INSTRUCTIONAL SERVICE IN ACADEMC DEPARTMENTS: AN EXPLORATORY STIDY

Disscriation for the Degree of Ph. D. MICHGAF STATE UNIVERSTTY LOU ANWA KIMSEY SIMON

1974

LIBRA: $:$
Michigan s:

This is to certify that the
thesis entitled
INSTRUCTIONAL SERVICE IN ACADEMIC DEPARTMENTS: AN EXPLORATORY STUDY
presented by

Lou Anna Kimsey Simon
has been accepted towards fulfillment of the requirements for

Ph.D._degree in Higher Education

Date 5/9/74

－ís stuè bas

ב：oi acaje：ic do
Feit suzed by a
$2 \mathrm{E}: \mathrm{i}$ at the $0: \mathrm{E}$
at：wier the $d:$
Lite tisic pitase
Eiveat of a buci
isess of departze
Ca＇roles．The

tit of fugdiag

ABSTRACT
INSTRUCTIONAL SERVICE IN ACADEMIC DEPARTMENTS:
AN EXPLORATORY STUDY
By
Lou Anna Kimsey Simon

This study was an investigation of the instructional service component of academic departments. This examination is part of a broader project funded by a grant from the Exxon Education Foundation and centered at the Office of Institutional Research at Michigan State University under the direction of Dr. Paul L. Dressel. One of the foci of this the third phase of the Exxon Departmental Study Project is the development of a budgeting model for academic departments based on clusters of departments with similar intrinsic characteristics and institutional roles. The selection of instructional service as a focus of study was predicated on the possibility of its inclusion as a dimension of the clustering framework. However, the concept of instructional service has been brought to the forefront at Michigan State University because the newly established medical schools subsidize certain departments for the service instruction given the medical students in "shared" departments. In lieu of a formalized pricing system for service instruction, this study identified the amount of service instruction in each academic department and sought to determine how the extent of instructional service was reflected in other data about the department (i.e., level of funding and staffing patterns).

Z: stutu: was es צe: ansiys be:
:
-isi ui ti:s stu
an:sai service
xisios a=ang

xasure and
grees of the in.

> au:ina! Servis
> So sets of in
> sex the instr
> getent-iast
> Site acocat of
> eseriice stujer:
> aiervice meas
> \because-isomal serv:
> ras assuate :
> enees, six Eeas.
> \because Ger:oents

Purposes

This study was exploratory in nature and was designed to identify the relationships between measures of instructional service and the other available data about academic departments. Specifically, the purposes of this study were to 1) develop appropriate measures of the instructional service component of academic departments; 2) identify relationships among these measures and between these instructional service measures and other departmental characteristics; and 3) classify departments according to each undergraduate and graduate instructional service measure and determine which variables discriminate among the categories of the instructional service measures.

Instructional Service Measures

Two sets of instructional service measures were constructed to represent the instructional service component of academic departments. The department-based instructional service measures represented the relative amount of the total instructional load of each department who were service students (non-majors) while the university-based instructional service measures reflected the relative amount of the total instructional service load of the institution (instruction to non-majors) which was assumed by each department. Within each of these two set of measures, six measures representing various aggregates of courses within the departments were also constructed.

Ei, prestige of 85
:in onergracua

Cites iceati:ied
Gis) rinch dis
\therefore service meas:
\because

Sate prograzs $/$:

Research Design

The research design developed for this study centered around ten questions about the relationships among the twelve instructional service measures and between each of these measures and departmental descriptor variables. In this study, two hundred fifty-two Spearman rank correlations and eight chi-square tests for independence were used to analyze the relationships among the twelve instructional service measures and between each of these measures and variables representing funding, faculty rank distributions, average salary, number of graduate assistants, prestige of graduate programs/faculty, and level of students served in undergraduate courses. In addition, the multiple discriminant analyses identified factors (generated from the principal axes factor analysis) which discriminated among the levels of eight of the instructional service measures.

Findings

The analyses of the data on instructional service revealed that significant relationships existed between 1) undergraduate and total instructional service measures, 2) department-based and university-based instructional service measures, and 3) unadjusted and adjusted instructional service measures. The results of the chi-square tests for independence indicated that 1) departments that service predominately lower division students tended to have high adjusted, and unadjusted, undergraduate university-based measures and 2) departments with prestige graduate programs/faculty tended to be classified as medium for the

Zaxi-jased gracu:
Ee:atents were

- ق e:graies for th:

~i. sevive meāsure

aye saiary, sixt:
$=$ Bexty-two of tit.
$\ddot{\because}$:is, thereiore,
zistive anaiysis
z:
4ns reve defined
arcained 82a
Eanas greater
Eif Deasures use
Fio discrizinant
Az:e department
sion vas signis:
Fi the categories
a: l (undergraci
orionses of the

department-based graduate instructional service measures while the rated departments were primarily distributed between the medium and high categories for the university-based graduate measures. In addition, of the one hundred eighty Spearman rank correlations between the instructional service measures and the descriptor variables representing funding, faculty rank distributions, number of graduate assistants, and average salary, sixty-four (35.6%) were statistically significant, but only twenty-two of these correlations (12.2\%) were strong (greater than .50) and, therefore, meaningful. Finally, the results of the principal axes factor analysis with a varimax rotation and the multiple discriminant analyses were unusually decisive. In the factor analysis six factors were defined which were good representations of the original data (explained 82% of the variance) and were highly internally consistent (alphas greater than .90). For seven of the eight instructional service measures used in the multiple discriminant analyses, only one of the two discriminant functions was significant. For the adjusted graduate department-based instructional service measure, no discriminant function was significant. Three factors emerged which discriminated among the categories of the seven instructional service measures. Factor 1 (undergraduate instructional load) was the dominant variable in the analyses of the unadjusted and adjusted undergraduate universitybased instructional service measures. Factor 2 (graduate instructional load) was the dominant variable for the adjusted graduate departmentbased instructional service measure and the unadjusted and adjusted graduate university-based instructional service measures. Factor 3

Mas exis:ec
¥uensis biti
yivate a.c ō:
Yu:ivas ser:こ

$\ddot{\text { genvice zéasu }}$
$-\overline{6}$ ad stait:
Yisional servio
ziè paraceters
Es to je the p:
\& :saly, ticu,
itusually deci
Fiated the int
Sies tie inter
Gsed before a

(undergraduate instructional output) was the dominant variable for the unadjusted and adjusted undergraduate department-based instructional service measures.

Conclusions

The findings indicated that overlap among the instructional service measures existed. The results of this study suggested that in any further analysis which included instructional service only the unadjusted undergraduate and graduate department-based are needed to represent the instructional service component of academic departments. Further, the lack of meaningful relationships between the department-based instructional service measures and the descriptor variables indicated that the funding and staffing of departments are not related to the level of instructional service in these departments. Instructional volume rather than the parameters of the instructional process in academic departments tended to be the primary determinant of departmental funding and staffing. Finally, though the results of the multiple discriminant analyses were unusually decisive, the use of factors instead of variables greatly complicated the interpretation of the results. Further research which clarifies the interactions of variables within these dominant factors is needed before a clear understanding of the relationships between the level of instructional service and variables representing instructional load and instructional output emerges. However, such further research must also be related to the realities of departmental organization and budgetary process.
in
eparts.

INSTRUCTIONAL SERVICE IN ACADEMIC DEPARTMENTS:

AN EXPLORATORY STUDY

By
Lou Anna Kimsey Simon

A DISSERTATION

Submitted to
Michigan State University in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY

Department of Administration and Higher Education
(C) Copyright by LOU ANNA KIMSEY SIMON 1974

$$
1
$$

To My Fomily
This study is dedicated to my family. Their encouragement, understanding, and love are the cornorstone of my efforts.

Eis writer $6:=$
\therefore :ui L. Jressel
me:a::iva and for
\because :3:se of Instit:
Zsjistant jisrest
Eis riter a:
\therefore Se:...er YoSinee
yérive and cr
rian the qualit
$=$ E:irt.
Gateful acki
\because Research $\mathrm{s}:$
Ficil bord of
$\therefore \because \cdots$ Faric
St
isaliy, th
Outstand:

ACKNOWLEDGMENTS

This writer wishes to express her sincere appreciation to Dr. Paul L. Dressel for his guidance and support in preparing this dissertation and for the excellent experience derived while working in the Office of Institutional Research as a graduate assistant and as the Assistant Director of the Exxon Departmental Study Project.

This writer also wishes to thank the members of her committee-Dr. Maryellen McSweeney, Dr. Philip Marcus, and Dr. Vandel Johnson. Their advice and criticism have greatly improved the quality of this work and the quality of the educational experience which surrounded this effort.

Grateful acknowledgment is extended to all members of the Institutional Research staff for their constant support and encouragement. A special word of appreciation is extended to Dr. Mary Thompson and Dr. William Faricy who assisted in the final preparation of this manuscript.

Finally, this writer wishes to thank Christina Traines who displayed outstanding competence and patience in typing manuscript drafts.
\qquad
Sumazy.
\because UEZR DEPSZ:
Bacigirou
 Instrua
Data. Data.
Researc位thodo Simary \therefore IIS RES…] Instrid
Relatil as.
isiscri Sinerir

TABLE OF CONTENTS

Chapter Page
LIST OF TABLES vii
LIST OF FIGURES X
I. RATIONALE FOR THE STUDY. 1
Introduction. 1
Purpose of the Study. 5
Assumptions of the Study. 6
Limitations of the Study. 9
Definitions of Terms. 10
Overview of the Dissertation. 11
II. CONCEPTUAL FRAMEWORK FOR INSTRUCTIONAL SERVICE 12
Summary 20
III. OTHER DEPARTMENTAL LITERATURE 21
Background 21
Departmental Organization 24
Empirical Studies 27
Summary 33
IV. RESEARCH DESIGN. 35
Instructional Service Measures. 35
Data. 39
Research Questions. 41
Methodology 48
Summary 57
V. THE RESULTS 58
Instructional Service Measures. 58
Relationships Between Instructional Service Measures and Descriptive Data 77
Discriminatory Variables. 88
Summary 105
\because Sus, cu:
STKY . .

Terviev $c:$
S:ay 0 : Coscousions seco=e:.̇̇a:
\square

d. : $\because \mathrm{SO}$ OF vS:
\therefore : $\because 3: 5 \mathrm{OF}$ -
G:97. . . .

TABLE OF CONTENTS-COntinued
CHAPTER Page
VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY 106
Overview of the Study 106
Summary of Findings 114
Conclusions 116
Recommendations for Further Study 125
APPENDICES
A. DEPARTMENTS IN STUDY 128
B. LIST OF MSU DEPARTMENT DESCRIPTOR VARIABLES 131
C. TABLES OF DATA USED IN THIS STUDY 135
BIBLIOGRAPHY. 170

Sinery yeasure=
\therefore Antuctival 9

\cdot - arations for

Biversity-bas=
\therefore in:ese Depar:=
そesei Instruにt
: Escriptive Ja.
tessures. . .
\therefore itscriptive ia
Eesures. . .
Sperman Raain
Yescres. . .
\cdots Ceartzeats w : jervice Stuiter
\therefore Ni-sçure Ie SErice Stude:

\therefore iesiriptor \because
$\begin{aligned} & \text { Instructi }\end{aligned}$

LIST OF TABLES

Table Page

1. Summary Measures 38
2. Instructional Service Students by Course Leve1, Fall 1971 60
3. Enrollment by Course Leve1, Fall 1971 62
4. Equations for Instructional Service Measures 64
5. Department-based Instructional Service Measures, Fall 1971. 65
6. University-based Instructional Service Measures, Fall 1971. 67
7. Extreme Departments--Unadjusted and Adjusted Department- based Instructional Service Measures. 70
8. Descriptive Data--Department-based Instructional Service Measures 72
9. Descriptive Data--University-based Instructional Service Measures. 73
10. Spearman Rank Correlations Among Instructional Service Measures 75
11. Departments with Predominately Lower Division Instructional Service Students in Undergraduate Courses 79
12. Chi-square Tests of Independence--Level of Instructional Service Students in Undergraduate Courses 80
13. Departments with Prestige Graduate Faculty/Programs 82
14. Chi-square Tests of Independence--Prestige of Graduate Faculty/Programs 83
15. Spearman Rank Correlations Between Instructional Service Measures and Descriptive Data 85
16. Descriptor Variables with Moderate and Strong Relationships to Instructional Service Measures 89
\therefore غ̇epgries of $=$ ※e＝a゙＝ents •
\therefore áegories of \because ． eefarteeats • •

Baturs and Fie
… escriptive Du：

ت．Süp Veazs on
3．Cist of Depãa：t またar＂ent－bas
\because Ne：arteatal Service ！！eas
\therefore jevarteental Seriice Yeasu
\therefore ianis Orderizit braduate Jepa
\therefore and Orderia a：e Jepartee
\therefore Sais Orderis jepartaeat－i
\therefore ienis Orderir gracidate Je

澔
iadi人 Order
iepartsezt
\therefore iáá Orier iepartaent
\therefore yerik order ら゙aduate U
\therefore Rak Orce aie Univer
Table
17. Categories of Department-based Instructional Service Departments 91
18. Categories of University-based Instructional Service Departments 92
19. Factors and Their Loadings. 94
20. Descriptive Data--Factors and Their Loadings. 95
21. Standardized Discriminant Functions 100
22. Group Means on Standardized Functions 101
23. List of Departments with Disparate Unadjusted and Adjusted Department-based Instructional Service Measures 136
24. Departmental Rankings on Department-based Instructional Service Measures 137
25. Departmental Rankings on University-based Instructional Service Measures 139
26. Rank Ordering of Departments According to Unadjusted Under- graduate Department-based Instructional Service 141
27. Rank Ordering of Departments According to Unadjusted Gradu- ate Department-based Instructional Service. 142
28. Rank Ordering of Departments According to Unadjusted Total Department-based Instructional Service. 143
29. Rank Ordering of Departments According to Adjusted Under- graduate Department-based Instructional Service 144
30. Rank Ordering of Departments According to Adjusted Graduate Department-based Instructional Service. 145
31. Rank Ordering of Departments According to Adjusted Total Department-based Instructional Service. 146
32. Rank Ordering of Departments According to Unadjusted Under- graduate University-based Instructional Service 147
33. Rank Ordering of Departments According to Unadjusted Gradu- ate University-based Instructional Service. 148

浪 urjering o： Erersity－base
\because Unemirg 0： gracuate inivers

洨 Ordering 0 a：e＂：uersity－
－iar vicieriag o ت̌ressity－base

BMarteental ミa 3il－72．．．
：eeartental irecistures，
\therefore ：auty Rani
\therefore Aracuate Ass
\therefore 远 Gated Salar
\therefore Eercentage D Y Stuceat L
－Etrentage J
污Student
\therefore Facior Scor，
LIST OF TABLES--Continued
Table Page
34. Rank Ordering of Departments According to Unadjusted Total University-based Instructional Service 149
35. Rank Ordering of Departments According to Adjusted Under- graduate University-based Instructional Service. 150
36. Rank Ordering of Departments According to Adjusted Gradu- ate University-based Instructional Service 151
37. Rank Ordering of Departments According to Adjusted Total
University-based Instructional Service 152
38. Departmental Rankings on General Fund Expenditures, 1971-72. 153
39. Departmental Rankings on Research Grant and Contract Expenditures, 1971-72. 155
40. Faculty Rank Distribution Indices 157
41. Graduate Assistants, 1971-72 159
42. Rank Ordering of Departments According to Average 10-month Equated Salary, 1971-72 161
43. Percentage Distribution of Instructional Service Students
by Student Level--Unadjusted Data 162
44. Percentage Distribution of Instructional Service Students by Student Level--Adjusted Data. 165
45. Factor Scores 168

LIST OF FIGURES

Figure Page

1. Group Means-mBIS-UU and DBIS-UG 102
2. Group Means--DBIS-AU and DBIS-AG 102
3. Group Means-mBIS-UU and UBIS-UG 104
4. Group Means--UBIS-AU and UBIS-AG 104
as university gisive and fis Mi.usivazent $\because:$ cierial and fir

$$
2 x \div i=g \text { less }
$$

af sourd ma.
college and
eat irom tho

Is acdition

Estensified
"z costs, and
In sioror, cre serv: for nore
E. M. Gr
-ie Yanag
'E. F.

Chapter I

RATIONAL FOR THE STUDY

Introduction

As university operations have come under close scrutiny by legislative and fiscal agencies and the taxpaying public, growing disillusionment with higher education has amplified the cry for more managerial and financial accountability. In an article by Grassell, Whitter--speaking for the Council for the Advancement of Small Colleges--stated that

The crisis in which higher education finds itself today demands nothing less than our institutions being operated on the basis of sound management principles, keeping in mind, of course, that college and university purposes and characteristics are different from those of business and government. ${ }^{1}$

In addition to being under public suspicion, higher education also finds itself in financial difficulty. The "dollar squeeze" has been intensified by declining revenues from tuition, increasing operating costs, and diminishing soft monies. As Cheit points out

In short, due to inflation and growing demands on schools for more service, for broader access, for academic innovation and for more quality, costs were rapidly rising. But income has not. ${ }^{2}$

[^0]> تi, ess costly t:
> Mizinities wi.
> -rypent of eff:
> mese uth $\mathrm{x}=$
> Zx of primary:
> vanis states :
> Ming ior appr:
> Bave these:
> zs aciag operat
> Ehee often te:
> Acteases. Suz
> wree the rela
> Ens:onal prio
> sixe even grow
> sicid to changes
> zin assigaed
> cenase or re
> razer teable
> Soud planai:
> sievore opera
> ¿ej to sounde
> ait unit or co
> the depar
> \because be cepartae
> Gate educat:

Thus, less costly techniques must be found for meeting institutional responsibilities while retaining acceptable levels of quality. The development of efficient and effective methods of resource allocation compatible with institutional organization, goals, and needs has become of primary importance.

Many states have developed techniques of formula or program budgeting for appropriating funds to institutions. Yet, once institutions have these funds in their possession, they tend to divide these funds among operating units in traditional ways. This allocation procedure often takes the form of across-the-board percentage increases or decreases. Such uniform percentage changes across operating units reinforce the relative position of units and indirectly establish institutional priorities. The "fat" programs and departments remain, and some even grow fatter. But this type of system maintenance cannot respond to changes in societal goals and public needs and to alterations in assigned or implied institutional responsibilities. Simple maintenance or reinforcement of existing structures and priorities is no longer tenable for institutions of higher education.

Sound planning and management require that institutional priorities become operational through the budget. Within each institution, the key to sounder financial management lies at the level of the basic budget unit or cost center. In academic areas this basic unit is usually the department. In spite of debates about the appropriateness of the departmental structure for higher education, especially undergraduate education, departments remain the predominant organizational
elements of colleges and universities around the world. Furthermore, alternatives to the departmental structure tend over time to regress to this basic pattern. At the departmental level inputs are translated into various outputs with contrasting degrees of efficiency. The aggregate of these departmental data reflects the overall level of institutional efficiency. A redefinition of efficiency at the institutional level does not imply greater effectiveness or efficiency for all departments. (This change could reflect a shift of mean which was accompanied by greater departmental variation.) Thus, departments represent viable units around which to develop a budget methodology. Some would argue as McConnell does in the following passage that each department is unique and that separate criteria must be developed for the evaluation of each department.

> The nature of departments varies so greatly, not only among institutions, but within particular institutions, that it is very difficult to make valid general statements about departmental organization and administration.

On the other hand, a complete departmental self-study for each unit at a large institution is prohibitive, especially if such a self-study were to become necessary as an annual basis for resource allocation. Furthermore, the budgetary process for any single department always takes place in the context of the needs and aspirations of other departments. Departmental comparisons are inevitable. Procedures should be developed and tested by which departments could be grouped

[^1]or clustered on variables or parameters which provide an equitable basis for departmental funding. These dimensions should recognize the inherent differences in disciplines and their concomitant instructional methodologies which affect input and output properties. This clustering strategy is predicated on the assumption that the budgetary procedure for departments with similar characteristics and missions should utilize the same funding principles and variables. When this strategy is applied, each department is compared only with other departments in its cluster and not with the entire university community. This approach permits variability among departmental clusters while stressing the development of uniform funding criteria within clusters.

The fundamental question is what dimensions or variables should be used as a basis for departmental clustering. By employing factor analytic techniques almost any set of variables could be used to group departments. Yet, implicit in the above discussion is the assumption that these clustering dimensions should have inherent implications for departmental resource allocation. This stipulation requires a clear understanding of each of the dimensions chosen as a basis for clustering departments. Simply manipulating the cost data on academic departments reflects only past budgeting practices about which little rationale is available. Thus, clustering dimensions must be identified in the context of a conceptual model of resource allocation, and these dimensions should be explored in light of present departmental data so that relationships in the data can be identified and redundancies

تес.
eliminated. Only after intensive study should these dimensions be included in the departmental clustering methodology. This study undertook the analysis of one possible dimension--the instructional service component of academic departments.

Purpose of the Study

This study was exploratory in nature and designed to identify relationships and patterns between the aspects of instructional service and other available data on academic departments. This examination of instructional service in academic departments is part of a broader project funded by a grant from the Exxon Education Foundation and centered at the Office of Institutional Research at Michigan State University under the direction of Dr. Paul L. Dressel. One of the foci of this third phase of the Exxon Departmental Study Project ${ }^{4}$ is the development of the cluster-oriented budgetary schema alluded to in the introduction of this chapter. Using eighty-two academic departments at Michigan State University as the study population, the specific purposes of this study were to:

1. Develop appropriate measures of the instructional service component of academic departments. These measures represent both the amount of instructional service in a department and the

[^2]served.
3. Chass: y
and $\dot{c} \in$
Categar:
variable
ticaal
anctions of
Siree bas
arents ar
Ser educat:
isiopsent o:
Itie izive
\& of depar
Etive syst
?. S.
contribution of a department to the overall instructional service load of the institution.
2. Identify relationships among the instructional service measures, among these measures and other departmental characteristics. These departmental characteristics include funding level, faculty rank distribution, and levels of students served.
3. Classify departments on the basis of instructional service and determine which variables serve to discriminate among categories of service. Through various analyses, variable and variable sets emerge which are related to the amount of instructional service in academic departments.

Abstract

Assumptions of the Study Three basic assumptions are the premises for this study. First, departments are the basic organizational units in institutions of higher education and are, thus, an appropriate analysis unit. The development of departments can be traced to nineteenth century Harvard and the University of Virginia. ${ }^{5}$ While the rationale for the establishment of departments is unclear, the expansion of knowledge and the elective system fostered the development of departments as organizational

[^3]```
\(2.3 s 5^{6}\) Regard.
2is, iefartmeats
``` a of the facult:
\(=\operatorname{accitr}\) and \(a\)
a:eseat status

B:Ca:timed in \(t\)
:aci:y bjian
Te departee:
etucation and

Sevod, depar
wismal colles
aje ©isensions

Sisective ter=
ceess of asis
-a cuatable u
Sisins, not \(t\)
aied in thi
Fie third as
cructional \(s \in\)
'J. A. Perk
siotic: ycor
a. Butchin
\(\stackrel{s}{*}\), April

entities. \({ }^{6}\) Regardless of the initial organizational intent of departments, departments have evolved as the professional and intellectual home of the faculty, providing peer social-psychological support for the faculty and also serving as a vehicle for academic governance. The present status of departments as the "heart of the multiversity" \({ }^{7}\) is reaffirmed in the following passage from the Michigan State University faculty bylaws:

The department or school is the basic administrative unit of education and research within the university. \({ }^{8}\)

Second, departments can be described by dimensions that transcend traditional collegial structure and disciplinary lines. Further, these dimensions are identifiable, measurable, and can be explicated in objective terms. Thus, the teaching load of each department, regardless of affiliated college or subject matter, can be expressed in a countable unit such as teaching credits. The existence of such dimensions, not the homogeneity of departments on these dimensions, was postulated in this study.

The third assumption implicit in this research was that the instructional service aspect of academic departments is a viable

\footnotetext{
\({ }^{6}\) J. A. Perkins (Ed.), The University as an Organization (New York: McGraw-Hill Book Company, 1973), p. 25.
\({ }^{7}\) R. Hutchins, "The University and the Multiversity," The New Republic, April 1, 1967, p. 17.
\({ }^{8}\) Michigan State University, Bylaws for Faculty Governance (East Lansing: Michigan State University, 1971), p. 7.
}
dimension for study. In this study departmental activity was partitioned into two basic analysis units--a core unit and a service unit. The core unit consists of those inputs, resources, and outputs which are related to the education of students (graduate as well as undergraduate) who are majors in programs in a department. This departmental aspect includes the research and public service activities which are integrally related to the instructional programs within the department. The service aspect consists of those inputs, resources, and outputs which are related to the education of students who are not majors in programs offered by the department. This service component includes instruction to non-majors as well as research and public service activities that are tangential to the main thrust of the department and the disciplines within the department. Thus, using the core-service dichotomy, the service component of academic departments is defined as an extension of activity beyond that which is required for the education of students majoring in fields within the department.

Part of the utility of this dichotomy for resource allocation rests on cost differentials between service and non-service instruction. Service instruction tends, by nature, to be introductory, thus lending itself to large class size and reduced cost per unit. In addition, introductory courses are usually taught by junior faculty whose salaries are lower than senior faculty. Finally, the addition of service students to primarily major-oriented classes can be viewed as affecting marginal cost rather than fixed cost. Thus, while exact cost differentials are unknown, available evidence supports the proposition that these differentials exist.
iecent orgã:
itindicated th
ant of acaíes:
"ujered the pro
matents.
: exdical scino
\(\therefore\) zintip’e fu

Fied a line buc
-ise "shared" \(\dot{C}\)
: ior the ses
xi. Fiss tire

Gipriations s

Eiersity coosu
":̇ed" departz
?ince the izpe
x:S witina a


Recent organizational developments at Michigan State University have indicated the need for a better understanding of the service aspect of academic departments. The addition of two medical schools \({ }^{9}\) triggered the proliferation of multi-administered and multi-financed departments. These "shared" departments received operating funds from each medical school as well as from the university's general fund. This multiple funding occurred because the medical schools each received a line budget from the legislature. Through the funding of these "shared" departments, the medical schools were providing a subsidy for the service rendered to their students by the "shared" department. This type of subsidy was heretofore hidden in the general fund appropriations since each department provides some service to the university community. While neither the medical schools nor the "shared" departments were the focus for this research, these units did provide the impetus for studying the service aspect of academic departments within a conceptual framework based on economic theory.

\section*{Limitations of the Study}

This study was limited to analyses related only to the instructional service aspect of academic departments. Thus, the service aspect was considered only in terms of course offerings. This view of service neglected such faculty activities as advising and sitting on graduate committees of non-majors. Hence; the qualifier "instructional" has been used throughout this study. In addition, the generalizability

\footnotetext{
\({ }^{9}\) The College of Human Medicine was established in 1966, and the College of Osteopathic Medicine was established in 1970.
}
\(\therefore\) : wants frow zesuriptive aa yex: inderth stu Exiotic for si=:
cis:ocs of Te:
as noted pre

Eiop appropria
\(\therefore\) :ase: ćc depa:
Ese: of measur
yructional ser
Bei istructic:
\(\therefore\) tie total am:
\(\therefore\) ail who we
\(\therefore\) ser:ie stude
sto:tival st
etcesating der
\%is set of at


Ees repres.
of the results of the study was limited by the inclusion of only departments from Michigan State University. However, the exploratory and descriptive nature of the research lends itself to an institutionalbased in-depth study with the economic model providing the conceptual framework for similar work in other institutions.

\section*{Definitions of Terms}

As noted previously, one of the purposes of this study was to develop appropriate measures of the instructional service component of academic departments. Two constructs were created for this purpose. One set of measures was developed to reflect the relative amount of instructional service in each academic department. These departmentbased instructional service measures (DBIS) represented the proportion of the total number of students enrolled in a department during Fall term 1971 who were service students (non-majors). As the percentage of service students increased, the value of these department-based instructional service measures also increased, with higher values representing departments whose instruction was primarily service. The second set of measures was developed to reflect the relative amount of the total instructional service load of the university (instruction to non-majors) which was assumed by each academic department. These university-based instructional service measures (UBIS) represented the proportion of the total number of service students taught during Fall term 1971 who received instruction in each academic department. Similarly, high values on these university-based instructional service measures represented departments that processed many service students
\(\therefore\) \#exeiore, as
Zan::2a. Bati.
:a: IT.

Chapter I hà =
\(\cdots\) service.

Mieptival fraz
ise is a part:
: :he depar::
Ine of the da:
\(\approx\) mish met:
ans daa.yses.
Sindy along
and, therefore, assumed a large share of the university's non-major instruction. Both constructs are discussed in greater detail in Chapter IV.

Overview of the Dissertation
Chapter I has presented a rationale for the study of instructional service. Chapter II presents ideas and literature related to a conceptual framework for resource allocations of which instructional service is a part. Chapter III presents other relevant literature about the department and its operations. Chapter IV describes the nature of the data, the specific research questions in this study, and the analysis methodologies. Chapter \(V\) presents the results of the various analyses. Chapter VI presents a summary and conclusions of the study along with suggestions of areas for further study.


CONCEPTUAL FRAMEWORK FOR INSTRUCTIONAL SERVICE

\begin{abstract}
As mentioned in Chapter \(I\), the validity of instructional service as a dimension of a departmental budgeting schema and, hence, as a topic for study was predicated on the efficacy of this concept in resource allocation. The fiduciary relationships between the basic science departments and the medical schools at Michigan State University provided an example of the purchase of service by units within the same umbrella organization. This situation evolved because the medical programs were line-budgeted by the legislature and because the "shared" pattern which evolved helped facilitate the integration of the medical schools into the university community. Yet, no systematic method of exchange has evolved for determining what activities of the departments are actually being purchased and what relative value, "price," is associated with each of these activities. The amount of the departmental subsidy has been separately negotiated for each funding source. In turn, department chairmen have tried to allocate their departmental activities in a manner commensurate with the subsidy. However, with a growing cry for more accountability, this allocation by bargaining must give way to a more quantitative input-output model in which the commodities purchased from these basic science departments are identified and their rates of exchange are clearly established.
\end{abstract}

> EBactual do 1 sa
> 3 asic science \(=\)
> \(\begin{aligned} & \text { cepec wish p: } \\ & \text { weic depart:e: }\end{aligned}\)
> aci: of acace-:
> cas couid exte:
> =: 15sociated w:
> \(\operatorname{mac}\) advising
> wzents in 0
> si ie includec.
> \(\therefore\) a R
> ふis. Secianis
> yise systez
> \(\begin{aligned} & \text { ablocation } \\ & \text { ar jo custor } \\ & \text { 3itutions o }\end{aligned}\)
> xatistorical:
> \% oniy iscent:
> Biniz the en
> \(\because\) assessing \(t\) :
> ai model
> with a pr

While actual dollar subsidies occur between the medical schools and the basic sciences, a hypothetical service subsidy schema could be developed which provides part of the basis for the funding of all academic departments. In this study only the instructional service aspect of academic departments was analyzed. Yet, a service subsidy schema could extend to all the activities of the department which are not associated with the education of department majors. For example, academic advising, doctoral committee assignments and administrative assignments in other departments, i.e., curriculum committees, could also be included.

In a RAND publication, economist Martin Shubik proposed eight basic mechanisms for resource allocation: "(1) the economic model with a price system, (2) voting procedures, (3) bidding, (4) bargaining, (5) allocation by high authority, (6) allocation by force, (7) allocation by custom, and (8) allocation by chance." \({ }^{1}\) The current trend in institutions of higher education is away from mechanisms 2-8 which have been historically dominant and towards a flexible system which provides not only incentives for adapting to changing educational needs and for improving the educational quality by reducing costs, but also a format for assessing the efficiency and effectiveness concerns of an accountability model. These types of incentives are present in an economic model with a price system. However, higher education when examined

\footnotetext{
\({ }^{1}\) M. Shubik, On Different Methods of Allocating Resources, as quoted in D. W. Breneman, Internal Pricing Within the University-A Conference Report (Berkeley, Calif.: University of California, 1971), pp. 3-4.
}
    sinuals ani
    rinecures
    tues and
    Ts, the inter
    sing organ:
from an economic perspective, is an extremely unique industry. Unlike other organizations whose operations are governed by a market model, in institutions of higher education, "(1) those who consume its product do not purchase it; (2) those who produce it do not sell it; and (3) those who finance it do not control it."2 Thus, the selection of the type, quantity and quality of an educational output is governed by the producers (faculty within each department) and is not determined by the consumer (the student) since he has no buying power. Within this type of framework, no incentives for adapting to changing educational needs exist. Further, since the producers have no investments in the product (not the financiers), little incentive exists for improving quality and reducing costs.

The above assessment of the uniqueness of higher education indicates that organizational behavior in educational institutions is diametrically opposed to the price-driven tenets of a market model.

In its polar characteristics it represents a non-market economy in which (a) non-price variables, non-profit goods, and nondivisible resources (inputs and outputs) are prominently present; (b) non-tâtonnement exchanges and resource transfers are very important due to transaction and information costs; (c) price signals and output quotas may be replaced by other organizational procedures ...; and solutions may be attempted by central directives and informal organizational procedures. \({ }^{3}\)

Thus, the interaction of departments for scarce resources within the umbrella organization of the institution simulates a non-market model

\footnotetext{
\({ }^{2}\) J. M. Buchanan and N. E. Develetoglou, Academia in Anarchy (New York: Basic Books, Inc. Publishers, 1970), p. 8.
\({ }^{3}\) K. A. Fox (Ed.), Economic Analysis for Educational Planning (Baltimore: The Johns Hopkins University Press, 1972), p. 20.
}
criation and
: - as occur.
\(\because-\) wict nccel
wies. The
programing tion of ex: \(=\) froe the dep on zev facu: pragras.
bas also des
Perturaace
\(a^{2}\), cost, and
ataents in :
set :esca:ques Ser eduea:ios
x.:ies upon

If depart=
sibed in \(C\)
\(\mathrm{C}^{-}\)
T. Plesst
ices in a
- p. 259.
R. A, Fo
since this interaction represents an internal market which is governed by non-price (quality and prestige) variables. Techniques for resource allocation within a non-market model require the optimization or suboptimization of a policy function which reflects the objectives of the organization and the set of activities which relate inputs to outputs. In addition, the relative price of each must be known before optimization can occur. Plessnar, Fox and Sanyal have developed a policy-based non-market model for the allocation of resources in a department of economics. The economic part of the model was represented by a programming objective function which consists of the capitalization of expected lifetime income earned by students who graduate from the department in all its programs less departmental expenses on new faculty and other expenditures associated with the teaching program. \({ }^{4}\)

Fox has also described problems and approaches for comparing work loads and performance among departments within a university, developing work load, cost, and quality measures for a given department, and comparing departments in the same discipline across institutions. \({ }^{5}\) However, all these techniques which apply the postulates of non-market models to higher education are theoretical manipulation rather than practical realities upon which resource allocation can be based.

If departments are viewed using the core-service dichotomy described in Chapter I, a more practical application of an economic

\footnotetext{
\({ }^{4}\) Y. Plessnar, K. A. Fox, and B. C. Sanyal, "On the Allocation of Resources in a University Department," Metroeconomica, 20 (September, 1968), p. 259.

\author{
\({ }^{5}\) K. A. Fox (Ed.), Economic Analysis for Educational Planning (Baltimore: The Johns Hopkins University Press, 1972), pp. 258-295.
}
}
theory for resource allocation emerges. The decentralized market model advocated by Hoenack and Norman \({ }^{6}\) in a recent journal article could be applied to only the service aspect of each department, and more subjective allocation techniques like bargaining or bidding could be used as a basis for the subsidy of the core area-teaching, research, and public related to the education of majors. This procedure theoretically divides the department into a major coalition and a service unit in a manner which parallels Hirschleifer's model of a divisionalized firm. \({ }^{7}\) Under this allocation procedure, departments would first be funded in terms of their major coalition--core-activities. Thus, funding from external agencies for research or instruction would become part of the pool for the core activities. Funding for the service aspect would be generated from fees paid by non-majors in exchange for instruction or other activities provided by the department. "Theoretically, under this system, each department has an incentive to reduce costs while maximizing output since it naturally wishes to maintain or increase its operating budget." \({ }^{8}\) In addition, the separation of funding for service and non-service students would provide non-service students with buying power which theoretically should make the department more responsive to the needs

\footnotetext{
\({ }^{6}\) S. A. Hoenack and A. L. Norman, "Incentives and Resource Allocation in Universities," Journal of Higher Education, 45 (January, 1974), pp. 21-37.
\({ }^{7}\) J. Hirschleifer, "Economics of the Divisionalized Firm," Journal of Business, 30 (April, 1957).
\({ }^{8}\) J. F. Minahan, "Administrative Cost Accounting: Whose Cost and Whose Accounting," Journal of Higher Education, 45 (January, 1974), p. 25.
}

Te serviz
instructio
depeeds so
reieive pa
B:az:ed a:
scaedule
assimed :
0 which
a a dicket \(=\)
res pa::
Y! ( \(a\) esu:
Its juiget
: in itus,
Mor by
\(\therefore \operatorname{sinanige}\)
\(\underbrace{\text { i. }}_{i s, ~}\)
of these students and should increase the quality of service instruction. This is especially true if the students purchased elective rather than required instruction. Similarly, the department could also be reimbursed for activities such as advising, doctoral committee assignments, and committee assignments outside the department. This type of model is presently approximated by the "shared" department arrangement between the medical schools and the basic science department.

Hoenack and Norman advocated the position that instructional service fees should be set by each department and that these fees could differ substantially by department and by teaching methodology. Thus,

The service unit sets the prices of all its services, including instruction. The expansion or contraction of a service unit depends solely on its market performance because service units receive payment directly from their clients and budgets are not granted automatically by the institution.... In establishing a schedule of prices for alternative types of services, it is assumed that academics will seek to maximize a utility function of which prestige is an important component. \({ }^{9}\)

In a market model with such an internal pricing schema, each department accrues part of its operating budget on the basis of the value of its cutput (measured by a schedule of internal prices) and uses this portion of its budget to purchase resources, internally priced at opportunity cost. Thus, "the central administration can influence departmental behavior by altering the values placed on outputs, while maintaining the advantages of decentralization in resource use through the system

\footnotetext{
\({ }^{9}\) S. A. Hoenack and A. L. Norman, "Incentives and Resource Allocation in Universities," Journal of Higher Education, 45 (January, 1974), p. 25.
}
1. The abse of coile
2. The lace oupuis;
3. The prev
4. Lack of tion; a:
5. Inidex: Besore, unti
axteuts of

2:3:20-2an:ig
\(=\) al pricin
Pe:ises.
thot the ins
ematal c)
zis invef fut
Stervise
A revien
Yitutionil

\(\because j_{\epsilon \in \pi_{\epsilon}}\) par

\(\stackrel{\text { Irid. }}{ }\)
of internal resource prices. \({ }^{110}\) Yet, several problems prohibit the current implementation of a complete pricing system:
1. The absence of a complete, well-defined and measurable set of college and university outputs;
2. The lack of systematic methods for evaluating university outputs;
3. The prevalence of single year budgets;
4. Lack of knowledge regarding the educational production function; and
5. Inflexibility in staffing created by tenure positions. \({ }^{11}\) Therefore, until research which identifies and measures adequately the outputs of higher education and research which characterizes the decision-making processes within institutions have been completed, internal pricing--like the non-market approach--will remain theoretical exercises. Until these methodological problems are solved, the inclusion of the instructional service measures as a dimension of the departmental clustering and budgeting schema serves to identify departments whose funding base would be contingent largely on money acquired from service instruction.

A review of the annotated bibliographies of the Association for Institutional Research for the last four years revealed no reference to service instruction. Thus, measures of instructional service have not become part of the regular reporting schema for academic departments.

\footnotetext{
\({ }^{10}\) D. W. Breneman, Internal Pricing Within the University--A Conference Report (Berkeley, Calif.: University of California, 1971), p. 30 .
\({ }^{11}\) Ibid.
}

Mid the
Sesource ate
Cis: Cente:
\(\because \mathrm{B}: \mathrm{ate}\) に
x::ces, the
set e=ro:1
S":ne
\(\because \mathrm{B}\) suctat
:ニ:_гec.:
\(3: 3 s\) asd
osis Sad info
Fative the
Mer seztor
Buaje \(a \in \in\)
Yed : Uurs

\(\therefore=5: x u=: 0\)
Brise resourc

Fi: utiona:
sivent's

However, probably the most prominent examples of the use of the concept of instructional service in a management system are the induced course load and the induced work load matrices which are an integral part of the Resource Requirements Prediction Model (RRPM) developed by the National Center for Higher Education Management Systems at the Western Interstate Commission for Higher Education. From the data in these matrices, the number of credits taken in each discipline by the average student enrolled in each program and the total number of credits each discipline must generate in order to satisfy the demand placed on it by all students enrolled in each program for a given period can be determined. \({ }^{12}\) Since the dimensions of these matrices are in terms of programs and disciplines, further aggregation is necessary to generate work load information for each department. On the basis of this information the effect of a decrease or increase in enrollment in any other sector of the institution can be calculated in terms of the resource needs of each department. Unfortunately, the construction of induced course load and work load matrices is a difficult task which requires large manpower and hardware commitments. However, the measures of instructional service developed in this study do identify departments whose resource requirements are very sensitive to change in the enrollments within the institution. For example, the department-based instructional service measures reflected the relative proportion of the department's instructional load which are service students. Thus,

\footnotetext{
\({ }^{12}\) National Center for Higher Education Management Systems, A Blueprint for RRPM, 1.6 Application (Boulder, Colo.: Western Interstate Comission for Higher Education, 1973), p. 19.
}
departments with high department-based instructional service measures have instructional loads and, thus, resource requirements which are sensitive to changes in student enrollments or enrollment patterns.

\section*{Summary}

The preceding discussion provided evidence that the concept of instructional service can be incorporated in resource allocation and projective techniques, and within these frameworks this concept can produce greater clarity and refinement in management models. Yet, the operation of this concept in the framework presented above is practically impossible. The instructional service measures developed for this study and the eventual use of these measures in a departmental clustering and budgetary schema are important because they provide a method of incorporating instructional service into a management model before all the methodological problems mentioned above have been solved.

ジ：
：ーシー．

Chapter III
OTHER DEPARTMENTAL LITERATURE

While the instructional service component of academic departments was of primary interest in the study, a brief review of the literature about the establishment and organization of the department provides a general framework from which to view academic departments and their management. It was evident from the review of available literature that most articles about academic departments were based on speculation rather than empirical data. However, in this chapter some of the empirical works on academic departments are presented. Again, their relevance is in terms of a general understanding of academic departments, and these works had little direct bearing on the analyses in this study.

\section*{Background}

The evolution of the department to its present position as the basic organizational unit in institutions of higher education closely paralleled the growth and specialization of knowledge. Yet, the establishment of the elective system in the early nineteenth century provided the catalyst for the reorganization of college faculties on the basis of subject matter rather than individual chairs of instruction. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) J. Brubacher and W. Rudy, Higher Education in Transition (New York: Harper and Brothers, Publishers, 1958), p. 114.
}

The emergence of the department pattern as an organizational reality occurred in the "second quarter of the nineteenth century at both Harvard and the University of Virginia." \({ }^{2}\) While forces such as specialization and the elective system have been identified as contributors to the development of the departmental structure, the exact rationale used by men such as Eliot at Harvard for this reorganization is only speculation. Veysey states the problem thus:

Indeed one may find the date on which such and such a department was established at such and such a university; one may even uncover a spirited debate over the details of certain of the new arrangements. But exceedingly little direct evidence may be found on decisions involving the basic shape of the rapidly emerging academic structures. \({ }^{3}\)

As the complexity of American life continued to change from a rural, agricultural society to highly industrialized, urban society as a result of the Industrial Revolution, new specializations were introduced as viable areas of advanced study. These specializations grew into departments such as engineering, management, and architecture.

In the new technological society educational institutions are expanded not only to exercise research functions but also to play a central role in the economy and the system of stratification as agencies of selection, training, and occupational placement of individuals. \({ }^{4}\)
\({ }^{2}\) Ibid., p. 354.
\({ }^{3}\) L. R. Veysey, The Emergence of the American University (Chicago: The University of Chicago Press, 1965), p. 267.
\({ }^{4}\) A. H. Halsey, "The Changing Functions of Universities," in A. H. Halsey, J. Floud, and C. A. Anderson (Eds.), Education, Economy, and Society (Glencoe, Il1.: The Free Press, 1961), pp. 456-465.

With the space age also came widening commitments on the part of institutions of higher education to the study of societal issues. Departments of resource development, racial and ethnic studies, and urban development began to appear on university campuses in addition to departments representing new specializations such as biophysics and packaging.

Through its evolution the department "has become the potent force both in determining the stature of the university and in hampering the attempts of the university to improve its effectiveness and adapt to changing social and economic requirements." \({ }^{5}\) This increase in departmental autonomy was a function of the rapid growth and increased specialization of academic departments and the decentralization of authority which resulted because the central administrative personnel could not deal with all the complexities of an evolving multiversity. Yet, this autonomy which has allowed departments to grow and prosper poses a threat to departments today because of growing presses for accountability at all institutional levels. Indeed, Freeman in a recent article calls departments "a fallacy of misplaced abstraction." \({ }^{6}\) Freeman further contends that "like credit hours, departments seem useful only in documenting where one has been and not at all useful in imagining where he might go."7 While perpetuation of the organizational

\footnotetext{
\({ }^{5}\) P. L. Dressel and D. Reichard, "The University Department: Retrospect and Prospect," Journal of Higher Education, 41 (May, 1970), p. 387.
\({ }^{6}\) L. D. Freeman, "The Management of Knowledge," Journal of Higher Education, 45 (February, 1974), p. 86.
\({ }^{7}\) Ibid., p. 92.
}
integrity of the department, rather than the development and transmission of knowledge, may have become the primary thrust of departments in today's institutions, departments are still the basic organizational unit and the "heart" of the institution.

\section*{Departmental Organization}

Though McConnell has indicated that the great diversity among departments makes generalizations about departmental organization and administration very difficult, the recent studies by Hobbs and Anderson and by Dressel et al. provide some insight into the organization of academic departments. Though faculty members were described by Millett as "individual practitioners of scholarship," \({ }^{8}\) they do have responsibility for some administrative matters. These activities generally fall under the major heading of governance. The primary foci of faculty efforts in governance at the department level are curriculum review and control and personnel concerns. Hobbs and Anderson indicated that the organizational modes for dealing with these two areas were different. Curriculum review and control decisions were handled in a democratic manner while personnel decisions were relegated to a group of senior faculty.

The most widely applicable model of academic departmental organization is a composite of (1) a division of labor among peers for administrative activities, (2) an oligarchy of the senior professional ranks for decision-making with respect to professional concerns, and (3) a collegium, i.e., a democracy, for decisionmaking with respect to curricular affairs. But given (a) departments with varying degrees of activities requiring coordination, and, hence, varying extents of the divisions of administrative
\({ }^{8}\) J. D. Millett, The Academic Community (New York: McGraw-Hill Book Company, 1962), p. 102.

labor, (b) several possible structures for governance, whether in professional or curricular concerns, (c) numerous departmental matters which fall in the areas of intersect between administration and governance, and (d) the inclination of many, if not most, individuals to exploit whatever power they may enjoy in one context when participating in another--the combinatorial possibilities of organizational models with which to describe any given academic department are legion. \({ }^{9}\)

The organization of academic departments is further complicated by the role of the department chairman or head in the decision-making within the department. There is some debate in the literature as to whether an elected chairman or an appointed head should be the chief administrative officer of the department. Porter indicated that if prompt and confident administration is important then a head is indicated. On the other hand, a chairman is indicated if faculty participation in determining departmental policy is of paramount concern. \({ }^{10}\) It, thus, appears that the appointed department head occupies a more authoritative position than does an elected chairman. Further complexities are introduced into the organization of departments by past inadequacies of definition because "for the most part ... the chairman's role was so pocrly defined that there wasn't anything they could do which could make much difference."1. Euwema indicated that the head should be personally responsible for recruiting, faculty evaluation,

\footnotetext{
\({ }^{9}\) W. C. Hobbs and L. G. Anderson, "The Operation of Academic Departments," Management Science, 15 (December, 1971), pp. B-142-143.
\({ }^{10} \mathrm{~K}\). Porter, "Department Head or Chairman?" AAUP Bulletin, 47 (December, 1961), p. 339.
\({ }^{11}\) W. Key, The Department Chairman: One Man's Viewpoint (Boulder, Colo.: Western Interstate Commission for Higher Education, 1.970), p. 2.
}
\[
\begin{aligned}
& \text {..n:Mi: and } \\
& \text { treting else. } \\
& \text { se departe: } \\
& \text { me buerviscr. } \\
& \text { Ex Exuity to : } \\
& \text { steistry has } \\
& \text { Fe the chair } \\
& \text { Enisor zañes } \\
& \cdots=\text { Second, } \\
& \text { axäg hierarc: } \\
& \text { :raic colieagut } \\
& \text { Eicinie sumaz: } \\
& \text { - } \mathrm{s} \text { : }
\end{aligned}
\]
curriculum, and ceremonial functions and that he should delegate everything else. \({ }^{12}\)

The department chairman's position is similar to that of a firstline supervisor. He represents the administration to the faculty and the faculty to the administration. However, the first-line supervisor in industry has two advantages over the department chairman. First, while the chairman's decisions are primarily in policy execution, the supervisor makes many decisions of policy formulation as well as execution. Second, the supervisor's relationship to his subordinates is usually hierarchical while the chairman is both a leader and a professional colleague and, thus, has shared power with his colleagues. \({ }^{13}\) McKeachie summarizes the organizational problems of the chairmanship thus:

Although the department chairmen in most colleges and universities are the key individuals in determining the educational process of the institution, they are generally ill-prepared, inadequately supported, and more to be pitied than censored. \({ }^{14}\)

The chairman's role as well as the formal and informal aspects of the departmental organization need to be more closely studied so that an effective management model for academic departments can be developed.

\footnotetext{
\({ }^{12}\) B. Euwema, "The Organization of the Department," Educational Record, 23 (January, 1953), p. 42.
\({ }^{13} \mathrm{~J}\). J. Corson, Governance of Colleges and Universities (New York: McGraw-Hill Book Company, 1960), p. 89.
\({ }^{14}\) W. J. McKeachie, "Memo to a New Department Chairman," Educational Record, 42 (Spring, 1968), p. 221.
}

\section*{Empirical Studies}

Beginning in 1918, Committee T, on Academic Freedom and Tenure, of the American Association of University Professors has studied the various procedures in departmental and institutional administration. At periodic intervals questionnaires were mailed to several hundred AAUP chapter offices throughout the United States. The 1948 survey was summarized in Doyle, \({ }^{15}\) and this survey showed that the major functions of the department chairman included budgeting and curriculum control and review. However, Doyle's own study of 107 departments in 33 liberal arts colleges for the academic year 1950-51 is one of the most intensive works done on the role and functions of the department chairman. In this study Doyle conducted interviews about the actual practice in each department and also studied faculty handbooks, regulations, resolutions, and minutes. In addition to delineating the functions of these chairmen, Doyle indicated that these chairmen spent most of their time in educationally rather than administratively related activities. Doyle also reported that previous teaching experience, teaching ability, and administrative ability were the three criteria used in the selection of a chairman.

Gunter surveyed the department chairmen in ten state universities during the 1963-64 academic year. He found that the size of the institution (large or small) did not affect the principal functions of

\footnotetext{
\({ }^{15}\) E. A. Doyle, The Status and Functions of the Department Chairman (Washington, D.C.: Catholic University of America Press, 1953) pp. 115-125.
}
\(=\) Esearinent \(c\).
rotea depart=e:
St=an. On ti.
:is coliege, he
:-i.je a crite:
\(\therefore\) : Be departmer:
: :A:e-scipporte
sive corre

cis product.
y: Qegative
Beissional ou
zure perce:
wis. \({ }^{\text {it }}\) Fisa
\(\because\) Esscrs in 9
\(\because\) :gisit the
-ieverined

the department chairman. \({ }^{16}\) Hemphill in 1955 studied the relationship between departmental reputation and the leadership behavior of the chairman. On the basis of the data from 22 departments of a liberal arts college, Hemphill concluded that, "It appears that reputation may provide a criterion of excellence. \({ }^{117}\) In an effort to study the power of the department chairman, Hill and French sampled 375 professors in 5 state-supported four year colleges. Their findings indicated a positive correlation between the faculty's perception of the power of the department chairman and the level of the professor's satisfaction and the productivity in terms of organizational goals. However, a slight negative correlation existed between perceived power and the professional output of the professors. In addition, department chairmen were perceived to have less authority than other administrative groups. \({ }^{18}\) Finally, Patterson has reported that in a study of 338 professors in 90 departments at 10 universities faculty members tended to regard the ideal department chairman as a facilitator of their own self-determined goals, an intermediary between themselves and the dean,

\footnotetext{
\({ }^{16}\) C. W. Gunter, "The Role of Department Chairmen in the Governance of State Universities" (Unpublished Ed.D. dissertation, Washington State University, 1964).
\({ }^{17}\) J. K. Hemphill, "Leadership Behavior Associated with the Administrative Reputation of College Departments," in W. W. Charters, Jr. and N. L. Gage (Eds.), Readings in the Social Psychology of Education (Boston: Allyn and Bacon, 1963), p. 326.
\({ }^{18}\) W. W. Hill and W. L. French, "Perceptions of Power of the Department Chairman by Professors," Administrative Science Quarterly, 11 (March, 1967), pp. 548-574.
}
\({ }^{i}\) R．\(S\)
＂I．\(D\).
Caje＝ic
\(0-323\).
as an information handler, and as a scheduler of time and space. \({ }^{19}\)
Other research has focused on the faculty and students associated with academic departments. Vreeland and Bidwell classified departments on the basis of departmental goals and means available for achieving them. The findings of this research suggested that
the particular definition of undergraduate education by a department faculty conditions teachers' affective responses to students and the way in which they define and relate to the student role. If so, it may be a faculty's conception of the instructional task more than the content of the subject matter itself, that determines the social organization of the department's work with undergraduates. \({ }^{20}\)

Currie et al. studied the relationship between the images of college professors which are held by undergraduates and these students' interest in becoming college professors. The results of this survey of freshmen at the University of California indicated that the prevailing image of the college professor (an occupational stereotype) is an important factor in identifying students who are interested in certain occupations. Also, the number of students "realistically considering" becoming college professors varied from one area to another. \({ }^{21}\)

\footnotetext{
\({ }^{19}\) L. M. Patterson, "Preferences in Administrative Style Based on an Inquiry Into the Perceptions of the Ideal Role of the Department Chairman" (Unpublished Ph.D. dissertation, University of Texas, 1966).
\({ }^{20}\) R. S. Vreeland and C. E. Bidwell, "Classifying University Departments: An Approach to the Analysis of Their Effects," Sociology of Education, 39 (Spring, 1966), p. 254.
\({ }^{21}\) I. D. Currie et al., "Images of the Professors and Interest in the Academic Profession," Sociology of Education, 39 (Fall, 1966), pp. 301-323.
}
\(3 i:\) :exe of va
neer documeo
:uas of specia
\(\because\) proiessiona

3i:Eerent

Iie coace


Oazus ane
exe zure dise
fith they wer
ABer, Eaz
2iatior and
Ziasis of
AS:intions
\(\therefore \therefore\) proiessi
: these fa
inainy,
rith has bee
\(\underbrace{i y_{1} c}_{i=1}\)
\(\therefore{ }^{23}\) A. \(\quad\) a.


The theme of variability among departments and their students was further documented by Gaff and Wilson whose research suggested that areas of specialization--humanities, social sciences, natural sciences and professional studies--represented four different faculty cultures with different attitudes toward certain relevant educational topics. \({ }^{22}\)

The concepts of local and cosmopolitan academic faculty were described by Gouldner on the basis of his work at a small midwestern college. While locals were characterized by their involvement on their own campus and their general concern for the institution, cosmopolitans were more discipline-oriented and had few ties to the institution at which they were employed. \({ }^{23}\) Utilizing these concepts developed by Gouldner, Hamblin and Smith surveyed graduate students about the behavior and attitude patterns of professors in their department. On the basis of their results, these researchers suggested that the primary distinctions between those faculty members with local status and those with professional status were their research publications and the fact that these faculty members remained aloof (socially distant). \({ }^{24}\)

Finally, the research on departments as organizational units which has been reported in the first two phases of the Exxon Departmental

\footnotetext{
\({ }^{22}\) J. C. Gaff and R. C. Wilson, "Faculty Cultures and Interdisciplinary Studies," Journal of Higher Education, 43 (March, 1971), pp. 186-201.
\({ }^{23}\) A. W. Gouldner, "Cosmopolitans and Locals: Toward an Analysis of Latent Social Roles," Administrative Science Quarterly, 2 (June, 1958), pp. 444-480.
\({ }^{24}\) R. L. Hamblin and C. R. Smith, "Values, Status, and Professors," Sociometry, 29 (September, 1966), pp. 183-196.
}

Study Project merits attention. The Confidence Crisis represented a study of selected university departments in fourteen universities. Featherstone called this book a "basic text" and an excellent review of the literature on departments as well as a report of research findings. \({ }^{25}\) The basic question in this research was what roles do the operation and function of departments in large universities play in the achievement of the institution's goals? The results reported in The Confidence Crisis indicated that departments with high national standing, based on productivity research and doctoral degrees, were characterized by more informal administrative organization and practices than departments of less stature. In addition, departments of high national standing were found to be less involved in local institutional matters and tended to shun institutional priorities. Further, three of the tentative conclusions reached in this study were thus:

Autonomy is essential to effective departmental operation, but autonomy is meaningless without adequate resources, which, in turn, are dependent upon the existence of both departmental selfconfidence and confidence reciprocated among the department, the dean, and the university.... The confidence game is a central element in university relations.... The outcomes of the confidence game are not always in best interest of higher education. \({ }^{26}\)

The authors concluded by stating that the "university and the departments within them are out of control. \({ }^{127}\) Reorganization of departments

\footnotetext{
\({ }^{25}\) R. L. Featherstone, The Development of Management Systems for the Academic Department (Boulder, Colo.: Western Interstate Commission for Higher Education, 1972), p. 15.
\({ }^{26}\) P. L. Dressel, F. C. Johnson, and P. M. Marcus, The Confidence Crisis (San Francisco: Jossey-Bass, Inc., Publishers, 1970), p. 145.
\({ }^{27}\) Ibid.,\(~ p . ~ 232\).
}
athe develo
e zeeded to
the prior
a:c:02 with
In Retur:
:zssel asd Fa
asized to by

Eressitg.
: a :s is

St jasis of
aison, joar
bet most pe

Esisiratcr
Eisiciet
aizor co
and int
particu
: 2esi patte
Jepar:
tures,
Jerely
sirsctu
\(>\)
"tatd.
\(i s\)
ip. L.
rancis

and the development of appropriate management informational systems are needed to ensure that "resources are allocated and used in accord with the priorities set for the university by the university in cooperation with those who support it." \({ }^{28}\)

In Return to Responsibility, a sequel to The Confidence Crisis, Dressel and Faricy focus "on developments, self-generated or imposed, designed to bring increased control over the uses of resources in the university. The appropriate degree of autonomy of the university and its units is a central issue ... through all the discussion. \({ }^{29}\) on the basis of the responses to questionnaires sent to faculty, administration, board members and legislators, the authors suggested that while most people accept the need for departmental review, most respondents felt that this review should be conducted by faculty or administrators.

Efficiency, uniformity, a better "product"--these appear to be major concerns in universities. But human concerns--personal and intellectual welfare--are not neglected, especially on particular issues. \({ }^{30}\)

On new patterns of organization, the authors stated that
Departmental autonomy is generally decreased by innovative structures, but problems of autonomy--excessive or deficient--are merely shifted to other points in the structure. Furthermore, no structure observed has been able to curb or satisfy the faculty's

\footnotetext{
\({ }^{28}\) Ibid., p. 232.
\({ }^{29}\) P. L. Dressel and W. H. Faricy, Return to Responsibility (San Francisco: Jossey-Bass, Inc., Publishers, 1972) p. xil.
\({ }^{30}\) Ibid., p. 47.
}
desire：
g：acuate
autiors
ma：e and ma：
：scute ail

Laieec
oa the
versity
the pr：
societ：
sity is
：
\(\therefore\) constra

Geper
（a）
（b）
（c）
（i）\(p\)
\(i=\)
\(E=j=\)
そことこと
desire for a disciplinary-based structure corresponding to their graduate school preparation and their research interest. \({ }^{31}\)

The authors also stressed the need for planning and coordination at the state and national level so that some measure of congruence between resource allocation, social needs and institutional roles can be achieved.

Indeed, most faculty members and departments seem to have operated on the principle that what is good for them is good for the university; and in turn, the university seems to have operated on the principle that what is good for the university is good for society. But, in fact, what they perceive as good for the university is not necessarily needed by, wanted by, or good for society. \({ }^{22}\)

Finally, on the subject of constraints, the authors listed four types of constraints that are reasonable and justifiable:

Generally, constraints are justifiable when they
(a) tend to make the students' educational experience more interesting, challenging, and relevant to social needs;
(b) provide policies that are both necessary and fair as judged by students and the general public;
(c) encourage or ensure more efficient use of resources;
(d) permit effectiveness and success to be judged by results and costs, rather than by faculty or student preferences for particular educational processes. \({ }^{33}\)

\section*{Summary}

Fundamental organizational questions about the department and its operations still remain even though the department structure has been in existence for over 100 years. Much has been written about the department

\footnotetext{
\({ }^{31}\) Ibid., p. 87.
\({ }^{32}\) Ibid., p. 184.
\({ }^{33}\) Ibid., p. 188.
}
and its members, but few facts have emerged. Systematic research on all facets of departmental operations including the formal and informal social systems is needed. In addition, the results of these research efforts need to be coalesced into a theory of academic departments so that departments on the same or different campuses can be adequately evaluated and compared. Each effort to describe, measure, or report departmental operations, like this study of the instructional service aspect of academic departments, makes such a theory of departments more possible.

Ie aforesa
:iate measures (axents; 2)
※asures and and
:iss, and 3) cl
2 jetermine
: irstructiona
is is fully

Stuctional
Departmen
\(=\) either the
s:قled in
tivs (SCE)
Ueist hours
If that depar
ins, one
isial servi
strive indi
\(\because\) ises exis
ins.

\section*{Chapter IV}

\section*{RESEARCH DESIGN}

\begin{abstract}
The aforesaid purposes of this study were to 1) develop appropriate measures of the instructional service component of academic departments; 2) identify relationships among the instructional service measures and among these measures and other departmental characteristics, and 3) classify departments on the basis of instructional service and determine which variables serve to discriminate among categories of instructional service. The research design developed to meet these aims is fully described in this chapter.
\end{abstract}

\section*{Instructional Service Measures}

Departmental instructional service measures could have been based on either the number of students majoring in other departments who were enrolled in courses in a department or the number of student credit hours (SCH) generated by these students. Since the number of student credit hours generated by a department is a function of the enrollment of that department, the use of both measures would have been redundant. Thus, one set of measures was a sufficient representation of instructional service. Student-based measures were used as instructional service indicators in this study because service-oriented, sub-program courses existed which had enrollments but generated no student credit hours.

One caveat should be given about the nature of enrollment data. The enrollment data for each department are an aggregate of the number of students enrolled in each course offered by the department. These data do not represent the number of unique students enrolled in the department. For example, if a student were enrolled in two courses in a department during a term, this person would be reflected as two students in the enrollment data for the department for that term. However, this attribute of enrollment data did not adversely affect the data structure of this study since the instructional service concept was based on instructional activity or effort on the part of academic departments. Though only one student was involved, this student participated in two instructional activities provided by the department, and both of these activities were reflected in the enrollment data for the department.

In this study, the instructional service component of academic departments was represented by two sets of measures--department-based instructional service measures (DBIS) and university-based instructional service measures (UBIS). The department-based instructional service measures (DBIS) described the relative amount of instructional service (instruction to non-majors) in each academic department. These depart-ment-based measures were defined as the percentage of the total number of students enrolled in a department during Fall term 1971 who were service students (non-majors). Thus, DBIS \(=\) number of service students in a department/total number of students in the department. This equation was applicable for all course levels. On the other hand,
university-based instructional service measures (UBIS) represented the relative amount of the total instructional service load of the university (an aggregate over all departments) which was assumed by each academic department. Thus, UBIS \(=\) number of service students in a department/total number of service students over all departments. This equation was also applicable for all course levels. Since the level of a course affects its cost, with more advanced level courses tending to cost more, \({ }^{1}\) both department-based and university-based instructional service measures were computed for each course level. Undergraduate courses were initially subdivided into subprogram, lower level, and upper level, while graduate courses were subdivided into graduateprofessional, masters level, and doctoral level. The six summary measures constructed for each department for both categories of instructional service measures are displayed in Table 1.

The three unadjusted measures (undergraduate, graduate, and total) were based on all course levels applicable to each category. The adjusted measures, as constructed, did not include subprogram and short courses (undergraduate and total measures) and graduate-professional courses (graduate and total measures). Subprogram courses are those courses which are remedial in nature and whose credits do not count toward a degree. Short courses are those courses that are associated with the Agricultural Technology programs (usually granting two-year certificates) and are taught by various departments in the institution.

\footnotetext{
\({ }^{1}\) R. L. Williams, "The Cost of Educating One College Student," Educational Record, 42 (October, 1961), p. 233.
}


\section*{Table 1. Summary Measures}
\begin{tabular}{|c|c|c|}
\hline INDICNS BASECD ON NIMABER OF SITJDEVIS & LEVEL OF COURSES INCLUDED & COURSE NUMBERS \\
\hline 1. Unadjusted undergraduate & subprogram \& short courses lower level upper level & \[
\begin{aligned}
& 000-099 \\
& 100-299 \\
& 300-499
\end{aligned}
\] \\
\hline 2. Unadjusted graduate & graduate-professional master's level doctoral level & \[
\begin{aligned}
& 500-699 \\
& 800-899 \\
& 900-999
\end{aligned}
\] \\
\hline 3. Unadjusted total & \begin{tabular}{l}
subprogram \& short courses \\
lower level \\
upper level \\
graduate-professional \\
master's level \\
doctoral level
\end{tabular} & \[
\begin{aligned}
& 000-099 \\
& 100-299 \\
& 300-499 \\
& 500-699 \\
& 800-899 \\
& 900-999
\end{aligned}
\] \\
\hline 4. Adjusted undergraduate & lower level upper level & \[
\begin{aligned}
& 100-299 \\
& 300-499
\end{aligned}
\] \\
\hline 5. Adjusted graduate & master's level doctoral level & \[
\begin{aligned}
& 800-999 \\
& 900-999
\end{aligned}
\] \\
\hline 6. Adjusted total & lower level upper level master's level doctoral level & \[
\begin{aligned}
& 100-299 \\
& 300-499 \\
& 800-899 \\
& 900-999
\end{aligned}
\] \\
\hline
\end{tabular}
xing progran.

One other \(p\)
service in acade
Sexts (mon-
curse level (ar
aj unadjusted
ants serving p
:s:incticn by
"ists increase
=acedition, on
undergradu
:Sarily lower
Ins, when depo
*eessures were
itiure of the
\(\because\)


Finally, graduate-professional courses are those courses associated with the three professional programs at Michigan State University-m Human Medicine, Osteopathic Medicine, and Veterinary Medicine. The adjusted indicators reflect a concept of instructional service which is more applicable to other institutions that do not have similarly organized professional programs or an equivalent Agricultural Technology program.

One other piece of information was collected about instructional service in academic departments. A percentage distribution of service students (non-majors) by class level was generated for each aggregate course level (undergraduate, graduate, and total) from both adjusted and unadjusted data. These data were further aggregated, and departments serving primarily lower level students were identified. This distinction by student level was prompted by research which found that "costs increase with the advance in class level of the student." \({ }^{2}\) In addition, one of the questions of interest in this study was whether high undergraduate instructional service-oriented departments taught primarily lower division or upper division undergraduate students. Thus, when department-based and university-based instructional service measures were coupled with data about the level of student served, a picture of the department's instructional service role began to emerge.

Data
Information gathered on eighty-two (82) academic departments at Michigan State University formed the data base used in this study.

\footnotetext{
\({ }^{2}\) Ibid., p. 232 .
}
: exiev of
tat no depa
F. Eis
ion :2e Coll
yartent.
:ats withis
:Ats presen
a'or -fisa
+ a single
seopathic
acing of \(t\)
Bte in this
tigz sou:
The se :
zit in the
\(3: \%\) ent:
\(\therefore x\) tenth d
ir the Regis
ai avainio
zioe curr:
\(\therefore\) siscuitu
AEsb:egat
sitanti
解 Eyossi
\(\because\) is, dot \(t\)
\(\therefore\) Eis stue

A review of the list of these departments found in Appendix A reveals that no department in the College of Education was included in this study. This was a practical and not a conceptual omission. The data for the College of Education are not reported nor aggregated by department. Thus, no departmental data summaries exist for the departments within the College of Education. In addition, one other subtlety present in the data should be noted. Data for multi-administered and/or -financed departments were aggregated and reported as representing a single department. For example, the Colleges of Human Medicine, Osteopathic Medicine, and Veterinary Medicine each contributed to the funding of the Department of Anatomy. However, the data for Anatomy used in this study reflected the total dollars for Anatomy from all funding sources.

The service measures described above were computed for each department in the study from enrollment data in the Analysis of Student Enrollment in Courses by Student's Curriculum and Class (R7705) and from tenth day class lists for Fall 1971, both of which were prepared by the Registrar's Office. Class lists were used because they are the only available source of enrollments by major for departments with nonunique curriculum codes. For example, all departments in the College of Agriculture and Natural Resources have the same curriculum code and are aggregated in the R 7705 report; hence, separation of majors in each department in this college from other Agriculture students would have been impossible using this report. Since the service loads of departments, not the instructional service load of colleges, were of interest in this study, the major codes appearing on class lists for departments
like those in the College of Agriculture and Natural Resources with non-unique curriculum codes were used to discriminate between department majors and service students.

Numerous departmental descriptor variables were also used in various phases of the analyses conducted in this study. These variables are listed in Appendix B. These data for the 1971-72 academic year represent objective data (empirical and externally observable) routinely compiled by various offices at Michigan State University. \({ }^{3}\) In addition, data representing the prestige of graduate education in departments at Michigan State was gleaned from reports published by the American Council on Education. \({ }^{4}\) Thus, the twelve department-based and university-based instructional service measures and these eighty-six descriptor variables comprised the data base for this study.

\section*{Research Questions}

This research was exploratory in nature and was designed to identify relationships among the instructional service measures and among these measures and other available data on academic departments. The areas of inquiry central to this study and their attendant statistical analysis are delineated in the following passages.

\footnotetext{
\({ }^{3}\) These offices include the Registrar's Office, the Office of Institutional Research, the Provost's Office, and the Office of the Vice-President for Business and Finance.
\({ }^{4}\) The American Council on Education published reports on graduate education prestige compiled by Cartter in 1966 and by Roose and Andersen in 1970.
}

Do departm
miérgraduate
oriented gracua
his cquestion
se.vice and de

2tually incep
med to asses

CE:
atiationships
seasures and
The depa
departaent
oy the depar
:iral servi
ine process
:2u:se leve
jesed and
pendent?

2is adjuste
Eain course
"ersity-bas
ieiationsh
inicjusted
1. Relationships between undergraduate and graduate department-based instructional service measures.

Do departments with highly instructional service-oriented undergraduate programs tend to have highly instructional serviceoriented graduate programs? The null hypothesis associated with this question was that department-based undergraduate instructional service and department-based graduate instructional service are mutually independent. Spearman rank correlation coefficients were used to assess this relationship for both unadjusted and adjusted data.
2. Relationships between department-based instructional service measures and university-based instructional service measures.

The department-based instructional service measures for each department were defined in terms of the service students processed by the department. On the other hand, the university-based instructional service measures reflected the department's contribution to the processing of students at the institutional level. For each course level (undergraduate, graduate and total), are the departmentbased and university-based instructional service measures independent? Spearman rank correlation coefficients for both unadjusted and adjusted data were used to test the null hypothesis that for each course level department-based instructional service and uni-versity-based instructional service are mutually independent.
3. Relationships between adjusted instructional service measures and unadjusted instructional service measures.

As noted previously, the difference between unadjusted and adjusted instructional service measures reflected the effect of subprogram and short courses and graduate-professional courses on the instructional service level of a department. A review of the data on course offerings revealed that thirty-three (33) of the eighty-two (82) departments had courses falling into at least one of the above categories (see Appendix C, Table 23). The extent of the relationships between unadjusted and adjusted measures for both department-based and university-based instructional service was determined using Spearman rank correlation coefficients. The null hypotheses were that the unadjusted and adjusted department-based Instructional service measures for each course level are mutually Independent and that the unadjusted and adjusted university-based instructional service measures for each course level are mutually independent.
4. Relationships between the level of students served in undergraduate courses and the undergraduate instructional service measures.

Do high undergraduate instructional service-oriented departments serve primarily lower division or upper division students? Similarly, do departments which assume a large part of the institutional service load serve predominately lower division or upper division undergraduate students? A chi-square test for independence was used to test the hypothesis that the level of department-based undergraduate instructional service and the level of students served in undergraduate courses are statistically independent and the
hypothesis that the level of university-based undergraduate instructional service and the level of students served are statistically independent. The correlation coefficient phi ( \(\Phi\) ) was used to describe the strength of the relationships between these qualitative variables.
5. Relationships between the department-based and university-based instructional service measures and the faculty rank distribution of departments.

Do departments with similar department-based or university-based instructional service measures have similar faculty rank distributions? Are the department-based or the university-based instructional service measures reflective of the faculty rank distributions within departments? These relationships were of interest since, theoretically, the type of instructional load in academic departments should affect staffing. Three faculty rank indices--one based on faculty headcount, one based on full-time equivalent faculty (FTE), and one based on the percentage distribution of faculty and ranks--were constructed by weighting each rank. Spearman rank correlation coefficients were used to assess the relationships between these faculty rank distribution indices and undergraduate and graduate, adjusted and unadjusted department-based and university-based instructional service measures. The general form of the null hypothesis was that the faculty rank distribution index and the instructional service measure are mutually independent.
6. Relationships between department-based and university-based instructional service measures and the number of graduate assistants employed in academic departments.

Do departments with similar department-based or university-based instructional service measures employ a similar number of graduate assistants? Two measures of the number of graduate assistants in a department--headcount and FTE's--were developed for each department. Spearman rank correlation coefficients were used to assess the relationships between these measures and the undergraduate and graduate, department-based and university-based instructional service measures. These relationships were calculated for both adjusted and unadjusted instructional service measures. The general form of the null hypothesis was that the measure of the number of graduate assistants and the instructional service measure are mutually independent.
7. Relationships between department-based and university-based instructional service measures and the funding level and average salary in academic departments.

The two major sources of departmental funding are the general fund and research grants and contracts. Is the level of funding from these two sources independent of the level of department-based and university-based instructional service in the department? Is the average salary of faculty in a department related to the level of department-based or university-based instructional service? The extent of these relationships among funding, average salary, and instructional service measures was assessed using Spearman rank
: ineal s
20
\(15: 3\).
ser:ice
test the
instuct
gracuate
tiat the
and the
lation
reletion
\(\because a s s i s\)
Üs:
issteuct
\(5: 10 w i=\)

3

iases,
correlation coefficients. The null hypothesis tested stated the mutual independence of each pair of variables.
8. Relationships between the prestige of graduate education in departments and the department-based or university-based graduate instructional service measures.

Do departments with prestigious graduate programs have relatively high or low department-based and university-based instructional service measures? A chi-square test for independence was used to test the hypothesis that the level of department-based graduate instructional service and level of prestige of the department's graduate program are statistically independent and the hypothesis that the level of university-based graduate instructional service and the level of prestige are statistically independent. The correlation coefficient phi ( \(\Phi\) ) was used to describe the strength of the relationships between these qualitative variables.
9. Classification of departments on the basis of instructional service.

Using the rankings of departments on undergraduate and graduate instructional service data, four two-dimensional arrays of the following form were constructed.

\section*{Graduate}

Low Medium High

\section*{Low}

Undergraduate
Medium
High
These four arrays represented the rankings on unadjusted departmentbased, adjusted department-based, unadjusted university-based, and
adjusted university-based instructional service measures. Each category was constructed on the basis of rankings and represented approximately one-third of the departments. This stratification was based on ranking to ensure approximately equal cell sizes for the multiple discriminant analysis discussed in the next passage. In addition, since departments tended to cluster around the extremes of the instructional service measures, especially the department-based measures, the ranks provided the best representation of the data.
10. Identification of descriptor variables reflective of the classification schema.

For each dimension, undergraduate and graduate, of the four instructional service arrays, what descriptor variables discriminate among the categories of undergraduate and graduate instructional service? That is, what linear combination of variables will maximize the differences among groups? Multiple discriminant analysis was the technique used to study the relationships among the categories of undergraduate and graduate instructional service in terms of the many descriptor variables available for each department. The selection of the input variables for the multiple discriminant analyses was facilitated by the use of principal axes factor analysis. In principal axes factor analysis, redundancies in the data are eliminated by the generation of \(n\) statistically independent linear combinations called factors. These factors were, in turn, used as the input variables for the discriminant analysis.

Methodology
A review of the preceding section reveals that four types of statistical techniques were used in this study. Each of these tech-niques--rank correlation, chi-square test for independence, principal axes factor analysis, and multiple discriminant analysis-are described in the following paragraphs.

Spearman Rank Correlations--Correlation analysis deals with two basic questions: does a relationship exist between two variables and what is the extent of this relationship? In this study, Spearman's rho was used as a measure of the relationships among the ranks of the instructional service measures and the ranks of the other departmental descriptor variables. As with other measures of relationships, the values of rho vary from -1 , a perfect negative correlation, to +1 , a perfect positive correlation, with a value of zero indicating statistical. independence. Since departments tended to cluster around the extremes of the instructional service measures, correlation coefficients based on ranks rather than raw data were most appropriate in this study. In order to correct for the many ties which were present in the instructional service data, correlation coefficients were calculated using the ranks on these service data as the input into a computer program which computed Pearson's r. \({ }^{5}\) The correlation coefficients generated in this manner were then interpreted as Spearman's rho's. This type of manipulation was possible since "Pearson's r reduces to

\footnotetext{
\({ }^{5}\) W. J. Conover, Practical Nonparametric Statistics (New York: John Wiley \& Sons Inc., 1971), p. 246.
}

\section*{Ban's rio \\ Fieses of satistic, t \\ CiS-šuar \\ cisence tests \\ : 1 : coatinge \\ Confour ba \\ cit four based \\ bery tajles \\ Student \\ 迸el}

Spearman's rho if the data are replaced by their ranks." \({ }^{6}\) The null hypotheses of mutual independence \(\left(E\left(r_{s}\right)=0\right.\) ) were tested using a t-statistic, \(t=r_{s} \sqrt{\mathrm{~N}-2} / \sqrt{1-\mathrm{r}^{2}}{ }_{\mathbf{s}}\), with \(\mathrm{N}-2\) degrees of freedom. \({ }^{7}\) Chi-square Test for Independence--The chi-square test for independence tests statistical independence within the framework of an r x c contingency table. Eight chi-square tests were conducted on this study--four based on level of student served in undergraduate courses and four based on the prestige of graduate programs. The \(2 \times 3\) contingency tables which provided the basis for the analyses are diagramed as

\title{
Undergraduate Instructional Service \\ Low Medium High
}
\begin{tabular}{cc} 
Student & \begin{tabular}{c} 
Predominately Lower \\
Division
\end{tabular} \\
\(\underline{\text { Level }}\) & \begin{tabular}{c} 
Predominately Upper \\
Division
\end{tabular}
\end{tabular}

\title{
Graduate Instruction Service
}

Low Medium High
Ranked
Prestige
Unranked
In order to test the hypothesis of the general form, the level of qualitative variable \(A\) is independent of the level of qualitative variable \(B\),
\({ }^{6}\) Ibid., p. 247.
\({ }^{7}\) L. A. Marascuilo, Statistical Methods for Behavioral Science Research (New York: McGraw-Hill Book Company, 1971), p. 457.
the statistic \(T=\stackrel{r}{\Sigma} \sum_{\sum}^{\left(0_{i j}-E_{i j}\right)^{2}} E_{i j}\) was computed. \({ }^{8}\) The rejection region for the null hypothesis correspond to values of \(T\) greater than 5.991 , the . 95 percentile of the chimsquare random variable with \((r-1)(c-1)=2\) degrees of freedom. \({ }^{9}\) The strength of the association between the dimension of the contingency table was computed using the phi coefficient. The range of \(\hat{\Phi}\) is from 0 to 1 , where zero is uncorrelated while one represents a perfect relationship. The relationship between the phi coefficient and Karl Pearson's chi-square is expressed for a \(r \times c\) contingency tables by the formula: \(\hat{\Phi}=\sqrt{\mathrm{X}^{2}} 7 \mathrm{NM}\) where \(N\) is the sample size and \(M\) is the minimum of ( \(r-1\) ) and ( \(c-1\) ). \({ }^{10}\) Principal Axes Factor Analysis--Factor analysis was described by Overall and Klett as
a powerful method of statistical analysis that has as its aim the explanation of relationships among numerous correlated variables in terms of a relatively few underlying factor variables. \({ }^{11}\)

In this study one of the main analysis problems was the selection of variables for use in the multiple discriminant analyses. Since the number of departmental descriptor variables exceeds the number of departments in each instructional service category, criteria for variable selection were needed. Yet, no a priori variable selection strategy which accounted for possible correlations within the descriptor

\footnotetext{
\({ }^{8}\) W. J. Conover, Practical Nonparametric Statistics (New York: John Wiley \& Sons Inc., 1971), p. 155.
\({ }^{9}\) Ibid., p. 156.
\({ }^{10}\) L. A. Marasciulo, Statistical Methods for Behavioral Science Research (New York: McGraw-Hill Book Company, 1971), p. 406.
\({ }^{11}\) J. E. Overall and C. J. Klett, Applied Multivariate Analysis (New York: McGraw-Hill Book Company, 1972), p. 89.
}
variables and which weighted the variables accordingly existed. Principal axes factor analysis with a varimax rotation provided a tool for reducing the data into smaller set of orthogonal (statistically independent) factors which account for a maximum amount of the total variability among departments on all the descriptor variables.

Principal axes factor analysis is one of the multifactor techniques described by Rummel and characterized by the following attributes:
1. The approach is one of reducing the data to the minimum number of common factors or factor-dimensions necessary to reproduce the original data.
2. The complexity of the variables may be one (as in the multiplegroup technique), two, or greater.
3. The complexity of the factors may consist of general, group, or specific factors.
4. Communalities must be estimated if the common factor model is involved. \({ }^{12}\)

The general steps of most factor analytic techniques as delineated by Comrey are "(a) selecting the variables; (b) computing the matrix of correlations among the variables; (c) extracting the unrotated factors; (d) rotating the factors; and (e) interpreting the rotated factors."13

In this study thirty-five (35) departmental descriptor variables were used in the factor analysis conducted in this study. The remaining descriptor variables listed in Appendix B were used in other analyses conducted in this study. Steps \(b, c\), and \(d\) were accomplished through the use of two computer programs, PACKAGE and FACTRB, which were

\footnotetext{
\({ }^{12}\) R. J. Rummel, Applied Factor Analysis (Evanston, Ill.: Northwestern University Press, 1970), p. 333.
\({ }^{13}\) A. L. Comrey, A First Course in Factor Analysis (New York: Academic Press, 1973), p. 4.
}

Tre
are di
on th
deài
inser
Es：
i：trpes
wick wic
：atelatio
\(\because\) In \(t\)

Cex for
aitige
：＝ate
is p：
：－icipal
\(\underbrace{\therefore C_{0}}\)
※isgs
ジミane
：こor．＂

Ij
available at the Michigan State University Computer Center. First, a product-moment correlation matrix was computed with estimates of the communalities substituted in the diagonal of this matrix. This necessary substitution causes an inherent weakness in the common factor analytic model-a basic indeterminacy or circularity in calculation. Rummel describes the problem thus:

> The communalities \({ }^{14}\), \(h_{2}\), cannot be known until the common factors are defined. The delineation of these factors, however, depends on the correlation matrix.... The traditional procedure for dealing with this indeterminacy--this communality problem--is to insert in the principal diagonal of the correlation matrix some estimates of the communality values. \({ }^{15}\)

Two types of estimates of the communalities are commonly used; the upper bound which is unity or the lower bound which is the squared multiple correlation (SMC) of a variable with all the other variables in the data set. In the absence of other relevant studies that could serve as a guide for the choice of communality estimates for this study, the squared multiple correlations were used since Rummel described them as "the best estimate on theoretical and empirical grounds."16

As previously noted, the unrotated factors were extracted using principal axes factor analysis. The principal axes technique was

\footnotetext{
\({ }^{14}\) Commanalities are defined as the "sum of the squares of the factor loadings over all the factors," and they give the proportion of the variance of the variables that can be accounted for by scores in the factor." (Comrey, 1973, p. 12)
\({ }^{15}\) R. J. Rummel, Applied Factor Analysis (Evanston, Ill.: Northwestern University Press, 1970), p. 312.
\({ }^{16}\) Ibid., p. 320.
}
described by Cattell as the preferred technique "notably for its mathematical properties and for practical reasons such as yielding a test of the number of factors...."17 The principal axes were defined by Rummel as the "minimum orthogonal dimensions required to linearly reproduce (define, generate, explain) the original data."18 Computationally, principal axes factor analysis is an iterative method which operates on the correlation matrix and successive residual matrices to generate principal axes factor loadings based on principal components. These coefficients (factor loadings) represent the "extent to which variables are related to the hypothetical factor." \({ }^{9}\) FACTRB extracts successive principal components and factors until the eigenvalue of a factor is less than or equal to one or until a default limit of twenty factors is reached. However, this program constraint did not affect the analysis in this study. Some of the characteristics of the factors which are derived using principal axes factor analysis include
1. Both factor loadings and factor scores are orthogonal.
2. The variance contributions of the factors are decreasing. The first factor measures the most variance and successive factors will account for decreasing proportions of variance.
3. Sensitivity to random error or communality estimates appears low relative to other techniques.
4. The geometrical fit of all factors is ellipsoidal. \({ }^{20}\)

\footnotetext{
\({ }^{17}\) R. B. Cattell, Handbook of Multivarate Experimental Psychology (Chicago: Rand McNally \& Company, 1966), p. 176.
\({ }^{18}\) R. J. Rummel, Applied Factor Analysis (Evanston, Ill.: Northwestern University Press, 1970), p. 338.
\({ }^{19}\) A. L. Comrey, A First Course in Factor Analysis (New York: Academic Press, 1973), p. 7.
\({ }^{20}\) R. J. Rummel, Applied Factor Analysis (Evanston, Ill.: Northwestern University Press, 1970), pp. 344-45.
}
: a jasic incete
:erent methods
an, "aithough p
wout for maxim
wi: to interpr
and the origin
Eists "to obta
:possible from
z: results froe
Nourts for the
Wint for dece
etors, the var
4.3, the first
aibost all of
:is the varia
these variabl
Fitated matrix
fioved in bot:
Raiser's va
Eerate the rot
Uasion technic


As previously mentioned, factor analytic methods are characterized by a basic indeterminacy. That is, some data when factor analyzed by different methods produces different factor loading matrices. In addition, "although principal axes factors are statistically orthogonal and account for maximum possible variance, they tend to be complex and difficult to interpret. \({ }^{21}\) Rotational transformations of the factors around the origin of an n-dimensional space have been used by factor analysts "to obtain meaningful factors that are consistent (invariant) as possible from analysis to analysis. \({ }^{22}\) In the factor loading matrix that results from a principal axes factor analysis, the first factor accounts for the largest amount of variance and subsequent factors account for decreasing amounts of variance. In the matrix of rotated factors, the variance is distributed more evenly across all the factors; thus, the first rotated factors which are extracted do not have loadings on almost all of the variables. In addition, in the rotated factor matrix the variables are usually highly loaded on a few factors instead of these variables being highly loaded on many factors as occurs in the unrotated matrix. Thus, the rotation process can produce a matrix improved in both parsimony and clarity.

Kaiser's varimax rotation procedure was used in this study to generate the rotated factor matrix. The varimax method is an orthogonal rotation technique which maximizes the variance of the squared factor

\footnotetext{
\({ }^{21}\) J. E. Overall and C. J. Klett, Applied Multivariate Analysis (New York: McGraw-Hill Book Company, 1972), p. 114.
\({ }^{22}\) B. Fruchter, Introduction to Factor Analyses (New York: Van Nostrand, 1954), p. 106.
}
:zings by column. an the same clust : of otner varia
zinique rotatio
:aily independen
:i:stion are simp 1
Ciarity, and
asmary, a pris
zused to gener
ators which are
Zese linear coci
Bres were used
Wltiple Di
osseralized fo
isis group memb
e:able assume
xat functions
Escisimate
sops,it
0013
\(\underbrace{}_{i=3:{ }^{2 ?} \text { R. } \mathrm{J}, \mathrm{J}, \mathrm{R}}\)
\({ }^{2}\) Ibid

loadings by column. "A strong feature of varimax is its ability to discern the same cluster of variables regardless of the number or combination of other variables in the process. \({ }^{123}\) An orthogonal rather than an oblique rotation method was chosen because the factors remain statistically independent. In addition, "the chief grounds for orthogonal rotation are simplicity, a mathematical elegance of the result, conceptual clarity, and amenability to subsequent manipulation and analysis."24 In summary, a principal axes factor analysis with a varimax rotation was used to generate \(n\) weighted linear combinations of variables called factors which are statistically independent. Factor scores based on these linear combinations were computed for each department, and these scores were used as variables in the multiple discriminant analyses.

Multiple Discriminant Analysis--Multiple discriminant analysis is a generalized form of regression in which the dependent variable represents group membership. \({ }^{25}\) In the case of two groups the dependent variable assumes the values of 0 and 1 . Since the number of discriminent functions (linear combinations of variables which serve to maximally discriminate among groups) is equal to one less than the number of groups, \({ }^{26}\) only one discriminant function, similar in form to a

\footnotetext{
\({ }^{23}\) R: J. Rummel, Applied Factor Analysis (Evanston, Ill.: Northwestern University Press, 1970), p. 392.
.24 Ibid., p. 388.
\({ }^{25}\) F. N. Kerlinger and E. J. Pedhazur, Multiple Regression in Behavioral Research (New York: Holt, Rinehart and Winston, Inc., 1973), p. 337.
\({ }^{26} \mathrm{~J}\). E. Overall and C. J. Klett, Applied Multivariate Analysis (New York: McGraw-Hill Book Company, 1972), p. 281.
}

The i
tion
reias:
Ve s
of th
incer
Caxiz
Se cosput
Gever
: ine ocl
\(\therefore\) ainec
Sst:us: i
isied una
\(\therefore\)
\(* \mathrm{Y}_{0 \mathrm{~K}}\)
43
regression equation, emerges. With the three group classification schema used in this study, two discriminant functions which "maximize the difference between groups relative to the differences within the groups" \({ }^{27}\) were generated. These discriminant functions were linear combinations of the composite variables and not the original descriptor variables--a fact which complicated the interpretation of the discriminant functions. As was the case in principal axes factor analysis, the two discriminant functions are orthogonal (statistically independent) to each other.

The first discriminant function is that single weighted combination of measurements which has maximum variance between groups relative to the variance within groups. \({ }^{28}\)

The second discriminant function is that weighted combination of the \(p\) variables which of all possible weighted combinations independent of the first discriminant function accounts for a maximum of the remaining group differences. \({ }^{29}\)

The computer program DISCRIM2 available at the Michigan State University Computer Center was used to generate the two discriminant functions. Since only three groups were used, the constraints of the program did not affect the analysis. Eight separate discriminant analyses of the instructional service measures were conducted in this study: departmentbased unadjusted undergraduate, department-based unadjusted graduate,

\footnotetext{
\({ }^{27}\) F. N. Kerlinger and E. J. Pedhazur, Multiple Regression in Behavioral Research (New York: Holt, Rinehart and Winston, Inc., 1973), p. 340.
\({ }^{28}\) J. E. Overall and C. J. Klett, Applied Multivariate Analysis (New York: McGraw-Hill Book Company, 1972), p. 281.
\({ }^{29}\) Ibid., p. 282.
}
department-based adjusted undergraduate, department-based adjusted graduate, university-based unadjusted undergraduate, university-based unadjusted graduate, university-based adjusted undergraduate, and university-based adjusted graduate.

\section*{Summary}

In this chapter the research design of the study was presented. The instructional service measures were defined, and the procedure for calculating these measures identified. Also, the parameters of the entire data base for the study were described. While the purposes of the study have been mentioned in previous chapters, the focus in this chapter was on the specific areas of inquiry and their attendant statistical techniques. The discussion of these techniques--rank correlation, chi-square test for independence, principal axes factor analysis, and multiple discriminant analysis--completed the chapter.

\section*{Chapter V}

THE RESULTS

This study was exploratory in nature and was designed to identify relationships among the aspects of instructional service and other available data on academic departments. The purposes of this study were to 1) develop appropriate measures of the instructional service component of academic departments; 2) identify relationships among the instructional service measures and other departmental characteristics; and 3) classify departments on the basis of instructional service and determine which variables serve to discriminate among categories of instructional service. In the preceding chapter the ten areas of inquiry related to these research objectives were identified, and their attendant statistical strategies and techniques were described. The results of these statistical procedures are discussed in this chapter.

\section*{Instructional Service Measures}

As noted above, one of the tasks in this study was the development of appropriate measures of the instructional service component of academic departments. Two constructs were developed which reflected aspects of instructional service. Department-based instructional service measures represented the relative amount of the total enrollment in each department who were service students (non-majors). Therefore, these
wisures reflected
:-rtioning of eac: sstructional serv. ::al institutiona ies responsible. sititution.

For each cat ased and univers the number of :e displayed in \(\because\) Fall 1971 wi
masures were d
mejusted mea
setrice and to s:ry. The ad
\(\equiv \mathrm{ei}\) short cou irofessional
: calculate
\(\rightarrow\) Table 4.
te sixs un
isputed

measures reflected the role of instructional service in the internal functioning of each department. On the other hand, university-based instructional service measures represented the relative amount of the total institutional instructional service load for which each department was responsible. Thus, these university-based measures reflected the department's contribution to the total service instruction within the institution.

For each category of instructional service measures--departmentbased and university-based--six summary measures were calculated based on the number of instructional service students for Fall 1971, which are displayed in Table 2 and the total enrollments in each department for Fall 1971 which are displayed in Table 3. These six summary measures were described in Table 1 in the preceding chapter. The three unadjusted measures (undergraduate, graduate and total) were based on service and total enrollments in all courses applicable to each category. The adjusted measures, as constructed, did not include subprogram and short courses (undergraduate and total measures) and graduateprofessional courses (graduate and total measures). The equations used to calculate these twelve measures of instructional service are reported in Table 4. The six department-based instructional service measures and the six university-based instructional service measures which were computed for Fall 1971 are displayed in Tables 5 and 6 respectively.

Extreme Departments--In this study, extreme departments were defined as those departments with instructional service measures of 0.0 (no instructional service students; a non-service department) or 100.0 (all students were service students; a total service department).
Table 2. Instructional Service Students by Course Level, Fall 1971
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{UNDERGRADUATE} & \multicolumn{5}{|l|}{GRADUATE} & \multicolumn{2}{|l|}{TOTALS} \\
\hline Department & Subprogram & Lower Level & \begin{tabular}{l}
Upper \\
Level
\end{tabular} & Adjusted Total & Total & G-P & Masters & Doctoral & Adjusted Total & Total & Adjusted Total & Total \\
\hline
\end{tabular}





 8888888888888888888888888888888888888888





Ag. Economics
Ag. Engineering
Animal Husbandry
Crop \& Soil Sci.
Dify
Fish. \& Wildlife
Food Sci. \& H.N.
Forestry
Horticulture
Packaging
Park \& Rec. Res.
Poultry Science
Resource Devel.
Art
English
German \& Russian
History
Linguistics
Music
Philosophy
Religion
Romance Lang.
Acct. \& Finance
Bus. Law \& Off. Adm.
Economics
H. R. I.
Management
Marketing \& Trans.
Advertising
Audiology \& Spch.
Communications
Journalism
TV \& Radio
Theatre
Chemical Eng.
Civil \& San. Eng.
Computer Sci.
Electrical Eng.
Mechanical Eng.
M. M. M.
Table 2--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{5}{|l|}{UNDERGRADUATE.} & \multicolumn{5}{|l|}{GRADUATE} & \multicolumn{2}{|l|}{TOTALS} \\
\hline & Subprogram & Lower Level & \begin{tabular}{l}
Upper \\
Level
\end{tabular} & Adjusted Total & Total & G-P & Masters & Doctoral & Adjusted Total & Total & Adjusted Total & Total \\
\hline Family Ecology & 00 & 59 & 270 & 329 & 329 & 00 & 28 & 4 & 32 & 32 & 361 & 361 \\
\hline Fam. \& Child Sci. & 00 & 330 & 497 & 827 & 827 & 00 & 20 & 1 & 21 & 21 & 848 & 848 \\
\hline Hum. Nutr. 6 Foods & 00 & 380 & 28 & 408 & 408 & 00 & 3 & 00 & 3 & 3 & 411 & 411 \\
\hline Hum. Envir. 6 Des. & 00 & 304 & 121 & 425 & 425 & 00 & 4 & 00 & 4 & 4 & 429 & 429 \\
\hline Human Development & 00 & 00 & 00 & 00 & 00 & 1 & 00 & 00 & 00 & 1 & 00 & 1 \\
\hline Medicine (HLY) & 00 & 00 & 00 & 00 & 00 & 7 & 00 & 00 & 00 & 7 & 00 & 7 \\
\hline Psychiatry & 00 & 00 & 00 & 00 & 00 & 18 & 00 & 00 & 00 & 18 & 00 & 18 \\
\hline Astronomy & 00 & 345 & 17 & 362 & 362 & 00 & 00 & 00 & 00 & 00 & 362 & 362 \\
\hline Biochemistry & 114 & 00 & 356 & 356 & 470 & 00 & 73 & 9 & 82 & 82 & 438 & 552 \\
\hline Biophysics & 00 & 00 & 00 & 00 & 00 & 00 & 8 & 00 & 8 & 8 & 8 & 8 \\
\hline Bot. \& Plant Path. & 113 & 00 & 249 & 249 & 362 & 00 & 17 & 26 & 43 & 43 & 292 & 405 \\
\hline Chemistry & 00 & 4,242 & 458 & 4,700 & 4,700 & 00 & 40 & 18 & 58 & 58 & 4,758 & 4,758 \\
\hline Entomology & 15 & 00 & 446 & 446 & 461 & 00 & 00 & 20 & 20 & 20 & 466 & 481 \\
\hline Geology & 00 & 460 & 181 & 641 & 641 & 00 & 14 & 4 & 18 & 18 & 659 & 659 \\
\hline Mathematics & 594 & 4,898 & 525 & 5,423 & 6,017 & 00 & 43 & 2 & 45 & 45 & 5,468 & 6,062 \\
\hline Nursing & 00 & 6 & 1 & 7 & 7 & 00 & 00 & 00 & 00 & 00 & 7 & 7 \\
\hline Physics & 00 & 2,581 & 135 & 2,716 & 2,716 & 00 & 20 & 1 & 21 & 21 & 2,737 & 2,737 \\
\hline Statistics & 00 & 510 & 765 & 1,275 & 1,275 & 00 & 77 & 1 & 78 & 78 & 1,353 & 1,353 \\
\hline Zoology & 00 & 00 & 1,082 & 1,082 & 1,082 & 00 & 22 & 00 & 22 & 22 & 1,104 & 1,104 \\
\hline Anthropology & 00 & 1,694 & 323 & 2,017 & 2,017 & 00 & 20 & 00 & 20 & 20 & 2,037 & 2,037 \\
\hline Criminal Justice & 00 & 478 & 105 & 583 & 583 & 00 & 18 & 00 & 18 & 18 & 601 & 601 \\
\hline Geography & 00 & 697 & 456 & 1,153 & 1,153 & 00 & 12 & 00 & 12 & 12 & 1,165 & 1,165 \\
\hline Labor \& Ind. Rel. & 00 & 00 & 00 & 00 & 00 & 00 & 52 & 2 & 54 & 54 & 54 & 54 \\
\hline Political Science & 00 & 863 & 1,273 & 2,136 & 2,136 & 00 & 11 & 15 & 26 & 26 & 2,162 & 2,162 \\
\hline Psychology & 00 & 4,152 & 2,250 & 6,402 & 6,402 & 00 & 127 & 44 & 171 & 171 & 6,573 & 6,573 \\
\hline Social Work & 00 & 339 & 161 & 500 & 500 & 00 & 45 & 3 & 48 & 48 & 548 & 548 \\
\hline Sociology & 00 & 1,176 & 1,422 & 2,598 & 2,598 & 00 & 69 & 65 & 134 & 134 & 2,732 & 2,732 \\
\hline U. P. L. A. & 19 & 113 & 106 & 219 & 238 & 00 & 14 & 00 & 14 & 14 & 233 & 252 \\
\hline Amer. Tht. \& Lang. & 227 & 6,718 & 26 & 6,744 & 6,971 & 00 & 00 & 00 & 00 & 00 & 6,744 & 6,971 \\
\hline Humanities & 00 & 5,681 & 11 & 5,692 & 5,692 & 00 & 00 & 00 & 00 & 00 & 5,692 & 5,692 \\
\hline Natural Science & 00 & 5,167 & 35 & 5,202 & 5,202 & 00 & 00 & 00 & 00 & 00 & 5,202 & 5,202 \\
\hline Social Science & 00 & 4,542 & 51 & 4,593 & 4,593 & 00 & 00 & 00 & 00 & 00 & 4,593 & 4,593 \\
\hline Anatomy & 00 & 00 & 589 & 589 & 589 & 285 & 35 & 00 & 35 & 320 & 624 & 909 \\
\hline Lg. An im. Sur. EMed. & 00 & 00 & 00 & 00 & 00 & 226 & 00 & 00 & 00 & 226 & 00 & 226 \\
\hline Medical Tech. & 00 & 32 & 6 & 38 & 38 & 00 & 00 & 00 & 00 & 00 & 38 & 38 \\
\hline Microbiology & 44 & 287 & 330 & 617 & 661 & 105 & 13 & 1 & 14 & 119 & 631 & 780 \\
\hline Pathology & 00 & 00 & 82 & 82 & 82 & 95 & 81 & 8 & 89 & 184 & 171 & 266 \\
\hline Pharmacology & 00 & 00 & 97 & 97 & 97 & 113 & 00 & 00 & 00 & 113 & 97 & 210 \\
\hline Physiology & 00 & 321 & 296 & 617 & 617 & 189 & 7 & 7 & 14 & 203 & 631 & 820 \\
\hline Sm. Anim. Sur. 6 Med. & 00 & 00 & 00 & 00 & 00 & 427 & 4 & 00 & 4 & 431 & 4 & 431 \\
\hline Pam. \& Comm. Med. & 00 & 00 & 00 & 00 & 00 & 36 & 00 & 00 & 00 & 36 & 00 & 36 \\
\hline Medicine (OM) & 00 & 00 & 00 & 00 & 00 & 74 & 00 & 00 & 00 & 74 & 00 & 74 \\
\hline
\end{tabular}

Table 3. Enrollment by Course Level, Fall 1971
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{5}{|l|}{UNDERGRADUATE} & \multicolumn{5}{|l|}{GRADUATE} & \multicolumn{2}{|l|}{T0TALS} \\
\hline & Subprogram & Lower Level & Upper & Adjusted Total & Total & G-P & Masters & Doctoral & Adjusted Total & Total & Adjusted & Total \\
\hline Ag. Economics & 179 & 00 & 00 & 00 & 179 & 00 & 54 & 30 & 84 & 84 & 84 & 263 \\
\hline Ag. Engineering & 441 & 43 & 77 & 120 & 561 & 00 & 68 & 14 & 82 & 82 & 202 & 643 \\
\hline Animal Husbandry & 50 & 234 & 15 & 249 & 299 & 00 & 8 & 5 & 13 & 13 & 262 & 312 \\
\hline Crop 8 Soil Sci. & 349 & 272 & 64 & 336 & 685 & 00 & 36 & 23 & 59 & 59 & 395 & 744 \\
\hline Dairy & 47 & 256 & 95 & 351 & 398 & 00 & 9 & 16 & 25 & 25 & 376 & 423 \\
\hline Fish. 8 Wildlife & 00 & 00 & 227 & 227 & 227 & 00 & 46 & 15 & 61 & 61 & 288 & 288 \\
\hline Food Sct. 6 H.N. & 18 & 156 & 135 & 291 & 309 & 00 & 25 & 51 & 76 & 76 & 367 & 385 \\
\hline Forestry & 61 & 249 & 340 & 589 & 650 & 00 & 38 & 8 & 46 & 46 & 635 & 696 \\
\hline Horticulture & 235 & 129 & 197 & 326 & 561 & 00 & 42 & 17 & 59 & 59 & 385 & 620 \\
\hline Packaging & 00 & 79 & 206 & 285 & 285 & 00 & 19 & 00 & 19 & 19 & 304 & 304 \\
\hline Park \(\%\) Rec. Res. & 00 & 00 & 408 & 408 & 408 & 00 & 71 & 00 & 71 & 71 & 479 & 479 \\
\hline Poultry Science & 7 & 00 & 15 & 15 & 22 & 00 & 4 & 8 & 12 & 12 & 27 & 34 \\
\hline Resource Devel. & 38 & 00 & 399 & 399 & 437 & 00 & 174 & 8 & 182 & 182 & 581 & 619 \\
\hline Art & 00 & 1,265 & 792 & 2,057 & 2,057 & 00 & 148 & 00 & 148 & 148 & 2,205 & 2,205 \\
\hline Eng1ish & 630 & 1,692 & 2,285 & 3,977 & 4,607 & 00 & 191 & 119 & 310 & 310 & 4,287 & 4,917 \\
\hline German \& Russian & 00 & 861 & 221 & 1,082 & 1,082 & 00 & 47 & 22 & 69 & 69 & 1,151 & 1,151 \\
\hline History & 00 & 1,665 & 2,580 & 4,245 & 4,245 & 00 & 180 & 56 & 236 & 236 & 4,481 & 4,481 \\
\hline Linguistics & 00 & 106 & 115 & 221 & 221 & 00 & 41 & 9 & 50 & 50 & 271 & 271 \\
\hline Music & 00 & 3,351 & 911 & 4,262 & 4,262 & 00 & 170 & 33 & 203 & 203 & 4,465 & 4,465 \\
\hline Philosophy & 00 & 729 & 1,041 & 1,770 & 1,770 & 00 & 57 & 12 & 69 & 69 & 1,839 & 1,839 \\
\hline Religion & 00 & 555 & 275 & 830 & 830 & 00 & 4 & 00 & 4 & 4 & 834 & 834 \\
\hline Romance Lang. & 00 & 1,610 & 928 & 2,538 & 2,538 & 00 & 83 & 23 & 106 & 106 & 2,644 & 2,644 \\
\hline Acct. \& Finance & 153 & 894 & 1,035 & 1,929 & 2,082 & 00 & 408 & 58 & 466 & 466 & 2,395 & 2,548 \\
\hline Bus.Law Off . Adm. & 71 & 251 & 983 & 1,234 & 1,305 & 00 & 15 & 00 & 15 & 15 & 1,249 & 1,320 \\
\hline Economics & 00 & 1,634 & 1,577 & 3,211 & 3,211 & 00 & 518 & 51 & 569 & 569 & 3,780 & 3,780 \\
\hline H. R. I. & 00 & 335 & 248 & 583 & 583 & 00 & 29 & 00 & 29 & 29 & 612 & 612 \\
\hline Management & 00 & 149 & 1,024 & 1,173 & 1,173 & 00 & 650 & 28 & 678 & 678 & 1,851 & 1,851 \\
\hline Marketing \& Trans. & 33 & 00 & 1,163 & 1,163 & 1,196 & 00 & 362 & 58 & 420 & 420 & 1,583 & 1,616 \\
\hline Advertising & 10 & 446 & 412 & 858 & 868 & 00 & 16 & 00 & 16 & 16 & 874 & 884 \\
\hline Audiology of Spch. & 4 & 203 & 252 & 455 & 459 & 00 & 45 & 53 & 98 & 98 & 553 & 557 \\
\hline Communications & 00 & 1,382 & 361 & 1,743 & 1,743 & 00 & 201 & 37 & 238 & 238 & 1,981 & 1,981 \\
\hline Journalism & 00 & 335 & 365 & 700 & 700 & 00 & 44 & 1 & 45 & 45 & 745 & 745 \\
\hline TV 8 Radio & 00 & 407 & 276 & 683 & 683 & 00 & 69 & 12 & 81 & 81 & 764 & 764 \\
\hline Theatre & 00 & 219 & 220 & 439 & 439 & 00 & 28 & 17 & 45 & 45 & 484 & 484 \\
\hline Chemical Eng . & 00 & 31 & 133 & 164 & 164 & 00 & 42 & 16 & 58 & 58 & 222 & 222 \\
\hline Civil \(\%\) San. Eng. & 00 & 117 & 242 & 359 & 359 & 00 & 56 & 23 & 79 & 79 & 438 & 438 \\
\hline Computer Sci. & 00 & 831 & 619 & 1,450 & 1,450 & 00 & 40 & 25 & 65 & 65 & 1,515 & 1,515 \\
\hline Electrical Eng. & 00 & 00 & 1,267 & 1,267 & 1,267 & 00 & 197 & 54 & 251 & 251 & 1,518 & 1,518 \\
\hline Mechanical Eng. & 00 & 47 & 420 & 467 & 467 & 00 & 23 & 20 & 43 & 43 & 510 & 510 \\
\hline M. M. M. & 00 & 447 & 207 & 654 & 654 & 00 & 84 & 19 & 103 & 103 & 757 & 757 \\
\hline
\end{tabular}

Table 3--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{5}{|l|}{UNDERGRADUATE} & \multicolumn{5}{|l|}{GRADUATE} & \multicolumn{2}{|l|}{T OTALS} \\
\hline & Subprogram & Lower Level & Upper Level & Adjusted Total & Total & G-P & Masters & Doctoral & Adjusted Total & Total & Adjusted Total & Total \\
\hline Family Ecology & 00 & 74 & 509 & 583 & 583 & 00 & 63 & 13 & 76 & 76 & 659 & 659 \\
\hline Fam. \& Child Sci. & 00 & 372 & 776 & 1,148 & 1,148 & 00 & 69 & 5 & 74 & 74 & 1,222 & 1,222 \\
\hline Hum. Nutr. Foods & 00 & 426 & 127 & 553 & 553 & 00 & 16 & 3 & 19 & 19 & 572 & 572 \\
\hline Hum. Envir. 6 Des. & 00 & 1,146 & 711 & 1,857 & 1,857 & 00 & 54 & 00 & 54 & 54 & 1,911 & 1,911 \\
\hline Human Development & 00 & 00 & 00 & 00 & 00 & 01 & 00 & 00 & 00 & 01 & 00 & 01 \\
\hline Medicine (HM) & 00 & 00 & 00 & 00 & 00 & 7 & 00 & 00 & 00 & 7 & 00 & 07 \\
\hline Psychiatry & 00 & 00 & 00 & 00 & 00 & 18 & 00 & 00 & 00 & 18 & 00 & 18 \\
\hline Astronomy & 00 & 348 & 36 & 384 & 384 & 00 & 00 & 00 & 00 & 00 & 384 & 384 \\
\hline Biochemistry & 114 & 00 & 450 & 450 & 564 & 00 & 162 & 120 & 282 & 282 & 732 & 846 \\
\hline Biophysics & 00 & 00 & 00 & 00 & 00 & 00 & 25 & 8 & 33 & 33 & 33 & 33 \\
\hline Bot. \& Plant Path. & 113 & 00 & 282 & 282 & 395 & 00 & 61 & 83 & 144 & 144 & 426 & 539 \\
\hline Chemistry & 00 & 4,316 & 615 & 4,931 & 4,931 & 00 & 144 & 243 & 387 & 387 & 5,318 & 5,318 \\
\hline Entomology & 15 & 00 & 479 & 479 & 494 & 00 & 7 & 46 & 53 & 53 & 532 & 547 \\
\hline Geology & 00 & 483 & 295 & 778 & 778 & 00 & 67 & 16 & 83 & 83 & 861 & 861 \\
\hline Mathematics & 595 & 5,173 & 1,168 & 6,341 & 6,936 & 00 & 322 & 112 & 434 & 434 & 6,775 & 7,370 \\
\hline Nursing & 00 & 89 & 187 & 276 & 276 & 00 & 00 & 00 & 00 & 00 & 276 & 276 \\
\hline Physics & 00 & 2,600 & 265 & 2,865 & 2,865 & 00 & 125 & 77 & 202 & 202 & 3,067 & 3,067 \\
\hline Statistics & 00 & 510 & 767 & 1,277 & 1,277 & 00 & 124 & 25 & 149 & 149 & 1,426 & 1,426 \\
\hline Zoology & 00 & 00 & 1,483 & 1,483 & 1,483 & 00 & 89 & 40 & 129 & 129 & 1,612 & 1,612 \\
\hline Anthropology & 00 & 1,788 & 429 & 2,217 & 2,217 & 00 & 69 & 25 & 94 & 94 & 2,311 & 2,311 \\
\hline Criminal Justice & 00 & 766 & 1,118 & 1,884 & 1,884 & 00 & 135 & 00 & 135 & 135 & 2,019 & 2,019 \\
\hline Geography & 00 & 757 & 603 & 1,360 & 1,360 & 00 & 100 & 37 & 137 & 137 & 1,497 & 1,497 \\
\hline Labor \& Ind. Rel. & 00 & 00 & 00 & 00 & 00 & 00 & 154 & 4 & 158 & 158 & 158 & 158 \\
\hline Political Science & 00 & 1,020 & 1,604 & 2,624 & 2,624 & 00 & 31 & 54 & 85 & 85 & 2,709 & 2,709 \\
\hline Psychology & 00 & 4,677 & 3,265 & 7,942 & 7,942 & 00 & 422 & 318 & 740 & 740 & 8,682 & 8,682 \\
\hline Social Work & 00 & 434 & 729 & 1,163 & 1,163 & 00 & 453 & 4 & 457 & 457 & 1,620 & 1,620 \\
\hline Sociology & 00 & 1,198 & 1,657 & 2,855 & 2,855 & 00 & 158 & 154 & 312 & 312 & 3,167 & 3,167 \\
\hline U. P. L. A. & 19 & 383 & 430 & 813 & 832 & 00 & 136 & 00 & 136 & 136 & 949 & 968 \\
\hline Amer. Tht. 6 Lang. & 227 & 6,718 & 26 & 6,744 & 6,971 & 00 & 00 & 00 & 00 & 00 & 6,744 & 6,971 \\
\hline Humanities & 00 & 5,681 & 11 & 5,692 & 5,692 & 00 & 00 & 00 & 00 & 00 & 5,692 & 5,692 \\
\hline Natural Science & 00 & 5,167 & 35 & 5,202 & 5,202 & 00 & 00 & 00 & 00 & 00 & 5,202 & 5,202 \\
\hline Social Science & 00 & 4,542 & 51 & 4,593 & 4,593 & 00 & 00 & 00 & 00 & 00 & 4,593 & 4,593 \\
\hline Anatomy & 00 & 00 & 590 & 590 & 590 & 287 & 45 & 3 & 48 & 335 & 638 & 925 \\
\hline Lg.Anim. Sur. 8 Med. & 00 & 00 & 00 & 00 & 00 & 226 & 2 & 00 & 2 & 228 & 2 & 228 \\
\hline Medical Tech. & 00 & 124 & 72 & 196 & 196 & 00 & 00 & 00 & 00 & 00 & 196 & 196 \\
\hline Microbiology & 44 & 288 & 400 & 688 & 732 & 106 & 59 & 31 & 90 & 196 & 778 & 928 \\
\hline Pathology & 00 & 00 & 82 & 82 & 82 & 96 & 103 & 15 & 118 & 214 & 200 & 296 \\
\hline Pharmacology & 00 & 00 & 97 & 97 & 97 & 116 & 4 & 50 & 54 & 170 & 151 & 267 \\
\hline Physiology & 00 & 322 & 320 & 642 & 642 & 197 & 23 & 53 & 76 & 273 & 718 & 915 \\
\hline Sm.Anim. Sur.f Med. & 00 & 00 & 00 & 00 & 00 & 427 & 15 & 00 & 15 & 442 & 15 & 442 \\
\hline Fam. \& Com. Med. & 00 & 00 & 00 & 00 & 00 & 36 & 00 & 00 & 00 & 36 & 00 & 36 \\
\hline Medicine (OM) & 00 & 00 & 00 & 00 & 00 & 74 & 00 & 00 & 00 & 74 & 00 & 74 \\
\hline
\end{tabular}
Table 4. Equations for Instructional Service Measures
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Surmary \\
Measures
\end{tabular} & Department-Based Instructional Service Measures & University-Based Instructional Service Measurea \\
\hline unadjusted undergraduate & \[
\text { DBIS }_{v 0}=\frac{100 \text { (num. of service students - In unad. . undergrad. courses) }}{\text { dept. enroll. In unadj. undergrad. courses }}
\] & \[
\text { UBIS }_{\text {UU }}=\frac{100 \text { (num. of service students in unadi. undergrad. courses) }}{\text { total service enroill. in unadj. undergrad. ccurses }(9 i, 389)}
\] \\
\hline unadjusted graduate & \[
\text { DBIs }_{\text {UG }}=\frac{100 \text { (num. of service students in unad. grad. courses) }}{\text { dept. enroll. in unadj. grad. courses }}
\] & \[
\text { UBIS }_{\text {UG }}=\frac{100 \text { (num. of service students in unady. grad. courses) }}{\text { total service entoll. in unadj. grad. courses }}(4,734)
\] \\
\hline un:adjusted tota: & \[
\text { DBIS }_{u r}=\frac{100 \text { (num, of service studenta in unadj. total courses) }}{\text { dept. enroll. In unadj. total courses }}
\] & \[
\text { UBIS }_{\text {UT }}-\frac{100 \text { (num. of seryice students in unadj. total courses) }}{\text { total service enroll. in unadj. total courses }(96,123)}
\] \\
\hline adjusted undergraduate & \[
\text { DBIS }_{A U}=\frac{100 \text { (num. of service students in add. undergrad. courges) }}{\text { dept. enroil. in adj. undergrad. courses }}
\] & \[
\text { UBIS }_{A J}=\frac{100 \text { (num. of service students in adj. undergrad. courses) }}{\text { total service enroll. in adj. undergrad. courses }(87,937)}
\] \\
\hline adjusted graduate & \[
\text { DBIS }_{A G}=\frac{100 \text { (num. of service students in adj. grad. courses) }}{\text { dept. enroill. in adj. grad. courses }}
\] & \[
\text { UBIS }_{\text {AG }}=\frac{100 \text { (num. of service students in add. gred. courses) }}{\text { total service enroll. in adj. grad. courses }(3,158)}
\] \\
\hline adjusted total & \[
\text { DBIS }_{A T}=\frac{100 \text { (num. of service students in adj. total courses) }}{\text { dept. enroil. in adj. total courses }}
\] & \[
\text { UBIS }_{\text {AT }}=\frac{100 \text { (num. of service students in adj. total courses) }}{\text { total service enroil. in adj. total courses }(91,005)}
\] \\
\hline
\end{tabular}
iecie 5. Depurte:

Pepartitent

Agricultural Eco:
A A :icultural Enc
Areai Busoandry
Crep 6 Soll Scicr
Catry
fisteries a W :id
iood Sc1. \& HI=.
Forestry
Erriculture
Fakaging
fark 6 Rec. Resol,
foliry Science
Resource Develof
hit
Eqgitsh
Geamo Russian
Eistory
Li-guistics
Ausic
Philosophy
Reijgion
knance Lancua;e.
tict. \& Finance
3us. Law \(80 f i\)
ivonosics
Eotel, Res. 6 In
tazament
4iketing 6 Ir
Aiertising
Aidiology \& 5
comunications
jumalisa
It \& Radio
ITeatre
Cheaical Engincer.
Civil \& Sanitar:
Cosputer Science
Eectrical Engi-
Yectianical EnR:-
Yial., Mech, 8
Facliy Ecoloz:
sian \& Chile.
Euzan Entr. of
fizan Devel \(\delta\)
Medicize
Psychiop-:

Table 5. Department-based Instructional Service Measures, Fall 1971
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Department} & \multicolumn{3}{|c|}{Unadjusted} & \multicolumn{3}{|c|}{Adjusted} \\
\hline & graduate & Graduate & Total & Undergraduate & Graduate & Total \\
\hline Agricultural Economics & 100.0 & 4.8 & 69.6 & 0.0 & 4.8 & 4.8 \\
\hline Agricultural Engineering & 94.8 & 52.4 & 89.4 & 75.8 & 52.4 & 66.3 \\
\hline Animal Husbandry & 83.9 & 7.7 & 80.8 & 80.7 & 7.7 & 77.1 \\
\hline Crop \& Soil Science & 94.6 & 32.2 & 89.7 & 89.0 & 32.2 & 80.5 \\
\hline Dairy & 92.5 & 4.0 & 87.2 & 91.5 & 4.0 & 85.6 \\
\hline Fisheries \& Wildife & 64.8 & 4.9 & 52.1 & 64.8 & 4.9 & 52.1 \\
\hline Food Sci. \& Hum. Nutr. & 68.0 & 17.1 & 57.9 & 66.0 & 17.1 & 55.9 \\
\hline Forestry & 46.2 & 39.1 & 45.7 & 40.6 & 39.1 & 40.5 \\
\hline Horticulture & 83.6 & 11.9 & 76.8 & 71.8 & 11.9 & 62.6 \\
\hline Packaging & 22.1 & 10.5 & 21.4 & 22.1 & 10.5 & 21.4 \\
\hline Park \& Rec. Resources & 49.5 & 47.9 & 49.3 & 49.5 & 47.9 & 49.3 \\
\hline Poultry Science & 50.0 & 0.0 & 32.4 & 26.7 & 0.0 & 14.8 \\
\hline Resource Development & 83.8 & 36.3 & 69.8 & 82.2 & 36.3 & 67.8 \\
\hline Art & 44.0 & 4.7 & 41.4 & 44.0 & 4.7 & 41.4 \\
\hline English & 76.2 & 22.9 & 72.8 & 72.4 & 22.9 & 68.8 \\
\hline German 8 Russian & 85.5 & 4.3 & 80.6 & 85.5 & 4.3 & 80.6 \\
\hline History & 86.1 & 15.3 & 82.3 & 86.1 & 15.3 & 82.3 \\
\hline Linguistics & 89.6 & 20.0 & 76.8 & 89.6 & 20.0 & 76.8 \\
\hline Music & 35.8 & 0.5 & 34.2 & 35.8 & 0.5 & 34.2 \\
\hline Philosophy & 93.2 & 36.2 & 91.0 & 93.2 & 36.2 & 91.0 \\
\hline Religion & 96.6 & 100.0 & 96.6 & 96.6 & 100.0 & 96.6 \\
\hline Romance Languages & 80.9 & 6.6 & 77.9 & 80.9 & 6.6 & 77.9 \\
\hline Acct. \& Finance Adm. & 70.3 & 58.6 & 68.2 & 68.0 & 58.6 & 66.1 \\
\hline Bus. Law \& Office Adm. & 73.9 & 100.0 & 74.2 & 72.4 & 100.0 & 72.7 \\
\hline Economics & 86.5 & 69.6 & 83.9 & 86.5 & 69.6 & 83.9 \\
\hline Hotel, Res. \& Inst. Mgt. & 18.5 & 10.3 & 18.1 & 18.5 & 10.3 & 18.1 \\
\hline Management & 88.4 & 72.7 & 82.7 & 88.4 & 72.7 & 82.7 \\
\hline Marketing \& Trans. Adm. & 83.9 & 45.7 & 73.9 & 83.4 & 45.7 & 73.4 \\
\hline Advertising & 62.9 & 68.8 & 63.0 & 62.5 & 68.8 & 62.5 \\
\hline Audiology \& Speech Sci. & 53.4 & 1.0 & 44.2 & 53.0 & 1.0 & 43.8 \\
\hline Communications & 73.6 & 50.4 & 70.8 & 73.6 & 50.4 & 70.8 \\
\hline Journalism & 41.0 & 22.2 & 39.9 & 41.0 & 22.2 & 39.9 \\
\hline TV \& Radio & 32.8 & 8.6 & 30.2 & 32.8 & 8.6 & 30.2 \\
\hline Theatre & 44.4 & 2.2 & 40.5 & 44.4 & 2.2 & 40.5 \\
\hline Chemical Engincering & 5.5 & 15.5 & 8.1 & 5.5 & 15.5 & 8.1 \\
\hline Civil \& Sanitary Eng. & 35.4 & 10.1 & 30.8 & 35.4 & 10.1 & 30.8 \\
\hline Computer Science & 74.7 & 16.9 & 72.2 & 74.7 & 16.9 & 72.2 \\
\hline Electrical Engineering & 12.4 & 33.9 & 15.9 & 12.4 & 33.9 & 15.9 \\
\hline Mechanical Engineering & 14.8 & 11.6 & 14.5 & 14.8 & 11.6 & 14.5 \\
\hline Metal., Mech, \& Mat.Sci. & 90.5 & 34.0 & 82.8 & 90.5 & 34.0 & 82.8 \\
\hline Family Ecology & 56.4 & 42.1 & 54.8 & 56.4 & 42.1 & 54.8 \\
\hline Family \& Child Science & 72.0 & 28.4 & 69.4 & 72.0 & 28.4 & 69.4 \\
\hline Human Nutr. \& Foods & 73.8 & 15.8 & 71.9 & 73.8 & 15.8 & 71.9 \\
\hline Human Envir. \& Design & 22.9 & 7.4 & 22.4 & 22.9 & 7.4 & 22.4 \\
\hline Human Development & 0.0 & 100.0 & 100.0 & 0.0 & 0.0 & 0.0 \\
\hline Medicine & 0.0 & 100.0 & 100.0 & 0.0 & 0.0 & 0.0 \\
\hline Psychiatry & 0.0 & 100.0 & 100.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}


Table 5--Continued


Table 6. University-based Instructional Service Measures, Fall 1971
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Department Und} & \multicolumn{3}{|l|}{Unadjusted} & \multicolumn{3}{|c|}{Adjusted} \\
\hline & graduate & Graduate & Total & Undergraduate & Graduate & Total \\
\hline Agricultural Economics & . 196 & . 084 & . 190 & . 000 & . 127 & . 004 \\
\hline Agricultural Engineering & . 582 & . 908 & . 598 & . 103 & 1.362 & . 147 \\
\hline Animal Husbandry & . 275 & . 021 & . 262 & . 229 & . 032 & . 222 \\
\hline Crop \& Soil Science & . 709 & . 401 & . 694 & . 340 & . 602 & . 349 \\
\hline Dairy & . 403 & . 021 & . 384 & . 365 & . 032 & . 353 \\
\hline Fisheries \& Wildife & . 161 & . 063 & . 156 & . 167 & . 095 & . 165 \\
\hline Food Sci. \& Hum. Nutr. & . 230 & . 275 & . 232 & . 218 & . 412 & . 225 \\
\hline Porestry & . 328 & . 380 & . 331 & . 272 & . 570 & . 282 \\
\hline Horticulture & . 513 & . 148 & . 495 & . 266 & . 222 & . 265 \\
\hline Packaging & . 069 & . 042 & . 068 & . 072 & . 063 & . 071 \\
\hline Park \& Kec. Resources & . 221 & . 718 & . 246 & . 230 & 1.077 & . 259 \\
\hline Poultry Science & . 012 & . 000 & . 011 & . 005 & . 000 & . 004 \\
\hline Resource Development & . 400 & 1.394 & . 449 & . 373 & 2.090 & . 433 \\
\hline Art & . 991 & . 148 & . 950 & 1.030 & . 222 & 1.002 \\
\hline English & 3.840 & 1.500 & 3.724 & 3.274 & 2.248 & 3.238 \\
\hline German \& Russian & 1.012 & . 063 & . 965 & 1.052 & . 095 & 1.019 \\
\hline History & 3.998 & . 760 & 3.839 & 4.155 & 1.140 & 4.051 \\
\hline Linguistics & . 217 & . 211 & . 216 & . 225 & . 317 & . 228 \\
\hline Music & 1.671 & . 021 & 1.590 & 1.736 & . 032 & 1.677 \\
\hline Philosophy & 1.804 & . 528 & 1.742 & 1.875 & . 792 & 1.838 \\
\hline Religion & . 878 & . 085 & . 839 & . 912 & . 127 & . 885 \\
\hline Romance Languages & 2.246 & . 148 & 2.143 & 2.335 & . 222 & 2.261 \\
\hline Acct. \& Finance Adm. & 1.602 & 5.767 & 1.807 & 1.491 & 8.645 & 1.739 \\
\hline Bus. Law \& Office Adm. & 1.055 & . 317 & 1.018 & 1.015 & . 475 & . 997 \\
\hline Economics & 3.039 & 8.365 & 3.301 & 3.158 & 12.540 & 3.483 \\
\hline Hotel, Res. 6 Inst. Mgt. & . 118 & . 063 & . 115 & . 123 & . 095 & . 122 \\
\hline Management & 1.135 & 10.414 & 1.592 & 1.179 & 15.611 & 1.680 \\
\hline Marketing \& Trans. Adm. & 1.098 & 4.056 & 1.243 & 1.103 & 6.080 & 1.276 \\
\hline Advertising & . 597 & . 232 & . 579 & . 610 & . 348 & . 600 \\
\hline Audiology \& Speech Sci. & . 268 & . 021 & . 256 & . 274 & . 032 & . 266 \\
\hline Communications & 1.403 & 2.535 & 1.459 & 1.458 & 3.800 & 1.539 \\
\hline Journalism & . 314 & . 211 & . 309 & . 326 & . 317 & . 326 \\
\hline TV. 8 Radio & . 245 & . 148 & . 240 & . 255 & . 222 & . 254 \\
\hline Theatre & . 213 & . 021 & . 204 & . 222 & . 032 & . 215 \\
\hline Chemical Engineering & . 010 & . 190 & . 019 & . 010 & . 285 & . 020 \\
\hline Civil \& Sanitary Eng. & . 139 & . 169 & . 140 & . 144 & . 253 & . 148 \\
\hline Computer Science & 1.185 & . 232 & 1.138 & 1.232 & . 348 & 1.201 \\
\hline Electrical Engineering & . 172 & 1.796 & . 252 & . 179 & 2.692 & . 266 \\
\hline Mechanical Engineering & . 076 & . 106 & . 077 & . 078 & . 158 & . 081 \\
\hline Metal., Mech, \& Mat.Sci. & . 648 & . 739 & . 652 & . 673 & 1.108 & . 688 \\
\hline Family Ecology & . 360 & . 676 & . 376 & . 374 & 1.013 & . 396 \\
\hline Family \& Child Science & . 905 & . 444 & . 882 & . 940 & . 665 & . 931 \\
\hline Human Nutr. \& Foods & . 446 & . 063 & . 428 & . 464 & . 095 & . 451 \\
\hline Human Envir. \& Design & . 465 & . 084 & . 446 & . 483 & . 127 & . 471 \\
\hline Human Development & . 000 & . 021 & . 001 & . 000 & . 000 & . 000 \\
\hline Medicine ( HM ) & . 000 & . 148 & . 007 & . 000 & . 000 & . 000 \\
\hline Psychiatry & . 000 & . 380 & . 019 & . 000 & . 000 & . 000 \\
\hline
\end{tabular}

Table 6--Continued

]

A review of the data in Tables 5 and 6 revealed that departments at both extremes appeared on the department-based instructional service measures while only non-service departments were identified on the universitybased instructional service measures. In addition, the non-service departments were identical on both sets of measures. \({ }^{1}\) These extreme departments (non-service and total service) are listed in Table 7. In general, these departments are classified as extreme because they did not have any undergraduate or graduate courses. However, there were two exceptions to the above for both the department-based and the universitybased instructional service measures. For both the unadjusted and adjusted data, Poultry Science was classified as a graduate, non-service department; Pharmacology was classified as a graduate, non-service department on only the adjusted measure. Yet, both these departments offered graduate courses and had graduate-level majors. Thus, these deviations were engendered by student course selection for Fall 1971 and could not have been predicted from such departmental characteristics as number of majors and course offerings.

Two additional points should be made about the data in Table 7. When the total instructional efforts of the department was considered (unadjusted total instructional service measures), every department in the study provided instruction to service students (non-majors) in either

\footnotetext{
\({ }^{1}\) The definition of the university-based measures required that the sum of the departmental values for each measure equal 100. Thus, no total service departments existed on the university-based measures.
}
Table 7. Extreme Departments-Unadjusted and Adjusted Department-based Instructional Service Measures

undergraduate or graduate courses. Thus, the degree of both undergraduate and graduate instructional service, not the presence or absence of instructional service, should be used to differentiate the role of instructional service in academic departments. Second, a comparison of the list of unadjusted and adjusted extreme departments revealed that some departments (Psychiatry, Human Development, etc.) shifted from graduate, total service departments (unadjusted) to graduate, nonservice departments (adjusted). This exchange occurred because all of the courses offered in these departments were graduate-professional courses, and enrollments in these courses were not part of the adjusted data base. Similarly, Agricultural Economics was classified as an undergraduate, total service department (unadjusted) and an undergraduate, non-service department. In this case, the deletion of enrollments of sub-program and short courses to form the adjusted data base eliminated all undergraduate enrollment in Agricultural Economics. This, in turn, changed the value of the undergraduate instructional service measure from 100.0 to 0.0 .

Descriptive Data--The department-based instructional service measures ranged from 0.0 (non-service) to 100.0 (total service) for all measures except the unadjusted total which ranged from 2.50 to 100.0 . The range, mean, median, and standard deviations of these six measures are presented in Table 8. These data in Table 8 indicated that means and medians for the undergraduate and total instructional service measures were substantially higher than the means and medians for the graduate service measures. Thus, generally, the level of graduate service instruction is less than the level of undergraduate service

Table 8. Descriptive Data--Department-based Instructional Service Measures
\begin{tabular}{lcccc}
\hline \hline & & & & \begin{tabular}{l} 
Standard \\
Deviation
\end{tabular} \\
Summary Measures & & Median & Mean & \\
\hline & & & & \\
unadjusted undergraduate & \(0.0-100.0\) & 75.45 & 62.73 & 34.47 \\
unadjusted graduate & \(0.0-100.0\) & 21.95 & 33.26 & 32.12 \\
unadjusted total & \(2.5-100.0\) & 76.10 & 67.64 & 27.46 \\
adjusted undergraduate & \(0.0-100.0\) & 73.30 & 60.37 & 34.68 \\
adjusted graduate & \(0.0-100.0\) & 15.55 & 22.65 & 23.57 \\
adjusted total & \(0.0-100.0\) & 68.15 & 57.13 & 31.11 \\
\hline
\end{tabular}
instruction in academic departments. However, the obvious exceptions were those departments which had no undergraduate service or instructional load (i.e., Labor and Industrial Relations and Psychiatry). The distributions of the undergraduate and total department-based instructional service measures were negatively skewed (median > mean) for both unadjusted and adjusted data while the distributions of the graduate measures were positively skewed (median < mean). Finally, when the unadjusted and adjusted department-based measures for each instructional level were compared, the difference scores indicated that the means of the unadjusted and adjusted, graduate and total measures were meaningfully different (10.61 and 10.51 respectively).

Parallel data for the university-based instructional service measures are presented in Table 9. While both the upper and lower limits of the ranges of the department-based measures with relatively constant ( 0.0 and 100.0 ), only the lower limits of the ranges of the universitybased measures exhibited this stability. All measures except the

Table 9. Descriptive Data--University-based Instructional Service Measures
\begin{tabular}{lcccc}
\hline \hline & Range & Medium & Mean & \begin{tabular}{c} 
Standard \\
Deviation
\end{tabular} \\
Summary Measures & & & & \\
\hline unadjusted undergraduate & \(0-7.628\) & .514 & 1.220 & 1.774 \\
unadjusted graduate & \(0-10.414\) & .380 & 1.221 & 2.103 \\
unadjusted total & \(.001-7.252\) & .535 & 1.219 & 1.694 \\
adjusted undergraduate & \(0-7.669\) & .438 & 1.220 & 1.808 \\
adjusted graduate & \(0-15.611\) & .364 & 1.220 & 2.527 \\
adjusted total & \(0-7.403\) & .461 & 1.220 & 1.763 \\
\hline
\end{tabular}
unadjusted total (.001) had lower limits of 0.0 . The upper bounds of the range varied from 7.403 (adjusted total) to 15.611 (adjusted graduate). Also, the upper limits of the graduate measures were larger than their undergraduate and total counterparts. The data in Table 9 indicated that the means of the six university-based instructional service measures were identical when rounded to the nearest hundredth. Further, the medians, though exhibiting more variance than the means across measures, were less than the means which indicated that the distributions of all of the university-based instructional service measures were positively skewed.

Correlational Data \(^{2}\)--Three of the ten sets of research questions outlined in Chapter IV focused on the relationships among the twelve

\footnotetext{
\({ }^{2}\) Throughout the discussions in Chapter V and VI "relationship" implies the relationship of the rank order of the variables as computed by Spearman's rho.
}
instructional service measures defined in this study. Spearman rank correlation coefficients were computed based on the ranking of the departments on each instructional service measure. A composite of the rankings for each department and the rankings for each measure are shown in Appendix C, Tables 24-37. The correlation coefficients relevant to all three questions are presented in Table 10.

The first set of research questions dealt with the relationships among the undergraduate, graduate, and total instructional service measures. For the unadjusted department-based instructional service measures, the relationship between the undergraduate and graduate instructional service measures was extremely weak \({ }^{3}\) ( -.07 ) while the relationships between the undergraduate and total (.53) and the graduate and total measures were statistically significant but moderate and weak respectively. A similar pattern emerged for the adjusted departmentbased measures for which the relationship between the undergraduate and graduate measures was very weak (.26) while the relationships between the undergraduate and total (.96) and the graduate and total (.32) measures were statistically significant and very strong and weak respectively. Thus, for the adjusted department-based instructional service measures, the null hypothesis of mutual independence was not rejected for the relationship between undergraduate and graduate measures and

\footnotetext{
\({ }^{3}\) Qualitative descriptions of the correlation coefficients (weak, moderate, strong) were based on guidelines presented by Marascuilo. (L. Marascuilo, Statistical Methods for Behavioral Science Research (New York: McGraw-Hill Book Company, 1971), p. 433.)
}
Table 10. Spearman Rank Correlations Among Instructional Service Measures
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & DBIS-UU & DBIS-UG & DBIS-UT & DBIS-AU & DBIS-AG & DBIS-AT & UBIS-UU & UBIS-UG & UBIS-UT & UBIS-AU & UBIS-AG & UBIS-AT \\
\hline DBIS-UU & 1.00 & & & & & & & & & & & \\
\hline DBIS-UG & -. 07 & 1.00 & & & & & & & & & & \\
\hline DBIS-UT & .53* & .37* & 1.00 & & & & & & & & & \\
\hline DBIS-AU & .93* & -. 03 & .54* & 1.00 & & & & & & & & \\
\hline DBIS-AG & . 23 & .57* & -. 05 & . 26 & 1.00 & & & & & & & \\
\hline DBIS-AT & .88* & -. 05 & .55* & .96* & .32* & 1.00 & & & & & & \\
\hline UBIS-UU & .64* & -. 16 & .30* & .70* & . 25 & .77* & 1.00 & & & & & \\
\hline UBIS-UG & . 11 & .72* & . 21 & . 15 & .63* & . 14 & . 16 & 1.00 & & & & \\
\hline UBIS-UT & .63* & -. 06 & .38* & .69* & . 30 * & .78* & .98* & .28* & 1.00 & & & \\
\hline UBIS-AU & .59* & -. 18 & . 26 & .69*. & . 23 & .77* & .98* & . 14 & .96* & 1.00 & & \\
\hline UBIS-AG & . 25 & .38* & -. 10 & . 28 & .82* & .32* & .43* & .75* & .46* & .41* & 1.00 & \\
\hline UBIS-AT & .59* & -. 16 & . 25 & .69* & . 27 & .79* & .98* & . 18 & .97* & 1.00* & .46* & 1.00 \\
\hline
\end{tabular}
* \(p<.01\)
was rejected for the relationship between undergraduate and total and graduate and total measures. Parallel results were found for the unadjusted university-based instructional service measures. However, for the adjusted university-based instructional service measures, the relationship between the undergraduate and the graduate measures (.41) was weak but statistically significant.

The second set of research questions focused on the relationships between department-based and university-based instructional service measures. The Spearman rank correlation coefficients for these relationships are also found in Table 10. In this analysis, the relationships between each department-based summary measure and its universitybased counterpart were of interest. The null hypothesis of mutual independence was rejected for all six summary measures. However, the strength of the relationships varied from . 38 (unadjusted total) to .82 (adjusted graduate).

Finally, the third set of research questions were developed to assess the relationship between the unadjusted and adjusted instructional service measures at each level (undergraduate, graduate and total). An analysis of these six correlation coefficients revealed that on the basis of these Spearman rho's the null hypothesis of mutual independence for each pair of unadjusted and adjusted measures was rejected. In addition, the strengths of the relationships for the uni-versity-based measures (.98, undergraduate; .75, graduate; .97, total) were greater than those for the department-based measures (.93, .57, and . 55 respectively).

Summary--The analyses of the data on instructional service revealed that significant relationships existed between 1) undergraduate and total instructional service measures, 2) undergraduate and graduate adjusted, university-based measures, 3) department-based and universitybased instructional service measures, and 4) adjusted and unadjusted instructional service measures. Only the relationships between the undergraduate and graduate unadjusted department-based, adjusted depart-ment-based, and unadjusted university-based instructional service measures were not significant.

\section*{Relationships Between Instructional Service} Measures and Descriptive Data

Five of the areas of inquiry delineated in Chapter IV focused on the relationships of the twelve instructional service measures with other descriptive data about the academic departments. These descriptive data included funding, faculty rank distributions, graduate assistants, prestige of graduate programs and level of instructional service students. The relationships with funding, faculty rank distributions, graduate assistants and average salary, were assessed by Spearman rank correlations based on the rankings on the instructional service measures, Appendix B, Tables 24-37 and the rankings on the descriptor variables, Appendix C, Tables 38-42. The relationships with prestige and level of instructional service were measured through a chi-square test for independence. A discussion of the results of each type of analysis is presented in this section of Chapter \(V\).

Chi-square Tests of Independence--Four chi-square tests were used to assess the relationship between the level of instructional service students in undergraduate courses and the level of undergraduate instructional service based on unadjusted and adjusted, department-based and university-based instructional service measures. Departments were first classified into predominately lower division or predominately upper division instruction service on the basis of the percentage distributions of students by level presented in Appendix C, Tables 43-44. The departments which provided instructional service in undergraduate courses to primarily lower division undergraduate students are listed in Table 11. The departments were then classified into low, medium, and high instructional service departments. The classification procedure and its results are discussed fully in a subsequent section of this chapter. The observed and expected cell frequencies and the results of the analyses of the contingency tables for each test are presented in Table 12. A review of the results of these four chi-square tests for independence revealed that the level of department-based instructional service in undergraduate courses was independent of the predominate level of instructional service students in undergraduate courses. The values of chi-square and phi were 4.29 and .24 for the unadjusted data and 2.69 and .18 for the adjusted data. Conversely, the computed values of chi-square for the university-based measures were significant at the . 05 level. Therefore, the null hypotheses were rejected and significant relationships existed between the unadjusted and adjusted university-based instructional service measures and the level of instructional service students in undergraduate courses.

\section*{Table 11. Departments with Predominately Lower Division Instructional Service Students in Undergraduate Courses}

Based on Unadjusted Data
1. Agricultural Economics
2. Agricultural Engineering
3. Animal Husbandry
4. Crop and Soil Science
5. Dairy
6. Horticulture
7. Poultry Science
8. German and Russian
9. Music
10. Romance Languages
11. Communications
12. Human Environment and Design
13. Chemistry
14. Mathematics
15. Physics
16. Criminal Justice
17. Psychology
18. American Thought and Language
19. Humanities
20. Natural Science
21. Social Science
22. Medical Technology

Table 12. Chi-square Tests of Independence-Level of Instructional Service Students in Undergraduate Courses



\footnotetext{
*Significant; alpha \(=.05\)
}

The strengths of these relationships were .31 for the unadjusted data and .38 for the adjusted data. Finally, an inspection of the contingency tables indicated that departments that served predominately lower division students in undergraduate courses tended to have high university-based instructional measures.

A second set of four chi-square tests for independence was used to assess the relationship between the prestige of graduate programs and the level of instructional service in graduate courses. The reports on the prestige of graduate education by Cartter (1966) and Roose and Andersen (1970) published by the American Council on Education were used to identify departments with prestige graduate programs. Both reports rated departments on the quality of their faculty and the quality of their graduate program. A composite of those two ratings was used to identify the "ranked" departments listed in Table 13. Six departments appeared in the Roose-Andersen report which were not rated in the Cartter report. These departments which are designated with asterisks in Table 13 were included in the analyses as rated departments. The categories of graduate instructional service were based on the rankings of departments on each measure and are discussed in a subsequent section. The observed and expected frequencies and the results of the chi-square tests on each contingency table are presented in Table 14. The null hypothesis that the level of graduate instructional service and the prestige rating of graduate education are statistically independent was rejected for all four measures of graduate instructional service. The strengths of these relationships as described by the phi

Table 13. Departments with Prestige Graduate Faculty/Programs
\begin{tabular}{ll}
\hline \hline & \\
*Anthropology & History \\
*Biochemistry & Mathematics \\
Botany & Mechanical Engineering \\
*Chemical Engineering \(\times\) & Microbiology \\
Chemistry & *Music \\
Civil and Sanitary Engineering & Philosophy \\
Economics & Physics \\
Electrical Engineering \(\times\) & Physiology \\
English & Political Science \\
Entomology & Psychology \\
Geography \(\times\) & *Romance Languages \\
Geology & Sociology \\
*German and Russian & Zoology \\
& \\
\hline
\end{tabular}
```

*Rated by Roose and Andersen (1970) but not by Cartter (1966). $\mathrm{N}=26$ (31.7\%)

```
coefficient were . 31 , unadjusted department-based; . 38, adjusted department-based; .27, unadjusted university-based, and .35 adjusted university-based. A comparison of the observed and expected values in each contingency table disclosed that for the department-based graduate instructional service measures the ranked departments tended to have medium unadjusted and adjusted measures. However, for the universitybased graduate instructional service measures, the rank departments were primarily distributed in the medium and high categories for the unadjusted and adjusted measures.

Correlational Data--As previously noted, Spearman rank correlation coefficients were used to measure the strengths of the relationships between the twelve instructional service measures and descriptive data such as funding, faculty rank distributions, graduate assistants and

Table 14. Chi-square Tests of Independence Prestige of Graduate Faculty/Programs
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Depart & ased--Unadj & Gra & uate \\
\hline Ranked & 7 & \[
\begin{aligned}
& \text { Low } \\
& (8.88)
\end{aligned}
\] & \[
\begin{gathered}
\text { Medium } \\
14(8.56)
\end{gathered}
\] & 5 & \[
\begin{aligned}
& \text { High } \\
& (8.56)
\end{aligned}
\] \\
\hline Unranked & 21 & (19.12) & 13 (18.44) & 22 & (18.44) \\
\hline & & \(\mathrm{x}^{2}=\) & & & \\
\hline & & Depar & Based--Adju & ad & ate \\
\hline Ranked & 3 & \[
\begin{aligned}
& \text { Low } \\
& (8.56)
\end{aligned}
\] & \[
\begin{gathered}
\text { Medium } \\
15(8.88)
\end{gathered}
\] & & \[
\begin{aligned}
& \text { High } \\
& (8.56)
\end{aligned}
\] \\
\hline Unranked & 24 & (18.44) & 13 (19.12) & & (18.44) \\
\hline & & \(x^{2}=\) & \(\hat{0}=\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|r|}{University-Based--Unadjusted} & \multicolumn{2}{|l|}{Graduate} \\
\hline & & Low & & Medium & & High \\
\hline Ranked & 4 & (8.88) & & (8.24) & 12 & (8.88) \\
\hline Unranked & 24 & (19.12) & 16 & (17.76) & 16 & (19.12) \\
\hline & & \(x^{2}=\) & & \(\hat{\theta}=\) & & \\
\hline
\end{tabular}
\begin{tabular}{lccc} 
& \multicolumn{2}{c}{ University-Based--Adjusted Graduate } \\
& Low & Medium & High \\
Ranked & \(2(7.93)\) & \(11(9.51)\) & \(13(8.56)\) \\
Unranked & \(23(17.07)\) & \(19(20.49)\) & \(14(18.44)\) \\
& & \\
& \(\mathrm{x}^{2}=10.20\) & \(\hat{\theta}=.35\)
\end{tabular}
*Significant; alpha \(=.05\)
average salary. The correlation coefficients are presented in Table 15. This array is a table of correlations, not a correlation matrix, because only the correlations of the descriptor variables with the twelve instructional service measures are displayed.

One of the sets of relationships under study was the relationships between the instructional service measures and funding. Ten variables were identified which represented three aspects of funding in each department. Five variables (total, salary, labor, supplies and services and equipment) described the general fund expenditures for the 1971-72 academic year; four variables (total, salary, equipment, and other) described the research grant and contract expenditures for 1971-72, and one variable (average salary) described the 10 -month equated average salary for each department. The data in Table 15 indicated that significant but weak relationships existed between general fund total and salary expenditures and the unadjusted and adjusted, undergraduate and total department-based instructional service measures. However, the relationships between these general fund variables and the comparable university-based instructional service measures were strong and statistically significant. Three other significant relationships were found in the general fund data: general fund labor and unadjusted total department-based measure, general fund supplies and services and unadjusted total department-based measure, and general fund supplies and services and unadjusted university-based measure. While no significant relationships occurred between the department-based instructional service measures and the four research grant and contract variables,
Table 15. Spearman Rank Correlations Between Instructional Service Measures and Descriptive Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & DBIS-UU & DBIS-UG & DB.IS-UT & DBIS-AU & DBIS-AG & DBIS-AT & UBIS-UU & UBIS-UG & UBIS-UT & UBIS-AU & UBIS-AG & UBIS-UT \\
\hline GF-TOTAL & .36* & -. 04 & . \(31 *\) & .40* & . 06 & .44* & .66* & . \(35 *\) & .70* & .64* & . \(38 *\) & .65* \\
\hline GF-SALARY & . 32* & -. 03 & .29* & . 37 * & . 07 & .43* & .66* & .35* & .71* & .64* & . \(38 *\) & .66* \\
\hline GF-LABOR & . 27 & . 01 & . 28 * & . 25 & -. 08 & . 21 & . 11 & . 15 & . 14 & . 07 & . 03 & . 07 \\
\hline GF-SUP.\&SERV. & . 23 & . 09 & . 30* & . 21 & -. 08 & . 17 & . 20 & .29* & . 22 & . 15 & . 18 & . 16 \\
\hline GF-EQUIP. & -. 03 & . 11 & . 04 & . 01 & -. 11 & -. 07 & -. 12 & . 11 & -. 14 & -. 10 & -. 01 & -. 12 \\
\hline RG-TOTAL & . 15 & . 16 & . 09 & . 06 & . 07 & . 01 & -. 05 & .29* & -. 05 & -. 10 & . 23 & -. 09 \\
\hline RG-SALARY & . 14 & . 20 & . 10 & . 04 & . 11 & -. 00 & -. 06 & .31* & -. 06 & -. 11 & . 25 & -. 10 \\
\hline RG-EQUIP. & . 06 & . 25 & . 19 & -. 00 & -. 00 & -. 06 & -. 25 & . 21 & -. 20 & -. 30* & . 00 & -. 28 \\
\hline RG-0THER & .17 & . 16 & . 10 & . 08 & . 08 & . 04 & -. 05 & .29* & -. 05 & -. 10 & . 23 & -. 09 \\
\hline FI-NUM. & .47* & -. 14 & .28* & .39* & . 03 & .41* & . \(59 *\) & . 19 & .60* & . 52 * & .30* & . \(54 *\) \\
\hline FI-FTE & .37* & -. 14 & . 19 & .43* & . 10 & .48* & .72* & .28* & .75* & .71* & .39* & .73* \\
\hline FI-\% DIST. & . 13 & . 11 & -. 03 & . 06 & . 24 & . 05 & . 05 & . 24 & . 03 & -. 00 & . \(34 *\) & . 02 \\
\hline GA-NUM. & . 27 & -. 04 & -. 10 & . 21 & . \(31 *\) & . 25 & . \(47 *\) & . 35 * & .43* & .41* & .60* & .43* \\
\hline GA-FTE & . 16 & . 03 & -. 12 & . 26 & .36* & . 30* & . \(56 *\) & .44* & .55* & . \(57 *\) & .66* & .59* \\
\hline AVG. SAL. & -. 13 & .42* & . 09 & -. 11 & . 16 & -. 13 & -. 09 & .39* & -. 08 & -. 09 & .30* & -. 08 \\
\hline
\end{tabular}
*Significant; alpha \(<.01\)
four significant, but weak, relationships were evidenced between the university-based instructional service measures and these four funding variables. These relationships were between the following pairs of variables: unadjusted graduate and total; unadjusted graduate and salary; unadjusted graduate and other; and adjusted undergraduate and equipment. Finally, only three significant relationshipsmunadjusted and adjusted graduate university-based instructional service measures and unadjusted graduate department-based measure--with average salary were present in the data. Interestingly, most of the non-significant relationships with average salary were negative.

The second set of relationships which was analyzed in this study included the twelve instructional service measures and indicators of the faculty distribution by ranks in each department. These relationships were of interest because, theoretically, the type of instructional load in academic departments should affect staffing. Three faculty rank indices-one based on faculty headcount, one based on full-time equivalent faculty (FTE), and one based on the percentage distribution of faculty over ranks-were constructed by weighting each rank (4-professor, 3-associate professor, 2-assistant professor, and 1-instructor) and summing across ranks. These indices and ranking of the departments on each are displayed in Appendix C, Table 40. The evidence in Table 15 suggested that both the headcount and FTE faculty indices were significantly related to eight of the twelve instructional service measures--department-based unadjusted and adjusted undergraduate and adjusted total; university-based unadjusted and adjusted
undergraduate and total and adjusted graduate. In addition, the headcount index is significantly related to the unadjusted total departmentbased measure while the FTE index is significantly related to the unadjusted graduate university-based measure. On the other hand, the faculty rank index based on the percentage distribution of faculty over ranks was significantly, but weakly, related to only one instructional service measure--the adjusted graduate university-based measure.

The last set of relationships between the twelve instructional service measures and the descriptor variables focused on the number (headcount and FTE) of graduate assistants employed in academic departments. Both measures of graduate assistant employment were significantly related to all six university-based instructional service measures and to the adjusted graduate department-based measure. In addition, the FTE measure had a weak, but significant relationship with the adjusted total department-based measure.

Summary--From the results of the chi-square tests for independence, three points can be made. First, departments that served predominately lower division students tended to have high adjusted and unadjusted undergraduate university-based instructional service measures. Second, departments with rated graduate programs/faculty tended to be classified as medium unadjusted and adjusted graduate department-based instructional service measures. Third, for the university-based graduate instructional service measures, the rated departments were primarily distributed in the medium and high categories for the unadjusted and adjusted measures.

Of the one hundred and eighty correlations under consideration in this part of the analysis, sixty-four (35.6\%) were statistically
significant. These significant relationships were identified in the preceding discussion. However, of these sixty-four significant relationships, only twenty-two (12.2\%) were moderate or strong (greater than .50). Thus, approximately thirty-six percent of the relationships studied were significant and only twelve percent were moderate or strong. These twenty-two moderate to strong relationships are summarized in Table 16. Interestingly, no department-based instructional service measures were strongly related to any of the descriptor variables, and no variables representing research grant and contract expenditures were strongly related to any of the instructional service measures. In addition, the strong correlations between the unadjusted undergraduate and unadjusted total and between the adjusted undergraduate and adjusted total university-based instructional service measures were reflected in Table 16 since these pairs of measures had similar relationships with the descriptor variables. Finally, the adjusted graduate universitybased instructional service measure appeared only twice (graduate assistant-numbers and FTE) in Table 16, while the unadjusted graduate measure was not represented.

\section*{Discriminatory Variables}

The final purpose of this study was to classify departments on the basis of the instructional service measures and to determine which descriptor variables discriminated among the categories of instructional service. A multiple discriminant analysis was conducted on the four undergraduate measures and the four graduate instructional service

Table 16. Descriptor Variables with Moderate and Strong Relationships to Instructional Service Measures
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Variable}} & Instructional Service Measure & Rho \\
\hline & & & & \\
\hline 1 & General & Fund Total & UBIS - unadjusted undergraduate & . 66 \\
\hline 2 & & " & UBIS - unadjusted total & . 70 \\
\hline 3 & & " & UBIS - adjusted undergraduate & . 64 \\
\hline 4 & & " & UBIS - adjusted total & . 65 \\
\hline 5 & General & Fund Salary & UBIS - unadjusted undergraduate & . 66 \\
\hline 6 & & & UBIS - unadjusted total & . 71 \\
\hline 7 & & " & UBIS - adjusted undergraduate & . 64 \\
\hline 8 & & " & UBIS - adjusted total & . 66 \\
\hline 9 & Faculty & Index - Number & UBIS - unadjusted undergraduate & . 59 \\
\hline 10 & & " & UBIS - unadjusted total & . 60 \\
\hline 11 & & " & UBIS - adjusted undergraduate & . 52 \\
\hline 12 & & " & UBIS - adjusted total & . 54 \\
\hline 13 & Faculty & Index - FTE & UBIS - unadjusted undergraduate & . 72 \\
\hline 14 & & & UBIS - unadjusted total & . 75 \\
\hline 15 & & " & UBIS - adjusted undergraduate & . 71 \\
\hline 16 & & " & UBIS - adjusted total & . 73 \\
\hline 17 & Graduate & Asst. - Number & UBIS - adjusted graduate & . 60 \\
\hline 18 & Graduate & Asst. - FTE & UBIS - unadjusted undergraduate & . 56 \\
\hline 19 & & & UBIS - unadjusted total & . 55 \\
\hline 20 & & " & UBIS - adjusted undergraduate & . 57 \\
\hline 21 & & " & UBIS - adjusted graduate & . 66 \\
\hline 22 & & " & UBIS - adjusted total & . 59 \\
\hline
\end{tabular}
measures defined in this study. The input variables for these analyses were factor scores derived by using a principal-axes factor analysis with a varimax rotation. The results of the classification, factor analytic, and discriminatory techniques are discussed in this part of Chapter V.

Classification Schema--Using the rankings of departments on all undergraduate and graduate instructional service measures which are displayed in Appendix C, Tables 26-27, 29-30, 32-33, and 35-36, departments with ranks of \(1-27\) were classified as low, \(28-55\) as medium, and 56-82 as high. Thus, each category represented approximately one-third of the departments in the study. The stratification was based on ranking because the numerous tied ranks and the skewness of the distributions rendered the standard deviation approach inutile. In addition, approximately equal cell sizes were advantageous in the multiple discriminant analyses conducted on each undergraduate and graduate instructional service measure. The largest deviations from the one-third approximations occurred for the adjusted graduate university-based measure which had cell frequencies of twenty-five for the low category and thirty for the medium category. While each instructional service measure was analyzed separately, the departments in each category are presented as two-dimensional (undergraduate-graduate) arrays. The two arrays representing the unadjusted and adjusted department-based instructional measures are displayed in Table 17, and the two arrays representing the unadjusted and adjusted university-based instructional service measures are displayed in Table 18. Each dimension of these four arrays was used
Table 17. Categories of Department-besed Inatructional 8ervice Departmente
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{UNDERGRA} & \multicolumn{2}{|l|}{} & GRAD HICA & \multicolumn{3}{|l|}{} \\
\hline & \begin{tabular}{l}
Art \\
Civil Sanitary Eng. \({ }^{2}\) \\
Hotel, Res. 6 Inat. Mgt. \\
Hum. Envir. 4 Design 1 \\
Medical Technology 1 \\
Music \({ }^{2} 2\) \\
Nursing \\
Packaging \\
Social Work \\
Theatre \\
IV and Radio \\
Urban Plan. 6 Land.Arch
\end{tabular} & \begin{tabular}{l}
Blophysica Chenical Engineerirg \({ }^{2}\) Criminal Justice \({ }^{1}\) Electrical Engineering \({ }^{2}\) Journalism \\
Labor 8 Indust. Rel. Mechanical Engincering
\end{tabular} & \begin{tabular}{l}
Fanily 8 Comen. Med. \\
Forestry \\
Human Developrent \\
Large Animel Surgery \\
Medicine (HM) \\
Medicine (OM) \\
Paychiatry \\
Small Animal Surgery
\end{tabular} & \begin{tabular}{l}
Agr. Economics \\
Pamily 8 Come. Med. \\
Human Developeent \\
Hum. Envir. 6 Designa \\
Large Animal Surgery \\
Medical Technology \({ }^{1}\) \\
Medicine (HM) \\
Medicine (M) \\
Music \({ }^{1}{ }^{2}\) \\
Nursing \\
Poultry Science \({ }^{1}\) \\
Paychiatry \\
TV and Radio
\end{tabular} & \begin{tabular}{l}
Blophysics \\
Chemical lingincering \({ }_{2}^{2}\) Civil 4 Sanitary Eng. Criminal Justice \({ }^{1}\) Hotel, Res. 6 Inst. Mgt. Journalism \\
Mechanical Engineering Packaging \\
Small Animal Surgery Social Work \\
Urban Plan. 6 Land.Arch
\end{tabular} & \begin{tabular}{l}
Electrical Eagineering? Porestry \\
Labor 6 Induat. Rel.
\end{tabular} \\
\hline USDERGEND
MEED & \begin{tabular}{l}
Antral Huabandry 1 Audiology \\
Fisheries 6 Wildilfe Gerrian \& Ruasian 12 Geography \({ }^{2}\) Poultry Science 1 Romance Languagea 12
\end{tabular} & \begin{tabular}{l}
Blochemiatry \({ }^{2}\) \\
Computer Science English 2 \\
Fanily \& Child Sci. \\
Food Sc1. 6 Hum. Nutr. Geology \({ }^{2}\) \\
History \({ }^{2}\) \\
Horticulture \({ }^{1}\) \\
Human Nutr. 6 Foods \\
Political Science \({ }^{2}\) Psychology \({ }^{1}{ }^{2}\) \\
Resource Development Zoology \({ }^{2}\)
\end{tabular} & \begin{tabular}{l}
Accounting \({ }^{6}\) Finance \\
Advertising \\
Business 6 Office Adm. \\
Communications \({ }^{2}\) \\
Economics \({ }^{2}\) \\
Pamily Ecolony \\
Marketing \\
Parke 6 Rncreation
\end{tabular} & \begin{tabular}{l}
Animal Huabandry \({ }^{2}\) \\
Art \\
Audiolory \\
Fisheries Wildile \\
Romance Languages \({ }^{2} 2\) \\
Theatre
\end{tabular} & ```
Computer Science
English }\mp@subsup{}{}{2
Food Sci. & Hum. Ruty.
Geography '
Geology ?
Horticulture
Human Nutri, Coode
Paychology
200logy 2
``` & \begin{tabular}{l}
Accounting \(\&\) Finance \\
Advertising \\
Ag. Engineering \\
Diochemistry \({ }^{2}\) \\
Buainess Law off.Ad. \\
Comminications \({ }^{1}\) \\
Fanily 6 Child Sci. \\
Fanily Ecolosy \\
Marketing \\
Parke 6 Recreation \\
Political Scienct \({ }^{2}\) \\
Pesource Developent
\end{tabular} \\
\hline UNDEECOAD
EICR & \begin{tabular}{l}
A8. Economice \({ }^{1}\) \\
Aear. Thought 6 Leng. 1 \\
Astroany \\
Dairy \({ }^{1}\) \\
Humanities 1 \\
Mathematics \({ }^{1} 2\) \\
Natural Science \({ }^{1}\) \\
Physics \({ }^{2} 2\) \\
Social Science 1
\end{tabular} & Anthropology 2 Dotany 2 Chemiatry \({ }^{1} 2\) Crop 6 Soll Sc1. \({ }^{1}\) Linguistice Metal.,Mech. 8 Mat.Sci. Philosophy \({ }^{2}\) & \begin{tabular}{l}
Ag. Engincering \({ }^{2}\) Anatomy \\
Entomology 2 \\
Management \\
Microbiology 2 \\
Pathology \\
Pharmacology \\
Physiology \({ }^{2}\) \\
Religion \\
Sociology \({ }^{2}\) \\
Statistics
\end{tabular} & \begin{tabular}{l}
Amer. Thought 6 Leng. \({ }^{2}\) \\
Astronomy \\
Dairy \({ }^{3}\) \\
German 6 Ruasien \({ }^{2} 2\) \\
Huganities \({ }^{1}\) \\
Natural Science \({ }^{1}\) \\
Pharmacology \\
Social Science \({ }^{2}\)
\end{tabular} & & ```
Anatomy
Botany }\mp@subsup{}{}{2
Crop & So11 Sci.
Economice 2
Entomology '2
Management
Metal.,Mech.6 Mat.Sc1.
Pathology
Ph1losophy '2
Religion
Sociology }\mp@subsup{}{}{2
Statistics
``` \\
\hline
\end{tabular}
\({ }^{2}\) Primarily lower division undergraduate service \(\quad{ }^{2}\) Rated graduate program/faculty
Table 18. Categorice of Univeraity-based Inatructional Service Departmente
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{USDESERAD} & GRAD LOW & U NADJ OSTED & GND BICH & GRAD LOW & \(\frac{\text { ADJUSTED }}{\text { GRAD }}\) & GND RIGT \\
\hline & ```
As. Economics }\mp@subsup{}{}{1
Fisheries & Wildlifa
Hotel,Res.f Inst. Mgt.
Huaan Development
Mechanical Engineering}\mp@subsup{}{}{2
Medical Technology }\mp@subsup{}{}{1
Medicine (HM)
Nuraing
Packaging
Poultry Science '
Theatre
TV and Radio
``` & \begin{tabular}{l}
BLophyeice \\
Chemical Engincering \({ }^{2}\) \\
Civil \& Sanitary Eng. \({ }^{2}\) \\
Food Sci. 6 Hum. Nutr. \\
Linguistice \\
Parks \& Recreation \\
Paych1atry
\end{tabular} & ```
Electrical Engincering 2
Fanily & Com. Med.
Labor & Indust. Iel.
Large Animal Surgery
Medicine (OM)
Pathology
Pharnacology
Small Animal Surgery
``` & Animal Huabandry Fanily 8 Comen. Med. Fisheries 6 Wildife Hotel, Res. \(f\) Inat. Mar. Human Development Large Animal Surger? Medical Technology Medicine (HM) Medicine (OM) Nursing Packaging Pharmacology Poultry Science \({ }^{1}\) Paychiatry Theatre & \begin{tabular}{l}
As. Economica Biophysics Chenical Engineering 2 Civil Sanitary Eng. \({ }^{2}\) Food Sci. 6 Hum. Nutr. \\
Linguistice \\
Mechanical Engincering \({ }^{2}\) Seall dnimal Surgery
\end{tabular} & \begin{tabular}{l}
Ag. Enginearing Electrical Rogineariag \({ }^{2}\) \\
Labor \& Iadust. Rel. \\
Pachology
\end{tabular} \\
\hline UNDERGRAD
NAD & Animal Husbandry \({ }^{2}\) hrt Astronomy Aud. \& Speech Sci. Dairy? Borticultura \({ }^{1}\) Huann Envir. \& Designa Human llutr. © Yoods Religion & \begin{tabular}{l}
Advertising Crimingl Justice \({ }^{2}\) Crop \& Soll Science \({ }^{1}\) Entomology \({ }^{2}\) \\
Panily \& Child Sci. Fanily Rcology Forestry Geology 2 Journalisa Metal. ,Mech. 6 Mat.Sc1. Urban Plan.ctland.Arch.
\end{tabular} & ```
Ag. Enginearing '
Anatomy
Biochemistry }\mp@subsup{}{}{2
Botany & Plant Path. }\mp@subsup{}{}{2
Microbiology
Phyeiology
Resource Development
Social Work
``` & \begin{tabular}{l}
Aud. \(\delta\) Speech Sci. \\
Ast ronoay \\
Dairy \({ }^{1}\) \\
Rumen Mutr. \& Foods
\end{tabular} & \begin{tabular}{l}
Advertising \\
Bus. Law of Ofice Adm. \\
Criminal Juacice \({ }^{2}\) \\
Crop \& Soll Science \\
Entomology \({ }^{2}\) \\
Feally Child Sci. \\
Forestry \\
Geology \({ }^{2}\) \\
Horticulture \\
Human Envir. \& Design \({ }^{1}\) \\
Journalism \\
Microbiology \({ }^{2}\) \\
Physiology 2 \\
Religion \\
TV and Radio \\
Urban Plan. ALand.Arch.
\end{tabular} & \begin{tabular}{l}
Anat ony \\
Biochemistry \({ }^{2}\) \\
Botany \& Plant Path. \({ }^{2}\) \\
Panily Ecology \\
Metal., Mech. C Mat. 8 cc . \\
Parke 6 Recreation \\
Recource Davelopment \\
Social Hork
\end{tabular} \\
\hline USDERGRAD
HIEA & \begin{tabular}{l}
Aser. Thought \(\&\) Langs \({ }^{1}\) German 6 Ruscian \\
Humanities \({ }^{2}\) \\
Music \({ }^{2}{ }^{2}\) \\
Natural Science \({ }^{1}\) \\
Social Science \({ }^{1}\) \\
Romance Languages \({ }^{1} 2\)
\end{tabular} & ```
Anthropology }\mp@subsup{}{}{2
Bus. Lav & Office Adm.
Computer Science
Geography }\mp@subsup{}{}{2
Philosophy & }
Physice '/2
Political Science '2
200108y }\mp@subsup{}{}{2
``` & \begin{tabular}{l}
Accounting \({ }_{1}{ }_{2}\) Finsance \\
Chemistry \\
Communications 1 \\
Economice \({ }^{2}\) \\
English \\
History 2 \\
Management \\
Marketing \\
Mathematics \({ }^{2} 2\) \\
Paychology \({ }^{2} 2\) \\
Sociology \({ }^{2}\) \\
Statistice
\end{tabular} & ```
Ferman & Ruseian '2
Amex. Thought & Lang.'
Humanities 
Music 1 2
Natural Science '
Social Scieace '
``` & \begin{tabular}{l}
Anthropology \({ }^{2}\) \\
Art \\
Computer Science \\
Geography \({ }^{2}\) \\
Physice 12 \\
Romance Languages
\end{tabular} & \begin{tabular}{l}
Accounting 6 Finance Chemistry \({ }^{1} 2\) \\
Communications \({ }^{1}\) \\
Econoaics \({ }^{2}\) \\
English \({ }^{2}\) \\
History \({ }^{2}\) \\
Management \\
Marketing \\
Mathematice \({ }^{2} 2\) \\
Philosophy \({ }^{2}\) \\
Political Science \({ }^{2}\) \\
Psychology \({ }_{2}{ }^{2}\) \\
Suciology \({ }^{2}\) \\
Statietice \\
zoology \({ }^{2}\)
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
Primarily lower division undergraduate service \({ }^{2}\) Rated graduate progralfaculty
}
in the multiple disciminant analyses.
Factor Scores-As previously explained, the factor scores which were generated by a principal axes factor analysis with a varimax rotation were the input variables for the multiple discriminant analyses. This factor analytic technique was performed on thirty-five descriptor variables which represented various characteristics of the instructional load and output of academic departments (i.e., teaching credits, student credit hours (SCH), enrollment, degrees, and majors). Six orthogonal factors (statistically independent, linear combinations of the original variables) were created through the factor analytic techniques used in this study. The variables which comprised these six factors and their loadings are reported in Table 19. The loadings in Table 19 are the correlation coefficients which indicate the extent to which each variable is related to the hypothetical factor. The square of the loading multiplied by one hundred equals the percent of a variable's variance accounted for by the factor. Thus, strong correlations (high loadings) were used to identify dominant variables in each factor. The percentages of the total variance (the average squared loadings for each factor) accounted for by each factor are reported in Table 20. These values ranged from \(24 \%\) for the first factor to \(4 \%\) for Factor 6. The sum of these average squared loadings (.82) multiplied by one hundred is the percentage of variance of the original data explained by the factors. Thus, these six factors accounted for \(82 \%\) of the variance in the original data. Therefore, these six factors are a good representation of the original data. The standard score alpha coefficients for each

Table 19. Factors and Their Loadings
\begin{tabular}{|c|c|}
\hline Factor 1 & Loading \\
\hline 1. Teaching Credits - Undergraduate Total & . 91 \\
\hline 2. Teaching Credits - Undergraduate Recitation & . 91 \\
\hline 3. SCH - Undergraduate & . 91 \\
\hline 4. Enrollment - Undergraduate Lower Division & . 90 \\
\hline 5. Teaching Credits - Total & . 90 \\
\hline 6. SCH - Undergraduate Recitation & . 90 \\
\hline 7. SCH - Total & . 89 \\
\hline 8. Enrollment - Undergraduate Total & . 88 \\
\hline 9. Enrollment - Total & . 88 \\
\hline Factor 2 & Loading \\
\hline 1. SCH - Graduate Classes & . 96 \\
\hline 2. SCH - Graduate Total & . 91 \\
\hline 3. Enrollment - Graduate Total & . 88 \\
\hline 4. Teaching Credits - Graduate & . 83 \\
\hline 5. Enrollment - Master's Level & . 81 \\
\hline 6. Majors - Master's Level & . 68 \\
\hline 7. Degrees - Master's Level & . 65 \\
\hline 8. Majors - Graduate Total & . 64 \\
\hline Factor 3 & Loading \\
\hline 1. Majors - Undergraduate Total & . 93 \\
\hline 2. Majors - Undergraduate Upper Division & . 92 \\
\hline 3. Degrees - Bachelor's & . 87 \\
\hline 4. Majors - Undergraduate Lower Division & . 86 \\
\hline 5. Majors - Total & . 80 \\
\hline 6. Degrees - Total & . 72 \\
\hline 7. Enrollment - Undergraduate Upper Division & . 56 \\
\hline 8. SCH - Undergraduate Independent Study & . 55 \\
\hline 9. Enrollment - Graduate-Professional & -. 30 \\
\hline Factor 4 & Loading \\
\hline 1. Enrollment - Doctoral Level & . 81 \\
\hline 2. Majors - Doctoral Level & . 73 \\
\hline 3. Degrees - Doctoral Level & . 70 \\
\hline 4. SCH - Graduate Independent Study & . 66 \\
\hline Factor 5 & Loading \\
\hline 1. SCH - Undergraduate Laboratory & . 92 \\
\hline 2. Teaching Credits - Undergraduate Laboratory & . 91 \\
\hline 3. Teaching Credits - Undergraduate Lecture & . 78 \\
\hline 4. SCH - Undergraduate Lecture & . 68 \\
\hline Factor 6 & Loading \\
\hline 1. Enrollment - Sub College & . 54 \\
\hline
\end{tabular}

Table 20. Descriptive Data--Factors and Their Loadings
\begin{tabular}{cccc}
Factor & \begin{tabular}{c}
Number of \\
Variables
\end{tabular} & \begin{tabular}{c}
Proportion of \\
Variance
\end{tabular} & \begin{tabular}{c}
Coefficient \\
Alpha
\end{tabular} \\
\hline & & & \\
1 & 9 & .24 & .99 \\
2 & 8 & .18 & .96 \\
3 & 9 & .17 & .93 \\
4 & 4 & .09 & .91 \\
5 & 4 & .09 & .90 \\
6 & 1 & .04 & 1.00
\end{tabular}

\section*{INTER-FACTOR CORRELATIONS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline FACTOR 1 & 1.00 & & & & & \\
\hline 2 & . 37 & 1.00 & & & & \\
\hline 3 & . 46 & . 52 & 1.00 & & & \\
\hline 4 & . 52 & . 66 & . 54 & 1.00 & & \\
\hline 5 & . 38 & . 07 & . 23 & . 33 & 1.00 & \\
\hline 6 & . 40 & . 20 & . 21 & . 29 & . 06 & 1.00 \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
\end{tabular}
factor are also displayed on Table 20. These alphas are the measure of internal consistency of each factor. \({ }^{4}\) These extremely high alpha values indicated that the factors are highly internally consistent and, thus, are very reliable factors. Finally, the correlations among these six factors are also reported in Table 20. These correlations ranged from . 66 for Factors 2 and 4 to . 06 for Factors 5 and 6.

The interpretation of these factors was based on the dominant variables in each factor. Variables with loading of at least . 80 were considered dominant variables for the purposes of this analysis. \({ }^{5}\) In Factor 1, all the variables in this factor were dominant. This factor basically represented instructional load characteristics associated with undergraduate education in academic departments. Similarly, the dominant variables in Factor 2 represented the instructional•load characteristics of graduate education in academic departments. However, the other variables in Factor 2 had strong correlations (greater than .60) and emphasized the master's level of graduate education. Undergraduate instructional output characteristics (majors and degrees) were the dominant variables in Factor 3. In addition, the variable representing total degrees had a strong (.72) factor loading while undergraduate upper division enrollment (.56) and undergraduate independent study student credit hours (.55) had moderate loadings. Factor 3 was the only factor

\footnotetext{
\({ }^{4}\) J. C. Nunnally, Psychometric Theory (New York: McGraw-Hill Book Company, 1967), pp. 196-98.
\({ }^{5}\) This was an arbitrary decision based on the distributions of factor loadings, and the definition by Marascuilo of a very strong correlation referred to in footnote 3.
}
which had a variable with a negative loading (graduate-professional enrollment, -.30). While the loading represented a weak correlation between this variable and factor, this relationship indicated a tendency for departments with high graduate-professional enrollments to have a relatively small number of undergraduate majors and low undergraduate degree output. This type of relationship is exemplified by departments associated with the health programs such as Human Development and Psychiatry. Factor 4 has only one dominant variable, doctoral enrollment, but the other three variables in the factor had strong factor loadings. This factor was interpreted as representing graduate education at the doctoral level. On the basis of its two dominant variables, Factor 5 represented undergraduate laboratory instructional load. Yet, variables representing undergraduate lecture instructional load were also strongly related to this factor. Finally, Factor 6 represented undergraduate instruction in sub-college courses. Though only one variable was included in this factor, its loading is not unity because of the orthogonality criteria of the varimax rotation.

The factor scores which were used as the variables in the multiple discriminant analyses were calculated using the loadings as weighting coefficients. The six scores for each department were computed using the following equations \({ }^{6}\) :
\[
\begin{aligned}
\mathrm{F}_{1}= & .91 \mathrm{x}_{13}+.91 \mathrm{x}_{11}+.91 \mathrm{X}_{5}+.90 \mathrm{x}_{17}+.90 \mathrm{x}_{15}+.90 \mathrm{x}_{2}+89 \mathrm{x}_{9} \\
& +.88 \mathrm{X}_{19}+.88 \mathrm{X}_{24}
\end{aligned}
\]

\footnotetext{
\({ }^{6}\) The subscripts for each variable in these equations are the number assigned the variable prior to analysis.
}
\[
\begin{aligned}
\mathrm{F}_{2}= & .96 \mathrm{X}_{6}+.91 \mathrm{X}_{8}+.88 \mathrm{x}_{23}+.83 \mathrm{X}_{14}+.81 \mathrm{X}_{21}+.68 \mathrm{X}_{28}+.65 \mathrm{x}_{33} \\
& +.64 \mathrm{X}_{30} \\
\mathrm{~F}_{3}= & .93 \mathrm{X}_{27}+.92 \mathrm{X}_{26}+.87 \mathrm{X}_{32}+.86 \mathrm{X}_{25}+.80 \mathrm{X}_{31}+.72 \mathrm{X}_{35}+.56 \mathrm{X}_{18} \\
& +.55 \mathrm{~S}_{4}-.30 \mathrm{X}_{20} \\
\mathrm{~F}_{4}= & .81 \mathrm{X}_{22}+.73 \mathrm{X}_{29}+.70 \mathrm{X}_{34}+.66 \mathrm{X}_{7} \\
\mathrm{~F}_{5}= & .92 \mathrm{X}_{3}+.91 \mathrm{X}_{12}+.78 \mathrm{X}_{10}+.68 \mathrm{X}_{1} \\
\mathrm{~F}_{6}= & .54 \mathrm{X}_{16}
\end{aligned}
\]

The scores for each department which were used in the multiple discriminant analyses are present in Appendix C, Table 45.

Multiple Discriminant Analyses--As explained in Chapter IV, multiple discriminant analysis is a regression-like technique for reducing the six factor scores for each department to two orthogonal linear combinations of these variables which have the maximum potential for distinguishing among members of the three categories of instructional service. Rao's chi-square test was used to test the hypothesis of no significant difference between the groups on the discriminant functions. \({ }^{7}\) Standardized function weights were used to compare the discriminant functions after the effects units of measurement had been largely removed.

\footnotetext{
7"Rather than testing the significance of each root separately, the strategy is to test the total discrimination as a chi-square with \(p(k-1)\) degrees of freedom. If significant, it is accepted that at least one discriminant function is significant, and if any is significant, it should be the one with the largest associate variance \(\lambda_{1}\). Next the first root \(\lambda_{1}\) is subtracted from the total of all roots..., and the residual is tested as a chi-square with \(p(k-1)-(p+k-2)\) degrees of freedom. If this test is significant, it is concluded that at least one discriminant function in addition to the first is significant." (J. E. Overall and C. J. Klett, Applied Multivariate Analysis (New York: McGraw-Hill Book Company, 1972), p. 289.)
}
\[
\mid
\]

As in the factor analytic results reported above, the weighting coefficients of each variable in the discriminant functions represented the extent to which each variable is related (contributed) to the discriminant functions. The two standardized discriminant functions for each undergraduate and graduate instructional service measure are displayed in Table 21, and the group means \({ }^{8}\) on each of these discriminant functions are reported in Table 22.

For seven of the eight multiple discriminant analyses, only one of the two discriminant functions was significant, and for the adjusted graduate department-based instructional service measure, no discriminant function was significant. \({ }^{9}\) In the analyses of the instructional service categories for the unadjusted and adjusted undergraduate departmentbased measures, the highest weighting coefficients in the significant functions occurred for Factor 3 (undergraduate instructional output). These factors had weighting coefficients of .84 and .77 respectively. The configurations of the group means presented in Figures 1 and \(2^{10}\) indicated that for these two measures, group 3 (high) differed substantially from the other two and occupied an extreme position in the

\footnotetext{
\({ }^{8}\) Group means for each discriminant function are computed by applying the discriminant function weights to the group means on the original data.
\({ }^{9}\) The significance of the total function, not the significance of individual weighting coefficients, was tested by chi-square. Thus, significant and non-significant functions could both have significant (dominant) weighting coefficients.
\({ }^{10}\) The figures were constructed using the group means for the two discriminant functions (\(y_{1}\) and \(y_{2}\)) which are reported in Table 22.
}
Table 21. Standardized Discriminant Functions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Instruc- \\
tional \\
Service \\
Measure
\end{tabular}} & \multirow[t]{2}{*}{\(\mathrm{x}^{2}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Percent of } \\
\text { Trace } \\
\hline
\end{gathered}
\]} & \multicolumn{6}{|l|}{Standardized Function Weight} \\
\hline & & & Factor 1 & Factor 2 & Factor 3 & Factor 4 & Factor 5 & Factor 6 \\
\hline \multirow[t]{2}{*}{DBIS-UU} & SIG. & 87.97 & -. 31 & -. 09 & . 84 & -. 27 & -. 18 & -. 25 \\
\hline & NOT SIG. & 12.02 & -. 38 & -. 02 & -. 17 & -. 56 & . 69 & -. 18 \\
\hline \multirow[t]{2}{*}{DBIS-UG} & SIG. & 78.77 & . 42 & -. 72 & . 47 & -. 12 & . 22 & -. 04 \\
\hline & NOT SIG. & 21.23 & . 33 & . 34 & -. 09 & -. 83 & . 18 & -. 20 \\
\hline \multirow[t]{2}{*}{DBIS-AU} & SIG. & 85.84 & -. 55 & -. 23 & . 77 & -. 15 & -. 18 & . 03 \\
\hline & NOT. SIG. & 14.15 & . 01 & . 23 & -. 20 & -. 76 & . 28 & -. 50 \\
\hline \multirow[t]{2}{*}{DBIS-AG} & NOT SIG. & 69.73 & . 50 & -. 71 & . 03 & -. 34 & . 14 & -. 32 \\
\hline & NOT SIG. & 30.27 & -. 20 & -. 25 & . 49 & . 37 & . 71 & . 05 \\
\hline \multirow[t]{2}{*}{UBIS-UU} & SIG. & 96.58 & . 97 & . 19 & . 05 & -. 02 & . 07 & -. 15 \\
\hline & NOT SIG. & 3.42 & . 53 & . 15 & -. 23 & -. 36 & -. 36 & -. 63 \\
\hline \multirow[t]{2}{*}{UBIS-UG} & SIG. & 97.10 & . 21 & -. 92 & . 22 & -. 12 & -. 01 & -. 22 \\
\hline & NOT SIG. & 2.90 & . 64 & . 19 & . 14 & -. 70 & . 21 & . 00 \\
\hline \multirow[t]{2}{*}{UBIS-AU} & SIG. & 99.43 & . 94 & . 18 & . 13 & . 01 & . 14 & -. 20 \\
\hline & NOT SIG. & . 57 & . 50 & . 11 & -. 75 & -. 06 & -. 24 & -. 32 \\
\hline \multirow[t]{2}{*}{UBIS-AG} & SIG. & 91.17 & . 13 & -. 87 & -. 08 & -. 34 & . 07 & -. 30 \\
\hline & NOT STG. & 8.83 & . 77 & . 18 & -. 45 & -. 25 & -. 21 & -. 21 \\
\hline
\end{tabular}

Table 22. Group Means on Standardized Functions
\begin{tabular}{|c|c|c|c|}
\hline Instructional Service Measure & Group 1 & Group 2 & Group 3 \\
\hline \multirow[t]{2}{*}{DBIS-UU} & 173 & 80 & -147 \\
\hline & -84 & -245 & -124 \\
\hline \multirow[t]{2}{*}{DBIS-UG} & 644 & 316 & -382 \\
\hline & 10 & -89 & -10 \\
\hline \multirow[t]{2}{*}{DBIS-AU} & 521 & 236 & -779 \\
\hline & -37 & -112 & -61 \\
\hline \multirow[t]{2}{*}{DBIS-AG} & 10 & -113 & -161 \\
\hline & 340 & 579 & 257 \\
\hline \multirow[t]{2}{*}{UBIS-UU} & 114 & 231 & 889 \\
\hline & -22 & -61 & -38 \\
\hline \multirow[t]{2}{*}{UBIS-UG} & 17 & -57 & -423 \\
\hline & 148 & 54 & 116 \\
\hline \multirow[t]{2}{*}{UBIS-AU} & 89 & 198 & 710 \\
\hline & -101 & -137 & -114 \\
\hline \multirow[t]{2}{*}{UBIS-AG} & -64 & -148 & -398 \\
\hline & 26 & -92 & -12 \\
\hline
\end{tabular}

Figure 1. Group Means--DBIS-UU and DBIS-UG.

Figure 2. Group Means--DBIS-AU and DBIS-AG.
measurement domain. Three of the four discriminant analyses on graduate instructional service measures yielded one significant discriminant function. For each of these discriminant functions representing the unadjusted graduate department-based measures and the unadjusted and adjusted graduate university-based measures, the most dominant variable in the function was Factor 2 (graduate instructional load). The coefficients for this factor were -. 72 for unadjusted department-based, -. 92 for unadjusted university-based, and -. 87 for adjusted universitybased. The information in Table 22 and in Figures 1, 3 and 4 suggested that for these three measures, group 3 (high) differed substantially from the other two and occupied an extreme position in the measurement domain. Similarly, for the significant discriminant functions for the unadjusted and adjusted undergraduate university-based instructional service measures, one factor--Factor 1, undergraduate instructional load-was the dominant factor with weighting coefficients of .97 and .94 respectively. Finally, the configurations of the group means presented in Figures 3 and 4 depicted group 3 (high) as substantially different from other two groups on both of these instructional service measures. Summary--These multiple discriminant analyses were conducted to identify the descriptor variables which discriminated among the categories of each instructional service measures. Factor scores instead of the original descriptor variables were used in the discriminant analyses because of the interdependence among these original variables. The results of these discriminant analyses are summarized by three statements. First, no factor used in these analyses discriminated significantly

Figure 3. Group Means--UBIS-UU and UBIS-UG.

Figure 4. Group Means--UBIS-AU and UBIS-AG.
among the three categories of the adjusted graduate department-based instructional service measures. Second, three factors emerged which discriminated among the categories of the instructional service measures. Factor 1 (undergraduate instructional load) was the dominant variable in the analyses of the unadjusted and adjusted undergraduate university-based measures. Factor 2 (graduate instructional load) was the dominant variable for the unadjusted graduate department-based measure and the unadjusted and adjusted graduate university-based measures. Factor 3 (undergraduate instructional output) was the dominant variable for the unadjusted and adjusted undergraduate departmentbased instructional service measures. Finally, in all the analyses, group 3 (high) substantially differed from the other two groups and occupied an extreme position in the measurement domain.

\begin{abstract}
Summary
The results of the numerous analyses conducted in this study were presented and summarized in this chapter. Two hundred fifty-two Spearman rank correlations were studied along with the results of eight chi-square tests of independence. In addition, the results of the preparatory analyses (classification and factor analysis) and the eight multiple discriminant analyses were also reported. The implications of these results and the conclusions drawn from them are discussed in Chapter VI.
\end{abstract}

Chapter VI
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

\begin{abstract}
Overview of the Study
One of the more pressing problems facing institutions of higher education today is the development of effective and efficient methods of resource allocation within each institution. While many states have developed techniques of formula or program budgeting for appropriating funds to institutions, once institutions have these funds in their possession, they tend to divide these funds among operating units in traditional ways. This allocation procedure of ten takes the form of uniform percentages changes across these units which reinforce the relative position of units and indirectly establishes institutional priorities. Thus, a more dynamic resource allocation system is needed which can respond to changes in societal goals and public needs and to alterations in assigned or implied institutional responsibilities while satisfying the demands for accountability. This study of the instructional service component of academic departments is only part of a broader study funded by a grant from the Exxon Education Foundation and centered at the Office of Institutional Research at Michigan State University under the direction of Dr. Paul L. Dressel. One of the foci of this third phase of the Exxon Departmental Study
\end{abstract}

Project is the development of a model of the dynamic budgeting schema alluded to in Chapter I which accounts for the inherent differences in disciplines, the concomitant instructional methodologies which affect input and output properties of departments, and the operational differences imposed by the role of each department in the university community.

Since the present study is a portion of this larger project, a brief discussion of the current Departmental Study Project is necessary to bring this study into proper perspective. The dynamic budgeting schema which is the goal of the current Departmental Study Project will be based on a series of departmental clusters. These clusters represent groups of departments with similar intrinsic characteristics and similar institutional roles. This clustering strategy was predicated on the assumption that budgetary procedures for departments with similar characteristics and missions should utilize the same funding principles and variables. When this strategy is applied, each department is compared only with other departments in its cluster and not with every department in the university. This approach permits variability among departmental clusters while stressing the development of uniform funding criteria within clusters.
"Process" variables are associated with the disciplines that make up a department and describe the intrinsic characteristic of a discipline and its instructional modes. These variables reflect
questions such as:
1. What is unique about the discipline?
2. Are certain modes of instruction required by the discipline?
3. Is there a minimum number of specializations that must be represented to have a "legitimate" university department?
4. Are the skills that are acquired by students of a discipline predictive of success and in that discipline reflective of the internal processes of a department?

The identification of "process" variables is an effort to partition out the institutional effects on departments. For example, when studying departmental data, one cannot account for a chairman's political activities in acquiring funds or for the historically determined status of a department. Add-on budgeting methods only further complicate an analysis. Institutional politics and idiosyncracies cannot be ignored, but a department-oriented budgeting schema should also include elements that transcend institutional bounds. "Process" variables have been used in this model to represent these supra-institutional dimensions.

The identification of fundamental "process" variables is hindered by the inadequacy of curricular theory and pedagogy in higher education. The common elements of curricular and pedagogical theory across institutions or disciplines are not adequately addressed in the literature. However, two dimensions have been identified in this project through theoretical analysis which do reflect intrinsic characteristics of a discipline. These are
laboratory modes and specializations. In addition to reflecting the intrinsic characteristics of a discipline, these variables also have budgetary and planning implications. Laboratory modes refers to those disciplines whose operations involve non-classroom experience as well as those whose operations require specially equipped work spaces. It should be noted that curricular innovations may alter the assignment of departments along this dimension, but such reassignment of a discipline would not invalidate the model. The second dimension, specializations, refers to the number of faculty members necessary to staff a department. A university department cannot usually include a member to represent each possible specialization within a discipline. For example, the National Register of Scientific and Technical Personnel lists over 150 specialities for physics alone and nearly 1000 distinct specializations in natural sciences. The issue can be stated: regardless of student enrollment, how many specializations must be represented in order to have a "legitimate" university department. When a department includes all possible specializations, enrollments would determine the number of faculty needed in each specialization. In the absence of criteria for selecting the number of specializations to be included, the size of the departmental faculty would be determined by enrollment, by the desired educational thrust of the department, and by a department's role within the university.
"Role" variables reflect those characteristics that can be
ascribed to a department by the institution or by a state-wide system. These variables might fluctuate with changing student body interests or with the whims of the department chairmen. However, they can also be key decision points for administrators with the consequences of these decisions having many budgetary and educational ramifications. The inclusion of these variables in a model does not presuppose a given decision-making process. Decisions about these variables may be made by an individual or by a committee at several levels of review. The model does, however, make these variables overt and points out the consequences of changes in these variables. Dimensions considered for the model include the following:
1. service (major vs nonmajor)
2. undergraduate ve graduate enrollment
3. size
4. quality (prestige)
5. public service
6. research
7. societal needs

Each dimension will be explored in depth and correlated with other available information about departments. Then the dimensions will be multivariately combined and their effects on cost and faculty time and rank distribution will be determined.

Finally, "cost" variables need to be identified which include both direct and indirect costs that stem from "process" or "role"
designations. For example, a laboratory department would have equipment costs, repair costs, and replacement costs, as well as salary dollars for technical personnel (glassblowers, electronic personnel and store room managers). These expenses must be accounted for in departmental budgets. The cost variables translate the department typology into a budgeting schema.

In this study, the instructional service component of academic departments was examined in light of the other available data about the characteristics of academic departments. The selection of this aspect of departmental operations as a focus of study was predicated on the possibility of its inclusion as a dimension of the clustering framework. The concept of instructional service has received attention at Michigan State University; in the organization of this university, the three medical colleges (veterinarian, osteopathic, and allopathic) subsidize certain departments for the service instruction that these shared departments give to the medical students enrolled in departmental courses. With the need for more accountability, the university has begun to study more closely the parameters of these exchanges of financial support and instructional service. No solution to this problem of rates of exchange has yet been found. At present, department chairmen bargain directly with each dean for the funds each department receives.

This type of exchange could extend to all service instruction within the institution. Each department could receive part of its
funding from the service instruction it provides to various colleges, at different rates of exchange. In lieu of a formalized pricing system for service instruction, this study identified the amount of service instruction in each academic department and sought to determine how the extent of instructional service was reflected in other data about the department (i.e., level of funding and staffing patterns).

Purposes--This study was exploratory in nature and was designed to identify the relationships between measures of instructional service and the other available data about academic departments. Specifically, the purposes of this study were to 1) develop appropriate measures of the instructional service component of academic departments; 2) identify relationships among these measures and between these instructional service measures and other departmental characteristics, and 3) classify departments according to each undergraduate and graduate instructional service measure and determine which variables discriminate among the categories of the instructional service measures.

Instructional Service Measures--Two sets of instructional service measures were constructed to represent the instructional service component of academic departments. The department-based instructional service measures represented the relative amount of the total instructional load of each department directed to service students (non-majors) while the university-based instructional service measures reflected the relative amount of the total instructional service load of the
institution (instruction to non-majors) which was assumed by each department. Within each of these two sets of measures, six measures representing various aggregates of courses within the departments were also constructed. The unadjusted measures (undergraduate, graduate, and total) represented instructional service in all courses in each of these categories. On the other hand, the three adjusted measures (undergraduate, graduate and total) did not include subprogram and short courses (undergraduate and total) and graduateprofessional courses (graduate and total). The difference between the corresponding unadjusted and adjusted instructional service measures reflected the effects of these predominantly non-major types of instruction on the level of instructional service in academic departments.

Research Design--The research design developed for this study centered around ten questions about the relationships among the twelve instructional service measures and between each of these measures and departmental descriptor variables. A variety of statistical techniques was used to assess these relationships. Among these were Spearman rank correlations, chi-square tests for independence, principal axes factor analysis, and multiple discriminant analyses. In this study, two hundred fifty-two Spearman rank correlations and eight chi-square tests for independence were used to analyze the relationships among the twelve instructional service measures and between each of these measures and variables representing funding, faculty rank distributions, average salary, number of graduate

\begin{abstract}
assistants, prestige of graduate programs/faculty, and level of students served in undergraduata courses. In addition, the multiple discriminant analyses identified factors (generated from the principal axes factor analysis) which discriminated among the levels of eight of the instructional service measures. The findings of this study based on the results of the analyses of the twelve instructional service measures and the eighty-six descriptor variables which were reported in Chapter \(V\) and the implications of these results are discussed in the following passages.
\end{abstract}

\section*{Summary of Findings}

The following statements summarize the mafor findings of this study of the instructional service component of academic departments at Michigan State University. A discussion of the implications of these findings is presented in the next section of this chapter.
1. When all course offerings of departments were considered, every department provided instruction to service students (non-majors) during Fall 1971.
2. Generally, for departments that offered both undergraduate and graduate courses, the level of the instructional service in undergraduate courses as measured by the departmentbased measures was greater than the level of instructional service in graduate courses.
3. The undergraduate and graduate instructional service measures were mutually independent.
4. The department-based and university-based instructional service measures are not mutually independent.
5. The unadjusted and adjusted instructional service measures are not mutually independent.

6. Departments that serve predominantly lower division undergraduate students tended to have relatively high undergraduate university-based instructional service measures.
7. Departments with prestigious graduate programs/faculty as indicated in the ACE reports tended to have medium graduate department-based instructional service measures and medium to high graduate university-based instructional service measures.
8. Of the one hundred eighty Spearman rank correlations between the instructional service measures and the descriptor variables representing funding, faculty rank distributions, number of graduate assistants, and average salary, sixty-four (\(35.6 \%\)) were statistically significant, but only twenty-two of these correlations (12.2\%) were strong (greater than .50) and, therefore, meaningful.
9. No department-based instructional service measure was strongly related to any of the descriptor variables representing funding, faculty rank distributions, average salary, and number of graduate assistants.
10. No variable representing research grant and contract expenditures was strongly related to any of the instructional service measures.
11. The undergraduate and total university-based instructional service measures were strongly related to the following variables: 1) general fund total, 2) general fund salary, 3) faculty index based on headcount, 4) faculty index based on FTE's, and 5) number of graduate assistants based on headcount.
12. The adjusted graduate university-based instructional service measure was strongly related to the descriptor variables representing the number of graduate assistants based on FTE's.
13. Six factors were defined within the descriptor variables through the principal axes factor analysis with a varimax rotation. These factors were good representations of the original data (explained \(82 \%\) of the variance) and were highly internally consistent (alphas greater than .90).
14. For each of the eight multiple discriminant analyses, two discriminant functions (groups-1) were computed. These linear combinations of variables were orthogonal and have
potential for discriminating among the groups of each instructional service measure. For the adjusted graduate department-based instructional service measure, neither one of the discriminant functions were significant. In addition, the interpretation of the results of these analyses was greatly enhanced because in the remaining seven analyses, only the first discriminant function was significant. Thus, the categories of each of these instructional service measures differed significantly in multivariate mean profiles, and the contribution of each factor to this overall difference is expressed by the weighting coefficients of the first discriminant function.
15. Three factors emerged which were dominant in these significant discriminant functions. In addition, the emergence of a single dominant factor in each discriminant function greatly aided the interpretation of the results of the multiple discriminant analyses. Factor 1 (undergraduate instructional load) was the dominant variable in the significant discriminant functions for the unadjusted and adjusted university-based instructional service measures. Factor 2 (graduate instructional load) was the dominant variable for the unadjusted graduate department-based instructional service measure and the unadjusted and adjusted graduate university-based instructional service measure. Similarly, Factor 3 (undergraduate instructional output) was the dominant variable for the unadjusted and adjusted undergraduate department-based instructional service measures.
16. In all the significant multiple discriminant analyses, group 3 (high) substantially differed from the other two groups and occupied an extreme position in the measurement domain.

\section*{Conclusions}

Since this study is part of the more extensive Departmental Study Project, the conclusions and implications of these findings extend beyond the scope and purposes of this study. In the following paragraphs the more statistically-based conclusions which flow
directly from the findings of this study are first discussed, and
then the more general implications of these findings for the clustering and budgeting schema being developed in the Departmental Study Project and for similar studies of academic. departments are discussed.

One of the purposes of this study was the development of appropriate measures of the instructional service component of academic departments. The summary measures used in this study represented possible course aggregates upon which instructional service could be described. Since no a priori criteria existed for choosing among these measures, all twelve measures were included in the study and the relationships among these twelve measures were examined. However, the inclusion of all twelve instructional service measures as part of one dimension of the departmental clustering schema may be a meaningful representation of this dimension, but a linear combination of these variables would be very difficult to interpret (low utility) and may not be the most parsimonious way of expressing this dimension. Parsimony and utility along with meaningfulness and efficiency are important criteria for any model and for the selection of variables which are included in the model. Through the study of the relationships among the instructional service measures, overlap and redundancy within the measures can be identified and a subset of these measures chosen to represent the dimension of instructional service in the cluster-oriented budgeting model.

The findings of this study reported in the preceding section indicated that overlap among the measures did exist. However, the
mutual independence between the undergraduate and graduate instructional service measures indicated that measures representing aggregates of both these course bases should be included in any further analysis of instructional service in academic departments. On the other hand, since both of these measures were strongly related to the total measure for the department, the use of the total measure in conjunction with both the undergraduate and graduate measure is unnecessary for an adequate representation of the instructional service component of academic departments.

However, decisions about the selection between unadjusted and adjusted measures and the selection between department-based and university-based measures involved certain pragmatic considerations and a post hoc analysis and were not directly discernible from the data. With the exception of the relationship between the unadjusted total measures for the department-based and the universitybased measures (significant but weak), the relationships between the corresponding department-based and university-based measures were strong and significant. Thus, the use of both measures of each of these pairs would result in redundancy within the instructional service dimension of the clustering schema. However, the analyses provided no indication of which measure of each set should be chosen. Since the unadjusted measures represented instructional service in all courses in each department and, thus, are a better representation of the workload within each department, the unadjusted measures rather than the adjusted measures will be used in any further analysis
of instructional service. The effect of sub-program and graduateprofessional courses on the instructional service load of each department can be expressed through an internal pricing system in which different types of instruction have different rates of exchange. The selection of the department-based measures over the university-based measures was aided by a post hoc examination of the relationships between these measures and the enrollments in each department. This analysis indicated that the relationships between the unadjusted department-based measures and the corresponding enrollments were . 43, . 31 , and .13 for the undergraduate, graduate and total measures respectively. For the university-based measures these relationships were \(.94, .83\), and .93 for the undergraduate, graduate, and total respectively. Thus, the university-based instructional service measures were much more a function of the size of the department than were the department-based measures. For example, Agricultural Economics and American Thought and Language have the same unadjusted undergraduate department-based instructional service measure--100.0-while the enrollment for each is 179 and 6971 respectively. Therefore, the department-based measures were chosen because they best reflect the role of instructional service in departmental operations and these measures are less sensitive to departmental size. In summary, the set of twelve instructional service measures was reduced to two measures--unadjusted undergraduate and graduate department-based--which will represent instructional service in further analyses.

A second facet of the results of this study is that no department-based instructional service measure was strongly related to any of the descriptor variables representing funding, faculty, rank distributions, number of graduate assistants, or average salary. Thus, the staffing and funding of the departments do not appear to be meaningfully related to the "role" of instructional service in these departments. These findings also indicate that the size-related university-based measures (undergraduate and total) were strongly related to these descriptor variables. Thus, instructional volume rather than the parameters of the instructional processes appears to be the primary determinant of departmental funding and staffing. This point is further evidenced by the finding that the faculty index based on the percentage distribution over ranks (which standardizes the size of the faculty in each department) was not related to any of the university-based instructional service measures. Finally, the results of the multiple discriminant analyses of the undergraduate and graduate instructional service measures suggest that relationships existed between these measures of instructional service and the six factors derived from the descriptor variables. These multiple discriminant analyses were important because they clarify the role of instructional service in academic departments by identifying linear combinations of variables which reflect differences along the instructional service dimension. However, even though the results of these analyses were unusually decisive (only one significant discriminant function which was dominated by one of the factors),
the use of factors instead of variables greatly complicated the Interpretation of these results. In this study the most appropriate statistical techniques did not yield the most interpretable and meaningful results. Further research which clarifies the interactions of variables within these dominant factors is needed before a clear understanding of the relationships between the level of instructional service and variables representing instructional load (enrollment, student credit hours, and teaching credits) and instructional output (degrees and majors) emerges. However, such further research must also be related to the realities of departmental organization and the budgetary process. Procedures which deviate too far from practical and traditional patterns of organization and budgeting are unlikely to seriously affect existing patterns of univarsity operations.

At this point, the discussion focuses on the more general implications of these results for the Departmental Study Project and for other research on academic departments. These implications center on two basic issues-a "costing" or "pricing" schema and staffing standards. In Chapter II there was presented an economic framework for instructional service in which the instructional service provided by academic departments was "traded" to other academic units at a yet to be determined rate of exchange. Two basic questions associated with this "pricing" schema are: (1) At what level of course offering should these prices be set? and (2) Should these prices reflect marginal or average costs?

In relation to the first question, the analyses in this study compared measures based on different quantities across the same aggregate level of instruction. These analyses produced two measures (unadjusted undergraduate and graduate department-based) which could be used in future analyses to represent the "role" of instructional service in academic departments. While these two measures seem to represent the best measurement base, they do not necessarily represent the best costing base. Indeed, a further differentiation of undergraduate and graduate unadjusted department-based measures into their components (subprogram, lower level, upper level, graduateprofessional, master's, and doctoral) may offer a more viable framework for a "pricing" schema. A "pricing" schema based on course aggregates within these six broader levels of instruction rather than on individual courses may result in a more easily managed system of exchange. Further research using the unadjusted department-oriented measurement base identified through this study with different levels of aggregation must be conducted to identify the most appropriate level of specification for a pricing system.

For the second cost question--whether to use marginal or average costs in the "pricing" schema--consideration of the level of instructional service provides some insight. Assuming similar instructional modes in several departments, a department with a low instructional service "role" will have its instructional load primarily generated by majors. In such a case, the relatively low proportion of service students taught by the department might best be reflected by a mar-
ginal cost (increment of one student to a base cost). On the other hand, if a department's instructional service "role" is relatively high, an average cost (total cost/number of students) might be the most appropriate foundation for a "pricing" schema. Again, this concept needs to be explored through a study which compares the two costing principle in selected departments which have relatively low or relatively high instructional service "roles." In addition, the impact of the instructional mode on the cost of adding a student to a particular course needs to be examined. It may be that equipment and space restrictions of laboratory versus non-laboratory courses are greater determinants in the choice of an appropriate cost base than the level of instructional service.

Finally, the implications of the role of instructional service for the staffing pattern of academic departments should be explored. The department-based measures reflected the relative amount of a department's total instructional load related to service (non-major) students. Thus, these measures of instructional service indicate the thrust of the educational process in each department. One of the basic questions in an accountability model is whether or not a department staffing pattern is congruent with its objectives and "roles." This question is especially important since a large proportion of the budget of each department is salary money. In a rigorous accountability model the requirement that the number of faculty members be commensurate with the enrollment of the department could be coupled with the requirement that these faculty members be assigned
to tasks which are congruent with the instructional load and missions of the department. For example, if a department is a low service, graduate-oriented department, this department could possible justify a faculty rank distribution which was skewed toward the ranks of assoclate and full professors and a workload model which included low teaching load and a high research commitment. However, this same staffing and workload pattern might be very hard to fustify for a high service, undergraduate-oriented department. Since the results of this study indicated that the funding and staffing of academic departments were not related to the instructional service "role," present departmental data can not be used to identify staffing patterns which are congruent with the "role" of the department. In the continuing work of the Departmental Study Project, this problem of staffing and workload will be approached through a more theoretical orientation. Appropriate staffing and workload patterns must be hypothesized for each configuration of departmental "roles," and the effects of these patterns of departmental funding closely analyzed. If these postulated patterns prove workable, these patterns can be used as targets for future departmental staffing.

One final point should be made about the available institutional data on academic departments. The results of the study suggested that most of the data collected about academic departments is size-related. While the concept of volume of instruction has some merit when the magnitude of the departmental efforts is discussed, size should not be the sole criterion for funding or staffing departments. The core-
service dichotomy (reflecting the distinction between instruction of majors and non-majors) utilized in this study may provide a vehicle for partially overcoming this problem. If the core department is considered first as the basic unit necessary to maintain the integrity of the departments in the eyes of the discipline and the academic community, then the resource requirements necessary for the first \(n\) majors could be identified. The addition of more majors to this basic department would result in further resource requirements. The service dimension could then be treated as instructional overhead which requires certain resource requirements which are reflected through the "pricing" schema. The main point in this discussion is that in any funding and staffing model the basic integrity of the department must be maintained, thus fostering departmental contributions to the discilpine and society. The core-service framework helps protect this departmental integrity by highlighting the needs of the core departmant, especially in high instructional service departments.

\section*{Recommendations for Further Study}

The results of this study indicated that instructional service is a viable dimension for a departmental clustering and budgeting schema. In addition, this dimension can be represented by two measures of instructional service: the unadjusted undergraduate and graduate department-based instructional service measures. Four areas of study need to be further explored in order to make the concept of instructional service usable in a department-oriented management schema.

First, the concept of instructional service needs to be expanded to include the other aspects of service which are provided by departments (i.e., academic advising to non-majors, graduate committee work, and committee assignment in other units). The basic science departments "shared" by the medical colleges provide an excellent arena for this study for two reasons. Presently, these units are involved in a faculty activity analysis which can provide information about the time expenditures of faculty in various research and instructional activities. This form could be modified to include a division between time spent with majors and time spent with non-majors. Further, members of these "shared" departments have formalized responsibilities for committee and instructional responsibility within the medical schools. Thus, the "shared" department-medical program interactions provide a good microcosm for the study of non-instructional service aspects.

The second area of needed research is the assignment of "prices" to the services provided by academic departments. Here again, the present fiduciary arrangements between the "shared" departments and the medical colleges provide an appropriate subject for study. Techniques of cost accounting coupled with the information from the faculty activity analysis can be used to define the parameters of these exchanges. Hypothetical exchanges based on the "prices" derived from these techniques can then be compared to the amount of existing financial subsidy to gain further insight into the pricing problem.

A third area of needed research implied in this study is the identification of other possible dimensions of departmental activity
which can be used in the departmental clustering and budgeting schema which is the primary thrust of the current Exxon Departmental Study Project. However, this study has identified a methodology by which each of these proposed dimansions can be studied and has pointed to the need for better understanding of the relationships among the variables within each factor prior to such an analysis. Techaiques such as multi-dimensional scaling or hierarchical clustering need to be explored as alternatives to the principal axes factor analysis used in this study.

Finally, the effect of size on the costs and instructional processes within the departments must be understood before a sound budgetary schema can be developed which considers the intrinsic characteristics of the departments as well as its volume. This understanding of size is also important in developing sound staffing standards for academic departments.

APPENDICES
"

APPENDIX A
DEPARTMENTS IN STUDY

\section*{APPENDIX A}

DEPARTMENTS IN STUDY
\begin{tabular}{|c|c|}
\hline Department & College Affiliation \\
\hline Agricultural Economics & Agriculture \& Nat. Res. \\
\hline Agricultural Engineering & \\
\hline Animal Husbandry & " \\
\hline Crop \& Soil Science & " \\
\hline Dairy & " \\
\hline Fisheries \& Wildiffe & " \\
\hline Food Science \& Human Nutrition & " \\
\hline Forestry & " \\
\hline Horticulture & " \\
\hline Packaging & " \\
\hline Park \& Recreation Resources & " \\
\hline Poultry Science & " \\
\hline Resource Development & " \\
\hline Art & Arts and Letters \\
\hline English & \\
\hline German and Russian & " \\
\hline History & " \\
\hline Linguistics--Oriental \& African Langauges & " \\
\hline Music & " \\
\hline Philosophy & " \\
\hline Religion & " \\
\hline Romance Languages & " \\
\hline Accounting \& Financial Administration & Business \\
\hline Business Law and Office Administration & \\
\hline Economics & " \\
\hline Hotel, Restaurant, \& Inst. Management & \(\cdots\) \\
\hline Management & " \\
\hline Marketing \& Transportation Administration & " \\
\hline Advertising & Communication Arts \\
\hline Audiology \& Speech Science Communication & 硣 \\
\hline Journalism, School of & " \\
\hline TV \& Radio & " \\
\hline Theatre & " \\
\hline Chemical Engineering & Engineering \\
\hline Civil \& Sanitary Engineering & \\
\hline Computer Science & " \\
\hline Electrical Engineering \& Systems Science & " \\
\hline Mechanical Engineering & " \\
\hline Metallurgy, Mechanics, \& Materials Sci. & " \\
\hline Family Ecology & Human Ecology \\
\hline Family and Child Science & \\
\hline Human Nutrition \& Poods & " \\
\hline Human Environment \& Design & " \\
\hline Human Development & Human Medicine \\
\hline Medicine & \\
\hline Psychiatry & " \\
\hline
\end{tabular}

APPENDIX A-Continued
\begin{tabular}{|c|c|}
\hline Department & College Affillation \\
\hline Ast ronomy & Natural Science \\
\hline Biochemistry & Natural Science \\
\hline & Hunan Medicine \\
\hline Biophysics & Natural Science \\
\hline & Human Medicine \\
\hline Botany \& Plant Pathology & Natural Science \\
\hline Chemistry & " \\
\hline Entomulogy & " \\
\hline Geology & " \\
\hline Matheniatics & 1 \\
\hline Nursing & " \\
\hline Physics & " \\
\hline Statistics & " \\
\hline Zoolosy & Natural Science Human Medicire \\
\hline Anthrofology & Social Science \\
\hline Criminal Justice & \\
\hline Geography & " \\
\hline Labor \(\delta\) Industrial Relations & \\
\hline Political Science & " \\
\hline Psychology & Social Science Huran Medicine \\
\hline Social Work & Social Scicnce \\
\hline Sociolozy & Social Science Human Medicine \\
\hline Urban Planning \& iandscape Architecture & Social Science \\
\hline American Thought \& Language & University College \\
\hline Humanities & \\
\hline Natural Science & " \\
\hline Social Science & " \\
\hline Anatomy & Veterinary Medicine Munan Medicine \\
\hline Large Animal Surgery \& Medicine & Veterinary Medicine \\
\hline Medical Technology & Veterinary Medicine Iuman Medicine \\
\hline Microbiology \& Public Health & Veterinary Medicine Human Medicine Natural Science \\
\hline Pathology & Veterinary Medicine Human Medicine \\
\hline Pharmacology & Veterinary Medicine Human Nedicine \\
\hline Physiology & Veterinary Medicine Human Medicine \\
\hline Small Animal Surgery \& Medicine & Veterinary Medicine \\
\hline Family \& Community Mcdicine & Osteopathic Medicine \\
\hline Medicine & Osteopathis Medicine \\
\hline
\end{tabular}

\section*{APPENDIX B}

LIST OF MSU DEPARTMENT DESCRIPTOR VARIABLES

APPENDIX B

\section*{LIST OF MSU DEPARTMENT DESCRIPTOR VARIABLES}

\section*{General Fund Expenditures}
1. Total, 1971-72
2. Salary, 1971-72
3. Labor, 1971-72
4. Supplies \& Services, 1971-72
5. Equipment, 1971-72

Research Grant \& Contract Expenditures
6. Salary, 1971-72
7. Equipment, 1971-72
8. Other, 1971-72
9. Total

\section*{Student Credit Hours}
10. Undergraduate Lecture, Fall 1971
11. Undergraduate Recitation, Fall 1971
12. Undergraduate Laboratory, Fall 1971
13. Undergraduate Independent Study-Variable Credit, Fall 1971
14. Undergraduate Total, Fall 1971
15. Percent, Undergraduate Laboratory SCH
16. Graduate Classes, Fall 1971
17. Graduate Independent Study-Variable Credit, Fall 1971
18. Total Graduate SCH, Fall 1971
19. Total SCH, Fall 1971

Teaching Credits
20. Undergraduate Lecture, Fall 1971
21. Undergraduate Recitation, Fall 1971
22. Undergraduate Laboratory, Fall 1971
23. Undergraduate Total, Fall 1971
24. Percent, Undergraduate Lab/Undergraduate Total, Fall 1971
25. Graduate, Fall 1971
26. Total, Fall 1971

Total Head Count
27. Full-time Faculty, Fall 1971
28. Part-time Faculty, Fall 1971
29. Graduate Assistants, Fall 1971
30. Total, Fall 1971
31. Total, Full and Part-time Faculty, Fall 1971

FTE
32. Full-time Faculty, Fall 1971
33. Part-time Faculty, Fall 1971
APPENDIX B--Continued
FTE Cont'd.
34. Graduate Assistants, Fall 1971
35. Total, Fall 1971
36. Total Full and Part-time Faculty, Fall 1971
FTE - General Fund
37. A-Faculty, 1971-72
38. B-Faculty, 1971-72
Faculty Headcount - By Rank
39. Professors, 1971-72
40. Associate Professors, 1971-72
41. Assistant Professors, 1971-72
42. Instructors, 1971-72
43. Other, 1971-72
44. Total, 1971-72
FTE - By Rank
45. Professor, 1971-72
46. Associate Professor, 1971-72
47. Assistant Professor, 1971-72
48. Instructor, 1971-72
49. Total, 1971-72
Faculty Rank Percentages
50. Percent Professors, 1971-72
51. Percent Associate Professors, 1971-72
52. Percent Assistant Professors, 1971-72
53. Percent Instructors, 1971-72
54. Percent Other, 1971-72
Course Enrollments
55. Sub-College, Fall 1971
56. Lower Division, Fall 1971
57. Upper Division, Fall 1971
58. Undergraduate (Lower \& Upper), Fall 1971
59. Graduate-Professional, Fall 1971
60. Masters, Fall 1971
61. Doctors, Pall 1971
62. Graduate Total, Fall 1971
63. Total, Pall 1971

\section*{APPENDIX B--Continued}

\section*{Majors}
64. Lower Division, Fall 1971
65. Upper Division, Fall 1971
66. Undergraduate Total
67. Masters, Fall 1971
68. Doctoral, Fall 1971
69. Graduate Total
70. Departmental Total
Degrees
71. No. of Bachelor Degrees, 1971
72. No. of Masters Degrees, 1971
73. No. of Doctor Degrees, 1971
74. Total, 1971
Average Salary
75. Professor, 1971-72
76. Associate Professor, 1971-72
77. Assistant Professor, 1971-72
78. Instructor, 1971-72
79. Ten Month Salary - All Ranks
80. Twelve Month Salary - All Ranks
Quality Measures
81. Cartter Report, Quality of Faculty
82. Cartter Report, Quality of Program
83. Roose-Andersen Report, Quality of Faculty
84. Roose-Andersen Report, Quality of Program
85. Composite of Cartter Report
86. Composite of Roose-Andersen Report

\section*{APPENDIX C}
tables Of Data used in this study

Table 23. List of Departments with Disparate Unadjusted and Adjusted Department-Based Instructional Service Measures

Departments with
Sub Program and Short Courses
1. Agricultural Economics
2. Agricultural Engineering
3. Animal Husbandry
4. Crop and Soil Science
5. Dairy
6. Food Sci. and Human Nutr.
7. Forestry
8. Horticulture
9. Poultry Science
10. Resource Development
11. English
12. Accounting and Finance
13. Business Law and Office Ad.
14. Marketing and Transportation
15. Advertising
16. Audiology and speech Sci.
17. Biochemistry
18. Botany and Plant Path.
19. Entomology
20. Mathematics
21. Urban Planning and Land. Arch.
22. ATL
23. Microbiology*

Departments with GraduateProfessional Courses
1. Human Development
2. Psychiatry
3. Medicine (HM)
4. Anatomy
5. Large Animal Surgery
6. Microbiology*
7. Pathology
8. Pharmacology
9. Physiology
10. Small Animal Surgery
11. Fam. and Comm. Med.
12. Medicine (OM)

Table 24. Departmental Rankings on Department-based Instructional Service Measures
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Department Und} & \multicolumn{3}{|l|}{UNADJUSTED} & \multicolumn{3}{|c|}{ADJUSTED} \\
\hline & radua & Gradua & Total & Undergradua & Graduate & Total \\
\hline Ag. Economics & T79.0 & 15 & 32 & T 5.5 & 22 & 8 \\
\hline Ag. Engineering & T69.5 & 64 & 62 & 45 & 74 & 40 \\
\hline Animal Husbandry & T50.5 & 19 & 50 & 48 & 26 & 54 \\
\hline Crop \& Soil Sci. & 68 & 50 & 65 & 61 & 60 & 58 \\
\hline Dairy & 64 & 12 & 58 & 67 & 19 & 67 \\
\hline Fisheries \& Wildife & 33 & 16 & 24 & 34 & 23 & 32 \\
\hline Food Sci. \& Hum. Nutr. & 34 & T37.5 & 26 & 35 & T45.5 & 34 \\
\hline Forestry & 27 & 57 & 22 & 25 & 67 & T27.5 \\
\hline Horticulture & 48 & 30 & T43.5 & 37 & 37 & 37 \\
\hline Packaging & 16 & T27.5 & 7 & 17 & T34.5 & 15 \\
\hline Park \& Rec. Resources & 28 & 61 & 23 & 30 & 71 & 31 \\
\hline Poultry Science & 29 & T 4.5 & 14 & 19 & T 8.0 & 11 \\
\hline Resource Development & 49 & 55 & 33 & 51 & 65 & 41 \\
\hline Art & 25 & 14 & 20 & 28 & 21 & 29 \\
\hline English & 42 & 43 & 37 & T39.5 & 52 & 44 \\
\hline German \& Russian & 53 & 13 & 49 & T55.5 & 20 & 59 \\
\hline History & 54 & 33 & T51.5 & 57 & 40 & 62 \\
\hline Linguistics & 58 & 39 & T43.5 & 62 & 48 & 53 \\
\hline Music & 22 & 9 & T16.5 & 24 & 16 & T24.5 \\
\hline Philosophy & 65 & 54 & 67 & 69 & 64 & 74 \\
\hline Religion & 73 & T79.0 & 70 & 74 & T81.5 & 77 \\
\hline Romance Languages & 44 & 17 & 46 & 49 & 24 & 56 \\
\hline Acct. \& Finance Adm. & 35 & 65 & 29 & 36 & 75 & 39 \\
\hline Bus. Law \& Office Adm. & 40 & T79.0 & 39 & T39.5 & T81.5 & 49 \\
\hline Economics & 55 & 69 & 55 & 58 & 77 & 65 \\
\hline Hotel, Rest. \& Inst.Mgt. & 14 & T23.5 & 5 & 15 & T30.5 & 13 \\
\hline Management & 57 & 70 & 53 & 60 & 78 & 63 \\
\hline Marketing \& Transp. Adm. & T50.5 & 60 & 38 & 53 & 70 & 50 \\
\hline Advertising & 32 & 68 & 27 & - 33 & 76 & 36 \\
\hline Audiology \& Speech Sci. & 30 & 10 & 21 & 31 & 17 & 30 \\
\hline Communications & 38 & 62 & 34 & 42 & 72 & 46 \\
\hline Journalism & 23 & 42 & 18 & 26 & 51 & 26 \\
\hline TV \& Radio & 20 & 20 & 12 & 22 & 27 & 21 \\
\hline Theatre & 26 & 11 & 19 & 29 & 18 & T27.5 \\
\hline Chemical Engineering & 11 & 34 & 2 & 12 & 41 & 9 \\
\hline Civil \& Sanitary Eng. & 21 & 22 & 13 & 23 & 29 & 22 \\
\hline Computer Science & 41 & 36 & 36 & 44 & 44 & 48 \\
\hline Electrical Engineering & 12 & 51 & 4 & 13 & 61 & 12 \\
\hline Mechanical Engineering & 13 & 29 & 3 & 14 & 36 & 10 \\
\hline Metal, Mech, \& Mat.Sci. & 60 & 52 & 54 & 64 & 62 & 64 \\
\hline Family Ecology & 31 & 58 & 25 & 32 & 68 & 33 \\
\hline Family \& Child Sci. & 36 & 46 & 31 & 38 & 56 & 45 \\
\hline Human Nutr. \& Foods & 39 & 35 & 35 & 43 & 43 & 47 \\
\hline Human Envir. \& Design & 17 & 18 & 8 & 18 & 25 & 16 \\
\hline Human Development & T 5.0 & T79.0 & T78.0 & T 5.5 & T 8.0 & T 3.5 \\
\hline Medicine (IMM) & T 5.0 & T79.0 & T78.0 & T 5.5 & T 8.0 & T 3.5 \\
\hline Psychiatry & T 5.0 & T79.0 & T78.0 & T 5.5 & T 8.0 & T 3.5 \\
\hline
\end{tabular}

Table 24--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Department Un} & \multicolumn{3}{|l|}{UNADJUSTED} & \multicolumn{3}{|c|}{ADJUSTED} \\
\hline & \multicolumn{3}{|l|}{Undergraduate Graduate Total} & \multicolumn{3}{|l|}{Undergraduate Graduate Total} \\
\hline Astronomy & 67 & T 4.5 & 68 & 70 & T 8.0 & 75 \\
\hline Biochemistry & 47 & 47 & 28 & 46 & 57 & 35 \\
\hline Biophysics & T 5.0 & 45 & 9 & T 5.5 & 54 & 17 \\
\hline Botany \& Plant Path. & 63 & 48 & 40 & 59 & 58 & T42.5 \\
\hline Chemistry & 71 & 32 & 63 & 72 & 39 & 73 \\
\hline Entomology & 66 & 56 & 59 & 68 & 66 & 69 \\
\hline Geology & 46 & 41 & 42 & 52 & 50 & 52 \\
\hline Mathematics & 56 & T25.5 & T51.5 & T55.5 & T32.5 & 60 \\
\hline Nursing & 10 & T 4.5 & 1 & 11 & T 8.0 & 7 \\
\hline Physics & T69.5 & T25.5 & 61 & 71 & T32.5 & 72 \\
\hline Statistics & T74.5 & 63 & 69 & T75.5 & 73 & 76 \\
\hline Zoology & 37 & T37.5 & 30 & 41 & T45.5 & T42.5 \\
\hline Anthropology & 61 & 40 & 60 & T65.5 & 49 & 71 \\
\hline Criminal Justice & 19 & 31 & 11 & 21 & 38 & 20 \\
\hline Geography & 52 & 21 & 45 & 54 & 28 & 55 \\
\hline Labor \& Indust. Rel. & T 5.0 & 53 & T16.5 & T 5.5 & 63 & T24.5 \\
\hline Political Science & 45 & 49 & 48 & 50 & 59 & 57 \\
\hline Psychology & 43 & 44 & 41 & 47 & 53 & 51 \\
\hline Social Work & 24 & T27.5 & 15 & 27 & T34.5 & 23 \\
\hline Sociology & 62 & 59 & 57 & T65.5 & 69 & 68 \\
\hline Urban Plan. \& Land.Arch. & 18 & T23.5 & 10 & 20 & T30.5 & 18 \\
\hline Amer. Thought \& Lang. & T79.0 & T 4.5 & T78.0 & T79.5 & T 8.0 & T80.5 \\
\hline Humanities & T79.0 & T 4.5 & T78.0 & T79.5 & T 8.0 & T80.5 \\
\hline Natural Science & T79.0 & T 4.5 & T78.0 & T79.5 & T 8.0 & T80.5 \\
\hline Social Science & T79.0 & T 4.5 & T78.0 & T79.5 & T 8.0 & T80.5 \\
\hline Anatomy & T74.5 & 73 & 72 & T75.5 & 79 & 78 \\
\hline Lg. Anim. Surg. \& Med. & T 5.0 & 75 & 73 & T 5.5 & T 8.0 & T 3.5 \\
\hline Medical Technology & 15 & T 4.5 & 6 & 16 & T 8.0 & 14 \\
\hline Microbiology & 59 & 66 & 56 & 63 & 42 & 61 \\
\hline Pathology & T79.0 & 72 & 66 & T79.5 & 80 & 66 \\
\hline Pharmacology & T79.0 & 67 & 47 & T79.5 & T 8.0 & 38 \\
\hline Physiology & 72 & 71 & 64 & 73 & 47 & 70 \\
\hline Sm. Anim. Surg. \& Med. & T 5.0 & 74 & 71 & T 5.5 & 55 & 19 \\
\hline Family \& Comm. Med. & T 5.0 & T79.0 & T78.0 & T 5.5 & T 8.0 & T 3.5 \\
\hline Medicine (OM) & T 5.0 & T79.0 & T78.0 & T 5.5 & T 8.0 & T 3.5 \\
\hline
\end{tabular}

Table 25. Departmental Rankings on University-based Instructional Service Measures

Table 25-Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Department Un} & \multicolumn{3}{|l|}{UNADJUSTED} & \multicolumn{3}{|c|}{ADJUSTED} \\
\hline & \multicolumn{3}{|l|}{Undergraduate Graduate Total} & Undergraduat & Graduate & Total \\
\hline Astronomy & T34.5 & T 4.5 & 33 & 41 & T 8.0 & 39 \\
\hline Biochemistry & 42 & 67 & 43 & 40 & 73 & 43 \\
\hline Biophysics & T 5.0 & T29.5 & 4 & T 5.5 & T35.5 & 11 \\
\hline Botany \& Plant Path. & T34.5 & T57.5 & 35 & 34 & T64.5 & 34 \\
\hline Chemistry & 77 & 62 & 77 & 77 & 69 & 77 \\
\hline Entomology & 40 & T45.5 & 41 & 44 & 48 & 44 \\
\hline Geology & 50 & T41.5 & 48 & 52 & T50.0 & 52 \\
\hline Mathematics & 80 & 59 & 80 & 79 & 66 & 79 \\
\hline Nursing & 10 & T 4.5 & T 2.5 & 12 & T 8.0 & 10 \\
\hline Physics & 72 & T47.5 & 72 & 72 & T54.5 & 72 \\
\hline Statistics & 63 & 66 & 62 & 63 & 72 & 62 \\
\hline 20010gy & 60 & 49 & 59 & 60 & 56 & 59 \\
\hline Anthropology & 68 & T45.5 & 68 & 68 & 53 & 68 \\
\hline Criminal Justice & 46 & T41.5 & 46 & 47 & T50.0 & 47 \\
\hline Geography & 62 & 36 & 60 & 62 & 42 & 61 \\
\hline Labor \& Indust. Rel. & T 5.0 & 61 & 10 & T 5.5 & 68 & 14 \\
\hline Political Science & 70 & 51 & 70 & 70 & 58 & 70 \\
\hline Psychology & 81 & 73 & 81 & 81 & 78 & 81 \\
\hline Social Work & 43 & 60 & 42 & 45 & 67 & 46 \\
\hline Sociology & 71 & 72 & 71 & 71 & 77 & 71 \\
\hline Urban Plan. \& Land.Arch. & 28 & 38 & T27.5 & 29 & T45.0 & 28 \\
\hline Amer. Thought \& Lang. & 82 & T 4.5 & 82 & 82 & T 8.0 & 82 \\
\hline Humanities & 78 & T 4.5 & 79 & 80 & T 8.0 & 80 \\
\hline Natural Science & 79 & T 4.5 & 78 & 78 & T 8.0 & 78 \\
\hline Social Science & 76 & T 4.5 & 76 & 76 & T 8.0 & 76 \\
\hline Anatomy & 47 & 79 & 54 & 48 & 61 & 48 \\
\hline Lg. Anim. Surg. \& Med. & T 5.0 & 77 & 22 & T 5.5 & T 8.0 & T 3.5 \\
\hline Medical Technology & 13 & T 4.5 & 9 & 14 & T 8.0 & 13 \\
\hline Microbiology & 52 & 70 & 50 & T50.5 & T45.0 & T50.5 \\
\hline Pathology & 16 & 74 & 29 & 17 & 75 & 22 \\
\hline Pharmacology & 17 & 69 & 20 & 19 & T 8.0 & 17 \\
\hline Physiology & 49 & 76 & 52 & T50.5 & T45.0 & T50.5 \\
\hline Sm. Anim. Surg. \& Med. & T 5.0 & 81 & 38 & T 5.5 & T27.5 & T 8.0 \\
\hline Family \& Comm. Med. & T 5.0 & T55.5 & 8 & T 5.5 & T 8.0 & T 3.5 \\
\hline Medicine (OM) & T 5.0 & 65 & T12.5 & T 5.5 & T 8.0 & T 3.5 \\
\hline
\end{tabular}

Table 26. Rank Ordering of Departments According to Unadjusted Undergraduate Depart-ment-based Instructional Service
\(\left.\begin{array}{lllll}\text { T } 5.0 & \text { Human Development } & \text { (0.0) } & 42 & \text { English } \\ & \text { Medicine (HM) } & (0.0) & 43 & \text { Psychology } \\ & \text { Psychiatry } & (0.0) & 44 & \text { Romance Languages } \\ & \text { Biophysics } & (0.0) & 45 & \text { Political Science }\end{array}\right)\)

Table 27. Rank Ordering of Departments According to Unadjusted Graduate Departmentbased Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{T 4.5} & Poultry Science & (0.0) & 42 & Journallsm & (22.2) \\
\hline & Astronomy & (0.0) & 43 & English & (22.9) \\
\hline & Nursing & (0.0) & 44 & Psychology & (23.1) \\
\hline & American Thought \& Lang. & (0.0) & 45 & Biophysics & (24.2) \\
\hline & Humanities & (0.0) & 46 & Family \& Child Science & (28.4) \\
\hline & Natural Science & (0.0) & 47 & Biochemistry & (29.1) \\
\hline & Social Science & (0.0) & 48 & Botany \& Plant Pathology & (29.9) \\
\hline & Medical Technology & (0.0) & 49 & Political Science & (30.6) \\
\hline 9 & Music & (0.5) & 50 & Crop \& Soil Science & (32.2) \\
\hline 10 & Audiology \& Speech Sci. & (1.0) & 51 & Electrical Engineering & (33.9) \\
\hline 11 & Theatre & (2.2) & 52 & Metal., Mech., \& Mat. Sci. & (34.0) \\
\hline 12 & Dairy & (4.0) & 53 & Labor \& Industrial Rel. & (34.2) \\
\hline 13 & German \& Russian & (4.3) & 54 & Philosophy & (36.2) \\
\hline 14 & Art & (4.7) & 55 & Resource Development & (36.3) \\
\hline 15 & Agricultural Economics & (4.8) & 56 & Entomology & (37.7) \\
\hline 16 & Fisheries \& Wildiffe & (4.9) & 57 & Forestry & (39.1) \\
\hline 17 & Romance Languages & (6.6) & 58 & Family Ecology & (42.1) \\
\hline 18 & Human Environment \& Design & (7.4) & 59 & Sociology & (42.9) \\
\hline 19 & Animal Husbandry & (7.7) & 60 & Marketing \& Transp. Adm. & (45.7) \\
\hline 20 & TV \& Radio & (8.6) & 61 & Park \& Recreation Res. & (47.9) \\
\hline 21 & Geography & (8.8) & 62 & Communications & (50.4) \\
\hline 22 & Civil \& Sanitary Eng. & (10.1) & 63 & Statistics & (52.3) \\
\hline \multirow[t]{2}{*}{T23.5} & Hotel, Rest. \& Inst. Mgt. & (10.3) & 64 & Agricultural Engineering & (52.4) \\
\hline & Urban Plan. \& Land. Arch. & (10.3) & 65 & Acct. \& Finance Adm. & (58.6) \\
\hline \multirow[t]{2}{*}{T25.5} & Mathematics & (10.4) & 66 & Microbiology & (60.7) \\
\hline & Physics & (10.4) & 67 & Pharmacology & (66.5) \\
\hline \multirow[t]{2}{*}{T27.5} & Packaging & (10.5) & 68 & Advertising & (68.8) \\
\hline & Social Work & (10.5) & 69 & Economics & (69.6) \\
\hline 29 & Mechanical Engineering & (11.6) & 70 & Management & (72.7) \\
\hline 30 & Horticulture & (11.9) & 71 & Physiology & (74.4) \\
\hline 31 & Criminal Justice & (13.3) & 72 & Pathology & (86.0) \\
\hline 32 & Chemistry & (15.0) & 73 & Anatomy & (95.5) \\
\hline 33 & History & (15.3) & 74 & Small Animal Surg. \& Med. & (97.5) \\
\hline 34 & Chemical Engineering & (15.5) & 75 & Large Animal Surg. \& Med. & (99.1) \\
\hline 35 & Human Nutrition \& Foods & (15.8) & T79.0 & Religion & (100.0) \\
\hline 36 & Computer Science & (16.9) & & Business Law \& Office Adm. & (100.0) \\
\hline \multirow[t]{2}{*}{T37.5} & Food Sci. \& Human Nutr. & (17.1) & & Human Development & (100.0) \\
\hline & Zoology & (17.1) & & Medicine (HM) & (100.0) \\
\hline 39 & Linguistics & (20.0) & & Prychiatry & (100.0) \\
\hline 40 & Anthropology & (21.3) & & Family \& Community Med. & (100.0) \\
\hline 41 & Geology & (21.7) & & Medicine (OM) & (100.0) \\
\hline
\end{tabular}

Table 28. Rank Ordering of Departments According to Unadjusted Total Departmentbased Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & Nursing & (2.5) & 42 & Geology & (76.5) \\
\hline 2 & Chemical Engincering & (8.1) & T43.5 & Horticulture & (76.8) \\
\hline 3 & Mechanical Engineering & (14.5) & & Linguistics & (76.8) \\
\hline 4 & Electrical Engineering & (15.9) & 45 & Geography & (77.8) \\
\hline 5 & Hotel, Rest. \& Inst. Mgt. & (18.1) & 46 & Romance Languages & (77.9) \\
\hline 6 & Medical Technology & (19.4) & 47 & Pharmacology & (78.7) \\
\hline 7 & Packaging & (21.4) & 48 & Political Science & (79.8) \\
\hline 8 & Human Environment \& Design & (22.4) & 49 & German \& Russian & (80.6) \\
\hline 9 & Biophysics & (24.2) & 50 & Animal Husbandry & (80.8) \\
\hline 10 & Urban Plan. \& Land. Arch. & (26.0) & T51.5 & History & (82.3) \\
\hline 11 & Criminal Justice & (29.8) & & Mathematics & (82.3) \\
\hline 12 & TV \& Radio & (30.2) & 53 & Management & (82.7) \\
\hline 13 & Civil \& Sanitary Eng. & (30.8) & 54 & Metal., Mech., \& Mat. Sci. & (82.8) \\
\hline 14 & Poultry Science & (32.4) & 55 & Economics & (83.9) \\
\hline 15 & Social Work & (33.8) & 56 & Microbiology & (84.1) \\
\hline T16.5 & Music & (34.2) & 57 & Sociology & (86.3) \\
\hline & Labor \& Industrial Rel. & (34.2) & 58 & Dairy & (87.2) \\
\hline 18 & Journalism & (39.9) & 59 & Entomology & (87.9) \\
\hline 19 & Theatre & (40.5) & 60 & Anthropology & (88.1) \\
\hline 20 & Art & (41.4) & 61 & Physics & (89.2) \\
\hline 21 & Audiology \& Speech Sci. & (44.2) & 62 & Agricultural Engineering & (89.4) \\
\hline 22 & Forestry & (45.7) & 63 & Chemistry & (89.5) \\
\hline 23 & Park \& Recreation Res. & (49.3) & 64 & Physiology & (89.6) \\
\hline 24 & Fisheries \& Wildlife & (52.1) & 65 & Crop \& Soil Science & (89.7) \\
\hline 25 & Family Ecology & (54.8) & 66 & Pathology & (89.9) \\
\hline 26 & Food Sci. \& Human Nutr. & (57.9) & 67 & Philosophy & (91.0) \\
\hline 27 & Advertising & (63.0) & 68 & Astronomy & (94.3) \\
\hline 28 & Biochemistry & (65.2) & 69 & Statistics & (94.9) \\
\hline 29 & Acct. \& Finance Adm. & (68.2) & 70 & Réligion & (96.6) \\
\hline 30 & Zoology & (68.5) & 71 & Small Animal Surg. \& Med. & (97.5) \\
\hline 31 & Family \& Child Science & (69.4) & 72 & Anatomy & (98.3) \\
\hline 32 & Agricultural Economics & (69.6) & 73 & Large Animal Surg. \& Med. & (99.1) \\
\hline 33 & Resource Development & (69.8) & T78.0 & Human Development & (100.0) \\
\hline 34 & Communications & (70.8) & & Medicine (HM) & (100.0) \\
\hline 35 & Human Nutrition \& Foods & (71.9) & & Psychiatry & (100.0) \\
\hline 36 & Computer Science & (72.2) & & American Thought \& Lang. & (100.0) \\
\hline 37 & English & (72.8) & & Humanities & (100.0) \\
\hline 38 & Marketing \& Transp. Adm. & (73.9) & & Natural Science & (100.0) \\
\hline 39 & Business Law \& Office Adm. & (74.2) & & Social Science & (100.0) \\
\hline 40 & Botany \& Plant Pathology & (75.1) & & Family \& Community Med. & (100.0) \\
\hline 41 & Psychology & (75.7) & & Medicine (OM) & (100.0) \\
\hline
\end{tabular}

Table 29. Rank Ordering of Departments According to Adjusted Undergraduate Departmentbased Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{T 5.5} & Agricultural Economics & (0.0) & 42 & Communications & (73.6) \\
\hline & Human Development & (0.0) & 43 & Human Nutrition \& Poods & (73.8) \\
\hline & Medicine (HM) & (0.0) & 44 & Computer Science & (74.7) \\
\hline & Psychiatry & (0.0) & 45 & Agricultural Engineering & (75.8) \\
\hline & Biophysics & (0.0) & 46 & Biochemistry & (79.1) \\
\hline & Labor \& Industrial Rel. & (0.0) & 47 & Psychology & (80.6) \\
\hline & Large Animal Surg. \& Med. & (0.0) & 48 & Animal Husbandry & (80.7) \\
\hline & Small Animal Surg. \& Med. & (0.0) & 49 & Romance Languages & (80.9) \\
\hline & Family \& Community Med. & (0.0) & 50 & Political Science & (81.4) \\
\hline & Medicine (OM) & (0.0) & 51 & Resource Development & (82.2) \\
\hline 11 & Nursing & (2.5) & 52 & Geology & (82.4) \\
\hline 12 & Chemical Engineering & (5.5) & 53 & Marketing \& Transp. Adm. & (83.4) \\
\hline 13 & Electrical Engineering & (12.4) & 54 & Geography & (84.8) \\
\hline 14 & Mechanical Engineering & (14.8) & T55.5 & German \& Russian & (85.5) \\
\hline 15 & Hotel, Rest. \& Inst. Mgt. & (18.5) & & Mathematics & (85.5) \\
\hline 16 & Medical Technology & (19.4) & 57 & History & (86.1) \\
\hline 17 & Packaging & (22.1) & 58 & Economics & (86.5) \\
\hline 18 & Human Environment \& Design & (22.9) & 59 & Botany \& Plant Pathology & (88.3) \\
\hline 19 & Poultry Science & (26.7) & 60 & Management & (88.4) \\
\hline 20 & Urban Plan. \& Land. Arch. & (26.9) & 61 & Crop \& Soil Science & (89.0) \\
\hline 21 & Criminal Justice & (30.9) & 62 & Linguistics & (89.6) \\
\hline \(22^{\circ}\) & TV \& Radio & (32.8) & 63 & Microbiology & (89.7) \\
\hline 23 & Civil \& Sanitary Eng. & (35.4) & 64 & Metal., Mech., \& Mat. Sci. & (90.5) \\
\hline 24 & Music & (35.8) & T65.5 & Anthropology & (91.0) \\
\hline 25 & Forestry & (40.6) & & Sociology & (91.0) \\
\hline 26 & Journalism & (41.0) & 67 & Dairy & (91.5) \\
\hline 27 & Social Work & (43.0) & 68 & Entomology & (93.1) \\
\hline 28 & Art & (44.0) & 69 & Philosophy & (93.2) \\
\hline 29 & Theatre & (44.4) & 70 & Astronomy & (94.3) \\
\hline 30 & Park \& Recreation Res. & (49.5) & 71 & Physics & (94.8) \\
\hline 31 & Audiology \& Speech Sci. & (53.0) & 72 & Chemistry & (95.3) \\
\hline 32 & Family Ecology & (56.4) & 73 & Physiology & (96.1) \\
\hline 33 & Advertising & (62.5) & 74 & Religion & (96.6) \\
\hline 34 & Fisheries \& Wildlife & (64.8) & T75.5 & Statistics & (99.8) \\
\hline 35 & Food Sci. \& Human Nutr. & (66.0) & & Anatomy & (99.8) \\
\hline 36 & Acct. \& Finance Adm. & (68.0) & T79.5 & American Thought \& Lang. & (100.0) \\
\hline 37 & Horticulture & (71.8) & & Humanities & (100.0) \\
\hline 38 & Family \& Child Science & (72.0) & & Natural Science & (100.0) \\
\hline T39.5 & English & (72.4) & & Social Science & (100.0) \\
\hline & Business Law \& Office Adm. & (72.4) & & Pathology & (100.0) \\
\hline 41 & Zoology & (73.0) & & Pharmacology & (100.0) \\
\hline
\end{tabular}

Table 30. Rank Ordering of Departments According to Adjusted Graduate Departmentbased Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{15}{*}{T 8.0} & Poultry Science & (0.0) & 42 & Microbiology & (15.6) \\
\hline & Human Development & (0.0) & 43 & Human Nutrition \& Foods & (15.8) \\
\hline & Medicine (HM) & (0.0) & 44 & Computer Science & (16.9) \\
\hline & Psychiatry & (0.0) & T45.5 & Food Sc1. \& Human Nutr. & (17.1) \\
\hline & Astronomy & (0.0) & & Zoology & (17.1) \\
\hline & Nursing & (0.0) & 47 & Physiology & (18.4) \\
\hline & American Thought \& Lang. & (0.0) & 48 & Linguistics & (20.0) \\
\hline & Humanities & (0.0) & 49 & Anthropology & (21.3) \\
\hline & Natural Science & (0.0) & 50 & Geology & (21.7) \\
\hline & Social Science & (0.0) & 51 & Journalism & (22.2) \\
\hline & Large Animal Surg. \& Med. & (0.0) & 52 & English & (22.9) \\
\hline & Medical Technology & (0.0) & 53 & Psychology & (23.1) \\
\hline & Pharmacology & (0.0) & 54 & Biophysics & (24.2) \\
\hline & Family \& Community Med. & (0.0) & 55 & Small Animal Surg. \& Med. & (26.7) \\
\hline & Medicine (OM) & (0.0) & 56 & Family \& Child Science & (28.4) \\
\hline 16 & Music & (0.5) & 57 & Biochemistry & (29.1) \\
\hline 17 & Audiology \& Speech Sci. & (1.0) & 58 & Botany \& Plant Pathology & (29.9) \\
\hline 18 & Theatre & (2.2) & 59 & Political Science & (30.6) \\
\hline 19 & Dairy & (4.0) & 60 & Crop \& Soil Science & (32.2) \\
\hline 20 & German \& Russian & (4.3) & 61 & Electrical Engineering & (33.9) \\
\hline 21 & Art & (4.7) & 62 & Metal., Mech., \& Mat. Sci. & (34.0) \\
\hline 22 & Agricultural Economics & (4.8) & 63 & Labor \& Industrial Rel. & (34.2) \\
\hline 23 & Fisheries \& Wildiffe & (4.9) & 64 & Philosophy & (36.2) \\
\hline 24 & Romance Languages & (6.6) & 65 & Resource Development & (36.3) \\
\hline 25 & Human Environment \& Design & (7.4) & 66 & Entomology & (37.7) \\
\hline 26 & Animal Husbandry & (7.7) & 67 & Forestry & (39.1) \\
\hline 27 & TV \& Radio & (8.6) & 68 & Family Ecology & (42.1) \\
\hline 28 & Geography & (8.8) & 69 & Spciology & (42.9) \\
\hline 29 & Civil \& Sanitary Eng. & (10.1) & 70 & Marketing \& Transp. Adm. & (45.7) \\
\hline \multirow[t]{2}{*}{T30.5} & Hotel, Rest. \& Inst. Mgt. & (10.3) & 71 & Park \& Recreation Res. & (47.9) \\
\hline & Urban Plan. \& Land. Arch. & (10.3) & 72 & Communications & (50.4) \\
\hline \multirow[t]{2}{*}{T32.5} & Mathematics & (10.4) & 73 & Statistics & (52.3) \\
\hline & Physics & (10.4) & 74 & Agricultural Engineering & (52.4) \\
\hline \multirow[t]{2}{*}{T34.5} & Packaging & (10.5) & 75 & Acct. \& Finance Adm. & (58.6) \\
\hline & Social Work & (10.5) & 76 & Advertising & (68.8) \\
\hline 36 & Mechanical Engineering & (11.6) & 77 & Economics & (69.6) \\
\hline 37 & Horticulture & (11.9) & 78 & Management & (72.7) \\
\hline 38 & Criminal Justice & (13.3) & 79 & Anatomy & (72.9) \\
\hline 39 & Chemistry & (15.0) & 80 & Pathology & (75.4) \\
\hline 40 & History & (15.3) & T81.5 & Religion & (100.0) \\
\hline 41 & Chemical Engineering & (15.5) & & Business Law \& Office Adm. & (100.0) \\
\hline
\end{tabular}

Table 31. Rank Ordering of Departments According to Adjusted Total Department-based Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{T 3.5} & Human Development & (0.0) & T42.5 & Botany \& Plant Pathology & (68.5) \\
\hline & Medicine & (0.0) & & Zoology & (68.5) \\
\hline & Psychiatry & (0.0) & 44 & English & (68.8) \\
\hline & Large Animal Surg. \& Med. & (0.0) & 45 & Family \& Child Science & (69.4) \\
\hline & Family \& Community Med. & (0.0) & 46 & Communications & (70.8) \\
\hline & Medicine (\(O M\)) & (0.0) & 47 & Human Nutrition \& Foods & (71.9) \\
\hline 7 & Nursing & (2.5) & 48 & Computer Science & (72.2) \\
\hline 8 & Agricultural Economics & (4.8) & 49 & Business Law office Adm. & (72.7) \\
\hline 9 & Chemical Engineering & (8.1) & 50 & Marketing \& Transp. Adm. & (73.4) \\
\hline 10 & Mechanical Engincering & (14.5) & 51 & Psychology & (75.7) \\
\hline 11 & Poultry Science & (14.8) & 52 & Geology & (76.5) \\
\hline 12 & Electrical Engineering & (15.9) & 53 & Linguistics & (76.8) \\
\hline 13 & Hotel, Rest. \& Inst. Mgt. & (18.1) & 54 & Animal Husbandry & (77.1) \\
\hline 14 & Medical Technology & (19.4) & 55 & Geography & (77.8) \\
\hline 15 & Packaging & (21.4) & 56 & Romance Languages & (77.9) \\
\hline 16 & Human Environment \& Design & (22.4) & 57 & Political Science & (79.8) \\
\hline 17 & Biophysics & (24.2) & 58 & Crop \& Soil Science & (80.5) \\
\hline 18 & Urban Plan. \& Land. Arch. & (24.6) & 59 & German \& Russian & (80.6) \\
\hline 19 & Small Animal Surg. \& Med. & (26.7) & 60 & Mathematics & (80.7) \\
\hline 20 & Criminal Justice & (29.8) & 61 & Microbiology & (81.1) \\
\hline 21 & TV \& Radio & (30.2) & 62 & History & (82.3) \\
\hline 22 & Civil \& Sanitary Eng. & (30.8) & 63 & Management & (82.7) \\
\hline 23 & Social Work & (33.8) & 64 & Metal., Mech., \& Mat. Sci. & (82.8) \\
\hline \multirow[t]{2}{*}{T24.5} & Music & (34.2) & 65 & Economics & (83.9) \\
\hline & Labor \& Industrial Rel. & (34.2) & 66 & Pathology & (85.5) \\
\hline 26 & Journalism & (39.9) & 67 & Dairy & (85.6) \\
\hline \multirow[t]{2}{*}{T27.5} & Forestry & (40.5) & 68 & Sociology & (86.3) \\
\hline & Theatre & (40.5) & 69 & Entomology & (87.6) \\
\hline 29 & Art & (41.4) & 70 & Physiology & (87.9) \\
\hline 30 & Audiology 8 Speech Sci. & (43.8) & 71 & Anthropology & (88.1) \\
\hline 31 & Park \& Recreation Res. & (49.3) & 72 & Physics & (89.2) \\
\hline 32 & Fisheries \& Wildiife & (52.1) & 73 & Chemistry & (89.5) \\
\hline 33 & Family Ecology & (54.8) & 74 & Philosophy & (91.0) \\
\hline 34 & Food Sci. \& Human Nutr. & (55.9) & 75 & Astronomy & (94.3) \\
\hline 35 & Biochemistry & (59.8) & 76 & Statistics & (94.9) \\
\hline 36 & Advertising & (62.5) & 77 & Religion & (96.6) \\
\hline 37 & Horticulture & (62.6) & 78 & Anatomy & (97.8) \\
\hline 38 & Pharmacology & (64.2) & T80.5 & American Thought \& Lang. & (100.0) \\
\hline 39 & Acct. \& Finance Adm. & (66.1) & & Humanities & (100.0) \\
\hline 40 & Agricultural Engineering & (66.3) & & Natural Science & (100.0) \\
\hline 41 & Resource Development & (67.8) & & Social Science & (100.0) \\
\hline
\end{tabular}

Table 32. Rank Ordering of Departments According to Unadjusted Undergraduate University-based Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{9}{*}{T 5.0} & Human Development & (0.000) & 42 & Biochemistry & (0.514) \\
\hline & Medicine (IM) & (0.000) & 43 & Social Work & (0.547) \\
\hline & Psychiatry & (0.000) & 44 & Agricultural Engineering & (0.582) \\
\hline & Biophysics & (0.000) & 45 & Advertising & (0.597) \\
\hline & Labor \& Industrial Rel. & (0.000) & 46 & Criminal Justice & (0.638) \\
\hline & Large Animal Surg. \& Med. & (0.000) & 47 & Anatomy & (0.644) \\
\hline & Small Animal Surg. \& Med. & (0.000) & 48 & Metal., Mech. \& Mat. Sci. & (0.648) \\
\hline & Family \& Community Med. & (0.000) & 49 & Physiology & (0.675) \\
\hline & Medicine (OM) & (0.000) & 50 & Geology & (0.701) \\
\hline 10 & Nursing & (0.008) & 51 & Crop \& Soll Science & (0.709) \\
\hline 11 & Chemical Engineering & (0.010) & 52 & Microbiology & (0.723) \\
\hline 12 & Poultry Science & (0.012) & 53 & Religion & (0.878) \\
\hline 13 & Medical Technology & (0.042) & 54 & Family \& Child Science & (0.905) \\
\hline 14 & Fackaging & (0.069) & 55 & Art & (0.991) \\
\hline 15 & Mechanical Engineering & (0.076) & 56 & German \& Russian & (1.012) \\
\hline 16 & Pathology & (0.090) & 57 & Bus. Law \& Office hdm. & (1.055) \\
\hline 17 & Pharmacology & (0.106) & 58 & Marketing \& Transp. Adm. & (1.098) \\
\hline 18 & Hotel, Rest. \& Inst. Mgt. & (0.118) & 59 & Manageuent & (1.135) \\
\hline 19 & Civil \& Sanitary Eng. & (0.139) & 60 & Zoology & (1.184) \\
\hline 20 & Fisheries \& Wildlife & (0.161) & 61 & Computer Science & (1.185) \\
\hline 21 & Electrical Engineering & (0.172) & 62 & Gcography & (1.262) \\
\hline 22 & Agricultural Economics & (0.196) & 63 & Statistics & (1.395) \\
\hline 23 & Theatre & (0.213) & 64 & Communications & (1.403) \\
\hline 24 & Linguistics & (0.217) & 65 & Acct. \& Finance Adm. & (1.602) \\
\hline 25 & Park \& Recreation Res. & (0.221.) & 66 & Music & (1.671) \\
\hline 26 & Food Sci. \& Human Nutr. & (0.230) & 67 & Philosophy & (1.804) \\
\hline 27 & TV \& Radio & (0.245) & 68 & Anthropology & (2.207) \\
\hline 28 & Urban Plan. \& Land. Arch. & (0.260) & 69 & Ronance Languages & (2.246) \\
\hline 29 & Audiology \& Speech Sci. & (0.268) & 70 & Political Science & (2.337) \\
\hline 30 & Animal Husbandry & (0.275) & 71 & Sociology & (2.843) \\
\hline 31 & Journalism & (0.314) & 72 & Physics & (2.972) \\
\hline 32 & Forestry & (0.328) & 73 & Economics & (3.039) \\
\hline 33 & Family Ecology & (0.360) & 74 & English & (3.840) \\
\hline \multirow[t]{2}{*}{T34.5} & Astronomy & (0.396) & 75 & History & (3.998) \\
\hline & Botany \& Plant Pathology & (0.396) & 76 & Social Science & (5.026) \\
\hline 36 & Resource Development & (0.400) & 77 & Chemistry & (5.143) \\
\hline 37 & Dairy & (0.403) & 78 & Natural Science & (5.692) \\
\hline 38 & Human Nutrition \& Foods & (0.446) & 79 & Humanities & (6.228) \\
\hline 39 & Human Environment \& Design & (0.465) & 80 & Mathematics & (6.584) \\
\hline 40 & Entomology & (0.504) & 81 & Psychology & (7.005) \\
\hline 41 & Horticulture & (0.513) & 82 & American Thought \& Lang. & (7.628) \\
\hline
\end{tabular}

Table 33. Rank Ordering of Departments According to Unadjusted Graduate Universitybased Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{T 4.5} & Poultry Science & (0.000) & T41.5 & Geology & (0.380) \\
\hline & Astronomy & (0.000) & & Criminal Justice & (0.380) \\
\hline & Nursing & (0.000) & 44 & Crop and Soll Science & (0.401) \\
\hline & American Thought \& Lang. & (0.000) & T45.5 & Entomology & (0.422) \\
\hline & Humanities & (0.000) & & Anthropology & (0.422) \\
\hline & Natural Science & (0.000) & T47.5 & Family \& Child Science & (0.444) \\
\hline & Social Science & (0.000) & & Physics & (0.444) \\
\hline & Medical Technology & (0.000) & 49 & Zoology & (0.465) \\
\hline \multirow[t]{6}{*}{T11.5} & Animal Husbandry & (0.021) & 50 & Philosophy & (0.528) \\
\hline & Dairy & (0.021) & 51 & Political Science & (0.549) \\
\hline & Music & (0.021) & 52 & Family Ecology & (0.676) \\
\hline & Audiology \& Speech Sci. & (0.021) & 53 & Park \& Recreation Res. & (0.718) \\
\hline & Theatre & (0.021) & 54 & Metal., Mech. \& Mat. Sci. & (0.739) \\
\hline & Human Development & (0.021) & T55.5 & History & (0.760) \\
\hline 15 & Packaging & (0.042) & & Family \& Community Med. & (0.760) \\
\hline \multirow[t]{4}{*}{T17.5} & Fisheries \& Wildiffe & (0.063) & T57.5 & Agricultural Engineering & (0.908) \\
\hline & German \& Russian & (0.063) & & Botany \& Plant Pathology & (0.908) \\
\hline & Hotel, Rest. \& Inst. Mgt. & (0.063) & 59 & Mathematics & (0.951) \\
\hline & Human Nutrition \& Foods & (0.063) & 60 & Social Work & (1.104) \\
\hline \multirow[t]{2}{*}{T20.5} & Agricultural Economics & (0.084) & 61 & Labor \& Industrial Rel. & (1.141) \\
\hline & Human Environment \& Design & (0.084) & 62 & Chemistry & (1.225) \\
\hline 22 & Religion & (0.085) & 63 & Resource Development & (1.394) \\
\hline 23 & Mechanical Engineering & (0.106) & 64 & English & (1.500) \\
\hline \multirow[t]{5}{*}{T26.0} & Horticulture & (0.148) & 65 & Medicine (\(O M\)) & (1.563) \\
\hline & Art & (0.148) & 66 & Statistics & (1.648) \\
\hline & Romance Languages & (0.148) & 67 & Biochemistry & (1.732) \\
\hline & TV \& Radio & (0.148) & 68 & Electrical Engineering & (1.796) \\
\hline & Medicine (HM) & (0.148) & 69 & Pharmacology & (2.387) \\
\hline \multirow[t]{2}{*}{T29.5} & Civil \& Sanitary Eng. & (0.169) & 70 & Microbiology & (2.514) \\
\hline & Biophysics & (0.169) & 71 & Communications & (2.535) \\
\hline 31 & Chemical Engineering & (0.190) & 72 & Sociology & (2.831) \\
\hline \multirow[t]{2}{*}{T32.5} & Linguistics & (0.211) & 73 & Psychology & (3.612) \\
\hline & Journalism & (0.211) & 74 & Pathology & (3.887) \\
\hline \multirow[t]{2}{*}{T34.5} & Advertising & (0.232) & 75 & Marketing \& Transp. Adm. & (4.056) \\
\hline & Computer Science & (0.232) & 76 & Physiology & (4.288) \\
\hline 36 & Geography & (0.253) & 77 & Large Animal Surg. \& Med. & (4.774) \\
\hline 37 & Food Sci. \& Human Nutr. & (0.275) & 78 & Acct. \& Finance Adm. & (5.767) \\
\hline 38 & Urban Plan. \& Land. Arch. & (0.296) & 79 & Anatomy & (6.760) \\
\hline 39 & Bus. Law \& Office Adm. & (0.317) & 80 & Economics & (8.365) \\
\hline \multirow[t]{2}{*}{T41.5} & Forestry & (0.380) & 81 & Small Animal Surg. \% Med. & (9.104) \\
\hline & Psychiatry & (0.380) & 82 & Management & (10.414) \\
\hline
\end{tabular}

Table 34. Rank Ordering of Departments According to Unadjusted Total University-based Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & Human Development & (0.001) & 42 & Social Work & (0.570) \\
\hline \multirow[t]{2}{*}{T 2.5} & Medicine (HM) & (0.007) & 43 & Biochemistry & (0.574) \\
\hline & Nursing & (0.007) & 44 & Advertising & (0.579) \\
\hline 4 & Biophysics & (0.008) & 45 & Agricultural Engineering & (0.598) \\
\hline 5 & Poultry Science & (0.011) & 46 & Criminal Justice & (0.625) \\
\hline \multirow[t]{2}{*}{T 6.5} & Chemical Engincering & (0.019) & 47 & Metal., Mech. \& Mat. Sci. & (0.652) \\
\hline & Psychiatry & (0.019) & 48 & Geology & (0.686) \\
\hline 8 & Family \& Community Med. & (0.037) & 49 & Crop \& Soil Science & (0.694) \\
\hline 9 & Medical Technology & (0.040) & 50 & Microbiology & (0.811) \\
\hline 10 & Labor \& Industrial Rel. & (0.056) & 51 & Religion & (0.839) \\
\hline 11 & Packaging & (0.068) & 52 & Physiology & (0.853) \\
\hline \multirow[t]{2}{*}{T12.5} & Mechanical Engineering & (0.077) & 53 & Family \& Child Science & (0.882) \\
\hline & Medicine (\(O M\)) & (0.077) & 54 & Anatorny & (0.946) \\
\hline 14 & Hotel, Rest. \& Inst. Mgt. & (0.115) & 55 & Art & (0.950) \\
\hline 15 & Civil \& Sanitary Eng. & (0.140) & 56 & German \& Russian & (0.965) \\
\hline 16 & Fisheries \& Wildife & (0.156) & 57 & Bus. Law \& Office Adm. & (1.018) \\
\hline 17 & Agricultural Economics & (0.190) & 58 & Computer Science & (1.138) \\
\hline 18 & Theatre & (0.204) & 59 & Zoology & (1.149) \\
\hline 19 & Linguistics & (0.216) & 60 & Geography & (1.212) \\
\hline 20 & Pharmacology & (0.218) & 61 & Marketing \& Transp. Adm. & (1.243) \\
\hline 21 & Food Sci. \& Human Nutr: & (0.232) & 62 & Statistics & (1.408) \\
\hline 22 & Large Animal Surg. \& Med. & (0.235) & 63 & Communications & (1.459) \\
\hline 23 & TV \& Radio & (0.240) & 64 & Music & (1.590) \\
\hline 24 & Park \& Recreation Res. & (0.246) & 65 & Management & (1.592) \\
\hline 25 & Electrical Engineering & (0.252) & 66 & Philosophy & (1.742) \\
\hline 26 & Audiology \& Speech Sci. & (0.256) & 67 & Acct. \& Finance Adm. & (1.807) \\
\hline \multirow[t]{2}{*}{T27.5} & Animal Husbandry & (0.262) & 68 & Anthropology & (2.119) \\
\hline & Urban Plan. \& Land. Arch. & (0.262) & 69 & Rqmance Languages & (2.143) \\
\hline 29 & Pathology & (0.277) & 70 & Political Science & (2.249) \\
\hline 30 & Journalism & (0.309) & 71 & Sociology & (2.842) \\
\hline 31 & Forestry & (0.331) & 72 & Physics & (2.847) \\
\hline 32 & Family Ecology & (0.376) & 73 & Economics & (3.301) \\
\hline 33 & Astronomy & (0.377) & 74 & English & (3.724) \\
\hline 34 & Dairy & (0.384) & 75 & History & (3.839) \\
\hline 35 & Botany \& Plant Pathology & (0.421) & 76 & Social Science & (4.778) \\
\hline 36 & Human Nutrition \& Foods & (0.428) & 77 & Chemistry & (4.950) \\
\hline 37 & Human Environment \& Design & (0.446) & 78 & Natural Science & (5.412) \\
\hline 38 & Small Animal Surg. \& Med. & (0.448) & 79 & Humanities & (5.922) \\
\hline 39 & Resource Development & (0.449) & 80 & Mathematics & (6.307) \\
\hline 40 & Horticulture & (0.495) & 81 & Psychology & (6.838) \\
\hline 41 & Entomology & (0.500) & 82 & American Thought \& Lang. & (7.252) \\
\hline
\end{tabular}

Table 35. Rank Ordering of Departments According to Adjusted Undergraduate Universitybased Instructional Scrvice
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{10}{*}{T 5.5} & Agricultural Economics & (0.000) & 42 & Human Nutrition \& Foods & (0.464) \\
\hline & Human Development & (0.000) & 43 & Human Environment \& Design & (0.483) \\
\hline & Medicine (HM) & (0.000) & 44 & Entomology & (0.507) \\
\hline & Psychiatry & (0.000) & 45 & Social Work & (0.569) \\
\hline & Biophysics & (0.000) & 46 & Advertising & (0.610) \\
\hline & labor \& Industrial Rel. & (0.000) & 47 & Criminal Justice & (0.663) \\
\hline & Large Animal Surg. \& Med. & (0.000) & 48 & Anatomy & (0.670) \\
\hline & Snall Animal Surg. \& Med. & (0.000) & 49 & Metal., Mech. \& Mat. Sci. & (0.673) \\
\hline & Family \& Community Med. & (0.000) & T50.5 & Microbiology & (0.702) \\
\hline & Medicine (OM) & (0.000) & & Physiology & (0.702) \\
\hline 11 & Poultry Science & (0.005) & 52 & Geology & (0.729) \\
\hline 12 & Nursing & (0.008) & 53 & Religion & (0.912) \\
\hline 13 & Chemical Engineering & (0.010) & 54 & Family \& Child Science & (0.940) \\
\hline 14 & Medical Technology & (0.043) & 55 & Bus. Law \& Office Adm. & (1.015) \\
\hline 15 & Packaging & (0.072) & 56 & Art & (1.030) \\
\hline 16 & Mechanical Engineering & (0.078) & 57 & German \& Russian & (1.052) \\
\hline 17 & Pathology & (0.093) & 58 & Marketing \& Transp. Adm. & (1.103) \\
\hline 18 & Agricultural Engineering & (0.103) & 59 & Management & (1.179) \\
\hline 19 & Pharmacology & (0.110) & 60 & Zoology & (1.230) \\
\hline 20 & Hotel, Rest. \& Inst. Mgt. & (0.123) & 61 & Computer Science & (1.232) \\
\hline 21 & Civil \& Sanitary Eng. & (0.144) & 62 & Geography & (1.311) \\
\hline 22 & Fisheries \& Wildife & (0.167) & 63 & Statistics & (1.450) \\
\hline 23 & Electrical Engineering & (0.179) & 64 & Communications & (1.458) \\
\hline 24 & Food Sci. \& lluman Nutr. & (0.218) & 65 & Acct. \& Finance Adm. & (1.491) \\
\hline 25 & Theatre & (0.222) & 66 & Music & (1.736) \\
\hline 26 & Linguistics & (0.225) & 67 & Philosophy & (1.875) \\
\hline 27 & Animal Husbandry & (0.229) & 68 & Anthropology & (2.294) \\
\hline 28 & Park \& Recreation Res. & (0.230) & 69 & Romance Languages & (2.335) \\
\hline 29 & Urban Plan. \& Land. Arch. & (0.249) & 70 & Political Science & (2.429) \\
\hline 30 & TV \& Radio & (0.255) & 71 & Sociology & (2.954) \\
\hline 31 & Horticulture & (0.266) & 72 & Physics & (3.089) \\
\hline 32 & Forestry & (0.272) & 73 & Economics & (3.158) \\
\hline 33 & Audiology \& Speech Sci. & (0.274) & 74 & English & (3.274) \\
\hline 34 & Botany \& Plant Pathology & (0.283) & 75 & History & (4.155) \\
\hline 35 & Journalism & (0.326) & 76 & Social Science & (5.223) \\
\hline 36 & Crop \& Soil Science & (0.340) & 77 & Chemistry & (5.345) \\
\hline 37 & Dairy & (0.365) & 78 & Natural Science & (5.916) \\
\hline 38 & Resource Developnent & (0.373) & 79 & Mathematics & (6.167) \\
\hline 39 & Family Ecology & (0.374) & 80 & Humanities & (6.473) \\
\hline 40 & Biochemistry & (0.405) & 81 & Psychology & (7.280) \\
\hline 41 & Astronomy & (0.412) & 82 & American Thought \& Lang. & (7.669) \\
\hline
\end{tabular}

Table 36. Rank Ordcring of Departments According to Adjusted Graduate University-based Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline T 8.0 & Poultry Science & (0.000) & 42 & Geography & (0.380) \\
\hline & Human Developrent & (0.000) & 43 & Food Sc1. \& Human Nutr. & (0.412) \\
\hline & Medicine (IM) & (0.000) & T45.0 & Urban Plan. \& Land. Arch. & (0.443) \\
\hline & Psychiatry & (0.000) & & Microbiology & (0.443) \\
\hline & Astronomy & (0.000) & & Physiology & (0.443) \\
\hline & Nursing & (0.000) & 47 & Bus. Law \& Office Adm. & (0.475) \\
\hline & American Thought \& Lang. & (0.000) & T49.0 & Forestry & (0.570) \\
\hline & Humanities & (0.000) & & Geology & (0.570) \\
\hline & Natural Science & (0.000) & & Criminal Justice & (0.570) \\
\hline & Social Science & (0.000) & 51 & Crop \& Soil Science & (0.602) \\
\hline & Large Animal Surg. \& Med. & (0.000) & T52.5 & Entomology & (0.633) \\
\hline & Medical Technology & (0.000) & & Anthropology & (0.633) \\
\hline & Pharmacology & (0.000) & T54.5 & Family \& Child Science & (0.665) \\
\hline & Family \& Community Med. & (0.000) & & Physics & (0.665) \\
\hline & Medicine (OM) & (0.000) & 56 & Zoology & (0.697) \\
\hline T18.0 & Animal Husbandry & (0.032) & 57 & Philosophy & (0.792) \\
\hline & Dairy & (0.032) & 58 & Political Science & (0.823) \\
\hline & Music & (0.032) & 59 & Family Ecology & (1.013) \\
\hline & Audiology \& Speech Sci. & (0.032) & 60 & Park \& Recreation Res. & (1.077) \\
\hline & Theatre & (0.032) & T61.5 & Metal., Mech. \& Mat. Sci. & (1.108) \\
\hline 21 & Packaging & (0.063) & & Anatomy & (1.108) \\
\hline T23.5 & Fisheries \& Wildiffe & (0.095) & 63 & History & (1.140) \\
\hline & German \& Russian & (0.095) & T64.5 & Agricultural Engineering & (1.362) \\
\hline & Hotel, Rest. \& Inst. Mgt. & (0.095) & & Botany \& Plant Pathology & (1.362) \\
\hline & Human Nutrition \& Foods & (0.095) & 66 & Mathematics & (1.425) \\
\hline T27.5 & Agricultural Economics & (0.127) & 67 & Social Work & (1.520) \\
\hline & Religion & (0.127) & 68 & Labor \& Industrial Rel. & (1.710) \\
\hline & Human Environment \& Design & (0.127) & 69 & Chemistry & (1.834) \\
\hline & Small Animal Surg. \& Med. & (0.127) & 70 & Resource Development & (2.090) \\
\hline 30 & Mechanical Engineering & (0.158) & 71 & English & (2.248) \\
\hline T32.5 & Horticulture & (0.222) & 72 & Statistics & (2.470) \\
\hline & Art & (0.222) & 73 & Biochemistry & (2.597) \\
\hline & Romance Languages & (0.222) & 74 & Electrical Engineering & (2.692) \\
\hline & TV \& Radio & (0.222) & 75 & Pathology & (2.818) \\
\hline T35.5 & Civil 8 Sanitary Eng. & (0.253) & 76 & Communications & (3.800) \\
\hline & Biophysics & (0.253) & 77 & Sociology & (4.243) \\
\hline 37 & Chemical Engineering & (0.285) & 78 & Psychology & (5.415) \\
\hline T38.5 & Linguistics & (0.317) & 79 & Marketing \& Transp. Adm. & (6.080) \\
\hline & Journalism & (0.317) & 80 & Acct. \& Finance Adm. & (8.645) \\
\hline T40.5 & Advertising & (0.348) & 81 & Economics & (12.540) \\
\hline & Computer Science & (0.348) & 82 & Management & (15.611) \\
\hline
\end{tabular}

Table 37. Rank Ordering of Departments According to Adjusted Total University-based Instructional Service
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{T 3.5} & Human Development & (0.000) & 42 & Human Environment \& Design & (0.471) \\
\hline & Medicine (HM) & (0.000) & 43 & Biochemistry & (0.481) \\
\hline & Psychiatry & (0.000) & 44 & Entomology & (0.512) \\
\hline & Large Animal Surg. \& Med. & (0.000) & 45 & Advertising & (0.600) \\
\hline & Family \& Community Med. & (0.000) & 46 & Social Work & (0.602) \\
\hline & Medicine (OM) & (0.000) & 47 & Criminal Justice & (0.660) \\
\hline \multirow[t]{3}{*}{T 8.0} & Agricultural Economics & (0.004) & 48 & Anatomy & (0.685) \\
\hline & Poultry Science & (0.004) & 49 & Metal., Mech. \& Mat. Sci. & (0.688) \\
\hline & Small Animal Surg. \& Med. & (0.004) & T50.5 & Microbiology & (0.693) \\
\hline 10 & Nursing & (0.008) & & Physiology & (0.693) \\
\hline 11 & Biophysics & (0.009) & 52 & Geology & (0.723) \\
\hline 12 & Chemical Engineering & (0.020) & 53 & Religion & (0.885) \\
\hline 13 & Medical Technology & (0.042) & 54 & Family \& Child Science & (0.931) \\
\hline 14 & Labor \& Industrial Rel. & (0.059) & 55 & Bus. Law \& Office Adm. & (0.997) \\
\hline 15 & Packaging & (0.071) & 56 & Art & (1.002) \\
\hline 16 & Mechanical Engineering & (0.081) & 57 & German \& Russian & (1.019) \\
\hline 17 & Pharmacology & (0.106) & 58 & Statistics & (1.201) \\
\hline 18 & Hotel, Rest. \& Inst. Mgt. & (0.122) & 59 & Zoology & (1.212) \\
\hline 19 & Agricultural Engineering & (0.147) & 60 & Marketing \& Transp. Adm. & (1.276) \\
\hline 20 & Civil \& Sanitary Eng. & (0.148) & 61 & Geography & (1.279) \\
\hline 21 & Fisheries \& Wildlife & (0.165) & 62 & Statistics & (1.485) \\
\hline 22 & Pathology & (0.188) & 63 & Comrnunications & (1.539) \\
\hline 23 & Theatre & (0.215) & 64 & Music & (1.677) \\
\hline 24 & Animal Husbandry & (0.222) & 65 & Management & (1.680) \\
\hline 25 & Food Sci. \& Human Nutr. & (0.225) & 66 & Acct. \& Finance Adm. & (1.739) \\
\hline 26 & Linguistics & (0.228) & 67 & Philosophy & (1.838) \\
\hline 27 & TV \& Radio & (0.254) & 68 & Anthropology & (2.236) \\
\hline 28 & Urban Plan. \& Land. Arch. & (0.256) & 69 & Romance Languages & (2.261) \\
\hline 29 & Park \& Recreation Res. & (0.259) & 70 & Political Science & (2.373) \\
\hline 30 & Horticulture & (0.265) & 71 & Sociology & (2.999) \\
\hline \multirow[t]{2}{*}{T31. 5} & Audiology \& Speech Sci. & (0.266) & 72 & Physics & (3.005) \\
\hline & Electrical Engineering & (0.266) & 73 & English & (3.238) \\
\hline 33 & Forestry & (0.282) & 74 & Economics & (3.483) \\
\hline 34 & Botany \& Plant Pathology & (0.321) & 75 & History & (4.051) \\
\hline 35 & Journalism & (0.326) & 76 & Social Science & (5.042) \\
\hline 36 & Crop \& Soll Science & (0.349) & 77 & Chemistry & (5.223) \\
\hline 37 & Dairy & (0.353) & 78 & Natural Science & (5.711) \\
\hline 38 & Family Ecology & (0.396) & 79 & Mathematics & (6.003) \\
\hline 39 & Astronomy & (0.397) & 80 & Humanities & (6.248) \\
\hline 40 & Resource Development & (0.433) & 81 & Psychology & (7.216) \\
\hline 41 & Human Nutrition \& Foods & (0.451) & 82 & American Thought \& Lang. & (7.403) \\
\hline
\end{tabular}

Table 38. Departmental Rankings on General Fund Expenditures, 1971-72
\begin{tabular}{|c|c|c|c|c|c|}
\hline Department & Total & Salary & Labor & Supplies \& Services & Equip. \\
\hline Ag. Economics & 23 & 25 & 28 & 49 & T11.5 \\
\hline Ag. Engineering & 32 & 32 & 62 & 48 & 36 \\
\hline Animal Husbandry & 33 & 22 & 74 & 72 & 56 \\
\hline Crop \& Soil Sci. & 50 & 47 & 67 & 61 & 42 \\
\hline Dairy & 19 & 6 & 80 & 35 & 46 \\
\hline Fisheries \& Wildife & 17 & 20 & 37 & 19 & 38 \\
\hline Food Sci. \& Human Nutr. & 28 & 24 & 70 & 54 & 2 \\
\hline Porestry & 20 & 19 & 27 & 30 & 60 \\
\hline Horticulture & 45 & 36 & 78 & 50 & 40 \\
\hline Packaging & 7 & 9 & 22 & 16 & 58 \\
\hline Park \& Rec. Resources & 2 & & 1 & 6 & 1 \\
\hline Poultry Science & 12 & 3 & 77 & 58 & 59 \\
\hline Resource Development & 5 & 7 & 30 & 17 & 3 \\
\hline Art & 73 & 73 & 51 & 71 & 72 \\
\hline English & 78 & 79 & 17 & 37 & 20 \\
\hline German \& Russian & 54 & 57 & 11 & 15 & T11.5 \\
\hline History & 68 & 69 & 6 & 22 & 27 \\
\hline Linguistics & 11 & 15 & 9 & 3 & 21 \\
\hline Music & 75 & 75 & 54 & 60 & 73 \\
\hline Philosophy & 53 & 58 & 14 & 2 & 22 \\
\hline Religion & 3 & 5 & 4 & 1 & 24 \\
\hline Romance Languages & 72 & 74 & 19 & 32 & 23 \\
\hline Acct. \& Finance Adm. & 67 & 67 & 56 & 40 & T11.5 \\
\hline Bus. Law and Office Adm. & 27 & 34 & 24 & 12 & T11.5 \\
\hline Economics & 71 & 72 & 31 & 52 & T11.5 \\
\hline Hotel, Rest. \& Inst. Mgt. & 13 & 17 & T 2.5 & 13 & T11.5 \\
\hline Management & 52 & 52 & 12 & 27 & T11.5 \\
\hline Marketing \& Transp. Adm. & 60 & 62 & 21 & 10 & T11.5 \\
\hline Advertising & 8 & 13 & 15 & 8 & 28 \\
\hline Audiology \& Speech Sci. & 25 & 29 & 16 & 38 & 39 \\
\hline Communications & 56 & 55 & 53 & 53 & 54 \\
\hline Journalism & 22 & 23 & 20 & 18 & 35 \\
\hline TV \& Radio & 9 & 12 & 34 & 7 & 48 \\
\hline Theatre & 24 & 31 & 23 & 24 & 25 \\
\hline Chemcial Engineering & 10 & 10 & 10 & 23 & 67 \\
\hline Civil \& Sanitary Eng. & 31 & 35 & 42 & 9 & 47 \\
\hline Computer Science & 34 & 28 & 72 & 56 & 50 \\
\hline Electrical Engineering & 59 & 59 & 71 & 63 & 53 \\
\hline Mechanical Engineering & 41 & 43 & 35 & 34 & 33 \\
\hline Metal, Mech., \& Mat. Sci. & 47 & 49 & 25 & 51 & 45 \\
\hline Family Ecology & 15 & 18 & 29 & 5 & 51 \\
\hline Family \& Child Science & 21 & 21 & 48 & 11 & 31 \\
\hline Human Nutr. \& Foods & 16 & 14 & 64 & 33 & 44 \\
\hline Human Envir. \& Design & 36 & 39 & 36 & 28 & 49 \\
\hline Human Development & 37 & 37 & 59 & 68 & 63 \\
\hline Medicine (HM) & 39 & 38 & 45 & 62 & 74 \\
\hline Psychiatry & 18 & 16 & 32 & 59 & 55 \\
\hline
\end{tabular}

Table 38--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Department & Total & Salary & Labor & Supplies \& Services & Equip. \\
\hline Astronomy & 4 & 4 & 47 & 55 & 64 \\
\hline Biochemistry & 51 & 42 & 58 & 66 & 79 \\
\hline Biophysics & 6 & 8 & T 2.5 & 14 & 34 \\
\hline Botany \& Plant Path. & 58 & 56 & 61 & 70 & 68 \\
\hline Chemistry & 82 & 81 & 82 & 82 & 82 \\
\hline Entomology & 14 & 11 & 65 & 43 & 65 \\
\hline Geology & 44 & 44 & 52 & 46 & 57 \\
\hline Mathenatics & 81 & 82 & 55 & 79 & T11.5 \\
\hline Nursing & 48 & 50 & 5 & 20 & 29 \\
\hline Physics & 79 & 78 & 81 & 78 & 78 \\
\hline Statistics & 49 & 51 & 8 & 21 & 26 \\
\hline Zoology & 57 & 54 & 57 & 69 & 71 \\
\hline Anthropology & 38 & 41 & 41 & 44 & 52 \\
\hline Criminal Justice & 43 & 46 & 13 & 41 & 30 \\
\hline Geography & 55 & 53 & 43 & 45 & 37 \\
\hline Labor \& Indust. Rel. & 64 & 64 & 60 & 65 & T11.5 \\
\hline Political Science & 66 & 66 & 33 & 74 & 43 \\
\hline Psychology & 80 & 80 & 76 & 80 & 80 \\
\hline Social Work & 40 & 40 & 7 & 57 & 66 \\
\hline Sociology & 69 & 68 & 50 & 77 & 61 \\
\hline Urban Plan. \& Land. Arch. & 42 & 45 & 38 & 36 & 32 \\
\hline Amer. Thought \& Lang. & 77 & 77 & 39 & 39 & T11.5 \\
\hline Humanities & 70 & 71 & 46 & 29 & T11.5 \\
\hline Natural Science & 76 & 76 & 68 & 64 & T11.5 \\
\hline Social Science & 636 & 65 & 44 & 25 & T11.5 \\
\hline Anatomy & 62 & 60 & 66 & 75 & 81 \\
\hline Lg. Anim. Surg. \& Med. & 26 & 27 & 63 & 26 & T11.5 \\
\hline Medical Technology & 1 & 1 & 26 & 4 & 41 \\
\hline Microbiology & 74 & 70 & 79 & 81 & 77 \\
\hline Pathology & 65 & 63 & 75 & 73 & 76 \\
\hline Pharmacology & 35 & 26 & 69 & 67 & 75 \\
\hline Physiology & 61 & 61 & 73 & 76 & 62 \\
\hline Sm. Anim. Surg. \& Med. & 46 & 48 & 49 & 31 & T11.5 \\
\hline Family \& Comm. Med. & 30 & 30 & 40 & 47 & 70 \\
\hline Medicine (OM) & 29 & 33 & 18 & 42 & 69 \\
\hline
\end{tabular}

Table 39. Departmental Rankings on Research Grant and Contract Expenditures, 1971-72
\begin{tabular}{|c|c|c|c|c|}
\hline Department & Total & Salary & Equip. & Other \\
\hline Ag. Economics & 80 & 81 & 58 & 81 \\
\hline Ag. Engineering & 55 & 58 & 62 & 54 \\
\hline Animal Husbandry & 64 & 63 & 64 & 66 \\
\hline Crop \& Soil Sci. & 72 & 73 & 65 & 68 \\
\hline Dairy & 60 & 57 & 49 & 65 \\
\hline Fisheries \& Wildife & 57 & 55 & 75 & 59 \\
\hline Food Sci. \& Human Nutr. & 65 & 60 & 74 & 71 \\
\hline Forestry & 40 & 44 & 46 & 40 \\
\hline Horticulture & 63 & 64 & 70 & 60 \\
\hline Packaging & 48 & 50 & 61 & 43 \\
\hline Park \& Rec. Resources & 31 & 35 & T22.5 & 31 \\
\hline Poultry Science & 44 & 46 & T22.5 & 46 \\
\hline Resource Development & 49 & 48 & T22.5 & 49 \\
\hline Art & 33 & T12.5 & 68 & T 9.0 \\
\hline English & 26 & 27 & T22.5 & 30 \\
\hline German \& Russian & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline History & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Linguistics & 25 & T12.5 & T22.5 & 28 \\
\hline Music & 21 & T12.5 & T22.5 & 23 \\
\hline Philosophy & 29 & 25 & T22.5 & 34 \\
\hline Religion & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Romance Languages & 23 & T12.5 & T22.5 & 25 \\
\hline Acct. 6 Finance Adm. & 27 & 31 & T22.5 & 29 \\
\hline Bus. Law \& Office Adm. & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Economics & 52 & 54 & T22.5 & 20 \\
\hline Hotel, Rest. \& Inst. Mgt. & 22 & 30 & T22.5 & 20 \\
\hline Management & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Marketing \& Transp. Adm. & 35 & 38 & T22.5 & 36 \\
\hline Advertising & 20 & 28 & T22.5 & 21 \\
\hline Audiology \& Speech Sci. & 53 & 45 & 44 & 55 \\
\hline Communications & 61 & 61 & 48 & 63 \\
\hline Journalism & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline TV \& Radio & 39 & T12.5 & T22.5 & 50 \\
\hline Theatre & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Chemical Engineering & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Civil \& Sanitary Eng. & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Computer Science & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Electrical Engineering & 43 & 47 & 57 & 39 \\
\hline Mechanical Engineering & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Metal, Mech., \& Mat. Sci. & 19 & T12:5 & T22.5 & 22 \\
\hline Family Ecology & 24 & 26 & T22.5 & 24 \\
\hline Family \& Child Science & 70 & 69 & 50 & 72 \\
\hline Human Nutr. \& Foods & 34 & 40 & 56 & 26 \\
\hline Human Envir. \& Design & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Human Development & 59 & 62 & 71 & 57 \\
\hline Medicine (HM) & 47 & 43 & 60 & 51 \\
\hline Psychiatry & 66 & 71 & 53 & 64 \\
\hline
\end{tabular}

Table 39--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Department & Total & Salary & Equip. & Other \\
\hline Astronomy & 28 & 29 & T22.5 & 32 \\
\hline Biochemistry & 79 & 79 & 79 & 80 \\
\hline Biophysics & 75 & 75 & 76 & 75 \\
\hline Botany \& Plant Path. & 68 & 68 & 63 & 70 \\
\hline Chemistry & 81 & 80 & 82 & 78 \\
\hline Entomology & 74 & 76 & 72 & 73 \\
\hline Geology & 46 & 41 & 1 & 52 \\
\hline Mathematics & 69 & 74 & T22.5 & 58 \\
\hline Nursing & 62 & 65 & 53 & 56 \\
\hline Physics & 82 & 82 & 80 & 82 \\
\hline Statistics & 45 & 51 & T22.5 & 41 \\
\hline Zoology & 67 & 66 & 54 & 67 \\
\hline Anthropology & 38 & 37 & 45 & 38 \\
\hline Criminal Justice & 50 & 49 & T22.5 & 48 \\
\hline Geography & 17 & T12.5 & T22.5 & 18 \\
\hline Labor \& Indust. Rel. & 58 & 59 & 47 & 62 \\
\hline Political Science & 41 & 42 & T22.5 & 45 \\
\hline Psychology & 78 & 78 & 59 & 79 \\
\hline Social Work & 71 & 72 & T22.5 & 69 \\
\hline Sociology & 56 & 52 & 52 & 61 \\
\hline Urban Plan. \& Land.Arch & 30 & 34 & T22.5 & 27 \\
\hline Amer. Thought \& Lang. & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Humanities & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Natural Science & 37 & 36 & T22.5 & 37 \\
\hline Social Science & 18 & T12.5 & T22.5 & 19 \\
\hline Anatomy & 54 & 56 & 69 & 53 \\
\hline Lg. Anim. Surg. \& Med. & 32 & 33 & 51 & 33 \\
\hline Medical Technology & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline Microbiology & 76 & 70 & 81 & 76 \\
\hline Apthology & 42 & 39 & 73 & 42 \\
\hline Pharmacology & 73 & 67 & 77 & 74 \\
\hline Physiology & 77 & 77 & 787 & 77 \\
\hline Sm. Anim. Surg. \& Med. & 36 & 32 & 67 & 35 \\
\hline Family \& Comm. Med. & 51 & 53 & 66 & 44 \\
\hline Medicine (\(O M\)) & T 8.5 & T12.5 & T22.5 & T 9.0 \\
\hline
\end{tabular}

Table 40. Faculty Rank Distribution Indices
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Department} & \multicolumn{3}{|l|}{PACULTY RANK INDICES} & \multicolumn{3}{|c|}{RANKINGS} \\
\hline & Headcount & FTE & 2 Dist. & Num. & FTE & \% Dist. \\
\hline Ag. Economics & 145 & 22.60 & 333 & 76.0 & 20.0 & T59.5 \\
\hline Ag. Engineering & 68 & 25.65 & 337 & T57.5 & 30.0 & T63.5 \\
\hline Animal Husbandry & 54 & 20.00 & 360 & 48.0 & 17.0 & T74.5 \\
\hline Crop 8 Soil Sci. & 148 & 43.08 & 343 & 78.0 & 50.0 & 67.0 \\
\hline Daity & 57 & 12.40 & 317 & T49.5 & 4.0 & 47:0 \\
\hline Pisheries \& Wildife & 36 & 25.20 & 324 & T28.5 & 27.0 & T52.5 \\
\hline Food Sci. \& Hum. Nutr. & 71 & 24.55 & 360 & 60.0 & 26.0 & T74.5 \\
\hline Forestry & 62 & 25.35 & 326 & 53.0 & 28.0 & 57.0 \\
\hline Horticulture & 104 & 30.60 & 320 & 71.0 & 38.0 & T49.5 \\
\hline Packaging & \(\cdot 19\) & 15.30 & 220 & T 8.0 & 11.0 & 4.0 \\
\hline Park 8 Rec. Resources & 12 & 3.50 & 240 & T 3.5 & 2.0 & 8.0 \\
\hline Poultry Science & 34 & 9.35 & 340 & T24.5 & 3.0 & 66.0 \\
\hline Resource Development & 33 & 17.20 & 346 & T21.5 & 13.0 & 70.0 \\
\hline Art & 117 & 105.00 & 308 & 72.0 & 74.0 & T41.0 \\
\hline English & 146 & 132.77 & 359 & 77.0 & 78.0 & 73.0 \\
\hline German 8 Russian & 47 & 53.00 & 250 & T38.5 & 62.0 & 10.0 \\
\hline Eistory & 96 & 85.00 & 304 & 68.0 & 71.0 & 36.0 \\
\hline Linguistics & 21 & 21.16 & 245 & 10.0 & 18.0 & 9.0 \\
\hline Masic & 137 & 139.50 & 299 & 74.0 & 79.0 & T31.0 \\
\hline Philosophy & 67 & 59.67 & 302 & 56.0 & 65.0 & 35.0 \\
\hline Religion & 14 & 15.20 & 350 & 5.0 & 10.0 & 71.0 \\
\hline Romance Languages & 88 & 86.34 & 276 & 66.0 & 72.0 & 21.0 \\
\hline Acct. \& Finance Adm. & 68 & 73.00 & 283 & T57.5 & 68.0 & 25.0 \\
\hline Bus. Law \& Office Adm. & 30 & 32.00 & 299 & 17.0 & 39.0 & T31.0 \\
\hline Economics & 91 & 84.91 & 323 & 67.0 & 70.0 & 51.0 \\
\hline Hotel, Rest. \& Inst. Mgt. & 23 & 25.75 & 380 & T12.5 & 32.0 & T79.5 \\
\hline Management & 48 & 39.00 & 333 & T41.0 & 46.0 & T59.5 \\
\hline Marketing \& Transp. Adm. & 27 & 58.85 & 389 & T14.5 & 64.0 & 81.0 \\
\hline Advertising & 19 & 19.00 & 266 & T 8.0 & 16.0 & T17.5 \\
\hline Audiology 8 Speech Sci. & 33 & 29.50 & 275 & T21.5 & 36.0 & 20.0 \\
\hline Communications & 53 & 36.50 & 314 & T46.5 & 43.0 & 44.0 \\
\hline Journalism & 31 & 26.00 & 230 & T18.5 & 33.0 & 5.0 \\
\hline TV 6 Radio & 17 & 13.25 & 325 & 6.0 & 5.0 & T55.0 \\
\hline Theatre & 11 & 23.00 & 233 & 2.0 & T22.5 & 6.0 \\
\hline Chemcial Engineering & 23 & 21.50 & 329 & T12.5 & 19.0 & 58.0 \\
\hline Civil \& Sanitary Eng. & 34 & 36.70 & 324 & T24.5 & 45.0 & T52.5 \\
\hline Computer Science & . 33 & 27.20 & 260 & T21.5 & 35.0 & 14.0 \\
\hline Electrical Engineering & 59 & 47.40 & 305 & 51.0 & 56.0 & T37.5 \\
\hline Mechanical Engineering & 60 & 45.50 & 339 & 52.0 & 53.0 & 65.0 \\
\hline Met., Mech. \& Mat. Sci. & 63 & 45.75 & 337 & 54.0 & 54.0 & T63.5 \\
\hline Family Ecology & 36 & 24.05 & 274 & T28.5 & 25.0 & 19.0 \\
\hline Family \& Child Sci. & 33 & 22.90 & 266 & T21.5 & 21.0 & T17.5 \\
\hline Human Nutr. 8 Foods & 38 & 18.50 & 306 & T30.5 & 15.0 & 39.0 \\
\hline Human Envir. \& Design & 29 & 25.70 & 203 & 16.0 & 31.0 & 3.0 \\
\hline Human Development & 31 & 13.51 & 257 & T18.5 & 7.0 & 13.0 \\
\hline Medicine (HM) & 57 & 23.00 & 320 & T49.5 & T22.5 & T49.5 \\
\hline Paychiatry & 35 & 13.50 & 264 & T26.5 & 6.0 & 16.0 \\
\hline
\end{tabular}

Table 40--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Department} & \multicolumn{3}{|l|}{FACULTY RANK INDICES} & \multicolumn{3}{|c|}{RANKINGS} \\
\hline & Headcount & FTE & 2 Dist. & Num. & FTE & 2 Dist. \\
\hline Astronomy & 12 & 14.00 & 280 & T 3.5 & 8.0 & 24.0 \\
\hline Biochemistry & 75 & 30.55 & 371 & T61.5 & 37.0 & 78.0 \\
\hline Biophysics & 19 & 15.00 & 380 & T 8.0 & 9.0 & T79.5 \\
\hline Botany \& Plant Pathology & 101 & 48.50 & 335 & 69.0 & 58.0 & 62.0 \\
\hline Chemistry & 102 & 91.40 & 316 & 70.0 & 73.0 & T45.5 \\
\hline Entomology & 50 & 17.45 & 300 & T44.5 & 14.0 & T33.5 \\
\hline Geology & 43 & 46.00 & 367 & 35.0 & 55.0 & 77.0 \\
\hline Mathematics & 221 & 182.04 & 345 & 82.0 & 82.0 & T68.5 \\
\hline Nursing & 47 & 40.25 & 174 & T38.5 & 49.0 & 2.0 \\
\hline Physics & 156 & 118.18 & 345 & 80.0 & 75.0 & T68.5 \\
\hline Statistics & 48 & 49.22 & 316 & T41.0 & 59.0 & T45.5 \\
\hline Zoology & 64 & 49.25 & 351 & 55.0 & 60.0 & 72.0 \\
\hline Anthropology & 44 & 36.55 & 297 & T36.5 & 44.0 & T28.5 \\
\hline Criminal Justice & 44 & 34.00 & 310 & T36.5 & 41.0 & 43.0 \\
\hline Geography & 39 & 44.40 & 308 & T32.5 & 51.0 & T41.0 \\
\hline Labor \(\%\) Indust. Rel. & 50 & 48.00 & 325 & T44.5 & 57.0 & T55.0 \\
\hline Political Science & 70 & 65.11 & 305 & 59.0 & 66.0 & T37.5 \\
\hline Psychology & 168 & 130.33 & 334 & 81.0 & 77.0 & 61.0 \\
\hline Social Work & 53 & 39.50 & 308 & T46.5 & 47.0 & T41.0 \\
\hline Sociology & 75 & 53.78 & 297 & T61.5 & 63.0 & T28.5 \\
\hline Urban Plan. \& Land. Arch. & 48 & 39.55 & 319 & T41.0 & 48:0 & 48.0 \\
\hline Amer. Thought \& Language & 140 & 175.35 & 252 & 75.0 & 81.0 & 11.0 \\
\hline Humanities & 133 & 121.17 & 286 & 73.0 & 76.0 & 26.0 \\
\hline Natural Science & 153 & 163.55 & 279 & 79.0 & 80.0 & 23.0 \\
\hline Social Science & 84 & 75.00 & 299 & 65.0 & 69.0 & T31.0 \\
\hline Anatomy & 42 & 35.60 & 262 & 34.0 & 42.0 & 15.0 \\
\hline Lg. Anim. Surg. \& Med. & 35 & 23.65 & 254 & T26.5 & 24.0 & 12.0 \\
\hline Medical Technology & 1 & 3.00 & 150 & 1.0 & 1.0 & 1.0 \\
\hline Microbiology & 80 & 68.03 & 292 & 63.0 & 67.0 & 27.0 \\
\hline Pathology & 49 & 44.50 & 325 & 43.0 & 52.0 & T55.0 \\
\hline Pharmacology & 38 & 25.50 & 278 & T30.5 & 29.0 & 22.0 \\
\hline Physiology & 81 & 51.15 & 361 & 64.0 & 61.0 & 76.0 \\
\hline Sm. Anim. Surg. \& Med. & 39 & 32.85 & 234 & T32.5 & 40.0 & 7.0 \\
\hline Family \& Comm. Med. & 22 & 16.47 & 300 & 11.0 & 12.0 & T33.5 \\
\hline Medicine (OM) & 27 & 26.69 & 400 & T14.5 & 34.0 & 82.0 \\
\hline
\end{tabular}

Table 41. Graduate Assistants, 1971-72
\begin{tabular}{|c|c|c|c|c|}
\hline Department & Headcount & FTE & \multicolumn{2}{|l|}{RANK I N G S} \\
\hline Ag. Economics & 50 & 0 & 76 & T 7.0 \\
\hline Ag. Engineering & 16 & 1.00 & 43 & T23.5 \\
\hline Animal Husbandry & 13 & 1.00 & 39 & T23.5 \\
\hline Crop \& Soil Sci. & 39 & 2.45 & T72.0 & 39 \\
\hline Dairy & 25 & 0.50 & T55.5 & T17.0 \\
\hline Fisheries \& Wildlife & 38 & 0.50 & T70.0 & T17.0 \\
\hline Food Sci. \& Hum. Nutr. & 37 & 0 & T67.5 & T 7.0 \\
\hline Forestry & 22 & 0 & 52 & T 7.0 \\
\hline Horticulture & 37 & 3.00 & T67.5 & 42 \\
\hline Packaging & 4 & 1.50 & T19.0 & T30.5 \\
\hline Park \& Rec. Resources & 4 & 0.50 & T19.0 & T17.0 \\
\hline Poultry Science & 11 & 1.50 & T33.5 & T30.5 \\
\hline Resource Development & 14 & 1.00 & T40.5 & T23.5 \\
\hline Art & 28 & 10.25 & 60 & T65.5 \\
\hline English & 51 & 25.50 & 77 & 79 \\
\hline German \& Russian & 21 & 10.25 & T50.0 & T65.5 \\
\hline History & 43 & 16.00 & T73.0 & 76 \\
\hline Linguistics & 14 & 4.81 & T40.5 & 51 \\
\hline Music & 36 & 11.50 & T65.5 & T69.5 \\
\hline Philosophy & 15 & 6.70 & 42 & 56 \\
\hline Religion & 1 & 0.50 & T12.0 & T17.0 \\
\hline Romance Languages & 44 & 22.75 & 74 & 78 \\
\hline Acct. \& Finance Adm. & 38 & 13.25 & T70.0 & 74 \\
\hline Bus. Law \& Office Adm & 3 & 1.25 & T16.5 & T27.5 \\
\hline Economics & 25 & 11.50 & T.55.5 & T69.5 \\
\hline Hotel, Rest. \& Inst. Mgt. & 11 & 3.50 & T33.5 & T43.5 \\
\hline Management & 26 & 11.15 & T58.0 & 67 \\
\hline Marketing \& Transp. Adm. & 20 & 8.75 & 48 & T62.5 \\
\hline Advertising & 5 & 1.75 & T22.0 & 33 \\
\hline Audiology \& Speech Sci. & 1 & 0.50 & T12.0 & T17.0 \\
\hline Communications & 35 & 9.25 & 64 & 64 \\
\hline Journalism & 8 & 2.25 & T27.0 & T36.5 \\
\hline TV \& Radio & 6 & 2.50 & T24.5 & T40.5 \\
\hline Theatre & 23 & 11.25 & T53.5 & 68 \\
\hline Chemical Engineering & 3 & 1.00 & T16.5 & T23.5 \\
\hline Civil \& Sanitary Eng. & 9 & 3.50 & 29 & T43.5 \\
\hline Computer Science & 5 & 2.25 & T22.0 & T36.5 \\
\hline Electrical Engineering & 19 & 8.50 & 47 & 61 \\
\hline Mechanical Engineering & 4 & 1.25 & T19.0 & T27.5 \\
\hline Met1, Mech., \& Mat.Sci. & 10 & 4.25 & 30 & T48.0 \\
\hline Family Ecology & 12 & 3.75 & T37.5 & 45 \\
\hline Family \& Child Sci. & 29 & 4.25 & 61 & T48.0 \\
\hline Human Nutr. \& Foods & 11 & 2.25 & T33.5 & T36.5 \\
\hline Human Envir. \& Design & 17 & 4.00 & T33.5 & 46 \\
\hline Human Development & 8 & 1.00 & T27.0 & T23.5 \\
\hline Medicine & 2 & 0.50 & T14.5 & T17.0 \\
\hline Psychiatry & 6 & 1.00 & T24.5 & T23.5 \\
\hline
\end{tabular}

Table 41--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Department} & \multirow[b]{2}{*}{Headcount} & \multirow[b]{2}{*}{FTE} & \multicolumn{2}{|l|}{R ANKINGS} \\
\hline & & & Headcount & FTE \\
\hline Astronomy & 0 & 0 & T 5.5 & T 7.0 \\
\hline Biochemistry & 46 & 8.75 & 75 & T62.5 \\
\hline Biophysics & 12 & 2.25 & T37.5 & T36.5 \\
\hline Botany \& Plant Path. & 38 & 6.00 & T70.0 & T54.0 \\
\hline Chemistry & 163 & 58.28 & 82 & 81 \\
\hline Entomology & 23 & 1.50 & T53.5 & T30.5 \\
\hline Geology & 17 & 7.25 & T44.5 & 58 \\
\hline Mathematics & 133 & 63.75 & 81 & 82 \\
\hline Nursing & 0 & 0 & T 5.5 & T 7.0 \\
\hline Physics & 78 & 15.75 & 79 & 75 \\
\hline Statistics & 17 & 6.75 & T44.5 & 57 \\
\hline Zoology & 36 & 11.55 & T65.5 & 71 \\
\hline Anthropology & 18 & 7.50 & 46 & 59 \\
\hline Criminal Justice & 11 & 5.50 & T33.5 & 52 \\
\hline Geography & 30 & 12.75 & 62.5 & 72 \\
\hline Labor \& Indust. Rel. & 21 & 8.25 & T50.0 & 60 \\
\hline Political Science & 26 & 13.00 & T58.0 & 73 \\
\hline Psychology & 85 & 34.75 & 80 & 80 \\
\hline Social Work & 21 & 4.25 & T50.0 & T48.0 \\
\hline Sociology & 60 & 21.25 & 78 & 77 \\
\hline Urban Plan. \& Land. Arch. & 8 & 2.50 & T27.0 & T40.5 \\
\hline Amer. Thought \& Lang. & 0 & 0 & T 5.5 & T 7.0 \\
\hline Humanities & 0 & 0 & T 5.5 & T 7.0 \\
\hline Natural Science & 1 & 0.50 & T12.0 & T17.0 \\
\hline Social Science & 0 & 0 & T 5.5 & T 7.0 \\
\hline Anatomy & 11 & 4.50 & T33.5 & 50 \\
\hline Lg. Anim. Surg. \& Med. & 0 & 0 & T 5.5 & T 7.0 \\
\hline Medical Technology & 0 & 0 & T 5.5 & T 7.0 \\
\hline Microbioloby & 30 & 6.00 & T62.5 & T54.0 \\
\hline Pathology & 2 & 1.50 & T14.5 & T30.5 \\
\hline Pharmacology & 5 & 2.00 & T22.0 & 34 \\
\hline Physiology & 26 & 6.00 & T58.0 & T54.0 \\
\hline Sm. Animal Surg. \& Med. & 0 & 0 & T 5.5 & T 7.0 \\
\hline Family \& Comm. Med. & 0 & 0 & T 5.5 & T 7.0 \\
\hline Medicine (OM) & 0 & 0 & T 5.5 & T 7.0 \\
\hline
\end{tabular}

Table 42. Kank Ordering of Departments According to Average 10-month Equated Salary, 1971-72
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 & Medical Technology & \((10,868)\) & 42 & Mathematics & \((16,103)\) \\
\hline 2 & Nursing & \((11,538)\) & 43 & Dairy & \((16,108)\) \\
\hline 3 & Theatre & \((11,737)\) & 44 & Poultry Science & \((16,110)\) \\
\hline 4 & Family \& Child Science & \((12,001)\) & 45 & Geography & \((16,131)\) \\
\hline 5 & Human Envir. \& Design & \((12,546)\) & 46 & Bus. Law \& Office Adm. & \((16,144)\) \\
\hline 6 & Packaging & \((13,200)\) & 47 & Animal Husbandry & \((16,216)\) \\
\hline 7 & Park and Rec.Resources & \((13,224)\) & 48 & English & \((16,222)\) \\
\hline 8 & Linguistics & \((13,361)\) & 49 & Electrical Engineering & \((16,355)\) \\
\hline 9 & Amer. Thought \& Lang. & \((13,484)\) & 50 & Urban Plan. \& Land. Arch. & \((16,400)\) \\
\hline 10 & Sm. Anim. Surg. \& Med. & \((13,518)\) & 51 & Pharvacology & \((16,484)\) \\
\hline 11 & Hum. Nutr. \& Foods & \((13,283)\) & 52 & Geology & \((16,496)\) \\
\hline 12 & Humanities & \((13,851)\) & 53 & Computer Science & \((16,503)\) \\
\hline 13 & German \& Kussian & \((13,932)\) & 54 & Sociology & \((16,665)\) \\
\hline 14 & Natural Science & \((14,117)\) & 55 & Chemistry & \((16,775)\) \\
\hline 15 & Family Ecolozy & \((14,183)\) & 56 & Labor \& Indust. Rel. & \((16,807)\) \\
\hline 16 & Anatomy & \((14,209)\) & 57 & Biochemlstry & \((16,815)\) \\
\hline 17 & Romance Languages & \((14,384)\) & 58 & Physiology & \((16,826)\) \\
\hline 18 & Entomology & \((14,555)\) & 59 & Communications & \((16,915)\) \\
\hline 19 & Audiology & \((14,589)\) & 60 & Psychology & \((16,966)\) \\
\hline 20 & Music & \((14,661)\) & 61 & Yood Sci. \& Human Nutr. & \((17,024)\) \\
\hline 21 & Ag. Engincering & \((14,664)\) & 62 & Resource Development & \((17,036)\) \\
\hline 22 & Art & \((14,792)\) & 63 & Criminal Justice & \((17,135)\) \\
\hline 23 & Journalism & \((14,987)\) & 64 & Mechanical Engincering & \((17,384)\) \\
\hline 24 & Philosophy & \((15,062)\) & 65 & Zoology & \((17,404)\) \\
\hline 25 & Astronomy & \((15,138)\) & 66 & Physics & \((17,514)\) \\
\hline 26 & Lg. Anim. Surg. \& Med. & \((15,317)\) & 67 & Statistics & \((17,565)\) \\
\hline 27 & TV and Radio & \((15,329)\) & 68 & Pathology & \((17,689)\) \\
\hline 28 & Horticulture & \((15,352)\) & 69 & Civil \& Sanitary Eng. & \((17,920)\) \\
\hline 29 & Microbiology & \((15,466)\) & 70 & Metal, Mech. \& Mat. Sci. & \((18,110)\) \\
\hline 30 & Botany & \((15,476)\) & 71 & Acct. \& Finance Adm. & \((18,263)\) \\
\hline 31 & Advertising & \((15,498)\) & 72 & Chemical Engineering & \((18,612)\) \\
\hline 32 & Religion & \((15,697)\) & 73 & Human Development & \((18,623)\) \\
\hline 33 & Anthropology & \((15,700)\) & 74 & Family \& Comm. Med. & \((18,896)\) \\
\hline 34 & History & \((15,711)\) & 75 & Biophysics & \((19,037)\) \\
\hline 35 & Fisheries \& Wildiffe & \((15,776)\) & 76 & Management & \((19,320)\) \\
\hline 36 & Ag. Economics & \((15,850)\) & 77 & Hotel, Rest., \& Inst. Mgt. & \((19,800)\) \\
\hline 37 & Political Science & \((15,988)\) & 78 & Economics & \((19,806)\) \\
\hline 38 & Social Science & \((15,993)\) & 79 & Psychiatry & \((21,119)\) \\
\hline 39 & Social Work & \((16,060)\) & 80 & Marketing \& Transp. Adm. & \((21,337)\) \\
\hline 40 & Forestry & \((16,079)\) & 81 & Medicine (HM) & \((22,271)\) \\
\hline 41 & Crop and Soil Science & \((16,091)\) & 82 & Medicine (OM) & \((25,105)\) \\
\hline
\end{tabular}
Table 43. Percentage Distribution of Instructional Service Students by Student Level--Unadjusted Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{undergrandate courses}} & \multicolumn{4}{|l|}{Grad. COURSES} & \multicolumn{6}{|l|}{all courses} \\
\hline & & & & & & & Jr & Sr & Grad & Total & Fr & Soph & Jr & Sr & & Total \\
\hline Agricultural Economics & 84 & 15 & 01 & 00 & 00 & 179 & 00 & 00 & 100 & 04 & 82 & 15 & 01 & 00 & 02 & 183 \\
\hline Agricultural Engineering & 75 & 10 & 06 & 08 & 02 & 532 & 00 & 05 & 95 & 43 & 70 & 09 & 05 & 07 & 09 & 575 \\
\hline Animal Husbandry & 78 & 07 & 05 & 09 & 01 & 251 & 00 & 00 & 100 & 01 & 77 & 06 & 06 & 09 & 02 & 252 \\
\hline Crop \& Soil Scrence & 55 & 13 & 17 & 13 & 02 & 648 & 00 & 00 & 100 & 19 & 54 & 13 & 16 & 12 & 05 & 667 \\
\hline Datry & 53 & 08 & 11 & 18 & 11 & 368 & 00 & 00 & 100 & 01 & 53 & 08 & 11 & 18 & 11 & 369 \\
\hline Fisheries o Wildife & 01 & 02 & 19 & 48 & 30 & 147 & 00 & 00 & 100 & 03 & 01 & 02 & 19 & 47 & 31 & 150 \\
\hline Food Sci. \& Human Nutr. & 09 & 17 & 35 & 36 & 03 & 210 & 00 & 00 & 100 & 13 & 08 & 16 & 33 & 34 & 09 & 223 \\
\hline Forestry & 36 & 12 & 19 & 25 & 08 & 300 & 00 & 00 & 100 & 18 & 34 & 11 & 18 & 24 & 13 & 318 \\
\hline Horticulture & 49 & 16 & 21 & 14 & 00 & 469 & 00 & 00 & 100 & 07 & 48 & 15 & 21 & 13 & 02 & 476 \\
\hline Packaging & 08 & 22 & 29 & 35 & 07 & 063 & 00 & 00 & 100 & 02 & 08 & 22 & 28 & 34 & 09 & 065 \\
\hline Park \(\&\) Rec. Resources & 03 & 13 & 21 & 52 & 10 & 202 & 00 & 07 & 94 & 34 & 03 & 11 & 18 & 45 & 22 & 236 \\
\hline Poultry Science & 45 & 36 & 00 & 00 & 18 & 11 & 00 & 00 & 00 & 00 & 45 & 36 & 00 & 00 & 18 & 11 \\
\hline Resource Development & 13 & 09 & 25 & 39 & 14 & 366 & 03 & 08 & 89 & 66 & 11 & 08 & 22 & 34 & 25 & 432 \\
\hline Art & 16 & 17 & 34 & 30 & 03 & 906 & 14 & 43 & 43 & 07 & 16 & 17 & 33 & 31 & 03 & 913 \\
\hline Enslish & 10 & 14 & 34 & 35 & 06 & 3509 & 00 & 32 & 68 & 71 & 10 & 14 & 34 & 35 & 07 & 3580 \\
\hline German \& Russian & 31 & 25 & 28 & 14 & 02 & 925 & 33 & 33 & 33 & 03 & 31 & 25 & 28 & 15 & 01 & 928 \\
\hline History & 14 & 18 & 40 & 27 & 01 & 3654 & 11 & 03 & 86 & 36 & 14 & 17 & 40 & 27 & 02 & 3690 \\
\hline Linguistics & 12 & 16 & 29 & 23 & 21 & 198 & 10 & 30 & 60 & 10 & 11 & 15 & 28 & 23 & 23 & 208 \\
\hline Music & 34 & 25 & 26 & 14 & 01 & 1527 & 00 & 00 & 100 & 01 & 34 & 25 & 26 & 14 & 01 & 1528 \\
\hline Philosophy & 19 & 23 & 33 & 23 & 02 & 1649 & 12 & 08 & 80 & 25 & 19 & 22 & 33 & 23 & 03 & 1674 \\
\hline Religion & 19 & 22 & 34 & 24 & 01 & 802 & 00 & 00 & 100 & 04 & 19 & 22 & 34 & 24 & 01 & 806 \\
\hline Romance Languages & 31 & 22 & 27 & 18 & 01 & 2053 & 00 & 00 & 100 & 07 & 31 & 22 & 27 & 18 & 02 & 2060 \\
\hline Accounting \& Fin. Ad. & 12 & 24 & 38 & 25 & 01 & 1464 & 00 & 04 & 96 & 273 & 11 & 20 & 32 & 21 & 16 & 1737 \\
\hline Business Law & 10 & 09 & 28 & 52 & 01 & 964 & 00 & 13 & 87 & 15 & 10 & 08 & 28 & 52 & 02 & 979 \\
\hline Economics & 08 & 28 & 38 & 23 & 03 & 2777 & 00 & 03 & 97 & 396 & 07 & 24 & 33 & 21 & 15 & 3173 \\
\hline Hotel, Res. \& Inst. Mgt. & 21 & 22 & 33 & 23 & 01 & 108 & 00 & 00 & 100 & 03 & 21 & 22 & 32 & 22 & 03 & 111 \\
\hline Management & 06 & 08 & 36 & 49 & 01 & 1037 & 00 & 04 & 96 & 493 & 04 & 05 & 25 & 34 & 32 & 1530 \\
\hline Marketing & 03 & 10 & 49 & 37 & 01 & 1003 & 01 & 05 & 94 & 192 & 02 & 08 & 42 & 32 & 16 & 1195 \\
\hline Advertising & 13 & 30 & 36 & 19 & 02 & 546 & 00 & 00 & 100 & 11 & 12 & 30 & 35 & 19 & 04 & 557 \\
\hline Audiology \& Speech Sci. & 10 & 22 & 40 & 26 & 02 & 245 & 00 & 100 & 00 & 01 & 10 & 22 & 40 & 26 & 02 & 246 \\
\hline Communications & 45 & 18 & 23 & 14 & 00 & 1282 & 02 & 03 & 95 & 120 & 42 & 16 & 21 & 13 & 08 & 1402 \\
\hline Journalism & 18 & 14 & 29 & 37 & 02 & 287 & 00 & 30 & 70 & 10 & 18 & 13 & 28 & 36 & 05 & 297 \\
\hline TV and Radio & 17 & 26 & 21 & 29 & 07 & 224 & 00 & 00 & 100 & 07 & 17 & 25 & 20 & 28 & 10 & 231 \\
\hline Theatre & 10 & 20 & 38 & 29 & 03 & 195 & 00 & 00 & 100 & 01 & 10 & 19 & 38 & 29 & 03 & 196 \\
\hline
\end{tabular}
Table 43-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{6}{|l|}{Undergraduate COURSES} & \multicolumn{4}{|l|}{GRAD. COURSES} & \multicolumn{6}{|l|}{ALL COURSES} \\
\hline & Fr & Soph & Jr & Sr & Grad & Total & Jr & Sr & Grad & Total & Fr & Soph & Jr & Sr & Grad & Total \\
\hline Chemical Engineering & 00 & 22 & 00 & 67 & 11 & 09 & 00 & 00 & 100 & 09 & 00 & 11 & 00 & 33 & 56 & 18 \\
\hline Civil \({ }^{\text {d Sanitary Eng. }}\) & 03 & 17 & 39 & 35 & 06 & 127 & 00 & 12 & 88 & 08 & 03 & 16 & 36 & 34 & 11 & 135 \\
\hline Computer Science & 24 & 21 & 33 & 14 & 08 & 1083 & 46 & 27 & 27 & 11 & 24 & 21 & 33 & 15 & 08 & 1094 \\
\hline Electrical Engineering & 00 & 06 & 53 & 37 & 04 & 157 & 04 & 14 & 82 & 85 & 00 & 04 & 35 & 29 & 32 & 242 \\
\hline Mechanical Engineering & 04 & 10 & 26 & 44 & 16 & 69 & 00 & 00 & 100 & 05 & 04 & 09 & 24 & 41 & 22 & 74 \\
\hline Metal., Mech. \(\%\) Mat.Sci. & 01 & 22 & 57 & 20 & 00 & 592 & 00 & 17 & 83 & 35 & 01 & 21 & 54 & 19 & 05 & 627 \\
\hline Family Ecology & 18 & 06 & 39 & 36 & 01 & 329 & 00 & 12 & 88 & 32 & 16 & 06 & 35 & 34 & 09 & 361 \\
\hline Family \({ }^{\text {a Child Sci. }}\) & 07 & 21 & 40 & 28 & 04 & 827 & 00 & 00 & 100 & 21 & 07 & 20 & 39. & 27 & 06 & 848 \\
\hline Kuman Nutr. \& Poods & 17 & 22 & 38 & 18 & 04 & 408 & 33 & 00 & 67 & 03 & 17 & 21 & 38 & 18 & 05 & 411 \\
\hline Euman Envir. 8 Design & 26 & 25 & 27 & 21 & 01 & 425 & 00 & 00 & 100 & 04 & 26 & 24 & 27 & 20 & 02 & 429 \\
\hline Human Development & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 100 & 01 & 00 & 00 & 00 & 00 & 100 & 01 \\
\hline Medicine (BM) & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 100 & 07 & 00 & 00 & 00 & 00 & 100 & 07 \\
\hline Peychiatry & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 100 & 18 & 00 & 00 & 00 & 00 & 100 & 18 \\
\hline Astronomy & 10 & 21 & 37 & 32 & 01 & 362 & 00 & 00 & 00 & 00 & 10 & 21 & 37 & 32 & 01 & 362 \\
\hline Blochemistry & 24 & 03 & 28 & 14 & 30 & 470 & 04 & 04 & 91 & 82 & 21 & 03 & 25 & 12 & 39 & 552 \\
\hline Biophysics & 00 & 00 & 00 & 00 & 00 & 00 & 12 & 38 & 50 & 08 & 00 & 00 & 12 & 38 & 50 & 08 \\
\hline Botany \& Plant Path. & 32 & 10 & 27 & 20 & 10 & 362 & 00 & 00 & 100 & 43 & 29 & 09 & 24 & 18 & 20 & 405 \\
\hline Chemistry & 56 & 19 & 15 & 08 & 01 & 4700 & 05 & 21 & 74 & 58 & 55 & 19 & 15 & 08 & 02 & 4758 \\
\hline Entomology & 05 & 10 & 48 & 31 & 05 & 461 & 00 & 00 & 100 & 20 & 05 & 10 & 46 & 31 & \(09^{.}\) & 481 \\
\hline Geology & 11 & 19 & 38 & 30 & 01 & 641 & 00 & 33 & 66 & 18 & 11 & 19 & 37 & 30 & 03 & 659 \\
\hline Mathematice & 55 & 18 & 15 & 08 & 03 & 6017 & 11 & 13 & 76 & 45 & 55 & 18 & 15 & 08 & 04 & 6062 \\
\hline Nursing & 00 & 29 & 43 & 14 & 14 & 07 & 00 & 00 & 00 & 00 & 00 & 29 & 43 & 14 & 14 & 07 \\
\hline Physics & 06 & 47 & 34 & 12 & 01 & 2716 & 00 & 48 & 52 & 21 & 06 & 46 & 34 & 12 & 01 & 2737 \\
\hline Statistics & 03 & 19 & 36 & 23 & 19 & 1275 & 10 & 17 & 73 & 78 & 03 & 18 & 35 & 22 & 22 & 1353 \\
\hline 20010gy & 03 & 09 & 43 & 39 & 06 & 1082 & 00 & 14 & 86 & 22 & 03 & 09 & 42 & 39 & 07 & 1104 \\
\hline Anthropology & 27 & 22 & 30 & 20 & 01 & 2017 & 05 & 00 & 95 & 20 & 26 & 22 & 30 & 20 & 02 & 2037 \\
\hline Criminal Justice & 31 & 26 & 20 & 22 & 01 & 583 & 00 & 11 & 89 & 18 & 30 & 26 & 20 & 21 & 03 & 601 \\
\hline Geography & 13 & 18 & 34 & 33 & 02 & 1153 & 00 & 25 & 75 & 12 & 13 & 18 & 33 & 33 & 03 & 1165 \\
\hline Labor \(\%\) Industrial Rel. & 00 & 00 & 00 & 00 & 00 & 00 & 00 & 09 & 91 & 54 & 00 & 00 & 00 & 09 & 91 & 54 \\
\hline Political Science & 15 & 18 & 40 & 26 & 01 & 2136 & 03 & 12 & 85 & 26 & 15 & 17 & 40 & 26 & 02 & 2162 \\
\hline Psychology & 34 & 17 & 27 & 20 & 02 & 6402 & 02 & 08 & 90 & 171 & 34 & 17 & 26 & 19 & 04 & 6573 \\
\hline Social Work & 21 & 20 & 31 & 25 & 03 & 500 & 00 & 21 & 79 & 48 & 19 & 19 & 28 & 24 & 10 & 548 \\
\hline Sociology & 14 & 20 & 36 & 26 & 05 & 2598 & 00 & 04 & 96 & 134 & 13 & 19 & 34 & 25 & 09 & 2732 \\
\hline Drban Planning & 17 & 16 & 25 & 30 & 11 & 238 & 00 & 14 & 86 & 14 & 16 & 15 & 24 & 29 & 16 & 252 \\
\hline Amer. Thought 6 Lang. & 89 & 04 & 02 & 05 & 00 & 6971 & 00 & 00 & 00 & 00 & 89 & 04 & 02 & 05 & 00 & 6971 \\
\hline Eumanities & 13 & 63 & 19 & 06 & 00 & 5692 & 00 & 00 & 00 & 00 & 13 & 63 & 19 & 06 & 00 & 5692 \\
\hline Natural Science & 79 & 07 & 07 & 07 & 00 & 5202 & 00 & 00 & 00 & 00 & 79 & 07 & 07 & 07 & 00 & 5202 \\
\hline Social Science & 18 & 64 & 13 & 05 & 00 & 4593 & 00 & 00 & 00 & 00 & 18 & 64 & 13 & 05 & 00 & 4593 \\
\hline
\end{tabular}
Table 43--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{7}{|l|}{UNDERGRADUATE COURSES} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{GRAD COURSES}} & \multicolumn{6}{|l|}{all courses} \\
\hline & Fr & Soph & Jr & Sr & Grad & Total & Jr & & & & Fr & Soph & Jr & Sr & Grad & Total \\
\hline Anatomy & 04 & 34 & 46 & 15 & 01 & 589 & 01 & 03 & 96 & 320 & 02 & 22 & 30 & 11 & 35 & 909 \\
\hline Large Animal Surg \% Med & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 100 & 226 & 00 & 00 & 00 & 00 & 100 & 226 \\
\hline Medical Technology & 03 & 50 & 32 & 11 & 05 & 38 & 00 & 00 & 00 & 0 & 03 & 50 & 32 & 11 & 05 & 38 \\
\hline Microbiology & 07 & 19 & 24 & 46 & 04 & 661 & 02 & 02 & 96 & 119 & 06 & 16 & 21 & 39 & 18 & 780 \\
\hline Pathology & 00 & 00 & 11 & 79 & 10 & 82 & 00 & 02 & 98 & 184 & 00 & 00 & 03 & 26 & 71 & 266 \\
\hline Pharmacology & 00 & 01 & 33 & 53 & 13 & 97 & 00 & 03 & 97 & 113 & 00 & 00 & 15 & 24 & 59 & 210 \\
\hline Physiology & 05 & 17 & 34 & 35 & 09 & 617 & 00 & 02 & 98 & 203 & 03 & 13 & 25 & 27 & 31 & 820 \\
\hline Small Animal Surg 8 Med & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 99 & 431 & 00 & 00 & 00 & 00 & 99 & 431 \\
\hline Family of Community Med & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 100 & 36 & 00 & 00 & 00 & 00 & 100 & 36 \\
\hline Hedicine (04) & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 100 & 74 & 00 & 00 & 00 & 00 & 100 & 74 \\
\hline
\end{tabular}
Table 44. Percentage Distribution of Instructional Service Students by Student Level--Adjusted Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{6}{|l|}{UNDERGRADUATE} & \multicolumn{4}{|l|}{GRAD. COURSES} & \multirow[t]{2}{*}{Fr} & \multirow[t]{2}{*}{Soph} & \multicolumn{4}{|l|}{ALL COURSES} \\
\hline & Fr & Soph & Jr & Sr & Grad & Total & Jr & Sr & Grad & Total & & & \(\mathrm{Jr}^{\text {r }}\) & Sr & Grad & Total \\
\hline Agricultural Economics & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 100 & 4 & 00 & 00 & 00 & 00 & 100 & 4 \\
\hline Agricultural Engineering & 11 & 05 & 31 & 44 & 09 & 91 & 00 & 05 & 95 & 43 & 07 & 04 & 21 & 31 & 37 & 134 \\
\hline Animal Husbandry & 76 & 05 & 06 & 11 & 01 & 201 & 00 & 00 & 100 & 1 & 76 & 05 & 06 & 11 & 02 & 202 \\
\hline Crop and Soil Science & 11 & 21 & 36 & 27 & 05 & 299 & 00 & 00 & 100 & 19 & 10 & 19 & 34 & 26 & 11 & 318 \\
\hline Dairy & 50 & 06 & 12 & 21 & 12 & 321 & 00 & 00 & 100 & 1 & 49 & 06 & 12 & 20 & 12 & 322 \\
\hline Fisheries \& Wildilfe & 01 & 02 & 19 & 48 & 30 & 147 & 00 & 00 & 100 & 3 & 01 & 02 & 19 & 47 & 31 & 150 \\
\hline Food Sci. \& Human Nutr. & 03 & 16 & 38 & 40 & 04 & 192 & 00 & 00 & 100 & 13 & 03 & 15 & 35 & 37 & 10 & 205 \\
\hline Forestry & 21 & 13 & 24 & 32 & 10 & 239 & 00 & 00 & 100 & 18 & 19 & 12 & 23 & 30 & 16 & 257 \\
\hline Horticulture & 07 & 24 & 41 & 27 & 01 & 234 & 00 & 00 & 100 & 7 & 07 & 23 & 39 & 27 & 04 & 241 \\
\hline Packaging & 08 & 22 & 29 & 35 & 07 & 63 & 00 & 00 & 100 & 2 & 08 & 22 & 28 & 34 & 09 & 65 \\
\hline Parks \& Rec. Resources & 03 & 13 & 21 & 52 & 10 & 202 & 00 & 07 & 94 & 34 & 03 & 11 & 18 & 45 & 22 & 236 \\
\hline Poultry Science & 00 & 50 & 00 & 00 & 50 & 4 & 00 & 00 & 00 & 0 & 00 & 50 & 00 & 00 & 50 & 4 \\
\hline Resource Development & 03 & 10 & 28 & 43 & 16 & 328 & 03 & 08 & 89 & 66 & 02 & 08 & 24 & 37 & 28 & 394 \\
\hline Art & 16 & 17 & 34 & 30 & 03 & 906 & 14 & 43 & 43 & 7 & 16 & 17 & 33 & 31 & 03 & 913 \\
\hline English & 13 & 17 & 42 & 27 & 01 & 2879 & 00 & 32 & 68 & 71 & 12 & 16 & 41 & 27 & 03 & 2950 \\
\hline German \& Russian & 31 & 25 & 28 & 14 & 02 & 925 & 33 & 33 & 33 & 3 & 31 & 25 & 28 & 15 & 01 & 928 \\
\hline History & 14 & 18 & 40 & 27 & 01 & 3654 & 11 & 03 & 86 & 36 & 14 & 17 & 40 & 27 & 02 & 3690 \\
\hline Linguistics & 12 & 16 & 29 & 23 & 21 & 198 & 10 & 30 & 60 & 10 & 11 & 15 & 28 & 23 & 23 & 208 \\
\hline Music & 34 & 25 & 26 & 14 & 01 & 1527 & 00 & 00 & 100 & 1 & 34 & 25 & 26 & 14 & 01 & 1528 \\
\hline Philosophy & 19 & 23 & 33 & 23 & 02 & 1649 & 12 & 08 & 80 & 25 & 19 & 22 & 33 & 23 & 03 & 1674 \\
\hline Religion & 19 & 22 & 34 & 24 & 01 & 802 & 00 & 00 & 100 & 4 & 19 & 22 & 34 & 24 & 01 & 806 \\
\hline Romance Languages & 31 & 22 & 27 & 18 & 01 & 2053 & 00 & 00 & 100 & 7 & 31 & 22 & 27 & 18 & 02 & 2060 \\
\hline Accounting \& Fin. Ad. & 03 & 26 & 43 & 27 & 01 & 1311 & 00 & 04 & 96 & 273 & 03 & 21 & 35 & 24 & 17 & 1584 \\
\hline Bus. Law \& Office Ad. & 05 & 08 & 30 & 56 & 01 & 893 & 00 & 13 & 87 & 15 & 05 & 07 & 30 & 56 & 02 & 908 \\
\hline Economics & 08 & 28 & 38 & 23 & 03 & 2777 & 00 & 03 & 97 & 396 & 07 & 24 & 33 & 21 & 15 & 3173 \\
\hline Hotel, Res. \& Inst. Mgt. & 21 & 22 & 33 & 23 & 01 & 108 & 00 & 00 & 100 & 3 & 21 & 22 & 32 & 22 & 03 & 111 \\
\hline Management & 06 & 08 & 36 & 49 & 01 & 1037 & 00 & 04 & 96 & 493 & 04 & 05 & 25 & 34 & 32 & 1530 \\
\hline Marketing & 01 & 09 & 51 & 38 & 01 & 970 & 01 & 05 & 94 & 192 & 01 & 08 & 43 & 33 & 16 & 1162 \\
\hline Advertising & 11 & 31 & 36 & 20 & 02 & 536 & 00 & 00 & 100 & 11 & 11 & 30 & 35 & 19 & 04 & 547 \\
\hline Audiology \& Speech Sci. & 10 & 23 & 41 & 25 & 02 & 241 & 00 & 100 & 00 & 1 & 10 & 23 & 40 & 25 & 02 & 242 \\
\hline Communications & 45 & 18 & 23 & 14 & -00 & 1282 & 02 & 03 & 95 & 120 & 42 & 16 & 21 & 13 & 08 & 1402 \\
\hline Journalism & 18 & 14 & 29 & 37 & 02 & 287 & 00 & 30 & 70 & 10 & 18 & 13 & 28 & 36 & 05 & 297 \\
\hline TV and Radio & 17 & 26 & 21 & 29 & 07 & 224 & 00 & 00 & 100 & 7 & 17 & 25 & 20 & 28 & 10 & 231 \\
\hline Theatre & 10 & 20 & 38 & 29 & 03 & 195 & 00 & 00 & 100 & 1 & 10 & 19 & 38 & 29 & 03 & 196 \\
\hline
\end{tabular}
Table 44--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{6}{|l|}{undergraduate courses} & \multicolumn{4}{|l|}{GRAD. COURSES} & \multicolumn{6}{|l|}{all COURSES} \\
\hline & Fr & Soph & & Sr & Grad & Tota? & Jr & Sr & Grad & Total & Pr & Soph & Jr & Sr & Grad & Total \\
\hline Chemical Engineering & OC & 22 & 00 & 67 & 11 & 9 & 00 & 00 & 100 & 9 & 0 & 11 & 00 & 33 & 56 & 18 \\
\hline Civil \(\%\) Sanitary Eng. & 03 & 17 & 39 & 35 & 06 & 127 & 00 & 12 & 88 & 8 & 03 & 16 & 36 & 34 & 11 & 135 \\
\hline Computer Sclence & 24 & 21 & 33 & 14 & 08 & 1083 & 46 & 27 & 27 & 11 & 24 & 21 & 33 & 15 & 08 & 1094 \\
\hline Electrical Engineering & 00 & 06 & 53 & 37 & \(\mathrm{c}_{4}\) & 157 & 04 & 14 & 82 & 85 & 00 & 04 & 35 & 29 & 32 & 242 \\
\hline Mechanical Engineering & 04 & 10 & 26 & 44 & 16 & 69 & 00 & 00 & 100 & 5 & 04 & 09 & 24 & 41 & 22 & 74 \\
\hline Netal., Mech. \(\delta\) Mat.Sci. & 01 & 22 & 57 & 20 & 00 & 592 & 00 & 17 & 83 & 35 & 01 & 21 & 54 & 19 & 05 & 627 \\
\hline Fanily Ecology & 18 & 06 & 39 & 36 & 01 & 329 & 00 & 12 & 88 & 32 & 16 & 06 & 35 & 34 & 09 & 361 \\
\hline Family of Child Science & 07 & 21 & 40 & 23 & 04 & 827 & 00 & 00 & 100 & 21 & 07 & 20 & 39 & 27 & 96 & 848 \\
\hline Human Nutrition \& Foods & 17 & 22 & 38 & 18 & 04 & 408 & 33 & 00 & 67 & 3 & 17 & 21 & 38 & 18 & 05 & 411 \\
\hline Human Envir. \& Design & 26 & 25 & 27 & 21 & 01 & 425 & 00 & 00 & 100 & 4 & 26 & 24 & 27 & 20 & 02 & 429 \\
\hline Human Development & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 0 \\
\hline Medicine (HM) & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 0 \\
\hline Psychiatry & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 0 \\
\hline Astronomy & 10 & 21 & 37 & 32 & 01 & 362 & 00 & 00 & 00 & 0 & 10 & 21 & 37 & 32 & 01 & 362 \\
\hline Blochemistry & 01 & 04 & 37 & 18 & 40 & 356 & 04 & 04 & 91 & 82 & 00 & 03 & 31 & 16 & 50 & 438 \\
\hline Biophysics & 00 & 00 & 00 & 00 & 00 & 0 & 12 & 38 & 50 & & 00 & 00 & 12 & 38 & 50 & \\
\hline Botany \& Plant Path. & 01 & 16 & 39 & 29 & 15 & 249 & 00 & 00 & 100 & 43 & 01 & 13 & 33 & 25 & 27 & 292 \\
\hline Chemistry & 56 & 19 & 15 & 08 & 01 & 4700 & 05 & 21 & 74 & 58 & 55 & 19 & 15 & 08 & 02 & 4758 \\
\hline Entomology & 02 & 11 & 49 & 33 & 05 & 446 & 00 & 00 & 100 & 20 & 02 & 10 & 47 & 32 & 09 & 466 \\
\hline Geology & 11 & 19 & 38 & 30 & 01 & 641 & 00 & 33 & 66 & 18 & 11 & 19 & 37 & 30 & 03 & 659 \\
\hline Mathematics & 54 & 19 & 15 & 08 & 03 & 5423 & 11 & 13 & 76 & 45 & 54 & 19 & 15 & 08 & & 5468 \\
\hline Nursing & 00 & 29 & 43 & 14 & 14 & 7 & 00 & 00 & 00 & 0 & 00 & 29 & 43 & 14 & 14 & 7 \\
\hline Physics & 06 & 47 & 34 & 12 & 01 & 2716 & 00 & 48 & 52 & 21 & 06 & 46 & 34 & 12 & 01 & 2737 \\
\hline Statistics & 03 & 19 & 36 & 23 & 19 & 1275 & 10 & 17 & 73 & 78 & 03 & 18 & 35 & 22 & 22 & 1353 \\
\hline 2oology & 02 & 09 & 43 & 39 & 06 & 1082 & 00 & 14 & 86 & 22 & 03 & 09 & 42 & 39 & 07 & 1104 \\
\hline Anthropology & 27 & 22 & 30 & 20 & 01 & 2017 & 05 & 00 & 95 & 20 & 26 & 22 & 30 & 20 & 02 & 2037 \\
\hline Criminal Justice & 31 & 26 & 20 & 22 & 01 & 583 & 00 & 11 & 89 & 18 & 30 & 26 & 20 & 21 & 03 & 601 \\
\hline Geography & 13 & 18 & 34 & 33 & 02 & 1153 & 00 & 25 & 75 & 12 & 13 & 18 & 33 & 33 & 03 & 1165 \\
\hline Labor \& Industrial Rel. & 00 & 00 & 00 & 00 & 00 & & 00 & 09 & 91. & 54 & 00 & 00 & 00 & 09 & 91 & 5 \\
\hline Political Scienc & 15 & 18 & 40 & 26 & 01 & 2136 & 03 & 12 & 85 & 26 & 15 & 17 & 40 & 26 & 02 & 2162 \\
\hline Psychology & 34 & 17 & 27 & 20 & 02 & 6402 & 02 & 08 & 90 & 171 & 34 & 17 & 26 & 19 & 04 & 6573 \\
\hline Social Work & 21 & 20 & 31 & 25 & 03 & 500 & 00 & 21 & 79 & 48 & 19 & 19 & 28 & 24 & 10 & 548 \\
\hline Sociology & 14 & 20 & 36 & 26 & 05 & 2598 & 00 & 04 & 96 & 134 & 13 & 19 & 34 & 25 & 09 & 2732 \\
\hline Urban Plan. 6 Land.Arch. & 11 & 16 & 27 & 33 & 12 & 219 & 00 & 14 & 86 & 14 & 10 & 15 & 26 & 32 & 17 & 233 \\
\hline Amer. Thought \& Language & 88 & 04 & 02 & 06 & 00 & 6744 & 00 & 00 & 00 & 0 & 88 & 04 & 02 & 06 & 00 & 6744 \\
\hline Humanities & 13 & 63 & 19 & 06 & 00 & 5692 & 00 & 00 & 00 & 0 & 13 & 63 & 19 & 06 & 00 & 5692 \\
\hline Natural Sclence & 79 & 07 & 07 & 07 & 00 & 5202 & 00 & 00 & 00 & 0 & 79 & 07 & 07 & 07 & 00 & 5202 \\
\hline Social Science & 18 & 64 & 13 & 05 & 00 & 4593 & 00 & 00 & 00 & 0 & 18 & 64 & 13 & 05 & 00 & 4593 \\
\hline
\end{tabular}
Table 44--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Department} & \multicolumn{4}{|l|}{UNDERGRADUATE} & \multicolumn{3}{|l|}{COURSES} & \multicolumn{4}{|l|}{GRAD COURSES} & \multicolumn{5}{|l|}{ALL COURSES} \\
\hline & Fr & Soph & Jr & Sr & Grad & Total & Jr & Sr & Grad & Total & Fr & Soph & Jr & Sr & Grad & Total \\
\hline Anatomy & 04 & 34 & 46 & 15 & 01 & 589 & 00 & 09 & 91 & 35 & 03 & 32 & 44 & 15 & 06 & 624 \\
\hline Large Animal Surg \& Med & 00 & 00 & 00 & 00 & 00 & 0 & 00 & . 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 00 \\
\hline Medical Technology & 03 & 50 & 32 & 11 & 05 & 38 & 00 & 00 & 00 & 0 & 03 & 50 & 32 & 11 & 05 & 38 \\
\hline Microbiology & 02 & 18 & 26 & 49 & 04 & 617 & 07 & 07 & 86 & 14 & 02 & 18 & 26 & 48 & 06 & 631 \\
\hline Pathology & 00 & 00 & 11 & 79 & 10 & 82 & 00 & 02 & 98 & 89 & 00 & 00 & 05 & 39 & 56 & 171 \\
\hline Pharmacology & 00 & 01 & 33 & 53 & 13 & 97 & 00 & 00 & 00 & 0 & 00 & 01 & 33 & 53 & 13 & 97 \\
\hline Physiology & 05 & 17 & 34 & 35 & 09 & 617 & 00 & 07 & 93 & 14 & 04 & 17 & 33 & 34 & 11 & 631 \\
\hline Small Animal Surg \& Med & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 100 & 4 & 00 & 00 & 00 & 00 & 100 & 4 \\
\hline Family \& Community Med & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 0 \\
\hline Medicine (OM) & 00 & 00 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 0 & 00 & 00 & 00 & 00 & 00 & 0 \\
\hline
\end{tabular}

Table 45. Factor Scores
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Departinent & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Ag. Economics & 341 & 238 & 1,338 & 76 & 18 & 98 \\
\hline Ag. Engineering & 3,926 & 579 & 952 & 105 & 1,241 & 245 \\
\hline Animal Husbandry & 2,067 & 88 & 1,567 & 45 & 789 & 28 \\
\hline Crop \& Soil Sci. & 5,152 & 476 & 1,066 & 108 & 769 & 191 \\
\hline Dairy & 3,113 & 140 & 868 & 83 & 926 & 26 \\
\hline Fisheries \& Kildilfe & 1,311 & 476 & 4,900 & 216 & 435 & 0 \\
\hline Food Sci. \& Human Nutr. & 2,306 & 484 & 974 & 152 & 720 & 10 \\
\hline Forestry & 5,156 & 344 & 2,698 & 81 & 979 & 33 \\
\hline Horticulture & 4,164 & 431 & 1,565 & 105 & 1,301 & 127 \\
\hline Packaging & 3,590 & 190 & 3,620 & 20 & 619 & 0 \\
\hline Park \& Rec. Resources & 3,345 & 560 & 1,980 & 13 & 83 & 0 \\
\hline Poultry Science & 204 & 113 & 333 & 75 & 0 & 4 \\
\hline Resource Development & 4,403 & 1,562 & 1,871 & 94 & 0 & 21 \\
\hline Art & 18,629 & 947 & 8,643 & 391 & 4,717 & 0 \\
\hline English & 38,626 & 2,001 & 11,025 & 393 & 657 & 327 \\
\hline German \& Russian & 11,454 & 507 & 1,467 & 87 & 291 & 0 \\
\hline History & 35,908 & 2,266 & 7,672 & 309 & 2,265 & 0 \\
\hline Linguistics & 2,927 & 380 & 367 & 32 & 269 & 0 \\
\hline Music & 23,773 & 1,089 & 7,196 & 263 & 4,341 & 0 \\
\hline Philosophy & 14,994 & 565 & 1,586 & 127 & 216 & 0 \\
\hline Religion & 6,741 & 18 & 305 & 8 & 0 & 0 \\
\hline Romance Languages & 26,178 & 797 & 4,071 & 83 & 449 & 0 \\
\hline Acct. \& Finance Adm. & 24,229 & 4,288 & 8,832 & 200 & 632 & 82 \\
\hline Bus. Law \& Office Adm. & 10,564 & 103 & 3,001 & 21 & 371 & 38 \\
\hline Economics & 34,223 & 4,949 & 4,430 & 263 & 0 & 0 \\
\hline Hotel, Rest., \& Inst. Mgt. & 5,097 & 344 & 5,456 & 0 & 754 & 0 \\
\hline Management & 12,523 & 6,035 & 3.960 & 293 & 732 & 0 \\
\hline Marketing \& Transp. Adm. & 10,838 & 4,314 & 4,764 & 204 & 1,794 & 17. \\
\hline Advertising & 6,855 & 176 & 3,810 & 14 & 693 & 5 \\
\hline Audiology \& Speech Sci. & 3,731 & 742 & 2,497 & 209 & 279 & 3 \\
\hline Communcations & 15,288 & 1,983 & 4,089 & 160 & 0 & 0 \\
\hline Journalism & 6,233 & 417 & 4,909 & 46 & 1,006 & 0 \\
\hline TV \& Radio & 6,458 & 723 & 4,406 & 59 & 510 & 0 \\
\hline Theatre & 4,036 & 370 & 2,126 & 63 & 863 & 0 \\
\hline Chemical Engineering & 1,433 & 365 & 1,595 & 64. & 0 & 0 \\
\hline Civil \& Sanitary Eng. & 2,926 & 618 & 3,093 & 75 & 866 & 0 \\
\hline Computer Science & 12,934 & . 1,476 & 3,490 & 68 & 506 & 0 \\
\hline Electrical Engineering & 8,893 & 933 & 5,459 & 116 & 402 & 0 \\
\hline Mechanical Engineering & 3,515 & 347 & 3,573 & 61 & 655 & 0 \\
\hline Metal, Mech. \& Mat. Sci. & 6,046 & 649 & 780 & 94 & 5515 & 0 \\
\hline Family Ecology & 4,243 & 438 & 604 & 106 & 365 & 0 \\
\hline Family \& Child Sci. & 7,997 & 564 & 2,917 & 110 & 248 & 0 \\
\hline Human Nuțr. \& Foods & 4,713 & 111 & 1,522 & 39 & 931 & 0 \\
\hline Human Envir. \& Design & 13,603 & 408 & 8,632 & 34 & 2,526 & 0 \\
\hline Human Development & 3 & 3 & 0 & 1 & 0 & 0 \\
\hline Medicine (im) & 1,085 & 1,274 & 1,522 & 281 & 119 & 0 \\
\hline Psychiatry & 55 & 56 & -5 & 29 & 0 & 0 \\
\hline
\end{tabular}
\[
]
\]

Table 45--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Depirtment & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Astronomy & 3,745 & 1 & 507 & 0 & 36 & 0 \\
\hline Biochemistry & 5,611 & 1,342 & 2,613 & 263 & 350 & 63 \\
\hline Biophysics & 169 & 311 & 227 & 57 & 0 & 0 \\
\hline Botany \& Plant Path. & 3,286 & 983 & 1,048 & 263 & 1;096 & 62 \\
\hline Chemistry & 34,940 & 2,142 & 3,990 & 684 & 11,159 & 0 \\
\hline Entomology & 3,478 & 376 & 813 & 139 & 624 & 8 \\
\hline Geology & 5,727 & 470 & 1,463 & 135 & 1,310 & 0 \\
\hline Mathematics & 71,718 & 3,897 & 2,822 & 370 & 7,173 & 329 \\
\hline Nursing & 3,694 & 0 & 6,012 & 0 & 1,396 & 0 \\
\hline Physics & 19,392 & 1,392 & 2,385 & 312 & 3,125 & 0 \\
\hline Statistics & 11,138 & 1,284 & 898 & 85 & 1,541 & 0 \\
\hline Zoology & 12,334 & 803 & 5,411 & 273 & 2,252 & 0 \\
\hline Anthropology & 18,997 & 567 & 2,264 & 302 & 3,234 & 0 \\
\hline Criminal Justice & 19,734 & 895 & 9,854 - & 375 & 604 & 0 \\
\hline Geography & 9,828 & 873 & 1,909 & 297 & 2,506 & 0 \\
\hline Labor \& Indust. Rel. & 741 & 1,556 & 560 & 30 & 0 & 0 \\
\hline Political Science & 25,768 & 778 & 5,360 & 125 & 0 & 0 \\
\hline Psychology & 68,087 & 4,997 & 7,533 & 1,231 & 1,447 & 0 \\
\hline Sorial Work & 9,554 & 4,003 & 6,420 & 26 & 756 & 0 \\
\hline Sociology & 26,344 & 1,958 & 4,199 & 753 & 172 & 0 \\
\hline Urban Plan. \& Land. Arch. & 7,272 & 1,144 & 3,668 & 22 & 1,251 & 11 \\
\hline Amer. Thought \& Lang. & 57,048 & 0 & 66 & 0 & 0 & 124 \\
\hline Humanities & 56,461 & 0 & 23 & 0 & 992 & 0 \\
\hline Natural Science & 43,059 & 0 & 53 & 0 & 12,006 & 0 \\
\hline Social Science & 44,943 & 0 & 130 & 0 & 918 & 0 \\
\hline Anatomy & 7,944 & 3,132 & 361 & 322 & 446 & 0 \\
\hline Lg. Anim. Surg. \& Med. & 1,440 & 2,764 & -34 & 7 & 0 & 0 \\
\hline Medical Technology & 810 & 0 & 3,310 & 0 & 0 & 0 \\
\hline Microbiology & 6,110 & 1,812 & 1,604 & 113 & 2,362 & 24 \\
\hline Pathology & 1,728 & 1,971 & 179 & 73 & 332 & 0 \\
\hline Pharmacology & 1,371 & 1,247 & 217 & 89 & 0 & 0 \\
\hline Physiology & 5,926 & 2,660 & 802 & 141 & 1,645 & 0 \\
\hline Sm. Anim. Surg. \& Med. & 1,388 & 2,412 & -72 & 43 & 0 & 0 \\
\hline Family \& Comm. Med. & 98 & 168 & -11 & 0 & 0 & 0 \\
\hline Medicine (OM) & 234 & 415 & -22 & 0 & 0 & 0 \\
\hline
\end{tabular}

BIBLIOGRAPHY

Breneman, D. W. (Ed.). Internal Pricing Within the University--A Conference Report. Berkeley, Calif.: University of California, 1971.

Brubacher, J. S., and Rudy, W. Higher Education in Transition. New York: Harper and Brothers Publishers, 1958.

Buchanan, J. M., and Develetoglou, N. E. Academia in Anarchy. New York: Basic Books, Inc., Publisher, 1970.

Cartter, A. M. An Assessment of Quality in Graduate Education. Washington, D. C.: American Council on Education, 1966.

Cattell, R. B. Handbook of Multivariate Experimental Psychology. Chicago: Rand McNally and Company, 1966.

Charters, W. W., Jr., and Gage, N. L. Readings in the Social Psychology of Education. Boston: Allyn and Bacon, 1963.

Cheit, E. F. The New Depression in Higher Education. New York: McGraw-Hill Book Company, 1971.

Comrey, A. L. A First Course in Factor Analysis. New York: Academic Press, 1973.

Conover, W. J. Practical Nonparametric Statistics. New York: John Wiley and Sons Inc., 1971.

Corson, J. J. Governance in Colleges and Universities. New York: McGraw-Hill Book Company, 1960.

Currie, I. D. et al. "Images of the Professors and Interest in the Academic Profession." Sociology of Education, 39 (Fall, 1966), 301-323.

Doyle, E. A. The Status and Function of the Department Chairman. Washington, D. C.: Catholic University of America Press, 1953.

Dressel, P. and Reichard, D. "The University Department: Retrospect and Prospect." Journal of Higher Education, 41 (May, 1970), 387-402.

Dressel, P. L., and Faricy, W. H. Return to Responsibility. San Francisco: Jossey-Bass, Inc. Publishers, 1972.

Dressel, P. L.; Johnson, F. C.; and Marcus, P. M. The Confidence Crisis. San Francisco: Jossey-Bass, Inc. Publishers, 1970.

Euwema, B. "The Organization of the Department." Educational Record, 34 (January, 1953), 38-43.

Featherstone, R. L. The Development of Management Systems for the Academic Department. Boulder, Colo.: Western Interstate Commission for Higher Education, 1972.

Fox, K. A. (Ed.). Economic Analysis for Educational Planning. Baltimore: The Johns Hopkins University Press, 1972.

Freeman, L. D. "The Management of Knowledge." Journal of Higher Education, 45 (February, 1974), 81-97.

Fruchter, B. Introduction to Factor Analysis. New York: Van Nostrand, 1954.

Gaff, J. C., and Wilson, R. C. "Faculty Cultures and Interdisciplinary Studies." Journal of Higher Education, 43 (March, 1971), 186-201.

Gouldner, A. W. "Cosmopolitans and Locals: Toward an Analysis of Latent Social Roles." Administrative Science Quarterly, 2 (June, 1958), 444-480.

Grassell, E. M. "The President Needs Management Training." College Management, 6 (August, 1971), 28-29.

Gunter, C. W. "The Role of Department Chairmen in the Governance of State Universities." Unpublished Ed.D. Dissertation, Washington State University, 1964.

Halsey, A. H. "The Changing Functions of Universities." In A. H. Halsey, J. Floud, and C. A. Anderson (Eds.) Education, Economy, and Society. Glencoe, Ill.: The Free Press, 1961.

Halsey, A. H.; Floud, J.; and Anderson, C. A. Education, Economics, and Society. Glencoe, I11.: The Free Press, 1961.

Hamblin, R. L., and Smith, C. R. "Values, Status, and Professors." Sociometry, 29 (September, 1966), 183-196.

Hamphill, J. K. "Leadership Behavior Associated With the Administrative Reputation of College Departments." In W. W. Charters, Jr. and N. L. Gage (Eds.). Readings in the Social Psychology of Education. Boston: Allyn and Bacon, 1963.

Hill, W. W., and French, W. L. "Perceptions of Power of the Department Chairman by Professors." Administrative Science Quarterly, 11 (March, 1967), 548-574.

Hirschleifer, J. "Economics of the Divisionalized Firm." Journal of Business, 30 (April, 1957), 96-108.

Hobbs, W. C., and Anderson, L. G. "The Operation of Academic Departments." Management Science, 15 (December, 1971), B-134-143.

Hoenack, S. A., and Norman, A. L. "Incentives and Resource Allocation in Universities." Journal of Higher Education, 45 (January, 1974), 21-37.

Hunter, J. E. "FACTRB--Preliminary User's Manual." Computer Institute for Social Science Research, Michigan State University, n.d. (Mimeographed.)

Hunter, J. E. and Cohen, S. H. "PACKAGE." Version 1.0. Computer Institute for Social Science Research, Michigan State University, June 1, 1971. (Mimeographed.)

Hutchins, R. "The University and the Multiversity." The New Republic, April 1, 1967, pp. 15-17.

Kerlinger, F. N., and Pedhazur, E. J. Multiple Regression in Behavioral Research. New York: Holt, Rinehart and Winston, Inc., 1973.

Key, W. The Department Chairman: One Man's Viewpoint. Boulder, Colo.: Western Interstate Commission for Higher Education, 1970.

Marascuilo, L. A. Statistical Methods for Behavioral Science Research. New York: McGraw-Hil1 Book Company, 1971.

McConnell, T. R. Notes for a Talk on Departmental Organization. Monograph 5. Boulder, Colo.: Western Interstate Commission for Higher Education, 1969.

McKeachie, W. J. "Memo to a New Department Chairman." Educational Record, 42 (Spring, 1968), 221-227.

Michigan State University. Bylaws for Faculty Governance. East Lansing, Mich.: Michigan State University, 1971.

Millett, J. D. The Academic Community. New York: McGraw-Hill Book Company, 1962.

Minahan, J. P. "Administrative Cost Accounting: Whose Cost and Whose Accounting?' Journal of Higher Education, 45 (January, 1974), 38-47.

National Center for Higher Education Management Systems. A Blueprint for RRPM 1.6 Application. Boulder, Colo.: Western Interstate Commission for Higher Education, 1973.

Nunnally, J. C. Psychometric Theory. New York: McGraw-Hill Book Company, 1967.

Overall, J. Eo, and Klett, C. J. Applied Multivariate Analysis. New York: McGraw-Hill Book Company, 1972.

Patterson, L. M. "Preferences in Administrative Style Based on an Inquiry Into the Perceptions of the Ideal Role of the Department Chairman." Unpublished Ph.D. Dissertation, University of Texas, 1966.

Perkins, J. A. (Ed.). The University as an Organization. New York: McGraw-Hill Book Company, 1973.

Plessnar, Y.; Fox, K. A.; and Sanyal, B. C. "On the Allocation of Resources in a University Department." Metroeconomica, 20 (September, 1968), 256-271.

Porter, K. "Department Head or Chairman?" AAUP Bulletin, 47 (December, 1961), 339-342.

Rumme1, R. J. Applied Factor Analysis. Evanston, Ill.: Northwestern University Press, 1970.

Roose, K., and Andersen, C. J. A Rating of Graduate Programs. Washington, D. C.: American Council on Education, 1970.

Shubik, M. On Different Methods of Allocating Resources. RAND Report No. P-4161. New York: RAND Corporation, 1969.

Thomas, S. "DISCRIM2." Technical Report No. 33. Computer Institute for Social Science Research, Michigan State University, July 5, 1968. (Mimeographed.)

Veysey, L. R. The Emergence of the American University. Chicago: The University of Chicago Press, 1965.

Vreeland, R. S., and Bidwell, C. E. "Classifying University Departments: An Approach to the Analysis of Their Effects." Sociology of Education, 39 (Spring, 1966), 237-254.

Williams, R. L. "The Cost of Educating One College Student." Educational Record, 2 (October, 1961), 322-329.
```


[^0]:    ${ }^{1}$ E. M. Grassell, "The President Needs Training in Management," College Management, 6 (August, 1971), p. 29.
    ${ }^{2}$ E. F. Cheit, The New Depression in Higher Education (New York: McGraw-Hill, 1971), p. 1.

[^1]:    ${ }^{3}$ T. R. McConnell, Notes for a Table on Departmental Organization, Monograph 5 (Blouder, Colorado: Western Interstate Commission for Higher Education, 1969), p. 1.

[^2]:    ${ }^{4}$ The two previous projects are summarized in The Confidence Crisis (1970) by Dressel, Johnson, and Marcus and Return to Responsibility (1972) by Dressel and Faricy. Journal articles and dissertations have also been written from the data of these projects.

[^3]:    ${ }^{5}$ J. S. Brubacher and W. Rudy, Higher Education in Transition (New York: Harper and Brothers Publishers, 1958), p. 354.

