


ABSTRACT

FAULT ANALYSIS OF COMBINATIONAL LOGIC NETWORKS

BY

Lung-Hsiung Chang

The algebraic model called the Complete Gate Equivalent

Model (CGEM) which describes completely and precisely the

physical and logical structures of a multiple output

network is proposed for the study of faulty combinational

logic networks.

In this thesis, the power of a CGEM is demonstrated,

with its various forms, through its application in the

generation of fault functions and complete test sets for

a network with stuck-at type faults. An upper bound on

the number of possible fault functions, hence the number

of possible fault classes, is established. Then, a

straightforward procedure to find, without enumeration,

all possible fault functions and the associated fault

sets is presented.

A complete test set can be found by covering the

direct differences which are generated by enumerating all

possible faults of the network. It is shown given a fault

function and a complete test set of a logic network, one
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can either find the associated fault set or decide that

the network cannot have degenerated into the given fault

function. Methods of computing the fault functions for

several kinds of bridging faults also are demonstrated.

Four algorithms for generating near minimal complete

test sets are presented. The first two are for multiple

fault and single fault detection. The other two are the

direct generalizations of the first two to fault location.

A method for searching for a minimal complete detection

test set for an irredundant network is also suggested. In

general, one can find a smaller complete detection test

set than that obtained by Poage's method. The generaliza-

tions of the method to cover the general networks parallel

the development of the algorithms. Furthermore, the

existence of undetectable faults in a redundant network

impose no restrictions on the test generation since we

can modify the CGEM according to the fault before it is

used in the algorithms.

When detailed information about the logic network

is not required, the Complete Gate Equivalent Model can be

modified to describe LSI combinational networks in a

manageable manner. Its use in generating tests for a

sequential logic network has also been pointed out.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND
 

In this chapter we present some background

materials required for a study of faulty combinational

logic networks. The basic assumption is that the combina-

tional logic networks are comprised of single-output

elementary gates. Further assumptions will be presented

as the development of this thesis requires.

Most studies of faulty combinational logic networks

have concentrated on the network level rather than on the

system level and have been concerned only with the effects

of faults on the logical behaviors of the networks. This

thesis will follow in this tradition unless otherwise

indicated.

The importance of the study of faulty combinational

logic networks has been pointed out by several authors,

e.g., Carter [6] and Kamal [22] and is evidenced by

numerous related articles appearing in such publications

as the IEEE Transactions on Computers. Furthermore, there

have been three International Symposia on Fault-Tolerant



Computing in the past three years and two textbooks

devoted exclusively to fault detection and diagnosis of

digital systems.

The original contributions and organization of the

thesis are discussed at the end of this chapter.

1.2 COMBINATIONAL LOGIC NETWORKS
 

A Boolean function is elementary in argument X
 

if the function can be expressed in the form X*-fl or

x* + F2, where X* = X or i and f1 and f2

functions independent of X. A function is elementary if

are any Boolean

 

it is elementary in all of its input arguments. An

elementary gate is a gate whose function is elementary.

The commonly used gates such as AND, OR, NOT, NAND and NOR

are all elementary gates while Exclusive-OR is not. This

thesis will deal with combinational logic networks which

are realized by elementary gates. Figure 1.1 shows the

schematic notion that will be used to represent these gates.

(a) AND (b) OR (C) NOT

(d) NAND (e) NOR

Figure 1.1. The Elementary Gates



Combinational logic networks are used to realize

combinational functions and are characterized by the absence

of feedback. A combinational function may be represented by

(1) a Boolean expression of input literals, (2) a truth

table which specifies the value of the function for each

combination of input values or (3) a Karnaugh map.

Figure 1.2 (a) is a combinational logic network for the

Exclusive-OR function. Two different representations of

the function are shown on Figure 1.2 (b) and (c).

 

 

  
(a) A Combinational Network for the Exclusive—OR Function.

 

 

   

X1

x1 x2 Z 0 1

0 O O 0 0 1 l

o 1 1 X2 -11

1 0 1 1 1 o l

1 1 o I M

(b) Truth Table. (c) Karnaugh Map.

Figure 1.2. A Network and the Representations for the

Exclusive—OR Function.



1.3 LOGICAL FAULTS

The faults that we shall be concerned with are

logical faults. A logical fault is a fault which produces
 

some changes in the logical behavior of the network.

Hereafter the term fault will mean logical fault unless

otherwise indicated.

The class of faults to be considered in the study of

faulty logic networks depends on the type of networks.

However, most of the faults in contemporary networks can

be represented by an input or output of some basic elements

being stuck at one or stuck at zero. That is, an input or

output of some basic elements may assume a fixed loqical

value, independent of the inputs supplied to the logic

network. All but one section of this thesis deals with

stuck-at type faults.

While stuck-at type faults deal with individual leads

of the network, bridging faults are concerned with the

faults due to the connection of two or more leads of the

network. We shall investigate bridging faults exclusively

in Section 3.4.

A fault may be permanent or intermittent. A permanent

fault is a fault which will not occur, disappear or change

its nature during testing and its effect will exist

throughout the period of interest. An intermittent fault

may show its effect at one time and not at other times.

We shall deal only with permanent faults.



1.4 FAULT DIAGNOSIS
 

A combinational logic network is said to contain

a fault if upon the application of an input vector Ti' the

output vector of the network is different from that of

fault-free network. We call such an input vector a EEEE'

A test Ti is said to detect fault Fj if the output vectors

for the fault-free network and the same network containing

Fj are different when T1 is applied.

A set of tests which detects all detectable single

faults of the network is called a complete single fault

detection test set. The single fault assumption implies
  

the network cannot have more than one fault at any time.

This assumption is justifiable only if testing is frequent

enough so that the probability of the occurrence of more

than one fault during the interval between test experiments

is negligibly small. It is clear that the single fault

assumption may not be valid for initial check-out of the

networks. Even so, it does not mean the test generations

under single fault assumption has to be simpler than that

under the multiple fault assumption, as we shall demonstrate
 

in Chapter 4.

Two faults are distinguishable if there is a test that
 

generates different output vectors for two instances of the

same network containing the different faults. A set of

tests which distinguishes every pair of distinguishable

faults of the network is called a complete location test

set.



In general, a test can detect several faults and a

fault can be detected by several tests. It takes several

tests to locate a fault and it also takes several faults

to specify a test.

1.5 CONTRIBUTIONS AND ORGANIZATION OF THE THESIS
 

An algebraic model called the Complete Gate

Equivalent Model (CGEM) which describes completely and

precisely the physical and logical structures of a multiple

output network is prOposed for the study of faulty com-

binational logic networks.

In this thesis, the power of a CGEM is demonstrated,

with its various forms, through its application in the

generation of fault functions and complete test sets for

a network with stuck-at type faults. An upper bound on

the number of possible fault functions, hence the number

of possible fault classes, is established. Then, a

straightforward procedure to find, without enumeration,

all possible fault functions and the associated fault

sets is presented.

A complete test set can be found by covering the

direct differences which are generated by enumerating all

possible faults of the network. It is shown given a

fault function and a complete test set of a network one

can either find the associated fault set or decide that the

network can not have degenerated into the given fault



function. Methods of computing the fault functions for

several kinds of bridging faults also are demonstrated.

Four algorithms for generating near minimal complete

test sets are presented. The first two are for multiple

fault and single fault detection. The other two are the

direct generalizations of the first two to fault location.

A method of searching for a minimal complete detection

test set for an irredundant network is also suggested.

In general, one can find a smaller complete detection test

set than that obtained by Poage's method [33].

In Chapter 2 the Complete Gate Equivalent Model is

presented. Chapter 3 deals with fault functions and

Chapter 4 describes the algorithms and the method of

complete test generations. Chapter 5 concludes the thesis

and recommends problems for further research.



CHAPTER 2

A COMPLETE GATE EQUIVALENT MODEL

2.1 INTRODUCTION
 

The problem of analyzing the relationships between

network faults and output IOgic abberrationsraslalready been

studied by numerous models and various techniques. However,

a large number of unanswered questions remain in the area

of fault detection and location. In order to solve these

and other related problems, a logic network model which

makes structural and logical interdependencies easier to

recognize and express formally is still needed.

The earliest model which embodies information about

both structure and logical characteristics of an object

network to aid in fault analysis was presented by Poage [33]

in 1963. Poage's model uses three valued lead variables to

explicitly represent the normal, stuck at one and stuck at

zero conditions of each lead. This results in expressions

which are notationally complicated and unwieldly even though

the model is rigorously presented.

Armstrong's enf (equivalent normal from) [1] offers

a much more tractable notation than that of Poage, but it



lacks both the completeness and preciseness of the latter.

Clegg [11] developed the SPOOF (Structure and Parity-

Observing Output Function) model to more completely des-

cribe the network structure, by making internal network

inversion explicit without providing a mathematically

complete and rigorous basis. While Reese and McCluskey

[36] utilized the SPOOF model to take advantage of its

convenient notation and to provide mathematical rigor, it

lacks both structural generality and logical completeness.

The model to be deve10ped is an extension of Reese

and McCluskey's model.

2.2 THE COMPLETE GATE EQUIVALENT ALGEBRAIC

NETWORK MODEL (CGEMT

 

A labeling scheme that accurately describes the

structure of the network will be used in our model. The

CGEMs describe both the outputs and the complement of the

outputs of the multiple—output network, whereas the GEM

describes only the output of the single—output network.

Furthermore, a formal definition of the functional equiva-

lent of CGEM will be added to the model.

The logic networks we are going to study are finite,

combinational networks comprised of single-output elemen-

tary gates with all their leads properly labeled. The

labeling scheme is as follows:
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Procedure L (Lead-labeling)

(l) Assign a distinct integer label to each primary

input lead and the output lead of each elemen-

tary gate.

(2) To each of r fanout branches from a lead labeled

p, assign a distinct label pv, where v is a

letter in some alphabet other than the integers.

(3) Repeat step (2) until all of the leads are

labeled.

Because the networks to be considered are finite, the

labeling procedure will stOp in a finite number of steps.

The reasons for explicitly labeling fanout branches are:

(1)

(2)

(3)

Under the single fault assumption, if a network model

that does not faithfully represent the actual wiring

topology is used to generate test sets, some real

single faults may remain untested. For example, a

failure along lead 3b in Figure 2.1 (a) may be

modeled as a single stuck-at fault. However, this

failure can not be represented by any single fault

in the network of Figure 2.1 (b).

Under the multiple fault assumption, fanout branches

are checkpoints which play an important role in the

generation of complete detection test sets.

Fault analysis for certain kinds of failures, e.g.,

bridging faults, require the identification of fanout

branches.
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I') I 3ba

13b

3bb

(a) Labeling that Preserves

Physical Wiring TOpology.

 

3a

1

3 3b

2

3c 

 

(b) Labeling that Assumes

Simple Fanout.

Figure 2.1. Two Different Labeling Schemes for the Same

Portion of a Combinational Logic Network.

Example 2.1

Figure 2.2 is a network after applying Procedure L.
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Figure 2.2, A Combination§l_ngic Network which Realizes

X1X2X3X4 + X X X X

1 2 3 4'
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Definition 2.1
 

The inversion parity with respect to a path h of
 

lead g is the number (modulo 2) of inverting elemen-

tary gates between 9 and a network output Zj along

the signal path h. The inverting elementary gates

are: NOT, NAND and NOR.

Since there is no inverting elementary gate between an

input literal and the associated primary input lead, the

inversion parity of an input literal will be the same as

that of the associated input lead.

Definition 2.2
 

A path set L = <ai, ... , a;,23> is an ordered

set of labels describing some signal path h of a

network with a network output literal as its last

element. The ordering of the labels corresponds

to the order in which a signal traveling along h

would encounter them.

a; = ar if the inversion parity of ar in the path

is even and 2; = Zj or the inversion

parity of ar in the path is odd and

Zt='z’..

3 J

= 3 otherwise.
r

Definition 2.3
 

 

A gfliteral L = <X{,ai, ... , a;,z;> is a path

set which has an input literal Xi as its first

element.
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From the above definitions that we know we can divide

the g-literals and the path sets of a network into two

disjoint subsets, one which possesses overbarred output

literals, while the other does not. We shall call the

latter "gl-literals" and "pl-path sets", the former

"go-literals" and "pO-path sets".

Example 2.2
 

For the single output network of Figure 2.3 we

list all pl-path sets in Table 2.1(a). The pl-path

sets of (a) which are also gl-literals are listed in

Table 2.1(b). All po-path sets and all go-literals

of the network are just their counterparts with all

elements complemented. An input literal, an output

literal or a lead label is overbarred if and only if

it is complemented.

 

Figure 2.3. A Combinational Logic Network which Realizes

XlXZX3 + XIX2 + X1X3.
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Note that a lead label may appear in several path sets

and g-literals. Whether a particular label is complemented

or uncomplemented depends on its inversion parity and the

output literal of the path set or g-literal.

Table 2.1. All pl-path Sets and gl-literals for the Network

of Figure 2.3.

(a) All pl-path Sets for the Network of Figure 2.3.

L1 = <9,Z> L13 = <2,4,4a,7,9,z>

L2 = <7,9,z> L14 = <3,4,4a,7,9,Z>

L3 = <8,9,z> L15 = <I,IE,5,8,9,z>

L4 = <1a,7,9,Z> L16 = <4,ZE,6,8,9,2>

L5 = <4a,7,9,z> L17 = <X2,2, 4, 4a, 7, 9, Z>

L6 = <5,8,9,z> L18 = <x3,3 4 ,4a,7, 9, z>

L7 = <6,8,9,z> L19 = <x1,I, lb, 5, 8, 9, z>

L8 = <l,la,7,9,Z> L20 = <§,Z,‘B,6,8,9,z>

L9 = <4,4a,7,9,Z> 1.21 = <3,4,4—,6,8,9,Z>

L10 = <IB,5,8,9,z> L22 = <X;,§{Z,ZE,6,8,9,Z>

L11 = <ZE,6,8,9,z> L23 = <X;,§,4,ES, 6, 8, 9, z>

L12 = <x1,1 la, 7, 9, z>

(b) Pl-path Sets of (a) which are Also gl-literals.

L12 = <X1,l,la,7,9,z> L19 = <XI,I,IE,5,8,9,Z>

L17 = <x2,2 4, 4a, 7, 9, z> L22 = <X_,2,4,45,6,8,9,Z>

L18 = <3,3,4, 4a, 7, 9, Z> L23 = <X3,3, 4, 4b, 6, 8, 9, Z>
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Since the purpose of introducing g-literals is to

facilitate the study of faulty logic networks, it will be

useful to assign the functional equivalent to a g—literal

under the fault conditions of interest.

Definition 2.4

A g-literal L = <X;,a*, ... ,a;,Z§> has a

functional equivalent L(F) which depends upon the
 

fault F which is present:

L(F) = X3°a1/N'a2/N° ... -an/N

* o o o+ al/l a2/N ... an/N

* o o o
+ al/O aZ/N ... an/N

* o o o+ a2/l a3/N ... an/N

* o o o+ a2/0 a3/N ... an/N

+ O O O

+ 33/1

+ afi/O

where ak/l, ak/O and ak/N represent leadak stuck—at

l, 0 and fault-free respectively. All faults are

elements of F.

From the above formal definition, we can make following

observations: The functional equivalent L(F) of a g-literal

L depends both on the current input vector and on the fault

affecting the network and is 4

(l) The first element of L if L does not contain any

lead affected by F.
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a; = ak is the last element of L for which

is an element of F.

*=-

ak ak

is an element of F.

is the last element of L for which

Table 2.2 illustrates this concept for the g-literals

of Table 2.1(b).

Table 2.2. The Functional Equivalents of gl-literals

Table 2.1(b).

L12(F1’

L17‘F1)

L18(F1)

L12(F2)

L17(F2)

L (F )
18 2

(a) Fl = 9

x1 ;

x2 ,

x3 ;

(b) F2 = Ma/0,5/l,7/0]

O 3

0 7

O ,

Definition 2.5
 

A set Q of g-literals is a Zjli set of one

given outputs Zj

(l)

(2)

of network N if:

L19(F1’

L22(Fl)

L23(F1)

L19‘F2’

L22(F2’

L23(F )

of

II
II

X
I

X
I

u X
I

II
II

x
l

P
‘

u x
l

of the

The output Zj takes on the value 1 whenever

the functional equivalents for every

gl-literal in Q has value 1, and

If any member of Q is removed, then condition

(1) no longer holds.
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Definition 2.6

A set Q of g-literals is a gj-O set of one of

the given outputs Zj of network N if:

(1) The output Zj takes on the value 0 whenever

the functional equivalents for every

gO-literal in Q has value 1, and

(2) If any member of Q is removed, then condi—

tion (1) no longer holds.

Table 2.3 lists the Zj-l and Zj-O sets for the example

of Figure 2.4. The subscript j in Z. -1 and z. -0 is

Jlk Jrk

used to indicate the set is one of the Zj-l and Z.-0 sets,

respectively, while k distinguishes between the elements

in Q. Derivation of these sets will be illustrated in the

next section.

 

 

  

‘

X2 2 9

3 7a "

x3 ’

7b

10 A z1

X 4 11a
 

 

4 e

‘

s [ [ 11b

'21:. I7

 

 

Figure 2.4. The Logic Network for Example 2.3.
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The Zj-l and Zj-O Sets for the Network of

Figure 2.4.

(a) Zj-l Sets for the Network of Figure 2.4.

(b)

22,4”

[<x1,I, Ta, 6, 9, 12, 21>,

2,2,Ta'6'9'12'zl>’

[<X3,3,7,7b,10,1l,11a,12,Zl>,

4,10,11,11a,12,Zl>]

(X3'3pv’7—a—I9112,z1>]

[<x <x3,3,7373,9,12,zl>]

<X4,

[<x5,5,11,11a,12,z1>]

[<X1,1,1b,8,13,Z >,

4,10,11,11b,13,22>]

<23,§,7,7b,11,11b,13,z2>,

<x4,

[<X11171b,8,13,z >, <X5,5,11,11b,13,Z2>1
2

[<X2,2, 2b, 8'13'ZZ>' <X3,3, 7, 7b,11,11b,13, Z

<X:,4,10,11,11b,13,Z2>]

2)!

[<X2,2,2b,8,13,z >,2 <x5,5,1l,llb,l3,22>]

Zj-O Sets for the Network of Figure 2.4.

[<xl ,1, 1a, 6, 9, 2, >, <X2,2,2a,6,9,12,ZI>,

<x3,3, 7',7E’J6’,I‘,TI§,T2,2;>,

<x5,s,11,11a,12,2I>1

[<Xl,l, la ,6 ,9',T§,ZI$, <X;,4,15, Tl, lla ,12,ZI>,

<x2,2, 2a, 6,'§,"2,2;>, <:;,§',II, 11a,12',2’>]

[<X3,3, 7, 7a, 9, T2, ZI>, ?'§,11,111a,12,zl>,

[<X3,3, 7 7a, 9,1221>: (X;I4Ilollllllallzlzl>l

<X5,5,11,11a,12, 21>]

[<2",,,‘1"‘1‘B§,‘1‘3‘,,<2‘2'>2‘232,,2’E,,'§T§2'231

[<x3,3, 7',7E, II',ITB ,12',2;5, m2;‘§'21’125,‘2,22>1

[<X4WI'TU’II’ITE'T3,z>, <x5,‘E, TT',11'15,‘§)2;3]
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Now we are ready to define a gate equivalent model of

the network (GEM).

Definition 2.7
 

The GEMj:1_set of an output Zj of network N is

the set Gj' where Gj contains all the Zj-l sets of N.

Definition 2.8
 

The GEM.-O set of an output Z. of network N is

"—O‘—' J

the set Hj, where Hj contains all the Z3. 0 sets of N.

Table 2.4 lists the GEMj-l and GEMj-O sets for the

example of Table 2.3.

Table 2.4. The GEM.-1 and GEM.-O Sets for the Example of

Table 223. 3

(a) The GEMj-l Sets for the Example of Table 2.3(a).

GEMl-l — [21,1-

GEM2-1 = [22,1-

1, 1., Z '1' -l]

21,2’ 1,3 Z1,4

1' 1’ Z -ll -1]

22,2' 2.3 Z2,4

(b) The GEMj-O Sets for the Example of Table 2.3(b).

GEMl-O = [Z

GEMz-O = [22,1-

0, z “'0, Z -0, Z

1,1’ 1,2

0, Z -0; Z -0]

2.3 CONSTRUCTION OF THE COMPLETE GATE EQUIVALENT MODEL

FOR A COMBINATIONAL LOGIC NETWORK

 

 

The construction of the Complete Gate Equivalent

Model (CGEM) for a combinational loqic network is accom-

plished in two steps. First, all gl-literals of the

network are formed and used to make a Boolean expression
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Ej for each of the network outputs Zj. Second, the Ej

expressions are reduced to the desired CGEM forms.

2.3.1 Transformation from the Combinational Logic

Network to an Equivalent Boolean Expression

 

In the following algorithm, the extension of a

path set L = (air --- : agng> to the path set L' = (3;!

ai, ... , a3,23> will be denoted as a;&L, i.e., L' = a;&L.

We shall treat each fanout branch as a single—input OR

gate and each NOT gate as a single-input NOR gate.

Algorithm G (Generation of an Equivalent Boolean Expression)

Gl: Given a network N with primary input and network

output literals, assign distinct labels to each

lead of the network using Procedure L.

62: Form a pl-path set Ej for each of the m network

outputs zj. Each path set contains only two

elements, the first element is a network output

lead label and the second element is the

corresponding output literal.

G3: Let j = 1.

G4: Choose all path sets which are not g-literals

from the current Ej expression.

(1) If no such path set can be found from Ej

for all j, where j = 1,2, ... ,m then the

collection of all Ej's is the desired

network expression E.
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(2) Process this selection of path sets one by

one: Denote the path set under investiga-

. = < * no.tion by Lr ak: a* Z?>.
In!)

Replace

all path sets in current E expression which

have the same a* as Lr by a subexpression
k

formed according to the appropriate rule

as follows:

If ak is the output from
and 1f ak in Lr appears

Non—overbarred Overbarred

AND gate R1

OR gate or fanout stem R2

NAND gate R3

NOR gate or NOT gate R4

R3

R4

R1

R2

Rules: In each of the following rules, let s be the number

of leads which are the inputs to the gate or the

fanout branches. The subexpression is

R1: The conjunct of s new path sets, Li

R2: The disjunct of s new path sets, Li -

R3: The disjunct of s new path sets, Li

ll

O
J

p
. 2
’

L'
"

'
1

R4: The conjunct of s new path sets, Li - —

where i = 1,2, ... ,s.

(3) If j = m go to G5, otherwise

by 1 and go to G4.

increase j

G5: Repeat G3 until all path sets in each Ej

expression are g-literals.
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Example 2.3
 

Let us use Algorithm G to construct an equivalent

Boolean expression for the network of Figure 2.4.

Step Gl: We label the leads of the network by

Procedure L of Section 2.

> for E .Step GZ: Form <12,Z 2 2> for E and <13,Z
1 1

Step G3:

(a) At the end of first iteration, we have

I
?
!

II <9,12,Z > + <1la,12,Z >
1

>'<8,13,22>

1

<11b,13,zI'
ll ll

2

(b) The result of the second iteration is

E = <‘6‘,9,12,z >-<7§,9,12,z > + <11,11a,12,z >
1

> + <2b,8,13,22>)

1 1

E = <11,11b,13,22>°(<1b,8,13,Z2

(c) Beginning with the third iteration, we can take

advantage of the fact that 21 and 22 share some

degree of input circuitry and save some effort

in the path set expansion process. At the end

of the seventh iteration, we get

E1 = (<fi,I,1‘5,€,9,12,zl> + <23,7,§'5,3,9,12,zl>)

°<X3,3,7,fi,9,12,zl >

+ <i ,5’,7,7b,1o,11,11a,12,z >

1

°<X 4,10,11,1la,12,z >

4' 1

5,11,11a,12,Z >+ <X l
5!

(l)
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= (<i'.337,7b,1o,11,11b,13,zz>

'<X4,4,10,11,llb,l3,22> + <X5,

2,2b,8,13,22>)

E2

5,ll,llb,13,Z2>)

°<X 1,1b,8,13,Z > + <X
1' 2 2’

(2)

Since all path sets in (l) and (2) are g-literals,

the required equivalent Boolean expression saved as a

vector of two Ej expressions is

_ T
E - (El E2) (3)

where (V)T denotes tranSpose of vector V.

Note that lead label 7 appears complemented in the

third g-literal of Eq.(l) of Example 2.3, whereas it is

not complemented when it appears in the fourth g-literal

of the same equation. Physically, lead 7 is a fanout stem

whose branches reconverge at the network output 21'

Since the same lead has no branches which reconverge at

the network output ZZ, it appears only once in Eq.(2).

In addition to the fanout stems, other labels also

appear in different g-literals. In fact, the closer they

are to the network output, the more they appear in the

g-literals. The only difference is that they do not

possess different inversion parities as some fanout stems

do.

A data structure for the machine implementation of

Algorithm G will be discussed in the Appendix.
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Theorem 2.1
 

All gl-literals for the combinational network are

generated by Algorithm G. Each appears in the

resultant expression E exactly once, and all path

sets appearing in the final expression are gl-literals.

11:92.:

Suppose there exists a gl—literal Li = <X;,a*,

... ,a;_l,an,zj> which is not generated by Algorithm

G. At Step G2 we form a set of two-element path sets

which includes path set LS = <an,zj>. By Step G4,

Ls will be chosen and expanded into three-element path

set. Since no input lead has been neglected, one of

them must be path set <a;_1,an,

g-literal we are done, otherwise repeating the above

Zj>. If this is a

argument we will generage gl-literal Li which contra-

dicts our assumption. Hence all gl-literals of the

network are generated by Algorithm G.

Since each lead is labeled distinctly by Step Cl,

and a u-element path set can only be expanded to

(u+l)-e1ement path sets in one of the following three

cases: (1) Expanded to distinct labels from the same

path set for AND, OR, NAND and NOR gates. (2) Expanded

to the same label from distinct path sets for fanout.

(3) Expanded to a label from a path set for NOT gate.

Hence all the path sets generated by Algorithm G are

distinct from one another which implies each gl—literal

in the resultant expression E appears exactly once.
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The fact that all path sets appearing in the

final expression are gl-literals is guaranteed by

Step G4.

Q.E.D.

Theorem 2.2

Algorithm G transforms a given network structure

into a Boolean expression which accurately and com-

pletely describes the logical structure of the network.

23.22:

The path set expansion rules used in Algorithm G

are exactly the logical operations of elementary

gates. The logical structure of the network is

accurately described in each step of the algorithm by

applying the prOper rule to each elementary gate and

fanout point.

The completeness of the final Boolean expression

is guaranteed by Theorem 2.1.

Q.E.D.

Theorem 2.3

The Boolean expression E generated by Algorithm G

is isomorphic to the physical structure and its

corresponding input-output literals of the network to

the level of interconnected gates.

Proof

Our labeling procedure completely and distinctly

labels the physical structure of the network to the
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level of fanout points and interconnected elementary

gates. The rules used in the generation of E are the

logical operations of fanout point and elementary

gates. For each gl-literal Lr = <X§,a*, ... ,

a* a

n-l' n’

with primary input lead al which is followed by lead

Zj> we can find an input literal Xi together

a2. The lead a must be a fanout branch of al or the
2

output lead of an elementary gate for which al is one

of the input leads. Trace the elements of Lr one by

one, we will finally find that an is a network output

lead and Zj is the corresponding output literal.

Thus, we have a physical path for each gl-literal in

Expression E.

For each physical path we can also find, using a

similar argument as the proof of Theorem 2.1, a

distinct gl-literal which describes uniquely and

completely each lead in the path together with the

input and output literals associated with the path.

Q.E.D.

2.3.2 Reduction of Boolean Expression E to CGEM Form

The second step of the construction of CGEM is

to change the Boolean expression E of the network to a two-

level sum of products expression E'.

Example 2.4
 

Find the sum of products expression E' for the

network of Figure 2.4.
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Starting with Equation (3) of Example 2.3, only

carrying it one step further using distributivity, we

have

>o<X 4 10,11 11a 12 Z >
4II I I I2

1 3(3'7'77-5.’9'12,Zl>

+ <X2,2, 2a, 6, 9, 12, zl>- <X3,3, 7, 73, 9, 12, 21>

5,11,11a,12,Zl>

E' = <X;,3,7,7b,10,11,1la,12,Z
1 1

+ <XI,T,T§,6,9,12,Z >-<x

+ <x5,

2>-<X3,3, 7, 7b,10,11b,13, 22>{
1
1

II <Xl,1 1b, 8,13, Z

'<X 4,10,11 11b 13 Z >4I I I I2

+ X111,1b, 8, 13, Z 5,11,11b,13,Z >

2 5' 2

2,2,2b,8,13,z2> <x3m§’7 75,10,11, 11b, 13, 22>

<x4,4 10, 11, 11b, 13, 22>

<X2,2,2b,8,13,Z2>'<X5,5,ll,llb,l3,22>

> <x

+<X

TI ._. I I

Zj-l sets and GEMj-l sets of Figure 2.4 are listed in

Table 2.3(a) and Table 2.4(a), respectively.

2.4 THE COMPLEMENT OF THE BOOLEAN EXPRESSION E OF

A COMBINATIONAL LOGIC NETWORK

 
 

 

From Algorithm G we can construct a Boolean

equivalent expression E for a logic network. For the

completeness of the CGEM, we would like to know how to

obtain E, the complement of E, and some of its properties.
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Definition 2.9
 

The complement of a g—literal L = <X;,a*,

... ,a3,Z§> is fj= <X§,ai, ... ,5:,Z§> which is also

a g-literal.

Note that Definition 2.9 does not conflict with

Definition 2.4 of Section 2.2. Since the complement of

a g-literal L is a g-literal E with all elements of L

complemented, the complement of a gl-literal is a

go-literal and vice versa.

We have defined the functional equivalent for a

g-literal and it is not difficult to see that the func—

tional equivalent of a Boolean expression of g—literals is

just the Boolean expression of the functional equivalents

of individual g-literals.

Lemma 2.1
 

For a g-literal L = <x;,a*1, ... , a;,Z;> we have

(L + E) (F) = 1 and (L'f)(F) = 0.

Proof

(L + E)(F) = L(F) + EKF)

(x; + XE).a1/N.a2/N. ... .an/N

+ (ai/l + Ef/l)-a2/N-a3/N- ... °an/N

+ . o .

+ (ag/l + 5:71)

+ (aa/O + 5:70)
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= (al/N + ai/l + ai/l + ai/O + ai/O)

-a2/N° ... -an/N

:I ‘1’ 'k “i?
+ az/l + a2/l + aZ/O + a2/O)

°a3/N° ... °an/N

+ o o o

+ (as/1 + 33/1 + ag/o + Ei/O)

(l)

The first term of (1) equals to a2/N- ... ~an/N,

this term disjuncted with the second term makes it

a N-a4/N- ... -an/N. Continuing the operation we
3

* ’i * ‘7' ° '
will have an/N + an/l + an/l + an/O + an/O Wthh is l.

(L-f)(F) = L(F)°E<F) (2)

Since a lead can be in only one of the three

states, i.e., stuck at one, stuck at zero and fault

free the conjunct of different faulty states of the

same lead vanishes. We have

(L-f)(F) = (x;-§§)-a1/N-a2/N- ... ~an/N

+ (ai/l-nyl + ai/o-E§70)-a2/N- ... °an/N

1 . . .

+ (a*/1-§?/1 + a*/o-§?70)

(3)

Each term in the right hand side of (3) is

logical zero. Hence we have the second part of the

lemma.
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Definition 2.10

Let E be a Boolean expression of g-literals, the

complement of E, denoted as E, is also a Boolean
 

expression of g-literals with the operations of

conjunct and disjunct in E interchanged and all

g-literals in E complemented.

Example 2.5

Find E' for the network of Figure 2.4.

Using Equation (1) of Example 2.3 of Section 2.3

we first find El then reduce Ei to two-level sum of

products form, i.e.,

Ei = <x1,1, la, 6,‘§, 12,T1> <x2,2,2a,6,§,I§)2“3

<X3,37, 7b, 15,31, 11a,13, Zl> <X5,§,11,‘Tl—, 12

+ <xl,1,1a,6,9,12,Tl 2,2,2a,6,9,I§,T1>

°<X4,4,10,11,lla,12,zl>'<X5:5,11,lla,12,zl>_

>°<X

°<x5,5,11,11a,12,z1>

+ <X3,3, 7, 7a, 9,12, 21> <X4,z,10,11,11a,12, 21>

-<x5,,,3HII5,I2',T1>

Complementing Eq.(2) of Example 2.3 of Section

2.3 and reducing it to the.sum of products form, we

get

E5 = “I'IE'EI3, T2> <x2,5, IE, 8,I§,T

+<X<X3,3,7,73,11,11b,1§)§33-<X§,§,II,11b,I3,Z;>

+ <§:,I,I6,II,IIE,I§,E; >~<§§,§,II,IIB,I§,E§>



31

The required expression is

- — — Tu: I I
E (E1 E2)

zj-o sets and GEMj-O sets of Figure 2.4 are listed

in Table 2.3(b) and Table 2.4(b), respectively.

Inspecting Algorithm G we can find that if we start

with two-element pO—path sets at Step G3, call it Algorithm

6', we will end up with Boolean expression E. The following

three theorems are the duals of Theorems 2.1-2.3 which we

state without proof.

Theorem 2.1'
 

All go-literals for the combinational network

are generated by Algorithm G'. Each appears in the

resultant expression E exactly once, and all path sets

appearing in the final expression are go—literals.

Theorem 2.2'
 

Algorithm 6' transforms a given network structure

into a Boolean expression which accurately describes

the complement of the logical structure of the network.

Theorem 2.3'
 

The Boolean expression E generated by Algorithm

6' is isomorphic to the physical structure and its

corresponding input-output literals of the network to

the level of interconnected gates.
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2.5 CHAPTER SUMMARY AND REMARKS
 

An algebraic network model which describes

accurately and completely the physical and logical structure

of an object logic network has been rigorously presented.

It is a substantial extension of GEM of Reese and McCluskey,

even though the name of their model is adopted.

The differences between our model and theirs are: (1)

Our model is for multiple—output logic networks, theirs for

single-output networks only. (2) We added the rigorous

definition of the complement of the Boolean expression of

g-literals, without which the other side of the logical

structure remains untold. (3) The functional equivalent of

a g-literal is formally defined in our model. With this,

the detailed information of a faulty network can be rigor-

ously investigated.

One may note that we mentioned nothing about the

complemented input literals. This would not impose a

serious restriction on the model since either the comple-

mented inputs can be generated by the network or we can

rename the input provided by the system.

By substituting the functional equivalent of Defini-

tion 2.4 for the corresponding g-literals in the expressions

E and E, one can have more information about the logic

network than that obtained by Poage's method. Finally, with

all lead labels and output literals dropped from the Boolean

expressions of g-literals we have the simplified cause-

effect equations of Bossen and Hong [3].



CHAPTER 3

FAULT FUNCTIONS

3.1 INTRODUCTION

In this Chapter we shall deal with fault func-

tions and related topics.

A fault function is a Boolean expression of input

literals that a logic network realizes under the influence

of a fault.

In addition to stuck-at type fault we shall discuss

how to find fault functions for several kinds of bridging

faults.

The difference between the fault-free function and

fault function provides the tests. So, for a given fault

we can first find the fault function, then a set of tests

that detects the fault.

If we have a complete test set and a fault function,

we can also either find the corresponding fault set or

decide that the network can not realize the given fault

function.

33
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3.2 FAULT EggIVALENCE

The immediate application of the model developed

in Chapter 2 is the determination of the fault function

E(F) realized by the network in the presence of fault F.

Since two different faults F1 and Fj may result in

the same fault function, it will be convenient to put

these two faults in a set and deal with the whole set or

its representative in the studies of faulty logical

networks.

Definition 3.1
 

Two faults Fi and F3. in a logical network are

said to be functionally equivalent, written as
 

Fi"Fj' if and only if their fault functions for

that network are identical, i.e.,

Pi ~ Fj <=> E(Fi) = E(Fj).

Example 3.1
 

For the network of Figure 2.3 we have

E = <x 1,1a,7,9,z>-<X 2,4,4a,7,9,z>-<x 3,4,4a,7,9,z>

1' 2' 3'

+ <i‘1',I,‘1‘S,5,3,9,z>-(<i'2','2‘,7f,71'i5,6,8,9,z>

+ <}'('3,3',I,IB,6,8,9,Z>)

Consider two faults: Fl = 4b/0 and F2 = 6/1.

The fault functions are

E(F1) = X1X2X3 + Xl
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Hence F1 and F2 are functionally equivalent in the

network.

The functional equivalence of faults is an equivalence

relation which partitions the collection of all possible

faults PI of a logic network into disjoint fault classes.

Definition 3.2

A logic network is said to contain a redundant

fault if and only if there exists a fault F1 6 PI

such that i f O and Fi ~ F0, where F0 contains no fault.

Example 3.2

In Figure 3.1 the logic network is a realization

of Boolean function zB = xlx2 + x2x3x4 which has

E' = <x ,1,7,9,z>-<i 5,53,5,7,9,z>-<x2,2,2b,6,6a,7,9,z>
2'

+ <.X1,1,7,9,z>'(22,7,E,7,9,Z>“(X3p31616317191Z>

+ <x1,1,7,9,z>-<§<’ 5,5,7,9,z>-<x 4,6,6a,7,9,z>
2' 4'

+ <22,§,75,3,33,8,9,z>-<25,§,E}35,8,9,z>

-<§A,I,§,§E}8,9,Z>

For fault Fl = 6a/l the fault function is

' _ _ _._._

E (F1) - XIX2 + X2X3X4

- I _ "' "" "' "" — _.
Since E (Fl) .- X1X2X3 + x1x2x4 + X2X3X4 - ZB we

have F1 ” F0 which implies the logic network is

redundant, i.e., it contains redundant faults.
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The redundant faults cannot be detected. This

fault-masking property has been used in designing logic

networks where continuous operation is required for a

specified length of time and repair is impossible. In

general, the existence of redundancy can not be readily

identified. The detection and location of redundancy

usually are the by-products of test generation.

 

 

 

 
 

Figure 3.1. The Logic Network for Example 3.2.

Note that the fault 6a/0 in the above logic network

can be detected.

3.3 GENERATION OF ALL POSSIBLE FAULT FUNCTIONS
 

Given a logic network we can find all possible

fault functions and associated fault classes by assigning

all combinations of the single faults of the network. The

possible fault functions are the collection of all distinct

functions that the network degenerates into and each fault
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class contains all faults of the same fault function. But,

the astronomical number of all possible combinations of the

single faults makes the enumeration method impractical.

Before the presentation of a straightforward method for

the generation of all possible fault functions, we first

establish an upper bound on the number of fault functions

a given logic network can possibly have.

Theorem 3.1
 

The number of fault functions NF for a logic

network is bounded by

iN m
2 X m G + 1)]< o

NF - Min [(2 ) , igl (2

where Nx is the number of input literals, m the

number of output literals and G1 is the smaller number

of the numbers of g-literals in E1 and ii.

Proof

2Nx . . .
There are only 2 distinct functions of Nx

binary variables which any single output logic network

can possibly realize. Hence, for a m-output logic net-

N

work NF 5 (22 x)m.

For a Zi k-l term which has G; gl-literals we can

I

delete none, 1, 2, ... up KDG: - l gl-literals by

substituting l for the gl—literals under consideration.

We can also delete a 2i k-l term by assigning 0 to it.

I

If all the gl-literals in the term are distinct we

Gi Gi
have H2 k = 2

k

ways of deleting gl-literals from a
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Bi expression. In addition, any term in Ei which

has a functional equivalent of 1 will drive output

1

Zi to 1. Thus, we have (2G + 1) distinct fault

functions for output 21.

Since there is a one-to-one correspondence between

the fault functions of Bi and E5, the total number of

fault functions for a network will be bounded by using

° l

the smaller number of 61's from each pair of E; s in

our computation. The arguments for E; parallel those

of Bi in preceding two paragraphs.

Q.E.D.

Example 3.3

For the logic network of Figure 2.4 we have

N = 5; m = 2; cl = Min (7,10) = 7 and

N
G2 2 X 19

Min (14,6) = 6. Since (2 ) g 2.97 x 10 and

l 2

+ 1)(2G + 1) = 8,385, the upper bound for the<2G

number of fault functions for the network is 8,385.

The bound computed from the number of input literals

is very loose even for a moderate size, single output

logic network. It is interesting to note that the number

of all possible combinations of the single faults of the

illustrative network is 321, approximately 1010.

Directly from Definition 2.4 we can find functional

equivalents of a g-literal and the Boolean expression of

g-literals under a given fault set. When we want to find

all possible functional equivalents, i.e, fault functions,
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of a logic network, we simply let fault set F be unspecified

and substitute the functional equivalent of each g-literal

into the expression E, then reduce it into the sum of

products form.

Definition 3.3
 

The range of a Boolean expression of g—literals,

written as R(-), is the disjunct of the conjunct of

all possible fault functions of the expression over

their corresponding fault sets.

Example 3.4
 

The range of the term

2 '1 = <il,I,Ta-,5,9,12,Z

1,1 >-<x
3,7,73,9,12,zl> is

1 3'

iiX3°(l/N°la/N°3/N'6/N-7/N-7a/N-9/N-lZ/N)

+ xi-(1/N-1a/N-3/1-6/N-7/N-7a/N-9/N-12/N

+ l/N °1a/N'3/N-6/N'7/0°7a/N‘9/N°12/N

+ l/N-la/N-B/N-G/N-7/N-7a/0-9/N-12/N)

+ X3°(l/0°la/N'3/N°6/N'7/N'7a/N°9/N'12/N

+ 1/N-1a/o-3/N-6/N-7/N~7a/N-9/N-12/N

f l/N°la/N°3/N°6/O-7/N°7a/N-9/N-12/N)

+ 1-(i/o-ia/N-3/1-6/N-7/N-7a/N-9/N-12/N

+ 1/0'1a/N°3/N-6/N-7/0-7a/N-9/N-12/N

+ l/O'la/N'3/N'6/N'7/N°7a/0°9/N°12/N

+ la/O'3/1-6/N-7/N'7a/N'9/N'12/N

+ la/O°3/N°6/N°7/O°7a/N°9/N°12/N

+ 1a/0-3/N-6/N-7/N°7a/0°9/N'12/N
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+ 3/1'6/0'7/N'7a/N°9/N°l2/N

+ 3/N'6/0'7/0'7a/N'9/N'12/N

+ 3/N°6/0'7/N'7a/0'9/N'12/N + 9/1'12/N + 12/1)

+ (l/l'la/N'3/N'6/N°7/N'7a/N°9/N'12/N

+ la/l'3/N'6/N'7/N'7a/N°9/N'12/N + 7/1'7a/N°9/N°12/N

+ 3/O°6/N°7/N°7a/N-9/N’12/N + 7a/1°9/N'12/N

+ 6/1°7/N°7a/N°9/N'12/N + 9/0-12/N + 12/0)

Investigating the above result we conclude that any

fault that affects the 21.1-1 term will transform it into

one and only one of the five possible fault functions.

The computation of the ranges for Bi and E' is a trivial

extension.

The fault set associated with each fault function con-

tains the representatives of the fault class. Any combina-

tion of the single faults of a logic network that satisfies

one fault in the fault set will transform the function

realized by the network into the associated fault function.

For example, there are approximately 3.5 x 109 combinations

of the single faults which include lzd.that cause output

Z of the network of Figure 2.4 to be stuck-at l.
l

3.4 BRIDGING FAULTS
 

While the stuck-at type faults deal with individual

leads, bridging faults are concerned with the connection of

two or more leads of the logic network.
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Definition 3.4

A bridging fault is a short circuit between two

or more leads of a logic network and wired logic is

performed at the point of connection.

We shall limit our studies to single two-lead bridging

faults. The wired logic function is assumed to be either

a wired AND or a wired OR.

If a bridging fault affects two leads on the same path

in a lOgic network, it is a feedback bridging fault. A

non-feedback bridging fault can affect at most one lead on i

one path.

In order to find the fault function of a logic network

under a non-feedback bridging fault, we can (1) express the

network output E'(Fo) in terms of primary inputs and the

lead variables of faulty leads. We call this the

decomposition of the network output with respect to the
 

lead variables; (2) express the lead variables of faulty

leads in terms of primary inputs; (3) combine these lead

variables with proper wired lOgic and substitute the result

into the lead variables in the decomposed network output.

The first two steps of the preceding procedure can be

carried out by first treating the faulty leads as primary

input leads to the succeeding part of the network and

letting the unaffected portion remain unchanged, then as

the network output leads of the preceding part of the network

and dropping the remaining portion from consideration.
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Since the Boolean expression E' of the g-literals of

a logic network can be regarded as a network output expres-

sion, one may want to know what is the decomposition of

E' and how it helps us in finding the fault function realized

by a logic network under the influence of a bridging fault.

Definition 3.5
 

The decomposition of the Boolean expression E'

of the g-literals of a logic network with respect to

the lead variable Yi of lead i is obtained by: (1)

W
-
O
A
-
r
-
u
i
w
m

1
1
0
W

.

Replacing the g-literals which have the form <X£,a*, ... ,

i* ..., an,zj> by <Y{,i*, ... , an,Zj>, where the

inversion parity of Yi is the same as that of lead 1.

(2) Keeping the other g-literals in the expression

unchanged.

Let Bi denote the decomposition of E' with respect'

1

to Yi' It is not difficult to see that E; (F0) is indeed

i

the decomposition of the network output E'(FO) with respect

to Yi. Since for a g-literal which contains no i* as

one of its elements, it cannot be decomposed with respect

to Yi and its effect on the network output remains unchanged.

For a g-literal containing i*, the effect of lead variable

Yi on the network output depends on the inversion parity

of lead i.

To express the lead variable in terms of the network

primary inputs we can construct a Boolean expression for an
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isolated portion of the network as pointed out, or obtain

it from the E' expression of the network as follows:

Lemma 3.1
 

The lead function Yi for lead i can be determined

from the Boolean expression E' of the g-literals of

the logic network by the following procedure:

(1) For each 2. .-1 term which contains no

(2)

(3)

Proof

1:]

g-literal which has i* as one of its

elements, replace this term by O.

For each zi’j-l term which has at least one

g-literal contains i*, replace each such

g-literal by the correSponding input

literal, replace the other g-literals in

this term by 1. Set the result equal to Yi

if i is non-overbarred, I: otherwise.

Simplify the resultant expression by Boolean

rules.

Since only the inputs of the g-literals which have

i* as one of their elements can have the effect on the

lead variable Yi' all other g-literals can be

neglected in the evaluation.

We have to find Yi and Y: separately and treat i

and I independentlybecause by definition i cannot

generate ii and i cannot generate Yi'
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While the stuck-at type faults have the effect of

simplifying the logic topology, the bridging faults

introduce connections and wired gates to the network and

complicate the network topology.

Definition 3.5 and Lemma 3.2 were established for a

single lead. When two leads are involved as the case of

bridging faults, we can deal with both the affected leads

at one time if no g-literal contains more than one faulty

lead, or decompose E' with respect to the lead variable

whose lead is closer to the primary inputs, then subject

3
"
.

I
F
‘
v
—
J
—
é
‘.
.
.
_
,
T
.
Z
.
.
‘

the decomposed expression to be decomposed with respect to

another lead variable if two leads in the same g-literal

are connected.

Example 3.5

We denote wired AND between lead 1 and lead j by

B(i-j) and wired OR by B(i + j). For the logic

network of Figure 2.3 the fault function due to the

presence of bridging fault F B(lb°6) can be
1

computed as follows:

From Example 3.1 the sum of products expression

of g-literals is

E' = <X1,1,la,7,9,Z>o<X 2,4,4a,7,9,Z>
2'

‘(X 3,4,43,7,9,Z>3’

+ (x1,1-,IB,5,8,9,z>0(22,2,I,m,6,8,9,z>

+ <x'l,I,ITo‘,5,8,9,2>-<Y3,§,Z,IB‘,6,8,9,2>
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(a) Since no g-literal contains both lead lb and lead

6, we can decompose E' with respect to Y and Y
lb 6

at one time. The result is

Eélb'YG = <xl,l,la,7,9,z>-<x2,2,4,4a,7,9,Z>

-<X3,3,4,4a,7,9,z>

+ <Y1b,IB,5,8,9,z>-<Y6,6,8,9,z>.

The decomposed network output is

' _ _

E (F0) - X1X2x3 + YlbYG (1)

Y1b'Y6

The lead variables in terms of primary inputs

are found to be

Y1b=XlandY6=X +X

The output of the wired gate is

Y=Y~Y=xi+xx (2)
9 lb 6 l 2 l 3

Substituting (2) into Y11) and Y6 of (l), we

get the fault function

El

(b) We can also treat one lead at one time. The

results are

Eélb = <Xl,l,la,7,9,z>'<X2,2,4,4a,7,9,z>

-<X 3,4,4a,7,9,z>3!
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+ E,5’8'9,Z>.<-x_2’§’.4-'ZB,6'8,9’Z>

<Y1b'

+ <Y IB,S,8,9,z>-<Y3,§,I,ZE,6,8,9,Z>
lb'

(4)

E96 = <Yl,l,la,7,9,Z>'<X2,2,4,4a,7,9,Z>

°<X3,3,4,4a,7,9,Z>

+ <§i,I,IE,5,8,9,Z>-<Y6

+ (illipIB'S’Blgtz).<Y6I6'8'9'z>

,6,8,9,z>

(S)

If we either decompose (4) with respect to Y6 or

decompose (5) with respect to Y b' we will obtain
1

the same result as that of (a). The order of

decomposition in the case of non-feedback bridging

is of no importance, e.g., E' = E' .

Ylb’Y6 Y6'Ylb

A feedback bridging fault can be classified as

inverting or non-inverting depending on whether the lead
  

labels in the g-literal have different inversion parities

or not. The following example will demonstrate how to find

the fault functions caused by feedback bridging faults.

Example 3.6
 

The logic network of Figure 2.3 will be investi-

gated further in this example.

(a) The bridging fault F = B(4-7) is non-inverting
2

because both lead labels in the second and the

third g-literals of the first term of expression

E' (see Example 3.5) have the same inversion

parity.
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Since lead 4 is closer to the primary input,

we have to decompose E' with respect to Y4 first.

E§4 = <x1,l,la,7,9,z>°<Y4,4,4a,7,9,z>

-<Y4,4,4a,7,9,z>

+ <§i,I,IE,5,8,9,z>o<Y4,Z,EE,6,3,9,z> (1)

E; (F0) = X1Y4 + iiY4 (2)

.
5

L
“
?

Y = x x (3)

Then, we decompose E; with respect to Y7

4

1
2
1
'
"
;

A
“
.

E' = <Y ,

Y4'Y7 7
7,9,Z>

+ <x1,I,IB,5,8,9,z>o<Y4,I,IB,6,8,9,z>

(4)

Y + x Y4 (5)
3' (F0) = 7 1
Y4,Y7

Y = x Y (6)
7 l 4

The first wired gate output after the

application of the primary inputs is

Y =X91 XX

Let the superscript s of E; Y (F?) denote

4, 7

the sequence of output under the influence of

bridging fault F2. Substitute (3) into Y4 of

(5) and (6), then (6) into Y7 of (5), we have

. _ _ _

BY Y (F ) - xlx2x3 + xlx + x (8)

4’ 7

X

2 l 3

which is the fault free output of the network.
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Since the wired gate output will remain at

4 and Y7 of

(5), we get the right hand side of (8) again.

(7), substituting (7) into both Y

This implies (8) can be regarded as the required

fault function. The fault F2 happens to be

undetectable.

,
P
'

The fault F3 = B(lb-8) is an inverting feedback

bridging fault since lead lb and lead 8 have

‘3

different inversion parities in a g-literal of E'.

‘
t
‘
f
‘
m
‘
m
‘
m
”
m

After a few computations, we have

EYlb(Fo) = x1X2X3 + n¥2 + (n52 (1)

Ylb = x1 (2)

Eélb’Y8(Fo) = X1x2x3 + Y8 (3)

Y8 = ilbszz + rug (4)

Y9 = YlbY8 (5)

The first output of the wired gate is obtained

by first substituting (2) into Ylb of (4) and (5),

then (4) into Y of (5), i.e.,

8

Ygi = 3fx1xz + X1X3) = 0 (6)

Substitute (6) into Y8 of (3), we have

E' (F1) = x x x (7)
Y 3 l 2 3

lb'Y8
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The wired gate output will remain at (6),

which in turn keep the network out at (7). (7)

is the required fault function.

In the above examples, all three bridging faults

generated no sequential dependency in the logic network.

In some cases, we may have to compute the network output

for a number of feedback periods to establish the fault

functions.

fi
‘
m
u
—
w

‘
‘
1

It is interesting to note that bridging fault F1 of

[
Q
T

V
"
.
‘
V
.
_
)
'

r
.

~

Example 3.5 is equivalent to bridging fault F3 of Example

3.6. Furthermore, the logic network of Figure 2.3 is

redundant with respect to bridging faults since fault F2

of Example 3.6 cannot be detected, even though it is

(irredundant when only stuck-at type faults are considered.'

3.5 DIRECT DIFFERENCE AND TEST GENERATION

A fault in a logic network can be detected only

if it causes the network to realize a function, called the

fault function, which is different from the intended

function, i.e., fault-free function.

A fault can be located, to the level of interest, if

it can be detected and the differences between this fault

and all other faults of the network can be identified.
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Definition 3.6

The direct difference Dij of fault Fi and fault

Fj is B(Fi) G E(Fj), the exclusive-OR of the respec-

tive fault functions.

The solution of Doj = l is the test set which detects

the existence of fault Fj. A set of input vectors which

covers the solutions of Doj = l for all j # O of the

network is a complete detection test set. A set of input

vectors which covers the solutions of Dij = l for all i,j

of the network and distinguishes each pair of the solutions

is a complete location test set.

Example 3.7

The logic network of Figure 2.2 (p. 11) realizes

a ' - — .-

the function E (F0) - xlx2x3x4 + X1X2X3X4. The

Boolean expression E of the network is

E = (<ilpI,E,5,-§,12,Z>'(23,3,33,5,8,12,z>

+ <X2,2,2a,§,12,z>) (x1,1,1b,'§,12,z> +

<3E2,§,'2‘B,§BE,6,6a,'9’,12,z>.<23,§,§'5,'3'5T5,6,6a,§,11 ,z>)

(<‘i2,§,‘5,7‘5,6,6b,1o,12,z>

~<§3,'§,‘E,?5‘,6,6b,1o,12,2> + <x4,4,4a,‘1‘6,12,z>)

(<‘i2,§,T,TB,7,‘I,12,z>o<§4,Z,Z'B,7,11,12,z>

+ <x3,3,3b,ll,12,Z>)

For the fault Fl = 6/0, we have B(Fl) = x1x2x3x4.

The solution of D01 = E(F0) 6 B(Fl) = X1X2X3X4 = l is
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0000. This is the only input vector which can detect

the existence of the 6/0 fault.

To use the direct difference method in test generation,

we have to know the fault sets, the fault functions, and

the corresponding direct differences. This makes it

impractical for the generation of complete test set.

However, this method is still valuable in generating test

set for a smaller number of the faults of particular

interest, such as the 6/0 fault of above example and the

bridging faults discussed in Section 3.4.

The generation of a complete test set for a logic

network will be discussed in Chapter 4.

3.6 IDENTIFICATION OF FAULTS

Given a fault in a logic network we can find the

corresponding fault function simply by substituting the

functional equivalents of the g-literals into the Boolean

expression E of the network. Conversely, given a fault

function we can find the associated fault set if we have a

complete test set for the network.

Before we proceed to describe a procedure to find the

required fault set, it is worth noting that if the range of

the Boolean expression E is already found, the problem

reduces to the identification of the fault function which

conjoined with the associated fault set is a term of the

range. -If we want to know whether there is a fault which
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generates a particular fault function, the procedure is

exactly the same except if there is no such fault the

search of the fault function in the range will fail.

Instead of computing the range of the Boolean expres-

sion E then identifying the fault function to find the

fault set, we can: (1) Substitute each g-literal in Ei

by the range of the corresponding g-literal, then set the

result equal to the fault function Ei(F). (2) Evaluate ;

both sides of the m equations by a complete test set which

contains t input vectors. (3) Solve the set of mt

 

“
W
.
.
.
"

.
-
.

.

simultaneous equations. The solution is the required

fault set. If there is no solution, we conclude that the

logic network can not degenerate into the given fault

function.

The above procedure is straightforward and can be

machine implemented. But to deal with every lead of the

logic network the job will be enormous even for one of

moderate size. Looking for the ways of simplification, we

have the following theorem.

Theorem 3.2

Any multiple fault in a combinational logic

network can be represented by a combination of the

faults in the distinct g-literals of the network.

Proof

From Chapter 2 we know each g-literal of the

Boolean expression E generated by Algorithm G is
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distinct. The expression E describes accurately and

completely the logical and physical structures of

the network. The effects of a fault on E, hence the

network, is the Boolean expression of the effects of

the fault on the distinct g—literals.

Q.E.D.

Since a g-literal can assume only one of the three

states as a lead in the network, it will be convenient to

assign a distinct number to a distinct g—literal and treat

the simplified g-literal as a single lead g—literal.

'
.

'
L

"
.
'
-
.

0
‘
d

U
W
s
*
“
“
*
—
“
r
1
"
*

Definition 3.7
 

The simplified g—literal of a g-literal L =

<X{,a*, ... ,a;,z§> is the three element gmliteral

L8 = <X;,A*, 23>, where A is a number representing

the sequence of lead labels in L and it is overbarred

if z; = 23' non-overbarred otherwise.

In the above definition we treated the distinct

g-literals in E as the complements of their counterparts

in E. The Boolean expressions of the simplified g-literals

will be denoted by the corresponding notations, with

subscript s, used for the g-literals, e.g., Es' Eis'

The range of the simplified g-literal L8 = <x;,A*,23>

is R(Ls) = XE-A/N + A*/l + A*/0 where A/N = al/N- ... -an/N,

A/l = ai/B1°a2/N- ... -an/N + ... + an-l/Bn-l'an/N + afi/Bn

where Bk = 1 if afi = ak, 0 otherwise. A/O = ai/C1°a2/N- ...

-an/N + ... + a;_1/Cn_1'an/N + ag/Cn where Ck = 1 if a* =
k

3*, 0 otherwise. Note that A71 = A/0 and 370 A/l.
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Example 3.8
 

For the logic network of Figure 2.3, we find the

fault set associated with the fault function B(F) = X1.

Referring to Example 3.1 for the E expression of

the network, assign l to 6 sequentially to each of the

six distinct g-literals. Substitute the range of each

simplified g-literal in the expression and set it

equal to the fault function. We have

(xl-l/N + l/l)(X2-2/N + 2/1)(X3-3/N + 3/1)

+ (fl-4m + 4/1) ((X2.5/N + 5/1) + (553-6/N + 5/1))

= X (l)
l

The set T = (001, 010, 011, 101, 111) of input

vectors is a minimal complete detection test set for

the network. Evaluating (l) by the elements of T,

we get

l/l°2/l'3/N + 1/1-2/1-3/1 + 4/N-5/N + 4/N-5/1 + 4/1-5/N

+ 4/1-5/1 + 4/N-6/1 + 4/1-6/1

l/l-Z/N-3/1 + 1/1-2/1-3/1 + 4/N°5/l + 4/105/1 + 4/N-6/N

+ 4/N°6/1 + 4/1-6/N + 4/106/1

= 0 (3)

l/l-2/N-3/N + 1/1'2/N°3/l + l/l-2/1'3/N + l/l°2/l°3/l

+ 4/N°5/l + 4/l°5/l + 4/N'6/l + 4/1-6/1

= O (4)
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l/N'2/1'3/N + l/N'2/1'3/1 + 1/1'2/1‘3/N + 1/1'2/1'3/1

+ 4/1'5/N + 4/1‘5/1 + 4/1'6/1

l/N-Z/N'B/N + l/N°2/N'3/l + l/N°2/l'3/N + 1/1'2/N°3/N

+ l/N°2/1'3/l + l/l'Z/N°3/l + l/l°2/l°3/N + l/l-Z/l-B/l

+ 4/l°5/1 + 4/1-6/1

= l (6)

The simultaneous solution of (2) to (6) is

P8 = l/N-2/l-3/l-(4/0 + 5/0-6/0) (7)

for the simplified g-literals which implies

F = 4/1-(1b/l + 5/0 + 8/0 + 4b/l + 6/0)

+ 4a/l-(lb/l + 5/0 + 8/0 + 2/1-3/1 + 4b/l + 6/0)

for the leads of the logic network.

If the fault function is B(Fo), the fault free func-

tion, the solution for the simultaneous equations may

contain just one situation, i.e., all leads are normal,

which implies the network is irredundant. If the solution

contains situations other than all leads are normal, the

network is redundant and the extra solutions tell exactly

where the redundancies are.

3.7 CHAPTER SUMMARY AND REMARKS
 

Through the fault equivalence defined in Section

3.2, we can treat the faults in fault classes instead of as

individual faults. The upper bound on the number of possible
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fault functions established in Section 3.3 gives us a rough

idea how tedious it will be if we have to consider each

fault function separately. However, we have a machine

implementable procedure to find all possible fault func—

tions and the associated fault sets.

The feedback bridging faults not only can be identi-

fied as suggested by Flomenhoft ep_al. [15], but the fault

functions can also be computed as demonstrated in Section

3.4.

In Section 3.5, we discussed how to find a test set

if the fault function can be found. From a given fault

we can find the fault function, conversely, given a fault

function we can identify the associated fault set.

For the faults which are essentially indistinguishable,

we certainly do not have to compute their fault functions

individually. In a network comprised of the elementary

gates, they are:

Gate Input leads ais Output lead aj

AND any ai/O aj/O

NAND any ai/O aj/l

NOT ai/O aj/l

OR any ai/l aj/l

NOR any ai/l aj/O

NOT ai/l aj/O



 

:
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In solving the simultaneous equations of Section 3.6

we can use the cubic intersection:

a/O a/l a/N X

 

a/O a/O 0 fl a/O

a/l fl a/l fl a/l

a/N g p a/N a/N

X a/O a/l a/N X 
where 6 denotes empty and X denotes don't care. We can

use the machine to solve a large set of simultaneous

equations, but for a small number of equations solution

by inspection may be faster.



CHAPTER 4

TEST GENERATION

4.1 INTRODUCTION

The Complete Gate Equivalent Model and its

various forms will be used.h1this Chapter for the generation

of complete test sets for the combinational logic network.

Four algorithms for generating near minimal complete

test sets will be discussed. The first two will be for

multiple and single fault detection. The other two are

the direct generalizations of the first two to fault

location.

A method of searching for a minimal complete test set

for an irredundant combinational logic network also will

be presented.

4.2 GENERATION OF NEAR MINIMAL COMPLETE

DETECTION TEST SETS

The generation of a complete test set for detect-

ing stuck-at type faults in a combinational logic network

will be accomplished in two steps: (1) Generation of a

near minimal set of terms that detects all detectable faults.

(2) Finding a minimal covering of the terms generated.

58
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4.2.1 Generation of a Near Minimal Test Set which Detects

AII Faults’in a Combinational Logic Network

 

In the sequel we shall call E' under the fault

free condition, but without any Boolean simplifications a

simplified E' expression and denoted by E". The notation
 

“-10 0: _ll II_ |:__ - '
E , Ei , Ei , zi,kl and Z1 ko W111 be used for their

counterparts in E' and E'. A Z"-l or Z"-0 term is said

to contain a conflict pair if it has xiii as its member.

' !l__ II_ °
A growth in a zi,k1 or 21 k0 term is the enlargement

of the set of nodes covered by the term on the N-cube,

caused by the presence of some faults. A shrinkage of a

Zi'El or Zi'ip term is the reduction of the set of nodes

I I

covered by the term on the N-cube, caused by the presence

of some faults.

In the descriptions of the algorithms and the procedure

in this Chapter, the alternative arguments will be put in

the parentheses.

Algorithm MFD (Multiple Fault Detection)
 

Data required for this algorithm are the expressions

E", E“, E'(Fo) and E'(FO).

1: Select either Ei' or E;' which contains the smaller

number of input literals from each of the m primary

outputs of the network. If both Ei' and E1' have

the same number of input literals, choose one

arbitrarily.
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o:__ I: ° 0: —ll -
Separate zi,k1 (Zi;E0) terms in E (E ) into

two different sets such that one contains the

terms which have conflict pairs and the other

does not.

For those Z!'—l (Z!'—0) terms which contain no
i,k i,k

conflict pairs

(a) Let i = l.

(b) Compute

_ II_ '71—:—
Mu - (zi,kl) H (Zi,jl)

all jfik

(Mu = (255:0) n W- ))

all jfk

If Mu is nonempty put it in set M.

(c) Repeat Step 3(b) for all z!'-l (Z!'—0) terms
i,k i,k

- II —II
in Ei (Ei ).

(a) If no Mu computed in Step 3 for Ei' (Ei') is

empty, increase i by 1 otherwise go to

Step 5.

(b) If not all Ei' (Ei') selected in Step 1 are

investigated,go to Step 3(b) otherwise go to

— Step 6. Set M now contains the terms which

detect any shrinkage of the coverings of the

I __ I

selected Ei' s and E1' 3.

Let there by s Z!'-l (Z!'-0) terms in set S whose
i,k i,k

Mu computed in Step 3 for Ei' (Ei') are empty.

(a) Set n = 2.
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(b) If n is greater than the number of terms in

S, increase 1 by l and go to Step 4(b).

' ' II II

(c) For all combinations of n zi,El (zi,E°) terms

from set S compute

M = Z (Ziz'fil) H (Z.|I-7-1$

u i,j

k selected j not selected

= I I_ -—I—l_'——-
(Mu Z (zi’km n (2130))

k selected j not selected

(d) Put all nonempty Mu's in set M, delete the

corresponding Z"-l (Z"-0) terms from set

S and increase n by 1 go to (b).

Set i = l and j = 1.

Now we compute the terms which detect the growths

caused by the faults. Let W denote a Zizgl

(2;:T0) term with one or more of its input

literals replaced by l.

(a) Replace one input literal in ziiji (ZiIEO)

by l.

(b) Compute

M.3 w n E (F0) (1)

(Mj
I

W FIE (FO))

If Mu is not empty put it in set M.

(c) Repeat (a) through (b) for all input literals

in this term.
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8 (a) If no Mu computed in Step 7 for a term is

empty increase j by 1 otherwise go to Step 9.

(b) If not all terms in Ei' (Eg') are investigated

go to Step 7 otherwise increase i by l and

set j = l.

(c) If all selected Ei' (Ei') are processed,

stop. Set M now contains the terms which

detect the shrinkages and the growths of

the coverings of the selected Ei"s and

Ei"s or else go to Step 7.

9: Let there be t input literals in set T whose Mu's

are empty.

(a) Let q = 2.

(b) If g is greater than the number of input

literals in T, delete all the literals from

T, increase j by l and go to Step 8(b).

(c) Replace all combinations of q input literals

by l and compute Mu by Eq. (1) of Step 7.

(d) Put all nonempty Mu in set M, delete the

corresponding input literals from set T,

increase q by 1 go to (b).

Theorem 4.1
 

A minimal single covering of all Mu's in set M

generated by Algorithm MFD is a near minimal complete

detection test set that detects all detectable faults in

the logic network.
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12°23.

The functional equivalent of a g-literal affected by

a stuck-at type fault can assume only one of the two

values 1 or 0.

The functional equivalent of a zi’k-l or Zi'k-O term

will be 0, i.e. false if at least one of its g-literals has

functional equivalent 0. This results in a smaller number

of vertices covered by the output 21 or the complement of

21. Hence it is a shrinkage.

The shrinkage can be detected only if it is not

covered by the fault free realization and the growth caused

by the same fault due to the common lead label appearing

with different inversion parities in different g-literals.

we computed the terms that detect the shrinkages which are

not covered by the fault free realization in Step 3 through

Step 5. The result, more than the least number of terms

required for detecting all detectable shrinkages is

generated.

A term which contains conflict pairs covers no

vertices originally, so we can neglect it in the generation

of the terms which detect the faults that cause shrinkages.

If a g-literal in a term has functional equivalent of

1, it causes this term to cover more vertices than the

fault free situation. Hence it is a growth. A growth will

be detected if it is not covered by the fault free realiza-

tion. This implies a detectable growth has a nonempty

intersection with the complement of the original function.
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A fault will be detected if it contains a detectable

fault of smaller size on the N-cube, whether it is a

growth or a shrinkage. We took advantage of this property

to terminate the algorithm.

Step 1 is to ensure that a minimal number of computa-

tions is required. The fact that a minimal single covering

is a near minimal complete test set is because the terms

for shrinkages are more than necessary and the terms for

growths of the same input literal in different terms are

not merged into one subset. Hence they may be covered

more than once.

Example 4.1

Find a complete test set that detects all faults

in the logic network of Figure 2.4.

First, we use Algorithm MFD to generate the terms

which detect all faults in the network.

Step 1: Referring to Examples 2.4 and 2.5, we

select E" and E“ for the computations, where
1

II_._ "‘ "

E1 — xlx3 + x2x3 + x3x4 + x5 (1)

and

—II=-_ "' """"

E2 XIX2 + X3X5 + x4x5 (2)



i
i
l
l
"
)
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I
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Step 2: Since no term in Eqs. (1) and (2)

contains conflict pairs, all the terms have to be

investigated in the generation of terms which detect

shrinkages.

Step 3: The first iteration processes 4 terms

of Ei'.

 

M = X1X3(X5X3)(X3X4)X5 = X1X2X3X5

 

 

 

M2 = x2x2(xlx3)(x3x4)x5 = x1X2X3X5

M3 = x3x4(xlx3)(x2x3)x5 = X3x4x5

4 _ —. .— _. _ ..-
M - x5(x1x3)(x2x3)(x3x4) — x1x2x3x4 + x3x4x5

Step 4: All Mu's computed for Ei' are nonempty,

". The result of theso we can proceed to consider'E'2

second iteration of Step 3 is:

= X1X3X4X5 + X2X3X4XsN MM = 1X2X3X4 + X X 5 ;

5 1 2 6

M7 = x1§3§4§5 + x2§3§43€5

All Mu's computed in Step 3 for E2' also are nonempty,

so put them in set M and go to Step 6.

Step 6: In order to compute the terms that detect

the growth of the network function, we have to consider

all terms regardless of whether they contain conflict

pairs or not. For the problem concerned they happen

to be all the terms we investigated so far.
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Step 7: The fault free functions to be used in

the following computations are

—' - — —-—' ...-._..—

E (F0) - xlx2x3xs + x1x2x4x5 + x3x4x5

and

x i’x + x x + x i’x + x x
I

E‘2“?0’ 134 15 234 25

Step 8: Since all terms computed from each single

growth of all terms selected are nonempty, the

algorithm terminates without going to Step 9. From

XIX3 we have

M8 = x3 0 E'(Fo) = x1x2x3§s

M9 = 21 n'E'(Fo) = iiiéifiis

and

From this term The Mu's obtained

362x3 M10 = x1X2"3"?5 7 M11 = 22§3§4§5

SE3X4 M12 = x1x2x3x4'525; M13 = Yflags

x5 M14 = Eiwo)

iiiz M15 = xiii-53% + x129‘s ’

M16 = iixziéx4 + xliéxs

x3i5 M17 = xlxéx4§s + x2i5x4is

M18 = xlx3x5 + x2x3x5

i4i5 M19 = x1i3x425 + x2§3x4is

M = x i x + x i'x
20 1 4 5 2 4
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A minimal set of input vectors that covers all

Mu's generated is (00101, 01000, 01010, 01110, 10000,

10110, 11101, 1110) which can be found by row-column

dominance and other covering techniques.

In reading the example above, note that it is not

necessary to compute M if we recorded the growth of each

14

term and found there is a detectable growth in Ei'. We

also do not have to compute M and M if we note that the
10 19

3 direction and the X5 direction have

been investigated. Although these observations are feasible

growths into the X

for hand computations the tradeoffs necessary for machine

implementation remain to be assessed. Since the covering

set is found for all Mu's, some vectors of the set may

detect both the growth and the shrinkage.

4.2.2 Generationgf a Near Minimal Test Seplwhich Detects

AII Single Faults in a CombinationaI Logic Network

 

Algorithm MFD certainly will generate all terms

that detect all single faults in the logic network, but

for a possibly smaller set of terms and a smaller complete

test set, we can simplify it by means of the single fault

assumption.

In order to obtain some simplifications in Algorithm

MFD we need more information about the structure of the

logic network. The algorithm requires as data the lead

labels in the g-literals.
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Algorithm SFD (Single Fault Detection)

Data required for this algorithm are the expressions

E', E', E", E", E'(Fo) and E‘(F0).

1: Select either Ei or E; which contains the smaller

number of g-literals for each of the m primary

outputs of the network. If both have same number

of g-literals, choose one arbitrarily.

Separate zi,k1 (Zi,k0) terms in E; (E1) into two

different sets. One contains the terms which

contain g-literals have the same input literals

with different inversion parities and the other

does not.

For those terms in Ei' (Ei') which contains no

conflict pairs:

(a) Let i = l.

(b) Compute

_ II... 1 ll— 5

all jyk

= II__ '—I'I'_—(Mu ”i,k” n (2130))

all j#k

If Mu is nonempty, put it in set M.

(c) Repeat (b) for all terms in Ei' (Ei').

(a) If no Mu computed for each term is empty,

increase 1 by 1 otherwise go to Step 5.

(b) If not all Outputs of the network are considered

to to Step 3(b) otherwise go to Step 6. Now

set M contains the terms which detect any
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shrinkage of the coverings of the selected

Ei"s and Ei"s caused by any single fault

in the network.

Let there he 3 terms whose Mu's are nonempty and

t terms whose Mu's are empty. Put their corres-

ponding g-literals in set S and set T, respectively.

(a) If all g—literals in a term of T are covered

by some terms of S, delete this term from

T. Repeat this investigation for every term

of T.

(b) For each common lead label, with same inver—

sion parity, contained in two or more terms

in T: Compute

M = Z (zizfi) II ('z"-5-1)

“ keK j¢K 1'

(M = Z (2! '-0) II (2! '3. S)
u keK i,k j¢K i,j

where K contains the numbers of the terms

which have the common lead label.

(c) Increase i by 1, go to Step 3(b).

Remove all g-literals from set S and T. Set 1 = l

and j = 1.

Let W denote a 21:31 (Zi:§0) term with one or

more of its input literals replaced by l.

(a) Replace one input literal in the ZE'?l (ZE'?0)
1’] 1']

term by 1. Compute
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M
-I

11 W n Eiwo’

(Mu w nEi(FO))

If Mu is nonempty, put it in set M.

(b) Repeat (a) for every input literal in the term.

(a) If no Mu computed for each input literal in

a term is empty, increase j by 1 otherwise

go to Step 9.

(b) If not all terms in Ei'(Ei') are investigated,

go to Step 7 otherwise increase i by 1 and

set j = l.

(c) If not all selected Ei"s and E{"s are

processed, go to Step 7 otherwise stop. Set

M now contains the terms which detect all

single faults in the logic network.

Let there be 8 input literals whose deletion

generated nonempty Mu's and t input literals

whose deletion generated empty Mu's. Put the

corresponding g-literals in set S and set T,

respectively.

(a) Delete all the g-literals which are in both

8 and T from T.

(b) For each common lead label contained in two

or more g-literals, replace the corresponding

input literals in the Zizfil (25:30) term by

1 then compute Mu by the pr0per equation of

Step 7. Put each nonempty Mu in set M,

delete the corresponding g-literals from T.
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(c) Increase j by 1, go to Step 8(b).

There is certainly much more information that can be

obtained from Algorithm SFD, but since this information

is useless in detection test generation, we delay its

extraction until the generation of the complete location

test set.

Theorem 4.2
 

A minimal single covering of each Mu in set M

generated by Algorithm SFD is a near minimal complete

test set that detects all detectable single faults in

the logic network.

amt.

A single fault can cause multiple shrinkages in

several terms only if this fault is in the common lead

which has the same inversion parity in the corresponding

terms of E' or E' expression. If a term is jointly

covered by other terms of the same output, the shrink-

age of this term alone will not be detected. Further-

more, if a covered term has its g-literals covered by

those of uncovered terms, this term need not be inves-

tigated for the possible joint multiple shrinkage.

Because all the single shrinkages due to its member

g-literals can be detected by the terms which detect

the shrinkages of the covering terms.

A multiple growth in a term is due to a single

fault in the common lead label of several g—literals
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in the corresponding terms of E' or E' expression. A

growth of a g—literal in a term may be masked while the

same growth in other terms may not. Each g-literal

which is not masked in any one term need not be con—

sidered further for multiple growth, since the multiple

growth caused by a single fault in the g-literal will

also be detected by the term generated to detect the

single growth.

Example 4.2
 

If we use algorithm SFD to generate a near

minimal set of terms that detects all single faults

in the logic network of Figure 2.4, we will end up

with the same set of terms that was generated in

Example 4.1 to detect all faults of the network.

Hence a complete detection test set for single faults

is also a complete test set for multiple faults in

this particular network.

In a multiple output network, a fault may be detected

in one, two, ... up to all of the network outputs. If a

fault is not detected by a complete detection test set we

say that fault is undetectable and the network contains

redundancy. An undetectable fault is a redundant fault

as defined in Definition 3.2.
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4.3 GENERATION OF NEAR MINIMAL COMPLETE LOCATION TEST SETS

The generation of a complete test set that locates

stuck-at type faults in a combinational logic network will

also be accomplished in two steps: (1) the generation of

a near minimal set of terms and the fault set detected by

the terms. (2) Finding a minimal multiple covering of the

terms such that every pair of distinguishable fault sets

will be distinguished by the covering.

4.3.1 Generation ofpa Near Minimal Complete Test Set Which

Locates aIl Faults in a Combinational Logic Network
 

We shall call a collection of the subsets of

single faults a multiple fault set if each fault in the

set will cause (1) at least one g-literal to have functional

equivalent of l, or (2) at least one Ziiel or 23:30 term

_to have a functional equivalent of 0. '

A multiple fault of a multiple fault set is a non-

conflicting combination of at least one single fault from

one of the single fault subsets. For convenience, a

multiple fault F = [al/O, a2/0, a3/l, a4/0, aS/l] will be

written as [(al, a2,a4)/0, (a3, a5)/l].

Algorithm MFL (Multiple Fault Location)

Data required for this algorithm are the expressions

E', E', E", E", E'(Fo) and E'(F0).

1: Select either E5 or E3 which contains the smaller

number of g-literals for each of the m primary
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outputs of the network. If both have same number

of g-literals.choose one arbitrarily.

2: For all Z!'—l (Z!'-0) terms which contain no
i,k i,k

conflicting pairs: Let i = l.

(a) For all possible combinations of the terms

II —II

of Bi (Ei ), compute

= ot___ T
Mu Z (zi,kl) H (zi,jl)

k selected j not selected

= "...(Mn 2 (”i,k0’ H (z;j§5))

k selected j not selected

(b) Put all nonempty Mu's and the associated

multiple fault sets in set M. The multiple

fault set at this stage is the collection of

the subsets of single faults in the corres-

ponding terms. These subsets contain the

single faults whose effects on the shrinkages

of their terms are not offset by the appear-

ances of the faulty leads in different

g-literals with different inversion parities.

(c) Repeat (a) through (b) for all selected Ei'

(Ei').

3: For all terms in all selected Ei"s and E;"s.

Let W denote a degenerate Zi:E1 (Zi:E0) term.

(a) Set i = l and k_= l.

(b) For all possible combinations of the growths

of input literals in a term, compute

= _I ' ' II
Mu W n Ei(Fo) for growths in Ei
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or

Mj = W n Ei(F0) for growths in E;'

(c) Put all nonempty Mu's and the associated

multiple fault sets in set M. The single

fault subsets of the multiple fault set now

contains all single faults in the correspond—

ing g-literals whose effect on the growth of

the term is not masked by the fault free

function.

(d) Repeat (b) through (c) for all terms of the

same output.

(e) Repeat (b) through (d) for all selected

Ei' (Ei').

4: Group Mu's which have the same multiple fault set

and multiple fault sets which have the same Mu.

Stop.

Theorem 4.3
 

A minimal multiple covering of Mu‘s generated by

the Algorithm MFL which distinguishes each pair of

multiple fault sets is a near minimal complete fault

location test set of the logic network.

Proof

Algorithm MFL generates a set of terms that detects

any detectable combinations of shrinkages and growths

of the covering of the network function.



76

A single covering of each Mu of M is a complete

detection test set follows directly from Theorem 4.1.

A multiple covering which distinguishes every pair of

Mu's will distinguish all distinguishable multiple

faults. Because any multiple fault of the logic net-

work is a combination of faults in the generated

multiple fault sets, if any two combinations are dis-

tinguishable the multiple fault will be distinguished

by the covering which distinguishes between the

elements of the combination.

The non-minimal property of a minimal covering

follows the same arguments in the proof of Theorem

4.1. Step 4 ensures there are no overlaps in the

Mu's and in the multiple fault sets.

When a single fault is investigated to determine

whether its effect on the shrinkage of a term is offset by

the possible growths in other terms, each vertex in the

shrinking term has to be considered separately because the

offset may be partial. The Mu and the multiple fault set

then can be adjusted accordingly.

Example 4.3

Find a near minimal complete test set that

locates all multiple faults in the logic network of

Figure 2.3.
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First, we use Algorithm MFL to generate a near

minimal set of terms which will distinguish every

distinguishable pair of the multiple faults.

Step 1: Refer to Example 3.1, E' is selected to

be processed, where

E' = <X
l!

o<x3’

+ <§i,I,IE,5,8,9,z>-<§

2I

3,4,4a,7,9,z>

2I

2,4,4a,7,9,Z>

'2,E,45)6,8,9,z>

+ <2 ,I,1—b-,5,8,9,Z>‘<Y3,'§,z,m,6,8,9,z>

Step 2:

Terms investigated

x1x2x3

X
I

The result of this step is:

M

u

M1

Multiple fault set

F1
[(l,la,2,3,4

43:719)/0]

[(1,1b7274b)/1.

(5,6,8,9)/0]

[(l,lb,3,4,4b)

/l,(5,6,3.9)/0]
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Step 3: We need E'(Fo) = XIX2 + XIX3 + x1x2x3

for computing the Mu's. The result is:

Inputs

Term replaced Mu Multiple fault set

x1x2x3 x1 M8 = Silxzx3 F8 = [(l,la,7,9)/l]

x2 M9 = x1§2x3 F9 = [(2,4,4a,7,9)/l]

x3 Mlo = Xlx2§3 Flo = [(3,4,4a,7,9)/1]

x1'x2 ' M11 = M8 + M9 F11 = [F8' F9]

x1' x3 M12 = “3 + M10 F12 = [Fa' F10]

X2' X3 M13 = Xli2 + xl§3 F13 = [F9' F10]

All M14 = E'(Fo) F14 = [F8, F9, Flo]

2122 E1 M15 = x122 F15 = [E§:§?;{3il

22 M16 = 5"1"2X3 F16 = [§§:§:g?}{?'

All M17 = E"Fo) F17 = [F15' F16]

§1§3 i1 M18 = X1§3 F18 = P15

3('3 M19 = M16 F19 = [E2:g:g?}{?'

All M20 = E‘(FO) F20 = (Fla, F19]

Step 4: Since F18 = F15 we can delete M18 and

substitute M15 by X122 + x135, which in turn equals

M13. So M15 can be deleted and F13 replaced by [F9, F10,

F15]. We can also remove M17 and M20 from set M, then

replace F14 by [F8’ F9, F10, F15, F16' F18' F19].
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Finally, since M8 and M16 are equal, we can delete

M16 and replace F8 by [(1,1a,6,7,8,9)/1, (2,4,4b)/0].

Now,a minimal multiple covering of remaining

Mu's which distinguishes each pair of remaining

multiple fault sets is found to be the all possible

combinations of input literals, i.e. (000, 001, 010,

011, 100, 101, 110, 111) which is a near minimal

complete location test set.

4.3.2 Generation of a Near Minimal Test Set which Locates

AII Single Faults in a CombinationaI Log c Network

The algorithm to be discussed is a direct

extension of Algorithm SFD and bears some similarities

with Algorithm MFL of preceding subsection.

Algorithm SFL (Sipgle Fault Location)

Data required for this algorithm are the same as

Algorithm MFL.

1: Select either E; or E; which contains the smaller

number of g-literals for each of the m primary

outputs of the network. If both have same number

of g-literals, choose one arbitrarily.

2: For all Zizil (Ziz—O) terms which contain no

conflicting pairs: Let i = l.

(a) Compute
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= II_ _.Mu (Zi,kl) II (zi,jl

all jfk

= II_ I
(Mu (Zi’kO) II (21:30))

all j#k

for each term in Ei' (Ei').

Put all nonempty Mu's and the associated set

of single faults in set M. The set of

single faults contains all single faults in

the term that cause such a term to have the

functional equivalent of 0 without considering

the possibly masking growths caused by the

same single faults.

3: For the terms of Step 2 which contain common

lead labels.

(a)

(b)

Compute

M

11

Z (221-1) n 7377:33‘

keK l'k jtK 1'3

(Mu 2 (2;:E0). n (2. e0 )

keK j¢K 1’3

where K contains the numbers of the terms

which have common lead labels under

investigation.

Put all nonempty Mu's and associated single

faults in set M.

4: Repeat Step 2(b) through Step 3 for each Ei'

(EE') selected.
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5: For all terms selected:

Let W denote a degenerate Zi'El (Zi'EO) term.

I I

(a) Set 1 - 1 and j a l.

(b) Compute

3 " - I I
Mu Wll Ei(F0) for growths in E1

or

Mu = W’n Ei(F0) for growths in E;'

for each single and possible multiple growth

in a term.

(c) Repeat (b) for all terms in Ei' (El').

(d) Repeat (b) through (c) for all E£"s and

§"'s selected.

6: Group Mu's which have the same fault set and group

fault sets which have the same Mu.

Theorem 4.4

A minimal multiple covering of Mu‘s generated by

Algorithm SFL which distinguishes each pair of single

fault sets is a near minimal complete test set which

locates all single faults of the logic network.

Proof

The statements for the proof parallel those of

Theorem 4.2 and Theorem 4.3.

Q.E.D.
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Example 4.4

Find a near minimal complete test set which

locates all single faults in the logic network of

Figure 2.3.

Refer to Example 4.3 and use Algorithm SFL to

generate the required Mu's and the single fault sets.

Step 1: Select E‘ to be processed.

Step 2: The result of this step is the same as

the first three Mu's and Fu's of Example 4.3.

Step 3: After this step, we obtain the M6 and M7

of the preceding example, but the single fault sets

are F6 = [(5,6,8,9)/0] and F.7 = [9/0].

Step 4: The network has pnly one output, so

this step is skipped.

Step 5: We get M8' M9, M 0' M and M of

l 13 14

Example 4.3 for the x1x2x3 term except that F13 =

[(4,4a,7,9)/l] and F14 = [(7,9)/l]. For the term of

5, M and M = [(8,9)/l]. From

16 17

and M20 = [(8,9)/1].

15 and M18 as before except the

xlx2' there are M1

X1X3 we have M18' M19

Step 6: Delete M

new Fl3 is [(4,4a,5,7,8,9)/l, (l,lb)/0]. For the

removal of M17 and M20, the new F14 = [(7,8,9)/l] is

introduced. Finally, delete M16 and make F8 equal to

[(lllaI6I7I8I9)/1I (2I4I4b)/0]°

We do have a smaller set of Mu's for single faults

than that for multiple faults. However, the near
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minimal complete location test set found is no smaller

for this particular logic network.

4.4 SEARCH OF MINIMAL COMPLETE DETECTION TEST SETS

In this Section we shall search for a minimal set

of terms such that a minimal single covering of these terms

is a minimal complete test set which detects all faults in

the combinational logic network.

The logic networks will be assumed to be irredundant.

The generalization of the procedure to be presented in this

Section to general networks parallels the algorithms dis-

cussed in Section 2 and will not be repeated in this Section.

Lemma 4.4.1

Any multiple fault in a combinational logic

network can be represented by a combination of faults

in non-fanout primary input leads and the fanout

branches of the network.

2922

Any multiple fault that includes the output lead

of the elementary gate is equivalent to the single

fault in the output lead only. But a stuck output of

an elementary gate is equivalent to a stuck input

leads or lead of the gate. For a stuck fanout stem

lead the fault is equivalent to stuck branches.
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Tracing back from the primary output leads of

the network and repeating the above arguments, we

have the lemma.

Q.E.D.

We shall call the non-fanout primary input leads and

the fanout branches the checkpoints of the network.
 

Procedure MTG (Minimal Test Generation)

(1) Find a minimal number of Z! —1 (Z! —O) terms
i,k i,k

that covers all the checkpoints of the network.

(2) (a) Compute

= II_ _ ll

Mu (zi,k1) H (ziijl) for terms from Ei

all j¢k

= II II "II

Mu (Zi,k0) H (21,30) for terms from E1

all j¢k

(b) If Mu is empty, go to Step 1.

(c) If Mu is nonempty, but at least one check-

point is a selected term is masked by a

growth and the deletion of this checkpoint

destroys the property of coverage obtained

in Step 1, go to Step 1.

(3) (a) Find a minimal number of g-literals in E; (Ei)

which covers the complement of lead labels

not covered by the terms selected in Step 1.

(b) Compute



(4)

(5)

(6)

(a)

(b)

(e)

(d)
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M
—I

11 W (1 Bi (F0)

(Mu W n Ei(F0))

for each g-literal selected in (a), where W

is the disjunct of the degenerate Zizfil

(Zi1E0) terms of which the input literal of

the g-literal in question is replaced by 1.

Find a minimal number of terms in E; (Ei)

which covers all the checkpoint labels that

are not covered by the terms selected in

Step 1.

Compute Mu by the proper equation of Step 2(a).

If Mu is empty, go to (a).

If Mu is nonempty, but at least one check-

point label in a term is covered by a growth

and the deletion of this checkpoint destroys

the property of coverage obtained in (a), go

to (a) .

Repeat Step 1 through Step 4, start Step 1 for

the terms in E‘.

For both E' and E':

(a) Find a minimal single covering for Mu's

generated in Step 2 and Step 3.

(b) Find a minimal single covering for Mu‘s

(C)

generated in Step 2 and Step 4.

Select one which contains a minimal number of

input vectors from the four coverings found

in (a) and (b). Stop.
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Theorem 4.5

The set of input vectors selected in Step 6(a) of

Procedure MTG is a minimal complete detection test set

for an irredundant network.

2:22:

The purpose of Procedure MTG is to detect the

stuck-at type faults at all checkpoints of the network.

Since the network is irredundant, every shrinkage

caused by a g-literal will be detected. In particular,

the shrinkages of the g-literals in the selected terms

of Step 1 will be detected, hence Step 1 can be

satisfied.

For a checkpoint, both stuck-at l and stuck-at 0

faults can cause a shrinkage in the network function if

the checkpoint has different inversion parities in the

different terms selected in Step 1. It is necessary and

sufficient to cover the checkpoint labels which are not

covered by Step 1. Step 3 and Step 4 serve this purpose.

Step 5 searches the complement of the network

function. After four possible minimalities are com-

puted, we get a minimal complete detection test set for

the network by selection.

Example 4.5
 

Find a minimal test set which detects all faults

of the logic network of Figure 4.1.
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Figure 4.1 The Irredundant Network for Example 4.5.

The E' and E' expressions of the network can be

found by using Algorithm G of Chapter 2. They are:

E' = <x1,_l_,5,§_a_,9,11,z>-<X2,_2,5,_5_a_,9,11,z>

«I? ,3,6,_6_a_1,7,9,ll,z>

+ (X 'l's'églgll-IIZ>.(xz'glsliilgl11IZ>
1

°<f I£I6I§2I7I9I11IZ>

+ <§i,:}§,§§,8,10,ll,z>-<x3,§,6,§p,10,ll,2>

.<X 4,6,.6_b_,10'11,Z>

4'—

+ (KZ’ZIE'E’8[10,11]Z>.<X3I_3_16I_6_§I10I11’2>

o<x4,4_,6,§_b,10,ll,2>

and

E' = <§1,L5',E,'§,II,_>~<§3,§,6,63,T6,II,2'>

+ <"'1,I, ,53, ,II,'z'>-<'}'{'4,_4_','6,EE,IU,II,'Z’>



-<X _2__,5,§_1_>_,'8‘,IIY,II,§>
2I

1,155b3—Ullz><X2,255b8TU-1

+ <x3,_3_, 6, _6_a, 7, 3,11,23 <x4 ,_4_,6,_6_§_,7,§,IT,-Z->

.<X4IZIKI§_E_II6IIII-z->

where the checkpoints are underlined.

Step 1: Select the first and the third terms

from E'. The checkpoint labels covered by this

selection are: l,I,2,3,3,4,5a,55,63,6b.

Step 2: The Mu's obtained are: M1 = XIXZXBX4

and M2 = X1X2X3X4. Both terms are nonempty and no

checkpoint is covered by any corresponding growth.

Step 3: One of the minimal number of g-literals

which covers the checkpoint labels 2,4,5a,55,6§,6b

contains the second and the third g-literals of the

first term and the first and the third g-literals of

the third term. The Mu's computed are:

M3 = 111x23?3 + xlx2x4; M4 = xlx2x3x4,

+XXX4

2 3
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Step 4: One of the minimal number of terms in

E' that covers the checkpoint labels 2}T}5§,5b,6a,65

contains the fourth and the fifth terms of E'. The

Mu's that detect the shrinkages of these terms are:

M6 = x1X2X3X4 and M7 = X1X2X3x4. There is no check—

point covered by the corresponding growth.

Step 5: Start from Step 1 by picking the first

and the fifth terms of E‘. These two terms cover the

checkpoint labels 1,I,2,3,3,4,53,56,6a,6“. The Mu's

are M8 = X1X2X3X4 and M9 = X1X2X3X4. Then we choose

the first and the second g-literals of the first term

and the second and the fourth g-literals of the fifth

term. The result 13: M10 = X1X2X3 + x1x2x4,

M11 = X1X3X4 + X2X3X4, M12 = X1X2X3X4and M13 = X1X2X3X4.

Finally, use the second and the fourth terms of E'

14 = x1X2x3x4 and M15 = x1X2x3x4'

Step 6: The result of this step is:

to get M

The Mu's to be covered A minimal covering

(M1, M2, M3, M4, M5) (0010, 0111, 1001, 1101, 1111)

(M1, M2, M6, M7) (0111, 1010, 1101, 1111)

(M8, M9, M10, M11, (0101, 1011, 1110, 1111)

M M )
12’ 13

(M8, M9, M14, M15) (0101, 1011, 1110, 1111)

We can choose either the second or the third set

of input vectors as a minimal complete detection test
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set for the network. Note that the fourth test set is

the same as the third set.

4.5 CHAPTER SUMMARY AND REMARKS
 

The power of the CGEMs, with its various modified

forms, in generating the complete test sets was demonstrated

in this Chapter.

Two algorithms for generating near minimal complete

test sets and two algorithms for generating near minimal

complete location test sets were presented. As the examples

illustrated, the generation of complete test sets under the

single fault assumption is sometimes no simpler than that

with the multiple fault assumption.

A method of searching for a minimal complete detection

test set for an irredundant network was also suggested.

Applying this method to a network, i.e. The network of

Figure 4.1 we found a smaller minimal complete detection

set than that obtained by Poage's method. This is due to

the fact that we used a "better" model than that of Poage‘s.

In reading the searching method, i.e. Procedure MTG,

one may note that all the algorithms discussed were not

intended for the generation of minimal complete test sets.

Rather, we tried to simplify the computations as much as

possible and at the same time kept the test sets at a

reasonable small size. Therefore, these algorithms can

easily be modified, with the aid of Procedure MTG, to

conform to one's particular situation.
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When applied to a redundant network, the algorithms

presume no redundant faults exist. For a redundant net-

work with the presence of redundant faults, we can: (1)

Substitute the g-literals which are affected by each of the

possible combinations of the redundant faults by apprOpriate

functional equivalents. (2) Find a complete test set Ti

I
' .—

for each of the modified E' s or E' s. The disjunction of

Ti's is a complete test set.



CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

5.1 CONCLUSIONS

This thesis presents an algebraic model which

describes accurately and completely the physical and

logical structures of a combinational logic network com-

prised of elementary gates. The model also provides a

large degree of flexibility for expressing the interdepen-

dencies of the physical and logical structures of an object

network.

After the model is constructed by an algorithm, it is

used for (l) analyzing stuck-at type faults and bridging

faults and (2) generating complete test sets. The fault

functions realized by a network under the influence of the

stuck-at type faults or the bridging faults were rigorously

investigated. The generation of complete test sets was

studied by four algorithms and one procedure. The algorithms

and the procedure are straightforward and can be modified

to satisfy one's particular situation. The memory require—

ments are minimized by taking advantage of the flexibility

of the model.

92
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5.2 SUGGESTIONS FOR FUTURE WORK

Many conjectures from the articles of fault

diagnosis and test generation can be confirmed or disproved

using the model discussed in this thesis. For example:

Armstrong's [1] conjecture: There exist at least

one set of literals [L] and an associated set of

tests [T] that tests an appearance of every

literal in [L] for s-a-l and s—a—O and also detects

every fault in the net.

This is true if we consider the set of literals of

Armstrong is the set of all distinct g-literals of the

network. We may have an even smaller set of g-literals by

Theorem 4.5.

Bossen and Hong's [3] conjecture: Any strategy

based on checkpoint verification seems infeasible

for redundant networks.

This can easily be diSproved by viewing the detection

of a shrinkage and a growth in Algorithm MFD is the verifi—

cation of checkpoints in a g-literal of the network.

There are some interesting problems which remain to

be solved.

The problem of detecting and locating stuck—at type

faults, both permanent and intermittent, in sequential

logic networks has not been satisfactorily solved. This

is due to both the large number of state transitions and

the length of test sequence which brings the network to a

required state. I conjecture that by cascading the combi—

national equivalent of a sequential network and generating
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test set for first, first two, first three, ... time frame

sequentially, removing the checkpoints which are investi-

gated and adding checkpoints from the new time frame the

computational burden may remain manageable and the problem

can be more satisfactorily solved.

The design of easily testable networks without adding

logic circuits for testing purpose is another interesting

problem. From Chapter 4 we know if the shrinkage of each

term and the growth of each g-literal are detectable, then

the algorithms can be terminated earlier and the test set

will be smaller. A more general network structure other

than two-level and tree realizations remains to be dis-

covered. A retrospective study of this thesis may shed a

little light on this problem.

Even if all functional units can be modeled in terms

of elementary gates and the checkpoints can be used ade-

quately in the model to describe a MSI or a LSI logic

network, one may still want to develop a model in terms of

other small functional units for a LSI network. The

possible consequences are (l) The model cannot be used

to detect redundancy in the network, (2) the preciseness

of the parity of each label in an information path.wi11

be lost, hence the computations for test generation

will be much more complicated.
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J

A DATA STRUCTURE FOR ALGORITHM G

OF SECTION 2.3

For the machine implementation of Algorithm G a

doubly linked list structure can be used to represent the

equivalent Boolean expression of a logic network. Each

node of the list represents a distinct lead label together

with the addresses of its predecessors and successors.

The size of a node depends on the properties of the

logic network. In terms of number of bits, it is the sum

of the following four items:

1. For the lead label

flog2 (The largest number of the lead labels)1

+ rlogzl(Maximum numb er of fanout branches with

the same labeling integer) + 1]1 bits.

where [x1 is the smallest integer z x.

2. For indicators

a. The label is barred or non-barred: 1 bit.

b. The lead is a network output, a primary

input or an internal lead: 2 bits.

95 h\\
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c. The lead is the output of an OR gate or an

AND gate: 1 bit.

3. For the addresses of predecessors

[(Maximum number of input leads for an elementary

gate) + 1(for endmarker)]

X [flog2 (Total number of leads of the network)1

+ 1(indicating whether the label is barred)

+ 1(indicating whether it is a predecessor or

a successor)] bits.

4. For the addresses of successors

[(Maximum number of fanout branches from a fanout

stem) + 1(for endmarker)]

X [Flog2 (Total number of leads of the network)1

+ 1(indicating whether the label is barred)

+ 1(indicating whether it is a predecessor

or successor)] bits.

For a network of 2,000 gates with 40 primary inputs,

let the maximum number of fanout branches with the same

labeling integer be 6, the maximum number of fanout branches

from a fanout stem be 3 and the total number of distinct

leads of the network be 5,000. It requires 168 bits to

represent a node. Counting both barred and non-barred

labels, a memory size of 30K 60-bit words is needed.

In order to illustrate the data structure discussed,

Example 2.3 is recomputed as follows:
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For the network of Figure 2.4 the node of List requires

53 bits which is divided into 11 fields:

Field Length Descriptions

(in bits)

1 5 Represents the integer part of lead

label.

2 2 0 for non-fanout, l for fanout a and 2

for fanout b.

3 l 0 for non-barred, l for barred.

4 2 0 for network output, 2 for primary

input and l for internal lead.

5 l 0 for OR gate, 1 for AND gate. (primary

input lead use 0.)

6-8 7 each For the addresses of predecessors which

will be represented by the labels with

or without overbar. E for endmarker

and M for not used.

9-11 7 each 'For the addresses of successors which

will be represented by the labels with

or without overbar. E for endmarker

and b for not used.

The node describing label p will be denoted by Np

where p either barred or non-barred. Two more Lists will

be introduced to keep track of path expansion process.

List A stores the non-primary input label and its address

from the end and its head element is to be removed for

expansion. After expansion the label and the primary input
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label introduced together with the corresponding addresses

are stored in List B.

The starting state after the network is labeled by

Procedure L is

N12: 12,0,0,0,0,9,lla,E,E,b,b

N13: 13,0,0,0,l,llb,8,E,E,b,b

A(0): 12,13

B (0) : (empty)

The first step is to remove 12 from List A then

generate N9 and N11. Since 9 and 11 are not primary input

lead labels, they are put at the tail of List A. 12 is

put at List B. Note the integer in the parentheses after

A or B denotes the number of expansions completed.

N9: 9,0,0,1,1,6,7E,E,12,E,M

Nlla: 11,1,o,1,o,11,E,p,12,E,U

A(l): 13,9,lla

3(1): 12

The further results are:

Nllb: 11,2,0,l,0,11,E,b,13,E,b

N8: 8,0,0,l,0,1b,2b,E,13,E,b

A(2): 9,11a,llb,8

8(2): 12,13

N6: G’O'IIIIO'E'E'Epng’M

N7a: 7,1,1,1,o,7,s,p,9,s,b
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A(3): 11a,11b,8,6,7§,

B(3): 12,13,9

N11: 11,0,o,1,o,1o,5,E,11a,E,h

A(4): 11b,8,6,7§,11

B(4): 12,13,9,lla

For the fifth step 11b is extended to 11 which is in

A(4), so we update N11:

N11: 11,0,0,1,0,10,5,E,11a,11b,E

A(S): 8,6)75,ll

B(S): 12,13,9,11a,11b

Nlb: l,2,0,1,0,l,E,M,8,E,b

N2b: 2,2,0,l,0,2,E,fl,8,E,b

A(G): 6,75,11,1b,2b

8(6): 12,13,9,11a,11b,8

N33 lllIlIlIOIIIEIMI-é-IEI”

N53: 2I1I1I1IOI§IEIMI€IEIM

A(7): 73,11,1b,2b,I3,§E'

5(7): 12,13,9,11a,11b,8,6

N7: 7,0,1,1,o,3,E,M,73)E,M

A(8): 11,1b,2b,IE,§E,7

3(3): 12,13,9,11a,11b,3,6,7§

N10: l0,0,0,l,l,7b,5,E,ll,E,b

N5: 5,0,0,2,0,E,M,b,ll,E,M

A(9):, 1b,2h,I§,§3,7,1o

8(9): 12,13,9,11a,116,8,637§,11,5
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Note that lead label 5 is a primary input lead label.

It can be extended, so put it into B(9) rather than

attached it to A(9).

N1: 1,0,0’2'0,E'M,”'1b

A(lO): 2b,IE,§E,7,10

B(lO): B(9),lb,l

where the notation B(9),lb,l is used to represent the

insertion of lb and 1 into List B(9).

N2: ZIOIOIZIOIEIbIbIZbIEIb

A(ll): IE,§§,7,10

B(ll): B(9),lb,1,2b,2

NI: lrorlrzloIEIbIMITaIErb

A(12): 23,7,10

3(12): B(9),1b,1,2b,2,I3,I

NE: ZIOIlIZIOIEIMIKIEETEIb

A(13): 7,10

B(13): B(9),1b,1,2b,2,I§,1,23,2

N3: 3I0I0I2I0IElblwl7IEIb

A(14): 10

3(14): B(9),1b,1,2b,2,I3,I,§3,§,7,3

N7b: 7,2,0,1,0,7,E,p,10,E,M

N4: 4,0,0,2,0,E,p,b,10,s,p

A(15): 7b

3(15): B(9),1b,1,2h,2,I§,I}7§,§,7}3,10,4
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N7: 7,0,0,1,0,3,E,M,7b,s,8

A(l6): 7

B(16): B(lS),7b

N3: 3.0.1.2.0.E.)6:)6:7.E.)6

A(l7): (empty)

3(17): B(lS),7b,7,3

The program will stop at the eighteenth step, since

the empty A(l7) implies the path sets generated are

g-literals.

In the above computations the input to the program is

assumed to have all the information needed. The network

information can be compactly stored and easily fetched if

they are arranged in an appropriate order.

For a large network one may like to sort the nodes in

List B in the manner that will save the searching time.

The procession of List A is similar to the breadth—first

search method in artificial intelligence. The size of

List A may be reduced by using the depthvfirst method but,

in general, for a network of various lengths of geliterals

the reduction will not be appreciable.

The AND/OR graph representation of the network of

Figure 2.4 is depicted on the next page. One may note

with a little effort the sum of products form of the

g-literals and the functional equivalent of the network can

be obtained. Furthermore, with the interpretations of AND

and OR, barred and non-barred interchanged it is the

complemented form of the network.
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Figure A.l. The AND/OR Graph representation of Figure 2.4.
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