
VISUAL DATA REPRESENTATION AND CODING BASED ON TENSOR
DECOMPOSITION AND SUPER-RESOLUTION

By

Abo Talib Mahfoodh

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Electrical Engineering—Doctor of Philosophy

2016

ABSTRACT

VISUAL DATA REPRESENTATION AND CODING BASED ON TENSOR
DECOMPOSITION AND SUPER-RESOLUTION

By

Abo Talib Mahfoodh

Tensor based methods have been used in a wide range of signal processing applications.

A particular area of interest is tensor decomposition, which can be used to reduce the di-

mensionality of the massive multidimensional data. Hence, tensor decomposition can be

considered as a high dimension extension of popular Singular Value Decomposition (SVD)

methods used for matrix analysis. The lower dimension representation of tensors resulting

from tensor decomposition can be used for classification, pattern recognition, and reconstruc-

tion. Our objective in the first part of this thesis, is to develop a tensor coding framework

based on a tensor decomposition method for visual data efficient representation and com-

pression.

As part of the proposed tensor coding framework, we developed a tensor decomposition

algorithm that decomposed the input tensor into a set of rank-one tensors. The proposed

decomposition is designed to be efficient specifically for visual data. The proposed tensor

decomposition algorithm is applied in a block-wise approach. Two partitioning methods are

proposed for tensor coding framework which are uniform and adaptive tree partitioning. The

former subdivide a region into a set of equal size blocks while the later subdivide a region

into a set of variable size blocks. The decision whether to subdivide the region or not is

made based on the existing amount of the information and the overall available bitrate. A

tree data structure stores the partitioning structure information which is required for the

tensor reconstruction process.

Furthermore, an encoder/decoder framework is proposed for compressing and storing

the decomposed data. The proposed framework provides a number of desirable properties

especially at the decoder side which can be critical for some applications. Low complexity

reconstruction, random access, and scalability are the main properties that we have targeted.

We demonstrate the viability of the proposed tensor coding framework by employing it

for the representation and coding of three types of data sets: hyperspectral/multispectral

images, bio-metric face image ensembles, and low motion videos. These data sets can be

arranged as either three or four dimensional tensors. For each application, we show that

the compression efficiency along with the inherited properties of the proposed tensor coding

framework, provide a competitive approach to the current standard methods.

In the second part of the thesis, we propose an example-based super-resolution algorithm

for a new framework of scalable video streaming. The proposed method is applicable to scal-

able videos where the enhancement layer of some frames might be dropped due to changing

network conditions. This leads to a streaming scenario that we call Inconsistent Scalable

Video (ISV) streaming. At the decoder, the frames with the enhancement layer are used as

a dictionary for super-resolving other video frames whose enhancement layers were dropped.

The proposed super-resolution framework is integrated with Google VP9 video codec. Then

it is applied to various High Definition (HD) videos to estimate the dropped enhancement

layer. Our simulation results show an improvement visually and in terms of PSNR over

traditional interpolation up-sampling filters.

To my family ...

iv

ACKNOWLEDGMENTS

I would like to thank professor Hayder Radha who has been my adviser during the PhD

program. It was a great learning opportunity for me to work with him. His supportive and

constructive guidance was a major contributor to my success in completing this thesis. I

also would like to thank my guidance committee members professor Selin Aviyente, professor

Yiying Tong, and professor Lalita Udpa for their efforts, support, and for what I have learned

from them. My special gratitude to professor Yiying Tong for his gracious support that left

a great impact on me.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 Introduction . 1
1.1 Tensor Coding . 1
1.2 Tensor coding motivations . 4
1.3 Tensor coding related work . 5
1.4 Inconsistent scalable video streaming . 9
1.5 ISV related work . 11
1.6 Summary of contributions . 12
1.7 Thesis organization . 13

Chapter 2 Tensor decomposition for visual data 15
2.1 CP decomposition . 15
2.2 CP decomposition for visual data . 18
2.3 Progressive CP decomposition . 19
2.4 The Rank-Distortion optimization problem 23
2.5 Rank-Distortion optimization problem solution 26

Chapter 3 Tensor coding framework . 30
3.1 Tensor partitioning . 30

3.1.1 Uniform partitioning . 31
3.1.2 Adaptive tree partitioning . 34

3.2 Eigenfibers arrangement and coding . 39
3.3 Residual coding . 44
3.4 Tensor coding properties . 45

3.4.1 Random access . 45
3.4.2 Progressive reconstruction and decoding 47
3.4.3 PCP time complexity . 47

Chapter 4 Tensor coding applications . 50
4.1 Hyperspectral image coding . 50

4.1.1 Experimental results . 51
4.2 Image ensembles coding . 61

4.2.1 Experimental results . 61
4.3 Low complexity video coding . 65

4.3.1 Experimental results . 66

vi

Chapter 5 Super-resolution for reconstructing high frequency data 78
5.1 Spatial ISV with Hybrid Super and Base Frames 78
5.2 Super-resolution framework for ISV . 80
5.3 Experimental results . 82

Chapter 6 Conclusion . 88

BIBLIOGRAPHY . 91

vii

LIST OF TABLES

Table 4.1: bitrate comparison between tensor coding and JPEG2000 for various
hyperspectral images from AVIRIS data set. 54

Table 4.2: The encoding/decoding time, PSNR and bitrate of ten CIF videos
with 180 frames using four coding methods. Relatively-low and (al-
most) the same PSNR values were targeted for this experiment to
compare the bitrate and time complexity. 74

Table 4.2: (cont’d) . 75

Table 4.3: The encoding/decoding time, PSNR and bitrate of ten CIF videos
with 180 frames using four coding methods. Relatively-high and (al-
most) the same PSNR values were targeted for this experiment to
compare the bitrate and time complexity. 76

Table 4.3: (cont’d) . 77

Table 5.1: PSNR comparison between bicubic up-sampling and the proposed
super-resolution framework. 87

viii

LIST OF FIGURES

Figure 2.1: A three dimensional tensor reconstruction from a set of R rank-one
tensors. Each 3D rank one tensor is an outer product of three vectors.
The reconstructed tensor is a linear combination of these rank one
tensors. 16

Figure 2.2: PCP decomposition progressive reconstruction of χ. At the first iter-
ation the input tensor is approximated with only one rank one tensor.
Then at each iteration a rank one tensor is added to approximate the
residual. 21

Figure 2.3: An example of uniform partitioning of an 3D tensor and the PCP
decomposition on each block. PCP allocates different value of Rj for
each block based on the amount of the information in that particular
block. 21

Figure 3.1: Tensor coding framework for visual data coding and representation.
The framework consist of various modules that operate at different
stages. Among these modules are tensor partitioning, decomposition,
and eigenfibers coding. It also shows the residual coding process. . . 31

Figure 3.2: PSNR vs bitrate plots of (a) Silent and (b) Container CIF videos
employing three different block sizes. Larger block sizes result in
higher PSNR at lower bitrates however at some bitrate point they
cross over. 32

Figure 3.3: PSNR plots of (a) Silent and (b) Container CIF videos employing
blocks of different time dimension size. The plots show that if the
video has high redundancy across time, then larger block sizes will
result in higher PSNR. 33

Figure 3.4: (a) An example of 3D block recursive subdivision, and (b) its corre-
sponding octree representation. The leaf node indicate no subdivision
while the branching node subdivided and it has eight children. A leaf
is represented by 0 and a branching node is represented by 1. The
octree representation code is also shown. 35

Figure 3.5: An example three levels hextree structure with its corresponding
code. Each branching node has 16 children nodes which can be either
a leaf or a branching node as well. 37

ix

Figure 3.6: An example three levels 2n-ary tree structure with its corresponding
code. Each branching node has 2n children nodes which can be either
a leaf or a branching node as well 37

Figure 3.7: Eigenfibers of the PCP tensor decomposition and the rank values R
for 50 blocks of the Container CIF video with 180 frames. The figure
shows a possible eigenfibers arrangement for coding and storage. . . 40

Figure 3.8: The correlation among (a) matrix A columns (i.e. CP vectors); (b)
matrix B columns (i.e. PCP eigenfibers); The correlation among (c)
matrix A rows; (d) matrix B rows; (e) after λ(r,j) absorption onto

a
(3)
(r,j)

vectors; and (f) after β(r,j) absorption onto b
(3)
r . The video is

Container CIF. 42

Figure 3.9: ”Red Flower” CIF video encoded by tensor coding with a total of
4000 rank-one tensors. Uniform partitioning was used with block size
of 1616180. The video decoded with (a) 1000 (93 Kbps 30.43 dB), (b)
2000 (205 Kbps 35.76 dB), (c) 3000 (320 Kbps 38.49 dB), (d) 4000
(433 Kbps 40 dB), rank-one tensors. 48

Figure 4.1: Indian pine PSNR vs bpppb comparison among TC with different
block sizes, TC with octree and JPEG2000. 52

Figure 4.2: The spectral profile over 200 bands of a particular spatial location
from the Indian pine data shown in Figure 4.3. Three reconstructed
spectral profiles based on the proposed framework at different bitrates
are shown. 53

Figure 4.3: A hyperspectral 3D imaging data and its reconstructed representation
using a progressive number of 3D eigenfiber sets. Compression ratios
raging from one order of magnitude (near lossless) to more than two
orders of magnitude. (b) Original Indian pine, (b) 100 eigenfibers,
compression ratio 213, (c) 1000 eigenfibers, compression ratio 37, (d)
1000 eigenfibers plus residual coding, compression ratio 10. 55

Figure 4.4: Lake multispectral image PSNR vs bpppb comparison. The com-
pression result of 4D tensor coding with hextree partitioning is com-
pared with 3D tensor coding with octree partitioning. 4D tensor cod-
ing achieves higher compression by exploiting the existing correlation
along all the dimension of the lake multispectral image. 57

x

Figure 4.5: Lake multispectral image decoding time comparison. The decode
time per slice is shown in milliseconds for 4D and 3D tensor coding.
At lower bitrates the decoding time is close while in the higher bitrates
the 4D tensor coding results in higher decoding time. 57

Figure 4.6: 3D tensor coding of high-resolution 2K × 2K pixels across 20 time
instances of Landsat data. (a) original image, (b) compression ratio =
1142 and PSNR = 29, (c) compression ratio = 727 and PSNR = 30.83,
(d) compression ratio = 534 and PSNR = 31.73, (e) compression ratio
= 421 and PSNR = 32.37, (f) compression ratio = 340 and PSNR =
32.88. 59

Figure 4.7: 4D tensor coding of high resolution 2K × 2K pixels across 20 time
instances of Landsat data. (a) original image, (b) compression ratio
= 6154 and PSNR = 27.29, (c) compression ratio = 4210 and PSNR
= 29.43, (d) compression ratio = 3077 and PSNR = 30.43, (e) com-
pression ratio = 1429 and PSNR = 31.02, (f) compression ratio =
769 and PSNR = 32.22. 60

Figure 4.8: Average PSNR plot of 38 persons face images from Yale Face Database
B versus the average storage size required per image. 62

Figure 4.9: PCP R values for the blocks of an image encoded at a) 288 Bytes b)
979 Bytes. As the allocated number of rank one tensors is increased,
the tensor coding framework allocate a higher number of rank one
tensors to the blocks with more information. For example the blocks
that contains the eyes and the mouth 63

Figure 4.10: (a) Original image; (b) tensor coding with PCP (288 Bytes, 30.1 dB)
; (c) tensor coding with CP (286 Bytes, 28.98 dB); (d) JPEG2000
(291 Bytes, 25.68 dB); (e) motion JPEG2000(292 Bytes, 24.63 dB);
(f) JPEG (790 Bytes, 25.19 dB). 64

Figure 4.11: (a) Original image; (b) tensor coding with PCP (979 Bytes, PSNR:
34.5); (c) tensor coding with CP (986 Bytes, PSNR: 32.6); (d) JPEG2000
(975 Bytes, PSNR: 35.27); (e) motion JPEG2000 (990 Bytes, PSNR:
35.1); (f) JPEG (999 Bytes, PSNR:29.1). 64

Figure 4.12: Average a) decoding b) encoding time of 38 persons face images from
Yale Face Database B versus the average storage size required per
image. 65

Figure 4.13: HEVC Intra and H.264 Intra time complexity comparison for con-
tainer video. (a) Encoding time, (b) Decoding time. 67

xi

Figure 4.14: PSNR vs. bitrate plots of (a) Container,(b) Silent, (c) Bridge Close
video. 68

Figure 4.15: PSNR vs. frames plots of (a) Container (500 Kbps), (b) Silent (699
Kbps), (c) Bridge Close (380 Kbps) videos encoded with TC and
SPIHT. Tensor coding maintains a more uniform PSNR across the
frames while the SPIHT quality tends to degrade as it get closer to
the end of the GOP. 69

Figure 4.16: Frame 14 of the Container CIF video. (a) original video, (b) tensor
coding (731.07 Kbps; 37.39 dB), (c) H.264/AVC-no-motion (732.09
Kbps; 35.26 dB), (d)DISCOVER DVC (735.53 Kbps; 34.06 dB), (e)
H.264/AVC-Intra (753.96 Kbps; 30.02 dB), (f) SPIHT (732.94 Kbps;
38.22 dB). 70

Figure 4.17: The first frame of the Bridge Close CIF video. (a) original frame, (b)
tensor coding (202.74 Kbps; 33.48 dB), (c) H.264/AVC-no-motion
(209.29 Kbps; 32.21 dB), (d) DISCOVERDVC (274.77 Kbps; 28.32
dB), (e) H.264/AVC-Intra (218.41 Kbps; 26.71 dB), (f) SPIHT (203.77
Kbps; 31.81 dB). 71

Figure 5.1: Encoder diagram of the proposed spatial ISV with hybrid two-layer
spatial video coding that consist of the super-frames and the base-
frames. The process of generating the base and the enhancement
layer is shown. 79

Figure 5.2: The proposed decoder structure with super-resolution framework for
a two-layer ISV encoded video. The final reconstructed display video
consists of super-frames and base-frames. The super-frames are added
directly while the base-frames are super resolved to improve their
quality. 80

Figure 5.3: The quad tree block structure which was used for the proposed super-
resolution framework. The frame is the 25th frame of the in to tree. 83

Figure 5.4: PSNR comparison of the proposed super-resolution framework when
applied to quad tree and various fixed size blocks. 84

Figure 5.5: PSNR results of the super-resolution with bilinear up-sampling, super-
resolution with Bicubic up-sampling, bilinear up-sampling, and Bicu-
bic up-sampling of (a) Intotree, (b) shields, and (c) old town. . . . 85

xii

Figure 5.6: Frame 27 of the (a) original, (b) bilinear up-sampling and the pro-
posed super-resolution framework, (c) bilinear up-sampling, (d) bicu-
bic up-sampling, of the old town video. For (b), (c), and (d), the
video is encoded at 2.7 Mbps. 86

xiii

Chapter 1

Introduction

1.1 Tensor Coding

Tensor decomposition, which is a generalization of matrix SVD decomposition, has been

receiving growing attention recently [1–5]. Tensors are multi-dimensional set of data and

generalizations of vectors and matrices, which are 1D and 2D tensors, respectively. There

are two main tensor decomposition methods. The first one is known as Higher Order SVD

(HOSVD) or Tucker decomposition [1, 6]. The second decomposition approach is known

as Canonical-decomposition Parallel-factor (CP) [7, 8]. The CP decomposition factorizes a

tensor onto a number of rank-one tensors [1]. A rank-one tensor can be thought of as a ”basis-

tensor” that can be represented efficiently and reconstructed perfectly using 1D vectors. In

particular, an n dimensional rank-one tensor can be represented by n 1D vectors only. Like

matrix SVD, tensor decomposition methods are used in a wide range of applications. Tensor

decomposition has been used for data analysis, fusion, representation and classification [9].

In this thesis, we propose a framework based on tensor decomposition for representation

and coding of n dimensional visual data. There are various types of data that can fit in this

category of ”n dimensional visual data”. For example, a set of 2D video frames over time

is inherently a 3D data set. Also, a set of images stored within a common image database

(e.g., for storing images of human faces; or images of certain class of visual objects) can be

categorized as a high dimension data set. In general, for a set of large number of images or

1

2D video frames stored in a common image database, we call these types of imaging/video

data as a ”visual data ensemble”. Hence, in this thesis, an ensemble is a 3D or higher

dimensional set of tensor data. We call the 2D matrices along a particular dimension, slice.

For example a 3D visual data ensemble consists of 2D matrices along the third dimension,

which are stacked on top of each other. In our experiments, we used 3D and 4D visual data

ensembles to illustrate the concept and show the experimental results.

Our goal is to develop a compression approach for visual data ensembles while achieving

desirable properties for applications like web browsing and image retrieval. A tensor based

coding framework can achieve:

• Random access: It is the ability to reconstruct any slice within an ensemble without

the need to reconstruct or access any other slice from the same ensemble. Random

access is crucial for some applications, not only for storage efficiency, but also to reduce

bandwidth across networks for scalable search and retrieval engines.

• Coding efficiency: achieving higher compression ratio by exploiting any potential

correlation that may exist among the slices within the same data set.

• Low complexity: The ability to reconstruct the original tensor data with low com-

plexity can provide fast access and enable low end devices to benefit from the proposed

approach.

As part of the proposed tensor coding framework, we developed a Progressive Canoni-

cal/Parallel (PCP) tensor decomposition, which is based on the popular CP tensor factor-

ization [1], for decomposing any arbitrary given visual data ensemble. Similar to CP, PCP

factors an n-dimensional tensor into a set of R rank-one tensors, each of which is represented

by n one dimensional vectors. We apply PCP in a block-wise basis, and each tensor-block

2

is decomposed into a different number of rank-one tensors. Depending on the nature of the

data, a uniform partitioning or an adaptive tree partitioning can be employed to partition

the tensor into a set of equal size blocks or variable size blocks respectively. The block-

wise tensor decomposition strategy leads to the need for deriving the optimal distribution

of rank-one tensors among the different visual data ensemble tensor blocks. Thus, we for-

mulated the rank distribution as an optimization problem. A greedy algorithm is developed

for identifying the optimal number of rank-one tensors that should be used for decomposing

the ensemble blocks.

Tensor decomposition is well suited for approximating low rank data. If the signal con-

tains a large amount of high frequency data, then the rank of the corresponding tensor is

high. For the high rank tensors, at some point we would not be able to capture the high

frequency information, no matter how many rank-one tensors are used. Meanwhile, there are

cases and applications that would not require the presence of high frequency data, enabling

the possibility of near lossless and lossless compression is desirable. The flexibility of the

reconstruction quality that can range from low quality to high quality can serve different

types of applications. A residual coding module is presented as part of the proposed tensor

coding framework to enable near-lossless coding.

Data encoding based on tensor decomposition has different applications for 3D and higher

dimensional visual data ensembles. For example, a low motion video holds a high correlation

among the frames which can be exploited for low complexity coding [10]. Similarly, an image

ensemble of face images, can be coded with tensor-factorization based method [11] to exploit

the existing correlation among a large number of images. The potential applications of the

proposed tensor coding framework are illustrated using three types of data sets:

1. Hyperspectral/multispectral images data set: These types of data set have a

3

high correlation in the spectrum spectral and time temporal dimension. The proposed

tensor coding framework exploits this correlation to create an efficient representation

and coding that holds the desirable random access property.

2. Bio-metric face image data set: A set of face images taken under different condi-

tions, which can be used for recognition and analysis, form a 3D tensor. These images

contain a high amount of similarities, espcially for face images of the same person.

3. Low complexity video compression: The proposed tensor coding framework can

be used in video coding scenarios where low complexity decoding and random access

are important.

1.2 Tensor coding motivations

Visual data is a core component of many applications and services. For example im-

age databases of faces and fingerprints are used for security applications, and hyperspec-

tral/multispectral images are used for scientific analysis. Such databases store a large num-

ber of images of the same type. In many such applications, the traditional compression

standards are used to store these images without exploiting the correlation. The goal of the

proposed tensor coding framework is to develop a compression method to provide:

• Random access to any slice without decoding other slices.

• Coding efficiency by exploiting any potential correlation that may exist among the

slices within the same data set.

• Low complexity and fast decoding.

4

• Scalable reconstruction in which a lower quality can be reconstructed with part of the

encoded data.

• Enable fast access and browsing.

1.3 Tensor coding related work

Tensor based algorithms have been used widely in image processing and computer vision

applications [3,12]. Our proposed framework belongs to the area of multidimensional signal

decomposition. In [13] a video encoder based on 2DSVD decomposition was proposed.

2DSVD [14] decomposes a GOP onto two eigenvector matrices and group of coefficient

matrices. Their framework was based on coding the factored matrices. Our method has

two advantages over 2DSVD encoder. (a) It is faster than 2DSVD. (b) It can be extended

to higher dimensions. Furthermore the proposed tensor coding framework provides higher

PSNR.

A rank R decomposition method was proposed in [15] for video dimension reduction.

Based on the presented experimental results, the method works well for texture videos,

which are known to be low rank. The value of R in the proposed method is fixed. The same

method was used in [16] for compact representation of video textures.

An efficient rank R decomposition was proposed in [17] for compact representation of

image ensembles. The method was used for compact representation of face datasets and toy

video sequence.

HOSVD analysis (Tucker decomposition) was proposed in [17] for modeling dynamic

textures. Similarly, HOSVD decomposition was used in [18] for representing facial images in

computer vision problems.

5

A D-1 factorization was used in [19] for video compression and classification. However,

the method was used for video classification not coding. A rank-one decomposition was

used for compact representation of multidimensional data in [20]. Their method is based

on standard rank-one decomposition, which is not as efficient as our proposed PCP. They

applied their approach for decomposing video textures.

A compression method based on tucker decomposition was proposed in [21] for hyper-

spectral images. The tucker decomposition was applied on the wavelet transform coefficients

of the hyperspectral images to compact the energy of the sub images. This will result in loss

of random access property.

Furthermore, [22, 23] proposed tensor based methods for hyperspectral image compres-

sion. Both works were based on proposing a decomposition algorithm without presenting a

complete coding framework. It is important to measure the compression efficiency based on

a storage requirement not just the number of coefficients. This is because of the fact that the

decomposed values are float numbers as opposed to the visual data values which are usually

8 bits integers.

Lei Wang et al. presented a hyperspectral image compression system based on the lapped

transform and Tucker decomposition [24]. The lapped transform decorrelate the hyperspec-

tral image bands. Then they arranged the transformed coefficients of different frequencies

into a 3D wavelet sub-band tensor. Finally Tucker decomposition was used to decompose

the tensor into a core tensor and three factor matrices. The bit-plane coding algorithm was

used to encode the core tensor.

Vasilescu, M. Alex O., and Demetri Terzopoulos proposed a multilinear modeling tech-

nique that employs an N-mode SVD [18]. They presented the multilinear analysis of facial

images ensembles which contain different types, like different facial geometries, expressions,

6

head poses, and lighting conditions. They call the representation TensorFaces and argue

that multilinear analysis can be an effective framework for computer vision problems.

Hazan Tamir et al. presented an algorithm for a non-negative 3D tensor decomposition

which extracts a local parts feature decomposition from a set of object images [25]. They

showed that this feature can be used for face detection using SVM and Adaboost classifiers.

They argue that their tensor factorization has a unique factorization and it preserves the

2D representations of images. They argue that the proposed algorithm improve the sparsity

level, ghost residue, and compression around comparing to NMF.

Wang, Hongcheng, et al. presented an out-of-core algorithm to approximate high dimen-

sional tensors [26]. The algorithm preserve the original dimensionality of the data items

and hence exploit existing spatial redundancy more effectively to reduce the computation

complexity. They partition a tensor into a set of blocks and complete the tensor operations

in a block-wise approach. Their experimental results showed the advantage of the proposed

method for three graphics models which are 6D bidirectional texture functions, 7D dynamic

BTFs and 4D volume simulation sequences. The proposed method can process out-of-core

data and achieve higher compression ratios comparing to the previous methods.

Inoue, Kohei, and Kiichi Urahama proposed a dyadic singular value decomposition

(DSVD) that reduces the dimensionality of a set of matrix data [27]. Their experimen-

tal results showed the method application in image compression and face recognition. The

DSVD algorithm is derived from the higher Order SVD (HOSVD) of a three dimensional

tensor. It provides a low rank approximation for data matrices. They showed that the

DSVD can provides better results in terms of the computational complexity and accuracy in

image compression comparing to the other dimensionality reduction methods. They argue

that their results are better than the result derived from the eigenface method.

7

Hou Junhui, et al. proposed a compact and progressive representation of the motion cap-

ture data in video coding by employing a tensor decomposition method [28]. They arranged

the motion capture sequence in a three dimensional tensor. They argue that this type of data

has strong correlation within and across slices of the tensor. Then, they performed tensor

decomposition iteratively to take advantage of the existing correlation. Their experimental

results showed that their proposed method provides better results in terms of scalability and

storage requirement comparing to the existing algorithms.

[29] Suter Susanne K., et al. proposed a multi-scale volume representation in a GPU-

accelerated out-of-core multi-resolution rendering framework. The proposed method is based

on the tensor approximation. They argue that the proposed hierarchical tensor decomposi-

tion can achieve large volume data pre-processing, GPU accelerated tensor reconstruction,

and effective tensor quantization for data transfer bandwidth reduction. They showed that

the proposed multi-scale representation can perform the extraction, analysis and display

of structural features. Their experimental results showed the application of the proposed

methos on a gigabyte-sized micro-tomographic volumes data set.

Wu Qing, et al. developed a hierarchical tensor transformation for compact data repre-

sentation [30]. In order to show the existing multiscale structures, a multidimensional data

set is transformed into a set of hierarchical signals.At each level, the signal is further divided

into a set of smaller tensors. Furthermore a tensor approximation method is used to trans-

form these smaller tensors. Their method has the advantage of progressive reconstruction.

Their experimental results showed that the proposed method can provide higher compres-

sion ratios and quality when compared to wavelet transforms, wavelet packet transforms,

and single-level tensor approximation.

[31] Sivalingam, Ravishankar, et al. proposed a sparse representation of positive defi-

8

nite matrices that preserves the inherent structure of the data unlike vectorization. They

formulated the sparse decomposition of a positive definite matrix as a convex optimization

problem. An efficient interior point algorithms can solve the formulated problem. Their ex-

perimental results showed the advantage of the new model for extending the sparsity-based

algorithms for positive definite matrices.

1.4 Inconsistent scalable video streaming

Video traffic has been growing continuously especially during the last few years. According

to CISCO’s Visual Networking Index [32], by 2018 the sum of all forms of video traffic will

be in a range of 80 to 90 percent. Another important factor in CISCO’s index is the fact

that by 2018 over half of all traffic will originate from non-PC devices. Furthermore, the

mobile data will increase 11-fold and the traffic from wireless devices will exceed the traffic

from wired devices.

The reported video traffic increase accounts for both consumer growth, the emerging of

high quality video streaming, and the development of devices that can capture 360 degree

videos as virtual reality contents. There are already many 4k, 8k videos, and virtual reality

contents available on major Internet portals such as YouTube, Amazon, and Netflix.

These statistics support the fact that consumers are requesting video contents from var-

ious devices ranging from small cell-phones to large smart TVs. Furthermore the network

connection quality of these devices may vary tremendously based on the region and consumer

preferences. Consequently, a video streaming server has to ensure sending the best quality

video based on the user device and network quality.

Scalable Video Coding (SVC) [33–35] is increasingly emerging as a viable solution to

9

address the aforementioned variability in network conditions and device capabilities. Some

examples among the various types of SVC are temporal, spatial, and SNR methods.

In this thesis, we address the important case when some enhancement layers (e.g., within

a GOP) are dropped while other enhancement layers can reach the receiver. This leads to an

In-consistent Scalable Video (ISV) streaming. In such scenario, the decoder can exploit the

higher quality/resolution SVC decoded pictures to assist in a super-resolution driven recon-

struction of the lower quality/resolution pictures. The proposed framework was developed

for spatial SVC. However, it can be extended and used within other forms of scalability, and

in particular SNR SVC.

The proposed frame-work is applicable when network conditions change, and conse-

quently, a streaming server can perform ISV streaming by choosing to drop some of the

enhancement-layer frames. Under these circumstances, the frames with dropped layers need

to be scaled up to the display size. A simple interpolation method can be used for ISV.

However the final frame would be blurry and missing the high frequency data. The pro-

posed framework, which was applied in block-wise approch, employes an example based

super-resolution method to scale up those frames with a better quality. The block partition

structure was drived from the quad tree block structure of the encoder. Our experimental

results show that this partitioning strategy can improves the reconstruction quality when

compared to using uniform size blocks.

The proposed framework was implemented within VP9 spatial SVC [36]. VP9 is an open

source video codec which has been developed and supported by Google. The source code is

available as part of Googles WebM project and can be obtained from [37].

10

1.5 ISV related work

Many prior efforts have been proposed for single image super-resolution with high quality

reconstruction results [38]. The better quality comes at the expense of higher computation

complexity. This complexity makes it difficult to employ these methods for videos.

In [39], the authors proposed a fast super-resolution method based on multi-frames that

can be used for video. However, the complexity for even a low resolution video was high.

With the emergence of high resolution videos (HD and above), using this type of super-

resolution is not applicable. On the other hand, many of the classical image super-resolution

methods do not perform well on the high-frequency component [40]. This is an important

drawback especially for high resolution videos since this type of videos tend to have more

high frequency components.

A video super-resolution framework has been proposed in [41–43] based on coding some

of the frames at a high resolution (key-frames) to be used as the dictionary. The non-key-

frames are super resolved with the high frequency data found in the dictionary. In our work,

we are focusing on estimating the high frequency component as a mean of super resolving

the video. We use a similar example based super-resolution as in [41] to scale up the frames

whose enhancement layer is dropped.

Freeman William T., et al. proposed a fast algorithm for one-pass super-resolution that is

based on a training-based super-resolution algorithm [44]. The algorithm perform a nearest-

neighbor search in the training set to find a feature vector that is obtained from each patch of

local image data. Their experimental results showed the application of the proposed method

in natural image quality enhancement.

Xiong, Zhiwei, et al. proposed a robust single image super-resolution method to increase

11

the quality of low quality web images and videos [45]. Their method combines adaptive

regularization and learning-based super-resolution. During the iterative regularization pro-

cess, the image energy change characteristics is analyzed. This analysis provide the conver-

gence property of the energy change ratio. It leads to the regularization parameter which

balance quality enhancement and primitive components preservation. Also, the adaptive

regularization improve the pair matching accuracy in learning-based super-resolution. Their

experimental results showed that the proposed method can enhance the visual quality of the

degraded web images and videos.

Shan, Qi, et al. proposed an upsampling method for image and video resolution enhance-

ment that preserve the essential structural information [46]. Their proposed feedback-control

framework recovers the high frequency details without additional local structure constraints.

They argue that the proposed method is independent of the quality and number of the se-

lected examples. Their experimental results showed that the proposed method can achieve

high quality images enhancement without observable artifacts. Also they argue that the

method can extends to video upsampling while maintaining the temporal coherence.

1.6 Summary of contributions

The contributions made in this thesis are summarized as follows:

1. Developing a Progressive Canonical-decomposition Parallel-factor (PCP) tensor-decomposition

for representing and coding visual data ensembles efficiently.

2. Developing an adaptive tree partitioning algorithm for sub dividing an input tensor

into a set of smaller size blocks. For three and four dimensional tensors, it translates

to octree and hextree respectively. For n dimensional tensors it translates to 2n-ary

12

tree.

3. Formulating the problem of finding the global optimal number of PCP eigenfibers for

the blocks of a visual data tensor as an optimization problem.

4. Developing a greedy solution to solve the above optimization problem.

5. Developing a complete coding framework, based on the proposed PCP tensor decom-

position.

6. Applying the proposed tensor coding framework on three types of data sets which are:

hyperspectral/multispectral images, bio-metric images, and low motion videos.

7. Developing an example based super-resolution framework to approximate the missing

high frequency data.

8. Employing the proposed super-resolution framework, which was developed within Google’s

VP9 scalable video coding software, in an inconsistent scalable video streaming sce-

nario.

1.7 Thesis organization

The thesis is organized in two main parts. In the first part, we propose a tensor coding

framework for representation and coding of visual data ensembles. In the second part of the

thesis, an example based super-resolution algorithm is proposed for enhancing the quality of

scalable video streaming when some of the enhancement layers are dropped.

The remaining of the thesis is organized as follows:

13

• In chapter 2, a summery of CP tensor decomposition is presented. Next we define

the problem and propose a progressive tensor decomposition. Later in the chapter we

define the problem of finding the optimal number of rank-one tensors for all the sub

blocks as an optimization problem and propose a greedy solution for it. The theories

are presented for three dimensional tensors first for illustrating purpose. The result

are extended for the general n dimensional tensors afterward.

• In chapter 3, the different modules of the tensor coding framework are presented. A

uniform and adaptive tree partitioning methods are discussed. Furthermore decom-

posed vectors arrangement and coding are explained in details along with residual

coding module. We also present the main properties of the tensor coding framework.

• In chapter 4 three different applications of the proposed tensor coding framework are

presented. For each application, we compare our experimental results with some of the

standard coding methods used within the application.

• Chapter 5 consist of the second part of this thesis. The ISV streaming problem is

defined under which some of the enhancement layers of a scalable video are dropped

due to poor network quality. Later in the chapter, an example based super-resolution

algorithm is proposed to reconstruct the missing high frequency data of the video.

Finally, the experimental results are shown and compared with simple interpolation

methods.

• In chapter 6 we discuss the conclusions of the two main proposed frameworks in this

thesis.

14

Chapter 2

Tensor decomposition for visual data

In this chapter a brief introduction on CP tensor decomposition is presented before we

discuss the details of the proposed tensor decomposition. At each section, we first develop

and illustrate the theories and the results for the three dimensional tensors. Then, we extend

the results for a general case of the n dimensional tensors.

2.1 CP decomposition

CP decomposes a 3D tensor χ ∈ Rv1×v2×v3 onto a number of rank-one tensors, each of which

can be written as an outer product of three vectors [1]. The original tensor is approximated

by summation of these rank-one tensors as shown in eq. (2.1).

χ̂ =
R∑
r=1

λr

(
a
(1)
r ◦ a

(2)
r ◦ a

(3)
r

)
(2.1)

Where ◦ is an outer product, and λr is a normalization factor such that to maintain an `2

unit norm for the vectors a
(d)
r , d ∈ {1, 2, 3} [1]. Hence, the tensor χ is approximated using a

linear combination of rank-one tensors
(
a
(1)
r ◦ a

(2)
r ◦ a

(3)
r

)
; and the rank parameter R is the

number of rank-one tensors used to approximate χ. Figure 2.1 shows the reconstruction of

a three dimensional tensor from a set of rank-one tensors.

The vectors a
(d)
r can be arranged as column vectors of a corresponding set of matrices

15

χ̂ = λ1

A
(1)
1

A
(3)
1

A
(2)
1

+...+

A
(1)
R

A
(3)
R

A
(2)
R

Figure 2.1: A three dimensional tensor reconstruction from a set of R rank-one tensors. Each
3D rank one tensor is an outer product of three vectors. The reconstructed tensor is a linear
combination of these rank one tensors.

(i.e. A(d) where d = 1, 2, 3). For example, A(1) = [a
(1)
1 a

(1)
2 . . . a

(1)
R] is a v1 × R matrix. In

general, A(d) ∈ Rvd×R. These matrices can be found using eq. (2.2).

A∗(d) = argmin

A(d)

∥∥∥∥X(d) − A
(d)
(
A(d1) � A(d2)

)T∥∥∥∥
F

(2.2)

Where, � is Khatri-Rao product, d ∈ {1, 2, 3}, d1 ∈ {1, 2, 3} − {d}, and d2 ∈ {1, 2, 3} −

{d, d1}. X(d) is a matrix that results from unfolding the tensor χ with respect to the dth

dimension. For example, X(1) ∈ Rv1×(v2v3) is a matrix that results from unfolding the

original tensor χ with respect to the first dimension (i.e. v1). Similarly, X(2) and X(3) are

the unfolded original tensors with respect to the second (v2) and third (v3) dimensions [1],

respectively. For a given rank parameter R, the Alternative Least Square (ALS) [7] approach

can be used to solve for the set of matrices in eq. (2.2). It solves for A(1) by fixing A(2) and

A(3) and similarly for A(2) and A(3) as shown in (2.3).

A∗(d) = X(d)

(
Z(d)

)T((
Z(d)

)T (
Z(d)

))−1
(2.3)

Where Z(d) = A(d1) � A(d2) and, as before, d ∈ {1, 2, 3}, d1 ∈ {1, 2, 3} − {d}, and d2 ∈

16

{1, 2, 3} − {d, d1}.

An n-dimensional tensor χ ∈ Rv1×...×vn is decomposed by CP onto a set of of rank-one

tensors. An n dimensional rank-one tensor is equal to outer product of n vectors [1]. The

original tensor is approximated by summation of these rank-one tensors as shown in eq. (2.4).

χ̂ =
R∑
r=1

λr

(
a
(1)
r ◦ . . . ◦ a

(n)
r

)
(2.4)

The vectors a
(d)
r can be arranged as column vectors of a corresponding set of matrices

A(d) ∈ Rvd×R where d = 1, 2, . . . , n and A(d) = [a
(d)
1 a

(d)
2 . . . a

(d)
R] . Finding these matrices

can be formulated in an optimization problem as shown in eq. (2.5).

A∗(d) = argmin

A(d)

∥∥∥∥X(d) − A
(d)
(
A(1) � . . .� A(d−1) � A(d+1) � . . .� A(N)

)T∥∥∥∥
F

(2.5)

Where, � is Khatri-Rao product, d = 1, 2, . . . , n. X(1) ∈ Rvd×(v1v3...vd−1vd+1...vn) is the

unfolded tensor χ with respect to the dth dimension. For a given rank parameter R, the

ALS approach can solve for the set of matrices in eq. (2.5). It solves for A(1) by fixing A(2),

A(3), . . ., and A(n) and similarly for A(2), . . . , A(n) and so on as shown in eq. (2.6).

A∗(d) = X(d)

(
Z(d)

)T((
Z(d)

)T (
Z(d)

))−1
(2.6)

Where Z(d) = A(d1) � . . .� A(d−1) � A(d+1) . . .� A(n), d = 1, 2, . . . , n.

17

2.2 CP decomposition for visual data

A straightforward approach for tensor-based representation of visual data is to directly em-

ploy the CP decomposition onto an original data set. However, such straightforward ap-

proach does not result in an efficient coding method. There are three main disadvantages in

using CP decomposition for visual data coding which are:

1. Independent of the form of tensor decomposition used, the rank parameter R should

not be fixed throughout the tensor decomposition of the entire visual data tensor. In

particular, the value of R directly influences the rate and efficiency of the original

tensor representation since it determines the number of rank-one tensors used for this

representation. Meanwhile, different parts of the multimedia tensor have different levels

of spatial and temporal details. On the other hand, it is known that finding the tenor

rank is an NP-complete problem [47]. A primitive way of finding the rank is to start

at one and gradually increase the rank, until the optimal rank is found. However, in

the case of CP decomposition this will result in a high time complexity.

2. CP decomposition requires all the composing rank-one tensors in order to approximate

the original visual data tensor χ. This is true even if the actual rank of the tensor is

smaller than the number of the composing rank-one tensors. In other words, if part

of the decomposed data are missing, the reconstructed result will be degraded signifi-

cantly. This will result in a non-progressive reconstruction in which all the eigenfibers

are required prior to the reconstruction.

3. CP decomposition result in a set of decomposed vectors with real number values. The

reconstruction quality is highly sensitive to small approximation in the decomposed

18

values. As the result, there should be enough number of bytes allocated for storing the

decomposed values. This will decrease the storage efficiency especially considering the

fact that most of the visual data are 8-bit and requires only one byte to store each point.

Furthermore, because of the precision sensibility, the CP decomposed values are not

noise robust. The noisy decomposed values will result in poor quality reconstruction.

We propose a CP-based decomposition for visual data that can address the before men-

tioned shortcomings of the CP decomposition. The details of the proposed decomposition is

presented in the next section.

2.3 Progressive CP decomposition

Similar to CP, the approximated tensor (χ̂) under PCP is a sum of rank-one tensors. How-

ever, the PCP decomposition results in different rank-one tensors and corresponding vectors

from what is generated by CP. We also use a different normalization as explained further

below. To emphasize the difference between the two schemes, we express the PCP de-

composition using different notations for rank-one tensors and normalization parameters as

expressed in eq. (2.7).

χ̂ =
R∑
r=1

βr(b
(1)
r ◦ b

(2)
r ◦ b

(3)
r) (2.7)

Under PCP, R ∈ {1, 2, . . . , Rmax}, where Rmax is the maximum possible number of rank

one tensors that are available for approximating the original tensor. It limits the total bitrate

by limiting the number of eigenfibers to be coded. Similar to CP, b
(d)
r can be arranged as

column vectors of a corresponding set of matrices B(d) where d = 1, 2, 3. Under PCP though,

there are two key differences.

19

The first difference is that the eigenfibers b
(d)
r are computed individually as shown in

eq. (2.8).

b
∗(d)
r = argmin

b
(d)
r

∥∥∥∥∥
(
X(d) −

r−1∑
k=0

X ′(d),k

)
− b(d)r

(
z
(d)
r

)T∥∥∥∥∥
F

(2.8)

Where z
(d)
r = b

(d1)
r � b(d2)r , d ∈ {1, 2, 3}, d1 ∈ {1, 2, 3}−{d}, and d2 ∈ {1, 2, 3}−{d, d1}.

X ′(d),k is the kth rank-one unfolded-tensor over dimension d, and k ∈ {0, 1, 2, . . . , R}.

X ′(d),0 = 0, X ′(d),k = βkb
(d)
k

(
z
(d)
k

)T
. Note that the vector product b

(d)
r

(
z
(d)
r

)T
in

eq. (2.8) results in a matrix of size vd × vd1vd2 , which is the size of the unfolded-tensor

matrix X(d).

For a given rank parameter Rmax, we modify the ALS approach to solve the minimization

problem in eq. (2.8). Similar to CP, we fix b
(2)
r and b

(3)
r and solve for b

(1)
r ; and similarly for

b
(2)
r and b

(3)
r as in eq. (2.9).

b
∗(d)
r =

(
X(d) −

r−1∑
k=0

X ′(d),k

)(
z
(d)
r

)T((
z
(d)
r

)T
z
(d)
r

)−1
(2.9)

At each iteration r we calculate the error εr = MSE (χ− χ̂r), where χ̂r is obtained

from eq. (2.7). The PCP decomposition is applied in block-wise approach. The errors of all

3D-blocks are used in a procedure of finding the optimal global solution as will be discussed

later. The solution may add another rank-one tensor to approximate the residual χ− χ̂r in

the next iteration. This approximation results in a progressive decomposition of χ as shown

in figure 2.2.

Figure 2.3 shows an example of uniform partitioning of the tensor and the PCP decom-

position on each block. As mentioned before, the value of R for each block could be different

20

Figure 2.2: PCP decomposition progressive reconstruction of χ. At the first iteration the
input tensor is approximated with only one rank one tensor. Then at each iteration a rank
one tensor is added to approximate the residual.

Figure 2.3: An example of uniform partitioning of an 3D tensor and the PCP decomposition
on each block. PCP allocates different value of Rj for each block based on the amount of
the information in that particular block.

21

based on its rank. The problem of finding the optimal number of rank-one tensors for each

3D-block is addressed in the next section.

The second difference between CP and the proposed PCP is the following. As mentioned

above, under CP, the rank-one tensors are normalized by maintaining an `2 unit-norm vec-

tors. This is captured through λr in eq. (2.1). Under PCP, we employ an `∞ norm instead.

This leads to the following:

• The normalizing parameter βr captures the maximum magnitudes of the entries of the

corresponding vectors b
(d)
r , d = 1, 2, 3.

• The vectors b
(d)
r have normalized values between −1 and +1. As we show later, the

proposed PCP lends itself to more efficient coding when compared to traditional CP.

PCP approximates an n dimensional tensor χ as a linear combination of a set of rank

one tensors as shown in eq. (2.10).

χ̂ =
R∑
r=1

βr(b
(1)
r ◦ . . . ◦ b

(n)
r) (2.10)

Where R ∈ {1, 2, . . . , Rmax}, where Rmax is the maximum possible number of rank-one

tensors that can be used. b
(d)
r are column vectors of a corresponding set of matrices B(d)

where d = 1, 2, . . . , n. The PCP eigenfibers b
(d)
r can be computed as follows:

b
∗(d)
r = argmin

b
(d)
r

∥∥∥∥∥
(
X(d) −

r−1∑
k=0

X ′(d),k

)
− b(d)r

(
z
(d)
r

)T∥∥∥∥∥
F

(2.11)

Where z
(d)
r = b

(1)
r � . . . � b

(d−1)
r � b(d+1)

r � . . . � b(n)r , d ∈ {1, 2, . . . , n}. X ′(d),k is the

kth rank-one unfolded-tensor over dimension d. X ′(d),0 = 0, X ′(d),k = βkb
(d)
k

(
z
(d)
k

)T
. The

22

vector product b
(d)
r

(
z
(d)
r

)T
in eq. (2.11) results in a matrix of size vd×v1v2 . . . vd−1vd+1 . . . vN ,

which is the size of the unfolded-tensor matrix X(d).

For a given rank parameter Rmax, ALS approach can solve the minimization problem in

eq. (2.11). We fix b
(2)
r , b

(3)
r , . . . , b

(n)
r and solve for b

(1)
r ; and similarly for the other eigenfibers

as shown in eq. (2.12).

b
∗(d)
r =

(
X(d) −

r−1∑
k=0

X ′(d),k

)(
z
(d)
r

)T((
z
(d)
r

)T
z
(d)
r

)−1
(2.12)

2.4 The Rank-Distortion optimization problem

In the proposed tensor coding framework, a 3D visual data tensor is partitioned into a set

of 3D sub-tensor blocks. Block j has sj elements where sj = v1jv2jv3j . PCP decomposes

a given 3D block, which is indexed by j, onto Rj rank-one tensors, each of which has three

eigenfibers. The total number of elements in the PCP rank-one decomposition for 3D block j

is s′j where s′j = Rj(v1j+v2j+v3j). Assuming that we use the same precision for the original

visual data pixels and for the elements of the PCP decomposition (e.g., eight bits/pixel and

eight bits/element in an eigenfiber), then using the eigenfibers instead of the original block

will result in the compaction ratio shown in eq. (??).

sj
s′j

=
v1jv2jv3j(

Rj
(
v1j + v2j + v3j

)) (2.13)

We would like to increase the block size and minimize the value of Rj to have larger

compaction ratio. However, a larger block potentially has higher rank and requires a larger

value of Rj to be coded with acceptable quality. This will decrease the compaction ratio.

23

One option is to have the compaction ratio larger than some regularization parameter γ > 1.

This leads to an upper bound for Rj that keeps the compaction ratio larger than γ as shown

in eq. (2.14).

Rj <
1

γ

(
v1v2v3

v1 + v2 + v3

)
(2.14)

We employ the inequality in eq. (2.14) as a constraint for our optimization problem.

Another constraint is related to the reconstruction error. We use the average error constraint

shown in eq. (2.15) for reconstructing the original tensor.

1

N

N∑
j=1

∥∥∥∥∥∥∥χj −
Rj∑
i=1

b
(1)
i,j ◦ b

(2)
i,j ◦ b

(3)
i,j

∥∥∥∥∥∥∥
F

≤ εmax (2.15)

For a given data set with N 3D tensor blocks, the goal is to find the global optimum R,

where R is a vector of dimension N . Each entry of R = (R1, R2, . . . , RN) corresponds to

the number of rank-one tensors which are used to reconstruct a 3D-block of the data set.

We formulate the rank-distortion optimization problem to find the global optimum R as in

eq. (2.16).

min

 N∑
j=1

Rj

 s.t.

1

N

N∑
j=1

∥∥∥∥∥∥∥χj −
Rj∑
i=1

b
(1)
i,j ◦ b

(2)
i,j ◦ b

(3)
i,j

∥∥∥∥∥∥∥
F

≤ εmax

N∑
j=1

Rj <

1

γ

N∑
j=1

v1jv2jv3j
v1j + v2j + v3j

 , Rmax

(2.16)

Where εmax is the average, overall acceptable error. The second inequality in eq. (2.16)

captures an upper bound for the total number of eigenfibers that can be used. Note that If

24

all the blocks have the same size, Rmax can be simplified to ((v1v2v3)N) / (γ(v1 + v2 + v3)).

An n dimensional block j has sj elements where sj = v1jv2j . . . vnj . PCP decomposes this

block ontoRj rank-one tensors, each of which has n eigenfibers. The total number of elements

in the PCP rank-one decomposition for block (j) is s′j where s′j = Rj(v1j + v2j + . . .+ vnj).

Using the eigenfibers instead of the original block will result in the following compaction ratio

sj/s
′
j = v1jv2j . . . vnj/

(
Rj
(
v1j + v2j + . . .+ vnj)

))
. The upper bound for Rj that keeps

the compaction ratio larger than γ is Rj < 1
γ

((
v1jv2j . . . vnj

)
/
(
v1j + v2j + . . .+ vnj

))
.

For an n dimensional tensor, we use the average error constraint shown in eq. (2.17) for

reconstructing the original tensor.

1

N

N∑
j=1

∥∥∥∥∥∥∥χj −
Rj∑
i=1

b
(1)
i,j ◦ b

(2)
i,j ◦ . . . ◦ b

(n)
i,j

∥∥∥∥∥∥∥
F

≤ εmax (2.17)

For a given n dimensional tensor with N n dimensional sub-tensor blocks, the goal is

to find the global optimum vector R, where R is a vector of dimension N . Each entry

of R = (R1, R2, . . . , RN) corresponds to the number of rank-one tensors which are used

to reconstruct an n dimensional block of the data set. The rank-distortion optimization

problem to find the global optimum R is as shown in eq. (2.18).

min

 N∑
j=1

Rj

 s.t.

1

N

N∑
j=1

∥∥∥∥∥∥∥χj −
Rj∑
i=1

b
(1)
i,j ◦ b

(2)
i,j ◦ . . . ◦ b

(n)
i,j

∥∥∥∥∥∥∥
F

≤ εmax

N∑
j=1

Rj <

1

γ

N∑
j=1

v1jv2j . . . vnj
v1j + v2j + . . .+ vnj

 , Rmax

(2.18)

As mentioned earlier in the case of a 3D tensor, εmax represents the average overall

25

acceptable error. The second inequality is the upper bound for the total number of eigenfibers

that can be used. If the tensor is partitioned uniformly to a set of equal size blocks, Rmax

can be simplified to ((v1v2 . . . vn)N) / (γ(v1 + v2 + . . .+ vn)).

A solution to this optimization problem can be found by searching for the optimum Rj

which satisfies the constraints. The search is done by starting from Rj = 1, j = 1, . . . , N

and increasing Rj of block j that meets a certain criterion gradually until the constraints

are satisfied. The details are presented in the next section.

2.5 Rank-Distortion optimization problem solution

A greedy algorithm is developed in this section to solve eq. (2.16). For an 3D input tensor

that has been partitioned to N 3D tensor blocks, the algorithm starts initially by R =
−→
1 .

This initialization is along with the fact that each 3D tensor block should be represented at

least with one rank-one tensor. Furthermore, Ej is defined as block j error decrement if Rj

increased by one as shown in eq. (2.19).

Ej = εj,Rj − εj,Rj+1 (2.19)

Where εj,Rj is the reconstruction error when Rj rank one tensors are used in block j

reconstruction. Initially Ej = εj,1 − εj,2 for j = 1, 2, . . . , N . Iteratively we find block j∗

that has the maximum Ej∗ and increase its corresponding Rj∗ by one. This greedy choice

provides the largest possible error reduction at each iteration. After Rj∗ is incremented

for block j∗, the inequalities are checked. If the first inequality is satisfied or the second

inequality is not satisfied, the algorithm will be terminated. The PCP tensor decomposition

algorithm for 3D tensors is shown in algorithm 1.

26

Algorithm 1 3D tensor decomposition with Rank-Distortion Optimization

Input: A set of 3D tensor blocks (i.e. χj , j = 1, . . . , N .), and γ

Output: A set of eigenfibers to represent the input tensor.

R =
−→
1

Find b
(1)
r,j , b

(2)
r,j , and b

(3)
r,j for r = 1, 2 and j = 1 . . . N from eq. (2.9).

εj,r =
∥∥∥χj −∑r

i=1 b
(1)
i,j ◦ b

(2)
i,j ◦ b

(3)
i,j

∥∥∥
F

for r = 1, 2 and j = 1 . . . N do

Ej = εj,1−εj,2. for j = 1 . . . N

end for

while first inequality in eq. (2.16) is not satisfied and the second inequality in eq. (2.16)

is satisfied do

j∗ = argmaxj Ej

r = Rj∗ + 1

Find b
(1)
r,j∗ , b

(2)
r,j∗ , b

(3)
r,j∗ from eq. (2.9)

εj∗,r =
∥∥∥χj∗ −∑r

i=1 b
(1)
i,j∗ ◦ b

(2)
i,j∗ ◦ b

(3)
i,j∗
∥∥∥
F

εj∗,r+1 =
∥∥∥χj∗ −∑r+1

i=1 b
(1)
i,j∗ ◦ b

(2)
i,j∗ ◦ b

(3)
i,j∗
∥∥∥
F

Ej∗ = εj∗,r+1 − εj∗,r

Rj∗ = r

end while

27

For an n dimensional tensor, the optimization problem shown in eq. (2.18) can be solved

with the greedy algorithm shown in algorithm 2. Similar to the algorithm for a 3D tensor,

the algorithm starts initially by R =
−→
1 . It iteratively finds block j∗ that has the maximum

Ej∗ and increase its corresponding Rj∗ by one. The time complexity of calculating the error

decrements at each iteration can be reduced by storing them in a vector. The vector E stores

the values Ej for j = 1, 2, . . . , N . At each iteration, only the value of the entry point j∗

needs to be updated.

28

Algorithm 2 n dimensional tensor decomposition with Rank-Distortion Optimization

Input: A set of n dimensional tensor blocks (i.e. χj , j = 1, . . . , N .), and γ

Output: A set of eigenfibers to represent the input tensor.

R =
−→
1

Find b
(1)
r,j , b

(2)
r,j , . . . , b

(n)
r,j for r = 1, 2 and j = 1 . . . N from eq. (2.12).

εj,r =
∥∥∥χj −∑r

i=1 b
(1)
i,j ◦ b

(2)
i,j ◦ . . . ◦ b

(n)
i,j

∥∥∥
F

for r = 1, 2 and j = 1 . . . N do

Ej = εj,1−εj,2. for j = 1 . . . N

end for

while first inequality in eq. (2.18) is not satisfied and the second inequality in eq. (2.18)

is satisfied do

j∗ = argmaxj Ej

r = Rj∗ + 1

Find b
(1)
r,j∗ , b

(2)
r,j∗ , . . . , b

(n)
r,j∗ from eq. (2.12)

εj∗,r =
∥∥∥χj∗ −∑r

i=1 b
(1)
i,j∗ ◦ b

(2)
i,j∗ ◦ . . . ◦ b

(n)
i,j∗
∥∥∥
F

εj∗,r+1 =
∥∥∥χj∗ −∑r+1

i=1 b
(1)
i,j∗ ◦ b

(2)
i,j∗ ◦ . . . ◦ b

(n)
i,j∗
∥∥∥
F

Ej∗ = εj∗,r+1 − εj∗,r

Rj∗ = r

end while

29

Chapter 3

Tensor coding framework

PCP is the core transform used in the tensor coding framework. Other tasks of the frame-

work are handled in various modules. Among this tasks are tensor partitioning, eigenfibers

arrangements and coding, header data management, etc. Figure 3.1 shows the diagram of

the tensor coding framework with its various modules. The details of these modules are

presented in this chapter.

3.1 Tensor partitioning

The first step of the tensor coding framework is the input tensor partitioning. It helps to

balance the rate in the optimization problem in eq. (2.2) and eq. (2.5). It also balance the

complexity based on the block size. We employed two types of partitioning:

• Uniform partitioning: the input tensor is divided into a set of equal size blocks.

The blocks have the same dimension as the input tensor.

• Adaptive tree partitioning: initially the input tensor is partitioned into a set of

equal size blocks, then for each block a recursive algorithm is employed to subdivide

it if required. The decision of whether to subdivide a block or not is made based on a

criteria. A tree structure represents the partitioning structure. For 3D and 4D input

tensors, the partitioning can be represented by octree and hextree correspondingly. A

higher dimension tensor partitioning can be represented by an 2n-ary tree where n is

30

Input

tensor

χ

Tensr

partitioning

Block-wise

PCP

B(1)

B(2)

B(3)

Header

data Entropy coding

In
it
ia
l

qu
an
ti
za
ti
on

2D
im

ag
e

co
m
p
re
ss
io
n

C
om

p
re
ss
ed

ou
tp
u
t

Reconstruct χ̂,

χr = χ− χ̂ Compress χr

Residual coding

Figure 3.1: Tensor coding framework for visual data coding and representation. The frame-
work consist of various modules that operate at different stages. Among these modules are
tensor partitioning, decomposition, and eigenfibers coding. It also shows the residual coding
process.

the tensor dimension. Similar to the uniform partitioning, each block has the same

dimension as the input tensor. The details of the algorithm will be discussed later.

3.1.1 Uniform partitioning

Uniform partitioning divides the input tensor into a set of equal size blocks. Intuitively, we

would like to increase the block size to have a larger compaction ratio. However, increasing

the block size may increase the required number of rank-one tensors to code it.

Suppose a 3D region covered by a block of size v1 × v2 × v3 requires R rank-one tensors

to be coded. Also, if the same region covered by eight blocks of size
v1
2 ×

v2
2 ×

v3
2 requires

R′ rank-one tensors to be coded. Here R′ is the total number of rank-one tensors for all

the eight 3D blocks. The compaction ratio for both scenarios is as follows, respectively:

C =
v1v2v3

R(v1+v2+v3)
and C ′ = 1

4
v1v2v3

R′(v1+v2+v3)
. The larger block results in better compression

when C > C ′ and consequently R < 4R′. This implies that if it is possible to code a region

using the large block size while the error is not larger than when it is coded with the small

block size and if R < 4R′, the large block size would result in higher compression than the

31

(a)

(b)

Figure 3.2: PSNR vs bitrate plots of (a) Silent and (b) Container CIF videos employing three
different block sizes. Larger block sizes result in higher PSNR at lower bitrates however at
some bitrate point they cross over.

small one. More generally, for a block size ratio d (i.e. d =
(
v1/v

′
1

)
=
(
v2/v

′
2

)
=
(
v3/v

′
3

)
),

if R < d2R′ and the reconstruction error is relatively close; then, the larger block would be

a better choice in terms of coding efficiency.

Figure 3.2 shows PSNR plots of Silent and Container CIF videos, encoded with three

block sizes which are 8×8×180, 16×16×180, and 32×32×180. The plot shows that larger

block sizes result in higher PSNR at low bitrates, however they cross over at some bitrate

point.

32

(a)

(b)

Figure 3.3: PSNR plots of (a) Silent and (b) Container CIF videos employing blocks of
different time dimension size. The plots show that if the video has high redundancy across
time, then larger block sizes will result in higher PSNR.

In another experiment the size of the third dimension is varied while the spatial size is

16×16. The block size over the third dimension of size 180, 90, 60, 45, and 36 were evaluated.

Figure 3.3 shows the PSNR results for Container and Silent video. The results show when

the video has large number of blocks that do not change with time, expanding the block in

time dimension will result in taking advantage of the redundancy and increases the PSNR. In

the case of Container video that has linear and texture movement; at low bitrates, the larger

33

block sizes results in higher PSNR than smaller block sizes. However at some bitrate points,

they crossover. Using variable block size for different regions of a video has the advantage

of obtaining the highest possible PSNR.

Similar block size analysis can be done for an n dimensional tensor. Assuming that an n

dimensional region covered by a block of size v1 × v2 × . . .× vn requires R rank-one tensors

to be coded, if the same region covered by dn blocks of size
v1
d ×

v2
d × . . .×

vn
d requires R′

rank-one tensors to be coded where R′ is the total number of rank-one tensors for all the

dn n dimensional blocks. The compaction ratio for both scenarios is as follows, respectively:

C =
v1v2...vn

R(v1+v2+...+vn)
and C ′ = 1

d(n−1)
v1v2...vn

R′(v1+v2+...+vn)
. The larger block results in better

compression when C > C ′ and consequently R < d(n−1)R′.

3.1.2 Adaptive tree partitioning

Adaptive tree subdivide the input tensor into a set of variable size sub-blocks. In the case of

a 3D tensor, it translate to octree, for 4D tensor it translate to hextree and in general for an

n dimensional tensor it translate to 2n-ary tree. For the illustration purpose the partitioning

algorithm is developed for octree first and the result is extended afterward.

Octree is the 3D analogous of quadtree in which a 3D block is recursively subdivided

into eight adjacent disjoint 3D sub-blocks [48]. Figure 3.4 illustrates an example 3D block

subdivision and its corresponding octree representation.

The octree divides a 2v1 × 2v2 × 2v3 block into a v1 − v
(l0)
1 + 1 levels tree. Where

2v
(l0)
1 × 2v

(l0)
2 × 2v

(l0)
3 is the smallest possible block. Depending on the application, it

is desirable to have the flexibility of allocating different size along each dimensions. For

example, for a hyperspectral images tensor, since the nature of the third dimension is different

than the spatial dimensions, we would like to allocate different size along the third dimension.

34

(a)

Level l = l0 + 3

Level l = l0 + 2

Level l = l0 + 1

Level l = l0
Code: 1 | 10000000 | 01000000 | 00000000

(b)

Figure 3.4: (a) An example of 3D block recursive subdivision, and (b) its corresponding octree
representation. The leaf node indicate no subdivision while the branching node subdivided
and it has eight children. A leaf is represented by 0 and a branching node is represented by
1. The octree representation code is also shown.

However the tree level is similar in all directions, v1−v
(l0)
1 +1 = v2−v

(l0)
2 +1 = v3−v

(l0)
3 +1.

The blocks at level l have the size 2v
(l)
1 × 2v

(l)
2 × 2v

(l)
3 where0 6 v

(l0)
d 6 v

(l)
d 6 vd, d = 1, 2, 3.

Each node can be a leaf or it can be divided to eight 2(v
(l)
1 −1)×2(v

(l)
2 −1)×2(v

(l)
3 −1) sub-blocks.

Similar to quadtree, the octree can be represented with a series of bits in which 0 indicates

leaf and 1 indicates branching node. The top down approach is used for subdividing the

blocks. It starts with a maximum size block and divide it if a criteria is met. The procedure

is applied to the eight sub-blocks recursively until the sub-blocks do not require further

division or they reach the maximum tree level l0.

Since we are trying to approximate a tensor block by a linear combination of rank-one

tensors, a natural choice for division criteria is the rank. However, as mentioned eralier, find-

ing tensor rank is an NP-complete problem. As an alternative, weighted directional variance

is used as the core of the decision criteria. For a given tensor block χ ∈ R(2v1×2v2×2v3), the

average variance along each dimension is defined as in eq. (3.1).

sd =
K∑
k=0

V AR(X
jk
(d)

), d = 1, 2, 3 (3.1)

35

Where X(d) is a matrix that results from unfolding the tensor χ with respect to the dth

dimension and K is the number of the columns. The weighted directional variance is defined

as in eq. (3.2).

∆ =
3∑
d=1

wdsd (3.2)

Where wd is the dimension weight and
∑3
d=1wd = 1. wd regulates the contribution of

each direction in the decision. For each block we calculate the average variance at level l (i.e.

∆l), then we subdivide it into eight sub-blocks and calculate the average variance for each

of them (i.e. ∆
(l−1)
j , j = 1, . . . , 8). If sum of the average variance of the sub-blocks is smaller

than the average variance of the block, then the block will be divided into eight sub-blocks.

In general a relaxed criteria is used as in eq. (3.3).

∆n −
8∑
j=1

∆n−1
j <

τ

ρ
(3.3)

Where τ is a threshold and ρ = 4 × Rmax/N . The value of the ρ is derived from the

block analysis in section 3.1.1. Note that the ratio Rmax/N is the average available rank-one

tensors per block. As mentioned earlier, when the available rank-one tensors per block is

small, larger blocks will provide better approximation of the input data. The parameter

ρ will enforce less aggressive block subdivision at lower rates and more aggressive block

subdivision at higher rate. If the absolute value of the differential average is smaller than

τ/ρ, then subdivision is not required. Otherwise, the block is divided into eight sub-blocks

and the procedure is repeated recursively for each of them.

Figure 3.5 shows an example of the hextree and its corresponding code. Figure 3.6 shows

an exmple of the general 2n-ary tree and its corresponding code. As mentioned before,

36

Level l = l0 + 3

Level l = l0 + 2

Level l = l0 + 1

Level l = l0
Code: 1 | 0000100000000000 | 0000010000000000 | 0000000000000000

Figure 3.5: An example three levels hextree structure with its corresponding code. Each
branching node has 16 children nodes which can be either a leaf or a branching node as well.

Level l = l0 + 3

Level l = l0 + 2

Level l = l0 + 1

Level l = l0
Code: 1 | 0000100000. . .000 | 0000010000. . .000 | 0000000000. . .000

. . .

. . .

. . .

Figure 3.6: An example three levels 2n-ary tree structure with its corresponding code. Each
branching node has 2n children nodes which can be either a leaf or a branching node as well

Depending on the application and its associated data, an n dimensional input tensor can

have different nature along each direction. Therefore, the adaptive tree partitioning should

be able to handle a block with different size along each direction. We use a 2n-ary tree for

partitioning an n dimensional tensor. It divides a 2v1×2v2×. . .×2vn block into a v1−v
(l0)
1 +1

levels tree. Although the block size may not be equal along the dimensions, we assume that

the tree levels are equal in all directions, v1−v
(l0)
1 + 1 = v2−v

(l0)
2 + 1 = . . . = vn−v

(l0)
n + 1.

Where 2v
(l0)
1 2v

(l0)
2 . . . 2v

(l0)
n is the smallest possible block. The blocks at level l have the size

2v
(l)
1 × 2v

(l)
2 × . . .× 2v

(l)
n . For dimension d, 0 6 v

(l0)
d 6 v

(l)
d 6 vd, d = 1, 2, . . . , n. Each node

can be a leaf or it can be divided to 2n child sub-blocks with a size of 2(v
(l)
1 −1)× 2(v

(l)
2 −1)×

. . .× 2(v
(l)
n −1).

The dividing procedure is applied to the 2n sub-blocks recursively until the sub-blocks

37

do not require further division or they reach the maximum tree level l0. For a given tensor

block χ ∈ R(2v1×2v2×...×2vn), the average variance along each dimension is defined as in

eq. (3.4).

sd =
K∑
k=0

V AR(Xk
(d)), d = 1, 2, . . . , n (3.4)

Where X(d) is a matrix that results from unfolding the tensor χ with respect to the dth

dimension and K is the number of the columns. The weighted directional variance is defined

as in eq. (3.5).

∆ =
n∑
d=1

wdsd (3.5)

Where
∑n
d=1wd = 1. For each block we calculate the average variance at level l (i.e. ∆l),

then we subdivide it into 2n sub-blocks and calculate the average variance for each of them

(i.e. ∆
(l−1)
j , j = 1, 2, . . . , 2n). If sum of the average variance of the sub-blocks is smaller

than the average variance of the block, then the blocks will be divided into 2n sub-blocks.

In general a relaxed criteria is used as shown in eq. (3.5).

∆l −
2n∑
j=1

∆l−1
j <

τ

ρ
(3.6)

Where ρ = d(n−1)×Rmax/N and τ is a threshold. If the absolute value of the differential

average is smaller than τ/ρ, then subdivision is not required. Otherwise, the block is divided

into 2n sub-blocks and the procedure is repeated recursively for each of them.

Similar to octree, the 2n-ary tree can be represented with a series of bits. However, as

the dimension grows number of the bits grows exponentially. Arithmetic coding and zero

38

trail termination code can be used to reduce the size of the encoded tree.

3.2 Eigenfibers arrangement and coding

Once the eigenfibers are evaluated for all the blocks of a tensor, we can arrange them onto

the columns of a 2D matrix B. Thus, we can apply a 2D compression scheme to this matrix

B, treating it as an image. Subsequently, we can decode its columns, which represent the

eigenfibers b
(d)
r , to reconstruct the original tensor. Two important questions need to be

answered:

1. How should the eigenfibers b
(d)
r be arranged within the matrix B?

2. How much correlation does exist among these eigenfibers?

Recall that under PCP each block has its own rank, and hence we denote Rj to represent

the number of rank-one tensors used for approximating block j. Consequently, the total

number of rank-one tensors used for approximating the whole tenor is:
∑N
j=1Rj , where N

is the total number of blocks. Each 3D rank-one tensor requires three eigenfibers: (b
(1)
r,j ◦

b
(2)
r,j ◦ b

(3)
r,j), for r = 1, . . . Rj and j = 1, . . . N ; then we have a total of 3

∑N
j=1Rj eigenfibers

to code.

There are many options for arranging these eigenfibers b
(d)
r,j onto the matrix B that we

plan to compress as a 2D image. Here, we employ the arrangement shown in the example

of Figure 3.7. In this example, we generated the eigenfibers of 180 frames of the Container

CIF video.

We divided the video into 16×16×180 3D blocks, which results into 396 tensor blocks.

For clarity and ease-of-illustration purposes, we are only showing the eigenfibers for the

39

b
(1)
r :

b
(2)
r :

βrb
(3)
r :

30
60

0 10 20 30 40 50

Rj :

j

r = 1 r = 2, ..., Rmax

Figure 3.7: Eigenfibers of the PCP tensor decomposition and the rank values R for 50
blocks of the Container CIF video with 180 frames. The figure shows a possible eigenfibers
arrangement for coding and storage.

first 50 blocks chosen in a raster-scan order. All eigenfiber values are mapped from their

normalized [−1,+1] range onto the traditional [0, 255] pixel values. As shown in the figure,

we employ the following arrangement:

• Vertical arrangement: The eigenfibers b
(1)
r,j are put at the top of the 2D image; each fiber

is of height 16. Next, the second eigenfibers b
(2)
r,j , also with height 16, are placed below

b
(1)
r,j . These two groups of eigenfibers capture the 16×16 spatial information of the

video-blocks. Meanwhile, the third eigenfibers b
(3)
r,j with height 180 are placed below;

and these later eigenfibers capture the temporal information of the 3D video-blocks.

• Horizontal arrangement: More importantly, we separate the eigenfibers associated with

the first rank-one tensors (i.e., for r = 1) from the rest of all other eigenfibers with

higher rank index (i.e. for r > 1). This separation is analogous to differentiating

40

between ”DC” and ”AC” coefficients in traditional image and video coding. The left

bright area in the images of figure 3.7 corresponds to these eigenfibers. For higher rank

indices, r > 1, we simply place the eigenfibers according to the blocks they belong to

in a raster-scan order. We have also experimented with other horizontal arrangements

for eigenfibers with r > 1. For example, one can group eigenfibers with r = 2, followed

by ones with r = 3, and so on. We observed little improvement in coding efficiency

while using such arrangement; meanwhile it increases the complexity due to the need

of performing matrix permutations at both the encoding and decoding sides.

Note that, in addition to the eigenfibers, we also have the normalization parameter βr. Under

the proposed tensor coding framework, we absorb the parameters βr,j onto the third direction

eigenfibers b
(3)
r,j , as shown in figure 3.7. There are two benefits for absorbing these parameters

onto the eigenfibers. First, we eliminate the need for coding these parameters separately.

Second, this multiplication process improves the correlation among the eigenfibers within

the 2D image as we discuss below.

It is important to note that for a given 3D block, the three eigenfibers (b
(1)
r , b

(2)
r , b

(3)
r)

are expected to be uncorrelated. However, if we consider different 3D blocks of similar

spatial and temporal characteristics, then we anticipate that the eigenfibers across such

blocks to be correlated. Figure 3.8a shows the correlation among the columns of matrix

A that correspond to traditional CP factored vectors (a
(1)
r,j , a

(2)
r,j , a

(3)
r,j). Figure 3.8b is the

correlation among the columns of matrix B, which are the PCP eigenfibers (b
(1)
r,j , b

(2)
r,j , b

(3)
r,j).

The bright upper-left region corresponds to the correlation among the first eigenfibers of

each block. These particular (first) eigenfibers, which represent the principle eigenfibers, are

highly correlated. However, they have low correlation with most of the other eigenfibers

41

(a) (b)

(c) (d)

(e) (f)

Figure 3.8: The correlation among (a) matrix A columns (i.e. CP vectors); (b) matrix B
columns (i.e. PCP eigenfibers); The correlation among (c) matrix A rows; (d) matrix B

rows; (e) after λ(r,j) absorption onto a
(3)
(r,j)

vectors; and (f) after β(r,j) absorption onto b
(3)
r .

The video is Container CIF.

42

(darker upper panel). As expected, and similar to the original CP decomposition, PCP

provides uncorrelated vectors within each block.

Meanwhile, the entries within the eigenfibers can be correlated. In other words, if we

consider the first row of matrix B then it will be desired to have this row correlated with other

rows within the same matrix. Such intra-eigenfiber correlation is captured by the correlation

among the rows of the eigenfiber matrix shown in figures 3.8c-3.8f. The proposed PCP

decomposition provides higher intra-eigenfibers correlation than what can be achieved under

CP. Assuming R∗ is known, we decomposed the video using both CP and PCP with the same

R∗ to obtain a comparable number of factored vectors and eigenfibers in this experiment.

Figure 3.8c is the correlation among the rows of matrix A and figure 3.8d is the correlation

among the rows of matrix B. From figures 3.8c and 3.8d, PCP provides eigenfibers with

higher row correlation than the standard CP. The three square regions on the diagonal are

the intra-eigenfiber correlation of B(1), B(2), and B(3) respectively. The other three regions

above the diagonal is the intra-eigenfiber correlation of B(1) with B(2), B(1) with B(3),

and B(2) with B(3). Figures 3.8e and 3.8f show the impact of absorbing the normalization

parameters λr,j (for CP) and βr,j (for PCP) within the corresponding eigenfibers.

The next step is to code the rank parameters Rj for all blocks. We simply arrange these

values onto a vector and entropy code them in a lossless manner.

For a higher dimension input tensor we simply add the eigenfibers at the bottom of

the 2D matrix. For example, decomposing an n dimensional input tensor will result in n

eigenfibers. Based on the partitioning method we have two different settings:

1. Uniform partitioning: assuming each block is of size v1v2 . . . vn, the vector that stack

all the eigenfibers of a rank-one tensor will be of size v1 + v2 + . . .+ vn. Since all the

blocks are of the same size we can arrange this vectors as columns of the 2D matrix.

43

2. Adaptive tree partitioning: in this settings, each block can have a different size. How-

ever based on the tree structure we know the maximum block size and the tree level.

Consequently we can obtain the minimum block size. For a minimum size block we

simply follow the arrangement steps of uniform partitioning. For larger blocks, in

order to maintain consistent column size, we simply store the corresponding eigen-

fibers as multiple columns. Each column has the same size as the vector of eigenfibers

of the minimum size block. For example, assume the size of the minimum block is

v1 × v2 × . . . × vn and a particular block j has a size of 2v1 × 2v2 × . . . × 2vn. The

eigenfibers vector of the block j will be of size 2v1 + 2v2 + . . .+ 2vn, therefor we store

this vector as two vectors of size v1 + v2 + . . . + vn each to be consistent with the

minimum size block.

3.3 Residual coding

The proposed framework is based on approximating a tensor with a set of rank-one tensors.

If the original tensor is of low-rank we would be able to reconstruct it exactly. However, if

the tensor is close to full rank, at some point no matter how many rank-one tensors we add,

the approximation will not converge to the original one.

The exact or near lossless reconstruction is important for some applications. In order

to present a complete coding framework that would be able to code the visual data tensors

with high quality (near lossless), we employ a residual coding process as shown in figure 3.1.

After approximating a visual data tensor χ with the proposed tensor coding framework, we

obtain the final residual χr = χ− χ̂ where χ̂ is the approximation tensor.

Since PCP captured the existing correlation in the input tensor, we code each residual

44

slice separately. This would also maintain the random access property. Note that, these

slices can be along any dimensional direction depending on the type of the random access

required in a particular application. For example, image ensemble decoding requires random

access along the third dimension. Consequently, the residual slices are coded separately

along the third dimension. While the rate of coding the residual slices would not be as high

as coding the original images, the scalability of the proposed method provides flexibility for

different applications to reconstruct the data based on their requirement. In this thesis we

used the Amplitude and Group Partitioning (AGP) image coding method [49] to code the

residual.

3.4 Tensor coding properties

The proposed tensor coding framework has some desirable properties. These properties,

individually or combined, result in advantages over standard compression methods in some

applications. In this section Random access, progressive reconstruction, and time complexity

will be discussed.

3.4.1 Random access

Tensor coding has the advantage of random access, which is not the case for the motion based

coding methods and many 3D transform based coding approaches. The motion based coding

methods codes a GOP using a single key frame and the rest are predicted frames. In order to

decode any predicted frame, the decoder need to have all of the previous frames in the same

GOP. The 3D transform based coding methods, take advantage of the existing correlation

along all the dimensions. However they require all the transform domain coefficients to

45

reconstruct the original tensor.

In the case of tensor coding, to reconstruct a slice from a 3D tensor, the decoder requires

the first two eigenfibers and a value of the third eigenfiber to decode a slice independently.

In general, any slice can be decoded as shown in eq. (3.7).

Slicei,j =

Rj∑
r=1

(B
(1)
j,r ◦B

(2)
j,r ◦B

(3)
i,j,r), j = 1, . . . , N (3.7)

Where j is the block index, B
(1)
j,r and B

(2)
j,r are vectors, B

(3)
j,r,i is a single value from row i

of B(3). The column indices are either obtained from the octree structure in the case of

adaptive tree partitioning, or from the block number in the case of the uniform partitioning.

The first two eigenfibers can be thought of as basis, while the values from the third eigenfiber

are the coefficients.

For the more general case of an n dimensional tensor, a particular slice can be decoded

as shown in eq. (3.8).

Slicei,i3,...,i4 =

Rj∑
r=1

(B
(1)
j,r ◦B

(2)
j,r ◦B

(3)
i3,j,r

◦ . . . ◦B(n)
in,j,r

), j = 1, . . . , N (3.8)

The random access property is not limited to a slice of the first and second dimension

and based on the application a subset of eigenfibers can be selected to reconstruct a slice in

a particular dimension. For example, in hyperspectral images, a vector of values across all

bands for a particular pixel called pixel signature. It provide a valuable information about

the type of the earth materials or the vegetation. When a hyperspectral images is coded with

tensor coding framework, a pixel signature can be reconstructed from a set of eigenfinbers

as shown in eq. (3.9).

46

Signaturei1,i2,j =

Rj∑
r=1

(B
(1)
i1,j,r

◦B(2)
i2,j,r

◦B(3)
j,r), j = 1, . . . , N (3.9)

Note that the reconstructed signature is a one dimensional vector and j is the block

index, B
(1)
i1,j,r

and B
(2)
i2,j,r

are single values from matrices B(1) and B(2) correspondingly, and

B
(3)
j,r is a vector.

3.4.2 Progressive reconstruction and decoding

Unlike CP decomposition PCP factorizes the tensor in a progressive scheme. In other words,

if one derives the CP decomposition using a given rank parameters R, then all of the R

rank-one tensors must be used for reconstructing the approximated tensor χ̂; otherwise, the

quality of the reconstructed tensor is significantly degraded. This is true even if the 3D

block has a low rank; all of the factored vectors should be used in the reconstruction to give

reasonable results. On the other hand, PCP simply improves the quality of the reconstructed

tensor, when increasing the number of rank-one tensors used for reconstruction. Therefore,

a subset of the eigenfibers can be used to reconstruct a lower quality result.

Figure 3.9 shows a frame from the ”Red Flower” CIF video encoded by the proposed

tensor coding framework with a total number of rank-one tensors equal to 6000 and then

decoded using (a) 1000, (b) 2000, (c) 3000, and (d) 4000 rank-one tensors. Increasing number

of rank-one tensors, result in gradual increment of the video details.

3.4.3 PCP time complexity

The most time-consuming operation of the PCP decomposition is the Khatri-Rao product

in eq. (2.9). For example to find b
∗(1)
r we need to calculate z

(1)
r and X ′(1),k. The first term

47

(a) (b)

(c) (d)

Figure 3.9: ”Red Flower” CIF video encoded by tensor coding with a total of 4000 rank-one
tensors. Uniform partitioning was used with block size of 1616180. The video decoded with
(a) 1000 (93 Kbps 30.43 dB), (b) 2000 (205 Kbps 35.76 dB), (c) 3000 (320 Kbps 38.49 dB),
(d) 4000 (433 Kbps 40 dB), rank-one tensors.

is of order O (v2v3) while the second one is of order O (v1v2v3). Recall that v1 × v2 × v3 is

the size of the 3D tensor block. The time complexity of all three decomposed eigenfibers and

all other extra operations can be captured by a constant term (ρ). The total complexity of

coding a visual data ensemble with tensor coding framework is O
(
ρv1v2v3

∑N
j=1Rj

)
where

N is the number of blocks, and Rj is the number of rank-one tensors used to reconstruct

48

block j. Note that to solve for b
∗(1)
r we are using ALS, which is an iterative approach. The

complexity of all the iterations is captured by ρ.

PCP reconstructs a 3D tensor as in eq. ((2.7)). It consists of outer product of decom-

posed eigenfibers and then addition of rank-one tensors. Overall there are v1v2v3
∑N
j=1Rj

multiplications and v1v2v3
∑N
j=1Rj additions; where N is the number of blocks. Hence, the

complexity of the decoding algorithm is of order O(2v1v2v3
∑N
j=1Rj).

For an n dimensional tensor, the PCP reconstruction shown in eq. (2.10) has a time

complexity of O
(
ρv1v2 . . . vn

∑N
j=1Rj

)
. Where N is the number of the blocks. Note that

this time complexity accounts for the PCP decomposition only and despite the used tensor

partitioning approach. The adaptive tree partitioning time complexity should be considered

as part of the overall tensor coding complexity.

49

Chapter 4

Tensor coding applications

The proposed tensor coding framework is optimized for visual data, however it can be applied

to any type of data. It is designed to be able to represent and code input tenor with any

dimension efficiently specially 3D and above. In this thesis, the framework is applied to three

applications which are

1. Hyperspectral and multispectral images. Multiple experiments have been done for

both 3D and 4D input data tensors.

2. Biometric face image ensembles which are 3D tensors.

3. Low complexity video coding in which a video is treated as a 3D tensor.

4.1 Hyperspectral image coding

Unlike the conventional imaging systems that measure the energies in the visible light spectral

bands, the hyperspectral imaging system measures the energies in a broad range of spectral

bands. The number of spectral bands can range from 8 in Landsat data sets up to 200 in the

multispectral data sets. While most of the bands do not provide visual information, they

contain a vital scientific information about the earth and atmosphere. An efficient system

for representation and coding of hyperspectral images is essential especially considering the

fact that the amount of this type of images are growing rapidly.

50

While each band has its characteristics, there is a high amount of correlation among

them that can be exploited for compression. Various 3D-wavelet based compression meth-

ods are proposed to exploit this correlation [50–53]. However, the random access property

is not preserved in these methods. Fast random access property is playing a key role in

providing efficient browsing experience. Suppose that we want to download a specific band

of a hyperspectral images available on a server. Under the 3D-wavelet methods, the whole

compressed data should be available to reconstruct the original data and then access that

particular band. Depending on the size of the image, network quality, and the server band-

width/traffic, obtaining the complete compressed data can be inconvenient.

The proposed tensor representation and coding can provide a random access while deliv-

ering a better compression than the single image compression methods [54]. Further more,

the inherited scalable coding property of the proposed method can provide reconstruction

with variable quality. The scalability property contribute in efficient functionality. For ex-

ample we can use a lower quality reconstruction for classification. Also, the proposed method

capable of fast decoding which is a key component of the efficient browsing. The inherited

scalable coding property of the proposed method can provide reconstruction with variable

quality. Furthermore, with the residual coding capability the high frequency data can be

reserved and delivered whenever desired.

4.1.1 Experimental results

The proposed tensor coding framework was employed to code a set of 3D hyperspectral

images from AVIRIS data set [55] and multispectral images from Landsat data set [56]. All

the experiments were evaluated at a desktop computer with 12 GB of memory and an Intel

Core i7 2600 CPU (8MB Cache, 3.4 GHz).

51

0 0.2 0.4 0.6 0.8 1 1.2 1.4
50

52

54

56

58

60

bpppb

PS
N

R
 (

dB
)

TC octree

TC 48×48×200

TC 24×24×100

TC 12×12×50
JPEG2000

Figure 4.1: Indian pine PSNR vs bpppb comparison among TC with different block sizes,
TC with octree and JPEG2000.

In the first experiment we decomposed the Indian pine hyperspectral image data with

different number of eigenfibers to limit the rate and consequently the final storage size. The

Indian pine data set consists of 200 spectral bands and the spatial resolution is 144 × 144.

Figure 4.1 shows the PSNR vs bit per pixel per band (bpppb) plot. Tensor coding results

with different block sizes and octree block structure are compared to the JPEG2000. We

used an octree with three levels and the largest block size of 48 × 48 × 200. The weights

in eq. (3.2) are equally distributed and the threshold in eq. (3.3) is set as 1% of the parent

block variance.

Similar to the discussion in the section 3.1.1, Figure 4.1 shows that for smaller rate, the

larger block sizes provide better compression at lower bitrates. However they cross over at

some point and at higher bitrates smaller block sizes provide better compression. On the

other hand, octree delivers a consistent better compression by choosing a variable block size

based on the region and the available bitrate.

A critical illustration for how effective such decomposition can be is how does it impact

the spectral profile of individual physical locations across bands. The spectral profile is a

52

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
1000

2000

3000

4000

5000

Spectral band

V
al

ue

Original
Compression ratio 63
Compression ratio 37
Compression ratio 14 (near lossless)

Figure 4.2: The spectral profile over 200 bands of a particular spatial location from the
Indian pine data shown in Figure 4.3. Three reconstructed spectral profiles based on the
proposed framework at different bitrates are shown.

key piece of information that scientists rely on to analyze the data. The spectral profile

of the Indian pine is shown in Figure 4.2. Our simulation results show that reconstruction

with two order of magnitudes of compression ratio provides spectral profiles that track the

original one very closely therefore it can be used in applications like classification and pattern

recognition. The scalability of the proposed tensor coding method provide a flexibility on the

reconstructed signature quality. However there is a trade off between the the reconstructed

signature precision and the compression ratio.

A similar experiments were done for different hyperspectral images from AVIRIS image

data sets. Table 4.1 shows the bitrate comparison between tensor coding and JPEG2000 at

a particular PSNR for these hyperspectral images. The results show the advantage of tensor

coding in exploiting the correlation over a standard 2D compression method.

In different encoding scenario, we set the Rmax value to 100 and 1000 which result in

average of 1.39 and 6.95 eigenfibers per block respectively. Furthermore to achieve near loss-

less compression, when coded with Rmax = 1000, we encoded each residual slice (difference

53

Table 4.1: bitrate comparison between tensor coding and JPEG2000 for various hyperspec-
tral images from AVIRIS data set.

Image
Tensor coding JPEG2000

bitrate(bpppb) PSNR(dB) bitrate(bpppb) PSNR(dB)

Cuprite 0.20 42.82 0.41 42.83

Pavia University 0.20 51.90 0.53 51.94

Botswana 0.20 52.95 0.42 52.94

Salinas 0.20 66.17 0.90 66.17

Indian pines 0.20 55.29 0.66 55.32

between original and reconstructed slices) using AGP image coding [49]. Figure 4.3 shows

the reconstruction results. Note that for illustration purpose only RGB bands are shown.

In addition to the efficient and scalable representation ranging from more than two orders

of magnitude to one order of magnitude in compression ratios (for near lossless), the time

for reconstruction ranges from 0.6 to 1.35 per one 2D slice (using MatLab). This enables

reconstruction of 100 low-resolution slices to more than 40 high-resolution slices per second.

The decoding process time complexity can be further reduced through using C/C++ im-

plementation with parallel computing capability. In this experiment, for Rmax = 100, we

obtained a compression ratio equal to 228 and the average decoding time of 0.6 msec/slice.

For Rmax = 1000, the compression ratio was 61.5 and the average decoding time was 1.35

msec/slice. Finally, the near lossless coding compression ratio was 10. Note that here the

compression ratio is the ratio between the actual bits needed to store the compressed data

and the original image bits.

In another experiment, we conducted 3D representation of high-resolution 2K×2K pixels

54

(a) (b)

(c) (d)

Figure 4.3: A hyperspectral 3D imaging data and its reconstructed representation using
a progressive number of 3D eigenfiber sets. Compression ratios raging from one order of
magnitude (near lossless) to more than two orders of magnitude. (b) Original Indian pine,
(b) 100 eigenfibers, compression ratio 213, (c) 1000 eigenfibers, compression ratio 37, (d)
1000 eigenfibers plus residual coding, compression ratio 10.

55

of Landsat data across 20 time instances. The Landsat images are multispectral that have

fewer spectral bands comparing to hyperspectral. However, Landsat takes periodic images

of the same region. While the spectral direction of the data set have some correlation, there

is a large amount of correlation in the time direction. For this experiment we used the below

coding scenario to evaluate and compare the higher dimension tensor coding.

1. The Landsat multispectral images have six spectrum. We aligned the 20 time instances

of each spectrum in a 3D tensor. As a result, six 3D tensors were encoded with the

proposed framework.

2. The Landsat multispectral images were aligned in a 4D tensor. The dimensions are

two spatial, time, and spectrum. Then a hextree was used to represent the tensor

partitioning and a 4D tensor coding framework was applied to code the data.

We compared the compression ratio of these two scenarios at different bitrates. Figure 4.4

shows the bitrate vs. PSNR plot for the Lake multispectral image. The lowest bitrate

point achieved by the 4D tensor coding framework was 0.0072 bpppb. It translate to a

compression ratio of 1111. The corresponding PSNR was 31.5. The encoding time at this

particular bitrate point was 13.2 seconds per slice and the decoding time was 114 milliseconds

per slice. In other words, the 4D tensor coding framework can decode about 9 slices per

second at the bitrate of 0.0072 bpppb. Figure 4.5 shows the decoding time comparison along

different bitrates between the 3D and 4D tensor coding for the Lake multispectral image.

The decoding times of 4D and 3D tensor coding at lower bitrates were close. However the

gap was gradually increased as the bitrate was increased.

Figure 4.6 shows the original image along with the 3D tensor coding reconstruction results

at different compression ratios. The compression ratios were ranging from 1142 to 340 which

56

0 0.01 0.02 0.03 0.04 0.05 0.06
28

29

30

31

32

33

34

35

36

37

bpppb

PS
N

R
 (

dB
)

4D tensor coding
3D tensor coding

Figure 4.4: Lake multispectral image PSNR vs bpppb comparison. The compression result
of 4D tensor coding with hextree partitioning is compared with 3D tensor coding with
octree partitioning. 4D tensor coding achieves higher compression by exploiting the existing
correlation along all the dimension of the lake multispectral image.

0 0.01 0.02 0.03 0.04 0.05 0.06
100

200

300

400

500

600

bpppb

D
ec

od
e

tim
e

pe
r

sl
ic

e
(M

ill
is

ec
on

ds
)

4D tensor coding
3D tensor coding

Figure 4.5: Lake multispectral image decoding time comparison. The decode time per slice
is shown in milliseconds for 4D and 3D tensor coding. At lower bitrates the decoding time
is close while in the higher bitrates the 4D tensor coding results in higher decoding time.

57

are quite significant. Note that at compression ratio 1142, each block is represented by only

one rank one tensor. Since each block needs to be represented at least with one rank one

tensor, this compression ratio represent a lower boundary on how much compression the 3D

tensor coding can achieve.

Figure 4.7 shows the original image along with the 4D tensor coding reconstruction results

at different compression ratios. The compression ratios were ranging from 6154 to 769. The

4D tensor coding can achieve better quality reconstruction at the same compression ratio

compared to the 3D tensor coding. This is due to the fact that the 4D tensor coding takes

advantage of the correlation along the fourth dimension. Also, note that 4D tensor coding

can encode at lower bitrates compared to 3D tensor coding lower boundary.

58

(a) (b)

(c) (d)

(e) (f)

Figure 4.6: 3D tensor coding of high-resolution 2K × 2K pixels across 20 time instances
of Landsat data. (a) original image, (b) compression ratio = 1142 and PSNR = 29, (c)
compression ratio = 727 and PSNR = 30.83, (d) compression ratio = 534 and PSNR =
31.73, (e) compression ratio = 421 and PSNR = 32.37, (f) compression ratio = 340 and
PSNR = 32.88.

59

(a) (b)

(c) (d)

(e) (f)

Figure 4.7: 4D tensor coding of high resolution 2K × 2K pixels across 20 time instances
of Landsat data. (a) original image, (b) compression ratio = 6154 and PSNR = 27.29, (c)
compression ratio = 4210 and PSNR = 29.43, (d) compression ratio = 3077 and PSNR =
30.43, (e) compression ratio = 1429 and PSNR = 31.02, (f) compression ratio = 769 and
PSNR = 32.22.

60

4.2 Image ensembles coding

Image databases represent a core component of many well-established and emerging applica-

tions and services including ecommerce and security. For example, image databases of faces,

fingerprints, and eye retinas are used extensively for biometric and other security-related

applications. Such databases store a vast number of images of the same type, and yet, tradi-

tional compression standards are used to compress and store these images without exploiting

the correlation that potentially exists among the images within the same database.

For example, the ISO/IEC 19794 standard on biometric data interchange format defined

JPEG and JPEG2000 as admissible lossy compression methods. A key driver for encoding

each image in isolation of other images within the same database is the ability to access and

decode any image without the need to access/decode other images. Such requirement elim-

inates popular video coding standards as viable candidates for coding still-image databases.

Employing the proposed tensor coding framework can achieve both: (a) random access to

any image within a collection of images coded jointly and (b) coding efficiency by exploiting

any potential correlation that may exist among the images within the same database.

4.2.1 Experimental results

The proposed method was applied to the Yale Face Database B [57]. The database has images

of 38 persons. Each of them has 64 images of size 192×168. These images vary in expression

and illumination condition. After stacking the images on top of each other, we have a 3D

tensor of size 192 × 168 × 2432. The resulting tensor is decomposed using PCP and the

eigenfibers are arranged in 2D matrices. Then the result is compressed by JPEG2000. Within

the context of our proposed image-ensemble tensor based compression, we compare the

61

150 200 250 300 350 400 450 500 550 600 650
20

22

24

26

28

30

32

34

Average Bytes per image

A
ve

ra
ge

 P
SN

R
 (

dB
)

PCP

CP

JPEG2000

Figure 4.8: Average PSNR plot of 38 persons face images from Yale Face Database B versus
the average storage size required per image.

following tensor decomposition approaches and existing still-image compression standards

used in image databases:

1. Block-wise PCP-decomposition. The block size is 16 × 21 × 64 and the value of γ is

changed to control the final storage size.

2. Block-wise CP-decomposition. The block size is the same as in method (1) and the

value of γ is changed to compare the results for different compaction ratios. Here, we

used the same structure as in 3.1 except the decomposition method is replaced with

CP and JPEG2000 lossless mode is used since small changes in the CP decomposed

vectors can lead to large error in reconstruction.

3. Storing each image separately using JPEG2000 standard. The MATLAB implementa-

tion is used.

Figure 4.8 shows the reconstruction PSNR averaged over 38 persons versus the required

space (in Kbytes) for all the 64 images of a person averaged over 38 persons. Over a wide-

range of bitrates, PCP outperforms other methods. Figure 4.9 shows the PCP R values

for the blocks of an image encoded at two different bitrates. Notice that when we increase

62

2 4 6 8

2

4

6

8

10

12

5

10

15

20

(a)

2 4 6 8

2

4

6

8

10

12

5

10

15

20

(b)

Figure 4.9: PCP R values for the blocks of an image encoded at a) 288 Bytes b) 979 Bytes. As
the allocated number of rank one tensors is increased, the tensor coding framework allocate
a higher number of rank one tensors to the blocks with more information. For example the
blocks that contains the eyes and the mouth

the Rmax value, our algorithm allocate larger R values for the blocks that contain more

information. In the case of the Yale Face Database, those regions are around the eyes, nose

and the mouth. Figure 4.10 shows one of the reconstructed images using above methods and

standard JPEG along with MATLAB implementation of Motion JPEG2000. Figure 4.11

shows the reconstruction results at higher bitrates. At higher bitrates, except for JPEG, all

of the methods have close PSNR and the visual quality is similar.

Based on the progressive nature of PCP, its time complexity is linear as a function of

the number of rank-one tensors. CP factorization (i.e., the encoding side) has a quadratic

complexity as a function of R. Either case (PCP or CP), the decoding complexity is on the

same order as a traditional JPEG2000 decoding. Figure 4.12 shows the time complexity,

where the decomposition methods are evaluated at a desktop computer with 12 GB of

memory and an Intel Core i7 2600 CPU (8MB Cache, 3.4 GHz).

63

(a) (b) (c)

(d) (e) (f)

Figure 4.10: (a) Original image; (b) tensor coding with PCP (288 Bytes, 30.1 dB) ; (c) tensor
coding with CP (286 Bytes, 28.98 dB); (d) JPEG2000 (291 Bytes, 25.68 dB); (e) motion
JPEG2000(292 Bytes, 24.63 dB); (f) JPEG (790 Bytes, 25.19 dB).

(a) (b) (c)

(d) (e) (f)

Figure 4.11: (a) Original image; (b) tensor coding with PCP (979 Bytes, PSNR: 34.5); (c)
tensor coding with CP (986 Bytes, PSNR: 32.6); (d) JPEG2000 (975 Bytes, PSNR: 35.27);
(e) motion JPEG2000 (990 Bytes, PSNR: 35.1); (f) JPEG (999 Bytes, PSNR:29.1).

64

200 300 400 500 600
0.05

0.06

0.07

0.08

0.09

0.1

Average Bytes per image

D
ec

od
in

g
T

im
e

(S
ec

)

PCP
CP
JPEG2000

(a)

200 300 400 500 600
0

20

40

60

80

Average Bytes per image

E
nc

od
e

T
im

e
(S

ec
)

PCP
CP
JPEG2000

(b)

Figure 4.12: Average a) decoding b) encoding time of 38 persons face images from Yale Face
Database B versus the average storage size required per image.

These simulations confirm the conjecture that one can achieve highly-efficient progressive

coding of image ensembles while maintaining low-complexity random access to any desired

image when employing tensor-based decomposition.

4.3 Low complexity video coding

The proposed framework does not rely on any form of Motion Estimation (ME) or Motion

Compensation (MC). It can be targeted for applications and devices that tolerate delay but

require low-complexity at both the encoder and decoder. We show that for low rank videos,

TC outperforms the video coding schemes that do not employ ME. Among such video cod-

ing schemes, H.264/AVC-Intra [58, 59] are based on coding each frame without exploiting

temporal redundancy. Distributed Coding for Video Services (DISCOVER) codec [60] is

based on Wyner-Ziv coding with side information [61,62]. H.264/AVC-no motion [58] codes

a Group Of Pictures (GOP) such that the first frame is coded as a reference (i.e. I frame)

and the other frames in the same GOP are coded as predicted pictures. This latter coding

scheme exploits the temporal redundancy without employing any ME. Another set of low

65

complexity video coding schemes are based on dimensionality reduction by means of multidi-

mensional decomposition. Two-dimensional Singular Value Decomposition (2DSVD) [14,63]

video coding is one of the recent developed frameworks in this family [13].

4.3.1 Experimental results

In our simulations, we simply employed JPEG2000 to compress the eigenfibers’ matrix.

Huffman and run-length coding was applied to compress the rank-values Rj . The proposed

tensor coding was evaluated by comparing it with four encoders. They have in common the

property of low complexity encoding. We did not show comparison results with the High

Efficiency Video Coding (HEVC) standard because of its encoding complexity. Even Intra

coding of HEVC has higher complexity in comparison with H.264. Figure 4.13 shows (a)

encoding, (b) decoding time comparison between HEVC Intra and H.264 Intra for Container

video. While HEVC Intra is significantly more complex than H.264 Intra, it achieves 1.24

dB average PSNR increase. In this experiment HHI HEVC software revision 3604 [64] was

used at a desktop computer with 12 GB of memory and an Intel Core i7 2600 CPU (8MB

Cache, 3.4 GHz).

The following five video codecs were used in our simulations:

1. H.264/AVC-no motion with high profile, GOP of size 24 and number of reference frames

equals to one. The JM18.4 version implemented in C/C++ available at [65] was used.

2. H.264/AVC-Intra with high profile (JM18.4 version).

3. Scalable video coding with 3D set partitioning in hierarchical trees (3D SPIHT) [66–68].

The C/C++ implementation is available at [69]. In this implementation the GOP size

66

200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

Bit Rate (Kbps)

E
nc

od
e

T
im

e
(S

ec
)

HEVC
H.264 Intra

(a)

200 400 600 800 1000 1200
5

10

15

20

25

30

35

40

Bit Rate (Kbps)

D
ec

od
e

T
im

e
(S

ec
)

HEVC Intra
H.264 Intra

(b)

Figure 4.13: HEVC Intra and H.264 Intra time complexity comparison for container video.
(a) Encoding time, (b) Decoding time.

is 16. The value of bit per pixel (bpp) was changed accordingly to achieve different

bitrates.

4. DISCOVER DVC intra codec [60] with GOP size of two. The C/C++ implementation

available at [70] was used.

5. The proposed tensor coding framework implemented in MATLAB.

First, we present the PSNR results and corresponding plots for 180 frames of four CIF

videos available at [71–73]. Note that the DISCOVER codec requires odd number of frames

to code them. We used 179 frames of the test video sequences when coding with DISCOVER

codec. Also, the parameters were assigned in a way to keep the PSNR values of both key and

Wyner/Ziv frames close together. For tensor coding, we changed the block size to obtain

the highest possible PSNR at different bitrates.

67

100 200 300 400 500 600 700 800 900 1000 1100
22

24

26

28

30

32

34

36

38

40

42

PS
N

R
 (

dB
)

Bit Rate (Kbps)

(a)

200 300 400 500 600 700 800 900 1000 1100
26

28

30

32

34

36

38

40

42

PS
N

R
 (

dB
)

Bit Rate (Kbps)

(b)

100 200 300 400 500 600 700 800 900 1000
26

28

30

32

34

36

38

PS
N

R
 (

dB
)

Bit Rate (Kbps)

(c)

100 300 500 700 900 1100

P
S

N
R

 (
dB

)

TC H.264−no motion H.264Intra DVC Intra SPIHT

Figure 4.14: PSNR vs. bitrate plots of (a) Container,(b) Silent, (c) Bridge Close video.

68

20 40 60 80 100 120 140 160

34

36

38

Frame

PS
N

R
 (

dB
)

(a)

20 40 60 80 100 120 140 160

35
36
37
38
39

Frame

PS
N

R
 (

dB
)

(b)

20 40 60 80 100 120 140 160
32

34

Frame

PS
N

R
 (

dB
)

(c)

Frame
 3D SIHT TVC

Figure 4.15: PSNR vs. frames plots of (a) Container (500 Kbps), (b) Silent (699 Kbps), (c)
Bridge Close (380 Kbps) videos encoded with TC and SPIHT. Tensor coding maintains a
more uniform PSNR across the frames while the SPIHT quality tends to degrade as it get
closer to the end of the GOP.

The PSNR plots are shown in Figure 4.14. Our proposed method outperformed all other

encoders except for higher bitrates of the Container video where 3D SPIHT provided higher

average PSNR. Even though 3D SPIHT on average performed better than our method, it

suffers from wide PSNR variation within each GOP, and with very visible degradation that

is quite significant toward the end of the GOP. In particular, 3D SPIHT results in high

PSNR differences among the frames at the beginning of the GOP in comparison with frames

at the end of the GOP, especially for videos that have frames that tend to change within

a GOP. Figure 4.15 shows the PSNR versus frame sequence of Container and Bridge Close

69

(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Frame 14 of the Container CIF video. (a) original video, (b) tensor coding
(731.07 Kbps; 37.39 dB), (c) H.264/AVC-no-motion (732.09 Kbps; 35.26 dB), (d)DISCOVER
DVC (735.53 Kbps; 34.06 dB), (e) H.264/AVC-Intra (753.96 Kbps; 30.02 dB), (f) SPIHT
(732.94 Kbps; 38.22 dB).

70

(a) (b)

(c) (d)

(e) (f)

Figure 4.17: The first frame of the Bridge Close CIF video. (a) original frame, (b) tensor
coding (202.74 Kbps; 33.48 dB), (c) H.264/AVC-no-motion (209.29 Kbps; 32.21 dB), (d)
DISCOVERDVC (274.77 Kbps; 28.32 dB), (e) H.264/AVC-Intra (218.41 Kbps; 26.71 dB),
(f) SPIHT (203.77 Kbps; 31.81 dB).

71

videos encoded using tensor coding and 3D SPIHT. At low bitrates, the PSNR variation of 3D

SPIHT was noticeable. Hence, such wide variation in visual quality is arguably unacceptable

for many applications.

Figure 4.16 shows frame number 14 of container video. The original frame was com-

pared with the decoded frame of five different codecs in this case. The video was coded at

approximately 730 Kbps. For this particular frame, tensor coding had lower PSNR at this

bitrate than the 3D SPIHT. Meanwhile, tensor coding decoded the frame with more details

(especially the water region) in comparison with the other decoders.

Figure 4.17 shows the first frame of ”Bridge Close” video. The original frame was com-

pared with the decoded frame of the five encoders as in the previous experiment. The video

was coded at approximately 210 Kbps. In this example, tensor coding outperformed all other

five codecs both in terms of PSNR and visual quality. The details of the bridge are more

visible in the frame decoded with tensor coding in comparison to the other methods. Due

to the aforementioned issues with 3D SPIHT, and in particular the significant variation in

visual quality within each GOP, we focus the remainder of this section on comparing tensor

coding with the other three leading coding systems.

In another experiment, we encoded ten CIF videos at two levels of PSNR to compare

the bitrate and the time complexity. The results for the relatively low PSNR are shown in

Table 4.2. Table 4.3 shows the results corresponding to encoding the same videos but at

relatively higher PSNR values. The encoders were evaluated at a desktop computer with

12 GB of memory and an Intel Core i7 2600 CPU (8MB Cache, 3.4 GHz). Tensor coding

provides the best bitrate results and very competitive encoder/decoder times at low bitrates.

As expected, DISCOVER DVC provided the best encoding times but at a significant penalty

at the decoder side. For videos with low motion, tensor coding encoding time was even

72

smaller than DISCOVER DVC. However at higher bitrates the encoding time was higher

than other methods. The tensor coding decoding time was consistently the lowest at both

the low and high PSNR levels. Overall, tensor coding provided a good balance of coding

efficiency and low-complexity despite its MATLAB implementation.

73

Table 4.2: The encoding/decoding time, PSNR and bitrate of ten CIF videos with 180
frames using four coding methods. Relatively-low and (almost) the same PSNR values were
targeted for this experiment to compare the bitrate and time complexity.

Video Method PSNR(dB) b
it

ra
te

(K
b
p
s)

E
n
co

d
e

ti
m

e
(s

)

D
e
co

d
e

ti
m

e
(s

)

Container

H.264/AVC-no motion 30.35 276 77 2.9

H.264/AVC-Intra 30.02 754 96 7.7

DISCOVER 30.29 424 58 803

TC 30.18 114 81 1.4

Silent

H.264/AVC-no motion 30.96 192 88 4.2

H.264/AVC-Intra 30.37 672 111 9.6

DISCOVER 30.45 456 54 1367

TC 30.97 116 68 1.3

Mother

and

Daughter

H.264/AVC-no motion 32.55 120 72 3.62

H.264/AVC-Intra 32.38 284 89 7.7

DISCOVER 32.94 227 54 1059

TC 32.64 98 65 1.2

Bridge Close

H.264/AVC-no motion 32.12 209 75 2.5

H.264/AVC-Intra 32.6 1264 104 8.3

DISCOVER 32.64 788 64 1173

TC 32.29 100 64 1.3

Bridge far

H.264/AVC-no motion 37.02 51 76 2.7

H.264/AVC-Intra 37.03 638 97 7.9

DISCOVER 36.84 493 58 1517

74

Table 4.2: (cont’d)

TC 37.03 33 25 0.7

Waterfall

H.264/AVC-no motion 26.53 219 81 3.6

H.264/AVC-Intra 26.43 433 93 8.7

DISCOVER 26.37 276 53 971

TC 26.68 148 80 1.7

Vassar View 0

H.264/AVC-no motion 32.56 109 89 3.23

H.264/AVC-Intra 32.01 588 114 9.1

DISCOVER 32.29 382 68 995

TC 32.43 83 45 1.1

News

H.264/AVC-no motion 32.44 231 76 3.4

H.264/AVC-Intra 32 785 97 7.9

DISCOVER 32.04 486 59 1044

TC 32.49 230 113 2.5

Red Flower

H.264/AVC-no motion 32.52 124 84 2.4

H.264/AVC-Intra 32.06 1645 109 9

DISCOVER 32.18 776 73 791

TC 32.48 100 38 1.2

Hall

H.264/AVC-no motion 32.68 117 86 3.1

H.264/AVC-Intra 32.11 672 95 7.8

DISCOVER 32.38 434 58 922

TC 32.67 98 36 1.2

75

Table 4.3: The encoding/decoding time, PSNR and bitrate of ten CIF videos with 180
frames using four coding methods. Relatively-high and (almost) the same PSNR values
were targeted for this experiment to compare the bitrate and time complexity.

Video Method PSNR(dB) b
it

ra
te

(K
b
p
s)

E
n
co

d
e

ti
m

e
(s

)

D
e
co

d
e

ti
m

e
(s

)

Container

H.264/AVC-no motion 39.88 1902 125 6.5

H.264/AVC-Intra 38.91 3184 125 9.6

DISCOVER 39.47 1800 100 1020

TC 39.36 1214 448 3.1

Silent

H.264/AVC-no motion 39.74 1216 118 5.5

H.264/AVC-Intra 39.16 3749 151 11.5

DISCOVER 38.74 2074 101 1843

TC 39.73 1112 320 2.4

Mother

and

Daughter

H.264/AVC-no motion 39.28 776 88 5.3

H.264/AVC-Intra 39.70 1203 116 9.6

DISCOVER 39.62 740 72 1143

TC 39.97 736 154 1.9

Bridge Close

H.264/AVC-no motion 39.94 2038 125 5.9

H.264/AVC-Intra 39.28 3964 137 10.4

DISCOVER 39.28 2665 119 2069

TC 39.96 1975 329 3.73

Bridge far

H.264/AVC-no motion 39.08 446 95 4.6

H.264/AVC-Intra 39.23 1370 122 10.1

DISCOVER 39.31 1045 70 2092

76

Table 4.3: (cont’d)

TC 39.20 332 208 3.6

Waterfall

H.264/AVC-no motion 32.44 1984 112 8.6

H.264/AVC-Intra 32.66 2389 129 10.9

DISCOVER 32.38 1093 72 1219

TC 32.50 1291 373 3.4

Vassar View 0

H.264/AVC-no motion 39.32 695 116 4.3

H.264/AVC-Intra 39.17 2733 141 10.2

DISCOVER 39.01 1799 92 1719

TC 39.22 636 183 1.9

News

H.264/AVC-no motion 39.52 879 97 4.6

H.264/AVC-Intra 39.38 2085 112 9.4

DISCOVER 39.14 1308 87 1749

TC 39.91 850 188 2.2

Red Flower

H.264/AVC-no motion 39.18 598 110 3.3

H.264/AVC-Intra 39.06 4159 137 10.9

DISCOVER 39.42 2169 99 1465

TC 39.86 494 87 1.6

Hall

H.264/AVC-no motion 39.89 736 104 5.1

H.264/AVC-Intra 39.43 1990 116 9.4

DISCOVER 39.26 1467 75 2703

TC 39.84 634 122 2.2

77

Chapter 5

Super-resolution for reconstructing

high frequency data

We first present a brief introduction to spatial ISV in the context of the proposed framework.

Subsequently, the overall architecture of the proposed super-resolution based spatial ISV

system is explained in details.

5.1 Spatial ISV with Hybrid Super and Base Frames

Figure 5.1 shows the proposed hybrid two-layer spatial ISV with super and base frames. The

base layer (B(Fi)) is the sequence of the down-sampled video where the Fi is the frame i.

The down-sample ratio can be any reasonable value. The enhancement layer (E(Fi)) is the

difference between the up-sampled base layer and the original video. In other words, the

enhancement layer carries the high frequency components. Dropping the enhancement layer

can reduce the required bandwidth to stream the video. However the mere up-sampled base

layer would result in blurry frame and noticeable quality drop.

In the proposed framework, a few frames are encoded and/or transmitted/received with

the enhancement layer. We refer to such frames as super-frames. The remaining frames

are encoded and/or transmitted/received using the base layer only. We call these frames

base-frames. Hence, the decoder receives a hybrid of super-frames and base-frames. This

78

Figure 5.1: Encoder diagram of the proposed spatial ISV with hybrid two-layer spatial video
coding that consist of the super-frames and the base-frames. The process of generating the
base and the enhancement layer is shown.

encoding framework would enable the use of high frequency data in super-frames to enhance

the base-frames. In other words, the super-frames can be used to build a dictionary for

the super-resolution method. Encoding a few frames with enhancement layer enables saving

bandwidth and/or reacting to changing network conditions.

Under the proposed framework, a Group Of Pictures (GOP) is defined as a set of one

super-frame and all remainder frames are base-frames. In general, the super-frame could

be placed within anywhere with a GOP. However, for simplicity of implementation and

simulation, we place the super-frame as the first frame within a GOP. It is important to

note that a larger GOP size would result in a smaller required bandwidth. At the receiver

side, the decoded video consists of frames with two different spatial sizes. The super-frames

are added to the display sequence directly since they have the same resolution as of the final

display sequence. They are also used to extract the high frequency data. The base-frames

are up-sampled and then super resolved using the proposed framework. Finally, they are

79

Figure 5.2: The proposed decoder structure with super-resolution framework for a two-layer
ISV encoded video. The final reconstructed display video consists of super-frames and base-
frames. The super-frames are added directly while the base-frames are super resolved to
improve their quality.

added to the display sequence. Figure 5.2 shows the proposed decoder structure and the

process of reconstructing the final display video.

5.2 Super-resolution framework for ISV

The proposed framework is similar to an unsharp masking where the blurred copy of the

frame is obtained by a down-sampling filter followed by an up-sampling filter. A bilinear

or bicubic filter can be used. The unsharp mask SFR is obtained using the difference

between the decoded super-frame and an up-sampled version of its low-resolution picture as

in eq. (5.1).

SFR = SF − SFH (5.1)

Here, SFR is the residual (unsharp mask), SF is the decoded super-frame, and SFH =

UP (DOWN(SF)). Both SFR and SFH are stored in buffers to be used for super resolving

base-frames. Once a new super-frame is decoded, the process of extracting high frequency

data will be repeated and the buffers will be updated with the new data.

80

Each base-frame was up-sampled and then super resolved. The super-resolution was

applied in a block-wise approach. We used the blocks that are defined by the quad tree

structure of the encoder. The blocks are of different sizes ranging from 4× 4 up to 64× 64.

Since the quad tree structure is on the base-frame with smaller size, up-sampling results in

larger block sizes. For example if the base-frame is scaled up by 2 at each direction, then

the block sizes would be from 8× 8 up to 128× 128. Based on experiment, we find out that

in this case, dividing the block size by two at each direction and maintaining the 16× 8 and

8× 16 as the minimum block size gives the best result.

For each block of BFH , a block-wise search was applied to find a match in SFH . Here,

BFH is the up-sampled base-frame. The window of the search can be restricted to decrease

the complexity. In our experiments, the window was 64 pixels from each direction of the

current block. Sum of the absolute value was used as the error measure. Eq. (5.2) shows the

block-matching minimization.

k∗ = argmin
k

SUM
(∣∣∣SF kH −BF jH ∣∣∣) (5.2)

Where j is the index of the block to be super resolved, k is the index of a matching block

in SFH , SUM() is the sum of all the elements in a block. After finding k, we super resolve

block j by adding the corresponding high frequency data from SFR:

F̂ j = BF j + SF kR (5.3)

The overall proposed algorithm is as follow:

81

Algorithm 3 super-resolution for ISV

Input: Hybrid spatial SVC encoded video.

Output: Super resolved decoded video

if super-frame then

Decode the frame and send to the output stream

Compute and store SFH in a buffer.

Compute SFR as in Eq. (5.1) and store the result in a buffer.

else

Decode and up-sample the frame

for block k in the quad tree structure do

Search for a match in SFH as in Eq. (5.2)

Find the corresponding high frequency data from SFR.

Super resolve the current block as in Eq. (5.3).

end for

Send the super resolved base-frame to the output stream.

end if

5.3 Experimental results

The proposed framework was implemented within spatial SVC of VP9 version 1.3.0. A

video was encoded in two spatial layers. The base layer was half of the display video at each

direction. The enhancement layer was the same size as the display video. The enhancement

layer of the base-frames was dropped based on the GOP size. GOP sizes 2, 5, 10, 15, 20, 25,

and 30 were used for comparison.

The result of using quad tree blocks was compared with various fixed-size blocks. The

82

Figure 5.3: The quad tree block structure which was used for the proposed super-resolution
framework. The frame is the 25th frame of the in to tree.

block sizes were 8× 8, 16× 16, 32× 32, and 64× 64. The quad tree block was divided into

four sub-blocks to compensate for up-sampling. Figure 5.3 shows the structure of the quad

tree on the 25th frame of the in to tree video. In this experiment 150 frames of in to tree

720p video were encoded at 4 Mbps. The search box for block matching was 64 pixels from

each direction. For down and up sampling we used bilinear interpolation filters. Figure 5.4

shows the PSNR result versus GOP size. Note that for the smaller GOP, larger block size

has higher PSNR result while for larger GOP the larger blocks result in lower PSNR. This

is mainly because of the fact that at a longer distance from the super-frame, finding a good

match for larger block sizes becomes harder. Using the quad tree keeps a good balance

between the smaller and larger GOP.

In another experiment, 150 frames of in to tree, shields, and old town videos were en-

coded with VP9 SVC at various bitrates. All the videos were 720p. They were encoded

with two layers. The base layer was half of the enhancement layer at each direction. The

enhancement layer of the base-frames was dropped. Then at the decoder, the following

methods were used to up-sample the base-frames:

83

Figure 5.4: PSNR comparison of the proposed super-resolution framework when applied to
quad tree and various fixed size blocks.

• Bilinear interpolation

• Bicubic interpolation

• Bilinear interpolation and the proposed super-resolution

• Bicubic interpolation and the proposed super-resolution

Figure 5.5 shows the PSNR vs. bitrate plots that compares the above up-sampling

methods. In this experiment the GOP size was 15. Note that using bilinear or bicubic up-

sampling with the proposed super-resolution framework, changes the PSNR result slightly.

This is because of the fact that using bicubic up-sampling would result in more high frequency

components in SFH and consequently less high frequency components in SFR. Also, BFH in

eq. (5.3) would have more high frequency components due to bicubic up-sampling. However,

the SFR high frequency components decrease almost cancel out the difference.

Table 5.1 shows the PSNR comparison between bicubic up-sampling and the proposed

super-resolution framework for various videos with GOP of size 5.

84

(a)

(b)

(c)

Figure 5.5: PSNR results of the super-resolution with bilinear up-sampling, super-resolution
with Bicubic up-sampling, bilinear up-sampling, and Bicubic up-sampling of (a) Intotree,
(b) shields, and (c) old town.

85

(a) (b)

(c) (d)

Figure 5.6: Frame 27 of the (a) original, (b) bilinear up-sampling and the proposed super-
resolution framework, (c) bilinear up-sampling, (d) bicubic up-sampling, of the old town
video. For (b), (c), and (d), the video is encoded at 2.7 Mbps.

86

Table 5.1: PSNR comparison between bicubic up-sampling and the proposed super-resolution
framework.

Videos SR Bicubic Gain

old town 720p 34.33 32.71 1.62

shields 720p 32.82 31.31 1.51

Stockholm 720p 32.71 31.27 1.44

in to tree 720p 34.28 33.24 1.04

station 1080p 37.50 36.75 0.75

parkrun 720p 25.59 25.24 0.35

Pedestrian area 1080p 36.51 36.16 0.35

crowd run 1080p 26.9 26.6 0.3

tractor 1080p 33.21 32.96 0.25

Figure 5.6 shows frame 27 of the old town video. The result of bilinear up-sampling,

bicubic up-sampling, bilinear up-sampling and the proposed framework were compared with

the original frame. The video was encoded at 2.7 Mbps. In the highlighted part, it is obvious

that the proposed framework reconstructed the frame with more high frequency components.

87

Chapter 6

Conclusion

We presented tensor coding as a low complexity framework for coding high dimensional

visual data. Tensor coding is based on a proposed Progressive Canonical-decomposition

Parallel-factor (PCP) decomposition that reduces an n dimensional tensor onto a 2D data

set. The proposed PCP was applied in block-wise approach.

Two tensor partitioning methods which are uniform and adaptive tree were employed to

divide the input tensor into a set of sub-tensor blocks. The uniform partitioning divide a

tensor into a set of equal size blocks. The adaptive tree partitioning employs a top down

approach to divide the tensor. At each level it decide whether a block need to be sub-

divided into a set of smaller blocks or not. The decision is made based on a developed

weighted directional variance and the allocated number of rank-one tensors. A 2n-ary tree

structure was used to store the partitioning information.

The partitioned sub-tensors have different amount of information and rank. Therefore

they may require different number of rank-one tensors. The proposed framework utilizes a

greedy algorithm to search for the global optimal number of rank-one tensors that represent

all of the blocks of a tensor. After applying the PCP to all the blocks, the decomposed

eigenfibers are arranged and then further compressed by a 2D compression method. The

required side information for decoding were stored in a header file and then entropy coded.

The proposed tensor coding framework was supplemented with a residual coding module

to enable near lossless compression. This addition can benefit the applications that require a

88

fine level of details. The residual coding module encoded the tensor’s slices separately since

the PCP has already captured the present correlation among the slices.

An important aspect of the proposed tensor coding framework is its desirable properties.

We showed that the framework can achieve random access, progressive reconstruction or

scalability, and low complexity reconstruction. These properties play an important role in

applications like online browsing, streaming and scientific analysis.

We applied the proposed tensor coding framework to represent and code three type of

data sets which were hyperspectral/multispectral images, bio-metric face images, and low

motion videos. For each application we showed that the proposed tensor coding framework

can achieve higher quality reconstruction, specially at the low bitrates, in comparison with

the standard compression methods.

Our experimental results for the 4D multispectral images showed a possibility of three

order of magnitude compression. This significant compression ratio is possible by taking

advantage of the existing correlation along all the dimensions. The lower dimensions com-

pression methods can not achieve this level of compression. Although the quality of the

reconstructed image at this compression level was degraded, it can be acceptable for some

applications like course level browsing and classification.

On the second part of this thesis, we proposed a super-resolution method for spatial

inconsistent scalable video streaming. In this streaming scenario some of the frames can lose

their enhancement layer due to network connection quality. This leads to an undesirable

experience where some of the frames are at high quality while the others are not. In the

worst case the streaming can keep switching between the two qualities in an effort to mitigate

the network congestion.

The proposed method was used to reconstruct the frames with dropped enhancement

89

layer. This was done by using the high frequency data of the frames with enhancement layer

(super-frames) as dictionary. The frames without enhancement layer (base-frame) were first

up-sampled and then super resolved. The super resolution method was based on searching

the dictionary for a match and then adding the corresponding high frequency data. The quad

tree structure of the current frame was used for block-matching search with super-frame.

The proposed super resolution framework was integrated with Google VP9 video codec.

Then we applied the framework to various High Definition (HD) videos to estimate the

dropped enhancement layer. Our simulation results show an improvement visually and in

terms of PSNR over traditional interpolation up-sampling filters.

90

BIBLIOGRAPHY

91

BIBLIOGRAPHY

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM review,
vol. 51, no. 3, pp. 455–500, 2009.

[2] R. M. Bowen and C.-C. Wang, Introduction to vectors and tensors. Courier Corpora-
tion, 2008, vol. 2.

[3] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan,
“Tensor decompositions for signal processing applications: From two-way to multiway
component analysis,” Signal Processing Magazine, IEEE, vol. 32, no. 2, pp. 145–163,
2015.

[4] O. Scherzer, Handbook of Mathematical Methods in Imaging: Vol. 1. Springer Science
& Business Media, 2011.

[5] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing
values in visual data,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 35, no. 1, pp. 208–220, 2013.

[6] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychometrika,
vol. 31, no. 3, pp. 279–311, 1966.

[7] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in multidimensional
scaling via an n-way generalization of eckart-young decomposition,” Psychometrika,
vol. 35, no. 3, pp. 283–319, 1970.

[8] R. A. Harshman, “Foundations of the parafac procedure: Models and conditions for
an” explanatory” multi-modal factor analysis,” 1970.

[9] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan,
“Tensor decompositions for signal processing applications: From two-way to multiway
component analysis,” Signal Processing Magazine, IEEE, vol. 32, no. 2, pp. 145–163,
2015.

[10] A. T. Mahfoodh and H. Radha, “Tensor video coding,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 2013, pp. 1724–
1728.

92

[11] ——, “Compression of image ensembles using tensor decomposition,” in Picture Coding
Symposium (PCS), 2013. IEEE, 2013, pp. 21–24.

[12] S. Aja-Fernández, R. de Luis Garcia, D. Tao, and X. Li, Tensors in image processing
and computer vision. Springer Science & Business Media, 2009.

[13] Z. Gu, W. Lin, B.-S. Lee, and C. Lau, “Low-complexity video coding based on two-
dimensional singular value decomposition,” Image Processing, IEEE Transactions on,
vol. 21, no. 2, pp. 674–687, 2012.

[14] C. H. Ding and J. Ye, “2-dimensional singular value decomposition for 2d maps and
images.” in SDM. SIAM, 2005, pp. 32–43.

[15] B. Zhou, F. Zhang, and L. Peng, “Video dimension reduction and coding using mul-
tiple tensor rank-r decomposition,” in Image and Signal Processing (CISP), 2011 4th
International Congress on, vol. 1. IEEE, 2011, pp. 330–334.

[16] ——, “Compact representation for dynamic texture video coding using tensor method,”
Circuits and Systems for Video Technology, IEEE Transactions on, vol. 23, no. 2, pp.
280–288, 2013.

[17] H. Wang and N. Ahuja, “Rank-r approximation of tensors using image-as-matrix rep-
resentation,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 2. IEEE, 2005, pp. 346–353.

[18] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles: Ten-
sorfaces,” in Computer VisionECCV 2002. Springer, 2002, pp. 447–460.

[19] C. Ding, H. Huang, and D. Luo, “Tensor reduction error analysisapplications to video
compression and classification,” in Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1–8.

[20] H. Wang and N. Ahuja, “Compact representation of multidimensional data using tensor
rank-one decomposition,” vectors, vol. 1, p. 5, 2004.

[21] A. Karami, M. Yazdi, and G. Mercier, “Compression of hyperspectral images using
discerete wavelet transform and tucker decomposition,” Selected Topics in Applied Earth
Observations and Remote Sensing, IEEE Journal of, vol. 5, no. 2, pp. 444–450, 2012.

[22] L. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, “Compression of hyperspectral
remote sensing images by tensor approach,” Neurocomputing, vol. 147, pp. 358–363,
2015.

93

[23] H. Chen, W. Lei, S. Zhou, and Y. Zhang, “An optimal-truncation-based tucker de-
composition method for hyperspectral image compression,” in Geoscience and Remote
Sensing Symposium (IGARSS), 2012 IEEE International. IEEE, 2012, pp. 4090–4093.

[24] L. Wang, J. Bai, J. Wu, and G. Jeon, “Hyperspectral image compression based on
lapped transform and tucker decomposition,” Signal Processing: Image Communication,
vol. 36, pp. 63–69, 2015.

[25] T. Hazan, S. Polak, and A. Shashua, “Sparse image coding using a 3d non-negative
tensor factorization,” in Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, vol. 1. IEEE, 2005, pp. 50–57.

[26] H. Wang, Q. Wu, L. Shi, Y. Yu, and N. Ahuja, “Out-of-core tensor approximation of
multi-dimensional matrices of visual data,” in ACM Transactions on Graphics (TOG),
vol. 24, no. 3. ACM, 2005, pp. 527–535.

[27] K. Inoue and K. Urahama, “Dsvd: A tensor-based image compression and recognition
method,” in Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium
on. IEEE, 2005, pp. 6308–6311.

[28] J. Hou, L.-P. Chau, N. Magnenat-Thalmann, and Y. He, “Scalable and compact rep-
resentation for motion capture data using tensor decomposition,” Signal Processing
Letters, IEEE, vol. 21, no. 3, pp. 255–259, 2014.

[29] S. K. Suter, J. A. I. Guitián, F. Marton, M. Agus, A. Elsener, C. P. Zollikofer, M. Gopi,
E. Gobbetti, and R. Pajarola, “Interactive multiscale tensor reconstruction for mul-
tiresolution volume visualization,” Visualization and Computer Graphics, IEEE Trans-
actions on, vol. 17, no. 12, pp. 2135–2143, 2011.

[30] Q. Wu, T. Xia, C. Chen, H.-Y. S. Lin, H. Wang, and Y. Yu, “Hierarchical tensor
approximation of multi-dimensional visual data,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 14, no. 1, pp. 186–199, 2008.

[31] R. Sivalingam, D. Boley, V. Morellas, and N. Papanikolopoulos, “Tensor sparse coding
for region covariances,” in Computer Vision–ECCV 2010. Springer, 2010, pp. 722–735.

[32] V. Cisco, “Forecast and methodology, 2013–2018.(2014).”

[33] H. M. Radha, M. Van der Schaar, and Y. Chen, “The mpeg-4 fine-grained scalable video
coding method for multimedia streaming over ip,” Multimedia, IEEE Transactions on,
vol. 3, no. 1, pp. 53–68, 2001.

94

[34] J.-R. Ohm and M. van der Schaar, “Scalable video coding,” in Tutorial material, Int.
Conf. Image Processing ICIP, vol. 2001, 2001.

[35] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding ex-
tension of the h. 264/avc standard,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 17, no. 9, pp. 1103–1120, 2007.

[36] D. Mukherjee, J. Bankoski, A. Grange, J. Han, J. Koleszar, P. Wilkins, Y. Xu, and
R. Bultje, “The latest open-source video codec vp9-an overview and preliminary re-
sults,” in Picture Coding Symposium (PCS), 2013. IEEE, 2013, pp. 390–393.

[37] “webm/libvpx,” https://chromium.googlesource.com/webm/libvpx/, accessed: 2015-
01-04.

[38] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a
technical overview,” Signal Processing Magazine, IEEE, vol. 20, no. 3, pp. 21–36, 2003.

[39] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super
resolution,” Image processing, IEEE Transactions on, vol. 13, no. 10, pp. 1327–1344,
2004.

[40] S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, no. 9, pp. 1167–1183,
2002.

[41] E. M. Hung, R. L. De Queiroz, F. Brandi, K. F. De Oliveira, and D. Mukherjee, “Video
super-resolution using codebooks derived from key-frames,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 22, no. 9, pp. 1321–1331, 2012.

[42] K. F. De Oliveira, F. Brandi, E. M. Hung, R. L. de Queiroz, and D. Mukherjee,
“Bipredictive video super-resolution using key-frames,” in Proc. SPIE Symposium on
Electronic Imaging, Visual Information Processing and Communication, 2010.

[43] F. Brandi, R. de Queiroz, and D. Mukherjee, “Super-resolution of video using key frames
and motion estimation,” in Image Processing, 2008. ICIP 2008. 15th IEEE International
Conference on. IEEE, 2008, pp. 321–324.

[44] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-resolution,”
Computer Graphics and Applications, IEEE, vol. 22, no. 2, pp. 56–65, 2002.

[45] Z. Xiong, X. Sun, and F. Wu, “Robust web image/video super-resolution,” Image Pro-
cessing, IEEE Transactions on, vol. 19, no. 8, pp. 2017–2028, 2010.

95

[46] Q. Shan, Z. Li, J. Jia, and C.-K. Tang, “Fast image/video upsampling,” in ACM Trans-
actions on Graphics (TOG), vol. 27, no. 5. ACM, 2008, p. 153.

[47] J. H̊astad, “Tensor rank is np-complete,” Journal of Algorithms, vol. 11, no. 4, pp.
644–654, 1990.

[48] M. J. Atallah and M. Blanton, Algorithms and Theory of Computation Handbook, Vol-
ume 2: Special Topics and Techniques. CRC press, 2009.

[49] A. Said and W. A. Pearlman, “Low-complexity waveform coding via alphabet and
sample-set partitioning,” in Electronic Imaging’97. International Society for Optics
and Photonics, 1997, pp. 25–37.

[50] X. Tang, W. A. Pearlman, and J. W. Modestino, “Hyperspectral image compression
using three-dimensional wavelet coding,” in Electronic Imaging 2003. International
Society for Optics and Photonics, 2003, pp. 1037–1047.

[51] E. Christophe, C. Mailhes, and P. Duhamel, “Hyperspectral image compression: adapt-
ing spiht and ezw to anisotropic 3-d wavelet coding,” Image Processing, IEEE Trans-
actions on, vol. 17, no. 12, pp. 2334–2346, 2008.

[52] X. Tang, S. Cho, and W. A. Pearlman, “3d set partitioning coding methods in hyper-
spectral image compression,” in Image Processing, 2003. ICIP 2003. Proceedings. 2003
International Conference on, vol. 2. IEEE, 2003, pp. II–239.

[53] X. Tang and W. A. Pearlman, “Three-dimensional wavelet-based compression of hyper-
spectral images,” in Hyperspectral Data Compression. Springer, 2006, pp. 273–308.

[54] Q. Du and J. E. Fowler, “Hyperspectral image compression using jpeg2000 and principal
component analysis,” Geoscience and Remote Sensing Letters, IEEE, vol. 4, no. 2, pp.
201–205, 2007.

[55] Aviris - airborne visible / infrared imaging spectrometer - data. [Online]. Available:
http://aviris.jpl.nasa.gov/data/index.html

[56] Landsat global archive consolidation. [Online]. Available: http://landsat.usgs.gov/
/Landsat Global Archive Consolidation.php

[57] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: Illu-
mination cone models for face recognition under variable lighting and pose,” Pattern

96

Analysis and Machine Intelligence, IEEE Transactions on, vol. 23, no. 6, pp. 643–660,
2001.

[58] D. Marpe, T. Wiegand, and G. J. Sullivan, “The h. 264/mpeg4 advanced video coding
standard and its applications,” Communications Magazine, IEEE, vol. 44, no. 8, pp.
134–143, 2006.

[59] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the h. 264/avc
video coding standard,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 13, no. 7, pp. 560–576, 2003.

[60] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, and M. Ouaret, “The discover
codec: architecture, techniques and evaluation,” in Picture Coding Symposium (PCS”
07), no. MMSPL-CONF-2009-014, 2007.

[61] L. Liu, Z. Li, and E. J. Delp, “Efficient and low-complexity surveillance video compres-
sion using backward-channel aware wyner-ziv video coding,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 19, no. 4, pp. 453–465, 2009.

[62] M. Tagliasacchi, A. Trapanese, S. Tubaro, J. Ascenso, C. Brites, and F. Pereira, “Intra
mode decision based on spatio-temporal cues in pixel domain wyner-ziv video coding,”
in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on, vol. 2. IEEE, 2006, pp. II–II.

[63] J. Ye, “Generalized low rank approximations of matrices,” Machine Learning, vol. 61,
no. 1-3, pp. 167–191, 2005.

[64] “HEVC,” http://hevc.hhi.fraunhofer.de, accessed: 2013-08-09.

[65] “H.264/AVC JM Reference Software,” http://iphome.hhi.de/suehring/tml/, accessed:
2013-01-18.

[66] A. Said, W. Pearlman et al., “An image multiresolution representation for lossless and
lossy compression,” Image Processing, IEEE Transactions on, vol. 5, no. 9, pp. 1303–
1310, 1996.

[67] B.-J. Kim, W. Pearlman et al., “An embedded wavelet video coder using three-
dimensional set partitioning in hierarchical trees (spiht),” in Data Compression Con-
ference, 1997. DCC’97. Proceedings. IEEE, 1997, pp. 251–260.

97

[68] Y. Chen and W. A. Pearlman, “Three-dimensional subband coding of video using the
zero-tree method,” in Visual Communications and Image Processing’96. International
Society for Optics and Photonics, 1996, pp. 1302–1312.

[69] “Image compression programs,” http://www.cipr.rpi.edu/research/SPIHT/spiht3.html,
accessed: 2013-09-02.

[70] “Discover,” http://www.discoverdvc.org/, accessed: 2012-11-20.

[71] “Xiph.org video test media,” http://media.xiph.org/video/derf/, accessed: 2012-11-20.

[72] “Yuv video sequences,” http://www.discoverdvc.org/, accessed: 2012-11-20.

[73] “Video quality experts group (vqeg) - its,” ftp://vqeg.its.bldrdoc.gov/MM/cif/, ac-
cessed: 2012-11-20.

98

