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ABSTRACT

HIERARCHICAL ORGANIZATION AND ADAPTIVE DYNAMICS
- IN RELATIONAL SYSTEMS

By
Tom Michel Koplyay

The aim of the thesis is to investigate certain biological con-
cepts related to adaptation of hierarchical systems coupled to general
environments. A system model is constructed to account for some mathe-
matically tractéble aspects of adeptive behavior.

The organizing principles underlying hierarchical systems are
applied to define levels of dynamical invariance of the system structure,
and a close relationship between structure and function is demonstrated.
Certain dynamical characteristics of general systems are related to
structural perturbations due to the environment. The concepts of sys-
tem complexity, vulnerability and relational stability are discussed
within the framework of relational systems.

A class of relational dynamical systéms are submitted as natural

candidates for realization of a given set of input-output specifications.
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"...usually, there is a well-marked negative correlation between the
scope and the soundness of the writings...The sound work is confined

either to engineering or rather trivial applications; ambitious formu-

lations remain vague.”

Anatol Rapoport

In light of the above we intend to be relatively ambitious, and

hopefully not so vague.
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0. INTRODUCTION

"The time has come," said the Walrus," to speak of many things..."
L. Carrol

The present dissertation explores some of the problems related to

structure and behavior in dynamical systems and their influence on
adaptation.
The model proposed (we are much too humble and wise to call it a

theory) is intended to shed some light on the systems foundation of

biological adaptation. Indeed, to be more precise, we focus our attention
on certain salient aspects of biological organization that are sufficiently
|

well understood and defined to lend themselves to mathematical analysis.
The methodology of the investigation consists of a Judicious blend

of ideas and techniques from the diverse but related fields of systems

Both of these fields presuppose a certain

science and relational biology.
In

amount of mathematical maturity and a reasonable level of competence.
particular, basic knowledge of graph theory, dynamical systems and ab-
stract algebra is assumed.

To a first approximstion the model includes the following concepts:

a) Emergent and adaptive behavior in dynamical systems; with bio-

logical interpretations.



The general properties of system deep and surface structures

b)
and their respective role in storage of biological information.

¢) The principle of biological function change and adaptive
capacity in (M, R)-systeﬁs.

d) The functional and structural aspects of hierarchical organ-
ization in relational dynamical systems.

e) Identification procedures in systems modeling and the levels
of isomorphism between hierarchical structures.

f) Concepts related to self-organization, adaptation and regu-

lation along with the dynamical properties of biosystems

coupled to specific environments.
Obviously, as in any other speculative model, there exist definite limi-

tations. Within the present scope and formast, we cannot hope to answer
all the questions pertaining to adaptive features of real biological

systems. What we can do is to offer possible interpretations and solu-
tions to some adaptive phenomena encompassed by the model.

A concrete modeling methodology is developed to describe essential
characteristics of adaptation, and beyond the fundamental hypotheses the

procedure is fairly algorithmic; however possible flaws in the hypotheses

can invalidate some results. For the above reason every attempt was

made to incorporate biological principles in a manner that they fit the

model framework, yet the biological meaning is not lost in the process of

abstraction.
Another inherent and almost inescapable limitation is the personal

bias of the investigator.



The formulation of the basic axioms automatically defines the

Hence, the selection of organizing and basic assump-

modeling horizons.

tions is to be made with the model content and scope in mind.

Content

does not necessarily preclude scope, but they do lie at almost opposite

ends of the modeling requirements. If the model is to have a fairly

large (specific) content then generally the scope is narrowed and con-

versely. Therefore it is a futile attempt to eliminate all subjectivism

on the part of the investigator, only an attempt can be made to find a

proper balance.
Assuming that the above problem is under control, there still remains

some obstacles related to the particular tools used in the analysis.

The potential complexity of a problem such as adaptation is infinite,
yet we must be content to approximate reality by finite means.

Techniques related to identification of structure, function and

dynamics of biological systems rely on idealizations that are by physi-

cal necessity finite.
Consequently, in view of the above constraints we venture forth

the qualified statement that the present model is sufficiently objective,

wide in scope and specific in content to satisfy a variety of aesthetic

and scientific criteria.

The novelty of the approach lies in the fusion of different fields

to yield a unified, if modest picture of adaptive behavior in relational

biological systems.




The main contribution of the present thesis is the construction of
a graph theoretic systems framework for class of abstract biological sys-
tems known as (M,R)-systems. Some results are derived on the realizability
of (M,R)-systems within a graph representation context and certain con-
cepts associated with adaptive structural changes are investigated. To
relate (M,R)-systems to the basic ideas in systems science and to formu-
late a concept of hierarchy a methodology is developed whereby fundamental
structural components in an arbitrary system can be isolated with respect
to an observed set of activities. The literature survey is integrated
with the thesis and each topic is reviewed in the appropriate section.

To provide & loose framework for the modeling techniques introduced
in Chapter I, we shall examine some problems related to analysis of struc-
ture and function in a specific biological discipline; cytology. The
discussion is intended to serve as motivation for the ideas exposed in the
next chapter on system modeling and the nature of perceived hierarchies.

One important aspect of cellular metabolism is enzyme activity.
Depending on the skill and ingenuity of the investigator sewveral structural
components can be distinguished for a specific enzyme. These may consist
of;

a) individual atoms,

b) NH, amino group, COOH-acid group,

c¢) amino acids,

d) proteins,




The structural decomposition above constitutes a biological hierarchy,
in the sense that units at one level aggregate via reactions to form
the next level. The amino and acid groups combine to form amino acids,
which in turn serve as building blocks for proteins. Within certain biotic
and abiotic bounds, units at each level may constitute invariant aggre-
gates for a class of chemical reactions and metabolic activities. For
some chemical reactions catalyzed by specific enzymes, for small variations
of temperature, pH and substrate concentration the engymes may be invariant
units. If the temperature is increased the enzymes may decompose.into
proteins and subsequently into the amino and acid groups.

If the original aim of the investigation was to isolate factors
responsible for the catalysis of some chemical reactions in the cell and

the activity of catalysis is assigned observable (measurable) features

such as:

a) ©pH,

b) temperature of solution,

¢) concentration of an identifiable compound (substrate),
then the enzymes should be isolated as responsible chemical units.

The initial point of view concerning the system (cell) is to regard it
as an "imperfect" black box. An activity known as catalysis exists and
certain outstanding features are recognized as characteristic of the
activity. At this stage the cell is a black box, with a class of chemi-

cals as input, catalysis as internal process and a new class of chemicals

as output.




However, the investigator is still free to intervene in the system and to
perform sets of measurements appropriate to the characteristic features
of the catalysis activity. Thus the system identification corresponds to
an imperfect black box approach. Once the measurements are made (temper-
ature, pH, substrate concentration, etc.) and some structural entities

(enzymes) are isolated as possible significant components generating the

catalysis, the components have to be reassembled in a manner to account
for features of catalytic activity.

If an abiotic factor such as temperature is strongly varying in the
cellular system, then, instead of enzymes the amino acids may be picked
as natural candidates for reconstructing the activity.

The function-structure analysis in Chapter I is to be interpreted
in this light. A structure underlying and generating a function (activity)
in our framework is not absolute but rather perceived. It depends on the
original choice of behavioral features associated witﬁ the activity, the
measurement process, refinement of techniques and other experimental limi-

tations.

The hierarchical organization considered in this thesis roughly cor-
responds to the meaningful aggregations of structural units with respect
to an observed activity.

Consequently enzymes are natural units for catalysis, whereas amino
acids may be fundamental for protein synthesis. When enzyme synthesis is

considered ih the cell, a class of proteins may be associated with that

specific metabolic activity.



In many respects biological systems (cells) differ from physical sys-

tems. An activity in a biological system can persist in time in spite of
the fact that the underlying structure is changing.

As an example again we may refer to enzyme catalysis. The individual
enzymes have a relatively fast turnover rate, yet the catalytic activity
characteristic of their presence in a chemical reaction persists. On the
other hand, structural features may be relatively constant yet the asso-
ciated activity varies. If amino acids are considered basic then struc-
tural protein, enzyme synthesis can be both interpreted as generated by
the same structural invariants.

Consequently the structure-function relationship in & biological con-
text is a very delicate matter and no more should be attributed t§ Chapter
I than a possible explanation for aspects of the relationship which may
be based on the concept of levels of structural invariance exemplified by

the amino acid-+protein+*enzyme structural succession.




CHAPTER I

SYSTEMS FOUNDATIONS

1.1 Identificaton and Decomposition of Arbitrary Systems

Standard procedure in the analysis of both physical and biological
systems is to first isolate the system under consideration from its
environment and then to decompose the system into a collection of sub-
units. The underlying motivation, which is a fundamental postulate of
systems science, is that structure and behavior of the total system are
reconstructable from the constituent components. The decomposition
singles out the subunits that can be relatively well modeled in a free-
body form by referencing its dynamics to previously documented analogous
forms. Having identified the structure or behavior of the isolated
(free-body) components the total system is reassembled by means of the
system graph topology and the induced constraint equationsa.

Usually structure of the fundamental subunits is elusive and general
methods exisf only to derive the behavioral equations of the system by
modeling the components as black-boxes and subjecting each unit to
preselected set of test signals, which represents a sampling of the actual
environment. [Z-1, 2-2, Z-3]. Immediately several problems surface at
the decomposition stage of the system. First, the investigator singles
out components that are meaningful in the system structure; by the above
we mean that each component is relatively stable within the system over
a period of time and that each participates in the system activity as an

8




identifiable subunit. The identificatlion process consists of observing
the system activity, and with respect to the observed behavior performing
a set of measurements on the system. The components that are subsequently
singled out as meaningful should behave as coherent units, at least over
the time interval of the observation and measurement. In addition, each
component is assumed to have some effect on the system behavior. It is
well known that the possible perturbations caused by the measurement pro-
cess might alter the system behavior, hence care must be taken to choose
a set of measurements to which £he system is relatively insensitive.

In’the present chapter we shall outline an identification metho-
dology from an arbitrary observer's point of view, which will lead to a
general model of hierarchical systems. The procedure incorporates the
classical techniques of "tearing and reconstruction" as well as some
fairly rigorous methods based on set theoretic foundations.

Each major mathematical tool will be defined as it is introduced.
It is assumed the experimental problem of defining system boundaries and

separating the system from its environment has been resolved.

Characterization of Fundamental Subunits

Given a system S delineated from its environment Eg structurally,
but still coupled to Eg functionally, we underteke the analytical task
of specifying its structure and behavior. From the observer's point of
view, considering the system as a black box, it may perform a set of simul-
taneous activities and the problem becomes one of identifying structural

characteristics responsible for this activity class.




10
Let the set of activities be denoted as [Al,...An] (where [ ] denotes
an ordered set); any A; corresponds to measurably differentiated activity
from any other AJ in the set. In other words, the set of activities
can be pairwise distinguished by at least one physical measurement. Each
Aj may differ from any other Ay 1in several measurable features if
A, = [fil,...fini] and Ay = [fjl,...fjnjl, but there must exist at least

one distinct characteristic feature fij not shared by any other activity.

Exemple 1.1-1

a) Physical system - digital computer

Ay 4 compiling of a specific program P,

Ai = [fil,ooofini]

fil = state of scanning the program p.

fjo = identification of subroutines

fip = state of translation to machine language.
i

b) Biological System - cell metabolism

A 2 cell mitosis

J
AJ = [fje,...finj]
le = state of condensation of chromosomes
fj? = concentration of ions in the cell
fJn = acidity of chemical medium.
J

¢) Social system - social groups

A s Antagonistic behavior
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= [£.,...,8 ]
Ak k1°? >“kny
fkl = degree of facial contortion
fk2 = physical posture
fknk = emotional state

To every A4, let us associate a specific decomposition of the system S,
induced by E;. The decomposition will be assumed to have the following
properties if E;i induces [Cil""’ciki] = Ei,where Ei is the set
decomposition of S

a) +the union of Cij’ i=1,...,n is the total system S

b) the intersection of any two CiJ is the null set, i.e.

C;y NeC,, =¢
Example 1.1-2
By> € = [C13.€12:013,Cy) ]
C11
s
€—~Cy
E, > Cy = 1Cy5C,,] [E,,E,] > C,NC,
£~ N
c C12° Co1
21
Coo

E, E2 are the abstract relations inducing the point set equivalence

partitioning éi and 52 of S. Hence 51 can be considered as the

realization of E;.
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We recognize the above decomposition as an equivalence parti-
tioning of the system S regarded as a point set. We are assuming there
exist nonoverlapping subunits in the system generating the specific
activity. By our previous discussion this is a very reasonable assump-
.tion. If there exists a decomposition of the system then each subunit
should be separable form the rest of the system and be in the same
relation to S as the original system was to its environment. At this
stage we are presupposing no underlying structure for S, and consider it
only as a point set in Euclidean space R®. The goal is to exhibit a
dependent structure derived from the A; and the induced equivalence
partitionings Ei’ in order to specify structure from function. The
observer-system interaction and subsequent structure identification is
at & particular time (or time interval) of the system's existence.
Having specified a structure corresponding to [Al,...,An] we shall
proceed to extrapolate the structural features to account for activities
not in the original experimental class. The A; can be looked upon as
being equivalent to a set of test functions in the modeling of physical
systems, except in our case the system activities are measurable and:
structure is to be specified, whereas in physical systems usually the
converse is true.

Since each Ai induces a corresponding E; the decomposition can

be repeated n times and n sets of subunits identified. The subunits

of E

1 considered as sets can now overlap with subunits of EJ’ The

superimposed equivalence partitions [El, 52,...,5n] generate a natural
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point set topology for the original system S, (Ci is the set repre-
sentation of Ei) using the basis set of this topology we shall be able
to define some characteristic fundamentel subunits of §S. First we must

present some topological notions. [B=9]

Definition 1.1- Topology -~ A collection of subsets T of an

arbitrary set S, is said to be & topology of S if
&) S and the null set @ belong to T
b) Arbitrary unions in T belong to T [Up Sy €T | 5, € T]
¢) Arbitrary finite intersections belong to T
[Nps; €T | s, €r]

Definition 1.2 - Basis of a Topology —- A subcollection B of a

topology T 1is a basis for T 1if every set in T 1is a union of sets

from B.

Hence, the topology T 1is reconstructible from its associated basis

B. (Generally B for a fixed T is not unique.) Let us now demonstrate

that [E;,...E;] induces a topology on S.
The first equivalence partitioning E; subdivides S into a mutually

exclusive collection 51. Superimposing the next partitioning E2 on

S we obtain 02. Let us take the set of all intersections Clkfw chg

where kl’ ky are indexed over the respective cardinality of the

equivalence relastions.
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Example 1.1-3

;
C1a1 | G0 \ C Foo
22 /
g \\\\\‘,, N

012f102

po 2

S Cy Co
jJ=1,...,n we refine at each stage

the mesh of the partitioning. At the n-th stage we have the set of all

n
possible intersections N Cik . For every stage of the subdivision we

i

define a topology T in the following manner; let '1‘j (j=th subdivision)
consist of all the subsets of S which are finite unions of particular

N
intersection sets f% Cipo + P 3. If Sp € T,j then S, =V [ R cik ]
i i

P <J. We can give a much more concise definition for TJ by

specifying the minimal basis. A basis B 1is said to be minimal for a

topology . T generated by B, if B generates T, but no other sub-
collection of B is a generating set. (Again there may be several mini-

mal bases for a given basis. We are dealing with finite topologies where

bases are also finite.) A minimal basis for TJ is the collection
[(% Cik ]. To determine the members of the basis. we must consider only
i=1

those sibsets that lie in all of the equivalence subdivisions [El""EJ]’
Obviously, since we started with n equivalence classes, the strongest
topology we may impose by [E ,...,En] is generated by the minimal sub-
base b% Ciki]. The strongest topology with respect to [El""En]
represents the depth of the analysis one can perform on S. The classical

approach to systems analysis consisted of finding the natural subunits of

the system and then establishing the interaction between the subunits.
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The first step roughly corresponds to the "tearing" stage; the component
identification level whereas the second represents the specification of
the dynamics of "reconstruction". Generally once the components are
identified, nothing further can be said about their internal. structure.
The resolving power of the analytical procedure is approximately
measured by the relative size of the components compared to the original
system. In our frame of reference by interacting with the system simul-
taneously thru several modes represented by the activities, we can obtain
structural information about components in one equivalence class EJ by
referring to the maximal topology. Furthermore, using the basis of the
maximal topology induced by [El,...,En], some sets which lie outside any
given equivalence subdivision can be analyzed. The superposition of

equivalence relations gives rise to possible increase in resolution level

in the systen.

Example 1.1-k4
a) E > C. = {C13,05,C13}
cl 62 Cln 02

resolution power increased by superposing 52 on Cl
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1 6! = ' '
b) E; >~ C {011’012}
E!+C! = {c!' ,c'}
2 2 21’ 22
a ) 1) At
1 Ce cl n C2
] ]
11| C2, Co1l Coo
/ - _/
' = '
Cl1 C21
' = 1
Ca c22

resolution power is unaltered by superimposing ﬁé on Ei
An estimate of this increase can be derived by referring to the maximal
topology. Let Ki by the cardinality of the equivalence partitioning
Ei° Then the maximal number of subunits of S +that can be isolated by
using each Ei in [El,...,En] separately and successively is % ii'
The maximal number of subunits analyzable by the simultaneous set
[El""’En] is the cardinality of the topology Tn' Obviously, since
every set of each E; belongs to T, the maximal topology is stronger.
Hence, the number of meaningful subunits isolated by T, is greater. One

might wish to establish the upper bound for the number of possible

components analyzeble by Tn.

Definition 1.3 -- Analyzable sets are elements of the topology T .
n

Theorem 1.1-1 -- Given a set of equivalence classes,

[El,...,En] on S, with cardinalities of partitioning {Kl,...,ﬁn}

the upper bound for the structurally analyzable sets by the strongest
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nk.
topology T, = {(n Cil)} generated by the minimal basis is ﬂKi.

Proof -- Let Ki be the cardinality of E;. Assume every set of E2

intersects every set of E,. Then the number of intersections is Kl * Ko,

Using the principle of mathematical induction if sets of E, intersect

every set of every E,, i€ n-1, we have nﬁlﬁi : in = 1 ii as cardi-

nality of maximal analyzable sets.

If n =10 and ﬁi = 2 the difference between minimal and maximal

analyzable sets is already quite marked.

10 -
Min = I Ki = 20
10 - 10
Max = I Ki = 2 = 102k

The observer's interaction with simultaneous activities of the system pro-
vides a great deal more information about the decomposition of the system
than the individual separate interactions based on one activity at a time.
Let us examine a bit closer what is involved here. The ability of the
system to engage in simultaneous activities is commensurate with its
degree of complexity [M-2,P-1]. The more activities there are the

greater need exists for co-ordination, control and organization within the

system [B-U4,R-16,R-17]). If the observation-measurement interaction is

limited to the separate analysis of each existing activity, certain
dynamical interactions between the structures generating the activities
might be lost. At the outset the investigator has no means at his dis-
posal to functionally differentiate between the activities he selects.

The set [Al""’An] was considered only because each Ai differed from
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any other AJ at least in one feature, however, the measurement process
provided no test to determine the degree of similarity between activities.
Therefore, it is quite conceivable that there exists a (many to one)
mapping between the component subdivisions and the system function as
displayed by the activities. Experimentally, in view of Theorem 1.1,
this implies the need to choose the A, so that the class [El”“’En]
induces a topology with maximal analytical pewer. To pairwise distinguish
n different activities we have to perform a minimum of (g) experiments.
Assauming every experiment differentiates between a given pair of
activities on the first attempt, we can generate under the conditions of
the theorem the ideal case. The measurement interaction with the system
represents the effort invested in attempting to determine the system
substructures corresponding to [Al,...,An]. The cardinality of the
topology Tn represents the structural information gained thru the
measurement. To derive an upper bound for the number of measurements in
separating n activitie we proceed as follows.

.,f. ] measurably distinguishable

in
i
features. Let us select any pair of (Ai,AJ) and consider the respective

Let Aj; consist of [fil"'

feature sets [f,_,...,f._ 1, [f ] 1if every feature in

f
,.l.,

i1 ip; J1 JPJ
the first set differs from every feature in the second set then a single
experiment (first attempt) will differentiate A; from AJ' (This case
corresponds to the minimal experimental effort.) At the other extreme

one set is properly included in the other. Assume AiCAJ, let p = ny-nj

then the probability of distinguishing between the two sets on the first
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n, -n
i
attempts —ig———~ = g—. (If a feature fi in A; 1is tested the effort

3 3 k '

is unsuccessful.) In general, a maximum of p; + 1 tests must be
performed to distinguish each pair (Ai’AJ) (when both feature sets
are finite). Let M be the maximum number of elements in a feature set
for any A; € [Al" ..»A,]. Then the maximal number of experiments to
pairwise distinguish two activities is (g) M. (Here every activity differs

from another in only one respect and all similar features are tested

before the identifying one is selected.) Based on the above arguments we
can state:

Theorem 1.1-2 —— Given the observed activity set [Al,.

..,An] for
a system S, if the largest feature set has M elements, then the number
of separate measurements to pairwise distinguish the activities lies

between (2) and M(g).

The implication and meaning of this theorem can be appreciated when
we examine system decomposition complexity. We make the assumption that
the complexity of the activity (measured by the number of elements in its
feature set) is in direct relation with the decomposition complexity of
the system substructure generating the activity. This assumption implies

the number of sets in Ei induced by Ai is proportional to the num-

ber of measurable features of Ai. (If we can percieve Ai to be complex
then also the underlying structure should be complex.) Now Theorem 1.1-2
says something about the effort of identification, whereas Theorem 1.1-1
gives bounds for structural analytical power based on the topology Tn'

If the assumption about proportional complexity is correct then we see
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the upper bound for the measurement effort is much smaller than the
potential information gained about the system structure. In fact, letting

Max ﬁi = M, maximum effort becomes M(g) and meximum structural information
yield is Me, Of course, we have not included several factors which may
nullify the above estimate. In particular if the activities of the system
are at different hierarchical levels or that the complexity of the sub-
structure underlying an activity arises from interaction with other sub-
structures we cannot use the previous result. A large number of components
with simple connectivity may yield the same dynamical complexity as a

small number with complex interconnections. Therefore, one may not be

able to decide initially whether one is confronted with an activity based
on simple substructure strongly converted in the system or complex sub-
structure weakly connected. A great deal depends on how we interact with
the system and select the activity set [Al,...,AnL[R-16].

In the next section we shall define a hierarchical system based on the

topology T, and further explore the problems of system structuring.

1.2 Structure of Hierarchical Systems

We have discussed how the activity set for a total system S may
lead to a component decomposition of S, considered as a set, and exhibited
8 topology with a finite basis that generates the sets in the equivalence
classes induced by the activity set [Al,...,An]. In particular, we can
answer the question about potentially anaelyzable sets in S as a con-

sequence of our original interaction with the system in the role of the

observer.
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Definiton 1.2-1 -~ An arbitrary subset Q of S 1is a potentially

meaningful component of S if Q is a set in the topology T, induced
by [El,...,En] (@ is an analyzable set). Thus, automatically we limit
our attention to a well-defined subcollection of S as candidates for
further analysis.

Of course, it is not implied that every Q will be & stable and use-
ful component of S. There may be structural and functional limits
imposed on the realizebility of particular Q as a real component. A
physical upper limit may exist for the number of components a given
member of the basis of Tn can belong.

Example 1.2-1

a) Social Systems -- If the basis consists of individuals and the
components are social organizations then an upper limit exists
for membership of any individual in various organizations.

b) Physical Systems -~ In a discrete physical system the number of
terminals for free-body forms (basis) limits the possible sys-
tem connectivity.

Since every Q is the union of sets from the basis T,s the basis
becomes & natural fundamental collection in the reconstruction of the
original system.

Definition 1.2-2 -- Given a topology T, induced by [El,...,En],

the generating (finite) basis of T, 1is called the fundamental morpheme
set of S.
The analogy is borrowed from linguistics where the morpheme is con-

sidered as a fundamental unit of meaning. In our model the morphemes
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represent the smallest structural units in the system out of which we
reconstruct potentially useful components. Once the morpheme set has
been specified both the topology Tn and the analyzable components are
fixed. Furthermore, the morphfmes represent the lower limit of structural

resolution of the system.

To specify the structure of the morpheme the original activity class
[Al,...,An] is insufficient. The only way to model morphemes (and this
is important in the reconstruction of the system) is to abstract it from
the system and model it as a free-body. System scientists will recognize
the morpheme to be analogous to an object [A-1,Z-2]. We can now proceed
to describe the non-trivial problem of modeling the morphemes in the
free-body form, defining the stimulus-response orientation and reconstructing
the system thru the constraint equations. This is one of the central
problems of systems science and although far from complete it is well
developed for certain physical systems that may be considered linear
[K—S,L—B,Z-Q]. The treatment of this aspect of the problem will be some-

what cursory since the methodology is well documented elsewhere [J-1,K-5,

Z-1]. There is one very basic difference between the standard approach and
ours. It is worthwhile pointing it out at this stage to avoid future
misunderstanding. In classical analysis of systems the structural
decomposition into morphemes is first accomplished, then the morpheme is
modeled as a free-body and the system is subsequently reassembled by means
of the system graph. The so-called emergent behavioral features of the
system are attributed to the interaction of the morphemes. The methodology

is rather straightforward once the morphemes (objects) have been isolated.
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In discrete physical systems the ldentification of the components is
relatively easy. There exist discernible physical boundaries to aid in
the decomposition. Unfortuntely, this is no longer the case with some
biological systems. In addition, the terminals (points of interaction)

of components are well defined for discrete physical systems but not readily
identifiable in biosystems. Nevertheless, under certain idealized modeling
assumptions the biological components may be treated as lumped parameter
systems with well-defined discrete terminals. (The problem becomes one

of deciding whether the distributed parameter system may be treated as

the union of locally lumped systems [C-6,K-5].) One possible approach is
to subdivide the system into topologically and dynamically homogeneous
regions and to treat each region as a lumped subsystem. The total system

is reconstructed with the methods of boundary values by imposing continuity
conditions between the homogeneous regions.) Let us outline the basic
difference between the two models.

The classical or standard decomposition techniques provide no defi-
nite guidelines for the isolation of the fundamentel objects. The original
formulation of the theories related to systems modeling is motivated by
those physical systems where component boundaries are rather obvious. It
is subsumed that the objects can be located and abstracted into a free-
body form. The free-body modeling stage consists of completely decoupling
an object from the ssytem structure and observing a set of input-output
data to obtain the stimulus-response relation for each object. At the next

stage, invoking the ecompatibility conditions and the system graph, along

with the inherited constraint equations, the total model is reassembled.
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The behavior of the system then can be based on the free-body models of
the obJects and the blueprint for the assembly is specified by the graph
topology. The problem is to decide whether an arbitrary interconnection of
components will yield an acceptable system behavior, with respect to the
original activity set [Al,...,An]. Generally, any compatible and consistent
interconnection is acceptable for physicel systems. In the present frame-
work this may not be true, because a possiblé interconnection pattern

need not be'realizable. Adaptive systems possess a certain selective
ability with respect to their component structure, an aspect that is
pertially incorporated into the adaptive behavior [G-1,A-3,P-1]. This

is the main reason why we started out with a real observable activity

set [Al,...,An]. Relying on the activity set we identify the components

of the system with respect to each activity. At the morpheme level we

are confronted with the problem of free-body modeling analogous to the
standard case. However the methodology of approximation of the morpheme

as 8 discrete multi-terminal component is no longer arbitrary, since we

can measure the effectiveness of our methodology by comparing the emergent
activity class of the total system, now dependent on our modeling of the
free-body morphemes, with the actual observed set [Al""’An]’ Consequently,
smong all the possible modeling alternatives, orientation choices for the
morphemes and feasible graph topologies we select the one that provides

the best fit for the original activity set [Al,...An]. We proceed to out-
line the methodology for the construction of the model based on the activity

Set [Al, L) oAn] 3
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Let Ei be the equivalence relation induced by Ai’ We define the
k~th superposition level as the partitioning of the system S due to the
intersection of the k-equivalence classes [E "“’Ek]‘

L(Ap,..008) = i(SlEi = M
Here M, is the k-morpheme set (basis for the topology Tk)' Among all
the possible sets generated by Mk we consider first only those corres-
ponding to complete equivalence classes of any [El,...,Ek] considered
separately.

Example 1.2-2

k

1]
w

Let the vertical lines represent the equivalence partitioning boundaries.
1) Then (Al,Bl,Alf\B2,C2,A11\B2{103,D3] constitute the complete
equivalence classes for E_, E2’ E3.

2) Bo is an analyzable set, but not a complete equivalence class.
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3) [ALB] =M
[Al’32’c2] = M2

(ay ,132,03,1)3] = Mg

The set of complete equivalence classes of the E; will be called the set
of natural components Ei' These natural components have certain prop-
erties of stability in the system; any A; 1is an emergent property of the
interaction of its Ei-component structure, and, if the activity Ay
persists in time so should the corresponding Ci.

Example 1.2-3

a) Cell cycle metabolism

!

Ay

manufacturing of proteins for growth

mitosis and cell division

Al mey be considered as a continuous activity in the cell ecycle, and
the supporting structure should also persist in time.

A> 1is a recurrent, discontinuous activity with structure responsible
for it also periodic.

b) Individual organism in a species

temperature homeostasis

A

Ay

antagonistic behavior
Ay is a continuous process whereas A, is recurrent and discon-

tinuous. Again underlying structure persists as long as corresponding

activity does.

Although as we have seen the morphemes constitute the basic structural

invariants of the system, the intermediate forms represented by the
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Ci-subassemblies are also important. In fact, we can relate the potential
component complexity to the distribution of stable subassemblies which
include the Ci. Obviously, the maximal number depends on the total

number of sets in the topology; the set of all analyzable sets. From an
evolutionary point of view systems possessing the greatest number of stable
subassemblies can exhibit the widest range of emergent behavior[S-6]. An
even more important property related to the morpheme topology of the sys-
tem is the density of stable subassemblies. (The analogous problem with
respect to dynamics of systems has been investigated by Peixoto, Smale

and others, [P-4,5-T]i)

Definition 1.2-2 -- An analyzasble set @ is an immediate neighbor

of a set Q' for a given topology T, if Q' differs from Q in only
one morpheme.

Example 1.2-k4

El!‘\E2 T2 generated by M2 basis.
T 2
™ v = [V(A cy )]
\ 1
' | c, = [Cy,,C,,]
{ C19NCo1| C11"Cop | 1 [C11:C5
Lo n N =
\\012 Ca| G2 %2 C, (e, +Cyp]
N

\\-;_.//
Let @ = C13NCy,

9 = i

Q = Cyxp

g = (€}, NCyRIVI(C N0, )

The set of all neighbors of Q, is the morpheme neighborhood NQ
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of Q. When a particular analyzable set becomes unstable (the activity

generating Q ceases) the Q structure may be perturbed by an addition

or deletion of a morpheme. If there exists a stable form in the neighbor-

hood NQ then the analyzable set Q may be transformed to this stable

neighbor. (In some systems the structural transition to immediste

neighbors may be accomplished by suppression of morpheme dynamics.)

The set of natural components Ci are reconstructidble from the

morphemes, by regular component analysis techniques of systems science.
The levels of superposition are recursively characterized as,
L]_(Al) = El = Ml
Ly(A1,A)) = ENE, = M,
Ln(Al’A2”'°’An) = EjNE ,...,nEn = M,

The topologies TJ and respective bases MJ are progressively

stronger

Y ok SPTG

Each MJ is a minimal basis for the topology TJ'

Definition 1.2-3 -- The LJ is the structurasl resolution level for

is the resolving power.

the system and TJ

The index J of the topology TJ indicates the number of activities

required to achieve a resolving power TJ‘ Given two distinct sets of

observed activities [Al,...,An] and [A',...,AA,] we are in a position to

compare their decomposition properties.

Definition 1.2-4 -- Two distinct decompositions [Al""’An] and

[A]

1s+++sA}1] are analogous if:
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a) n = n'

b) 3 a homeomorphism MJ-}ZMj for each J.

The above definition implies that analogous decompositions have equal
maximal resolution level (n=n') and equal resolving power (MJEMj). (For
the definition of homeomorphism see S. T. Hu, General Topology [H-3].)

A further comparison can be made for different decompositions with
respect to the distribution of stable subassemblies, in the collection of
enalyzable sets. We are dealing with discrete, finite topologies, hence
cardinality of the sets in a particular topology is finite and the num-
ber of analyzable sets for different decompositions is also finite. A basis
of comparison may be the size of the neighborhood NDS of the set of all
stable forms Ds. The most advantageous case is a distribution of stable
forms Dg such that NDs includes all the analyzable sets. We have
previously mentioned the relationship between self-organization and
decomposition. One of the basic differences between biological and phys-—
ical systems is the former's capacity to alter its structure and behavior

under envirommental perturbations [A-3,R-10]. The structural transitions

are not arbitrary, certain funfemental units are left invariant depending
on the magnitude and complexity of the transition. Inthe developmental
process of organisms the cells may be considered structural invariants.
Morphemes become natural candidates of structural invariance in our

model.

Definition 1.2-5 -- The states of the self-organization space of an

arbitrary system are the stable subassemblies (analyzable sets) generated

by the strongest topology induced by [Aj,...,A,].
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Obviously, each Ci for every Ei is included in addition to any

other subassembly constructed from the morphemes. The magnitude of

frequency of the environmental fluctuations may not be strong enough to

induce a transition in the self-organization space. The system may

react by only partially sltering the set of activities [A ,...,An].

Let the equivalence classes Ei be fixed. The specific activity

A; we have observed is generated by a definite interconnection pattern

between the equivalence classes of Ei; to alter an activity the graph

topology between natural components is varied. Let TiJ(Ci) denote the
set of all consistent system graph topologies for a fixed ai-equivalence

class set of Ei'

Definition 1.2-6 -- The states of the adaptive space for a fixed

Ci-equivalence class are the graph topologies Tij(ﬁi). An adaptive space
can be defined for each set Ej induced by EJ' Consequently, each acti-

vity A4 can be altered by a transition in the underlying adaptive

space.

The same arguments apply to the distribution of stable states as in
the self-organization case. In particular, a distribution of stable

graph topologies Tij(ai) allows a greater degree of adaptive freedom to

transfer from an unstable form to a stable one. Notice the main difference

between self-organization and adaptation is the invariant substructures.
In the case of self-organization the morphemes are the fundamental

building blocks whereas the natural components Ei serve the same pur-

pose for adeptation.
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In view of the fact that every activity Ai has its adaptive space,
the total adaptive space for the system may be considered as an n-
dimensional space (one dimension for each activity). If the class

..,Cn] is defined and the states of the system

(E ""’En] is given [Cl,.

adaptive space are computable. (Any inconsistent graph topology is
rejected.) The interactions between the 51 sets for a fixed i may
be relatively stable in time as evidenced by the persistence in time of
specific activities. To account for the routine minor reactions of the
system to small and expected perturbations the concept of system dynamics
is required. To deal effectively with systems dynamics we must introduce
some ideas of graph theory and re-examine the modeling of morphemes as
multi-terminal discrete components. (A good first reference for what
follows is D. Johnson and J. Johnson, Graph Theory [J-1].)

We assume the collection of morphemes have been isolated from the
system into a free-body form. The free-body concept permits the observer
to conduct a set of indépendent experiments on the morpheme now regarded
as a black box. The experiments consist of a sampling of the actual
environment the morpheme may be subjected to in the system. Under the
environment label we include the original system environment as well as
the morpheme set of the system itself. Hence, it is permissible to think
of the morpheme as a system except that we have no direct means to
deduce its structure. Instead the morpheme is subjected to the above
prescribed experiments and the state-space model derived from the observed
reaction to the experiments. The morpheme will exhibit & set of charac-

teristic activities (observable and measurable) [al,...,ak] analogous
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to the total system activity set. The a; are not unique or even well
defined, they depend to some extent on the investigator's preferences.
The total system activity set [Al,...,An] serves as & guideline for the
selection of meaningful activity set for the morpheme. The activity set
for the morpheme is recorded over time series domain T = [to,tl,...,tn]
and the k-tuple [al,...,ak] (ti) 0 <i<n 1is noted. The behavior of
the morpheme is defined to be the time sequence of the activity set
[al,...,ak] over the domain T. A further assumption is imposed about
cause and effect among the activities and the behavioral equation is
constructed. Essentially the behavioral equation consists of labeling a
certain subset of [al,...,ak] as stimuli, its complement as response and
associating the two subsets by an algebraic relation. Let [ai,,.m,ak]
be partitioned as [sl""'535 rl,...,ri) = [s,r], i +J = k, and let
B[sl,...,sj](t) = [rl,...,ri](t). The relation B expresses the
stimulus~response orientation of the morpheme.

Unfortunately B 1is not always a function and may be a one-to-many
mapping.

The concept of state is introduced to reduce the behavioral relation
to a function. The state-space description has two basic parts:

1) State-variable i varying over a state space .

2) Stimulus-response-state relation ﬁ(i,;,;,t).

The state-space model satisfies the three conditions [2-1,Z-2].

Condition 1 -- The oriented activity set [sl,...,sj,rl,...,rj] belong

to the range of the time-series,‘3 a state X €y such that
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(E agrees with B; B includes B).

Condition 2 -- The relation B 1is a function when restricted to
domein s and range r. (For any state X, 1 st most one response for
any s.)

Applying condition 2 we can express the response as a function of the
stimuli r(t) = R(i,g,t). In addition, we need a condition to express
the result of two successive stimuli.

Condition 3 -- Given R(il(tl),§(tl) . E(tg)) = ;(tz) then 3
a state X,(t;) such that R(X,(t,),s(ty)) = F(tp)

Thus the response function can be updated. The above assures that
the result of a sequence of stimuli can be replaced by a state. In
other words, if both state and stimulus are known at a specific time, the
next state is uniquely determined. Hence, the state variable is the
intermediate quantity required to transform the behaviorel relation into

a state-response function. In particular, if the state at some time t

is given, then the next state can be determined. In terms of a differential

relstion.
ax - -
—_ = t), t),t
= s(x(t), s(t),t)

Consequently, we have the pair of equetions

aX = g(x(t), s(t), t) Vi
dt

r(t) = R(x(t), s(t), t)
called the state and response equations respectively.
The first equation continually updates the state of the system,

vwhereas the second expresses the response in terms of state and stimuli.
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The state equation represents the total memory of the system required to
uniquely determine the response and next state.

It should be observed in retrospect that the behavioral relation and
subsequent state-response equations depended on the recorded time series
of the activity set for the morpheme. Hence, a different time series or
subdivision of the activity set into stimulus-response orientation will
yield different state-response equations. The one selected depends finally
on the agreement between the reconstructed activity set [Ai,...,Aﬁ] for the
total system and the original observed set [A ""’An] on which the
decomposition into constituent morphemes was based.

Once the free-body model of each morpheme is constructed we can
proceed to reconstruct the analyzable sets. We examine the restrictions
imposed on the behavior of each morpheme in light of the fact they inter-
act to form an analyzable set. (At this stage we may properly call both
morphemes and analyzable sets as components since we have imposed a
structure thru the state-response equations.)

We assume morphemes are constrained to interact at actual discrete
physical terminals. Every interaction is a potential constraint on the
behavioral relation. The constraints imposed on the free-body models of
the morphemes (the interconnection graph topology) generate the total
behavior of an analyzeble component. The graph topology for the
analyzeble component in an adeptive space transition is considered to be
fixed but may change in a self-organization situation. At the next
level of assembly the interaction of analyzable components is considered

again with s set of higher level constraint equations to yield to totel
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system state-space and response equations. The characterization of

analyzable components from morphemes is accomplished as follows.

Given
X (t) = 8,(X,8,,t)
at 1 b s g I
ry = Ri(xi,si,t)

for each morpheme, by the use the interaction constraints and compatibility

conditions [Z-3] we may coalesce the free-body forms into

g—Jt(- = S('x’s’t)
F = R(X,s,t)

where s Cr expressed the constraint relations; C is a full rank

matrix. Substituting ¢y for 3 in the equations we have

X g(%,cr,t)
dat
r = R(s{,C;,t)

if possible the response equation is solved in terms of r. The tech-
nique eliminates the intermediate variables (response and stimuli of the
free-body morphemes that are constrained in the system) and only the
connected suhsystem (anslyzable components) remain. The same procedure
of grouping components of large-scale system techniques applied to
analyzable components yields the system state-space model [K-5].

Example 1.2-2

a) Cytology -- if the collection of organelles in the cell are the
morphemes they can be further aggregated into more complex

substructures such as the mitochondria, cytoplasm, nucleus

(analyzeble sets).
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b) Physical system (computer) -~ The morphemes vary the constituent
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manufactured components (resistors, capacitors, inductors,
switches, etc.). The analyzable sets are aggregetes of these

morphemes; compiler, sorter, memory bank, printer, etc.

c) Social System -- If morphemes are individuals then analyzable
sets may be various sociael groups which in turn interact to
form higher level aggregates. A Ei-equivalence class may be the
family unit.
In all these examples the forces binding the morphemes in an
analyzable set are stronger than the interaction between the analyzable

sets at the next level.

When the number of morphemes is large,.the theoretical procedure

described to reconstruct the system from the free-body graph can become
cumbersome. The constraint equations for such large-scale problems are
resolved by means of the system graph which we now describe. First a
few preliminary concepts from greph theory.

Definition 1.2-7 —- A greph G(V,E) 1is a set of objects V called

vertices (nodes) with a set of edges E. Each element of E is defined
by a pair-of vertices (vj,vk).

The set of E may be visualized as a collection of lines connecting

a set of points (vertices). In the abstract formulation E becomes a
binary relation on the set V. Two elements of V, vy and Vo are in

relation to E, v, E v

1 o if v, is connected to vp. When we distinguish

between the pair (vi,vd) and (vy,v;) we assign direction to the edges and
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end up with a directed graph (digraph) with the edges denoted by the
ordered pair [vi,vJ].

Example 1.2-3

V2
o v
o 2
&2
e
e
l ov3 el
v
. 3
v
1 . Vlc
3
4 °3
L .
M1
Gy Go
Gl is undirected and G2 is directed.
A
An edge ejy = (vi,vJ) is incident on both v, and vy If

vy = vy the edge e forms a self-loop. A vertex Vi with no incident

id
edges is isolated. The degree of a vertex d(v) is the number of edges
incident on v. For digraphs we distinguish two separate degrees; the
negative degree of incidence d~(v) the number of edges directed to v
and the positive degree of incidence a*(v) the number of edges from v.

d(v) = a*(v) +a (v)

Definition 1.2-8 -~ Two graphs G and G' are isomorphic if

one-to-one correspondence between their edges with all incidences

preserved.
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Example 1.2-4

'vs

SR s

o V3
G3 G,
a) for G d+(v3) =1 da(vy) = 2 dlvy) = 3
av) = 2 dv) =1 alvy) = 3
a*(v)) = a7(v)) = o

\41 is isolated.

b) for Go d(v2) d(v3) = d(vh) = d(v5) = 3

5 (self-loop counted twice)

¢) for G dlv)

d) G, 1is isomorphic to Gy

1

e) Gl not isomorphic to G2 since Gl is directed and G2

is not.
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A graph G/ = (VS,ES) is a subgraph of G = (V,E) if Vg C V and
ES<: E. (If an edge is included so must all its incident vertices.)
When V_ #V or E # E then G, 1is said to be a proper subgraph.

A peth is a finite sequence of edges (el,...en) where e, = (vi_l,vi) and

i
the terminal vertex of ej is the initial vertex of €i41° A path is
simple if all edges are distinct, when v, = v, the path is closed. A
circuit is a simple closed path.

An undirected graph is connected if there is a path between any
two vertices. A digraph is connected if the underlying undirected graph

is connected.

Definition 1.2-4 -- A graph GT which is connected and contains no

circuits is a tree. In particular if a tree GT is a subgraph of G
then GT is a tree of G. If GT contains all vertices of G it is a
spanning tree. Any edge in a tree is called a branch. The complement

G' of G

T T is a cotree with edges known as chords.

Example 1.2-5

G

v

. 2

P!
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a) Gs(VS’Es)
where Vg = [vl,vz,v3,v6]
E, = [el,e3,e5] is a subgraph

b) [el,ez,es,eB,ez,eg,elo] is a path
c) [el,ee,eh,elol is & simple path
[e2,e5,e3,e2,e9,e6,e3] is a closed path
[e2,eh,e6,e3] is a circuit
d) [el,ez,eh,elo,eg] is a tree
[el,ez,es,e6,e8,e9] is a spanning tree
For a connected graph G with v vertices, GT consists of v-1
edges. A graph G 1is simple if it has no self-loops and no two edges
are incident to the same pair of vertices. For modéling of multi-terminal
discrete components simple graphs are not sufficient, after reassembling
the free-body models a system graph with multiple edges between vertices
may occur. An example is the parallel connection of two terminal compo-
nents. However, if we agree to reduce a parllel connections to an equiva-
lent single connection we reduce the nonsimple digraph to a simple graph.
The reduction consists of modeliﬁg the collection of components in parallel,
responsible for the multiple edges between two vertices, as a single
component. In the process we lose some information on the individual
dynamics of some morphemes, but our aim in description of adaptive behavior
is the topology of the natural components. The reason we seek a simple
graph is to deal more efficiently with the notion of relative complexity,
which will be based on the cyclomatic number of & graph. For an arbitrary

digraph the cyclomatic number may be infinite and furthermore, the
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complexity of the graph may be due to a large number of edges between two
vertices only. Hence, the complexity is not distributed throughout the
whole graph. In the next chapter we will need only the concept of a
simple graph when we introduce the inverse of a graph. (The inverse
graph will establish the bridge between input-output block diagrams of
relational biology and the terminal graph representation of systems
science.) The fundamental postulate of systems science permits us to
replace a parallel multi-connection with an equivalent single one. The
complementary variables (xi,yi), i=1,...,n for the parallel case are
reduced to (x,y) of a single connection. (Of course we lose the instant-
aneous dynamics of each (xi,yi), but the net effect is still reflected in
(x,¥).) Unless otherwise specified we shall deal only with simple graphs.
Where a nonsimple graph is introduced by a construction, the graph is
reduced to the simple dynamical equivalent.

In the original decomposition of the system into morphemes we had
to model the morphemes as free-bodies to derive a structure for them.
Although no information existed about their internal structure, the
structural points of contact (terminal) with other adjacent morphemes
could be determined by using the system under investigation is constrained
by its system graph. Knowing the terminals we can model the behavior of
each morpheme.

Fundamental Postulate of Systems Science -- The behavioral charsac-

teristics of an n-terminal component in an identified system structure
are completely specified by a set of (n-1) equations in (n-1) pairs of

complementary varisbles [x;,y;] identified by an arbitrary terminal graph [K-5].
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R A six-terminal morpheme with one
v3 P V3
V2 \( possible terminal graph.
v M
1l v
\ v,* - /’2\'
’ ) 6 4 vy * v
ve ) ‘ v vy 1
g 5 3
V6\ ,———""
v v
5 L

A terminal graph is a spanning tree for the complete set of terminals
(vertices) of the morpheme.

Applying the compatibility conditions the graph of the system is
coalesced from the model of the morphemes. By defining an appropriate
maximal tree (with respect to the dynamical properties of the morphemes)
the constraint equations are derived from two sets of conditions. One is
based on the circuits of the system graph defined by the cotree and the
other on cut-sets defined for the spanning tree.

The dynamics (behavior) of the total system can now be put into a
state-space, response equation format.

& - 5(x,s,t)
t) = R(x,s,t)
and a set of algebraic relations between non-dynamic variables.

Based on the state-space, response equations we can re-examine the
emergent activity set [A',...,AA,] as a direct consequence of the dynamics.
A qualitative comparison can be made between the model constructed to
explain the activity set [A ,...,An] and the actual set obtained
represented by [Ai, ',...,A;]. Of course, as a first criterion of

goodness of fit we expect n' = n, implying that if we started with n-
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distinguishable activities we should obtain as many. Furthermore, if

n' = n then the activity set [A’,...,Aé] can be compared to the set
[Al,...An]. At the start of the observer-system interaction stage the
investigator determined n-different activities in the system by distin-
guishing certain measurable behavioral features. At the completion of
the modeling stage ideally the same differences in the behavioral
features should be obtained. Hence, if we map

fp: [Ai,...,Aﬁ] + [Al,...,An] where fP is a permutation of [Ai,...,Aﬁ]
each fp(Ai)e'[Al""’An] can be compared feature by feature to

Aié [A]'_,. .o ’A1'1] . Initially interacting with the system at a functional
level (activity set) we construct an underlying structure generating this

function, by means of the morpheme based Ei-equivalence classes,

Definition 1.2-10 -- A system will be considered functionally

hierarchical if it engages in n-distinguishable separate activities.
n > 2.
The observed functional hierarchy leads to a natural structural
hierarchy induced by the decomposition into morphemes. The degree n
of functional hierarchy is the index of the set [Al,m..,An]. The cor-
responding induced structural analysis hierarchy is the level n determined
ﬁy the morpheme set Mn.
Hence, the degree of difficulty in the modeling is dependent on the
power of the resolution required to analyze the components of the system.
We have discussed which subassemblies of the system may be considered

a8 structural invariants depending on whether the change in the system
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is adaptive or a self-organization. Both of these involve some pertur-

bation of either structure or system graph topology. Routine maintenance

in the system, regulation for example, does not usuelly require a modi-

fication of structure or activities.

Example 1.2-6

Cytology -- active transport across the cell membrane during the

cell life cycle may be considered as routine maintenance with no funda-

mental activity or structural alterations.

The initiation of mitosis produces marked changes in types and levels

of activity and corresponding structure changes within the cell.

For the above reason we introduced one further degree of adaptive

freedom based on the system dynamics. Given the system topology for the

natural components (Ei-equivalence classes) superimposed is the dynamics

derived from the state-space equations. A first reaction of the system

to a minor environmental perturbation may be accomplished by modifying the

system dynamic parameters. Each parameter varies between specified

bounds depending on the physical properties of the corresponding component.
To summarize the results;

1) Given experimental observer-system interaction and measurably

distinguisheble activity set, based on the feature sets of each Ai’

[Al,...,An] iEEEEﬁs [El,...,En]. Superposition hierarchies of analysis

are established; Ll""’Ln' Each Ei is the set of equivalence classes

corresponding to Ei' The Ei are the natural components generating the
Ay.
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2) For self-organization the M, generated analyzable sets are

inveriant. For adaptive behavior the C

i--sets are invariant and con-

nective graph topology changed. For routine regulation problems only the
dynamical parameters are modified.

3) The system structure is based on the fundamental invariants
M, (morpheme set). The adaptive structure with respect to M, and the
activity set [A;,...,A ] is an ordered 3-tuple [ EiTiJ(Ei)’ DiJk(Ei,Ti)]
for each i=1,...,n where the Ei are functionally determined by Ei
and structurally from Mn and the system graph.

TiJ(Ei) = set of all consistent graph topologies between C, .

( Ei considered structurally invariant.)
Dijk(ai,ri) = the set of all possible dynamical realizations for

fixed Ci and Ty.

We see that there is progressive natural emergence from the morphemes
to natural components, to component topologies and finally system dynamics.
The reaction of the system depends on the magnitude and time-duration
of the perturbation.

We complete the section with two examples.

Example 1.2-7
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O L) < E o=

M o= [C3,C5] Cy

T, = [s,v),cll,cm]
b) L,(A,A)) = [ENE] = M

My = [Cy3NChy5 Cp3MCppsCyg NCoasCyp NCyys €150 C00:C 2 Cog)

C, = [CpCppsCh3] |

T, = [U(XaY): XéTl,YE.(-JQ]

Tlc; T2
€121 Cyy

& C1p0C,,

-
€70

Q = [{cy0c,)) V(Cpficy,)]
Q1 is an analyzable set.
¢) Natural components at level L2
[€11C15Cp) 5C205C 03]
d) Morpheme set at level Lh
M, = [xv(mz)lxeT3, Ye'r3, zech]
(Cn“czz" c3hn Chl) € M
e) Morpheme terminal graph.

N N i
Let morpheme (C11 Con 0320 Ch2) at level Lh be isolated as

a free-body
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% represented as
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[ : to [tl,tg,t3] terminals
t3
tf\ 8 possible terminal graph for morpheme
\, t
/r ¢
t3

Example 1.2-8

Given the observer-system interaction consists of analyzing the

metabolic activities of a cell.

A= (Eg,0 51 5]

fll = reproduction of the chromosomes
f12 = level of enzyme activity

fl3 = 1ion concentration

Ay = [yl

f21 = production of ATP

f22 = ion concentration

Ay = [f3,15,]

f3l = state of cell division

f32 = protein synthesis
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With respect to this activity set [Al,AQ,A3], the following

equivalence classes may be distinguished.

El = [nucleus, cytoplasm, chromosomes, DNA]
E2 = [mitochondria, cell membrane, rest of the cell]
E3 = [ribosomes, nucleus, endoplasmic reticulum, rest of cytoplasm]

The morpheme set consists of all functionally independent subunits

(organelles, DNA, cell membrane, etc.) that lie in the intersection of the

identified Ei for each E;. DNote that the system (cell) at the original
observer interaction stage is considered as a black-box when the Aj
are identified.

The choice of fij are arbitrary as long as they can be distinguished
by the observer. Although the activity set is derived from the black-box
point of view the investigator still has the freedom to meke measure-
ments to identify the Ei-classes. Furthermore once the Ci are identified
measurements can be performed to determine the terminals (points of inter-
action) between aggregates (cytoplasm, nucleus) or morphemes (DNA, RNA,

rihosomes). Some of these interactions are purely physical (energy,

ion, protein exchange) others are behavioral (inhibition, excitation).

1.3 Analogous Systems and Degrees of Isomorphism

Given two d&namical systems a comparison can be made between them
at various levels we have introduced. Equipped with the analyticsal
component decomposition of the morpheme set based topology we define the
system deep structure.

Definition 1.3-1 -- Based on the morpheme set M, the system deep
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structure is defined for each observed activity A; as the ordered

3‘tuPle [Ei’rid’(ai)’ DiJk(ai,TiJ)].

Obviously, the Ci depend on Mn' The topology Tyy is derived
from the permissible interconnection of the natural components Ci as
components of a system. (The label "natural component"” is used to
emphasize the relation between A; and its characteristic decomposition
based on Ei°) The definition yields a deep structure only to the depth
of adaptive capacity in the sense that only Tij graph topology may
change and system rearrangement due to self-organization is not included.
To account for self-organization we should include the set of analyzable
sets, thereby allowing a greater degree of permissible reorganization in
the system.
In that case the deep-structure becomes an ordered L-tuple

[Ta(M,), Ei(Mn), iy Dijk(ai,tij)]. Given a finite number of natural
components it is obvious that Tij(ai) is finite. We have only assumed
boundedness for the dynamic parameters. A continuous variation within the
permissible bounds may yield an infinite range of dynamical possibilities.
Hence, DiJk should be indexed Dj4[], vhere [k] is the range‘for the
parameters., In regulation problems it makes quite a difference whether
the system dynamics may vary continuously or discretely both for the
analytical methods used and the final result. The continuous case may
nevertheless be approximated by discrete analogues in most problems and

no real generatlity is sacrificed in assuming k to be discrete in the

formulation of the deep structure.
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An observation is in order about the modeling technique to derive
structure from function. Let the activity set be given as [Al,...,An]

the results of the model [A',...,A;,] are compared and certain conclusions

made about the goodness of fit. The whole procedure may be considered

as a multi-dimensional feedback problem. The system S 1is the black-box,

the [A7,...,A,] serve as input and the [Ai,...,A;'] as output.

Al — —> A
A, —  — Al
A _.__> ‘—'~> A'|
n n

The object of the modeling is to minimize the difference between

input and output. Thus, the problem can be formulated as multi-dimensional

feedback problem [C-6,C-T]. The resolving power induced by the topology

indicates at what structural subsets Mn the system is analyzed, and the

two sets [Al,...,An] and [Ai,...,Aﬁa] are compared. Unfortunately, the

free-body model requirements may impose practical limits on the resolution
power. What we can say sbout the free-body model depends on the actual
state of the art. Namely what information is available about entities
represented by the morphemes in the particular discipline the model is
applied to. It is an exercise in futility to model ecosystem behavior of
species based on the cellular decomposifion of the individual members of
the species,

This is not so preposterous an idea from the modeling point

of view, but rather, from the biological considerations. The difficulty
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of reassembling the species from cellular components stems mainly from
the biological information gap between the level of species behavior and

cellular structure. (Of course the complexity of the resulting graph

topology would make any computer wince.)
Generally, one does not aim for an exact fit between [Al”"’An]

and [A',...,Aﬁ.]. The practical requirements will provide adequate error

tolerances between input [Al,...,An] and output [Ai,...,Aé,] to leave the

morpheme decomposition at a reasonable level. (The present dissertation

is not concerned with system simulation, and consequently the accuracy
of the model will not be discussed further. The problem will be considered

in a future paper.)

In passing we note that n' can be expected to be less than or

equal to n, since in the modeling process certain information about the

system may be lost and the resultant system complexity is less than the

original.
Two arbitrary systems modeled by the L-tuple [Tn’ci’TiJ’Dljk] can
exhibit four different degrees of analogy with respect to an activity A;.

Definition 1.3-2 -~ Given [Al,...,An] and T  for two arbitrary

hierarchical systems

11 1 1
= »D
Sl [Tn,ci,‘t ijk]
= c2 2
S2 (T sC ’ ij’ ]

with respect to each pair {Ai,Ai} the two systems will be isomorphic if.

a) ,3 a homeomorphism between Ti and Tg,

b) the cardinality of the sets E% and 6? is the same,
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c) The sets of all permissible graph topologies T%J and ng
are equal,
d) For a fixed ’fiJ and its graph isomorph (Definition 1.2-T)

2 the corresponding system dynamics D%Jk and D?Jk have

TiJ,
the same canonical form [R-20].

If only adaptive behavior is compared then condition (a) can be
neglected, since analyzable sets are invariant for adaptive transitions.
(The analyzable sets for this case are the Ei-equivalence classes.) The
definition clearly demonstrates why in hierarchical systems comparison of
dynemics and graph topology is not sufficient. The system activity set
and supporting structure varies in time. Every transition at some deep
structure level implies changes at every level dependent on it. For
exemple, if a self-organization transition is induced both graph topology
and dynamics are altered. The frequency of change decreases with the
depth of the level affected. In increasing order of transition frequency

Ei’(Mh) - self-organization

Tid(éi) - adaptation

Dij(ai,TiJ) - regulation.

An adaptive change for an activity A; that consists of a deletion
of some edges in the graph topology between elements of Ei may be
considered as a step towards specialization. A loss of the degree of
freedom represented by cessation of graph edges may guarantee a greater

stability for the total system structure. This problem will be qualitatively

examined in the next chapter and analytically in Chapter III. It is
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also very plausible that any transition is the minimal possible; the
degree of reorganization is minimal with respect to a given purpose,

assuming the system has an optimization capacity.

1.4 Nature of Complexity and Organizational States

The functional complexity of the system at initial observer
interaction is measured by the activity set [Al,...,An]. Obviously, the
more complex the system the greater the activity set. We have indicated
that functional complexity should be reflected in structural complexity.
Hence, if we begin with s large number of distinguishable activities we
expect the underlying morpheme set to be proportional and the graph
topology associated with the natural components relatively complex. The
idea of absolute complexity, measured by the number of vertices and edges
in the system graph is of no real importance, at least for most systems,
in determining stability properties or adaptive capacity. In the following
chapters we shall examine the relationship between system complexity and
various stability properties. This will give us some interesting insights
into the nature of physical growth and increase of relative complexity
in biosystems. For the moment we shall be content to describe the nature
of complexity for the deep structure of hierarchical systems.

Definition 1.4-1 -~ The degree of functional complexity of the system

is the number of distinguishable activities of the observer level.

This implies that the observed functional complexity depends on the

observer-system interaction. A system considered simple by one set of

measurements may be promoted to complex echelons by a different observer

interaction.
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Definition 1.4-2 —-= The induced self-organization complexity of the

system is the cardinality of the basis of the topology Tn.

The induced complexity then becomes the set of all potentially mean-
ingful components. Complexity is dependent strongly on the equivalence
classes [E s+++>E ] derived from [Al,...An]. Hence, high functional
complexity implies similar complexity at the level of the deep structure.
To examine the complexity of the graph topology we need some results from
graph theory.

Given the vertices [vl,...,vn] a graph, G(V,E) can be constructed
by inserting edges between the vertices. The maximal number of edges that

is (% = n(n-1)
can be placed to construct a simple graph of n-vertices is (2) —-
The total number of subgraphs for such a maximally connected simple
graph is 2n(n-l)/2. (Any edge may or may not be included in the subgraph.)
A trée is the minimal number of edges required to connect n-vertices
(Definition 1.2-10).

The fundamental cyclomatic number of a graph with respect to a tree
T is the number of edges in the cotree. The fundamental cyclomatic
number represents the excess connectivity (system constraints) above the
minimal required for a connected system. Given a graph G with n
vertices and p edges the fundamental cyclomatic number is CF =(p-n+1).

The maximal value of the cyclomatic number for n-vertices in a simple

graph; I?

- 2

- n(n-1) - 2§n-l) _ 3n+
Maxc=£%_l_)"(n'l)= 2 -2

=Ll _ maximal possible connectivity
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(n-1) = edges for a tree
The relative complexity in a connected simple graph is the actual
CF divided by Maxc. Let G consist of p edges and n vertices,
and let G be simply connected (pzp—l) then

Definiton 1.4-3 -- The relative complexity of the system S at

the adaptive level is measured by

C , . .
R (n) = F (n) = p-n+1 _ 2(p-n+1)
¢ Mexg (n2 - 3n + 2)/2 n® - 30 + 2
A
Max , (2) = 1 where p<n(n-1)/2, n>2
Example 1.4-1
Gy Go . Gs
1'\ o//.‘ \
\l/’ \ /.. \‘/
v, = 6 v, = 6 vy = L
P, = 8 pp = 11 P, = L
Cpg = 3 Cp = 6 Cp = 1
R, = 3/10 Ry = 3/5 R, = 1/3

CF does not depend on the specific tree chosen for the graph.



Vh = 4 VS = 3 V6 = 7
P, = 3 Pg = 3 pp = 12
CF = 0 CF = 1 CF = 6
RC = 0 Ry = 1 R, = 2/5

We see, for example, that G2 and G6 have the same CF but
R2 > RO,
c c
It is easy to show O §_RC <1 for any graph. For graphs that are

not connected R, is computed for each connected subgraph and the total

C
graph RC is the sum of the subgraph RC divided by the number of sub-
graphs;

G is the minimal union of [Gl,GQ,G3] such that the subgraphs are

Joined at corresponding vertices only.

Gy Go G3 .
1 .\\ / L
. ' V2 v A
Vi 2 \\\\\\ v
v3 / '/ 5
vé6
= - = L
h =0 p2 = 3 p3 = U
CF 0 CF 1 F
1o 2 . RS = 1/3
R™ = =
o 0 RC 1 c
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. 0+1+1/3
R,(G) = ; = L/9

We see in this example the complexity of the total graph G is greater
then the minimal and less than the maximal for its component subgraphs.
This is true generally, if the union of two disjoint graphs initially
consists of one vertex union. Given a graph G as the union of disjoint
subgraphs Gl,...,Gn, let

min RC be the minimum of the relative complexities

Max RC be the maximum of the relative complexities
then

min R,(G;) iRC(G) < Max R,(Gy)
where G is minimal union of subgraphs [Gl,...Gn]. A minimal union

consists of joining only two vertices of disjoint graphs as in Example 1.h-2.

To see this fact consider the following

n
min R, = —— < = R.(G) < = Max R
Y n - n C - n c

The result is not particularly exciting unless we associate it with
specialization of the system. If specialization can be considered as
suppression of certain functions (with corresponding components) then it

may be advantageous for the system to decouple some components with low

relative complexity by an adaptive transition. We will later associate

relative complexity with a stability property.
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Example 1.4-3

vy 4
\ <3
vo //\ \\\\\

— % 12 v,

11

G' is an adaptive transition of G with a subgraph of G becoming

inactive in G°'.

7/55 Vo = 12 E, = 18

RC(G)

R,(G") T/10 v, = 6 E,, = 12

G'

If the reverse process is considered and the original system graph
is G' and the graph transition yields G then RC(G) is greatly
decreased from RC(G'). The union of the two systems can be interpreted
as a growth process, if number of vertices are proportional to physical
size of the system. If growth is quite sudden as in the above example the
relative complexity of the resultant system may be greatly reduced. If,
on the other hand, a system decomposes into separate graphs under an
adaptive change we expect the decomposition to yield relatively stable

subsystems. In fact, the decomposition should stop at the maximal stable

components. The process of assembling a complex structure consists of

several substages where each substage results in the completion of a stable

component, these components are then linked at the next stage. There is

a definite advantage to such a hierarchical construction. If the process

is interrupted at some point in time and the actual completed stage

| R WIW W W A I . -
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decomposes into stable substages the loss of effort is minimized if the
distribution of stable forms Dg is dense in D [A-3,8-6]. The potential
number of stable subgraphs of a given graph G(V,E) with n-vertices and
k edges is 2k. The effort of construction is minimized if for any
perturbation the graph is decomposed into only two subgraphs. It is
somevhat more difficult to find a useful criterion for the complexity of
the system dynamics. For reasons that will become more meaningful later
we choose the measure of dynamic complexity as

Definition 1.4-4 —- The degree of complexity of the system dynamics

is the dimension of the state vector X of the state-space equation [L-4]
(state variables are continuous). The state-space equation % = s(X,Cs,t)
is often referred to as the memory or updating equation of the system. The
dimension of the state vector is the number of observables required to
specify the dynamics and the response. Therefore, a system with higher
dimensional state-vector implies intuitively a greater memory capacity and
a more complex internal dynamical process. To "state" it more precisely,

from the observer's point of view the more complex the dynemics the more

involved its deseription via the state-equation.
In a series of articles Rashevsky introduced the idea of organismic

sets [R-7]. The motivation relied on the analogy between certain functions

in biology and corresponding ones in sociology. It demonstrated that some

activities of hierarchically organized systems may be considered similar

from a relationsl viewpoint. One of the fundemental results postulated

ation of orgenismic sets to form new

dealt with the spontaneous aggreg
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entities. If we consider our structurally stable subgraphs as potential
realizations of organismic subsets we see that (spontaneous) aggregation
may be formulated in terms of total graph complexity. The fundamental
cyclomatic number for each subgraph indicates the degree of interaction
between the system components. A cyclomatic number of four expresses the
fact that four subunits of the organismic set are in a state of interaction.
The length of the cycle corresponds to the number of elements involved.

Now two organismic subsets will aggregate into a new organismic set
if the cyclomatic complexity of the new graph is increased, indicating a
greater degree of co-operation between subunits. Furthermore, the distri-
bution of length of cycles measures the relative sizes of interacting sets.
A high frequency of low cyclomatic numbers indicates the organismic set
has a high number of interacting units with low membership per unit. The
structural repetition of a cycle with low cyclomatic number may lead to
progressively higher numbers in the new cycle superimposed, hence
increases the structural complexity of the system, but not the index of
relative complexity.

Example 1.4b-L

Gy Gp

e / \‘l, /
S O
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By repeating the fundamental cycle [1,2,3,4] in Example 1.4-k we

obtain G2 from Gl and Gi from Gi-l by Joining Gi-l to Gi

along one edge. Let N(G;) derote (fundamental) cyclomatic number.

a) N(Gl) = 1 Rc(Gl) = 1/3
b) N(G2) = 2 RC(G2) = 1/10
c) N(G3) = 3 RC(G3) = 1/15
d) N(Gh) = L RC(Gh) = 1/21

In general, a space filling repetition of a simple cycle of length n
yields a sequence of increasing structural complexity but decreasing
relative (graph) complexity. Consequently, if we look at the repetition of
a cycle as the aggregation of two organismic sets (natural growth for
exeample) then it is obvious that each growth stage is a period of insta-
bility which should be followed by a period of stabilization. The stabil-
ization process consists of developing new relations in the system. 1In
the model this is accomplished by increasing the cyclomatic number.

If this is not done then the aggregated system becomes progressively
less stable reaching a point where it may decompose into its comparatively
more stable subcomponents [S-6,R-6,R-T]. Any growth process decreases
relative complexity and hence system stability, in the sense of Rashevsky.
The mechanism regulating growth processes will have minimal simplicity of
description if accomplished by the repetition of a basic structural
pattern exemplified by a simple cycle. Thus, we see from the above argu-
ments that in our framework there is no spontaneous (natural) aggregation

of subunits only feasible or consistent ones. After a consistent union
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of the subsystem graphs is accomplished, the unity and certain stability
features of the resulting system are improved by increasing the system
interaction thru the increase in the cyclomatic numbers.

It was shown in the first two sections how function represented by

the getivity set [Al"‘°’An] induced a structure on the system based on
the morpheme set Mn. The natural components Ei reconstructed from

the morphemes free-body model served as & natural invariant class with
respect to adaptation. The system graph imposed on the Ci gave rise to
a set [Ai,...,Aé.] comparable to [Al,...,An]. Therefore, we can consider

both structure and function of the system (since one generates the other)

as manifestations of a common feature; system organization. Both

functional and structural descriptions attempt to summarize the state of

organization in the system. The common currency used to evaluate both is
information gathered initially from the observer-system interaction.

In addition to the information contained in the system (function,
structure) description the dynamics of the system gives further insight
into the capacity of the system to accumulate and process information
from the environment. The reason for selection of the order of the
state vector was motivated by the sbove. Hence, taking the cybernetic
point of view [G-1,G6-4,1-6], we can distinguish two separate levels of
information capacity in a system.

Definiton 1.4-5

a) Information on the permanent organization of the system is

contained in the deep-structure description.
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b) Transient organization of the system is measured by the order
of the state vector.

c) The total organizational state of a system consists of the
permanent and transient components.

Example 1.4-5 —- In linear systems (consisting of resistive, inductive

and capacitive components) and open to the environment for information
exchange and closed otherwise;

a) R-components represent information loss,

b) L-components represent information delay,

c) C-components represent information storage.

Hence, L and C type elements contribute to the total information
content in the system and among all the possible dynamical realizations of
graph topologically stable states, the one with maximal state vector
might be selected. The system dynamics then serves as an intermediate
stage between imparting of information from the environment and its incor-
poration into the permanent system deep structure. Systems processing and
incorporating information into the permanent structure may be considered
to possess learning ability [G-4].

Definition 1.4-6 -- If the transient information in the system is

incorporated into the permanent structure by a transition of the natural
component topology a learning capacity at the adaptive level exists.

Definition 1.4-7 —-- If a sequence of adaptive changes induce a corres-~

ponding change at the self-organization level the system will be called

evolutionary.
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Adaptive changes are characteristic of a biological system with a
fixed lifetime (individual organism). In a given lifetime of an indi-
fidual organism the self-organization level cannot change. If a large
number of these are subjected to the same sequence of adaptive changes,
say from activity Ai to A{, then the next generation of individuals
might surface in the enviromment with Ai repléced by A{. The process
of replacement is a genetic (self-organization) change and is accomplished

by rearranging the Ci class by modifying the morpheme sets in the next
generation.

Within the lifetime of the individual system the morpheme class is
invariant. New activities may be introduced by adaptive changes (Ei
inveriance). In our framework then evolution is analogous to self-organizing
ability and adaptation to transitions of a prescribed set Tij of
Ei graph topologies. System specialization at the adaptive stage is either
partial cessation of an activity A, (decoupling of the Ei-graph) or
total deletion of an activity. (Introduction of new activities would be
the opposite of specialization.)

In general, the mechanisms underlying learning (transient to perma-
nent structure) are difficult to isolate, however, for a class of systems
with strong biological significance, adaptation can be represented within
the framework of structural perturbation of large-scale systems. These

systems are called relational. The next chapter will deal with general

properties of relational systems and their place in the theory of general

systems.




CHAPTER II

RELATIONAL SYSTEMS

2.1 Relational Biology and Representation of (M,R)-Systems

The concepts exposed in the present section were originally formu-
lated for the study of abstract biological systems, but with suitable
generalizations can be applied to any dynamical system exhibiting structural
or functional organization. The first successful attempt to introduce
set theory and topology into the investigation of biosystems is due to
Rashevsky. The publications on the topic span a couple of decades and
the main results are summarized in a sequence of four papers published in
the late sixties [R-8,R-9,R-10,R-11]. The essence of the theory is that
biological phenomena may be classified into two categories; metric and
relational. The former is concerned with chemical and physical structure
of biological systems (in the strict sense of the word) whereas the latter

contains the organizational features of the system as subject matter.

Rashevsky's investigations focused on relational problems of biology and
culminated in a rather general theory under the topic of "Organismic
Sets". Certain formal snalogies can be deduced about biological systems
that exhibit the same relational properties, and based on relational
comparisons, systems far removed in the biological natural hierarchy such
as multicellular organisms and societies may be comparable. In the sys-

tems framework what matters ultimately is not the actual physical make up

65
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of the components but rather the interrelationship between them. Thus,
in our framework the specific content of the morphemes is immaterial as
long as the free-body models and system graph are available. There are
several useful concepts of organismic sets that we shall presently expose
and incorporate into the model.

First we state three of the basic postulates of organismic sets
[R-7,R-8]:

1) The degree of complexity of the system is directly proportional
to its adaptability and chances of survival in a given environ-
ment.

2) The sequence of organizational structures during the develop-
ment of & multicellular organism is determined by the require-
ment of maximal probability of survival during the whole lifetime
of the organism including the period of development.

3) The course of development of any organismic system is such that
during this course the total number of relations as well as the
variety of different relations is maximized.

The above postulates are not exhaustive but constitute aspects of the
theory which lend themselves readily to application in our framework. The
three postulates together appear to indicate that complexity of a system
is a measure of stability in the following sense: The total number of
relationships developed within the system serve as pathways of commu-
nication between components to assure survival in the environment. The

information capacity of the system is increased if the order of the
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state vector increases. In general, for a fixed number of interacting
components, the transient complexity is reflected by the state vector
which represents dynamical capacity to react to ihe environment, and

by the index of relative complexity R, indicating the relative infor-

C
mation content of the underlying structure. If the system is now rep-
resented by a graph the number of basic relationships developed between
the nodes (components) is derived from the total number of connections
between nodes. To provide a canonical characterization of the relation-
ships the postulates of systems science are invoked. With respect to a
tree in a (connected) system the fundemental circuit and cut set equations
serve as a generative basis for all other dynamical interactions. The
circuits define potential type interactions whereas cut sets specify flow

type constraints. If the internal dynamics process a quantity such as

information or energy, all internal changes can be defined in terms of

potential and flow between terminals. Thus, Rashevksy's n-ary interactions
are summerized by the above relations between components, and the

relational aspect accounted for in a dynamical framework. The organism
optimizes its chances of survival by developing interactions between
components and hence buffering itself against unexpected environmental
Perturbations. With respect to a given number of components, represented

by the nodes of a graph and the relationships given by the edges, we can

nov define the measure of adaptive capacity in the sense of Rashevsky,

based on the concept of relative complexity introduced in Chapter I.

Definition 2.1-1 -- (Relative Complexity) -- The degree of relative

complexity RC’ of a system is proportional to the probability of survival

e —
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in a8 specific environment.

The concept of relational stability is not dependent on the dynamical
properties. An interesting example is furnished by a simple mathematical
model of an ecosystem [M-5]. It is assumed that a class of predators and
prey exist and the trophic interactions are governed by Volterra-Lotks
type dynamics. May demonstrates in the paper that if the system is
modified by the addition of an equal number of predators and prey and the
new interactions are only of the predator-prey type, then the total
dynamical stability of the system must decrease. Let us represent the

system graphically, with Pi as the prey nodes and Hi the predator

nodes.

In the original system every Hi is connected to every P;. There are

no direct competitive links at either prey or predator level. The relative

complexity for the n-member system is

2(n2 -n+1)

R.(n) = C_/Max_ =
c
Fe (bn® - 6n + 2)

lim R (n) = 1/2 whereas RC(2) = 1

nre  C

The relative complexity of the system decreases from & maximal
7olume as new predator-prey pairs are added. Furthermore the new

Lelations developed in the system are of a single predation type, and
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her the Hi or Pi

levels are viable subsystems. Two of Rashevsky's
theses are violated; relative complexity and the variety of relations
he system. The above system can be considered in a state of growth
plified by the addition of predator-prey nodes.
In view of the discussion in Chapter I on growth and stability, we
the system in this case becomes less stable both from dyhamical and
ival points of view. Consequently a growth stage should be followed
F period of stabilization. The mechanism of relational stabilization
sists of developing new relations in the system by increasing the
ree of relative complexity.

Biological systems are characterized by finite lifetimes in any
ironment. Genetic modifications are induced from one generation to
next. In our model an individual biosystem has reactive capacity only
the depth of the adaptation level. (Adaptation for an individual
tem is to be understood as a change in behavior characterized by a
graph topological transition. To rearrange the Ei—equivalence classes
morpheme transition a new generation must emerge.) To account for
setion of activities due to the environment interaction we introduce
relational organization of‘an arbitrary system. The concepts related
relational theory within a graph context are due to Rosen [R-13,R-1k4].
subsequent development of the theory followed the path of algebraic
egories and general automata theory. These mathematical tools were
uired to introduce a precise definition of system components in terms

input-output relations, to account for internal dynamics and external
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vironmental forces. The theory now is quite well developed with the
jor modeling problems isolated [R-13,R-14,R-15,R-1T7,A-2,B-1,B-2,D-1,
b,M-L].

We propose to outline a different approach based mainly on graph
eory and the ideas of Chapter I. The advantage in such a formulation
es with the incorporation of systems science methodology into relational
stems. In particular we can exhibit a class of relational systems that
e functionally hierarchical. Later we shall examine the problem of
alization for relational systems in terms of input-output specification

»

" constituent components. We now proceed to outline the basic ideas
" relational theory.

As a first approximation the theory was formulated to account for the

lnerability of biological systems coupled to their environment. The

ep structure we have developed so far fails to account for this aspect.
le main concern of Rosen's theory is the behavior of an arbitrary system
ice a component has been inhibited. What class of components can be
ippressed (for the system to still survive) and how are components in the
stem replaced? The first problem relates to the degree of vulnerability

" the system, whereas the second deals with problems of self-repair.

neral éroperties of (M,R)-Systems

It is assumed that an arbitrary system S 1is decomposed into a
llection of Ei-components (Chapter I). The components are furnished with
dynamical structure via the free-~body modeling techniques. The

damental units with respect to the original activity class [A ..,An]

1"
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the Ei-equivalence classes equipped with an appropriate dynamical
ription. Let us denote these dynamical Ei-components as the funda-
al system modules Mi' (We are now concerned with a realization of a

structure in a specific environment of a single generation of
nisms, hence self-organization transitions do not occur. For adaptive
18itions the Mi are fundamental invariant units.)

The cause-effect relations between the modules can be represented by
aph where the Mi are vertices and the input-output relations are the
s. A particular input which is not an output of a.module is an environ-
al input, an edge which is not an input to Mi is an environmental
ut [R-13].

Definition 2.1-2 -- A subsystem S' of S 1is a subset of modules

ected analogously to S', such that

1) S' receives no input from any module of S not in S'.

J
2) The set of environmental outputs of S; contain a subset of
the environmental outputs of S.

Example 2.1-1

E
a) Block diagram T
3i/“rE -
E &4 /L_._S
N
-~
M M M
b |- | 6 € 8 |-—-——> E
/\///ﬂ / ]\
E < E

w3
b — <
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b) Input-output graph

Mg
My o€ . € ‘Mg
]

In example 2.1-1 [Ml’M2’M3] constitutes a subsystem but [M ,M2,M3,Mﬁ]
es not. (If the environment E is considered as an additional vertex
e graph can be simplified with all environmental inputs and outputs
nnected to this vertex.) The system graph is directed and the underlying
directed graph connected. The methodology we have introduced in
apter I does not lead to a similar graph for the system S, instead of
dules we have terminals of modules as graph nodes. It is possible to
oceed directly from the system representation to the module graph by
entifying the module Mj with its corresponding set of terminals, and
troducing between adjacent terminals of two modules an edge. The

rminals corresponding to an M emerge in the new representation as one

J
rtex. The procedure is analogous to reducing a set of multi-terminal
mponents in a large-scale system [K-5]. The addition of edges between

Jacent terminal can be viewed as a two-terminal approximation of time

g8 in real physical systems.
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Example 2.1-2

system S
b) ) .3 free-body model of M
Y o——>—3 ’ .
* and a terminal graph
1 y——> 1° 2
c) .5 a system graph
’T 'K’/’/ar’ 8
3 s /" \,
h'(_/"\——_).'\/
2
) 13 10
1,/__4,_5,/
,,,,,,,,~w2?*"11 - 12
1
d) Ml = [1,2,3,4] component terminal sets
M, = [3,5,6,7]
M3 = [738,9]

Mh = [2,6,10,13]
MS = [9310911312]
Mg = {1,11,13,14]

set [4,5,8,12,14] represent the potential environmental input-output

1lings.
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e
e) . 1 e A module graph.
1
Input set I_ = [i;,i5,15]
U M, ‘M Output set T = [e,,e,]
1 3 s 1°°2
<
ﬂh nMS
g X
li3
'] 12

e the module graph is obtained by merging the complete terminal set
Mi into one vertex and introducing a new edge between the new adjacent ter-
1s. The edges are directed with orientations dependent on system

mics.

Definition 2.1-2 —- Given the system graph of S1 the inverse graph

onstructed by

1) Identifying the terminal set of each Mi and representing the

set as a vertex,

2) Introducing a directed edge between adjacent terminals.

The concept of the inverse graph allows us to proceed from the systems

esentation to the relational module graph. The orientations of the

s are dependent on the dynamical properties of the system and are

ved from the constraint equations. The graph represents the basic

e-effect relations in the system and these relations are subject to

ge under the influence of the dynamics. At a specific time instance
orientation of each edge is fixed.

Let © represént the set of all environmental outputs of S, and to

. module M; we assign a set 5;<C6, which is the subset of outputs
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inated when Mi is inhibited. Following Rosen's terminology S1

alled the dependent set of the module Mi' Two fundamental assumptions

needed to bring the model closer to biological reality.

1) The module graph represents the metabolic activity of the system
and each Mi is dependent on Mj from which it receives

inputs. It is assumed no Mi functions unless all of

its inputs are active. This property is known as non-contracti-

bility. This permits the identification of each S, (for a

fixed time instance) from the module digraph.

2) Every Mi has a finite life-time. The ordered pair [Mi,t(Mi)]
defines the module and its life span. If t(Mi) is exceeded the
Mi ceases to function. To compensate for the finite life-time
restriction every Mi is provided with a dual component Ri
the activity of which consists of replacing the M; [R-13].

Therefore, associated with the metabolic graph based on the module

we have a related graph consisting of the repair set. The inputs

to the Ri are constructed from the environmental output set 6 of

system. If Mi has environmental outputs in the system at least one

ne outputs serves as an input to a Rj. Let Ty be the set of

i

ronmental outputs of a module Mi’ then

‘I'Mif\(Uej) # 8 if TMi# ¢

The above will be referred to as the feedback relation, or the covering

thesis.

The structure outlined is called a (M,R)-system with metabolic

rities (systems dynamics) represented by the module graph (M-graph)
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the self-repair functions by the repair graph (R-graph). Let us show
to construct the R-graph from the M-graph.

Example 2.1-3

a) Module block diagram.

el es e
ey /\ Z‘eg eB,\T 1\
€6
4 > [ M Mg My
AN ,T
N .
My ” AN Mpo| 18
AN\ 5 M8 T
/ . \
Y Mg Mpi|—
/N\ T elO
i ,
2 Ml iy M,lﬁ
- A
. is
3
Input set I, = [11,12,13,ih,15]
Output set T, = [el,...,elo]
T = T = T = T = T = TM = @
M1 M, M3 M5 Y 12
T = [e,,e,]
M’-& 1’72
T, = [e 1€, 5€ ]
h6 3°7L°75
T = [e,]
Mg 6
T = [e_]
M
9 T
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[e8]

]

[e9,elo

[e),e5]

[e,]

ey se,]

[e)]

le. seq]

[e) 56550 5e4]
[e.]
[eg]
[e,]
[ep,e,]

[e3]

[e6,e9]

feedback relation is satisfied, but

since e

59 e10 are not in 6.

G

is a proper subset of
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b) M-graph (with environmental couplings suppressed )
Ml& ¢ WM, =
L% 47
\\
M \\\\ oM
. s /} 10
ha‘\\\\\\\\ //////ﬂﬂ
5 8
M2 . . 'M
My A 11
Ml . M
¢ 712
¢) R-graph

l .
The R-graph has edges originating only at terminal modules

[Mh,M6,M8,Mlo,Mll] of M-graph.

d) (M,R)-graph is constructed by superimposing on the M-graph the
R-graph. An Ri vertex is the same as its corresponding Mi'
Thus, each vertex now is considered as representing the pair

(MiRi)- The input set and environmental outputs not in 6

are deleted




I-graph

——y

i-graph

n output in TM is fed back to an Rj then an edge is superimposed
i

he M-graph between vertices Mk (terminal modules) and R,.
J
Obviously the construction tends to be unwieldy and is much simpler
esented by the adjacency matrix of the graph[J-1].

Example 2.1-4 (Refer to Example 2.1-3)

a) Let aiJG'V(M) the adjacency matrix for the M-graph.

‘{11 if there are n strictly parallel edges from Mi to MJ.
a =

i)

0 otherwise.

For example, some entries are:

agg = 1 a3 = 0 gy = 1
b) Let biJ€1V(R) the adjacency matrix for the R-graph.

m if there are m strictly parallel edges from R; to RJ.

bij
0 otherwise.
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b3 =0 Pyp = 1 b = 2
bgy = 1 bgp = O bge = 1
c) Let cije V(M,R) the adjacency matrix for the (M,R)-graph
A
€1y T 215 * Py
cjp = 1 ¢33 = 0] 99 = 1
Cgg = 2 cp; = 1

Therefore all structural features of the (M,R)-graph can be summarized
the matrix form. The feedback matrix may be simplified by reducing
rictly parallel edges between any (Mk’Rj)’ consequently all entries of
e feedback matrix are zero or one. We have already permitted the
luction of parallel edges between modules in the M-graph (if the con-
*tion in the M-graph represents signal flow then one potential variable

and one flow variable ¥ suffice). The matrix resulting from the

verposition has entries {0,1,2}, since there exist at most two strictly

rallel edges between vertices.

> Re-establishable and Central Modules

A module in the relational system is said to be central if its
1ibition implies the cessation of all environmental outputs. (From
> observer's point of view the activity class [Al,...,An] ceases to
st.)

For an arbitrary module the augmented dependent set consists of all
rironmental outputs that eventually cease to function when the module is

ibited. In other words, all outputs from the system that are either
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fected by the inhibition of the module in the M-graph or those depending
- the feedback relation from the terminals Mk inhibited by the module (a
rminal module My 1is a module producing an environmental output). A

dule Mi is re-establishable if it does not inhibit any terminal Mk

oducing a feedback signal to its own repair set Rj. Both concepts of
ntrality and re-establishability can be conveniently defined on the
»R) graph, using the property of non-contractibility of the [Mi’Ri]
rtices.

Definition 2.2-1 -- An (M,R)-circuit originating at M; and including

feedback edge from a terminal M, to Rj is a proper feedback circuit.

Theorem 2.2-1 -- Assume the M-graph and R-graph are free of directed

recuits. Given the (M,R)-graph representation of relational systems a
lule Mi is
1) Central iff every terminal M, is connected to M; by a direc-

ted M-path from Mi to Mk'

2) Re—establishable iff there does not exist an (M,R)-directed
proper feedback circuit originating at Mi'

Proof':
1) =»if the M; is central every terminal M is inhibited,

implying the eventual inhibition of every M; by an (My ,R5)

feedback cycle.
& if there exists a directed M-path to any M, from an M,

every Rj will eventually cease to function, since every ter-

minal is inhibited, and corresponding Mj eventually fails.
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2) Let us show the contrapositive
= if Mi is non re-establishable then there exists a terminal
M, inhibited by M, such that an ( Mk’Rf edge exists. By
the property of non-contractibility there is a directed path
from Mi to Mk’ But W&ng is a directed edge completing
the circuit.
& Assume there exists a directed circuit based on Mi' Then
the circuit must pass thru a terminal Mk since the M-graph
is circuit free. The directed edge('Mk,Rg represents a feed-
back edge. If Mk is now inhibited by Mi so is Ri by the
feedback edge (M'k’Ri ).

The assumption that the M-graph and R-graph are free of directed
ircuits can be relaxed. It is sufficient to require that there be no
irected proper feedback circuits in the (M,R)-graph based on M;. To
how that the exclusion of M-circuits is not necessary we consider the
ollowing example.

Example 2.2-1

a) TS = [MS’M'?’M6]
(M5,R5) IQ,(ESLRZ )
7/
/ 4 \I
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e T Ly (] ] .
].CZ Mg [Ml’Me’M3’Mh] is a directed circuit
| in the M-graph, yet all [Ml’M29M3’Mh]
are re-establishable.
6, €T T
3 M M
5 T
eh CT
M
6

b) To show an arbitrary circuit in the (M,R) graph is not

sufficient to produce a non re-establishable module.

(M ,B; ) (Mc,Rc) 6 cT U T
’ ¢~ — __ 1
/ ,
/ 0o C Ty
AN , 7
(Mg,{ie),;‘ —/ﬂ (M7,R7)
~
l / _ 3 C Ty
l Y/ e yd ) h
(M3,\3)'»r - _ 8), C Ty
- s 7
\ | e _ ~
~ ' -

Mg — -~ Ty = (M ,Mg,M7] 65 C Ty
(M""Rh) 1
(It is assumed every terminal producing a 6g C TM

5
feedback relation has at least as many environ-
6, C T
T M
mental outputs.) , L

1) M6 is non re-establishable [M6,M2,M5,R6] is a proper feedback
circuit including an input to Rg.

2) M; is re-establishable even though [Ml’Rs’RG’Mz’Mll is an
(M,R)-circuit. The circuit does not include an input to R;.

(61 €Ty )
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3) [Mh ,M,(] are potentially non re-establishable, if the R; time
lags are considered.

The respective R-circuits include edges of Oh and 87.

If MT in the example is inhibited at the moment the life-time of
M), is exceeded then both Mh’ and M; will fail since there exists an
R-circuit between them. In particular if M7 fails and the remaining
time of operation for Mh is less than the time required by R7 to
replace M7 then both M6 and M7 will fail. Therefore R-graph circuits
may create conditions of non re-establishability if the operational life~
times are considered. When a non re-establishable module Mi is connected
to a central component by an R-graph circuit, in light of the above
discussion M; may also have the same effect on the system as a central
component. One of Rosen's original hypotheses eliminates this troublesome
condition by requiring the replacement of a module to be produced
instantaneously. In our model Rosen's hypothesis eliminates the need to
consider R-circuits at the present stage. Systems with time delays in
the R;-components appear to closer approximate biological phenomena by
incorporating the operational time lags inherent in the real components
of biological systems. We shall outline briefly the methodology to
include operational time lags, in section 2.5 under optimization. Unless
otherwise stated we assume none of the Ri have operational time lags.

The set of central components is obviously a subset of the non re-
establishable components. We can give an algebraic criterion for the

existence of re-establishable modules in terms of the adjacency matrices

of the M-graph and (M,R)-graph.
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Lemmg 2.2-1 -- Given the adjacency matrix V of a directed graph,
the matrix V& gives the number of directed paths of length n between
any two vertices.

Proof: if 8k €V is the number of edges joining vy to Vi
and a‘k,j €V the number of edges between vk and Vis then aik'a'kj eV2
is the number of different paths between A\ and vy Summed over all
k, all paths of length 2 are computed. V2 has entries aik'akj . Assume

result is true for V%1, then V° = yB-1

* V yielding the number of paths
of length n between corresponding vertices.

Corollary 2.2-1 —- If V" =0 for n > N then there exist no

directed circuits in the graph.

Proof: if there exists a circuit, then a path of infinite length can
be constructed by repeating the circuit.

Applying the corollary we can reformulate Theorem 2.2-1 in terms of
adjacency matrices.of the respective graph

Theorem 2.2-1' —- Let V(M), V(R), be the adjacency matrices of the

respective graphs. ([ai,j] =V(M),[biJ] =V(R)).
Assume (M,R)-graph consists of m vertices and
v (M)

v(R)

0 for niNl

0 for n >N,

then

a) The module Mi is re-establishable iff given the terminal module
set [Mk ] producing a feedback input to R;
i

[a‘ik ] = 0 V, such that MkG[Mk ] ([aik]j =VJ(M) and
i i

1<J<N




)
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The module MJ is central iff the set of terminals [Mk ]
J

inhibited by M, thru an M-path satisfy the following

J

conditions
1) TFor the terminal set [Mk - Mkj] not directly inhibited by

Mj there exists for each MK'G [Mk - Mkj] a feedback edge

Ot JRyr) iuee [b ] # 0.
3

2) For every M€ (M -M ]and M, € [1& ] if a feedback
J 3 3

edge (Mk"Rk' ) exists then also (Mk"’Rk') exists, with Mk,,é[ML ]
J 3 J J

i.e., if [bk.k,

] # 0 then [bk' k" 1 # 0.
] s

Proof':

a)

b)

if Mi is re-establishable then Mi may not inhibit a
termine.; My producing a feedback input to ‘Ri’ which implies
there is no directed M-path to Mk

This implies [aiki]J = 0 Vk such that Mke[Mki]. Since

v3(M) =0 for n > N; the maximal path that may exist is of
length J iNl'

& if [aikJ]J =0 for 1<J<N

then there exists no directed M-path from Mi to a terminal

Mk producing a feedback edge, hence no proper feedback cir-
cuit can be completed. Threfore Mi must be re-establishable.
> Assume M 3 is central and [Mk,j] is the terminal set directly
inhibited by My, if MaeM - MkJ] then M., survives unless

it is inhibited by an Mk'J G[Mk ], therefore ['bk k'] # 0 for

at least one terminal in [Mk 1.

J
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On the other hand, for a terminal Mksz[Mk ] if the corres-
J
ponding Ry received feedback input from only [M, - ] then
J MkMkJ
Mkj is re-establishable which implies MJ is not central.

Therefore, if [bknk'] # O then also [bk.k"] # 0.

3
& Let [M_ ] be the directly inhibited terminal set of M.

J
If for Mo G[Mk - M ] & feedback edge exists from the set
J

[Mk ] i.e., [bk k‘] # 0 and if the set [Mk ] is non re-establishable

J J J
([bk'ks] # O#[bkjk;] # 0 for some Mkj’ nge [MkJ]) then
eventually all terminals will fail. Hence in'the system every

M; will also fail. This implies MJ is central.
The conditions V%(R) = O, v®(M) =0 for n 3_Max[N1,N2] are not

necessary, but are included to provide more realistic constraints for

relational systems that represent biclogical systems. The existence

of directed circuits in the R-graph imply strong vulnerability and mutual

dependence for modules connected in the circuit. The assumption that

Vi (M) = 0 implies the conditions for re-establishability, however with

some modifications in the proof, the condition can be relaxed.

Note that the theorem relies heavily on two properties of relational

systems, non-contractability and the replacement of an M; without time

delay. If the second condition is relaxed and the operational time lag

is required to produce an arbitrary Mi the situstion becomes quite

complicated. In that case not only proper feedback circuits but any

circuit in both (M,R)-graph and R-graph have to be considered.
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Example 2.2-2"

~ 73 / (My+15Ry,,)

d 7 (M,,R,) — — = R-graph
s 373

'

(Mi’Ri) ~_ _—

0 T
’ 3 C My

(M;_15R;)

6. C T
M
PN

Both M; and MJ serve as feedback inputs to each other. If My
is inhibited at t=t° and the life expectency at t=to "of MJ is t(MJ)
with the replacement time for M; greater than t(Mj) both Mi and Mj
will fail and become non. re-establishable.

This is true generally. Let a set of modules [Ml"“’Mh] and
(M1,...,M)1] be given in a relational system. If 0, CITMJ for
MJG&[Mi,...,Beg] and 6, C.TMi for M, [Ml""’Mn]’ when either set is
inhibited if modules in the other cease to function before the first set
is replaced both sets will cease to function eventually. The idea can
be applied to define generalized non. re-establishable modules.

Let two modules M; and MJ be given such that there exists a directed
circuit of length two between (Rj,Ry) i.e., [by,]p # 0 in ve(R). Let
t(R;) be the replacement time for M, and to(MJ) be the operational
time remaining for MJ at t=t . Let M, De inhibited at t=t,.

If t (MJ) < t(R,) then both M; and My become non re-establishable
o i

at t, + to(MJ),
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With respect to remaining operational times and replacement times a
system can be classified into generalized non re-establishable sets of

modules following the inhibition of any module Mi'
If the (M,R)-graph is strongly connected then obviously every module

is central and non re-establishable. On the other hand an acyclic

(M,R)-graph has every module as re-establishable. Similarly a subsystem

of an (M,R)-system survives when an MJ is inhibited only if MJ is not

in the subsystem and there exist no directed paths from M; and is an Rj

in the subsystem. In particular, if a directed (M,R)-path exists to a

subset of the system, as long as the terminals producing the feedback
signals to the Ri-set corresponding to the subset are not inhibited, the

set will be re-established. Inhibition in this sense is only temporary.

Therefore circuits existing in the metabolic M-graph are of no real

importance from the survival point of view for the components. Only (M,R)

circuits producing proper feedback, and R-circuits establishing
generalized central modules are of interest. An important observation

on relational systems satisfying the covering hypothesis is derived from

the following theorem due to Rosen.

Theorem 2.2-2 [R-13] -- Given an (M,R)-system satisfying the covering

hypothesis, if the system is connected then there exists at least one

non re-establishable component (module).

Proof: Assume every module is re-establishable. Then a terminal Mi

is re-establishable. By the covering hypothesis there exists a feedback

edge from M; to an Ri' The edge (Mi’Ri) cannot serve as an input to







90

(Otherwise an

an Mi that is connected to Mk by a directed M-path.

(M,R)=circuit is constructed.)

Let ME be a terminal reachable from Mi by a directed (M,R)-path,

since Mi is re-establishable the feedback edge from Mi cannot serve

as an input to any R. directly connected to [Ml,MQ]. Hence a further
1 k k

terminal is inhibited which is also re-establishable. By repeating the

above argument the set of finite terminals is exhausted and the last

M2 must produce a feedback edge to an R; directly connected to at

least one Mﬁ thus completing an (M,R)-circuit.

Hence there exists at least one non re-establishable module.

The theorem implies the impossibility of realizing an (M,R)-system

by an acyclic (M,R)-graph; it must contain at least one proper (M,R)-

feedback circuit. A question comes to mind immediately as to how the

covering hypothesis can be relaxed to permit the realization of a

relational system with no non re-establishable modules. This problem

is of importance in the synthesis of relational systems, and will be

examined under the section of optimization on (M,R)-graphs. Certain

Properties however are obvious and can be pointed out at this stage.

Any module associated with an R-self-loop is automatically non re-

establishable. If a component produces a feedback signel to its own

repair mechanism it cannot be re-established. Any strongly connected

(M,R)-system is meximally vulnerable in the sense that all of its com-

ponents are central and hence non re-establishable. An acyclic (M,R)-system

is minimelly vulnerable from the inhibition point of view. The solution
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to the optimization problem must then lie between these two extremes. In

the sense of Rashevsky survival stability requires the increase of

system interaction between components as measured by the degree of rela-
tive complexity. This definition of stability considers the alternative
modes of interaction available to the components to compensate for lack

of information about the environment. On the other hand a high RC

implies a greater probability of existence of proper feedback (M,R)-circuits

and the system becomes more vulnerable in the sense of Rosen. In addition

the restrictions imposed by the type of dynamics superimposed on the
graph topology act as a potential constraint on the optimization process.
Therefore dynamical stability, survival stability (degree of complexity)

and vulnerebility enter simultaneously as constraints on the realization

of possible (M,R)-systems. Subsystems of a relational system (Definition

2.1-2) are characterized in the (M,R)-graph by the following.

Definition 2.1-2' -~ A set of vertices [Mi] constitute a subsystem iff

there do not exist directed (M,R)-paths to the set [M;] from any M; not in
[Mi].
A module MJ in the subsystem may not inhibit a terminal M

Producing a feedback edge to an R, of a module in the subsystem
i

consequently we can reformulate a theorem of Rosen's on the survival set

of a system.

Theorem 2.2-3 (Rosen) -- If a module Mj is inhibited either

a) the entire system fails,

b) there exists a subsystem which survives.
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Proof: Assume there exists an M; which is not terminated (other-

wise case (a) holds) then there is at least one terminal M, not

inhibited, otherwise Rj has no non-inhibited inputs. Now the totality

of terminals [Mk] serving as inputs to Ri are also not affected. 1In
addition any module connected to the surviving terminal set [Mk] must also

survive. The collection of all these surviving [Mk] and associated [M]

directly connected to [My] form a subsystem.

If this were not the case then some MJ'€>[MJ] is inhibited and by

the non-contractability so is at least one terminal Mk serving as an

input to R; implying the inhibition of M;, which is a contradiction.

Therefore, the failure of a relational system is either total or

some viable subsystem survives. Again we are led to & paradoxical situ-

ation as far as realization of (M,R)-systems are concerned. We have seen

that a module Mi responsible for self-repair is automaticelly non re-

establishable. Analogously for subsystems if all self-repair (feedback

signals) originates from terminals contained in the subsystem, the vul-

nerability is increased. Hence feedback signals should be produced by

terminals in the complementary set of the subsystem, but these terminals

cannot be too strongly connected to other modules in the system. Other-

wise probability of inhibition is increased. Furthermore, in view of

non-contractibility, the feedback set to each Ri should be minimal for

survival of the Mi.
The Rashevsky hypotheses favor strong metabolic interactions but

Rosen's conditions discourage strong connectivity. A possible solution is
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to relax the non-contractability property and to assume an R; cen be

activated and inhibited by several on-off feedback relations. In that

case one needs threshold conditions in terms of the total feedback state

to determine whether an R; 1is inhibited.

2.3 Realization of (M,R)-Systems

It is assumed the system graph is free of self-loops. In the M-graph

self-loops are unnecessary for dynamical description and in the R-graph

a self-loop implies automatic non re-establishability. Within Rashevsky's

framework the existence of a self-loop corresponds to a relation developed

by a module with itself, clearly superfluous. Furthermore we rule out the

possibility of a strongly connected (M,R)-graph since a system represented

by such a graph is terminated if any module is inhibited. (This eliminates

the possibility of achieving an optimal solution for survival stability

since the degree of complexity RC is only maximal if the (M,R)-graph is

strongly connected.) We assume strictly paralled edges in both the M-graph

and R-graph are reduced, and RC is computed for digraphs with two pos-

sible edges between vertices.
An arbitrary module in the system block diagram form can be considered

as specified by a set of input-output relations. Within the (M,R)-graph

framework a vertex corresponding to a module is specified by its incidence
set (a*,a”)(v). (a¥(v) is the set of outgoing degrees and d~(v) is the
set of incoming degrees.) The ordered pair (d+,d-)(v) is the degree pair
Hence a finite collection of modules can be represented

of the node v.

by a set of non-negative ordered integer pairs. For purposes of synthesis
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the representation problem becomes one of constructing an (M,R)-graph

given the degree pair (input-output) description of the modules.

Definition 2.3-1 -- A (p,s)-digraph is a directed graph in which the
number of strictly parallel edges is less than or equal to p and the

number of self-loops bounded by S.

We are concerned with connected graphs where p <2 and s = 0.

An (M,R)-graph may have two strictly parallel edges as long as one
belongs to the M-graph and the other to the R-graph.

Let us now state a rather general theorem on the realizability of

+ -
an arbitrary collection of degree pairs [(d.,di)].

Theorem 2.3-1 [C-2] -- The necessary and sufficient conditions for a set of
n degree pairs [(df,d;)] to be realizable as a (p,s)~digraph are
i
n
n -
1) tat = %4
i i

2) 1 minla},a(s))p] + I min[d+,[a(SA)—l]p +s1> 1 4

+ + 3 -
diGSA dJéSA dkgsB
where
A = [d‘l‘, .,a ]
B = [d;,. ,d;]
SA C A SA = A - SA
SB CB
a(SA) = cardinality of the set SA
and
a"€s. & 4. €s =1
x B x A S

Proof: [C-2, Chapter 6]
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Corollary 2.3-1 —-- A necessary and sufficient condition for the set

[(d;,d;)] to be realizable as the degree pairs of an n-mode («,»)-digraph is
+ -
z di = I di

Proof: Let p = », s = «» in the theorem.

The corollary is the representation condition for a digraph (not

necessarily connected) without constraints on p or s.

Corollary 2.3-2 -- The set [(d;,d;)] is realizable as the degree

pair set of an n-node digraph without self-loops if and only if

n 4+ n _
1) Td; = I
n + -
2) .2 d; > dJ J = 1,2,...,n
1=
i#3

8

Proof: Let s=0 1p-= in the theorem.

+ -

A realization of an arbitrary set [(di,di)] need not be unique.
Let [Gi(R)] represent the set of all realizations, the problem of
generating GJ(R) from a given realization is now examined.

Definition 2.3-2 -- (d-invarient transformations) -- Two (p,s)-

digraphs G3(R) and GJ(R) are d-inveriant if there exists a one-to-one
correspondence between nodes preserving the degree pairs for every node.

(Note that d-invariant graphs need not be isomorphic.)

One can define a sequence of elementary (p,s) d-invariant transfor-

mations between digraphs such that the result of each step is a d-invariant
digraph [C-2]. Any two (p,s)-digraph realizations Gi(R) end GJ(R)

can be transformed as Gj - Gj by & finite sequence of (p,s) d-invariant
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graph transformations. Hence the set of all realizations [Gi(R)] is (p,s)
d-invariant and can be considered equivalent from this point of view [C-2].
The invariant transformations can be applied to study the notion of
biotopological mappings introduced by Rashevsky in his theory on organismic
sets [R-4,R-5,R-T]. The set [Gi(R)] can be viewed as different physical
(biological) realization of an identical input-output specified relational

system. From the standpoint of (p,s) d-invariant transformations some

problems of sociology and biology can be studied in a unified relational
framework.

Definition 2.3-3 -- Two (p,s)-digraphs Ga(R) and Gy (R) realize the

same biological relational system if there exists a finite sequence of
(p,s) d-inveriant graphs [G;(R)] i=l,...,n such that Gy(R) = G_(R) and

¢y(R) = G (R).

The problem of constructing an (M,R)-graph from the degree pair set
[(d;,d{)] is important in its own right. The procedures however require
more graph theory than is possible to include within the confines of the
present thesis. A forthcoming paper will examine this same problem in
detail. To state the results on the realizsbility of connected digraphs
we need the following.

Lemma 2.3-1 [Cc-2] -— Let G be a (p,s)-digraph containing % graph

components (disconnected subgraphs) with p # 0 and k > 2. If G

has no isolated vertices and if one of the graph components contains a
circuit (need not be directed) then there exists a (p,s) d-invariant

digraph transform of G with k-1 graph component.
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Proof: The proof depends on properties of bipartite graphs and

d-invariant substitutions [C-2,Chapter 6].

Theorem 2.3-2 -- The necessary and sufficient conditions for a set

[(d;,dz)] to be realizable as the degree pair set of a connected (p,s)-
digraph with n vertices (n > 2) are
1) Conditions of theorem 2.3-1 be satisfied
+ - .
2) a; + di #0 i=1,2,...,n

n o+
3) p#0eand Id; > (n-1)
i=1l

gggggzéz.Let G be a connected (p,s)-digraph realization of
[(d;,d;)], condition (1) is true by theorem 2.3-1. d; + d; # 0 since
G 1is connected, similarly for p # 0. The number of edges in a connected
(p,s)-digraph is at least (n-1), which is the number of edges in a
n +

spanning tree. Hence I di > (n-1).

=> by theorem 2.3-1 there exists a (p,s)-digraph realization. We have
to show it is connected. Assume there are at least two graph components
(x > 2). We may assume there are no circuits, otherwise using Lemma 2.3-1
G can be shown connected. If all components of G are circuitless then

n

+
the number of edges in G is (n-k) so T a; = n-k > (n-1) which

implies k < 1, but k > 2 by assumption and is clearly impossible.

We now state the conditions for a strongly comnnected, directed and
self-loopless graph. By the previous discussions on non re-establishable

modules the hypotheses guarantee the existence of a relational system that

is meximally vulnerabdble.
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Theorem 2.2-3 —-- The necessary and sufficient conditions for

[(d;,d;)] to be realizable as degree pair set of a strongly-connected
digraph without self-loops are:
1) conditions of corollary 2.3-2 are satisfied,
. + - .
2) mln[(di,di)] #0 i=1,...,n.
Proof':
€ 1) obvious from corollary 2.3-2,
2) min[(d;,dz)] #0 i=1,...,n implies the graph is connected.

=2 Proof sufficiency [C-2, Chapter 6].

Corollary 2.3-3 -- If the set [(dz,d;)] is realizable as the degree
pairs of a self-loopless digraph then, the necessary and sufficient
condition for all such realizations to be acyclic is that min[(d;,d;)] #0
for at most one i, i = 1,...,n.

Proof: =»Let G be self-loopless realization of the set with the

+ - o .
property, min[(dio’dio)] #0 i-= i for at most one i Now a

o
directed circuit of length greater than one contains at least two
vertices with min[(d;,d;)] # 0 hence G 1is acyclic.

&= Assume an acyclic realization G exists, such that min[(d;,d;)] #0
for at least two vertices. Let i,J be the vertices. Then there exist
edges (u,i), (i,v), (y,3), (3,2) in G. Now G is acyclic and so
u#i#v and y# 3 # z. Replace edges [(u,i), (i,v), (¥,3), (§,2)]
by [(u,v), (1,i), (3,3), (y,z)]. The substitution (d~invariant) yields

& d-invariant graph G' of G with two self-loops. If in G' now

replace the two self-loops by edges (i,j) and (J,i) a directed graph Gy
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(d-inveriant of G) results. G2 contains at least one directed circuit

which is a contradiction.

The corollary unfortunately does not guarantee the existence of an
acyclic self-loopless representation, only the properties of an acyclic
characterization are defined.

In certain cases the set of realizatioms [Gi(R)] reduces to a single
element. These unique realizations may be of significant biological
interest serving as prototypes of maximally constrained realization con-
ditions. A set of conditions is said to maximally constrain a relational
graph if the set of realizations [Gi(R)] reduces to a unique graph. The
study of this problem requires the same graph topological background as
the algorithms for constructing digraphs, and will be included in & sepa-
rate paper.

The (M,R)-digraph can be interpreted to represent the metabolic
activity of an organism, where the internal dynamics are described via the
inverse graph in the format of state-space equations. A connected graph
represents a single organism. If conditions of theorem 2.3-2 are not
satisfied then within the confines of relational systems there is no
single organism realizing the constraints.

Furthermore, even when conditions of the theorem are satisfied the
resulting graph need not be equivalent to an (M,R)-graph unless all edges
in the R-graph originate at terminals of the M-graph, and p < 2, one has
to isolate the R-graph and with respect to the R-graph define the set of

potential terminal modules of the M-graph. This is a problem one is




100

confronted with in the synthesis of relational systems. We have presented

certain conditions (constraints) in the theorems of this section, under

which relational systems may be representable as (M,R)-graphs. The

results shed some light on the nature and number of the module interactions

possible in a relational system given the input-output specification of

each module in the system. The set of envirommental outputs are prescribed

by the covering hypothesis, but the envirommental inputs are independent
of the realization and consequently have to be derived from the fine

structure of the individual modules.

The fine structure problem was examined in Chapter I under the topic

of assembling the system from the Ci—equivalence classes.

2.4 (M,R)-Systems and Surface Structures

The deep structure developed in Chapter I defined the various levels

of dynamical invariance with respect to the activity class [Al,...,An] of

a given system. It was assumed each of these activities A; had a

measurably distinguishable feature class [fil""’fin ] used in

defining the activities in the observer-system interaction. The derived

hierarchical structure denoted by the ordered L-tuple
[Tn(Mn)’Ci(Mn)’Tij(ci)’DiJk(ai’Tij)] defined the levels of invariance with

respect to each Ai’ although the generative topology with the morpheme

basisrequired knowledge of the complete activity set [Al”"’An]'

With respect to a given generation of biological organism the

Ci-equivalence classes (modules) are fixed. (From this point of view the

level of self-organization may be considered to be part of the genetic
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structure.) Hence, for an individual organism only the 3-tuple

[Ei(Mn),tij(ai),DiJk(Ci,TiJ)] is required to define the deep structure
(Definition 1.3-1). To bring the deep structure closer to biological
reality the notions of finite life-times, possibility of component inhi-
bition and environmental couplings are needed. These concepts are readily
available in the framework of (M,R)-systems.

The graph topology developed for the deep structure corresponds to
the M-graph of relational systems. With the aid of the feedback relation
we can superimpose on the metabolic structure represented by the M-graph
& new graph with identical vertex set representing the repair functions
in the system. This repair capacity is embodied in the R-graph. The
resulting (M?R)-system, now based on the analysis of the deep structure
will be called the surface structure corresponding to the activity set

[Al,...,An]. By means of the surface structure and the use of the inverse

graph we can observe the environment-system interaction from different
vantage points. Problems related to system activity, structural complexity,
dynamical stability, relational stability and vulnerebility may be
simultaneously studied in the same framework.

Definition 2.4-1 -- Given a system deep structure with an activity

class [Al,...,An], with respect to the deep structure
[Tn(Mn),Ci(Mh),riJ(Ei),Dijk(Ei,TiJ)] an (M,R)-system is a surface
structure if the M-graph corresponds to an admissible topology Tige

In section 2.3-1 we have seen that if the graph topology is defined

via a vertex set and the incidence sets (degree pairs) several possible
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realizations of an (M,R)-system may exist, which are equivalent from the
point of view of (p,s) d-invariant transformations.

Hence, for any deep structure there may be a class of surface
structures realizing that particular deep structure.

The environment may limit the number of possible realizations and
is considered to be the context within which the deep structure surfaces
via the (M,R)-system realization. If the realization is dependent on
the environment it will be called context-sensitive, otherwise it is
context free. In a context-free situation all possible realizations of
the (M,R)-graph may serve as a surface structure whereas the set of con-
text-sensitive realizations are constrained by envirommentally produced
selective criteria. Context-free realizations are essentially environ-
mentel constraint independent and are subject only to the Principle of
Adequate Design, whereas context-sensitive surface structures are selected

on the basis of the Principles of Optimal Design [R-S,R-T,M—h,R-lT,R—QB].

2.5 Optimization on (M,R)-Graphs

At each level of the hierarchical system deep structure certain
dynamical and structural features are selected for, based on some measure
of system performance and subject to operational and environmental con-
straints. The selection of an appropriate realization of an (M,R)-system
from the class of all possible surface structures [Gi(M,R)] is accomplished
at the level of self-organization. The biological system surfaces in the
environment with a fixed module structure and a specified set éf inter-

connections in the model. The adaptive transitions are equivalent to the
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perturbations of the graph topology. If the dynamical responses can be
handled as a routine regulation problem or by variation of system dynamical
parameters the M-graph is invarient. There is a definite ordering of the
degree of system response depending on the magnitude and frequency of
environmental perturbations. Within this context if a system performs
graph topology transitions based only on the history of environmental
forcings, it can be viewed as a learning system. Thus (M,R)-graph
transitions fall into two categories;

a) Envirommentally forced. (The system either adjusts or faces

extinction.)

b) Internally initiated. (The system samples the dynamical

history and searches for an optimal graph topology.)

The factors influencing the (M,R)-graph topology fall into the
following classes:

1) Dynamical stability,

2) Relational stability,

3) Vulnerability,

L) Capacity to process information.

Quantitative measures can be developed to define the above system
characteristics. Given an (M,R)-system the (M,R)-graph representation
decomposes into the M-graph and R-graph. Since metabolic (dynamical)
activities take place in the domain of the M-graph and if, for example,

energy is a quantity processed then potentials and flows (x,y) continually

reorient the M-graph. Centrality and non re-establishability of modules







104

is to be understood in this perspective. For a fixed instance of time
t=t, the graph orientation is fixed and results derived on non re-establish-
ability can be applied. The source for the reorientation process is the
system dynamics superposed on the M-graph topology.

Therefore, dynamical activities have a dual function in the system.
On the one hand dynamics serve as mechanisms of homeostasis and regu-
lation, on the other the M-graph is oriented in a manner to reduce system
vulnerability. The R-graph cannot be influenced in the orientation
sense by the internal dynamics, but the R-graph structure (feedback
relations) can change under an adaptive transition. If the dynamics are
linear the qualitative measure for each of the four classes influencing

the optimization process can be given,

1') Dynamical stability -- if ¥ =AX + Bu is the state equation

and (Al,...,xn) are the eigenvalues of A. Then sufficient condition for
dynemical stability is Max [Re A;] < O where Rel; = real component

of the complex eigenvalue.

2') Relational stability -- the index of relative complexity Rc

is maximized (Definition 1.4-3). If the (M,R)-graph consists of n nodes.

R () Cp 2(p - n +1) .
n = = - n >
C Max C n2_3n+2
A
Max(2) = 2 for directed graphs where the actual cyclomatic num-

ber p-n+1 is to be maximized. Obviously Rc(n) <1

3') Vulnerability -- The number of (M,R)-graph proper directed

feedback circuits (Theorem 2.2-1) is minimized.
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4t) Information capacity -- The order of the state vector X

is
maximized (Definition 1.45b).

For a fixed (M,R)-graph (adaptive state) the only variable is the
dynamical property. Within the bounds of stability (Max[Rexi] < 0) the

orientation of the M-graph is controlled by feedback dynamics to minimize

system vulnerability. The order of the state vector, the index of

relative complexity and the R-graph are invariant for a fixed adaptive

state.

If the re-orientation of the M-graph is of high frequency then non

re-establishable components may survive inhibition. For example, if a

non re-establishable module Mi has the capacity to survive inhibition

for a time interval t;(M,), then a reorientation of the M-graph in time

less than t(M;) guarantees the survival of Mi'
Given the characteristic survival times t;(M;) J =1,...,m,
following inhibition of each non re-establishable module, the dynamical

re-orientations of the M-graph can be increased in frequency to exceed

Min[tj(mj)].

Unfortunately by increasing the reorientation frequency the

likelihoodof inhibiting a central component is also increased. To

determine the optimal reorientation frequency a suboptimal problem has
to be solved, constrained now by the distribution of central components,

the real part of the eigenvalues of the matrix Ai and the characteristic

survival times. The whole process of optimization can be decomposed into

levels of suboptimal processes such that the results of one level are used
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as inputs to the next higher level. 1In case the dynamics are nonlinear

an appropriate linearization may be derived or some other measure of

stability defined is used.

The solution effort in decomposing an optimization problem into
suboptimal stages for hierarchical systems was examined by J. Pearson

in & cybernetic context [P-3]. It is interesting to note that every

constraint on the system introduces additional complexities into the

optimization process. Every new constraint contributes a new system

measure to be incorporated into a performance index. If the constraints

are sufficiently strong then the set of solutions may reduce to a single
element and hence the system is specified uniquely thru its constraints.

The main problem is to locate a system measure that is characteristic of

all the constraints and only of these. In biological systems special-~

ization of constraint system measures is not well developed, but in
cybernetics the duality between specifying the system directly or thru

its constraints is well recognized [C-1].

We shall not develop such an

approach here but note that the selection of a context-sensitive reali-

zation of an (M,R)-graph is a problem of optimization based on environ-

mentelly induced constraints.

We now propose a solution of the generalized feedback relations

required to realize a relational (M,R)~graph. Although an acyclic

realization eliminates the need for a vulnerability constraint the

question remains whether the (M,R)-graphs are representations of real

biclogical systems.




107

Theorem 2.5-1 -- Assume the degree pair set [(d;,d;)] is realizable
+ -
as a directed self-loopless graph. If Min[(di,di)] # 0 for at least

two i +then among all the realizations there exists at least one

with a directed circuit.

Proof: Corollary 2.3-3.

The theorem implies that among all possible realizations of an input-
output set [(d;,d;)] there must be at least one with a directed circuit,
LfMin[(d;,d;)] # 0 for two modules.

For relational systems if every module receives an R-feedback from
some terminal and if the M-graph is connected then Min[(d;,d;)] # 0 for
every terminal and every module connected to a terminal. Hence in the
set [Gi(M,R)] there exists at least one with a non re-establishable
module. Under the generalized feedback relation of every Ri receiving
an input from some terminal Mk we can guarantee at least one (M,R)-
graph with a directed proper feedback circuit. Therefore when Rosen's
covering hypothesis is relaxed and the generalized feedback relation
holds, the non re-establishability property is still velid for at least
one representation the class [Gi(M,R)].

If operational time lags are introduced in the system for the repair
components Ri +then a module may become non re-establishable even though
the proper feedback circuit does not exist (Examples 2.2-1b and 2.2-2).
Generally, if any terminal My fails that produces a feedback signal to
an Ri while the module Mi is being replaced then Mi is non re-

establishable. Furthermore, directed circuits in the R-~graph may have the
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seme effect as proper feedback circuits in the (M,R)-graph. Given a R-

graph directed circuit with vertices [(Ml’Rl)’(MQ’RZ)"'"(MP’Rp)] if an

Ry 1 <i <p requires a time ti(Ri) to replace its dual Mi and if

t1(Ry) > t'j (MJ) then eventuslly all M, will fail when as My is

inhibited, since all life-times tj(Mj) will be exceeded before Mi

is replaced. Consequently a necessary condition for modules connected

by a directed path in the R-graph to be re-establishable are:

a) If Mi is inhibited at time t = to, then all terminals producing

input to Ri are functioning and have life expectancy longer

than ti(Rj_ ) .
b) The time required to replace Mi is no greater than the expected

life-times of all RJ to which M; serves as an input if M;

is a terminal.
These are just partial results, to completely determine the effect

on the system the inhibition of an M; at t = t, all the life expec-

tancies at t = t, of each module have to be known in addition to the

individual survival times under state of inhibition. The fact that the

M-greph is continuously reoriented greatly complicates the problem. It

is of interest to determine in advance if an (M,R)-graph yields strong-

connectedness for an arbitrary orientation.

Definition 2.4-1 —- (Orientability) -- A non-directed connected

graph is orientable if under an arbitrary orientation of the edges the re-~

sulting graph is strongly connected.

Hence, given the basic interactions between the vertex pairs (Mi'Ri)

both in the M and R domain the question is posed whether the (M,R)-graph
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is orientable. (The problem may be considered at two separate levels.)

a) With R-graph orientation fixed, determine an appropriate M-
graph orientation to yield a strongly connected (M,R)-graph.

b) Find an (M,R)-graph with strong connectivity, specify the R-
graph (feedback relations) along with a corresponding terminal
module set such that there are a minimal number of central
components.

Theorem 2.4-2 -- A connected (M,R)-graph is orientable if every edge

of G(M,R) 1is contained in at least one circuit.

Proof: If there exists an edge not contained in a circuit then

Min[(d;,d;)] = 0 for at least two nodes and conditions of theorem
2.3-3 are violated.

if (M,R)-graph is strongly connected let Mi be an arbitrary node for
any M there is a directed path from Mi to Mj and conversely. The

union of the two paths forms a circuit with Mi as origin.

The theorem indicates that strong-connectivity can be deduced form
the circuit matrix of the system. If every column is non-empty in
the circuit matrix the (M,R)-graph is orientable as a strongly-connected
graph. In an optimization process for realizing an (M,R)-graph, if the
circuit matrix is specified with an empty column the resulting (M,R)-graph
cannot be strongly connected for any orientation.

Given a surface structure realization Gi(M,R) of a particular deep
structure [Tn(Mn),ai(Mn),riJ(ai),Dijk(TiJ,Ei)] for every activity A; of

the system (S), the dynamical reorientations of the (M,R)-graph yield
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a different incidence set [(dz,d;)] for every possible orientation of
the M-graph. The initial specified input-output set [(dI,d;)] generates
a sequence of possible dynamical alternatives.

Example 2.4-1 -~ Given input-output degree pair set

[(1,3),(3,1),(3,2),(2,2)]

a) Realization as a (1,0)-directed (M,R)-graph with terminal module

set TS = [M D3 3’ )4]
d /I;v\\\
v \\ — — —> R-graph
SN

¥ —_— 3 M-
o, 2, )D—— o —j(M3,R —> M-graph

\/

(i ,R,) [:!(

b) One possible dynamical reorientation as (1,0)-directed (M,R)-

graph.

[(2,3),(1,2),(3,2),(2,2)]
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It can be shown that in the above example there are no other dynamical
reorientations (with R-graph invariant) that satisfy the (1,0)-directed
graph conditions.

Any other M-graph orientation yields a graph with at least two
strictly parallel edges in the (M,R)-graph. In general given the
adjacency matrices V(M) and V(R) the set of all possible dynamical
reorientations of a (1,0)-directed graph are obtained by perturbing the
entries of the V(M) matrix subject to the condition that,

a) V(R) is invariant,

b)  V(M,R) has no entries equal to two.

(In each matrix V(R), V(M) the entries are zero or one.)

The set of all possible dynamical reorientations as a (p,s)-directed

graph depends on the
a) M-graph,

b) Specified terminal module set [Mk ,...,Mkl],
1

c) R-graph (invariant).
For every dynamical reorientation the results of theorem 2.2-1'
can be applied to determine the central and non re-establishable components.
A perturbation consisting of reorienting a single edge in the M-graph
may be represented by a relatively simple perturbation of the degree

pair set [(df,d;)]. If an edge in the M-graph is reoriented (Example
i

2.4-1) the degree pair set is perturbed for two entries. Let the edge

’ . . + -
exist between Mi and MJ. Then the original incidence pairs (di’di)’

T.aT N s e - the edge
(dJ’dJ) chenge to (d; +1, dj - 1) and (dj - 1, ] + 1) if the edg
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existed as an (MJ’Mi) orientation. The new incidence set is determined by

substitutingl(ay + 1, 4f - 1), (4 - 1, ay + 1] for [(a7,a7),(4],a))].
Any reorientation is computable by the above scheme. If the M-graph
consists of p edges then the theoretical maximal of dynamical reorien-
tations is p2. Of course not all of these need satisfy the (p,s)-
directed graph conditions. However, the computation to determine whether
the perturbed incidence set satisfied the (p,s)-conditions is straight-
forward. For every M-graph edge two entries of the matrix V(M) are
changed. The composite graph V(M,R) is altered analogously. The (p,s)-
condition is satisfied if the new V(M,R)-graph has no diagonal entries
greater than s; and no off-diagonal entries greater than p. Hence

+ -
all perturbations of the incidence set [(di’di)] are allowed as long as

[vij]e V(M,R) is such that [vij] <s and [vy5] <p.




CHAPTER III

STABILITY OF ADAPTIVE DYNAMICS

3.1 State Space of Adaptive Transitions

In this chapter a framework for adaptive transitions is developed

based on the structural properties of the (M,R) graph. Certain questions

related to the dynamical stability properties of interacting large-scale

systems will be investigated via the techniques developed by Siljak

[s-1,8-2,5-3,5-5]. As pointed out in the section on optimization the first

constraint imposed on the (M,R)-system is dynamical stability with respect

to the system dynamics DiJk(TiJ’Ci) imposed on the (M,R)-topology.
If the modules of the (M,R)-system are constrained to participate

in the total system activity by an (on,off)-criterion, then a convenient

condition of the permissible topology Tij is based on the (M,R)-graph.

Given a module M; 1in the realization of an (M,R)-system, the module is

a) Off: if M; ceases to function as a separate node in the M-graph.

b) On: if Mi exists as a separate node in the M-graph.

Example 3.1-1 -- (2,0)~directed (M,R)-graph.
(M&BR )
_ - T = [M LM M, ]
Tl R ° 273
14// / \L a) (M,R) on

SR I . CES
A7
'

(M5 ,R5) N Te ”
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b) (Ml,Rl) off.
(M), ,Ry,) “ N
A '\S
L (ug,Ry)
.//;1/
e
P
‘ i
(35.R,) «

The R-graph edges corresponding to (Ml’Rl) are deleted and all

M-paths passing through (M;,R;) are replaced by one edge.

Given & realization Gi(M,R) of an input-output at [(d;,d;)] a subset
of the adaptive states is defined to be the set of all (M,R)~topologies
resulting from the(on,off)-state of any module M.

1

Definition 3.1-1 -- With respect to a fixed realization Gi(M,R)

of the incidence set [(d;,d;)] as a (p,s)-graph the adaptive states are
the set of all permissible topologies TiJ resulting from the (on,off)-

state of any Mi i=1,...,n.

The above definition is a special case of definition 1.2-6, with
the (on,off)-state of each Mi providing the perturbations of Tij
Obviously if the (p,s)-condition is satisfied for Gi(M,R) then deletion of
edges (some Mi in an off-state) also satisfy the condition. For a
specific adaptive state, corresponding to [Mi""’Mk}’ [Mk+i,...,Mh]
where modules in first set are on, and the second set off, the (M,R)-graph

topology can be reoriented via the system dynamics.
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If the dynamical stability properties of the free-body forms for
each Mi are known under certain assumptions the stability of the

total (M,R)-system can be determined (Section 3.3). If a terminal My

is off in the system then the covering hypothesis for the(M,R)-system

mey be violated. In Example 3.1-1 the cessation of (M3,R3) node implies
the termination of the feedback relation (M3,R1). To eliminate problems
arising from the existence of modules without R-graph feedback, we restrict

the (on,off)-condition to non-terminel modules. Therefore, given an

initiel reelization G;(M,R) with a terminal module set [Mk ,...,Mk 1,
J

1

for any adaptive graph transitions Tij all elements of the terminal

set are active.

Definition 3.1-2 -- (Adaptive (M,R)-states) ~- A permissible

adaptive state (Definition 3.1-1) is an (M,R)-state if every terminal in

the original G;(M,R) realization is active.

A particular realization of the deep structure as an (M,R)-system
constrains the set of possible topologies TiJ by means of the covering
hypothesis.

The (M,R)-system may perform an adaptive transition whenever
a) The system dynamics are unstable in the present state and
cannot be stabilized by pafameter feedback,
b) The degree of relative complexity RC is increased in the next
adaptive state,

e) The number of non re-establishaeble components is reduced in the

next state,
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a) The order of state vector is increased in the next state.

Any combination of the above factors may also result in an adaptive
transition. It is difficult to establish an order of importance for
transitions, but dynamical stability and low vulnerability appear to
dominate [R-11,A-3,R-10]. However, stability and vulnerability may
impose different constraints in the system graph and a dynamically unstable
system may possess low vulnerability with respect to the environment.

The reason for the above conflict arises from the fact that vulnerability
is defined for the (M,R)-graph, whereas system dynamics are superposed on
the graph, and as demonstrated by May's example, relational and dynamical
stability are not necessarily dependent. This result is not very sur-
prising when one considers that vulnerability, relational stability and
information processing capacity are defined on structural features of the
system which usually persist in time whereas dynamical stability is a more
transient feature. It is possible to introduce Markov processes to
account for the dynamics of adaptive transitions in a stochastic frame-~
work [K-2,K-L].

For such an approach to be useful a relatively complete list of the
factors influencing adaptive changes must exist. We have isolated only
four of these factors and presumably many others exist that are Just as

important. There is no common denominator for the definition of adeptive
changes in dynamical system, but generally structural modifications due to
external or internal influences are recognized as examples of adaptation

[R~5,8-6,0-3,1-8,M~7]. 1In the following sections we shall be concerned




117

with the dynemical stability properties of (M,R)-systems specified through

the free-body models of the constituent modules.

3.2 Dynemical Description of Large-Scale (M,R)-Systems

Let the state space representation for a relational (M,R)-system be

given as X = F(t,%) X(t) € R" (3.3)

Let F: TxR® > R® be globally Lipschitz continuous, so that unigque

solutions to (3.3) exist and are continuous for all initial conditions

(t ,Xx )61 x R® [H-1]. The (M,R)-system is composed of the n Ci-

equivalence class generated modules Mi‘ Assume the free-body model for

each Mi is

: - - ni ni n
X3 = Fyt,X;) X;€R R CR (3.4)

Let the constrained interconnected Mi be modeled by

X. = F(tX)+12 iy J(J)

Y, = Hi()_(i) (3.5)

Mi, Yi is the out-

Here Xi is the state vector for the i-th module

put of the M., and GiJ are the interconnection constraints.

F,o: 7 x B » R1
H : R1+pg™
1
Gy RJ > g
such that Gij are Lipschitz continuous
Hoy (3,111 = lle, (A, XD < o n;iu i, =1,2,...,n
(3.6)

and //'// is the Euclidean norm of a vector.
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1 if MJ acts on M
0 if M, does not act on M;
In terms of the Tij topology, if MJ is a node in an adaptive state
and if the M-graph directed edge (Mﬁ’Mi) exists then ey = 1. The
total state vector is i :=(£1’°"’in) and the dimension of X is the
sum of the dimensions of the ii'
An interconnection matrix Ei (nxn) can be represented by the
adjacency matrix V(M) of the M-graph for any e
The structural perturbations of the (M,R)-system corresponding
to the (on,off)-condition of each Mi yield a class of adaptive states
(subset of 13y topologies). If a module M; is in the off-state all
ejx = 0, (the interconnection matrix E has a zero k-th column). A
module either participates in the system metabolic activity or it is
totally in the off-state and no constituent morpheme interacts with the

system. This implies the Mi-nodes of the M-graph are not subdividable

for adaptive transitions. If the M; is off in the metabolic process so

is all its R-graph feedback edges. To express the structural pertur-

bations we consider a real (nxn) matrix A = [aij] and define the q x q

principal submatrix Aq as

i i . . i a. -
172 q 111, i1,
Aq = A =
i i O | 8 . e .8y gy
172 q 1 atq
where
1 <qZ<n.
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The determinant D(Aq) will be called the principal minor [F-1].
The fundemental interconnection matrix Ef(M,R) is a matrix with zero,
one entries corresponding to (on,off)-condition for each Mi for any

T topology. All entries corresponding to the terminal modules

13
[Mk ] are invarient ones. (a terminal module is always in an active
i

state) and non-existing interconnections are invariant zeros. A
structural perturbation is obtained by manipulating the entries of
Eo(M,R) subject to the above stated invariance.

In our framework the Ef(M,R) matrix is constructed from the
adjacency matrix V(M) of the original realization Gi(M,R) for the
input-output set [(dI,dz)]. Hence Ef(M,R) contains the maximal number
of entries. An entry [eiJ]fE'Ef(M,R) is one if there exists a corresponding
edge in the M-graph of the realization Gi(M,R).

The interconnection matrices E; are derived from Ef(M,R) by
setting an M,-module in the off state (Example 3.1-1). Each EJ
represents a Tij topology (state of the adaptive space).
The structural changes can be represented by canonical form matrices

E , which are row-column transformations of Ei into a quasidiagonal

form [S-2].

Tqu




120

From e dynamical viewpoint the Ep matrix sorts the Mi-modules
into dynemically independent groups. (The groups need not correspond to
the subsystems we have defined in Chapter II Definition 2.1-2.)

Under the assumption that the origin of the state space is a unique
equilibrium point for the (M,R)-system and the Mi—module free-body
models, i.e.,

F(t,0) = O
F,(t,5) = O
Certain conclusions can be derived about the (M,R)-system stability from

the stability behavior of the Mi-module free-body dynamics
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3.3 Connective Stability of (M,R)-Systems

We now provide a definition of the dynamical stability of an
(M,R)-system, which is invariant under the structural perturbations.

Definition 3.3-1 -- (Connective Stability) -- The equilibrium state

X =0 of a free dynamic (M,R)-system is connectively stable if and only
if it is stable in the sense of Lyapunov for all canonical interconnection
matrices EP. (For definition of Lyapunov stability see Koenig, et al.
(k-5].)

A necessary condition for connective stability of the (M,R)-system is
the stability of each M;-module. This can be seen by setting Ep equal
to the zero matrix; with no interconnections each Mi must be stable
separately. However, the perturbation of the Ef(M,R) matrix corresponds
to the inhibition of a module, hence the necessary condition is trivially
satisfied for each disconnected (inhibited) module.

Definition 3.3-2 -- (Exponential connective stability) =-- The

equilibrium state i = 0 of a free dynamic system & is exponentially
connectively stable if and only if there exists o >0, B >0 independent

of initial conditions (to,Xo) such that

xR tx )] < |1 x| 1e78(%) Veer
for all (to;EO)e-r x R® and all canonical interconnection matrices Ep.
Lemma 3.3-1 -- The equilibrium state ii = 6 of a free-body dynemic
M;-module is exponentially stable if and only if there exists a positive

n-
definite function vi(t,ia) on Tx R Y such that
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“il\\ii“ vy i.uizllii\\ (3.7)

.

RERIEA]

lerea vill <oy

where
are positive numbers

> ui
and

v —E-V + (grad v-)T F
i 3¢ 1 &r 1 i

Proof: [S-2]
Theorem 3.3-1 —- (Siljak) -- The equilibrium state X = 0 of the

free dynamic (M,R)-system is exponentially connectively stable if the

elements
(3.8)

-1 )
Biy = Siy Myp My3 * iy Big a1 Mk

of the real (nxn) matrix A = [aij] satisfy the inequalities.

(3.8")

(-1)¢ D(a) >0 Vq= 1,2,...,n

corresponding to the fundamental interconnection matrix Ep(M,R).

(835 1is the Kroenecker delta.)
Proof: To prove the theorem we need the following results from

stability of dynamical systems and matrix theory.
(R1) Let ;(t,to,vo) be a solution of the differential inequality

v <Av for v. =v(t ;t .v.) and let r(t,t .v.) be a
—_— fe) o'oY o [oR Ao}

solution of the comparison equation r = Ar for
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r = r(to,to,ro). If v

o ;o and all [aij] > 0 and real,

then V¥(t,toyr ) < Flt,tg,r)) Ve €T [B-3,WA].
(R2) A real (nxn) matrix A = [a‘iJ] with 834 20 for

J #1 has all eigenvalues Ak with negative real parts if and
only if (-l)qD(Aq) > 0 is satisfied [L-1].

Now the proof of the theorem:

The total time derivative along system trajectories is given by

n

. T -
\}i=§£vi + (grad vi) (z ei,j GiJ[HJ(XJﬂ) (3.9)

Apply inequalities (3.6) and (3.7) and rewrite (3.9) as

v <y s, v
Vi S Hia Yy uih,j:leiJ i3 W1 V3

for every interaction Gij' Define an n~vector Vv T

(v1 Vs ,vn)

and form the differential inequality

V < Av
[aiJ] are given by (3.8). Apply (Rl) and (R2) to satisfy conditions for

asymptotic stability. (The system X = Fi(t,X) is assymtotically stable

if Max R (A,) <0, k =1,2,...,n.) Now let S = Max R (A) then
k e''k k e

there exist two positive numbers € < |&] and o

IleA(t—to)H <o e(6+€)(t-to)

p(€) such that
Vier (3.10)
(c-6]. Use inequalities (3.7) and (3.10) along with some properties of
Euclidean norms to obtain

[1%(t,80,%,) | < al x| [emB(b=t0)

for all (t°7xo)e T x RP where

i,J =1,2,.

«.on
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Q

[}
=]
=]
o]

L[}

Min = .
) 1 MM e T MExowy,

B = -¢&-¢%, S = Max Re)‘k < 0 if system is asymptotically

stable « Since €< h5l=é -8 < 0 . By definition 3.3-2 the system

X = F(¢,X) is exponentially stable.

The theorem gives us an algebraic criterion (3.8') under which the
(M,R)-system stability can be inferred from the stability properties of
the Mi-modules. Since the stability of each Mi is & necessary condition
for (M,R)-system stability, if en M; becomes unsteble an adaptive
transition occurs in the (M,R)-graph. The transition decouples the
unstable Mi from the system graph. The question related to the distri-

bution of stable forms (Chapter I) can now be rephrased in light of

connective stability.

Definition 3.3-3 -- An interconnection matrix Efi is an immediate

neighbor of the matrix EfJ if Ep; differs from Ef'j at only one

entry.

If a structural perturbation of the (M,R)-system is representable
as the modification of the fundamental interconnection matrix Ef(M,R),
then the distribution of stable (dynamical) forms depends on the stable
configurations of Ef(M,R). Every possible perturbation can be tested by
theorem 3.3-1. Let the possible stable interconnections correspond to
the fundemental matrices [Efl’EfQ""’Efm]‘ The above distribution of

stable forms will be called dense in the set of all structural pertur-

bations if any perturbation Ep; is an immediate neighbor of a stable

form,
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If an adaptive transition consists of perturbing a simple entry of
Ef(M,R), then for a particular unstable form it is important to know

whether a stable form exists in the immediate neighborhood. A dense

distribution of stable forms guarantees such a neighbor. Therefore an

(M,R)-system satisfying the density criterion for its adaptive state

space has some degree of adaptive flexibility. The results we have stated

for connective assymtotic stability relies on the ASymptotic stability of

the constituent components. Further research is needed to determine under

what conditions can the stability criterion for components be relaxed.




CHAPTER IV

CONCLUSIONS

The dissertation is intended to serve as a framework for introducing

dynamical principles into relational systems. The first chapter outlined

a general systems methodology for identification of components of an
arbitrary system underlying a specific observed activity class [Al,.. ’An]’
The identification process depends strongly on the observer-system inter-
action and possesses a generative cdpacity in reconstructing structure

from function. A system deep structure is isclated and invariant structural

features identified with respect to environmental perturbations.

In Chapter II a specific surface structure is appended to the deep
structure incorporating biological limitations of a system under the
finite-lifetime and non re-establishable hypotheses of (M,R)-systems.

A set of stability criteria are proposed for (M,R)-systems and
certain optimization problems explored based on these measures. The
main applications of the model will be in subsequent investigations of
the organizational properties of biclogical systems within the scope of

(M,R)-representations. Questions related to realization of arbitrary

input-output specified (M,R)-systems can now be answered by the results
of Section 2.3.
Furthermore, if biologicel function change can be shown to be

generated by structural changes in a system, then the state space of
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adaptive dynamics can be applied to investigate some problems of bio-
logical significance such as degree of specialization and irreversibility
of behavioral changes in an (M,R)-system.
The nature of hierarchicsl organization is somewhat elusive, and
whether a correlation exists between the functional levels, as displayed
in the system activity, and the inputed structure is debatable. We have

offered a plausible connection between the two modes of system description.




(a-1]

(a-2]

(4-3]

[B-1]

(B-2]

(B-3]

[B-4]

[B-5]

[B-6]
[B-7]
[B-8]

[B-9]

[B-10]

[B-11]

REFERENCES

Arbib, M., "A Common Framework for Automata Theory and Control
Theory," SIAM J. Control, Ser A., pp.206~222,1965.

Arbib, M., "Categories of (M,R)-Systems," Bull. Math. Biophys.,
Vol. 28, pp. 511-51T, 1966.

Ashby, R., "Stability and Adaptation," Organizations, Vol. II,
Litterer J. (Ed. )Systems, Control and Adaptation, Wiley, 1969.

Baianu, I., "Organismic Supercategories and Qualitative Dynamics
of Systems," Bull. Math. Biophys., Vol. 33, pp. 339-354, 197T1.

Baianu, I. and M. Marinescu, "Organismic Supercategories," Bull.
Math. Biophys., Vol. 30, pp. 625-635, 1968.

Bellman , R., "Vector Lyapunov Functions," SIAM J. Control, Ser. A,
Vol. I, pp. 32-3k4, 1962.

von Bertalanffy, L., "General Systems Theory - Critical Review,"
Organizations, Vol. II, Litter J.(Ed) Systems, Control and .
Adaptation, Wiley, New York, 1Y69.

von Bertalanffy, L., General System Theory, Braziller, New York, /
1968.

Berge, C., Graphes et Hypergraphes, Duncd, Paris, 1970.

Birkhoff, G. and S. Maclane, Algebra, Macmillen, London, 1967.

Boling, R., "Toward State-Space Models for Biological Systems,"
Ph.D. Thesis, Michigan State University, 1971.

Bourbaki, N., Eléments de Mathematique (Topologie Générale),
Hermann, Paris, 1966.

Busacker, R. and T. Saaty, Finite Graphs and Networks, McGraw-Hill,
New York, 1965.

Butz, E., "A Contribution to Rashevsky's Mathematical Theory of
Development," Bull. Math. Biophys., Vol. 30, pp. 135-154, 1968.

128

e T







[c-1]

[c-2]

[c-3]

[c-4]

[c-5]

[c-6]

(c-7]

(D-1]

[F-1]

(G-1]

(G-2]

(G-3]

(G-L]

(H-1]

[H-2]

[H-3]

129

Charnes, A. and W. Cooper, Tonstrained Extremization Models and
Their Use in Developing System Measures,"Views on General Systems
Theory, M. Mesarovic (Ed.), Wiley, pp. 61-68, 196L.

Chen, W., Applied Graph Theory, American Elsevier, New York, 1971.

Chow, C. K. and C. N. Lim, "An Approach to Structure Adaptation
in Pattern Recognition," IEEE Systems Science and Cybernetics,
Dec. 1966, pp. 73-80.

Comorosan, S. and I. Baianu, "Abstract Representation of Bio-
logical Systems in Supercategories,” Bull. Math. Biophys., Vol. 31,
pp. 59-70, 1969.

Cox, D. and H. Miller, The Theory of Stochastic Processes, Wiley,
1965.

Cséki, F., Korszeru Szabélxpzéselmélet Aksdémiai Kiadé, Budapest,
1970.

Cséki, F., Szabalyozasok Dinemikaja Akadémiai Kiadd, Budapest,
1970.

Demetrius, L., "Cellular Systems as Graphs," Bull. Math. Biophys.,
Vol. 30, pp. 105-116, 1968.

Frame, J. S., Lecture Notes in Matrix Theory, Michigan State
University, 1973.

George, F. H., "Behavioral Cybernetics,”" Survey of Cybernetics,
J. Rose, (Ed.), London, pp. 78-92, 1969.

Gill, A., "Introduction to the Theory of Finite State Machines,"
System Theory, Zadeh, L. and E. Polsk (Eds.), McGraw-Hill,
New York, 1962.

Ginzburg, A., Algebraic Theory of Automata, Academic Press,
New York, 1968.

Glushkov, V., "Contemporary Cybernetics," Survey of Cybernetics,
J. Rose (Ed.), london, pp. 47-T70, 1969.

Hahn, W., Stability of Motion, Springer, New York, 1967.

Harrison, M., Lectures on Linear Sequential Machines, Academic
Press, New York, 1969.

Hu, S., General Topology, Holden-Day, San Francisco, 1966.




—————ﬁ-

(J-1]

(k-1]

(k-2]

[k-3]

[k-L]

[k-5]

(L-1]
[1-2]

(1-3]

(z-4]

[z-5]

(1-6]

[L-7]

(1-8]

(M-1]

(M-2]

130

Johnson, D. and J. Johnson, Graph Theory, Ronald Press, New
York, 1972. :

Kaufmenn, A., Introduction a la Combinatorique, Dunod, Paris, 1968.

Kemeny, J. and L. Snell, Finite Markov Chains, Van Nostrand Co.,
New York, 1960,

Kirk, D., Optimal Control Theory, Prentice Hall, Englewood Cliffs,
New Jersey, 1970.

Kirschbaum, H., "The Application of Markov Chains to Discrete
Extremum Seeking Adaptive Systems," Adaptive Control Systems,
Levenstein, H. and F. Caruthers (Eds.), Pergamon Press pp. 179-
200, 1963.

Koenig, H, Y. Tokad, and H. Kesevan, Analysis of Discrete Physical
Systems, McGraw-Hill, New York, 1967.

Lancaster, , Theory of Matrices, Academic Press, New York, 1968.

Lang, S., Algebra, Addison-Wesley, 1965.

Laszlo, E., The Relevance of General Systems Theory, G. Braziller, v
New York, 1972.

Lee, E. and L. Markus, Foundations of Optimal Control Theory,
Wiley, New York, 1967.

Leininger, C., "On Chains of Related Sets," Bull. Math. Biophys.,
Vol. 28, pp. 103-106, 1966.

Leondes, C. and J. Mendel, "Artificiasl Intelligence Control,"
Survey of Cybernetics, J. Rose (Ed.), London, pp. 209-228, 1969.

Lewontin, R., "The Meaning of Stability," Brookhaven Symposia in
Biology, No. 22, pp. 13-2h4, 1969.

Linvill, W., "Toward Approximate Analyses of Linear Dynamic
Systems," Views on General Systems Theory, M. Mesarovic (Ed.),
Wiley, New York, pp. 125-42, 196L.

Marimont, R., System Connectivity and Matrix Properties, Vol. 31,
PP. 255-2Th, 1969.

Margalef, R., "Diversity and Stability in Ecological Systems,"
Brookhaven Symposia in Biology, No. 22, pp. 25-3T, 1969.




—. - )

[M-3]

[M-4 ]

(M-5]

(M-6]

(M-71]

(M-8]

[P-1]

(p-2]

[p-3]

(P-L]

[R-1]

[R-2]

[rR-3]

[R-L]

(R-5]

131

Marshall, A., Applied Graph Theory, Wiley-Interscience, New York,
1971.

Martinez, H., "Toward an Optimal Design Principle in Relational
Biology," Bull. Math. Biophys., Vol. 26, pp. 351-365, 196kL.

May, R., "Stability of Multispecies Community Models," Math.
Biosciences, Vol. 12, pp. 59-T9, 19T1.

Mesarovic, M., "Foundations for a General Systems Theory," Views
on General Systems Theory, M. Mesarovic (Ed.), Wiley, New York,
pp. 1-24, 196L.

Mohler, R.,and A. Ruberti, The Theory and Applications of Variable
Structure Systems, Academic Press, New York, 1972.

Mowshowitz, A., "Entropy and the Complexity of Graphs I, II, III,
IV," Bull. Math. Biophys., Vol. 30, pp. 175-20k4, 225-2&0 387—
hlh 533-546, 1968.

Pattee, H., Hierarchy Systems, Braziller, New York, 1973. .~

Patterson, J. and B. Womack, "An Adaptive Pattern Classification
System," IEEE Systems Science and Cybernetics, Aug. 1966,
pp. 62-67.

Pearson, J., "Decomposition, Coordination and Multilevel Systems,"
IEEE Systems Science and Cybernetics, Aug. 1966, pp. 36-L0.

Peixoto, M., "Structural Staebility on 2-Dimensional Menifolds,»
Topology, No. 1, pp. 101-120, 1962.

Rapoport, A., "Mathematical Aspects of General Systems Analysis
Organization, Vol. II, J. Litterer (Ed.), Systems, Control and
Adaptation, Wiley, 1969.

Rashevsky, N., "Note on a Combinatorial Problem in Topological
Biology," Bull. Math. Biophys., Vol. 17, pp. 45-50, 1955.

Rashevsky, N., "Some Remarks on Topological Biology," Bull. Math.
Biophys., Vol. 17, pp. 207-218, 1955.

Rashevsky, N., "Some Theorems in Topology and a Possible Biological
Implication," Bull. Math. Biophys., Vol. 17, pp. 111-126, 1955.

Rashevsky, N., "A Contribution to the Search for General Mathe-
matical Principles in Biology," Bull. Math. Biophys., Vol. 20,
pp. T1-93, 1958.




132

[R-6] Rashevsky, N., "Contributions to Topological Biology," Bull.
Math. Biophys., Vol. 18, pp. 113-128, 1956.

[R-7] Rashevsky, N., "Organismic Sets I, II, III," Bull. Math. Biophys.,
Vols. 29, 30, pp. 139,152, 163,173, 55-66, 1967-68.

[R-8] Rashevsky, N., "Outline of a Unified Approach to Physics, Biology
and Sociology," Bull. Math. Biophys., Vol. 31, pp. 159-198, 1969.

[R-9] Rashevsky, N., "Physics, Biology and Sociology: & Reappraisal,"
Bull. Math. Biophys., Vol. 28, pp. 283-308, 1966.

[R-10] Rashevsky, N., "Life, Information Theory and Topology," Bull.
Math. Biophys., Vol. 17, pp. 229-235, 1955.

[R-11] Rashevsky, N., "A Note on Relations Between Sets I, II," Bull.
Math. Biophys., Vol. 28, pp. 309-313, 117-124, 1966.

[R-12] Rescigno, A., "On Some Topological Properties of the Systems of
Compartments," Bull. Math. Biophys., Vol. 26, pp. 31-38, 196L.

[R-13] Rosen, R., "A Relational Theory of Biological Systems I, II,"
Bull. Math. Biophys., Vols. 20, 21, pp. 2Lh5-260, 109-128, 1958-59.

[R-14] Rosen, R., "The Representation of Biological Systems from the
Standpoint of the Theory of Categories," Bull. Math. Biophys.,
Vol. 20, pp. 317-341, 1958.

[R-15] Rosen, R., "Abstract Biological Systems as Sequential Machines,
I, II," Bull. Math. Biophys., Vol. 26, pp. 103-111, 239-246, 196kL.

[R-16] Rosen, R., "On Analogous Systems," Bull. Math. Biophys., Vol. 30,
pp. 481-L492, 1968.

[R-17] Rosen, R., "Some Realizations of (M,R)-Systems and their Interpre-
tations,”" Bull. Math. Biophys., Vol. 33, pp. 303-319, 1971.

[R-18] Rosen, R., "On the Decomposition of Dynemical Systems into non-~
interacting Subsystems," Bull. Math. Biophys., Vol. 34, pp. 337-
341, 1972.

[R-19] Rosen, R., "On the Generation of Metabolic Novelties in Evolution,"
Biogenesis, Evolution, Homeostasis, A. Locker (Ed.), Springer-
Verlag, 1973.

[R-20] Rosen, R., Dynamical System Theory in Biology I, Wiley-Interscience,

New York, 1970.




[R-21]

[(R-22]

[R-23]

[s-1]

[s-2]

[5-3]

[s-4]

[s-5]

[5-6]

[s-7]

[s-8]

[T-1]

[T-2]

[T-3]

133

Rosen, R., "A Note on Replication in (M,R)-Systems I, II,"
Bull. Math. Biophys., Vols. 28, 29, pp. 149-151, 1966-6T.

Rosen, R., "A Relational Theory of the Structural Changes Induced
in Biological Systems by Alterations in Environment," Bull. Math.
Biophys., Vol. 23, pp. 165-1T1, 1961.

Rosen, R., "Recent Developments in the Theory of Control and
Regulation of Cellular Processes," International Reviews of

Cytology, No. 23, pp. 25-88, 1968.

Siljak, D., "Stability of Large-Scale Systems under Structural
Perturbations," IEEE Systems, Man and Cybernetics, Vol. 2, No. 5,
pp. 657-663, 1972.

Siljak, D., "On Stability of Large-Scale Systems under Structural
Perturbations," IEEE Systems, Man and Cybernetics, July, 1972,
pp. L415-41T.

Siljak, D., "Stability of Large~Scale Systems," 5th IFAC Congress,
¢-32, pp. 1-9, 1972.

Siljak, D., Nonlinear Systems, Wiley, New York, 1969.

Siljek, D. and T. Grujic, "Stability of Large-Scale Systems with
Stable and Unstable Subsystems," Joint Automatic Control Conference,
pp. 550-555, 1972.

Simon, H. A., "The Architecture of Complexity, Organizations,
Vol. II, J. Litterer (Ed.), Systems, Control and Adaptation,
Wiley, New York, 1969.

Smale, S., "Differentiable Dynamical Systems," Bull. American
Math Society, No. T3, pp. T47-813, 1967.

Strejc, V., "Cybernetics and Process Control," Survey of Cyber-
netics, J. Rose (Ed.), London, pp. 231-25k, 1969.

Thom, R., "Topological Models in Biology," Topology, Vol. 8,
pp. 313-335, 1969.

Trucco, E., "On the Information Content of Graphs," Bull. Math.
Biophys., Vol. 18, pp. 237-253, 1956.

Trucco, E., "A Note on Rashevsky's Theorem about Point Bases in
Topological Biology," Bull. Math. Biophys., Vol. 18, pp. 65-85,
1956.




(T-4]

(w-1]

(z-1]

[z-2]

[2-3]

134

Turnblade, R. C., "Random Optimization and Multiple Adaptive
Control," Adaptive Control Systems, Levenstein, H. and F.
Caruthers (Eds.), Pergamon Press, pp. 143-1T7, 1963.

Wazewski, T., "Systemes des equations et des inequalites
differentielles ordinaires aux deuxiemes membres monotones et
leursapplications," Am. Soc. Polon. Math. No. 23, 22-36, pp. 112~
166, 1950.

Zadeh, L., "The Concept of State in System Theory," Views on
General Systems Theory, M. Mesarovic (Ed.), Wiley, New York, 196L.

Zadeh, L. and D. Desoer, Linear Systems Theory, McGraw-Hill,
New York, 1963.

Zadeh, L. and E. Polak, System Theory, McGraw-Hill, New York, 1969.













1293101

CHIGAN STATE UNIV. LIBRARIES

MI
Il
3

AR
67 2

302




