

associate editor’s suggestion, locally weighted smoothing was applied to the upper and lower

confidence limits to generate a smoothed confidence band. Following a referee’s suggestion

to treat the number (Ns + 1) of subintervals as fixed instead of growing to infinity, a naive

parametric confidence band was computed as

m̂(x)± σ̂n,LONG(x)Q1−α.Ns+1 (3.15)

in which Q1−α.Ns+1 = Z{
1+(1−α)1/(Ns+1)

}
/2

is the (1− α) quantile of the maximal

absolute values of (Ns + 1) iid N (0, 1) random variables. We compare the performance of
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the confidence band in (3.14), the smoothed band and naive parametric band in (3.15).

Given n = 20 with Ns = 8, 12, and n = 50 Ns = 44 (by taking c = 1 in the definition of Ns

in Section 3.4), σ = 0.5, 1.0, and 1−α = 0.99, Table 3.2 reports the coverage percentages P̂ ,

P̂naive, P̂smooth and the average maximal widths W,Wnaive,Wsmooth of Ns + 1 intervals

out of 200 replications calculated from confidence bands (3.14), (3.15), and the smoothed

confidence bands, respectively.

Table 3.2: Uniform coverage rates and average maximal widths in Chapter 3

n σ Ns P̂ P̂naive P̂smooth W Wnaive Wsmooth

20 0.5
8
12

0.820
0.930

0.505
0.765

0.910
0.955

1.490
1.644

1.210
1.363

1.480
1.628

1.0
8
12

0.910
0.960

0.655
0.820

0.970
0.985

1.725
1.937

1.401
1.606

1.721
1.928

50 0.5 44 0.990 0.960 0.990 1.651 1.522 1.609
1.0 44 0.990 0.975 1.000 2.054 1.893 2.016

Note: uniform coverage rates and average maximal widths of confidence intervals from 200
replications using the confidence bands (3.14), (3.15), and the smoothed bands respectively,
for 1− α = 0.99.

In all experiments, one has P̂smooth > P̂ > P̂naive and W > Wsmooth > Wnaive. The

coverage percentages for both the confidence bands in (3.14) and the smoothed bands are

much closer to the nominal level than those of the naive bands in (3.15), while the smoothed

bands perform slightly better than the constant spline bands in (3.14), with coverage percent-

ages closer to the nominal and smaller widths. Based on these observations, the naive band is

not recommended due to poor coverage. As for the smoothed band, although it has slightly

better coverage than the constant spline band, its asymptotic property has yet to be estab-

lished, and the second step smoothing adds to its conceptual complexity and computational

burden. Therefore with everything considered, the constant spline band is recommended for

52



its satisfactory theoretical property, fast computing, and conceptual simplicity.

For visualization of the actual function estimates, at σ = 0.5 with n = 20, 50, Figures 3.1

and 3.2 depict the simulated data points and the true curve, and Figures 3.3, 3.4, 3.5 and 3.6

show the true curve, the estimated curve, the uniform confidence band, and the pointwise

confidence intervals.

3.6 Empirical Example

In this section, we apply the confidence band procedure of Section 3.4 to the data collected

from a study by the AIDS Clinical Trials Group, ACTG 315 (Zhou, Huang, and Carroll

(2008)). In this study, 46 HIV 1 infected patients were treated with potent antiviral therapy

consisting of ritonavir, 3TC and AZT. After initiation of the treatment on day 0, patients

were followed for up to 10 visits. Scheduled visit times common for all patients were 7,

14, 21, 28, 35, 42, 56, 70, 84, and 168 days. Since the patients did not follow exactly the

scheduled times and/or missed some visits, the actual visit times Tij were irregularly spaced

and varied from day 0 to day 196. The CD4+ cell counts during HIV/AIDS treatments are

taken as the response variable Y from day 0 to day 196. Figure 3.7 shows that the data

points (dots) are extremely sparse between day 100 and 150, thus we first transform the

data by Xij = T
1/3
ij . A histogram (not shown) indicates that the Xij -values are distributed

fairly uniformly. The number of interior knots in (3.9) is taken to be Ns = 6, so that the

range for visit time T , which is [0, 196], is divided into seven unequal subintervals, and in

each subinterval, the mean CD4+ cell counts and the confidence bands remain the same.

Table 3.3 gives the mean CD4+ cell counts and the confidence limits on each subinterval

at simultaneous confidence level 0.95. For instance, from day 4 to 14, the mean CD4+ cell
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Figure 3.1: Plots of simulated data for n = 20 in Chapter 3

Note: plots of simulated data scatter points at σ = 0.5, n = 20, and the true curve.
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Figure 3.2: Plots of simulated data for n = 50 in Chapter 3

Note: plots of simulated data scatter points at σ = 0.5, n = 50, and the true curve.
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counts is 241.62 with lower and upper limits 171.81 and 311.43 respectively.

Table 3.3: Confidence limits for CD4 data set

Days Mean CD4+ cell counts Confidence limits
[0, 1) 178.23 [106.73, 249.72]
[1, 4) 200.32 [130.51, 270.13]
[4, 15) 241.62 [171.81, 311.43]
[15, 36) 271.87 [194.70, 349.04]
[36, 71) 299.51 [222.34, 376.68]
[71, 123) 280.78 [203.50, 358.06]
[123, 196] 299.27 [221.99, 376.55]

Note: the mean CD4+ cell counts and the confidence limits on each subinterval at
simultaneous confidence level 0.95.

Figure 3.7 depicts the 95% simultaneous (smoothed) confidence band according to (3.14)

in (median) thin lines, and Figure 3.8 depicts the pointwise 95% confidence intervals in thin

lines. The center thick line is the piecewise-constant spline fit m̂(x). It can be seen that

the pointwise confidence intervals are of course narrower than the uniform confidence band

by the same ratio. Figure 3.7 is essentially a graphical representation of Table 3.3; both

confirm that the mean CD4+ cell counts generally increases over time as Zhou, Huang, and

Carroll (2008) pointed out. The advantage of the current method is that such inference on

the overall trend is made with predetermined type I error probability, in this case 0.05.

3.7 Discussion

In this chapter, we have constructed a simultaneous confidence band for the mean function

m (x) for sparse longitudinal data via piecewise-constant spline fitting. Our approach extends

the asymptotic results in Wang and Yang (2009) for i.i.d. random designs to a much more

complicated data structure by allowing dependence of measurements within each subject.
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Figure 3.3: Plots of confidence bands at 1− α = 0.95, n = 20 in Chapter 3

Note: plots of confidence bands (3.14) (upper and lower solid lines), pointwise confidence
intervals (upper and lower dashed lines), the spline estimator (middle thin line), and the
true function (middle thick line) at 1− α = 0.95, n = 20.
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Figure 3.4: Plots of confidence bands at 1− α = 0.95, n = 50 in Chapter 3

Note: plots of confidence bands (3.14) (upper and lower solid lines), pointwise confidence
intervals (upper and lower dashed lines), the spline estimator (middle thin line), and the
true function (middle thick line) at 1− α = 0.95, n = 50.
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Figure 3.5: Plots of confidence bands at 1− α = 0.99, n = 20 in Chapter 3

Note: plots of confidence bands (3.14) (upper and lower solid lines), pointwise confidence
intervals (upper and lower dashed lines), the spline estimator (middle thin line), and the
true function (middle thick line) at 1− α = 0.99, n = 20.
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Figure 3.6: Plots of confidence bands at 1− α = 0.99, n = 50 in Chapter 3

Note: plots of confidence bands (3.14) (upper and lower solid lines), pointwise confidence
intervals (upper and lower dashed lines), the spline estimator (middle thin line), and the
true function (middle thick line) at 1− α = 0.99, n = 50.
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Figure 3.7: Plots of confidence bands for CD4 data

Note: plots of the piecewise-constant spline estimator (thick line), the data (dots),
confidence band (3.14) (upper and lower solid lines), and the smoothed band (upper and
lower thin lines) at confidence level 0.95.
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Figure 3.8: Plots of confidence intervals for CD4 data

Note: plots of the piecewise-constant spline estimator (thick line), the data (dots),
pointwise confidence intervals (upper and lower thin lines), and the smoothed band (upper
and lower thin lines) at confidence level 0.95.
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The proposed estimator has good asymptotic behavior, and the confidence band had coverage

very close to the nominal in our simulation study. An empirical study for the mean CD4+

cell counts illustrates the practical use of the confidence band.

Clearly the simultaneous confidence band in (3.14) can be improved in terms of both the-

oretical and numerical performance if higher order spline or local linear estimators are used.

Constant piecewise spline estimators are less appealing and have sub-optimal convergence

rates in the sense of Hall, Müller, and Wang (2006), which uses local linear approaches.

Establishing the asymptotic confidence level for such extensions, however, requires highly

sophisticated extreme value theory, for sequences of non-stationary Gaussian processes over

intervals growing to infinity. That is much more difficult than the proofs of this chapter.

We consider the confidence band in (3.14) significant because it is the first of its kind for

the longitudinal case with complete theoretical justification, and with satisfactory numerical

performance for commonly encountered data sizes.

Our methodology can be applied to construct simultaneous confidence bands for other

functional objects, such as the covariance function G
(
x, x′

)
and its eigenfunctions, see Yao

(2007). It can also be adapted to the estimation of regression functions in the functional

linear model, as in Li and Hsing (2007). We expect further research along these lines to yield

deep theoretical results with interesting applications.

3.8 Appendix

Throughout this section, an ∼ bn means lim
n→∞ bn/an = c, where c is some nonzero constant,

and for functions an(x), bn(x), an(x) = u {bn(x)} means an(x)/bn(x) → 0 as n → ∞

uniformly for x ∈ [0, 1].
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3.8.1 A.1. Preliminaries

We first state some results on strong approximation, extreme value theory and the classic

Bernstein inequality. These are used in the proofs of Lemma 3.7, Theorem 3.1, and Lemma

3.6.

Lemma 3.1. (Theorem 2.6.7 of Csőrgő and Révész (1981)) Suppose that ξi, 1 ≤ i ≤ n

are iid with E(ξ1) = 0, E(ξ21) = 1, and H(x) > 0 (x ≥ 0) is an increasing continuous

function such that x−2−γH(x) is increasing for some γ > 0 and x−1logH(x) is decreasing

with EH (|ξ1|) < ∞. Then there exists a Wiener process {W (t) , 0 ≤ t <∞} that is a

Borel function of ξi, 1 ≤ i ≤ n, and constants C1, C2, a > 0 which depend only on the

distribution of ξ1, such that for any {xn}∞n=1 satisfying H−1 (n) < xn < C1 (nlogn)
1/2

and Sk =
∑k
i=1 ξi,

P

{
max

1≤k≤n

∣∣Sk −W (k)
∣∣ > xn

}
≤ C2n {H (axn)}−1 .

Lemma 3.2. Let ξ
(n)
i , 1 ≤ i ≤ n, be jointly normal with ξ

(n)
i ∼ N (0, 1). Let r

(n)
ij =

Eξ
(n)
i ξ

(n)
j be such that for γ > 0, Cr > 0,

∣∣∣∣r(n)ij

∣∣∣∣ < Cr/n
γ, i ̸= j. Then for τ ∈ R, as n →

∞, P
{
Mn,ξ ≤ τ/an + bn

}
→ exp

(
−2e−τ

)
, in which Mn,ξ = max

{∣∣∣∣ξ(n)1

∣∣∣∣ , . . . , ∣∣∣∣ξ(n)n

∣∣∣∣}
and an, bn are as in (3.7) with Ns + 1 replaced by n.

Proof. Let
{
ηi
}n
i=1 be i.i.d. standard normal r.v.’s, u =

{
ui
}n
i=1 ,v =

{
vi
}n
i=1

be vectors of real numbers, and w = min (|u1| , . . . , |un| , |v1| , . . . , |vn|). By the Normal

Comparison Lemma (Leadbetter, Lindgren and Rootzén (1983), Lemma 11.1.2),

∣∣∣∣P {−vj < ξ
(n)
j ≤ uj for j = 1, . . . , n

}
− P

{
−vj < ηj ≤ uj for j = 1, . . . , n

}∣∣∣∣
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≤ 4

2π

∑
1≤i<j≤n

∣∣∣∣r(n)ij

∣∣∣∣
(
1−

∣∣∣∣r(n)ij

∣∣∣∣2
)−1/2

exp

 −w2

1 + r
(n)
ij

 .

If u1 = · · · = un = v1 = · · · = vn = τ/an+bn = τn, it is clear that τ
2
n/ (2logn) → 1, as n→

∞. Then τ2n > (2− ε) logn, for any ε > 0 and large n. Since 1− r
(n)2
ij ≥ 1− (Cr/n

γ)2 → 1

as n → ∞, i ̸= j, for i ̸= j, ∃Cr2 > 0 such that 1− r
(n)2
ij ≥ Cr2 > 0 and 1 + r

(n)
ij < 1 + ϵ

for any ϵ > 0 and large n. Let Mn,η = max {|η1| , . . . , |ηn|}. By Leadbetter, Lindgren and

Rootzén (1983), Theorem 1.5.3, P
{
Mn,η ≤ τn

}
→ exp

(
−2e−τ

)
as n → ∞, while the

above results entail

∣∣∣P (Mn,ξ ≤ τn

)
− P

(
Mn,η ≤ τn

)∣∣∣ ≤ 4

2π

∑
i<j

∣∣∣∣r(n)ij

∣∣∣∣
(
1−

∣∣∣∣r(n)ij

∣∣∣∣2
)−1/2

exp

 −w2

1 + r
(n)
ij


≤ 4

2π

∑
1≤i<j≤n Crn

−γC−1/2
r2 exp

{
− (2− ε) logn

1 + ϵ

}
≤ C′rn2−γ−(2−ε)(1+ϵ)−1

→ 0

as n→ ∞. Hence P
{
Mn,ξ ≤ τn

}
→ exp

(
−2e−τ

)
, as n→ ∞. �

Lemma 3.3. (Theorem 1.2 of Bosq (1998)) Suppose that
{
ξi
}n
i=1 are iid with E(ξ1) =

0, σ2 = Eξ21, and there exists c > 0 such that for r = 3, 4, ..., E |ξ1|r ≤ cr−2r!Eξ21 < +∞.

Then for each n > 1, t > 0, P (|Sn| ≥
√
nσt) ≤ 2 exp

(
−t2 (4 + 2ct/

√
nσ)−1

)
, in which

Sn =
∑n
i=1 ξi.

Lemma 3.4. Under Assumption (A2), as n→ ∞ for cJ,n defined in (3.5),

cJ,n = f
(
tJ
)
hs
(
1 + rJ,n

)
,
⟨
bJ , bJ ′

⟩
≡ 0, J ̸= J ′, where max0≤J≤Ns

∣∣∣rJ,n∣∣∣ ≤ Cω (f, hs).

There exist constants CB > cB > 0 such that cBh
1−r/2
s ≤ E

{
BJ

(
Xij

)}r
≤ CBh

1−r/2
s

for r = 1, 2, . . . and 1 ≤ J ≤ Ns + 1, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n.
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Proof. By the definition of cJ,n in (3.5),

cJ,n =

∫
bJ (x)f(x)dx =

∫[
tJ ,tJ+1

] f(x)dx = f
(
tJ
)
hs +

∫[
tJ ,tJ+1

] {f(x)− f
(
tJ
)}
dx.

Hence for all J = 0, ..., Ns,
∣∣∣cJ,n − f

(
tJ
)
hs

∣∣∣ ≤ ∫[tJ ,tJ+1
] ∣∣f(x)− f

(
tJ
)∣∣ dx ≤ ω (f, hs)hs,

or
∣∣∣rJ,n∣∣∣ = ∣∣∣cJ,n − f

(
tJ
)
hs

∣∣∣ {f (tJ)hs}−1 ≤ Cω (f, hs) , J = 0, ..., Ns. By (3.8),

E
{
BJ

(
Xij

)}r
=
(
cJ,n

)−r/2 ∫
bJ (x)f(x)dx =

(
cJ,n

)1−r/2
∼ h

1−r/2
s . �

Proof of Proposition 3.1. By Lemma 3.4 and Assumption (A2) on the continuity

of functions ϕ2k(x), σ
2(x) and f(x) on [0, 1], for any x ∈ [0, 1]

∣∣∣∣∣∣
∫
χJ(x)

ϕk(x)f(x)du−
∫
χJ(x)

ϕk (u) f (u) du

∣∣∣∣∣∣ ≤ ω
(
ϕkf, hs

)
hs = O

(
h
1+β
s

)
,

∣∣∣∣∣
∫
J(x)

{
σ2Y (x)f(x)− σ2Y (u) f (u)

}
du

∣∣∣∣∣ ≤ ω
(
σ2Y f, hs

)
hs = O

(
h
1+β
s

)
.

Hence,

σ2n(x) = c−2
J(x),n

(nEN1)
−1
∫
J(x)

σ2Y (u) f (u) du×1 +
E {N1 (N1 − 1)}

EN1

κ∑
k=1

∫
χJ(x)

ϕk (u) f (u) du

2{∫
J(x)

σ2Y (u) f (u) du

}−1


=
{
f(x)hs + U

(
h
1+β
s

)}−2
(nEN1)

−1
{
σ2Y (x)f(x)hs + U

(
h
1+β
s

)}
{1+

E {N1 (N1 − 1)}
EN1

κ∑
k=1

{
ϕk(x)f(x)hs + U

(
h
1+β
s

)}2 {
σ2Y (x)f(x)hs + U

(
h
1+β
s

)}−1

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= (f(x)hsnEN1)
−1 σ2Y (x)

{
1 +

E {N1 (N1 − 1)}
EN1

∑κ
k=1 ϕ

2
k(x)f(x)hs

σ2Y (x)

}{
1 + U

(
h
β
s

)}

= σ2n,LONG(x)
{
1 + U

(
h
β
s

)}
= σ2n,IID(x)

{
1 + U

(
h
β
s

)}
.�

A.2. Proof of Theorem 1

Note that BJ(x)(x) ≡ c
−1/2
J(x),n

, x ∈ [0, 1], so the terms ξ̃k(x) and ε̃(x) defined in (3.12)

are

ξ̃k(x) =

NS∑
J=0

N−1
T BJ (x)

∥∥BJ∥∥−2
2,NT

n∑
i=1

Ni∑
j=1

BJ

(
Xij

)
ϕk

(
Xij

)
ξik

= c
−1/2
J(x),n

∥∥∥BJ(x)∥∥∥−2

2,NT
N−1
T

n∑
i=1

Ni∑
j=1

BJ(x)

(
Xij

)
ϕk

(
Xij

)
ξik,

ε̃(x) = c
−1/2
J(x),n

∥∥∥BJ(x)∥∥∥−2

2,NT
N−1
T

n∑
i=1

Ni∑
j=1

BJ(x)

(
Xij

)
σ
(
Xij

)
εij.

Let

ξ̂k(x) =
∥∥∥BJ(x)∥∥∥22,NT

ξ̃k(x) = c
−1/2
J(x),n

N−1
T

∑n

i=1
Rik,ξ,J(x)ξik,

ε̂(x) =
∥∥∥BJ(x)∥∥∥22,NT

ε̃(x) = c
−1/2
J(x),n

N−1
T

∑n

i=1

∑Ni
j=1

Rij,ε,J(x)εij, (3.16)

where

Rik,ξ,J =
∑Ni

j=1
BJ

(
Xij

)
ϕk

(
Xij

)
, Rij,ε,J = BJ

(
Xij

)
σ
(
Xij

)
, 0 ≤ J ≤ Ns.

(3.17)
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Lemma 3.5. Under Assumption (A3), for ẽ(x) given in (3.11) and ξ̂k(x), ε̂(x) given in

(3.16), we have

∣∣∣∣∣∣ẽ(x)−


κ∑
k=1

ξ̂k(x) + ε̂(x)


∣∣∣∣∣∣ ≤ An (1− An)

−1

∣∣∣∣∣∣
κ∑
k=1

ξ̂k(x) + ε̂(x)

∣∣∣∣∣∣ , x ∈ [0, 1],

where An = sup0≤J≤NS

∣∣∣∥∥BJ∥∥22,NT − 1
∣∣∣. There exists CA > 0, such that for large n,

P
(
An ≥ CA

√
log (n) / (nhs)

)
≤ 2n−3. An = Oa.s.

(√
log (n) / (nhs)

)
as n→ ∞.

See the Supplement of Wang and Yang (2009) for a detailed proof. �

Lemma 3.6. Under Assumptions (A2) and (A3), for R1k,ξ,J , R11,ε,J in (3.17),

ER21k,ξ,J = c−1
J,n

[
E (N1)

∫
bJ (u)ϕ2k (u) f (u) du+

E {N1 (N1 − 1)}
(∫

bJ (u)ϕk (u) f (u) du

)2]
,

ER211,ε,J = c−1
J,n

∫
bJ (u)σ2 (u) f (u) du, 0 ≤ J ≤ Ns,

there exist 0 < cR < CR < ∞, such that ER21k,ξ,J , ER
2
11,ε,J ∈

[
cR,CR

]
for 0 ≤ J ≤

Ns, sup0≤J≤Ns
∣∣∣n−1∑n

i=1R
2
ik,ξ,J − ER21k,ξ,J

∣∣∣ = Oa.s.

(√
logn/ (nhs)

)
, 1 ≤ k ≤ κ,

sup
0≤J≤Ns

∣∣∣∣N−1
T
∑n
i=1

∑Ni
j=1R

2
ij,ε,J − ER211,ε,J

∣∣∣∣ = Oa.s.

(√
logn/ (nhs)

)
as n→ ∞.
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Proof. By independence of X1j, 1 ≤ j ≤ N1 and N1 and (3.8),

ER21k,ξ,J = E

{∑N1
j,j′=1

E
{
BJ

(
X1j

)
BJ

(
X1j′

)
ϕk

(
X1j

)
ϕk

(
X1j′

)
|N1

}}
= E

{∑N1
j=1

E
{
B2
J

(
X1j

)
ϕ2k

(
X1j

)
|N1

}}
+

E

{∑N1
j ̸=j′ E

{
BJ

(
X1j

)
BJ

(
X1j′

)
ϕk

(
X1j

)
ϕk

(
X1j′

)
|N1

}}
= c−1

J(x),n

{
E (N1)

∫
bJ (u)ϕ2k (u) f (u) du+

E {N1 (N1 − 1)}
(∫

bJ (u)ϕk (u) f (u) du

)2}
.

It is easily shown that ∃ 0 < cR < CR < ∞ such that cR ≤ ER21k,ξ,J ≤ CR, 0 ≤ J ≤ Ns.

Let ζi,J = ζi,k,J = R2ik,ξ,J , ζ
∗
i,J = ζi,J − E

(
ζ1,J

)
for r ≥ 1 and large n,

E
(
ζi,J

)r
= E

{∑Ni
j=1

BJ

(
Xij

)
ϕk

(
Xij

)}2r
≤ C2rϕ E

{∑Ni
j=1

BJ

(
Xij

)}2r

= C2rϕ E


ν1+···+νNi=2r∑
0≤ν1···νNi≤2r

(
2r

ν1 · · · νNi

) Ni∏
j=1

E
{
BJ

(
Xij

)}νj


≤ C2rϕ E

N2r
1 max


Ni∏
j=1

E
{
BJ

(
Xij

)}νj

 ≤ C2rϕ

(
EN2r

1

)
CBh

1−r
s

≤ C2rϕ CBc
r
Nr!h

1−r
s = Cζr!h

1−r
s ,

E
(
ζi,J

)r
≥ c2rϕ E

{∑Ni
j=1

E
{
BJ

(
Xij

)}2r}
≥ c2rϕ (EN1) cBh

1−r
s ,

by Lemma 3.4. So
{
E
(
ζ1,J

)}r
∼ 1, E

(
ζi,J

)r
≫
{
E
(
ζ1,J

)}r
for r ≥ 2, and ∃C′ζ >
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c′ζ > 0 such that C′ζh
−1
s ≥ σ2

ζ∗ ≥ c′ζh
−1
s , for σζ∗ =

{
E
(
ζ∗i,J

)2}1/2
. We obtain

E
∣∣∣ζ∗i,J ∣∣∣r ≤ cr−2

∗ r!E
(
ζ∗i,J

)2
with c∗ =

(
Cζ/c

′
ζ

) 1
r−2 h−1

s , which implies that
{
ζ∗i,J

}n
i=1

satisfies Cramér’s condition. Applying Lemma 3.3 to
∑n
i=1 ζ

∗
i,J , for r > 2 and any large

enough δ > 0, P
{
n−1

∣∣∣∑n
i=1 ζ

∗
i,J

∣∣∣ ≥ δ
√

logn/ (nhs)
}
is bounded by

2 exp


−δ2

(
C′ζ
)−1

(logn)

4 + 2
(
Cζ/c

′
ζ

) 1
r−2 δ

(
c′
ζ

)−1
h
1/2
s (logn)1/2 n−1/2


≤ 2 exp

−δ2 (logn)
4C′
ζ

 ≤ 2n−3.

Hence
∞∑
n=1

P

 sup
0≤J≤Ns

∣∣∣∣∣∣ 1n
n∑
i=1

R2ik,ξ,J − ER21k,ξ,J

∣∣∣∣∣∣ ≥ δ
√
logn/ (nhs)

 ≤
∞∑
n=1

2Ns

n3
<∞.

Thus, sup0≤J≤Ns
∣∣∣n−1∑n

i=1R
2
ik,ξ,J − ER21k,ξ,J

∣∣∣ = Oa.s.

(√
logn/ (nhs)

)
as n → ∞

by Borel-Cantelli Lemma. The properties of Rij,ε,J are obtained similarly. �

Order all Xij, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n from large to small as X(t), X(1) ≥ · · · ≥ X(
NT
),

and denote the εij corresponding to X(t) as ε(t). By (3.16),

ε̂(x) = c−1
J(x),n

N−1
T

∑NT
t=1

bJ(x)

(
X(t)

)
σ
(
X(t)

)
ε(t)

= c−1
J(x),n

N−1
T

∑NT
t=1

bJ(x)

(
X(t)

)
σ
(
X(t)

){
St − St−1

}
,

where Sq =
∑q
t=1 ε(t), q ≥ 1 and S0 = 0.

Lemma 3.7. Under Assumptions (A2)-(A5), there is a Wiener process {W (t) , 0 ≤ t <∞}

independent of
{
Ni,Xij, 1 ≤ j ≤ Ni, ξik, 1 ≤ k ≤ κ, 1 ≤ i ≤ n

}
, such that as n→ ∞,
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sup
x∈[0,1]

∣∣∣ε̂(0)(x)− ε̂(x)
∣∣∣ = oa.s.

(
nt
)
for some t < − (1− ϑ) /2 < 0, where ε̂(0)(x) is

(
cJ(x),nNT

)−1∑NT
t=1

bJ(x)

(
X(t)

)
σ
(
X(t)

)
{W (t)−W (t− 1)} , x ∈ [0, 1]. (3.18)

Proof. Define MNT
= max1≤q≤NT

∣∣Sq −W (q)
∣∣, in which {W (t) , 0 ≤ t <∞} is the

Wiener process in Lemma 3.1 that a Borel function of the set of variables
{
ε(t) 1 ≤ t ≤ NT

}
is independent of

{
Ni,Xij, 1 ≤ j ≤ Ni, ξik, 1 ≤ k ≤ κ, 1 ≤ i ≤ n

}
since

{
ε(t) 1 ≤ t ≤ NT

}
is. Further, supx∈[0,1]

∣∣∣ε̂(0)(x)− ε̂(x)
∣∣∣ equals to

supx∈[0,1] c
−1
J(x),n

N−1
T

∣∣∣∣bJ(x)(X(NT
))σ(X(

NT
)){W (

NT
)
− SNT

}
+
∑NT−1

t=1

{
bJ(x)

(
X(t)

)
σ
(
X(t)

)
− bJ(x)

(
X(t+1)

)
σ
(
X(t+1)

)}
{W (t)− St}

∣∣∣∣
≤ max

0≤J≤Ns+1
c−1
JnN

−1
T

{
bJ

(
X(
NT
)) σ(X(

NT
))+

∑NT−1

t=1

∣∣∣bJ (X(t)

)
σ
(
X(t)

)
− bJ

(
X(t+1)

)
σ
(
X(t+1)

)∣∣∣}MNT

≤ max
0≤J≤Ns+1

c−1
J,nN

−1
T MNT

3Cσ +
∑

1≤t≤NT−1,X(t)∈bJ

∣∣∣σ (X(t)

)
− σ

(
X(t+1)

)∣∣∣


which, by the Hölder continuity of σ in Assumption (A2), is bounded by

N−1
T MNT

max
0≤J≤Ns+1

c−1
J,n

3Cσ + ∥σ∥0,β
∑

1≤t≤NT−1,X(t)∈bJ

∣∣∣X(t) −X(t+1)

∣∣∣β
 ≤

N−1
T MNT

max
J

c−1
J,n

3Cσ + ∥σ∥0,β n
1−β
J

 ∑
1≤t≤NT−1,X(t)∈bJ

∣∣∣X(t) −X(t+1)

∣∣∣

β

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≤ N−1
T MNT

(
max

0≤J≤Ns+1
c−1
J,n

)3Cσ + ∥σ∥0,β h
β
s

(
max

0≤J≤Ns+1
nJ

)1−β
where nJ =

∑NT
t=1 I

(
X(t) ∈ χJ

)
, 0 ≤ J ≤ Ns + 1, has a binomial distribution with

parameters
(
NT, pJ,n

)
, where pJ,n =

∫
χJ

f(x)dx. Simple application of Lemma 3.3 entails

max0≤J≤Ns+1 nJ = Oa.s.

(
NTN

−1
s

)
. Meanwhile, by letting H(x) = xr, xn = nt

′
,

t′ ∈ (2/r, β − (1 + ϑ) /2), the existence of which is due to the Assumption (A4) that r >

2/ {β − (1 + ϑ) /2}. It is clear that
{
ε(t)

}NT
t=1

satisfies the conditions in Lemma 3.1. Since

n
H(axn)

= a−rn1−rt
′
= O

(
n−γ1

)
for some γ1 > 1, one can use the probability inequality

in Lemma 3.1 and the Borel-Cantelli Lemma to obtain MNT
= Oa.s. (xn) = Oa.s.

(
nt
′
)
.

Hence Lemma 3.4 and the above imply

sup
x∈[0,1]

∣∣∣ε̂(0)(x)− ε̂(x)
∣∣∣ = Oa.s.

(
Nsn

t′−1
){

1 +N
−β
s

(
NTN

−1
s

)1−β}

= Oa.s.

(
Nsn

t′−1 +Nsn
t′−1 ×N−1

s n1−β
)

= Oa.s.

(
Nsn

t′−1 +Nsn
t′−β

)
= oa.s.

(
nt
′−β+ϑ

)

since t′ < β − (1 + ϑ) /2 by definition, implying t′ − 1 ≤ t′ − β < − (1 + ϑ) /2. The Lemma

follows by setting t = t′ − β + ϑ. �

Now

ε̂(0)(x) = c−1
J(x),n

N−1
T

∑NT
t=1

bJ(x)

(
X(t)

)
σ
(
X(t)

)
Z(t)

= c−1
J(x),n

N−1
T

∑n

i=1

∑Ni
j=1

bJ(x)

(
Xij

)
σ
(
Xij

)
Zij, (3.19)
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where Z(t) = W (t) − W (t− 1) , 1 ≤ t ≤ NT, are i.i.d N (0, 1), ξik, Zij,Xij,Ni are in-

dependent, for 1 ≤ k ≤ κ, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n, and ξ̂k(x), ε̂
(0)(x) are conditional

independent of Xij,Ni, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n. If the conditional variances of ξ̂k(x), ε̂
(0)(x)

on
(
Xij,Ni

)
1≤j≤Ni,1≤i≤n

are σ2ξk,n
(x), σ2ε,n(x), we have

σξk,n
(x) =

{
c−1
J(x),n

N−2
T

∑n

i=1
R2ik,ξ,J(x)

}1/2
σε,n(x) =

{
c−1
J(x),n

N−2
T

∑n

i=1

∑Ni
j=1

R2ij,ε,J(x)

}1/2
, (3.20)

where Rik,ξ,J(x), Rij,ε,J(x), and cJ(x),n are given in (3.17) and (3.5).

Lemma 3.8. Under Assumptions (A2) and (A3), let

η(x) =


κ∑
k=1

σ2ξk,n
(x) + σ2ε,n(x)


−1/2

κ∑
k=1

ξ̂k(x) + ε̂(0)(x)

 , (3.21)

with σξk,n
(x), σε,n(x), ξ̂k(x), ε̂

(0)(x), and cJ(x),n given in (3.20), (3.16), (3.18), and (3.5).

Then η(x) is a Gaussian process consisting of (Ns + 1) standard normal variables
{
ηJ
}Ns
J=0

such that η(x) = ηJ(x) for x ∈ [0, 1], and there exists a constant C > 0 such that for large

n, sup0≤J ̸=J ′≤Ns

∣∣∣EηJηJ ′∣∣∣ ≤ Chs.

Proof. It is apparent that L
{
ηJ

∣∣∣(Xij,Ni) , 1 ≤ j ≤ Ni, 1 ≤ i ≤ n
}

= N (0, 1) for

0 ≤ J ≤ Ns, so L
{
ηJ
}

= N (0, 1), for 0 ≤ J ≤ Ns. For J ̸= J ′, by (3.17) and (3.8),

Rij,ε,JRij,ε,J ′ = BJ

(
Xij

)
B
J ′
(
Xij

)
σ2
(
Xij

)
= 0, along with (3.19), (3.18), the condi-

tional independence of ξ̂k(x), ε̂
(0)(x) on Xij,Ni, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n, and independence
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of ξik, Zij,Xij,Ni, 1 ≤ k ≤ κ, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n, E
(
ηJηJ ′

)
is

E

{{∑n

i=1

{∑κ

k=1
R2ik,ξ,J +

∑Ni
j=1

R2ij,ε,J

}}−1/2{∑n

i=1

{∑κ

k=1
R2
ik,ξ,J ′+∑Ni

j=1
R2
ij,ε,J ′

}}−1/2
E
{∑κ

k=1

{∑n

i=1
Rik,ξ,J ξik

}{∑n

i=1
Rik,ξ,J ′ξik

}
+{∑n

i=1

∑Ni
j=1

Rij,ε,JZij

}{∑n

i=1

∑Ni
j=1

R
ij,ε,J ′Zij

} ∣∣∣(Xij,Ni)}}
= ECn,J,J ′

in which C
n,J,J ′ =

N−1
T

n∑
i=1


κ∑
k=1

R2ik,ξ,J +
∑Ni

j=1
R2ij,ε,J



−1/2

×

N−1
T

n∑
i=1


κ∑
k=1

R2
ik,ξ,J ′ +

Ni∑
j=1

R2
ij,ε,J ′



−1/2N−1

T

κ∑
k=1

n∑
i=1

Rik,ξ,JRik,ξ,J ′

 .

Note that according to definitions of Rik,ξ,J , Rij,ε,J , and Lemma 3.5,

N−1
T

∑n

i=1

{∑κ

k=1
R2ik,ξ,J +

∑Ni
j=1

R2ij,ε,J

}

≥ c2σN
−1
T

∑n

i=1

∑Ni
j=1

B2
J

(
Xij

)
= c2σ

∥∥BJ∥∥22,NT ≥ c2σ (1− An) , for 0 ≤ J ≤ Ns,

P

 inf
0≤J ̸=J ′≤Ns

N−1
T

n∑
i=1

 κ∑
k=1

R2ik,ξ,J +

Ni∑
j=1

R2ij,ε,J


×

N−1
T

n∑
i=1

 κ∑
k=1

R2
ik,ξ,J ′ +

Ni∑
j=1

R2
ij,ε,J ′


 ≥ c4σ

1− CA

√
log (n)

nhs

2
 ≥ 1− 2n−3,
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by Lemma 3.5. Thus for large n, with probability ≥ 1− 2n−3, the numerator of C
n,J,J ′ is

uniformly greater than c2σ/2. Applying Bernstein’s inequality to

N−1
T

{∑κ
k=1

∑n
i=1Rik,ξ,JRik,ξ,J ′

}
, there exists C0 > 0 such that, for large n,

P

 sup
0≤J ̸=J ′≤Ns

∣∣∣N−1
T

∑κ

k=1

∑n

i=1
Rik,ξ,JRik,ξ,J ′

∣∣∣ ≤ C0hs

 ≥ 1− 2n−3.

Putting the above together, for large n, C1 = C0

(
c2σ/2

)−1
,

P
(
sup0≤J ̸=J ′≤Ns

∣∣∣Cn,J,J ′∣∣∣ ≤ C1hs
)
≥ 1− 4n−3.

Note that as a continuous random variable, sup0≤J ̸=J ′≤Ns

∣∣∣Cn,J,J ′∣∣∣ ∈ [0, 1] , thus

E
(
sup0≤J ̸=J ′≤Ns

∣∣∣Cn,J,J ′∣∣∣) =

∫ 1

0
P
(
sup0≤J ̸=J ′≤Ns

∣∣∣Cn,J,J ′∣∣∣ > t
)
dt.

For large n, C1hs < 1 and then E
(
sup0≤J ̸=J ′≤Ns

∣∣∣Cn,J,J ′∣∣∣) is

∫ C1hs

0
P

 sup
0≤J ̸=J ′≤Ns

∣∣∣Cn,J,J ′∣∣∣ > t

 dt+

∫ 1

C1hs
P

 sup
0≤J ̸=J ′≤Ns

∣∣∣Cn,J,J ′∣∣∣ > t

 dt

≤
∫ C1hs

0
1dt+

∫ 1

C1hs
4n−3dt ≤ C1hs + 4n−3 ≤ Chs

for some C > 0 and large enough n. The lemma now follows from

sup0≤J ̸=J ′≤Ns

∣∣∣E (Cn,J,J ′)∣∣∣ ≤ E
(
sup0≤J ̸=J ′≤Ns

∣∣∣Cn,J,J ′∣∣∣) ≤ Chs. �

75



By Lemma 3.8, the (Ns + 1) standard normal variables η0, ..., ηNs satisfy the conditions

of Lemma 3.2 Hence for any τ ∈ R,

lim
n→∞P

(
supx∈[0,1] |η(x)| ≤ τ/aNs+1 + bNs+1

)
= exp

(
−2e−τ

)
. (3.22)

For x ∈ [0, 1], Rik,ξ,J , Rij,ε,J given in (3.17), define the ratio of population and sample

quantities as rn(x) =
{
nE (N1) /NT

}1/2 {
R̄n(x)/R̄(x)

}1/2, with
R̄n(x) = N−1

T

{∑n

i=1

(∑κ

k=1
R2ik,ξ,J(x) +

∑Ni
j=1R

2
ij,ε,J(x)

)}
R̄(x) = (EN1)

−1
∑κ

k=1
ER21k,ξ,J(x) + ER211,ε,J(x).

Lemma 3.9. Under Assumptions (A2), (A3), for η(x), σn(x) in (3.21), (3.6),

∣∣∣σn(x)−1
{∑κ

k=1
ξ̂k(x) + ε̂(0)(x)

}
− η(x)

∣∣∣ = |rn(x)− 1| |η(x)| (3.23)

as n→ ∞, supx∈[0,1]
{
aNs+1 |rn(x)− 1|

}
= Oa.s.

(√
{log (Ns + 1)} (logn) / (nhs)

)
.

Proof. Equation (3.23) follows from the definitions of η(x) and σn(x). By Lemma 3.6,

supx∈[0,1]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

R2
ij,ε,J(x)

− ER2
11,ε,J(x)

∣∣∣∣∣∣ = Oa.s.

(√
logn/ (nhs)

)
,

supx∈[0,1]
∣∣∣N−1

T

∑κ

k=1

∑n

i=1
R2ik,ξ,J(x) − (EN1)

−1
∑κ

k=1
ER21k,ξ,J(x)

∣∣∣
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≤ supx∈[0,1] (EN1)
−1
∑κ

k=1

∣∣∣n−1
∑n

i=1
R2ik,ξ,J(x) − ER21k,ξ,J(x)

∣∣∣
+supx∈[0,1] (EN1)

−1
∑κ

k=1

∣∣∣n (EN1)N
−1
T

− 1
∣∣∣ ∣∣∣n−1

∑n

i=1
R2ik,ξ,J(x)

∣∣∣
= Oa.s.

(√
logn/ (nhs)

)
+Oa.s.

(
n−1/2

)
= Oa.s.

(√
logn/ (nhs)

)
,

and there exist constants 0 < cR̄ < CR̄ < ∞ such that for all x ∈ [0, 1], cR̄ < R̄(x) < CR̄.

Thus, supx∈[0,1]
∣∣R̄n(x)− R̄(x)

∣∣ is bounded by

supx∈[0,1]
∣∣∣N−1

T

∑κ

k=1

∑n

i=1
R2ik,ξ,J(x) − (EN1)

−1
∑κ

k=1
ER21k,ξ,J(x)

∣∣∣+
supx∈[0,1]

∣∣∣∣N−1
T

∑n

i=1

∑Ni
j=1

R2ij,ε,J(x) − ER211,ε,J(x)

∣∣∣∣ = Oa.s.

(√
logn/ (nhs)

)
.

Thus sup
x∈[0,1]

∣∣∣{R̄n(x)}1/2 −
{
R̄(x)

}1/2∣∣∣ ≤ sup
x∈[0,1]

∣∣R̄n(x)− R̄(x)
∣∣ sup
x∈[0,1]

{
R̄(x)

}−1/2

= Oa.s.

(√
logn/ (nhs)

)
. Then supx∈[0,1]

{
aNs+1 |rn(x)− 1|

}
is bounded by

aNs+1

{nE (N1) /NT

}1/2
sup

x∈[0,1]

∣∣∣{R̄n(x)/R̄(x)}1/2 − 1
∣∣∣+ ∣∣∣∣1− {nE (N1) /NT

}1/2∣∣∣∣


≤ aNs+1

{nE (N1) /NT

}1/2
sup

x∈[0,1]

{
R̄(x)

}−1/2 sup
x∈[0,1]

∣∣∣{R̄n(x)}1/2 −
{
R̄(x)

}1/2∣∣∣
+

∣∣∣∣1− {nE (N1) /NT

}1/2∣∣∣∣} = Oa.s.

(√
{log (Ns + 1)} (logn) / (nhs)

)
. �

Proof of Proposition 3.2. The proof follows from Lemmas 3.5, 3.7, 3.9, (3.22), and

Slutsky’s Theorem. �
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Proof of Theorem 3.1. By Theorem 3.2, ∥m̃(x)−m(x)∥∞ = Op (hs), so

aNs+1

 sup
x∈[0,1]

σ−1
n (x) |m̃(x)−m(x)|

 = Op

{
(nhs)

1/2√log (Ns + 1)hs
}
= op (1) ,

aNs+1

 sup
x∈[0,1]

σ−1
n (x) |m̂(x)−m(x)| − sup

x∈[0,1]
σ−1
n (x)

∣∣∣∣∣∣
κ∑
k=1

ξ̃k(x) + ε̃(x)

∣∣∣∣∣∣
 = op (1) .

Meanwhile, (3.11) and Proposition 3.2 entail that, for any τ ∈ R,

lim
n→∞P

aNs+1

 sup
x∈[0,1]

σ−1
n (x)

∣∣∣∣∣∣
κ∑
k=1

ξ̃k(x) + ε̃(x)

∣∣∣∣∣∣− bNs+1

 ≤ τ

 = exp
(
−2e−τ

)
.

Thus Slutsky’s Theorem implies that

lim
n→∞P

aNs+1

 sup
x∈[0,1]

σ−1
n (x) |m̂(x)−m(x)| − bNs+1

 ≤ τ

 = exp
(
−2e−τ

)
.

Let τ = −log
{
−1
2log (1− α)

}
, definitions of aNs+1, bNs+1, and QNs+1 (α) in (3.7) entail

lim
n→∞P

{
m(x) ∈ m̂(x)± σn(x)QNs+1 (α) ,∀x ∈ [0, 1]

}
= lim
n→∞P

Q−1
Ns+1 (α) sup

x∈[0,1]
σ−1
n (x) |ẽ(x) + m̃(x)−m(x)| ≤ 1

 = 1− α.

by (3.11). That σn(x)
−1 {m̂(x)−m(x)} →d N (0, 1) for any x ∈ [0, 1] follows by directly

using η(x) ∼ N (0, 1), without reference to supx∈[0,1] |η(x)|. �
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Chapter 4

Spline-backfitted Kernel Smoothing of

Partially Linear Additive Model

4.1 Introduction

This chapter is based on Ma and Yang (2011b). Since the 1980’s, non- and semiparametric

analysis of time series has been vigorously pursued, see, for example, Tjøstheim and Auestad

(1994) and Huang and Yang (2004). There are few satisfactory smoothing tools for multi-

dimensional time series data, however, due to the poor convergence rate of nonparametric

estimation of multivariate functions, known as the “curse of dimensionality”. One solution

is the partially linear additive model (PLAM) studied in Li (2000), Fan and Li (2003) and

Liang, Thurston, Ruppert, Apanasovich and Hauser (2008)

Yi = m
(
Xi,Ti

)
+ σ

(
Xi,Ti

)
εi,m(x, t) = c00 +

∑d1
l=1

c0ltl +
∑d2

α=1
mα (xα) (4.1)
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in which the sequence
{
Yi,X

T
i ,T

T
i

}n
i=1

=
{
Yi,Xi1, ..., Xid2

, Ti1, . . . Tid1

}n
i=1

. The func-

tions m and σ are the mean and standard deviation of the response Yi conditional on the

predictor vector {Xi,Ti}, and εi is a white noise conditional on {Xi,Ti}. For identifiabil-

ity, both additive and linear components must be centered, i.e., Emα
(
Xiα

)
≡ 0, 1 ≤ α ≤

d2, ETil = 0, 1 ≤ l ≤ d1.

If parameters c0l ≡ 0, 1 ≤ l ≤ d1,
(
Ti1, . . . Tid1

)
are redundant.

{
Yi,Xi1, ..., Xid2

}n
i=1

follow an additive model. For applications of additive model, see, Nácher, Ojeda, Cadarso-

Suárez, Roca-Pardiñas and Acuña (2006), Roca-Pardiñas, Cadarso-Suárez, Nácher and Acuña

(2006), González-Manteiga, Mart́ınez-Miranda and Raya-Miranda (2008). Additive model,

however, is only appropriate to model nonparametric effects of continuous predictors
(
Xi1,

..., Xid2

)
supported on compact intervals. The effects of possibly discrete and/or unbounded

predictors can be neatly modeled as some of the variables
(
Ti1, . . . Tid1

)
in the PLAM (4.1),

see the simulation example in Section 4.3 where Ti1, Ti2 are normal conditional on Xi, Ti3

is discrete and Ti4 has positive density over a compact interval, and Section 4.4 which shows

that the simpler PLAM fits the Boston housing data much better than an additive model.

For general references on partially linear model, see Schimek (2000) and Liang (2006). For

applications of partially linear model to panel data, see Su and Ullah (2006), while for data

with measurement errors, see Liang, Wang and Carroll (2007) and Liang et al. (2008).

Satisfactory estimators of functions {mα (xα)}
d2
α=1 and constants

{
c0l
}d1
l=0

in model

(4.1) based on
{
Yi,X

T
i ,T

T
i

}n
i=1

should be (i) computationally expedient; (ii) theoretically

reliable and (iii) intuitively appealing. Kernel procedures for PLAM, such as Fan and Li

(2003) and Liang et al. (2008) satisfy criterion (iii) and partly (ii) but not (i) since they

are computationally intensive when sample size n is large, as illustrated in the Monte-Carlo

80



results of Xue and Yang (2006). It is mentioned in Li (2000) that the computation time of

estimating a PLAM is about n times of estimating a partially linear model with d2 = 1 by

using the kernel marginal integration method. For discussion of computation burden issues

by kernel methods, see Li (2000). Spline approaches of Li (2000), Schimek (2000) to PLAM,

do not satisfy criterion (ii) as they lack limiting distribution, but are fast to compute, thus

satisfying (i). The SBK estimator we propose combines the best features of both kernel and

spline methods, and is essentially as fast and accurate as an univariate kernel smoothing,

satisfying all three criteria (i)-(iii).

We propose to extend the “spline-backfitted kernel smoothing” (SBK) of Wang and

Yang (2007) to PLAM (4.1). If the regression coefficients
{
c0l
}d1
l=0

and the component

functions
{
mβ

(
xβ

)}d2
β=1,β ̸=α

were known by “oracle”, one could create
{
Yiα,Xiα

}n
i=1

with Yiα = Yi − c00 −
∑d1
l=1

c0lTil −
∑d2
β=1,β ̸=αmβ

(
Xiβ

)
= mα

(
Xiα

)
+σ
(
Xi,Ti

)
εi, from which one could compute an “oracle smoother” to estimate

the only unknown function mα (xα), bypassing the “curse of dimensionality”. The idea was

to obtain approximations to the unobservable variables Yiα by substituting mβ

(
Xiβ

)
,

1 ≤ i ≤ n, 1 ≤ β ≤ d2, β ̸= α, with spline estimates and argue that the error incurred by

this “cheating” is of smaller magnitude than the rate O
(
n−2/5

)
for estimating mα (xα)

from the unobservable data. Lemmas 4.9, 4.14, 4.17 and 4.18 establish the estimators’

uniform oracle efficiency by “reducing bias via undersmoothing (step one) and averaging

out the variance (step two)”, via the joint asymptotics of kernel and spline functions. A

major theoretical innovation is to resolve the dependence between T and X, making use

of Assumption (A5), which is not needed in Wang and Yang (2007). Another significant

innovation is the
√
n-consistency and asymptotic distribution of estimators for parameters
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{
c0l
}d1
l=0

, which is trivial for the additive model of Wang and Yang (2007).

This chapter is organized as follows. The SBK estimators are introduced in Section 4.2

with theoretical properties. Section 4.3 contains Monte Carlo results to demonstrate the

asymptotic properties of SBK estimators for moderate dimensions. The SBK estimator is

applied to the Boston housing data in Section 4.4. Proofs of technical lemmas are in the

Appendix.

4.2 The SBK Estimators

For convenience, we denote vectors as x =
(
x1, ..., xd

)T and take ∥·∥ as the usual Euclidean

norm on Rd, i.e., ∥x∥ =
√∑d

α=1 x
2
α, and ∥·∥∞ the sup norm, i.e., ∥x∥∞ = sup1≤α≤d |xα|.

We denote by Ir the r × r identity matrix, 0r×s the zero matrix of dimension r × s, and

diag(a, b) the 2 × 2 diagonal matrix with diagonal entries a, b. Let
{
Yi,X

T
i ,T

T
i

}n
i=1

be a

sequence of strictly stationary observations from a geometrically α-mixing process following

model (4.1), where Yi and
(
Xi,Ti

)
= {

(
Xi1, ..., Xid2

)T
, (Ti1, . . . Tid1

)T } are the i-th

response and predictor vector. Denote Y = (Y1, ..., Yn)
T the response vector. Without loss

of generality, we assume Xα is distributed on [0, 1] , 1 ≤ α ≤ d2. An integer N = Nn ∼

n1/4 log n is pre-selected. Denote the class of Lipschitz continuous functions for a constant

C > 0 as Lip([0, 1] , C) =
{
m|
∣∣∣m(x)−m(x′)

∣∣∣ ≤ C
∣∣∣x− x′

∣∣∣ , ∀x, x′ ∈ [0, 1]
}
.

We use the second order B spline (or linear B spline) basis bJ (x) = bJ,2 (x), 0 ≤ J ≤

N + 1 which is defined in Section 1.3 of Chapter 1. Let the distance between neighboring

interior or boundary knots be H = Hn = (N + 1)−1. Define next the space G of partially
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linear additive spline functions as the linear space spanned by

{
1, tl, bJ (xα) , 1 ≤ l ≤ d1,1 ≤ α ≤ d2, 1 ≤ J ≤ N + 1

}
,

and let
{
1,
{
Tl, bJ

(
Xiα

)}n
i=1 , 1 ≤ l ≤ d1,1 ≤ α ≤ d2, 1 ≤ J ≤ N + 1

}
span the spaceGn ⊂

Rn . As n→ ∞, with probability approaching 1, the dimension of Gn becomes

{1 + d1 + d2 (N + 1)}. The spline estimator of m (x, t) is the unique element m̂ (x, t) =

m̂n (x, t) from G so that
{
m̂
(
Xi,Ti

)}T
1≤i≤n best approximates the response vector Y. To

be precise, we define

m̂ (x, t) = ĉ00 +
∑d1

l=1
ĉ0ltl +

∑d2
α=1

∑N+1

J=1
ĉJ,αbJ (xα) , (4.2)

where the coefficients
(
ĉ00, ĉ0l, ĉJ,α

)
1≤l≤d1,1≤J≤N+1,1≤α≤d2

minimize

∑n

i=1

{
Yi − c0 −

∑d1
l=1

clTil −
∑d2

α=1

∑N+1

J=1
cJ,αbJ

(
Xiα

)}2
.

Pilot estimators of cT =
{
c0l
}d1
l=0

and mα (xα) are ĉT =
{
ĉ0l
}d1
l=0

and m̂α (xα) =∑N+1
J=1 ĉJ,αbJ (xα) − n−1∑n

i=1
∑N+1
J=1 ĉJ,αbJ

(
Xiα

)
, which are used to define pseudo

responses Ŷiα, estimates of the unobservable “oracle” responses Yiα:

Ŷiα = Yi − ĉ00 −
∑d1

l=1
ĉ0lTil −

∑d2
β=1,β ̸=α m̂β

(
Xiβ

)
,

Yiα = Yi − c00 −
∑d1

l=1
c0lTil −

∑d2
β=1,β ̸=αmβ

(
Xiβ

)
. (4.3)

Based on
{
Ŷiα,Xiα

}n
i=1

, the SBK estimator m̂SBK,α (xα) ofmα (xα) mimics the would-be
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Nadaraya-Watson estimator m̃K,α (xα) of mα (xα) based on
{
Yiα,Xiα

}n
i=1, if the unob-

servable responses
{
Yiα
}n
i=1 were available

m̂SBK,α (xα) =
{
n−1

∑n

i=1
Kh

(
Xiα − xα

)
Ŷiα

}
/f̂α(xα),

m̃K,α (xα) =
{
n−1

∑n

i=1
Kh

(
Xiα − xα

)
Yiα

}
/f̂α(xα), (4.4)

with Ŷiα, Yiα in (4.3), f̂α(xα) = n−1∑n
i=1Kh

(
Xiα − xα

)
an estimator of fα (xα).

Without loss of generality, let α = 1. Under Assumptions A1-A5 and A7, it is straight-

forward to verify (as in Bosq 1998) that as n→ ∞,

supx1∈[h,1−h]
∣∣∣m̃K,1 (x1)−m1 (x1)

∣∣∣ = op

(
n−2/5 log n

)
,

√
nh
{
m̃K,1 (x1)−m1 (x1)− b1 (x1)h

2
}
D→ N

{
0, v21 (x1)

}
,

where, b1 (x1) =

∫
u2K (u) du

{
m′′
1 (x1) f1 (x1) /2 +m′

1 (x1) f
′
1 (x1)

}
f−1
1 (x1) ,

v21 (x1) =

∫
K2 (u) duE

[
σ2 (X,T) |X1 = x1

]
f−1
1 (x1) . (4.5)

It is shown in Li (2000) and Schimek (2000) that the spline estimator m̂1 (x1) in the first step

uniformly converges to m1 (x1) with certain convergence rate, but lacks asymptotic distribu-

tion. Theorem 4.1 below states that the difference between m̂SBK,1 (x1) and m̃K,1 (x1) is

op

(
n−2/5

)
uniformly, dominated by the asymptotic uniform size of m̃K,1 (x1)−m1 (x1).

So m̂SBK,1 (x1) has identical asymptotic distribution as m̃K,1 (x1).

Theorem 4.1. Under Assumptions A1-A7, as n → ∞, the SBK estimator m̂SBK,1 (x1)

given in (4.4) satisfies supx1∈[0,1]
∣∣∣m̂SBK,1 (x1)− m̃K,1 (x1)

∣∣∣ = op

(
n−2/5

)
. Hence with
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b1 (x1) and v
2
1 (x1) as defined in (4.5), for any x1 ∈ [h, 1− h],

√
nh
{
m̂SBK,1 (x1)−m1 (x1)− b1 (x1)h

2
}
D→ N

{
0, v21 (x1)

}
.

Instead of Nadaraya-Watson estimator, one can use local polynomial estimator, see

Fan and Gijbels (1996). Under Assumptions A1-A7, for any α ∈ (0, 1), an asymptotic

100 (1− α)% confidence intervals for m1 (x1) is

m̂SBK,1 (x1)− b̂1 (x1)h
2 ± zα/2v̂1(x1) (nh)

−1/2 (4.6)

where b̂1 (x1) and v̂
2
1(x1) are estimators of b1 (x1) and v

2
1 (x1) respectively.

The following corollary provides the asymptotic distribution of m̂SBK (x). The proof of

this corollary is straightforward and therefore omitted.

Corollary 4.1. Under Assumptions A1-A7 and the additional assumptionmα ∈ C(2) [0, 1] , 2 ≤

α ≤ d2. Let m̂SBK (x) =
d2∑
α=1

m̂SBK,α (xα), b (x) =
d2∑
α=1

bα (xα), v
2 (x) =

d2∑
α=1

v2α (xα),

for any x ∈ [0, 1]d2, with SBK estimators m̂SBK,α (xα) , 1 ≤ α ≤ d2, defined in (4.4), and

bα (xα), v
2
α (xα) similarly defined as in (4.5), as n→ ∞,

√
nh

{
m̂SBK (x)−

∑d2
α=1

mα (xα)− b (x)h2
}
D→ N

{
0, v2 (x)

}

Next theorem describes the asymptotic behavior of estimator ĉ for c.

Theorem 4.2. Under Assumptions A1-A6, as n → ∞, ∥ĉ− c∥ = Op

(
n−1/2

)
. With the

additional Assumption A8,
√
n (ĉ− c) →d N

0, σ20


1 0Td1

0d1
Σ−1


, for Σ = cov

(
T̃
)
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with random vector T̃ defined in (4.10).

To construct confidence sets for c, Σ is consistently estimated by

n−1∑n
i=1 T̂i,l,nT̂i,l′,n in which T̂l,n = Tl−

∑d2
α=1

∑N+1
J=1 âJ,αb

∗
J,α (xα), where b

∗
J,α (xα) ≡

bJ (xα)−n−1∑n
i=1 bJ

(
Xiα

)
is the empirical centering of bJ (x) for the α-th variable Xα,

defined in the Appendix and
(
âJ,α

)
1≤J≤N+1,1≤α≤d2

minimize

∥∥∥∥Tl −∑d2
α=1

∑N+1

J=1
aJ,αb

∗
J,α (Xα)

∥∥∥∥2
n
.

4.3 Simulation

In this section, we analyze some simulated data examples to illustrate the finite-sample

behavior of SBK estimators. The number of interior knots N in (4.2) is given by N =

min
([
c1n

1/4 log n
]
+ c2,

[
(n/2− 1− d1) d

−1
2 − 1

])
, in which [a] denotes the integer part

of a. In our implementation, we have used c1 = c2 = 1. The additional constraint that

N ≤ (n/2− 1− d1) d
−1
2 − 1 ensures that the number of terms in the linear least squares

problem (4.2), 1 + d1 + d2 (N + 1), is no greater than n/2, which is necessary when the

sample size n is moderate.

The i.i.d. data
{
Yi,Xi,Ti

}n
i=1 is generated according to the partially linear additive

model (4.1), which satisfies Assumptions A1-A5, and A8

Yi = 2 +
∑d1

l=1
Til +

∑d2
α=1

mα
(
Xiα

)
+ σ0εi,mα (x) ≡ sin (2πx) , 1 ≤ α ≤ d2,

where σ0 = 2, εi ∼ N (0, 1) is independent of
(
Xi,Ti

)
, Ti =

(
Ti1, Ti2, Ti3, Ti4

)
such that

Ti3, Ti4,
(
Ti1, Ti2

)
are independent, Ti3 = ±1 with probability 1/2, Ti4 ∼ U (−0.5, 0.5),
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(
Ti1, Ti2

)′ ∼ N
(
(0, 0)′ , diag

(
a
(
Xi1

)
, a
(
Xi2

)))
, a (x) =

5−sin(2πx)
5+sin(2πx)

.

Xi =

{(
Xiα

)d2
α=1

}T
is generated from the vector autoregression (VAR) equation Xiα =

Φ

{(
1− a2

)1/2
Ziα

}
− 1/2, 1 ≤ α ≤ d2 with stationary distribution

Zi =
(
Zi1, ..., Zid2

)T
∼ N

(
0d2

,
(
1− a2

)−1
Σ

)

Z1 ∼ N

(
0d2

,
(
1− a2

)−1
Σ

)
,Zi = aZi−1 + εi, εi ∼ N (0,Σ) , 2 ≤ i ≤ n,

Σ = (1− r) Id2×d2 + r1d2
1Td2

, 0 < a < 1, 0 < r < 1,

So
{
Xi
}n
i=1 is geometrically α-mixing with marginal distribution U [−0.5, 0.5].

We obtained for comparison the SBK estimator m̂SBK,α (xα) and the “oracle” smoother

m̃K,α (xα) by Nadaraya-Watson regression using quartic kernel and the rule-of-thumb band-

width. To see that m̂SBK,α (xα) is as efficient as m̃K,α (xα) for numerical performance, we

define the empirical relative efficiency of m̂SBK,α (xα) with respect to m̃K,α (xα) as

effα =


∑n
i=1

{
m̃K,α (xα)−mα

(
Xiα

)}2
∑n
i=1

{
m̂SBK,α (xα)−mα

(
Xiα

)}2

1/2

. (4.7)

Theorem 4.1 indicates effα should be close to 1 for 1 ≤ α ≤ d2. Figures 4.1, 4.2, 4.3,

and 4.4 provide the kernel density estimates of 100 empirical efficiencies α = 2, 3, sample

sizes n = 100 (solid lines), 200 (dashed lines), 500 (thin lines) and 1000 (thick lines) at

σ0 = 2, d2 = 3, and d2 = 30. The vertical line at efficiency = 1 is the standard line for

the comparison of m̂SBK,α (xα) and m̃K,α (xα). One clearly sees that the center of the

density plots is going toward the standard line at 1 with narrower spread when sample size

n is increasing, confirmative to Theorem 4.1.
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Efficiency of the 2-nd estimator
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Figure 4.1: Kernel density plots for α = 2, d1 = 4, d2 = 3 in Chapter 4

Note: kernel density plots of the 100 empirical efficiencies of m̂SBK,α (xα) to m̃K,α (xα),

computed according to (4.7) for sample sizes n = 100 (solid lines), 200 (dashed lines), 500
(thin lines) and 1000 (thick lines) at α = 2, d1 = 4, d2 = 3.
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Efficiency of the 3-rd estimator
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Figure 4.2: Kernel density plots in Chapter 4

Note: kernel density plots of the 100 empirical efficiencies of m̂SBK,α (xα) to m̃K,α (xα),

computed according to (4.7) for sample sizes n = 100 (solid lines), 200 (dashed lines), 500
(thin lines) and 1000 (thick lines) at α = 3, d1 = 4, d2 = 3.
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Efficiency of the 2-nd estimator
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Figure 4.3: Kernel density plots for α = 2, d1 = 4, d2 = 30 in Chapter 4

Note: kernel density plots of the 100 empirical efficiencies of m̂SBK,α (xα) to m̃K,α (xα),

computed according to (4.7) for sample sizes n = 100 (solid lines), 200 (dashed lines), 500
(thin lines) and 1000 (thick lines) at α = 2, d1 = 4, d2 = 30.
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Efficiency of the 3-rd estimator
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Figure 4.4: Kernel density plots for α = 3, d1 = 4, d2 = 30 in Chapter 4

Note: kernel density plots of the 100 empirical efficiencies of m̂SBK,α (xα) to m̃K,α (xα),

computed according to (4.7) for sample sizes n = 100 (solid lines), 200 (dashed lines), 500
(thin lines) and 1000 (thick lines) at α = 3, d1 = 4, d2 = 30.
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To see that ĉ0l is as efficient as c̃0l, we define the asymptotic efficiency of ĉ0l with respect

to c̃0l as effl =

∑100
t=1

{
c̃0l,t−c0l

}2
/100∑100

t=1

{
ĉ0l,t−c0l

}2
/100


1/2

, where c̃0l,t, ĉ0l,t are values of c̃0l, ĉ0l for the

t-th replication in the simulation. For n = 200, 500, d2 = 3, Table 4.1 lists the frequencies

of 95% confidence interval coverage of the SBK estimators for the regression coefficients{
c0l
}d1
l=0

, the sample mean squared error (MSE) and the asymptotic efficiency. The coverage

frequencies are all close to the nominal level of 95%. As expected, increase in sample size

reduces the sample MSE and increases the asymptotic efficiency.

Table 4.1: Estimation of parameters for the linear part in Chapter 4

r a 95% CI coverage MSE Asymptotic
frequency Efficiency

0 0 0.92 (0.92) 0.0241 (0.010) 0.8806 (0.8406)
c00 0.3 0 0.92 (0.91) 0.0264 (0.0095) 0.8403 (0.8588)

0 0.3 0.89 (0.92) 0.0263 (0.0096) 0.8446 (0.8536)
0.3 0.3 0.89 (0.92) 0.0282 (0.0103) 0.8146 (0.8270)
0 0 0.95 (0.90) 0.0330 (0.0152) 0.8795 (0.8892)

c01 0.3 0 0.99 (0.91) 0.0297 (0.0143) 0.9217 (0.9069)

0 0.3 0.98 (0.95) 0.0296 (0.0121) 0.9157 (0.9949)
0.3 0.3 0.96 (0.94) 0.0336 (0.0134) 0.8635 (0.9491)
0 0 0.96 (0.95) 0.0306 (0.0115) 0.8809 (0.8659)

c02 0.3 0 0.97 (0.97) 0.0378 (0.0118) 0.7914 (0.8553)

0 0.3 0.95 (0.95) 0.0329 (0.0112) 0.8523 (0.8757)
0.3 0.3 0.97 (0.97) 0.0336 (0.0104) 0.8397 (0.9039)
0 0 0.96 (0.97) 0.0259 (0.0087) 0.8892 (0.8983)

c03 0.3 0 0.92 (0.98) 0.0301 (0.0074) 0.7527 (0.9327)

0 0.3 0.93 (0.96) 0.0362 (0.0078) 0.8264 (0.9178)
0.3 0.3 0.96 (0.97) 0.0258 (0.0078) 0.8919 (0.9101)
0 0 0.95 (0.96) 0.4006 (0.1229) 0.7873 (0.9181)

c04 0.3 0 0.94 (0.95) 0.3771 (0.1111) 0.8117 (0.9661)

0 0.3 0.92 (0.95) 0.3867 (0.1154) 0.8019 (0.9470)
0.3 0.3 0.93 (0.96) 0.3533 (0.1138) 0.8388 (0.9537)

Note: estimation of c = (c00, c01, c02, c03, c04)
′ with d2 = 3, n = 200 (outside

parentheses), n = 500 (inside parentheses).
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For visualization of the actual function estimates, at noise level σ0 = 2 with sample size

n = 200, 500, we plot m̃K,α (xα) (thin curves), m̂SBK,α (xα) (thick curves) and their 95%

pointwise confidence intervals (upper and lower medium curves) for mα (dashed curves)

in Figures 4.5, 4.6, 4.7, and 4.8. The SBK estimators seem rather satisfactory and their

performance improves with increasing n.

4.4 Application

In this section we apply our method to the well-known Boston housing data, which contains

506 different houses from a variety of locations in Boston Standard Metropolitan Statis-

tical Area in 1970. The median value and 13 sociodemographic statistics values of the

Boston houses were first studied by Harrison and Rubinfeld (1978) to estimate the hous-

ing price index model. Breiman and Friedman (1985) did further analysis to deal with the

multi-collinearity for overfitting by using a stepwise method. The response and explanatory

variables of interest are:

MEDV: Median value of owner-occupied homes in $1000’s

RM: average number of rooms per dwelling

TAX: full-value property-tax rate per $10, 000

PTRATIO: pupil-teacher ratio by town school district

LSTAT: proportion of population that is of ”lower status” in %.

Wang and Yang (2009b) fitted an additive model using RM, log(TAX), PTRSATIO

and log(LSTAT) as predictors to test the linearity of the components and found that only

PTRATIO is accepted at the significance level 0.05 for the linearity hypothesis test. Based

on the conclusion drawn from Wang and Yang (2009b), we fitted a partial linear additive
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n=200, Estimation of component #2
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Figure 4.5: Plots of the estimator for the nonparametric part at α = 2, n = 200

Note: plots of the oracle smoother m̃K,α (xα) (thin curve), the SBK estimator
m̂SBK,α (xα) (thick curve) defined in (4.4), and the 95% pointwise confidence intervals

constructed by (4.6) (upper and lower medium curves) of the function components
mα (xα), α = 2 (dashed curve), d1 = 4, d2 = 3.
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n=500, Estimation of component #2
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Figure 4.6: Plots of the estimator for the nonparametric part at α = 2, n = 500

Note: plots of the oracle smoother m̃K,α (xα) (thin curve), the SBK estimator
m̂SBK,α (xα) (thick curve) defined in (4.4), and the 95% pointwise confidence intervals

constructed by (4.6) (upper and lower medium curves) of the function components
mα (xα), α = 2 (dashed curve), d1 = 4, d2 = 3.
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n=200, Estimation of component #3
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Figure 4.7: Plots of the estimator for the nonparametric part at α = 3, n = 200

Note: plots of the oracle smoother m̃K,α (xα) (thin curve), the SBK estimator
m̂SBK,α (xα) (thick curve) defined in (4.4), and the 95% pointwise confidence intervals

constructed by (4.6) (upper and lower medium curves) of the function components
mα (xα), α = 3 (dashed curve), d1 = 4, d2 = 3.
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n=500, Estimation of component #3
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Figure 4.8: Plots of the estimator for the nonparametric part at α = 3, n = 500

Note: plots of the oracle smoother m̃K,α (xα) (thin curve), the SBK estimator
m̂SBK,α (xα) (thick curve) defined in (4.4), and the 95% pointwise confidence intervals

constructed by (4.6) (upper and lower medium curves) of the function components
mα (xα), α = 3 (dashed curve), d1 = 4, d2 = 3.
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model as follows:

MEDV = c00 + c01 × PTRATIO +m1 (RM) +m2 (log(TAX)) +m3 (log(LSTAT)) + ε.

As in Wang and Yang (2009b), the number of interior knots is N = 5.

In Figure 4.9, the univariate nonlinear function estimates (dashed lines) and correspond-

ing simultaneous confidence bands (thin lines) are displayed together with the ”pseudo data

points” (dots) with pseudo response as the backfitted response after subtracting the sum

function of the remaining covariates as in (4.3). The confidence bands are used to test the

linearity of the nonparametric components. In Figures 4.9, 4.10 and 4.11 the straight solid

lines are the least squares regression lines through the pseudo data points. The first figure

confidence band with 0.999999 confidence level does not totally cover the straight regression

line, i.e, the p-value is less than 0.000001. Similarly the linearity of the component func-

tions for log(TAX) and log(LSTAT) are rejected at the significance levels 0.017 and 0.007,

respectively. The estimators ĉ00 and ĉ01 of c00 and c01 are 33.393 and −0.58845 and both

are significant with p-values close to 0. The correlation between the estimated and observed

values of MEDV is 0.89944, much higher than 0.80112 obtained by Wang and Yang (2009b).

This improvement is due to fitting the variable PTRATIO directly as linear with the higher

accuracy of parametric model instead of treating it unnecessarily as a nonparametric vari-

able. In other words, our simpler partially linear additive model (PLAM) fits the housing

data much better than the additive model of Wang and Yang (2009b).
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Figure 4.9: Plots of the estimators for RM for Boston housing data

Note: plots of the least squares regression estimator (solid line), confidence bands (upper
and lower thin lines), the spline estimator (dashed line) and the data (dot).
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Confidence Level = 0.983
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Figure 4.10: Plots of the estimators for log(TAX) for Boston housing data

Note: plots of the least squares regression estimator (solid line), confidence bands (upper
and lower thin lines), the spline estimator (dashed line) and the data (dot).
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Confidence Level = 0.993

0.5 1 1.5 2 2.5 3 3.5
log(LSTAT)

-1
0

0
10

20
30

Y
ha

t3

Figure 4.11: Plots of the estimators for log(LSTAT) for Boston housing data

Note: plots of the least squares regression estimator (solid line), confidence bands (upper
and lower thin lines), the spline estimator (dashed line) and the data (dot).
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4.5 Appendix

Throughout this section, an ≫ bn means lim
n→∞ bn/an = 0, and an ∼ bn means lim

n→∞ bn/an

= c, where c is some nonzero constant.

We state the following assumptions.

A1. Given 1 ≤ α ≤ d2,mα ∈ C(2) [0, 1], while there is a constant 0 < C∞ <∞, such that

m′
β ∈ Lip([0, 1], C∞), ∀1 ≤ β ≤ d2 and β ̸= α.

A2. Vector process {Zt}∞t=−∞ =
{(

XTt ,T
T
t , εt

)}∞
t=−∞

is strictly stationary and ge-

ometrically strongly mixing, that is, its α -mixing coefficient α (k) ≤ K0e
−λ0k, for

K0, λ0 > 0 , where

α (k) = supB∈σ{Zt,t≤0},C∈σ{Zt,t≥k} |P (B ∩ C)− P (B)P (C)| . (4.8)

A3. The noise εi satisfies E
(
εi
∣∣Fi ) = 0, E

(
ε2i

∣∣Fi) = 1, E
(∣∣εi∣∣2+δ ∣∣Fi) < Mδ < +∞

for some δ > 2/3,Mδ > 0, and σ-fields Fi = σ
{(

X
i′ ,Ti′

)
,

i′ ≤ i; ε
i′ , i

′ ≤ i− 1, 1 ≤ i ≤ n
}
. Function σ (x, t) is continuous with

0 < cσ ≤ inf
x∈[0,1]d2 ,t∈Rd1

σ (x, t) ≤ sup
x∈[0,1]d2 ,t∈Rd1

σ (x, t) ≤ Cσ <∞.

A4. The density function f (x) of X and the marginal densities fα (xα) of Xα satisfy

f ∈ C [0, 1]d2 , 0 < cf ≤ inf
x∈[0,1]d2

f (x) ≤ sup
x∈[0,1]d2

f (x) ≤ Cf < ∞, fα ∈

C(1) [0, 1].

A5. There exist constants 0 < cδ ≤ Cδ < +∞, 0 < cQ ≤ CQ < +∞ such that
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cδ ≤ E
(∣∣Tl∣∣2+δ |X = x

)
≤ Cδ, ∀ x ∈ [0, 1]d2, 1 ≤ l ≤ d1.and cQI(d1+1)×(d1+1) ≤

Q (x) ≤ CQI(d1+1)×(d1+1), whereQ (x) = E

{(
1 TT

)T (
1 TT

)
|X = x

}
.

A6. The number of interior knots N = Nn ∼ n1/4 log n, i.e., cNn
1/4 log n ≤ N ≤

CNn
1/4 log n for some positive constants cN , CN .

A7. The kernel function K ∈ Lip([−1, 1], C∞) for C∞ > 0 is bounded, nonnegative,

symmetric, and supported on [−1, 1]. The bandwidth h ∼ n−1/5, i.e., chn
−1/5 ≤

h ≤ Chn
−1/5 for positive constants Ch, ch.

Assumption A1 on the smoothness of the component functions is greatly relaxed and

is close to being the minimal. Assumption A2 is typical in time series literature while

Assumptions A3-A5 are typical in nonparametric smoothing literature, see for instance, Fan

and Gijbels (1996).

For ϕ, φ on [0, 1]d2 × Rd1, define the empirical inner product and empirical norm as

⟨ϕ, φ⟩n = n−1∑n
i=1 ϕ

(
Xi,Ti

)
φ
(
Xi,Ti

)
, ∥ϕ∥2n = n−1∑n

i=1 ϕ
2 (Xi,Ti). If ϕ, φ are

L2-integrable, we define the theoretical inner product and theoretical L2 norm as ⟨ϕ, φ⟩ =

E
{
ϕ
(
Xi,Ti

)
φ
(
Xi,Ti

)}
, ∥ϕ∥2 = E

{
ϕ2
(
Xi,Ti

)}
and denote Enϕ = ⟨ϕ, 1⟩n. ϕ is em-

pirically(theoretically) centered if Enϕ = 0(Eϕ = 0). For theoretical analysis, define the cen-

tered spline basis as bJ,α (xα) = bJ (xα)−
cJ,α

cJ−1,α
bJ−1 (xα) , ∀1 ≤ α ≤ d2, 1 ≤ J ≤ N+1,

where cJ,α = EbJ (Xα) =
∫
bJ (xα) fα (xα) dxα. The standardized basis is

BJ,α (xα) = bJ,α (xα) /
∥∥∥bJ,α∥∥∥ ,∀1 ≤ α ≤ d2, 1 ≤ J ≤ N + 1. (4.9)
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For the proof of Theorem 4.2, define the Hilbert space

H =

{
p (x) =

∑d2
α=1

pα (xα) , Epα (Xα) = 0, E2pα (Xα) <∞
}

of theoretically centered L2 additive functions on [0, 1]d2, while denote by Hn its subspace

spanned by
{
BJ,α (xα) , 1 ≤ α ≤ d2, 1 ≤ J ≤ N + 1

}
. Denote

ProjH Tl = pl (X) = argmin p∈HE
{
Tl − p (X)

}2 , T̃l = Tl − ProjH Tl,

ProjHn Tl = argmin p∈HnE
{
Tl − p (X)

}2 , T̃l,n = Tl − ProjHn Tl,

for 1 ≤ l ≤ d1, where ProjHTl and ProjHn Tl are orthogonal projections of Tl unto

subspaces H and Hn respectively. Denote next in vector form

T̃n =
{
T̃l,n

}
1≤l≤d1

, T̃ =
{
T̃l

}
1≤l≤d1

. (4.10)

The next assumption is needed for the second part of Theorem 4.2.

A8. Functions pl ∈ C [0, 1]d2 , 1 ≤ l ≤ d1 while σ (x, t) ≡ σ0, (x, t) ∈ [0, 1]d2 ×Rd1.

m̂ (x, t) can be expressed in terms of the standardized basis

m̂ (x, t) = ĉ00 +
∑d1

l=1
ĉ0ltl +

∑d2
α=1

∑N+1

J=1
ĉJ,αBJ,α (xα) , (4.11)

where
(
ĉ00, ĉ0l, ĉJ,α

)
1≤l≤d1,1≤J≤N+1,1≤α≤d2

minimize

∑n

i=1

{
Yi − c0 −

∑d1
l=1

clTil −
∑d2

α=1

∑N+1

J=1
cJ,αBJ,α

(
Xiα

)}2
. (4.12)
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While (4.2) is used for statistical implementation, algebraically equivalent (4.11) is for math-

ematical analysis. Pilot estimators of mα (xα) and cT are

m̂α (xα) =
∑N+1

J=1
ĉJ,αB

∗
J,α (xα) , ĉ

T =
{
ĉ00, ĉ0l

}d1
l=1

(4.13)

where B∗
J,α (xα) ≡ BJ,α (xα)−EnBJ,α = BJ,α (xα)− n−1∑n

i=1BJ,α
(
Xiα

)
is the em-

pirical centering of BJ,α (xα). The evaluation of m̂ (x, t) at the n observations results in an

n-dimensional vector
{
m̂
(
Xi,Ti

)}T
1≤i≤n, the projection of Y onto Gn with respect to the

empirical inner product ⟨·, ·⟩n. In general, for any n-dimensional vector Λ =
{
Λi
}T
1≤i≤n, we

definePnΛ (x, t) as the projection ofΛ onto (Gn, ⟨·, ·⟩n), i.e., PnΛ (x, t) = λ̂0+
∑d1
l=1

λ̂ltl+∑d2
α=1

∑N+1
J=1 λ̂J,αBJ,α (xα), with Yi replaced by Λi and coefficients

{
λ̂0, λ̂l, λ̂J,α

}
given

in (4.12). Define the empirically centered additive components as

Pn,αΛ (xα) =
∑N+1
J=1 λ̂J,αB

∗
J,α (xα) , 1 ≤ α ≤ d2, and the linear component as

(
Pn,cΛ

)T ={
λ̂0, λ̂l

}
1≤l≤d1

. Rewrite estimators m̂ (x), m̂α (xα), ĉ defined in (4.11) and (4.13) as

m̂ (x, t) = PnY (x, t) , m̂α (xα) = Pn,αY (xα) , ĉ = Pn,cY. The noiseless and noisy com-

ponents are

m̃ (x, t) = Pnm (x, t) , m̃α (xα) = Pn,αm (xα) , c̃m = Pn,cm,

ε̃ (x, t) = PnE, ε̃α (xα) = Pn,αE (xα) , c̃ε = Pn,cE, (4.14)

for m =
{
m
(
Xi,Ti

)}n
i=1 ,E =

{
σ
(
Xi,Ti

)
εi
}n
i=1. Linearity of Pn, Pn,c, Pn,α, 1 ≤ α ≤

d2, and the relation Y = m+ E imply a crucial decomposition

m̂ (x, t) = m̃ (x, t) + ε̃ (x, t) , m̂α (xα) = m̃α (xα) + ε̃α (xα) , ĉ = c̃m + c̃ε. (4.15)

105



Let ã =
(
ã0, ãl, ãJ,α

)T
1≤l≤d1,1≤J≤N+1,1≤α≤d2

be the minimizer of

∑n

i=1

{
σ
(
Xi,Ti

)
εi − a0 −

∑d1
l=1

alTil −
∑d2

α=1

∑N+1

J=1
aJ,αBJ,α

(
Xiα

)}2
.

(4.16)

Similarly, c̃ =
(
c̃00, c̃0l, c̃J,α

)T
1≤l≤d1,1≤J≤N+1,1≤α≤d2

minimizes

∑n

i=1

{
m
(
Xi,Ti

)
− c0 −

∑d1
l=1

clTil −
∑d2

α=1

∑N+1

J=1
cJ,αBJ,α

(
Xiα

)}2
. (4.17)

Then ε̃ (x, t) = ãTB (x, t) , ã =
(
BTB

)−1
BTE, with matrices

B (x, t) =
{
1, tl, BJ,α (xα)

}T
1≤l≤d1,1≤J≤N+1,1≤α≤d2

,B =
{
B
(
Xi,Ti

)}T
1≤i≤n ,

(4.18)

and ã, the solution of (4.16), equals to


1 EnTl EnBJ,α(
EnTl′

)T ⟨
T
l′ , Tl

⟩
n

⟨
T
l′ , BJ,α

⟩
n(

EnBJ ′,α′
)T ⟨

B
J ′,α′ , Tl

⟩
n

⟨
B
J ′,α′ , BJ,α

⟩
n



−1

1≤l,l′≤d1,1≤α,α′≤d2,
1≤J,J ′≤N+1

×


n−1∑n

i=1 σ
(
Xi,Ti

)
εi

n−1∑n
i=1 Tilσ

(
Xi,Ti

)
εi

n−1∑n
i=1BJ,α

(
Xiα

)
σ
(
Xi,Ti

)
εi


1≤l≤d1,1≤J≤N+1,1≤α≤d2

(4.19)

Bernstein inequality below under geometric α-mixing is used in many proofs.
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Lemma 4.1. [Theorem 1.4, page 31 of Bosq (1998)] Let {ξt, t ∈ Z} be a zero mean real

valued α-mixing process, Sn =
∑n
t=1 ξt. Suppose there exists c > 0 such that for t =

1, ..., n, k = 3, 4, ..., E |ξt|k ≤ ck−2k!Eξ2t < +∞ (Cramér’s condition) then for n > 1,

integer q ∈ [1, n/2], ε > 0 and k ≥ 3

P (|Sn| ≥ nε) ≤ a1 exp

(
− qε2

25m2
2 + 5cε

)
+ a2 (k)α

([
n

q + 1

])2k/(2k+1)
,

where α(·) is the α-mixing coefficient defined in (4.8) and

a1 = 2
n

q
+ 2

(
1 +

ε2

25m2
2 + 5cε

)
, a2 (k) = 11n

1 +
5m

2k/(2k+1)
k

ε

 ,

with mr = max1≤i≤n ∥ξt∥r, r ≥ 2.

Lemma 4.2. Under Assumptions A2, A4, A6, cfH/2 ≤ cJ,α ≤ CfH and (i) ∃ con-

stants c0 (f) , C0(f) depending on fα (xα) , 1 ≤ α ≤ d2, such that c0 (f)H ≤
∥∥∥bJ,α∥∥∥2 ≤

C0(f)H. (ii) uniformly for 1 ≤ J, J ′ ≤ N + 1, 1 ≤ α, α′ ≤ d2, E
∣∣∣BJ,α (Xα)

∣∣∣ ≤ CH1/2,

E
∣∣∣BJ,α (Xiα)BJ ′,α′ (Xiα′)∣∣∣2 ≥ cfC

−2
f

> 0, E
∣∣∣BJ,α (Xiα)BJ ′,α′ (Xiα′)∣∣∣k ≤

CkH2−k, k ≥ 1. (iii) uniformly for 1 ≤ J, J ′ ≤ N + 1, 1 ≤ α ≤ d2,

E
{
BJ,α

(
Xiα

)
B
J ′,α

(
Xiα

)}
∼


1 J ′ = J

−1/3
∣∣∣J ′ − J

∣∣∣ = 1

1/6
∣∣∣J ′ − J

∣∣∣ = 2

,

E
∣∣∣BJ,α (Xiα)BJ ′,α (Xiα)∣∣∣k


≤ CkH1−k

∣∣∣J ′ − J
∣∣∣ ≤ 2

0
∣∣∣J ′ − J

∣∣∣ > 2

, k ≥ 1.
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Lemma 4.3. Under Assumptions A2, A4, A6 and A7, denote

ωJ,α
(
Xl, x1

)
= Kh

(
Xl1 − x1

)
BJ,α

(
Xlα

)
, µJ,α (x1) = EωJ,α

(
Xl, x1

)
, (4.20)

as n→ ∞, supx1∈[0,1]
sup1≤α≤d2,1≤J≤N+1

∣∣∣µJ,α (x1)
∣∣∣ = O

(√
H
)
.

Lemma 4.4. Under Assumptions A2, A4, A6 and A7, as n→ ∞,

sup
x1∈[0,1]

sup
1≤α≤d2,1≤J≤N+1

∣∣∣n−1
∑n

l=1

{
ωJ,α

(
Xl, x1

)
− µJ,α (x1)

}∣∣∣ = Op

{
log n/

√
nh
}
,

where ωJ,α
(
Xl, x1

)
and µJ,α (x1) are given in (4.20).

Lemma 4.5. Under Assumptions A2, A4-A6, as n→ ∞,

An,1 = supJ,α

∣∣∣EnBJ,α∣∣∣ = Op

(
n−1/2 log n

)
, (4.21)

An,2 = sup
J,J ′,α

∣∣∣⟨BJ,α,BJ ′,α⟩n −
⟨
BJ,α,BJ ′,α

⟩∣∣∣ = Op

{
(nH)−1/2 log n

}
, (4.22)

An,3 = sup
α ̸=α′

∣∣∣⟨BJ,α,BJ ′,α′⟩n −
⟨
BJ,α,BJ ′,α′

⟩∣∣∣ = Op

(
n−1/2 log n

)
, (4.23)

An,4 = supl,J,α

∣∣∣⟨Tl, BJ,α⟩n −
⟨
Tl, BJ,α

⟩∣∣∣ = Op

(
n−1/2 log n

)
. (4.24)

Lemma 4.6. Under Assumptions A2, A4-A7, denote

ζl
(
Xi1, Til, x1

)
= Kh

(
Xi1 − x1

)
Til, µl (x1) = Eζl

(
Xi1, Til, x1

)
, (4.25)

as n→ ∞, sup1≤l≤d1,x1∈[0,1]
∣∣µl (x1)∣∣ = O (1), while

sup1≤l≤d1,x1∈[0,1]
∣∣∣n−1

∑n

i=1

{
ζl
(
Xi1, Til, x1

)
− µl (x1)

}∣∣∣ = Op

{
n−1/2h−1/2 log n

}
.
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For proofs of Lemmas 4.2-4.6, see Ma and Yang (2011b). Let

(
v(
J ′,α′

)
,(J,α)

)
=⟨

BJ ′,α′ ,

BJ,α

⟩
,
(
v
l′,l
)
=
⟨
T
l′ , Tl

⟩
,

(
v
l′,(J,α)

)
=
⟨
T
l′,BJ,α

⟩
,

(
v(
J ′,α′

)
,l

)
=
⟨
B
J ′,α′ , Tl

⟩
. De-

note by V the theoretical inner product matrix of the standardized basis

{
1, tl, BJ,α (xα) , 1 ≤ l ≤ d1, 1 ≤ J ≤ N + 1, 1 ≤ α ≤ d2

}
, i.e.

V =


1 0Td1

0T
d2(N+1)

0d1

(
vl′,l

) (
vl′,(J,α)

)
0d2(N+1)

(
v(
J ′,α′

)
,l

) (
v(
J ′,α′

)
,(J,α)

)


1≤l,l′≤d1,1≤α≤α′≤d2,

1≤J,J ′≤N+1

. (4.26)

Denote by S the inverse matrix of V

S =


1 0Td1

0T
d2(N+1)

0d1

(
sl′,l

) (
sl′,(J,α)

)
0d2(N+1)

(
s(
J ′,α′

)
,l

) (
s(
J ′,α′

)
,(J,α)

)


1≤l,l′≤d1,1≤α≤α′≤d2,

1≤J,J ′≤N+1

. (4.27)

Next, we denote by V̂ the empirical version of V, i.e.

V̂ =


0 EnTl EnBJ,α(
EnTl′

)T ⟨
T
l′ , Tl

⟩
n

⟨
T
l′ , BJ,α

⟩
n(

EnBJ ′,α′
)T ⟨

BJ ′,α′ , Tl
⟩
n

⟨
BJ ′,α′ , BJ,α

⟩
n


1≤l,l′≤d1,1≤α≤α′≤d2,

1≤J,J ′≤N+1

.

(4.28)
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Lemma 4.7. Under Assumptions A2, A4-A7, for matrices V, S and V̂ defined in (4.26),

(4.27), and (4.28) (i) there exist constants CV > cV > 0, CS = c−1
V , cS = C−1

V such that

cV I1+d1+d2(N+1) ≤ V ≤ CV I1+d1+d2(N+1),

cSI1+d1+d2(N+1) ≤ S ≤ CSI1+d1+d2(N+1). (4.29)

(ii) Define An = supg1,g2∈G
∣∣⟨g1, g2⟩n − ⟨g1, g2⟩

∣∣ ∥g1∥−1 ∥g2∥−1, then

An = Op

(
n−1/2H−1 log n

)
. (iii) With probability approaching 1 as n→ ∞,

cV I1+d1+d2(N+1) ≤ V̂ ≤ CV I1+d1+d2(N+1),

cSI1+d1+d2(N+1) ≤ V̂−1 ≤ CSI1+d1+d2(N+1). (4.30)

Lemma 4.8. Under Assumptions A2-A7, as n→ ∞,

∣∣∣n−1
∑n

i=1
σ
(
Xi,Ti

)
εi

∣∣∣+max
J,α

∣∣∣n−1
∑n

i=1
BJ,α

(
Xiα

)
σ
(
Xi,Ti

)
εi

∣∣∣
+max

l

∣∣∣n−1
∑n

i=1
Tilσ

(
Xi,Ti

)
εi

∣∣∣ = Op

(
n−1/2 log n

)
.

For proofs of Lemmas 4.7 and 4.8, see Ma and Yang (2011b).

Corollary 4.2. Under Assumptions A2-A7, as n→ ∞,∥∥∥n−1BTE
∥∥∥ = Op(n

−1/2N1/2 log n),
∥∥∥n−1BTE

∥∥∥∞ = Op(n
−1/2 log n).

Corollary 4.2 follows from Lemma 4.8 directly.

Next we study the difference between m̂SBK (x1) and m̃K,1 (x1) , both given in (4.4).

Denote c =
{
c0l
}d1
l=0

, the decomposition (4.15) implies that m̃K,1 (x1)− m̂SBK (x1) =
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{
ΨTb (x1) + ΨTv (x1) + Ψb (x1) + Ψv (x1)

}
/f̂1(x1), where

ΨTb (x1) = n−1
∑n

i=1
Kh

(
Xi1 − x1

) (
1,TTi

)
(c̃m − c) , (4.31)

ΨTv (x1) = n−1
∑n

i=1
Kh

(
Xi1 − x1

) (
1,TTi

)
c̃ε,

Ψb (x1) = n−1
∑n

i=1
Kh

(
Xi1 − x1

)∑d2
α=2

{
m̃α

(
Xiα

)
−mα

(
Xiα

)}
,

Ψv (x1) = n−1
∑n

i=1
Kh

(
Xi1 − x1

)∑d2
α=2

ε̃α
(
Xiα

)
. (4.32)

First we show Ψb (x1) is uniformly of order Op

(
n−1/2

)
for x1 ∈ [0, 1].

Lemma 4.9. Under Assumptions A1, A2, A4-A7, as n→ ∞,

supx1∈[0,1]
∣∣Ψb (x1)∣∣ = Op

(
n−1/2 +H2

)
= Op

(
n−1/2

)
.

Lemma 4.10. Under Assumptions A1, A2 and A6, there exist functions gα ∈ G, 1 ≤ α ≤ d2,

such that as n→ ∞,

∥∥∥∥m̃− g +
∑d2
α=1Engα(Xα)

∥∥∥∥
n
= Op

(
n−1/2 +H2

)
, where g(x, t) =

c00 +
∑d1
l=1

c0ltl +
∑d2
α=1 gα(xα) and m̃ is defined in (4.14).

For proofs of Lemma 4.10 and Lemma 4.9, see Ma and Yang (2011b). Next we show Ψv (x1)

in (4.32) is uniformly of order op

(
n−2/5

)
. For ãJ,α given in (4.19), define an auxiliary

entity

ε̃∗α =
∑N+1

J=1
ãJ,αBJ,α (xα) , (4.33)

The ε̃α (xα) in (4.14) is the empirical centering of ε̃∗2 (x2), i.e.

ε̃α (xα) ≡ ε̃∗α (xα)− n−1
∑n

i=1
ε̃∗α
(
Xiα

)
. (4.34)

111



According to (4.34), we can write Ψv (x1) = Ψ
(2)
v (x1)−Ψ

(1)
v (x1), where

Ψ
(1)
v (x1) = n−1

∑n

l=1
Kh

(
Xl1 − x1

)∑d2
α=2

n−1
∑n

i=1
ε̃∗α
(
Xiα

)
, (4.35)

Ψ
(2)
v (x1) = n−1

∑n

l=1
Kh

(
Xl1 − x1

)∑d2
α=2

ε̃∗α
(
Xlα

)
, (4.36)

for ε̃∗α
(
Xiα

)
in (4.33). By (4.19) and (4.33), Ψ

(2)
v (x1) can be rewritten as

Ψ
(2)
v (x1) = n−1

∑d2
α=2

∑n

l=1

∑N+1

J=1
ãJ,αωJ

(
Xl, x1

)
, (4.37)

for ωJ,α
(
Xl, x1

)
given in (4.20). Ψ

(1)
v (x1) and Ψ

(2)
v (x1) are of order

Op

{
Nn−1 (log n)2

}
and Op

(
n−1/2 log n

)
uniformly, given in Lemmas 4.12 and 4.13. The

next lemma provides the size of ãT ã, where ã is the least square solution defined by (4.16).

Lemma 4.11. Under Assumptions A2-A6, as n→ ∞,

ãT ã = ã20 +
∑d1

l=1
ã2l +

∑d2
α=1

∑N+1

J=1
ã2J,α = Op

{
Nn−1 (log n)2

}
. (4.38)

Proof. By (4.18), (4.19), (4.30), with probability approaching 1 as n→ ∞, ∥ã∥
∥∥∥n−1BTE

∥∥∥ ≥

ãT
(
n−1BTE

)
= ãT V̂ã ≥ cV ∥ã∥2 with Corollary 4.2 imply ∥ã∥2 ≤ c−1

V ∥ã∥
∥∥∥n−1BTE

∥∥∥ =

c−1
V ∥ã∥ ×Op

{
N1/2n−1/2 log n

}
. Thus ∥ã∥ = Op

{
N1/2n−1/2 log n

}
, n→ ∞.

Lemma 4.12. Under Assumptions A2-A7, as n→ ∞, Ψ
(1)
v (x1) in (4.35) satisfies

supx1∈[0,1]

∣∣∣∣Ψ(1)
v (x1)

∣∣∣∣ = Op

{
Nn−1 (log n)2

}
.

For proof, see Ma and Yang (2011b). The vector ã in (4.19) is

ã =
(
V̂
)−1 (

n−1BTE
)
. (4.39)
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Next define theoretical versions â of ã and Ψ̂
(2)
v (x1) of Ψ

(2)
v (x1) in (4.37) as

â= V−1
(
n−1BTE

)
= S

(
n−1BTE

)
, (4.40)

Ψ̂
(2)
v (x1) = n−1

∑n

i=1

∑d2
α=1

∑N+1

J=1
âJ,αωJ,α

(
Xi, x1

)
. (4.41)

Lemma 4.13. Under Assumptions A2-A7, as n→ ∞, Ψ
(2)
v (x1) in (4.36) satisfies

supx1∈[0,1]

∣∣∣∣Ψ(2)
v (x1)

∣∣∣∣ = Op

(
n−1/2 log n

)
= op

(
n−2/5

)
.

Proof. According to (4.39) and (4.40), one has Vâ =
(
V̂
)
ã, which implies

(
V̂ −V

)
ã =

V (â− ã). Using (4.21), (4.22), (4.23), (4.24) one obtains that ∥V (â− ã)∥ =
∥∥∥(V̂ −V

)
ã
∥∥∥

≤ Op

(
n−1/2H−1 log n

)
∥ã∥. According to Lemma 4.11, ∥ã∥ = Op

(
n−1/2N1/2 log n

)
,

so as n→ ∞, ∥V (â− ã)∥ ≤ Op

{
n−1N3/2 (log n)2

}
. By Lemmas 4.7 and 4.11, as n→ ∞,

∥â− ã∥ = Op

{
n−1N3/2 (log n)2

}
, (4.42)

∥â∥ ≤ ∥â− ã∥+ ∥ã∥ = Op

(
n−1/2N1/2 log n

)
. (4.43)

sup
x1∈[0,1]

∣∣∣∣Ψ(2)
v (x1)− Ψ̂

(2)
v (x1)

∣∣∣∣ ≤ sup
x1∈[0,1]

∣∣∣∣∣∣
d2∑
α=2

N+1∑
J=1

(
ãJ,α − âJ,α

)
n−1

n∑
l=1

ωJ
(
Xl, x1

)∣∣∣∣∣∣
=
√
d2 (N + 1)Op

(
n−1H−3/2 log2 n

)
Op

(
H1/2

)
= Op

(
n−1H−3/2 log2 n

)
. (4.44)

Note that

∣∣∣∣Ψ̂(2)
v (x1)

∣∣∣∣ ≤ Q1 (x1) +Q2 (x1), where Q1 (x1) =

∣∣∣∣∣∣
d2∑
α=2

N+1∑
J=1

âJ,αµJ,α (x1)

∣∣∣∣∣∣ ,

Q2 (x1) =

∣∣∣∣∑d2
α=2

∑N+1

J=1
âJ,αn

−1
∑n

i=1

{
ωJ,α

(
Xi, x1

)
− µJ,α (x1)

}∣∣∣∣ .
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Using the discretization idea, we divide interval [0, 1] into Mn ∼ n equally spaced intervals

with disjoint endpoints 0 = x1,0 < · · · < x1,Mn = 1, then supx1∈[0,1]
Q1 (x1) ≤ T1 + T2,

where T1 = max1≤k≤Mn

∣∣∣∣∑d2
α=2

∑N+1
J=1 âJ,αµJ,α

(
x1,k

)∣∣∣∣ , T2 equals to

supx1∈[x1,k−1,x1,k],1≤k≤Mn

∣∣∣∣∑d2
α=2

∑N+1

J=1

{
âJ,αµJ,α (x1)− âJ,αµJ,α

(
x1,k

)}∣∣∣∣ .
âJ,α =

1

n

n∑
i=1

σ
(
Xi,Ti

)
εi


d1∑
l=1

Tils(J,α),l +

d2∑
α′=1

N+1∑
J=1

B
J ′,α′

(
X
iα′
)
s
(J,α),

(
J ′,α′

)
 ,

∑N+1

J=1
âJ,αµJ,α

(
x1,k

)
= n−1

∑
i,l,J

µJ,α

(
x1,k

)
s(J,α),lTilσ

(
Xi,Ti

)
εi

+n−1
∑

i,α′,J,J ′ µJ,α
(
x1,k

)
s
(J,α),

(
J ′,α′

)B
J ′,α′

(
X
iα′
)
σ
(
Xi,Ti

)
εi.

Define nextWα,l = max1≤k≤Mn
∣∣∣n−1∑n

i=1
∑N+1
J=1 µJ,α

(
x1,k

)
s(J,α),lTilσ

(
Xi,Ti

)
εi

∣∣∣ ,
W
α,α′ = max

1≤k≤Mn

∣∣∣∣n−1∑
i
∑
J,J ′ µJ,α

(
x1,k

)
s
(J,α),

(
J ′,α′

)B
J ′,α′

(
X
iα′
)
σ
(
Xi,Ti

)
εi

∣∣∣∣.
So T1 ≤

∑d2
α=1

(∑d1
l=1

Wα,l +
∑d2
α′=1

Wα,α′
)
. supα,l Wα,l is bounded by

supl

∣∣∣n−1
∑n

i=1
Tilσ

(
Xi,Ti

)
εi

∣∣∣max1≤k≤Mn supα,l

∣∣∣∣∑N+1

J=1
µJ,α

(
x1,k

)
s(J,α),l

∣∣∣∣
= Op

(
n−1/2 log n

)
Op (1) = Op

(
n−1/2 log n

)
,

which follows from Lemma 4.8 and Lemma 4.3. Let Dn = nθ0 , (2 + δ)−1 < θ0 < 3/8,

where δ is the same as in Assumption A3. Define

ε−i,D = εiI
(∣∣εi∣∣ ≤ Dn

)
, ε+i,D = εiI

(∣∣εi∣∣ > Dn
)
, ε∗i,D = ε−i,D − E

(
ε−i,D

∣∣Xi,Ti) ,
Ui,k = µα

(
x1,k

)T {
s
(J,α),

(
J ′,α′

)}
1≤J,J ′≤N+1

{
BJ ′,α′(Xiα′)

}T
J ′
σ
(
Xi,Ti

)
ε∗i,D.
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Denote WD
α,α′ = max

1≤k≤Mn

∣∣∣n−1∑n
i=1 Ui,k

∣∣∣ as truncated centered version of W
α,α′ . To

show

∣∣∣∣Wα,α′ −WD
α,α′

∣∣∣∣ = Up

(
n−1/2 log n

)
, note

∣∣∣∣Wα,α′ −WD
α,α′

∣∣∣∣ ≤ Λ1 + Λ2,

Λ1 = max
k

∣∣∣∣∣∣∣∣
1

n

∑
i,J,J

′
µJ,α

(
x1,k

)
s
(J,α),

(
J ′,α′

)B
J ′,α′

(
X
iα′
)
σ
(
Xi,Ti

)
E
(
ε−i,D

∣∣Xi,Ti)
∣∣∣∣∣∣∣∣

Λ2 = max
1≤k≤Mn

∣∣∣∣∣∣∣
1

n

∑
i

∑
J,J ′

µJ,α

(
x1,k

)
s
(J,α),

(
J ′,α′

)B
J ′,α′

(
X
iα′
)
σ
(
Xi,Ti

)
ε+i,D

∣∣∣∣∣∣∣ .

Let µα

(
x1,k

)
=
{
µ1,α

(
x1,k

)
, · · · , µN+1,α

(
x1,k

)}T
, then

Λ1 = max1≤k≤Mn

[
µα

(
x1,k

)T {
s
(J,α),

(
J ′,α′

)}
J,J ′{

n−1
∑n

i=1
BJ ′,α′

(
Xiα′

)
σ
(
Xi,Ti

)
E
(
ε−i,D

∣∣Xi,Ti)}J ′
]

≤ max1≤k≤Mn

[
µα

(
x1,k

)T
µα

(
x1,k

)[{
s
(J,α),

(
J ′,α′

)}
1≤J,J ′≤N+1

×

{
n−1∑n

i=1BJ ′,α′
(
X
iα′
)
σ
(
Xi,Ti

)
E
(
ε−i,D

∣∣Xi,Ti)}J ′
]T [{

s
(J,α),

(
J ′,α′

)}
J,J ′

×
{
n−1∑n

i=1BJ ′,α′
(
X
iα′
)
σ
(
Xi,Ti

)
E
(
ε−i,D

∣∣Xi,Ti)}N+1

J
′
=1

]]1/2
≤

C
′
S maxk


∑
J,J ′

µ2J,α

(
x1,k

) 1

n

∑
i

BJ ′,α′
(
Xiα′

)
σ
(
Xi,Ti

)
E
(
ε−i,D

∣∣Xi,Ti)

2

1/2

.

By Assumption A3,
∣∣∣E (ε−i,D ∣∣Xi,Ti)∣∣∣ = ∣∣∣E (ε+i,D ∣∣Xi,Ti)∣∣∣ ≤ MδD

−(1+δ)
n . By Lemma
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4.1, sup
J ′,α′

∣∣∣n−1∑n
i=1BJ ′,α′

(
X
iα′
)
σ
(
Xi,Ti

)∣∣∣ = Op

(
n−1/2 log n

)
. So

sup
α,α′

Λ1 ≤ CSMδD
−(1+δ)
n N max

k
sup
J,α

∣∣∣µJ,α (x1,k)∣∣∣ sup
J ′,α′

∣∣∣∣∣∣ 1n
n∑
i=1

B
J ′,α′

(
X
iα′
)
σ
(
Xi,Ti

)∣∣∣∣∣∣
= Op

{
Nn−1D

−(1+δ)
n log2 n

}
= Op

{
(log n)2Nn−3/2

}
,

where the last step follows from the choice of Dn. Meanwhile

∞∑
n=1

P (|εn| ≥ Dn) ≤
∞∑
n=1

E |εn|2+δ

D2+δ
n

=
∞∑
n=1

E
(
E |εn|2+δ |Xn,Tn

)
D2+δ
n

≤
∞∑
n=1

Mδ

D2+δ
n

≤ ∞,

since δ > 2/3. By Borel-Cantelli Lemma, for large n, with probability 1,

n−1
∑n

i=1

∑N+1

J ′,J=1
µJ,α

(
x1,k

)
s
(J,α),

(
J ′,α′

)BJ ′,α′ (Xiα′)σ (Xi,Ti) ε+i,D = 0,

sup
α,α′

∣∣∣∣Wα,α′ −WD
α,α′

∣∣∣∣ ≤ sup
α,α′ Λ1 + sup

α,α′ Λ2 = Op

(
(log n)2Nn−3/2

)
. Next we

show that WD
α,α′ = Up

(
n−1/2 log n

)
. The variance of Ui,k is

µα

(
x1,k

)T {
s
(J,α),

(
J ′,α′

)}
J,J ′

var

({
BJ,α′(Xiα′)

}T
1≤J≤N+1

σ
(
Xi,Ti

)
ε∗i,D

)

×
{
s
(J,α),

(
J ′,α′

)}T
1≤J,J ′≤N+1

µα

(
x1,k

)
.

By Assumption A3, c2σ

(
v(
J,α′

)
,
(
J ′,α′

))
1≤J,J ′≤N+1

is bounded by

var

({
B
J,α′(Xiα′)

}T
1≤J≤N+1

σ
(
Xi,Ti

))
≤ C2σ

(
v(
J,α′

)
,
(
J ′,α′

))
1≤J,J ′≤N+1

.
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var
(
Ui,k

)
∼ µα

(
x1,k

)T {
s
(J,α),

(
J ′,α′

)}
1≤J,J ′≤N+1

(
v(
J,α′

)
,
(
J ′,α′

))
1≤J,J ′≤N+1

×
{
s
(J,α),

(
J ′,α′

)}T
1≤J,J ′≤N+1

µα

(
x1,k

)
Vε,D ∼

µα

(
x1,k

)T {
s
(J,α),

(
J ′,α′

)}
J,J ′

{
s
(J,α),

(
J ′,α′

)}T
J,J ′

µα

(
x1,k

)
Vε,D,

where Vε,D = var
{
ε∗i,D

∣∣Xi,Ti}. Let κ(x1,k) =

{
µα

(
x1,k

)T
µα

(
x1,k

)}1/2
,

c
′2
S c

2
σ

{
κ
(
x1,k

)}2
Vε,D ≤ var

(
Ui,k

)
≤ C

′2
S C

2
σ

{
κ
(
x1,k

)}2
Vε,D.

Since E
∣∣∣Ui,k∣∣∣r ≤

{
c0κ

(
x1,k

)
DnH

−1/2
}r−2

r!E
∣∣∣Ui,k∣∣∣2 < +∞, for r ≥ 3,

{
Ui,k

}n
i=1

satisfies the Cramér’s condition with Cramér’s constant

c∗ = c0κ
(
x1,k

)
DnH

−1/2, hence by Lemma 4.1

P


∣∣∣∣∣∣n−1

n∑
l=1

Ui,k

∣∣∣∣∣∣ ≥ ρn

 ≤ a1 exp

(
− qρ2n

25m2
2 + 5c∗ρn

)
+ a2 (3)α

([
n

q + 1

])6/7
,

where m2
2 ∼ κ2

(
x1,k

)
Vε,D, m3 ≤

{
cκ3

(
x1,k

)
H−1/2DnVε,D

}1/3
, ρn = ρ log n/

√
n,

a1 = 2nq + 2

(
1 +

ρ2n
25m2

2+5c∗ρn

)
, a2 (3) = 11n

1 +
5m

6/7
3
ρn

. Similar as in Lemma 4.4,

qρ2n

25m2
2 + 5c∗ρn

≥
cn log n−1

(
ρn−1/2 log n

)2
25c∗ + 5c0κ

(
x1,k

)
DnH

−1/2ρn−1/2 log n
∼ log n, as n→ ∞,
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Taking c0, ρ large enough, one has

P

 1

n

∣∣∣∣∣∣
n∑
i=1

Ui,k

∣∣∣∣∣∣ > ρn−1/2 log n

 ≤ c log n exp
{
−c2ρ

2 log n
}
+ Cn2−6λ0c0/7 ≤ n−3,

for n large enough. Hence
∑∞
n=1 P

(∣∣∣∣WD
α,α′

∣∣∣∣ ≥ ρn−1/2 log n

)
is bounded by

∑∞
n=1

∑Mn
k=1

P
(∣∣∣n−1

∑n

i=1
Ui,k

∣∣∣ ≥ ρn−1/2N1/2 log n
)
≤
∑∞

n=1
Mnn

−3 <∞.

Thus, Borel-Cantelli Lemma entails WD
α,α′ = Up

(
n−1/2 log n

)
, as n→ ∞. Note∣∣∣∣Wα,α′ −WD

α,α′

∣∣∣∣ = Up

(
(log n)2Nn−3/2

)
, then Wα,α′ = Up (log n/

√
n). Thus T1 ≤∑d2

α=1

(∑d1
l=1

Wα,l +
∑d2
α′=1

Wα,α′
)
.

So as n→ ∞, T1 ≤ d1Op

(
n−1/2 log n

)
+ d2

2Op

(
n−1/2 log n

)
= Op

(
n−1/2 log n

)
.

Employing Cauchy-Schwartz inequality and Lipschitz continuity of kernel K, Assumption

A5, Lemma 4.2 (ii) and (4.43) lead to

T2 ≤ d2Op

(
n−1/2N1/2 log n

){∑N+1

J=1
EB2

J,2 (X12)

}1/2 (
h2Mn

)−1
= op

(
n−1/2

)
.

Therefore, supx1∈[0,1]
Q1 (x1) ≤ T1 + T2 = Op

(
n−1/2 log n

)
. Noting that

sup
x1∈[0,1]

Q2 (x1) = Op

(
n−1/2N1/2 (log n) d

1/2
2 N1/2n−1/2h−1/2 log n

)
= op

(
n−1/2

)
,

by Cauchy-Schwartz inequality, (4.43), Lemma 4.4, Assumptions A6 and A7. Thus
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sup
x1∈[0,1]

∣∣∣∣Ψ̂(2)
v (x1)

∣∣∣∣ ≤ sup
x1∈[0,1]

{Q1 (x1) +Q2 (x1)} = Op

(
n−1/2 log n

)
= op

(
n−2/5

)
.

The desired result follows from the above result and (4.44).

Lemma 4.14. Under Assumptions A2-A4, A6 and A7, as n→ ∞,

supx1∈[0,1]
|Ψv (x1)| = Op

(
n−1/2 log n

)
= op

(
n−2/5

)
.

Lemma 4.14 follows from Lemmas 4.12 and 4.13. Next we bound c̃Tm − cT , c̃Tε defined

in (4.17), (4.16). Denote by Ir×d the matrix

(
Ir 0r×d

)
.

Lemma 4.15. Under Assumptions A1, A2, A4-A7, as n→ ∞, ∥c̃m − c∥ = op

(
n−1/2

)
.

Proof. By the result on page 149 of de Boor (2001), ∃ C∞ > 0 such that for mα ∈

C1 [0, 1] with m
′
α ∈ Lip ([0, 1] , C∞) , there is a function gα ∈ G such that Egα (Xα) =

0, ∥gα −mα∥∞ ≤ C∞
∥∥∥∥m′

α

∥∥∥∥H2, 1 ≤ α ≤ d2. Then

c̃m − c = I(1+d1)×{d2(N+1)} ×
(
BTB

)−1
BTm− c

= I(1+d1)×{d2(N+1)}
(
BTB

)−1
BT

{
c0 +

∑d1
l=1

clTil +
∑d2

α=1
gα
(
Xiα

)}
1≤i≤n

− c

+I(1+d1)×{d2(N+1)}
(
BTB

)−1
BT

{∑d2
α=1

mα
(
Xiα

)
−
∑d2

α=1
gα
(
Xiα

)}
1≤i≤n

= I(1+d1)×{d2(N+1)}V̂
−1n−1BT

[∑d2
α=1

{
mα

(
Xiα

)
− gα

(
Xiα

)}]
1≤i≤n

with V̂ defined in (4.28). So by Lemma 4.7, ∥c̃m − c∥2 is bounded with probability ap-

119



proaching 1 by

∥∥∥∥∥V̂−1n−1BT
[∑d2

α=1

{
mα

(
Xiα

)
− gα

(
Xiα

)}]
1≤i≤n

∥∥∥∥∥
2

≤ C2S

∥∥∥∥∥n−1BT
[∑d2

α=1

{
mα

(
Xiα

)
− gα

(
Xiα

)}]
1≤i≤n

∥∥∥∥∥
2

≤ C2S

(∑d2
α=1 ∥gα −mα∥∞

)2
+ C2S

∑d1
l=1

(∑d2
α=1 ∥gα −mα∥∞ n−1∑n

i=1

∣∣Til∣∣)2
+C2S

∑d2
α′=1

∑N+1
J=1

(∑d2
α=1 ∥gα −mα∥∞ n−1∑n

i=1

∣∣∣BJ,α′ (Xiα′)∣∣∣
)

≤ C2S

(∑d2
α=1 ∥gα −mα∥∞

)2{
1 + d1

(
sup1≤l≤d1 n

−1∑n
i=1

∣∣Til∣∣)2
+ (N + 1) d2

(
sup1≤α′≤d2,1≤J≤N+1 n

−1∑n
i=1

∣∣∣BJ,α′ (Xiα′)∣∣∣
)2}

.

sup1≤α′≤d2,1≤J≤N+1 n
−1∑n

i=1

∣∣∣BJ,α′ (Xiα′)∣∣∣ = Oa.s.

(
H1/2

)
,

sup1≤l≤d1 n
−1∑n

i=1

∣∣Til∣∣ = Oa.s. (1), so as n→ ∞,

∥c̃m − c∥2 ∼
[∑d2

α=1 ∥gα −mα∥∞

]2
= Op

(
H4
)
,

Lemma 4.16. Under Assumptions A1-A7, as n→ ∞, ∥c̃ε∥ = Op

(
n−1/2

)
.

Proof. Let (Q1,Q2) = I(1+d1)×{d2(N+1)} (â, ã− â). By (4.40), (4.42), (4.27)

c̃Tε = I(1+d1)×{d2(N+1)}ã = Q1 +Q2, (4.45)

so ∥Q2∥ = Op

{
n−1N3/2 (log n)2

}
, while

Q1 =
(
n−1

∑n

i=1
σ
(
Xi,Ti

)
εi, n

−1
∑n

i=1
ξil′
)T
1≤l′≤d1

(4.46)

in which ξil′ =
{∑

l sl′lTil +
∑
α,J sl′,(J,α)BJ,α

(
Xiα

)}
σ
(
Xi,Ti

)
εi. Clearly Eξil′ = 0

while Eξ2
il′ ≤ C2σE

[{∑
l sl′lTl +

∑
α,J sl′,(J,α)BJ,α (Xα)

}]2
≤ C2σ

(
0, s

l′l, sl′,(J,α)

)
×
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V

(
0, s

l′l, sl′,(J,α)

)T
≤ C2σCV

∥∥∥∥(0, sl′l, sl′,(J,α)
)∥∥∥∥2 ≤ C2σCV C

2
S . It is easily checked

E
(
ξ
il′ξjl′

)
= 0 for i ̸= i′ thus by Markov Inequality, sup1≤l′≤d1

∣∣∣n−1∑n
i=1 ξil′

∣∣∣ =

Op(n
−1/2). Likewise n−1∑n

i=1 σ
(
Xi,Ti

)
εi = Op(n

−1/2). Then, Lemma 4.16 follows

from the above results.

Lemma 4.17. Under Assumptions A1, A2, A4-A7, as n → ∞, supx1∈[0,1]
∣∣ΨTb (x1)∣∣ =

op (1/
√
n) .

For proof, see Ma and Yang (2011b). Define a theoretical version of

ΨTv (x1) = n−1∑n
i=1Kh

(
Xi1 − x1

)(
ã0 +

∑d1
l=1

ãlTil

)
as

Ψ̂Tv (x1) = â0n
−1∑n

i=1Kh
(
Xi1 − x1

)
+
∑d1
l=1

âln
−1∑n

i=1 ζl
(
Xi1, Til, x1

)
.

Lemma 4.18. Under Assumptions A1-A7, as n→ ∞,

supx1∈[0,1]
∣∣ΨTv (x1)∣∣ = Op

{
n−1/2 (log n)4

}
= op

(
n−2/5

)
.

For proof, see Ma and Yang (2011b).

Lemma 4.19. Under Assumptions A1-A6 and A8,
(
s
l′,l
)
= cov

(
T̃n

)−1
and as n → ∞,

cov
(
T̃n

)−1
→ cov

(
T̃
)−1

, where
(
s
l′,l
)
defined in (4.27), T̃n and T̃ defined in (4.10).

Proof.
(
s
l′,l
)
= cov

(
T̃n

)−1
is induced by basic linear algebra. By the result on page 149

of de Boor (2001), there is a constant C∞ > 0 and functions gl (x) ∈ Hn, 1 ≤ α ≤ d2

such that sup1≤l≤d1
∥∥gl − pl

∥∥∞ = o (1). Since ProjHn Tl = ProjHn
(
ProjH Tl

)
, for ∀1 ≤

l ≤ d1 by Hilbert space theory, E
(
ProjHn Tl − ProjH Tl

)2
≤ E

{
gl (X)− ProjH Tl

}2 =

E
{
gl (X)− pl (X)

}2 = o (1), as n→ ∞. Thus cov
(
T̃n

)−1
→ cov

(
T̃
)−1

, as n→ ∞.

Proof of Theorem 4.1. The term ΨTb (x1) in (4.31) has order op(n
−1/2) and other

terms have order op(n
−2/5) by Lemmas 4.17, 4.18, 4.9, 4.14. Standard theory ensures that
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f̂1(x1) = n−1∑n
i=1Kh

(
Xi1 − x1

)
has a positive lower bound. Theorem 4.1 then follows.

2

Proof of Theorem 4.2. The first part of Theorem 4.2 follows from Lemmas 4.15 and 4.16.

By (4.15), (4.45) and Lemma 4.15,
√
n (ĉ− c) =

√
nc̃ε +

√
n (c̃m − c) =

√
n (Q1 +Q2) +

√
n (c̃m − c) =

√
nQ1 + op {1}. It is easily verified E (

√
nQ1) = 0. By (4.46), Lemma 4.19,

var (
√
nQ1) = n× σ20I(1+d1)×{d2(N+1)} var

(
ââT

)
IT
(1+d1)×{d2(N+1)}

= n× n−1σ20I(1+d1)×{d2(N+1)}SI
T
(1+d1)×{d2(N+1)}

=σ20


1 0Td1

0d1

(
sl′,l

)
→ σ20


1 0Td1

0d1
cov

(
T̃
)−1

 , as n→ ∞.

Theorem 4.2 then follows by applying Theorem 1 of Sunklodas (1984). 2
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Chapter 5

Spline Regression in the Presence of

Categorical Predictors

5.1 Background

This chapter is based on Ma, Racine and Yang (2011). Applied researchers must frequently

model relationships involving both continuous and categorical predictors, and a range of non-

parametric kernel regression methods have recently been proposed for such settings. These

developments have extended the reach of kernel smoothing methods beyond the traditional

continuous-only predictor case and have had a marked impact on applied nonparametric

research; see Li and Racine (2007) for examples and an overview. Though kernel methods

hold much appeal for practitioners, many in the applied community continue to resist their

use, often for valid reasons. In particular, nonparametric kernel methods are local in na-

ture, bandwidth selection can be fragile and numerically demanding, interpretation can be

challenging, while imposing constraints on the resulting estimate can be difficult.
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Regression spline methods, on the other hand, are global in nature and involve straightfor-

ward least squares solutions hence unconstrained and constrained estimation is much easier

to handle and faster to compute. Furthermore, their least squares underpinnings render

the methods immediately accessible to those who routinely use least squares approaches. As

such, regression splines provide an immediately accessible and attractive alternative to kernel

methods for the nonparametric estimation of regression models. For excellent overviews of

spline modeling we direct the interested reader to Stone (1985), Stone (1994), Huang (2003),

and Wang and Yang (2009a). For applications of spline approaches, see Huang (1998) for

functional ANOVA models, Huang and Yang (2004), Wang and Yang (2007) and Xue (2009)

for additive models, Wang and Yang (2009a) and Wang (2009) for single-index models, Liu

and Yang (2010) and Xue and Liang (2010) for additive coefficient models, and Ma and

Yang (2011) for jump detection in regression functions. However, just like their traditional

kernel-based continuous-only predictor kin, regression splines are limited by their inability

to handle the presence of categorical predictors without resorting to sample-splitting which

can entail a substantial loss in efficiency. In this chapter we consider a regression spline alter-

native motivated by recent developments in the kernel smoothing of relationships involving

categorical covariates. The proposed spline approach possesses intuitive appeal by produc-

ing a piecewise polynomial, computational expedience as discussed before and theoretical

reliability according to the mean square and uniform convergence rates, and the pointwise

asymptotic distribution results established in this chapter.

The remainder of this chapter proceeds as follows. Section 5.2 outlines the framework

and presents theorems detailing rates of convergence and the asymptotic distribution of the

proposed approach. Section 5.3 considers cross-validatory selection of the spline knot vector
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and kernel bandwidth vector. Section 5.4 examines the finite-sample performance of the

proposed method versus the traditional ‘frequency’ (i.e. ‘sample-splitting’) estimator, the

additive regression spline estimator, and the cross-validated local linear kernel regression

estimator, while proofs are to be found in the appendix.

5.2 Methods and Main Results

In what follows we presume that the reader is interested in the unknown conditional mean

in the following location-scale model,

Y = g (X,Z) + σ (X,Z) ε, (5.1)

where g(·) is an unknown function, X =
(
X1, . . . , Xq

)T is a q-dimensional vector of contin-

uous predictors, and Z = (Z1, . . . , Zr)
T is an r-dimensional vector of categorical predictors.

Letting z = (zs)
r
s=1, we assume that zs takes cs different values in Ds ≡ {0, 1, . . . , cs − 1},

s = 1, . . . , r, and let cs be a finite positive constant. Let
(
Yi,X

T
i ,Z

T
i

)n
i=1

be an i.i.d copy

of
(
Y,XT,ZT

)
. Assume for 1 ≤ l ≤ q, each Xl is distributed on a compact interval

[
al, bl

]
,

and without loss of generality, we take all intervals
[
al, bl

]
= [0, 1].

In order to handle the presence of categorical predictors, we define

l (Zs, zs, λs) =


1,when Zs = zs

λs, otherwise.

,

L (Z, z,λ) =
r∏
s=1

l (Zs, zs, λs) =
r∏
s=1

λ
1(Zs ̸=zs)
s , (5.2)
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where l(·) is a variant of Aitchison and Aitken (1976) univariate categorical kernel function,

L(·) is a product categorical kernel function, and λ = (λ1, λ2, . . . , λr)
T is the vector of

bandwidths for each of the categorical predictors. We use the tensor product splines intro-

duced in Section 1.4 of Chapter 1. Let B =
[
{B (X1) , . . . ,B (Xn)}T

]
n×Kn

, where B (x) is

defined in (1.3). Then g (x, z) can be approximated by B (x)T β (z), where β (z) is a Kn× 1

vector. We estimate β (z) by minimizing the following weighted least squares criterion,

β̂ (z) = arg min
β(z)∈RKn

n∑
i=1

{
Yi − B

(
Xi
)T β (z)}2 L (Zi, z,λ) .

Let Lz = diag {L (Z1, z,λ) , . . . , L (Zn, z,λ)} be a diagonal matrix with L
(
Zi, z,λ

)
,

1 ≤ i ≤ n as the diagonal entries. Then β̂ (z) can be written as

β̂ (z) =
(
n−1BTLzB

)−1 (
n−1BTLzY

)
, (5.3)

where Y =(Y1, . . . , Yn)
T. g (x, z) is estimated by ĝ (x, z) = B (x)T β̂ (z).

Given any z ∈D, for any µ ∈ (0, 1], we denote by C0,µ [0, 1]q the space of order µ Hölder

continuous functions on [0, 1]q, i.e.,

C0,µ [0, 1]q =

ϕ : ∥ϕ∥0,µ,z = sup
x̸=x′,x,x′∈[0,1]q

∣∣∣ϕ(x, z)− ϕ
(
x′, z

)∣∣∣∥∥x− x′
∥∥µ
2

< +∞


in which ∥x∥2 =

(∑q
l=1

x2l

)1/2
is the Euclidean norm of x , and ∥ϕ∥0,µ,z is the C0,µ

-norm of ϕ. Let C [0, 1]q be the space of continuous functions on [0, 1]q. Given a q-tuple

α =
(
α1, . . . , αq

)
of nonnegative integers, let [α] =α1 + · · · + αq and let Dα denote the

differential operator defined by Dα = ∂[α]

∂x
α1
1 ···∂x

αq
q

. For positive numbers an and bn,
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n ≥ 1, let an ≍ bn mean that limn→∞ an/bn = c, where c is some nonzero constant. The

assumptions employed for the asymptotic results are listed below:

(A1) For any given z ∈D, the regression function satisfies Dαg ∈ C0,1 [0, 1]q , for all α

with [α] = p− 1 and 1 ≤ p ≤ min
(
m1, . . . ,mq

)
.

(A2) The marginal density f (x) of X satisfies f (x) ∈ C [0, 1]q and f(x) ∈
[
cf , Cf

]
for constants 0 < cf ≤ Cf < ∞. There exists a constant cP > 0, such that

P (Z = z |X) ≥ cP for all z ∈D.

(A3) The noise ε satisfies E (ε |X,Z) = 0, E
(
ε2 |X,Z

)
= 1. There exists a positive value

δ > 0 and finite positive Mδ such that supx∈[0,1]q,z∈D E
(
|ε|2+δ |X = x,Z = z

)
<

Mδ and E
(
|ε|2+δ

)
< Mδ. The standard deviation function σ (x, z) is continuous

on [0, 1]q × D for D =D1 × · · · × Dr and 0 < cσ ≤ infx∈[0,1]q,z∈D σ (x, z) ≤

supx∈[0,1]q,z∈D σ (x, z) ≤ Cσ <∞.

(A4) The number of interior knots Nl, 1 ≤ l ≤ q satisfy as n → ∞, max1≤l≤q
(
N−1
l

)
=

o
{
n−1/(2p+q)

}
,
∏q
l=1

Nl = o
{
n (log n)−1

}
, and the bandwidths λs, 1 ≤ s ≤ r

satisfy as n→ ∞,
∑r
s=1 λs = o

{(
n−1∏q

l=1
Nl

)1/2}
.

Theorem 5.1. Under assumptions (A1)-(A4), as n→ ∞,

sup
x∈[0,1]q,z∈D

|ĝ (x, z)− g (x, z)| = Oa.s.

 q∑
l=1

h
p
l
+

r∑
s=1

λs +

{
1

n

(∏q

l=1
hl

)−1
log n

}1/2 .
Theorem 5.2. Under assumptions (A1)-(A4), for σ̂2n (x, z) in (5.14), as n→ ∞,

σ̂−1
n (x, z) {ĝ (x, z)− g (x, z)} −→ N (0, 1). For any given (x, z) ∈ [0, 1]q ×D, c∗σn−1 ×(∏q
l=1

hl

)−1
≤ σ̂2n (x, z) ≤ C∗σn−1

(∏q
l=1

hl

)−1
, for some constants 0 < c∗σ < C∗σ <∞.
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Proofs of these theorems are presented in the appendix. Having outlined the theoretical

underpinnings of the proposed method, we now consider an illustrative simulated example

that demonstrates how smoothing the categorical predictors in the manner prescribed above

impacts the resulting estimator ĝ(x, z).

5.3 Cross-Validated Choice of N and λ

Cross-validation Stone (1977) has a rich pedigree in the regression spline arena and has

been used for decades to choose the appropriate number of interior knots and is the basis for

Friedman (1991) multivariate adaptive regression spline (MARS) methodology among others;

see Wahba (199) for an overview in the spline context. It has also been used extensively for

bandwidth selection for kernel estimators such as the local linear kernel estimator proposed

by Li and Racine (2004) that appears in the simulations in Section 5.4 (see also Racine

and Li (2004) for the local constant counterpart). Following in this tradition we choose the

number of interior knots (i.e. the vector (N)) and smoothing parameters (i.e. the bandwidth

vector λ) by minimizing the cross-validation function defined by

CV (N, λ) = n−1
n∑
i=1

(Yi −Bm(Xi)
T β̂−i(Zi))

2, (5.4)

where β̂−i(Zi) denotes the leave-one-out estimate of β.

To illustrate the behavior of the data-driven cross-validated selection of N and λ, we

consider two simple data generating processes (DGPs) and plot the resulting cross-validated

regression estimate based on the popular cubic spline basis. For each figure we regress Yi on

Xi and Zi using the proposed method. Figure 5.1 presents four simulated data sets and the
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cross-validated values of N and λ (maximum N is 15, n = 500, λ ∈ [0, 1]).

Figure 5.1: Example with n = 500 and a variety of DGPs in Chapter 5

Note: for the lower left DGP there is no difference in the function when Z = 0 versus
Z = 1 and cross-validation ought to select λ = 1 (N the number of interior knots, λ the
bandwidth).

Figure 5.1 illustrates how the cross-validated choices of N and λ differ depending on the

underlying DGP. For instance, the plot on the upper left is one for which Yi = cos(πXi)+εi

if Zi = 0 and Yi = 1 + cos(πXi) + εi if Zi = 1. It is evident that N ≈ 0 and λ ≈ 0.0012

is appropriate here. The figure on the upper right is one for which Yi = cos(πXi) + εi
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regardless of the value taken on by Zi. Those on the lower left and right are similar but use

cos(4πXi) instead. For both the lower and upper figures on the right, N ≈ 0 and N ≈ 3

appear to be appropriate while λ ≈ 1 and λ ≈ 1 are also appropriate since Zi is independent

of Yi. These simple examples serve to illustrate how cross-validation is delivering values of

N and λ that are appropriate for the DGP at hand.

Before proceeding, a few words on the numerical optimization of (5.4) are in order.

Search takes place over N1, . . . , Nq and λ1, . . . , λr where the λ are continuous lying in

[0, 1] and the N are integers. Clearly this is a mixed integer combinatorial optimization

procedure which would render exhaustive search infeasible when facing a non-trivial number

of predictors. However, in settings such as these one could leverage recent advances in mixed

integer search algorithms which is the avenue we pursue in the Monte Carlo simulations

reported below. In particular, we adopt the ‘Nonsmooth Optimization by Mesh Adaptive

Direct Search’ (NOMAD) approach (Abramson, Audet, Couture, Dennis Jr., and Le Digabel

(2011)). Given that the objective function can be trivially computed for large sample sizes

as it involves nothing more than computing the hat matrix for weighted least squares, it

turns out that the computational burden is in fact nowhere near as costly as, say, cross-

validated kernel regression for moderate to large data sets. As such, the proposed approach

constitutes a computationally attractive alternative to multivariate cross-validated kernel

regression. In addition, in the next section we shall also see that the proposed approach

constitutes a statistically attractive alternative as well, at least from the perspective of

finite-sample square error loss.
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5.4 Monte Carlo Simulations

In this section we consider a modest Monte Carlo experiment designed to assess the finite-

sample performance of the proposed method. We consider two DGPs with q = 2 continuous

predictors and r = 2 categorical predictors given by

DGP-M: Yi = cos(2πXi1)× sin(2πXi2) + (Zi1 + Zi2)/10 + εi,

DGP-A: Yi = cos(2πXi1) + sin(2πXi2) + (Zi1 + Zi2)/10 + εi, (5.5)

where the continuous predictors are drawn from the uniform (Xj ∼ U [0, 1], j = 1, 2), the

categorical predictors (Zj , j = 1, 2) are drawn from the rectangular distribution with equal

probability (zs ∈ {0, 1, . . . , cs − 1} where cs is the number of categorical outcomes, cs ≥ 2,

s = 1, 2), and ε ∼ N(0, σ2) with σ = 0.1. For what follows we set cs = c, s = 1, 2. Observe

that DGP-M is multiplicative in the continuous components while DGP-A is additive.

We draw M = 1, 000 Monte Carlo replications and for each replication we compute the

cross-validated frequency estimator (i.e. that based only on the (Y,X) pairs lying in each

‘cell’ defined by Z), the proposed cross-validated categorical regression spline estimator, the

cross-validated additive categorical regression spline estimator Ma and Racine (2011) and

the cross-validated local linear kernel estimator that is often used to model continuous and

categorical predictors in a manner similar to that undertaken here (note that the local linear

kernel estimator is minimax efficient and has the best boundary bias correction properties

of the class of kernel regression estimators; see Li and Racine (2004) for details). For the

regression spline estimators we set the spline degree vector equal to (3, 3) (a popular choice)

and cross-validate the number of knots vector (N1, N2) and the bandwidth vector (λ1, λ2).
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We then compute the MSE of each estimator based upon (5.5) for each replication and report

the relative median MSE over all M replications in Table 5.1. Table 5.2 reports a summary

of the smoothing parameters chosen by cross-validation.

Table 5.1: Relative median MSE in Chapter 5

DGP-M: Multiplicative Specification
n c Frequency Additive Kernel
500 2 0.591 0.008 0.487
500 3 0.572 0.014 0.618
500 4 0.519 0.020 0.718
1000 2 0.745 0.004 0.403
1000 3 0.591 0.008 0.494
1000 4 0.609 0.013 0.585
1500 2 0.815 0.003 0.359
1500 3 0.636 0.006 0.446
1500 4 0.626 0.010 0.518
2000 2 0.838 0.002 0.337
2000 3 0.722 0.005 0.408
2000 4 0.628 0.008 0.480

DGP-A: Additive Specification
n c Frequency Additive Kernel
500 2 0.554 2.028 0.489
500 3 0.488 1.939 0.593
500 4 0.434 1.788 0.702
1000 2 0.776 2.072 0.417
1000 3 0.518 2.096 0.494
1000 4 0.523 2.072 0.571
1500 2 0.822 2.053 0.381
1500 3 0.660 2.119 0.446
1500 4 0.520 2.176 0.514
2000 2 0.852 2.087 0.368
2000 3 0.754 2.143 0.418
2000 4 0.572 2.226 0.478

Note: Relative median MSE of the proposed proposed spline regression estimator versus
the frequency regression spline, additive regression spline, and local linear kernel regression
estimator. Numbers less than one indicate superior performance of the proposed spline
estimator. c denotes the number of outcomes for the discrete predictors, n the sample size.

Table 5.1 illustrates how, for a given sample size, the relative performance of the proposed

approach that smooths the categorical predictors versus the frequency approach that breaks

the data into c1×c2 = (4, 9, 16) subsets improves as c increases, as expected (each categorical

predictor takes on c1 = c2 = c = (2, 3, 4) values). Furthermore, for a given c, as n increases

the proposed estimator approaches the frequency estimator since λ → 0 as n → ∞. Table

5.1 further illustrates how the proposed cross-validated method dominates the popular local

linear kernel estimator for all sample sizes and values of c considered.

Often additive spline models are recommended in applied settings due to the curse of
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dimensionality (the property that the multiplicative tensor regression spline has a rate of

convergence that deteriorates with the number of continuous predictors, q). Observe, how-

ever, that even in small sample settings such as n = 500, if the additive model is used

when additivity is not present, the square error properties of the additive regression spline

model can be orders of magnitude worse than the multiplicative tensor regression spline

model (the tensor model has roughly 1/100 the MSE of the additive model for DGP-M).

Naturally, if additivity is appropriate the additive model that incorporates this information

will have better finite-sample properties (the tensor model has roughly 2 times the MSE of

the additive model for DGP-A, the additive DGP). Simulations not reported here for space

considerations indicate that the finite-sample mean square error improvement over the ker-

nel regression estimator holds a) whether or not there exist categorical predictors, and b) in

higher-dimension settings than those reported here.

Table 5.2 reveals how the cross-validated bandwidths tend to zero as n increases. These

findings are consistent with the theoretical properties detailed in the appendix.

In the above simulations the tensor-based multivariate regression spline approach dom-

inates the popular local linear kernel regression approach for the range of sample sizes and

number of predictors considered. However, we caution the reader that this is not guaranteed

to always be the case. The dimension of the tensor spline basis grows exponentially with

the number of continuous predictors for a given order/knot combination for each predictor.

Thus, for a fixed sample size n, as the number of continuous predictors q increases degrees

of freedom will quickly fall and the square error properties of the resulting estimator will

naturally deteriorate. So, in small n large q low degrees of freedom settings one could readily

construct instances in which the kernel regression approach will display better finite-sample
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Table 5.2: Median values for smoothing parameters in Chapter 5

DGP-M: Multiplicative Specification
n c N1 N2 λ1 λ2
500 2 2 3 0.16 0.16
500 3 2 3 0.11 0.11
500 4 2 1 0.07 0.08
1000 2 2 3 0.10 0.10
1000 3 2 3 0.07 0.07
1000 4 2 3 0.05 0.05
1500 2 2 3 0.07 0.07
1500 3 2 3 0.05 0.05
1500 4 2 3 0.04 0.04
2000 2 2 3 0.06 0.06
2000 3 2 3 0.04 0.04
2000 4 2 3 0.03 0.03

DGP-A: Additive Specification
n c N1 N2 λ1 λ2
500 2 2 3 0.16 0.16
500 3 2 3 0.11 0.11
500 4 2 3 0.09 0.09
1000 2 2 3 0.10 0.10
1000 3 2 3 0.07 0.07
1000 4 2 3 0.05 0.05
1500 2 2 3 0.07 0.07
1500 3 2 3 0.05 0.05
1500 4 2 3 0.04 0.04
2000 2 2 3 0.06 0.06
2000 3 2 3 0.04 0.04
2000 4 2 3 0.03 0.03

Note: Median values for the number of interior knots and bandwidths for the proposed
spline regression estimator. c = c1 = c2 denotes the number of outcomes for the discrete
predictors, n the sample size, Nj the number of interior knots for continuous predictor Xj ,
j = 1, 2, and λj the bandwidth for continuous predictor Zj , j = 1, 2.

behavior than the regression spline approach. We therefore offer the following advice for the

sound practical application of the methods proposed herein:

1. The proposed methods are best suited to settings in which q is not overly large and n

not overly small.

Our experience shows that for a range of DGPs the regression spline outperforms kernel

regression when n ≥ 500 and q ≤ 5.

One practical advantage is the reduced computational burden of cross-validation for

regression splines versus their kernel counterpart, and in large sample settings (say,

n ≥ 10, 000) one can push the dimension of q much higher than that considered here.

2. Of course, when the dimension of the multivariate tensor spline becomes a practical

barrier to their sound application, one can always resort to additive spline models; see
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Ma and Racine (2011) for details. The drawback of the additive spline approach is

that if the DGP is non-additive, the inefficiency of the additive spline approach can be

much worse than the multivariate kernel approach as clearly demonstrated above. Of

course, it is a simple matter to compare the value of the cross-validation function for

each of the tensor-based, additive-based, and kernel-based cross-validated approaches

and it is perfectly sensible to use this as a guide in applied settings. But our experience

is that the tensor-based multivariate regression spline will indeed be competitive and

ought to be part of every practitioners toolkit.

In summary, the simulations outlined above indicate that the proposed method is capable

of outperforming the frequency estimator that breaks the sample into subsets, while it pro-

vides a compelling alternative to kernel methods when faced with a mix of categorical and

continuous predictors and to additive regression spline models for general nonlinear DGPs

for which additivity is not fully present.

5.5 Concluding Remarks

Applied researchers frequently must model relationships containing categorical predictors,

yet may require nonparametric estimators of, say, regression functions. The traditional ker-

nel and spline estimators break the data into subsets defined by the categorical predictors

and then model the resulting relationship involving continuous predictors only. Though

consistent, these approaches are acknowledged to be inefficient. In this chapter we provide

an approach that combines regression splines with categorical kernel functions that is capa-

ble of overcoming the efficiency losses present in the traditional sample-splitting approach.

Furthermore, the proposed approach constitutes an attractive alternative to cross-validated
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kernel estimators that admit categorical predictors. Theoretical underpinnings are provided

and simulations are undertaken to assess the finite-sample performance of the proposed

method. We hope that these methods are of interest to those modelling regression functions

nonparametrically when faced with both continuous and categorical predictors.

5.6 Appendix

For any vector ζ = (ζ1, . . . , ζs) ∈ Rs, denote the norm ∥ζ∥r = (|ζ1|r + · · ·+ |ζs|r)1/r , 1 ≤

r < +∞, ∥ζ∥∞ = max (|ζ1| , . . . , |ζs|). For any functions ϕ, φ, define the empirical in-

ner product and norm as ⟨ϕ, φ⟩n,Lz = n−1∑n
i=1 ϕ

(
Xi
)
φ
(
Xi
)
L
(
Zi, z,λ

)
, ∥ϕ∥2n,Lz =

n−1∑n
i=1 ϕ

2 (Xi)L (Zi, z,λ). If the functions ϕ, φ are L2-integrable, we define the theo-

retical inner product and the corresponding norm as ⟨ϕ, φ⟩Lz = E {ϕ (X)φ (X)L (Z, z,λ)},

∥ϕ∥2Lz = E
{
ϕ2 (X)L (Z, z,λ)

}
. We denote by the same letters c, C, any positive con-

stants without distinction. For any s × s symmetric matrix A, denote its Lr norm as

∥A∥r = maxζ∈Rs,ζ ̸=0 ∥Aζ∥r ∥ζ∥
−1
r . Let ∥A∥∞ = max1≤i≤s

∑s
j=1

∣∣∣Aij∣∣∣. Let Is be

the s× s identity matrix.

β̂ (z) can be decomposed into β̂g (z) and β̂ε (z), such that β̂ (z) = β̂g (z) + β̂ε (z), and

β̂g (z) =
(
n−1BTLzB

)−1 (
n−1BTLzg

)
, β̂ε (z) =

(
n−1BTLzB

)−1 (
n−1BTLzE

)
,

(5.6)

where g = {g (X1,Z1) , . . . , g (Xn,Zn)}T , E = {σ (X1,Zn) ε1, . . . ,σ (Xn,Zn) εn}T. Then

ĝ (x, z) = ĝg (x, z) + ĝε (x, z), in which

ĝg (x, z) = B (x)T β̂g (z) , ĝε (x, z) = B (x)T β̂ε (z) . (5.7)
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Next we cite a result in the Appendix of Huang (2003).

Lemma 5.1. Under assumptions (A2), for any α ∈RKn, there exist constants 0 < cB <

CB <∞ that do not depend on n, such that for any z ∈ D

cB
(∏q

l=1
hl

)
∥α∥22 ≤ E

[{
αTB (X)

}2]
≤ CB

(∏q

l=1
hl

)
∥α∥22 .

Since

E
{
Lk (Z, z,λ) |X

}
= E


r∏
s=1

λ
k(Zs ̸=zs)
s |X

 ≥ P (Z = z |X ) ≥ cp > 0,

E
{
Lk (Z, z, λ) |X

}
≤ 1, (5.8)

for any integer k ≥ 1. Thus, for CB = CB and cB = cpcB, one has

∥∥∥αTB
∥∥∥2Lz ≤ E

[{
αTB (X)

}2]
≤ CB

(∏q

l=1
hl

)
∥α∥22 ,∥∥∥αTB

∥∥∥2Lz ≥ cpE

[{
αTB (X)

}2]
≥ cB

(∏q

l=1
hl

)
∥α∥22 . (5.9)

Lemma 5.2. Under assumptions (A2) and (A4), as n→ ∞ ,

max
z∈D

max
j1,...,jq,j

′
1,...j

′
q

∣∣∣∣∣
⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
n,Lz

−
⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Lz

∣∣∣∣∣
=Oa.s.

[{
n−1

(∏q

l=1
hl

)
log n

}1/2]
.

Proof. Let ζ
j1,...,jq,j

′
1,...,j

′
q,i

= Bj1,...,jq
(
Xi
)
B
j′1,...,j

′
q

(
Xi
)
L
(
Zi, z,λ

)
−

E

{
Bj1,...,jq

(
Xi
)
B
j′1,...,j

′
q

(
Xi
)
L
(
Zi, z,λ

)}
. When

∣∣∣jl − j′l
∣∣∣ ≤ ml − 1 for all 1 ≤ l ≤ q,
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by the properties of the B-spline basis, there exist constants 0 < cB,k < CB,k < ∞ and

0 < c′B < C′B < ∞, such that cB,k

(∏q
l=1

hl

)
≤ E

∣∣∣∣Bj1,...,jq (Xi)Bj′1,...,j′q (Xi)
∣∣∣∣k ≤

CB,k

(∏q
l=1

hl

)
and c′B

(∏q
l=1

hl

)k
≤
∣∣∣∣E{Bj1,...,jq (Xi)Bj′1,...,j′q (Xi)

}∣∣∣∣k ≤

C′B
(∏q

l=1
hl

)k
, thus by (5.8),

Eζ2
j1,...,jq,j

′
1,...,j

′
q,i

≥ cpE

{
B2j1,...,jq

(
Xi
)
B2
j′1,...,j

′
q

(
Xi
)}

−
[
E

{
Bj1,...,jq

(
Xi
)
B
j′1,...,j

′
q

(
Xi
)}]2

≥ cpcB,2

(∏q

l=1
hl

)
− C′B

(∏q

l=1
hl

)2
≥ c

ζ2

(∏q

l=1
hl

)
,

Eζ2
j1,...,jq,j

′
1,...,j

′
q,i

≤ E

{
B2j1,...,jq

(
Xi
)
B2
j′1,...,j

′
q

(
Xi
)}

≤ CB,2

(∏q

l=1
hl

)
,

E

∣∣∣∣ζj1,...,jq,j′1,...,j′q,i
∣∣∣∣k ≤ 2k−1

[
E

∣∣∣∣Bj1,...,jq (Xi)Bj′1,...,j′q (Xi)L (Zi, z, λ)
∣∣∣∣k

+

∣∣∣∣E {Bj1,...,jq (Xi)Bj′1,...,j′q (Xi)L (Zi, z, λ)
}∣∣∣∣k

]

≤ 2k−1
(
CB,k

(∏q

l=1
hl

)
+ C′B

(∏q

l=1
hl

)k)
≤ c

ζk

(∏q

l=1
hl

)
.

There exists a constant c = c
ζk
c−1
ζ2

, such thatE

∣∣∣∣ζj1,...,jq,j′1,...,j′q,i
∣∣∣∣k ≤ ck!Eζ2

j1,...,jq,j
′
1,...,j

′
q,i

<∞, for k ≥ 3. Then by Bernstein’s inequality (p.24, Theorem 1.2, BOSQ(1998)),

P

(
n−1

∣∣∣∣∑n

i=1
ζ
j1,...,jq,j

′
1,...,j

′
q,i

∣∣∣∣ ≥ {c′n−1
(∏q

l=1
hl

)
log n

}1/2)
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≤ 2 exp

−
c′n
(∏q

l=1
hl

)
log n

4CB,2n
(∏q

l=1
hl

)
+ 2c

{
c′n
(∏q

l=1
hl

)
log n

}1/2


= 2n
−c′
(
4CB,2

)−1

≤ 2n−4, for any c′ ≥ 16CB,2,

which implies
∑∞
n=1 P

[
maxz∈Dmax

j1,...,jq,j
′
1,...,j

′
q

∣∣∣∣n−1∑n
i=1 ζj1,...,jq,j

′
1,...,j

′
q,i

∣∣∣∣
≥
{
c′n−1

(∏q

l=1
hl

)
log n

}1/2]
≤ 2

∑∞
n=1

(
max

1≤s≤r
cs

)r
K2
nn

−4 <∞.

Thus, the Borel-Cantelli Lemma entails that

max
z∈D

max
j1,...,jq,j

′
1,...,j

′
q

∣∣∣∣n−1
∑n

i=1
ζ
j1,...,jq,j

′
1,...,j

′
q,i

∣∣∣∣ = Oa.s.

[{
n−1

(∏q

l=1
hl

)
log n

}1/2]
.

When
∣∣∣jl − j′l

∣∣∣ > ml − 1 for some 1 ≤ l ≤ q,

⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
n,Lz

−
⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Lz

= 0.

Lemma 5.3. Under assumptions (A2) and (A4), as n→ ∞,

An = sup
z∈D

sup
γ1,γ2∈G

∣∣∣∣∣⟨γ1, γ2⟩n,Lz − ⟨γ1, γ2⟩Lz
∥γ1∥Lz ∥γ2∥Lz

∣∣∣∣∣ = Oa.s.

[{
n−1

(∏q

l=1
hl

)−1
log n

}1/2]
.

(5.10)

Proof. Any γ1, γ2 ∈ G can be written as γ1 (x) = α1B (x), γ2 (x) = α2B (x) for some
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vectors α1 =
(
αj1,...,jq,1

)
∈ RKn , α2 =

(
αj1,...,jq,2

)
∈ RKn . ⟨γ1, γ2⟩n,Lz is

n−1
n∑
i=1

 ∑
j1,...,jq

αj1,...,jq,1
Bj1,...,jq


 ∑
j1,...,jq

αj1,...,jq,2
Bj1,...,jq

L
(
Zi, z,λ

)

=
∑

j1,...,jq,j
′
1,...,j

′
q
αj1,...,jq,1

α
,j′1,...,j

′
q,2

⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
n,Lz

⟨γ1, γ2⟩Lz =
∑

j1,...,jq,j
′
1,...,j

′
q
αj1,...,jq,1

α
,j′1,...,j

′
q,2

⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Lz

.

According to (5.9), one has for any z ∈ D, there exist constants 0 < c1 < C1 < ∞ and 0 <

c2 < C2 < ∞, such that c1

(∏q
l=1

hl

)1/2
∥α1∥2 ≤ ∥γ1∥Lz ≤ C1

(∏q
l=1

hl

)1/2
∥α1∥2,

c2

(∏q
l=1

hl

)1/2
∥α2∥2 ≤ ∥γ2∥Lz ≤ C2

(∏q
l=1

hl

)1/2
∥α2∥2, thus

c1c2

(∏q
l=1

hl

)
∥α1∥2 ∥α2∥2 ≤ ∥γ1∥Lz ∥γ1∥Lz ≤ C1C2

(∏q
l=1

hl

)
∥α1∥2 ∥α2∥2. Hence

An ≤
∥α1∥2 ∥α2∥2

c1c2

(∏q
l=1

hl

)
∥α1∥2 ∥α2∥2

×

max
z∈D

max
j1,...,jq,j

′
1,...j

′
q

∣∣∣∣∣
⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
n,Lz

−
⟨
Bj1,...,j,q ,Bj′1,...,j

′
q

⟩
Lz

∣∣∣∣∣
=Oa.s.

[{
n−1

(∏q

l=1
hl

)−1
log n

}1/2]
.

Let

V̂z,n = n−1BTLzB =

{⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
n,Lz

}
Kn×Kn

, (5.11)
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Vz,n =

{⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Lz

}
Kn×Kn

. (5.12)

A result in Demko (1986) is described as follows, which plays an essential role in the proof

of Lemma 5.5.

Lemma 5.4. For positive definite Hermitian matrices A such that A has no more than k

nonzero entries in each row, then
∥∥∥A−1

∥∥∥∞ ≤ 33
√
k
∥∥∥A−1

∥∥∥5/4
2

∥A∥1/42 .

Lemma 5.5. Under assumptions (A2) and (A4), there exists a constant 0 < Cm < ∞

depending only on ml, 1 ≤ l ≤ q, such that supz∈D
∥∥∥V−1

z,n

∥∥∥∞ ≤ Cm

(∏q
l=1

hl

)−1
, where

Vz,n is defined in (5.12)

Proof. For any vector w ∈RKn , cB
(∏q

l=1
hl

)
∥w∥22 ≤ wTVz,nw ≤CB

(∏q
l=1

hl

)
∥w∥22

which follows directly from (5.9), and it is clear that Vz,n is symmetric, thus Vz,n is a

positive definite Hermitian matrix .

∥∥Vz,n
∥∥
2 = sup

w

{(
Vz,nw

)T (Vz,nw
)
/ ∥w∥22

}1/2
≤ sup

w

{
CB

(∏q

l=1
hl

) (
Vz,nw

)TV−1
z,n
(
Vz,nw

)
/ ∥w∥22

}1/2
= C

1/2
B

(∏q

l=1
hl

)1/2
sup
w

{
wTVz,nw/ ∥w∥22

}1/2
≤ CB

(∏q

l=1
hl

)

Similarly
∥∥∥V−1

z,n

∥∥∥
2
≤ c−1

B

(∏q
l=1

hl

)−1
. By tensor spline properties, Vz,n has no more

than
∏q
l=1

(
2ml − 1

)
nonzero entries in each row, thus

supz∈D
∥∥∥V−1

z,n

∥∥∥∞ ≤ 33

√
q∏
l=1

(
2ml − 1

) ∥∥∥V−1
z,n

∥∥∥5/4
2

∥∥∥V−1
z,n

∥∥∥1/4
2

= Cm

(
q∏
l=1

hl

)−1

, where

Cm = 33

√
q∏
l=1

(
2ml − 1

)
cBC

−1
B .
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Lemma 5.6. For V̂z,n defined in (5.11), and for n large enough, supz∈D
∥∥∥V̂−1

z,n

∥∥∥∞ ≤

2Cm

(∏q
l=1

hl

)−1
in which Cm > 0 is the constant in Lemma 5.5.

Proof. By Lemma 5.2, as n→ ∞,

sup
z∈D

∥∥∥V̂z,n −Vz,n

∥∥∥∞ =

sup
z∈D

max
j1,...,jq

∑
j′1,...j

′
q

∣∣∣∣∣
⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
n,Lz

−
⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Lz

∣∣∣∣∣ ≤

q∏
l=1

(
2ml − 1

)
sup
z∈D

max
j1,...,jq,j

′
1,...j

′
q

∣∣∣∣∣
⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
n,Lz

−
⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Lz

∣∣∣∣∣
= Oa.s.

[{
n−1

(∏q

l=1
hl

)
log n

}1/2]
. (5.13)

Let ξ = Vz,nη, for any given vector η with dimension Kn × 1, then for any given

z ∈ D,
∥∥∥V−1

z,nξ
∥∥∥∞ ≤

∥∥∥V−1
z,n

∥∥∥∞∥ξ∥∞ ≤ Cm

(∏q
l=1

hl

)−1
∥ξ∥∞ by Lemma 5.5, and thus∥∥Vz,nη

∥∥∞ ≥ C−1
m

(∏q
l=1

hl

)
∥η∥∞. By (5.13) and

∥∥∥(V̂z,n −Vz,n

)
η
∥∥∥∞ ≤∥∥∥V̂z,n −Vz,n

∥∥∥∞∥η∥∞, for n large enough
∥∥∥V̂z,nη

∥∥∥∞ ≥ (1/2)C−1
m

(∏q
l=1

hl

)
∥η∥∞.

Let ξ1=V̂z,nη, then we have
∥∥∥V̂−1

z,nξ1

∥∥∥∞ ≤ 2Cm

(∏q
l=1

hl

)−1
∥ξ1∥∞, for any given

z ∈ D and n large enough. Therefore the result follows.

Lemma 5.7. Under assumptions (A2)-(A4), as n→ ∞,

sup
z∈D

∥∥∥n−1BTLzE
∥∥∥∞ = Oa.s.

[{
n−1

(∏q

l=1
hl

)
log n

}1/2]
.

Proof. Let Dn = nϑ, with ϑ < 1/2, ϑ (2 + δ) > 1, ϑ (1 + δ) > 1/2, which are satisfied
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by δ > 0. We decompose the noise variable εi into a truncated part and a tail part εi =

εDni,1 + εDni,2 + εDni,3 , where εDni,1 = εiI
(∣∣εi∣∣ > Dn

)
, εDni,2 = εiI

(∣∣εi∣∣ ≤ Dn
)
− εDni,3 , εDni,3 =

E
{
εiI
(∣∣εi∣∣ ≤ Dn

) ∣∣Xi,Zi}. Since
∣∣∣εDni,3 ∣∣∣ ≤

(
E
∣∣εi∣∣2+δ ∣∣Xi,Zi) /D1+δ

n = o
(
n−1/2

)
,

then

sup
z∈D,j1,...,jq

∣∣∣n−1
∑n

i=1
Bj1,...,jq

(
Xi
)
L
(
Zi, z,λ

)
σ
(
Xi,Zi

)
εDni,3

∣∣∣ = o
(
n−1/2

)
.

The tail part vanishes almost surely, since
∑∞
n=1 P (|εn| > Dn) ≤ Mδ

∑∞
n=1 n

−ϑ(2+δ) <

∞. The Borel Cantelli Lemma implies that

sup
z∈D,j1,...,jq

∣∣∣∣∣∣n−1
n∑
i=1

Bj1,...,jq
(
Xi
)
L
(
Zi, z,λ

)
σ
(
Xi,Zi

)
εDn
i,l

∣∣∣∣∣∣ = O
(
n−k

)
, for any k > 0.

For the truncated part, using Bernstein’s inequality in Theorem 1.2 of Bosq (1998), one has

supz∈D,j1,...,jq
∣∣∣n−1

∑n

i=1
Bj1,...,jq

(
Xi
)
L
(
Zi, z,λ

)
σ
(
Xi,Zi

)
εDni,2

∣∣∣
=

[{
n−1

(∏q

l=1
hl

)
log n

}1/2]

as n→ ∞. Therefore the result of Lemma 5.7 follows from above.

Lemma 5.8. Under assumptions (A2)-(A4), for ĝε (x, z) in (5.7), as n→ ∞,

supx∈[0,1]q,z∈D |ĝε (x, z)| = Oa.s.

[{
n−1

(∏q
l=1

hl

)−1
log n

}1/2]
.

Proof. By Theorem 5.4.2 in DeVore and Lorentz (1993), Lemma 5.6, Lemma 5.7 and the
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definition of ĝε (x, z), one has

sup
z∈D

∥∥∥β̂ε∥∥∥∞ = sup
z∈D

∥∥∥V̂−1
z,n

(
n−1BTLzE

)∥∥∥∞ ≤ sup
z∈D

∥∥∥V̂−1
z,n

∥∥∥∞ sup
z∈D

∥∥∥n−1BTLzE
∥∥∥∞

= Oa.s.

[{
n−1

(∏q

l=1
hl

)−1
log n

}1/2]
.

sup
x∈[0,1]q,z∈D

|ĝε (x, z)| ≤ sup
z∈D

∥∥∥β̂ε∥∥∥∞ = Oa.s.

[{
n−1

(∏q

l=1
hl

)−1
log n

}1/2]
.

Let Σz =

{⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Wz

}
Kn×Kn

, where⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Wz

= E

{
Bj1,...,jq (X)B

j′1,...,j
′
q
(X)L2 (Z, z,λ)σ2 (X,Z)

}
, and

Wz = Lzdiag
{
σ2 (X1,Z1) , . . . , σ

2 (Xn,Zn)
}
Lz

= diag
{
L2 (Z1, z,λ)σ

2 (X1,Z1) , . . . , L
2 (Z1, z,λ)σ

2 (Xn,Zn)
}
.

For (x, z) ∈ [0, 1]q ×D define

σ̂2n (x, z) = n−1B (x)TV−1
z,nΣzV

−1
z,nB (x) . (5.14)

Lemma 5.9. Under assumptions (A2)-(A4), for ĝε (x, z) in (5.7) and σ̂2n (x, z) in (5.14), as

n→ ∞, σ̂−1
n (x, z) {ĝε (x, z)} −→ N(0, 1) . For any given (x, z) ∈ [0, 1]q ×D,

c∗σn−1
(∏q

l=1
hl

)−1
≤ σ̂2n (x, z) ≤ C∗σn−1

(∏q
l=1

hl

)−1
, for some constants 0 < c∗σ <

C∗σ <∞.

Proof. For any given z ∈ D, by the definition of β̂ε (z) in (5.6), for any c ∈ RKn with
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∥c∥2 = 1, we can write cTβ̂ε (z) =
∑n
i=1 aiεi, where

a2i = n−2cTV̂−1
z,nB

(
Xi
)
B
(
Xi
)T L2 (Zi, z,λ)σ2 (Xi) V̂−1

z,nc.

For any given z ∈ D, by Lemma 5.6, as n → ∞ with probability 1, max1≤i≤n a2i ≤

C2σ (2Cm)2 n−2
(∏q

l=1
hl

)−2
. As n→ ∞ with probability 1,

∑n

i=1
a2i ≥ c2σC

−2
B

(∏q

l=1
hl

)−2
n−2

∑n

i=1

{
cTB

(
Xi
)}2

L2
(
Zi, z,λ

)
≥ c2σC

−2
B

(∏q

l=1
hl

)−2
n−1E

[{
cTB

(
Xi
)}2

L2
(
Zi, z,λ

)]
(1− An) ,

the proof of which follows the same pattern as in Lemmas 5.1 and 5.3, thus as n→ ∞ with

probability 1,
∑n
i=1 a

2
i ≥ C′n−1

(∏q
l=1

hl

)−1
. Hence for any given z ∈ D,

max
1≤i≤n

a2i /
∑n
i=1 a

2
i = Oa.s.

{
n−1

(∏q
l=1

hl

)−1
}

= Oa.s. (1) . Given any ξ > 0, one has

lim
n→∞∥a∥−2

2

∑n

k=1
a2kE

{
ε2I
(∣∣akε∣∣ > ξ ∥a∥2

)}
≤ lim
n→∞∥a∥−2

2

∑n

k=1
a2k

(
E |ε|2+δ

)2/(2+δ) {
P
(
|ε| > ξa−1

k
∥a∥2

)}δ/(2+δ)
≤M

2/(2+δ)
δ

lim
n→∞ max

1≤k≤n

{
P
(
|ε| > ξa−1

k
∥a∥2

)}δ/(2+δ)
= 0,

thus, the Lindeberg condition is satisfied. By the Lindeberg-Feller CLT, as n→ ∞,∑n
i=1 aiεi/

(∑n
i=1 a

2
i

)−1/2
→ N (0, 1). Therefore, [Var {ĝε (x, z) |X,Z}]−1/2 ĝε (x, z) →

N (0, 1).

Var {ĝε (x, z) |X,Z} = n−1B (x)TV−1
n,zΣn,zV

−1
n,zB (x)T ,
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where

⟨
Bj1,...,jq ,Bj′1,...,j

′
q

⟩
Wz,n

= n−1
∑n

i=1
Bj1,...,jq

(
Xi
)
B
j′1,...,j

′
q

(
Xi
)
L2
(
Zi, z,λ

)
σ2
(
Xi,Zi

)

. By Lemma 5.3, one can prove that

wTΣzw (1− An) ≤ wTΣn,zw ≤ wTΣzw (1 + An) ,

and cΣ

(∏q
l=1

hl

)
∥w∥2 ≤ wTΣzw ≤CΣ

(∏q
l=1

hl

)
∥w∥2, thus

wTV−1
z,nΣzV

−1
z,nw≤CΣ

(∏q

l=1
hl

)
wTV−1

z,nV
−1
z,nw ≤CΣc

(∏q

l=1
hl

)−1
∥w∥2 ,

wTV−1
z,nΣzV

−1
z,nw≥cΣ

(∏q

l=1
hl

)
wTV−1

z,nV
−1
z,nw ≥cΣC

−2
V

(∏q

l=1
hl

)−1
∥w∥2 .

For any given (x, z) ∈ [0, 1]q×D, σ̂2n (x, z) ≤ n−1CΣc
−2
V

(∏q
l=1

hl

)−1 ∥∥∥Bj1,...,jq (x)∥∥∥22 ≤

C∗σn−1
(∏q

l=1
hl

)−1
, where σ̂2n (x, z) is defined in (5.14), and similarly one has σ̂2n (x, z) ≥

c∗σn−1
(∏q

l=1
hl

)−1
, for some constants 0 < c∗σ < C∗σ < ∞. For any given (x, z) ∈

[0, 1]q ×D,

limn→∞
[
[Var {ĝε (x, z) |X,Z}]1/2 {σ̂n (x, z)}−1

]
= 1, since

Var {ĝε (x, z) |X,Z} ≤ B (x)TV−1
z,nΣzV

−1
z,nB (x) (1 + An) (1− An)

−2 ,

Var {ĝε (x, z) |X,Z} ≥ B (x)TV−1
z,nΣzV

−1
z,nB (x) (1− An) (1 + An)

−2 .

Thus, the result in Lemma 5.9 follows.
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Lemma 5.10. Under assumptions (A1), (A2) and (A4), for ĝg (x, z) in (5.7), as n → ∞,

supx∈[0,1]q,z∈D
∣∣ĝg (x, z)− g (x, z)

∣∣ = Oa.s.

(∑q
l=1

h
p
l
+
∑r
s=1 λs

)
.

Proof. For 1 ≤ i ≤ n, 1 ≤ s ≤ r, let Z−is be the leave-one out vector of Zi, then

L
(
Zi, z,λ

)
=

r∏
s=1

λ
1
(
Zis ̸=zs

)
s = 1

(
Zi = z

)
+

∑r

s=1
λs1

(
Zis ̸= zs,Z−is = z−is

)
+ o

(∑r

s=1
λs

)
.

Denote Lz = Lz,1 + Lz,2 + Lz,3, where Lz,1 = diag {1 (Z1 = z) , . . . ,1 (Zn = z)}, Lz,2 =

diag

{
r∑
s=1

λs1
(
Z1s ̸= zs,Z−1s = z−1s

)
, . . . ,

r∑
s=1

λs1
(
Zns ̸= zs,Z−ns = z−ns

)}
and

Lz,3 = o

(
r∑
s=1

λs

)
In. Thus by the definition of ĝg (x, z) in (5.7),

ĝg (x, z)− g (x, z) = B (x)T V̂−1
z,n

(
n−1BTLzg

)
− g (x, z) = Π1 + Π2 + Π3,

where Π1 = B (x)T V̂−1
z,n

(
n−1BTLz,1g

)
− g (x, z) ,

Π2 = B (x)T V̂−1
z,n

(
n−1BTLz,2g

)
,Π3 = B (x)T V̂−1

z,n

(
n−1BT

mLz,3g
)
.

By Theorem 12.8 and (13.69) on p. 149 of de Boor (2001), for any z ∈D, there exists

β (z) ∈ RKn , such that supx∈[0,1]q
∣∣∣B (x)T β (z)− g (x, z)

∣∣∣ = O
(∑q

l=1
h
p
l

)
. Let gz =

{g (X1, z) , . . . , g (Xn, z)}T, Π1 = B (x)T V̂−1
z,n

(
n−1BTLz,1gz

)
− g (x, z) = Π11 + Π12,

where Π11 = B (x)T V̂−1
z,n

[
n−1BTLz,1 {gz −Bβ (z)}

]
,

Π12 = B (x)T V̂−1
z,n

{
n−1BTLz,1Bβ (z)

}
− g (x, z) .
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sup
z∈D

∥∥∥V̂−1
z,n

[
n−1BTLz,1 {gz −Bβ (z)}

]∥∥∥∞
≤ sup

z∈D

∥∥∥V̂−1
z,n

∥∥∥∞ sup
z∈D

∥∥∥n−1BTLz,1 {gz −Bβ (z)}
∥∥∥∞ ≤(

sup
z∈D

∥∥∥V̂−1
z,n

∥∥∥∞
){

sup
z∈D

∥gz −Bβ (z)∥∞

}(∥∥∥n−1BTLz,1
∥∥∥∞) = Oa.s.

 q∑
l=1

h
p
l

 ,

sup
x∈[0,1]q,z∈D

|Π11| ≤ sup
z∈D

∥∥∥V̂−1
z,n

[
n−1BT {gz −Bβ (z)}

]∥∥∥∞ = Oa.s.

(∑q

l=1
h
p
l

)
,

by Theorem 5.4.2 in Devore and Lorentz (1993), Lemma 5.6 and properties of the B-spline.

supx∈[0,1]q,z∈D |Π12| ≤ supx∈[0,1]q,z∈D
∣∣∣B (x)T β (z)− g (x, z)

∣∣∣+
supx∈[0,1]q,z∈D

∣∣∣B (x)T V̂−1
z,n

{
n−1BT

(
Lz,2 + Lz,3

)
Bβ (z)

}∣∣∣
≤ O

(∑q

l=1
h
p
l

)
+ sup
z∈D

∥∥∥V̂−1
z,n

∥∥∥∞ sup
z∈D

∥∥∥n−1BTBβ (z)
∥∥∥∞O

(∑r

s=1
λs

)
.

By Lemmas 5.1 and 5.2 and , one has supz∈D
∥∥∥n−1BTB

∥∥∥∞ = Oa.s.

(∏q
l=1

hl

)
, then

supx∈[0,1]q,z∈D |Π12| ≤ O
(∑q

l=1
h
p
l

)
+

supz∈D
∥∥∥V̂−1

z,n

∥∥∥∞ supz∈D
∥∥∥n−1BTB

∥∥∥∞ supz∈D ∥β (z)∥∞O
(∑r

s=1
λs

)
= Oa.s.

(∑q

l=1
h
p
l
+
∑r

s=1
λs

)
.

supx∈[0,1]q,z∈D |Π1| ≤ supx∈[0,1]q,z∈D (|Π11|+ |Π12|) = Oa.s.

(∑q
l=1

h
p
l
+
∑r
s=1 λs

)
.

supz∈D
∥∥∥V−1

n,z

(
n−1BTLz,2g

)∥∥∥∞ ≤ supz∈D
∥∥∥V−1

n,z

∥∥∥∞ supz∈D
∥∥∥n−1BTLz,2g

∥∥∥∞
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≤ sup
z∈D

∥∥∥V−1
n,z

∥∥∥∞ sup
z∈D

∥∥∥n−1BT
∥∥∥∞ sup

z∈D
∥g∥∞O

(∑r

s=1
λs

)
= Oa.s.

(∑r

s=1
λs

)
,

thus, sup
x∈[0,1]q,z∈D

∣∣ĝg (x, z)− g (x, z)
∣∣ ≤ sup

x∈[0,1]q,z∈D
(|Π1|+ |Π2|+ |Π3|)

= Oa.s.

(
q∑
l=1

h
p
l
+

r∑
s=1

λs

)
.

Proofs of Theorems 5.1 and 5.2. Theorem 5.1 follows from Lemmas 5.8 and 5.10 directly,

while Theorem 5.2 follows from Lemmas 5.9 and 5.10 and assumption (A4) directly.
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