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ABSTRACT

HIERARCHICAL ORGANIZATION AND ADAPTIVE DYNAMICS

'IN RELATIONAL SYSTEMS

By

Tom Michel Kbplyay

The aim.of the thesis is to investigate certain biological con-

cepts related to adaptation of hierarchical systems.coupled to general

environments. A system.model is constructed to account fOr some mathe-

matically tractable aspects of adaptive behavior.

The organizing principles underlying hierarchical systems are

applied to define levels of dynamical invariance of the system structure,

and a close relationship between structure and function is demonstrated.

Certain dynamical characteristics of general systems are related to

structural perturbations due to the environment. The concepts of sys—

tem complexity, vulnerability and relational stability are discussed

within the framework of relational systems.

A class of relational dynamical systems are submitted as natural

candidates for realization of a given set of input-output specifications.
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"...usually, there is a welldmarked negative correlation between the

scope and the soundness of the writings...The sound work is confined

either to engineering or rather trivial applications; ambitious formu-

lations remain vague."

Anatol Rapoport

In light of the above we intend to be relatively ambitious, and

hopefully not so vague.
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0. INTRODUCTION 
"The time has come," said the Walrus," to speak of many things..."

L. Carrol

The present dissertation explores some of the problems related to

structure and behavior in dynamical systems and their influence on

adaptation.

The model proposed (we are much too humble and wise to call it a

theory) is intended to shed some light on the systems fOundation of

biological adaptation. Indeed, to be more precise, we focus our attention

on certain salient aspects of biological organization that are sufficiently

well understood and defined to lend themselves to mathematical analysis.

The methodology of the investigation consists of a Judicious blend

of ideas and techniques from.the diverse but related fields of systems

Both of these fields presuppose a certainscience and relational biology.

Inamount of mathematical maturity and a reasonable level of competence.

particular, basic knowledge of graph theory, dynamical systems and ab-

stract algebra is assumed.

To a first approximation the model includes the following concepts:

a) Emergent and adaptive behavior in dynamical systems; with bio-

logical interpretations.

 



 

 

The general properties of system deep and surface structuresb)

and their respective role in storage of biological information.

c) The principle of biological function change and adaptive

capacity in (M, R)-systems.

d) The functional and structural aspects of hierarchical organ-

ization in relational dynamical systems.

e) Identification procedures in systems modeling and the levels

of isomorphism between hierarchical structures.

f) Concepts related to self-organization, adaptation and regu-

lation along with the dynamical properties of biosystems

coupled to specific environments.

Obviously, as in any other speculative model, there exist definite limi-

tations. Within the present scope and format, we cannot hope to answer

all the questions pertaining to adaptive features of real biological

systems. What we can do is to offer possible interpretations and solu-

tions to some adaptive phenomena encompassed by the model.

A concrete modeling methodology is developed to describe essential

characteristics of adaptation, and beyond the fundamental hypotheses the

procedure is fairly algorithmic; however possible flaws in the hypotheses

can invalidate some results. For the above reason every attempt was

made to incorporate biological principles in a manner that they fit the

model framework, yet the biological meaning is not lost in the process of

abstraction.

Another inherent and almost inescapable limitation is the personal

bias of the investigator.



 

 

The formulation of the basic axioms automatically defines the

Hence, the selection of organizing and basic assump—modeling horizons.

tions is to be made with the model content and scope in mind. Content

does not necessarily preclude scope, but they do lie at almost opposite

ends of the modeling requirements. If the model is to have a fairly

large (specific) content than generally the scope is narrowed and con-

versely. Therefbre it is a futile attempt to eliminate all subjectivism

on the part of the investigator, only an attempt can be made to find a

proper balance.

Assuming that the above problem is under control, there still remains

some obstacles related to the particular tools used in the analysis.

The potential complexity' of a problem.such as adaptation is infinite,

yet we must be content to approximate reality by finite means.

Techniques related to identification of structure, function and

dynamics of biological systems rely on idealizations that are by physi-

cal necessity finite.

Consequently, in view of the above constraints we venture forth

the qualified statement that the present model is sufficiently objective,

wide in scope and specific in content to satisfy a variety of aesthetic

and scientific criteria.

The novelty of the approach lies in the fusion of different fields

to yield a unified, if modest picture of adaptive behavior in relational

biological systems.
 



 

 

The main contribution of the present thesis is the construction of

a graph theoretic systems framework for class of abstract biological sys-

tems known as (M,R)-systems. Some results are derived on the realizability

of (M,R)-systems within a graph representation context and certain con-

cepts associated with adaptive structural changes are investigated. To

relate (M,R)-systems to the basic ideas in systems science and to formu-

late a concept of hierarchy a methodology is developed whereby fundamental

structural components in an arbitrary system can be isolated with respect

to an observed set of activities. The literature survey is integrated

with the thesis and each topic is reviewed in the appropriate section.

To provide a loose framework for the modeling techniques introduced

in Chapter I, we shall examine some problems related to analysis of struc-

ture and function in a specific biological discipline; cytology. The

discussion is intended to serve as motivation for the ideas exposed in the

next chapter on system modeling and the nature of perceived hierarchies.

One important aspect of cellular metabolism is enzyme activity.

Depending on the skill and ingenuity of the investigator several structural

components can be distinguished for a specific enzyme. These may consist

of;

a) individual atoms:

b) NH2 amino group, COOH-acid group,

c) amino acids,

d)‘ proteins,

 

 

 
 

 



 

 

The structural decomposition above constitutes a biological hierarchy,

in the sense that units at one level aggregate via reactions to form

the next level. The amino and acid groups combine to form amino acids,

which in turn serve as building blocks for proteins. Within certain biotic

and abiotic bounds, units at each level may constitute invariant aggre-

gates for a class of chemical reactions and metabolic activities. For

some chemical reactions catalyzed by specific enzymes, for small variations

of temperature, pH and substrate concentration the enzymes may be invariant

units. If the temperature is increased the enzymes may decompose into

proteins and subsequently into the amino and acid groups.

If the original aim of the investigation was to isolate factors

responsible for the catalysis of some chemical reactions in the cell and

the activity of catalysis is assigned observable (measurable) features

such as:

a) pH,

b) temperature of solution,

c) concentration of an identifiable compound (substrate),

then the enzymes should be isolated as responsible chemical units.

The initial point of view concerning the system (cell) is to regard it

as an "imperfect" black box. An activity known as catalysis exists and

certain outstanding features are recognized as characteristic of the

activity. At this stage the cell is a black box, with a class of chemi-

cals as input, catalysis as internal process and a new class of chemicals

as output.

 



 

However, the investigator is still free to intervene in the system and to

perform.sets of measurements appropriate to the characteristic features

of the catalysis activity. Thus the system identification corresponds to

an imperfect black box approach. Once the measurements are made (temper-

ature, pH, substrate concentration, etc.) and some structural entities

(enzymes) are isolated as possible significant components generating the

catalysis, the components haveto be reassembled in a manner to account

for features of catalytic activity.

If an abiotic factor such as temperature is strongly varying in the

cellular system, then, instead of enzymes the amino acids may be picked

as natural candidates for reconstructing the activity.

The function-structure analysis in Chapter I is to be interpreted

in this light. A structure underlying and generating a function (activity)

in our framework is not absolute but rather perceived. It depends on the

original choice of behavioral features associated with the activity, the

measurement process, refinement of techniques and other experimental limi—

tations.

The hierarchical organization considered in this thesis roughly cor-

responds to the meaningful aggregations of structural units with respect

to an observed activity.

Consequently enzymes are natural units for catalysis, whereas amino

acids may be fundamental for protein synthesis. When enzyme synthesis is

considered ih the cell, a class of proteins may be associated with that

specific metabolic activity.

 

 



In many respects biological systems (cells) differ from physical sys-

tems. An activity in a biological system.can persist in time in spite of  
the fact that the underlying structure is changing.

As an example again we may refer to enzyme catalysis. The individual

enzymes have a relatively fast turnover rate, yet the catalytic activity

characteristic of their presence in a chemical reaction persists. On the

other hand, structural features may be relatively constant yet the asso—

ciated activity varies. If amino acids are considered basic then struc-

tural protein, enzyme synthesis can be both interpreted as generated by

the same structural invariants.

Consequently the structure-function relationship in a biological con—

text is a very delicate matter and no more should be attributed to Chapter

I than a possible explanation for aspects of the relationship which may

be based on the concept of levels of structural invariance exemplified by

the amino acid+protein+enzyme structural succession.

 

 

 



 

 

 

CHAPTER I

SYSTEMS FOUNDATIONS

l.l Identificaton and Decomposition of Arbitrary Systems

Standard procedure in the analysis of both physical and biological

systems is to first isolate the system.under consideration from its

environment and then to decompose the system into a collection of sub-

units. The underlying motivation, which is a fundamental postulate of

systems science, is that structure and behavior of the total system are

reconstructable from the constituent components. The decomposition

singles out the subunits that can be relatively well modeled in a free-

body form by referencing its dynamics to previously documented analogous

forms. Having identified the structure or behavior of the isolated

(free-body) components the total system is reassembled by means of the

system graph topology and the induced constraint equations.

Usually structure of the fundamental subunits is elusive and general

methods exist only to derive the behavioral equations of the system by

modeling the components as black-boxes and subjecting each unit to

preselected set of test signals, which represents a sampling of the actual

environment. [Z-l, Z-2, Z-3]. Immediately several problems surface at

the decomposition stage of the system. First, the investigator singles

out components that are meaningful in the system structure; by the above

we mean that each component is relatively stable within the system over

a period of time and that each participates in the system activity as an

8

 

 

 



 

identifiable subunit. The identification process consists of observing

the system.activity, and with respect to the observed behavior performing

a set of measurements on the system. The components that are subsequently

singled out as meaningful should behave as coherent units, at least over

the time interval of the observation and measurement. In addition, each

component is assumed to have some effect on the system.behavior. It is

well known that the possible perturbations caused by the measurement pro-

cess might alter the system behavior, hence care must be taken to choose

a set of measurements to which the system is relatively insensitive.

In the present chapter we shall outline an identification metho-

dology from an arbitrary observer's point of view, which will lead to a

general model of hierarchical systems. The procedure incorporates the

classical techniques of "tearing and reconstruction" as well as some

fairly rigorous methods based on set theoretic feundations.

Each major mathematical tool will be defined as it is introduced.

It is assumed the experimental problem of defining system boundaries and

separating the system from its environment has been resolved.

 
Characterization of Fundamental Subunits

Given a system S delineated from its environment Es structurally,

but still coupled to ES functionally, we undertake the analytical task

of specifying its structure and behavior. From the observer's point of

view, considering the system as a black box, it may perform a set of simul-

taneous activities and the problem becomes one of identifying structural

characteristics responsible for this activity class.
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Let the set of activities be denoted as [Al’°"An] (where [ ] denotes

an ordered set); any Ai corresponds to measurably differentiated activity

from any other A3 in the set. In other words, the set of activities

can be pairwise distinguished by at least one physical measurement. Each

Ai may differ from any other A3 in several measurable features if

A.=[f1 il"'°fini] and A3 = [le’°°°fjn ], but there must exist at least

3

one distinct characteristic feature fi3 not shared by any other activity.

Example 1.1-l

a) Physical system - digital computer

Ai A compiling of a specific program pi

A1 = [fil,ooofini]

f11 = state of scanning the program Pi

fi2 = identification of subroutines

fin = state of translation to machine language.

1

b) Biological System.- cell metabolism

A .
AJ = cell mit031s

AJ "' [£32,000f1nj]

fJl - state of condensation of chromosomes

f32 = concentration of ions in the cell

fjn = acidity of chemical medium.

J

c) Social system - social groups

Ak 2 Antagonistic behavior
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AR = [fkl,...,fknk]

fkl
degree of facial contortion

fk2
physical posture

fknk = emotional state

To every Ai, let us associate a specific decomposition of the system S,

induced by E1. The decomposition will be assumed to have the following

properties if E1 induces [Cil"°"ciki] = Ci,where Ci is the set

decomposition of S

a) the union of C1 , i = l,...,n is the total system S

J

b) the intersection of any two Cij is the null set, i.e.

 

 

 

c (l c. = ¢
131 132

Example 1.1-2

Ei'> Cl = [011.012.013.01hl

C11

S a

(I‘Clh

E2 + C2 — [021’C22] [El’Ez] + Clr\02

E>\_ r}

0 C12 C21

21

C22

El, E2 are the abstract relations inducing the point set equivalence

partitioning Ci and 02 of S. Hence Cl can be considered as the

realization of E1.

  



 

12

We recognize the above decomposition as an equivalence parti-

tioning of the system. S regarded as a point set. We are assuming there

exist nonoverlapping subunits in the system generating the specific

activity. By our previous discussion this is a very reasonable assump-

ition. If there exists a decomposition of the system then each subunit

should be separable form the rest of the system and be in the same

relation to S as the original system.was to its environment. At this

stage we are presupposing no underlying structure fer S, and consider it

only as a point set in Euclidean space Rn. The goal is to exhibit a

dependent structure derived from the A1 and the induced equivalence

partitionings Ei’ in order to specify structure from function. The

observer—system.interaction and subsequent structure identification is

at a particular time (or time interval) of the system's existence.

Having specified a structure corresponding to [Al,...,An] we shall

proceed to extrapolate the structural features to account for activities

not in the original experimental class. The A1 can be looked upon as

being equivalent to a set of test functions in the modeling of physical

systems, except in our case the system activities are measurable and~

structure is to be Specified, whereas in physical systems usually the

converse is true.

Since each Ai induces a corresponding E1 the decomposition can

be repeated n times and n sets of subunits identified. The subunits

of E consideredzmasets can now overlap with subunits of EJ' The
i

superimposed equivalence partitions [51, 52,...,Cn] generate a natural
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point set tOpology for the original system S, (C1 is the set repre-

sentation of E1) using the basis set of this topology we shall be able

to define some characteristic fundamental subunits of S. First we must

present some.topological notions. [B-9]

Definition l.l— Topology -- A collection of subsets T of an

arbitrary set S, is said to be a topology of S if

a) S and the null set ¢ belong to T

b) Arbitrary unions in T belong to T [UT 83 e T 1 s3. 6 T]

c) Arbitrary finite intersections belong to T

[nTsieT l 8161‘]

Definition 1.2 - Basis of a Topology —- A subcollection B of a

topology T is a basis for T if every set in T is a union of sets

from B.

Hence, the topology T is reconstructible from its associated basis

B. (Generally B for a fixed T is not unique.) Let us now demonstrate

that [El,...En] induces a topology on S.

The first equivalence partitioning E1 subdivides S into a mutually

exclusive collection 51. Superimposing the DBXijpartitioning E2 on

S we obtain C2. Let us take the set of all intersections Clkgfi C2k2

where kl, k2 are indexed over the reSpective cardinality of the

equivalence relations.
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Example 1.1—3

//"‘\~

C21

C11 C12 ' c I

v2 // /.

c2 cell 02

   

 

- C12 n C22
S Cl

Continuing recursively for each EJ J = l,...,n we refine at each stage

the mesh of the partitioning. At the n-th stage we have the set of all

n

possible intersections f1 Cik . For every stage of the subdivision we

1

define a topology T in the following manner; let 'I'j (j—th subdivision)

consist of all the subsets of S which are finite unions of particular

N

If ST 5 TJ then sT =U [ R ciki]

definition for T3 by

intersection sets A Cik . p _<_ ,j.

i

p §_J. we can give a much more concise

specifying the mdnimal basis. A basis B is said to be minimal for a

topology {T generated by B, if B generates T, but no other sub-

collection of B is a generating set. (Again there may be several mini—

mal bases for a given basis. we are dealing with finite topologies where

baSES are also finite.) A minimal basis for TJ is the collection

J

[:(1 C1k ]. To determine the members of the basis. we must consider only

'=1 1

those subsets that lie in all of the equivalence subdivisions [El”"EJ]°

Obviously, since we started with n equivalence classes, the strongest

topology we may impose by [El’°’°’En] is generated by the minimal sub—

base If: Cik ]. The strongest topology with respect to [El"'°E ]

n
i

represents the depth of the analysis one can perform on S. The classical

approach to systems analysis consisted of finding the natural subunits of

the system.and then establishing the interaction between the subunits.
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The first step roughly corresponds to the "tearing" stage; the component

identification level whereas the second represents the specification of

the dynamics of "reconstruction". Generally once the components are

identified, nothing further can be said about their'internal.structure.

The resolving power of the analytical procedure is approximately

measured by the relative size of the components compared to the original

system. In our frame of reference by interacting with the system simul-

taneously thru several modes represented by the activities, we can obtain

structural information about components in one equivalence class EJ by

referring to the maximal topology. Furthermore, using the basis of the

maximal topology induced by [El,...,En], some sets which lie outside any

given equivalence subdivision can be analyzed. The superposition of

equivalence relations gives rise to possible increase in resolution level

in the system.

Example 1.1-h

 
 

a) El + cl = {C11,012,013}

Cl C (:10 c2

/ \

l _l

l

[K/

resolution power increased by superposing C2 on C1
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I v = v t

1" E1 + Cl {C11’012}

E' +'E = {c' ,c' }

2 21 22

E! 'v "I -v

1 C2 C1 n C2

' I

C11 012. 051 052

/ -__/

C' = C'

11 21

v = a

C21 C22

resolution power is unaltered by superimposing Cé on Ci

An estimate of this increase can be derived by referring to the maximal

tOpology. Let Ki by the cardinality of the equivalence partitioning

Ei. Then the maximal number of subunits of S that can be isolated by

using each Ei in [E1’°“’En] separately and successively is I Hi.

The maximal number of subunits analyzable by the simultaneous set

[E ..,E ] is the cardinality of the topology Tn. Obviously, since

n

1,.

every set of each E1 belongs to Tn’ the maximal topology is stronger.

Hence, the number of meaningful subunits isolated by Tn is greater. One

might wish to establish the upper bound for the number of possible

components analyzable by Tn.

Definition 1.3 -- Analyzable sets are elements of the topology T .

n

Theorem 1.1-l -- Given a set of equivalence classes,
 

[E1,...,En] on S, with cardinalities of partitioning {Kl""’Kh}

the upper bound for the structurally analyzable sets by the strongest
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nk.

topology Tn = {((lCO1)} generated by the minimal basis is fifii.

1

Proof -- Let Ki be the cardinality of E1. Assume every set of E2

intersects every set of E1. Then the number of interSections is* "1 ° H2.

Using the principle of mathematical induction if sets of En intersect

.4 n-l- . - fi ' . .
every set of every E1, 1.. n-l, we have H Ki Kn = Ki as cardi-

nality of maximal analyzable sets.

If n = 10 and ii = 2 the difference between minimal and maximal

analyzable sets is already quite marked.

10 —

Min = 2. K1 = 20

10 - 10
Max = H Ki = 2 = 102A

The observer's interaction with simultaneous activities of the system pro-

vides a great deal more information about the decomposition of the system

than the individual separate interactions based on one activity at a time.

Let us examine a bit closer what is involved here. The ability of the

system to engage in simultaneous activities is commensurate with its

degree of complexity [M-2,P—l]. The more activities there are the

greater need exists for co—ordination, control and organization within the

system [B-h,R-l6,R-17]. If the observation-measurement interaction is

limited to the separate analysis of each existing activity, certain

dynamical interactions between the structures generating the activities

might be lost. At the outset the investigator has no means at his dis-

posal to functionally differentiate between the activities he selects.

The set [A1,...,Ah] was considered only because each Ai differed from
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any other AJ at least in one feature, however, the measurement process

provided no test to determine the degree of similarity between activities.

Therefore, it is quite conceivable that there exists a (many to one)

mapping between the component subdivisions and the system function as

displayed by the activities. Experimentally, in view of Theorem l.ll,

this implies the need to choose the A1 so that the class [El"°°’En]

induces a topology with maximal analytical power. To pairwise distinguish

n different activities we have to perform a minimum.of (2) experiments.

Assuming every experiment differentiates between a given pair of

activities on the first attempt, we can generate under the conditions of

the theorem the ideal case. The measurement interaction with the system

represents the effort invested in attempting to determine the system

substructures corresponding to [Al""’An]° The cardinality of the

topology Tn represents the structural information gained thru the

measurement. To derive an upper bound for the number of measurements in

separating n activitie we proceed as follows.

.,f, ] measurably distinguishable

in
1

features. Let us select any pair of (Ai,AJ) and consider the respective

Let Ai consist of [fil’°°

] if every feature inl, [ffeatur sets ... . ... f
e [fil, sflpi 31’ a 3P3

the first set differs from.avery feature in the second set then a single

experiment (first attempt) will differentiate Ai from. AJ' (This case

corresponds to the minimal experimental effort.) At the other extreme

one set is properly included in the other. Assume AiGAJ, let p = nJ-ni

then the probability of distinguishing between the two sets on the first
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n -n.

J 1 _.

 

attempts - fién (If a feature f, in A. is tested the effort
nJ J 1k 1

is unsuccessful.) In general, a maximum of Pi + 1 tests must be

perfbrmed to distinguish each pair (Ai’AJ) (when both feature sets

are finite). Let M’ be the maximum number of elements in a feature set

for any A1 6 [Al,. . . ,An]. Then the maximal number of experiments to

pairwise distinguish two activities is (g) M. (Here every activity differs

from another in QQ;X_0ne respect and all similar features are tested

before the identifying one is selected.) Based on the above arguments we

can state:

Theorem 1.1-2 —- Given the observed activity set [A1,...,An] for

a system. S, if the largest feature set has M elements, then the number

of separate measurements to pairwise distinguish the activities lies

between (3) and M(g).

The implication and meaning of this theorem can be appreciated when

we examine system decomposition complexity. we make the assumption that

the complexity of the activity (measured by the number of elements in its

feature set) is in direct relation with the decomposition complexity of

the system substructure generating the activity. This assumption implies

the number of sets in E1 induced by A1 is proportional to the num-

ber of measurable features of A1. (If we can percieve A1 to be complex

then also the underlying structure should be complex.) Now Theorem.l.l-2

says something about the effort of identification, whereas Theorem.l.l—l

gives bounds for structural analytical power based on the topology Tn.

If the assumption about proportional complexity is correct then we see
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the upper bound fer the measurement effort is much smaller than the

potential information gained about the system structure. In fact, letting .

Max ii = M5 maximum.effort becomes M(g) and maximum structural information

yield, is Mn. Of course, we have not included several factors which may

nullify the above estimate. In particular if the activities of the system

are at different hierarchical levels or that the complexity of the sub-

structure underlying an activity arises from interaction with other sub—

structures we cannot use the previous result. A large number of components

with simple connectivity may yield the same dynamical complexity as a

small number with complex interconnections. Therefore, one may not be

able to decide initially whether one is confronted with an activity based

on simple substructure strongly converted in the system.or complex sub-

structure weakly connected. A great deal depends on how we interact with

the system and select the activity set [A1,...,AnLLR-l6].

In the next section we shall define a hierarchical system based on the

topology TD and further explore the problems of system structuring.

1.2 Structure of Hierarchical Systems

We have discussed how the activity set for a total system. S may

lead to a component decomposition of S, considered as a set, and exhibited

a topology with a finite basis that generates the sets in the equivalence

classes induced by the activity set [Al,...,An]. In particular, we can

answer the question about potentially analyzable sets in S as a con-

sequence of our original interaction with the system in the role of the

observer.
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Definiton 1.2-l -- An arbitrary subset Q of S is a potentially

meaningful component of S if Q is a set in the topology Tn induced

by [El,...,En] (Q is an analyzable set). Thus, automatically we limit

our attention to a well-defined subcollection of S as candidates for

further analysis.

Of course, it is not implied that_every Q will be a stable and use-

ful component of S. There may be structural and functional limits

imposed on the realizability of particular Q as a real component. A

physical upper limit may exist for the number of components a given

member of the basis of Tn can belong.

Example 1.2-l

a) Social Systems -- If the basis consists of individuals and the

components are social organizations then an upper limit exists

for membership of any individual in various organizations.

b) Physical Systems -- In a discrete physical system the number of

terminals for free-body forms (basis) limits the possible sys-

tem connectivity.

Since every Q is the union of sets from the basis Tn, the basis

becomes a natural fundamental collection in the reconstruction of the

original system.

Definition 1.2-2 -- Given a topology Tn induced by [El,...,En],

the generating (finite) basis of Tn is called the fundamental morpheme

set of S.

The analogy is borrowed from linguistics where the morpheme is con-

sidered as a fundamental unit of meaning. In our model the morphemes
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represent the smallest structural units in the system out of which we

reconstruct potentially useful components. Once the morpheme set has

been specified both the topology Tn and the analyzable components are

fixed. Furthermore, the morphemes represent the lower limit of structural

resolution of the system.

To specify the structure of the morpheme the original activity class

[Al,...,An] is insufficient. The only way to model morphemes (and this

is important in the reconstruction of the system) is to abstract it from

the system and model it as a free-body. System scientists will recognize

the morpheme to be analogous to an object [A-l,Z—2]. we can now proceed

to describe the non-trivial problem of modeling the morphemes in the

free-body form, defining the stimulus-reaponse orientation and reconstructing

the system thru the constraint equations. This is one of the central

problems of systems science and although far from complete it is well

developed for certain physical systems that may be considered linear ,

[K-5,L-8,Z—2]. The treatment of this aspect of the problem will be some-

what cursory since the methodology is well documented elsewhere [J-l,K#S,

Z-l]. There is one very basic difference between the standard approach and

ours. It is worthwhile pointing it out at this stage to avoid future

misunderstanding. In classical analysis of systems the structural

decomposition into morphemes is first accomplished, then the morpheme is

modeled as a free-body and the system is subsequently reassembled by means

of the system graph. The so-called emergent behavioral features of the

system are attributed to the interaction of the morphemes. The methodology

is rather straightforward once the morphemes (objects) have been isolated.
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In discrete physical systems the identification of the components is

relatively easy. There exist discernible physical boundaries to aid in

the decomposition. Unfortuntely, this is no longer the case with some

biological systems. In addition, the terminals (points of interaction)

of components are well defined for discrete physical systems but not readily

identifiable in biosystems. Nevertheless, under certain idealized modeling

assumptions the biological components may be treated as lumped parameter

systems with well-defined discrete terminals. (The problem becomes one

of deciding whether the distributed parameter system.may be treated as

the union of locally lumped systems [C-6,K§S].) One possible approach is

to subdivide the system into tepologically and dynamically homogeneous

regions and to treat each region as a lumped subsystem. The total system

is reconstructed with the methods of boundary values by imposing continuity

conditions between the homogeneous regions.) Let us outline the basic

difference between the two models.

The classical or standard decomposition techniques provide no defi-

nite guidelines for the isolation of the fundamental objects. The original

formulation of the theories related to systems modeling is motivated by

those physical systems where component boundaries are rather obvious. It

is subsumed that the objects can be located and abstracted into a free-

body form, The free-body modeling stage consists of completely decoupling

an object from the ssytem structure and observing a set of input-output

data to obtain the stimulus-response relation for each object. At the next

stage, invoking the compatibility conditions and the system.graph, along

with the inherited constraint equations, the total model is reassembled.
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The behavior of the system then can be based on the free-body models of

the objects and the blueprint for the assembly is specified by the graph

topology. The problem is to decide whether an arbitrary interconnection of

components will yield an acceptable system behavior, with respect to the

original activity set [A1,...,An]. Generally, any compatible and consistent

interconnection is acceptable for physical systems. In the present frame—

work this may not be true, because a possible interconnection pattern

need not be'realizable. Adaptive systems possess a certain selective

ability with respect to their component structure, an aspect that is

partially incorporated into the adaptive behavior [G—l,A-3,P—l]. This

is the main reason why we started out with a real observable activity

set [Al,...,An]. Relying on the activity set we identify the components

of the system with respect to each activity. At the morpheme level we

are confronted with the problem.of free-body modeling analogous to the

standard case. Howevervthe methodology of approximation of the morpheme

as a discrete multi-terminal component is no longer arbitrary, since we

can measure the effectiveness of our methodology by comparing the emergent

activity class of the total system, now dependent on our modeling of the

freeebody morphemes, with the actual observed set [Al,...,An]. Consequently,

among all the possible modeling alternatives, orientation choices for the

morphemes and feasible graph topologies we select the one that provides

the best fit for the original activity set [Al,...An]. We proceed to out-

line the methodology for the construction of the model based on the activity

set [A1,000An]o
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Let Ei be the equivalence relation induced by A1. we define the

k-th superposition level as the partitioning of the system 8 due to the

intersection of the k-equivalence classes [E1,...,Ek].

Lk(Al,...,Ak) = 151E" = Mk

Here- Mk is the kemorpheme set (basis for the topology Tk)° Among all

the possible sets generated by Mk we consider first only those corres-

ponding to complete equivalence classes of any [El,...,Ek] considered

separately.

Example 1.2-2

  
k l

l

L
A
)

Let the vertical lines represent the equivalence partitioning boundaries.

1) Then [A1,B1,A1r\B2,02,A1/\B2{103,D3] constitute the complete

equivalence classes for El’ E2, E3.

2) B2 is an analyzable set, but not a complete equivalence class.
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3) [Al’Bl] = M1

[A1,BQ,CQ] = M2

[A1,B2,C3,D3] = M3

The set of complete equivalence classes of the Ei will be called the set

of natural components Ci' These natural components have certain prop-

erties of stability in the system; any Ai is an emergent property of the

interaction of its Ci-component structure, and, if the activity Ai

persists in time so should the corresponding Ci.

Example 1.2-3

a) Cell cycle metabolism

A1

A2

manufacturing of proteins for growth

mitosis and cell division

Al may be considered as a continuous activity in the cell cycle, and

the supporting structure should also persist in time.

A2 is a recurrent, discontinuous activity with structure responsible

for it also periodic.

b) Individual organism in a species

temperature homeostasis
A1

A2 antagonistic behavior

Al is a continuous process whereas A2 is recurrent and discon-

tinuous. Again underlying structure persists as long as corresponding

activity does.

Although as we have seen the morphemes constitute the basic structural

invariants of the system, the intermediate forms represented by the
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Ci—subassemblies are also important. In fact, we can relate the potential

component complexity to the distribution of stable subassemblies which

include the Ci. Obviously, the maximal number depends on the total

number of sets in the topology; the set of all analyzable sets. From an

evolutionary point of view systems possessing the greatest number of stable

subassemblies can exhibit the widest range of emergent behavior[S-6]. An

even more important property related to the morpheme topology of the sys—

tem is the density of stable subassemblies. (The analogous problem with

respect to dynamics of systems has been investigated by Peixoto, Smale

and others, [P—h,S—7]3)

Definition 1.2-2 -- An analyzable set Q is an immediate neighbor
 

of a set Q' for a given topology Tn if Q' differs from Q in only

one morpheme.

Example 1.2-h

 

 

ElrlE2 T2 generated by M2 basis.
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The set of all neighbors of Q, is the morpheme neighborhood NQ
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of Q. When a particular analyzable set becomes unstable (the activity

generating Q ceases) the Q structure may be perturbed by an addition

or deletion of a morpheme. If there exists a stable form in the neighbor-

hood NQ then the analyzable set Q may be transformed to this stable

neighbor. (In some systems the structural transition to immediate

neighbors may be accomplished by suppression of morpheme dynamics.)

The set of natural components C1 are reconstructible from the

morphemes, by regular component analysis techniques of systems science.

The levels of superposition are recursively characterized as,

L1(Al) = E]. = M1

L2(A1,A2) = ElnEz = M2

Ln(Al,A2,...,An) = ElnE2,...,nEn = Mn

The topologies TJ and respective bases M3 are progressively

stronger

TIC T2, . . . ,CTn

Each MJ is a minimal basis for the topology Tj‘

Definition 1.2-3 -- The LJ is the structural resolution level for

the system and T3 is the resolving power.

The index 3 of the topology TJ indicates the number of activities

required to achieve a resolving power Tj° Given two distinct sets of

observed activities [Al’°"’An] and [A',...,A£,] we are in a position to

compare their decomposition properties.

Definition 1.2-h -- Two distinct decompositions [A ,...,An] and

[Ai,...,Afi.] are analogous if:
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a) n = n'

b) 3 a homeomorphism MJE‘Mj for, each j.

The above definition implies that analogous decompositions have equal

maximal resolution level (n=n') and equal resolving power (MJEMJ). (For

the definition of homeomorphism see 3. T. Hu, General Topology [H-3].)

A further comparison can be made for different decompositions with

respect to the distribution of stable subassemblies, in the collection of

analyzable sets. We are dealingwith discrete, finite topologies, hence

cardinality of the sets in a particular topology is finite and the num-

ber of analyzable sets for different decompositions is also finite. A basis

of comparison may be the size of the neighborhood Nbs of the set of all

stable forms Ds‘ The most advantageous case is a distribution of stable

forms Ds such that NDs includes all the analyzable sets. we have

previously mentioned the relationship between self-organization and

decomposition. One of the basic differences between biological and phys-

ical systems is the former's capacity to alter its structure and behavior

under environmental perturbations [A-3,R-10]. The structural transitions

are not arbitrary, certain fundamental units are left invariant depending

on the magnitude and complexity of the transition. Inthe developmental

process of organisms the cells may be considered structural invariants.

Morphemes become natural candidates of structural invariance in our

model.

Definition 1.2-5 —— The states of the self—organization space of an

arbitrary system.are the stable subassemblies (analyzable sets) generated

by the strongest topology induced by [A1,...,An].
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Obviously, each Ci for every E1 is included in addition to any

other subassembly constructed from the morphemes. The magnitude of

frequency of the environmental fluctuations may not be strong enough to

induce a transition in the self-organization space. The system.may

react by only partially altering the set of activities [A1,...,An].

Let the equivalence classes Ei be fixed. The specific activity

Ai we have observed is generated by a definite interconnection pattern

between the equivalence classes of E1; to alter an activity the graph

topology between natural components is varied. Let ‘tij(ai) denote the

set of all consistent system graph tepologies for a fixed Ci-equivalence

class set of E1.

Definition 1.2-6 -— The states of the adaptive space for a fixed

Ci-equivalence class are the graph topologies 'r13(§1)- An adaptive space

can be defined for each set 63 induced by Ej' Consequently, each acti-

vity Ai can be altered by a transition in the underlying adaptive

space.

The same arguments apply to the distribution of stable states as in

the self-organization case. In particular, a distribution of stable

graph topologies 't£J(Ci) allows a greater degree of adaptive freedom to

transfer from an unstable form to a stable one. Notice the main difference

between self-organization and adaptation is the invariant substructures.

In the case of self-organization the morphemes are the fundamental

building blocks whereas the natural components Ci serve the same pur-

pose for adaptation.
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In view of the fact that every activity Ai has its adaptive space.

the total adaptive space for the system may be considered as an n-

dimensional space (one dimension for each activity). If the class

[E ..,En] is given [C1"“’Cn] is defined and the states of the system1,.

adaptive space are computable. (Any inconsistent graph topology is

rejected.) The interactions between the 51 sets for a fixed 1 may

be relatively stable in time as evidenced by the persistence in time of

specific activities. To account for the routine minor reactions of the

system to small and expected perturbations the concept of system dynamics

is required. To deal effectively with systems dynamics we must introduce

some ideas of graph theory and re-examine the modeling of morphemes as

multi—terminal discrete components. (A good first reference for what

follows is D. Johnson and J. Johnson, Graph Theory [J-l].)

'We assume the collection of morphemes have been isolated from the

system into a free-body form. The free-body concept permits the observer

to conduct a set of independent experiments on the morpheme now regarded

as a black box. The experiments consist of a sampling of the actual

environment the morpheme may be subjected to in the system. Under the

environment label we include the original system environment as well as

the morpheme set of the system itself. Hence, it is permissible to think

of the morpheme as a system except that we have no direct means to

deduce its structure. Instead the morpheme is subjected to the above

prescribed experiments and the state-space model derived from the observed

reaction to the experiments. The morpheme will exhibit a set of charac-

teristic activities (observable and measurable) [al,...,ak] analogous
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to the total system activity set. The ai are not unique or even well

defined, they depend to some extent on the investigator's preferences.

The total system.activity set [Al"”’An] serves as a guideline fbr the

selection of meaningful activity set for the morpheme. The activity set

for the morpheme is recorded over time series domain T = [to,tl,...,tn]

and the k-tuple [al,...,ak] (ti) 0 :_i §.n is noted. The behavior of

the morpheme is defined to be the time sequence of the activity set

[al,...,ak] over the domain T. A further assumption is imposed about

cause and effect among the activities and the behavioral equation is

constructed. Essentially the behavioral equati‘mconsists of labeling a

certain subset of [al,...,ak] as stimuli, its complement as response and

associating the two subsets by an algebraic relation. Let [ai,...,ak]

be partitioned as [51,...,sJ; rl,...,ri) = [2,?1, 1 + J = k, and let

B[sl,...,sJ](t) = [rl,...,ri](t). The relation B expresses the

stimulus—response orientation of the morpheme.

Unfortunately B is not always a function and may be a one-to—many

mapping.

The concept of state is introduced to reducetflxa behavioral relation

to a function. The state-space description has two basic parts:

1) State-variable i varying over a state space w.

2) Stimulus-response-state relation, §(§,s,r,t).

The state-space model satisfies the three conditions [Z-l,Z-2].

Condition 1 —— The oriented activity set [81"'°’Sj’rl"'°’rj] belong

to the range of the time-series) 3 a state 3? 6w such that
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(B agrees with B; B includes B).

Condition 2 -- The relation B is a function when restricted to

domain s and range {1. (For any state X0 3 at most one response for

any E.)

Applying condition 2 we can express the response as a function of the

stimuli ;(t) = R(i,§,t). In addition, we need a condition to express

the result of two successive stimuli.

Condition 3 -— Given R(il(tl),§(tl) ' §(t2)) = r(t2) then 53

astate 229:2) such that R(x2(t2),'s'(t2)) = 5(t2)

Thus the response function can be updated. The above assures that

the result of a sequence of stimuli can be replaced by a state. In

other words, if both state and stimulus are known at a specific time, the

next state is uniquely determined. Hence, the state variable is the

intermediate quantity required to transform the behavioral relation into

a state-response function. In particular, if the state at some time t

  
is given, then the next state can be determined. In terms of a differential

relation.

as
:1: = 3(1-{(t), §(t)’t)

Consequently, we have the pair of equations

9-43 = shim. Sent) Vt
dt

I‘(t) = R(X(t)9 3(t)s t)

called the state and response equations respectively.

The first equation continually updates the state of the system,

whereas the second expresses the response in terms of state and stimuli.
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The state equation represents the total memory of the system required to

uniquely determine the response and next state.

It should be observed in retrospect that the behavioral relation and

subsequent state-response equations depended on the recorded time series

of the activity set for the morpheme. Hence, a different time series or

subdivision of the activity set into stimulus-response orientation will

yieldxiifferent state-response equations. The one selected depends finally

on the agreement between the reconstructed activity set [Ai,...,Afi] for the

total system and the original observed set [A ,...,An] on which the

decomposition into constituent morphemes was based.

Once the free-body model of each morpheme is constructed we can

proceed to reconstruct the analyzable sets. we examine the restrictions

imposed on the behavior of each.morpheme in light of the fact they inter-

act to form an analyzable set. (At this stage we may properly call both

morphemes and analyzable sets as components since we have imposed a

structure thru the state—response equations.)

we assume morphemes are constrained to interact at actual discrete

physical terminals. Every interaction is a potential constraint on the

behavioral relation. The constraints imposed on the free-body models of

the morphemes (the interconnection graph topology) generate the total

behavior of an analyzable component. The graph topology for the

analyzable component in an adaptive space transition is considered to be

fixed but may change in a self-organization situation. At the next

level of assembly the interaction of analyzable components is considered

again with a set of higher level constraint equations to yield to total
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system state-space and response equations. The characterization of

analyzable components from morphemes is accomplished as follows.

Given

9.32m = s6: E t)
dti 11,1,

r1 = Ri(xi,si,t)

for each morpheme, by the use the interaction constraints and compatibility

conditions [Z—3] we may coalesce the free-body forms into

32':-
= S('x,

s,t)

r = R(3'c,§,t)

where 55 Cr expressed the constraint relations; C is a full rank

matrix. Substituting C; for s in the equations we have

six:

dt

5 = R(i.c§.t)

= S(-)-{, Cr,t)

if possible the response equation is solved in terms of E. The tech-

nique eliminates the intermediate variables (response and stimuli of the

free-body morphemes that are constrained in the system) and only the

connected subsystem (analyzable components) remain. The same procedure

of grouping components of large-scale system techniques applied to

analyzable components yields the system state-space model [K—S].

Example 1.2-2

a) Cytology —— if the collection of organelles in the cell are the

morphemes they can be further aggregated into more complex

substructures such as the mitochondria, cytoplasm, nucleus

(analyzable sets).
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b) Physical system (computer) -- The morphemes vary the constituent

36

manufactured components (resistors, capacitors, inductors,

switches, etc.). The analyzable sets are aggregates of these

morphemes; compiler, sorter, memory bank, printer, etc.   
c) Social System -- If morphemes are individuals then analyzable

sets may be various social groups which in turn interact to

form higher level aggregates. A Ci-equivalence class may be the

family unit.

In all these examples the forces binding the morphemes in an

analyzable set are stronger than the interaction between the analyzable

sets at the next level.

When the number of morphemes is large, the theoretical procedure

described to reconstruct the system from the free-body graph can become

cumbersome. The constraint equations for such large-scale problems are

resolved by means of the system graph which we now describe. First a

few preliminary concepts from graph theory.

Definition 1.2-7 -— A graph G(V,E) is a set of objects V called

vertices (nodes) with a set of edges E. Each element of E is defined

by a pairfof vertices (v3,vk).

The set of E may be visualized as a collection of lines connecting

a set of points (vertices). In the abstract formulation E becomes a

binary relation on the set V. Two elements of V, v1 and v2 are in

relation to E, v "E v1 2 if v1 is connected to v2. When we distinguish

between the pair (vi,vJ) and (vJ,vi) we assign direction to the edges and
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end up with a directed graph (digraph) with the edges denoted by the

ordered pair [vi,vJ].

Example 1.2-3

61 V
e

1

G1 is undirected and G2 is directed.

A

An edge eiJ = (vi,vJ) is incident on both vi and VJ. If

Vi = v3 the edge eij forms a self-loop. A vertex vk with no incident

edges is isolated. The degree of a vertex d(v) is the number of edges

incident on v. For digraphs we distinguish two separate degrees; the

negative degree of incidence d"(v) the number of edges directed to v

and the positive degree of incidence d+(v) the number of edges from v.

d(V) = d+(V) + d-(v)

Definition 1.2-8 -- Two graphs G and G' are isomorphic if

one—to-one correspondence between their edges with all incidences

preserved.
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Example 1.2—h

v/Sx /\-

 

4

3
3
‘

4

W
e

0 v3

G3 Gh

a) for G1 d+(v3) = 1 d‘(v3) = 2 d(v3) — 3

d+(vh) = 2 d-(vh) - l d(v3) = 3

d+(vl) = d-(vl) = 0

v1 is isolated.

b) for G2 d(v2) = d(v3) = d(vh) = d(v5) = 3

c) for Gh d(vl) 5 (self—loop counted twice)

d) G1 is isomorphic to G3

e) Gl not isomorphic to G2 since G1 is directed and G2

is not.
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A graph G8 = (VS,ES) is a subgraph of G = (V,E) if Vac: V and

Es<:.E. (If an edge is included so must all its incident vertices.)

When VS # V or ES # E then GS is said to be a proper subgraph.

A path is a finite sequence of edges (el,...en) where ei = (v ,vi) and
i-l

the terminal vertex of ei is the initial vertex of ei A path is
+1'

simple if all edges are distinct, when v0 = vh the path is closed. A

circuit is a simple closed path.

An undirected graph is connected if there is a path between any

two vertices. A digraph is connected if the underlying undirected graph

is connected.

Definition 1.2—h -- A graph GT which is connected and contains no

circuits is a tree. In particular if a tree G is a subgraph of G
T

then GT is a tree of G. If GT contains all vertices of G it is a

spanning tree. Any edge in a tree is called a branch. The complement

G' of GT T is a cotree with edges known as chords.

Example 1.2—5

G

 

s/Q/\/

87 \v7
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a) GS(VS,ES)

where VS = [v1,v2,v3,v6]

ES = [el,e3,e5] is a subgraph

 b) [el,e2,es,e3,e2,e9,elo] is a path

0) [el,e2,eh,elo] is a simple path

[e2,e5,e3,e2,e9,e6,e3] is a closed path

[e2,eh,e6,e3] is a circuit

d) [el,e2,eh,e10,e9] is a tree

[el,e2,e5,e6,e8,e9] is a spanning tree

For a connected graph G with v vertices, GT consists of v-l

edges. A graph G is simple if it has no self-loops and no two edges

are incident to the same pair of vertices. For modeling of multi-terminal

discrete components simple graphs are not sufficient, after reassembling

the free-body models a system graph with multiple edges between vertices

may occur. An example is the parallel connection of two terminal compo-

nents. However, if we agree to reduce a parllel connections to an equiva-

lent single connection we reduce the nonsimple digraph to a simple graph.

The reduction consists of modeling the collection of components in parallel,

responsible for the multiple edges between two vertices, as a single

component. In the process we lose some information on the individual

dynamics of some morphemes, but our aim in description of adaptive behavior

is the topology of the natural components. The reason we seek a simple

graph is to deal more efficiently with the notion of relative complexity,

which will be based on the cyclomatic number of a graph. For an arbitrary

digraph the cyclomatic number may be infinite and furthermore, the
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complexity of the graph may be due to a large number of edges between two

vertices only. Hence, the complexity is not distributed throughout the

whole graph. In the next chapter we will need only the concept of a

simple graph when we introduce the inverse of a graph. (The inverse

graph will establish the bridge between input-output block diagrams of

relational biology and the terminal graph representation of systems

science.) The fundamental postulate of systems science permits us to

replace a parallel multi-connection with an equivalent single one. The

complementary variables (xi,yi), i = l,...,n for the parallel case are

reduced to (x,y) of a single connection. (Of course we lose the instant-

aneous dynamics of each (xi,yi), but the net effect is still reflected in

(x,y).) Unless otherwise specified we shall deal only with simple graphs.

Where a nonsimple graph is introduced by a construction, the graph is

reduced to the simple dynamical equivalent.

In the original decomposition of the system into morphemes we had

to model the morphemes as free-bodies to derive a structure for them.

Although no information existed about their internal structure, the

structural points of contact (terminal) with other adjacent morphemes

could be determined by using the system under investigation is constrained

by its system graph. Knowing the terminals we can model the behavior of

each morpheme.

Fundamental Postulate of Systems Science -- The behavioral charac-

teristics of an n-terminal component in an identified system structure

are completely specified by a set of (n-l) equations in (n-l) pairs of

complementary variables [xi,yi] identified by an arbitrary terminal graph {K—S].

 





 

  

42

.v1 'v2 A six-terminal morpheme with one

/”’__“““ v «-v3

3 . /
V2 «L

possible terminal graph-

vh

Q
'V6 '1 '7 V6 v I

vh V1 3

v5 Vh

A terminal graph is a spanning tree for the complete set of terminals

(vertices) of the morpheme.

Applying the compatibility conditions the graph of the system is

coalesced. from.the model of the morphemes. By defining an appropriate

maximal tree (with respect to the dynamical properties of the morphemes)

the constraint equations are derived from two sets of conditions. One is

based on the circuits of the system graph defined by the cotree and the

other on cut-sets defined for the spanning tree.

The dynamics (behavior) of the total system can now be put into a

state-space, response equation format.

g: = s(§<,'s',t)

5(t) = R(§,§,t)

and a set of algebraic relations between non-dynamic variables.

Based on the state-space, response equations we can re—examine the

emergent activity set [A',...,Afi,] as a direct consequence of the dynamics.

A qualitative comparison can be made between the model constructed to

explain the activity set [A ,...,An] and the actual set obtained

represented by [Ai,Aé,...,A£]. Of course, as a first criterion of

goodness of fit we expect n' = n, implying that if we started with n-
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distinguishable activities we should obtain as many. Furthermore, if

n' = n then the activity set [A',...,Afi] can be compared to the set

[A1,...An]. At the start of the observer-system interaction stage the

investigator determined n-different activities in the system.by distin-

guishing certain measurable behavioral features. At the completion of

the modeling stage ideally the same differences in the behavioral

features should be obtained. Hence, if we map

f : [A'p l,...,Aé] +»[A An] where fp is a permutation of [Ai,...,Afi]l’°°"

each fP(Ai)e [Al,. . .',An] can be compared feature by feature to

Aié ”I.” . . ’An] . Initially interacting with the system at a functional

level (activity set) we construct an underlying structure generating this

function, by means of the morpheme based Ci-equivalence classes.

Definition 1.2—10 -- A system will be considered functionally

hierarchical if it engages in n-distinguishable separate activities.

n :_2.

The observed functional hierarchy leads to a natural structural

hierarchy induced by the decomposition into morphemes. The degree n

of functional hierarchy is the index of the set [A1,...,An]. The cor-

responding induced structural analysis hierarchy is the level n determined

by the morpheme set Mn.

Hence, the degree of difficulty in the modeling is dependent on the

power of the resolution required to analyze the components of the system.

We have discussed which subassemblies of the system may be considered

as structural invariants depending on whether the change in the system
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is adaptive or a self-organization. Both of these involve some pertur-

bation of either structure or system graph topology. Routine maintenance

in the system, regulation for example, does not usually require a modi-

fication of structure or activities.

Example 1.2-6

Cytology e- active transport across the cell membrane during the

cell life cycle may be considered as routine maintenance with no funda—

mental activity or structural alterations.

The initiation of mitosis produces marked changes in types and levels

of activity and corresponding structure changes within the cell.

For the abOve reason we introduced one further degree of adaptive

freedom based on the system.dynamics. Given the system.topology for the

natural components (Ci—equivalence classes) superimposed is the dynamics

derived from the state-space equations. A first reaction of the system

to a minor environmental perturbation may be accomplished by modifying the

system dynamic parameters. Each parameter varies between specified

bounds depending on the physical properties of the corresponding component.

To summarize the results;

1) Given experimental observer-system interaction and measurably

distinguishable activity set, based on the feature sets of each Ai’

[A1,...,An] 1222333 [El,...,En]. Superposition hierarchies of analysis

are established; Ll’°"’Ln° Each Ci is the set of equivalence classes

corresponding to Ei' The Ci are the natural components generating the

A1.
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2) For self—organization the Mh generated analyzable sets are

invariant. For adaptive behavior the Ci—sets are invariant and con-

nective graph topology changed. For routine regulation problems only the

dynamical parameters are modified.

3) The system structure is based on the fundamental invariants

Mn (morpheme set). The adaptive structure with respect to Mh and the

activity set [Al,...,An] is an ordered 3—tuple [ CitiJ(Ei), Dijk(ai’Ti)]

for each i=l,...,n where the 51 are functionally determined by E1

and structurally from Mh and the system graph.

TiJ(Ei) = set of all consistent graph topologies between Ci'

( C. considered structurally invariant.)

1

Dijk(Ci’Ti) = the set of all possible dynamical realizations for

fixed C1 and Ti.

   

  

  

  

  

   

We see that there is progressive natural emergence from.the morphemes

to natural components, to component topologies and finally system dynamics.

The reaction of the system depends on the magnitude and time-duration

of the perturbation.

We complete the section with two examples.

Example 1.2-7

E E E

\Lefl a L/
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a) L1(Al) = E1 = M1

M1 = [Cll’cl2] = 51

T1 = [s,¢,cll,clg]

b) L2(A1,A2) [El/1E2] M2

M2 = [ell/1021, 011‘“ 022,011n023,012 ”021’ 0120022,012n023

62 = [C21’022’023] I

T2 = [U(an): “11,16,621

 

      
 

 
Q1 = [(0110021) U (012nC22H

Q1 is an analyzable set.

C) Natural components at level L2

[011,012,021,022,023]

d) Morpheme set at level L
b

,Y'T,Z€Ce3 h]Mh [xv(Ynz)lxeT3

(0110 022A c A 0’41) e Mh

3h

Morpheme terminal graph.e)

be isolated as{1C fiC

h

32 h2) at level LLet morpheme (Clln 022

a freeebody
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A

 

 

v21.

E10 EQfiEB’fiE;4

.t
l

€222 represented as

t

t 3'1 _
'te

i :th [tl,t2,t3] terminals

t3

t1\ a possible terminal graph for morpheme

\ t

/r 2

t3

Example 1.2-8

Given the observer—system interaction consists of analyzing the

metabolic activities of a cell.

A1 = (fll’fl2’fl3]

f11 = reproduction of the chromosomes

f12 = level of enzyme activity

f13 = ion concentration

A = f

2 [ 21’f22]

f21 = production of ATP

f22 = ion concentration

A3 = [f31’f32]

f31 = state of cell division

- protein synthesis
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With respect to this activity set [A1,A2,A3], the following

equivalence classes may be distinguished.

E1 = (nucleus, cytoplasm, chromosomes, DNA]

E2 = [mitochondria, cell membrane, rest of the cell]

E3 = (ribosomes, nucleus, endoplasmic reticulum, rest of cytoplasm]

The morpheme set consists of all functionally independent subunits

(organelles, DNA, cell membrane, etc.) that lie in the intersection of the    
identified 6i for each Ei' Note that the system (cell) at the original

observer interaction stage is considered as a black-box when the A1

are identified.

The choice of fij are arbitrary as long as they can be distinguished

by the observer. Although the activity set is derived from the black-box

point of view the investigator still has the freedom to make measure-

ments to identify the Ci-classes. Furthermore once the C1 are identified

measurements can be performed to determine the terminals (points of inter-

action) between aggregates (cytoplasm, nucleus) or morphemes (DNA, RNA,

rihosomes). Some of these interactions are purely physical (energy,

ion, protein exchange) others are behavioral (inhibition, excitation).

1.3 Analogous Systems and Degrees of Isomorphism

Given two dynamical systems a comparison can be made between them

at various levels we have introduced. Equipped with the analytical

component decomposition of the morpheme set based topology we define the

system.deep structure.

Definition 1.3-l -- Based on the morpheme set Mn the system deep
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structure is defined for each observed activity Ai as the ordered

343111319 [Ei’Tij’(Ei)’ D (Eisrij)]°

iJk

Obviously, the C1 depend on Mn. The topology Tij is derived

from the permissible interconnection of the natural components Ci as

components of a system. (The label "natural component" is used to

emphasize the relation between Ai and its characteristic decomposition

based on Ei°) The definition yields a deep structure only to the depth

of adaptive capacity in the sense that only TiJ graph topology may

change and system rearrangement due to self—organization is not included.

To account for self-organization we should include the set of analyzable

sets, thereby allowing a greater degree of permissible reorganization in

the system.

In that case the deep—structure becomes an ordered h-tuple

[Tn(Mn), Ci(Mn), TiJ, Dijk(6i’Tij)]' Given a finite number of natural

components it is obvious that 113(51) is finite. we have only assumed

boundedness for the dynamic parameters. A continuous variation within the

permissible bounds may yield an infinite range of dynamical possibilities.

Hence, Dijk should be indexed Dij[k]’ where [k] is the range for the

parameters. In regulation problems it makes quite a difference whether

the system dynamics may vary continuously or discretely both for the

analytical methods used and the final result. The continuous case may

nevertheless be approximated by discrete analogues in most problems and

no real generatlity is sacrificed in assuming k to be discrete in the

formulation of the deep structure.
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An observation is in order about the modeling technique to derive

structure from function. Let the activity set be given as [Al,...,An]

the results of the model [A',...,A£,] are compared and certain conclusions

made about the goodness of fit. The whole procedure may be considered

as a multi—dimensional feedback problem. The system S is the black-box,

the [Al,...,An] serve as input and the [Ai,...,Ag'] as output.

 

A1—-—-—-> -—--9A1'

A2~——-> ————>Aé

A _______>
~—>A',

n n  
 

The object of the modeling is to minimize the difference between

input and output. Thus, the problem can be formulated as multi-dimensional

feedback problem [C—6,C-7]. The resolving power induced by the topology

indicates at what structural subsets Mn the system is analyzed, and the

two sets [A1,...,An] and [A',...,Afi.] are compared. Unfortunately, the

free-body model requirements may impose practical limits on the resolution

power. What we can say about the free-body model depends on the actual

state of the art. Namely what information is available about entities

represented by the morphemes in the particular discipline the model is

applied to. It is an exercise in futility to model ecosystem behavior of

species based on the cellular decomposition of the individual members of

the species. This is not so preposterous an idea from the modeling point

of view, but rather, from the biological considerations. The difficulty
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of reassembling the species from cellular components stems mainly from

the biological information gap between the level of species behavior and

cellular structure. (Of course the complexity of the resulting graph

topology would make any computer wince.)

Generally, one does not aim for an exact fit between [Al,...,An]

and [A',...,Afi.]. The practical requirements will provide adequate error

tolerances between input [Al,...,An] and output [Ai,...,A£,] to leave the

morpheme decomposition at a reasonable level. (The present dissertation

is not concerned with system simulation, and consequently the accuracy

of the model will not be discussed further. The problem will be considered

in a future paper.)

In passing we note that n' can be expected to be less than or

equal to n, since in the modeling process certain information about the

system may be lost and the resultant system complexity is less than the

original.

Two arbitrary systems modeled by the h-tuple [Tn’ai’TiJ’Dijk] can

exhibit four different degrees of analogy with respect to an activity Ai'

Definition 1.3-2 -— Given [Al,...,An] and Tn for two arbitrary

hierarchical systems

' 1 -1 1 1
= D31 [Tn,Ci,TiJ, ijk]

= 2 '2 2 2
82 [Tn,Ci,tiJ,DiJk]

with respect to each pair {A%,A§} the two systems will be isomorphic if.

a) .3 a homeomorphism between T: and TE,

b) the cardinality of the sets C; and CE is the same,
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c) The sets of all permissible graph topologies 1%3 and TEJ

are equal,

d) For a fixed.’r% and its graph isomorph (Definition 1.2-7)

13

2 the correSponding system dynamics Dijk and Dijk haveTij’

the same canonical form [R-20].

If only adaptive behavior is compared then condition (a) can be

neglected, since analyzable sets are invariant for adaptive transitions.

(The analyzable sets for this case are the Eg-equivalence classes.) The

definition clearly demonstrates why in hierarchical systems comparison of

dynamics and graph topology is not sufficient. The system activity set

and supporting structure varies in time. Every transition at some deep

structure level implies changes at every level dependent on it. For

example, if a self-organization transition is induced both graph topology

and dynamics are altered. The frequency of change decreases with the

depth of the level affected. In increasing order of transition frequency

Ci,(Mh) - self-organization

TiJ(6i) - adaptation

Dij(ai’1ij) - regulation.

An adaptive change for an activity Ai that consists of a deletion

of some edges in the graph topology between elements of 6i may be

considered as a step towards specialization. A loss of the degree of

freedom represented by cessation of graph edges may.guarantee a greater

stability for the total system structure. This problem will be qualitatively

examined in the next chapter and analytically in Chapter III. It is
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also very plausible that any transition is the minimal possible; the

degree of reorganization is minimal with respect to a given purpose,

assuming the system has an optimization capacity.

l.h Nature of Complexity and Organizational States

The functional complexity of the system at initial observer

interaction is measured by the activity set [Al,...,An]. Obviously, the

more complex the system the greater the activity set. we have indicated

that functional complexity should be reflected in structural complexity.

Hence, if we begin with a large number of distinguishable activities we

expect the underlying morpheme set to be proportional and the graph

topology associated with the natural components relatively complex. The

idea of absolute complexity, measured by the number of vertices and edges

in the system graph is of no real importance, at least for most systems,

in determining stability properties or adaptive capacity. In the following

chapters we shall examine the relationship between system complexity and

various stability properties. This will give us some interesting insights

into the nature of physical growth and increase of relative complexity

in biosystems. For the moment we shall be content to describe the nature

of complexity for the deep structure of hierarchical systems.

Definition l.h—l -- The degree of functional complexity of the system
 

is the number of distinguishable activities of the observer level.

This implies that the observed functional complexity depends on the

observer-system interaction. A system considered simple by one set of

measurements may be promoted to complex echelons by a different observer

interaction.
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Definition l.h—2 -- The induced self-organization
complexity of the

system is the cardinality of the basis of the topology Tn.

The induced complexity then becomes the set of all potentially mean-

ingful components. Complexity is dependent strongly on the equivalence

classes [E ,...,En] derived from [Al,...An]. Hence, high functional

complexity implies similar complexity at the level of the deep structure.

To examine the complexity of the graph topology we need some results from

graph theory.

Given the vertices [vl,...,vn] a graph, G(V,E) can be constructed

by inserting edges between the vertices. The maximal number of edges that

. . n = n(n-1)can be placed to construct a simple graph of n-vertices is (2) __2r__ .

The total number of subgraphs for such a maximally connected simple

graph is 2n(n-l)/2. (Any edge may or may not be included in the subgraph.)

A tree is the minimal number of edges required to connect n-vertices

(Definition 1.2-10).

The fundamental cyclomatic number of a graph with respect to a tree

T is the number of edges in the cotree. The fundamental cyclomatic

number represents the excess connectivity (system constraints) above the

minimal required for a connected system. Given a graph G with n

vertices and p edges the fundamental cyclomatic number is CF = (P - n + 1).

The maximal value of the cyclomatic number for n—vertices in a simple

 

graph; '

n(n-l) n(nrl) - 2(n-l) = pE-3n+2

MuC: _?*”(n’n = 2 2

Binzll. - maximal possible connectivity
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(n-l) = edges for a tree

The relative complexity in a connected simple graph is the actual

C divided by MaxF C' Let G consist of p edges and n vertices,

and let G be simply connected (pin—l) then

Definiton l.h-3 -- The relative complexity of the system' S at

the adaptive level is measured by

Ran) = CF (n) = ‘P-n+'l _._"2<L-‘n'+‘1>

MaxC (n2 - 3n + 2)/2 n2 - 3n + 2

 

A

MaxC (2) l where p :_n(n - l)/2, n :_2

Example l.h-l
 

G1 G2 G3\v\\\\\\ q_,.—-—;7‘

/////
///\\\\///

/Zii:i;gf::>\\\

//////
>,

\\\\\\\\I”””’
\\\\\\\ //////‘ \\\\\\\/////

v1 = 6 V2 = 6 V3 = ’4

P1 = 8 p2 = 11 p1, = 1*

CF = 3 CF = 6 CF = 1

RC = 3/10 RC = 3/5 RC = 1/3

CF does not depend on the specific tree chosen for the graph.



VI; = h V5 =

Ph = 3 p5 =

CF = 0 CF =

RC = 0 RC =

we see, for example, that G2 and

2 6
R>R.

C C

It is easy to show 0 fi-RC §_l

not connected RC is computed for

ra h8 P RC

graphs.

Egample 1.h-2

is the sum of the subgraph RC

3 V6

3 p7

1 CF

1 RC

G6 have the same C

F

12

6

2/5

but

for any graph. For graphs that are

each connected subgraph and the total

divided by the number of sub-

G is the minimal union of [G1,G2,G3] such that the subgraphs are

Joined at corresponding vertices only.

G1

V =. =1 1 V2

P1 = 0 p2 =

C =
=

F 0 CF

1

R = 2 =

C 0 RC

G
2

V v

1

.

\

' v2

v I

V1
/

2

V3
\

v6

3 V3=

3 P3 =

1 CF=

1 R3:

G

/’v5

h

h

l/3
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- 0ili'l/3 _
RC(G) - 3 — h/9 

We see in this example the complexity of the total graph G is greater

than the minimal and less than the maximal for its component subgraphs.

This is true generally, if the union of two disjoint graphs initially

consists of one vertex union. Given a graph G as the union of disjoint

subgraphs G1,...,Gn, let

min RC be the minimum.of the relative complexities

Max RC be the maximum of the relative complexities

then

min Rc(Gi) :_RC(G) fi_Max RC(GJ)

where G is minimal union of subgraphs [Gl,...Gn]. A minimal union

consists of joining only two vertices of disjoint graphs as in Example l.h-2.

To see this fact consider the following

n

  

, n min RC 2 RC
n Max RC

C n '— n C ‘— n C

The result is not particularly exciting unless we associate it with

Specialization of the system. If specialization can be considered as

Suppression of certain functions (with corresponding components) then it

may be advantageous for the system to decouple some components with low

relative complexity by an adaptive transition. We will later associate

relative complexity with a stability property.
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Example l.h-3

v o

1
V8 V9

/\6_______...

/"6 .7\

,’/”//”;5 v12 9’

VA

 

G' is an adaptive transition of G with a subgraph of G becoming

inactive in G'.

RC(G) 7/55 v = 12 EG = 18

G

RC(G') 7/10 v = 6 EG, = 12
g.

If the reverse process is considered and the original system graph

is G' and the graph transition yields G then RC(G) is greatly

decreased from. RC(G'). The union of the two systems can be interpreted

as a growth process, if number of vertices are proportional to physical

size of the system, If growth is quite sudden as in the above example the

relative complexity of the resultant system may be greatly reduced. If,

on the other hand, a system decomposes into separate graphs under an

adaptive change we expect the decomposition to yield relatively stable

subsystems. In fact, the decomposition should stop at the maximal stable

components. The process of assembling a complex structure consists of

several substages where each substage results in the completion of a stable

component, these components are then linked at.the next stage. There is

a definite advantage to such a hierarchical construction. If the process

is interrupted at some point in time and the actual completed stage

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIE:- ii 
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decomposes into stable substages the loss of effort is minimized if the

distribution of stable forms DS is dense in D [A-3,S-6]. The potential

number of stable subgraphs of a given graph G(V,E) with n—vertices and

k edges is 2k. The effort of construction is minimized if for any

perturbation the graph is decomposed into only two subgraphs. It is

somewhat more difficult to find a useful criterion for the complexity of

the system dynamics. For reasons that will become more meaningful later

we choose the measure of dynamic complexity as

Definition l.h-h -— The degree of complexity of the system.dynamics
 

is the dimension of the state vector E of the state-space equation [L—h]

(state variables are continuous). The state-space equation E — S(E,Cs,t)

iS often referred to as the memory or updating equation of the system. The

dimension of the state vector is the number of observables required to

Specify the dynamics and the response. Therefore, a system with higher

dimensional state—vector implies intuitively a greater memory capacity and

a more complex internal dynamical process. To "state" it more precisely,

from the observer's point of view the more complex the dynamics the more

involved its description via the state-equation.

In a series of articles Rashevsky introduced the idea of organismic

sets [R—Y]. The motivation relied on the analogy between certain functions

in biology and corresponding ones in sociology. It demonstrated that some

activities of hierarchically organized systems may be considered similar

from a relational viewpoint. One of the fundamental results postulated

dealt with the spontaneous aggregation of organismic sets to form new
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entities. If we consider our structurally stable subgraphs as potential

realizations of organismic subsets we see that (spontaneous) aggregation

may be formulated in terms of total graph complexity. The fundamental

cyclomatic number for each subgraph indicates the degree of interaction

between the system components. A cyclomatic number of four expresses the

fact that four subunits of the organismic set are in a state of interaction.

The length of the cycle corresponds to the number of elements involved.

Now two organismic subsets will aggregate into a new organismic set

if the cyclomatic complexity of the new graph is increased, indicating a

greater degree of co-operation between subunits. Furthermore, the distri-

bution of length of cycles measures the relative sizes of interacting sets.

A high frequency of low cyclomatic numbers indicates the organismic set

has a high number of interacting units with low membership per unit. The

structural repetition of a cycle with low cyclomatic number may lead to

progressively higher numbers in the new cycle superimposed, hence

increases the structural complexity of the system, but not the index of

relative complexity.

Example l.h-h

G1 Ge

/ \ ’ \" /\,\> . \/ .
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By repeating the fundamental cycle [l,2,3,h] in Example l.h-h we

obtain G2 from C1 and G from Gi-l by joining Gi- to G.

i 1 1

along one edge. Let N(Gi) denote (fundamental) cyclomatic number.

a) N(Gl) = 1 RC(G1) = 1/3

b) N(G2) = 2 RC(G2) = 1/10

C) N(G3) = 3 RC(G3) = 1/15

d) N(Gh) = h RC(Gh) = 1/21

In general, a Space filling repetition of a simple cycle of length n

yields a sequence of increasing structural complexity but decreasing

relative (graph) complexity. Consequently, if we look at the repetition of

a cycle as the aggregation of two organismic sets (natural growth for

example) then it is obvious that each growth stage is a period of insta-

bility which should be followed by a period of stabilization. The stabil—

ization prOcess consists of developing new relations in the system, In

the model this is accomplished by increasing the cyclomatic number.

If this is not done then the aggregated system becomes progressively

less stable reaching a point where it may decompose into its comparatively

more stable subcomponents [S—6,R-6,R—7]. Any growth process decreases

relative complexity and hence system stability, in the sense of Rashevsky.

The mechanism regulating growth processes will have minimal simplicity of

description if accomplished by the repetition of a basic structural

pattern exemplified by a simple cycle. Thus, we see from the above argu-

ments that in our framework there is no spontaneous (natural) aggregation

of subunits only feasible or consistent ones. After a consistent union

 





62

of the subsystem graphs is accomplished, the unity and certain stability

features of the resulting system are improved by increasing the system

interaction thru the increase in the cyclomatic numbers.

It was shown in the first two sections how function represented by

the activity set [Al,...,An] induced a structure on the system based on

the morpheme set Mn’ The natural components Ci reconstructed from

the morphemes free-body model served as a natural invariant class with

respect to adaptation. The system graph imposed on the Ci gave rise to

a set [Ai,...,Aa.] comparable to [Al,...,An]. Therefore, we can consider

both structure and function of the system (since one generates the other)

as manifestations of a common feature; system organization. Both
 

functional and structural descriptions attempt to summarize the state of

organization in the system. The common currency used to evaluate both is

information gathered initially from.the observer-system.interaction.

In addition to the information contained in the system.(function,

structure) description the dynamics of the system gives further insight

into the capacity of the system to accumulate and process information

from the environment. The reason for selection of the order of the

state vector was motivated by the above. Hence, taking the cybernetic

point of view [G—l,G-h,L—6], we can distinguish.two separate levels of

information capacity in a system.

Definiton l.h-5

a) Information on the permanent organization of the system.is

contained in the deep-structure description.
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b) Transient organization of the system is measured by the order

of the state vector.

c) The total organizational state of a system consists of the

permanent and transient components.

Example l.h-5 -- In linear systems (consisting of resistive, inductive
 

and capacitive components) and open to the environment for information

exchange and closed otherwise;

a) R—components represent information loss,

b) L—components represent information delay,

c) C-components represent information storage.

Hence, L and C type elements contribute to the total information

content in the system and among all the possible dynamical realizations of

graph topologically stable states, the one with maximal state vector

might be selected. The system dynamics then serves as an intermediate

stage between imparting of information from the environment and its incor—

poration into the permanent system deep structure. Systems processing and

incorporating information into the permanent structure may be considered

to possess learning ability [G-h).

Definition 1.h—6 -- If the transient information in the system is
 

incorporated into the permanent structure by a transition of the natural

component topology a learning capacity at the adaptive level exists.

Definition l.h-7 —- If a sequence of adaptive changes induce a corres—

ponding change at the self—organization level the system.will be called

evolutionary.
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Adaptive changes are characteristic of a biological system with a

fixed lifetime (individual organism). In a given lifetime of an indi—

vidual organism.the self-organization level cannot change. If a large

number of these are subjected to the same sequence of adaptive changes,

say from activity A1 to A! then the next generation of individuals1,

might surface in the environment with A1 replaced by A5. The process

of replacement is a genetic (self-organization) change and is accomplished

by rearranging the Ci class by modifying the morpheme sets in the next

generation.

Within the lifetime of the individual system the morpheme class is

invariant. New activities may be introduced by adaptive changes (Ci

invarianCe). In our framework then evolution is analogous to self-organizing

ability and adaptation to transitions of a prescribed set T. of

1.1

Ci graph tOpologies. System specialization at the adaptive stage is either

partial cessation of an activity Ai (decoupling of the Ci-graph) or

total deletion of an activity. (Introduction of new activities would be

the opposite of specialization.)

In general, the mechanisms underlying learning (transient to perma-

nent structure) are difficult to isolate, however, for a class of systems

with strong biological significance, adaptation can be represented within

the framework of structural perturbation of large-scale systems. These

systems are called relational. The next chapter will deal with general

properties of relational systems and their place in the theory of general

systems.

 

 



CHAPTER II

RELATIONAL SYSTEMS

2.1 Relational Biology and Representation of (M,R)-Systems

The concepts exposed in the present section were originally formu-

lated for the study of abstract biological systems, but with suitable

generalizations can be applied to any dynamical system exhibiting structural

or functional organization. The first successful attempt to introduce

set theory and top010gy into the investigation of biosystems is due to

Rashevsky. The publications on the topic span a couple of decades and

the main results are summarized in a sequence of four papers published in

the late sixties [R-8,R-9,R—lO,R—ll]. The essence of the theory is that

biological phenomena may be classified into two categories; metric and

relational. The former is concerned with chemical and physical structure

of biological systems (in the strict sense of the word) whereas the latter

contains the organizational features of the system as subject matter.  
Rashevsky's investigations focused on relational problems of biology and

culminated in a rather general theory under the topic of "Organismic

Sets". Certain formal analogies can be deduced about biological systems

that exhibit the same relational properties, and based on relational

comparisons, systems far removed in thebiological natural hierarchy such

as multicellular organisms and societies may be comparable. In the sys-

tems framework what matters ultimately is not the actual physical make up  
65
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of the components but rather the interrelationship between them. Thus,

in our framework the specific content of the morphemes is immaterial as

long as the free-body models and system graph are available. There are

several useful concepts of organismic sets that we shall presently expose

and incorporate into the model.

First we state three of the basic postulates of organismic sets

[R-7,R-8]:

l) The degree of complexity of the systemis directly proportional

to its adaptability and chances of survival in a given environ-

ment.

2) The sequence of organizational structures during the develop—

ment of a multicellular organism is determined by the require-

ment of maximal probability of survival during the whole lifetime

of the organism including the period of development.

3) The course of development of any organismic system is such that

during this course the total number of relations as well as the

variety of different relations is maximized.

The above postulates are not exhaustive but constitute aspects of the

theory which lend themselves readily to application in our framework. The

three postulates together appear to indicate that complexity of a system

is a measure of stability in the following sense: The total number of

relationships developed within the system serve as pathways of commu-

nication between components to assure survival in the environment. The

information capacity of the system is increased if the order of the
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state vector increases. In general, for a fixed number of interacting

components, the transient complexity is reflected-by the state vector

which represents dynamical capacity to react to the environment, and

by the index of relative complexity R indicating the relative infor-

C

mation content of the underlying structure. If the system is now rep-

resented by a graph the number of basic relationships developed between

the nodes (components) is derived from.the total number of connections

between nodes. To provide a canonical characterization of the relation-

ships the postulates of systems science are invoked. With respect to a

tree in a (connected) system the fundamental circuit and cut set equations

serve as a generative basis for all other dynamical interactions. The

circuits define potential type interactions whereas cut sets specify flow

type constraints. If the internal dynamics process a quantity such as

information or energy, all internal changes can be defined in terms of

 potential and flow between terminals. Thus, Rashevksy's n-ary interactions

are summarized by the above relations between components, and the

relational aspect accounted for in a dynamical framework. The organism

optimizes its chances of survival by developing interactions between

components and hence buffering itself against unexpected environmental

perturbations. With respect to a given number of components, represented

by the nodes of a graph and the relationships given by the edges, we can

now define the measure of adaptive capacity in the sense of Rashevsky,

based on the concept of relative complexity introduced in Chapter I.

Definition 2.1—1 -— (Relative Complexity) -- The degree of relative

complexity RC, of a system is proportional to the probability of survival
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in a specific environment.

The concept of relational stability is not dependent on the dynamical

properties. An interesting example is furnished by a simple mathematical

model of an ecosystem [M-S]. It is assumed that a class of predators and

prey exist and the trophic interactions are governed by Volterra-Lotka

type dynamics. .May demonstrates in the paper that if the system is

modified by the addition of an equal number of predators and prey and the

new interactions are only of the predator-prey type, then the total

dynamical stability of the system must decrease. Let us represent the

system graphically, with Pi as the prey nodes and Hi the predator

nodes.

 

In the original system every H1 is connected to every Pi’ There are

no direct competitive links at either prey or predator level. The relative

complexity for the nemember system is

2(n2 - n + 1)
 

R (n) = C /Max =
C

F C (hn2 - 6n + 2)

lim R (n) = 1/2 whereas RC(2) = l

n+co C

The relative complexity of the system decreases from a maximal

IOlume as new predator—prey pairs are added. Furthermore the new

Lelations developed in the system are of a single predation type, and
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her the H. or P-1 1 levels are viable subsystems. Two of Rashevsky's

theses are violated; relative complexity and the variety of relations

he system. The above system can be considered in a state of growth

plified by the addition of predator-prey nodes.

In view of the discussion in Chapter I on growth and stability, we

the system in this case becomes less stable both from dynamical and

ival points of view. Consequently a growth stage should be followed

period of stabilization. The mechanism of relational stabilization

sists of developing new relations in the system by increasing the

ree of relative complexity.

Biological systems are characterized by finite lifetimes in any

ironment. Genetic modifications are induced from one generation to

next. In our model an individual biosystem has reactive capacity only

the depth of the adaptation level. (Adaptation for an individual

tem is to be understood as a change in behavior characterized by a

graph topological transition. To rearrange the Ci-equivalence classes

morpheme transition a new generation must emerge.) To account for

sation of activities due to the environment interaction we introduce

relational organization of an arbitrary system. The concepts related

relational theory within a graph context are due to Rosen [R-l3,R-lh].

subsequent development of the theory followed the path of algebraic

egories and general automata theory. These mathematical tools were

uired to introduce a precise definition of system components in terms

input—output relations, to account for internal dynamics and external
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vironmental forces. The theory now is quite well developed with the

jor modeling problems isolated [R—13,R—1h ,R-15,R-17 ,A-2,B-1,B-2 ,D-l,

h,M—h].

we propose to outline a different approach based mainly on graph

eory and the ideas of Chapter I. The advantage in such a fermulation

es with the incorporation of systems science methodology into relational

stems. In particular we can exhibit a class of relational systems that

e functionally hierarchical. Later we shall examine the problem of

aalization for relational systems in terms of input—output specification

3

. constituent components. We now proceed to outline the basic ideas

? relational theory.

As a first approximation the theory was formulated to account for the

ilnerability of biological systems coupled to their environment. The

rep structure we have developed so far fails to account for this aspect.

1e main concern of Rosen's theory is the behavior of an arbitrary system

ice a component has been inhibited. What class of components can be

lppressed (for the system to still survive) and how are components in the

rstem replaced? The first problem relates to the degree of vulnerability

? the system, whereas the second deals with problems of self-repair.

:neral Properties of (M,R)-Systems

It is assumed that an arbitrary system S is decomposed into a

>llection of Ci-components (Chapter I). The components are furnished with

dynamical structure via the free—body modeling techniques. The

.A]damental units with respect to the original activity class [Al,... n
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the C -equivalence classes equipped with an appropriate dynamical

i

ription. Let us denote these dynamical Ci—components as the funda-

al system.modules Mi. (we are now concerned with a realization of a

structure in a specific environment of a single generation of

isms, hence self-organization transitions do not occur. For adaptive

isitions the M1 are fundamental invariant units.)

The cause-effect relations between the modules can be represented by

'aph where the M1 are vertices and the input-output relations are the

es. A particular input which is not an output of a module is an environ-

;al input, an edge which is not an input to M1 is an environmental

mt [R-13] .

Definition 2.1—2 -- A subsystem. S' of S is a subset of modules

lected analogously to S', such that

l) S' receives no input from any module of S not in S'.

2) The set of environmental outputs of S2 contain a subset of

the environmental outputs of S.

Example 2.l-l

   

     

 

E

a) Block diagram /I

U: E M

E E " M3 / /'l 5\ - .
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 b) Input-output graph

é—T-L, ' M5

 

M6
0M2 of” of 0M

(— M .MT

In example 2.1-l [M1,M2,M3] constitutes a subsystem but [M1,M2,M3,Mh]

es not. (If the environment E is considered as an additional vertex

e graph can be simplified with all environmental inputs and outputs

nnected to this vertex.) The system graph is directed and the underlying

directed graph connected. The methodology we have introduced in

apter I does not lead to a similar graph for the system S, instead of

dules we have terminals of modules as graph nodes. It is possible to

oceed directly from the system representation to the module graph by

entifying the module Mj with its corresponding set of terminals, and

troducing between adjacent terminals of two modules an edge. The

rminals corresponding to an M emerge in the new representation as one

J

rtex. The procedure is analogous to reducing a set of multi-terminal

mponents in a large-scale system [K—S]. The addition of edges between

jacent terminal can be viewed as a two-terminal approximation of time

gs in real physical systems.
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Example 2.1-2

 

 

system S.

b) h 3 free-body model of M1

h'-*-fi~—'j3 ' .

+ and a terminal graph

1 o—A"2
1' 2

. t h
0) T5 7’/,,Ar’ 8 a sys em grap

3 6 /\.
h'MI\—+’Y\/

2 .

. 13 10

l,¢::;?:iji::w<é::j:

/‘11
I 12

1h.

G) M1 = [l,2,3,h] component terminal sets

M2 = [3.5.6.7]

M3 = [7,8,9]

Mh = [2,6,10,13]

M5 = [9,10,11,12]

M6 = [1,11,13,1h]

set [h,5,8,l2,lh] represent the potential environmental input-output

>lings.
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M1, '

M61 N

112

A module graph.

Input set IS = [11,12,13]

Out =put set TS [el,e2]

e the module graph is obtained by merging the complete terminal set

Mi

ls.

mics.

into one vertex and introducing a new edge between the new adjacent ter—

The edges are directed with orientations dependent on system

Definition 2.1-2 -- Given the system graph of S1 the inverse graph

 

Nonstructed by

1) Identifying the terminal set of each Mi

set as a vertex,

and representing the

2) Introducing a directed edge between adjacent terminals.

The concept of the inverse graph allows us to proceed from the systems

’esentation to the relational module graph.

:s are dependent on the dynamical propertie

.ved from the constraint equations.

:e—effect relations in the system and these rel

186 under the influence of the dynamics.

orientation of each edge is fixed.

Let 6 represent the set of all environment

1 module Mi

The orientations of the

s of the system and are

The graph represents the basic

ations are subject to

At a specific time instance

al outputs of S, and to

we assign a set SiCCB, which is the subset of outputs
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inated when Mi is inhibited. Following Rosen's terminology S1

alled the dependent set of the module Mi' Two fundamental assumptions

needed to bring the model closer to biological reality.

1) The module graph represents the metabolic activity of the system

and each M1 is dependent on Mj from which it receives

inputs. It is assumed no Mi functions unless all of

its inputs are active. This property is known as non-contracti-

bility. This permits the identification of each S1 (for a

fixed time instance) from the module digraph.

2) Every Mi has a finite life—time. The ordered pair [Mi’t(Mi)]

defines the module and its life span. If t(Mi) is exceeded the

M1 ceases to function. To compensate for the finite life-time

restriction every M1 is provided with a dual component R1

the activity of which consists of replacing the Mi [R-l3].

Therefore, associated with the metabolic graph based on the module

we have a related graph consisting of the repair set. The inputs

to the R. are constructed from the environmental output set 6 of

1

system. If Mi has environmental outputs in the system at least one

he outputs serves as an input to a Rj' Let TM be the set of

i

ronmental outputs of a module Mi’ then

TMifl(U6j) # 9) if TMiaé (6

The above will be referred to as the feedback relatigp, or the covering

thesis.

The structure outlined is called a (M,R)-system with metabolic

vities (systems dynamics) represented by the module graph (M-graph)

 





76

the self-repair functions by the repair graph (R-graph). Let us show

to construct the R-graph from the M-graph.

Example 2.1-3

a) Medule block diagram.
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2 M7 11'——9

i
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. l is

13

Input set IS = [11,12,13’ih’15]

Output set TS = [el,...,elo]

T = T = T = T = T = TM = A

M1 M2 M3 M5 M7 12

T = [e e 1
’ 2MA 1

TM = [e3’eu’e5]
6

T = [e 1
M8 6

TM = [e7]
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TMlO = [88]

Ihll = [e9,elO]

91 = [el,e8]

62 = [62]

63 = [eh’e7]

9p = [eh]

95 = [e7,e8]

96 = [el,e2,e6,e8]

97 = [e7]

68 = [e6]

99 = [e7]

6 =
10 [92,93]

611 = [63]

612 = [36,89]

The feedback relation is satisfied, but 6 is a proper subset of

e are not in 6.since e5, 10
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b) M-graph (with environmental couplings suppressed)

o MMh r ‘MG ’, 9

//////////:::::::;;5Lx}‘\\\
’///////;7

M I ' \." /'(M10

/rMa\

h.
)\ 11

 

 

 

 
1' 12

The R-graph has edges originating only at terminal modules

[Mh ,M6 ,M8 ,M10 ,Mll] of M-graph.

d) (M,R)-graph is constructed by superimposing on the M—graph the

R-graph. An Ri vertex is the same as its corresponding Mi'

Thus, each vertex now is considered as representing the pair

(MiRi)’ The input set and environmental outputs not in 9

are deleted

 

 



 

 

  
d-gra hP 3

i-graph

then an edge is superimposedLn output in :M. is fed back to an Rj

l

:he M-graph between vertices Mk (termdnal modules) and Rj'

Obviously the construction tends to be unwieldy and is much simpler

'esented by the adjacency matrix of the graph[J-l].

Example 2.1-h (Refer to Example 2.1-3)

a) Let aiJ€1V(M) the adjacency matrix for the M—graph.

a =

n if there are n strictly parallel edges from Mi to MJ.

11.3
0 otherwise.

For example, some entries are:

a89 = 1 a13 = 0 a12 = l

b) Let biJ€1V(R) the adjacency matrix for the R-graph.

m if there are m strictly parallel edges from Ri to RJ'

0 otherwise.
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b13 = 0 bh2 = 1 bus = 2

b63 = l b62 = 0 b86 = l

c) Let ciJE V(M,R) the adjacency matrix for the (M,R)-graph

A

cid = 313 + bIJ

012 = 1 cl3 = 0 C99 = 1

CB6 = 2 Chi = 1

Therefore all structural features of the (M,R)—graph can be summarized

the matrix form. The feedback matrix may be simplified by reducing

rictly parallel edges between any (Mk’Rj)’ consequently all entries of

e feedback matrix are zero or one. we have already permitted the

iuction of parallel edges between modules in the M—graph (if the con-

:tion in the M-graph represents signal flow then one potential variable

and one flow variable 'yi suffice). The matrix resulting from the

perposition has entries {0,1,2}, since there exist at most two strictly

rallel edges between vertices.

2 Re-establishable and Central Modules

A module in the relational system is said to be central if its

libition implies the cessation of all environmental outputs. (From

a observer's point of view the activity class [Al,...,An] ceases to

.st.)

For an arbitrary module the augmented dependent set consists of all

rironmental outputs that eventually cease to function when the module is

libited. In other words, all outputs from the system that are either
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Tected by the inhibition of the module in the M-graph or those depending

.the feedback relation from the terminals Mk inhibited by the module (a

rminal module Mk is a module producing an environmental output). A

dule Mi is re-establishable if it does not inhibit any terminal Mk
 

oducing a feedback signal to its own repair set Ri' Both concepts of

ntrality and re—establishability can be conveniently defined on the

,R) graph, using the property of non-contractibility of the [M1,Ri]

rtices.

Definition 2.2-1 -- An (M,R)-circuit originating at M1 and including
 

feedback edge from a terminal Mk to R1 is a proper feedback circuit.

Theorem 2.2-1 -- Assume the M-graph and R—graph are free of directed
 

rcuits. Given the (M,R)—graph representation of relational systems a

iule Mi is

1) Central iff every terminal Mk is connected to Mi by a direc-

ted M-path from Mi to Mk'

2) Re—establishable iff there does not exist an (M,R)-directed

proper feedback circuit originating at Mi'

1) fi>if the M1 is central every terminal Mk is inhibited,

implying the eventual inhibition of every M1 by an (Mk’Ri)

feedback cycle.

<??if there exists a directed M—path to any Mk from an Mi,

every Rj will eventually cease to function, since every ter-

minal is inhibited, and.corresponding Mj eventually fails.
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2) Let us show the contrapositive

:fiiif' Mi is non re-establishable then there exists a terminal

Mk inhibited by Mi such that an(le,R9 edge exists. By

the property of non-contractibility there is a directed path

from M1 to Mk' But (Mk,R3 is a directed edge completing

the circuit.

<$LAssume there exists a directed circuit based on Mi' Then

the circuit must pass thru a terminal Mk since the M-graph

is circuit free. The directed edge( Mk,R3 represents a feed—

back edge. If Mk is now inhibited by Mi so is Ri by the

feedback edge (Mk,Ri).

The assumption that the M-graph and R-graph are free of directed

*ircuits can be relaxed. It is sufficient to require that there be no

.irected proper feedback circuits in the (M,R)-graph based on M1. To

how that the exclusion of M-circuits is not necessary we consider the

ollowing example.

Example 2.2-1

80
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[Ml 9M2 9M3’Mh] is a directed circuit

in the M-graph, yet all [M1,M2,M3,Mh]

are re-establishable.

b) To show an arbitrary circuit in the (M,R) graph is not

sufficient to produce a non re-establishable module.

(MlgRl)0~

4* M ‘ - ..

7 ‘T\ l
/

I

(Mbig2b'

(M3 ,¥\l3 )[WT

T I '/

7

 
(Mu ,Rh 5. I ‘—

 

/ .

\ 1p /

  

 

   

/

TS = [WILL ,MS 9M7]

(It is assumed every terminal producing a

feedback relation has at least as many environ-

mental outputs.)

‘2’ (M7,:R7)

e c_T T) T
1

Mh M7

<92ch

7

<3ch

3 2.

9h C'Th

1) M6 is non re-establishable [M6,M2,M5,R6] is a proper feedback

circuit including an input to R6.

2) Mi is re-establishable even though [M1,R5,R6,M2,Ml] is an

(M,R)-circuit.

m1€%,)

7

 

The circuit does not include an input to R1.
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3) [Mh’MYJ are potentially non re-establishable, if the R1 time

lags are considered.

The respective R-circuits include edges of 0h and 67.

If M7 in the example is inhibited at the moment the life-time of

Mn is exceeded then both Mh’ and M7 will fail since there exists an

R-circuit between them. In particular if M7 fails and the remaining

time of operation for Mh is less than the time required by R7 to

replace M7 then both M6 and M7 will fail. Therefore R-graph circuits

may create conditions of non re—establishability if the operational life-

 times are considered. When a non re—establishable module Mi is connected

to a central component by an R-graph circuit, in light of the above

discussion Mi may also have the same effect on the system as a central

component. One of Rosen's original hypotheses eliminates this troublesome

condition by requiring the replacement of a module to be produced

 instantaneously. In our model Rosen's hypothesis eliminates the need to

consider R-circuits at the present stage. Systems with time delays in

the Ri-components appear to closer approximate biological phenomena by

incorporating the operational time lags inherent in the real components

of biological systems. We shall outline briefly the methodology to

include operational time lags, in section 2.5 under optimization. Unless

otherwise stated we assume none of the R1 have operational time lags.

The set of central components is obviously a subset of the non re-

establishable components. we can give an algebraic criterion for the

existence of re—establishable modules in terms of the adjacency matrices

of the M—graph and (M,R)—graph.
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Lemma 2.2-1 -- Given the adjacency matrix V of a directed graph,

the matrix Vn gives the number of directed paths of length n between

any two vertices.

M: if ‘aik EV is the number of edges joining vi to vk

and a’kj EV the number of edges between vk and V3, then aik'akj 6V2

is the number of different paths between vi and VJ. Summed over all

k, all paths of length 2 are computed. V2 has entries aik‘akj . Assume

result is true for Vn‘l, then Vn = Vn-l ° V yielding the number of paths

of length n between corresponding vertices.

Corollary 2.2-1 -— If VI1 = O for n :_N then there exist no

directed circuits in the graph.

2393:; if there exists a circuit, then a path of infinite length can

be constructed by repeating the circuit.

Applying the corollary we can reformulate Theorem 2.2-1 in terms of

adjacency matrices.of the respective graph

Theorem 2.2—1' -- Let V(M), V(R), be the adjacency matrices of the

respective graphs. ([aij]==V(M),[biJ]==V(R))-

Assume (M,R)-graph consists of m vertices and

Wm

vnuo

O for nlNl

0 for n :_N2

then

 

a) The module M1 is re—establishable iff given the terminal module

set [Mk ] producing a feedback input to Bi

1

[aik] = o vk such that Mk€[Mk.] ([aik]j=v3(M) and

i 1

1:3 1N1

   



 

‘0)

Proof:

a)

b)
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The module Mj is central iff the set of terminals [Mk ]

J

inhibited by M thru an M-path satisfy the following

3

conditions

1) For the terminal set [Mk - Mk3] not directly inhibited by

J

(Mk'j’Rk') i.e. [kak'] ¢ 0.

2) For every Mk.e [Mk - Mk3] and My; [Mk3] if a feedback

edge (Mk.,Rk. ) exists then also (Mk.,,Rk,) exists, with Mk,,€[ML ]

J '3 J J

M there exists for each M .6 [M - Mk ] a feedback edge
k R J

i.e. , if [bk,k, ] ¢ 0 then [bk' k" ] ¢ 0.

J J J

=9if Mi is re-establishable then Mi may not inhibit a

terminal Mk producing a feedback input to 'Ri’ which implies

there is no directed M-path to Mk'

This implies [aiki]3 = O Vk such that Mke[Mk-]' Since

1  
Vn(M) = 0 for n 1 N1 the maximal path that may exist is of

length j _<_Nl.

¢1if [81th = O for l :j 1N1

then there exists no directed M-path from M1 to a terminal

Mk producing a feedback edge, hence no proper feedback cir-

cuit can be completed. Threfore Mi must be re-establishable.

=$Assume Mj is central and [Mkj] is the terminal set directly

inhibited by M3, if Mk.é[Mk - Mk3] then Mk. survives unless

it is inhibited by an Mk'J GU41: ], therefore [bk k'] i O for

at least one terminal in [Mk ].

J
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On the other hand, for a terminal MksJéE[Mk ] if the corres-

J

ponding Rk' received feedback input from only [ - ] then

J Mk MkJ

Mk5 is re-establishable which implies M3 is not central.

Therefore, if [bk'ks] # 0 then also [bkskg] # O.

{ZILet [Mk ] be the directly inhibited terminal set of Mj'

J

If for Mk' é-[Mk - Mk ] a feedback edge exists from the set

J

[Mk ] i.e., [bk k‘] # O and if the set [Mk ] is non re-establishable

J J J

([bk,k3] )6 0:)[bk5k3] at o for some Mk5, nge [1413]) then

eventually all terminals will fail. Hence in the system every

Mi will also fail. This implies Mj is central.

The conditions Vn(R) = O, Vn(M) = O for n 3_Max[Nl,N2] are not

necessary, but are included to provide more realistic constraints for

relational systems that represent biological systems. The existence

of directed circuits in the R—graph imply strong vulnerability and mutual

dependence for modules connected in the circuit. The assumption that

Vn(M) = 0 implies the conditions for re—establishability, however with

some modifications in the proof, the condition can be relaxed.

Note that the theorem relies heavily on two properties of relational

SYstems, non-contractability and the replacement of an Mi without time

delay. If the second condition is relaxed and the operational time lag

is required to produce an arbitrary Mi the situation becomes qulte

complicated. In that case not only proper feedback circuits but any

circuit in both (M,R)-graph and R—graph have to be considered.
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Example 2.2-2'

/ ,.. N "‘j /' (M3+1’RJ+1)

/

’ -—-— R—graph// (MJ,RJ) —>

e T

‘ JCMi

(Mi-l ’Ri-l)

Both Mi and MJ serve as feedback inputs to each other. If Mi

is inhibited at t=to and the life expectency at t=tO ‘of Mj is t(NB)

with the replacement time for M1 greater than t(MJ) both MJ" and Mj

will fail and become non.re-establishable.

This is true generally. Let a set of modules [Mi,...,Mh] and

[Ml.,...,Mn.] be given in a relational system. If e].L CTMJ for

MJETM ,...,Mn.] and ej CTMi for M1 [Ml,...,Mn], when either set is

inhibited if modules in the other cease to function before the first set

is replaced both sets will cease to function eventually. The idea can

be applied to define generalized non.re-establishable modules.

Let two modules Mi and M3 be given such that there exists a directed

. . . 2
circuit of length two between (Ri,RJ) i.e., [bij]2 ¢ 0 1n v (R). Let

t(Ri) be the replacement time for Mi and tO(MJ) be the operational

time remaining for M3 at t=to. Let Mi be inhibited at t=to.

If t (M ) < t(R ) then both M. and MJ become non re—establishable

0 j i 1

at tO + to(Mj)'
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With respect to remaining operational times and replacement times a

system can be classified into generalized non re—establishable sets of

modules following the inhibition of any module Mi'

If the (M,R)-graph is strongly connected then obviously every module

is central and non re-establishable. On the other hand an acyclic

(M,R)-graph has every module as re-establishable. Similarly a subsystem

of an (M,R)-system survives when an Mj is inhibited only if Mj is not

in the subsystem and there exist no directed paths from Mi and is an Rj

in the subsystem. In particular, if a directed (M,R)-path exists to a

subset of the system, as long as the terminals producing the feedback

signals to the R -set corresponding to the subset are not inhibited, the

set will be re—established. Inhibition in this sense is only temporary.

Therefore circuits existing in the metabolic M-graph are of no real

importance from the survival point of view for the components. Only (M,R)

circuits producing proper feedback, and R-circuits establishing ‘

generalized central modules are of interest. An important observation

on relational systems satisfying the covering hypothesis is derived from

the following theorem due to Rosen.

Theorem 2.2-2 [R—l3] -- Given an (M,R)—system satisfying the covering
 

hypothesis, if the system is connected then there exists at least one

non re-establishable component (module).

Then a terminal M:Proof: Assume every module is re-establishable.

is re-establishable. By the covering hypothesis there exists a feedback

edge from Mi to an Ri‘ The edge (Mi’Ri) cannot serve as an input to
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(Otherwise anan Mi that is connected to Mk by a directed M-path.

(M,R)-circuit is constructed.)

Let ME be a terminal reachable from Mi by a directed (M,R)-path,

since Mi is re-establishable the feedback edge from Mi cannot serve

as an input to any Ri directly connected to [Mi,M§]. Hence a further

terminal is inhibited which is also re-establishable. By repeating the

above argument the set of finite terminals is exhausted and the last

Mn must produce a feedback edge to an El directly connected to at

k

least one Mi thus completing an (M,R)-circuit.

Hence there exists at least one non re-establishable module.

The theorem implies the impossibility of realizing an (M,R)-system

by an acyclic (M,R)—graph; it must contain at least one proper (M,R)-

feedback circuit. A question comes to mind immediately as to how the

covering hypothesis can be relaxed to permit the realization of a

relational system with no non re-establishable modules. This problem

is of importance in the synthesis of relational systems, and will be

examined under the section of optimization on (M,R)-graphs. Certain

properties however are obvious and can be pointed out at this stage.

Any'module associated with an R-self—loop is automatically non re-

establishable. If a component produces a feedback signal to its own

repair mechanism it cannot be re-established. Any strongly connected

(MSR)-System is maximally vulnerable in the sense that all of its com-

ponents are central and hence non re~establishable. An acyclic (M,R)-system

is minimally vulnerable from the inhibition point of view. The solution

 

 





91

 

to the optimization problem must then lie between these two extremes. In

the sense of Rashevsky survival stability requires the increase of

system interaction between components as measured by the degree of rela-

tive complexity. This definition of stability considers the alternative

modes of interaction available to the components to compensate for lack

of information about the environment. On the other hand a high RC

implies a greater probability of existence of proper feedback (M,R)—circuits

and the system becomes more vulnerable in the sense of Rosen. In addition

the restrictions imposed by the type of dynamics superimposed on the

graph topology act as a potential constraint on the optimization process.

Therefore dynamical stability, survival stability (degree of complexity) 
and vulnerability enter simultaneously as constraints on the realization

of possible (M,R)-systems. Subsystems of a relational system (Definition

2.1-2) are characterized in the (M,R)-graph by the following.

Definition 2.1—2' -— A set of vertices [Mi] constitute a subsystem iff
 

there do not exist directed (M,R)-paths to the set [Mi] from any MJ not in

 [Mi].

A module M5 in the subsystem may not inhibit a terminal Mk

producing a feedback edge to an R, of a module in the subsystem

. 1

consequently we can reformulate a theorem of Rosen's on the survival set

Of a system.

Theorem.2.2-3 (Rosen) -~ If a module M3 is inhibited either

a) the entire system fails,

b) there exists a subsystem which survives.
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Proof: Assume there exists an Mi which is not terminated (other-

wise case (a) holds) then there is at least one terminal Mk not

has no non—inhibited inputs. Now the totalityinhibited, otherwise Ri

of terminals [Mk] serving as inputs to R1 are also not affected. In

addition any module connected to the surviving terminal set [Mk] must also

survive. The collection of all these surviving [Mk] and associated [Mk]

directly connected to [Mk] form a subsystem.

If this were not the case then some ij€;[MJ] is inhibited and by

the non-contractability so is at least one terminal Mk serving as an

input to R1 implying the inhibition of Mi’ which is a contradiction.

Therefore, the failure of a relational system is either total or

some viable subsystem survives. Again we are led to a paradoxical situ-

ation as far as realization of (M,R)-systems are concerned. We have seen

that a module Mi responsible for self-repair is automatically non re—

establishable. Analogously for subsystems if all self-repair (feedback

Signals) originates from terminals contained in the subsystem, the vul-

nerability is increased. Hence feedback signals should be produced by

terminals in the complementary set of the subsystem, but these terminals

cannot 'be too strongly connected to other modules in the systems Other-

wise probability of inhibition is increased. Furthermore, in view of

non-contractibility, the feedback set to each Ri should be minimal for

survival of the Mi.

The Rashevsky hypotheses favor strong metabolic interactions but

Rosen's conditions discourage strong connectivity. A possible solution is
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to relax the non-contractability'property and to assume an R1 can be

activated and inhibited by several on-off feedback relations. In that

case one needs threshold conditions in terms of the total feedback state

to determine whether an Ri is inhibited.

2.3 Realization of (M,R)-Systems

It is assumed the system graph is free of self—loops. In the M—graph

self-loops are unnecessary for dynamical description and in the R-graph

a self-loop implies automatic non re-establishability. Within Rashevsky's

framework the existence of a self-loop corresponds to a relation developed

by a module with itself, clearly superfluous. Furthermore we rule out the

possibility of a strongly connected (M,R)-graph since a system represented

by such a graph is terminated if any module is inhibited. (This eliminates

the possibility of achieving an optimal solution for survival stability

since the degree of complexity RC is only maximal if the (M,R)-graph is

strongly connected.) We assume strictly paralled edges in both the M—graph

and R-graph are reduced, and RC is computed for digraphs with two pos-

sible edges between vertices.

An arbitrary module in the system block diagram form can be considered

as specified by a set of input-output relations. Within the (M,R)—graph

framework a vertex corresponding to a module is specified by its incidence

set (d+,d_)(v). (d+(v) is the set of outgoing degrees and d'(v) is the

set of incoming degrees.) The ordered pair (d+,d_)(v) is the degree pair

Hence a finite collection of modules can be representedOf the node v.

by a set of non-negative ordered integer pairs. For purposes of synthesis
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the representation problem becomes one of constructing an (M,R)—graph

given the degree pair (input-output) description of the modules.

Definition 2.3—l -- A (p,s)—digraph is a directed graph in which the

number of strictly parallel edges is less than or equal to p and the

number of self-loops bounded by S.

We are concerned with connected graphs where p :_2 and s = 0.

An (M,R)—graph may have two strictly parallel edges as long as one

belongs to the M-graph and the other to the R-graph.

Let us now state a rather general theorem on the realizability of

+ -

an arbitrary collection of degree pairs [(di,di)].

 

Theorem.2.3—l. [C—2] —- The necessary and sufficient conditions for a set of

n degree pairs [(d:,d;)] to be realizable as a (P,S)-digraph are

n
n _

1) 22d”? = 2d.
1 1

. + . + —
2) >3 mln[d.,a(S )p] + 2 min[a,,[a(s )-1]p +s] > 2 d

d+€§ l A ('58 J A — (as k
i A J A k B

where

A = [div ,d]

B = [d;,. ,d;]

SA C A SA = A — SA

8 C B

B

d(SA) = cardinality of the set SA

and

d-(ES <%’ d+GES "1. n

x B x A x ’ "

Proof: [0-2, Chapter 6]
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Corollary 2.3~l -- A necessary and sufficient condition for the set

[(d:,d;)] to be realizable as the degree pairs of an n-mode (w,w)-digraph is

2d? = 2d?
1 1

Proof: Let p = w, s = w in the theorem.

The corollary is the representation condition for a digraph (not

necessarily connected) without constraints on p or s.

Corollary 2.3—2 -- The set [(d;,d;)] is realizable as the degree

pair set of an n-node digraph without self-loops if and only if

n + n _

1) Edi — Edi

D + _.

2) Ed. > d _ J = l,2,...,n

. 1 - J
1=l

ifii

Proof: Let s = O p = 8 in the theorem.

A realization of an arbitrary set [(d:,d;)] need not be unique.

Let [Gi(R)] represent the set of all realizations, the problem of

generating GJ(R) from a given realization is now examined.

Definition 2.3—2 -- (d—invariant transformations) —- Two (p,s)-

digraphs Gi(R) and GJ(R) are d—invariant if there exists a one-to—one

correspondence between nodes preserving the degree pairs for every node.

(Note that d-invariant graphs need not be isomorphic.)

One can define a sequence of elementary (p,s) d—invariant transfor-

mations between digraphs such that the result of each step is a d—invariant

digraph [0-2]. Any two (p,s)—digraph realizations G1(R) and GJ(R)

can be transformed as Gi + GJ by a finite sequence of (P,S) d—invariant
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graph transformations. Hence the set of all realizations [Gi(R)] is (p,s)

d-invariant and can be considered equivalent from this point of view [C-2].

The invariant transformations can be applied to study the notion of

biotopological mappings introduced by Rashevsky in his theory on organismic

sets [R-h,R-S,R-7]. The set [Gi(R)] can be viewed as different physical

(biological) realization of an identical input-output specified relational

system. From the standpoint of (p,s) d-invariant transformations some

problems of sociology and biology can be studied in a unified relational

framework.

Definition 2.3-3 -- Two (p,s)—digraphs Ga(R) and Gb(R) realize the

same biological relational system if there exists a finite sequence of

(p,s) d-invariant graphs [Gi(R)] i=l,...,n such that G1(R) = Ga(R) and

Gn(R) = ch03).

The problem of constructing an (M,R)—graph from the degree pair set

[(d;,d;)] is important in its own right. The procedures however require

more graph theory than is possible to include within the confines of the

present thesis. A forthcoming paper will examine this same problem in

detail. To state the results on the realizability of connected digraphs

we need the following.

Lemma 2.3-1 [C—2] -— Let G be a (p,s)-digraph containing k graph
 

components (disconnected subgraphs) with p i O and k :_2. If G

has no isolated vertices and if one of the graph components contains a

circuit (need not be directed) then there exists a (P’s) d-invariant

digraph transform of G with k-l graph component.
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Proof: The proof depends on properties of bipartite graphs and

d-invariant substitutions [C-2,Chapter 6].

Theorem 2.3—2 -- The necessary and sufficient conditions for a set

[(d:,d;)] to be realizable as the degree pair set of a connected (P’s)-

digraph with n vertices (n :_2) are

1) Conditions of theorem 2.3-l be satisfied

+ — .

2) di + di 76 o l = l,2,...,n

n +
3) p at o and 2 di :(n—l)

i=1

nggfggtzLet G be a connected (p,s)—digraph realization of

[(d;,d;)], condition (1) is true by theorem 2.3—l. d: + d; # 0 since

G is connected, similarly for p # O. The number of edges in a connected

(p,s)-digraph is at least (n—l), which is the number of edges in a

n +

spanning tree. Hence 2 di :_(n-l).

:§ by theorem 2.3-l there exists a (p,s)-digraph realization. We have

to show it is connected. Assume there are at least two graph components

(k :_2). We may assume there are no circuits, otherwise using Lemma 2.3-l

G can be shown connected. If all components of G are circuitless then

n
+

the number of edges in G is (n-k) so 2 di = n - k :_(n—l) which

implies k :_l, but k :_2 by assumption and is clearly impossible.

We now state the conditions for a strongly connected, directed and

self—loopless graph. By the previous discussions on non re—establishable

modules the hypotheses guarantee the existence of a relational system that

is maximally vulnerable.
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Theorem 2.2-3 —- The necessary and sufficient conditions for

[(d:,d;)] to be realizable as degree pair set of a strongly-connected

digraph without self-loops are:

1) conditions of corollary 2.3-2 are satisfied,

2) min[(d:,d;)] # o i = l,...,n.

2:222:

Ci-l) obvious from corollary 2.3-2,

2) min[(d:,d;)] # O i = l,...,n implies the graph is connected.

3? Proof sufficiency [0-2, Chapter 6].

Corollary 2.3—3 -- If the set [(d:,d;)] is realizable as the degree

pairs of a self-lOOpless digraph then, the necessary and sufficient

condition for all_such realizations to be acyclic is that min[(d:,d;)] # O

for at most one i, i = l,...,n.

nggfgf=?let G- be self-loopless realization of the set with the

property, min[(d:o,d;0)] # O i = i0 for at most one i0, Now a

directed circuit of length greater than one contains at least two

vertices with min[(d:,d;)] # 0 hence G is acyclic.

<:.Assume an acyclic realization G exists, such that min[(d:,d;)] # O

for at least two vertices. Let i,j be the vertices. Then there exist

edges (u,i), (i,v), (y,j), (J,z) in G. Now G is acyclic and so

u # i # v and y # J # 2. Replace edges [(u,i), (i,v), (y,j), (3,2)]

by [(u,v), (i,i), (3,3), (y,z)]. The substitution (d—invariant) yields

a d-invariant graph G' of G with two self—loops. If in G' now

replace the two self-loops by edges (i,3) and (3.1) a directed graph G2
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(d-invariant of G) results. G2 contains at least one directed circuit

which is a contradiction.

The corollary unfortunately does not guarantee the existence of an

acyclic self-loopless representation, only the properties of an acyclic

characterization are defined.

In certain cases the set of realizations [Gi(R)] reduces to a single

element. These unique realizations may be of significant biological

interest serving as prototypes of maximally constrained realization con-

ditions. A set of conditions is said to maximally constrain a relational

graph if the set of realizations [G1(R)] reduces to a unique graph. The

study of this problem requires the same graph topologicaltmbkground as

the algorithms for constructing digraphs, and will be included in a sepa-

rate paper.'

The (M,R)—digraph can be interpreted to represent the metabolic

activity of an organism, where the internal dynamics are described via the

inverse graph in the format of state-space equations. A connected graph

represents a single organism. If conditions of theorem 2.3-2 are not

satisfied then within the confines of relational systems there is no

single organism realizing the constraints.

Furthermore, even when conditions of the theorem are satisfied the

.resulting graph need not be equivalent to an (M,R)-graph unless all edges

in the R-graph originate at terminals of the M—graph, and p :_2, one has

to isolate the R-graph and with respect to the R-graph define the set of

potential terminal modules of the M—graph. This is a problem one is
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confronted with in the synthesis of relational systems. We have presented

certain conditions (constraints) in the theorems of this section, under

which relational systems may be representable as (M,R)—graphs. The

results shed some light on the nature and number of the module interactions

possible in a relational system given the input-output specification of

each module in the system. The set of environmental outputs are prescribed

by the covering hypothesis, but the environmental inputs are independent

of the realization and consequently have to be derived from the fine

structure of the individual modules.

The fine structure problem was examined in Chapter I under the topic

of assembling the system from the Ci—equivalence classes.

2.h (M,R)-Systems and Surface Structures

The deep structure developed in Chapter I defined the various levels

of dynamical invariance with respect to the activity class [Al,...,An] of

a given system. It was assumed each of these activities Ai had a

measurably distinguishable feature class [f11’°"’fin ] used in

defining the activities in the observer-system interaction. The derived

hierarchical structure denoted by the ordered h—tuple

[Tn(Mn)’Ci(Mn)’Tij(Ci)’Dijk(ai’TiJ)] defined the levels of invariance with

respect to each Ai, although the generative topology with the morpheme

basisrequired knowledge of the complete activity set [A1,...,An].

With reSpect to a given generation of biological organism the

Ci-equivalence classes (modules) are fixed. (From this point of view the

level of self-organization may be considered to be part of the genetic
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structure.) Hence, for an individual organism only the 3-tuple

[51(Mn),tiJ(Ci),DiJk(Ci,TiJ)] is required to define the deep structure

(Definition 1.3-l). To bring the deep structure closer to biological

reality the notions of finite life-times, possibility of component inhi—

bition and environmental couplings are needed. These concepts are readily

available in the framework of (M,R)-systems.

The graph topology developed for the deep structure corresponds to

the Megraph of relational systems. With the aid of the feedback relation

we can superimpose on the metabolic structure represented by the M-graph

a neW' graph with identical vertex set representing the repair functions

in the system. This repair capacity is embodied in the R-graph. The

resulting (M,R)-system, now based on the analysis of the deep structure

will be called the surface structure corresponding to the activity set

[A An]. By means of the surface structure and the use of the inverse1,...,

graph we can observe the environment—system interaction from different

vantage points. Problems related to system activity, structural complexity,

dynamical stability, relational stability and vulnerability may be

simultaneously studied in the same framework.

Definition 2.h—l —- Given a system deep structure with an activity
 

class [A1,...,An], with respect to the deep structure

[Tn(Mh),Ci(Mh),TiJ(Ci),Dijk(Ci,tiJ)] an (M,R)-system is a surface

structure if the M—graph corresponds to an admissible topOIOgy TiJ‘

In section 2.3-l we have seen that if the graph topology is defined

via a vertex set and the incidence sets (degree pairs) several possible
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realizations of an (M,R)-system may exist, which are equivalent from the

point of view of (p,s) d-invariant transformations.

Hence, for any deep structure there may be a class of surface

structures realizing that particular deep structure.

The environment may limit the number of possible realizations and

is considered to be the context within which the deep structure surfaces

via the (M,R)-system realization. If the realization is dependent on

the environment it will be called context-sensitive, otherwise it is

context free. In a context-free situation all possible realizations of

the (M,R)-graph may serve as a surface structure whereas the set of con-

text-sensitive realizations are constrained by environmentally produced

selective criteria. Context—free realizations are essentially environ-

mental constraint independent and are subject only to the Principle of

Adequate Design, whereas context—sensitive surface structures are selected

on the basis of the Principles of Optimal Design [R-S,R-7,M-h,R-l7,R-23].

2.5 thimization on (M,R)-Graphs

At each level of the hierarchical system deep structure certain

dynamical and structural features are selected for, based on some measure

of system performance and subject to operational and environmental con-

straints. The selection of an appropriate realization of an (M,R)—system

from.the class of all possible surface structures [Gi(M,R)] is accomplished

at the level of self-organization. The biological system surfaces in the

environment with a fixed module structure and a specified set of inter—

connections in the model. The adaptive transitions are equivalent to the
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perturbations of the graph topology. If the dynamical responses can be

handled as a routine regulation problem or by variation of system dynamical

parameters the M—graph is invariant. There is a definite ordering of the

degree of system response depending on the magnitude and frequency of

environmental perturbations. Within this context if a system perfOrms

graph tOpology transitions based only on the history of environmental

forcings, it can be viewed as a learning system. Thus (M,R)-graph

transitions fall into two categories;

a) Environmentally forced. (The system either adjusts or faces

extinction.)

b) Internally initiated. (The system samples the dynamical

history and searches for an optimal graph topology.)

The factors influencing the (M,R)-graph topology fall into the

following classes:

 
l) Dynamical stability,

2) Relational stability,

3) Vulnerability,

h) Capacity to process information.

Quantitative measures can be developed to define the above system

characteristics. Given an (M,R)—system the (M,R)-graph representation

 decomposes into the M-graph and R-graph. Since metabolic (dynamical)

activities take place in the domain of the M—graph and if, for example,

energy is a quantity processed then potentials and flows (x,y) continually

reorient the M-graph. Centrality and non re—establishability of modules
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is to be understood in this perspective. For a fixed instance of time

t=to the graph orientation is fixed and results derived on non re-establish-

ability can be applied. The source for the reorientation process is the

system dynamics superposed on the M—graph topology.

Therefore, dynamical activities have a dual function in the system.

On the one hand dynamics serve as mechanisms of homeostasis and regu-

lation, on the other the M-graph is oriented in a manner to reduce system

vulnerability. The R—graph cannot be influenced in the orientation

sense by the internal dynamics, but the R—graph structure (feedback

relations) can change under an adaptive transition. If the dynamics are

linear the qualitative measure for each of the four classes influencing

the optimization process can be given,

1') Dynamical stability -- if 3? =A§§ + Bu is the state equation

and (A1,...,An) are the eigenvalues of A. Then sufficient condition for

 
dynamical stability is Max [Re xi] :_0 where REAi = real component

of the complex eigenvalue.

2') Relational stability -— the index of relative complexity RC

is maximized (Definition l.h—3). If the (M,R)-graph consists of n nodes.

 

 

CF 2(P — n + l)

RC(n) = C = 2 n_>_2

Max(2) = 2 for directed graphs where the actual cyclomatic num- 
ber p - n + l is to be maximized. Obviously RC(n) :_l

3') Vulnerability -— The number of (M,R)-graph proper directed

feedback circuits (Theorem 2.2—1) is minimized.  
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h‘) Information capacity —— The order of the state vector Xi is

maximized (Definition l.th).

For a fixed (M,R)-graph (adaptive state) the only variable is the

dynamical property. Within the bounds of stability (Max[Re)\i] : o) the

orientation of the M-graph is controlled by feedback dynamics to minimize

system vulnerability. The order of the state vector, the index of

relative complexity and the R—graph are invariant for a fixed adaptive

state.

If the re-orientation of the M-graph is of high frequency then non

re-establishable components may survive inhibition. For example, if a

non re-establishable module Mi has the capacity to survive inhibition

for a time interval ti(Mi), then a reorientation of the M—graph in time

less than ti(Mi) guarantees the survival of Mi'

Given the characteristic survival times ti(Mi) j = l,...,m,

following inhibition of each non re-establishable module, the dynamical

re-orientations of the M-graph can be increased in frequency to exceed

Min[t(m .J J)1

Unfortunately by increasing the reorientation frequency the

likelihoodof inhibiting a central component is also increased. To

determine the optimal reorientation frequency a suboptimal problem has

to be solved, constrained now by the distribution of central components,

the real part of the eigenvalues of the matrix Ai and the characteristic

survival times. The whole process of optimization can be decomposed into

levels of suboptimal processes such that the results of one level are used
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as inputs to the next higher level. In case the dynamics are nonlinear

an appropriate linearization may be derived or some other measure of

stability defined is used.

The solution effort in decomposing an optimization problem into

suboptimal stages for hierarchical systems was examined by J. Pearson

in a cybernetic context [P-3]. It is interesting to note that every

constraint on the system introduces additional complexities into the

Optimization process. Every new constraint contributes a new system

measure to be incorporated into a performance index. If the constraints

are sufficiently strong then the set of solutions may reduce to a single

element and hence the system is specified uniquely thru its constraints.

The main problem is to locate a system measure that is characteristic of

all the constraints and only of these. In biological systems special-

ization of constraint system measures is not well developed, but in

cybernetics the duality between specifying the system directly or thru

its constraints is well recognized [0-1]. We shall not develop such an

approach here but note that the selection of a context-sensitive reali-

zation of an (M,R)—graph is a problem of optimization based on environ-

mentally induced constraints.

We now propose a solution of the generalized feedback relations

required to realize a relational (M,R)—graph. Although an acyclic

realization eliminates the need for a vulnerability constraint the

question remains whether the (M,R)-graphs are representations of real

biological systems.
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Theorem 2.5-1 --Assume the degree pair set [(d:,d;)] is realizable

+ -

as a directed self-loopless graph. If Min[(di,di)]# 0 for at least

two i then among all the realizations there exists at least one

with a directed circuit.

Proof: Corollary 2.3—3.

The theorem.implies that among all possible realizations of an input-

output set [(d:,d;)] there must be at least one with a directed circuit,

if Min[(d‘;,d;)] 75 O for two modules.

For relational systems if every module receives an R~feedback from

some terminal and if the M—graph is connected then Min[(d:,d;)] # O for

every terminal and every module connected to a terminal. Hence in the

set [Gi(M,R)] there exists at least one with a non re-establishable

module. Under the generalized feedback relation of every Ri receiving

an input from some terminal Mk we can guarantee at least one (M,R)-

graph with a directed proper feedback circuit. Therefore when Rosen's  
covering hypothesis is relaxed and the generalized feedback relation

holds, the non re-establishability prOperty is still valid for at least

 
one representation the class [Gi(M,R)].

If operational time lags are introduced in the system for the repair

components Ri then a module may become non re-establishable even though

the proper feedback circuit does not exist (Examples 2.2-lb and 2.2-2).

Generally, if any terminal Mk fails that produces a feedback signal to

an R1 while the module M1 is being replaced then Mi is non re—

establishable. Furthermore, directed circuits in the R-graph may have the
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same effect as proper feedback circuits in the (M,R)-graph. Given a R-

graph directed circuit with vertices [(Ml’Rl)’(M2’R2)"'"(MP’Rp)] if an

Hi i §_i §_p requires a time ti(Ri) to replace its dual Mi and if

ti(Ri) :.tJ(M3) then eventually all MJ will fail when as M3 is

inhibited, since all life-times tJ(MJ) will be exceeded before Mi

is replaced. Consequently a necessary condition for modules connected

by a directed path in the R—graph to be re-establishable are:

a) If Mi is inhibited at time t = to, then all terminals producing

input to R1 are functioning and have life expectancy longer

than ti(Ri)°

b) The time required to replace Mi is no greater than the expected

life-times of all R3 to which Mi serves as an input if Mi

is a terminal.

These are Just partial results, to completely determine the effect

on the system the inhibition of an Mi at t = t0 all the life expec-

tancies at t = t0 of each module have to be known in addition to the

individual survival times under state of inhibition. The fact that the

M-graph is continuously reoriented greatly complicates the problem. It

is of interest to determine in advance if an (M,R)-graph yields strong-

connectedness for an arbitrary orientation.

Definition 2.h-l -— (Orientability) —— A non—directed connected

graph is orientable if under an arbitrary orientation of the edges the re—

sulting graph is strongly connected.

Hence, given the basic interactions between the vertex pairs (Mi'Ri)

both in the M and R domain the question is posed whether the (M,R)-graph
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is orientable. (The problem may be considered at two separate levels.)

a) With R-graph orientation fixed, determine an appropriate M-

graph orientation to yield a strongly connected (M,R)—graph.

b) Find an (M,R)-graph with strong connectivity, specify the R-

graph (feedback relations) along with a corresponding terminal

module set such that there are a minimal number of central

components.

Theorem 2.h—2 —- A connected (M,R)—graph is orientable if every edge
 

of G(M,R) is contained in at least one circuit.

22352:: If there exists an edge not contained in a circuit then

Min[(d;,d;)] = O for at least two nodes and conditions of theorem

2.3-3 are violated.

if (M,R)-graph is strongly connected let Mi be an arbitrary node for

any M there is a directed path from M1 to MJ and conversely. The

union of the two paths forms a circuit with M1 as origin.

The theorem indicates that strong-connectivity can be deduced form

the circuit matrix of the systeml If every column is non-empty in

the circuit matrix the (M,R)—graph is orientable as a strongly-connected

graph. In an Optimization process for realizing an (M,R)—graph, if the

circuit matrix is specified with an empty column the resulting (M,R)—graph

cannot be strongly connected for any orientation.

Given a surface structure realization Gi(M,R) of a particular deep

structure [Tn(Mn)’Ei(Mn)’Tij(6i)’Dijk(TiJ’6i)] for every activity A1 of

the system (S), the dynamical reorientations of the (M,R)-graph yield
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a different incidence set [(d:,d;)] for every possible orientation of

the Megraph. The initial specified input-output set [(d:,d;)] generates

a sequence of possible dynamical alternatives.

Example 2.h-l -— Given input-output degree pair set

[(1.3).(3.1),(3,2).(2,2)]

 

a) Realization as a (l,O)-directed (M,R)—graph with terminal module

set TS = [MM2:M3:Mu]

/’/’ [;:kE;:;

/ \\ —- — ——) R-graph

./ ! \‘\\
w I T -—-—~-——9 M-graph

(Ml,nl>I:]-— —- —— —- -- -- (M333)

(M2,R2 ) [:::]<L/

b) One possible dynamical reorientation as (l,O)-directed (M,R)—

graph.

[(2.3),(1,2),(3,2).(2,2)]
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It can be shown that in the above example there are no other dynamical

reorientations (With R-graph invariant) that satisfy the (l,0)-directed

graph conditions.

Any other M-graph orientation yields a graph with at least two

strictly parallel edges in the (M,R)—graph. In general given the

adjacency matrices V(M) and V(R) the set of all possible dynamical

reorientations of a (l,O)-directed graph are obtained by perturbing the

entries of the V(M) matrix subject to the condition that,

a) V(R) is invariant,

b) V(M,R) has no entries equal to two.

(In each matrix V(R), V(M) the entries are zero or one.)

The set of all possible dynamical reorientations as a (p,s)-directed

graph depends on the

a) M-graph,

b) Specified terminal module set [Mk ,...,Mkl],

l

c) R-graph (invariant).

For every dynamical reorientation the results of theorem 2.2—1'

can be applied to determine the central and non re-establishable components.

A perturbation consisting of reorienting a single edge in the M-graph

may be represented by a relatively simple perturbation of the degree

Pair set [(d:,d;)]. If an edge in the M-graph is reoriented (Example

2.h-l) the degree pair set is perturbed for two entries. Let the edge

. . . + _

exist between Mi and M3. Then the original incidence pairs (di’di)’

+ - + " + — - if the ed e(dJ,dJ) change to (di + 1, di - 1) and (dJ 1, dJ + 1) s
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existed as an (MJ’Mi) orientation. The new incidence set is determined by

substitutingB(d: + l, d; - l), (d; - 1, d3 + 1)] for [(d:,d;),(d;.d3)]-

Any reorientation is computable by the above scheme. If the M—graph

consists of p edges then the theoretical maximal of dynamical reorien—

tations is p2. Of course not all of these need satisfy the (p,s)-

directed graph conditions. However, the computation to determine whether

the perturbed incidence set satisfied the (p,s)-conditions is straight—

forward. For every M-graph edge two entries of the matrix V(M) are

changed. The composite graph V(M,R) is altered analogously. The (p,s)-

condition is satisfied if the new V(M,R)-graph has no diagonal entries

greater than $1 and no off—diagonal entries greater than p. Hence

4. .-

all perturbations of the incidence set [(di’di)] are allowed as long as

[viJ]6V(M,R) is such that [Vij] : s and [Vij] 1p.

 



 
 

CHAPTER III

STABILITY OF ADAPTIVE DYNAMICS

3.1 State Space Of Adaptive Transitions

In this chapter a framework for adaptive transitions is developed

based on the structural properties of the (M,R) graph. Certain questions

related to the dynamical stability prOperties of interacting large-scale

systems will be investigated via the techniques developed by Siljak

[S-l,S—2,S-3,S-5]. As pointed out in the section on Optimization the first

constraint imposed on the (M,R)—system is dynamical stability with respect

to the system.dynamics DiJk(tiJ,Ci) imposed on the (M,R)-tOpOlogy.

If the modules of the (M,R)—system are constrained to participate

in the total system activity by an (on,Off)-criterion, then a convenient

condition Of the permissible topology T13 is based on the (M,R)-graph.

Given a module M: in the realization Of an (M,R)-system, the module is

a) Off: if M; ceases to function as a separate node in the M-graph.

b) On: if M: exists as a separate node in the M-graph.

Example 3.1—l -- (2,0)-directed (M,R)-graph.

{/Mylflfl‘ T8 = [M2 :M3 ’Mh]

,/,a. F‘\

-l_f:/// I \\\\\fiL“ a) (M,R) on

un- —— ...]w
r“ ‘ 7V

1/

I x I '/
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b) (141,121) Off.

‘Mu’Ru’ )J‘ “ \ \

/7‘/
/ /

//// //

l ,// l /

(M2’R2) ‘é /
   

The R-graph edges corresponding to (Ml’Rl) are deleted and all

M-paths passing through (M1,Rl) are replaced by one edge.

Given a realization Gi(M,R) of an input-output at [(d;,d;)] a subset

Of the adaptive states is defined to be the set Of all (M,R)-topologies

resulting from the(on,off)-state Of any module Mi‘

Definition 3.1-l -— With respect to a fixed realization Gi(M,R)
 

. . + — .

of the incidence set [(di,di)] as a (P,S)-graph the adaptive states are

the set Of all permissible topologies Tij resulting from the (on,off)-

state Of any Mi i = l,...,n.

The above definition is a special case Of definition 1.2—6, with

the (on,Off)-state Of each Mi providing the perturbations Of TiJ‘

Obviously if the (p,s)-condition is satisfied fOr Gi(M,R) then deletion Of

edges (some Mi in an Off-state) also satisfy the condition. For a

specific adaptive state, corresponding to [Mi,...,Mk], [Mk+l"°°’Mh]  
where.modules in first set are on, and the second set Off, the (M,R)—graph

topology can be reoriented via the system dynamics.
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If the dynamical stability properties Of the free-body forms for

each M.i are known under certain assumptions the stability of the

total (M,R)-system can be determined (Section 3.3). If a terminal Mk

is Off in the system then the covering hypothesis for the(M,R)-system

may be violated. In Example 3.1-l the cessation Of (M3,R3) node implies

the termination of the feedback relation (M3,Rl). To eliminate problems

arising from the existence Of modules without R-graph feedback, we restrict

the (on,off)-condition to non-terminal modules. Therefore, given an

initial realization Gi(M,R) with a terminal module set [Mk ,...,MiJ],

l

for any adaptive graph transitions T. all elements of the terminal

13

set are active.

Definition 3.l~2 -- (Adaptive (M,R)—states) ~- A permissible
 

adaptive state (Definition 3.1—l) is an (M,R)-state if every terminal in

the original Gi(M,R) realization is active.

A particular realization Of the deep structure as an (M,R)-system

constrains the set of possible topologies TiJ by means of the covering

hypothesis.

The (M,R)-system may perform an adaptive transition whenever

a) The system dynamics are unstable in the present state and

cannot be stabilized by parameter feedback,

b) The degree Of relative complexity RC is increased in the next

adaptive state,

c) The number of non re-establishable components is reduced in the

next state,
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d) The order of state vector is increased in the next state.

Any combination of the above factors may also result in an adaptive

transition. It is difficult to establish an order of importance for

transitions, but dynamical stability and low vulnerability appear to

dominate [R-ll,A-3,R—10]. However, stability and vulnerability may

impose different constraints in the system graph and a dynamically unstable

system may possess low vulnerability with respect to the environment.

The reason fOr the above conflict arises from the fact that vulnerability

is defined for the (M,R)-graph, whereas system dynamics are superposed on

the graph, and as demonstrated by May's example, relational and dynamical

stability are not necessarily dependent. This result is not very sur—

prising when one considers that vulnerability, relational stability and

information processing capacity are defined on structural features Of the

 system which usually persist in time whereas dynamical stability is a more

transient feature. It is possible to introduce Markov processes to

account for the dynamics Of adaptive transitions in a stochastic frame—

work [K-2 ,K—h] .

For such an approach to be useful a relatively complete list of the

factors influencing adaptive changes must exist. we have isolated only

four Of these factors and presumably many others exist that are Just as

important. There is no common denominator for the definition of adaptive

changes in dynamical system, but generally structural modifications due to

external or internal influences are recognized as examples of adaptation  [R-5,S-6,C-3,L—8,ML7]. In the following sections we shall be concerned
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with the dynamical stability properties Of (M,R)-systems specified through

the free-body models Of the constituent modules.

3.2' Dynamical Description Of Large-Scale (M,R)-Systems

Let the state space representation for a relational (M,R)-system be

given as )I = F(t,)-() i(t) e Rn (3.3)

Let F: Tan + Rn be globally Lipschitz continuous, so that unique

solutions to (3.3) exist and are continuous for all initial conditions

(tO,XO)E T x Rn [H-l]. The (M,R)-system is composed Of the n Ci-

equivalence class generated modules Mi' Assume the free-body model for

each Mi is

i . 1 R C'R (3.h)

Let the constrained interconnected Mi be modeled by

_ n _

Fi(t,Xi) + .fl ciJ GJ(YJ)>
<
u

I
I

(3.5)+
4

ll Hi()Ii)

Here Xi is the state vector for the i—th module Mi, Yi is the out-

put of the Mi and GH are the interconnection constraints.

0 n0

Fi : T x Rnl + R 1

H, : Rni + Rmi
l

m

. J niGiJ . R +.R

such that Gig are Lipschitz continuous

(IGiJIi-JJII = ([GiJIHJ(XJ)]II ._<_ eiJIIXiII i’j =1929'°'3n

(3.6)

and [[0]] is the Ehclidean norm of a vector.
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1 if MJ acts on Mi

0 if MJ does not act on Mi

In terms of the T13 topology, if MJ is a node in an adaptive state

and if the M-graph directed edge (Mj’Mi) exists then eji = l. The

total state vector is I ==(Hl,...,in) and the dimension Of i is the

sum of the dimensions Of the ii'

An interconnection matrix Ei (nxn) can be represented by the

adjacency matrix V(M) of the M-graph for any TiJ.

The structural perturbations Of the (M,R)-system corresponding

to the (on,off)-condition of each Mi yield a class of adaptive states

(subset of TiJ topologies). If a module Mi is in the Off-state all

eik = 0, (the interconnection matrix E has a zero keth column). A

module either participates in the system metabolic activity or it is

totally in the Off-state and no constituent morpheme interacts with the

system. This implies the Mi-nodes of the M-graph are not subdividable

for adaptive transitions. If the Mi is Off in the metabolic process so

is all its R-graph feedback edges. To express the structural pertur—

bations we consider a real (nxn) matrix A = [aij] and define the q x q

principal submatrix Aq as

  
where
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The determinant D(Aq) will be called the principal minor [F-l].

The fundamental interconnection matrix Ef(M,R) is a matrix with zero,

one entries corresponding to (on,off)-condition for each Mi for any

I topology. All entries corresponding to the terminal modules

13

[Mk ] are invariant ones. (a terminal module is always in an active

1

state) and non—existing interconnections are invariant zeros. A

structural perturbation is Obtained by manipulating the entries Of

Ef(M,R) subject to the above stated invariance.

In our framework the Ef(M,R) matrix is constructed from the

adjacency matrix V(M) of the original realization Gi(M,R) for the

input-output set [(d:,d;)]. Hence Ef(M,R) contains the maximal number

Of entries. An entry [eiJ]fE*Ef(M,R) is one if there exists a corresponding

edge in the M-graph Of the realization Gi(M,R).

The interconnection matrices Ei are derived from Ef(M,R) by

setting an Mi-module in the Off state (Example 3.1-l). Each EJ

represents a Tij topology (state Of the adaptive space).

The structural changes can be represented by canonical form matrices

E , which are row-column transformations of E1 into a quasidiagonal

form [8—2] .

TECH

‘12  
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From a dynamical viewpoint the EF matrix sorts the Miamodules

into dynamically independent groups. (The groups need not correspond to

the subsystems we have defined in Chapter II Definition 2.1-2.)

Under the assumption that the origin of the state space is a unique

equilibrium.point for the (M,R)-system and the Miamodule free-body

models, i.e.,

F(t,6) = 6

F.(t,6) = 5

Certain conclusions can be derived about the (M,R)-system stability from

the stability behavior of the Mi-module free-body dynamics
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3.3 Connective Stability of (M,R)-Systems

we now provide a definition of the dynamical stability of an

(M,R)-system, which is invariant under the structural perturbations.

Definition 3.3-l -- (Connective Stability) -- The equilibrium state

i = 6 of a free dynamic (M,R)-system is connectively stable if and only

if it is stable in the sense of Lyapunov for all canonical interconnection

matrices EP. (For definition of Lyapunov stability see Koenig, et al.

[K—51.)

A necessary condition for connective stability of the (M,R)—system is

the stability of each Mi~module. This can be seen by setting EP equal

to the zero matrix; with no interconnections each Mi must be stable

separately. However, the perturbation of the Ef(M,R) matrix corresponds

to the inhibition of a module, hence the necessary condition is trivially

satisfied for each disconnected (inhibited) module.

Definition 3.3-2 —- (Exponential connective stability) -- The

 

equilibrium state i = O of a free dynamic system S is exponentially

connectively stable if and only if there exists a > 0, B > 0 independent

of initial conditions (tO,XO) such that

'
" -B(t—t )

llx(t,tOX0)ll :a II Xolle 0 Vtt—T

for all (to io)éT x Rn and all canonical interconnecti
on matrices Ep.

Lemma 3.3-l -— The equilibrium state Xi = O of a free—body dynamic

 

Miemodule is exponentially stable if and only if there exists a positive

n-

m- 1

definite function vi(t,x&) on T x R such that
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(3.7)

 

alum :vi :uizn 11!

r, yawn!

ngad viH _<_ni

h

where

are positive numbers

and

T

- —2-v. + (grad Vi) F.

1

V. -

1 at 1

Proof: [8-2]

Theorem 3.3—l -- (SilJak) -- The equilibrium state x = 6 of the

 

free dynamic (M,R)—system.is exponentially connectively stable if the

(3.8)

elements

6 -1 + -
aii 13 “i2 “i3 eij 513 “31 “ih

1 ] satisfy the inequalities.of the real (nxn) matrix A = [a J

(3.8')(-l)q D(Aq) > o Vq = l,2,...,n

corresponding to the fundamental interconnection matrix Ef(M,R).

(613 is the Kroenecker delta.)

To prove the theorem we need the following results fromProof:

stability of dynamical systems and matrix theory.

(Rl) Let v(t,to,vo) be a solution of the differential inequality

v §_Av for v0 -

= A; for

v(to;t0,vo) and let ;(t,to,vo) be a

solution of the comparison equation 5
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yo = r(to,to,ro). If vo r0 and all [an] :0 and real,

then v(t,to,ro) _<_r(t,to,ro) Vt 6T [B-3,W-l].

(R2) A real (nxn) matrix A = [am] with ai3 :0 for 1,3 - 1,2,. .0,n

j 3‘ i has all eigenvalues )‘k with negative real parts if and

only if (-l)qD(Aq) > o is satisfied [L-l].

Now the proof of the theorem:

The total time derivative along system trajectories is given by

. T -

. = . + . . .vl 3t vl (grad v1) (2 e13 Gijmjufl) (3 9)

Apply inequalities (3.6) and (3.7) and rewrite (3.9) as

-lo -1

. “I . + . o a

V1 5- “i2 “i3 v1 “ilfi 613 £13 “31 V3)
J=l

for every interaction G13. Define an n-vector V = (vl,v2,. ,v )T

and form the differential inequality

V :Av

[aid] are given by (3.8). Apply (R1) and (R2) to satisfy conditions for

asymptotic stability. (The system i = Fi(t,X) is assymtotically stable

if Max B (A ) < o, k = l,2,...,n.) Now let 6' Max B (lk) then
k e k k 3

there exist two positive numbers Q < HI and p 9(6) such that

lleA(t’t°)|1 -< p e(¢$+€)(t-—to)
Vt ET (3.10)

(0-6]. Use inequalities (3.7) and (3.10) along with some properties of

Euclidean norms to obtain

ll§(t.taxe)” f_ a] (£0, [e“8(t‘to
)

for all (to,xo)e T x Rn where
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9

II

:
3

:
5

:
3 II Min = Max .

l 2 l i ui2 n2 1 n12

t3 = «4.4., 6 Max Rexk < 0 if system is asymptotically

stable - Since e< \¢\=> -B < o . By definition 3.3-2 the system

i = F(t,i) is exponentially stable.

The theorem gives us an algebraic criterion (3.8') under which the

(M,R)-system stability can be inferred from the stability properties of

the Miemodules. Since the stability of each M1 is a necessary condition

for (M,R)-system stability, if an M1 becomes unstable an adaptive

transition occurs in the (M,R)-graph. The transition decouples the

unstable Mi from the system graph. The question related to the distri-

bution of stable forms (Chapter I) can now be rephrased in light of

connective stability.

Definition 3.3—3 -- An interconnection matrix Efi is an immediate

neighbor of the matrix EfJ if Efi ~differs from Ef'j at only one

entry.

If a structural perturbation of the (M,R)-system is representable

as the modification of the fundamental interconnection matrix Ef(M,R),

then the distribution of stable (dynamical) forms depends on the stable

configurations of Ef(M,R). Every possible perturbation can be tested by

theorem 3.3-1. Let the possible stable interconnections correspond to

the fundamental matrices [Efl’Ef2""’Efm]' The above distribution of

stable forms will be called dense in the set of all structural pertur—

bations if any perturbation Efi is an immediate neighbor of a stable

form.
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If an adaptive transition consists of perturbing a simple entry of

Ef(M,R), then for a particular unstable form it is important to know

whether a stable form exists in the immediate neighborhood. A dense

distribution of stable forms guarantees such a neighbor. Therefore an

(M,R)-system satisfying the density criterion for its adaptive state

space has some degree of adaptive flexibility. The results we have stated

for connective assymtotic stability relies on the asymptotic stability of

the constituent components. Further research is needed to determine under

 what conditions can the stability criterion for components be relaxed.

 

 
 

 



 

 

CHAPTER IV

CONCLUSIONS

The dissertation is intended to serve as a framework for introducing

dynamical principles into relational systems. The first chapter outlined

a general systems methodology for identification of components of an

arbitrary system.underlying a specific observed activity class [Al""’An]'

The identification process depends strongly on the observer-system inter-

action and possesses a generative capacity in reconstructing structure

from.function. A system deep structure is isolated and invariant structural

features identified with respect to environmental perturbations.

In Chapter II a specific surface structure is appended to the deep

structure incorporating biological limitations of a system under the

finite-lifetime and non re—establishable hypotheses of (M,R)-systems.

A set of stability criteria are proposed for (M,R)—systems and

certain optimization problems explored based on these measures. The

main applications of the model will be in subsequent investigations of

the organizational properties of biological systems within the scope of

(M,R)—representations. Questions related to realization of arbitrary

input—output Specified (M,R)-systems can now be answered by the results

of Section 2.3.

Furthermore, if biological function change can be shown to be

generated by structural changes in a system, then the state space of
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adaptive dynamics can be applied to investigate some problems of bio-

logical significance such as degree of specialization and irreversibility

of behavioral changes in an (M,R)-system.

The nature of hierarchical organization is somewhat elusive, and

whether a correlation exists between the functional levels, as diaplayed

in the system activity, and the inputed structure is debatable. We have

offered a plausible connection between the two modes of system description.
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