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ABSTRACT

VISUAL DATA REPRESENTATION AND CODING BASED ON TENSOR
DECOMPOSITION AND SUPER-RESOLUTION

By

Abo Talib Mahfoodh

Tensor based methods have been used in a wide range of signal processing applications.
A particular area of interest is tensor decomposition, which can be used to reduce the di-
mensionality of the massive multidimensional data. Hence, tensor decomposition can be
considered as a high dimension extension of popular Singular Value Decomposition (SVD)
methods used for matrix analysis. The lower dimension representation of tensors resulting
from tensor decomposition can be used for classification, pattern recognition, and reconstruc-
tion. Our objective in the first part of this thesis, is to develop a tensor coding framework
based on a tensor decomposition method for visual data efficient representation and com-
pression.

As part of the proposed tensor coding framework, we developed a tensor decomposition
algorithm that decomposed the input tensor into a set of rank-one tensors. The proposed
decomposition is designed to be efficient specifically for visual data. The proposed tensor
decomposition algorithm is applied in a block-wise approach. Two partitioning methods are
proposed for tensor coding framework which are uniform and adaptive tree partitioning. The
former subdivide a region into a set of equal size blocks while the later subdivide a region
into a set of variable size blocks. The decision whether to subdivide the region or not is
made based on the existing amount of the information and the overall available bitrate. A
tree data structure stores the partitioning structure information which is required for the

tensor reconstruction process.



Furthermore, an encoder/decoder framework is proposed for compressing and storing
the decomposed data. The proposed framework provides a number of desirable properties
especially at the decoder side which can be critical for some applications. Low complexity
reconstruction, random access, and scalability are the main properties that we have targeted.
We demonstrate the viability of the proposed tensor coding framework by employing it
for the representation and coding of three types of data sets: hyperspectral /multispectral
images, bio-metric face image ensembles, and low motion videos. These data sets can be
arranged as either three or four dimensional tensors. For each application, we show that
the compression efficiency along with the inherited properties of the proposed tensor coding
framework, provide a competitive approach to the current standard methods.

In the second part of the thesis, we propose an example-based super-resolution algorithm
for a new framework of scalable video streaming. The proposed method is applicable to scal-
able videos where the enhancement layer of some frames might be dropped due to changing
network conditions. This leads to a streaming scenario that we call Inconsistent Scalable
Video (ISV) streaming. At the decoder, the frames with the enhancement layer are used as
a dictionary for super-resolving other video frames whose enhancement layers were dropped.
The proposed super-resolution framework is integrated with Google VP9 video codec. Then
it is applied to various High Definition (HD) videos to estimate the dropped enhancement
layer. Our simulation results show an improvement visually and in terms of PSNR over

traditional interpolation up-sampling filters.
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Chapter 1

Introduction

1.1 Tensor Coding

Tensor decomposition, which is a generalization of matrix SVD decomposition, has been
receiving growing attention recently [1-5]. Tensors are multi-dimensional set of data and
generalizations of vectors and matrices, which are 1D and 2D tensors, respectively. There
are two main tensor decomposition methods. The first one is known as Higher Order SVD
(HOSVD) or Tucker decomposition [1,6]. The second decomposition approach is known
as Canonical-decomposition Parallel-factor (CP) [7,8]. The CP decomposition factorizes a
tensor onto a number of rank-one tensors [1]. A rank-one tensor can be thought of as a ”basis-
tensor” that can be represented efficiently and reconstructed perfectly using 1D vectors. In
particular, an n dimensional rank-one tensor can be represented by n 1D vectors only. Like
matrix SVD, tensor decomposition methods are used in a wide range of applications. Tensor
decomposition has been used for data analysis, fusion, representation and classification [9].

In this thesis, we propose a framework based on tensor decomposition for representation
and coding of n dimensional visual data. There are various types of data that can fit in this
category of "n dimensional visual data”. For example, a set of 2D video frames over time
is inherently a 3D data set. Also, a set of images stored within a common image database
(e.g., for storing images of human faces; or images of certain class of visual objects) can be

categorized as a high dimension data set. In general, for a set of large number of images or



2D video frames stored in a common image database, we call these types of imaging/video
data as a ”"visual data ensemble”. Hence, in this thesis, an ensemble is a 3D or higher
dimensional set of tensor data. We call the 2D matrices along a particular dimension, slice.
For example a 3D visual data ensemble consists of 2D matrices along the third dimension,
which are stacked on top of each other. In our experiments, we used 3D and 4D visual data
ensembles to illustrate the concept and show the experimental results.

Our goal is to develop a compression approach for visual data ensembles while achieving
desirable properties for applications like web browsing and image retrieval. A tensor based

coding framework can achieve:

e Random access: It is the ability to reconstruct any slice within an ensemble without
the need to reconstruct or access any other slice from the same ensemble. Random
access is crucial for some applications, not only for storage efficiency, but also to reduce

bandwidth across networks for scalable search and retrieval engines.

e Coding efficiency: achieving higher compression ratio by exploiting any potential

correlation that may exist among the slices within the same data set.

e Low complexity: The ability to reconstruct the original tensor data with low com-
plexity can provide fast access and enable low end devices to benefit from the proposed

approach.

As part of the proposed tensor coding framework, we developed a Progressive Canoni-
cal/Parallel (PCP) tensor decomposition, which is based on the popular CP tensor factor-
ization [1], for decomposing any arbitrary given visual data ensemble. Similar to CP, PCP
factors an n-dimensional tensor into a set of R rank-one tensors, each of which is represented

by n one dimensional vectors. We apply PCP in a block-wise basis, and each tensor-block



is decomposed into a different number of rank-one tensors. Depending on the nature of the
data, a uniform partitioning or an adaptive tree partitioning can be employed to partition
the tensor into a set of equal size blocks or variable size blocks respectively. The block-
wise tensor decomposition strategy leads to the need for deriving the optimal distribution
of rank-one tensors among the different visual data ensemble tensor blocks. Thus, we for-
mulated the rank distribution as an optimization problem. A greedy algorithm is developed
for identifying the optimal number of rank-one tensors that should be used for decomposing
the ensemble blocks.

Tensor decomposition is well suited for approximating low rank data. If the signal con-
tains a large amount of high frequency data, then the rank of the corresponding tensor is
high. For the high rank tensors, at some point we would not be able to capture the high
frequency information, no matter how many rank-one tensors are used. Meanwhile, there are
cases and applications that would not require the presence of high frequency data, enabling
the possibility of near lossless and lossless compression is desirable. The flexibility of the
reconstruction quality that can range from low quality to high quality can serve different
types of applications. A residual coding module is presented as part of the proposed tensor
coding framework to enable near-lossless coding.

Data encoding based on tensor decomposition has different applications for 3D and higher
dimensional visual data ensembles. For example, a low motion video holds a high correlation
among the frames which can be exploited for low complexity coding [10]. Similarly, an image
ensemble of face images, can be coded with tensor-factorization based method [11] to exploit
the existing correlation among a large number of images. The potential applications of the

proposed tensor coding framework are illustrated using three types of data sets:

1. Hyperspectral /multispectral images data set: These types of data set have a

3



high correlation in the spectrum spectral and time temporal dimension. The proposed
tensor coding framework exploits this correlation to create an efficient representation

and coding that holds the desirable random access property.

2. Bio-metric face image data set: A set of face images taken under different condi-
tions, which can be used for recognition and analysis, form a 3D tensor. These images

contain a high amount of similarities, espcially for face images of the same person.

3. Low complexity video compression: The proposed tensor coding framework can
be used in video coding scenarios where low complexity decoding and random access

are important.

1.2 Tensor coding motivations

Visual data is a core component of many applications and services. For example im-
age databases of faces and fingerprints are used for security applications, and hyperspec-
tral /multispectral images are used for scientific analysis. Such databases store a large num-
ber of images of the same type. In many such applications, the traditional compression
standards are used to store these images without exploiting the correlation. The goal of the

proposed tensor coding framework is to develop a compression method to provide:
e Random access to any slice without decoding other slices.

e Coding efficiency by exploiting any potential correlation that may exist among the

slices within the same data set.

e Low complexity and fast decoding.



e Scalable reconstruction in which a lower quality can be reconstructed with part of the

encoded data.

e Enable fast access and browsing.

1.3 Tensor coding related work

Tensor based algorithms have been used widely in image processing and computer vision
applications [3,12]. Our proposed framework belongs to the area of multidimensional signal
decomposition. In [13] a video encoder based on 2DSVD decomposition was proposed.
2DSVD [14] decomposes a GOP onto two eigenvector matrices and group of coefficient
matrices. Their framework was based on coding the factored matrices. Our method has
two advantages over 2DSVD encoder. (a) It is faster than 2DSVD. (b) It can be extended
to higher dimensions. Furthermore the proposed tensor coding framework provides higher
PSNR.

A rank R decomposition method was proposed in [15] for video dimension reduction.
Based on the presented experimental results, the method works well for texture videos,
which are known to be low rank. The value of R in the proposed method is fixed. The same
method was used in [16] for compact representation of video textures.

An efficient rank R decomposition was proposed in [17] for compact representation of
image ensembles. The method was used for compact representation of face datasets and toy
video sequence.

HOSVD analysis (Tucker decomposition) was proposed in [17] for modeling dynamic
textures. Similarly, HOSVD decomposition was used in [18] for representing facial images in

computer vision problems.



A D-1 factorization was used in [19] for video compression and classification. However,
the method was used for video classification not coding. A rank-one decomposition was
used for compact representation of multidimensional data in [20]. Their method is based
on standard rank-one decomposition, which is not as efficient as our proposed PCP. They
applied their approach for decomposing video textures.

A compression method based on tucker decomposition was proposed in [21] for hyper-
spectral images. The tucker decomposition was applied on the wavelet transform coefficients
of the hyperspectral images to compact the energy of the sub images. This will result in loss
of random access property.

Furthermore, [22,23] proposed tensor based methods for hyperspectral image compres-
sion. Both works were based on proposing a decomposition algorithm without presenting a
complete coding framework. It is important to measure the compression efficiency based on
a storage requirement not just the number of coefficients. This is because of the fact that the
decomposed values are float numbers as opposed to the visual data values which are usually
8 bits integers.

Lei Wang et al. presented a hyperspectral image compression system based on the lapped
transform and Tucker decomposition [24]. The lapped transform decorrelate the hyperspec-
tral image bands. Then they arranged the transformed coefficients of different frequencies
into a 3D wavelet sub-band tensor. Finally Tucker decomposition was used to decompose
the tensor into a core tensor and three factor matrices. The bit-plane coding algorithm was
used to encode the core tensor.

Vasilescu, M. Alex O., and Demetri Terzopoulos proposed a multilinear modeling tech-
nique that employs an N-mode SVD [18]. They presented the multilinear analysis of facial

images ensembles which contain different types, like different facial geometries, expressions,



head poses, and lighting conditions. They call the representation TensorFaces and argue
that multilinear analysis can be an effective framework for computer vision problems.

Hazan Tamir et al. presented an algorithm for a non-negative 3D tensor decomposition
which extracts a local parts feature decomposition from a set of object images [25]. They
showed that this feature can be used for face detection using SVM and Adaboost classifiers.
They argue that their tensor factorization has a unique factorization and it preserves the
2D representations of images. They argue that the proposed algorithm improve the sparsity
level, ghost residue, and compression around comparing to NMF.

Wang, Hongcheng, et al. presented an out-of-core algorithm to approximate high dimen-
sional tensors [26]. The algorithm preserve the original dimensionality of the data items
and hence exploit existing spatial redundancy more effectively to reduce the computation
complexity. They partition a tensor into a set of blocks and complete the tensor operations
in a block-wise approach. Their experimental results showed the advantage of the proposed
method for three graphics models which are 6D bidirectional texture functions, 7D dynamic
BTFs and 4D volume simulation sequences. The proposed method can process out-of-core
data and achieve higher compression ratios comparing to the previous methods.

Inoue, Kohei, and Kiichi Urahama proposed a dyadic singular value decomposition
(DSVD) that reduces the dimensionality of a set of matrix data [27]. Their experimen-
tal results showed the method application in image compression and face recognition. The
DSVD algorithm is derived from the higher Order SVD (HOSVD) of a three dimensional
tensor. It provides a low rank approximation for data matrices. They showed that the
DSVD can provides better results in terms of the computational complexity and accuracy in
image compression comparing to the other dimensionality reduction methods. They argue

that their results are better than the result derived from the eigenface method.



Hou Junhui, et al. proposed a compact and progressive representation of the motion cap-
ture data in video coding by employing a tensor decomposition method [28]. They arranged
the motion capture sequence in a three dimensional tensor. They argue that this type of data
has strong correlation within and across slices of the tensor. Then, they performed tensor
decomposition iteratively to take advantage of the existing correlation. Their experimental
results showed that their proposed method provides better results in terms of scalability and
storage requirement comparing to the existing algorithms.

[29] Suter Susanne K., et al. proposed a multi-scale volume representation in a GPU-
accelerated out-of-core multi-resolution rendering framework. The proposed method is based
on the tensor approximation. They argue that the proposed hierarchical tensor decomposi-
tion can achieve large volume data pre-processing, GPU accelerated tensor reconstruction,
and effective tensor quantization for data transfer bandwidth reduction. They showed that
the proposed multi-scale representation can perform the extraction, analysis and display
of structural features. Their experimental results showed the application of the proposed
methos on a gigabyte-sized micro-tomographic volumes data set.

Wu Qing, et al. developed a hierarchical tensor transformation for compact data repre-
sentation [30]. In order to show the existing multiscale structures, a multidimensional data
set is transformed into a set of hierarchical signals.At each level, the signal is further divided
into a set of smaller tensors. Furthermore a tensor approximation method is used to trans-
form these smaller tensors. Their method has the advantage of progressive reconstruction.
Their experimental results showed that the proposed method can provide higher compres-
sion ratios and quality when compared to wavelet transforms, wavelet packet transforms,
and single-level tensor approximation.

[31] Sivalingam, Ravishankar, et al. proposed a sparse representation of positive defi-



nite matrices that preserves the inherent structure of the data unlike vectorization. They
formulated the sparse decomposition of a positive definite matrix as a convex optimization
problem. An efficient interior point algorithms can solve the formulated problem. Their ex-
perimental results showed the advantage of the new model for extending the sparsity-based

algorithms for positive definite matrices.

1.4 Inconsistent scalable video streaming

Video traffic has been growing continuously especially during the last few years. According
to CISCO’s Visual Networking Index [32], by 2018 the sum of all forms of video traffic will
be in a range of 80 to 90 percent. Another important factor in CISCO’s index is the fact
that by 2018 over half of all traffic will originate from non-PC devices. Furthermore, the
mobile data will increase 11-fold and the traffic from wireless devices will exceed the traffic
from wired devices.

The reported video traffic increase accounts for both consumer growth, the emerging of
high quality video streaming, and the development of devices that can capture 360 degree
videos as virtual reality contents. There are already many 4k, 8k videos, and virtual reality
contents available on major Internet portals such as YouTube, Amazon, and Netflix.

These statistics support the fact that consumers are requesting video contents from var-
ious devices ranging from small cell-phones to large smart TVs. Furthermore the network
connection quality of these devices may vary tremendously based on the region and consumer
preferences. Consequently, a video streaming server has to ensure sending the best quality
video based on the user device and network quality.

Scalable Video Coding (SVC) [33-35] is increasingly emerging as a viable solution to



address the aforementioned variability in network conditions and device capabilities. Some
examples among the various types of SVC are temporal, spatial, and SNR methods.

In this thesis, we address the important case when some enhancement layers (e.g., within
a GOP) are dropped while other enhancement layers can reach the receiver. This leads to an
In-consistent Scalable Video (ISV) streaming. In such scenario, the decoder can exploit the
higher quality /resolution SVC decoded pictures to assist in a super-resolution driven recon-
struction of the lower quality/resolution pictures. The proposed framework was developed
for spatial SVC. However, it can be extended and used within other forms of scalability, and
in particular SNR SVC.

The proposed frame-work is applicable when network conditions change, and conse-
quently, a streaming server can perform ISV streaming by choosing to drop some of the
enhancement-layer frames. Under these circumstances, the frames with dropped layers need
to be scaled up to the display size. A simple interpolation method can be used for ISV.
However the final frame would be blurry and missing the high frequency data. The pro-
posed framework, which was applied in block-wise approch, employes an example based
super-resolution method to scale up those frames with a better quality. The block partition
structure was drived from the quad tree block structure of the encoder. Our experimental
results show that this partitioning strategy can improves the reconstruction quality when
compared to using uniform size blocks.

The proposed framework was implemented within VP9 spatial SVC [36]. VP9 is an open
source video codec which has been developed and supported by Google. The source code is

available as part of Googles WebM project and can be obtained from [37].
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1.5 ISV related work

Many prior efforts have been proposed for single image super-resolution with high quality
reconstruction results [38]. The better quality comes at the expense of higher computation
complexity. This complexity makes it difficult to employ these methods for videos.

In [39], the authors proposed a fast super-resolution method based on multi-frames that
can be used for video. However, the complexity for even a low resolution video was high.
With the emergence of high resolution videos (HD and above), using this type of super-
resolution is not applicable. On the other hand, many of the classical image super-resolution
methods do not perform well on the high-frequency component [40]. This is an important
drawback especially for high resolution videos since this type of videos tend to have more
high frequency components.

A video super-resolution framework has been proposed in [41-43] based on coding some
of the frames at a high resolution (key-frames) to be used as the dictionary. The non-key-
frames are super resolved with the high frequency data found in the dictionary. In our work,
we are focusing on estimating the high frequency component as a mean of super resolving
the video. We use a similar example based super-resolution as in [41] to scale up the frames
whose enhancement layer is dropped.

Freeman William T., et al. proposed a fast algorithm for one-pass super-resolution that is
based on a training-based super-resolution algorithm [44]. The algorithm perform a nearest-
neighbor search in the training set to find a feature vector that is obtained from each patch of
local image data. Their experimental results showed the application of the proposed method
in natural image quality enhancement.

Xiong, Zhiwei, et al. proposed a robust single image super-resolution method to increase

11



the quality of low quality web images and videos [45]. Their method combines adaptive
regularization and learning-based super-resolution. During the iterative regularization pro-
cess, the image energy change characteristics is analyzed. This analysis provide the conver-
gence property of the energy change ratio. It leads to the regularization parameter which
balance quality enhancement and primitive components preservation. Also, the adaptive
regularization improve the pair matching accuracy in learning-based super-resolution. Their
experimental results showed that the proposed method can enhance the visual quality of the
degraded web images and videos.

Shan, Qi, et al. proposed an upsampling method for image and video resolution enhance-
ment that preserve the essential structural information [46]. Their proposed feedback-control
framework recovers the high frequency details without additional local structure constraints.
They argue that the proposed method is independent of the quality and number of the se-
lected examples. Their experimental results showed that the proposed method can achieve
high quality images enhancement without observable artifacts. Also they argue that the

method can extends to video upsampling while maintaining the temporal coherence.

1.6 Summary of contributions

The contributions made in this thesis are summarized as follows:

1. Developing a Progressive Canonical-decomposition Parallel-factor (PCP) tensor-decomposition

for representing and coding visual data ensembles efficiently.

2. Developing an adaptive tree partitioning algorithm for sub dividing an input tensor
into a set of smaller size blocks. For three and four dimensional tensors, it translates

to octree and hextree respectively. For n dimensional tensors it translates to 2"-ary
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tree.

3. Formulating the problem of finding the global optimal number of PCP eigenfibers for

the blocks of a visual data tensor as an optimization problem.
4. Developing a greedy solution to solve the above optimization problem.

5. Developing a complete coding framework, based on the proposed PCP tensor decom-

position.

6. Applying the proposed tensor coding framework on three types of data sets which are:

hyperspectral /multispectral images, bio-metric images, and low motion videos.

7. Developing an example based super-resolution framework to approximate the missing

high frequency data.

8. Employing the proposed super-resolution framework, which was developed within Google’s
VP9 scalable video coding software, in an inconsistent scalable video streaming sce-

nario.

1.7 Thesis organization

The thesis is organized in two main parts. In the first part, we propose a tensor coding
framework for representation and coding of visual data ensembles. In the second part of the
thesis, an example based super-resolution algorithm is proposed for enhancing the quality of
scalable video streaming when some of the enhancement layers are dropped.

The remaining of the thesis is organized as follows:

13



e In chapter 2, a summery of CP tensor decomposition is presented. Next we define
the problem and propose a progressive tensor decomposition. Later in the chapter we
define the problem of finding the optimal number of rank-one tensors for all the sub
blocks as an optimization problem and propose a greedy solution for it. The theories
are presented for three dimensional tensors first for illustrating purpose. The result

are extended for the general n dimensional tensors afterward.

e In chapter 3, the different modules of the tensor coding framework are presented. A
uniform and adaptive tree partitioning methods are discussed. Furthermore decom-
posed vectors arrangement and coding are explained in details along with residual

coding module. We also present the main properties of the tensor coding framework.

e In chapter 4 three different applications of the proposed tensor coding framework are
presented. For each application, we compare our experimental results with some of the

standard coding methods used within the application.

e Chapter 5 consist of the second part of this thesis. The ISV streaming problem is
defined under which some of the enhancement layers of a scalable video are dropped
due to poor network quality. Later in the chapter, an example based super-resolution
algorithm is proposed to reconstruct the missing high frequency data of the video.
Finally, the experimental results are shown and compared with simple interpolation

methods.

e In chapter 6 we discuss the conclusions of the two main proposed frameworks in this

thesis.
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Chapter 2

Tensor decomposition for visual data

In this chapter a brief introduction on CP tensor decomposition is presented before we
discuss the details of the proposed tensor decomposition. At each section, we first develop
and illustrate the theories and the results for the three dimensional tensors. Then, we extend

the results for a general case of the n dimensional tensors.

2.1 CP decomposition

CP decomposes a 3D tensor xy € RV1*Y2%?3 onto a number of rank-one tensors, each of which
can be written as an outer product of three vectors [1]. The original tensor is approximated

by summation of these rank-one tensors as shown in eq. (2.1).

R
X = Z Ar <a7(«1) o a?) o a7(~3)> (2-1)
r=1

Where o is an outer product, and A, is a normalization factor such that to maintain an /o

(d)

unit norm for the vectors a, ’, d € {1,2,3} [1]. Hence, the tensor x is approximated using a
linear combination of rank-one tensors (ap) o aT(?) o a§3)); and the rank parameter R is the
number of rank-one tensors used to approximate y. Figure 2.1 shows the reconstruction of
a three dimensional tensor from a set of rank-one tensors.

(d)

The vectors a, * can be arranged as column vectors of a corresponding set of matrices
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Figure 2.1: A three dimensional tensor reconstruction from a set of R rank-one tensors. Each
3D rank one tensor is an outer product of three vectors. The reconstructed tensor is a linear
combination of these rank one tensors.

(i.c. A where d =1,2,3). For example, A = [agl) aél) . ..ag)] is a v1 X R matrix. In

general, A9 € RVa*T These matrices can be found using eq. (2.2).

Axd) — argmin
Ald)

Xig) - A® (40) 0 4))" (2.9
F

Where, ® is Khatri-Rao product, d € {1,2,3}, d1 € {1,2,3} — {d}, and do € {1,2,3} —
{d,d}. X(d) is a matrix that results from unfolding the tensor y with respect to the dth
dimension. For example, X(l) € Rv1X(v2v3) is a matrix that results from unfolding the
original tensor y with respect to the first dimension (i.e. v1). Similarly, X(Q) and X(3) are
the unfolded original tensors with respect to the second (v9) and third (v3) dimensions [1],
respectively. For a given rank parameter R, the Alternative Least Square (ALS) [7] approach
can be used to solve for the set of matrices in eq. (2.2). It solves for A() by fixing A() and

AB) and similarly for A and A®) as shown in (2.3).

-1

A0 = x(20)" ((29)" (2)) (23)

Where 2(d) = Ald1) o A(d2) and, as before, d € {1,2,3}, d1 € {1,2,3} — {d}, and dy €
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{17 2a 3} - {d7 dl}
An n-dimensional tensor xy € RV1*--*Un is decomposed by CP onto a set of of rank-one
tensors. An n dimensional rank-one tensor is equal to outer product of n vectors [1]. The

original tensor is approximated by summation of these rank-one tensors as shown in eq. (2.4).

R
X\ = r 7(})0...0 7(nn> .
X 7;)\ (a a ) (2.4)

(d)

The vectors a,’ can be arranged as column vectors of a corresponding set of matrices
Al ¢ RV where d = 1,2,...,n and Ald) = [agd) agd) o ag)] . Finding these matrices
can be formulated in an optimization problem as shown in eq. (2.5).

AXd) = argmin (2.5)

X - 4D (A0 ..o A4 o A4 o o AM)"
Ald)

F

Where, ® is Khatri-Rao product, d = 1,2,...,n. X(l) € RVd* (V10303103 41-0n) g the
unfolded tensor y with respect to the dt" dimension. For a given rank parameter R, the
ALS approach can solve for the set of matrices in eq. (2.5). It solves for AW by fixing A(2>,
AB) , and AM) and similarly for A(2), o ,A(”) and so on as shown in eq. (2.6).

g e e e

-1

Ax(d) X (4) <Z(d)>T<<Z(d)>T (Z(d))> (2.6)

Where 2@ = A1) o . @ Ald=1) o Ald+1) A("),d =1,2,...,n.
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2.2 CP decomposition for visual data

A straightforward approach for tensor-based representation of visual data is to directly em-
ploy the CP decomposition onto an original data set. However, such straightforward ap-
proach does not result in an efficient coding method. There are three main disadvantages in

using CP decomposition for visual data coding which are:

1. Independent of the form of tensor decomposition used, the rank parameter R should
not be fixed throughout the tensor decomposition of the entire visual data tensor. In
particular, the value of R directly influences the rate and efficiency of the original
tensor representation since it determines the number of rank-one tensors used for this
representation. Meanwhile, different parts of the multimedia tensor have different levels
of spatial and temporal details. On the other hand, it is known that finding the tenor
rank is an NP-complete problem [47]. A primitive way of finding the rank is to start
at one and gradually increase the rank, until the optimal rank is found. However, in

the case of CP decomposition this will result in a high time complexity.

2. CP decomposition requires all the composing rank-one tensors in order to approximate
the original visual data tensor y. This is true even if the actual rank of the tensor is
smaller than the number of the composing rank-one tensors. In other words, if part
of the decomposed data are missing, the reconstructed result will be degraded signifi-
cantly. This will result in a non-progressive reconstruction in which all the eigenfibers

are required prior to the reconstruction.

3. CP decomposition result in a set of decomposed vectors with real number values. The

reconstruction quality is highly sensitive to small approximation in the decomposed
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values. As the result, there should be enough number of bytes allocated for storing the
decomposed values. This will decrease the storage efficiency especially considering the
fact that most of the visual data are 8-bit and requires only one byte to store each point.
Furthermore, because of the precision sensibility, the CP decomposed values are not

noise robust. The noisy decomposed values will result in poor quality reconstruction.

We propose a CP-based decomposition for visual data that can address the before men-
tioned shortcomings of the CP decomposition. The details of the proposed decomposition is

presented in the next section.

2.3 Progressive CP decomposition

Similar to CP, the approximated tensor (x) under PCP is a sum of rank-one tensors. How-
ever, the PCP decomposition results in different rank-one tensors and corresponding vectors
from what is generated by CP. We also use a different normalization as explained further
below. To emphasize the difference between the two schemes, we express the PCP de-
composition using different notations for rank-one tensors and normalization parameters as
expressed in eq. (2.7).

R
1= 360N o b o p) (2.7)

Under PCP, R € {1,2,..., Rpmaz}, where Ryyqz is the maximum possible number of rank
one tensors that are available for approximating the original tensor. It limits the total bitrate
by limiting the number of eigenfibers to be coded. Similar to CP, bgd) can be arranged as

column vectors of a corresponding set of matrices B (d) where d = 1,2,3. Under PCP though,

there are two key differences.
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The first difference is that the eigenfibers bffl) are computed individually as shown in

eq. (2.8).

(2.8)

bi(d) = argmin
()
r

r—1
<X<d> > X '<d>,k) — o} (M)T
k=0

F

Where 29 — o9 039 g c €123}, d; € {1,2,3) — {d}, and dy € {1,2,3} — {d, dy }.

kth

X' (d) .k is the rank-one unfolded-tensor over dimension d, and k € {0,1,2,..., R}.

T T
X/(d)o = 0, X,(d),k = Bk;b;gd) <z](€d)> . Note that the vector product bﬁd) (zﬁd)> in

eq. (2.8) results in a matrix of size vy X vg, vg,, which is the size of the unfolded-tensor
matrix X (d)-
For a given rank parameter R4z, we modify the ALS approach to solve the minimization

(1)

3) and solve for b, 7; and similarly for

problem in eq. (2.8). Similar to CP, we fix 67(42) and b7(n

b7(a2) and b7(a3) as in eq. (2.9).

() = . @\ ( (LN (@)
by = X(d)_ZX(d),k <ZT ) (Zr ) 2r (2.9)
k=0

At each iteration r we calculate the error ¢, = MSE (x — xr), where Y, is obtained
from eq. (2.7). The PCP decomposition is applied in block-wise approach. The errors of all
3D-blocks are used in a procedure of finding the optimal global solution as will be discussed
later. The solution may add another rank-one tensor to approximate the residual y — x, in
the next iteration. This approximation results in a progressive decomposition of y as shown
in figure 2.2.

Figure 2.3 shows an example of uniform partitioning of the tensor and the PCP decom-

position on each block. As mentioned before, the value of R for each block could be different
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Figure 2.2: PCP decomposition progressive reconstruction of y. At the first iteration the
input tensor is approximated with only one rank one tensor. Then at each iteration a rank
one tensor is added to approximate the residual.
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Figure 2.3: An example of uniform partitioning of an 3D tensor and the PCP decomposition
on each block. PCP allocates different value of R; for each block based on the amount of
the information in that particular block.
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based on its rank. The problem of finding the optimal number of rank-one tensors for each
3D-block is addressed in the next section.

The second difference between CP and the proposed PCP is the following. As mentioned
above, under CP, the rank-one tensors are normalized by maintaining an ¢9 unit-norm vec-
tors. This is captured through A, in eq. (2.1). Under PCP, we employ an ¢, norm instead.

This leads to the following:

e The normalizing parameter (3, captures the maximum magnitudes of the entries of the

corresponding vectors bgd), d=1,2,3.

(d)

e The vectors by’ have normalized values between —1 and +1. As we show later, the

proposed PCP lends itself to more efficient coding when compared to traditional CP.

PCP approximates an n dimensional tensor y as a linear combination of a set of rank

one tensors as shown in eq. (2.10).

R
= 3 8,0M o 0b™) (2.10)
r=1
Where R € {1,2,..., Rmnaz}, where Ry gz is the maximum possible number of rank-one

(d)

tensors that can be used. b, are column vectors of a corresponding set of matrices B (d)

where d = 1,2,...,n. The PCP eigenfibers bg‘d) can be computed as follows:

r—1 T
bi(d) = argmin <X(d) — Z X/(d),k) — bgd) (zﬁd)> (2.11)
bﬁd) k=0 F
Where 2% =5V ootV o b oo™, de (1,2, n}. X' (g is the

k" rank-one unfolded-tensor over dimension d. X’ (d),0 = =0, X = 0 bgg ( >
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(d) ( (@) 7T

vector product b, | zp > in eq. (2.11) results in a matrix of size vgxvivy ... V3_1V411 - - - UN,
which is the size of the unfolded-tensor matrix X (d)-

For a given rank parameter Ry,q., ALS approach can solve the minimization problem in
eq. (2.11). We fix bg), b7(n3) e bﬁ”) and solve for b,(nl) ; and similarly for the other eigenfibers

as shown in eq. (2.12).
r—1 -1
0= (= 5 % ) (47)' () "49) o1
k=0

2.4 The Rank-Distortion optimization problem

In the proposed tensor coding framework, a 3D visual data tensor is partitioned into a set
of 3D sub-tensor blocks. Block j has s; elements where s; = vy v95v3;. PCP decomposes
a given 3D block, which is indexed by j, onto R; rank-one tensors, each of which has three
eigenfibers. The total number of elements in the PCP rank-one decomposition for 3D block j
is s;- where s;- = R;(vyj+vg;+v3;). Assuming that we use the same precision for the original
visual data pixels and for the elements of the PCP decomposition (e.g., eight bits/pixel and
eight bits/element in an eigenfiber), then using the eigenfibers instead of the original block

will result in the compaction ratio shown in eq. (?7).

VA

Va)
LS|,

V14V9,U94
- 10205 (2.13)

(Rj (v1j +vaj +v35))

We would like to increase the block size and minimize the value of R; to have larger
compaction ratio. However, a larger block potentially has higher rank and requires a larger

value of R; to be coded with acceptable quality. This will decrease the compaction ratio.
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One option is to have the compaction ratio larger than some regularization parameter v > 1.
This leads to an upper bound for R; that keeps the compaction ratio larger than ~y as shown

in eq. (2.14).

1
Ry < & (- Uwv2ts (2.14)
v \v1 +v2 + v3

We employ the inequality in eq. (2.14) as a constraint for our optimization problem.
Another constraint is related to the reconstruction error. We use the average error constraint

shown in eq. (2.15) for reconstructing the original tensor.

R.
1 & L@ e
=1 i—1
F

For a given data set with N 3D tensor blocks, the goal is to find the global optimum R,
where R is a vector of dimension N. Each entry of R = (Rj, Ro,..., Rpy) corresponds to
the number of rank-one tensors which are used to reconstruct a 3D-block of the data set.
We formulate the rank-distortion optimization problem to find the global optimum R as in

eq. (2.16).

N
min Z Rj s.t.
Jj=1

R.
1 & L@ e
N2 | 2ubig by iy < emas (2.16)
=1 i—1 .
N N

1 V109,034
Sr< Lyt _ap,,
v V1 + V2 + U3

Where €4, is the average, overall acceptable error. The second inequality in eq. (2.16)

captures an upper bound for the total number of eigenfibers that can be used. Note that If
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all the blocks have the same size, Ryqz can be simplified to ((vyvav3)N) / (y(v1 + v2 + v3)).

An n dimensional block j has s; elements where s; = v1;v9; ... vp;. PCP decomposes this
block onto R; rank-one tensors, each of which has n eigenfibers. The total number of elements
in the PCP rank-one decomposition for block (j) is s;- where s;- = Rj(v1j + v+ ... +vpj).
Using the eigenfibers instead of the original block will result in the following compaction ratio
Sj/S;- = V1V .- Vp;/ (Rj (vlj +vgj+ ...+ vnj))). The upper bound for R; that keeps
the compaction ratio larger than v is R; < % ((vljvgj . .vnj) / (vlj +ug;+...+ vnj)).
For an n dimensional tensor, we use the average error constraint shown in eq. (2.17) for

reconstructing the original tensor.

N R;
1 L1 @) (n)
NZ Xj—zbz’,jObi,jo"'Obi,j < €max (2.17)
j=1 i=1
F

For a given n dimensional tensor with N n dimensional sub-tensor blocks, the goal is
to find the global optimum vector R, where R is a vector of dimension N. Each entry
of R = (Ry,Ra,...,Rpy) corresponds to the number of rank-one tensors which are used
to reconstruct an n dimensional block of the data set. The rank-distortion optimization

problem to find the global optimum R is as shown in eq. (2.18).

N
min ZRj s.t
7=1
1 & 2w @ (n)
T |xi— D bty o oty |l < eman (2.18)
j=1 i=1 .
N N
Yo Ly et ) s,
= J ’yj:lvlj—l—vgj—l—...-i-vnj

As mentioned earlier in the case of a 3D tensor, €4, represents the average overall
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acceptable error. The second inequality is the upper bound for the total number of eigenfibers
that can be used. If the tensor is partitioned uniformly to a set of equal size blocks, Rz
can be simplified to ((vvy...vn)N) /[ (y(v1 +v2 + ... 4+ vy)).

A solution to this optimization problem can be found by searching for the optimum R;
which satisfies the constraints. The search is done by starting from R; =1, j =1,..., N
and increasing R; of block j that meets a certain criterion gradually until the constraints

are satisfied. The details are presented in the next section.

2.5 Rank-Distortion optimization problem solution

A greedy algorithm is developed in this section to solve eq. (2.16). For an 3D input tensor
that has been partitioned to N 3D tensor blocks, the algorithm starts initially by R = ?
This initialization is along with the fact that each 3D tensor block should be represented at
least with one rank-one tensor. Furthermore, F; is defined as block j error decrement if R;

increased by one as shown in eq. (2.19).

E] :Ej,R'

TR+ (2.19)

Where €; R, is the reconstruction error when R; rank one tensors are used in block j
reconstruction. Initially F; = €1 —¢€jo for j = 1,2,..., N. Iteratively we find block j*
that has the maximum Ejx and increase its corresponding Rjx by one. This greedy choice
provides the largest possible error reduction at each iteration. After Rj* is incremented
for block j*, the inequalities are checked. If the first inequality is satisfied or the second
inequality is not satisfied, the algorithm will be terminated. The PCP tensor decomposition

algorithm for 3D tensors is shown in algorithm 1.
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Algorithm 1 3D tensor decomposition with Rank-Distortion Optimization

Input: A set of 3D tensor blocks (i.e. xj, j=1,...,N.), and v

Output: A set of eigenfibers to represent the input tensor.

R=T

Find b(j), bij), and b< ) forr=1,2and j =1...N from eq. (2.9).

- 2= 1Zj0b,.7 JH

forr=1,2and j=1...N do

€ =

E; = €j,17€; 9 forg=1...N
end for
while first inequality in eq. (2.16) is not satisfied and the second inequality in eq. (2.16)
is satisfied do

j* = argmaz; E;

r= Rj* +1

Find bfﬂ’lj)*, bg])*,bgj)* from eq. (2.9)

NCORIC I

— v — N
Ej*vr—HXJ* i=1 % O 0 jx © Uy

F

+1p (1) (2) (3)
ol = HXJ* = 2li1 by e 0 by jx 0 by

F

E*—e*r_i_l

J J na
R]* =r
end while
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For an n dimensional tensor, the optimization problem shown in eq. (2.18) can be solved
with the greedy algorithm shown in algorithm 2. Similar to the algorithm for a 3D tensor,
the algorithm starts initially by R = T It iteratively finds block j* that has the maximum
Ej* and increase its corresponding Rj* by one. The time complexity of calculating the error
decrements at each iteration can be reduced by storing them in a vector. The vector E stores
the values F; for j = 1,2,..., N. At each iteration, only the value of the entry point g*

needs to be updated.
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Algorithm 2 n dimensional tensor decomposition with Rank-Distortion Optimization

Input: A set of n dimensional tensor blocks (i.e. xj, j=1,...,N.), and v

Output: A set of eigenfibers to represent the input tensor.

R=T

Find b(j), bg},...,b%) forr=1,2and j =1...N from eq. (2.12).

L 1) () (n)
cir =[x = i) oo o onfl)]

forr=1,2and j=1...N do

E; = €j,17€; 9 forg=1...N
end for
while first inequality in eq. (2.18) is not satisfied and the second inequality in eq. (2.18)
is satisfied do

. o
)T = argmax; E;

Find bf}]) bfj) o ,bg* from eq. (2.12)
_ (1) (2 (n)
€5k p = ij* — > bi,j* o bm.* 0...0 bi,j* -

+1,(1) () (n)
¥yl = HX]*—Z; 1 b Obi,j*o"'ObLj*

F

E*—e*r_i_l

J J A
R]* =T
end while
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Chapter 3

Tensor coding framework

PCP is the core transform used in the tensor coding framework. Other tasks of the frame-
work are handled in various modules. Among this tasks are tensor partitioning, eigenfibers
arrangements and coding, header data management, etc. Figure 3.1 shows the diagram of
the tensor coding framework with its various modules. The details of these modules are

presented in this chapter.

3.1 Tensor partitioning

The first step of the tensor coding framework is the input tensor partitioning. It helps to
balance the rate in the optimization problem in eq. (2.2) and eq. (2.5). It also balance the

complexity based on the block size. We employed two types of partitioning:

e Uniform partitioning: the input tensor is divided into a set of equal size blocks.

The blocks have the same dimension as the input tensor.

e Adaptive tree partitioning: initially the input tensor is partitioned into a set of
equal size blocks, then for each block a recursive algorithm is employed to subdivide
it if required. The decision of whether to subdivide a block or not is made based on a
criteria. A tree structure represents the partitioning structure. For 3D and 4D input
tensors, the partitioning can be represented by octree and hextree correspondingly. A

higher dimension tensor partitioning can be represented by an 2"*-ary tree where n is
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Figure 3.1: Tensor coding framework for visual data coding and representation. The frame-
work consist of various modules that operate at different stages. Among these modules are
tensor partitioning, decomposition, and eigenfibers coding. It also shows the residual coding
process.

the tensor dimension. Similar to the uniform partitioning, each block has the same

dimension as the input tensor. The details of the algorithm will be discussed later.

3.1.1 Uniform partitioning

Uniform partitioning divides the input tensor into a set of equal size blocks. Intuitively, we
would like to increase the block size to have a larger compaction ratio. However, increasing
the block size may increase the required number of rank-one tensors to code it.

Suppose a 3D region covered by a block of size v; X v9 X v3 requires R rank-one tensors
to be coded. Also, if the same region covered by eight blocks of size %1 X %2 X %3 requires
R’ rank-one tensors to be coded. Here R’ is the total number of rank-one tensors for all

the eight 3D blocks. The compaction ratio for both scenarios is as follows, respectively:

= 19293 r—1__ vivry : :
C R +igt03) and " = 3 U= The larger block results in better compression

when C' > C’ and consequently R < 4R’. This implies that if it is possible to code a region
using the large block size while the error is not larger than when it is coded with the small

block size and if R < 4R’ the large block size would result in higher compression than the
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Figure 3.2: PSNR vs bitrate plots of (a) Silent and (b) Container CIF videos employing three
different block sizes. Larger block sizes result in higher PSNR at lower bitrates however at
some bitrate point they cross over.

small one. More generally, for a block size ratio d (i.e. d = (v1/v]) = (v2/vh) = (v3/v5) ),
if R < d2R’ and the reconstruction error is relatively close; then, the larger block would be
a better choice in terms of coding efficiency.

Figure 3.2 shows PSNR plots of Silent and Container CIF videos, encoded with three
block sizes which are 8x8x 180, 16x16x180, and 32x32x180. The plot shows that larger
block sizes result in higher PSNR at low bitrates, however they cross over at some bitrate

point.
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Figure 3.3: PSNR plots of (a) Silent and (b) Container CIF videos employing blocks of
different time dimension size. The plots show that if the video has high redundancy across
time, then larger block sizes will result in higher PSNR.

In another experiment the size of the third dimension is varied while the spatial size is
16x16. The block size over the third dimension of size 180, 90, 60, 45, and 36 were evaluated.
Figure 3.3 shows the PSNR results for Container and Silent video. The results show when
the video has large number of blocks that do not change with time, expanding the block in
time dimension will result in taking advantage of the redundancy and increases the PSNR. In

the case of Container video that has linear and texture movement; at low bitrates, the larger
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block sizes results in higher PSNR than smaller block sizes. However at some bitrate points,
they crossover. Using variable block size for different regions of a video has the advantage
of obtaining the highest possible PSNR.

Similar block size analysis can be done for an n dimensional tensor. Assuming that an n
dimensional region covered by a block of size v{ X vg X ... X vy, requires R rank-one tensors
to be coded, if the same region covered by d" blocks of size %1 X %2 X ... X %n requires R’
rank-one tensors to be coded where R’ is the total number of rank-one tensors for all the

d" n dimensional blocks. The compaction ratio for both scenarios is as follows, respectively:

C _ v1V9...Un and C/ _ 1 V1v9...Un

R{vq +vy ot on) S YR o — The larger block results in better

compression when C' > C’ and consequently R < dn-1p!

3.1.2 Adaptive tree partitioning

Adaptive tree subdivide the input tensor into a set of variable size sub-blocks. In the case of
a 3D tensor, it translate to octree, for 4D tensor it translate to hextree and in general for an
n dimensional tensor it translate to 2"-ary tree. For the illustration purpose the partitioning
algorithm is developed for octree first and the result is extended afterward.

Octree is the 3D analogous of quadtree in which a 3D block is recursively subdivided
into eight adjacent disjoint 3D sub-blocks [48]. Figure 3.4 illustrates an example 3D block
subdivision and its corresponding octree representation.

The octree divides a 2Y1 x 2Y2 x 2Y3 block into a v] — Uglo) + 1 levels tree. Where
Loy o) (g) , : o
2’1 x 272 x 273 is the smallest possible block. Depending on the application, it
is desirable to have the flexibility of allocating different size along each dimensions. For

example, for a hyperspectral images tensor, since the nature of the third dimension is different

than the spatial dimensions, we would like to allocate different size along the third dimension.
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Figure 3.4: (a) An example of 3D block recursive subdivision, and (b) its corresponding octree
representation. The leaf node indicate no subdivision while the branching node subdivided
and it has eight children. A leaf is represented by 0 and a branching node is represented by
1. The octree representation code is also shown.

(Ip) (lp) (lp)

However the tree level is similar in all directions, v —vy ™" +1 =v9—vy " +1 =v3—v3 "~ +1.

(1) () (1)
The blocks at level [ have the size 2°1 x 2Y2 x 23 where0 < vc(llO) < vo(ll) <vg,d=1,2,3.

Each node can be a leaf or it can be divided to eight 2(1)51)_1) X 2(1}51) Dy 2(vi(’>l) ~1 sub-blocks.

Similar to quadtree, the octree can be represented with a series of bits in which 0 indicates
leaf and 1 indicates branching node. The top down approach is used for subdividing the
blocks. It starts with a maximum size block and divide it if a criteria is met. The procedure
is applied to the eight sub-blocks recursively until the sub-blocks do not require further
division or they reach the maximum tree level [.

Since we are trying to approximate a tensor block by a linear combination of rank-one
tensors, a natural choice for division criteria is the rank. However, as mentioned eralier, find-
ing tensor rank is an NP-complete problem. As an alternative, weighted directional variance
(2V1 x2Y2 ><2”3)’ the

is used as the core of the decision criteria. For a given tensor block y € R

average variance along each dimension is defined as in eq. (3.1).

K

Sq= ZVAR(X{Z;)), d=1,2,3 (3.1)
k=0
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Where X (d) is a matrix that results from unfolding the tensor y with respect to the dth

dimension and K is the number of the columns. The weighted directional variance is defined

as in eq. (3.2).

3
A = Z WqaSd (3.2)
d=1

Where w, is the dimension weight and Z?l:l wg = 1. w, regulates the contribution of
each direction in the decision. For each block we calculate the average variance at level [ (i.e.
Al ), then we subdivide it into eight sub-blocks and calculate the average variance for each

of them (i.e. Azg.l*l)

.7 =1,...,8). If sum of the average variance of the sub-blocks is smaller
than the average variance of the block, then the block will be divided into eight sub-blocks.

In general a relaxed criteria is used as in eq. (3.3).

A" N AL < % (3.3)

Where 7 is a threshold and p = 4 X Ryaz/N. The value of the p is derived from the
block analysis in section 3.1.1. Note that the ratio R4, /N is the average available rank-one
tensors per block. As mentioned earlier, when the available rank-one tensors per block is
small, larger blocks will provide better approximation of the input data. The parameter
p will enforce less aggressive block subdivision at lower rates and more aggressive block
subdivision at higher rate. If the absolute value of the differential average is smaller than
7/p, then subdivision is not required. Otherwise, the block is divided into eight sub-blocks
and the procedure is repeated recursively for each of them.

Figure 3.5 shows an example of the hextree and its corresponding code. Figure 3.6 shows

an exmple of the general 2"-ary tree and its corresponding code. As mentioned before,
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Figure 3.5: An example three levels hextree structure with its corresponding code. Each
branching node has 16 children nodes which can be either a leaf or a branching node as well.

Q) Level [ =1+ 3

® () e Level | = [+ 2

D e Level l =1y +1
Level [ = [

Code: 1 | 0000100000. ..000 | 0000010000. ..000 | 0000000000. ..000

Figure 3.6: An example three levels 2"-ary tree structure with its corresponding code. Each
branching node has 2" children nodes which can be either a leaf or a branching node as well

Depending on the application and its associated data, an n dimensional input tensor can
have different nature along each direction. Therefore, the adaptive tree partitioning should

be able to handle a block with different size along each direction. We use a 2"-ary tree for

(o)

partitioning an n dimensional tensor. It divides a 21 x2Y2 x...x 2" block into a v; —Ullo +1

levels tree. Although the block size may not be equal along the dimensions, we assume that

) (Ip) (lp)

the tree levels are equal in all directions, v1 —v; > +1=vo—vy, ' +1=... =vp—v, " + 1.
L) (o) (o)
Where 271 272 .. .2 is the smallest possible block. The blocks at level [ have the size
(1) () ()
2°1 x2"2 x...x 2% . For dimension d, 0 < UC(ZZO) < vc(ll) <wvg,d=1,2,...,n. Each node

()

10 5 0871

can be a leaf or it can be divided to 2" child sub-blocks with a size of Q(Ul

The dividing procedure is applied to the 2™ sub-blocks recursively until the sub-blocks
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do not require further division or they reach the maximum tree level [y. For a given tensor
block y € R X2@2X"'X2vn), the average variance along each dimension is defined as in
eq. (3.4).

K

S = ZVAR(X@)), d=1,2,....n (3.4)
k=0

Where X (d) is a matrix that results from unfolding the tensor y with respect to the d'h

dimension and K is the number of the columns. The weighted directional variance is defined

as in eq. (3.5).

n
A = Z WqSd (3.5)
d=1

Where Y17 wg = 1. For each block we calculate the average variance at level [ (i.e. Al ),
then we subdivide it into 2" sub-blocks and calculate the average variance for each of them
(i.e. Agl_l),j = 1,2,...,2"). If sum of the average variance of the sub-blocks is smaller
than the average variance of the block, then the blocks will be divided into 2" sub-blocks.

In general a relaxed criteria is used as shown in eq. (3.5).

271
l 2: -1 T
j:

Where p = d(n=1) x Rpaz/N and 7 is a threshold. If the absolute value of the differential
average is smaller than 7/p, then subdivision is not required. Otherwise, the block is divided
into 2" sub-blocks and the procedure is repeated recursively for each of them.

Similar to octree, the 2"-ary tree can be represented with a series of bits. However, as

the dimension grows number of the bits grows exponentially. Arithmetic coding and zero
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trail termination code can be used to reduce the size of the encoded tree.

3.2 Eigenfibers arrangement and coding

Once the eigenfibers are evaluated for all the blocks of a tensor, we can arrange them onto

the columns of a 2D matrix B. Thus, we can apply a 2D compression scheme to this matrix

B, treating it as an image. Subsequently, we can decode its columns, which represent the
(d)

eigenfibers b, 7, to reconstruct the original tensor. Two important questions need to be

answered:
1. How should the eigenfibers b7(~d) be arranged within the matrix B?
2. How much correlation does exist among these eigenfibers?

Recall that under PCP each block has its own rank, and hence we denote R; to represent
the number of rank-one tensors used for approximating block j. Consequently, the total

number of rank-one tensors used for approximating the whole tenor is: Zj\le R;, where N

()

is the total number of blocks. Each 3D rank-one tensor requires three eigenfibers: (b, j

o

)(2) 3

Ry r,j>7 forr=1,...Rj and j = 1,... N; then we have a total of 32;-\7:1 R; eigenfibers

to code.

(d)

v onto the matrix B that we

There are many options for arranging these eigenfibers b
plan to compress as a 2D image. Here, we employ the arrangement shown in the example
of Figure 3.7. In this example, we generated the eigenfibers of 180 frames of the Container
CIF video.

We divided the video into 16x16x180 3D blocks, which results into 396 tensor blocks.

For clarity and ease-of-illustration purposes, we are only showing the eigenfibers for the
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Figure 3.7: FEigenfibers of the PCP tensor decomposition and the rank values R for 50
blocks of the Container CIF video with 180 frames. The figure shows a possible eigenfibers
arrangement for coding and storage.

first 50 blocks chosen in a raster-scan order. All eigenfiber values are mapped from their
normalized [—1, +1] range onto the traditional [0, 255] pixel values. As shown in the figure,

we employ the following arrangement:

()

e Vertical arrangement: The eigenfibers b ; are put at the top of the 2D image; each fiber

is of height 16. Next, the second eigenfibers 65,2} , also with height 16, are placed below
()

g

video-blocks. Meanwhile, the third eigenfibers bf? with height 180 are placed below;

These two groups of eigenfibers capture the 16x16 spatial information of the

and these later eigenfibers capture the temporal information of the 3D video-blocks.

e Horizontal arrangement: More importantly, we separate the eigenfibers associated with
the first rank-one tensors (i.e., for r = 1) from the rest of all other eigenfibers with

higher rank index (i.e. for » > 1). This separation is analogous to differentiating
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between "DC” and 7 AC” coefficients in traditional image and video coding. The left
bright area in the images of figure 3.7 corresponds to these eigenfibers. For higher rank
indices, r > 1, we simply place the eigenfibers according to the blocks they belong to
in a raster-scan order. We have also experimented with other horizontal arrangements
for eigenfibers with r > 1. For example, one can group eigenfibers with r = 2, followed
by ones with » = 3, and so on. We observed little improvement in coding efficiency
while using such arrangement; meanwhile it increases the complexity due to the need

of performing matrix permutations at both the encoding and decoding sides.

Note that, in addition to the eigenfibers, we also have the normalization parameter 3,. Under

the proposed tensor coding framework, we absorb the parameters ;. ; onto the third direction

3)

p g as shown in figure 3.7. There are two benefits for absorbing these parameters

eigenfibers b
onto the eigenfibers. First, we eliminate the need for coding these parameters separately.
Second, this multiplication process improves the correlation among the eigenfibers within
the 2D image as we discuss below.

It is important to note that for a given 3D block, the three eigenfibers (bﬁl), b?), b,(ag))
are expected to be uncorrelated. However, if we consider different 3D blocks of similar
spatial and temporal characteristics, then we anticipate that the eigenfibers across such

blocks to be correlated. Figure 3.8a shows the correlation among the columns of matrix

A that correspond to traditional CP factored vectors (af}},a?},afﬂ?’} ). Figure 3.8b is the
(1) 4@ ;@)

correlation among the columns of matrix B, which are the PCP eigenfibers (b, 510,550,

The bright upper-left region corresponds to the correlation among the first eigenfibers of
each block. These particular (first) eigenfibers, which represent the principle eigenfibers, are

highly correlated. However, they have low correlation with most of the other eigenfibers
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Figure 3.8: The correlation among (a) matrix A columns (i.e. CP vectors); (b) matrix B
columns (i.e. PCP eigenfibers); The correlation among (c) matrix A rows; (d) matrix B

(3) (3)

rows; (e) after A(T,j) absorption onto a6 vectors; and (f) after ﬁ(r,j) absorption onto b;~’.
The video is Container CIF.
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(darker upper panel). As expected, and similar to the original CP decomposition, PCP
provides uncorrelated vectors within each block.

Meanwhile, the entries within the eigenfibers can be correlated. In other words, if we
consider the first row of matrix B then it will be desired to have this row correlated with other
rows within the same matrix. Such intra-eigenfiber correlation is captured by the correlation
among the rows of the eigenfiber matrix shown in figures 3.8c-3.8f. The proposed PCP
decomposition provides higher intra-eigenfibers correlation than what can be achieved under
CP. Assuming R* is known, we decomposed the video using both CP and PCP with the same
R* to obtain a comparable number of factored vectors and eigenfibers in this experiment.
Figure 3.8c is the correlation among the rows of matrix A and figure 3.8d is the correlation
among the rows of matrix B. From figures 3.8c and 3.8d, PCP provides eigenfibers with
higher row correlation than the standard CP. The three square regions on the diagonal are
the intra-eigenfiber correlation of B (1), B (2), and BG) respectively. The other three regions
above the diagonal is the intra-eigenfiber correlation of B with B(2), B with B(?’),
and B(2) with B®), Figures 3.8e and 3.8f show the impact of absorbing the normalization
parameters A, ; (for CP) and §, ; (for PCP) within the corresponding eigenfibers.

The next step is to code the rank parameters R; for all blocks. We simply arrange these
values onto a vector and entropy code them in a lossless manner.

For a higher dimension input tensor we simply add the eigenfibers at the bottom of
the 2D matrix. For example, decomposing an n dimensional input tensor will result in n

eigenfibers. Based on the partitioning method we have two different settings:

1. Uniform partitioning: assuming each block is of size vivs ... vy, the vector that stack
all the eigenfibers of a rank-one tensor will be of size v{ + v9 + ...+ v,. Since all the

blocks are of the same size we can arrange this vectors as columns of the 2D matrix.
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2. Adaptive tree partitioning: in this settings, each block can have a different size. How-
ever based on the tree structure we know the maximum block size and the tree level.
Consequently we can obtain the minimum block size. For a minimum size block we
simply follow the arrangement steps of uniform partitioning. For larger blocks, in
order to maintain consistent column size, we simply store the corresponding eigen-
fibers as multiple columns. Each column has the same size as the vector of eigenfibers
of the minimum size block. For example, assume the size of the minimum block is
v] X U9 X ... X vy and a particular block j has a size of 2v; X 2v9 X ... X 2vy,. The
eigenfibers vector of the block 7 will be of size 2v1 + 2v9 + ... 4 2vy,, therefor we store
this vector as two vectors of size v + vo + ... 4+ v, each to be consistent with the

minimum size block.

3.3 Residual coding

The proposed framework is based on approximating a tensor with a set of rank-one tensors.
If the original tensor is of low-rank we would be able to reconstruct it exactly. However, if
the tensor is close to full rank, at some point no matter how many rank-one tensors we add,
the approximation will not converge to the original one.

The exact or near lossless reconstruction is important for some applications. In order
to present a complete coding framework that would be able to code the visual data tensors
with high quality (near lossless), we employ a residual coding process as shown in figure 3.1.
After approximating a visual data tensor x with the proposed tensor coding framework, we
obtain the final residual x, = x — x where x is the approximation tensor.

Since PCP captured the existing correlation in the input tensor, we code each residual
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slice separately. This would also maintain the random access property. Note that, these
slices can be along any dimensional direction depending on the type of the random access
required in a particular application. For example, image ensemble decoding requires random
access along the third dimension. Consequently, the residual slices are coded separately
along the third dimension. While the rate of coding the residual slices would not be as high
as coding the original images, the scalability of the proposed method provides flexibility for
different applications to reconstruct the data based on their requirement. In this thesis we
used the Amplitude and Group Partitioning (AGP) image coding method [49] to code the

residual.

3.4 Tensor coding properties

The proposed tensor coding framework has some desirable properties. These properties,
individually or combined, result in advantages over standard compression methods in some
applications. In this section Random access, progressive reconstruction, and time complexity

will be discussed.

3.4.1 Random access

Tensor coding has the advantage of random access, which is not the case for the motion based
coding methods and many 3D transform based coding approaches. The motion based coding
methods codes a GOP using a single key frame and the rest are predicted frames. In order to
decode any predicted frame, the decoder need to have all of the previous frames in the same
GOP. The 3D transform based coding methods, take advantage of the existing correlation

along all the dimensions. However they require all the transform domain coefficients to
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reconstruct the original tensor.
In the case of tensor coding, to reconstruct a slice from a 3D tensor, the decoder requires
the first two eigenfibers and a value of the third eigenfiber to decode a slice independently.

In general, any slice can be decoded as shown in eq. (3.7).

R.
J
- _ )R, pGB) Y - _
Slice; j = E 1 (Bj,r oBj, o Bi’j’r),j =1,...,N (3.7)
r=

Where j is the block index, Bj(’lr) and Bj(?r) are vectors, BJ(?;)’ ; 1s a single value from row ¢
of B®). The column indices are either obtained from the octree structure in the case of
adaptive tree partitioning, or from the block number in the case of the uniform partitioning.
The first two eigenfibers can be thought of as basis, while the values from the third eigenfiber
are the coefficients.

For the more general case of an n dimensional tensor, a particular slice can be decoded

as shown in eq. (3.8).

J W, 525G (n)
. n .
Slice; g, iy = E 1 (Bj,r o B o Big,j,r 0...0 Bin,j,r)’] =1,...,N (3.8)
r=

The random access property is not limited to a slice of the first and second dimension
and based on the application a subset of eigenfibers can be selected to reconstruct a slice in
a particular dimension. For example, in hyperspectral images, a vector of values across all
bands for a particular pixel called pixel signature. It provide a valuable information about
the type of the earth materials or the vegetation. When a hyperspectral images is coded with
tensor coding framework, a pixel signature can be reconstructed from a set of eigenfinbers

as shown in eq. (3.9).
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R

. 1 2 3 .
Signature; . j = E <Bz'(1,)j,r o 32(22-’74 o B](ﬂa)),] =1....N (3.9)
r=1

Note that the reconstructed signature is a one dimensional vector and j is the block
. (1) (2) . . (1) (2) .
index, Bi1 i and BZ.2 j o are single values from matrices B\"/ and B'%/ correspondingly, and

Bﬁ? is a vector.

b

3.4.2 Progressive reconstruction and decoding

Unlike CP decomposition PCP factorizes the tensor in a progressive scheme. In other words,
if one derives the CP decomposition using a given rank parameters R, then all of the R
rank-one tensors must be used for reconstructing the approximated tensor x; otherwise, the
quality of the reconstructed tensor is significantly degraded. This is true even if the 3D
block has a low rank; all of the factored vectors should be used in the reconstruction to give
reasonable results. On the other hand, PCP simply improves the quality of the reconstructed
tensor, when increasing the number of rank-one tensors used for reconstruction. Therefore,
a subset of the eigenfibers can be used to reconstruct a lower quality result.

Figure 3.9 shows a frame from the "Red Flower” CIF video encoded by the proposed
tensor coding framework with a total number of rank-one tensors equal to 6000 and then
decoded using (a) 1000, (b) 2000, (c) 3000, and (d) 4000 rank-one tensors. Increasing number

of rank-one tensors, result in gradual increment of the video details.

3.4.3 PCP time complexity

The most time-consuming operation of the PCP decomposition is the Khatri-Rao product

(1)

in eq. (2.9). For example to find by U \ve need to calculate 27(}) and X/(l),k' The first term
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Figure 3.9: "Red Flower” CIF video encoded by tensor coding with a total of 4000 rank-one
tensors. Uniform partitioning was used with block size of 1616180. The video decoded with
(a) 1000 (93 Kbps 30.43 dB), (b) 2000 (205 Kbps 35.76 dB), (c¢) 3000 (320 Kbps 38.49 dB),
(d) 4000 (433 Kbps 40 dB), rank-one tensors.

is of order O (v9vg) while the second one is of order O (vivov3). Recall that vy X vy X vg is
the size of the 3D tensor block. The time complexity of all three decomposed eigenfibers and
all other extra operations can be captured by a constant term (p). The total complexity of
coding a visual data ensemble with tensor coding framework is O (pvlvgvg Zévzl Rj) where

N is the number of blocks, and R; is the number of rank-one tensors used to reconstruct
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block j. Note that to solve for b:f(l) we are using ALS, which is an iterative approach. The
complexity of all the iterations is captured by p.

PCP reconstructs a 3D tensor as in eq. ((2.7)). It consists of outer product of decom-
posed eigenfibers and then addition of rank-one tensors. Overall there are vivoug é-vzl R;
multiplications and viv9ug Zévzl R; additions; where N is the number of blocks. Hence, the
complexity of the decoding algorithm is of order O(2vv9us Eévzl Rj).

For an n dimensional tensor, the PCP reconstruction shown in eq. (2.10) has a time
complexity of O (pvlvg . Up Z“;Vzl Rj>. Where N is the number of the blocks. Note that
this time complexity accounts for the PCP decomposition only and despite the used tensor
partitioning approach. The adaptive tree partitioning time complexity should be considered

as part of the overall tensor coding complexity.
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Chapter 4

Tensor coding applications

The proposed tensor coding framework is optimized for visual data, however it can be applied
to any type of data. It is designed to be able to represent and code input tenor with any
dimension efficiently specially 3D and above. In this thesis, the framework is applied to three

applications which are

1. Hyperspectral and multispectral images. Multiple experiments have been done for

both 3D and 4D input data tensors.
2. Biometric face image ensembles which are 3D tensors.

3. Low complexity video coding in which a video is treated as a 3D tensor.

4.1 Hyperspectral image coding

Unlike the conventional imaging systems that measure the energies in the visible light spectral
bands, the hyperspectral imaging system measures the energies in a broad range of spectral
bands. The number of spectral bands can range from 8 in Landsat data sets up to 200 in the
multispectral data sets. While most of the bands do not provide visual information, they
contain a vital scientific information about the earth and atmosphere. An efficient system
for representation and coding of hyperspectral images is essential especially considering the

fact that the amount of this type of images are growing rapidly.
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While each band has its characteristics, there is a high amount of correlation among
them that can be exploited for compression. Various 3D-wavelet based compression meth-
ods are proposed to exploit this correlation [50-53]. However, the random access property
is not preserved in these methods. Fast random access property is playing a key role in
providing efficient browsing experience. Suppose that we want to download a specific band
of a hyperspectral images available on a server. Under the 3D-wavelet methods, the whole
compressed data should be available to reconstruct the original data and then access that
particular band. Depending on the size of the image, network quality, and the server band-
width /traffic, obtaining the complete compressed data can be inconvenient.

The proposed tensor representation and coding can provide a random access while deliv-
ering a better compression than the single image compression methods [54]. Further more,
the inherited scalable coding property of the proposed method can provide reconstruction
with variable quality. The scalability property contribute in efficient functionality. For ex-
ample we can use a lower quality reconstruction for classification. Also, the proposed method
capable of fast decoding which is a key component of the efficient browsing. The inherited
scalable coding property of the proposed method can provide reconstruction with variable
quality. Furthermore, with the residual coding capability the high frequency data can be

reserved and delivered whenever desired.

4.1.1 Experimental results

The proposed tensor coding framework was employed to code a set of 3D hyperspectral
images from AVIRIS data set [55] and multispectral images from Landsat data set [56]. All
the experiments were evaluated at a desktop computer with 12 GB of memory and an Intel

Core i7 2600 CPU (8MB Cache, 3.4 GHz).
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Figure 4.1: Indian_pine PSNR vs bpppb comparison among TC with different block sizes,
TC with octree and JPEG2000.

In the first experiment we decomposed the Indian_pine hyperspectral image data with
different number of eigenfibers to limit the rate and consequently the final storage size. The
Indian_pine data set consists of 200 spectral bands and the spatial resolution is 144 x 144.
Figure 4.1 shows the PSNR vs bit per pixel per band (bpppb) plot. Tensor coding results
with different block sizes and octree block structure are compared to the JPEG2000. We
used an octree with three levels and the largest block size of 48 x 48 x 200. The weights
in eq. (3.2) are equally distributed and the threshold in eq. (3.3) is set as 1% of the parent
block variance.

Similar to the discussion in the section 3.1.1, Figure 4.1 shows that for smaller rate, the
larger block sizes provide better compression at lower bitrates. However they cross over at
some point and at higher bitrates smaller block sizes provide better compression. On the
other hand, octree delivers a consistent better compression by choosing a variable block size
based on the region and the available bitrate.

A critical illustration for how effective such decomposition can be is how does it impact

the spectral profile of individual physical locations across bands. The spectral profile is a

92



5000 —r—
— Original
2 —— Compression ratio 63
4000 ‘ . - — - Compression ratio 37 1
S Compression ratio 14 (near lossless)

Q \
>
® 3000 f s
>

2000¢ : ‘ O

1000 | | | | | | | | | | | | | | 1 | | | 1

0 10 20 30 40 50 60 70 80 90 100110 120130 140 150 160 170 180 190 200
Spectral band

Figure 4.2: The spectral profile over 200 bands of a particular spatial location from the
Indian_pine data shown in Figure 4.3. Three reconstructed spectral profiles based on the
proposed framework at different bitrates are shown.

key piece of information that scientists rely on to analyze the data. The spectral profile
of the Indian_pine is shown in Figure 4.2. Our simulation results show that reconstruction
with two order of magnitudes of compression ratio provides spectral profiles that track the
original one very closely therefore it can be used in applications like classification and pattern
recognition. The scalability of the proposed tensor coding method provide a flexibility on the
reconstructed signature quality. However there is a trade off between the the reconstructed
signature precision and the compression ratio.

A similar experiments were done for different hyperspectral images from AVIRIS image
data sets. Table 4.1 shows the bitrate comparison between tensor coding and JPEG2000 at
a particular PSNR for these hyperspectral images. The results show the advantage of tensor
coding in exploiting the correlation over a standard 2D compression method.

In different encoding scenario, we set the Rj,q, value to 100 and 1000 which result in
average of 1.39 and 6.95 eigenfibers per block respectively. Furthermore to achieve near loss-

less compression, when coded with Rjq. = 1000, we encoded each residual slice (difference
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Table 4.1: bitrate comparison between tensor coding and JPEG2000 for various hyperspec-
tral images from AVIRIS data set.

Tensor coding JPEG2000

Image

bitrate(bpppb) | PSNR(dB) | bitrate(bpppb) | PSNR(dB)
Cuprite 0.20 42.82 0.41 42.83
Pavia University 0.20 51.90 0.53 51.94
Botswana 0.20 52.95 0.42 52.94
Salinas 0.20 66.17 0.90 66.17
Indian pines 0.20 55.29 0.66 55.32

between original and reconstructed slices) using AGP image coding [49]. Figure 4.3 shows
the reconstruction results. Note that for illustration purpose only RGB bands are shown.
In addition to the efficient and scalable representation ranging from more than two orders
of magnitude to one order of magnitude in compression ratios (for near lossless), the time
for reconstruction ranges from 0.6 to 1.35 per one 2D slice (using MatLab). This enables
reconstruction of 100 low-resolution slices to more than 40 high-resolution slices per second.
The decoding process time complexity can be further reduced through using C/C++ im-
plementation with parallel computing capability. In this experiment, for R;qr = 100, we
obtained a compression ratio equal to 228 and the average decoding time of 0.6 msec/slice.
For Ry,q: = 1000, the compression ratio was 61.5 and the average decoding time was 1.35
msec/slice. Finally, the near lossless coding compression ratio was 10. Note that here the
compression ratio is the ratio between the actual bits needed to store the compressed data
and the original image bits.

In another experiment, we conducted 3D representation of high-resolution 2K x 2K pixels
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Figure 4.3: A hyperspectral 3D imaging data and its reconstructed representation using
a progressive number of 3D eigenfiber sets. Compression ratios raging from one order of
magnitude (near lossless) to more than two orders of magnitude. (b) Original Indian_pine,
(b) 100 eigenfibers, compression ratio 213, (¢) 1000 eigenfibers, compression ratio 37, (d)
1000 eigenfibers plus residual coding, compression ratio 10.
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of Landsat data across 20 time instances. The Landsat images are multispectral that have
fewer spectral bands comparing to hyperspectral. However, Landsat takes periodic images
of the same region. While the spectral direction of the data set have some correlation, there
is a large amount of correlation in the time direction. For this experiment we used the below

coding scenario to evaluate and compare the higher dimension tensor coding.

1. The Landsat multispectral images have six spectrum. We aligned the 20 time instances
of each spectrum in a 3D tensor. As a result, six 3D tensors were encoded with the

proposed framework.

2. The Landsat multispectral images were aligned in a 4D tensor. The dimensions are
two spatial, time, and spectrum. Then a hextree was used to represent the tensor

partitioning and a 4D tensor coding framework was applied to code the data.

We compared the compression ratio of these two scenarios at different bitrates. Figure 4.4
shows the bitrate vs. PSNR plot for the Lake multispectral image. The lowest bitrate
point achieved by the 4D tensor coding framework was 0.0072 bpppb. It translate to a
compression ratio of 1111. The corresponding PSNR was 31.5. The encoding time at this
particular bitrate point was 13.2 seconds per slice and the decoding time was 114 milliseconds
per slice. In other words, the 4D tensor coding framework can decode about 9 slices per
second at the bitrate of 0.0072 bpppb. Figure 4.5 shows the decoding time comparison along
different bitrates between the 3D and 4D tensor coding for the Lake multispectral image.
The decoding times of 4D and 3D tensor coding at lower bitrates were close. However the
gap was gradually increased as the bitrate was increased.

Figure 4.6 shows the original image along with the 3D tensor coding reconstruction results

at different compression ratios. The compression ratios were ranging from 1142 to 340 which
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Figure 4.4: Lake multispectral image PSNR vs bpppb comparison. The compression result
of 4D tensor coding with hextree partitioning is compared with 3D tensor coding with
octree partitioning. 4D tensor coding achieves higher compression by exploiting the existing
correlation along all the dimension of the lake multispectral image.
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Figure 4.5: Lake multispectral image decoding time comparison. The decode time per slice
is shown in milliseconds for 4D and 3D tensor coding. At lower bitrates the decoding time
is close while in the higher bitrates the 4D tensor coding results in higher decoding time.
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are quite significant. Note that at compression ratio 1142, each block is represented by only
one rank one tensor. Since each block needs to be represented at least with one rank one
tensor, this compression ratio represent a lower boundary on how much compression the 3D
tensor coding can achieve.

Figure 4.7 shows the original image along with the 4D tensor coding reconstruction results
at different compression ratios. The compression ratios were ranging from 6154 to 769. The
4D tensor coding can achieve better quality reconstruction at the same compression ratio
compared to the 3D tensor coding. This is due to the fact that the 4D tensor coding takes
advantage of the correlation along the fourth dimension. Also, note that 4D tensor coding

can encode at lower bitrates compared to 3D tensor coding lower boundary.
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Figure 4.6: 3D tensor codlng of high-resolution 2K x 2K plxels across 20 time instances
of Landsat data. (a) original image, (b) compression ratio = 1142 and PSNR = 29, (c)
compression ratio = 727 and PSNR = 30.83, (d) compression ratio = 534 and PSNR =
31.73, (e) compression ratio = 421 and PSNR = 32.37, (f) compression ratio = 340 and
PSNR = 32.88.
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Figure 4.7: 4D tensor codlng of high resolution 2K x 2K plxels across 20 time instances
of Landsat data. (a) original image, (b) compression ratio = 6154 and PSNR = 27.29, (c)
compression ratio = 4210 and PSNR = 29.43, (d) compression ratio = 3077 and PSNR =
30.43, (e) compression ratio = 1429 and PSNR = 31.02, (f) compression ratio = 769 and
PSNR = 32.22.
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4.2 Image ensembles coding

Image databases represent a core component of many well-established and emerging applica-
tions and services including ecommerce and security. For example, image databases of faces,
fingerprints, and eye retinas are used extensively for biometric and other security-related
applications. Such databases store a vast number of images of the same type, and yet, tradi-
tional compression standards are used to compress and store these images without exploiting
the correlation that potentially exists among the images within the same database.

For example, the ISO/IEC 19794 standard on biometric data interchange format defined
JPEG and JPEG2000 as admissible lossy compression methods. A key driver for encoding
each image in isolation of other images within the same database is the ability to access and
decode any image without the need to access/decode other images. Such requirement elim-
inates popular video coding standards as viable candidates for coding still-image databases.
Employing the proposed tensor coding framework can achieve both: (a) random access to
any image within a collection of images coded jointly and (b) coding efficiency by exploiting

any potential correlation that may exist among the images within the same database.

4.2.1 Experimental results

The proposed method was applied to the Yale Face Database B [57]. The database has images
of 38 persons. Each of them has 64 images of size 192 x 168. These images vary in expression
and illumination condition. After stacking the images on top of each other, we have a 3D
tensor of size 192 x 168 x 2432. The resulting tensor is decomposed using PCP and the
eigenfibers are arranged in 2D matrices. Then the result is compressed by JPEG2000. Within

the context of our proposed image-ensemble tensor based compression, we compare the
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Figure 4.8: Average PSNR plot of 38 persons face images from Yale Face Database B versus
the average storage size required per image.

following tensor decomposition approaches and existing still-image compression standards

used in image databases:

1. Block-wise PCP-decomposition. The block size is 16 x 21 x 64 and the value of v is

changed to control the final storage size.

2. Block-wise CP-decomposition. The block size is the same as in method (1) and the
value of v is changed to compare the results for different compaction ratios. Here, we
used the same structure as in 3.1 except the decomposition method is replaced with
CP and JPEG2000 lossless mode is used since small changes in the CP decomposed

vectors can lead to large error in reconstruction.

3. Storing each image separately using JPEG2000 standard. The MATLAB implementa-

tion is used.

Figure 4.8 shows the reconstruction PSNR averaged over 38 persons versus the required
space (in Kbytes) for all the 64 images of a person averaged over 38 persons. Over a wide-
range of bitrates, PCP outperforms other methods. Figure 4.9 shows the PCP R values

for the blocks of an image encoded at two different bitrates. Notice that when we increase
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Figure 4.9: PCP R values for the blocks of an image encoded at a) 288 Bytes b) 979 Bytes. As
the allocated number of rank one tensors is increased, the tensor coding framework allocate
a higher number of rank one tensors to the blocks with more information. For example the
blocks that contains the eyes and the mouth

the Rqr value, our algorithm allocate larger R values for the blocks that contain more
information. In the case of the Yale Face Database, those regions are around the eyes, nose
and the mouth. Figure 4.10 shows one of the reconstructed images using above methods and
standard JPEG along with MATLAB implementation of Motion JPEG2000. Figure 4.11
shows the reconstruction results at higher bitrates. At higher bitrates, except for JPEG, all
of the methods have close PSNR and the visual quality is similar.

Based on the progressive nature of PCP, its time complexity is linear as a function of
the number of rank-one tensors. CP factorization (i.e., the encoding side) has a quadratic
complexity as a function of R. Either case (PCP or CP), the decoding complexity is on the
same order as a traditional JPEG2000 decoding. Figure 4.12 shows the time complexity,
where the decomposition methods are evaluated at a desktop computer with 12 GB of

memory and an Intel Core i7 2600 CPU (8MB Cache, 3.4 GHz).
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Figure 4.10: (a) Original image; (b) tensor coding with PCP (288 Bytes, 30.1 dB) ; (
coding with CP (286 Bytes, 28.98 dB) (d) JPEG2000 (291 Bytes, 25.68 dB); (e
JPEG2000(292 Bytes, 24.63 dB); (f) JPEG (790 Bytes, 25.19 dB).
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Figure 4.11: (a) Original image; (b) tensor coding with PCP (979 Bytes, PSNR: 34.5); (c)
tensor coding with CP (986 Bytes, PSNR: 32.6); (d) JPEG2000 (975 Bytes, PSNR: 35.27);
(e) motion JPEG2000 (990 Bytes, PSNR: 35.1); (f) JPEG (999 Bytes, PSNR:29.1).

¢) tensor
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Figure 4.12: Average a) decoding b) encoding time of 38 persons face images from Yale Face
Database B versus the average storage size required per image.

These simulations confirm the conjecture that one can achieve highly-efficient progressive
coding of image ensembles while maintaining low-complexity random access to any desired

image when employing tensor-based decomposition.

4.3 Low complexity video coding

The proposed framework does not rely on any form of Motion Estimation (ME) or Motion
Compensation (MC). It can be targeted for applications and devices that tolerate delay but
require low-complexity at both the encoder and decoder. We show that for low rank videos,
TC outperforms the video coding schemes that do not employ ME. Among such video cod-
ing schemes, H.264/AVC-Intra [58,59] are based on coding each frame without exploiting
temporal redundancy. Distributed Coding for Video Services (DISCOVER) codec [60] is
based on Wyner-Ziv coding with side information [61,62]. H.264/AVC-no motion [58] codes
a Group Of Pictures (GOP) such that the first frame is coded as a reference (i.e. I frame)
and the other frames in the same GOP are coded as predicted pictures. This latter coding

scheme exploits the temporal redundancy without employing any ME. Another set of low
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complexity video coding schemes are based on dimensionality reduction by means of multidi-
mensional decomposition. Two-dimensional Singular Value Decomposition (2DSVD) [14,63]

video coding is one of the recent developed frameworks in this family [13].

4.3.1 Experimental results

In our simulations, we simply employed JPEG2000 to compress the eigenfibers’ matrix.
Huffman and run-length coding was applied to compress the rank-values R;. The proposed
tensor coding was evaluated by comparing it with four encoders. They have in common the
property of low complexity encoding. We did not show comparison results with the High
Efficiency Video Coding (HEVC) standard because of its encoding complexity. Even Intra
coding of HEVC has higher complexity in comparison with H.264. Figure 4.13 shows (a)
encoding, (b) decoding time comparison between HEVC Intra and H.264 Intra for Container
video. While HEVC Intra is significantly more complex than H.264 Intra, it achieves 1.24
dB average PSNR increase. In this experiment HHI HEVC software revision 3604 [64] was
used at a desktop computer with 12 GB of memory and an Intel Core i7 2600 CPU (8MB
Cache, 3.4 GHz).

The following five video codecs were used in our simulations:

1. H.264/AVC-no motion with high profile, GOP of size 24 and number of reference frames

equals to one. The JM18.4 version implemented in C/C++ available at [65] was used.
2. H.264/AVC-Intra with high profile (JM18.4 version).

3. Scalable video coding with 3D set partitioning in hierarchical trees (3D SPTHT) [66-68].

The C/C++ implementation is available at [69]. In this implementation the GOP size
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Figure 4.13: HEVC Intra and H.264 Intra time complexity comparison for container video.
(a) Encoding time, (b) Decoding time.

is 16. The value of bit per pixel (bpp) was changed accordingly to achieve different

bitrates.

4. DISCOVER DVC intra codec [60] with GOP size of two. The C/C++ implementation

available at [70] was used.
5. The proposed tensor coding framework implemented in MATLAB.

First, we present the PSNR results and corresponding plots for 180 frames of four CIF
videos available at [71-73]. Note that the DISCOVER codec requires odd number of frames
to code them. We used 179 frames of the test video sequences when coding with DISCOVER
codec. Also, the parameters were assigned in a way to keep the PSNR values of both key and
Wyner/Ziv frames close together. For tensor coding, we changed the block size to obtain

the highest possible PSNR at different bitrates.
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Figure 4.14: PSNR vs. bitrate plots of (a) Container,(b) Silent, (c) Bridge Close video.
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Figure 4.15: PSNR vs. frames plots of (a) Container (500 Kbps), (b) Silent (699 Kbps), (c)
Bridge Close (380 Kbps) videos encoded with TC and SPIHT. Tensor coding maintains a
more uniform PSNR across the frames while the SPIHT quality tends to degrade as it get
closer to the end of the GOP.

The PSNR plots are shown in Figure 4.14. Our proposed method outperformed all other
encoders except for higher bitrates of the Container video where 3D SPIHT provided higher
average PSNR. Even though 3D SPIHT on average performed better than our method, it
suffers from wide PSNR variation within each GOP, and with very visible degradation that
is quite significant toward the end of the GOP. In particular, 3D SPIHT results in high
PSNR differences among the frames at the beginning of the GOP in comparison with frames
at the end of the GOP, especially for videos that have frames that tend to change within

a GOP. Figure 4.15 shows the PSNR versus frame sequence of Container and Bridge Close
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Figure 4.16: Frame 14 of the Container CIF video. (a) original video, (b) tensor coding
(731.07 Kbps; 37.39 dB), (c¢) H.264/AVC-no-motion (732.09 Kbps; 35.26 dB), (d)DISCOVER

DVC (735.53 Kbps; 34.06 dB), (e) H.264/AVC-Intra (753.96 Kbps; 30.02 dB), (f) SPIHT
(732.94 Kbps; 38.22 dB).
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Figure 4.17: The first frame of the Bridge Close CIF video. (a) original frame, (b) tensor
coding (202.74 Kbps; 33.48 dB), (¢) H.264/AVC-no-motion (209.29 Kbps; 32.21 dB), (d)
DISCOVERDVC (274.77 Kbps; 28.32 dB), (e) H.264/AVC-Intra (218.41 Kbps; 26.71 dB),
(f) SPIHT (203.77 Kbps; 31.81 dB).
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videos encoded using tensor coding and 3D SPTHT. At low bitrates, the PSNR variation of 3D
SPIHT was noticeable. Hence, such wide variation in visual quality is arguably unacceptable
for many applications.

Figure 4.16 shows frame number 14 of container video. The original frame was com-
pared with the decoded frame of five different codecs in this case. The video was coded at
approximately 730 Kbps. For this particular frame, tensor coding had lower PSNR at this
bitrate than the 3D SPIHT. Meanwhile, tensor coding decoded the frame with more details
(especially the water region) in comparison with the other decoders.

Figure 4.17 shows the first frame of ”Bridge Close” video. The original frame was com-
pared with the decoded frame of the five encoders as in the previous experiment. The video
was coded at approximately 210 Kbps. In this example, tensor coding outperformed all other
five codecs both in terms of PSNR and visual quality. The details of the bridge are more
visible in the frame decoded with tensor coding in comparison to the other methods. Due
to the aforementioned issues with 3D SPIHT, and in particular the significant variation in
visual quality within each GOP, we focus the remainder of this section on comparing tensor
coding with the other three leading coding systems.

In another experiment, we encoded ten CIF videos at two levels of PSNR to compare
the bitrate and the time complexity. The results for the relatively low PSNR are shown in
Table 4.2. Table 4.3 shows the results corresponding to encoding the same videos but at
relatively higher PSNR values. The encoders were evaluated at a desktop computer with
12 GB of memory and an Intel Core i7 2600 CPU (8MB Cache, 3.4 GHz). Tensor coding
provides the best bitrate results and very competitive encoder/decoder times at low bitrates.
As expected, DISCOVER DVC provided the best encoding times but at a significant penalty

at the decoder side. For videos with low motion, tensor coding encoding time was even
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smaller than DISCOVER DVC. However at higher bitrates the encoding time was higher
than other methods. The tensor coding decoding time was consistently the lowest at both
the low and high PSNR levels. Overall, tensor coding provided a good balance of coding

efficiency and low-complexity despite its MATLAB implementation.
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Table 4.2: The encoding/decoding time, PSNR and bitrate of ten CIF videos with 180
frames using four coding methods. Relatively-low and (almost) the same PSNR values were
targeted for this experiment to compare the bitrate and time complexity.

2 T8 Z|e =
] 21 o T |leo T
= 0o |9 3
. = M5 E|& E
Video Method PSNR(AB) |2 =S|k £ | A &
H.264/AVC-no motion 30.35 276 7 2.9
H.264/AVC-Intra 30.02 754 96 7.7
Container
DISCOVER 30.29 424 58 803
TC 30.18 114 81 1.4
H.264/AVC-no motion 30.96 192 88 4.2
H.264/AVC-Intra 30.37 672 111 9.6
Silent
DISCOVER 30.45 456 54 1367
TC 30.97 116 68 1.3
H.264/AVC-no motion 32.55 120 72 3.62
Mother
H.264/AVC-Intra 32.38 284 89 7.7
and
DISCOVER 32.94 227 54 1059
Daughter
TC 32.64 98 65 1.2
H.264/AVC-no motion 32.12 209 75 2.5
H.264/AVC-Intra 32.6 1264 104 8.3
Bridge Close
DISCOVER 32.64 788 64 1173
TC 32.29 100 64 1.3
H.264/AVC-no motion 37.02 ol 76 2.7
H.264/AVC-Intra 37.03 638 97 7.9
Bridge far
DISCOVER 36.84 493 58 1517

74



Table 4.2: (cont’d)

TC 37.03 33 25 0.7
H.264/AVC-no motion 26.53 219 81 3.6
H.264/AVC-Intra 26.43 433 93 8.7
Waterfall
DISCOVER 26.37 276 53 971
TC 26.68 148 80 1.7
H.264/AVC-no motion 32.56 109 89 3.23
H.264/AVC-Intra 32.01 588 114 9.1
Vassar View 0
DISCOVER 32.29 382 68 995
TC 32.43 83 45 1.1
H.264/AVC-no motion 32.44 231 76 3.4
H.264/AVC-Intra 32 785 97 7.9
News
DISCOVER 32.04 486 59 1044
TC 32.49 230 113 2.5
H.264/AVC-no motion 32.52 124 84 24
H.264/AVC-Intra 32.06 1645 109 9
Red Flower
DISCOVER 32.18 776 73 791
TC 32.48 100 38 1.2
H.264/AVC-no motion 32.68 117 86 3.1
H.264/AVC-Intra 32.11 672 95 7.8
Hall
DISCOVER 32.38 434 58 922
TC 32.67 98 36 1.2
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Table 4.3: The encoding/decoding time, PSNR and bitrate of ten CIF videos with 180
frames using four coding methods. Relatively-high and (almost) the same PSNR values
were targeted for this experiment to compare the bitrate and time complexity.

2 T8 Z|e =
] 21 o T |leo T
= 2|9 3
. 2 Mg E|& E
Video Method PSNR(AB) |2 =S|k £ | A &
H.264/AVC-no motion 39.88 1902 125 6.5
H.264/AVC-Intra 38.91 3184 125 9.6
Container
DISCOVER 39.47 1800 100 1020
TC 39.36 | 1214 448 3.1
H.264/AVC-no motion 39.74 1216 118 5.5
H.264/AVC-Intra 39.16 3749 151 11.5
Silent
DISCOVER 38.74 2074 101 1843
TC 39.73 1112 320 2.4
H.264/AVC-no motion 39.28 776 88 5.3
Mother
H.264/AVC-Intra 39.70 1203 116 9.6
and
DISCOVER 39.62 740 72 1143
Daughter
TC 39.97 736 154 1.9
H.264/AVC-no motion 39.94 2038 125 5.9
H.264/AVC-Intra 39.28 3964 137 10.4
Bridge Close
DISCOVER 39.28 2665 119 2069
TC 39.96 1975 329 3.73
H.264/AVC-no motion 39.08 446 95 4.6
H.264/AVC-Intra 39.23 1370 122 10.1
Bridge far
DISCOVER 39.31 1045 70 2092
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Table 4.3: (cont’d)

TC 39.20 332 208 3.6
H.264/AVC-no motion 32.44 1984 112 8.6
H.264/AVC-Intra 32.66 2389 129 10.9
Waterfall
DISCOVER 32.38 1093 72 1219
TC 32.50 1291 373 3.4
H.264/AVC-no motion 39.32 695 116 4.3
H.264/AVC-Intra 39.17 2733 141 10.2
Vassar View 0
DISCOVER 39.01 1799 92 1719
TC 39.22 636 183 1.9
H.264/AVC-no motion 39.52 879 97 4.6
H.264/AVC-Intra 39.38 2085 112 9.4
News
DISCOVER 39.14 1308 87 1749
TC 39.91 850 188 2.2
H.264/AVC-no motion 39.18 598 110 3.3
H.264/AVC-Intra 39.06 4159 137 10.9
Red Flower
DISCOVER 39.42 2169 99 1465
TC 39.86 494 87 1.6
H.264/AVC-no motion 39.89 736 104 5.1
H.264/AVC-Intra 39.43 1990 116 9.4
Hall
DISCOVER 39.26 1467 75 2703
TC 39.84 634 122 2.2
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Chapter 5

Super-resolution for reconstructing

high frequency data

We first present a brief introduction to spatial ISV in the context of the proposed framework.
Subsequently, the overall architecture of the proposed super-resolution based spatial ISV

system is explained in details.

5.1 Spatial ISV with Hybrid Super and Base Frames

Figure 5.1 shows the proposed hybrid two-layer spatial ISV with super and base frames. The
base layer (B(F;)) is the sequence of the down-sampled video where the Fj is the frame i.
The down-sample ratio can be any reasonable value. The enhancement layer (E(F;)) is the
difference between the up-sampled base layer and the original video. In other words, the
enhancement layer carries the high frequency components. Dropping the enhancement layer
can reduce the required bandwidth to stream the video. However the mere up-sampled base
layer would result in blurry frame and noticeable quality drop.

In the proposed framework, a few frames are encoded and/or transmitted /received with
the enhancement layer. We refer to such frames as super-frames. The remaining frames
are encoded and/or transmitted/received using the base layer only. We call these frames

base-frames. Hence, the decoder receives a hybrid of super-frames and base-frames. This
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Figure 5.1: Encoder diagram of the proposed spatial ISV with hybrid two-layer spatial video
coding that consist of the super-frames and the base-frames. The process of generating the
base and the enhancement layer is shown.

encoding framework would enable the use of high frequency data in super-frames to enhance
the base-frames. In other words, the super-frames can be used to build a dictionary for
the super-resolution method. Encoding a few frames with enhancement layer enables saving
bandwidth and/or reacting to changing network conditions.

Under the proposed framework, a Group Of Pictures (GOP) is defined as a set of one
super-frame and all remainder frames are base-frames. In general, the super-frame could
be placed within anywhere with a GOP. However, for simplicity of implementation and
simulation, we place the super-frame as the first frame within a GOP. It is important to
note that a larger GOP size would result in a smaller required bandwidth. At the receiver
side, the decoded video consists of frames with two different spatial sizes. The super-frames
are added to the display sequence directly since they have the same resolution as of the final
display sequence. They are also used to extract the high frequency data. The base-frames

are up-sampled and then super resolved using the proposed framework. Finally, they are
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Figure 5.2: The proposed decoder structure with super-resolution framework for a two-layer
ISV encoded video. The final reconstructed display video consists of super-frames and base-
frames. The super-frames are added directly while the base-frames are super resolved to
improve their quality.

added to the display sequence. Figure 5.2 shows the proposed decoder structure and the

process of reconstructing the final display video.

5.2 Super-resolution framework for ISV

The proposed framework is similar to an unsharp masking where the blurred copy of the
frame is obtained by a down-sampling filter followed by an up-sampling filter. A bilinear
or bicubic filter can be used. The unsharp mask SFp is obtained using the difference
between the decoded super-frame and an up-sampled version of its low-resolution picture as
in eq. (5.1).

SFp = SF — SFy (5.1)

Here, SFp is the residual (unsharp mask), SF is the decoded super-frame, and SFyg =
UP(DOWN(SF)). Both SFr and SFp are stored in buffers to be used for super resolving
base-frames. Once a new super-frame is decoded, the process of extracting high frequency

data will be repeated and the buffers will be updated with the new data.
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Each base-frame was up-sampled and then super resolved. The super-resolution was
applied in a block-wise approach. We used the blocks that are defined by the quad tree
structure of the encoder. The blocks are of different sizes ranging from 4 x 4 up to 64 x 64.
Since the quad tree structure is on the base-frame with smaller size, up-sampling results in
larger block sizes. For example if the base-frame is scaled up by 2 at each direction, then
the block sizes would be from 8 x 8 up to 128 x 128. Based on experiment, we find out that
in this case, dividing the block size by two at each direction and maintaining the 16 x 8 and
8 X 16 as the minimum block size gives the best result.

For each block of BFYy, a block-wise search was applied to find a match in SFf. Here,
BFy is the up-sampled base-frame. The window of the search can be restricted to decrease
the complexity. In our experiments, the window was 64 pixels from each direction of the
current block. Sum of the absolute value was used as the error measure. Eq. (5.2) shows the

block-matching minimization.

k* = argmin SUM (‘SFJISI_BF}{D (5.2)
k

Where j is the index of the block to be super resolved, k is the index of a matching block
in SFy, SUM() is the sum of all the elements in a block. After finding k, we super resolve

block j by adding the corresponding high frequency data from SFp:

FJ = BFJ + SFh (5.3)

The overall proposed algorithm is as follow:
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Algorithm 3 super-resolution for ISV

Input: Hybrid spatial SVC encoded video.
Output: Super resolved decoded video
if super-frame then
Decode the frame and send to the output stream
Compute and store SF in a buffer.
Compute SFR as in Eq. (5.1) and store the result in a buffer.
else
Decode and up-sample the frame
for block £ in the quad tree structure do
Search for a match in SFy as in Eq. (5.2)
Find the corresponding high frequency data from SFp.
Super resolve the current block as in Eq. (5.3).
end for
Send the super resolved base-frame to the output stream.

end if

5.3 Experimental results

The proposed framework was implemented within spatial SVC of VP9 version 1.3.0. A
video was encoded in two spatial layers. The base layer was half of the display video at each
direction. The enhancement layer was the same size as the display video. The enhancement
layer of the base-frames was dropped based on the GOP size. GOP sizes 2, 5, 10, 15, 20, 25,
and 30 were used for comparison.

The result of using quad tree blocks was compared with various fixed-size blocks. The
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Figure 5.3: The quad tree block structure which was used for the proposed super-resolution
framework. The frame is the 25th frame of the in_to_tree.

block sizes were 8 x 8, 16 x 16, 32 x 32, and 64 x 64. The quad tree block was divided into
four sub-blocks to compensate for up-sampling. Figure 5.3 shows the structure of the quad
tree on the 25th frame of the in_to_tree video. In this experiment 150 frames of in_to_tree
720p video were encoded at 4 Mbps. The search box for block matching was 64 pixels from
each direction. For down and up sampling we used bilinear interpolation filters. Figure 5.4
shows the PSNR result versus GOP size. Note that for the smaller GOP, larger block size
has higher PSNR result while for larger GOP the larger blocks result in lower PSNR. This
is mainly because of the fact that at a longer distance from the super-frame, finding a good
match for larger block sizes becomes harder. Using the quad tree keeps a good balance
between the smaller and larger GOP.

In another experiment, 150 frames of in_to_tree, shields, and old_town videos were en-
coded with VP9 SVC at various bitrates. All the videos were 720p. They were encoded
with two layers. The base layer was half of the enhancement layer at each direction. The
enhancement layer of the base-frames was dropped. Then at the decoder, the following

methods were used to up-sample the base-frames:
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Figure 5.4: PSNR comparison of the proposed super-resolution framework when applied to
quad tree and various fixed size blocks.
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Figure 5.5 shows the PSNR vs. bitrate plots that compares the above up-sampling
methods. In this experiment the GOP size was 15. Note that using bilinear or bicubic up-
sampling with the proposed super-resolution framework, changes the PSNR result slightly.
This is because of the fact that using bicubic up-sampling would result in more high frequency
components in SFy and consequently less high frequency components in SFr. Also, BFy in
eq. (5.3) would have more high frequency components due to bicubic up-sampling. However,
the SF'p high frequency components decrease almost cancel out the difference.

Table 5.1 shows the PSNR comparison between bicubic up-sampling and the proposed

super-resolution framework for various videos with GOP of size 5.
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Figure 5.5: PSNR results of the super-resolution with bilinear up-sampling, super-resolution
with Bicubic up-sampling, bilinear up-sampling, and Bicubic up-sampling of (a) Intotree,
(b) shields, and (c) old_town.
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Figure 5.6: Frame 27 of the (a) original, (b) bilinear up-sampling and the proposed super-
resolution framework, (c) bilinear up-sampling, (d) bicubic up-sampling, of the old_town
video. For (b), (c), and (d), the video is encoded at 2.7 Mbps.
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Table 5.1: PSNR comparison between bicubic up-sampling and the proposed super-resolution
framework.

Videos SR Bicubic | Gain
old_town_720p 34.33 | 32.71 1.62
shields_720p 32.82 | 31.31 1.51
Stockholm_720p 32.71 | 31.27 1.44
in_to_tree_720p 34.28 | 33.24 1.04
station_1080p 37.50 | 36.75 0.75
parkrun_720p 25.59 | 25.24 0.35
Pedestrian_area_1080p | 36.51 | 36.16 0.35
crowd_run_1080p 26.9 | 26.6 0.3
tractor_1080p 33.21 | 32.96 0.25

Figure 5.6 shows frame 27 of the old_town video. The result of bilinear up-sampling,
bicubic up-sampling, bilinear up-sampling and the proposed framework were compared with
the original frame. The video was encoded at 2.7 Mbps. In the highlighted part, it is obvious

that the proposed framework reconstructed the frame with more high frequency components.
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Chapter 6

Conclusion

We presented tensor coding as a low complexity framework for coding high dimensional
visual data. Tensor coding is based on a proposed Progressive Canonical-decomposition
Parallel-factor (PCP) decomposition that reduces an n dimensional tensor onto a 2D data
set. The proposed PCP was applied in block-wise approach.

Two tensor partitioning methods which are uniform and adaptive tree were employed to
divide the input tensor into a set of sub-tensor blocks. The uniform partitioning divide a
tensor into a set of equal size blocks. The adaptive tree partitioning employs a top down
approach to divide the tensor. At each level it decide whether a block need to be sub-
divided into a set of smaller blocks or not. The decision is made based on a developed
weighted directional variance and the allocated number of rank-one tensors. A 2"-ary tree
structure was used to store the partitioning information.

The partitioned sub-tensors have different amount of information and rank. Therefore
they may require different number of rank-one tensors. The proposed framework utilizes a
greedy algorithm to search for the global optimal number of rank-one tensors that represent
all of the blocks of a tensor. After applying the PCP to all the blocks, the decomposed
eigenfibers are arranged and then further compressed by a 2D compression method. The
required side information for decoding were stored in a header file and then entropy coded.

The proposed tensor coding framework was supplemented with a residual coding module

to enable near lossless compression. This addition can benefit the applications that require a
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fine level of details. The residual coding module encoded the tensor’s slices separately since
the PCP has already captured the present correlation among the slices.

An important aspect of the proposed tensor coding framework is its desirable properties.
We showed that the framework can achieve random access, progressive reconstruction or
scalability, and low complexity reconstruction. These properties play an important role in
applications like online browsing, streaming and scientific analysis.

We applied the proposed tensor coding framework to represent and code three type of
data sets which were hyperspectral/multispectral images, bio-metric face images, and low
motion videos. For each application we showed that the proposed tensor coding framework
can achieve higher quality reconstruction, specially at the low bitrates, in comparison with
the standard compression methods.

Our experimental results for the 4D multispectral images showed a possibility of three
order of magnitude compression. This significant compression ratio is possible by taking
advantage of the existing correlation along all the dimensions. The lower dimensions com-
pression methods can not achieve this level of compression. Although the quality of the
reconstructed image at this compression level was degraded, it can be acceptable for some
applications like course level browsing and classification.

On the second part of this thesis, we proposed a super-resolution method for spatial
inconsistent scalable video streaming. In this streaming scenario some of the frames can lose
their enhancement layer due to network connection quality. This leads to an undesirable
experience where some of the frames are at high quality while the others are not. In the
worst case the streaming can keep switching between the two qualities in an effort to mitigate
the network congestion.

The proposed method was used to reconstruct the frames with dropped enhancement
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layer. This was done by using the high frequency data of the frames with enhancement layer
(super-frames) as dictionary. The frames without enhancement layer (base-frame) were first
up-sampled and then super resolved. The super resolution method was based on searching
the dictionary for a match and then adding the corresponding high frequency data. The quad
tree structure of the current frame was used for block-matching search with super-frame.
The proposed super resolution framework was integrated with Google VP9 video codec.
Then we applied the framework to various High Definition (HD) videos to estimate the
dropped enhancement layer. Our simulation results show an improvement visually and in

terms of PSNR over traditional interpolation up-sampling filters.
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