
METHOD OF LINES TRANSPOSE: HIGH-ORDER SCHEMES FOR PARABOLIC
PROBLEMS

By

Hana Cho

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Applied Mathematics - Doctor of Philosophy

2016

ABSTRACT

METHOD OF LINES TRANSPOSE: HIGH-ORDER SCHEMES
FOR PARABOLIC PROBLEMS

By

Hana Cho

In the dissertation, we mainly consider developing efficient numerical schemes for Allen-

Cahn and Cahn-Hilliard equations, which are the origin of the phase-field equations.

In the first part of the disseration, we present a new solver for nonlinear second-order

parabolic problems that is L-stable and achieves high order accuracy in space and time.

The solver is built by first constructing a single-dimensional heat equation solver that uses

fast O(N) convolution. This fundamental solver is based on the use of the Green’s func-

tion to invert a modified Helmholtz equation. Higher orders of accuracy in time are then

constructed through a novel technique known as successive convolution, which facilitate our

proofs of stability and convergence, and permit us to construct schemes that have provable

stiff decay. The multi-dimensional solver is built by repeated application of dimensionally

split independent fundamental solvers. We also solve nonlinear parabolic problems by using

the integrating factor method, where we apply the basic scheme to invert linear terms (that

look like a heat equation), and make use of Hermite-Birkhoff interpolants to integrate the

remaining nonlinear terms. Our solver is applied to several linear and nonlinear equations

including heat, Allen-Cahn, and the Fitzhugh-Nagumo system of equations in one and two

dimensions.

In the second part of the disseration, we extend our Method Of Lines Transpose (MOLT)

scheme to Cahn Hilliard (CH) and vector Cahn Hilliard (VCH) equations. Our first step is

to establish the gradient stability for CH models. This procedure is just a simple change of

variables where one of the fixed points is subtracted from the original variable. We prove

that in the semi-analytic setting, using Backwards Euler time stepping.

After discretizing in time, we proceed to our spatial solver for inverting the linear part

of the semi-analytic operator onto the non-linear part to construct an efficient fixed point

method. This is done by factoring the fourth into the modified Helmholtz operators, which

defined above. By including the splitting error into the right hand side of the fixed-point

method, we arrive at a non-split scheme. We also combine the MOLT formulation with

existing time stepping for high order time stepping methods, and numerically demonstrated

the gradient stable property in 1D and 2D in all simulations run. Time adaptive methods

are shown to be more efficient than using the same method with large fixed time steps.

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, professor

Andrew Christlieb, for his support and encouragement during five years. Andrew has pro-

vided me with tremendous knowledge, great insight, patient guidance and pleasant research

environment. It was such an amazing opportunity to discuss to our group members every

week and to build a friendship. I especially thank professor Matt Causley, who gave me and

our group valuable guidance about MOLT scheme. He was always willing to spend his time

to provide me academic knowledge and personal mentoring.

I thank to professor Keith Promislow, for his enlightening advices through his classes

and discussions. His strong analysis of phase-field models has been valuable. I also thank

the rest of committee members, professor Yingda Cheng, for teaching me great knowledge

in numerical analysis, professor Shanker Balasubramaniam and professor Jose Perea, for

valuable feedback and comments. I also thank to my Korean advisor, professor Jungho

Yoon, for his continuous support academically and personally for ten years.

I thank to all my dear friends at MSU, EWHA, Youngran, Jiguchon and Lansing church,

for their help and prayers. I have no doubt we will always be friends wherever we are.

I am eternally grateful to my family: my parents, my parents-in-law, my sister Eunhye

(congrats your wedding!), my sister-in-law’s family, and my grandparents, for their love,

unconditional support, and prayers. My deepest gratitude should go to my husband, Sijung

Oh, for his endless love. I wouldn’t have made it any of this work without his patience, love,

and support. He is my best friend, my best teacher, and my Broom tree of my life.

Last but not least, I am beyond words in my gratitude but forever thank to my Jesus,

my Lord. The Lord is my shepherd, I lack nothing. All glory belongs to my Savior. Amen.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

Chapter 1 Introduction . 1
1.1 Phase-field method . 1
1.2 Review of previous works . 3

1.2.1 Method of Lines (MOL) . 3
1.2.1.1 Eyre’s operator splitting . 4
1.2.1.2 The stabilized semi-implicit SDC method 4
1.2.1.3 Fully implicit scheme with conjugate gradient iteration . . . 5
1.2.1.4 Exponential time differencing (ETD) method 6

1.2.2 Method of Lines Transpose (MOLT) 7
1.2.2.1 Fast multipole method (FMM) 8
1.2.2.2 Fourier continuation-alternating direction (FC-AD) method 8
1.2.2.3 Dimensionally splitting-fast convolution method 9

1.3 Outline of the dissertation . 10

Chapter 2 MOLT for Parabolic Equations . 12
2.1 Motivation . 12
2.2 First order scheme for 1D Heat equation . 13

2.2.1 Inversion of the modified Helmholtz operator 15
2.2.2 Particular solution . 18

2.2.2.1 Characteristic decomposition for particular solution 19
2.2.2.2 A spatial solver for particular solution 20

2.2.3 Homogeneous solution . 21
2.2.3.1 Dirichlet boundary conditions 22
2.2.3.2 Neumann boundary conditions 22
2.2.3.3 Periodic boundary conditions 23

2.3 Higher order scheme for 1D Heat equation 23
2.3.1 Convergence . 26
2.3.2 Stability . 28
2.3.3 Numerical result: Refinement study of 1D Heat equation 33

2.4 MOLT for Multi-D Heat equation . 33
2.4.1 Stability . 34
2.4.2 Numerical result: Refinement study of 2D Heat equation 35

2.5 MOLT for Nonlinear equations . 36
2.5.1 Allen-Cahn Equation . 38

2.5.1.1 Numerical result: 1D Allen-Cahn test 39
2.5.1.2 Numerical result: 2D Allen-Cahn test 40

v

2.5.2 FitzHugh-Nagumo System . 42
2.5.2.1 Numerical result: 2D FitzHugh-Nagumo test 45

Chapter 3 MOLT for Cahn-Hilliard Equation 47
3.1 Models . 47

3.1.1 transformed model . 49
3.2 First order scheme for 1D CH equation . 50

3.2.1 Energy stability . 50
3.2.2 Two nonlinear iterative schemes . 53
3.2.3 Fully discrete solution . 56

3.3 Higher order scheme for 1D CH equation . 59
3.3.1 MOLT with Backward Difference Formula (BDF) 59
3.3.2 MOLT with Singly Diagonal Implicit Runge Kutta (SDIRK) 60
3.3.3 MOLT with Spectral Deferred Correction (SDC) 62
3.3.4 Numerical test: refinement studies of 1D CH solutions 65

3.4 MOLT for Multi-D CH equation . 70
3.4.1 First order scheme for 2D CH equation 70
3.4.2 Higher order scheme for 2D CH equation 73
3.4.3 Numerical test: refinement studies of 2D CH solutions 75

3.5 MOLT for vector CH (VCH) equation . 76
3.5.1 Two nonlinear iterative schemes . 78
3.5.2 Numerical test: refinement studies of 2D VCH solutions 79

3.6 Time adaptive strategy . 80
3.7 Numerical tests . 82

3.7.1 1D Cahn-Hilliard Model . 82
3.7.2 2D Cahn-Hilliard Model . 86
3.7.3 2D vector Cahn-Hilliard Model . 89
3.7.4 2D sixth order Model . 92

Chapter 4 Conclusion and Future work . 96

BIBLIOGRAPHY . 99

vi

LIST OF TABLES

Table 2.1: Values of β2 chosen for orders P = 1, 2, . . . 6. The first column are
those used in our schemes, and uniquely guarantee stiff decay and
A(0)-stability. For comparison, we also display the values in Nørsett
[49] which give optimal order P + 1, at the expense of stiff decay. . 32

Table 2.2: Refinement studies for 1D Heat equation (2.2) ((x, t) ∈ (0, 2π)× [0, 4])
with Periodic boundary conditions. P indicates the order of resolvent
expansion in (2.28). 33

Table 2.3: Refinement study for a 2D Heat equation ((x, y) ∈ (0, 2π)× (0, 2π))
with Periodic boundary conditions, (T = 1). 35

Table 2.4: Refinement study for the 1D Allen-Cahn (AC) equation with an initial
uAC(x, 0) in (2.49) and with the homogeneous Neumann boundary
conditions. 39

Table 2.5: Refinement studies for 2D Allen-Cahn equataion with the initial (2.50)
and with homogeneous Neumann boundary conditions. 43

Table 3.1: Refinement studies of second-order methods for 1D CH equation with
periodic BC. 66

Table 3.2: Refinement studies of third-order methods for the 1D CH equation
with periodic BC. 69

Table 3.3: Refinement study of SDC3 (P = 3) for the 1D CH equation with
periodic BC. 69

Table 3.4: Refinement studies of second-order methods for the 2D CH equation
with periodic BC. 77

Table 3.5: Ripening time of 1D CH equation with small fixed time step size
(∆t = 0.01) and with the periodic BC. 84

Table 3.6: Ripening time of 1D CH equation with large time steps (∆t = 0.05, 1, 10)
and with the periodic BC. 84

Table 3.7: Ripening time of 1D CH equation with adaptive time step size and
with the periodic BC. 84

vii

Table 3.8: Numerical ripening time of the 2D CH equation with fixed time step-
ping methods (∆t = 0.01, Ntol = 10−7) and with the periodic BCs. . 87

Table 3.9: Numerical ripening time of the 2D CH equation (the periodic BCs):
Comparison between the fixed time stepping methods (∆t = 0.1,
Ntol = 10−7) and the adaptive time stepping method (BE-BDF2). . 89

Table 4.1: Summarization of numerical results of presented scheme, dimensional
split MOLT scheme. 97

viii

LIST OF FIGURES

Figure 2.1: Fourier modes of (a) the expnential operator, (b) the truncated Taylor
expansion (P = 6), and (c) the Truncated Laguerre expansion (P =
6). The common parameters γ = 1 and ∆t = 0.1 is chosen. 26

Figure 2.2: Maximum amplification factors |φ(iy)| for the first few orders P , with
(a) maximal order, or (b) stiff decay. When maximizing order, the
first 3 schemes exhibit A-stability, whereas ensuring stiff decay leads
to L-stable schemes. For P > 3, both schemes become A(α)-stable. 31

Figure 2.3: The numerical solutions with two different time step sizes, ∆t = 0.05
and ∆t = 0.0063 (common parameters: ∆x = 2−6 and ε = 0.03

√
2).

Solid (red) line: the exact profile in (2.49) at T = 8. 40

Figure 2.4: Time evolution of the 2D AC numerical solution with initial condi-
tion (2.50), up to time T = 0.0256

ε2
= 10.24. (parameters: ∆t =

0.0256,∆x = ∆y = 0.0039, ε = 0.05) 42

Figure 2.5: Radii of the numerical interfacial circle as a function of time (0 ≤
t ≤ 0.0256

ε2
) with various time step sizes. (a) ε = 0.05 (b) ε = 0.01

(common parameter: ∆x = 2−8). Red line: the exact radius R in
(2.52). 43

Figure 2.6: Contour plot: Temporal evolution of the concentration of activator
u using the second-order scheme in (2.57) with parameters: ∆t =
0.01,∆x = ∆y = 0.2,M = 4 (fourth order in space). 46

Figure 3.1: Bifurcation of the parameter
1

α2
in the modified Helmholtz operator

L. 55

Figure 3.2: Energy descent and nonlinear iteration count history of all second-
and third- order methods with fixed time step ∆t = 0.025 and pa-
rameters (3.26). 67

Figure 3.3: Energy descent and nonlinear iteration count history of all second-
order 2D methods with fixed time step ∆t = 0.05 and with parame-
ters (3.38). 77

ix

Figure 3.4: Energy descent and nonlinear iteration count history of all second-
order VCH 2D methods with fixed time step ∆t = 0.000125 and with
parameters (3.45). 79

Figure 3.5: Temporal evolution of the 1D CH solution from the adaptive time
step (BE-BDF2) scheme. 85

Figure 3.6: The time step, iteration count, and energy history of our adaptive
time step (BE-BDF2) scheme for 1D CH equation. 86

Figure 3.7: The discrete energy of fixed time stepping schemes ((a)BE, (b)BDF2,
and (c)BDF3) for 2D CH equation. The common parameters are
used: ∆t = 5, and ∆x = ∆y = 0.05 87

Figure 3.8: Iteration count of 2D CH solution obtained by the fixed time stepp-
ping method (a) (∆t = 0.01), and (b) (∆t = 0.1). Black line is
obtained by Backward Euler(BE) scheme; blue is BDF2; and the red
one is BDF3 at both plots. 88

Figure 3.9: The time step, iteration count, and energy history of our adaptive
time step (BE-BDF2) scheme for 2D CH equation. 90

Figure 3.10: Temporal evolution of the 2D CH solution with the initial (3.37). . . 90

Figure 3.11: The time step, iteration count, and energy history of VCH solution . 93

Figure 3.12: Temporal evolution of the 2D CH vector solution with the initial
(3.37) for u1 and (3.44) for u2. Contours of cos(arg u1 + iu2) are
plotted. Two phases u = z2 and u = z3 have same cosine values,

−1

2
(light blue in the plots) but are separated by dark blue lines. . . 93

Figure 3.13: The iteration count and energy history of the first-order solution of
sixth-order equation (3.47). 95

Figure 3.14: Temporal evolution of the 2D sixth order model’s solution with the
initial (3.37). 95

x

Chapter 1

Introduction

1.1 Phase-field method

Certain materials that we use in daily life, such as metals, alloys, ceramics or polymers, have

properties that depend on their microstructure. Microstructure can be defined, in general,

as compositional and structural inhomogeneities that arise during material processing [15].

Specifically, microstructures include grain arrays, phase distributions, precipitate dispersions,

and dislocation networks, each of which produces different physical phenomena.

Since the microstructure of a material is strongly related to it’s physical properties,

composition, or performance, studying and investigating its evolution is crucial in material

science. This investigation, in fact, has led to practical use in many areas, such as fluid

mechanics [4], thermodynamics [7], and morphology [21] and so forth.

The process of microstructure evolution, however, is often very complex due to energy

interactions. Specifically, this microstructure process is driven by the decrease of total free en-

ergy, which includes chemical energy, interfacial energy, elastic strain energy, electrostatic en-

ergy and magnetic energy [15]. In this context, the phase-field model, which allows studying

the total free energy, has become a consolidated tool for simulating microstructure evolution

for decades. The phase-field model has two major features, interface and order parameter,

thus it is worth to review of the literature for interface and order parameter briefly.

An interface is defined as a surface which forming a common boundary between two

1

different phases of matter. A history of nature of the interface can be found in [4] and

here, we summarize the essence of the literature. In the early 1800s, the interface was

represented by a zero thickness surface (sharp interface) and it was assumed that physical

quantities (e.g. density) were discontinuous across the interface. Poisson, Maxwell and Gibbs

realized that the interface represented a rapid but smooth transition of physical quantities

[30]. In the late 1800s, Lord Rayleigh and Van der Waals introduced the first concept of

the non-zero thickness interface (diffuse interface), which circumvents certain difficulties in

explicit-tracking in the sharp-interface model. These original concepts of the interface have

been refined and developed for centuries.

In 1935, Landau and Lifshitz introduced a phase transition in a ferromagnetic crystal

[43] such that there is an intermediate region where the magnetic moments change gradually

from one direction to the opposite. This is the origin of the order parameter, space and time

dependent fuction which is zero at the disordered phase and nonzero at the ordered phase.

Later, Landau and Ginzburg extended the idea to the equilibrium of a superconductor; the

free energy of a superconductor near transition can be described in terms of the spatial

variation of an order parameter. Landau’s work has been crucial for the development of

modern theory of phase transition and order parameter became a foundation of phase-field

models.

Based on this literature, the origin of the phase-field equation lies in the works of Cahn

and Hilliard [8] on the interfacial free energy of non-uniform systems, and Allen and Cahn

[3] on the antiphase boundary motion in binary alloy. Without explicitly tracking the inter-

face positions, both models are able to predict corresponding complex microstructure, and

thus have been extensively discussed in many areas, such as solidification, solid-state phase

transformation, grain growth, and many examples in [15].

2

An important generalization of Cahn-Hilliard model is the functionalized Cahn Hilliard

(FCH) model, which has been proposed by Promislow et.al. in [29, 21, 40]. The FCH free

energy describes a phase separation in blends of amphiphilic polymers and solvents. More-

over, the FCH gradient flows are comprised of long-lived network morphologies of distinct

co-dimension, and the authors analyized their geometric evolution, bifurcation and compe-

tition. A great review of the details of FCH model is in [40].

1.2 Review of previous works

In this Section, we review the previous works related to numerical methods for the phase-field

models, especially for the Allen-Cahn(AC) and Cahn-Hilliard(CH) equations. Both equa-

tions have some numerical challenges, such as the presence of the small parameter ε which

describes the interfacial width, the nonlinearity introduced by the free energy, and various

time scales between each stage of temporal evolutions. There have been many contributions

to resolve such numerical challenges, but we mainly focus on following representative meth-

ods: (1) the method of lines (MOL), and (2) the method of lines transpose (MOLT). A

review of more diverse numerical approximations of the CH model can be found in [56].

1.2.1 Method of Lines (MOL)

The Method of Lines (MOL) is a classical technique [52] for time-dependent partial differen-

tial equations (PDEs). MOL first discretizes the spatial derivatives, using various methods

such as finite differences, and leaves the time variable continuous. This leads to a system of

coupled ordinary differential equations (ODEs), with the corresponding initial and boundary

conditions. The basic idea of the MOL is to replace the spatial (boundary value) derivatives

3

in the PDE with algebraic approximations.

We will review some numerical approximations that are based on the MOL literature.

1.2.1.1 Eyre’s operator splitting

In 1998, Eyre proposed a convex splitting scheme [26] for the CH equation (3.1). After MOL

discretization (using second-order centered finite differences in space), he split the potential

function in the CH equation, producing the convex and non-convex functions

F (Uj) = Fc(Uj) + Fe(Uj), Fc and − Fe are strictvely convex,

where Uj approximates u(xj , t). He then treated the convex term implicitly and the non-

convex term explicitly,

f(Unj , U
n+1
j) = F ′c(U

n+1
j) + F ′e(U

n
j) ≡ (Un+1

j)3 − Unj ,

where f(u) = F ′(u). This operator splitting guarantees unconditional energy stability, and

solvability for any time step ∆t. Thus many numerical schemes for phase-field models utilize

Eyre’s splitting, such as [18], where convex splitting is combined with a direct iterative solver.

From the point of view of solver efficiency, the splitting methods might be ideal. However,

[19, 37] indicate that Eyre’s splitting can lead to disproportionately large temporal errors

during ripening, and can result in poor dynamics when time-accurate solutions are required.

1.2.1.2 The stabilized semi-implicit SDC method

The stabilized semi-implicit spectral deferred correction (stabilized SISDC) method was

proposed by Shen et.al. for CH equation and related systems [46].

4

The authors used a spectral-Galerkin method (Legendre-Galerkin) in space which can ad-

dress non-periodic boundary conditions, and applied the spectral deferred correction (SDC)

for time discretization, where the basic solver (prediction) is a stabilized semi-implicit scheme

[54] which is the author’s previous work. The reaction term f(u) was treated explicitly, but

an extra dissipative term
S

ε2
(un+1 − un) was introduced. To ensure unconditional energy

stability, the authors also considered a truncated potential F̃ such that |F̃ ′′(u)| is uniformly

bounded in the maximum norm, and chose S depending on the upper bound of the |F̃ ′′(u)|.

This approach guarantees high order unconditional energy stable methods for general

gradient flow models, including a thin film model, and computational efficiency since the

method does not require solving a nonlinear system. The additional stabilizing term they

introduced in the first-order scheme (prediction), however, leads to the accuracy lost so

that it might be only restricted to SDC framework to get higher order of accuracy in time.

Moreover, [18] mentions that this semi-implicit scheme should impose a time step restriction

to ensure unique solvability of CH equation.

1.2.1.3 Fully implicit scheme with conjugate gradient iteration

In [19], Wetton et.al. presented a new approach, a fully implicit time stepping scheme

with a conjugate gradient (CG) spatial solver, for energy gradient flows from several models

including AC, CH, higher-order derivative model and vector variants.

Specifically, they applied a standard Fourier pseudo-spectral discretization in space, but

this produced a dense Jacobian matrix, which in [19] was preconditioned efficiently based

on physics. They could get high order of accuracy in time using the Backward difference

formula (BDF) as well as time adaptivity for long time coarsening process. Their high order

scheme was able to easily extend to sixth order problem and vector problem.

5

One of the main contributions of this work is developing several benchmark problems for

moving interface models in 1D, 2D and 3D. In this dissertation, we will also reproduce their

benchmark problems of CH, vector CH and sixth order phase-field models in Chapter 3.

However, since their scheme utilizes a Fourier spectral method, the problem is restricted to

the periodic boundary conditions. Moreover, even though their numerical simulations show

energy decaying solution for CH models, they do not give an analytical proof for energy

stability.

1.2.1.4 Exponential time differencing (ETD) method

The exponential time differencing (ETD) [20], sometimes called the exponential integrator,

is a classical numerical method for stiff systems. The ETD scheme is employed by the exact

integration of the governing equations followed by an approximation of an integral involving

the nonlinear terms.

In [37], a physics-based stable schemes for CH and FCH model were proposed. After a

Fourier pseudo-spectral discretization, the ETD method was employed. In particular, the

implicit high order Runge-Kutta (IRK) and the backward taylor expansions were considered.

This led to a parallelizable code, which was implemented on Graphics Processing Units

(GPUs).

A main contribution of the physics-based ETD scheme is implementations of various CH

and FCH problems (2D, 3D) quickly and efficiently as a parallel computing, and the scheme

can predict various geometric events of FCH models.

However, the physics-based ETD scheme is also limited to periodic boundary conditions

on rectangular domains. Another issue is that the scheme suffers from a loss of convergence

order for large time steps (called freeze out solution), prohibiting to use of large time steps

6

during coarseng process of models.

1.2.2 Method of Lines Transpose (MOLT)

As shown in Section 1.2.1, several schemes based on MOL discretization have had many

contributions to the numerical solution of phase-field models. However, since MOL scheme

discretizes in space first, the boundary conditions must be chosen immediately and any

proof of stability depends on that discretization. The MOLT scheme, referred to as Rothe’s

method [38], or the horizontal line method, is an alternative to MOL formulation.

The MOLT starts by discretizing a PDE in time but continuous in space. Hence, any sta-

bility properties are independent of the spatial discretization and the PDE is transformed to

a coupled set of elliptic boundary value problems (BVPs), which can be solved through an-

alytic inversion. The challenge, then, is to approximate the integral equations. For instance,

a naive approach leads to a direct solver formed by a dense matrix-vector product,

Un(xj) =

∫
Ω
Gf dx ≈

N∑
i=1

G(xi − xj)fi, i = 1, · · · , N.

where N is number of spatial grid points, and G(·) is a Green’s function (kernel). Then this

summation yields O(N2) complexity, which is impractical in large number of N .

Due to the lack of efficient integral solvers, the MOLT scheme required greater storage

than other methods, thus the scheme did not get a great deal of attention before the early

1980s. However, in 1987, Greengard and Rokhlin first suggested a potential theory and

developed a fast algorithm for integral equation based on the theory [31], since then the

MOLT scheme has received more attention recently with continuous progress of the fast

algorithm for integral equations.

7

In this Section, we will review some representative works based on the MOLT framework.

1.2.2.1 Fast multipole method (FMM)

The fast multipole method (FMM) was first introduced by Greengard and Rokhlin to evalu-

ate the Coulomb potential and force fields in particle system [31]. The FMM has since been

extended to include other potential functions, such as the Yukawa potential [32], which is

also called a a screened Coulomb potential.

The basic idea of FMM is an adaptive quad-tree structure in order to impose a hierarchy

of refinements on the computational domain. For each particle, the nearby particles to the

potential field are handled directly by summation, but far-field (non-neighbor) interactions

are handled using multipole expansions [42]. In other words, the FMM first forms the

mulipole expansions for all of nodes in the quad-tree structure, and then constructs a local

expansion for each node in far-field. Specifically, Kropinski et.al. presented FMM for the

modified Helmholtz equation which appears in the semi-discrete solution of the Heat, the

Navier-Stokes, and linearized Poisson-Boltzmann equation in [42]. Based on FMM, the

presented solution computes as rapid O(N) operations, where N is the number of nodes in

the discretization of the boundary, even in the highly complex domain.

The FMM is one of the most efficient and robust methods, which can speed up the

calculation; however, this scheme might be inefficient for modern parallel processing because

of global coupling of the boundary terms.

1.2.2.2 Fourier continuation-alternating direction (FC-AD) method

In 2010, Bruno and Lyon developed a new method for general PDEs, which is FC-AD

(Fourier-Continuation Alternating-Direction) in [6, 48]. The well-known Alternating Direc-

8

tion Implicit (ADI) approach is pioneered by Douglas, Peaceman and Rachford [22, 27].

First, the FC (Gram) solver is the method of spatial differentiation, which enables high

order/spectral convergence of Fourier expansions of non-periodic functions. The high order

FC-AD algorithm yields unconditional stability for general domains at an O(Nlog(N)) cost

per time step.

The exact Green’s function is replaced with a dimensionally split Greens function. As

a result, the boundary conditions are no longer globally coupled. The scheme also enables

efficient parallel implementations for general domains and does not suffer both Gibbs phe-

nomenon and CFL restrictions in hyperbolic problems. However, This is at the expense of

introducing splitting error.

1.2.2.3 Dimensionally splitting-fast convolution method

Recently, Christlieb’s group has presented the fast convolution strategy based on dimensional

splitting MOLT schemes in [11, 13, 10, 12]. Each of these schemes is able to make analytically

solve simpler, one-dimensional boundary value problem, and the subsequent solution can

be constructed through dimensional sweeps. This is also unconditionally stable numerical

scheme with computational cost and coding complexity comparable to explicit schemes.

The resulting dimensionally split MOLT method has been demonstrated on a range of

problems with complex geometry and boundary conditions. In [13] successive convolution

was introduced, leading to an A-stable method of arbitrary order in time for hyperbolic

problems. Moreover, [10, 58] include the development of an embedded boundary method

for Neumann boundary conditions on a complex boundary geometry and several numerical

examples, such as Maxwells equation. The contributions of the present author to [12] extend

the dimensionally split MOLT to high order in space and time for linear and non-linear

9

second-order parabolic problems, which will be reproduced in this dissertation. This work

is ongoing to high order derivative phase-field models, such as CH and FCH equations. In

the second part of the dissertation, we turn our attention to above models.

In each case, the spatial operator if factored, so that the boundary value problem is

solved using a composition of one-dimensional solves. Each solver is O(N) and matrix-free,

and the complexity is comparable to explicit.

1.3 Outline of the dissertation

In the dissertation, we mainly consider the efficient numerical schemes for Allen-Cahn and

Cahn-Hilliard equations. First, we would like to solve the equations in such a way as to

achieve high order of accuracy in time and space. Second, we would like to maintain the

energy stability when the method is used to model any microstructural evolution, such as

coarsening process in binary alloy.

In Chapter 2, we propose a numerical method for the parabolic equations, include the

linear heat equation and nonlinear equations of reaction-diffusion type. This Chapter is

organized as follows: In Section 2.2, we derive the basic scheme for the one-dimensional heat

equation, which is L-stable and can achieve high orders of accuracy in space and time. In

Section 2.3, we describe how to obtain an arbitrary order discretization in a single dimension

with resolvent expansions. In Section 2.4.1, we describe how this can be extended to multiple

dimensions, and we present results for linear heat in one and two dimensions in Section 2.3.3

and 2.4.2, respectively. In Section 2.5, we describe how our approach can handle nonlinear

source terms, and we present numerous numerical results including Allen-Cahn and the

Fitzhugh-Nagumo system of equations.

10

In Chapter 3, we extend the dimensionally split MOLT for the 1D and 2D Cahn-Hilliard

and vector variant. In Section 3.1, we introduce the CH model and vector CH model, which

are of interest in this Chapter. In Section 3.2, we derive a first order scheme for CH equation

in a basic 1D setting and the energy stability proof in semi-discrete setting in Section 3.2.1.

In Section 3.3, we modify the traditional time stepping scheme to achieve higher orders of

accuracy in time and present the temporal refinement studies in Section 3.3.4. In addition,

we extend our 1D solver to multiple spatial dimension in Section 3.4 with the refinement

studies in 2D in Section 3.4.3, as well as extend to vector model in Section 3.5. Finally, we

describe an adaptive time stepping strategy in Section 3.6 and present numerous numerical

results including 1D, 2D and vector model in Section 3.7.

11

Chapter 2

MOLT for Parabolic Equations

2.1 Motivation

The prototypical parabolic differential equation is the heat equation.

ut = ∆u, (2.1)

subject to appropriate initial and boundary condition. Here t > 0 and x ∈ Ω, where Ω ⊂ Rn

is open. The Laplacian ∆ is taken with respect to the spatial variables x = (x1, x2, · · · , xn) :

∆u =
∑n
i=1 uxixi . It forms a cornerstone of mathematics and physics, and its understanding

is essential for defining more complicated mathematical models.

Fourier introduced this equation as a means to describe transient heat flow. Fick quickly

recognized its importance to particle and chemical concentrations. As a result, parabolic

equations are now ubiquitous in describing diffusion processes, which are found in a vast

array of physical problems, among which are reaction-diffusion models of chemical kinetics

[3, 8], phase field models describing morphology and pattern formation in multiphase fluids

and solids [5, 9, 21], and even the volatility of stocks and bonds in mathematical finance [55].

Numerical solutions of (linear and nonlinear) diffusion equations have been the subject of

active research for many decades. As early as the 1950’s and 60’s, it was recognized that due

to the parabolic scaling, method of lines (MOL) discretizations of the heat equation lead to

12

numerically stiff systems of equations. In principal, the numerical stiffness can be subsided

by taking larger time steps, which are only stable if fully implicit solvers are used. But in

practice, the memory of early computers was extremely limited, making full matrix inversions

difficult and costly. Thus, alternate dimensionally implicit (ADI) splitting methods [22, 27],

which utilize dimensional splitting and tridiagonal solvers, quickly gained popularity.

Later on, memory constraints no longer defined the bottleneck for computing, and at-

tention shifted toward methods that focused on reducing floating point operations (FLOPs),

albeit with additional memory constraints. Most notable among these are Krylov methods

[35], boundary integral methods in Sections 1.2.2.1, and quadrature methods [47, 36]. How-

ever, with the advent of GPU processors, it appears that we are yet again seeing a paradigm

shift towards methods that should emphasize small memory footprints, even at the expense

of incurring a higher operation count. Thus, ADI-like methods, which can efficiently decom-

pose larger problems and limit overhead communication, warrant further investigation, and

these features are the motivating factor for this work.

We now start to propose a novel numerical method, MOLT in Section 2.2 for obtaining

solutions to the linear heat equation (2.1).

2.2 First order scheme for 1D Heat equation

We begin by forming a semi-discrete solution to the 1D heat equation using MOLT scheme.

Let u = u(x, t) satisfy

ut = γuxx, (x, t) ∈ (a, b)× [0, T], (2.2)

13

with constant diffusion coefficient γ, and appropriate initial and boundary conditions. The

MOLT amounts to employing a finite difference scheme for the time derivative, and collo-

cating the Laplacian term at time levels t = tn and t = tn+1, so that collocation has the

form

un+1 − un

∆t
= γ∂xx

(
un +

un+1 − un

β2

)
, β > 0,

where we intoduced a free parameter β > 0. Next, we introduce the differential operator

corresponding to the modified Helmholtz equation, defined by

L = I − ∂xx
α2

, α =
β√
γ∆t

. (2.3)

After some algebra, we find that the scheme can be written as

L[un+1 − (1− β2)un] = β2un. (2.4)

We note that there are at least two reasonable strategies for choosing β:

1. Maximize the order of accuracy. For example, if we choose β2 = 2, then the

discretization is the trapezoidal rule, which is second order accurate and A-stable.

2. Enforce stiff decay. For example, if we choose β2 = 1, then the discretization is the

Backward Euler scheme, which is first order accurate, L-stable, yet does not maximize

the order of accuracy.

Here and below, we opt for the second strategy, as the stiff decay of numerical solutions of

the heat equation is of paramount importance. In Section 2.3.2, we develop this discussion in

the context of higher order schemes that relies on a careful selection of β as well as repeated

14

applications of a single inverse operator.

Upon solving equation (2.4) for un+1, we find that the equation for the update is

un+1 = (1− β2)un + β2L−1[un], (2.5)

that requires inverting a modified Helmholtz operator. We will accomplish this analytically

by using Green’s function. We shall define L−1 in the ensuing discussion.

2.2.1 Inversion of the modified Helmholtz operator

In this Section, we seek the free-space Green’s function G(x|y) as the solution to

L[G](x) = δ(x− y), −∞ < x, y <∞, (2.6)

where δ is the delta distribution and L is the differential operator in (2.3). We first obtain

the solution G, which is stated in the following theorem.

Theorem 2.2.1. The free space Green’s function satisfying (2.6) is given by

G(x|y) =
α

2
e−α|x−y|, α =

β√
γ∆t

. (2.7)

Proof. We first consider x 6= y, and upon solving the homogeneous differential equation,

L[G] = 0,

G(x|y) =


Ae−α(x−y) +Beα(x−y), −∞ < x < y,

Ce−α(x−y) +Deα(x−y), y < x <∞.

15

To ensure that G remains bounded for all x and y, we set A = D = 0. Then it remains to

determine B and C. We demand that G be continuous at x = y, but allow for the derivative

of G to be discontinuous. The size of the jump discontinuity is obtained by integrating the

equation over the interval [y − ε, y + ε] and letting ε→ 0, from which we find

[Gx]x=y = α2.

Imposing that the continuity and jump conditions yields the following set of equations

C −B = 0, −α(C +B) = −α2.

The solution is then given by B = C =
α

2
, and the result (2.7) follows.

We note that the modified Helmholtz equation has a non-oscillatory Green’s function,

and especially it is exponential decaying property. Now, we consider a differential equation

of the form

L[un+1](x) = un(x), a ≤ x ≤ b, (2.8)

where un is an approximation of u(x, tn), (n ∈ N). Upon multiplying by G and integrating

over [a, b], we find after integration by parts that

un+1(x) =
α

2

∫ b

a
e−α|x−y|un(y)dy +

1

2α

[
u(y)

∂

∂y
e−α|x−y| − e−α|x−y| ∂

∂y
u(y)

]y=b

y=a
.

The boundary terms can also be evaluated explicitly, using

lim
y→a

∂

∂y
e−α|x−y| = αe−α(x−a), lim

y→b
∂

∂y
e−α|x−y| = −αe−α(b−x),

16

which gives

1

2α

[
u(y)

∂

∂y
e−α|x−y| − e−α|x−y| ∂

∂y
u(y)

]y=b

y=a
= Bae

−α(x−a) +Bbe
−α(b−x),

for some coefficients Ba and Bb. Moreover, the boundary terms satisfy the homogeneous

differential equation L[u] = 0.

Based on this result, an inversion of the modified Helmholtz operator (2.3) is defined that

L−1[un] =

(
I − ∂xx

α2

)−1

[un] :=
α

2

∫ b

a
e−α|x−y|un(y)dy+Bae

−α(x−a) +Bbe
−α(b−x), (2.9)

and the coefficients Ba and Bb are determined by applying prescribed boundary conditions

at x = a, b which we describe in Section 2.2.3.

Remark 1. Alternatively, had we followed the method of lines (MOL) and first discretized

(2.2) in space, then the differential operator L would be replaced by an algebraic operator L,

and would be inverted numerically.

Remark 2. Although the update (2.5) (with β 6= 1) is only first order accurate, we describe

in Section 2.3 how to extend our procedure to arbitrary order in time.

Remark 3. Since dimensional splitting is used, all spatial quantities are computed according

to a one-dimensional convolution integral of the form (2.9), which is performed on a line-

by-line basis, following so-called ”dimensional sweeps”. Since the discrete convolution is

computed in O(N) complexity, the full solver scales linearly in the number of spatial points

(assuming each sweep is performed in parallel).

Thus, we find that the inversion operator consists of two parts, the particular solution and

the homogeneous solution. The convolution operator is comprised of a particular solution,

17

which is defined by the convolution integral

I[un](x) :=
α

2

∫ b

a
e−α|x−y|un(y)dy, n ∈ N, (2.10)

and a homogeneous solution

Bae
−α(x−a) +Bbe

−α(b−x), (2.11)

both of which can be constructed in O(N) operations using fast convolution.

Furthremore, a fully discrete scheme is obtained after a spatial discretization of (2.9). The

domain [a, b] is partitioned into N subdomains [xj−1, xj], with a = x0 < x1 < . . . xN = b.

We now describe each of these in turn, starting with the first.

2.2.2 Particular solution

The particular solution is first split into I[u](x) = IL(x) + IR(x), where

IL(x) =
α

2

∫ x

a
e−α(x−y)u(y)dy, IR(x) =

α

2

∫ b

x
e−α(y−x)u(y)dy.

We now make a few key observations about the particular solution, which will be used

extensively in the ensuing discussion.

18

2.2.2.1 Characteristic decomposition for particular solution

Each of these parts independently satisfy the first order ”initial value problems”

(IL)′(y) + αIL(y) =
α

2
u(y), a < y < x, IL(a) = 0,

(IR)′(y)− αIR(y) = −α
2
u(y), x < y < b, IR(b) = 0,

where the prime denotes spatial differentiation. From the integrating factor method, the

integral satisfies the following identity, known as exponential recursion

IL(xj) = e
−νj IL(xj−1) + JL(xj), where JL(xj) =

α

2

∫ xj

xj−1

e
−α(xj−y)

u(y)dy,

(2.12)

IR(xj) = e
−νj+1IR(xj+1) + JR(xj), where JR(xj) =

α

2

∫ xj+1

xj

e
−α(y−xj)

u(y)dy,

(2.13)

and

νj = αhj , hj = xj − xj−1.

This expression is still exact, and indicates that only the ”local” integrals JL and JR needs

to be approximated. By symmetry, the scheme for JR follows from that of JL, which we

describe.

19

2.2.2.2 A spatial solver for particular solution

We first consider a projection of u(y) onto PM , the space of polynomials of degree M . A

local approximation

u(xj − zhj) ≈ pj(z), z ∈ [0, 1],

is accurate to O(hMj), and defines a quadrature of the form

JL(xj) =
νj
2

∫ 1

0
e
−νjzu(xj − hjz)dz ≈

νj
2

∫ 1

0
e
−νjzpj(z)dz. (2.14)

If standard Lagrange interpolation is used, then the polynomials can be factorized as

pj(z) =
r∑

k=−`
pjk(z)uj+k = zTA−1

j uMj , (2.15)

where z = [1, z, . . . , zM]T , and uMj = [uj−`, . . . , uj , . . . , uj+r]
T , and Aj is the Vandermonde

matrix corresponding to the points xj+k, for k = −` . . . r,

Aj =



(
xj − xj−l

hj

)0

. . .

(
xj − xj−l

hj

)M
...

. . .
...(

xj − xj+r
hj

)0

. . .

(
xj − xj+r

hj

)M


∈ RM+1,M+1

The values of ` and r are such that `+ r = M , and are centered about j except near the

boundaries, where a one-sided stencil is required.

Substituting this factorization into (2.14) and integrating against an exponential, we find

that

JL(xj) ≈ JLj :=
r∑

k=−`
wjkuj+k,

20

where the weights wj = [wj,−`, . . . wj,r] satisfy

wTj = φTj A
−1
j (2.16)

and where

φjk =
νj
2

∫ 1

0
e
−νjzzkdz = −e

−νj

2
+

k!

2νkj

1− e−νj
k−1∑
p=0

(νj)
p

p!

 (2.17)

If the weights are pre-computed, then the fast convolution algorithm scales as O(MN) per

time step, and achieves a user-defined O(M) in space. In every example shown in this work,

we choose M = 2, 4 or M = 6.

2.2.3 Homogeneous solution

The homogeneous solution in (2.11) is used to enforce boundary conditions. We first observe

that all dependence on x in the convolution integral, I(x) := I[un](x), in (2.10) is on the

Green’s function, which is a simple exponential function. Through direct differentiation, we

obtain

Ix(a) = αI(a), Ix(b) = −αI(b). (2.18)

Various boundary conditions at x = a and x = b can be enforced by solving a simple 2× 2

system for the unknowns Ba and Bb.

Remark 4. The cases of applying different boundary conditions at x = a and x = b are

not considered here, but the details follow from an analogous procedure to that demonstrated

below.

21

2.2.3.1 Dirichlet boundary conditions

Let us begin with Dirichlet boundary conditions, which we shall define by un(a) = wa and

un(b) = wb (at each discrete time step, t = tn). Then

wa = I(a) +Ba +Bbµ, wb = I(b) +Baµ+Bb,

where µ = e−α(b−a). This system of equations can be solved for the Ba and Bb, yielding

Ba =
(wa − Ia)− µ(wb − Ib)

1− µ2
, Bb =

(wb − Ib)− µ(wa − Ia)

1− µ2
, (2.19)

where Ia = I(a) and Ib = I(b).

2.2.3.2 Neumann boundary conditions

To apply the Neumann boundary conditions, we use the identities (2.18), and denote unx(a) =

αw′a and unx(b) = αw′b. This yields

αw′a = α
(
I ′(a)−Ba +Bbµ

)
, αw′b =

(
−I ′(b)−Baµ+Bb

)
,

and this system of equations can be solved for the Ba and Bb,

Ba =
(I ′a − w′a) + µ(w′b + I ′b)

1− µ2
, Bb =

(w′b + I ′b) + µ(I ′a − w′a)

1− µ2
. (2.20)

22

2.2.3.3 Periodic boundary conditions

We can also impose Periodic boundary conditions, by assuming that

un(a) = un(b), unx(a) = unx(b), ∀n ∈ N. (2.21)

We next enforce this assumption to hold on the scheme (2.9),

L−1[un](a) = L−1[un](b) ⇐⇒ I(a) +Ba +Bbµ = I(b) +Baµ+Bb,

L−1
x [un](a) = L−1

x [un](b) ⇐⇒ α (I(a)−Ba +Bbµ) = α (−I(b)−Baµ+Bb) ,

where the identities (2.18) are used to find L−1
x . Solving this linear system yields

Ba =
Ib

1− µ
, Bb =

Ia
1− µ

. (2.22)

2.3 Higher order scheme for 1D Heat equation

In our group’s recent work [13], Causley et.al. applied a successive convolution approach

to derive high order A-stable solvers for the wave equation. We extend this successive

convolution idea based on new approach, resolvent expansion, for the heat equation.

The key idea is to recognize the fact that, in view of the modified Helmholtz operator

(2.3), the second derivative can be factored as

(
−∂xx
α2

)
= L − I = L

(
I − L−1

)
:= LD, (2.23)

23

where

D = I − L−1, L = (I −D)−1 . (2.24)

Substitution of the second expression into (2.23) determines the second derivative completely

in terms of this new operator

(
−∂xx
α2

)
= (I −D)−1D =

∞∑
p=0

Dp. (2.25)

This shows that second order partial derivatives of a sufficiently smooth function u(x) can

be approximated by truncating a resolvent expansion based on successively applying D to

u(x), which is a linear combination of successive convolutions (2.9). We also note that for

implementation, each operator is applied successively, and is defined by

D(p+1)[u] := D[Dp[u]], D0[u] := u.

Now, we consider a solution u(x, t) to the heat equation (2.2), that for simplicity we take

to be infinitely smooth. We perform a Taylor expansion on u(x, t + ∆t), and then use the

Cauchy-Kovalevskaya procedure [53] to exchange temporal and spatial derivatives to yield

u(x, t+ ∆t) =
∞∑
p=0

(∆t∂t)
p

p!
u(x, t) =

∞∑
p=0

(γ∆t∂xx)p

p!
u(x, t) =: eγ∆t∂xxu(x, t). (2.26)

The term eγ∆t∂xx is a spatial pseudo-differential operator, and it compactly expresses the

full Taylor series. Our goal is to make use of the formula (2.25) to convert the Taylor

series into a resolvent expansion [24, 25]. This can be performed term-by-term, and requires

rearranging a doubly infinite sum. However, if we instead work directly with the operator

24

defining the Taylor series, then

eγ∆t∂xx = e
−β2

(
−∂xx
α2

)
= e−β

2(I−D)−1D.

The last exponential form of the operator reminds us a generating function of orthogo-

nal polynomials, which is the generating function of the generalized Laguerre polynomials

L
(λ)
p (z),

∞∑
p=0

L
(λ)
p (z)tp =

1

(1− t)λ+1
e
− tz

1−t , z > 0, (2.27)

and this bears a striking resemblance to our expansion. Indeed, if we take λ = −1, substitute

z = β2 and t = D, then

e−β
2(I−D)−1D =

∞∑
p=0

L
(−1)
p (β2)Dp = I +

∞∑
p=1

L
(−1)
p (β2)Dp. (2.28)

Therefore, the Laguerre expansions via our successive convolutions of D operator and the

Taylor expansion are exactly same with our exponential form of operator, e−β
2(I−D)−1D,

in the limiting sense. However, we do prefer the Laguerre expansion for the stability reason.

To compare the Laguerre expansion with the Taylor expansion, we first consider the

traditional Fourier stability analysis. Before replacing them in a Fourier mode, we should

truncate each series at some finite order in order to develop a numerical scheme. Thus, we

assume that truncate each series at the same order P , which gives us

Taylor:
P∑
p=0

(−γ∆k2)p

p!
, Laguerre:

P∑
p=0

Lp(β
2)D̂p, D̂ = 1− 1

1 + γ∆k2
,

where k is the wave number. Then, based on the previous identities (2.26) and (2.28),

25

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

k

(a) e−γ∆tk2

0 10 20 30 40 500

0.5

1

1.5

2

2.5

3

x 1011

k

(b) Taylor (P = 6)

0 10 20 30 40 500

0.2

0.4

0.6

0.8

1

k

(c) Laguerre (P = 6)

Figure 2.1: Fourier modes of (a) the expnential operator, (b) the truncated Taylor expansion
(P = 6), and (c) the Truncated Laguerre expansion (P = 6). The common parameters γ = 1
and ∆t = 0.1 is chosen.

two partial sums will converge to the same solution e−γ∆tk2
, that is exponential decaying

function in the Fourier mode. We specially chose P = 6 and draw each Fourier mode of the

expansions in Figure 2.1. As shown in Figure 2.1b, the truncated Taylor expansion diverges

for larger wave number k, however, the truncated Laguerre expansion at the same order

P is nicely decaying, which as shown in Figure 2.1c. This is because the Fourier mode of

convolution operator satisfies the boundedness, |D̂| ≤ 1, whatever the wave number k is.

Because of this boundedness of our D operator, we do prefer the Laguerre expansion for

our higher order timestepping scheme. Furthermore, this has a theoretical proof about the

rate of convergence of partial sum, which will be discussed in the following Section.

2.3.1 Convergence

This expansion has been considered in the context of C0- semigroups [33, 1], where
(
−∂xx

α2

)
is replaced with a general closed operator A on a Hilbert space X. In our notation, we

restate part (ii) of Theorem 5.2 in [1], which is proven therein.

26

Theorem 2.3.1. Let the C0- semigroup

T (β2) = e
−β2

(
−∂xx
α2

)
=
∞∑
p=0

L
(−1)
p (β2)Dp =

∞∑
p=0

L
(−1)
p (β2)L−p (L − I)p ,

=
∞∑
p=0

L
(−1)
p (β2)

(
I − ∂xx

α2

)−p(
−∂xx
α2

)p
,

where L
(−1)
p are generalized Laguerre polynomials. This can be approximated by P th partial

sum of the series,

TP (β2) =
P∑
p=0

L
(−1)
p (β2)Dp.

Then, for u ∈ C2P+2(Ω), there exists for each β2 > 0 an integer m0 such that for all integers

2 ≤ k ≤ P + 1, with P ≥ m0,

∥∥∥T (β2)u− TP (β2)u
∥∥∥ ≤ c(β2, k)

P k/2−1

∥∥∥∥∥
(
−∂xx
α2

)k
u

∥∥∥∥∥ ,
where c(β2, k) is a constant that depends only on β2 and k.

Remark 5. The salient point of the theorem is that, in consideration of α (c.f. Eqn. (2.3)),

the approximation error is of the form c∆tP+1
∥∥∥u(2P+2)(x)

∥∥∥, which matches the form given

by a typical Taylor method.

Finally, we truncate the resolvent expansion (2.28) at order p = P . For the heat equation,

this defines the numerical method as

u(x, t+ ∆t) = u(x, t) +
P∑
p=1

L
(−1)
p (β2)Dp[u](x, t), (2.29)

27

which has a truncation error of the form

τ := L
(−1)
P+1(β2)DP+1[u](x, t) +O(∆tP+2). (2.30)

For P = 1, 2, 3, these schemes (evaluated at t = tn) are

un+1 = un − β2D[un], (2.31)

un+1 = un − β2D[un]−
(
β2 − β4

2

)
D2[un], (2.32)

un+1 = un − β2D[un]−
(
β2 − β4

2

)
D2[un]−

(
β2 − β4 +

β6

6

)
D3[un], (2.33)

where we used the Rodrigues formula for generalized Laguerre polynomials

L
(−1)
0 (β2) = 1,

L
(−1)
1 (β2) = −β2,

L
(−1)
p (β2) = −ze

z

p!

dp

dzp

(
e−zzp−1

) ∣∣∣∣
z=β2

, p > 1.

Now, the next natural question becomes how we can choose the parameter β for our

time stepping method. This parameter actually guarentees the stiff decay of our numerical

scheme. This will be discussed in the next Section.

2.3.2 Stability

There remains one critical issue: the choice of the free parameter β. In 1974, Nørsett studied

a similar single-step multiderivative method for the heat equation [49] and he too, had a free

parameter in his solver. We follow his lead on the Von-Neumann analysis based on his MOL

28

discretization, but in this work we optimize β to obtain stiff decay, whereas Nørsett chose β

to maximize the order of accuracy of the solver.

Consider the linear test problem

dy

dt
= λy, y(0) = 1, λ ∈ C,

whose exact solution y(t) satisfies

y(tn + ∆t) = ezy(tn) ≡
∞∑
p=0

zp

p!
y(tn), z = λ∆t ∈ C.

On the other hand, our approximation solution yn+1 is obtained by P th partial sum of the

resolvent series (2.28). Application of (2.29) to this test problem results in

yn+1 =
P∑
p=0

L
(−1)
p (β2)D̄p(z, β2) yn, D̄(z, β2) = 1−

(
1− z

β2

)−1

=
z

z − β2
.

In other words, we can express our approximation as

yn+1 = φP,β(z)yn =
(
φP,β(z)

)2
yn−1 = · · · =

(
φP,β(z)

)n+1
,

where φP,β(z) is the stability function of the presented P th-order time stepping method,

φP,β(z) =
P∑
p=0

L
(−1)
p (β2)D̄p(z, β2), (2.34)

which depends on the free parameter β (determined later) and the temporal order P .

Following standard definitions, we say that a numerical scheme is A-stable, provided

29

|φ| ≤ 1 in the left-half of the complex plane z ∈ C−. Likewise, a scheme exhibits stiff decay

if φ(z) → 0 as Re(z) → −∞. If an A-stable method also exhibits stiff decay, it is L-stable.

We first note the following recurrence relation of generalized Laguerre polynomials, in order

to calculate the limit of stability functions at negative infinity. The generalized Laguerre

polynomials satisfy many identities, the following of which is the most pertinent:

L
(0)
p+1(x)− L(0)

p (x) = L
(−1)
p+1 (x) =

(
x

p+ 1

)
d

dx
L

(0)
p+1(x). (2.35)

Here, L
(0)
p (x) is the standard Laguerre polynomial Lp(x).

Now, observing that D̄ → 1 as Re(z)→ −∞, we find that

lim
Re(z)→−∞

φP,β(z) =
P∑
p=0

L
(−1)
p (β2) = L0

0(β2) +
P∑
p=1

(
L0
p(β

2)− L0
p−1(β2)

)
= L0

P (β2),

(2.36)

where we have used the first two expressions in (2.35) to introduce a telescoping sum. We

are now prepared to prove the following.

Theorem 2.3.2. Let u(x, t) be an approximate solution to the heat equation (2.2), given by

the successive convolution scheme (2.29). Then,

1. If β2 = x
(P)
1 is chosen as the smallest root of L′P+1(x) = (L

(0)
P+1(x))′, then the scheme

achieves order P + 1, but does not exhibit stiff decay.

2. If β2 = x
(P)
1 is chosen as the smallest root of LP (x) = L

(0)
P (x), then the scheme

achieves order P , and exhibits stiff decay.

3. Following the first strategy, the schemes are A-stable for P = 1, 2, 3, whereas the second

strategy ensures L-stability. For both strategies, A(α)-stability is achieved for P > 3,

30

−1 −0.5 0 0.5 1
0.998

0.999

1

1.001

1.002

Im(z)

|φ
(z

)|

P = 1

P = 2

P = 3

P = 4

P = 5

P = 6

(a) Maximal Order

−1 −0.5 0 0.5 1
0.95

1

1.05

Im(z)

|φ
(z

)|

P = 1

P = 2

P = 3

P = 4

P = 5

P = 6

(b) Stiff Decay

Figure 2.2: Maximum amplification factors |φ(iy)| for the first few orders P , with (a) maximal
order, or (b) stiff decay. When maximizing order, the first 3 schemes exhibit A-stability,
whereas ensuring stiff decay leads to L-stable schemes. For P > 3, both schemes become
A(α)-stable.

with large values of α ≈ π/2.

Proof. The proof follows by applying the maximum modulus principle coupled with (2.36).

For part 1, upon examining the truncation error (2.30), we see that an additional order of

accuracy can be gained if we choose

L
(−1)
P+1(β2) =

(
β2

P + 1

)
L′P+1(β2) = 0.

However, LP (β2) 6= 0 for this choice, and so stiff decay does not hold. For part 2, we

instead enforce stiff decay, but then the truncation error is of order P . Finally, part 3 is

demonstrated by the maximum amplification factors φ along the imaginary axis, as shown

for both strategies in Figure 2.2. In particular, we observe that |φP,β(iy)| ≤ 1 for P = 1, 2, 3.

31

Stiff Decay Maximal Order

P β2 LP (β2) β2 LP (β2)
1 1.0000 0 2.0000 -1.0000
2 0.5858 0 1.2679 -0.7320
3 0.4158 0 0.9358 -0.6304
4 0.3225 0 0.7433 -0.5768
5 0.2636 0 0.6170 -0.5436
6 0.2228 0 0.5277 -0.5211

Table 2.1: Values of β2 chosen for orders P = 1, 2, . . . 6. The first column are those used
in our schemes, and uniquely guarantee stiff decay and A(0)-stability. For comparison, we
also display the values in Nørsett [49] which give optimal order P + 1, at the expense of stiff
decay.

Specifically, the explicit forms of stability functions are

φ1,β = 1− β2
(

z

z − β2

)
, φ2,β =

(
1− 2β2 + β4/2

)
z2 +

(
β4 − 2β2

)
z + β4(

z − β2
)2 ,

φ3,β =

(
1− 3β2 + 3

2β
4 − 1

6β
6
)
z3 +

(
−3β2 + 3β4 − 1

2β
6
)
z2 + (3β4 − β6)z − β6(

z − β2
)3 .

Remark 6. In [49], the scheme was chosen to maximize the order of accuracy, implicitly

leading to eliminating the first term in the truncation error (2.30), which is equivalent to

the first strategy. However, in this work we follow the second strategy, and choose β2 as the

smallest root of LP (x) to ensure stiff decay.

For comparison we record the values of β2 chosen for each order 1 ≤ P ≤ 6, to those of

Nørsett in Table 2.1. For all of our solvers, we choose β to be the largest possible value that

still yields provable stiff decay.

32

P = 1 P = 2 P = 3
∆t L∞ error order L∞ error order L∞ error order

0.1 1.8405× 10−4 − 1.6255× 10−6 − 2.4225× 10−8 −
0.05 9.2121× 10−5 0.9985 4.0841× 10−7 1.9928 3.0620× 10−9 2.9839

0.025 4.6084× 10−5 0.9993 1.0236× 10−7 1.9964 3.8501× 10−10 2.9915

0.0125 2.3048× 10−5 0.9996 2.5622× 10−8 1.9982 4.8402× 10−11 2.9918

0.00625 1.1525× 10−5 0.9998 6.4097× 10−9 1.9990 6.2021× 10−12 2.9642

Table 2.2: Refinement studies for 1D Heat equation (2.2) ((x, t) ∈ (0, 2π)× [0, 4]) with Pe-
riodic boundary conditions. P indicates the order of resolvent expansion in (2.28).

2.3.3 Numerical result: Refinement study of 1D Heat equation

We first illustrate the accuracy of our method for the 1D heat equation defined in (2.2). We

consider initial conditions u(x, 0) = sin(x), for x ∈ [0, 2π] with periodic boundary conditions.

We integrate up to a final time of T = 4, and set γ = 0.182. We use the fast convolution

algorithm that is fourth order accurate in space (M = 4), and set the spatial grid size to be

∆x = 2π
1024 ≈ 0.0061. This ensures that the dominant error in the solution is temporal. We

compute errors by the L∞-norm, and compare against the exact solution

u(x, T) = e−γTu0(x) ≡ e−γT sin(x). (2.37)

The result of a temporal refinement study for P = 1, 2 and 3 is presented in Table 2.2,

computed at T = 4. This example serves to illustrate that our scheme achieves the designed

order of accuracy after appropriate truncations of the resolvent expansions.

2.4 MOLT for Multi-D Heat equation

We extend the 1D solver to multiple spatial dimensions through the use of dimensional

splitting. Our key observation is that we can use the factorization property of the exponential

33

to perform the series expansion. For instance, in three dimensions, we have

eγ∆t∇2
= e
−β2

(
−∂xx
α2

)
e
−β2

(
−∂yy
α2

)
e
−β2

(
−∂zz
α2

)
. (2.38)

Now, we first replace each term with the identity (2.28) dimension by dimension, and then

truncate the expansions which will be in terms of the univariate operators L−1
γ and Dγ for

γ = {x, y, z} as defined by (2.3), and (2.29) acting on a function un(x, y, z). This infinite

sum with three indices must then be truncated to order P , and after a change of indices we

find

EP =
P∑
p=0

P−p∑
q=0

P−(p+q)∑
r=0

L
(−1)
p (β2)L

(−1)
q (β2)L

(−1)
r (β2)DpxDqyDrz,

(2.39)

in 3D, with the corresponding 2D operator given by

EP =
P∑
p=0

P−p∑
q=0

L
(−1)
p (β2)L

(−1)
q (β2)DpxDqy. (2.40)

Here we adopt that sums are taken over all non-negative indices that sum to P .

2.4.1 Stability

The proof of stability for the multi-dimensional algorithm follows directly from that of the

one-dimensional case, with the same approach applied to each spatial dimension. For in-

34

P = 1 P = 2 P = 3
∆t L∞-error order L∞-error order L∞-error order

0.1 9.8182× 10−5 − 8.6717× 10−7 − 1.2925× 10−8 −
0.05 4.9143× 10−5 0.9985 2.1788× 10−7 1.9928 1.6354× 10−9 2.9825

0.025 2.4584× 10−5 0.9992 5.4608× 10−8 1.9963 2.0791× 10−10 2.9756

0.0125 1.2295× 10−5 0.9996 1.3672× 10−8 1.9979 2.9204× 10−11 2.8317

Table 2.3: Refinement study for a 2D Heat equation ((x, y) ∈ (0, 2π)× (0, 2π)) with Periodic
boundary conditions, (T = 1).

stance, for the 2D case, the stability function can be defined as

φ(z) =
P∑
p=0

P−p∑
q=0

L
(−1)
p (β2)L

(−1)
q (β2)D̄

p
xD̄

q
y, D̄x = D̄y = 1−

(
1− z

β2

)−1

,

thus, similar with the 1D stability function,

lim
Re(z)→−∞

φ(z) =
(
L0
P (β2)

)2
,

where we have used that D̄x, D̄y approach to 1 as Re(z) → −∞ and telescoping sum of

Laguerre polynomial. 3D case is also similar with low spatial dimension case.

2.4.2 Numerical result: Refinement study of 2D Heat equation

As a second example, we present results for the 2D heat equation. We consider initial

conditions u(x, y, 0) = sin(x) sin(y), for (x, y) ∈ [0, 2π] × [0, 2π] with periodic boundary

conditions. We use a uniform mesh of size ∆x = ∆y = 2π/512 ≈ 0.0123. Likewise, the

L∞-error is computed by comparing against the exact solution u(x, y, T) = e−2γTu0(x, y)

at the final time T = 1. In Table 2.3, we present results for a temporal refinement study for

orders P = 1, 2, and 3.

35

2.5 MOLT for Nonlinear equations

We next extend our method to nonlinear reaction-diffusion systems of the form

ut = D∇2u + F(u), (x, t) ∈ Ω× (0, T], (2.41)

where u = (u1, u2, · · · , uN), with ui = ui(x, t), D is a diffusion coefficient matrix, and the

reaction term F := (f1, f2, · · · , fN) is a function of ui, (i = 1, 2, · · · , N). In the above,

Ω ⊂ RN is a bounded domain, and we assume appropriate initial values and boundary

conditions. We shall view the diffusion as being the linear part of the differential operator,

and invert this linear part analytically, using successive convolution. To derive the scheme,

we use operator calculus to first write

(
∂t −D∇2

)
u = F =⇒

(
e−Dt∇

2
u

)
t

= e−Dt∇
2
F, (2.42)

where e−Dt∇
2

is a pseudo-differential operator. Upon integrating (2.42) over the interval

[t, t+ ∆t], we arrive at the update equation

u(t+ ∆t)− eD∆t∇2
u(t) =

∫ t+∆t

t
eD(t+∆t−τ)∇2

F(τ)dτ

=

∫ ∆t

0
eD(∆t−τ)∇2

F(t+ τ)dτ, (2.43)

where we have made use of the abbreviated notation, F(t) := F(u(x, t)). On the left hand

side, the diffusion terms have been collected by this pseudo-differential operator, and will

be approximated using the successive convolution techniques developed above. The reaction

terms on the right hand side (2.43) are fully nonlinear, and we must consider nonlinear

36

stability when choosing a method of discretization.

We first consider approximating the integral on the right hand side (2.43) with the trape-

zoidal rule. This defines a single-step update equation, which will be second order accurate

u(t+ ∆t)− eD∆t∇2
u(t) =

∆t

2

[
eD∆t∇2

F(t) + F(t+ ∆t)

]
. (2.44)

We may also obtain a single-step third order scheme, using multiderivative integration [53].

By replacing the integrand (2.43) with a third order Hermite-Birkhoff interpolant and per-

forming exact integration of the resulting function, we arrive at

u(t+ ∆t)− eD∆t∇2
u(t) = eD∆t∇2

[
2∆t

3
F(t) +

∆t

6

(
−D∆t∇2F(t) + ∆t

dF

dt
(t)

)]
+

∆t

3
F(t+ ∆t), (2.45)

where dF
dt (t) = dF

du (t) · (D∇2u(t) + F(t)). The Hermite-Birkhoff interpolant that matches

the integrand in (2.43) at times τ = 0, and τ = ∆t, as well as its derivative at time τ = 0

produces the quadrature rule in (2.45).

Upon perusing the third order update equation (2.45), we will need to use successive

convolution to replace the psuedo-differential operator exp
(
D∆t∇2

)
, as well as the Laplacian

operator∇2. This latter point has been detailed in [13], and so we comment briefly on it here.

Using the one-dimensional expansion (2.25), we observe that the two-dimensional Laplacian

is similarly given by

−∇
2

α2
= −∂xx

α2
−
∂yy

α2
=
∞∑
p=1

(
Dpx +Dpy

)
,

and can be truncated at the appropriate accuracy p = P . Here, the subscripts indicate that

the convolution is only in one spatial direction, and the other variable is held fixed. Thus,

37

Dx is applied along horizontal lines for fixed y-values, and likewise for Dy.

Remark 7. The proposed schemes in (2.44) and (2.45) produce nonlinear equations for

u(x, t + ∆t) that need to be solved at each time step. Therefore, any implicit solver will

necessarily be problem dependent.

For the problems examined in this work, we make use of simple fixed-point iterative

schemes. We stabilize our iterative solvers by linearizing F(u) about a background state

Fu(u∗), which depends on the problem under consideration.

2.5.1 Allen-Cahn Equation

We examine in greater detail the application of our schem to the Allen-Cahn (AC) equation

[3],

ut = ε2∇2u+ f(u), (x, t) ∈ Ω× (0, T], (2.46)

where the reaction term is f(u) = u− u3, and Ω ⊂ Rd is a bounded domain, and u satisfies

homogeneous Neumann boundary conditions.

For our fixed point iteration, we linearize f about the stable fixed points u∗ = ±1, which

satisfy f ′(u∗) = 0. For example, the second order scheme from (2.44) becomes

(1 + ∆t)un+1,k+1 = eε
2∆t∇2

(
un +

∆t

2
fn
)

+
∆t

2

(
fn+1,k + 2un+1,k

)
, (2.47)

where n indicates the time step as before, and now k is the iteration index. By lagging the

nonlinear term fn+1,k, the fixed point update is made explicit. Likewise, the third order

scheme from (2.45) becomes

38

P = 1 P = 2 P = 3
∆t L∞ error order L∞ error order L∞ error order

0.025 2.8216× 10−4 − 1.3895× 10−5 − 2.6060× 10−6 −
0.0125 1.4419× 10−4 0.9686 3.6115× 10−6 1.9439 3.9417× 10−7 2.7249

0.0063 7.2874× 10−5 0.9845 9.2164× 10−7 1.9703 5.5010× 10−8 2.8411

0.0031 3.6632× 10−5 0.9923 2.3294× 10−7 1.9842 7.3122× 10−9 2.9113

0.0016 1.8365× 10−5 0.9961 5.8695× 10−8 1.9886 9.5714× 10−10 2.9335

Table 2.4: Refinement study for the 1D Allen-Cahn (AC) equation with an initial uAC(x, 0)
in (2.49) and with the homogeneous Neumann boundary conditions.

(
1 +

2∆t

3

)
un+1,k+1 = eε

2∆t∇2
[
un +

2∆t

3
fn +

∆t

6

(
−ε2∆t∇2fn + ∆tfnt

)]
+

∆t

3

(
fn+1,k + 2un+1,k

)
. (2.48)

Here, eε
2∆t∇2

is again understood by replacing it with a resolvent expansion, which is a

truncated series of successive convolution operators.

2.5.1.1 Numerical result: 1D Allen-Cahn test

We demonstrate the accuracy of our proposed schemes by simulating a well-known traveling

wave solution [14, 54, 44],

uAC(x, t) =
1

2

(
1− tanh

(
x− Ts − st

2
√

2ε

))
, x ∈ Ω = [0, 4], 0 ≤ t ≤ T. (2.49)

Here, s = 3ε√
2

= 0.09 is the speed of the traveling wave, and we choose ε = 0.03
√

2.

Additionally, we choose the delay time Ts := 1.5 − sT , so that the exact solution satisfies

uAC(1.5, T) = 0.5. Results for a final time of T = 8 are shown in Figure 2.3, with two

different time steps. The solutions agree well with the exact solution.

39

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

initial
exact
∆t=0.05
∆t=0.0063

Figure 2.3: The numerical solutions with two different time step sizes, ∆t = 0.05 and
∆t = 0.0063 (common parameters: ∆x = 2−6 and ε = 0.03

√
2). Solid (red) line: the exact

profile in (2.49) at T = 8.

In Table 2.4, we present the L∞-error in the numerical solution at a final time T = 1,

using the exact solution uAC(x, T) (2.49). We observe first order accuracy from the Backward

Euler method, and the expected orders of accuracy from the second (2.47) and third (2.48)

order schemes. To ensure that the temporal error is dominant, we have used the fourth order

accurate scheme (eq. (2.14) with M = 4), with ∆x = 2−9 to perform spatial integration in

the successive convolutions.

In principle, we can achieve higher orders accuracy in space and time. The latter would

require using higher order Hermite-Birkhoff interpolation to discretize the reaction term in

(2.43).

2.5.1.2 Numerical result: 2D Allen-Cahn test

We next solve the Allen-Cahn equation in two spatial dimensions. A standard benchmark

problem involves the motion of a circular interface [14, 54, 44], to which an exact solution is

40

known in the limiting case ε→ 0. The radially symmetric initial conditions are defined by

u(x, y, 0) = tanh

(
0.25−

√
(x− 0.5)2 + (y − 0.5)2
√

2ε

)
, (2.50)

which has an interfacial circle (u(x, y, 0) = 0) centered at (0.5, 0.5), with a radius of R0 =

0.25. This interfacial circle is unstable, and will shrink over time, as determined by the mean

curvature [3],

V =
dR

dt
= − 1

R
. (2.51)

Here V is the velocity of the moving interface, and R is the radius of the interfacial circle

at time t (i.e., it is the radius of the curve defined by u(x, y, t) = 0). By integrating (2.51)

with respect to time, we solve for the radius as a function of time

R(t) =
√
R2

0 − 2ε2t. (2.52)

The location where ε is placed in equation (2.46) differs from other references [14, 44, 54].

Therefore, we point out that our time scales have been appropriately rescaled for comparison.

The moving interface problem was simulated using ε = 0.05, ∆t = 6.4×10−4

ε2
= 0.0256,

and ∆x = ∆y = 2−8 ≈ 0.0039, which are based on the parameters used in [44]. The

numerical solution is displayed in Figure 2.4, and we observe that the interfacial circle shrinks,

as is expected.

In Figure 2.5, we plot compare the evolution of the radii obtained by our second order

scheme with the exact radius (2.52), for two different values of the diffusion parameter ε.

The radius is measured by taking a slice of the solution along y = 0, and then solving for

the spatial point where u = 0 using linear interpolation between the two closest points that

41

(a) u(x, y, 0) (b) u(x, y, T2) (c) u(x, y, T)

Figure 2.4: Time evolution of the 2D AC numerical solution with initial condition (2.50), up
to time T = 0.0256

ε2
= 10.24. (parameters: ∆t = 0.0256,∆x = ∆y = 0.0039, ε = 0.05)

satisfy u(x, 0, t) < 0 and u(x, 0, t) > 0. Refinement is performed with a fixed spatial mesh

∆x = ∆y = 2−8, and time steps of ∆t = 0.2560, 0.1280, and 0.0640. Because the radius is

derived as an exact solution in the limit (i.e., ε → 0) [3], we observe that the smaller value

of ε is indeed more accurate.

We next perform a refinement study for the Allen-Cahn equations, but this time in two

spatial dimensions. To do so, we must incorporate the multivariate successive convolution

algorithms in (2.40) and (2.25) into the second (2.47) and third (2.48) order schemes. Given

that we do not have an exact solution, we compute successive errors in an L∞-norm. That

is, we compute ||u∆t − u∆t
2
||∞ for each time step ∆t. Results are as expected, and are

presented in Table 2.5. The parameters used are ε = 0.05, ∆x = ∆y = 2−9, and the final

computation time is T = 0.5. Again, the quadrature method is fourth order accurate in

space, so that the dominant source of error is temporal.

2.5.2 FitzHugh-Nagumo System

Finally, we solve a well known reaction diffusion system that arises in the modeling of

neurons, the Fitzhugh-Nagumo (FHN) model [28, 39]. The FHN system consists of an

42

0 2 4 6 8 10

0.1

0.15

0.2

0.25

TIME

R
ad

iu
s

∆ t
∆ t/2
∆ t/4
reference

(a) ε = 0.05

0 50 100 150 200 250
0.1

0.15

0.2

0.25

TIME

R
ad

iu
s

∆ t
∆ t/2
∆ t/4
reference

(b) ε = 0.01

Figure 2.5: Radii of the numerical interfacial circle as a function of time (0 ≤ t ≤ 0.0256
ε2

)

with various time step sizes. (a) ε = 0.05 (b) ε = 0.01 (common parameter: ∆x = 2−8).
Red line: the exact radius R in (2.52).

P = 1 P = 2 P = 3
∆t L∞ error order L∞ error order L∞ error order

0.0063 6.5941× 10−4 − 1.1740× 10−4 − 5.1744× 10−6 −
0.0031 3.3065× 10−4 0.9959 3.2637× 10−5 1.8468 7.8351× 10−7 2.7234

0.0016 1.6563× 10−4 0.9973 8.6726× 10−6 1.9120 1.0811× 10−7 2.8574

0.0008 8.2894× 10−5 0.9987 2.2389× 10−6 1.9537 1.2961× 10−8 3.0602

Table 2.5: Refinement studies for 2D Allen-Cahn equataion with the initial (2.50) and with
homogeneous Neumann boundary conditions.

activator u and an inhibitor v, which are coupled via nonlinear reaction diffusion equations

ut = Du∇2u+
1

δ
h(u, v),

vt = Dv∇2v + g(u, v),

(2.53)

where Du, Dv are the diffusion coefficients for u and v, respectively, and 0 < δ � 1 is a real

parameter. We use the classical cubic FHN local dynamics [39], that are defined as

43

h(u, v) = Cu(1− u)(u− a)− v,

g(u, v) = u− dv,
(2.54)

where C, a and d are dimensionless parameters. The parameters we use are the same as in

[19, 50]: Du = 1, Dv = 0, a = 0.1, C = 1, d = 0.5, and δ = 0.005. The diffusion coefficient

for the inhibitor is Dv = 0, identical to the work found in [41, 59].

The second order scheme from (2.47) is applied to each variable u and v separately. This

defines the numerical scheme as

un+1 = e∆t∇2
(
un +

∆t

2δ
hn
)

+
∆t

2δ
hn+1,

vn+1 =

(
vn +

∆t

2
gn
)

+
∆t

2
gn+1,

(2.55)

where hn = h(un, vn) and gn = g(un, vn). We again use a stabilized fixed point iteration to

address the nonlinear reaction terms. Because (u∗, v∗) = (0, 0) is the only stable excitable

fixed point of equation (2.53) simply construct the Jacobian of F = (h, g) of (2.54) about

this point:

JF(u∗, v∗) ·

u− u∗
v − v∗

 ≡ ∂(h, g)

∂(u, v)
|(0,0) ·

u
v

 =

−Ca −1

1 −d


u
v

 =

−Cau− v
u− dv

 . (2.56)

44

The resulting second order scheme is

1 +
Ca∆t

2δ

∆t

2δ

−∆t

2
1 +

d∆t

2


un+1,k+1

vn+1,k+1

 =

e
∆t∇2

(
un +

∆t

2δ
hn
)

vn +
∆t

2
gn

 (2.57)

+
∆t

2


1
δ

(
hn+1,k + Caun+1,k + vn+1,k

)
gn+1,k − un+1,k + dvn+1,k

 ,

where k is the iteration number, and n is the time level.

2.5.2.1 Numerical result: 2D FitzHugh-Nagumo test

We solve the FitzHugh-Nagumo system over the domain Ω = [−20, 20] × [−20, 20] with

Periodic boundary conditions. Using initial conditions

u(x, y, 0) =


0 if {x < 0} ∪ {y > 5}

1

(1 + e4(|x|−5))2
+

1

(1 + e4(|x|−1))2
otherwise

(2.58)

and

v(x, y, 0) =


0.15 if {x < 1} ∪ {y < −10}

0 otherwise

(2.59)

we present the numerical evolution of the activator u in Figure 2.6. We observe similar spiral

waves that form in other recent work from the literature [19].

45

(a) T = 1 (b) T = 2 (c) T = 4

Figure 2.6: Contour plot: Temporal evolution of the concentration of activator u using the
second-order scheme in (2.57) with parameters: ∆t = 0.01,∆x = ∆y = 0.2,M = 4 (fourth
order in space).

46

Chapter 3

MOLT for Cahn-Hilliard Equation

3.1 Models

In this Chapter, we present the proposed method of lines transpose (MOLT) scheme for

Cahn-Hilliard (CH) equation

ut = −∆
[
ε2∆u− f(u)

]
, x ∈ Ω ⊂ Rd, (3.1)

with the appropriate initial and boundary conditions. The phase function u ∈ H1(Ω)

describes the volume fraction of one component of a binary mixture where H1(Ω) is the

standard sobolev space. The reaction function f(u) is the derivative of classical Ginzburg-

Landau double-well potential, F (u) = 1
4(u2 − 1)2, whose local minima is at u = ±1. The

small parameter 0 < ε � 1 is the width of the interfacial transition layer. In a 1D setting

(Ω ≡ [a, b] ⊂ R), the Laplacian ∆ in the above equtions is replaced by ∂xx.

In 1893, van der Waals first developed a local free energy density function of binary mix-

tures, which became a key component in a phase-field model. Over decades, in 1950s, Cahn

and Hilliard rediscovered this functions role and extended this concept to model spinodal

decomposition based on their analysis. Since then, this continuum equation, Cahn-Hilliard

nonlinear diffusion equation, has been extensively used to predict the evolution of arbitrary

morphologies and complex microstructures without explicitly tracking the positions of inter-

47

faces [15].

The CH equation (3.1) describes the H−1 gradient flow of the CH free energy [8]

E(u) =

∫
Ω

ε2

2
|∇u|2 + F (u)dx. (3.2)

Subject to zero-flux boundary condition, the CH equation dissipates the CH free energy

d

dt
E(u) =

〈
ut,

δE
δu

〉
L2
≤ 0.

We emphasize that the physical property of energy stability is vital, and any consistent

numerical scheme for the CH model must also possess this property. Many such schemes

have been proposed, such as the operator splitting approach introduced by Eyre [26], the

semi-implicit spectral deferred correction method by Shen, [54, 46], and even fully implicit

schemes utilizing nonlinear solvers, such as the conjugate gradient method [16]. We shall

use a linearly implicit fixed point method to solve the CH equation, which is stabilized by

shifting the phase field about the background state u = −1.

In addition, we also consider vector version of CH (VCH) equation [16]. For u = (u1, u2),

ut = −∆
[
ε2∆u−∇uW (u)

]
(3.3)

where the reaction term is the derivative of the potential function,

W (u) = Π3
i=1|u− zi|2, zi : cube roots of unity in the (u1, u2) plane. (3.4)

The potential W is non-negative and its minimum values are attained at three vectors {zi},

48

so as to model a three-phase physical system. This model can be seen as the higher order

volume preserving version of the vector-valued Ginzber-Landau equation [5] , which suggests

a model for three phase boundary motion, such as the grain-boundary motion in alloys. The

energy functional is a vector version of (3.2) such that

EV CH(u) =

∫
Ω

ε2

2
|∇u|2 +W (u)dx. (3.5)

3.1.1 transformed model

Before employing a time discretization to CH equation (3.1), we first introduce a new trans-

formed variable v = u+ 1. Since pure states u = ±1 dominates the solution during ripening,

we see that equivalently v = 0, 2. This transformation is partially motivated by [18], in which

the same approach is combined with operator splitting to produce a contractive operator.

Similarly, in [16] the linearized variable v ≈ u + 1 is used as a preconditioner for the full

problem. Our work is distinct, however in that we are not solving the linearized equation,

but instead the fully nonlinear equation,

vt = −ε2vxxxx + f(v − 1)xx, f(v − 1) = v3 − 3v2 + 2v, (3.6)

which follows from the transformation v = u + 1 inserted into the CH equation (3.1), with

Ω = (a, b). Similarly, the energy functional (3.2) becomes

E(v) =

∫ b

a

ε2

2
|vx|2 + F (v − 1)dx, F (v − 1) =

1

4
v4 − v3 + v2 (3.7)

49

In Section 3.2, we will formulate our first-order MOLT scheme using above equation (3.6),

and will show that this transformation makes our scheme gradient stable in Section 3.2.1.

In the previous Chapter 2, we developed MOLT scheme for Heat equation and Allen-Cahn

equation. We will revisit this previous work when necessary.

3.2 First order scheme for 1D CH equation

We utilize the MOLT by discretizing (3.6) in time as the Backward Euler (BE) scheme,

vn+1 − vn

∆t
= −ε2∂xxxxvn+1 + 2∂xxv

n+1 + ∂xxf̃
n+1, f̃(v) = v3 − 3v2, (3.8)

where vn = u(x, tn) + 1 and ∆t = tn+1 − tn. This scheme (3.8) is first-order in time but

still continuous in space. We note that the equation contains both linear and nonlinear

implicit terms, and so an efficient iterative scheme is required to construct a fully implicit

solution. We will suggest two nonlinear iteration schemes to solve the solution vn+1 in

Section 3.2.2. We first would like to give a simple proof that the semi-discrete solution of

(3.8) is unconditionally gradient stable without considering the spatial discretization in the

following Section.

3.2.1 Energy stability

In this Section, we will give a simple proof that the first order scheme (3.8) is gradient stable

in the H−1 norm in the semi-analytic setting under the reasonable assumptions. The proof

is very similar to the stabilized semi-implicit scheme in [54] and operator splitting scheme in

[26], except our scheme is fully implicit. The salient point is that one can prove such stability

50

when the original system is modified through our simple change of variable in Section 3.1.1.

We first make useful observations which will be used to prove stability.

• The operator ∆−1 :
{
v ∈ L2|

∫
Ω vdx = 0

}
→ H2(Ω) is defined [18]

∆−1v = h ⇐⇒ < v, q >=< ∆h, q >, ∀q ∈ L2(Ω). (3.9)

• For any p, q ∈ L2(Ω), one can easily prove following identity,

< p, p− q >=
1

2

(
‖p‖20 − ‖q‖

2
0 + ‖p− q‖20

)
≥ 1

2

(
‖p‖20 − ‖q‖

2
0

)
, (3.10)

where < ·, · > is standard L2 inner product and ‖ · ‖0 is the L2 norm.

We will consider the first-order scheme (3.8) in general spatial dimension (Ω ∈ Rd, d ∈ N).

Lemma 1. Under the following assumption,

0 ≤ v ≤ 2, v = u+ 1

the fully-implicit scheme (3.8) satisfies the discrete energy law for any time step ∆t:

E(vn+1) ≤ E(vn), ∀n ≥ 0.

where vn is approximation of v(x, tn) ≡ u(x, tn) + 1 of Cahn-Hilliard equation (3.1).

Proof. The solution vn+1 satisfies the following weak formulation in H2(Ω),

1

∆t
< vn+1 − vn, φ >= −ε2 < ∆vn+1,∆φ > +2 < vn+1,∆φ > + < f̃n+1,∆φ >, (3.11)

51

for all φ ∈ H2(Ω). We choose φ = ∆−1(vn+1 − vn), then this weak form becomes

− 1

∆t
‖∇ ·∆−1(vn+1 − vn)‖20 = ε2 < ∇vn+1,∇(vn+1 − vn) >

+ 2 < vn+1, vn+1 − vn > + < f̃n+1, vn+1 − vn >,

(3.12)

by the definition of operator ∆−1 in (3.9), and employing integration by parts. We now

apply the property (3.10),

0 ≥ ε2

2
(‖∇vn+1‖20−‖∇v

n‖20) + (‖vn+1‖20−‖v
n‖20 +‖vn+1− vn‖20)+ < f̃n+1, vn+1− vn > .

(3.13)

We replace the last term with its Taylor expansion

< F̃n+1 − F̃n, 1 >=< f̃n+1, vn+1 − vn > − <
f̃ ′(ξn+1)

2
(vn+1 − vn), vn+1 − vn >,

so that the inequality (3.13) becomes

E(vn+1)− E(vn) =
ε2

2
(‖∇vn+1‖20 − ‖∇v

n‖20) + (‖vn+1‖20 − ‖v
n‖20)+ < F̃n+1 − F̃n, 1 >

≤

(
‖f̃ ′‖∞

2
− 1

)
‖vn+1 − vn‖20 ≤ 0,

where ‖ · ‖∞ is L∞ norm. The last inequality holds because f̃ ′ = 3v2 − 6v ≤ 0 with

our assumption v. Therefore, with this physical assumption, the implicit scheme (3.8) is

unconditionally gradient stable.

Remark 8. In [54, 46], Shen et.al. introduced a stabilizing term S(un+1−un) for their semi-

implicit scheme for the AC and CH equations. If S ≥ maxu∈R |f̃ ′(u)|
2

with the truncated

52

potential, then their scheme guarantees unconditionally stability. In practice, if they are

truncating F (u) outside the interval [−1, 1] such that maxu∈R |f ′(u)| = 2. Essentially, our

cut-off of v is equivalent to this assumption. Moreover, our transformed variable has same

stabilizing effect, without introducing an additional term.

We proved the weak formulation of our first-order scheme. In practice, we solve CH equa-

tion using a strong formulation. Even though the proof we gave it here is only illustrative,

all numerical simulations we are using allows to take large time step size while maintaining

gradient stability.

3.2.2 Two nonlinear iterative schemes

In this Section, we will give direct iteration solvers to solve the nonlinear problem (3.8). We

first set up a simple fixed point iteration to solve vn+1 of the first-order scheme (3.8)

(
I − (2∆t∂xx − ε2∆t∂xxxx)

)
vn+1,k+1 = vn + ∆t∂xxf̃

n+1,k, (3.14)

where k indicates the iteration index. By lagging the the nonlinear term f̃n+1,k, the iteration

update is made explicit. Now, we invert the fourth-order operator analytically, yielding the

update equation

vn+1,k+1 =
(
I − 2∆t∂xx + ε2∆t∂xxxx

)−1 [
vn + ∆t∂xxf̃

n+1,k
]
. (3.15)

If we employ the Green’s function method directly to this fourth order operator, then the

Green’s function would contain both decaying and oscillatory computations, which would

not produce an efficient method. However, we can instead factor this into a product of

53

second order differential operators (modified Helmholtz equations) which have a nonoscilla-

tory Green’s function, respectively, and in doing so leverage the fast computation methods

previously employed in the previous Chapter 2.

After some algebra, we rewrite (3.15) as the product of two second order differential

operators (modified Helmholtz),

vn+1,k+1 =

(
I − ∂xx

α2
1

)−1(
I − ∂xx

α2
2

)−1 [
vn + ∆t∂xxf̃

n+1,k
]
, (3.16)

where
1

α2
1

= ∆t +
√

∆t2 − ε2∆t and
1

α2
2

= ∆t −
√

∆t2 − ε2∆t, so that α1, α2 ∈ R when

∆t ≥ ε2. For ∆t ≥ ε2, the inverse operators both correspond to Green’s function which

decay exponentially. However, for ∆t < ε2, the corresponding Green’s function exhibits

oscillatory behavior.

To overcome this difficulty, we suggest another fixed-point iteration to solve vn+1:

vn+1,k+1 =
(
I −

√
ε2∆t∂xx

)−2
[
vn + ∆t∂xx

(
fn+1,k − 2

√
ε2

∆t
vn+1,k

)]
, (3.17)

which is based on completing the square, and has required the addition of the term

2
√
ε2∆t

(
vn+1,k+1 − vn+1,k

)
. The purpose for adding the extra term is to ensure that the

required Green’s function maintains decaying property.

We should point out that even though the first iteration (3.16) has a time step size re-

striction to have a real-valued Green’s function, we gave a simple proof that this scheme

is gradient stable in semi-analytic setting in Section 3.2.1. Moreover, we will present nu-

merical evidence that the scheme converges even with very large ∆t, which is of paramount

importance for numerical simulation of CH type equations.

54

0 0.02 0.04 0.060

0.02

0.04

0.06

0.08

0.1

ε2

L2

L1

L2

∆ t

α
−2

Figure 3.1: Bifurcation of the parameter
1

α2
in the modified Helmholtz operator L.

When ∆t ≤ ε2, alternatively, we can transition to (3.17). Since both iteration schemes

converge to one solution with the error of some order of ∆t, and are exactly equivalent at

the transition point ∆t = ε2 as shown in Figure 3.1. Therefore, we summarize as following:

Factorization method(∆t ≥ ε2) : Invert

(
I − ∂xx

α2
1

)(
I − ∂xx

α2
2

)

Completed square method (∆t < ε2) : Invert

(
I − ∂xx

α2

)2

where the constants α and αi(i = 1, 2) are determined by each scheme in Figure 3.1. We

should point out that the main reason we choose to change the operator is because the

solution for v is between 0 and 2 and a non-oscillatory kernel helps ensure that the integral

solution we compute is also non-oscillatory.

Remark 9. The second iterative scheme (3.17) was defined by introducing a second-order

term, S∂xx(vn+1,k+1 − vn+1,k) where S = 2
√
ε2∆t. Since our variable v was already trans-

formed by the steady stae, u = −1, this additional term could lower the stabilizing effect.

Indeed, we have checked that this second iteration guarantees a decrease in energy when

55

∆t ≤ εp where p ≈ 1.5, so that we can safely transfer the iteration with our criteria ∆t ≤ ε2.

Both iterations are made by two inversions of a modified Helmholtz operator in (2.3)

where β = 1 and γ = ε2, hence

L = I − ∂xx
α2

,

with the different values of α. Formal inversion of this operator in Section 2.2.1 yields:

L−1[v](x) = I[v](x)︸ ︷︷ ︸
Particular Solution

+Bae
−α(x−a) +Bbe

−α(b−x)︸ ︷︷ ︸
Homogeneous Solution

, a ≤ x ≤ b,

where the particular solution is a convolution with the Green’s function,

I[v](x) =
α

2

∫ b

a
e−α|x−x

′|v(x′)dx′,

and the coefficients Ba and Bb are determined by applying boundary conditions at x = a, b

in Section 3.2.3.

Remark 10. We additionally can calculate the second derivative of u as follows

∂xx = α2(I − L) =⇒ L−1[∂xxv] = α2
(
L−1 − I

)
[v],

where we use the definition of differential operator (2.3).

3.2.3 Fully discrete solution

Our semi-discrete scheme is made by double inversion of modified Helmholtz operators,

defined in Section 3.2.2. It remains to discretize the convolution integral I[v](x), and obtain

a fully discrete algorithm. In the previous Chapter 2, we have accomplished this inversion

56

with the fast convolution algorithm for our inversion operator (2.9); for convenience, we will

point out the essence of this fast algorithm in this Section.

For example, we review the spatial quadrature on a uniform grid (hj = ∆x), as the

second-order accurate (M = 2) scheme. First of all, the domain Ω ≡ [a, b] is partitioned into

N subdomains [xj−1, xj]

a = x0 < x1 < · · · < xN = b, hj = xj − xj−1,

we then should evaluate the convolution operator at each grid point through Ij ≡ I[v](xj) =

ILj + IRj in Section 2.2.2.1. However, because IL and IR are satisfying the recursive re-

lation in (2.12) and (2.13) respectively, this evaluation can be simplified through following

approximation

ILj = e−νILj−1 + J Lj , J Lj =
ν

2

∫ 1

0
e−νzv(xj −∆xz)dz,

IRj = e−νIRj+1 + JRj , JRj =
ν

2

∫ 1

0
e−νzv(xj + ∆xz)dz,

where J Lj and JRj are ”local” integrals in Section 2.2.2.2 and ν = α∆x. The standard

Lagrange interpolation is used to approximate these local integrals,

J Lj ≈
∫ 1

0
e−νzpLj dz, pLj =

(
z2 + z

2

)
vj−1 +

(
1− z2

)
vj +

(
z2 − z

2

)
vj+1,

JRj ≈
∫ 1

0
e−νzpRj dz, pRj =

(
z2 − z

2

)
vj−1 +

(
1− z2

)
vj +

(
z2 + z

2

)
vj+1.

57

Integrating against an exponential, we find that

J Lj ≈ w−1 · vj−1 + w1 · vj + w2 · vj+1, JRj ≈ w1 · vj−1 + w0 · vj + w−1 · vj+1,

where the quadrature weights are given by

w−1 =
1

2

(
φj,2 + φj,1

)
=

1

2

(
d+

1− 3d

2ν
+

1− d
ν2

)
,

w0 =
(
φj,0 − φj,2

)
=

1

2
+
d

ν
− 1− d

ν2
,

w1 =
1

2

(
φj,2 − φj,1

)
=

1

2

(
1− d
ν2
− 1 + d

2ν

)
.

where d = e−ν and φj,k is defined in (2.17).

For higher-order spatial schemes (M > 2), the quadrature weights are pre-computed as the

similar way, which presented in Section 2.2.2.2, so that the fast convolution algorithm is

achieved as O(MN) per time step where user-defined order M in space. In every simulation

in this work, we choose M = 4 or M = 6.

Next, the homogenous solution (2.11) is used to enforce various boundary conditions in

Section 2.2.3.3. For example, periodic boundary conditions lead to

vn(a) = vn(b), vnx(a) = vnx(b), ∀n ∈ N,

and evaluation of (2.11) at x = a, b, produces a 2 × 2 system for the unknown Ba and Bb.

Solving this linear system yields

Ba =
IN

1− µ
, Bb =

I0

1− µ

58

where µ = e−α(b−a) and I0 = I[v](a) and IN = I[v](b).

3.3 Higher order scheme for 1D CH equation

In this Section, we show how to make second and third order time accurate methods by

combining the ideas of MOLT formulation with Backward Difference Formulas (BDF), Singly

Diagonal Implicit Runge Kutta (SDIRK), and Spectral Differed Correction (SDC) methods.

We will present several refinement studies to compare those methods.

3.3.1 MOLT with Backward Difference Formula (BDF)

The BDF time stepping methods are one of the most commonly used implicit Linear Multi-

step Methods [34]. To achieve the designed order of accuracy, we discretize a time derivative

using BDF formulas as follows:

BDF2:

(
I +

2

3
ε2∆t∂xxxx

)
vn+1 =

4

3
vn − 1

3
vn−1 +

2

3
∆t∂xxf

n+1, (3.18)

BDF3:

(
I +

6

11
ε2∆t∂xxxx

)
vn+1 =

18

11
vn − 9

11
vn−1 +

2

11
vn−2 +

6

11
∆t∂xxf

n+1, (3.19)

where we now require two or three previous time steps, respectively. Similar with the first-

order scheme in Section 3.2, we define two fixed-point iterations. First, energy-stable fac-

torization iteration which has a time step lower bound for real-valued Green’s functions.

Second, completed square version by adding S(vn+1,k+1 − vn+1,k) term, which has a time

59

step upper bound for energy stability. With that, BDF2 iterations for (3.18)

∆t ≥ 3

2
ε2 : L = I − 4

3
∆t∂xx +

2

3
ε2∆t∂xxxx =

(
I − ∂xx

α2
1

)(
I − ∂xx

α2
2

)
,

∆t <
3

2
ε2 : L = I − 2

√
2

3
ε2∆t∂xx +

2

3
ε2∆t∂xxxx =

(
I − ∂xx

α2

)2

,

where 1
α2

1
= 2

3∆t+
√

(2
3∆t)2 − 2

3ε
2∆t, 1

α2
2

= 2
3∆t−

√
(2

3∆t)2 − 2
3ε

2∆t and 1
α2 =

√
2
3ε

2∆t.

For BDF3 in (3.19),

∆t ≥ 11

6
ε2 : L = I − 12

6
∆t∂xx +

6

11
ε2∆t∂xxxx =

(
I − ∂xx

α2
1

)(
I − ∂xx

α2
2

)
,

∆t <
11

6
ε2 : L = I − 2

√
6

11
ε2∆t∂xx +

6

11
ε2∆t∂xxxx =

(
I − ∂xx

α2

)2

,

where 1
α2

1
= 6

11∆t +
√

(6
11∆t)2 − 6

11ε
2∆t, 1

α2
2

= 6
11∆t −

√
(6

11∆t)2 − 6
11ε

2∆t and 1
α2 =√

6
11ε

2∆t.

The main advantage of BDF schemes is that the extension of first-order methods to

higher-order ones is very straightforward. However, they also require initialization of the

first few time steps. In next Section, we will look at the Ruge Kutta (RK) method, which

do not have this requirement.

3.3.2 MOLT with Singly Diagonal Implicit Runge Kutta (SDIRK)

The SDIRK method is an implicit Runge Kutta (RK) method, which has the same diago-

nal element in the Butcher Table in [2]. For the P th order method, RK methods need P

intermediate steps in one time stepping. It is somewhat computationally expensive, but it is

desirable for the initial step of multi step methods. Here, we derive the second-order SDIRK

60

(SDIRK2) method for CH equation, but employing SDIRK3 is similar.

(
I + ηε2∆t∂xxxx

)
K1 = −ε2∂xxxxvn + ∂xxf (vn + η∆tK1) , η = 1−

√
2

2
,(

I + ηε2∆t∂xxxx

)
K2 = −ε2∂xxxx (vn + (1− η)∆tK1) + ∂xxf (vn + (1− η)∆tK1 + η∆tK2)

vn+1 = vn + ∆t{(1− η)K1 + ηK2},

where η is the roolt of the polynomial 1
2−2η+η2, which is deriven from the order conditions

[2]. Next, we solve two intermediate solution K1 and K2 using similar nonlinear iterative

schemes in Section 3.2.2. First, if ∆t ≥ ε2

η
,

K
n+1,k+1
1 = L−1

1 L
−1
2

[
−ε2∂xxxxvn + ∂xx

(
f̃
(
vn + η∆tK

n+1,k
1

)
+ 2vn

)]
, Li = I − ∂xx

α2
i

K
n+1,k+1
2 = L−1

1 L
−1
2

[
−ε2∂xxxx

(
vn + (1− η)∆tK

n+1,k
1

)
+∂xx

(
f̃
(
vn + (1− η)∆tK

n+1,k
1 + η∆tK

n+1,k
2

)
+ 2(vn + (1− η)∆tK

n+1,k
1)

)]
,

where
1

α2
1

= η∆t+
√

(η∆t)2 − ε2η∆t and
1

α2
2

= η∆t−
√

(η∆t)2 − ε2η∆t. If ∆t <
ε2

η
,

K
n+1,k+1
1 = L−2

[
−ε2∂xxxxvn + ∂xx

(
f
(
vn + η∆tK

n+1,k
1

)
− 2

√
ηε2∆tK

n+1,k
1

)]
,

K
n+1,k+1
2 = L−2

[
−ε2∂xxxx

(
vn + (1− η)∆tK

n+1,k
1

)
+ ∂xx

(
f
(
vn + (1− η)∆tK

n+1,k
1 + η∆tK

n+1,k
2

)
− 2

√
ηε2∆tK

n+1,k
2

)]
,

where L ≡ I −
√
ηε2∆t∂xx is used.

61

Remark 11. Similar to Remark 10, the fourth derivative can be calculated as follows,

∂xxxx = α2
1α

2
2(I −L1)(I −L2) =⇒ L−1

1 L
−1
2 [∂xxxxv] = α2

1α
2
2

(
L−1

1 − I
)(
L−1

2 − I
)

[v].

In Section 3.3.4, we will present refinement studies for both the BDF and SDIRK meth-

ods. We note that for small enough time step ∆t, both methods converge as expected.

However, for the corresponding third-order methods (BDF3 and SDIRK3), as ∆t increases

the order of convergence begins to plateau. To resolve this issue, we will suggest another

higher order method.

3.3.3 MOLT with Spectral Deferred Correction (SDC)

The SDC methods are a class of time integrators [23]. Deferred Correction (DC) methods

first compute a prediction to the solution (”level 0”) using low order schemes (e.g. Backward

Euler), and then compute one or more corrections at the subsequent levels, to get higher

order of accuracy. We present the traditional SDC procedure in [17].

1. Prediction step (level [0]): Subdivide the time interval [0, T] with uniform ∆t:

0 ≡ t0 < t1 < · · · < tNt ≡ T.

Compute {v[0]
m (x)}0≤m≤Nt , via Backward Euler approximation in (3.8) for CH equa-

tion, which is first-order approximation to the exact solution {y(x, tm) ≡ ym(x)}0≤m≤Nt .

62

2. Correction step (level [1]): Assume that v(0)(x, t) be a polynomial interpolation to

the exact solution y(x, t) satisfying

v(0)(x, tm) ≡ v
[0]
m (x), m = n+ 1, n, · · · , n+ 1− P,

where P will be specified later. The error equation is defined

e(x, t) = y(x, t)− v(0)(x, t),

and the residual (or ”defect”) is

γ(x, t) = v
(0)
t −FCH(v(0)), FCH(v) = −ε2∂xxxxv + ∂xxf(v).

We take the derivative of the error equation with respect to t, and rewrite it using the

residual definition,

et(x, t) = yt(x, t)− v
(0)
t (x, t) ≡ FCH(y(x, t))−FCH(v(0)(x, t))− γ(x, t),

⇐⇒ et(x, t) + γ(x, t) = FCH((e+ v(0))(x, t))−FCH(v(0)(x, t)),

⇐⇒ ∂

∂t

(
v(1)(x, t)−

∫ t

0
FCH(v(0)(x, τ))dτ

)
= FCH(v(1)(x, t))−FCH(v(0)(x, t)),

where we assume that the initial condition e(x, 0) = 0, and v(1) = v(0) + e. Hence, our

updating ”level [1]” solution {v[1]
m } is found by approximating the above differential

equation as the same method as ”level 0”. In our case, we apply Backward Euler,

v
[1]
n+1 − v

[1]
n = ∆t

(
FCH(v

[1]
n+1)−FCH(v

[0]
n+1)

)
+

∫ tn+1

tn
FCH(v(0)(x, τ))dτ. (3.20)

63

3. Correction step (level [j]): The process is then iterated by generalizing (3.20),

v
[j]
n+1 −∆tFCH(v

[j]
n+1) = v

[j]
n −∆tFCH(v

[j−1]
n+1) +

∫ tn+1

tn
FCH(v(j−1)(x, τ))dτ, (3.21)

where the terms including updating solution v[j] have been collected on the left hand

side, and the old solution v[j−1] are on the right hand side.

To complete SDC method, we must consider an approximation of the integral in (3.21):

∫ tn+1

tn
FCH(v(j−1)(x, τ))dτ =


∆t

P∑
i=0

q̃iF
[j−1]
n+1−i, if n ≥ P − 1,

∆t
P∑
i=0

q̃iF
[j−1]
i if n < P − 1,

(3.22)

where F [j−1]
n = FCH(v

[j−1]
n), and q̃i are quadrature weights (cf. [17]). For example, if P = 2

and n > P − 1, the function values F [1]
n+1, F [1]

n , and F [1]
n−1 are used for the quadrature and

q̃i =

∫ tn+1

tn

P=2∏
k=0,k 6=i

(t− tn+1−k)

(tn+1−i − tn+1−k)
dt, i = 0, 1, 2.

Note that the number of terms in the sum (3.22) is P +1, where P is the order of polynomial

interpolation v(j−1). The integral must be approximated with increasing accuracy as level

increases, so that P ≥ j at ”level [j]”. In Section 3.3.4, we will show that this order P affects

the asymptotic region of stability of SDC3 method.

64

We now combine MOLT scheme with these higher-order SDC methods. For instance, the

second-order SDC scheme (SDC2) only requires one more correction (level [1]). If ∆t ≥ ε2,

v
[1]
n+1,k+1 = L−1

1 L
−1
2

v[1]
n + ∆t∂xx

f̃ [1]
n+1,k −

f
[0]
n+1 − f

[0]
n

2

+
ε2∆t

2
∂xxxx

(
v

[0]
n+1 − v

[0]
n

)
(3.23)

where quadrature weights of (3.22) are q̃1 = q̃2 = 1
2 (P = 1: trapezoidal rule) and Li are

same with the first-order scheme in Section 3.2. Similarly, if ∆t < ε2,

v
[1]
n+1,k+1 = L−2

v[1]
n + ∆t∂xx

f [1]
n+1,k − 2

√
ε2

∆t
v

[1]
n+1,k −

f
[0]
n+1 − f

[0]
n

2


+ L−2

[
ε2∆t

2
∂xxxx

(
v

[0]
n+1 − v

[0]
n

)]
(3.24)

We will now present refinement studies for second- and third-order BDF, SDIRK and

SDC methods in the following Section.

3.3.4 Numerical test: refinement studies of 1D CH solutions

In this Section, we will check the order of accuracy of presented time stepping methods and

compare these schemes. Starting from an initial data in reference [16],

u0(x) = cos(2x) +
1

100
e
cos
(
x+ 1

10

)
, x ∈ [0, 2π] (3.25)

and with the periodic boundary conditions, we integrate up to a final time Tfinal using each

second-order method. If we denote u∆t as the computed solution with fixed time-step size

∆t, then recompute solution u∆t/2 with halved time step up to Tfinal. Given that we do

65

BDF2 SDIRK2 SDC2
∆t L∞ error order L∞ error order L∞ error order

0.0500 2.9454× 10−5 − 4.7787× 10−6 − 6.3763× 10−5 −
0.0250 7.2771× 10−6 2.0170 1.2050× 10−6 1.9876 1.5412× 10−5 2.0487

0.0125 1.9755× 10−6 1.8812 3.0081× 10−7 2.0021 3.7618× 10−6 2.0345

0.0063 5.3869× 10−7 1.8747 7.5076× 10−8 2.0024 9.2786× 10−7 2.0194

0.0031 1.4352× 10−7 1.9082 1.8732× 10−8 2.0029 2.3032× 10−7 2.0103

Table 3.1: Refinement studies of second-order methods for 1D CH equation with periodic
BC.

not have an exact solution of (3.1), we estimated the error for ∆t as the successive error in

maximum norm, that is ‖u∆t − u∆t/2‖∞, and again halved the time step to compute the

corresponding error repeatedly. Those successive errors for three second-order methods are

presented in Table 3.1. We used the parameters in common:

ε = 0.18, ∆x =
2π

512
≈ 0.0123, Tfinal = 1, Ntol = 10−12, (3.26)

where Ntol is a tolerance for fixed point iterations such that ‖vn+1,k+1 − vn+1,k‖∞ < Ntol.

We use 6th-order spatial quadrature (M = 6), so that the dominant error was temporal.

As explained, each method has a criterion for time step size, which leads to switch

iterative schemes:

BDF2: ∆t =
3

2
ε2, SDIRK2: ∆t =

ε2

1−
√

2
2

, SDC2: ∆t = ε2.

With this criteria, we switched the corresponding fixed-point iterations, and the Table 3.1

shows that each of the methods exhibits second order convergence, respectively. This result

guarantees the safe adaptive switching control. Moreover in Figure 3.2a, we see that the

total energy of each fixed time stepping method decays during the time evolution.

66

0 0.2 0.4 0.6 0.8 1

0.7

0.75

0.8

t

En
er

gy

BDF2
SDC2
SDIRK2

(a) Energy decay (2nd order methods)

0 0.2 0.4 0.6 0.8 120

40

60

80

100

t

Ite
ra

tio
n

BDF2
SDC2
SDIRK2

(b) Iteration count(2nd order methods)

0 0.2 0.4 0.6 0.8 1

0.7

0.75

0.8

t

En
er

gy

BDF3
SDC3
SDIRK3

(c) Energy decay (3rd order methods)

0 0.2 0.4 0.6 0.8 120

40

60

80

100

120

140

t

Ite
ra

tio
n

BDF3
SDC3
SDIRK3

(d) Iteration count (3rd order methods)

Figure 3.2: Energy descent and nonlinear iteration count history of all second- and third-
order methods with fixed time step ∆t = 0.025 and parameters (3.26).

67

In Figure 3.2b, we plot the iteration count at each time level of all second-order schemes

(with the same tolerance Ntol = 10−12). Since SDIRK2 is comprised ot two intermediate

steps, this requires two separate nonlinear iterations. Hence, SDIRK2 methods is more ex-

pansive than the other two methods. In fact, using our MATLAB codes, the computational

time of BDF2, SDC2, SDIRK2 is 0.9725(s), 1.9003(s), and 2.6468(s), respectively, to get fi-

nal time Tfinal = 1. Therefore, we can conclude that BDF2 is most computationally efficient

among these schemes.

Next, we similarly implemented the corresponding third-order schemes for CH equation,

with the same parameters in (3.26), and with the following considerations:

• [BDF3] Need two initial step: SDIRK2 used. (Switch criterion: ∆tswitch = 11
6 ε

2)

• [SDIRK3] Need to compute K1, K2, K3 at each update. (∆tswitch = ε2
η , η ≈ 0.4359)

• [SDC3] Compute from level [0] to level [2] with the quadrature order P in (3.22): If we

choose P = 2 at level [2], then weights are q̃0 =
5

12
, q̃1 =

8

12
, q̃2 = − 1

12
. (∆tswitch = ε2)

The energy and iteration hisotry of third order schemes are shown in Figure 3.2c and Figure

3.2d. Again we see that the discrete energy of each solution decays. The very beginning

iteration number of BDF3 is larger than BDF2’s since we initialized using SDIRK2. But

BDF3 is still the most efficient method than other third order schemes. Using MATLAB

built-in function, the computational time of BDF3, SDC3, SDIRK3 is 1.0355(s), 2.8539(s),

and 3.6613(s), respectively, to compute up to the final time Tfinal = 1. The successive errors

of the third-order methods are shown in Table 3.2.

Each method achieves third order convergence for small ∆t; but the order of convergence

begins to plateau for larger time steps. However, we point out that the plateau is less severe

68

BDF3 SDIRK3 SDC3
∆t L∞ error order L∞ error order L∞ error order

0.0500 1.6001× 10−5 − 1.7259× 10−6 − 1.2669× 10−5 −
0.0250 5.2832× 10−6 1.5987 3.6118× 10−7 2.2566 2.1002× 10−6 2.5927

0.0125 1.1756× 10−6 2.1680 6.2823× 10−8 2.5234 3.1124× 10−7 2.7545

0.0063 1.9314× 10−7 2.6057 9.6163× 10−9 2.7077 4.2615× 10−8 2.8686

0.0031 2.6506× 10−8 2.8652 1.3011× 10−9 2.8858 5.4193× 10−9 2.9752

0.0016 3.2511× 10−9 3.0273 1.7447× 10−10 2.8986 6.6913× 10−10 3.0177

Table 3.2: Refinement studies of third-order methods for the 1D CH equation with periodic
BC.

SDC3 (P = 3)
∆t L∞ error order

0.0500 9.9462× 10−6 −
0.0250 1.3061× 10−6 2.9289

0.0125 1.4142× 10−7 3.2072

0.0063 1.6156× 10−8 3.1298

0.0031 1.7852× 10−9 3.1779

0.0016 2.2753× 10−10 2.9720

Table 3.3: Refinement study of SDC3 (P = 3) for the 1D CH equation with periodic BC.

for SDC3 than BDF3 or SDIRK3; the convergence order CR := log2

(‖u∆t−u∆t/2‖∞
‖u∆t/2−u∆t/4‖∞

)
of SDC3 starts around 2.59, which is closer to the expected order, compared to BDF3

(CR = 1.6) and SDIRK3 (CR = 2.26) when ∆t = 0.05.

Furthermore, if we use higher quadrature of order P in (3.22) for SDC3, then the antic-

ipated rate of convergence is observed even for large time steps ∆t. For instance, if we use

P = 3, (the quadrature weights are q̃0 =
9

24
, q̃1 =

19

24
, q̃2 = − 5

24
and q̃3 =

1

24
), then the rate

is roughly third order even with the larger time steps, shown in Table 3.3.

We summarize this Section that we can achieve expected order of accuracy through

(short-time) refinement studies of second and third order schemes. From the point of view

of solver efficiency, higher-order BDF schemes (BDF2 and BDF3) are ideal. High-order

69

quadrature in SDC3 shows interesting result, which performs well on larger time steps.

3.4 MOLT for Multi-D CH equation

We now extend the 1D solver to multiple spatial dimension via dimensional splitting [13,

10, 12] which also discussed in Section 2.4. Each time stepping method presented thus far

requires the inversion of a modified Helmholtz operator, with independently defined α. For

simplicity, in 2D,

L = I − ∆

α2
=

(
I − ∂xx

α2

)(
I −

∂yy

α2

)
−
∂xx∂yy

α4
≡ LxLy −

∂xx∂yy

α4
, (3.27)

where Lx and Ly are ourO(N) 1D solvers and the subscripts denote the spatial component of

univariate modified Helmholtz operators. Later, we should formally invert both operators.

Now L−1
x is done for fixed y, and vice versa for L−1

y in a line-by-line fashion, similar to

alternating direction implicit (ADI) type method [22, 27]. However, this factorization (3.27)

yields a mixed derivative term, which is O(
1

α4
). Our key observation is that if we include this

term in our fixed point iteration, then we can simultaneously solve the nonlinear problem

and remove the splitting error. More detaild analysis of the 2D CH equation (3.1) and 2D

CH vector equation (3.4) will be present in next several Sections.

3.4.1 First order scheme for 2D CH equation

In this Section, we will present the semi-discrete scheme for 2D CH equation, using the

Backward Euler method. The analogous higher-order schemes follow accordingly. Starting

from the 1D scheme (3.14), we replace ∂xx with the Laplacian operator ∆ = ∂xx + ∂yy. If

70

∆t > ε2, we factorize the operator, and have

(
I − ∆

α2
1

)(
I − ∆

α2
2

)
[vn+1,k+1] = vn + ∆t∆f̃n+1,k, f̃ = f(v)− 2v ≡ v3 − 3v2, (3.28)

where
1

α2
i

= ∆t ±
√

∆t2 − ε2∆t, i = 1, 2 respectively, which are same parameters with 1D

scheme. Plugging the identity in (3.27), by lagging the mixed derivative term along with the

nonlinear term,

(
L1,xL1,y

) (
L2,xL2,y

)
[vn+1,k+1] = vn + ∆t∆f̃n+1,k

+

((
L1,xL1,y

) ∂xx∂yy
α4

2

+
(
L2,xL2,y

) ∂xx∂yy
α4

1

−

(
∂xx∂yy

α4
1

)(
∂xx∂yy

α4
2

))
vn+1,k,

(3.29)

where Li,x = I − ∂xx

α2
i

, Li,y = I −
∂yy

α2
i

, (i = 1, 2). Note that Laplacian operator and

mixed derivative can be replaced as following:

∆ = α2
(
I − LxLy +

∂xx∂yy

α4

)
,

∂xx∂yy

α4
= (Lx − I)(Ly − I). (3.30)

Now we formally invert both operators
(
L1,xL1,y

) (
L2,xL2,y

)
to the right hand side of (3.29),

vn+1,k+1 =
(
L2,xL2,yL1,xL1,y

)−1
[vn] +

(
L2,xL2,y

)−1 C1[α2
1∆tf̃n+1,k] +M1,2

[
vn+1,k

]
(3.31)

71

where

Ci =
(
Li,xLi,y

)−1 − I +Di,xDi,y, Di,γ = I − L−1
i,γ , (γ = {x, y}), (3.32)

Mi,j = Di,xDi,y +Dj,xDj,y −
(
Di,xDi,yDj,xDj,y

)
. (3.33)

As shown, every mixed-derivative splitting error term can be controlled by applying Dγ ,

(γ = {x, y}) operators, which can also be constructed in a line-by-line fashion. We emphasize

that this allows us to remove splitting error O(
1

α4
) = O(∆t).

Similar operators’ extension L−1
γ and Dγ holds for the other case, ∆t ≤ ε2:

(
I − ∆

α2
0

)2

[vn+1,k+1] = vn + ∆

(
∆tfn+1,k − 2

α2
0

vn+1,k

)
, (3.34)

where
1

α2
0

=
√
ε2∆t. This completed square form is replaced by the identity in (3.27),

(
L0,xL0,y

)2
[vn+1,k+1] = vn + ∆

(
∆tfn+1,k − 2

α2
0

vn+1,k

)

+

2
(
L0,xL0,y

) ∂xx∂yy
α4

0

−

(
∂xx∂yy

α4
0

)2
 vn+1,k. (3.35)

Finally, we invert the modified Helmholtz operators and use the above operators (3.32) and

(3.33), then

vn+1,k+1 =
(
L0,xL0,y

)−2
[vn] +

(
L0,xL0,y

)−1 C0
[
α2

0∆tfn+1,k − 2vn+1,k
]

+M0,0

[
vn+1,k

]
.

(3.36)

We now have first-order switching-scheme with the time-step criterion ∆t = ε2, whcih

is same formulation with the 1D in Section 3.2.2. In addition, we can extend the fully-

72

discrete solution by applying the same procedure in Section 3.2.3 via line-by-line fashion.

This straightforward extension is one of main advantages of dimensional-split algorithm. We

also point out that we have already proved energy stability of above first-order scheme in

Section 3.2.1.

3.4.2 Higher order scheme for 2D CH equation

The higher-order time stepping methods’ extensions on 2D are analogous to the first order

scheme in previous Section 3.4.1. Hence, we will briefly state the formulas for second-order

2D CH schemes in this Section.

• BDF2

(
1

α2
0

=

√
2

3
ε2∆t,

1

α2
i

=
2

3
∆t±

√
4

9
∆t2 − 2

3
ε2∆t (i = 1, 2)

)

∆t ≤ 3

2
ε2 : vn+1,k+1 =

(
L0,xL0,y

)−2
[

4

3
vn − 1

3
vn−1

]
+
(
L0,xL0,y

)−1 C0
[

2

3
α2

0∆tfn+1,k − 2vn+1,k
]

+M0,0

[
vn+1,k

]
.

∆t >
3

2
ε2 : vn+1,k+1 =

(
L2,xL2,yL1,xL1,y

)−1
[

4

3
vn − 1

3
vn−1

]
+
(
L2,xL2,y

)−1 C1
[

2

3
α2

1∆tf̃n+1,k
]

+M1,2

[
vn+1,k

]
.

• SDIRK2

(
1

α2
0

=
√
ηε2∆t,

1

α2
i

= η∆t±
√

(η∆t)2 − ηε2∆t, η = 1−
√

2

2

)

73

∆t ≤ ε2

η
: K

n+1,k+1
1 = − 1

η∆t
C2

0 [vn] +M0,0

[
K
n+1,k
1

]
+
(
L0,xL0,y

)−1 C0
[
α2

0f(vn + η∆tK
n+1,k
1)− 2K

n+1,k
1

]
.

K
n+1,k+1
2 = − 1

η∆t
C2

0

[
vn + (1− η)∆tK

n+1,k
1

]
+M0,0

[
K
n+1,k
2

]
+
(
L0,xL0,y

)−1 C0
[
α2

0f(vn + (1− η)∆tK
n+1,k
1 + η∆tK

n+1,k
2)− 2K

n+1,k
2

]
.

vn+1,k+1 = vn + (1− η)∆tK
n+1,k+1
1 + η∆tK

n+1,k+1
2 .

∆t >
ε2

η
: K

n+1,k+1
1 = − 1

η∆t
C1C2 [vn] +M1,2

[
K
n+1,k
1

]
+ α2

1

(
L2,xL2,y

)−1 C1
[
f̃(vn + η∆tK

n+1,k
1) + 2vn

]
.

K
n+1,k+1
2 = − 1

η∆t
C2

1

[
vn + (1− η)∆tK

n+1,k
1

]
+M1,2

[
K
n+1,k
2

]
+ α2

1

(
L2,xL2,y

)−1 C1
[
f̃(vn + (1− η)∆tK

n+1,k
1 + η∆tK

n+1,k
2)

]
+ α2

1

(
L2,xL2,y

)−1 C1
[
2(vn + (1− η)∆tK

n+1,k
1)

]
.

vn+1,k+1 = vn + (1− η)∆tK
n+1,k+1
1 + η∆tK

n+1,k+1
2 .

• SDC2: The numerical solution at prediction step (level [0]) {v[0]
n }n∈N is obtained by

the first-order BE schemes in Section 3.4.1. The following is the correction step (level

[1]) {v[1]
n } depending on the time step size.(

1

α2
0

=
√
ε2∆t,

1

α2
i

= ∆t±
√

∆t2 − ε2∆t (i = 1, 2)

)

74

∆t ≤ ε2 : v
[1]
n+1,k+1 =

(
L0,xL0,y

)−2
[
v

[1]
n

]
+
(
L0,xL0,y

)−1 C0
[
α2

0∆tf
[1]
n+1,k − 2v

[1]
n+1,k

]
+M0,0

[
v

[1]
n+1,k

]
− 1

2
C2

0

[
v

[0]
n+1 − v

[0]
n

]
+
α2

0∆t

2

(
L0,xL0,y

)−1 C0
[
f

[0]
n+1 − f

[0]
n

]
.

∆t > ε2 : v
[1]
n+1,k+1 =

(
L2,xL2,yL1,xL1,y

)−1
[
v

[1]
n

]
+
(
L2,xL2,y

)−1 C1
[
α2

1∆tf̃
[1]
n+1,k

]
+M1,2

[
v

[1]
n+1,k

]
− 1

2
C1C2

[
v

[0]
n+1 − v

[0]
n

]
+
α2

1∆t

2

(
L2,xL2,y

)−1 C1
[
f

[0]
n+1 − f

[0]
n

]
.

With these formulas, we will implement refinement studies for 2D CH equation in the

next Section.

3.4.3 Numerical test: refinement studies of 2D CH solutions

In this Section, we present results for the 2D CH equation. We consider the standard

benchmark initial states in [16, 57] to confirm the temporal order of accuracy in 2D setting.

u0(x, y) = 2e(sin(x)+sin(y)−2) + 2.2e(− sin(x)−sin(y)−2) − 1, (x, y) ∈ [0, 2π]2 (3.37)

with the periodic boundary conditions and with the following parameters,

ε = 0.18, ∆x =
2π

128
≈ 0.0491, Tfinal = 1 (0 ≤ t ≤ Tfinal), Ntol = 10−6, (3.38)

where a 4th−order spatial quadrature (M = 4) is used.

We present a temporal refinement study of each second-order scheme is presented in Table

3.4. This refinement study shows the second-order of convergence for all three methods.

Furthermore, the total energy of each solution is decreased during time evolution, as

shown in Figure 3.3a. The dimensional split algorithm guarantees the energy-decent solution

in multiple spatial dimensions. By comparing the iteration count at each time level in Figure

75

3.3b, the BDF2 method is the most efficient, as was the case in 1D.

We note that we addressed the splitting error directly in the dimensional splitting for-

mulation by explicitly incorporating the mixed-derivative term (via Dγ operators in (3.32))

into the fixed-point method used to solve the nonlinear problem. This numerical studies

guarentee that we can achieve higher orders of accuracy in space and time by removing

splitting errors. This is important feature of the presented dimensional split algorithm.

We will show that our solver can be easily applied to the vector model in next Section.

3.5 MOLT for vector CH (VCH) equation

We now extend our dimensional split MOLT algorithm to vector CH (VCH) model (3.3).

This model consists of two coupled variables u1 and u2 with local dynamic ∇uW , comprised

of partial derivatives of 6th− order polynomials W (u1, u2) defined in (3.4).

Before we employ MOLT formulation to this system, we transform the vector (u1, u2)

about its background state. To do that, we first need to find the equilibrium points of the

functional W (u1, u2),

(u∗1, u
∗
2) = {(cos(θi), sin(θi)) |θ1 = 0, θ2 =

2π

3
, θ = −2π

3
} ≡ {(1, 0), (−1

2
,

√
3

2
), (−1

2
,−
√

3

2
)}

which are cube roots of unity in (u1, u2) plane. A straightfoward calculation yields the

Jacobian of the potential ∇uW at those points

J∇uW (u∗1, u
∗
2) ≡


∂2W
∂u2

1

∂2W
∂u1u2

∂2W
∂u2u1

∂2W
∂u2

2


(u∗1,u

∗
2)

=

18 0

0 18

 , (3.39)

76

BDF2 SDIRK2 SDC2
∆t L∞ error order L∞ error order L∞ error order

0.1000 3.7891× 10−3 − 1.0250× 10−3 − 2.3334× 10−3 −
0.0500 8.2626× 10−4 2.1972 2.6950× 10−4 1.9272 5.0570× 10−4 2.2061

0.0250 2.0319× 10−4 2.0238 6.9796× 10−5 1.9491 1.1000× 10−4 2.2007

0.0125 4.6909× 10−5 2.1149 1.7809× 10−5 1.9706 2.8312× 10−5 1.9581

Table 3.4: Refinement studies of second-order methods for the 2D CH equation with periodic
BC.

0 0.2 0.4 0.6 0.8 13

4

5

6

7

8

t

En
er

gy

BDF2
SDC2
SDIRK2

(a) Energy decay (2nd order methods)

0 0.2 0.4 0.6 0.8
50

100

150

200

250

t

Ite
ra

tio
n

BDF2
SDC2
SDIRK2

(b) Iteration count(2nd order methods)

Figure 3.3: Energy descent and nonlinear iteration count history of all second-order 2D
methods with fixed time step ∆t = 0.05 and with parameters (3.38).

77

thus, all points are stable equilibrium solutions [57]. We subract u = (u1, u2) of the back-

ground state z3 ≡ (−1
2 ,−

√
3

2), and introduce the new transformed vector v = (v1, v2) =

u− z3 into the original system (3.3),

vt = −ε2∆2v + ∆∇vW (v + z3) ≡ −ε2∆2v + ∆
(
∇vW̃ (v) + 18v

)
(3.40)

where W̃v1(v) := Wv1(v + z3)− 18v1 and W̃v2(v) := Wv2(v + z3)− 18v2. We will develop

the time marching scheme using this transformed system (3.40) in the following Section.

3.5.1 Two nonlinear iterative schemes

We first apply the Backward Euler scheme to the transformed system (3.40), then

(
I − 18∆t∆ + ε2∆t∆2

)
vn+1,k+1 = vn + ∆∇vW̃

n+1,k (3.41)

where k is an iteration index. We again introduce two factorizations of the left-hand side

operator:

∆t ≥ ε2

81
: I − 18∆t∆ + ε2∆t∆2 =

(
I − ∆

α2
1

)(
I − ∆

α2
2

)
,

1

α2
i

= 9∆t±
√

81∆t2 − ε2∆t,

(3.42)

∆t <
ε2

81
: I − 2

√
ε2∆t∆ + ε2∆t∆2 =

(
I − ∆

α2

)2

,
1

α2
=
√
ε2∆t. (3.43)

We can handle above operators with the same strategy in Section 3.4.1. The higher order

expansions are analogous in Section 3.4.2 to each component v1 and v2 respectively. As

expected, the stabilized fixed point iteration (3.42) also allow us to take large time steps

78

without forgoing the energy stability property (3.5).

3.5.2 Numerical test: refinement studies of 2D VCH solutions

In this Section, we implement our second-order scheme to 2D system (3.3) for vector CH

model. In order to look spinodal evolution of phase function u = (u1, u2), we begin with the

same initial condition (3.37) for u1 and

u2(x, y, 0) = sin(y), (x, y) ∈ [0, 2π]2 (3.44)

for u2 in the reference [16]. With the parameters

ε = 0.32, ∆x = ∆y =
2π

128
≈ 0.0491, Nmax it = 500, Ntol = 10−6, (3.45)

we implement BDF2, SDC2, and SDIRK2 methods for VCH system during 0 ≤ t ≤ Tfinal =

0.1 with fixed time step size ∆t = 0.000125.

0 0.02 0.04 0.06 0.08 0.120

30

40

50

60

70

80

t

En
er

gy

BDF2
SDC2
SDIRK2

(a) Energy decay (2nd order methods)

0 0.02 0.04 0.06 0.08 0.10

20

40

60

80

100

BDF2
SDC2
SDIRK2

(b) Iteration count(2nd order methods)

Figure 3.4: Energy descent and nonlinear iteration count history of all second-order VCH
2D methods with fixed time step ∆t = 0.000125 and with parameters (3.45).

79

As shown in Figure 3.4a, every scheme preserves the discrete form of the energy law during

the spinodal evolution of vector CH model. Figure 3.4b is obtained by iteration count at each

time such that max
(
‖un+1,k+1

1 − un+1,k
1 ‖∞, ‖un+1,k+1

2 − un+1,k
2 ‖∞

)
< Ntol. The result

indicates that BDF2 is most efficient, as expected, thus it requires least number of nonlinear

iteration while all have same convergence tolerance Ntol = 10−6. In fact, computational

time using built-in MATLAB function (tic-toc) of BDF2 simulation was 161.09 seconds,

while SDC2 is 373.74 second and SDIRK2 is 803.15 seconds.

In this simulation, we used small time step size to accrately simulate the spinodal phase.

However, we also present numerically that our schemes allow large time steps and iterative

schemes converge in Section 3.7.3.

3.6 Time adaptive strategy

For phase-field models, adaptive time stepping is a crucial feature for an efficient and accurate

numerical solution. For instance, the solution of CH equation (3.1) evolves on various time

scales. During spinodal evolution, transition layers are developed inO(1) time. Subsequently,

they slowly evolve and merge on a longer time scale, O(eC/ε) for 1D model, which is called

ripening process. Simulating these phenomena with a fixed time stepping necessarily become

inefficient, and so we suggest an adaptive time stepping strategy combined with presented

MOLT schemes.

The adaptive time step size control is based on the Local Truncation Error (LTE) ηe

at each time level t = tn. The LTE can be approximated by ηe ≈ η = ||u∗ − un||∞,

where u∗ is an explicit predictor solution, typically using the Forward Euler (FE) or Adams

Bashforth (AB) schemes in [16]. On the other hand, the Richardson extrapolation (known

80

Algorithm 1 Adaptive time step-size control

1. Starting at t = tn, approximate the local truncation error. For instance, for Richard-
son extrapolation, solution is estimated twice: once as a full step with ∆t (denoted
by un+1

∆t , and as two half steps (un+1
∆t/2

). The difference between the two numerical

approximations give an estimate for LTE of un+1

(e.g. Richardson extrapolation) ηe ≈ η :=
1

2
||un+1

∆t − u
n+1
∆t/2
||∞.

2. Define a tolerance σtol for the above LTE. If accuracy fails (η > σtol), then the time
step fails and repeat with the reduced time step. If accuracy success, then we also test
the following criteria for time step-size selection,

(I) η ≤ σtol :

Nit

Nmax it
< 0.7 : ∆tn+1 = ∆tn ·min

(
θ

√
σtol

η
, γ

)
, θ = 0.8, γ = 1.3 > 1

0.7 ≤ Nit

Nmax it
< 1 : ∆tn+1 = ∆tn ·min

(
θ

√
σtol

η
, 1

)
,

Nit

Nmax it
≥ 1 : Step fails. Try with shrink ∆tn = ∆tn · 1

γ

(II) η > σtol : Step fails. Try with shrink step-size

η

σtol
> 2 : ∆tn = ∆tn · 1

γ
,

η

σtol
≤ 2 : ∆tn = ∆tn · θ

√
σtol

η

where γ and θ are safety factors in [16].

81

as step-doubling) or embedded Runge-Kutta pairs can be used [17]. We adopt Richardson

extrpolation as well our second-order scheme, BDF2 and SDC2, to approximate the LTE.

We also use the time step-size selection criteria presented in [16], which is summarized below

Algorithm 1.

In practice, the procedure leads to small time steps during spinodal evolution, or at the

ripening event, to maintain a consistent LTE. On the other hand, during slow coarsening

(metastable states), small time steps are unnecessary and so ∆t is increased within the upper

bound for fixed-point iteration count.

3.7 Numerical tests

In this Section, we present adaptive time stepping results using the previously developed

dimensional-split MOLT schemes. As mentioned in Section 1.2.1.3, we will reproduce novel

benchmark problems in [16] using our schemes. We will compare several fixed time-stepping

schemes with the adaptive time stepping schemes via numerical results.

3.7.1 1D Cahn-Hilliard Model

In this Section, we first solve the 1D CH equation (3.1) with a stiff initial condition (3.25)

(ε = 0.18). The second perturbation term of this initial state creates two intervals, u = −1

and u = +1, are asymmetric, so that finite number of transition layers are formed during

spinodal evolution. After a long ripening process, such layers are eventually absorbed into

one region, at the so-called ripening time [16]. The aim of this simulation is to accurately

capture all time scales using both fixed and adaptive time stepping strategies. (The spatial

step-size is fixed with ∆x = 2π
128 ≈ 0.05.)

82

In the first experiment, we implement our various time stepping schemes, with small fixed

time step (∆t = 0.01). The ripening time Tr is defined as that for which the midpoint value

u(π, t) changes from positive to negative. The fixed point iteration has residual tolerance

Ntol = 10−11 at each step, and the ripening times are presented in Table 3.5. Our results

agree will with the reference time Tr = 8318.63 in [16].

We also compare the ripening time using several schemes, with larger fixed time steps

in Table 3.6. Among the three methods, BDF2 is the most efficient, and provides better

estimates of the true ripening time, even for larger ∆t. In the most extreme instance of

∆t = 10, we note that the first-order scheme (BE) predicts ripening too soon, and that

SDC2 is too late; but BDF2 is still gives fairly accurate evolution. However, to capture the

ripening moment accurately, we still require small fixed time steps (∆t ≤ 0.05), which is too

expensive for long time simulations.

Thus, we consider adaptive time stepping for the same problem. In Section 3.6, we

explained that there might be several ways to approximate the local truncation error (LTE).

With our schemes, we use three different methods for the LTE approximation: Richardson

extrapolation based on first-order BE scheme (in Algorithm 1); or BE combined with BDF2

(BE-BDF2) or combined with SDC2 (BE-SDC2). We note that we do not consider SDIRK2,

since it has already proved that this scheme is inefficient than two others in Section 3.3.4.

We implement three methods with the same fixed point residual tolerance Ntol = 10−11,

Nmax it = 600 in Algorithm 1, but with various error tolerance δtol. The performance

of the time-adaptive scheme is shown in Table 3.7, which are more accurate and efficient

than previous fixed time-stepping methods. In particular, BE-BDF2 combination for LTE

approximation is the fastest, as well as the most accurate, in this simulation.

The phase function u(x, t) obtained by our adaptive time stepping (BE-BDF2) scheme

83

Ripening time
BE 8317.81
BDF2 8318.70
BDF3 8318.74
SDC2 8318.99
SDC3 8318.84

Table 3.5: Ripening time of 1D CH equation with small fixed time step size (∆t = 0.01) and
with the periodic BC.

time step Ripening time Times(s)
10 8250.00 313.38

BE 1 8296.00 351.52
0.05 8311.85 1312.16
10 9050.00 717.26

SDC2 1 8582.00 692.65
0.05 8319.80 2779.61
10 8290.00 231.40

BDF2 1 8303.00 281.56
0.05 8315.75 1288.68

Table 3.6: Ripening time of 1D CH equation with large time steps (∆t = 0.05, 1, 10) and
with the periodic BC.

δtol Ripening time Times(s)

10−3 8292.54 224.03

BE 10−4 8276.08 226.06

(Richardson) 10−5 8308.23 235.44

10−3 8311.08 233.38

BE-SDC2 10−4 8311.47 239.58

10−5 8312.91 226.43

10−3 8320.03 184.71

BE-BDF2 10−4 8319.91 196.82

10−5 8317.87 208.18

Table 3.7: Ripening time of 1D CH equation with adaptive time step size and with the
periodic BC.

84

0 2 4 6
−1

−0.5

0

0.5

1

x

u

(a) u(x, 0)

0 2 4 6
−1

−0.5

0

0.5

1

x

u

(b) u(x, 0.51)

0 2 4 6
−1

−0.5

0

0.5

1

x

u

(c) u(x, 3669.8)

0 2 4 6
−1

−0.5

0

0.5

1

x

u

(d) u(x, 7005.7)

0 2 4 6
−1

−0.5

0

0.5

1

x

u

(e) u(x, 8317.9)

0 2 4 6
−1

−0.5

0

0.5

1

x

u

(f) u(x, 8319.2)

Figure 3.5: Temporal evolution of the 1D CH solution from the adaptive time step (BE-
BDF2) scheme.

is shown in Figure 3.5. The initial state 3.5a quickly moves to the metastable state 3.5b,

and then finally reaches the stable state 3.5f at which two layers are merged together after

a very slow time scale. This simulation also shows that the ripening event happens over a

very fast time scale in Figure 3.5e.

In Figure 3.6, we also plot the history of time step size, iteration count at each time

level, and discrete energy during time evolutions of our numerical solution which is obtained

by adaptive time stepping method (BE-BDF2). As shown in Figure 3.6a, small time steps

are used at early stage (spinodal evolution) but increase when the coarsening process starts,

which speed up the simulation. Also, if iteration count is too large (
Nit

Nmax it
≥ 1), we reject

the solution and compute u(x, t) again with the reduced time step ∆t. We see this behavior

in Figure 3.6b, where time steps are decreased whenver Nit ≈ Nmax it. We also observe in

85

0 2000 4000 6000 80000

10

20

30

t

tim
e

st
ep

(a) Time step size

0 2000 4000 6000 80000

200

400

600

t

Ite
ra
tio
n

(b) Iteration count

0 2000 4000 6000 8000

0.4

0.5

0.6

0.7

t

En
er
gy

(c) Energy

Figure 3.6: The time step, iteration count, and energy history of our adaptive time step
(BE-BDF2) scheme for 1D CH equation.

Figure 3.6c that adaptive time stepping does not affect energy decay.

3.7.2 2D Cahn-Hilliard Model

We next solve the CH equation (3.1) in two spatial dimension. With the parameters

ε = 0.18, ∆x = ∆y =
2π

128
≈ 0.0491, Nmax it = 500, Ntol = 10−7,

we implement the initial condition (3.37), using both the fixed and adaptive (BE-BDF2)

time stepping methods.

We first implement fixed time stepping by using the first-order (BE), second-order (BDF2),

and the third-order (BDF3) methods first with a small time step (∆t = 0.01) and check the

ripening time. The numerical ripening time is defined at which u(π2 ,
π
2) changes from positive

to negative, because the point (π2 ,
π
2) is the center of the smaller circular region of u = 1,

which will be consumed by the larger one after a long time scale. Based on numerical results

in Table 3.8, we can define such ripening time as Tr = 80.07.

Each time stepping method combined with dimensional-splitting guarantees that the

86

Time stepping Ripening time Total iteration Times(s)
BE 80.04 167,086 2025.96

∆t = 0.01 BDF2 80.07 149,500 1883.72
BDF3 80.07 142,240 1793.91

Table 3.8: Numerical ripening time of the 2D CH equation with fixed time stepping methods
(∆t = 0.01, Ntol = 10−7) and with the periodic BCs.

0 50 100 1502

3

4

5

6

7

8

t

En
er
gy

(a) Energy (BE)

0 50 100 1502

3

4

5

6

7

8

t

En
er
gy

(b) Energy (BDF2)

0 50 100 1502

3

4

5

6

7

8

t

En
er
gy

(c) Energy (BDF3)

Figure 3.7: The discrete energy of fixed time stepping schemes ((a)BE, (b)BDF2, and
(c)BDF3) for 2D CH equation. The common parameters are used: ∆t = 5, and ∆x =
∆y = 0.05

solution is decaying in energy, which shown in Figure 3.7, even where the CFL is 100,

(∆t = 5, and ∆x = ∆y = 0.05). By these results, we strongly believe our higher-order

dimensional splitting MOLT methods are unconditional gradient stable in practice.

In addition, it is important to note that that raising the order of the scheme (temporal

accuracy) reduces the number of iteration per time step, especially at the ripening moment,

as shown in Figure 3.8. Thus, the overall computation time of higher-order method is lower

than low-order schemes, summarized in Table 3.8. We also implement the same time stepping

methods with a larger time step ∆t = 0.1. As shown in Figure 3.8b, each of iteration counts

per time step is higher than the corresponding one with smaller time step (in Figure 3.8a).

We believe that this is reasonable results because of the accuracy requirement. Moreover,

the higher-order time stepping scheme exhibits the better efficiency like the smaller time

87

20 40 60 80

15

20

25

30

35

40

t

Ite
ra

tio
n

BE
BDF2
BDF3

(a) ∆t = 0.01

0 20 40 60 80
50

100

150

200

t

Ite
ra

tio
n

BE
BDF2
BDF3

(b) ∆t = 0.1

Figure 3.8: Iteration count of 2D CH solution obtained by the fixed time steppping method
(a) (∆t = 0.01), and (b) (∆t = 0.1). Black line is obtained by Backward Euler(BE) scheme;
blue is BDF2; and the red one is BDF3 at both plots.

step case. With these tests, we strongly believe that higher-order time stepping method is

preferable to resolve the interfacial structure of these types of the problems, regardless of

time step sizes.

However, ∆t = 0.1 or even ∆t = 0.01 is still large for this CH problem, especially during

spinodal composition, so that it is possible to damp out high frequency contributions in the

evolving field, which is somewhat unphysical. Thus, we next simulate the same problem

with adaptive time stepping method (BE-BDF2). We first compute the numerical ripening

time, total iteration number during temporal evolution, and the computational time of our

adaptive time stepping method, shown in Table 3.9. When we compare this result with the

fixed time stepping methods, the adaptive scheme is better with respect to the accracy, as

expected. The reason why the computational time of adaptive scheme is a little larger than

higher-order schemes is it uses very small time step size during spinodal evolution. Thus, we

realize that the adaptive time stepping method is necessary for the CH model in multiple

88

Time stepping Ripening time Total iteration Times(s)
BE 79.80 84,522 1125.69

∆t = 0.1 BDF2 80.10 68,322 844.39
BDF3 80.10 61,548 770.67

Adaptive time BE-BDF2 80.083 66,085 918.53

Table 3.9: Numerical ripening time of the 2D CH equation (the periodic BCs): Comparison
between the fixed time stepping methods (∆t = 0.1, Ntol = 10−7) and the adaptive time
stepping method (BE-BDF2).

spatial dimension, as well.

Like 1D case, the time step size, iteration count, and energy history are presented in

Figure 3.9. Our results agree with those of Section 3.7.1, in that larger time step sizes are

used where the transition layers are varying slowly, and smaller steps are used where the

layers vary rapidly (see Figure 3.9a), so that we believe our scheme captures various time

scales of 2D CH solution accurately. The energy in Figure 3.9c indicates that there are two

sharp transitions in the energy E ; early on, and at ripening. Finally, we also observe the

desired energy decaying property of our numerical solution.

The contour plots of time evolution of the phase function u(x, y, t) are shown in Figure

3.10. The initial states 3.10a quickly reaches the metastable state, where we see two circular

formations. Eventually the larger one absorbs the smaller, although over a very long time

scale, shown in 3.10c - 3.10e. The final state is shown in 3.10f, where the larger region

has fully consumed the smaller. In all plots, the total volume looks to be preserved. The

computational ripening time is Tr ≈ 80.0834 in this simulation.

3.7.3 2D vector Cahn-Hilliard Model

We now apply our first- and second-order time stepping methods from Section 3.5 to the 2D

vector CH system (3.3) combined with our adaptive time stepping (BE-BDF2) strategy. In

89

0 20 40 60 800

0.5

1

1.5

t

tim
e

st
ep

(a) Time step size

0 20 40 60 80

50
100
150
200
250
300

t
Ite
ra
tio
n

(b) Iteration count

0 20 40 60 80
3

4

5

6

7

t

En
er
gy

(c) Energy

Figure 3.9: The time step, iteration count, and energy history of our adaptive time step
(BE-BDF2) scheme for 2D CH equation.

x

y

0 2 4 60

2

4

6

0

0.5

1

(a) u(x, y, 0)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

(b) u(x, y, 0.5083)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

1

(c) u(x, y, 15.807)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

1

(d) u(x, y, 70.015)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

1

(e) u(x, y, 80.083)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

1

(f) u(x, y, 90)

Figure 3.10: Temporal evolution of the 2D CH solution with the initial (3.37).
.

90

this Section, we observe the long time behavior of the phase function u = (u1, u2), using the

same initial condition for u1 and u2 in Section 3.5.1. With the parameters

ε = 0.32,∆x = ∆y =
2π

64
≈ 0.0982, Nmax it = 400, Ntol = 10−6, δtol = 10−4

we implement the adaptive time stepping method (BE-BDF2) for vector CH (VCH) model.

First of all, the time step, number of nonlinear iteration and energy history results of

2D VCH solution are presented in Figure 3.11. Our results agree with previous Sections, we

also observe the desired energy decay in Figure 3.11c.

In addition, the contour plots of cos(arg(u1 + iu2)) are shown in Figure 3.12. Instead

of plotting u1 and u2 separately, [16] we define the angle θ ≡ arg(u1 + iu2) at a triple

juction, and plot cos(θ) to avoid any discontinuities. We follow this benchmark plot using

our numerical solution.

After some initial ripening in Figure 3.12b, the interfaces dividing the three states u = zi

(i = 1, 2, 3) form around T = 0.5. In Figure 3.12c - 3.12f, two of the values have cos(2π/3)

(light blue in the plots) but separated by dark blue lines. Then the ripening process begins,

and occurs over a long time scale, ending around T = 24.286 in Figure 3.12e. Again, we

believe that the volume is preserved over all time steps. For a more involved discussion of

this simulation, we refer the interested reader to [16]. Our goal here is to reproduce the same

results in the reference, but based on our dimensional-split MOLT scheme and confirm that

our scheme can capture the correct ripening behavior in multiple spatial domain. Moreover,

the numerical results what we have done in this Section prove that our scheme can be

extensible to vector system. Future work will investigate the extension of these second- and

third- order time stepping schemes of vector model to apply the multicomponent bilayer

91

structures arise in membrane in biology [51].

3.7.4 2D sixth order Model

In this Section, we introuduce one of our ongoing research projects. We also consider the

sixth order phase-field problem [16]:

ut = ∆
[
(ε2∆− f ′(u) + ε2η)(ε2∆u− f(u))

]
, f(u) = u3 − u. (3.46)

where ε and η are given positive constants. (The sign of η is important since minus η can form

the phase interface) This problem is motivated by the functionalized Cahn-Hilliard (FCH)

equation [29, 21, 37, 40] which models interfacial energy in amphiphilic phase-separated

mixtures. In the original FCH model, η1 > 0 and η2 ∈ R, which are functionalization term

that are analogous to the surface and volume energies typical of models of charged solutes,

but we have simplified to the case η = εη1 = εη2. Later, we will consider the solution of

original FCH equation with our MOLT formulation.

With the similar approaches to CH type equations, we first introduce the transformed

variable v = u+ 1 and substitues in (3.46),

vt = ∆
[
(ε2∆− f ′(v) + ε2η)(ε2∆v − f(v))

]
, f(v) = v3 − 3v2 + 2v. (3.47)

Apply the backward Euler (BE) scheme for time discretization of (3.47),

(
I −∆tε4∆3

)
vn+1 = vn−∆t∆

(
ε2∆fn+1 − ε2(f ′∆v)n+1 + (ff ′)n+1

)
− ηε2∆t∆

(
ε2∆vn+1 − fn+1

)
.

92

0 10 20 30 400

0.05

0.1

0.15

0.2

t

tim
e

st
ep

(a) Time step size

0 10 20 30 400

100

200

300

400

500

t
Ite
ra
tio
n

(b) Iteration count

0 10 20 30 4010

20

30

40

50

60

70

t

En
er
gy

(c) Energy

Figure 3.11: The time step, iteration count, and energy history of VCH solution
.

x

y

0 2 4 60

1

2

3

4

5

6

−1

−0.5

0

0.5

(a) t = 0

x

y

0 2 4 60

1

2

3

4

5

6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(b) t = 0.02503

x

y

0 2 4 60

1

2

3

4

5

6

−0.5

0

0.5

(c) t = 0.5083

x

y

0 2 4 60

1

2

3

4

5

6

−0.5

0

0.5

(d) t = 5.0848

x

y

0 2 4 60

1

2

3

4

5

6

−0.5

0

0.5

(e) t = 24.286

x

y

0 2 4 60

1

2

3

4

5

6

−0.5

0

0.5

(f) t = 30.021

Figure 3.12: Temporal evolution of the 2D CH vector solution with the initial (3.37) for u1
and (3.44) for u2. Contours of cos(arg u1 + iu2) are plotted. Two phases u = z2 and u = z3

have same cosine values, −1

2
(light blue in the plots) but are separated by dark blue lines.

93

Hence, we now should invert the 6th order operator to solve vn+1. One can invert this by

completing the cube such that

(
I − 3

√
∆tε4∆

)3
vn+1 = vn −∆t∆

(
ε2∆fn+1 − ε2(f ′∆v)n+1 + (ff ′)n+1

)
− ηε2∆t∆

(
ε2∆vn+1 − fn+1

)
−
(

3
3
√

∆tε4∆− 3(
3
√

∆tε4)2∆2
)
vn+1.

(3.48)

We can now solve vn+1 by applying the triple inversion of our modified Helmhotlz operator

L = I − 3√
∆tε4∆ by the same procedure in Section 3.4.1.

For simplicity, we apply the first-order BE scheme (3.48) with the fixed time step ∆t = 0.1

to solve the 6th order problem (3.47) (η = 1). By starting with the same initial condition

(3.37) (ε = 0.18), and with the following parameters:

∆x = ∆y =
2π

128
≈ 0.05, Nmax it = 200, Ntol = 10−6.

The contour plots of the temporal evolutions of our numerical solution u(x, y, t) of (3.46)

are shown in Figure 3.14. After solution varies rapidly, then solution seems to move very

slowly. As expected [16], we believe that our numerical solution reaches to the final steady

state around t ≈ 320, which has formed the regular array in Figure 3.14f and the corre-

sponding discrete energy decreased at that moment in Figure 3.13b.

Future work will consider the switching-scheme for the sixth-order problem, and extend

to the adaptive time stepping strategy, similar with the previously presented CH solutions.

94

0 100 200 300 400 500

50

100

150

200

t

Ite
ra
tio
n

(a) Iteration count

0 100 200 300 400 500
0

0.5

1

t

En
er
gy

(b) Energy

Figure 3.13: The iteration count and energy history of the first-order solution of sixth-order
equation (3.47).

x

y

0 2 4 60

2

4

6

0

0.5

1

(a) u(x, y, 0)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

(b) u(x, y, 2)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

(c) u(x, y, 40)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

(d) u(x, y, 150)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

(e) u(x, y, 300)

x

y

0 2 4 60

2

4

6

−0.5

0

0.5

(f) u(x, y, 500)

Figure 3.14: Temporal evolution of the 2D sixth order model’s solution with the initial (3.37).

95

Chapter 4

Conclusion and Future work

In this work, we have proposed the Method of lines transpose (MOLT) formulation for

nonlinear problems such as Allen-Cahn and Cahn-Hilliard equations. The reason we have

done is that the semi-discrete formulation gives better favorable stability property than

a traditional Method of lines (MOL) formulation. Then, we have proved the successive

convolution (resolvent expansion) could achieve arbitrary order in time, giving us great time

accuracy. Moreover, we have compared more traditional time stepping algorithms, such

as backward difference formula (BDF), singly diagonally implicit Runge kutta (SDIRK),

and spectral deferred correction (SDC), to achieve high order of accuracy for Cahn-Hilliard

models. Furthermore, the adaptive time stepping is still favorable to capture the scale

separation of CH model. Specifically, small time steps are used at the spinodal phase, but

large steps are used at the coarsening process in which phase-separated domains merge into

larger domains.

In order to handle the spatial component of the problems, typically the fast Fourier

method are chosen, but this only guarantees the periodic boundary conditions. Instead, we

have introduced a dimensional-split kernel, which is efficient O(N), and matrix-free scheme.

Not only we can address other boundary conditions, we can raise arbitrary order of accuracy

in space. This also promises the parallel efficiency for modern parallel multicore computing

because of the dimensional splitting strategy.

Especially, the dimensional splitting also has a framework that we can extend our 1D

96

Tools Results

MOLT discretization Stability in semi-discrete setting
Time Successive convolution High-order in time

stepping BDF/SDIRK/SDC Compare strategies
Time-adaptive Capture various time scales

Flexibility with BCs
Spatial Fast Arbitrary order of accuracy in space
scheme Convolution Fast O(N) computation

Parallel efficiency
Multi-D Dimensional Easy extension to multi-D scheme
scheme splitting High-order space and time

Table 4.1: Summarization of numerical results of presented scheme, dimensional split MOLT

scheme.

scheme to multiple spatial dimensions. In 2D, we have achieved the same results with 1D,

i.e. flexible, efficient, can achieve high-order of accuracy, and address various boundary

conditions. One might wonder the splitting error introduced by the dimensional splitting,

however, we have also addressed the splitting error in our iterative solver. We summarize

the numerical strategies we have done in this work and resulting positive effects what we

have got in the Table 4.1, which is easy to see a a glance our works.

In future work, parallel implementation will be the focus of our upcoming work in this

area. Moreover, we will investigate employing our scheme to the higher-order derivative

models, such as (2D and 3D) FCH models in [40]. In this work, we have done fixed time

stepping method for the sixth order parabolic equations, and the next goal should employ

adaptive time stepping, which can allow increased time steps to solve such higher-order

derivative models. We also want to make use of the implicit solvers ability to handle complex

boundary geometries of various phase-field models.

We have not yet tried comparison study between other boundary integral approximation

to solve the modified Helmholtz equations in the MOLT semi-discrete schemes, such as FFM

97

in Section 1.2.2.1 or Treecode algorithm [45]. Besides our dimensional splitting algorithm,

we will implement other boundary integral solvers, and compare which solvers gain efficiency

and accuracy in parallel computing.

98

BIBLIOGRAPHY

99

BIBLIOGRAPHY

[1] L. Abadias and P. J. Miana. c0-semigroups and resolvent operators approximated by
laguerre expansions. arXiv preprint arXiv:1311.7542, 2013.

[2] R. Alexander. Diagonally implicit runge-kutta methods for stiff ode’s. SIAM Journal
on Numerical Analysis, 14(6):1006–1021, 1977.

[3] S. M. Allen and J. W. Cahn. A microscopic theory for antiphase boundary motion and
its application to antiphase domain coarsening. Acta Metallurgica, 27(6):1085–1095,
1979.

[4] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in
fluid mechanics. Annual review of fluid mechanics, 30(1):139–165, 1998.

[5] L. Bronsard and F. Reitich. On three-phase boundary motion and the singular limit of a
vector-valued ginzburg-landau equation. Archive for Rational Mechanics and Analysis,
124(4):355–379, 1993.

[6] O. P. Bruno and M. Lyon. High-order unconditionally stable fc-ad solvers for general
smooth domains i. basic elements. Journal of Computational Physics, 229(6):2009–2033,
2010.

[7] J. W. Cahn. On spinodal decomposition. Acta metallurgica, 9(9):795–801, 1961.

[8] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. i. interfacial free
energy. The Journal of chemical physics, 28(2):258–267, 1958.

[9] J. Carr and R. L. Pego. Metastable patterns in solutions of ut= 2uxx- f (u). Commu-
nications on pure and applied mathematics, 42(5):523–576, 1989.

[10] M. Causley, A. Christlieb, Y. Güçlü, and E. Wolf. Method of lines transpose: an efficient
a-stable solver for wave propagation. arXiv preprint arXiv:1511.01013, 2015.

[11] M. Causley, A. Christlieb, B. Ong, and L. Van Groningen. Method of lines transpose:
An implicit solution to the wave equation. Mathematics of Computation, 83(290):2763–
2786, 2014.

100

[12] M. F. Causley, H. Cho, A. J. Christlieb, and D. C. Seal. Method of lines transpose:
High order l-stable o(n) schemes for parabolic equations using successive convolution.
SIAM Journal on Numerical Analysis, 54(3):1635–1652, 2016.

[13] M. F. Causley and A. J. Christlieb. Higher order a-stable schemes for the wave equa-
tion using a successive convolution approach. SIAM Journal on Numerical Analysis,
52(1):220–235, 2014.

[14] L. Chen and J. Shen. Applications of semi-implicit fourier-spectral method to phase
field equations. Computer Physics Communications, 108(2):147–158, 1998.

[15] L.-Q. Chen. Phase field models for microstructure evolution. Annual review of materials
research, 32(113–140), 2002.

[16] A. Christlieb, J. Jones, K. Promislow, B. Wetton, and M. Willoughby. High accuracy so-
lutions to energy gradient flows from material science models. Journal of Computational
Physics, 257:193–215, 2014.

[17] A. Christlieb, C. Macdonald, B. Ong, and R. Spiteri. Revisionist integral deferred
correction with adaptive step-size control. Communications in Applied Mathematics
and Computational Science, 10(1):1–25, 2015.

[18] A. Christlieb, K. Promislow, and Z. Xu. On the unconditionally gradient stable scheme
for the cahn-hilliard equation and its implementation with fourier method. Commun.
Math. Sci, 11:345–360, 2013.

[19] A. J. Christlieb, Y. Liu, and Z. Xu. High order operator splitting methods based on an
integral deferred correction framework. Journal of Computational Physics, 294:224–242,
2015.

[20] S. M. Cox and P. C. Matthews. Exponential time differencing for stiff systems. Journal
of Computational Physics, 176(2):430–455, 2002.

[21] S. Dai and K. Promislow. Geometric evolution of bilayers under the functionalized
cahn–hilliard equation. In Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, volume 469, page 20120505. The Royal Society, 2013.

[22] J. Douglas, Jr. On the numerical integration of ∂2u
∂x2 + ∂2u

∂y2 = ∂u
∂t by implicit methods.

Journal of the society for industrial and applied mathematics, 3(1):42–65, 1955.

101

[23] A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods for ordi-
nary differential equations. BIT Numerical Mathematics, 40(2):241–266, 2000.

[24] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations,
volume 194. Springer Science & Business Media, 2000.

[25] L. C. Evans. Partial Differential Equations: Second Edition. American Mathematical
Society, 2010.

[26] D. J. Eyre. An unconditionally stable one-step scheme for gradient systems. Unpublished
article, 1998.

[27] G. Fairweather and A. Mitchell. A new computational procedure for adi methods. SIAM
Journal on Numerical Analysis, 4(2):163–170, 1967.

[28] P. C. Fife. Mathematical aspects of reacting and diffusing systems, volume 28. Springer
Science & Business Media, 2013.

[29] N. Gavish, J. Jones, Z. Xu, A. Christlieb, and K. Promislow. Variational models of
network formation and ion transport: applications to perfluorosulfonate ionomer mem-
branes. Polymers, 4(1):630–655, 2012.

[30] J. W. Gibbs, H. A. Bumstead, and W. R. Longley. The collected works of J. Willard
Gibbs, volume 1. Longmans, Green and Company, 1928.

[31] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
computational physics, 73(2):325–348, 1987.

[32] L. F. Greengard and J. Huang. A new version of the fast multipole method for
screened coulomb interactions in three dimensions. Journal of Computational Physics,
180(2):642–658, 2002.

[33] V. Grimm and M. Gugat. Approximation of semigroups and related operator functions
by resolvent series. SIAM Journal on Numerical Analysis, 48(5):1826–1845, 2010.

[34] A. Iserles. A first course in the numerical analysis of differential equations. Number 44.
Cambridge university press, 2009.

[35] J. Jia and J. Huang. Krylov deferred correction accelerated method of lines transpose
for parabolic problems. Journal of Computational Physics, 227(3):1739–1753, 2008.

102

[36] S. Jiang, L. Greengard, and S. Wang. Efficient sum-of-exponentials approximations
for the heat kernel and their applications. Advances in Computational Mathematics,
41(3):529–551, 2015.

[37] J. S. Jones. Development of a fast and accurate time stepping scheme for the function-
alized Cahn-Hilliard equation and application to a graphics processing unit. PhD thesis,
MICHIGAN STATE UNIVERSITY, 2013.

[38] J. Kačur. Method of Rothe in evolution equations. Springer, 1986.

[39] J. P. Keener and J. Sneyd. Mathematical physiology, volume 1. Springer, 1998.

[40] N. Kraitzman and K. Promislow. An overview of network bifurcations in the function-
alized cahn-hilliard free energy. In Mathematics of Energy and Climate Change, pages
191–214. Springer, 2015.

[41] V. Krinsky and A. Pumir. Models of defibrillation of cardiac tissue. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 8(1):188–203, 1998.

[42] M. C. A. Kropinski and B. D. Quaife. Fast integral equation methods for the modified
helmholtz equation. Journal of Computational Physics, 230(2):425–434, 2011.

[43] L. D. Landau and E. Lifshitz. On the theory of the dispersion of magnetic permeability
in ferromagnetic bodies. Phys. Z. Sowjetunion, 8(153):101–114, 1935.

[44] H. G. Lee and J.-Y. Lee. A semi-analytical fourier spectral method for the allen–cahn
equation. Computers & Mathematics with Applications, 68(3):174–184, 2014.

[45] K. Lindsay and R. Krasny. A particle method and adaptive treecode for vortex sheet
motion in three-dimensional flow. Journal of Computational Physics, 172(2):879–907,
2001.

[46] F. Liu and J. Shen. Stabilized semi-implicit spectral deferred correction methods for
allen-cahn and cahn-hilliard equations. Math. Methods Appl. Sci, 2013.

[47] C. Lubich and R. Schneider. Time discretization of parabolic boundary integral equa-
tions. Numerische Mathematik, 63(1):455–481, 1992.

[48] M. Lyon and O. P. Bruno. High-order unconditionally stable fc-ad solvers for general
smooth domains ii. elliptic, parabolic and hyperbolic pdes; theoretical considerations.
Journal of Computational Physics, 229(9):3358–3381, 2010.

103

[49] S. P. Nørsett. One-step methods of hermite type for numerical integration of stiff
systems. BIT Numerical Mathematics, 14(1):63–77, 1974.

[50] D. Olmos and B. D. Shizgal. Pseudospectral method of solution of the fitzhugh–nagumo
equation. Mathematics and Computers in Simulation, 79(7):2258–2278, 2009.

[51] K. Promislow and Q. Wu. Geometric evolution of quasi-bilayers in multicomponent
functionalized cahn-hilliard equation. arXiv preprint arXiv:1510.08467, 2015.

[52] W. E. Schiesser. The numerical method of lines: integration of partial differential equa-
tions. Elsevier, 2012.

[53] D. C. Seal, Y. Güçlü, and A. J. Christlieb. High-order multiderivative time integrators
for hyperbolic conservation laws. Journal of Scientific Computing, 60(1):101–140, 2014.

[54] J. Shen and X. Yang. Numerical approximations of allen-cahn and cahn-hilliard equa-
tions. Discrete Contin. Dyn. Syst, 28(4):1669–1691, 2010.

[55] J. M. Starobin and C. Starmer. Common mechanism links spiral wave meandering and
wave-front–obstacle separation. Physical Review E, 55(1):1193, 1997.

[56] G. Tierra and F. Guillén-González. Numerical methods for solving the cahn–hilliard
equation and its applicability to related energy-based models. Archives of Computational
Methods in Engineering, 2(269–289):2015, 22.

[57] M. R. Willoughby. High-order time-adaptive numerical methods for the allen-cahn and
cahn-hilliard equations. Master’s thesis, University of British Columbia, 2011.

[58] E. M. Wolf. A particle-in-cell method for the simulation of plasmas based on an uncon-
ditionally stable wave equation solver. PhD thesis, MICHIGAN STATE UNIVERSITY,
2015.

[59] F. Xie, Z. Qu, J. N. Weiss, and A. Garfinkel. Coexistence of multiple spiral waves
with independent frequencies in a heterogeneous excitable medium. Physical Review E,
63(3):031905, 2001.

104

