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ABSTRACT

STRUCTURAL EQUATION MODELS
APPLIED TO HIERARCHICAL DATA
by
Joseph Michael Wisenbaker

If one were to draw a sample of m classrooms and, within each
classroom, observe n students on some set of variables of interest, one
would obtain a variance-covariance matrix which could be decomposed
into a simple linear combination of two other variance-covariance ma-
trices; one arising at the classroom level and one at the subject's
within-classroom level. Letting ZZ represent the overall variance-
covariance matrix, Zb the between-classroom variance-covariance matrix,
and Z the student's within-classroom variance-covariance matrix, we
have

Zz = Zb + 2.

While estimates of the within- and between-groups variance-
covariance matrices may be of some interest in and of themselves,
concern here is focused on a general parameterization of each, patterned
after the structural analysis of variance-covariance matrices advocated
by Joreskog over the past decade.

Based on previous work by Schmidt, a technique for producing the
maximum likelihood estimates for the parameters in the model is set
forth. In addition, a chi-square test of fit of the model is presented
along with an approach for producing the asymptotic variance-covariance

matrix of the estimates from which asymptotic standard errors may be



derived. Several sets of artificial data are analyzed using a computer
program implementing this approach. Additionally, a real set of data

drawn from the National Longitudinal Study of the High School Class of
1972 was used in an attempt to apply these techniques to a practical

problem.

Difficulties in producing fully-converged estimates were noted with
the analyses of the NLS data and one of the sets of artificial data.
The author speculates on the factors contributing to the failure of the
iterative techniques and suggests a strategy which may overcome this

problem.
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Chapter 1

Introduction and Statement of the Problem

As Kerlinger has pointed out, the history of the sciences has as
its unifying thread the search for relationships among wvariables.
Viewed in the light of this underlying activity, progress in scientific
methodology involves finer and finer refinements in our ability to search
out and evaluate the nature of relationships among variables. While the
theoretical organization of our knowledge about various interrelation-
ships may indeed be subject to progress via revolution a la Kuhn
(1970), progress in statistical methodology can more reasonably be
viewed as evolutionary in the sense that our later approaches allow us
to model relationships subject to fewer unrealistic constraints than those
approaches previously available.

At a very fundamental level, we may try to assess the nature of
the i‘elationship between two observed variables. One candidate for
this task is the correlation coefficient, which estimates the strength of
the linear association between two variables. So long as we wish to
deal with a situation where there are but two variables, where the
variables are not conceptualized as dependent and independent, and
where our measurement processes are assumed to be error free, there
is no real drawback to this approach.

If, on the other hand, we admit the consideration of a slightly
more complex model where one variable is seen as dependent on
another, a different approach is called for. The logical method to turn
to in this instance is regression analysis, whereby we can estimate the
magnitude of one variable given various values of the other. Once

1
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again, this involves a relatively simple model of the real world. The
fact is that often there are many variables, each related to varying
degrees with others, which are related to a particular dependent varia-
ble. To adequately investigate the simultaneous impact of each indepen-
dent variable, we may use the multiple regression approach. Examina-
tion of the regression coefficients associated with the independent
variables allows us to determine the nature of the conditional relation-
ship between each independent variable and our dependent variable.

Allow us to jump ahead several magnitudes in the complexity of the
model we are willing to consider. If we allow not only for multiple
independent variables but also for some of them to "causally depend"
upon others and in turn "cause" still others, we have quite a complex
model indeed. If we are dealing with what has been termed a
"recursive" model, estimates of the coefficients which must simultane-
ously hold can be done through the repeated application of regression
analysis with each presumed "causally dependent" variable functioning
as the dependent variable for one analysis and as an independent
variable in subsequent analyses. A great deal of the more sophisticated
work in the sociological literature has, of late, fallen into this category
(Miller, et al. [1979], Mortimer and Lorence [1979], Kohn and Schooler
[1978], Bielby, Hauser, and Featherman [1977]).

In those instances where models are non-recursive (i.e., where
variables may simultaneously affect each other) more complex estimation
procedures are called for. Two and three stage generalized least

squares represent one approach; maximum likelihood estimation another.
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A still greater step toward dealing with more "realistic" models is
to take into account the measurement error associated with the variables
involved and the fact that a number of the measures may, in fact, be
addressing the same latent trait. Joreskog has recently formulated a
general mathematical statement of such a model and, with Sérbom,
generated a computer program to provide estimates of the wvarious
parameters via maximum likelihood.

At this point, one may well ask why further refinements are
needed. In fact, there are applications in many fields for models of
such complexity. Unfortunately, there is an issue which, while not
completely unique to educational problems, presents further complexity
still.

While the educational psychologist operating as a "pure" psycholo-
gist may explore aspects of learning theory in the relatively safe con-
fines of the experimental laboratory, the educational psychologist oper-
ating in the context of the classroom is faced with a variety of
problems. Often he lacks the authority to carry out the random assign-
ments of subjects to various conditions in which he is interested. He
has no choice but to rely upon correlational approaches in his search
for knowledge, thereby making the utilization of such models as those
formulated by Joreskog a logical approach. But that same lack of
control which seems to point toward the use of sophisticated structural
equation models carries with it another problem--students do not receive
their instruction individually but in groups. What should be our unit
of analysis? Ought we to ignore the inherent hierarchical structure in
our data sets in favor of a simplistic approach? Or should the educa-

tional psychologist recast his thinking in terms of sociology and explore
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his questions in terms of classrooms rather than individuals? Neither
approach has intuitive appeal. In the first instance, we confound
classroom-level effects with individual-level effects; in the second, we
lose the ability to unambiguously apply that knowledge gained under
laboratory conditions.

A variety of papers dealing with the analysis of multi-level data
have appeared in recent sessions of the Annual Meeting of AERA.
Motivated in part by Leigh Burstein's interest in this area, these paper
sessions have provided a forum for a variety of discussions. Several
papers dealt with the problems associated with the analysis of data
aggregated to a higher level (Maw [1976], Hannan [1976]). Others
have considered the choice of the appropriate unit of analysis in the
context of ANOVA (Glendening [1976]). Burstein (1976) came closest
to the spirit of the present undertaking when he recommended that
analysis be carried out at the lowest level at which observations could
be considered to be independent. His more recent work (Burstein
[1979]) has tended to focus on the use of within-groups regression
coefficients broadly examined at the between-groups level.

Perhaps the most logical answer to the difficulty of analyzing data
arising from two levels is to try to assess the nature of intervariable
relationships at both levels simultaneously. Cronbach (undated) has
come to advocate such an approach through the analysis of both within-
and between-groups variance-covariance matrices. Thus far, his
efforts have revolved around the use of regression analysis at the
subjects within-groups and the between-groups levels respectively.
The most likely extension of this approach is in the direction of using

structural equation models rather than regression models.
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There are difficulties, however, in such an approach. In a slightly
different context, Schmidt (1969) has pointed out that, conceptually
speaking, the between-groups variance-covariance matrix has, as its
expected value, components due to both individual and group levels.
Simple adjustment of the between-groups variance-covariance matrix is
precluded by the non-zero probability of negative variance estimates.
Schmidt has developed a maximum likelihood approach to the estimation
of the two variance-covariance matrices which overcomes this problem
and has elaborated upon it in the context of the analysis of covariance
structures.

The next logical step is to apply Schmidt's approach to the analysis
of hierarchical data to the estimation of structural equation models
patterned after Joreskog. That is the task which the present author

has undertaken, and reports herein.

The General Covariance Structure Model

Since a few general conditions underlie all of the work discussed
in the following pages, it may be best to set them forth at this point to
provide a common focus for subsequent discussion. The general covari-
ance structure model has, as its basis, the following fundamental equa-
tion linking the observed multivariate "outcome" vector, y, to a simi-
larly multivariate "causal" vector, 6:

y=AB+e

In this situation, A is a matrix of coefficients relating the elements of 6
to those of y, and e is a vector of errors associated with that relation-

ship.
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Under the assumption that the covariance between 6 and e is

identically equivalent to a matrix of zeroes and with the definitions

E(e) = 0,
V(e) =y,
and

v(e) = ¢

where both ¢ and ¢ are square matrices of the appropriate dimensions,

two general implications obtain. In mathematical notation, these are:

E(y) = A E(8)
and
V(y) = Ad A"+ 4.

The first of these simply states that the expected value of the
vector y is a simple linear combination of the expected values of the
vector 6. In subsequent discussions, this fact is generally disregarded
by the simplifying supposition that the expected value of 8 is equal to a
vector of zeroes. Far more important is the second implication, which
states that the variance of y is a linear combination of the variance of @
plus the variance associated with the error term e. Since all of the
various parameters normally of interest in the underlying model are
reflected in this relationship, it is just this relationship that has been

the focus of a great deal of statistical thought and elaboration.



Chapter 2

Literature Review--Preliminary Developments

To appreciate the development of the statistical approach to struc-
tural equation modeling, we must refer back to the work of Lawley, who
provided a statistical basis for the estimation and testing of factor
analytic models. Prior to Lawley's work, the classical methods of factor
analysis were based upon algebraic transformations of the correlation
matrix without regard for sampling theory or statistical tests of fit.
Harman (1967) cites the work carried out by Lawley in the early 1940's
as the first to attack the problem of estimating factor loading matrices
from a statistical standpoint. Employing the multivariate normal distri-
bution derived by Wishart (1928), Lawley (1940) produced the partial
derivatives of the logarithm of the likelihood function with respect to

each of the elements in the factor analytic model:
I=ASA + V¥, (1)

In this model, Z represents the "true" variance-covariance matrix
of the variables involved, A is a matrix of factor loadings, and ¢ corre-
sponds to a diagonal matrix containing the unique variance associated
with each variable. The factors are assumed implicitly to be orthogonal
with unit variance (¢ = I).

When the partial derivatives of the log likelihood function with
respect to A and § are set equal to zero, the simultaneous solution of
the resulting system of equations will yield the maximum likelihood
estimates for A and . Because of the complexity of this sytem of
equations, analytic solutions for the parameter estimates can be obtained

7
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only in very simple cases. Thus the general application of this
approach must rely on numerical methods for solving the system of
equations. According to Harman (1967), the computational burden
imposed by the iterative method advanced by Lawley discouraged the
use of maximum likelihood factor analysis in the 1940's and 1950's.

Harman (1967) notes that several investigators in the early 1960's,
including Harman, Hemmerle and Joreskog carried out work aimed at
producing efficient, computer-based procedures for arriving at iterative
solutions for the parameter estimates. It is just such work that has
made feasible the use of maximum likelihood factor analysis.

While many researchers have made important contributions toward
the development of the statistical approach to structural equation
modeling, the complexity of the issue argues for some unified approach
to examining the sequence of developments. The approach adopted here
is to follow the work of Joreskog. While his work is, in many respects,
not unique nor even the most pioneering in many instances, it does
represent the single most sustained effort toward the development and
implementation of an approach to structural equation modeling available

in the literature.

Joreskog's Contributions to Structural Equation Modeling

As indicated by Harman (1967), Joreskog's earliest work in this
area was directed at implementing the maximum likelihood approach to
factor analysis originated by Lawley. In Jdreskog's first journal article
dealing with maximum likelihood factor analysis (1966), he discussed an
approach whereby a simple structure hypothesis might be tested.

Being essentially an operationalization of Thurstone's notion of simple
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structure in the context of maximum likelihood factor analysis, the
article began by positing a factor analytic model for the variance-
covariance matrix of a vector of random variables identical in form to
equation (1). This is fundamentally the same model considered by
Lawley with the relaxation of the constraint that the factors be uncorre-
lated and have unit variance. As in the work by Lawley, the variables
involved were assumed to be multivariate normally distributed. Under
this assumption, the logarithm of the likelihood function takes on the

following form:

L=-—;-n [103]2' + tr (SZ-I)]. (2)

In this equation, n is equal to the number of observations, Z is the
true variance-covariance matrix, and S is the observed variance-
covariance matrix. It is essentially this likelihood function that pro-
vides the basis for the vast majority of the work in this area and
virtually all of that carried out by Joreskog.

In the article currently under discussion, Joreskog was interested
in testing the fit of the model in the situation where certain elements in
the A matrix were constrained to be equal to zero, this being the criter-
ion for the existence of simple structure. To carry out such a test,
maximum likelihood estimates for the parameters not so constrained had
to be obtained. Following Lawley, Joéreskog generated the derivatives
of the log likelihood function with respect to the free elements of A, ¢,
and ¥. The resulting expressions were equated to zero and a numerical
solution for the simultaneous set of resulting equations was sought.

In considering ways to generate numerical estimates, Joreskog

experimented with three different approaches. Those considered
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included the original approach described by Lawley (1958), the method
of steepest descent, and the method of resultant descents. Based on
their performance in analyzing several sets of data, Joreskog argued
for the latter approach as the most efficient method of the three.
Joreskog implemented this method in a computer program to produce
maximum likelihood estimates for the factor analytic model permitting
elements in A'to be constrained equal to zero.

The basis for testing the fit of the model was the following likeli-

hood ratio:

x2 = - % n [ log |£| - log |S| + tr {Si-l} -p] (3)
where n and S are defined as before, i is the estimate of Z determined
by R, ;, and ';, and p is the number of variables in Z. Under the null
hypothesis that the particular model involved fits the data and for
reasonably large n, the statistic is distributed approximately chi-square
with the degrees of freedom equal to the number of independent ele-
ments in S less the number of parameters estimated in the model. This
approach to testing the fit of a model estimated via maximum likelihood
is the one uniformly adopted in all work considered herein and is
another constant found throughout Joreskog's work.

Whereas the situation considered in the previous article was essen-
tially a simple version of confirmatory factor analysis, Joreskog's next
article (1967) dealt with the implementation of Lawley's exploratory
factor analytic model. To ensure the identifiability of the model, the
variance-covariance matrix of the factors was, once more, constrained

equal to an identity matrix. This yields the same basic model consi-

dered earlier and expressed in equation (1) with ¢, once again,
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constrained equal to an identity matrix.

At this point, Joreskog made two contributions which assisted in
the popularization of maximum likelihood factor analysis. The first had
to do with the implementation of a new approach to solving iteratively
for parameter estimates, while the second addressed the problem of
inadmissable solutions.

Based on his experience with the use of the method of resultant
descents, Joreskog expressed dissatisfaction with its rate of conver-
gence in some instances. As an alternative, he adopted the Fletcher-
Powell (1963) method, with which he experienced general success. This
method provided the basis for the estimation approach used throughout
his more recent work.

With respect to the problem of inadmissible solutions, Joreskog
indicated that, with the estimation procedures heretofore employed,
there had been no guarantee that one or more of the elements in ¥
could not become negative. Not only is such a situation inadmissible
because ¥ is supposed to be a matrix containing only variances in the
diagonal, but the attainment of such values, according to Joreskog,
frequently heralds the complete breakdown of the estimation procedure.

Since the Fletcher-Powell method proved to be just as susceptible to

this problem as the ones previously tried, Joreskog imposed the restric
tion that none of the elements in ¥ could be less than some arbitrarily
small positive value. This method was implemented in a computer pro-
gram called UMLFA (1966) and made generally available.

In Joreskog (1969) we have the final developments in what can be
considered a purely factor analytic model. Subsequent articles, while

adopting the same strategy toward estimating parameters and testing the
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fit of the estimated model, dealt with models of a more general nature.
Expanding on an earlier article by Jéreskog and Lawley (1968), Joreskog
dealt not merely with confirmatory maximum likelihood factor analysis,
as in the 1966 article, nor with the exploratory version as in 1967;
rather, interest was placed on a more general approach designated as
restricted maximum likelihood factor analysis. In this model, parameters
co:ild be of two kinds, fixed or free. The free parameters were those
to be estimated from the data at hand; the fixed parameters were
assumed equal to certain fixed values. The flexibility here is that some
or all of the elements in any one or more of the parameter matrices may
be fixed equal to any chosen constants. Given these options, Joreskog
returned to the more general formulation of the factor analytic model
expressed in equation (1). With appropriate restrictions on the ele-
ments of the various parameter matrices, parameters in any or all of the
parameter matrices may be estimated. From this point on, model identif-
iability can be addressed through the use of more specific and research-
based a priori restrictions than the expedient of constraining ¢ to be
equal to an identity matrix.

Since it was known at this time that the Fletcher-Powell method
might not converge if its starting values were too far from the correct
values, Joreskog reported an additional modification to his estimation
routine. Rather than simply starting off with the Fletcher-Powell
method, the first stage of the iterative solution incorporated a number
of steepest descent iterations to obtain a better starting point for
Fletcher-Powell. This too is a characteristic of Joreskog's remaining

work.
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In Joreskog (1970) we find a more general model than those pre-
viously considered. This model has added several parameter matrices
for modeling = and, in addition, sets forth a model for the expected
value of the variables involved. The model has the following form:
I =B(Ad A"+ ¥2)B” + 62

(4)
EX) = A

P

where X is an nxp observational matrix, A and P are fixed matrices
with dimensions nxg and hxp respectively, ¢ is symmetric, ¥2 and 62
are diagonal, and B and A are rectangular. The matrix = is a matrix of
latent values, while A and P serve to reparameterize these to the matrix
of observed values. The addition of B and 62 serve to make this a
second-order factor analytic model. This model permitted parameteriza-
tions of both the means and variance-covariance matrices. In addition
to the constraints on the elements permitted in the previous article,
Joreskog introduced a third and final class of restrictions--elements of
the parameter matrices could be constrained equal to one another but
estimable otherwise. This additional item of flexibility completed the list
of options available in Jéreskog's work hereafter.

With the addition of the parameterizations permitted on the matrix
of expected values, the log likelihood function has as its more complete

form:

1ogL=-%pnlog (2n)-%nlog|2|

(5)
; & P P
= 2 Z 2 (X«i - M

=1 i=1 j=1

wi) %55 Faj = Haj)
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where p; is an element of E(X) and o of £ 1.

Joreskog also formalized the process of maximizing log L given the
possible restrictions on the parameters. To do so, he considered the
elements of the parameter matrices to be arranged as a vector, 2,
containing Kk elements. As a result, the logarithm of the likelihood
function became a function of z. If we designate 3F/3z and 32F/323z"
as the first and second order derivatives respectively, fixed elements
could be dealt with by assuming the first £ elements to be free, with
the remaining k-£ fixed. This yields a function of only £ elements
which can be designated as a vector y where the first and second
derivatives can be designated as 3G/dy and 32G/3ydy  respectively.
These may be obtained from 3F/3z and 32F/929z° by omitting appro-
priate rows and columns in these matrices.

Assuming the existence of but m distinct parameters designated as

X, the issue of constraining some parameters to be equal to others was

handled by defining elements of a matrix M as follows:

1ify, =x
={ P8 (6)

M.
18 0 otherwise.

The logarithm of the likelihood function was now expressed as a func-

tion H(x) where

2
9H/3 = 2 3G/9y. M. 7
/l_t8 i=1/21 ig QD)
and
2 o 2
9 H/ax8 axh = i z {9 G/(ayiayj)} Mig Mjh . (8)

i=1 j=1
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Thus, the logarithm of the likelihood function was to be maximized
by applying the Fletcher-Powell method to solving the simultaneous
equations resulting from setting 3H/3x to zero.

Joreskog then illustrated the application of this general model in
the contexts of congeneric measurements as developed by Lord and
Novick (1968), factor analysis, {variance-components estimation as set
forth by Bock and Bargmann (1/96§),j'ana1ysis of ordered response
following Pothoff and Ray (1964), and path analysis following Wright
(1918).

In another article during the same year, Joreskog (1970) dealt
with the same model discussed above. No new theoretical or procedural
results were introduced, but the application of the model to the estima-
tion of parameters associated with the Werner Simplex and Quasi-Simplex
were discussed and illustrated. In an article in the same vein, Jéreskog
(1971) illustrated the application of this model to estimating parameters
in models dealing with congeneric tests. Again in 1973, Joreskog
employed the same model to estimate parameters in test theory models,
congeneric tests, multitrait-multimethod data, factor analysis, variance-
covariance components, simplex and circumplex models, and path analytic
models. The same approach and types of applications are also found in
Joreskog (1974).

Joreskog's most recent embellishments on this basic model (1975,
1977) permitted explicitly dealing with situations in structural equation
modeling characterized by the presence of both endogenous and exogen-
ous variables measured with error. Since it is the purpose of the work

reported herein to extend this class of models to the situation in which
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hierarchical data is to be analyzed, this model is more fully discussed

in the following chapter.

Some Contributions by the Chicago Group

As has been mentioned previously, the types of models considered
by Joreskog were not unique to his work. Maximum likelihood factor
analysis models were dealt with independent’ly by a number of workers
in the area including Hemmerle (1965) and Harman (1966).

A maximum likelihood approach to estimating the parameters in a
model virtually identical to that discussed by Jéreskog (1975) was
discussed by Wiley (1973) at the same paper session at the University
of Wisconsin at Madison in 1970. A line of inquiry represented by the
work of Bock (1960); Bock and Bargmann (1966); Wiley (1967); and
Wiley, Schmidt, and Bramble (1973) addressed a set of models formally
parameterized as the factor analysis model but with different notions as
to the roles of the parameters themselves. It is this set of papers that
led to the work of Schmidt (1969) which extended the application of
similar models to the situation where observations were nested within
higher order units. It is to this line of inquiry that we now turn.

Bock (1960) argued that the similarity noted by Burt (1947) and
Creasy (1957) between factor analysis and analysis of variance can,
under the proper circumstances, be considered a "formal relation." He
further stated that if tests are chosen based on specific hypotheses
relative to their composition, a mixed model analysis of variance could
be used to examine their structural and distributional properties. The
purpose of using the mixed model ANOVA was to avoid the statistical

problems inherent in factor analysis at that time. Operationally, the
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approach advocated by Bock merely permitted (at least conceptually) an
investigator to effectively fix the A matrix in the factor analytic model
equal to the design matrix associated with the tests. The statistical
problems normally associated with classical factor analysis could then be
dealt with in the framework of ANOVA.

Bock and Bargmann (1966) essentially reversed this line of argu-
ment with their discussion of the analysis of covariance structures
operationalized through maximum likelihood estimation procedures. The
fundamental model they addressed treated data arising from a random
sample of subjects for whom observations were assumed to be multi-
variate normally distributed with some arbitrary mean py and a variance-

covariance matrix with the following structure:
I=AOA + Y (9)

where A is a matrix of known coefficients of the linear functions con-
necting the observed and latent variables, ¢ is the variance-covariance
matrix of latent variables, and ¥ is the diagonal matrix of measurement
error variances.

They considered the estimation of ¢ and ¥ under three conditions.
The first was where ¢ was constrained to be diagonal and the diagonal
elements of ¥ were equal. In the second, the diagonal elements of ¥
were allowed to be unequal. Finally, the third condition specified an

additional parameter matrix of scale factors in the diagonals such that
S=BA®A + V)’ (10)

where the diagonal elements of ¥ were, once again, constrained to be

equal. Bock and Bargmann went on to demonstrate the derivation of
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the first derivatives of the likelihood function with respect to each of
the parameter matrices in the three models, set forth the appropriate
likelihood ratio tests of fit, and discussed the iterative scheme for
parameter estimation employing the Newton-Raphson method.

While the form of these models is hauntingly similar to that of
Joreskog (1970), their development would appear to have taken place
independently, for nowhere in their article is Lawley's work on maximum
likelihood factor analysis cited. Furthermore, their conceptualization of
the applicability of such models appears to foreshadow applications later
made by Joreskog (1971).

Wiley, Schmidt, and Bramble (1973) later expanded on their work
by considering 8 variations on the model defined by fully crossing the
following conditions:

1) B is a general diagonal matrix of scale factors or an identity

matrix,

2) ¢ is diagonal or simply symmetric positive definite matrix, and

3) ¥ is diagonal with equal diagonal elements or the diagonal

elements are allowed to differ.
Since this paper was based on a somewhat earlier paper by Bramble,
Schmidt, and Wiley, some of the conditions considered were also dealt

with by Schmidt (1969).



Chapter 3
Schmidt's Hierarchical Model

In his doctoral dissertation in 1969, Schmidt set out to implement
one of the covariance structure models then being developed simultane-
ously at the University of Chicago by Wiley and others, and at the
Educational Testing Service by Joéreskog. The major difference between
his work and that of the others lay in the fact that his model was
developed in the context of data arising from observations nested within
groups. Owing to this, Schmidt's problem was that of setting out a
way to simultaneously estimate two models, one at the within-groups
level and the other at the between-groups level.

While it must be understood that Schmidt's model, like all covari-
ance structure models, is most fundamentally derived from models of the
underlying observations, previous discussion of the work in structural
equation models provides sufficient grounding in this basic principle to
allow us to proceed directly to the models for the variance-covariance
matrices themselves.

First, the overall variance-covariance matrix I was seen as a
simple additive function of the within- and between-groups variance-
covariance matrices, Zw and Zb respectively. Their relationship was

expressed as follows:
= Zw + zb (11)

/f_Each of the two matrices, Zw and Zb’ was expressed as a function of

\ . . . . .
\ matrices relating observed to latent variables, variance-covariance

19
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matrices among the latent variables and, finally, variance-covariance
matrices among the errors of measurement. These various matrices

were assembled into one two-part model:

A d® A+ V¥ (12)
wowowow

Ab <|>b AI; + '{’b (13)

zw
Z.b
where
/\b and Am represent the matrices of coefficients relating observed
to latent variables at the between- and within-groups levels,
respectively,
°b and ¢w represent the variance-covariance matrices among the
latent variables at the between- and within-groups levels,
4 1,0' and ‘l"‘u represent the variance-covariance matrices among the
 errors of measurement at the between- and within-groups
levels.
In general, Schmidt's model treated the matrices \I’w and \Pb as having
non-zero values on the diagonals and zero elsewhere. In addition, /\w
and /\b were permitted to be matrices containing known constants (as
arising from an experimental design over the measures) or free param-
eters to be estimated. Finally, the ¢w and cbb were allowed to be con-
sidered as diagonal matrices or general matrices with non-zero elements
in the off diagonals as well.

Taking Zw and Zb separately, it can be readily noted that each
model corresponds to those considered by Joreskog (1967). The primary
distinction is the fact that the models, each of which represents a set
of simultaneous equations, are themselves intended as being simultan-

eously operative. Thus, the procedure adopted for estimating the
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parameters in a particular application must be capable of estimating
parameters at both levels simultaneously. Schmidt's method of choice
for this was the method of maximum likelihood, and key to its applica-
{tion was his formulation of the likelihood function for hierarchical data.
He began with a basic situation in which p measures were available
for each of n subjects within each of m groups. Based on the work of
Tiao and Tan (1965) he reconceptualized this situation as one in which
each of the m groups were composed of np observations. Thus the
data was treated as m independent observations drawn from an np
dimensional multivariate normal distribution. This distribution had a

mean of 1 x p and a covariance matrix, 2 with the following

np’
structure:

an=ll‘®zb+1®zw. (14)

In this equation, Iw represents the covariance between observations
within each group while }:b represents the between-groups covariance.
Given the assumption of a multivariate normal distribution, Schmidt

derived the following as an expression for the likelihood function:

-mnp -m (15)

m
1 .
L= 2 3 12 etz [ 2y -1xw 2 (y; - 1xm)l
np i=1

Substituting the previously-defined expression for an in terms of Zw
and F.b into the above expression and simplifying making use of several

matrix algebra theorems, Schmidt obtained the following as an expression

for the likelihood function in terms of Zb and Zw rather than an:
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~mnp m-mn =m

L=(2n) 2 Zw 2 (Zw + n.Zb) 2

el-plmer 57l vamer (G, +az) s} (6)

+mtr (G, +0 %) (G- WG - w1

where
1y ¢ o .
S0 = mn jzl 151 (g5 - %5, )5 - ;) an
a m
Sp =@ 2 Gy, ¥ @ -y ) (18)
i=1
and

Zij is a vector of length p for the jQ subject in the ig group. The
values of ;'b and iw which cause this function to attain its maximum are
the maximum likelihood estimates for Zb and Zw. Since one of the
properties of this form of estimation is that the same estimates for Zb
and Em will be obtained through maximizing any monotonic function of L,
the usual approach is to maximize a slightly simpler function of L,
namely the logarithmic function.

Schmidt derived the following as an expression for the logarithm of
the likelihood function:

log L = :ggn log(2n) + “';“ log (I3, 1) - g log(|5, + 03, |)

1

- 2w tr {5,708} + mtr {(T, + nzb)'l s, } (19)

+ mn tr {(Zw + n}:b)°1 (y - - p) 3.
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Since the maximum likelihood estimator of p is y, the last term in
the above expression is zero. The first term being constant, it can be
effectively ignored with no impact on any results. This yields the
following as Schmidt's expression for the effective part of the log

likelihood function:

-1

- I-mn _IE _Elp_
log L = =~ log (Izwl) 5 log (lzw + anI) > tr {2 7S}

(20)

- g tr {(Zw + an)-l Sb}.

When a particular parameterization of Zb and Zw is substituted in
this expression, maximum likelihood estimates for the parameters can be
obtained by setting the first partial derivatives of log L with respect to
each parameter equal to zero and solving for the unknown of interest.
Because the approach adopted by the present author makes use of the
chain rules for obtaining these derivatives, the first partial derivative
of log L with respect to Zb and Zw are necessary. Schmidt's expres-

sions for these are set out below:

dlogL _ . .o -1 _ -1 -1 -1
Cy m(1 n)Zw m(Zw +n Zb) + mn Zw Sw Zw
-1 -1
+ (Zm +n f_b) Sb(Zw + nf.l) (21)
- .5 diag{m(1-n)Z -l m(Z +n Ib)-l + mn 2 -IS 2 -1
w w W oww

+ (2w +n Zb)'l Sb (Zw +n ib)-l}
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dlogl _ -1 -1 -1
—a—z—f—-mn(zwi-n)'.b) S, (3, +nZ) -m (3 +nZ)

(22)
- .5 diag{mn (Zw +n Zb)-1 Sp (Zw +n Zb)-l

- mn (Zw +n Zb)-l}.

Joreskog's Linear Structural Equation System Model

Two of the distinctive features of Joreskog's most recent structural
equation model are, first, that the structural relationships may be
expressed in terms of latent variables and; second, that such variables
are allowed to be fallibly measured. This implies that the overall model
is expressible as two components, a measurement model and a structural
model. The following presentation of Joreskog's formulation is based on
the ideas set forth in Jéreskog and Van Thillo (1972), Joreskog (1973)
and Joreskog (1977) with notational modifications allowing for a ready
comparison of Joreskog's model with its extension to the hierarchical
data situation to be presented subsequently.

Measurement Model

H+A]+eE (23)

A

x=v+T{+uw (24)

In this component of the overall model, the vector of y's repre-
sents the set of observed endogenous measures which have as their
expected value p and error ¢. The vector of n's stands for the latent
or "true" endogenous variables while A is a coefficient matrix relating n

to y. Likewise X embodies the observed exogenous variables with

expected value v and error w. The true exogenous variables are
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represented by { which is related to the observed variables by the
coefficient matrix I.

Structural Model

n=An+BL+0 (25)

The definitions for n and { remain as before. The vector of 8's
contains the equation errors while A and B are the structural coeffi-
cient matrices relating the true endogenous and exogenous variables to
the true endogenous variables.

To fully understand the importance of each of these components we
must examine the structure of the variance-covariance matrix of y and
X. In connection with this effort we must define the following addi-
tional parameter matrices:

2 = the variance-covariance matrix of y and X composed of 2.2

y’
and ny;

Zg = the variance-covariance matrix of the latent exogenous
variables;

Ze = the variance-covariance matrix of the errors in equations;

‘l’s = the variance-covariance matrix of the measurement errors
associated with y;

\l'w = the variance-covariance matrix of the measurement errors

associated with x.
In addition to these definitions, several assumptions are made.
The measurement errors, &£ and w, are assumed to be uncorrelated with
each other and with the latent variables, n and {. Finally, the residual

errors, 6, are uncorrelated with the true exogenous variables, {.
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For convenience we may express the variance-covariance matrix of

y and X in partitioned form:

M
"

where

I =3 .
yx = “xy

Given the preceding definitions and assumptions, each of the

components of Z may be expressed in terms of the parameters discussed

as follows:
- - -1 ' - =t
Zy = A[(I-A) (BZQB + Ze)(I A) TIAN' + \Ps (26)
Zx = l"Zgl"' + ‘l’w (27)
- 1 (T -t,,
ny = r‘ng (I-A) “A'. (28)
Estimation

If we assume that the composite vector = (x', y') is distributed
multivariate normal with a variance-covariance matrix as expressed
above, the various parameters of the overall model may be estimated via
the maximum likelihood method. The values of the parameters which

maximize the effective part of the log likelihood function,
Log L = - [(N-1)/2][log| £ 1 + tr(SZ )] (29)

are the maximum likelihood estimators. They may be found by taking
the partial derivatives of the log likelihood function with respect to
each of the parameters in the model, equating them to zero, and simul-

taneously solving the resulting equations. Since the explicit solution is
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obtainable only for a few restricted versions of the general model, some
numerical solution must be employed in actual practice. The particular
approach taken by Joreskog and Van Thillo (1972) employs two numerical
methods, the method of steepest descent and the Davidon-Fletcher-Powell
method. The first approach is used to generate an approximate solution
for the parameters in the neighborhood of the actual solution, while the

second produces the final solution.



Chapter 4
General Structural Equation Model for Hierarchical Data

Following the schema established previously with the presentation
of Jdreskog's Linear Structural Equation System Model, the structural
equation model for hierarchical data is set out below. To facilitate the
presentation, a notational convention has been adopted. whereby a
variable or parameter associated with the subject's within-groups level
stands alone and the corresponding parameter at the between-groups
level is subscripted with a lower case b. This should serve to preserve
the conceptual similarities between Jdreskog's and this model while
highlighting their differences.

As with Jéreskog's model, the new model may be set forth as two

N

related components: the measurement model and the structural model.

Measurement Model
E+An+/\bnb+§+§b \(30)
v + l‘; +h G twrw ,_\(3,1)"

Y

X

The y and v vectors are simply the expected values of y and x
respectively and are conceptually the same as the corresponding terms
in Joreskog's model. The matrix A contains coefficients relating the
latent endogenous within-groups variables n to the observed variables,
y. Likewise, Ab serves to relate the true endogenous between-groups
variables, Ny, to the observed y. The vectors ¢ and g, represent the
errors of measurement associated with the within- and between-groups
levels respectively. The coefficient matrices, I' and l‘b, and the vectors

g, Qb, w and Wy bear similar relationships to the observed x vector.

28



Structural Model

29

Reduced Form of Structural Model

n= An+B{ +8
Ny = Apy, + Bply + &

(32)

(33)

(I-A)q = BL + 8

(I-Any, =BG, + 8

(32°)

(339)

The first equation stipulates that the latent within-groups endog-

enous variables are expressible as linear functions of themselves (as

determined by the coefficients in the A matrix) and the latent within-

groups exogenous variables (as determined by the coefficients in the B

matrix).

Finally, we have the vector 6 containing the errors in equa-

tions associated with this part of the structural model.// The second

equation is composed of parallel constructs dealing with the expression

of‘,/the between-groups latent endogenous variables/

As with Joéreskog's model there are a number of variance-

covariance terms (associated with) these vector-valued variables.

are as follows:

2t

|®

Iy

IE

the variance-covariance matrix
exogenous variables, {;

the variance-covariance matrix
in equations, 6;

the variance-covariance matrix
ment error associated with the
variables, y;

the variance-covariance matrix
ment error associated with the

variables, x;

They

of the latent within-groups

of the within-groups errors

of the within-groups measure-

observed endogenous

of the within-groups measure-

observed exogenous
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the variance-covariance matrix of the latent between-groups

exogenous variables, { ;

the variance-covariance matrix of the between-groups errors

in equations, 9 ;
b

the variance-covariance matrix of the between-groups
measurement error associated with the observed endogenous
variables;

the variance-covariance matrix of the between-groups
measurement error associated with the observed exogenous

variables.

If, as before, we assume the measurement errors to be uncorre-

lated with each other and with the latent variables and that the residual
errors are uncorrelated with the true exogenous variables and that all
variables at one level are uncorrelated with those at another, the

variance-covariance matrix of the observed variables can be expressed

as a function of the parameters defined above.

Let the combined vector of observed scores for an individual be

represented by the vector z where

2.3
E:—--

A

The variance-covariance matrix among these observed variables, V(z),

can then be represented as 2 2 and we have

2,51ty (34)
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The parametric composition of Z and Ib is then:

' [} -t
I'ch" + ‘«Pw FZCB (I-4) A
T 2| e o cc o ccceeeceececeeaeaaaa (35)
A[(I-A)-IBZCB'(I-A)-t]A'

A(I-A)-IBICF a +

! A[(I-A)-IZG(I-A)-t]A' + ¥

_ _ _
rszbrf: + w"“b : rszbB‘;(I'Ab) t’\l';
S R (36)
L N TR B (A I
NI TRE T .
! (1-a)7 15, (1-a)7C A+ v
I MUEA) Ty (AT vy,

Parameter Estimation: General Considerations

If we assume the overall vector, [y', Xx'], to be multivariate
normally distributed, the parameters in the measurement and structural

components may be estimated by use of the maximum likelihood prin-

ciple. We have, from Schmidt, the effective part of the log likelihood
function of the hierarchical situation upder consideration:
= &-mn .o . m -1
F = > log(lZ1) 2 log(12 + nx |) 5 tr {2 s}

Y -1 (37)
-3 tr {(Z'f'n.z.b) Sb}.

After replacing I and Zb with the expressions set forth above we

need but to choose values for the parameters which maximize F. This
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may be accomplished by, first, taking the partial derivatives of F with
respect to each of the elements in the parameter matrices. The resulting
first derivatives are set equal to zero and simultaneous solutions found
for the parameters. Unfortunately, these equations are even more
complicated than those discussed previously; therefore, some numerical
solution is called for.

The first derivatives are fully set forth in Appendix A. In
general, they were found by, first, taking the partial derivatives of F
with respect to Z and Zb, and the partial derivaties of Z and Zb with
respect to their respective parameter matrices. The application of the
chain rule for matrix derivatives completed the process.

To carry out the numerical solution for the maximum likelihood
estimates, the same procedure used by Joreskog was employed. The
method of steepest descent serves as a first stage in the estimation
procedure until the estimated values for the solution approach a reason-
able neighborhood to the actual solution. The Fletcher-Powell method is

then used to accomplish the final maximization of the likelihood function.

Numerical Solutions for Parameter Estimates

The most satisfying approach to generating parameter estimates
would be to find simple analytical expressions for the parameters using
the "normal" equations arrived at by setting the first derivatives of the
log likelihood function equal to zero. The complexity of these expres-
sions, however, is such that straightforward solutions are possible only
in the case of very simplified models. Instead, we must turn to the
use of numerical techniques whereby parameter estimates are indivi-

dually generated for each model and each set of data.
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A quick perusal of any text that touches on non-linear program-

ming (for instance--Luenberger [1965]) reveals a wealth of techniques

whereby solutions may be obtained for systems of equations such as

those in the present instance. The key criteria in the selection of one

or more of these techniques for a particular application seem to be

global convergence and rate of convergence. The first of these criteria

refers to the ability of an alg?orithm to arrive at a "true" solution

irrespective of the point at which the algorithm starts. The second has

to do with the number of iterations required to arrive at a solution.

While the first constitutes a necessary condition for the choice of a

particular method, the second determines the efficiency of the estimation

routine.

The general approach adopted by most numerical solution algo-

rithms involves a series of steps outlined below:

D

2)

3)

4)

5)

6)

Choose an initial value for the solution, XO.
Determine the direction in which the solution is to be modified.
Choose as the new value for the solution, Xl’ the point at
which the function is minimized in the direction determined by
step 2.

Compare f(XO) with f(Xl) to see if a significant change has
been made.

If nothing has appreciably changed, the solution has been

found.

If changes have been made, return to step 2 and continue.

The primary difference which characterizes the various methods is the

way in which the direction of modification is determined.



34

In the present instance the technique actually implemented involves
a combination of two fairly widely used approaches, the method of
steepest descent and the Davidon-Fletcher-Powell method. According to
Joreskog (1969) the first of these approaches offers rapid advances
toward the immediate neighborhood of the solution followed by relatively
slower convergence upon the solution. The second method, on the
other hand, is relatively slow in arriving at the neighborhood of the
solution but fast thereafter. The algorithm employed relies upon a
number of steepest descent iterations ceasing when the change in the
value of the function is less than five percent from one iteration to the
next. These are then followed by the application of the Davidon-
Fletcher-Powell method to arrive at a fully-converged solution. The
operation of each is set forth below along with that of Newton's method

on which Davidon-Fletcher-Powell is based.

Steepest Descent

If we designate f as the function which we wish to minimize having
continuous first partial derivatives 3f, then the method of steepest
descent directs us to take as the k+1 value for our parameter estimates
the following:

= - (38)
Xee1 = X - o 2E(X)

where oy is a positive number which minimizes f(Xk - akaf(Xk)).
Repeated application of this method will yield values for X which corre-

spond to the solution sought.
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Newton's Method

In its pure form, Newton's method involves a change in the itera-
tive approach involved in the steepest descent technique whereby the
direction for solution modification is found. The net result is the use

of the following expression for Xk +1°

oy - -1 .
Xk+1 = Xk F(Xk) 3f(Xk) (39)

where F(Xk) is the matrix of second derivatives of f evaluated at the
point Xk.

Since global convergence cannot be assured for this method, its
typical operationalization is usually of the form

= - -1 -
xk+l = Xk akF(Xk) Bf(Xk) (40)

which has global convergence properties. In addition, use of this
method yields convergence requiring fewer cycles than does the method
of steepest descent assuming Xo is chosen sufficiently close to the
actual solution. The only drawback to applying this method is the need
to constantly reevaluate F(Xk)-l, a process which can be quite time

consuming.

Davidon-Fletcher-Powell

This approach belongs to a class of quasi-Newton methods all of
which are characterized by the use of approximations to the inverse of
the matrix of second partial derivatives. This particular method in-
volves starting the minimization procedure with both an initial estimate
for the solution, XO’ and an initial estimate of the inverse of the matrix

of second derivatives, SO' Successive approximations to the solutions
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are found by employing the following equation:

=X - (41)
Xeep = X = S (X))

where, as with the method of steepest descent and Newton's modified
method, oy is a positive number which minimizes t'(Xk - akSk aF(Xk)).
Successive approximations to the inverse of the matrix of second deriva-

tives are found through the use of the following relationship:

Sipy = Sy *+ PKPk Sk‘fqusk (42)
Py 9 Sy

where Py designates the difference between Xk and Xk+1 and Q) is
equal to the difference between af(xk) and at‘(Xk+1).

Both of the latter two methods may fail to converge to the appro-
priate solution given initial values of X0 which depart too much from
the actual solution. This absence of guaranteed global convergence

motivates the chaining of the method of steepest descent with that of

Davidon-Fletcher-Powell.

Identifiability

For a particular model to be of any real use, we must be able to
estimate the parameters associated with that model. For the parameters
to be estimable from a particular set of data two conditions must be
met. The first is that Z and %, must be of full rank. This will be the
case if enough observations are taken within each unit and if enough

units are observed. One must also avoid the inclusion of wvariables

which are linearly dependent upon other variables. In practice, the
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invertability of the unrestricted maximum likelihood estimates for X and
Zb guarantees that this condition is met.

The other, and far more difficult to determine, condition for the
estimability of a set of parameters is that the model be identified. The
identifiability of a model basically means that, for two distinct models to
give rise to the same Z and Zb, their parameters must be identical in all
respects. In other words, the parameters of an identified model must
be unique. It must be emphasized that this condition is on the model
in question and has nothing to do with a particular set of data.

When dealing with regression models, the only way in which a
model may be under-identified is if ene or more of the predictor varia-
bles is linearly dependent upon the others. This situation is readily
noted due to the fact that the XX matrix has no unique inverse even
though more observations were taken than the number of predictor
variables. While being a condition easily detected, the remedy may not
be so easy without considerable thought on the definitions of the pre-
dictor variables.

With more complex models such as the ones addressed in this
paper, determining if a specific model is identifiable may be much more
difficult. Econometricians have addressed this problem extensively and,
for a variety of models more complex than the simple regression model,
have formulated some mathematical rules for identifying necessary and
sufficient conditions for model identifiability (see Fisher [1970 and
1966], for instance).

The work that comes closest to addressing model identifiability in a

situation similar to that currently considered is represented by Geraci

4
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(1977). In this paper, he provides an algorithm by which the identifia-
bility of a particular uni-level model might be established. Although he
restricted the model considered to have no measurement error or complex
factor structure, establishing the criterion for model identifiability
involved the solution of a set of equations hardly less formidable than
those involved in the system whose identifiability was of interest.

Joreskog (1977) suggests that as a necessary condition for the
identifiability of a particular model that the number of unknown ele-
ments be less than %(p + q)(p + q + 1). While this must be true for a
unique solution to exist, it by no means guarantees that one does.
Given the complexity of the current model in the face of the rather

complicated necessary and sufficient condition advanced by Geraci when

dealing with a much simpler model, it is no real surprise that a straight
forward test for the identity of a particular model of the sort consid-
ered here is difficult to achieve.

Wiley (1973) in considering the identification problem in a uni-level
model of the same form as the one considered here offers a very useful
suggestion. If a program were available to compute a numerical esti-
mate of the information matrix for the parameters and if some reasonable
estimates for the parameters were inserted into the model, then model
identifiability could be reasonably assumed if the information matrix was
of full rank. The benefit from adopting this approach is that the
identifiability of a particular model could be reasonably assured prior to

the estimation of its free parameters.
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Estimating Parameters in the General Model

While there exist a variety of methods whereby estimates of the
parameters of the general model might be derived including both un-
weighted and generalized least squares, the most straightforward in
terms of estimation, tests of fit and producing asymptotic standard
errors of the estimates is the method of maximum likelihood. Parameter
estimates produced by this method are those values for the parameters
which maximize the likelihood of the observed data given an assumed
underlying distribution where the likelihood of a particular set of obser-
vations is their joint probability given the parameter values.

Given an expression for the joint probability of a sample of ob-
served values, values for the parameters may be formed by first taking
the derivatives of the log likelihood function with respect to the param-
eters themselves, equating these to zero, and finally, solving the
resulting set of simultaneous equations. The key to the entire process
is the formulation of the likelihood function.

Nearly all of the literature reviewed which dealt with the maximum
likelihood estimation of structural equations or analysis of covariance
structures addressed itself to the situation where a single sample of
observations was drawn from a presumed multivariate normal distribu-
tion. Under those circumstances, the effective part of the logarithm of

the likelihood function has the general form

M=tr (Z-IS) -log lz|. (43)

Only the work carried out by Schmidt considered the situation
involving a two-stage sampling process where observations were sampled

from primary sampling units which themselves were sampled. Under the
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assumption of doubly multivariate normally distributed observations
where variables for each individual observation are multivariate normally
distributed and observations themselves are similarly distributed within
groups, Schmidt derived the following expression for the logarithm of

the effective part of the likelihood function:

log L =22 10g |21- D log 1z +n 3 |-22¢er {z71s}

2
m -1 (44)
-5 tr {(Z+n2b) 5.}
where m is the number of groups, n the number of secondary units
within each of the m primary units, S and Sb are the within- and
between-groups observed vaﬁance-covaﬁmce matrices respectively, and
Z and }:b are the underlying variance-covariance matrices for the within-
and between- groups levels respectively. This expression served as
the basis for the estimation procedure implemented here.

The next step in producing the maximum likelihood estimates for
the parameters in the general model calls for expressions for the first
derivatives of the log likelihood function with respect to each of the
parameter matrices in the general model. The simplest way to arrive at
such expressions is through the use of the chain rule for derivatives
involving matrices. According to McDonald and Swaminathan (undated),
if the elements of a matrix Z are functions of the elements of a ma-

trix Y which are themselves functions of another matrix X, the partial

derivative of Z with respect to X can be expressed as:

32 aY 3z .

X 9X 9Y

This is also true if Z is some scalar function of X.
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Since the log likelihood function is a function of but two matrices,
2 and Zb, each of which is a function of a subset of the general param-
eters of the model, the partial derivatives of the log likelihood function
with respect to any one parameter matrix, say C, can be conveniently

expressed as follows:

92 Jdlogh

3¢ 93 ° if C is a parameter at the within-groups
level
dlogl
ag = { or
9
séh 9%23& , 1if C is a parameter at the between-groups
z'b level.

Schmidt has derived expressions for the rightmost partial derivatives of

each equation. These expressions are as follows:

9%§5& = {m(1-n) £} - m(Z + n zb)'1 +mon 3! sz !

+(E+a5) s, @E+0g) -] diag m 0o0) I (5)

-m((Z+n Zb)-l + mn Z-l SZ-I

+ (2 +n Zb)“1 S, (2+n ;-b)-l}
a;gbz = {mn (2 +n zb)-l S, (2 +n zb)-l =m (Z+n zb)-l}

- 2diag fmn (Z+03%) 'S, (Z+nz) (46)
-1
-m (Z+0Z%) '}
where S corresponds to the pooled within-groups observed variance-

covariance matrix and Sb corresponds to n times the between-groups

variance-covariance matrix.
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The remaining components necessary to complete the expressions
for the partial derivatives of the log likelihood function with respect to
the parameter matrices in the general model are the partial derivatives
of 2 and ib with respect to the parameter matrices involved in each.
These expressions have been derived through the use of matrix calculus

and are set forth fully in Appendix A.

Standard Error Estimation and Test of Fit of the Estimated Model

Just as the maximum likelihood principle leads directly to the
estimation of model parameters through the use of first order partial
derivatives, the second order partial derivatives assist in the estimation
of standard errors for the parameters involved. It has been shown
that the negative inverse of the expected values of the matrix of second
partial derivatives is equal to the asymptotic covariance matrix of the
maximum likelihood estimators. This may be simply expressed as

follows:

v(é) =-E [%é—"’gg-'] o (47)
i

The square roots of the diagonal values of this matrix yield estimates
for the standard errors of their associated parameters. Since maximum
likelihood estimators are, for sufficiently large numbers of observations,
normally distributed, the estimated standard errors may be used to

establish confidence intervals about the parameters estimated and thus
provide statistical tests for the parameter values against any particular
null hypothesis of interest. While the tests would not be strictly inde-
pendent of one another for a given model and set of data, they will

yield useful information toward the refinement of a particular model.
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Schmidt (1969) has shown that, for the hierarchical situation of
interest in the current investigation, the expected value of the matrix
of second partial derivatives of the log likelihood function is a function
of both the first and second derivatives. Furthermore, it can be

expressed by the following formula for the general ijth element:

3%loge | _ 1 32(z + ) -1
E [ae.ae.] Y ’ etk s n3) * (48)
i ] 36139j

90 90
1 J

P ’ (z+az) 3Tl <z+n2b>'1——a(z+n2b); |
Expressions for the first and second derivatives of Z and Zb with respect
to individual elements of the parameter matrices in the general model
have been derived and are set forth in Appendices B and C. So as to
conserve space, only the nonredundant expressions are shown. Since
the order in which the partial derivatives are taken has no effect upon
their value, only the unique formulae are shown.

When all of the various elements involved in a given parameteri-
zation have been calculated and assembled in matrix form, the negative
inverse of this matrix estimates the covariance matrix of the estimators.
The documentation for a computer program implementing this procedure
 is included in Appendix D and its listing is included in Appendix E.

While the foregoing provides a means whereby confidence intervals
may be established about individual parameter estimates in a particular
model, it does not actually enable the testing of a model as a complete
entity. To this end, we must turn to yet another construct derived

from the maximum likelihood principle, the likelihood ratio.
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To generate parameter estimates for a particular model and set of
data of interest, we choose as our estimates those values of the param-
eters in the model which yield the largest value of the likelihood func-
tion given the data at hand. Under some other parameterization of the
model both the estimates and the value of the likelihood functions would
likely differ when employing the same set of data. In particular, we
can posit as our alternative model one which is least restrictive in that
it will yield the largest wvalue for the likelihood ratio. This model
simply asserts that the data arise from a multivariate normal distribution
with parameters X and Zb with no further parameterization placed on
these two matrices. Thus our estimates c¢f Z and zb are unrestricted
by any constraints placed upon them and the value of the likelihood
function so obtained can be referred to as the maximum value of the
likelihood function over the unrestricted parameter space.

Under any other particular parameterization of Z and Zb furnished
by our model, the maximum of the likelihood function can be referred to
as the maximum over the restricted parameter space and cannot be
larger than the maximum over the unrestricted space. This implies that
the ratio of the latter to the former has as its maximum wvalue 1 and,
since neither term can take on anything other than non-negative values,
as its minimum 0. This quantity is known as the likelihood ratio and
provides a means whereby the fit of a particular model (i.e., the ability
of a model to replicate X and Zb) may be evaluated. Since the likelihood
ratio is based upon two random variables (the maximum of the likelihood
function over the restricted and unrestricted parameter space) it too is
a random variable. In addition, for large sample size, the negative

value of twice the logarithm of the likelihood ratio has approximately the
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chi-square distribution. Thus, we have as our test statistic the

following:

x2 = - 2 log (L (49)

restricted/ Lunrestricted) ’

This is readily seen to be equivalent to the more convenient expression:

x2 = 2(log L - log L (50)

unrestricted restricted)

The degrees of freedom associated with it are equal to the difference
between the number of unique elements in Z and Zb and the number of
unique parameters estimated in the restricted model.

Larger values of the test statistic which lie far to the right on the
reference distribution are unlikely under the assumption that the model
fits the data. Thus, likelihood ratio statistics of low probability under
the assumption of model fit point to overall weaknesses in the model,
the particulars of which should be addressed through inspection of the
asymptotic standard errors and the discrepancies between the unre-

stricted and restricted estimates for X and Zb.



Chapter 5
Applications

Analysis of Artificial Data: Testing the Estimation Procedure Using a

Simple Model =

As a part of the work carried out by Schmidt (1969), several sets
of data with a predetermined structure were generated. These data
sets were then analyzed using four different parameterizations, one of
which reflected the true structure of the data. As one test of the
estimation routine currently implemented, one of these data sets was
reanalyzed making use of the same parameterizations employed by
Schmidt. The S and Sb matrices used as input to the estimatfon
routine are displayed in Figure 1.

Due to the fact that the model considered by Schmidt did not
explicitly allow for the presence of exogenous variables, only the portion
of the current model dealing with the interrelationships among endogen-
ous variables could be examined. This restricted model parameterizes

the within- and between-groups variance-covariance matrices as follows:

7]
]

AZ A’+lll8 (51)

0
b =N Zeb At; + 'Peb . (52)

[2]
n

Thus, the matrices associated with exogenous variables (T, l'b, Bb,

Z, ,B,%,,¥, and ¥ ) were omitted from the model. Additionally,
§b ¢ w “‘b

the elements of A and Ab were fixed to zero, while A and Ab were both
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equated to the following design matrix:

o —

1.0 5 5
1.0 .5 ~-.5
A=hy = 1.0 -.5 5
1.0 -5 -5

The resulting model was, therefore, a function of but four param-

eter matrices, 29, Ze , \Pe, and ‘l’s . The various forms of these matrices
b b

for which parameters were estimated are presented in Table 1. The
true model, that which actually gave rise to the data in question, is

Model 1 for which Ze and 26 are diagonal matrices while ¥ e and \l'a

b b

are heterogeneous.

The results obtained from the estimation routine using the first
parameterization of the model where the 26 matrices were constrained to
be diagonal and the diagonal elements of the ¥ e matrices were allowed to
be heterogeneous are set forth in Table 2. Corresponding estimates
obtained from Schmidt's work are presented alongside those from the
new estimation routine. The associated asymptotic standard errors
obtained from the implementation of the procedure for estimating standard
errors are also presented in the same table, as is the chi-square value
and degrees of freedom associated with the model.

A comparison of the estimates obtained from the current program
and that developed by Schmidt reveals that the results are identical to
at least two decimal places. Differences beyond this point are attribu-
table to the accuracy of the calculations required to obtain S and Sb

from Schmidt's work. The obtained chi-square values for the test of fit
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Table 1

Parameterizations Employed in Analyzing Artificial Data from Schmidt

Z.and 2 y_ and ¥
Model @ % € b
1 diagonal heterogeneous
2 diagonal heterogeneous
3 general heterogeneous
4 general heterogeneous
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Table 2

Parameter Estimates, Standard Errors, and Test of Fit
for the Analysis of Schmidt's Data Using Model 1

Estimate From Estimate From Asymptotic
Current Schmidt's Error
Parameter Program Work Variance

zc 4.875 4.875 .211
11

3 - - -
§21

Zc 4.075 4.075 821
22

3 - - -
Ca1

3 - -- -
Caz

ZC 6.401 6.403 .984
33

Y. 6.959 6.957 .613
11

¥, 6.569 6.570 .632
22

¥ 7.129 7.127 .648
33

¥, 9.376 9.377 .699
44

b3 7.013 7.014 3.353
cb

11

3 -- - -

g
Pa1

z 6.840 6.842 10.923
b,

(continued)
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Table 2 (continued)

Estimate From Estimate From Asymptotic
Current Schmidt's Error
Parameter Program Work Variance
3 -- - -
4
P31
3 - -- -
g
P3g
2§ .000 .000 5.258
b33
¥ 3.694 3.693 4.588
b
11
4 6.713 6.713 5.327
b
22
¥ 11.082 11.086 8.679
“b
33
¥ 7.662 7.661 8.202
b
4
x2/df 17.4778 17.5

6 6
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of the model are identical within rounding error. Additionally, the
non-zero parameter estimates all differ from zero by more than one
standard error, as would be hoped for, given that the form of the
estimated model corresponds to that employed in generating Schmidt's
data.

Parallel results with respect to parameter estimates, asymptotic
standard errors, and chi-square statistics for the tests of fit of the
remaining three models are contained in Tables 3 through 5. The
parameter estimates obtained from the implementation of the present,
more general model are nearly identical to those reported by Schmidt as
are the chi-square statistics for each model. Since the asymptotic
standard errors reported by Schmidt were obtained as a by-product of
the Fletcher-Powell algorithm and not from the evaluation of the expected
value of the matrix of second derivatives, they are not reported here;
however, where comparable values were computed, the standard errors
were of similar magnitude.

The results of these analyses offer evidence that the currently
implemented estimation procedures perform accurately with models of at
least the complexity of those considered earlier by Schmidt. A more
comprehensive test of the accuracy of the estimation procedure required
data arising from a model with a more complex structure. The next
section presents results from the analysis of data with such a complex

structure.
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Table 3

Parameter Estimates, Standard Errors, and Test of Fit
for the Analysis of Schmidt's Data Using Model 2

Estimate From Estimate From Asymptotic
Current Schmidt's Error
Parameter Program Work Variance
ZC 4.965 4.965 .216
11
3 - - -
Ca1
ZC 4.329 4.330 835
22
3 - - -
Ca1
3 - -- -
€32
ic 6.430 6.433 .990
33
‘l‘e 7.398 7.396 .139
11
‘Pe 7.398 7.396 .139
22
‘I“€ 7.398 7.396 .139
33
\I's 7.398 7.396 .139
4
b3 6.259 6.259 3.309
cb
11
3 - - -
g
P21
2§ 5.833 5.834 11.431
b
22
(continued)

y B
ok
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Table 3 (continued)

Estimate From Estimate From Asymptotic
Current Schmidt's Error
Parameter Program Work Variance
3 - -- -
g
P31
3 - -- -
g
P32
z .000 .000 6.315
cb
33
¥ 7.717 7.717 1.880
b
11
¥ 7.717 7.717 1.880
p
22
¥ 7.717 7.717 1.880
b
33
4 7.717 7.717 1.880
b
44
x%/dt 28.9121 28.9

12 12
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Table 4

Parameter Estimates, Standard Errors, and Test of Fit
for the Analysis of Schmidt's Data Using Model 3

Estimate From Estimate From Asymptotic
Current Schmidt's Error
Parameter Program Work Variance

):C 4.964 4.964 .222
11

2; -1.541 -1.542 .216
21

ZC 4.324 4.326 .850
22

Zg -.356 -.357 .235
31

ZC .755 .55 .412
32

ZC 6.417 6.418 1.053
33

‘l‘s 7.328 7.329 .908
11

ll'e 7.508 7.504 .796
22

Y. 6.744 6.747 .810
33

‘I’e 8.020 8.019 1.323
44

3 6.342 6.342 3.364

%
11
z 4.084 4.083 2.644
%
21

2; 6.142 6.145 11.792

Po2

(continued)
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Table 4 (continued)

Estimate From Estimate From Asymptotic
Current Schmidt's Error
Parameter Program Work Variance
:'; -.997 -.997 1.913
P31
Zc -1.745 -1.747 5.410
b,
32
z .503 .504 5.579
%o
33
¥ 4.402 4.399 8.317
b
11
L 4 4.567 4.565 8.550
%y
22
‘I’s 11.089 11.084 10.278
P33
L 4 9.741 9.738 12.960
x2/dt .2635 .26
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Table 5

Parameter Estimates, Standard Errors, and Test of Fit
for the Analysis of Schmidt's Data Using Model 4

Estimate From Estimate From Asymptotic
Current Schmidt's Error
Parameter Program Work Variance
}ZC o 4.964 4.964 .222
11
zc -1.533 -1.533 .169
21
ZC 4.325 4.325 .850
22
2c -.538 -.538 .187
31
zt 1.029 1.029 .235
32
Zc 6.418 6.418 1.032
33
'l'e 7.398 7.400 .198
11
¥ 7.398 7.400 .198
22
¥ 7.398 7.400 .198
33
¥, 7.398 7.400 .198
44
b3 6.349 6.349 3.244
%
11
Zc 2.618 2.618 2.016
b
21
b3 6.258 6.258 11.391
by

(continued)
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Table 5 (continued)

Estimate From Estimate From Asymptotic
Current Schmidt's Error
Parameter Program Work Variance
z -.935 -.935 1.618
cb
31
2z -2.119 -2.119 2.670
(o
32
3 718 718 6.290
cb
33
y 7.360 7.358 2.286
b
11
y 7.360 7.358 2.286
b
22
L4 7.360 7.358 2.286
b
33
L 4 7.360 7.358 2.286
b
44
x2/df 7.3587 7.36
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Analysis of Artificial Data: Testing the Estimation Procedure Using a

Complex Model

The first step in testing the program through the analysis of
artificial data was to generate an S and Sb arising from a more complex
structure. The underlying principle employed was to assign arbitrary
values to the parameters in the general model and, from these values,
produce within- and between-groups variance-covariance matrices. At
least two methods are available for carrying this out. One method
involves a two-stage process characterized by, first, generating obser-
vations from a multivariate normal distribution with the appropriate
characteristics and, second, calculating the within- and between-groups
variance-covariance matrices based on the artificial random observations
from the first stage. This method is ideally suited to studies of the
empirical distribution of the parameter estimates over repeated analyses
of data with the same underlying structure using different samples of
observation.

Since this was not a goal of the present investigation, it was
determined that such an approach would be excessively laborious and
time consuming. Instead, an alternative was adopted that more readily
yielded analyzable data with a known structure, but did not rely on
any stochastic processes. Arbitrary values were assigned to the param-
eters in the general model and the resulting matrices were mathematically
combined according to the model to yield artificial underlying matrices,
Z and zb These were then placed in the equations for the unrestricted
maximum likelihood solutions and values for S and Sb were obtained.
Analysis of such data using the correctly specified model should result

in parameter estimates that exactly match the original arbitrary values.
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So as to simplify the calculation of the artificial data, the struc-
ture and parameters at both levels were defined to be identical. Since
the model to be estimated did not explicitly constrain the corresponding
within- and between-groups parameters to be equal, no unfair advantage
was accorded to the program through the use of this convention. In
the absence of such specified constraints, the program must still inde-
pendently estimate the parameters at both the within- and between-
groups levels.

The values assigned to each of the sixteen parameter matrices
associated with the model are found in Figure 2. To additionally simplify
calculating S and Sb’ the number of observations within each group and
the number of groups (m and n, respectively) were set to 100. The
resulting values for X and Zb are set forth in Figure 3. These two
matrices gave rise to the generated observed matrices S and Sb using

the following formulae from Schmidt (1969):

- n-1 (53)
E(S) ——n—}:

E(Sb) =n Z.b + 2. (54)

For the purpose considered herein the expectation operations can be
disregarded and the relationships treated as simple equalities.

The resulting values for S and Sb are presented in Figure 4.
When these data were analyzed using the programs operationalizing the
previously described estimation procedure, 4 steepest descent itelrations
took place before the stopping criterion was reached after which 26
Fletcher-Powell iterations followed. The parameter estimates are dis-
played in Table 6, and duplicate the original generating values to at

least three decimal places. The matrices S and Sb were duplicated with
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1 0 1 0 2 4
0 1 -.5 1 3 8
0 .5

(I-A) B&B
&
A& A (1-Ay) .
1 o 2 0
0 1 0o .03
I &3 &3
t =%, o = %6,
0o 0 o0 1 0
0 0 © 0 1
o o0 .1 0 .5
v, & vsb rar,
0 0 0
0 o0 o0
0 o0 1
¥y &Y

Figure 2. Parameter Values Used to Generate Variance-Covariance
Matrices for Example II.
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Table 6

Estimated Values for Parameters Treated as Not Fixed in Example II

Asymptotic Asymptotic
Error Error
Parameter Estimate Variance Parameter Estimate Variance
/\31 .500 <.001 Ab .500 <.001
31
A21 -.500 <.001 Ab -.500 <.001
21
B11 .200 <.001 Bb .200 <.001
11
B12 .400 <.001 Bb .400 <.001
12
B21 .300 <.001 Bb21 .300 <.001
B22 .800 <.001 Bb .800 <.001
22
r31 1.000 <.001 l‘b 1.000 <.001
31
z 1.000 <.001 z 1.000 <.001
t L,
11
z .200 <.001 b3 .200 <.001
& §b22
Za .030 <.001 Ze .030 <.001
11 bll
2 .100 <.001 b3 .100 <.001
822 %
22
"’e .500 <.001 «bs .500 <.001
33 b33
Y .100 <.001 ¥ .100 <.001
W33 Wy,




65

at least the same level of accuracy, yielding a value for the chi-square
test of fit of 0.00 with 16 degrees of freedom.

The results of the analyses carried out thus far indicated that the
estimation routine provides maximum likelihood estimates for parameters
in all components of the model considered here. In addition, chi-square
statistics for the test of fit of the model agreed with those independently
arrived at by Schmidt for the cases where his data were reanalyzed.
The chi-square value resulting from estimating parameters in the cor-
rectly specified model for the new set of artificial data was, as would
be expected, quite close to zero. The asymptotic standard errors,
while no strictly comparable values were available, appeared to gener-
ally agree with their approximations in Schmidt's work in instances
where comparisons could reasonably be made. In the analysis of the
new data these values were, as expected, quite close to zero. Based
on these results, it was concluded that the estimation routine performed
satisfactorily and could be used in conjunction with a real set of data.

It is to the results of this effort that we now turn.

Analysis of Data Drawn from the National Longitudinal Study of the

High School Class of 1972

As an attempt to illustrate the applicability of the model developed
herein it was applied to a real set of data drawn from the National
Longitudinal Study of the High School Class of 1972. Sponsored by the
National Center for Education Statistics, the NLS is an ongoing large-
scale survey project whose primary purpose is the observation of the
educational and vocational activities, plans, aspirations, and attitudes of

young people after they leave high school. The Educational Testing
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Service began full-scale base year data collection in the spring of 1972.
Data from over 18,000 seniors from a national probability sample of more
than 1,000 high schools was collected. Beginning in the fall of the
following year, Research Triangle Institute initiated the first of four
follow-up surveys of these same subjects. As of the end of the third
follow-up, over 13,000 subjects had responded to all of the instruments
administered.

The particular variables drawn from this data base included sex,
ethnicity, father's educational level, mother's educational level, hours of
English and foreign language coursework, and reading and vocabulary
scores. To facilitate the analysis, sex and ethnicity were recoded to
binary-valued variables. For sex, zero represented female and one
represented male; for ethnicity, zero represented Black and one repre-
sented white. Within- and between-school variance-covariance matrices
were obtained involving these variables. These matrices are found in
Figures 5 and 6 respectively.

The model to be estimated treated sex, ethnicity, father's educa-
tional level, and mother's educational level as observed exogenous
variables. Hours of English and foreign language, together with reading
and vocabulary scores, constituted the observed endogenous variables.
Father's and mother's educational levels provided observed measures of
a latent variable of socio-educational status. The hours of English and
foreign language were seen as observed measures of a verbal-skill
coursework variable. Likewise, reading and vocabulary scores were
construed as measures of a verbal achievement trait.

The latent exogenous variables of sex, ethnicity, and socio-educa-

tional status were hypothesized to have a causal relationship with both
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verbal-skill coursework and verbal aptitude. Similar models were
assumed to operate at both the within-and between-schools levels. The
non-error-related components of the model are diagramatically presented
in Figure 7, while the general parameterizations of the components of
the variance-covariance matrices are set forth in Figure 8.

These variance-covariance matrices, together with the within- and
between-group sample sizes, served as the input to the estimation
routine. In spite of the expectations that a solution would be readily
produced, even after 500 iterations the values of the derivatives of the
non-fixed parameters had not converged on the criteria for the termina-
tion of the iterative estimation procedure. Examination of the interme-
diate estimates and the values of their first derivatives indicated that,
while changes of considerable magnitude continued to take place at each
iteration with respect to the parameter estimates, little improvement

could be discerned in terms of their derivatives approaching 2zero.

Analysis of a Final Set of Artificial Data

As a final step in confirming that the problems experienced in
estimating parameters for the model employing the NLS data were not
simply due to some undetected flaw in the estimation routine, one addi-
tional set of artificial data was generated. This data was based upon a
model of similar complexity as that used to produce the second artificial
data set. The most pronounced difference lay in the fact that the
elements of ZC and Ze were no longer restricted to be relatively similar
in magnitude. The values of the parameter matrices used to generate
this data set are presented in Figure 9. Once again the same under-

lying structure prevailed at both the within- and between-groups level.
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/ Scores
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ex Achievement
Ethnicity / / \ Vocabulary
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Figure 7. General Diagrammatic Structure of Estimated Model

Using NLS Data.
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Figure 9. Parameter Values Used to Generate Variance-Covariance Matrices
for Example IV.
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The resulting values for Z and Zb are displayed in Figure 10. Based
on values for n and m of 100, the final S and Sb matrices were derived
and are set forth in Figure 11.

These data were then analyzed treating as free the parameters
included in Figure 12. As with the NLS data, the estimation routine
failed to provide stable parameter estimates even after more than 250
Fletcher-Powell iterations. In addition, correct values for the param-
eters were used as starting points for the estimation procedure. The
first derivatives of the parameters evaluated at this point proved to be
quite close to zero, as would be the case assuming the formulae were
correct. Since the specific parameters being estimated and the form of
the model itself is quite similar to that successfully treated in the case
of the analyses of the second artificial data set, the problem is not with
the program itself, which has successfully implemented the steepest
descent and Fletcher-Powell methods. Further, the problem seems to be

with their application to data sets which are difficult to analyze.

Attempted Solutions for the Estimation Problem

In analyzing the second set of artificial data for which parameters
at both levels were defined to be equal, it was noted that, given iden-
tical starting values, the derivatives associated with the parameters at
the within-groups level were larger than those for the comparable
parameters at the between-groups level by a factor associated with the
number of subjects within each group. Since the steepest descent
method alters estimated values for parameters in proportion to the size
of their first derivatives, changes in estimated parameter value first

took place with respect to the within-groups parameters. Initial values



74

0¢ 0 0S

o1t

11

‘Al ardwexy aoj saotajepy

0¢¢
8°0S

ovv
9°'101

00z°€

0SS
L21
0011
1 4°14
v9°veb L

000°02

aw pue T Jo sanjep

ot
G¢
0¢
0s = =X
86G

S6v ‘1

08¢

‘01 aandig



75

00°0g0°€

00°0 00°0S0°S 00°0
00°¢oe  00°0 00°S0S

00°0IT‘IT 00°0

00°TTT‘T

—

oL'6¢ 00°0 0S'6V
L6°¢ 00°0

06°801

‘Al ardurexyg ua0j saoLIIB nm pue § ayj Jo sjuawalyg Je[n3uerl] JaMo]

00°022 ‘22 00° 0SS ‘SS 00°010°T
08°0€1°‘S 00°.28°21 00°S2S°2
00 0vb ‘v¥ 00 00T ‘TII 00°020°2
09°192 ‘01 00 $S9°S2 00°0S0°‘S
00°002°€2¢  ¥9°868°0SL 00°86€°09
00°000°020°CZ  00°S66°0ST
oo.owm.mml
00°0 08°L1¢ 0S " ¥¥S 06°6 l
S6°V 6¢°0S g€L°G¢l SL've

00°0 09°GeV

68°0T 857001

00°680°T 08°61
9% 1S¢ 05" 6%

00°891°C  62°09¢°‘L ¢0°26S

00°008°6T SO'08%‘T
02°LL2

"IT aan3rg




76

1 0 1 0
0 1 9, 1
0 o
L 1. (I-A)
A& A &
o, 1 o 0
0 o 0 0.,
5, &3 5 &3
(SR 4N CAL
25.000 0.000 0.000
0.000 1,413.400 0.000
0.000 0.000 o,
v &Y
£ 8b
1 0 0 0]
0 10 0o o0
0 0 5 0
o 0 o 5
¥, & wwb
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for the Fletcher-Powell algorithm were, as a result, closer to the actual
value for the within-groups parameters than for those for the between-
groups parameters.

Initial efforts of the Fletcher-Powell algorithm were also directed
toward changes in the values of the within-group parameters since
Fletcher-Powell departs from steepest descent only as the successive
c:orrections to the initial estimate of the information matrix (an identity
matrix) make themselves felt. As a result, the values of the between-
groups parameters tended to lag behind those of their corresponding
within-groups parameters. Considerable oscillation in their wvalues
continued to be observed even after the values of the within-groups
parameters had substantially stabilized.

One set of attempts to improve the behavior of the estimation
procedure involved forcing the steepest descent segment to perform
additional iterations. In retrospect, it was not terribly surprising that
the marginal improvements in reducing the number of Fletcher-Powell
iterations for the simpler problems did not translate into a successful
approach to solving the problems associated with the more difficult
problems.

As an alternative, the steepest descent segment was modified so as
to alternate between activity in changing the values of all parameters
and simply concentrating on changes in the values of the between-groups
parameters holding the values of the within-groups parameters fixed.
When this modified approach was tried with the data sets that had
demonstrated convergence previously, small reductions in the number of
Fletcher-Powell iterations for the estimation procedure to arrive at

solutions were observed. Once again, the modified estimation procedure
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failed to generate correct, fully-converged estimates for the parameters
associated with the more difficult data.

When the third set of artificial data was used as input to the
estimation routine a potentially revealing result was obtained. Once
again, the derivatives displayed the same pattern .(v15 a v:s) the different
levels of the parameters. In addition, however, several specific param-
eters were observed to have values for their derivatives that far ex-
ceeded those of the other parameters at the same level. The steepest
descent phase terminated after making some modifications to the values
of these parameters and little impact on those associated with the re-
maining parameters. Fletcher-Powell proceeded in the same vein until
from 30 to 50 iterations had taken placé. At that time, considerable
changes were observed to take place in the values of nearly all param-
eters. This would appear to reflect the attainment of an approximate
information matrix that departed substantially from the identity matrix.

Despite the substantial changes in the wvalues of all the param-
eters, convergence proved to be elusive. Many of the parameters were
observed to take on relatively stable values while several continued to
slowly oscillate. Inspection of the relatively stable parameter values
revealed them to be within 10 or 20 percent of the generating values.
Those for the unstable parameters proved to be nearly unrelated to

those of their progenitors.

An Illustrative Interpretation of the NLS Results

At this point it may be useful to illustrate how interpretation of
the results from'an application of the model might be performed. While

the estimation procedure failed to yield fully converged estimates for
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the parameters in the model dealing with the NLS data, the intermediate
values at the point at which the estimation routine stopped provide a
reasonable set of results for this purpose. These intermediate results
are presented in Table 7. The following interpretation of these results
is based upon the assumptions that the model had acceptable fit to the
data and that all of the point estimates ;differed from zero by more than
two standard errors.

For ease in interpreting the parameter estimates associated with
the linkages in the model (with the exception of those associated with
measurement error), the estimates have been included in the diagram-
matic form of the model presented in Figure 13. The estimates arising
at the within-schools level appear alone while those at the between-
schools level are contained within parentheses. Parameter values that
were fixed are underlined to distinguish them from those which were
unconstrained during the estimation process.

With respect to both the between- and within-schools levels there
are two general sets of results that might be of interest. The first
involves the measurement aspect of the model while the second is asso-
ciated with the interrelationships among the latent variables themselves.
To keep the discussion at a more substantive level, the measurement
related results are not addressed in any great detail except to note that
the very large values associated with 619 and 622 at both levels points
to a serious problem in the definition of a common, verbal coursework
variable. This is clearly a function of the low degree of association
between the two variables. Were the model to be reformulated based on

these results, it would be preferable to posit independent latent variables
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Table 7

Intermediate Parameter Estimates for NLS Data

General Within-School Between-School
Parameter Level Estimate Level Estimate
8, .762 .643
8, .259 .014
64 .108 .062
6, .084 .093
65 2.352 .919
66 1.910 .008
8, 1.590 .051
6g -5.042 -.775
8g 2.323 -.378
8.0 4.680 .304
8,1 .868 -.633
8,0 2.053 3.267
613 2.085 .908
6.4 .209 .809
615 .823 .903
8.6 6.107 179.138
0,7 166.412 .152
9.8 5.155 .379
619 6973.252 9284 .864
850 8.803 .343

(continued)
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Table 7 (continued)

General Within-School Between-School
Parameter Level Estimate Level Estimate
621 5.429 .234
6 18297.432 “ .002

22
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associated with both of these variables rather than one common latent
variable.

Turning to the estimated relationships among the latent exogeneous
and indogeneous variables set forth in Figure 13 we now consider the
within- and between-schools results in turn. At the within-schools
level several interesting results may be noted. Sex, ethnicity, and
socio-educational status (SEdS) are all related to verbal skill coursework
in ways that might be expected. The positive coefficients for ethnicity
and SEdS simply indicate that, at the within-schools level, those who
are white and those who come from families with parents having high
levels of education tend to take more units of verbal-related courses.
The negative coefficient associated with sex indicates that males are less
inclined to take such courses, all else being equal.

With respect to verbal achievement the results at the within-schools
level are not entirely anticipated. Sex has a coefficient with a positive
value while SEdS has a negative, albeit small, value. As would be
expected, ethnicity and verbal skill coursework both are related to
verbal achievement with positive coefficients. It would appear from
these results that the typical univariate relationships observed among
sex, parents' education, and verbal achievement are explained more by
the indirect effects of these two background variables through verbal
skill coursework than through direct effects on verbal achievement
itself.

The results at the between-schools level differ considerably in
both magnitude and direction from those at the within-schools level.
The coefficients  linking ,the school-level aggregates of sex, ethnicity,

and SEdS to verbal skill coursework are considerably smaller than their

’
§
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counterparts at the within-schools level. In addition, at this level,
ethnicity is associated with verbal skills coursework through a coefficient
having a negative value implying that, for schools of equivalent sex and
SEdS, those that are not composed entirely of white students have
marginally more verbal skill coursework taken by the students.

With respect to the coefficients relating sex, ethnicity, SE4dS, and
verbal skill coursework to verbal achievement at the between-schools
level several differences may also be noted with the results at the
within-schools level. At this level, sex has a small negative coefficient
while the SEdS variable has a coefficient with a small positive value.
Both are opposite in sign to their within-schools counterparts. On the
other hand, both ethnicity and wverbal skill coursework are associated
with positive coefficients as they are at the within-schools level.

In general the exogeneous school-level aggregate variables of sex,
ethnicity and SEdS have a much weaker effect on verbal skills course-
work at this level than at the within-schools level. This would appear
to reflect an institutional emphasis on verbal skill type coursework that
is considerably less sensitive to such factors as sex, ethnicity, and
parents' educational level than the behavior of the students within the
schools. Unfortunately, such factors as ethnicity, parents' level of
education, and verbal skill coursework are even more strongly related
to verbal achievement at the between-schools level than at the within-
schools level.

The results discussed in this section should be viewed as illustra-
tive of the type of interpretation afforded through the use of this

model. Since the parameter estimates used were not fully-converged
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estimates, their values should not be used to come to any real substan-
tive conclusions with repsect to this set of variables. Furthermore, the
lack of any estimated standard errors makes the exercise carried out at

this point even more tentative in nature.



Chapter 6

Summary of Results, Conclusions, and New Directions

In some respects the nature of the work presented here is atypical
of that necessary for most dissertations in educational psychology.
Rather than being directed at answering a specific set of questions
through the use of available analytic techniques, its purpose was the
implementation of a relatively new analytic technique in the context of
multi-level data. As such, the most desirable result would be a useful
process.

The results of the work carried out thus far are not, therefore,
confined simply to the set of analyses performed, but include the devel-
opment of the components necessary for those analyses. These compo-
nents included the statement of the model itself, the first and second
derivatives of the effective part of the log likelihood function and the
computer program which makes use of them for the estimation of param-
eter values and asymptotic standard errors. Inasmuch as can be deter-
mined from the behavior of the computer programs on the first two sets
of artificial data where the expected and correct results were obtained,
the process has been defined and implemented. The question that
remains at this point has to do with its broader usefulness. The failure
of the estimation routine when applied to the NLS data clearly indicates
that, as things now stand, the process cannot be successfully imple-
mented for all sets of data. In the following section, these results are
reviewed and the implications for further work in this area are con-
sidered. For the convenience of the reader, where equations are

referenced they appear fully, with their original equation number.

86
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The Model
The model which was developed has, as its basis, the simple
random effects model in the multivariate form. Thus, the overall
variance-covariance matrix was seen as being composed of two additive

components:
Zz =2+ Zb (34)

where the terms on the right hand side of the equation arise at the
between-groups and within-groups levels, respectively.

Under the assumption of multivariate normality, previous authors
have addressed the problem of arriving at unrestricted maximum likeli-
hood estimates for Zb and X. Work has also been carried out to permit
the restricted maximum likelihood estimation under the constraints of
some very simple models. The efforts of the current author were
directed at formulating a more general structural equation model appli-
cable to this type of hierarchical data. The model developed is appli-
cable to both the within-groups and between-groups variance-covariance
matrices simultaneously, and was generally patterned after the linear
structural equation model considered by Joreskog, Wiley, and others.

The full models that were developed for Zb and X are as follows:
— | -
FEr" + ¥, FZCB'(I-A)-tA'
R I I I SO S (35)
A[(I-A)-legB'(I-A)-t]A'
(I-A)’IBzCr' +

-1 -t,.,
[ AL(I-A)  Zg(I-A) "JA" + ¥,
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rbzcbrg + wwb | rbzcb B! (I-A) A
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Maximum Likelihood Estimation

Under the assumption that the underlying data follow a multivariate
normal distribution, Schmidt (1969) has shown that the effective part of
the log. likelihood function, where the parameters are simply Z and Zb,

can be expressed as follows:

— m-mn _m _ mn -1
log L = log (IZ]) Zlog (|Z+an|) 7 tr {= °s}

2
(20)
- Jtr {(Z+n5)7 s}
where

1 3 2 .

S m jil 2 (35 = %3 (5 = v3) (17)
n n -

 “wm 2 W "L W mE ) (18)

Substitution of the parametric expressions for X and Zb in this
equation yielded the fully paramterized version of the log likelihood
function. The values of the parameters which maximize this function
for a given S and Sb are maximum likelihood estimates of the

parameters.
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Test of Fit and Standard Error Estimation

Given a set of maximum likelihood estimates for the parameter
matrices in a particular application, it was seen possible to produce a
statistical test of the fit of the model to a given set of data. This test
made use of the ratio of the value of the likelihood function evaluated
at the solution point for the maximum likelihood estimates to the value

over the unrestricted solution space. The test statistic,

x2 = 2(log L - log L (50)

unrestricted restn'cted) ’

is, for large sample sizes, distributed as chi-square with degrees of
freedom equal to the difference between the number of unique elements
in Zb and I and the number of unique parameters estimated in the
model.

It was also possible to produce asymptotic standard errors asso-
ciated with the estimated parameters. The procedure considered made
use of the fact that the asymptotic covariance matrix of the maximum
likelihood estimators is equal to the negative inverse of the expected
value of the matrix of second partial derivatives. Based on earlier

work by Schmidt (1969) it was seen that this could be expressed as

follows:
2 2 -
] - i I ey
i ] 960.90.
3 (48)

solom) o, 3(Z+n2b)-1 2E + 8 %) (540 5)7] a(z+nzb);
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Thus, it was necessary to obtain expressions for the first and
second derivatives of Z and Zb with respect to individual parameters
and parameter pairs, respectively. These are set forth fully in Appen-

dices B and C.

Obtaining the Maximum Likelihood Estimates

It was seen that obtaining the maximum likelihood estimates of the
parameters in a particular application is not a simple process. In
theory, the solutions for the set of equations resulting from setting the
first partial derivatives of the log likelihood function equal to zero
would provide estimating formulae for the various parameter estimates.
The complexity of the set of simultaneous equations precluded the
derivation of such a set of formulae. Alternatively, a set of numerical
procedures based on the method of steepest descent and the method of
Davidon-Fletcher-Powell were adopted to provide the values of the
estimates for any particular application. The matrix expressions for the
first partial derivatives of the log likelihood function, necessary for the
application of both methods, were derived and presented in Appen-
dix A. The adequacy of these approaches is considered in the dis-

cussion of the results of their application.

Results of Analyses

The first set of analyses which estimated parameters in the model
made use of a set of data employed by Schmidt (1969). As a result of
Schmidt's work, the parameter estimates for four relatively simple
models of the sort considered herein were already known. When the

present estimation procedure was applied to those data to estimate the
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parameters in the same model the same results were obtained in each
case. It was concluded that the estimation procedures implemented by
the present author were correct and satisfactory insofar as these simple
models were concerned.

A new set of data was generated based on a more complex struc-
ture than that found in Schmidt's work. The model used to generate
- this second set of data contained non-zero values for at least one
element in each parameter matrix of the full model. This set of data
was then analyzed employing the correctly specified model to see if the
generating values would be faithfully reproduced. Once again, the
estimation procedure performed adequately and yielded the expected
results.

Since the estimation procedure would be highly unlikely to provide
correct parameter estimates in the event that some error were present
anywhere in the conceptual process, including the programming stage,
it seemed reasonable to conclude that the estimation procedures had
been, in fact, successfully implemented.

The estimation routine was then used in an attempt to generate
parameter estimates for a model which addressed aspects of the within-
and between-school variability of a set of variables drawn from the
National Longitudinal Study of the High School Class of 1972. Despite
the use of an excessive number of iterations, the estimation routine
failed to yield fully converged estimates for the free parameters in the
hypothetical model.

In an attempt to gain a better understanding of the failure of the
estimation procedure in the NLS application, an additional set of artifi-

cial data were generated using a model which would yield sharply
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unequal variance terms within each variance-covariance matrix. When
the estimation routine was applied to this set of data using the
correctly specified model, a satisfactory solution was not obtained.

A variety of attempts were then carried out to improve the conver-
gence of the estimation procedure. Initially, the procedure was modi-
fied to require the performance of a larger number of steepest descent
iterations. Further modifications were directed at allowing the steepest
descent method to alternate between improvements on all parameters and
improvements on the between-groups parameters only. These efforts
failed to produce an estimation procedure that would accurately replicate

the generating parameters associated with the final artificial data set.

Conclusions

At this point, it seems safe to conclude that the original goals of
the effort reported here have been met to some extent. The model for
linear structural relations applicable to multi-level data was successfully
derived. The conditions that must be satisfied for the attainment of
maximum likelihood estimates of the parameters in the model were
derived. Procedures for testing the fit of an estimated model and for
producing asymptotic standard errors associated with estimated param-
eters were set forth. Finally, a computer program intended to yield
parameter estimates through the use of iterative methods was success-
fully implemented.

What remains as a problem confronting the general use of this set
of products is the inability of the estimation routine to provide satisfac-
tory parameter estimates when confronted with a difficult set of data.

Should it have been possible to specify the conditions under which
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convergence could be assured, this handicap would not prove to be
such a problem. Alternatively, had an alternative estimation procedure
insensitive to such problems been found, this problem would have been
overcome. Such was not the case. Further work in either or both of
thes areas is clearly necessary.

While the constraints facing the present author precluded an attack
on either of these fronts, experience with the currently implemented
estimation routine provided some results leading to speculation on the
direction in which efforts to attain the latter goal should proceed. This
speculation is briefly set out below.

For the steepest descent procedure to operate effectively in making
progress toward the maximum likelihood estimates associated with a
particular problem it seems necessary that the matrix of second deriva-
tives be similar, within a constant multiple, to an identity matrix. In
this situation, changes in the intermediate values of the parameter
estimates would proceed relatively uniformly. The nature of the current
application vitiates against this. Where the structure at both levels of
the hierarchy is the same, changes take place at the within-groups
level much more rapidly than at the between-groups level. In light of
the behavior of the estimation procedure when applied to the third set
of artificial data, it seems clear that this phenomenon can also take
place independently of the multi-level nature of the data to which it
applies with some parameters at a given level being subject to substan-
tial changes while others change but little.

It is also clear that the effective operation of the Davidon-

Fletcher-Powell procedure is dependent upon the characteristics of the
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data with which it operates. Joreskog has indicated the the interme-
diate parameter estimates associated with the LISREL problem must be
"close" to the solution point for convergence to take place. The nature
of this closeness would seem to be related to obtaining a region within
which the matrix of second derivatives is relatively constant. Ideally,
steepest descent would terminate only after taking the intermediate
estimates into such a region. In the current application, it seems as
though this does not happen. At least with the two more difficult sets
of data to which the currently implemented estimation procedures have
been applied, the steepest descent phase terminates prior to the attain-
ment of such a region. At these points, the Fletcher-Powell routine is
incapable of providing a converged solution, probably because the
matrix of second derivatives is quite variable within these regions.

Should the foregoing speculation prove to characterize the nature
of the estimation problem encountered in the course of the current
research, any iterative approach which will generally be capable of the
attainment of maximum likelihood estimates for the type of model
addressed here needs to explicitly incorporate the matrix of second
derivatives and not an iterative approximation to it. Thus, it seems
that the most promising approach to adopt is that of Newton's method,
which makes use of expressions for both the first and second deriva-
tives of the likelihood function with respect to the parameters of the

model.
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Appendix A

First Derivatives of the Log Likelihood Function

With Respect to the Parameter Matrices
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Appendix B

First Derivatives of Z with Respect to

Individual Elements of the Parameter Matrices
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Appendix C

Second Derivatives of 2 with Respect to

Individual Elements of the Parameter Matrices
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Appendix D

Deck Setup for Use of Standard Error Routine
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ATTACH,X,JOESSEPROGRAMLGO.

REWIND, X.

X.

*EOR

> Title Card < (required)

> Main Parameter Card < (required)

> Parameter Set < (1 required for each non-zero parameter matrix)
99 (required to terminate reading of parameter sets)

*EOR

Title Card

Descriptive information printed at the start of each job

Main Parameter Card

Consists of eight fields of three digits each, right justify all
information
1. number of groups

2. number of subjects per group

3. number of observed exogenous variables

4. number of observed endogenous variables

5. number of latent between groups exogenous variables
6. number of latent within groups exogenous variables

7. number of latent between groups endogenous variables
8. number of latent within groups endogenous variables
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Parameter Sets

One

set of these is required for each non-zero or non-fixed

parameter matrix.

Each set is composed of five items:

1.

The

The

The

The

The

A parameter identification card containing a number from 1
to 16 right justified in columns 1-2.

A format card describing a row of the parameter matrix.
One card for each row of the parameter matrix containing the
estimated (or fixed) values for the elements in that row.

A format card describing a row of the parameter specification
matrix. -

One card for each row of the parameter specification matrix.

correspondence between the parameter ID numbers and the
specific barameter matrix is set forth in Table 1.

format card describing the rows of the parameter matrix
should contain only F or E formats.

format card describing the rows of the parameter specification
matrix should contain only I formats.

parameter matrix should be presented as a rectangular matrix
(e.g., symmetric matrices cannot appear as lower triangular).
parameter specification matrix is obtainable from the printout
of the estimation routine and should consist of only 0's (for
fixed elements) and integers ranging from 1 to the total
number of unique parameter estimates. Elements which have

been constrained to be equal should have the same number.
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Table 1

Correspondence Between Parameter ID Numbers and Parameter Matrices

Number Matrix
1 A
2 B
3 A
4 ze
5 2z
¢
6 ¥y
€
7 ¥y
w
8 r
9 Ab
10 Bb
11 Ab
12 zeb
13 p3
tb
14 \Ps
b
15 y
Yy
16 r




Appendix E
Listing of Standard Error Program
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Appendix F
Listing of Estimation Program
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