

ABSTRACT

FAULT ANALYSIS OF COMBINATIONAL LOGIC NETWORKS

By
Lung-Hsiung Chang

The algebraic model called the Complete Gate Equivalent
Model (CGEM) which describes completely and precisely the
physical and logical structures of a multiple output
network is proposed for the study of faulty combinational
logic networks.

In this thesis, the power of a CGEM is demonstrated,
with its various forms, through its application in the
generation of fault functions and complete test sets for
a network with stuck-at type faults. An upper bound on
the number of possible fault functions, hence the number
of possible fault classes, is established. Then, a
straightforward procedure to find, without enumeration,
all possible fault functions and the associated fault
sets is presented.

A complete test set can be found by covering the
direct differences which are generated by enumerating all
possible faults of the network. It is shown given a fault

function and a complete test set of a logic network, one

. yi

\V Lung-Hsiung Chang

v}
can either find the associated fault set or decide that
the network cannot have degenerated into the given fault
function. Methods of computing the fault functions for
several kinds of bridging faults also are demonstrated.

Four algorithms for generating near minimal complete
test sets are presented. The first two are for multiple
fault and single fault detection. The other two are the
direct generalizations of the first two to fault location.
A method for searching for a minimal complete detection
test set for an irredundant network is also suggested. In
general, one can find a smaller complete detection test
set than that obtained by Poage's method. The generaliza-
tions of the method to cover the general networks parallel
the development of the algorithms. Furthermore, the
existence of undetectable faults in a redundant network
impose no restrictions on the test generation since we
can modify the CGEM according to the fault before it is
used in the algorithms.
When detailed information about the logic network

is not required, the Complete Gate Equivalent Model can be
modified to describe LSI combinational networks in a

manageable manner. 1Its use in generating tests for a

sequential logic network has also been pointed out.

FAULT ANALYSIS OF COMBINATIONAL LOGIC NETWORKS

By

Lung-Hsiung Chang

A THESIS

. .. Submitted to '
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

1974

ACKNOWLEDGMENTS

I am grateful to Dr. Carl V. Page, the chairman of
my guidance committee, for his guidance and encouragement
during the course of this thesis. My thanks also go to
Dr. Richard J. Reid, Dr. Julian Kateley, Jr., Dr. Edward A.
Nordhaus and to Dr. Berhard L. Weinberg for serving on my
guidance committee and for reviewing this work.

Finally, I am deeply indebted to my wife Hsiu-Lan for

her patience, understanding and encouragement.

ii

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS . . « « « « o« « o o« o o« o o ii
LIST OF TABLES . . . « ¢« ¢« o« o« o o o o o v
LIST OF FIGURES Ll L] L] L] . . L] . L] - L] Ll L] L3 vi
Chapter
1. INTRODUCTION . . . ¢« « o o o o o o 1
1.1 BACKGROUND e e e 1
1.2 COMBINATIONAL LOGIC NETWORKS e e e e 2
1 . 3 mGICAL FAULTS L) . L] . ° L] . L : 4
1.4 FAULT DIAGNOSIS . . . « e e e 5
1.5 CONTRIBUTIONS AND ORGANIZATION
OF THE THESIS « .. =« =« « ¢ o « @ 6
2. A COMPLETE GATE EQUIVALENT MODEL O T 8
2.1 INTRODUCTION 8
2.2 THE COMPLETE GATE EQUIVALENT ALGEBRAIC
NETWORK MODEL (CGEM) e e e e e 9

2.3 CONSTRUCTION OF THE COMPLETE GATE
EQUIVALENT MODEL FOR A COMBINATIONAL

LOGIC NETWORK . . . « =« « =« =« =« 19
2.3.1 Transformation from the
Combinational Logic Network
"to an Equivalent Boolean
Expression e « + « « <« . 20
2.3.2 Reduction of Boolean Expression
EtoCGEM Form 26
2.4 THE COMPLEMENT OF THE BOOLEAN
EXPRESSION E OF A COMBINATIONAL
LOGIC NETWORK e e . . 27
2.5 CHAPTER SUMMARY AND REMARKS e o o o 32

iii

Chapter

3. FAULT FUNCTIONS . . .« ¢« ¢ « « o o &
3.1 INTRODUCTION . . .« « « « « .
3.2 FAULT EQUIVALENCE . . o e e
3.3 GENERATION OF ALL POSSIBLE
FAULT FUNCTIONS« =« « .
3.4 BRIDGING FAULTS . . . o e
3.5 DIRECT DIFFERENCE AND TEST
GENE RAT I ON . L] L] L] L] L] L] A L4
3.6 IDENTIFICATION OF FAULTS
3.7 CHAPTER SUMMARY AND REMARKS . . .
4. TEST GENERATION . . . « .« « « « o =«
4.1 INTRODUCTION . . . e e e

4.2 GENERATION OF NEAR MINIMAL COMPLETE
DETECTION TEST SETS
4.2.1 Generation of a Near Minimal

Test Set which Detects all
Faults in a Combinational
Logic Network « e e e e
4.2.2 Generation of a Near Minimal
Test Set which Detects all
Single Faults in a Combina-
tional Logic Network . . .

4.3 GENERATION OF NEAR MINIMAL COMPLETE
LOCATION TEST SETS
4.3.1 Generation of a Near Minimal

Test Set which Locates All
Faults in a Combinational
Logic Network e e e e e
4.3.2 Generation of a Near Minimal
Test Set which Locates All
Single Faults in a Combina-
tional Logic Network . . .

4.4 SEARCH OF MINIMAL COMPLETE DETECTION
TEST SETS

4.5 CHAPTER SUMMARY AND REMARKS . o .

5. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK .

APPENDIX .

BIBLIOGRAPHY

5.1 CONCLUSIONS e e e e e e e e
5.2 SUGGESTIONS FOR FUTURE WORK . . .

. . . L] L] L] ° . o .

iv

Page
33

33
34

36
40

49
51
55
58
58

58

59

67
73

73

79

83
90

92

92
93

95
103

LIST OF TABLES

Table Page

2.1 All pl-path Sets and gl~1iterals for the
Network of Figure 2.3 e+ e« « e e« . . 14

2.2 The Functional Equivalents of gl—literals
of Table 2.1(b).« « .« « « =« « .« 16

2.3 The 2.-1 and 2.-0 Sets for the Network of
Figare 2.4 L] [] L] [] L] L] L] L] [] L] L L] 18

2.4 The GEM.-1 and GEM.-0 Sets for the Example
of TaBle 2.3 .7 19

Figure

1.1
102

2.1

2.2

2.3

The

A Network and the Representations for the

LIST OF FIGURES

Elementary Gates « e e .

Exclusive-OR Function e e

Two Different Labeling Schemes for the Same
Portion of a Combinational Logic Network

A Combinational Logic Network which
Realizes X.X, X.X, + X

A Combinational Logic Network_which
Realizes X,X, X, + X

The
The
The

The

1%2%3%, 1X2%X3%, -

1%2%3 1% + X %53 -

Logic Network for Example 2.3

Logic Network for Example 3.2

Irredundant Network for Example 4.5

AND/OR Graph Representation of Figure 2.4

vi

Page

11

11

13
17
36
87
102

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

In this chapter we present some background
materials required for a study of faulty combinational
logic networks. The basic assumption is that the combina-
tional logic networks are comprised of single-output
elementary gates. Further assumptions will be presented
as the development of this thesis requires.

Most studies of faulty combinational logic networks
have concentrated on the network level rather than on the
system level and have been concerned only with the effects
of faults on the logical behaviors of the networks. This
thesis will follow in this tradition unless otherwise
indicated.

The importance of the study of faulty combinational
logic networks has been pointed out by several authors,
e.g., Carter [6] and Kamal [22] and is evidenced by
numerous related articles appearing in such publications
as the IEEE Transactions on Computers. Furthermore, there

have been three International Symposia on Fault-Tolerant

Computing in the past three years and two textbooks
devoted exclusively to fault detection and diagnosis of
digital systems.

The original contributions and organization of the

thesis are discussed at the end of this chapter.

1.2 COMBINATIONAL LOGIC NETWORKS

A Boolean function is elementary in argument X

if the function can be expressed in the form X*-fl or
X* + F,, where X* = X or X and f, and f, are any Boolean

functions independent of X. A function is elementary if

it is elementary in all of its input arguments. An

elementary gate is a gate whose function is elementary.

The commonly used gates such as AND, OR, NOT, NAND and NOR
are all elementary gates while Exclusive-OR is not. This
thesis will deal with combinational logic networks which
are realized by elementary gates. Figure 1.1 shows the

schematic notion that will be used to represent these gates.

S]

(a) AND (b) OR (c) NOT
— L/
(d) NAND (e) NOR

Figure 1.1. The Elementary Gates

Combinational logic networks are used to realize
combinational functions and are characterized by the absence
of feedback. A combinational function may be represented by
(1) a Boolean expression of input literals, (2) a truth
table which specifies the value of the function for each
combination of input values or (3) a Karnaugh map.

Figure 1.2 (a) is a combinational logic network for the
Exclusive-OR function. Two different representations of

the function are shown on Figure 1.2 (b) and (c).

rl
) N\ - —

L/
’>l__

(a) A Combinational Network for the Exclusive-OR Function.

1
X) %2 2 0 1
0 0 O 0 0 1 '
0 1 1 X, :
1 o0 1 1|1 o|
1 1 o0
(b) Truth Table. (c) Karnaugh Map.

Figure 1.2. A Network and the Representations for the
Exclusive-OR Function.

1.3 LOGICAL FAULTS

The faults that we shall be concerned with are

logical faults. A logical fault is a fault which produces

some changes in the logical behavior of the network.
Hereafter the term fault will mean logical fault unless
otherwise indicated.

The class of faults to be considered in the study of
faulty logic networks depends on the type of networks.
However, most of the faults in contemporary networks can
be represented by an input or output of some basic elements
being stuck at one or stuck at zero. That is, an input or
output of some basic elements may assume a fixed logical
value, independent of the inputs supplied to the logic
network. All but one section of this thesis deals with
stuck-at type faults.

While stuck-at type faults deal with individual leads
of the network, bridging faults are concerned with the
faults due to the connection of two or more leads of the
network. We shall investigate bridging faults exclusively
in Section 3.4.

A fault may be permanent or intermittent. A permanent
fault is a fault which will not occur, disappear or change
its nature during testing and its effect will exist

throughout the period of interest. An intermittent fault

may show its effect at one time and not at other times.

We shall deal only with permanent faults.

l.4 FAULT DIAGNOSIS

A combinational logic network is said to contain
a fault if upon the application of an input vector Ti' the
output vector of the network is different from that of
fault-free network. We call such an input vector a test.
A test Ti is said to detect fault Fj if the output vectors
for the fault-free network and the same network containing
Fj are different when Ti is applied.

A set of tests which detects all detectable single

faults of the network is called a complete single fault

detection test set. The single fault assumption implies

the network cannot have more than one fault at any time.
This assumption is justifiable only if testing is frequent
enough so that the probability of the occurrence of more
than one fault during the interval between test experiments
is negligibly small. It is clear that the single fault
assumption may not be valid for initial check-out of the
networks. Even so, it does not mean the test generations
under single fault assumption has to be simpler than that

under the multiple fault assumption, as we shall demonstrate

in Chapter 4.

Two faults are distingquishable if there is a test that

generates different output vectors for two instances of the
same network containing the different faults. A set of
tests which distinguishes every pair of distinguishable

faults of the network is called a complete location test

set.

In general, a test can detect several faults and a
fault can be detected by several tests. It takes several
tests to locate a fault and it also takes several faults

to specify a test.

1.5 CONTRIBUTIONS AND ORGANIZATION OF THE THESIS

An algebraic model called the Complete Gate
Equivalent Model (CGEM) which describes completely and
precisely the physical and logical structures of a multiple
output network is proposed for the study of faulty com-
binational logic networks.

In this thesis, the power of a CGEM is demonstrated,
with its various forms, through its application in the
generation of fault functions and complete test sets for
a network with stuck-at type faults. An upper bound on
the number of possible fault functions, hence the number
of possible fault classes, is established. Then, a
straightforward procedure to find, without enumeration,
all possible fault functions and the associated fault
sets is presented.

A complete test set can be found by covering the
direct differences which are generated by enumerating all
possible faults of the network. It is shown given a
fault function and a complete test set of a network one
can either find the associated fault set or decide that the

network can not have degenerated into the given fault

function. Methods of computing the fault functions for
several kinds of bridging faults also are demonstrated.

Four algorithms for generating near minimal complete
test sets are presented. The first two are for multiple
fault and single fault detection. The other two are the
direct generalizations of the first two to fault location.
A method of searching for a minimal complete detection
test set for an irredundant network is also suggested.

In general, one can find a smaller complete detection test
set than that obtained by Poage's method [33].

In Chapter 2 the Complete Gate Egquivalent Model is
presented. Chapter 3 deals with fault functions and
Chapter 4 describes the algorithms and the method of
complete test generations. Chapter 5 concludes the thesis

and recommends problems for further research.

CHAPTER 2

A COMPLETE GATE EQUIVALENT MODEL

2.1 INTRODUCTION

The problem of analyzing the relationships between
network faults and output logic abberrations has already been
studied by numerous models and various techniques. However,
a large number of unanswered questions remain in the area
of fault detection and location. In order to solve these
and other related problems, a logic network model which
makes structural and logical interdependencies easier to
recognize and express formally is still needed.

The earliest model which embodies information about
both structure and logical characteristics of an object
network to aid in fault analysis was presented by Poage [33]
in 1963. Poage's model uses three valued lead variables to
explicitly represent the normal, stuck at one and stuck at
zero conditions of each lead. This results in expressions
which are notationally complicated and unwieldly even though
the model is rigorously presented.

Armstrong's enf (equivalent normal from) [1l] offers

a much more tractable notation than that of Poage, but it

lacks both the completeness and preciseness of the latter.
Clegg [11l] developed the SPOOF (Structure and Parity-
Observing Output Function) model to more completely des-
cribe the network structure, by making internal network
inversion explicit without providing a mathematically
complete and rigorous basis. While Reese and McCluskey
[36] utilized the SPOOF model to take advantage of its
convenient notation and to provide mathematical rigor, it
lacks both structural generality and logical completeness.
The model to be developed is an extension of Reese

and McCluskey's model.

2.2 THE COMPLETE GATE EQUIVALENT ALGEBRAIC
NETWORK MODEL (CGEM)

A labeling scheme that accurately describes the
structure of the network will be used in our model. The
CGEMs describe both the outputs and the complement of the
outputs of the multiple-output network, whereas the GEM
describes only the output of the single-output network.
Furthermore, a formal definition of the functional equiva-
lent of CGEM will be added to the model.

The logic networks we are going to study are finite,
combinational networks comprised of single-output elemen-
tary gates with all their leads properly labeled. The

labeling scheme is as follows:

10

Procedure L (Lead-labeling)

(1) Assign a distinct integer label to each primary
input lead and the output lead of each elemen-
tary gate.

(2) To each of r fanout branches from a lead labeled
P, assign a distinct label pv, where v is a
letter in some alphabet other than the integers.

(3) Repeat step (2) until all of the leads are

labeled.

Because the networks to be considered are finite, the

labeling procedure will stop in a finite number of steps.

The reasons for explicitly labeling fanout branches are:

(1)

(2)

(3)

Under the single fault assumption, if a network model
that does not faithfully represent the actual wiring
topology is used to generate test sets, some real
single faults may remain untested. For example, a
failure along lead 3b in Figure 2.1 (a) may be
modeled as a single stuck-at fault. However, this
failure can not be represented by any single fault

in the network of Figure 2.1 (b).

Under the multiple fault assumption, fanout branches
are checkpoints which play an important role in the
generation of complete detection test sets.

Fault analysis for certain kinds of failures, e.qg.,
bridging faults, require the identification of fanout

branches.

11

3a 3a
] 1]
}‘3_1 3ba N3 |
2 —— 2
3b ’/} 3c
3bb '
(a) Labeling that Preserves (b) Labeling that Assumes
Physical Wiring Topology. Simple Fanout.

Figure 2.1. Two Different Labeling Schemes for the Same
Portion of a Combinational Logic Network.

Example 2.1

Figure 2.2 is a network after applying Procedure L.

2a TT
la ™S\
;3aa
g L l 1b ~.
L1)
2 l2p 2ha ™\ 6a =,
X2 [p-s— —pi2- 2
3 6b —7
) 3a [?ab ~ 10
4 da)’ |
X4 Cth--:h)r;L———w
4b
N\
) 11
3b

Figure 2.2, A Combinational Logic Network which Realizes

X1X2X3X4 + X1X2X3X4.

12

Definition 2.1

The inversion parity with respect to a path h of

lead g is the number (modulo 2) of inverting elemen-
tary gates between g and a network output zj along
the signal path h. The inverting elementary gates

are: NOT, NAND and NOR.

Since there is no inverting elementary gate between an
input literal and the associated primary input lead, the
inversion parity of an input literal will be the same as

that of the associated input lead.

Definition 2.2

A path set L = <a¥, ... , a;,z§> is an ordered
set of labels describing some signal path h of a
network with a network output literal as its last
element. The ordering of the labels corresponds
to the order in which a signal traveling along h
would encounter them.
a; = a_ if the inversion parity of a,. in the path

is even and Z; = Zj or the inversion

parity of a. in the path is odd and

2% = Z..
J J
= a_ otherwise.

r

Definition 2.3

A g-literal L = <X§,ai, cee a;,z§> is a path
set which has an input literal Xi as its first

element.

13

From the above definitions that we know we can divide
the g-literals and the path sets of a network into two
disjoint subsets, one which possesses overbarred output
literals, while the other does not. We shall call the
latter "gl-literals" and "pl-path sets", the former

"go-literals“ and ”po-path sets".

Example 2.2

For the single output network of Figure 2.3 we
list all pl-path sets in Table 2.1(a). The pl-path
sets of (a) which are also gl-literals are listed in
Table 2.1(b). All po-path sets and all go-literals
of the network are just their counterparts with all
elements complemented. An input literal, an output
literal or a lead label is overbarred if and only if

it is complemented.

4a

N\
- | ’/}'3"'2

x22\4 DGJ—
x, =2 Vi b

Figure 2.3. A Combinational Logic Network which Realizes

X XoX3 + XX, + X)X,

Note that a lead label may appear in several path sets

and g-literals.

Whether a particular label is complemented

or uncomplemented depends on its inversion parity and the

outéut literal of the path set or g-literal.

Table 2.1. All pl-path Sets and gl-literals for the Network

of Figure 2.3.

(a) All pl-path Sets for the Network of Figure 2.3.

<9,2>

<7,9,2>

<8,9,2>

<la,?7,9,2>

<4a,7,9,2>

<5,8,9,2>
<6,8,9,2>

= <1,1a,7,9,2>

W O g & U & W N

= <4,4a,7,9,2>
= <1b,5,8,9,2>

[
o

= <4b,6,8,9,2>

o Ht" &t B v vt B B =t B P
[

12 = <xl'l’1a,7'9,Z>

| = [e (o = e e -
NONON O E e
N M O VW ® NG U W

N
w

<2,4,4a,7,9,2>
<3,4,4a,7,9,2>
<1,1b,5,8,9,2>
<4,4b,6,8,9,2>
<X2,2,4,4a,7,9,z>
<X3,3,4,4a,7,9,z>

(b) Pl-path Sets of (a) which are Also gl-literals.

le = l'l la,7,9,2>
L17 = 2,2 4,4a,7,9,2>
L18 = 3,3 4,4a,7,9,2>

Lo

oY)

L

23 T

<X1,1 1b,5,8,9,2>

<x2,7,I,IE,6,8,9,z>

<X.,3,4,%4b,6,8,9,2>

3

15

Since the purpose of introducing g-literals is to
facilitate the study of faulty logic networks, it will be

useful to assign the functional equivalent to a g-literal

under the fault conditions of interest.

Definition 2.4

A g-literal L = <X;,ai,)

functional equivalent L(F) which depends upon the

a*,Z2*> has a
n j

fault F which is present:

L(F) = x;°al/N-a2/N° . °an/N
+ aj/l-a,/N: ... +a /N
+ ai/o'az/N- ces -an/N
* . . .
* - . .
+ a2/0 a3/N oo an/N
+ L] L] L]
+ a;/l

+ a;/O

where ak/l, ak/O and ak/N represent lead a, stuck-at
1, 0 and fault-free respectively. All faults are

elements of F.

From the above formal definition, we can make following
observations: The functional equivalent L(F) of a g-literal
L depends both on the current input vector and on the fault
affecting the network and is |

(1) The first element of L if L does not contain any

lead affected by F.

le

k= 2 is the last element of L for which

ak/r is an element of F.

3 * =
(3) r if ag ay

ak/r is an element of F.

is the last element of L for which

Table 2.2 illustrates this concept for the g-literals

of Table 2.1(b).

Table 2.2. The Functional Equivalents of gl—literals of
Table 2.1(b).

(a) F, = ')
Li2(Fy) = X ; Lig(Fy) = X
Li4(Fy) =X, ; Lyp(Fy) = X,
Lig(Fy) = X, i Ly3(Fy) = X5
(b) F, = Wa/0,5/1,7/0]
Ljp(Fp) =0 i Lijg(Fy) =1
Ll7(F2) =0 : L22(F2) = Xz
_ . 23 _ =
Lo g(Fy) = 0 ; 123 () = X,

Definition 2.5

A set Q of g-literals is a gj:l set of one of the

given outputs Zj of network N if:

(1) The output Zj takes on the value 1 whenever
the functional equivalents for every
gl—literal in Q has value 1, and

(2) If any member of Q is removed, then condition

(1) no longer holds.

Definition 2.6

A set Q of g-literals is a gj-o set of one of

the given outputs Zj of network N if:

(1) The output zj takes on the value 0 whenever

the functional equivalents for every

go-literal in Q has value 1, and

(2) If any member of Q is removed, then condi-

tion (1) no longer holds.

Table 2.3 lists the zj-l and Zj-O sets for the example

of Figure 2.4. The subscript j in zj,k 3,k

-1 and 2. , -0 is

used to indicate the set is one of the Z.-1 and Z.-0 sets,

respectively, while k distinguishes between the elements

in Q. Derivation of these sets will be illustrated in the

next section.

X, 6
N
X, 2 \, 9
3 7a
Xy ~
7b }J.z_.
10 2y
x 44 X lla”
4 [~
5 |)_— 11b
X5 7 13 z
™~ 2
[1])2 —
2b L/

Figure 2.4. The Logic Network for Example 2.3.

18

Table 2.3. The Zj—l and Zj-O Sets for the Network of
Figure 2.4.

(a) Zj-l Sets for the Network of Figure 2.4.

21,1'1 = [<x ,1,1a,6,9,12, zl> <x3,3,7,7'5,9,12,zl>]
zl'z-l = [<X2,2,2a,6,9,12,z >, <x3,3,7,73,9,12,z1>]
2, 3-1 = [<§;,§,7,7b,1o,11,11a,12,zl>,
’
<x4,4,10,ll,lla,12,zl>]
21'4-1 = [<x5,5,ll,lla,12,zl>]
2, 171 = (<x;,1,1b,8,13,3,>, <§3,§,7,7b,11,11b,13,z >,
’
4,4 10,11,11b,13,2 >1
2. -1 = [<x ,1,1b,8,13,2, >, <X.,5,11,11b,13,32, >]
2,2 2 5
2, 3-1 = [<x 2,20,8,13,2,>, <x ,3,7,70,11,11b,13, z,>,
’
4,4 ,10,11,11b,13,2 >]
22'4-1 = [<x2'2,2b'8'13’Z2>, <X5,5,ll,llb,l3,zz>]

(b) Zj-O Sets for the Network of Figure 2.4.

N
|
o
|

[<X,,1,1a,6, 9,12,2.>, <x2,2 2a,6,9,12,2.>,

1 1

<x3,3,7,7E,I6,‘T,11a 12, Z,>,
<x—5-1§0ﬁl larﬁr?]__>]
21,2-0 = [<xlllllal6I§lEI__I>l <§IE i_o- TI IE E -Z—l>l
<X,,2,2a,6,9,12,2,>, < Xg,5,11,11a,12,2 1]
2, 370 = [<x .3,7,7a,9,12, E‘ , <X_ § 11,11a,12,Z2.>,
3,3 7,76,10,11, ila TE E‘>]
2., ,~0 = [<x ,3,7,7a,9,12,2.>, <X,,4,10,11,11a,12,2.>
1,4 __ ANt Al Y 1
<Xg,5,11,11a,12,2,>]
Z, 170 = [<i‘ 1,1p,8,13, E‘> 7 2b,8,13, Z‘ >]
’
22'2-0 = [<x3,3 7,70,11,11b 13,zz>, <X_ . ,5,11,11b,13, z,>
Z. .=0 = [<x ,4,10,1T,116,13,Z.>, <x ,5,11,11b,13,2 —;]

19

Now we are ready to define a gate equivalent model of

the network (GEM).

Definition 2.7

The GEM.-1 set of an output Z. of network N is
GEM, -1 put 2,

the set Gj' where Gj contains all the Zj—l sets of N.

Definition 2.8

The GEM.-0 set of an output 2. of network N is
e J

the set Hj' where Hj contains all the zj 0 sets of N.

Table 2.4 lists the GEMj-l and GEMj—O sets for the
example of Table 2.3.

Table 2.4. The GEM.-1 and GEM.-0 Sets for the Example of
Table 273. J

(a) The GEMj-l Sets for the Example of Table 2.3(a).

GEMl—l = [zl,l-

GEMz"l = [zz'l-ll

1, 1, Z "l, -1]

21,2 1,3 21,4

1, 2. .-1, -1]

23,2 2.3 Zy,4

(b) The GEMj-O Sets for the Example of Table 2.3(b).

GEMl-O -0, 2 -0, 2 -0, 2

(2, 4 1,2
"0, Z -0' Z "‘0]

GEM2-0 = 2,2

(2, 1

2.3 CONSTRUCTION OF THE COMPLETE GATE EQUIVALENT MODEL
FOR A COMBINATIONAL LOGIC NETWORK

The construction of the Complete Gate Equivalent
Model (CGEM) for a combinational logic network is accom-
plished in two steps. First, all gl-literals of the

network are formed and used to make a Boolean expression

20

Ej for each of the network outputs Zj. Second, the Ej

expressions are reduced to the desired CGEM forms.

2.3.1 Transformation from the Combinational Logic
Network to an Equivalent Boolean Expression

In the following algorithm, the extension of a

path set L = <a§, cee a;,z§> to the path set L' = <a;,
ai, cee 4 a;,z;> will be denoted as a;&L, i.e., L' = a;&L.

We shall treat each fanout branch as a single-input OR

gate and each NOT gate as a single-input NOR gate.

Algorithm G (Generation of an Equivalent Boolean Expression)

Gl: Given a network N with primary input and network
output literals, assign distinct labels to each
lead of the network using Procedure L.

G2: Form a pl-path set Ej for each of the m network
outputs zj. Each path set contains only two
elements, the first element is a network output
lead label and the second element is the
corresponding output literal.

G3: Let 3j = 1.

G4: Choose all path sets which are not g-literals
from the current E. expression.

(1) If no such path set can be found from Ej
for all j, where j =1,2, ... ,m then the
collection of all Ej's is the desired

network expression E.

21

(2) Process this selection of path sets one by
one: Denote the path set under investiga-
all path sets in current E expression which
have the same a¥*

k
formed according to the appropriate rule

as Lr by a subexpression

as follows:

and if a, in Lr appears

If a, is the output from
Non-overbarred Overbarred
AND gate Rl R3
OR gate or fanout stem R2 R4
NAND gate R3 Rl
NOR gate or NOT gate R4 R2

Rules: In each of the following rules, let s be the number
of leads which are the inputs to the gate or the

fanout branches. The subexpression is

Rl: The conjunct of new path sets, Li

n
V]
[
44
=
]

R2: The disjunct of s new path sets, Li = ai&Lr.
R3: The disjunct of s new path sets, L, = a &L .

R4: The conjunct of s new path sets, Li = Ei&Lr.
Where i = 1’2' o oo ,So

(3) If j=m go to G5, otherwise increase j

by 1 and go to G4.

G5: Repeat G3 until all path sets in each Ej

expression are g-literals.

22

Example 2.3

Let us use Algorithm G to construct an equivalent

Boolean expression for the network of Figure 2.4,

Step Gl: We label the leads of the network by
Procedure L of Section 2.

> for E,.

> for E 2 5

Step G2: Form <12,2%2 and <13,2

1 1

Step G3:

(a) At the end of first iteration, we have

m
]

<9,12,2.> + <1lla,l2,z2.>

1

>'<8,13,zz>

1
<11b,13,2

tq
]

2

(b) The result of the second iteration is

E, = <6,9,12,2.>+<7a,9,12,2.> + <11,11a,12,2.>

1l
> + <2b,8,13,22>)

1 1
E, = <ll,llb,l3,22>'(<1b,8,l3,Z2

(c) Beginning with the third iteration, we can take
advantage of the fact that Z1 and z, share some
degree of input circuitry and save some effort
in the path set expansion process. At the end

of the seventh iteration, we get

E, = (<X,I,1a,6,9,12,2,> + <X,,2,22,6,9,12,2,>)
'<X3,3’7'ﬁ,9'12’zl >

+ <X ,3,7,7b,1o,11,11a,12,z1>

+ <X.,5,11,11a,12,2.>

5’ 1

(1)

23

E, = (<>?3,§,7,7b,1o,11,11b,13,z2>

*<X,,4,10,11,11b,13,2.> + <X5,5,ll,llb,l3,22>)

2
> + <X

4'

+<X,,1,1b,8,13,2 2,2b,8,13,22>)

1’ 2 2’

(2)
Since all path sets in (1) and (2) are g-literals,

the required equivalent Boolean expression saved as a

vector of two Ej expressions is
_ T
where (V)T denotes transpose of vector V.

Note that lead label 7 appears complemented in the
third g-literal of Eq. (1) of Example 2.3, whereas it is
not complemented when it appears in the fourth g-literal
of the same equation. Physically, lead 7 is a fanout stem
whose branches reconverge at the network output Zl.

Since the same lead has no branches which reconverge at
the network output Zz, it appears only once in Eq. (2).

In addition to the fanout stems, other labels also
appear in different g-literals. In fact, the closer they
are to the network output, the more they appear in the
g-literals. The only difference is that they do not
possess different inversion parities as some fanout stems
do.

A data structure for the machine implementation of

Algorithm G will be discussed in the Appendix.

24

Theorem 2.1

All gl—literals for the combinational network are
generated by Algorithm G. Each appears in the
resultant expression E exactly once, and all path

sets appearing in the final expression are gl—literals.

Proof
Suppose there exists a gl-literal Li = <XI,a*,
ces ,a;_l,an,zj> which is not generated by Algorithm
G. At Step G2 we form a set of two-element path sets
which includes path set Ls = <an,zj>. By Step G4,
Ls will be chosen and expanded into three-element path
set. Since no input lead has been neglected, one of
them must be path set <af ,,a ,

g-literal we are done, otherwise repeating the above

Zj>. If this is a

argument we will generage gl-literal Li which contra-
dicts our assumption. Hence all gl-literals of the
network are generated by Algorithm G.

Since each lead is labeled distinctly by Step G1,
and a u-element path set can only be expanded to
(u+l) -element path sets in one of the following three
cases: (1) Expanded to distinct labels from the same
path set for AND, OR, NAND and NOR gates. (2) Expanded
to the same label from distinct path sets for fanout.
(3) Expanded to a label from a path set for NOT gate.
Hence all the path sets generated by Algorithm G are
distinct from one another which implies each gl-literal

in the resultant expression E appears exactly once.

25

The fact that all path sets appearing in the
final expression are gl-literals is guaranteed by
Step G4.
Q.E.D.

Theorem 2.2

Algorithm G transforms a given network structure
into a Boolean expression which accurately and com-

pletely describes the logical structure of the network.

Proof

The path set expansion rules used in Algorithm G
are exactly the logical operations of elementary
gates. The logical structure of the network is
accurately described in each step of the algorithm by
applying the proper rule to each elementary gate and
fanout point.

The completeness of the final Boolean expression
is guaranteed by Theorem 2.1.

Q.E.D.

Theorem 2.3

The Boolean expression E generated by Algorithm G
is isomorphic to the physical structure and its
corresponding input-output literals of the network to

the level of interconnected gates.

Proof
Our labeling procedure completely and distinctly

labels the physical structure of the network to the

26

level of fanout points and interconnected elementary
gates. The rules used in the generation of E are the
logical operations of fanout point and elementary
gates. For each gl—literal Lr = <Xz,a*, cee 4
a;_l,an,zj> we can find an input literal Xi together
with primary input lead a; which is followed by lead
a,. The lead a, must be a fanout branch of a or the
output lead of an elementary gate for which a; is one
of the input leads. Trace the elements of Lr one by
one, we will finally find that a, is a network output
lead and Zj is the corresponding output literal.
Thus, we have a physical path for each gl—literal in
Expression E.

For each physical path we can also find, using a
similar argument as the proof of Theorem 2.1, a
distinct gl-literal which describes uniquely and
completely each lead in the path together with the
input and output literals associated with the path.

Q.E.D.

2.3.2 Reduction of Boolean Expression E to CGEM Form

The second step of the construction of CGEM is
to change the Boolean expression E of the network to a two-

level sum of products expression E'.

Example 2.4

Find the sum of products expression E' for the

network of Figure 2.4.

_

27

Starting with Equation (3) of Example 2.3, only
carrying it one step further using distributivity, we

have

E! = <X.,3,7,7b,10,11,11a,12,2

1 4,10,11,11a,12,2_>

l 4' (4 ’ ’ ’ ’ 2

+ <xl,1,T§,6,9,12,z1>-<x3,3,7,7§,9,12,zl>

+ <x ,2,2a,6,9,12,2 >-<X3,3 7,7a,9,12, z,>

>e<X

+ <X_.,5,11,11a,12,2.>

5’ 1

2> <x /3,7,70,10,11b,13, Z,>

t
]

l,l 1b,8,13,2

*<X,,4,10,11,11b,13,2.>

4' ’ ’ ’ 2

+ l,l 1b, 8,13, 22> <x5,5 11,11b,13, ZZ>

+ <X2,2 2b,8,13, Zz> <X ,3,7,70,10,11,11b,13, Z,>
4,4 10,11,11b,13, Z >
<X2,2,2b,8,13,22>'<X5,5,ll,llb,l3,22>

T
| -] L]
and E' = (El E2)

zj—l sets and GEMj-l sets of Figure 2.4 are listed in

Table 2.3(a) and Table 2.4 (a), respectively.

2.4 THE COMPLEMENT OF THE BOOLEAN EXPRESSION E OF
A COMBINATIONAL LOGIC NETWORK

From Algorithm G we can construct a Boolean
equivalent expression E for a logic network. For the
completeness of the CGEM, we would like to know how to

obtain E, the complement of E, and some of its properties.

28

Definition 2.9

The complement of a g-literal L = <x;,a*,

+2%> which is also

ce. ,a*, 2% ig L = <X*,a*, ... *
’ n' J 1' ’ ’ n J

a g-literal.

Note that Definition 2.9 does not conflict with
Definition 2.4 of Section 2.2. Since the complement of
a g-literal L is a g-literal L with all elements of L
complemented, the complement of a gl-literal is a
go-literal and vice versa.

We have defined the functional equivalent for a
g-literal and it is not difficult to see that the func-
tional equivalent of a Boolean expression of g-literals is
just the Boolean expression of the functional equivalents

of individual g-literals.

Lemma 2.1

For a g-literal L = <x;,a*, cse ag,z;> we have

(L + L)(F) =1 and (L*L) (F) = 0.
Proof
(L + L)(F) = L(F) + L(F)

(x¥ + i—f).al/N.az/N. oo ca /N

+ (af/1 + 3}/1)'a2/n-a3/n- ce. ra /N
+ . . .

+ (a¥/1 + 5371)

+ (a%/0 + 3%/0)

29

= (al/N + ai/l + 5{71 + ai/O + 5}70)
-az/N° .ee 'an/N

* <3 * %
+ a2/l + a2/1 + a2/0 + a2/0)

.a3/N. o o o .an/N
+) . °
* 3% * ~3
+ (an/l + an/l + an/O + an/O)
(1)
The first term of (1) equals to az/N- e -an/N,
this term disjuncted with the second term makes it

a N-a4/N' cee -an/N. Continuing the operation we

3
* % Sx 3 :
will have an/N + an/l + an/l + a;/o + an/o which is 1.

(L-L) (F) = L(F)° L(F) (2)

Since a lead can be in only one of the three
states, i.e., stuck at one, stuck at zero and fault
free the conjunct of different faulty states of the

same lead vanishes. We have

(L*L) (F) = (x;-x_;')-al/N-az/No e. ca /N
+ (aj/1-a¥/1 + a}/0+a¥/0)-a,/N+ ... -a /N
+ oo o e
+ (a*/l-a*/1 + a*/0-a*/0)
(3)

Each term in the right hand side of (3) is
logical zero. Hence we have the second part of the

lemma.

30

Definition 2.10

Let E be a Boolean expression of g-literals, the

complement of E, denoted as E, is also a Boolean

expression of g-literals with the operations of
conjunct and disjunct in E interchanged and all

g-literals in E complemented.

Example 2.5

Find E' for the network of Figure 2.4,

Using Equation (1) of Example 2.3 of Section 2.3

we first find El then reduce El to two-level sum of

products form, i.e.,

El

1=<x

1,1a,6,§,1'2‘,f‘>-<x2,2,2a,6,§',I2',T>
,3,7,75,10,11,11a,12, Z > <x ,5,11,11a,12

+ <X1,1,la,6,9,r,2 >‘<X2,2,2a,6,9,ﬁ,z >

l'

'<x5,5,11,11a,12,zl>

- <X¢,5,11,11a,12,2,>

Complementing Eq. (2) of Example 2.3 of Section
2.3 and reducing it to the sum of products form, we

get

E} = <Xx,1,1b,%,13,%2,>-<X,,2,25,8,13,2 >

— e cmt—— a——— —— ——— — — — —— — o——

3,3,7,7b,11,11b,13,22>-<X5,5 11,11b,13, ZZ>

+ <X4,4,10,11,llb,l3,z2 >'<x5,5,ll,llb,l3,22>

+ <X

31

The required expression is

E' = (B EpT

zj-o sets and GEMj—O sets of Figure 2.4 are listed
in Table 2.3(b) and Table 2.4(b), respectively.

Inspecting Algorithm G we can find that if we start
with two-element po-path sets at Step G3, call it Algorithm
G', we will end up with Boolean expression E, The following
three theorems are the duals of Theorems 2.1-2.3 which we

state without proof.

Theorem 2.1'

All go-literals for the combinational network
are generated by Algorithm G'. Each appears in the
resultant expression E exactly once, and all path sets

appearing in the final expression are go—literals.

Theorem 2.2°

Algorithm G' transforms a given network structure
into a Boolean expression which accurately describes

the complement of the logical structure of the network.

Theorem 2.3'

The Boolean expression E generated by Algorithm
G' is isomorphic to the physical structure and its
corresponding input-output literals of the network to

the level of interconnected gates.

32

2.5 CHAPTER SUMMARY AND REMARKS

An algebraic network model which describes
accurately and completely the physical and logical structure
of an object logic network has been rigorously presented.

It is a substantial extension of GEM of Reese and McCluskey,
even though the name of their model is adopted.

The differences between our model and theirs are: (1)
Our model is for multiple-output logic networks, theirs for
single-output networks only. (2) We added the rigorous
definition of the complement of the Boolean expression of
g-literals, without which the other side of the logical
structure remains untold. (3) The functional equivalent of
a g-literal is formally defined in our model. With this,
the detailed information of a faulty network can be rigor-
ously investigated.

One may note that we mentioned nothing about the
complemented input literals. This would not impose a
serious restriction on the model since either the comple-
mented inputs can be generated by the network or we can
rename the input provided by the system.

By substituting the functional equivalent of Defini-
tion 2.4 for the corresponding g-literals in the expressions
E and E, one can have more information about the logic
network than that obtained by Poage's method. Finally, with
all lead labels and output literals dropped from the Boolean
expressions of g-literals we have the simplified cause-

effect equations of Bossen and Hong [3].

CHAPTER 3

FAULT FUNCTIONS

3.1 INTRODUCTION

In this Chapter we shall deal with fault func-
tions and related topics.

A fault function is a Boolean expression of input
literals that a logic network realizes under the influence
of a fault.

In addition to stuck-at type fault we shall discuss
how to find fault functions for several kinds of bridging
faults.

The difference between the fault-free function and
fault function provides the tests. So, for a given fault
we can first find the fault function, then a set of tests
that detects the fault.

If we have a complete test set and a fault function,
we can also either find the corresponding fault set or
decide that the network can not realize the given fault

function.

33

34

3.2 FAULT EQUIVALENCE

The immediate application of the model developed
in Chapter 2 is the determination of the fault function
E(F) realized by the network in the presence of fault F.

Since two different faults Fi and Fj may result in
the same fault function, it will be convenient to put
these two faults in a set and deal with the whole set or
its representative in the studies of faulty logical

networks.

Definition 3.1

Two faults Fi and Fj in a logical network are

said to be functionally equivalent, written as

Fi"Fj' if and only if their fault functions for

that network are identical, i.e.,

Fi ~ Fj <=> E(Fi) = E(Fj).

Example 3.1

For the network of Figure 2.3 we have

E = <x 1,1a,7'9’z>.<x2'2,4,4a'7’9’z>.<x 3,4,4&,7,9,Z>

1’ 3’
+ <RT,T,E,5,8,9,Z>° (<gl-2—'zrzsl6181912>

+ <%,,7,%,75,6,8,9,2>)

Consider two faults: Fl = 4b/0 and F2 = 6/1.

The fault functions are

E(Fl) = X, X X3 + Xl

172

35

Hence Fl and F2 are functionally equivalent in the

network.

The functional equivalence of faults is an equivalence
relation which partitions the collection of all possible

faults FI of a logic network into disjoint fault classes.

Definition 3.2

A logic network is said to contain a redundant
fault if and only if there exists a fault Fi € FI

such that i # 0 and Fi ~ FO' where Fo contains no fault.

Example 3.2

In Figure 3.1 the logic network is a realization

of Boolean function ZB = xlx2 + x2x3x4 which has

E' = <X,,1,7,9,2><X 5,55,5,7,9,z>-<x2,2,2b,6,6a,7,9,z>

1’ 2’
+ <x1,1,7,9,z>-<ié,7,73,7,9,z>-<x3,3,6,6a,7,9,z>

+ <x1,1,7,9,z>-<i 2,2a,7,9,2>»°<X,,4,6,6a,7,9,2>

2’ 4’
+ <22,7,75,3,35,8,9,z>-<23,§,3,35,8,9,z>

o <§4,z,§,?b_, 8,9,Z>

For fault F 6a/1 the fault function is

1

, _ - - ==
E (Fl) = Xlx2 + X2X3X4

Since E'(Fl) = X1X2X3 + X1X2X4 + X2X3X4 = ZB we
have Fl ~ Fo which implies the logic network is

redundant, i.e., it contains redundant faults.

36

The redundant faults cannot be detected. This
fault-masking property has been used in designing logic
networks where continuous operation is required for a
specified length of time and repair is impossible. 1In
general, the existence of redundancy can not be readily
identified. The detection and location of redundancy

usually are the by-products of test generation.

le R

X dz___;a__ 5 6a L//

2 ™~

9
2b I~ 4)-___- Z

X 3 —\ 6 7

3 /

| 6b 8
4

Xy

Figure 3.1. The Logic Network for Example 3.2.

Note that the fault 6a/0 in the above logic network

can be detected.

3.3 GENERATION OF ALL POSSIBLE FAULT FUNCTIONS

Given a logic network we can find all possible
fault functions and associated fault classes by assigning
all combinations of the single faults of the network. The
possible fault functions are the collection of all distinct

functions that the network degenerates into and each fault

37

class contains all faults of the same fault function. But,

the astronomical number of all possible combinations of the

single faults makes the enumeration method impractical.

Before the presentation of a straightforward method for

the generation of all possible fault functions, we first

establish an upper bound on the number of fault functions

a given logic network can possibly have.

Theorem 3.1

The number of fault functions NF for a logic

network is bounded by

N m i
G
M, I 28+ D)

N_. £ Min [(22 i

F

where NX is the number of input literals, m the

number of output literals and G* is the smaller number

of the numbers of g-literals in E! and fi.

Proof

N
There are only 22 X distinct functions of Nx

binary variables which any single output logic network

can possibly realize. Hence, for a m-output logic net-
N
work Np < (22 Xym

For a zi,k

delete none, 1, 2, ... up O G

-1 term which has G; gl—literals we can
i
k
substituting 1 for the gl-literals under consideration.

-1 gl—literals by

We can also delete a zi k—l term by assigning 0 to it.
’

If all the gl-literals in the term are distinct we
Gi Gi
have 127k = 2
k

ways of deleting gl-literals from a

38

Ei expression. In addition, any term in Ei which
has a functional equivalent.of 1 will drive output
Z;, to 1. Thus, we have (2Gl + 1) distinct fault
functions for output Z,-

Since there is a one-to-one correspondence between
the fault functions of Ei and Ei, the total number of
fault functions for a network will be bounded by using
the smaller number of Gi's from each pair of Ei's in
our computation. The arguments for Ei parallel those
of Ei in preceding two paragraphs.

Q'E.D.

Example 3.3

For the logic network of Figure 2.4 we have
1

Nx =5 m=2; G = Min (7,10) = 7 and

2 2Ny, - 19

G = Min (14,6) = 6. Since (2) = 2.97 x 10 and
Gl G2

(2 + 1) (2 + 1) = 8,385, the upper bound for the

number of fault functions for the network is 8,385.

The bound computed from the number of input literals
is very loose even for a moderate size, single output
logic network. It is interesting to note that the number
of all possible combinations of the single faults of the
illustrative network is 321, approximately 1010.

Directly from Definition 2.4 we can find functional
equivalents of a g-literal and the Boolean expression of

g-literals under a given fault set. When we want to find

all possible functional equivalents, i.e, fault functions,

39

of a logic network, we simply let fault set F be unspecified
and substitute the functional equivalent of each g-literal
into the expression E, then reduce it into the sum of

products form.

Definition 3.3

The range of a Boolean expression of g-literals,
written as R(*), is the disjunct of the conjunct of
all possible fault functions of the expression over

their corresponding fault sets.

Example 3.4

The range of the term

-1 = <X

1

1,1a,6,9,12,2 3,7,7a,9,12,z,> is

>e<X 1

1’ 1 3’
iix3-(l/N-la/N-3/N°6/N-7/N-7a/N-9/N°12/N)
+ X+ (1/N+la/N*3/1+6/N+7/N*Ta/N+9/N*12/N

+ 1/N +la/N*3/N*6/N+7/0+7a/N*9/N*12/N

+ 1/N-la/N*3/N*6/N*7/N+7a/0+9/N*12/N)
+ X5+ (1/0°1a/N*3/N*6/N*7/N*7a/N*9/N*12/N

+ 1/N°1a/0+3/N*6/N°*7/N*7a/N*9/N*12/N

+ 1/N-1la/N*3/N<6/0°7/N+7a/N+9/N*12/N)
+ 1+(1/0-1a/N*3/1+6/N*7/N*7a/N*9/N*12/N

+ 1/0°la/N*3/N*6/N*7/0+7a/N*9/N*12/N

+ 1/0+la/N*3/N*6/N*7/N*7a/0°9/N*12/N

+

la/0-3/1°6/N*7/N*7a/N*9/N*12/N

+

la/0°3/N*6/N*7/0°7a/N*9/N*12/N

+

la/0+3/N*6/N*7/N*7a/0+9/N*12/N

40

+ 3/1°-6/0°*7/N*7a/N*9/N*12/N
+ 3/N°6/0°7/0°7a/N*9/N*12/N
+ 3/N*6/0°7/N*7a/0°9/N*12/N + 9/1+12/N + 12/1)

+ (1/1-1a/N°*3/N°6/N°*7/N°*7a/N*9/N*12/N
+ la/1°-3/N°*6/N*7/N*7a/N*9/N*12/N + 7/1+7a/N*9/N*12/N
+ 3/0-6/N*7/N*7a/N*9/N*12/N + 7a/1+9/N-12/N
+ 6/1*7/N*7a/N*9/N*12/N + 9/0°12/N + 12/0)

Investigating the above result we conclude that any
fault that affects the zl,l-l term will transform it into
one and only one of the five possible fault functions.

The computation of the ranges for Ei and E' is a trivial
extension.

The fault set associated with each fault function con-
tains the representatives of the fault class. Any combina-
tion of the single faults of a logic network that satisfies
one fault in the fault set will transform the function
realized by the network into the associated fault function.
For example, there are approximately 3.5 x 109 combinations
of the single faults which include 12/1 that cause output
Zl of the network of Figure 2.4 to be stuck-at 1.

3.4 BRIDGING FAULTS

While the stuck-at type faults deal with individual
leads, bridging faults are concerned with the connection of

two or more leads of the logic network.

41

Definition 3.4

A bridging fault is a short circuit between two

or more leads of a logic network and wired logic is

performed at the point of connection.

We shall limit our studies to single two-lead bridging
faults. The wired logic function is assumed to be either
a wired AND or a wired OR. t -
If a bridging fault affects two leads on the same path

in a logic network, it is a feedback bridging fault. A

‘w—v\.‘ ve uT e T

non-feedback bridging fault can affect at most one lead on |
one path.

In order to find the fault function of a logic network
under a non-feedback bridging fault, we can (1) express the
network output E'(Fo) in terms of primary inputs and the
lead variables of faulty leads. We call this the

decomposition of the network output with respect to the

lead variables; (2) exﬁress the lead variables of faulty
leads in terms of primary inputs; (3) combine these lead
variables with proper wired logic and substitute the result
into the lead variables in the decomposed network output.

The first two steps of the preceding procedure can be
carried out by first treating the faulty leads as primary
input leads to the succeeding part of the network and
letting the unaffected portion remain unchanged, then as
the network output leads of the preceding part of the network

and dropping the remaining portion from consideration.

42

Since the Boolean expression E' of the g-literals of
a logic network can be regarded as a network output expres-
sion, one may want to know what is the decomposition of
E' and how it helps us in finding the fault function realized

by a logic network under the influence of a bridging fault.

Definition 3.5

The decomposition of the Boolean expression E'

of the g-literals of a logic network with respect to

the lead variable Yi of lead i is obtained by: (1)

Replacing the g-literals which have the form <x£,a*, .o
i* ..., an,zj> by <Y;,i*, cee s an,Zj>, where the

inversion parity of Yi is the same as that of lead i.
(2) Keeping the other g-literals in the expression

unchanged.

Let Eé denote the decomposition of E' with respect
i

to Yi. It is not difficult to see that E§ (Fo) is indeed
i

the decomposition of the network output E'(Fo) with respect
to Yi' Since for a g-literal which contains no i* as
one of its elements, it cannot be decomposed with respect
to Yi and its effect on the network output remains unchanged.
For a g-literal containing i*, the effect of lead variable
Yi on the network output depends on the inversion parity
of lead i.

To express the lead variable in terms of the network

primary inputs we can construct a Boolean expression for an

Ly o o e e S 4

43

isolated portion of the network as pointed out, or obtain

it from the E' expression of the network as follows:

Lemma 3.1

The lead function Yi for lead i can be determined

from the Boolean expression E' of the g-literals of

the logic network by the following procedure:

(1) For each Z. .-1 term which contains no

(2)

(3)

Proof

i,]
g-literal which has i* as one of its

elements, replace this term by 0.

For each zi'.-l term which has at least one
g-literal contains i*, replace each such
g-literal by the corresponding input
literal, replace the other g-literals in
this term by 1. Set the result equal to Yi
if i is non-overbarred, Ti otherwise.

Simplify the resultant expression by Boolean

rules.

Since only the inputs of the g-literals which have

i* as one of their elements can have the effect on the

lead variable Yi' all other g-literals can be

neglected in the evaluation.

We have to find Y, and ?i separately and treat i

and 1 independently because by definition i cannot

generate ?i and i1 cannot generate Y,.

44

While the stuck-at type faults have the effect of
simplifying the logic topology, the bridging faults
introduce connections and wired gates to the network and
complicate the network topology.

Definition 3.5 and Lemma 3.2 were established for a
single lead. When two leads are involved as the case of
bridging faults, we can deal with both the affected leads
at one time if no g-literal contains more than one faulty
lead, or decompose E' with respect to the lead variable

whose lead is closer to the primary inputs, then subject

L A

the decomposed expression to be decomposed with respect to
another lead variable if two leads in the same g-literal

are connected.

Example 3.5

We denote wired AND between lead i and lead j by
B(i*j) and wired OR by B(i + j). For the logic
network of Figure 2.3 the fault function due to the
presence of bridging fault F1 = B(lb*6) can be
computed as follows:

From Example 3.1 the sum of products expression

of g-literals is

E' = <Xl,l,la,7,9,z>-<x2,2,4,4a,7,9,z>

<X,,3,4,42,7,9,2>

3'
+ <X ,I,IE,5,8,9,Z>-<§2,2,T,15,6,8,9,Z>

+ <5(-1,I,E,5,8,9,z>’<i3,§,z,m,6,8,9,Z>

45

(a) Since no g-literal contains both lead lb and lead

are

get

(b)

6, we can decompose E' with respect to Ylb and Yo

at one time. The result is

E§1b1Y6 = <x1,l,1a.7,9,z>.<x2,2,4,4a,7,9,z>
.<X3’3’4,4a'7,9,z>

+ <ylb,IS,s,8,9,z>-<Y6,6,3,9,z>.
The decomposed network output is

XX, + Y

Ey (Fg) = X X X3 + Y, ¥,

1b'Ye
The lead variables in terms of primary inputs

found to be

and Y, = X, + X

Y =X 6

1b 1

The output of the wired gate is

L TR P xliz + XX
Substituting (2) into Ylb and YG of (1), we
the fault function
By LY (F,) = X XX
b6 1 17273
We can also treat one lead at one time. The

results are

E! = <X

Ylb 1,13,7,9,Z>'<X2,2,4,4a,7,9,Z>

ll
-<x3,3,4,4a,7,9,z>

(1)

(2)

(3)

'~‘¢g..qqg.fi-*—*‘_. = -

46

+ <Y -IB,5'8,9,z>'<_x-2'7,z,-4-5-,6’8,9'Z>

1b’

+ <Y TE,S,8,9;z>°<23,3,1,15,6,8,9,z>

1b’
(4)

E' = <Yl,l’la,7,9’Z>.<x2’2,4'4a,7,9,Z>

’<X 3'4’4a,7’9'z>

3'

+ <§1,T,TE,5,8,9,Z>°<Y6,6,8,9,Z>
+ <f1,I,IE,5,8,9,z>-<Y6,6,8,9,z>

(5)

I1f we either decompose (4) with respect to Y6 or
decompose (5) with respect to Y e We will obtain
the same result as that of (a). The order of
decomposition in the case of non-feedback bridging

is of no importance, e.g., E' = E! .
Y1p'¥6 Y6'Y1p

A feedback bridging fault can be classified as

inverting or non-inverting depending on whether the lead

labels in the g-literal have different inversion parities
or not. The following example will demonstrate how to find

the fault functions caused by feedback bridging faults.

Example 3.6

The logic network of Figure 2.3 will be investi-
gated further in this example.

(a) The bridging fault F, = B(4¢7) is non-inverting

2
because both lead labels in the second and the
third g-literals of the first term of expression
E' (see Example 3.5) have the same inversion

parity.

47

Since lead 4 is closer to the primary input,

we have to decompose E' with respect to Y, first.

E§4 = <x1,1,1a,7,9,z>-<Y4,4,4a,7,9,2>
'<Y4,4’4a,7,9,z>
+ <-X-1,T,E,5,8,9,Z>‘<-Y—4,z.,-4—516:81912> (1)
, _ _ —
Ey4 (Fo) = XY, + X;¥, (2)
Y4 = x2x3 (3)

Then, we decompose E& with respect to Y,
4

E'4 = <Y7,7,9,z>
7
[4

+ <§l,I,IB,5,8,9,z>~<Y4,Z,IS,6,8,9,Z>
(4)

) = Y, + X, Y (5)

[]
E (F 7 1Y4

Y, Y
7

4 0

Y7 = XlY4 (6)

The first wired gate output after the

application of the primary inputs is

Y = X

gl X, X

1X2%3 (7)

Let the superscript s of E§ v (Fg) denote
4,77

the sequence of output under the influence of

bridging fault Fz. Substitute (3) into Y4 of

(5) and (6), then (6) into Y7 of (5), we have

1X2%X3 *+ XX,

[] l — Y v
E (Fz) = X + X x3 (8)

Y4'Y7 1

which is the fault free output of the network.

2 1 mp——

\‘rw; PR

48

Since the wired gate output will remain at

4 and Y7 of

(5), we get the right hand side of (8) again.

(7) , substituting (7) into both Y

This implies (8) can be regarded as the required

fault function. The fault F., happens to be

2
undetectable.

(b) The fault F, = B(1lb°8) is an inverting feedback

oo =

3
bridging fault since lead 1b and lead 8 have

different inversion parities in a g-literal of E'.

After a few computations, we have

B;(lb(Fo) = XXX + VX + Y X, (1)
Y.y = Xy (2)
E"flb'Ys(%) = XXX, + Yg (3)
Yo = Yibié + ?1523 (4)
Yg =Y, Yg (5)

The first output of the wired gate is obtained
by first substituting (2) into Yip of (4) and (5),

then (4) into Y8 of (5), i.e.,

Ygl = xﬁxlxz + xlx3) =0 (6)
Substitute (6) into Y8 of (3), we have

E! (Fl) = x.x.x (7)

Y 3 17273

1’ Ys

49

The wired gate output will remain at (6),
which in turn keep the network out at (7). (7)

is the required fault function.

In the above examples, all three bridging faults
generated no sequential dependency in the logic network.
In some cases, we may have to compute the network output
for a number of feedback periods to establish the fault
functions.

It is interesting to note that bridging fault F1 of
Example 3.5 is equivalent to bridging fault F3 of Example
3.6. Furthermore, the logic network of Figure 2.3 is
redundant with respect to bridging faults since fault F2

of Example 3.6 cannot be detected, even though it is

irredundant when only stuck-at type faults are considered.

3.5 DIRECT DIFFERENCE AND TEST GENERATION

A fault in a logic network can be detected only

if it causes the network to realize a function, called the

fault function, which is different from the intended
function, i.e., fault-free function.

A fault can be located, to the level of interest, if
it can be detected and the differences between this fault

and all other faults of the network can be identified.

e e —
o

ltT "‘ S

50

Definition 3.6

The direct difference Dij of fault Fi and fault

Fj is E(Fi) ® E(Fj), the exclusive-OR of the respec-

tive fault functions.

The solution of Doj = 1 is the test set which detects
the existence of fault Fj. A set of input vectors which
covers the solutions of Doj = 1 for all j # 0 of the

network is a complete detection test set. A set of input

vectors which covers the solutions of Dij = 1 for all i,j

of the network and distinguishes each pair of the solutions

is a complete location test set.

Example 3.7

The logic network of Figure 2.2 (p. 1l1l) realizes

3 . — - -
the function E (Fo) = x1x2x3x4 + x1x2x3x4. The

Boolean expression E of the network is

E = (<21,I,IE,5,§,12,z>-<§3,§,33,5,8,12,z>
+ <x2,2,2a,§,12,z>) (xl,l,lb,'§,12,z> +

<§2,7,§E,553,6,6a,§,12,z>-<i3,§,§3,335,6,6a,§,11,z>)

(<22,§,§B,§Ba,6,6b,10,12,z>

-<§3,§,§E,§EE,6,6b,1o,12,z> + <x4,4,4a,T6,12,z>)

(<i2,i’E,§bb,7’ﬁ’12'z>.<i Z,Tb—’-"ll,lz'z>

4'

+ <X,,3,3b,11,12,2>)

3'
For the fault Fl = 6/0, we have E(Fl) = X1X2X3X4.

The solution of D01 = E(Fo)] E(Fl) = x1x2x3x4 =1 is

. A

51

0000. This is the only input vector which can detect

the existence of the 6/0 fault.

To use the direct difference method in test generation,
we have to know the fault sets, the fault functions, and
the corresponding direct differences. This makes it
impractical for the generation of complete test set.
However, this method is still valuable in generating test
set for a smaller number of the faults of particular
interest, such as the 6/0 fault of above example and the
bridging faults discussed in Section 3.4.

The generation of a complete test set for a logic

network will be discussed in Chapter 4.

3.6 IDENTIFICATION OF FAULTS

Given a fault in a logic network we can find the
corresponding fault function simply by substituting the
functional equivalents of the g-literals into the Boolean
expression E of the network. Conversely, given a fault
function we can find the associated fault set if we have a
complete test set for the network.

Before we proceed to describe a procedure to find the
required fault set, it is worth noting that if the range of
the Boolean expression E is already found, the problem
reduces to the identification of the fault function which
conjoined with the associated fault set is a term of the

range. If we want to know whether there is a fault which

ﬂtlr‘.f i - I
i

-~ — T ey

52

generates a particular fault function, the procedure is
exactly the same except if there is no such fault the
search of the fault function in the range will fail.
Instead of computing the range of the Boolean expres-
sion E then identifying the fault function to find the
fault set, we can: (1) Substitute each g-literal in E;
by the range of the corresponding g-literal, then set the
result equal to the fault function Ei(F). (2) Evaluate
both sides of the m equations by a complete test set which

contains t input vectors. (3) Solve the set of mt

simultaneous equations. The solution is the required
fault set. If there is no solution, we conclude that the
logic network can not degenerate into the given fault
function.

The above procedure is straightforward and can be
machine implemented. But to deal with every lead of the
logic network the job will be enormous even for one of
moderate size. Looking for the ways of simplification, we

have the following theorem.

Theorem 3.2

Any multiple fault in a combinational logic
network can be represented by a combination of the

faults in the distinct g-literals of the network.

Proof
From Chapter 2 we know each g-literal of the

Boolean expression E generated by Algorithm G is

53

distinct. The expression E describes accurately and

completely the logical and physical structures of

the network. The effects of a fault on E, hence the

network, is the Boolean expression of the effects of

the fault on the distinct g-literals.

Q.E.D.

Since a g-literal can assume only one of the three
states as a lead in the network, it will be convenient to
assign a distinct number to a distinct g-literal and treat

the simplified g-literal as a single lead g-literal.

Definition 3.7

The simplified g-literal of a g-literal L =

<X{.a*, cee ,a;,z§> is the three element g-~literal
L, = <x{,A*, z§>, where A is a number representing
the sequence of lead labels in L and it is overbarred

if zg = 25, non-overbarred otherwise.

In the above definition we treated the distinct
g-literals in E as the complements of their counterparts
in E. The Boolean expressions of the simplified g-literals
will be denoted by the corresponding notations, with
subscript s, used for the g-literals, e.g., Es' Eis'

The range of the simplified g-literal Ls = <x;,A*,Z§>
is R(Ls) = XI-A/N + A*/1 + A*/0 where A/N = al/N~ . -an/N,
A/l = ai/Bl°a2/N° e -an/N + ..+ a;_l/Bn_l-an/N + a;/Bn

where Bk =1 if aﬁ = ay. 0 otherwise. A/0 = ai/Cl'az/N- .o

. o s e *=
an/N + + a;_l/c /N + a;/cn where C, 1 if af

n-1 2n
Ek, 0 otherwise. Note that A/1 = A/0 and A/0

A/l.

54

Example 3.8

For the logic network of Figure 2.3, we find the
fault set associated with the fault function E(F) = Xy -

Referring to Example 3.1 for the E expression of
the network, assign 1 to 6 sequentially to each of the
six distinct g-literals. Substitute the range of each

simplified g-literal in the expression and set it

equal to the fault function. We have

(X{+1/N + 1/1) (X,*2/N + 2/1) (X3*3/N + 3/1)
+ (i1-4/N + 4/1)((?2.5/N + 5/1) + (23-6/N + 5/1))

=X (1)

1

The set T = (001, 010, 011, 101, 111) of input
vectors is a minimal complete detection test set for
the network. Evaluating (1) by the elements of T,

we get

1/1-2/1-3/N + 1/1°2/1+3/1 + 4/N*5/N + 4/N-5/1 + 4/1+5/N
+ 4/1-5/1 + 4/N°6/1 + 4/1°6/1

1/1-2/N°3/1 + 1/1°2/1-3/1 + 4/N*5/1 + 4/1+5/1 + 4/N°6/N
+ 4/N°6/1 + 4/1°6/N + 4/1°6/1
=0 (3)

l/1-2/N*3/N + 1/1+2/N°3/1 + 1/1°2/1°3/N + 1/1°2/1-3/1
+ 4/N°5/1 + 4/1°5/1 + 4/N-6/1 + 4/1°6/1
=0 (4)

55

1/N+2/1*3/N + 1/N°*2/1+3/1 + 1/1+2/1*3/N + 1/1-2/1-3/1
+ 4/1°5/N + 4/1+5/1 + 4/1°6/1
=1 (5)

1/N-2/N*3/N + 1/N*2/N*3/1 + 1/N*2/1*3/N + 1/1<2/N*3/N

+ 1/N°2/1-3/1 + 1/1+2/N°3/1 + 1/1+2/1+3/N + 1/1+2/1-3/1
+ 4/1-5/1 + 4/1-6/1

=1 (6)

The simultaneous solution of (2) to (6) is

F, = 1/N+2/1-3/1-(4/0 + 5/0+6/0) (7)

for the simplified g-literals which implies

F = 4/1-(1b/1 + 5/0 + 8/0 + 4b/1 + 6/0)
+ 4a/1°(l1b/1 + 5/0 + 8/0 + 2/1°3/1 + 4b/1 + 6/0)

for the leads of the logic network.

If the fault function is E(Fo), the fault free func-
tion, the solution for the simultaneous equations may
contain just one situation, i.e., all leads are normal,
which implies the network is irredundant. If the solution
contains situations other than all leads are normal, the
network is redundant and the extra solutions tell exactly

where the redundancies are.

3.7 CHAPTER SUMMARY AND REMARKS

Through the fault equivalence defined in Section
3.2, we can treat the faults in fault classes instead of as

individual faults. The upper bound on the number of possible

A& e ! B

56

fault functions established in Section 3.3 gives us a rough
idea how tedious it will be if we have to consider each
fault function separately. However, we have a machine
implementable procedure to find all possible fault func-
tions and the associated fault sets.

The feedback bridging faults not only can be identi-
fied as suggested by Flomenhoft et al. [15], but the fault
functions can also be computed as demonstrated in Section
3.4.

In Section 3.5, we discussed how to find a test set
if the fault function can be found. From a given fault
we can find the fault function, conversely, given a fault
function we can identify the associated fault set.

For the faglts which are essentially indistinguishable,
we certainly do not have to compute their fault functions
individually. In a network comprised of the elementary

gates, they are:

Gate Input leads a;s Output lead aj
AND any ai/O aj/O
NAND any ai/o aj/l
NOT ai/O aj/l
OR any ai/l aj/l
NOR any ai/l aj/O

NOT ai/l aj/O

—_————— — —

57

In solving the simultaneous equations of Section 3.6

we can use the cubic intersection:

a/0 a/l a/N X

a/0 | a/0 P) a/o0
a/l A a/l 2 a/l
a/N '] ') a/N a/N
X a/0 a/l a/N X

where @ denotes empty and X denotes don't care. We can
use the machine to solve a large set of simultaneous
equations, but for a small number of equations solution

by inspection may be faster.

CHAPTER 4

TEST GENERATION

4.1 INTRODUCTION

The Complete Gate Equivalent Model and its

various forms will be used in this Chaptér for the generation
of complete test sets for the combinational logic network.

Four algorithms for generating near minimal complete
test sets will be discussed. The first two will be for
multiple and single fault detection. The other two are
the direct generalizations of the first two to fault
location. |

A method of searching for a minimal complete test set
for an irredundant combinational logic network also will

be presented.

4.2 GENERATION OF NEAR MINIMAL COMPLETE
DETECTION TEST SETS

The generation of a complete test set for detect-
ing stuck-at type faults in a combinational logic network
will be accomplished in two steps: (1) Generation of a
near minimal set of terms that detects all detectable faults.

(2) Finding a minimal covering of the terms generated.

58

59

4.2.1 Generation of a Near Minimal Test Set which Detects
All Faults in a Combinational Logic Network

In the sequel we shall call E' under the fault
free condition, but without any Boolean simplifications a

simplified E' expression and denoted by E''. The notation

e (] e "o vy __ : :
E'', Ei R Ei R zi,kl and zi'ko will be used for their
counterparts in E' and E'. A 2''-1l or 2''-0 term is said
to contain a conflict pair if it has xiii as its member.
: " Ve s

A growth in a zi,kl or zi' 0 term is the enlargement
of the set of nodes covered by the term on the N-cube,
caused by the presence of some faults. A shrinkage of a
z!'El or 2!'s0 term is the reduction of the set of nodes
i, ik
covered by the term on the N-cube, caused by the presence
of some faults.

In the descriptions of the algorithms and the procedure
in this Chapter, the alternative arguments will be put in

the parentheses.

Algorithm MFD (Multiple Fault Detection)

Data required for this algorithm are the expressions

E'', E'', E'(Fo) and E' (Fo).

1: Select either E{' or E{' which contains the smaller
number of input literals from each of the m primary
outputs of the network. If both E{' and E}' have
the same number of input literals, choose one

arbitrarily.

60

2: Separate Z!'tl (2!'0) terms in E'' (E'') into
i,k i,
two different sets such that one contains the
terms which have conflict pairs and the other
does not.
3: For those 2!'s-l (2!'-0) terms which contain no
i,k i,k
conflict pairs

(a) Let i = 1.

(b) Compute

= v FALESE
Mu = (zi:kl) Il (zi,jl)
all j#k
M, = (2}'g0) T (ZTTTE0))

all j#k

If Mu is nonempty put it in set M.
(c) Repeat Step 3(b) for all Zi:fl (zi:KO) terms
in E}' (E!").
4: (a) If no Mu computed in Step 3 for Ei' (ﬁi') is
empty, increase i by 1 otherwise go to
Step 5.
(b) If not all E;' (ﬁi') selected in Step 1 are
investigated, go to Step 3(b) otherwise go to
- Step 6. Set M now contains the terms which
detect any shrinkage of the coverings of the
selected Ei"s and E}"s.
5: Let there by s 25:—1 (zi:—O) terms in set S whose

Mu computed in Step 3 for Ei' (E{') are empty.

(a) Set n = 2.

61

(b) If n is greater than the number of terms in
S, increase i by 1 and go to Step 4(b).
S 3 te te
(c) For all combinations of n zi'El (Zi'EO) terms

from set S compute

M =] (z{'gl) 1 (Z2T7=1)

u i,)
k selected j not selected
= v Tty
k selected j not selected

(d) Put all nonempty Mu's in set M, delete the
corresponding 2''-1 (2''-0) terms from set
S and increase n by 1 go to (b).
Set i =1and j = 1.
Now we compute the terms which detect the growths
caused by the faults. Let W denote a Zi:gl
(Z{:TO) term with one or more of its input
literals replaced by 1.
(a) Replace one input literal in z{:ii (25:30)

by 1.

(b) Compute

Mj =WANE (Fo) (1)

M.
(J

]
W NE (FO))
If Mu is not empty put it in set M.
(c) Repeat (a) through (b) for all input literals

in this term.

8: (a)

(b)

(c)

9: Let

are

(a)
(b)

(c)

(d)

Theorem 4.1

62

If no Mu computed in Step 7 for a term is
empty increase j by 1 otherwise go to Step 9.
If not all terms in E;' (E{') are investigated
go to Step 7 otherwise increase i by 1 and

set j = 1.

If all selected E;' (Ei') are processed,

stop. Set M now contains the terms which
detect the shrinkages and the growths of

the coverings of the selected Ei"s and

Ei"s or else go to Step 7.

there be t input literals in set T whose Mu's

empty.
Let q = 2.
If q is greater than the number of input

literals in T, delete all the literals from
T, increase j by 1 and go to Step 8(b).
Replace all combinations of q input literals
by 1 and compute Mu by Eq. (1) of Step 7.
Put all nonempty M, in set M, delete the
corresponding input literals from set T,

increase q by 1 go to (b).

A minimal single covering of all Mu's in set M

generated by Algorithm MFD is a near minimal complete

detection test set that detects all detectable faults in

the logic network.

63

Proof

The functional equivalent of a g-literal affected by
a stuck-at type fault can assume only one of the two
values 1 or 0.

The functional equivalent of a zi'k—l or Zi'k-o term
will be 0, i.e. false if at least one of its g-literals has
functional equivalent 0. This results in a smaller number
of vertices covered by the output z; or the complement of
zi. Hence it is a shrinkage.

The shrinkage can be detected only if it is not
covered by the fault free realization and the growth caused
by the same fault due to the common lead label appearing
with different inversion parities in different g-literals.
We computed the terms that detect the shrinkages which are
not covered by the fault free realization in Step 3 through
Step 5. The result, more than the least number of terms
required for detecting all detectable shrinkages is
generated.

A term which contains conflict pairs covers no
vertices originally, so we can neglect it in the generation
of the terms which detect the faults that cause shrinkages.

If a g-literal in a term has functional equivalent of
1l, it causes this term to cover more vertices than the
fault free situation. Hence it is a growth. A growth will
be detected if it is not covered by the fault free realiza-
tion. This implies a detectable growth has a nonempty

intersection with the complement of the original function.

64

A fault will be detected if it contains a detectable
fault of smaller size on the N-cube, whether it is a
growth or a shrinkage. We took advantage of this property
to terminate the algorithm.

Step 1 is to ensure that a minimal number of computa-
tions is required. The fact that a minimal single covering
is a near minimal complete test set is because the terms
for shrinkages are more than necessary and the terms for
growths of the same input literal in different terms are
not merged into one subset. Hence they may be covered

more than once.

Example 4.1

Find a complete test set that detects all faults

in the logic network of Figure 2.4.

First, we use Algorithm MFD to generate the terms
which detect all faults in the network.
Step 1: Referring to Examples 2.4 and 2.5, we

select E!' and E!' for the computations, where

1
" -y 'd Y
El x1x3 + x2x3 + x3x4 + X (1)
and
- — I
E2 xlx2 + x3x5 + x4x5 (2)

65

Step 2: Since no term in Egs. (1) and (2)
contains conflict pairs, all the terms have to be
investigated in the generation of terms which detect
shrinkages.

Step 3: The first iteration processes 4 terms

[I]
of El .

M) = X X3 (X X3) (RyX)Xo = X X X X

My = XX, (X1X3) (X3X) X5 = X, X X Xg

=
"
x|

3 = X3¥y (X1 X3) (XX3)Xg = X3X

475

M = X5(X1X3)(X2X3)(X3X4) = X1X2X3X4 + X3X4X5

Step 4: All Mu's computed for Ei' are nonempty,
so we can proceed to consider E!'. The result of the

second iteration of Step 3 is:

M5 = X1X2X3X4 + X1X2X5 ; M6 = X1X3X4X5 + X2X3 4Xs

M7 = X1X3X4X5 + X2X3 4X5

All Mu's computed in Step 3 for E}' also are nonempty,
so put them in set M and go to Step 6.

Step 6: 1In order to compute the terms that detect
the growth of the network function, we have to consider
all terms regardless of whether they contain conflict

pairs or not. For the problem concerned they happen

to be all the terms we investigated so far.

66

Step 7: The fault free functions to be used in

the following computations are

E' (Fo) = X1X2X3X5 + X1X2X4X5 + X3X4X5

and

, — —
E2(FO) = xlx3x4 + xlx5 + x2x3x4 + xzx5

Step 8: Since all terms computed from each single
growth of all terms selected are nonempty, the
algorithm terminates without going to Step 9. From

X.X. we have

1%3
Mg = X3 N E'(Fo) XXX X,
Mg = il n E'(Fo) iif3§4§5
and
From this term The Mu's obtained
X)Xy Mig = X XX3Xg 5 My; = XXX, Xy
XX, Myp = X XXX, Xgi Myg = X3X, X,
X5 Mg = E(Fp)
X)X, Mg = X X X3X, + XX Xg
Mg = ilx2i3x4 + X, X X
XXy My, = X XX Kg + XX XX
Mg = X XXg + XX X,
X4Xs Mig = X X3X,Xg + X X X, Xg
Myp = X X4X5 + XX Xg

67

A minimal set of input vectors that covers all
Mu's generated is (00101, 01000, 01010, 01110, 10000,
10110, 11101, 1110) which can be found by row-column

dominance and other covering techniques.

In reading the example above, note that it is not

necessary to compute M if we recorded the growth of each

14

term and found there is a detectable growth in Ei'. We

also do not have to compute M10 and M if we note that the

19

growths into the X, direction and the is <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>