## FOREST SUCCESSION ON THE FOORLY-DRAINED SOILS IN THE HIGGINS LAKE AREA OF MICHIGAN

Thesis for the Degree of Ph. D.
MICHIGAN STATE COLLEGE
Tao Ku
1954

71-82.5

This is to certify that the

thesis entitled

\*FOREST SUCCESSION ON POORLY DRAINED SOILS

IN HIGGINS LAKE AREA OF MICHIGAN"

presented by

TAO KU

has been accepted towards fulfillment of the requirements for

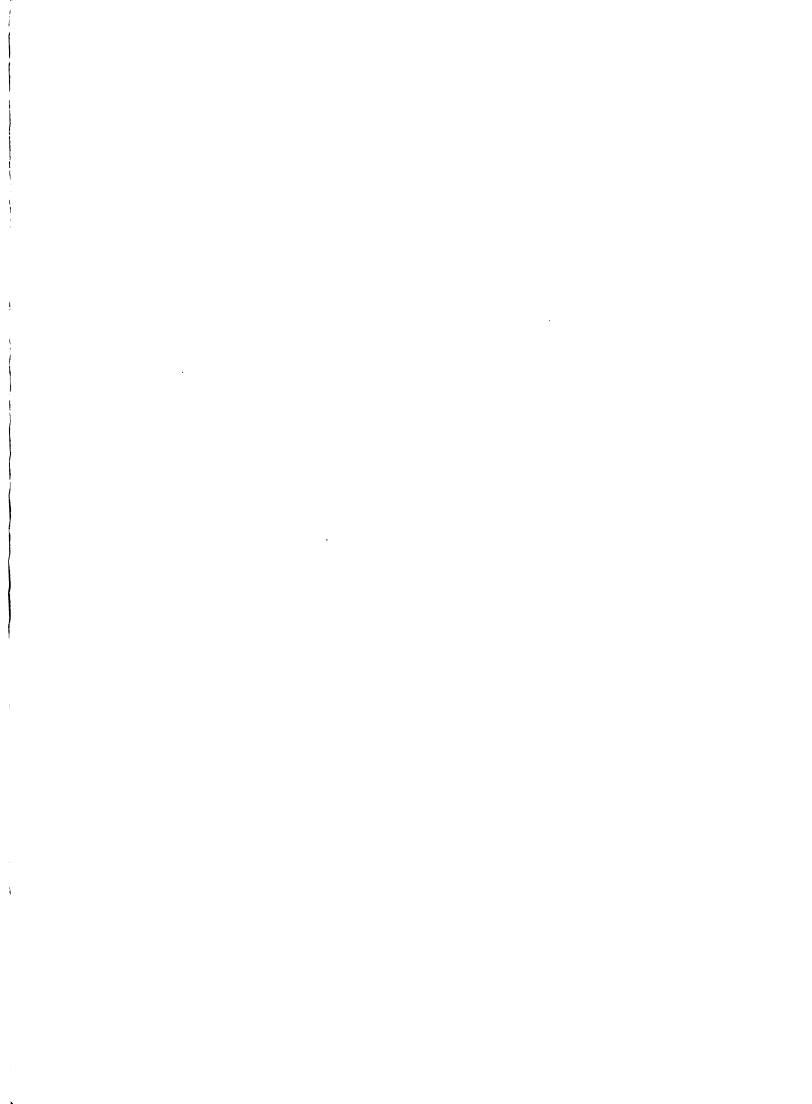
Ph.D. degree in Forestry

Major professor

Date July 30, 1954

**O**-169




OVERDUE FINES: 25¢ per day per item

#### RETURNING LIBRARY MATERIALS:

Place in book return to remove charge from circulation records



| i<br>i |  |  |  |
|--------|--|--|--|
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |



rcasi

IN 3

State of in

# FOREST SUCCESSION ON THE POORLY-DRAINED SOILS IN THE HIGGINS LAKE AREA OF MICHIGAN

BY A

TAO KU

#### A THESIS

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Forestry

Rual examination

Misertation: Fo

Miline of Stud

Homephical It

#### Tao Ku

## Candidate for the degree of Doctor of Philosophy

Final examination, Friday, July 30, 1:30 P.M., Forestry Building

Dissertation: Forest Succession on the Poorly-drained Soils in the Higgins Lake Area of Michigan.

Outline of Studies:

Major subject: Forestry
Minor subjects: Soils, Geology

Biographical Items:

Born, March 26, 1925, Chaochow, Kwangtung, China

High School, Nankai Middle School, Chungking, Szechuan, China, 1943

Undergraduate Studies, University of Nanking, Nanking, China, 1943-1948-B.S. degree, Forestry

Graduate Studies, Michigan State College, 1949-1950 - M.F. degree, Forestry 1950-1954 - Michigan State College, East Lansing, Michigan

Experience: Member, Chinese Youth Expeditional Army (203D), 1945

Member of Xi Sigma Pi

The authorized appreciation to I directly, under a minimiser this is

The writh half lawton, illance, helpfu

the work.

Grateful intia Valuable Wir. Robert E

Mi for the asc

Targe of the H

Driving ted.

The inv

Stanta in

after in condu

To my version the second of th

#### ACKNOWLEDGMENTS

The author wishes to express his sincere thanks and appreciation to Dr. T. D. Stevens, Head of the Department of Forestry, under whose inspiration, supervision, guidance and criticism this investigation was undertaken and completed.

The writer is further indebted to Dr. William B. Drew, Dr. Kirk Lawton, and Dr. Stanard G. Bergquist for their kind guidance, helpful suggestions and criticism in the conduct of this work.

Grateful acknowledgment is also due to Dr. C.L. Gilly, for his valuable help in identifying the vegetation specimens; to Dr. Robert E. Dils, for his criticism in the manuscript; and for the assistance received from Mr. H. V. Borgerson, in charge of the Higgins Lake State Forest where this study was conducted.

The investigator extends his sincere thanks to.

Mr. Kim K. Ching, who is working on Forest Succession on the Upland Soils in the same area, for his helpful assistance and suggestions in the field, and the continuous discussion thereafter in conducting this investigation.

To my wife, Victoria Ku, who contributed to certain phases of the manuscript, and her continuous encouragement and support, grateful acknowledgment is given for her patient effort.

FOREST ST

IN THE

State Co in p

## FOREST SUCCESSION ON THE POORLY-DRAINED SOILS IN THE HIGGINS LAKE AREA OF MICHIGAN

By

TAO KU

### AN ABSTRACT

Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

Department of Forestry

Year 1954

Approved 1. D. Statistics

The objec limitify the vari draited soils in posable trend of The Hisa hal part of the

"is within the Mar defined

Five ty

imined soils 1 maiom type, (2

thin, (3) the I

the Swamp Cont.

Winats of the i.e., 1/5 acre

for annub Verse

tation below g

Ecolo:

(1):::satio,

1434623 318374 iliei effect

ity, and pre-

TAO KU AESTRACT

The objective of this study is to distinguish and identify the various types of vegetation found on the poorly-drained soils in the Higgins Lake area and to determine their probable trend of succession upon the ecological basis.

The Higgins Lake area is located in the northern central part of the lower penisula of Michigan. Ecologically, it is within the Hemlock-White Pine-Northern Hardwoods Formation as defined by Nichols (1935), Braun (1950), among others.

Five types of vegetation were recorded on the poorly-drained soils in the area. They were: (1)The Marsh or Open-meadow type, (2)the Swamp Shrubs of Salix-Cornus-Alnus Association, (3)the Lowland Aspen of Populus-Salix Association, (4) the Swamp Coniferous forest, and (5)the Swamp Hardwood forest. Quadrats of three sizes were used for the vegetation study, i.e., 1/5 acre quadrat for tree vegetation; 1/10 acre quadrat for shrub vegetation; and 1/1000 or milacre quadrat for vegetation below six feet tall, the herbaceous layer.

Ecological factors were considered in three groups: (1)Climatic, (2)Edaphic, and (3)Biotic. Among the climatic factors discussed, evaporation is believed to show the combined effect of the other three, temperature, relative humidity, and precipitation. Data of evaporation rates in three

CAC KU

ilfferent vege

Ministers. R for the Marsh

his indicates

of the lower e

Marsh may still

Makent of fo

Soils

of seven soil Staracterist1

Il the labor

ferences betw

the soils. C

Min than the Wisture leaf

tes from the iencus Forest

tan the mine

ati in react

Stady Shrubs tte Swamp Har

Biot:

icance to in irained soils

an is probat

TAO KU ABSTRACT

different vegetation types were obtained by using Livingston atmometers. Results show that the evaporation rate decreases from the Marsh to the Swamp Shrubs type and to the Swamp Forest. This indicates that although the forest cover may be the cause of the lower evaporation, the higher evaporation rate in the Marsh may still be an important factor in retarding the establishment of forest cover on that area.

Soils of all the quadrats were investigated. Samples of seven soils were collected by horizon to determine their characteristics. Statistical analyses were applied to analyze all the laboratory data. Results show that there were no differences between the volume weight and the total porosity of the soils. Only the Newton sand had a lower cappilary porosity than the others. Results of field determinations of soil moisture leads to the belief that soil moisture content decreases from the Marsh to the Swamp Shrubs and to the Swamp Coniferous Forest. The peaty soils had higher organic contents than the mineral soils. Soils of the Marsh type were strongly acid in reaction, followed by the two Rifle peat soils of the Swamp Shrubs and the Swamp Conifers. The Bergland soils of the Swamp Hardwood type were almost neutral in reaction.

Biotic factors are not believed to be of great significance to influence the forest succession on the poorly-drained soils in the region. Fire which is usually caused by man is probably the most important factor that will induce secondary succession.

the state of the s

•

mer or otherwid Antiers of This Mileved to be TAO KU ABSTRACT

Diagrams of forest succession on the poorly-drained soils in this area is shown in Fig. 12. The principal trend of succession is believed to be that from Marsh to the Swamp Shrubs to Swamp Conifers to Swamp Hardwoods and finally after a relatively long period of time to the upland, mesophytic, climax type of the Hemlock-White Pine-Northern Hardwoods. The Lowland Aspen type is most commonly thought to be the fire or temporary type after the original forest has been burned over or otherwise denuded. The Swamp Hardwoods, the Swamp Conifers of Thuja-Abies-Picea, and the Marsh type are all believed to be the physiographic subclimax type to the area.

## TABLE OF CONTENTS

|                                                                              | rage       |
|------------------------------------------------------------------------------|------------|
| LIST OF TABLES                                                               | x          |
| LIST OF FIGURES                                                              | xiii       |
| LIST OF PLATES                                                               | χv         |
| INTRODUCTION                                                                 | 1          |
| REVIEW OF LITERATURE                                                         | 2          |
| A.ECOLOGICAL CONCEPTS                                                        | 2          |
| B.CLIMAX FOREST OF THE NORTHERN LOWER MICHIGAN                               | 10         |
| C.PERTINENT LITERATURE TO THE STUDY OF VEGETATION ON POORLY-DRAINED SOILS    | 15         |
| DESCRIPTION OF THE REGION                                                    | 24         |
| A.HISTORY AND GENERAL DESCRIPTION                                            | 24         |
| B.CLIMATE                                                                    | 30         |
| C.GEOLOGY                                                                    | 34         |
| D.SOIL                                                                       | <b>3</b> 9 |
| E.COVER TYPE                                                                 | 43         |
| VEGETATION ANALYSIS                                                          | 47         |
| A.FIELD PROCEDURE                                                            | 47         |
| B.OFFICE PROCEDURE                                                           | 51         |
| C.VEGETATION INVENTORY                                                       | 55         |
| 1.SWAMP HARDWOODS OF BLACK ASH-AMERICAN ELM-RED MAPLE ASSOCIATION            | 56         |
| 2.SWAMP CONIFERS OF BLACK SPRUCE-BALSAM FIR-NORTHERN WHITE CEDAR ASSOCIATION | <b>6</b> 8 |
| 3.LOWLAND ASPEN OF POPULUS-SALIX ASSOCIATION                                 | 80         |
| 4.SWAMP SHRUBS OF SALIX-CORNUS-ALNUS ASSOCIATION                             | 88         |
| 5.MARSH                                                                      | 91         |

MCICICA

A.CLIMAT

1.TEGT

. .

2.RELAT

3.REC]

4.EVAPO

BLEATHIO

1.5011

2.SOIL

3.50IL

4.30IL

5.3CIL

5.30IL

7.SCIL

graticate

l.Insec

2.41:21:4.5

3.1211

REST SUC

STEATH ...

KEEDIX

Baran Ograna

P. 4.78 ....

|                               | Page |
|-------------------------------|------|
| ECOLOGICAL FACTORS            | 99   |
| A.CLIMATIC FACTORS            | 99   |
| 1.TEMPERATURE                 | 100  |
| 2.RELATIVE HUMIDITY           | 103  |
| 3.PRECIPITATION               | 104  |
| 4 EVAPORATION                 | 106  |
| B.EDAPHIC FACTORS             | 113  |
| 1.SOIL PROFILE DESCRIPTION    | 114  |
| 2.SOIL VOLUME WEIGHT          | 118  |
| 3.SOIL POROSITY               | 121  |
| 4.SOIL MOISTURE               | 127  |
| 5.SOIL TEMPERATURE            | 132  |
| 6.SOIL ORGANIC MATTER CONTENT | 133  |
| 7.SOIL REACTION               | 138  |
| C.BIOTIC FACTORS              | 143  |
| 1.INSECTS AND DISEASES        | 143  |
| 2.ANIMAIS                     | 146  |
| 3.MEN                         | 147  |
| FOREST SUCCESSION             | 149  |
| SILVICULTURAL CONSIDERATIONS  | 162  |
| SUMMARY                       | 165  |
| APPENDIX                      | 169  |
| BIBLIOGRAPHY                  | 179  |
| PLATE                         | 190  |

|    | 1  | Weather I                      |
|----|----|--------------------------------|
|    | 2  | Summarize<br>Stands            |
|    | 3  | Surmary ) of the ; centage     |
|    |    | Classes                        |
|    | 4  | Summary<br>by Size             |
|    | 5  | Surmary of the                 |
|    | 6  | Summary                        |
|    |    | of the<br>tage of<br>Classes   |
| •, | 1  | Summary                        |
|    | 3  | by Size                        |
|    | Ç  | by Heig                        |
|    | ,  | Summary of the                 |
|    |    | Plants<br>Number               |
| ē  | 10 | Sunmary                        |
|    |    | Records                        |
|    | 1: | stems .                        |
|    |    | Summary of the Were Re         |
|    | 15 | 3, 2, e ±                      |
|    |    | Heekly And According Trom July |
|    |    | Data Ctt                       |

## LIST OF TABLES

| Table | F                                                                                                                                                                                                                                | age)       |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 1     | Weather Data of the Higgins Lake Area                                                                                                                                                                                            | 32         |
| 2     | Summarized Data of Four 1/5 Acre Swamp Hardwood Stands by Size Classes                                                                                                                                                           | 63         |
| 3     | Summary Data of the Vegetation in Milacre Quadrats of the Swamp Hardwood Stands as Recorded in Percentage of Coverage or Number of Stems by Height Classes                                                                       | 64         |
| 4     | Summary Data of Four 1/5 Acre Swamp Conifers Stands by Size Classes                                                                                                                                                              | <b>7</b> 5 |
| 5     | Summary Data of 1/10 Acre Quadrats by Height Classes of the Swamp Conifers Stands                                                                                                                                                | 76         |
| 6     | Summary Data of the Vegetation in Milacre Quadrats of the Swamp Conifer Stands as Recorded in Percentage of Coverage or Number of Stems by Height Classes                                                                        | <b>7</b> 7 |
| 7     | Summary Data of Two 1/5 Acre Lowland Aspen Satuds by Size Classes                                                                                                                                                                | 83         |
| 8 .   | Summary Data of Two 1/10 Acre Lowland Aspen Stands by Height Classes                                                                                                                                                             | 83         |
| 9     | Summary Data of the Vegetation in Milacre Quadrats of the Lowland Aspen Stands by Height Classes. Plants Were Recorded in Percentage of Coverage or Number of Stems                                                              | 84         |
| 10    | Summary Data of the Four Milacre Quadrats in the Swamp Shrubs Stand by Height Classes. Plants Were Recorded in Percentage of Coverage or Number of Stems                                                                         | 89         |
| 11    | Summary Data of the Vegetation in Milacre Quadrats of the Three Marsh Stands by Height Classes. Plants Were Recorded in Percentage of Coverage or Number of Stems                                                                | 96         |
| 12    | Weekly Averages of Temperature, Relative Humidity<br>and Accumulated Precipitation During the Period<br>from July 20 to October 4, 1952. Compiled from<br>Data Obtained at Weather Bureau Stations near the<br>Higgins Lake Area | 101        |

Volume

and Tot

Soils

Distri

ferent

July 2

the Ty

Were from .

as De

Analys tent

Soil R Horiz

Analys Five

Comlos 3ever

and the second of the second o en de la composition La composition de la

| Table | 1                                                                                                                                       | Page        |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 13    | Evaporation Rate as Recorded by Week at Stations of Three Different Vegetation Layers During the Period from July 20 to October 4, 1952 | 106         |
| 14    | Analysis of Variance of the Evaporation Data Obtains from Three Different Stands During the Period from July 20 to October 4, 1952      | ed<br>108   |
| 15    | Volume Weight of Each of the Three Horizons of Six Soils                                                                                | 120         |
| 16    | Result of the Statistical Analysis of the Soil Volume Weight Data                                                                       | 120         |
| 17    | Percentages of Soil Porosity of Each of the Three Horizons of Six Soils                                                                 | 122         |
| 18    | Analysis of Variances for Non-Capillary, Capillary and Total Porosity of Six Soils                                                      | 123         |
| 19    | Pore Space Distribution in Percentages of the Six Soils by Horizon                                                                      | 125         |
| 20    | Analysis of Variance from Data of the Pore Space Distribution of the Six Soils by Horizon                                               | 126         |
| 21    | Soil Moisture Data of Rifle Peat Soils in Two Dif-<br>ferent Stand Types, Obtained During the Period from<br>July 20 to October 4, 1952 | n<br>128    |
| 22    | Analysis of Variance of the Moisture Contents of the Two Rifle Peat Soils                                                               | 130         |
| 23    | Soil Temperatures of the Two Rifle Peat Soils Which Were Measured Once Every Week During the Period from July 20 to October 4, 1952     | 132         |
| 24    | Organic Matter in Percent of Seven Soils by Horizon as Determined from Dry Combustion Method                                            | <b>13</b> 5 |
| 25    | Analysis of Variance from the Data of Organic Content of Seven Soils by Horizon                                                         | 136         |
| 26    | Soil Reaction (pH Values) of the Seven Soils by Horizon                                                                                 | 139         |
| 27    | Analysis of Variance for the Soil Reaction Data of Five Soils by Horison                                                                | 140         |
| 28    | Composite Summation of Edaphic Characteristics of Seven Soils by Horizon                                                                | 142         |

The second second second

• •

| v | 4 | 4 |
|---|---|---|
| л | 1 | _ |

| Table |                                                                                                                         | Page |
|-------|-------------------------------------------------------------------------------------------------------------------------|------|
| 29    | Data of Relative Frequency, Relative Density, and Relative Basal Area of the Dominant Components of the Swamp Hardwoods | 157  |

Map of Low Hissins : White Fi Relation

2 Map of Hi dary Wit Kalkasks

Map of La Weather Lake Ar Study .

Map of t

5 Map of Servin

Weekly
Record
Weaths
to Oct

Weekly from

Weekly Weado for

Weekly Relati

soil !

Weekl

15

Diagr ted Soil

### LIST OF FIGURES

| Figure | Page                                                                                                                                                                                                  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Map of Lower Michigan Showing the Location of the Higgins Lake Area in Relationship to the Hemlock-White Pine-Northern Hardwoods region and also Its Relation to Some of the Tree Ranges and Soils 25 |
| 2      | Map of Higgins Lake State Forest Showing Its Boundary Within the Four Adjoining Counties: Missaukee, Kalkaska, Crawford and Roscommon                                                                 |
| 3      | Map of Lower Michigan Showing the Location of U.S. Weather Bureau Stations in and near the Higgins Lake Area Whose Weather Data Are Used in This Study                                                |
| 4      | Map of the Higgins Lake State Forest Showing Its Surface Geology                                                                                                                                      |
| 5      | Map of Lower Michigan Showing Drainage Basins<br>Serving the Higgins Lake Area                                                                                                                        |
| 6      | Weekly Data of Maximum and Minimum Temperatures as Recorded at the Higgins Lake and Houghton Lake Weather Stations During the Period from July 20 to October 4, 1952                                  |
| 7      | Weekly Accumulated Precipitation During the Period from July 20 to October 4, 1952                                                                                                                    |
| 8      | Weekly Evaporation in Cubic Centimeters in Open-<br>Meadow, Swamp Shrubs, and Swamp Conifers Stands<br>for the Period from July 20 to October 4, 1952 . 107                                           |
| 9      | Weekly Evaporation (Average of Three Stands) in Relation to Temperature and Precipitation for the Period from July 20 to October 4, 1952 112                                                          |
| 10     | Soil Moisture Curves for the Two Rifle Peat Soils 129                                                                                                                                                 |
| 11     | Weekly Data of Soil Moisture Content in Percent of the Two Rifle Peat Soils by Horizon 131                                                                                                            |
| 12     | Diagram Showing Successional Relationships exhibited Between the Associations of Poorly-Drained Soils in the Higgins Lake Area                                                                        |

Maire

l) Phytogra

Phytogram

.

|        |     |                                     | XIV  |
|--------|-----|-------------------------------------|------|
| Figure |     |                                     | Page |
| 13     | • - | Important Species of the Swamp Type | 156  |
| 14     |     | Important Species of the Swamp      | 159  |

| • |    |
|---|----|
|   | ٠. |
| • |    |

- Set Up of Inflores the Upper ximately
- 2 Set Up of Shrubs S Above th
- A Scirrus
  nance of
  by Their
  Ground.
  in the B
  Are Grow
  rance...
  - Aspen (E Ground
  - Soil Prof Calanary Dry Seas to A Deg Peat Laj
  - A Typical
  - External of the s
  - Ground Vethe Swan
    Marle, Eseen In
    Shown Ir
  - Soil Frof Maple-El Water-Ta

### LIST OF PLATES

| Plate | 1                                                                                                                                                                                                                                                                                                       | ?age      |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1     | Set Up of the Livingston Atmometer in A Marsh Stand Inflorescences of Scirpus cyperinus Can Be Seen on the Upper Part of the Photograph. Bulb Was Approximately 18 Inches Above the Ground                                                                                                              | 109       |
| 2     | Set Up of the Livingston Atmometer in A Swamp Shrubs Stand. Bulb Was Approximately 18 Inches Above the Ground                                                                                                                                                                                           | 110       |
| 3     | A Scirrus-Typha Stand of the Marsh Type. The Dominance of Cat-tails (Typha latifolia) Is Indicated by Their Numerous Flowering Stems in the Fore-Ground. An Aspen (Populus tremuloides) Stand Is in the Back Ground. In Between, Willows (Salix sp. Are Grown in Low Bushes to Give A Patchy Appearance | .)<br>190 |
| 4     | A Salix-Calamagrostis Stand of the Marsh Type. An Aspen (Populus tremuloides) Stand Is In the Back Ground                                                                                                                                                                                               | 191       |
| 5     | Soil Profile of the Newton Loamy Sand In A Salix-Calamagrostis Stand of the Marsh Type During the Dry Season in October. The Water-table Was Down to A Depth of Approximately 2 Feet. The Organic Peat Layer Reached Down to About 12 Feet                                                              | 192       |
| 6     | A Typical View of the Swamp Coniferous Forest                                                                                                                                                                                                                                                           | 193       |
| 7     | External Appearance of the Elm-Soft Maple Stand of the Swamp Hardwoods Type                                                                                                                                                                                                                             | 194       |
| 8     | Ground Vegetation of the Elm-Soft Maple Stand of the Swamp Hardwoods Type Showing Seedlings of Maple, Elm, and Ash. Carex intumescens Can Be Seen In the Fore-Ground With the Inflorescences Shown In the Center of the Picture                                                                         | 195       |
| 9     | Soil Profile of the Bergland Loam In the Ash-Red Maple-Elm Stand of the Swamp Hardwoods Type. Water-Table Was At Approximately 10 Inches                                                                                                                                                                | 196       |

imined soils in the trend.

This stimus intended to

The ob!

instead soils in the series is not end two parts of Adams State F

hat area former hat y and Miss hat Forest, w

les is now a z

Therefore is equivation. It is:

and state:

## INTRODUCTION

The objective of this study is to distinguish and identify the various types of vegetation found on the poorly-drained soils in the Higgins Lake area and to determine their probable trend of succession upon the ecological basis.

This study was begun in 1952. At that time, this study was intended to be entitled: "Forest succession on the poorly-drained soils in the Higgins Lake State Forest, Michigan."

However, for administrative reasons, the Higgins Lake State

Forest is not existing at the present time. It has been divided into two parts which belong to two separate State Forests: The AuSable State Forest and the Houghton Lake State Forest.

The area formerly of the Higgins Lake State Forest in Roscommon County and Missaukee County is now a part of the Houghton Lake State Forest, whereas the area in Crawford and Kalkaska Counties is now a part of the AuSable State Forest.

Therefore "the Higgins Lake area" as appeared in the title is equivalent to that of the former Higgins Lake Forest region. It is for the same reason that some of the maps produced and statements made remain to be referring to the Higgins Lake State Forest area.

A.Spological C

Before stay of veget

mi delimitati

Warmir

Miler records

tat

In eas stable complete side by the plan is going individual field of condition the manual stable sta

This

(1899,1901, 1

cession. He

final vehence is stage of societic the original

## REVIEW OF LITERATURE

## A. Ecological Concepts

Before the establishment of Ecology as a science, the study of vegetation was unchanging. It was a mere description and delimitation of plant communities as absolutely static.

Warming (1909) made a great advance by gathering together records of vegetative change or succession. He stated that

"In early times plant societies were looked upon as stable groups which were in a state of quiescence, complete in their development, and peacefully living side by side. In reality no such relations exist in the plant world. Everywhere and continuously there is going on a struggle between plant societies; each individual society constantly strives to invade the field of others, and each small change in the living conditions immediately produces shiftings and changes in the mutual relations of these group."

This dynamic view leads to the early works of Cowles (1899,1901, 1911), who conceived the modern concept of succession. He stated that

"At the close of the vegetative cycle there is the final vegetative aspect varies with the climate, and hence is called a climatic formation. --- The ultimate stage of a region is mesophytic. The various plant societies pass in a series of successive types from the original conditions to the mesophytic forest."

Beginni

Nements includ

mepts of succes

a simple climax

other permanent

diltion to cli

termed sub- or

plan between p

demided soils.

The state of the s

Michols

Frup or community
and are essentia

Many, ecologic

Mis concept of

M

thing as retrog

Eeginning at about the same time, the publications of Clements included much that served to shape our present concepts of succession. His "monoclimax" theory is that "only a single climax exists in a given climatic region, although other permanent communities determined by other factors in addition to climate may occur there also; these would be termed sub- or proclimaxes." He also attempted to distinquish between primary and secondary succession, the former being those on newly formed soils, and the latter these on denuded soils.

Nichels (1923) has defined plant association as "a group or community of plants which occupy a common habitat, and are essentially similar throughout its extent in physic-gnomy, ecological structure, and floristic composition."

This concept of "association" is used in this paper by the author applying to the various associations encountered.

Nichols recognized the plant association as the fundamental unit of vegetation whereas it parallels to the "Climax" or "Formation" by Clements. Nichols described succession simply as "the replacement of one plant association by another, and proceeded to classify successions into progressive and retrogressive in regard to "Trend"; whereas there is no such a thing as retrogressive succession in Clement' concept. In relation to "Climax", Nichols' idea was that the nature of climax in any area is controlled by geographic conditions,

Later the second of the second and the second of the second o • \*\*\*\*  $(x_{ij}, x_{ij}, x_{$ • And the second second second 

the state of the s

this both the recognized by the British "P landley (1935)

At the

Which was held Agust 25 to 3 the teachings fluence upon t Regetation. Si Mattpellier So recision the the conspicuous Plant mosaic at the concer hits floris mature, and up (2) the Scanding location where two oft reres the product of of the substra the layer or ;

Rankiser (199

יישנים!

il over the

thus both the climatic climax and physiographic climax were recognized by him. This is essentially the same as that of the British "Polyclimax" position under the leadership of Tansley (1935).

At the Conference of Plant and Animal Communities, which was held at Cold Spring Harbor, Long Island, New York, August 29 to September 2, 1938, Conard (1939) brought together the teachings of various schools which have had special influence upon the description and classification of nature vegetation. Six schools were considered by him: (1) The Zürich-Montpellier School: Kerner (1863) sketched with permanent precision the major lineaments of central European vegetation. The conspicuous feature was the stability of the magnificent plant mesaic of central Europe and Alps when left undisturbed, and the concept of association was developed. It was defined by its floristic composition as a unit actually found nature, and upon which all phytosociological study centered. (2) The Scandinavian School: Influenced by its geographical lecation where the vegetation is that of the marginal lands, "two oft repeated emphases were developed: (a) The soil is the product of vegetation, and is independent of the nature of the substratum; (b) the foundamental unit of vegetation is the layer or symusia" (Conard, 1939). (3) The Danish School: Raunkizer (1934) divided the species of the world into "lifeforms". The percentage of species in each group drawn from all over the earth gave the "normal spectrum" for the earth

sa whole. The sal treatment is all treatment is sal treatment is sal treatment is sal treatment is sal treatment in the first to rest of success leadership of study of veget processes or veget concept of the concept of

During Mividualist: that the fund: is, "what is Testion he r

tion of Clemer

tuating structure action of the surre association is scarce

In de

as a whole. Thus, the statistical method of phytosociological treatment was developed. (4) The Russian School: Conard (1939) quoted as Sukatchew (1934) summarized that "Russian phytosociologists were primarily interested in the Steppe vegetation and its relation to forest". The Russians were the first to recognize the relation of soils to vegetation and climate (Glinka, 1914). (5) The Chicago School: The concept of succession dominated the Chicago School under the leadership of Cowles (1899, 1901). Its prime object of the study of vegetation was an explanation of the causes and processes or vegetational change. (6) The Nebraska School: The concept of succession was developed under the inspiration of Clements, with its extensive terminology.

During the Conference, Gleason (1939) defended the Individualistic Concept of the Plant Association. He stated that the fundamental question basic to all ecological work is, "what is a plant association?" In answering to this question he presented his theory:

"The vegetation unit is a temporary and fluctuating phenomenon, dependent, in its origin, its structure, and its disappearance, on the selective action of the environment, and on the nature of the surrounding vegetation. Under this view, the association has no similarity to an organism and is scarcely comparable to a species."

In defense this theory, the so called Individualistic Concept, Gleason presented a series of theses, the main

mints were: (1) govers in excess acce method of m miar station is tational unit de the appearance o existing associa him to clarif.

> detached ri community, dimensions While its a theless a v surveyed, p area it main uniformity ture, over definite 1: on which the features, G statement a studies of Also beside a duration duration ar Second, Beries of e series, as it is part differs fro series, as it is part differs fro

"First,a

The clim hised and summa

tollow if w

points were: (1) Every species of plant has reproductive powers in excess of its need; (2) every species of plant has some method of migration; (3) the environment in any particular station is variable; and (4) the development of a vegetational unit depends upon one or the other of two conditions, the appearance of new ground, or the disappearance of the existing association. Two general statements were introduced by him to clarify these theses:

"First, an association, or better one of those detached pieces of vegetation which we may call a community, is a visible phenomenon. As such it has dimensions and area, and consequently boundary. While its area may be large, the community is nevertheless a very tangible thing, which may be mapped, surveyed, photographed, and analyzed. Over this area it maintains a remarkable degree of structural uniformity in its plant life. Homogenity of structure, ever a considerable extent, terminated by definite limits, are the three fundamental features on which the community is based. Without these three features, Grisebach would never have published his statement a century ago; without them, all of our studies of synecology would never have been developed. Also besides its extent in space, every community has a duration in time. Uniformity, area, boundary, and duration are the essentials of a plant community.

Second, every community occupies a position in two series of environmental variation. In the space series, as the community exists here, in this spot, it is part of a space-variation, and its environment differs from the adjacent communities. In the time series, as the community exists now, at this time, it is part of a time-variation and in its environment differs from the communities which preceded it or

follow it.

The climax and its complexities have been ably discussed and summarized by Cain (1939). In his paper, he made

the following s

"Folyolimax" the

"Since Rietz, Nic Scharfette on the rec be atresse climaxes 1 Clement hypothes 13 different faciations chronologi disposed c postclimax pressive f climatic c climax, ir communitie factors ar different or to diff (Phillips tion. The

In his difficulties in the result from

things, wi

following state

within the concepts of climax, prand throughout the scientific (climax) concepts of mumber of

the following statements concerning the "Monoclimax" and "Polyclimax" theories:

"Since support of the polyclimax hypothesis (Du Rietz, Nichols, Tansley, Gams, Gleason, Nordhagen, Scharfetter, Tüxen, Domin, Conard) rests largely on the recognition of "edaphic climaxes", it should be stressed that Clements too recognizes edaphic climaxes in the concept of 'seration'.

Clements has met exponents of the polyclimax hypothesis in the following ways: (1) chorologically different stable communities are considered to be faciations and lociations of an association; (2) chronologically different stable communities are disposed of as subclimax, proclimax, preclimax, postclimax, held in stability by a continuing repressive factor; (3) stable communities not of the climatic climax but due to biotic factors are disclimax, in part; (4)topographically different stable communities, different because of continuing edaphic factors are called serations; (5) variations due to different soil types within a geological formation, or to different geological fermations, are recognized (Phillips, 1934), apparently under the name of lociation. The polyclimax view includes many different things, while Clements uses a different term for a different thing."

In his concluding statement, Cain pointed out the difficulties in description and classification of vegetation as a result from lack of a standard terminology with the fellowing statements:

<sup>&</sup>quot;---- Clements' disposition of the variations within the climax (or climax region) through the concepts of faciation and lociation, through subclimax, proclimax and serclimax, through seration, and through preclimax and postclimax presents a scientifically and phylosophically sound system. A description and classification of all the stable (climax) communities of a region might necessitate dealing with all the above concepts. A very large number of investigators have chosen not to follow

Yisaan

CLEEK

inotant

jont,

1101, 1

i her

Clements in this but to treat all such cover types as 'associations'. The plant sociologists go even farther and include successional communities (associes) under the term. This may have some justification if the seral nature of the communities is not proven. The result, however, is to include many different things under the term, whereas Clements has a different term for a different thing."

Curtis and McIntosh (1951) have proposed the Concept of Vegetation Continuum for the upland forest of southwest Wisconsin. In their paper:

"The relative ecological importance of each tree species in each stand was expressed by a summation index of the relative frequency, relative density, and relative dominance herein called the importance value.

Climax adaptation numbers were used to weigh the importance value of each species in a stand. The summation of these weighted numbers resulted in an index which served to locate the stand along a gradient. ---- the entire series of communities formed a continuum in which a definite gradient was exhibited from initial stages composed of pioneer species to terminal stages composed of climax species."

Braun (1935, 1950) has developed an interpretation of climax vegetation, the "association-segregate". It is a climax unit, which refers to space-time segregates of the ancient mixed forest evolved by conditions of the environment, and it includes consociation, faciation, and lociation, regardless of the number of dominants in a stand. In her Deciduous Forests of Eastern North America, Braun has devoted a chapter to Forest Ecology and Terminology

because of the la forest ecology.

Dansereau

iescription and r
hasis. He sugges
tion in floristic
gival classificat
(4)leaf shape, (5)

because of the lack of uniformity in the terminology of forest ecology.

Dansereau (1951) has proposed a new system for the description and recording of vegetation upon a structural basis. He suggested six criteria for the study of vegetation in fleristic mapping, life-form statistics, and ecological classifications: (1)life-form, (2)size, (3)function, (4)leaf shape, (5)leaf texture, and (6)coverage.

3.311max forest

There ar

the state of Mics southern lower to Earlwoods Forest

jezinsula and th

The bound of being recognized is also common to miskegon. This resented by an in

Reason (1924), 1

1346, 1948), Bra

Pasence of this

The fores in forms a part instion. A number formation by

total region of F

" south Canadian

Presponded to the

B.Climax forest of the northern lower Michigan

There are two types of climax forest vegetation in the state of Michigan: the Deciduous Forest Formation in the southern lower penisula, and the Hemlock-White Pine-Northern Hardwoods Forest Formation in the northern part of the lower peninsula and throughout the upper peninsula.

The boundary between these two formations is generally being recognized as near the latitude 43 degrees North. It is also commonly described as a line running from Saginaw to Muskegon. This boundary is not sharply defined and is represented by an "ecotone" or a zone of tension. Beal and Wheeler (1892), Livingston (1903, 1905), Quick (1923), Gleason (1924), Veatch (1932), Darlington (1945), Potzger (1946, 1948), Braun (1950), and others have pointed out the presence of this tension zone between the two forest formations.

The forest vegetation which lies north of the tension zone forms a part of the mixed conifer northern hardwood forest formation. A number of descriptive names have been given to this formation by many ecologists and botanists. The region to be studied in this paper lies within the "northern hard-wood" region of Frothingham (1915), the northeastern "transition forest" region of Nichols (1918), and the "Great Lake" or "south Canadian forest" region of Hardy (1920). It is also corresponded to the "lake forest" region of Weaver & Clements

the control of the co in the second of a compatible as a second of the second of

the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s and the first of the control of the and the second of the second o and the second of the second o in the state of th  $(\mathbf{r}_{i}, \mathbf{r}_{i}, \mathbf{r}_{i}, \mathbf{r}_{i}) = (\mathbf{r}_{i}, \mathbf{r}_{i}, \mathbf{r}_{i},$ 

(1929), the "ea the "St. Lawren More recently, Merica (1950),

Mne-Worthern F

Froth! forests as occi of the northern tetween the no: that the north Pesence of ye and the absence leveral other forest is more into two resid the Great Lake abundance of t

Nicho: Ellock-easter tianly the "ea is a meaophyt! conferous and

Caracteristic

species are: h Hae, basewood

(1929), the "eastern hemlock" region of Nichols (1935), and the "St. Lawrence-Great Lake" region of Harshberger (1911).

More recently, in Braun's Deciduous Forests of Eastern North America (1950), the area is described as the Hemlock-White Pine-Northern Hardwood region.

Frothingham (1915) described the northern hardwood forests as occupying "the fresh, well-drained, fertile soils of the northern pine region". In discussing the differences between the northern and southern hardwood forests, he stated that the northern hardwood forest is distinguished by the presence of yellow birch, white pine and eastern hemlock, and the absence of yellow poplar, red gum, sycamore and several other more southern species. The northern hardwood forest is more simple in composition and usually divided into two regions: (1)the eastern mountain region, and (2) the Great Lakes region. He stated also that the greater abundance of basswood and elm is perhaps the most striking characteristic of this forest formation in the Lake States.

Nichols (1935) designated this region as "eastern hemlock-eastern white pine-northern hardwood region" or simply the "eastern hemlock region". He said that the climax is a mesophytic forest comprising a mixture of evergreen coniferous and deciduous broadleaf trees. The characteristic species are: hemlock, sugar maple, beech, yellow birch, white pine, basswood, American elm, white ash, red oak, black cherry,

red spruce, balsam fir, white spruce, red maple, and Norway pine. He considered these trees into four groups with reference to their geographical distribution: (1)those whose centers of north-south distribution are far to the south (beech, white ash, black cherry, white elm); (2)those whose centers are partly within and partly immediately to the south (sugar maple, basswood, and northern red oak); (3)those whose centers are within the region and whose ranges are more or less coextensive with it or some part of it (hemlock, white pine, yellow birch, Norway pine, and red spruce); (4) those whose centers of north-south distribution are to the north of the region (white and black spruce, fir, tamarack, balsam poplar, and paper birch).

Weaver and Clements (1929) described the "Lake Forest" formation as consisting of a single association in which white Pine, Norway pine and hemlock are the climax dominants.

A brief glacial history of the Lake Ferest Fermation was presented by Potzger (1946), in discussing the different opinions to characterizing the climax of the "lake forest" region, he grouped the different interpretations into two lines: "----one favoring the pine-hemlock complex as climax, the other favoring hemlock-northern hardwoods as climax". The latter group, which includes Potzger, considered pines participating grown cover as relies, or post-climax.

. .

. The state of the second of t

leck-Whi
from nor
through
southern

Northern Sharacte

> tonifero Pagar ma

iddar ma birch, w

ciates i

region a iry sand

ine, an

areas, b

in this

ttere is

Characte Healook-

Braum (1950) has designated the extent of the Hemlock-White Pine-Nerthern Hardwood region as: "It extends from northern Minneseta and extreme southerstern Maniteba through the upper Great Lakes region and eastward acress southern Canada and New England, including, toward the southeast much of the Applachian Plateau in New York and Northern Pennsylvania. She stated that the region is characterized by the prenounced alternations of deciduous, conifereus, and mixed forest communities. She listed to be Sugar maple, beech and basswood, sugar maple and beech, or sugar maple and bassweed as: the usual deminants, and yellew birch, white elm and red maple mere er less frequent asso-Clates in primary deciduous communities. The coniferous Communities which occur at intervals almost throughout the Pegion are of two general types: (1)these of more or less dry sand plains and ridges where white pine, red, or Nerway Pine, and jack pine prevail; and (2) these of peerly-drained Areas, begs or muskegs, where black spruce, northern white Codar, and tamarack prevail. The primary mixed communities in this area are hemlock and northern hardweeds, principally Bugar maple, beech, bassweed, and yellew birch, in which there is er was an admixture of white pine. These, the most Characteristic communities give to the region its name, Hemleck-White Pine-Northern Hardwoods.

 $(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n) + (x_1, x_2, \dots, x_n) + (x_1, x_2, \dots, x_n) + (x_1, x_2, \dots, x_n)$ 

in the control of the and the state of t The second of th and the control of th and the second of the second o and the second of the second o The state of the s and the contract of the contra to the control of the 

•

veois region as frequency plains of for the put in some state.

B

nd perha ind predoction andy out:

:ogruniti

the lake

porly-dra h limitin

Braun divided the Hemlock-White Fine-Northern Hardweeds region into four sections: (1) the Great Lakes Section; (2) the Superior Upland; (3) the Minnesota Section; and (4) the Laurentian Upland Section. Northern lower Michigan and eastern upper Michigan fall into the Great Lake Section. She stated that beech-maple as a forest type or as an ecological climax community is as well illustrated in this region as it is in northern Ohie or southern Michigan. "However, maple is generally more abundant than beech in the more northern communities and usually has a higher frequency." She also pointed out that the sandy outwash Plains of glacial topography afford suitable environment for the pine forests and the morainal ridges if the soil 18 fine-grained and loamy are occupied by deciduous ferest Communities or a mixture of deciduous species with hemlock and perhaps white pine.

Northern lower Michigan is a region of low relief and predominantly of glacial topography. There are extensive and predominantly of glacial topography. There are extensive andy outwash plains and morainal ridges as well as innumnerable lakes, ponds, and poorly-drained areas. This paper, the title indicates, deals with the forest succession on Poorly-drained soils of area near the Higgins Lake, therefore is limiting itself to a much confined scope.

a physics:

White views

the control of the co

C.Pertinent literature to the study of vegetation on poorly drained soils

Warming (1896) made variations in the water content of the soil as a basis for classifying plant societies into hydrophytes, mesophytes, and xerophytes. Cowles (1901), after afforts were made to classify the vegetation in northern Michigan in 1898 in accord with Warming's principles, felt the need of another classification. An attempt was therefore made by Cowles to relate the facts of distribution to combinations of factors and to group plant societies according to their relationship and their evolution. He stated that the climatic factors determine the distribution of plant societies in large while local differences are produced by changes in the edaphic or soil factors. Hence, he proposed a "physiographic classification" and stated:

"In a young topography, such as the recently glaciated areas of Michigan, Wisconsin, and Minneseta, there is a great variety of topographic conditions and of plant societies. Among these are many hydrophytic lakes and swamps and many xerophytic hills. In passing from youth to old age then, a region gradually loses its hydrophytic and xerophytic areas and the ultimate stage of a region is mesophytic. The various plant societies pass in a series of successive types from the original condition to the mesophytic forest which may be regarded as the climatic type."

Whitford (1901) followed Cowles' principle in his study of the genetic development of the forests of northern

Minigan. He positive societies and strough is a "dec

northern lower } ists and ecologicates (1926, 1926)

Johne (1938), 03

Ecologia

Livingst tion to be disti Mawford Countie (2)Tamarack-North

and the second of the second o

he also pointed we nearly their

forests due to to to burning nearly

of distribution

and hardwood drained por out of the is a few in seems to cogetable delin time the mixed and type.

In anothe

Michigan. He pointed out the successive stages of the swamp societies and stated that in each series the climax plant growth is a "deciduous-hemlock combination".

Ecological studies on bog or swamp communities in northern lower Michigan have been made by a number of botanists and ecologists, such as Transeau (1903), Rigg (1916), Gates (1926, 1942), Wilson and Potzger (1943), Dutro and Cohoe (1938), Olson (1943), among others.

Livingston (1905) recognized three types of vegetation to be distinquished on the lowland in Roscommon and Crawford Counties, Michigan. They are: (1) Open-meadow type, (2) Tamarack-Northern White Cedar swamp, and (3) Mixed swamp. He also pointed out that the swamps are generally in much more nearly their original condition than are the upland forests due to the fact that swamps have not been subjected to burning nearly so often as the uplands. As to the factors of distribution of vegetation in the lowlands, he explained:

In another paper, "The distribution of the plant societies of Kent County, Michigan, Livingston (1901) stated

<sup>&</sup>quot;---- but the mixed type (of both coniferous and hardwood species) is always found on the better drained portions, where there are humocks raised out of the saturated soil, and the general level is a few inches higher. Often this better drainage seems to come about merely by accumulation of vegetable debris, a fact which suggests that perhaps in time the conifer swamp might give way to the mixed, and at last possibly to the hardwood upland type."

.

that probably the main factor in determining the distribution of lowland societies is water. However, he stated further:

"---- the amount of water is practically the same in an undrained and in a drained swamp and on a brock margin; yet the floras are dissimilar, especially the first two. It has been suggested that the great amount of organic materials in the solution of the undrained swamp may effect the plants physically or chemically and thus exclude those which occur in the drained swamp. --- There remains the other suggestion that the undrained swamp owes the peculiar character of its flora to the chemical nature of the soil solution. It may be lack of oxygen in the soil which shuts out the plants of the drained swamp."

Davis (1906) has ably discussed the peat and the occurring vegetation. He has defined and distinquished the differences between the "bog", the "marsh", and the "swamp"; and also grouped the peat lands into eight groups: (1)Elm and black ash swamps, (2)Tamarack swamps, marshes, and bogs, (3)Cedar swamps, (5)Spruce swamps, (5)Willow and alder swamps or marsh, (6)Heath swamps, marshes, or bogs, (7)Grass and sedge marshes and bogs, and (8)Rush marshes.

Harper (1918) made a study on the plant population of northern lower Michigan. He believed that some of the imagined successions on the poorly-drained areas can never take place without profound topographic changes, which may or may not come to pass. In illustrating his point, he made the fellowing statement:

 $p = V_{p,\Phi}^{-1}$ 

;

## 

•

"Two genuine types of succession can be studied to advantage in this region. The first is that connected with the filling of lakes, etc. with vegetation and the gradual accumulation of peat and humus. ---- In such humus grow many plants which are equally characteristic of the upland hardwood forests, and this has led some to believe that the swamps, barring human interference and unforeseen complications, will ultimately be replaced by beech-maple-hemlock forests. But there are quite a number of plants in this region which seem to demand both humus and access to mineral soil or alkaline peat such as Acer saccharum, Tsuga, Fagus, Tilia, Ulmus, Quercus alba, Viburnum acerifolium etc., and we have no evidence that these will ever grow on top of deep sour peat. Furthermore, the swamps are colder at night than the adjoining slopes, and lack some of the characteristic soil fauna of clayey uplands, and these foundamental differences can hardly be obliterated by succession."

Gates (1926) has made a study on the plant successions about Douglas Lake in Cheboygan County, Michigan. He stated that cedar bog forest will be the terminal stage before reaching the upland type, whereas the lowland forest of ash, elm, and red maple is the stage next to dryland on land which is subject to overflow or spring flooding.

In 1942, Gates made another investigation on the bogs of northern lower Michigan. He defined the bog as "an area vegetated by a flora in which peat-forming types of plants (including certain herbaceous, ericacious shrubs, and coniferous trees) are particularly abundant." In his paper, trends of succession are diagramed and the characteristic vegetation of each stages also are listed.

Clements (1936) has stated that the bogs and muskegs

In dist

are the

3 8 8

Maie (

Teret:

icres:

Ectze in se and t

011-

rized fir,

are the prisere subclimaxes of the boreal and lake forests.

In discussing subclimax, he proposed the term "serclimax"

and made the following statement:

"Serclimax is suggested with a meaning of a seral community usually one or two stages before the sub-climax, which persists for such a period as to resemble the climax in this one respect.

For the most part, serclimaxes are found in standing water or in saturated soils as a consequence of imperfect drainage. The universal sample is the reed-swamp with one or more of several consocies, such as Scirpus, Typha, Zizania, Phragmites, and Glyceria. ---- In boreal and subalpine districts the distinctive serclimax is the peat bog, moor or muskeg, more or less regularly associated with the other seral communities of Carex and usually of Larix and Picea also in the proper region."

Fotzger (1934, 1941, 1943, 1946, 1947, and 1948) has made a number of studies on the history and succession of vegetation in Michigan, principally on the bogs and lowland forests, by means of pollen analysis. He considered the bog forests of Abies, Picea and Larix to be relics of the boreal forest caused by the retreat of glaciers.

In "The history of the vegetation of Michigan",

Potzger (1947) pointed out the existance of a "tension zone"

in central lower Michigan, between oak forests of the south

and the coniferous forests of the north.

Nichols (1935), in discussing the physiographic climax forests in the "Eastern Hemlock" region, has recognized the poorly-drained swamp coniferous forests of balsam fir, black spruce, white spruce (Picea glauca), northern white

ceiar,

graphic

forest

Survey :

land. |

SWEED OF

æ it la

Bites.

is unabl

state an

Sprice;

black ar

Self.

ने Darli

Matps 1:

stants of

well a

cs daero:

iater req

inests i

Masement

orest car

hained.

.

cedar, and tamarack, in varying admixtures, as the physic-graphic climax types.

Bowman (1944) pointed out that 26 percent of the forest land in Michigan has been classified by the Forest Survey as either coniferous swamps or spruce-balsam fir land. He stated that black spruce is usually found on the swamp or bog sites frequently associates with tamarack where as it may be accompanied by northern white cedar on better sites. As for the northern white cedar, he claimed that it is unable to withstand great soil acidity but can endure shade and a surplus of soil water quite as well as black spruce; and when conditions are favorable, it will surpass black spruce and all other swamp species in reproducing itself.

Swamp and bog floras have been listed and discussed by Darlington (1945). He pointed out that there are numerous swamps in northern lower Michigan, often covered with dense stands of northern white cedar, tamarack, and black spruce as well as some bogs with shrub growth.

Braun (1950) has discusted the succession of various forest communities to one another in sequences of decreasing water requirements from the bog to the highest ridges of the forests in northern lower Michigan. She stated that the replacement of bog or transitional communities by hardwood forest can not take place until the swamps are filled or drained.

most of the b communities w out the gener

In di

loping bog --

forest; and s are Larix lar

and the Thula

in lower Mich

the Thuis was

Where the oth

the presence

ela, balsam p

swamp trees t

She a lower Michiga

> "Shru times si strip. quent su a few ad ash commi 8003 dra

The re studied by Dar " their paper

itotession on

In discussing the bog communities Braun said that most of the bogs and swamps are occupied by coniferous communities with a few are hardwood swamps. She pointed out the general sequence of vegetational stages of a developing bog ---- aquatic, sedge mat, bog shrub, and bog ferest; and stated that the principal trees of bog forests are Larix laricina, Picea mariana, and Thuja occidentalis, and the Thuja bog is the ultimate in bog forest development in lewer Michigan. She further mentioned that in many cases the Thuja was wanting from the Thuja-Larix-Picea association where the other two were present in about equal number, with the presence of balsam fir, white spruce, black ash, white elm, balsam poplar, red maple and a few other species of swamp trees to give a mixed character to the type.

She also discussed the river swamp communities in lower Michigan and stated:

"Shrubby species of willow, alder and spiraea form a shrub border, white elm, black ash and some times silver maple dominate in the swamp forest strip. The royal fern (Osmunda regalis) is a frequent subdominant. On better drained stream margins, a few additional hardwood species may enter the elmash communities, suggesting its replacement under good drainage condition by mesophytic hardwood forest."

The peat bogs of eastern North America have been studied by Dansereau and Segadas-Vianna (1952). In the first of their papers, "Structure and evolution of vegetation", succession on the bogs has been well illustrated.

discussed by

(1929). Of t

Fores

to the hydrar

bogs of centr

Four "Lorthern for

been recogniz

and others, 1

1.Ela

Mre or mixed

northern white

Mper birch.

on acid peat w

2.Eori

therm white ce include tamara

black ash, red

Sometimes has

Mintains itse

tenally found

the not strong

3.Tama Predominating.

•

 $\mathcal{A}_{i}^{(i)}$  ,  $\mathcal{A}_{i}^{(i)}$ 

lorthern white

Forest succession in northern Minnesota has been discussed by Pergman and Stallard (1916), and by Stallard (1929). Of these, parts of the papers have been devoted to the hydrarch succession. Likewise, plant succession in bogs of central Minnesota has been studied by Conway (1949).

Four distinguished forest types on wet sites in "northern forest region" of the eastern United States have been recognized by the Society of American Foresters (Hawley and others, 1932). They are:

1.Black spruce type ---- composed of black spruce,

Pure or mixed with a minor portion of balsam fir, tamarack,

northern white cedar, black ash, red maple and occasionally

Paper birch. It is a subclimax type to be found in swamps,

on acid peat with little or no drainage.

2.Northern white cedar type ---- composed of northern white cedar, pure or predominating. Associates may include tamarack, balsam fir, yellow birch, paper birch, black ash, red maple, black spruce, white pine, and hemlock. Sometimes has an under growth of alder. If undisturbed, it maintains itself as long as the swamp remains wet. It is usually found on sites with slow drainage, high water-table, and not strongly acid.

3.Tamarack type ---- composed of tamarack pure or Predominating. Common associates either black spruce or northern white cedar or less commonly both.Other associates,

mostly, subordinate, include red maple, black ash, and aspen. It is chiefly found in peat swamps with little or no drainage, and is succeeded by black spruce on undrained acid peat or by northern white cedar in better drained less acid swamps.

4.Black ash-American elm-red maple type ----- Black ash eccurs least often in other types and therefore may be considered as an indicator species for this type. It is a climax for the site. In Lake States, the associates include balsam poplar, balsam fir, yellew birch, and less commonly white pine, tamarack, northern white cedar, basswood, etc.. It occupies moist to wet muck or shallow peat soils in swamps, sullies, and small depressions of slow drainage or along sluggish streams.

tion in northern lower Michigan. He pointed out the occurrence of aspen association is the result of virgin or second Srowth forest from burning. In his paper, he recognized three types within the aspen association: (1)Lowland type, (2)Sandy upland type, and (3)Clayey upland type. For the lowland type, he stated:

"The sandy lowland types of aspen association is distinguished by the dominance of <u>Populus tremuloides</u>, and it will be replaced by either <u>Thuja</u> association, or a mixture of spruce-balsam, or the lowland forest of black ash and American elm."

the state of the s

 $oldsymbol{\cdot}$  . The state of  $oldsymbol{\cdot}$  is the state of  $oldsymbol{\cdot}$  . The state of  $oldsymbol{\cdot}$ 

• 

### DESCRIPTION OF THE REGION

# A. History and general description

Ecologically speaking, the Higgins Lake area is located within the Hemlock-White Fine-Northern Hardwoods Formation which lies north of the tension zone between this Formation and the Deciduous Formation of the south in the state of Michigan (Fig. 1).

Geographically, the area is located in the northern central part of the lower peninsula of Michigan, and is within the scope of the Higgins Lake State Forest which is composed of parts of four Counties: Missaukee, Kalkaska, Crawford, and Roscommon (Fig. 2). The Higgins Lake State Forest encloses an area of 311,480 acres within its boundary, and has a net state ewnership of 195,475 acres (Michigan Department of Conservation Biennial Report, 1951-1952).

In 1899, a State Forestry Commission was authorized to study the forest situation in Michigan, and set up reserves but nothing was accomplished until 1903. That year, two "Reserves", the Higgins Lake Reserve in the northern half of T24N, R4W and the southern half of T25N, R4W, Crawford County, and the Houghton Lake Reserve in T21N, R3W and T21N, R4W, Roscommon County together comprising 35,000 acres tax-reverted, cutover and burned over land were set aside.

opr Nor

Fig. 1. Maj

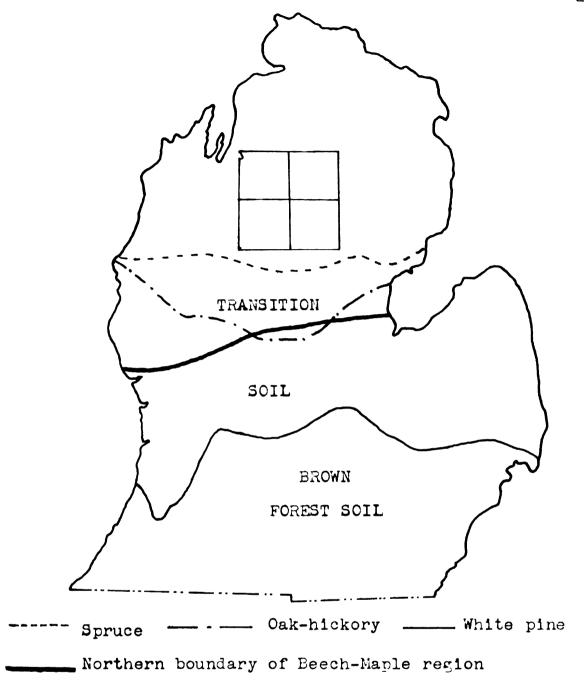
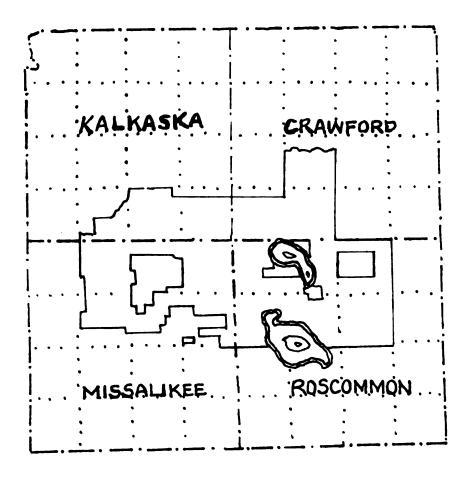




Fig. 1. Map of Lower Michigan showing the location of the Higgins Lake area in relationship to the Hemlock-White Pine-Northern Hardwoods region and also its relation to some of the tree ranges and soils. (After Braun, 1950, and Veatch, 1932)

1 · · ·



## LEGEND

COUNTY BOUNDARIES

TOWNSHIP BOUNDARIES

BOUNDARY OF HIGGINS LAKE STATE FOREST

LAKES

Fig. 2. Map of Higgins Lake State Forest showing its boundary within the four adjoining Counties: Missaukee, Kalkaska, Crawford, and Roscommon. (After the State Ownership Maps of the four Counties, Michigan Department of Conservation, June, 1951.)

Forest was the satisfied management.

The ent

However, no act:

Lie Reserve un

at the time of the dense fore:
and some open 1
industry of pin
hardwoods about

is long been c

Several forest as recor food forests, 1 species, and el

were the subjoc

aten, and yell

tite pine, res

tectes were n

However, no activities were being carried out on the Houghton Lake Reserve until 1911, therefore the Higgins Lake State

Ferest was the first of the State Forests to be put under active management.

The entire land area of the Higgins Lake State Forest, at the time of its first occupation by white men, was covered by a dense forest except for a small acreage of bog or marsh and some open land in the drier sandy plains. The lumber industry of pine on large scale started about 1870 and of hardwoods about 1900. At the present time, the original forest has long been cut over except in a very few small areas and woodlets, and may be a few places in swamps.

Several types of forest were represented in the virgin forest as recorded by the Soil Economic Survey: (1) The hard-wood forests, in which sugar maple and beech were the dominant species, and elm, ash, basswood, yellow birch, and hemlock were the subdominant species; (2) the mixed conifer and hard-wood forests, in which such species as elm, ash, red maple, as Don, and yellow birch were intimately associated with white pine, hemlock, spruce, and fir; (3) the pine forests, in which white pine, red pine and Norway pine or red and jack pine Predominated; and (4) the swamp forests, in which the dominant apacies were northern white cedar, spruce, balsam fir, and tamarack. Much of the forest land is at present covered with

 a dense

reprod/

lumber
of peo

the no

ture i

faras

Vitie lands

400**e**g

out t

of 1

the The

dew

خعيرو

a dense grewth of brush, briers, and grass or grown up to scrubby aspen, eak, and red maple, with little natural reproduction of the original dominant species.

In the early days of the area's development the lumber industry unquestionably braught the largest number of people into the area. During this period of the late seventions the railroads were extending their lines into the northern regions of the state and opening the way for further settlement in this area. At the same time agriculture was also gaining a foothold so that the population on farms was being increased. Between 1900 and 1910 the rate of farm settlement was considerably increased by the activities of outside real estate companies that sold cut-ever lands to new settlers.

with the decline in the lumber industry after the excessive cutting, the farmers lost an important and easily accessible market for their produce and surplus labor. Without this market, many farmers were forced to leave their farms. Extensive abandonment has since occurred on the lands of low productivity and least favorable locations which were chiefly those lands sold by the previously stated companies. The tracts and lots which have been abandoned by their owners now make up a large part of the present area of the Higgins Lake State Forest.

•

The recent development in this area has centered on resert and recreational property. With the advent of improved reads and motor transportation, Houghton and Higgins Lakes began to attract more visitors each year. There are now a tremendous numbers of dwellings in the resert villages of Houghton Heights, Houghton Lake Village, Prudenville and others. Higgins and Houghton Lakes have since become a famous hunting, fishing and outing ground.

#### B.Climate

Michigan is located in the heart of the Great Lakes region and has the longest shore line in the States. The large bodies of water tend to equalize the nearby land temperatures and this is especially true of lower Michigan, where the effect of cold waves sweeping down from the north-west is medified by the warmer water of the Great Lakes. This makes for lower Michigan a more equal and less extreme climate than occurs in the states of similar latitude on the other side of Lake Michigan.

In the Higgins Lake area, the climate alternates between centinental and semi-marine conditions. The marine type is due to the influence of the lakes and governed by the force and direction of the wind. The weather becomes sentimental in character when there is little or no wind, and a strong wind from the lakes will transfer it into a semi-marine type.

The winters are long and rigorous in this area, as temperature below freezing prevail from Nevember to March, inclusive; and occasional freezes may well be expected in September and May, or even in June. This limits the frost free or the growing season to a comparative short period. The average period for the region as a whole is about 105 days. It is derived from the data of six weather stations

The state of the s  $m{\omega}$  . Fig. ( ) which is the contraction of  $m{\omega}$  ,  $m{\omega}$ and the first of t  $(x_1, x_2, \dots, x_{n-1}) \in \{x_1, \dots, x_{n-1}, \dots, x_{n-1}, \dots, x_n\} \subseteq \{x_1, \dots, x_n\} \cap \{x_n\}$ and the state of t

and the second of the second o 

 in and near the £ te 125 days. and 95 days at R presence of larg treas.

The main annual temperatu ture 18°F., and precipitation (1 average snowfall le percentage o and mild summers

The prec throughout the y ila-menth period tion eccurs as a devapours. Snow from November to

freezing to a gr and rarely attai ilages.

Weather te data are ata Man (U.S.D.A

Olimatological D

in and near the Higgins Lake State Forest which range from 88 to 125 days. The low of 88 days at Houghton Lake Station and 95 days at Roscommon Station are probably due to the presence of large bodies of lakes and swamp lands in these areas.

The main climatic features of this region are a mean annual temperature of about 43°F. (average January temperature 18°F., and average July temperature of 68°F.); a normal precipitation (including melted snew) of about 29 inches; an average snewfall of approximately 70 inches; low evaporation; lew percentage of possible sunshine; and rigorous winters and mild summers.

The precipitation is distributed relatively even throughout the year with a slightly greater amount for the six-menth period from May to October. Most of the precipitation occurs as slow rains with rare occasions of destructive dewnpours. Snew ordinarily forms a permanent ground cover from November to March and serves to prevent the soil from freezing to a great depth. The prevailing winds are westerly and rarely attain high velocity to cause any destructive damages.

Weather data of this region are presented in Table 1.

The data are adapted from "Climate of Michigan" in Climate

And Man (U.S.D.A. Yearbook, 1941), and expanded by using

Climatelegical Data for Michigan, U.S. Department of Commerce,

and the control of th the term of the contract of th · \*\*\* the contract of the second en grande vaga et al a la calabara en la calabara e and the second of the second o approximate the second control of the second 

Stations w

\_ - - - -

Ta

Station
Higgins
Lake
Houghton
Lake

Roscommon

Grayling 5

lake City 3

\*Data co U.S. D. 1939 t.

1.

2 \_\_

36 1.46 1 24 1.34 1 71.18 39 1.56 1

12 23 1.49 1. 17 1.47 1.

1 ---- Le

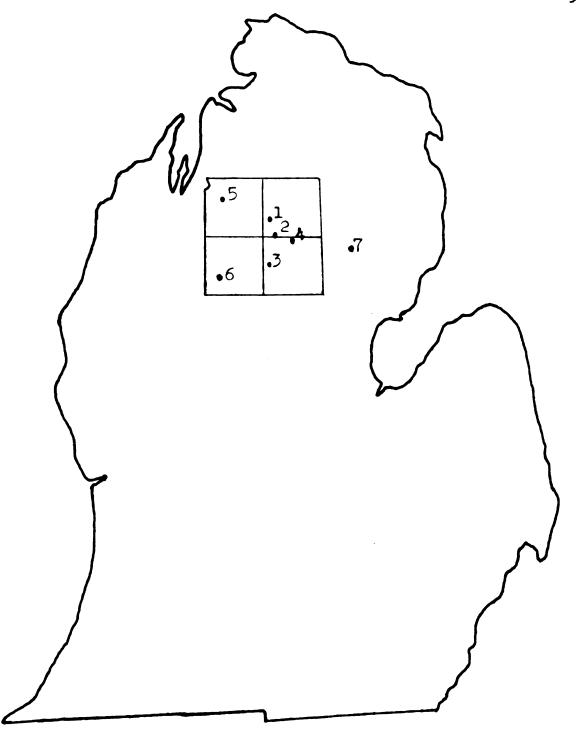
Weather Bureau, from 1938 to 1952. The locations of Weather Stations which are near the Higgins Lake are shown in Fig. 3.

Table 1. Weather data of the Higgins Lake area...

|                             | T          | empera       | F.        |     |     | Killing Frest Ave.D |    |      |    |               | ates Frecipi- |            |       |
|-----------------------------|------------|--------------|-----------|-----|-----|---------------------|----|------|----|---------------|---------------|------------|-------|
| Station                     | 1          | Jan.<br>ave. | July ave. |     | ъ   | •                   | 1  |      |    | First in Fall |               |            |       |
| Higgins<br>Lake<br>Houghton | 50         | 17.7         | 66.9      | 106 | -39 | •                   | 17 | June | 6  | Sept.16       | 102           | <b>4</b> 8 | 29.39 |
| Lake                        | 36         | 19.8         | 67.4      | 107 | -48 |                     | 36 | June | 10 | Sept. 6       | 88            | 37         | 27.40 |
| Rescommen                   | <b>*</b> 8 | 18.6         | 67.3      |     |     |                     | 8  | June | 2  | Sept. 5       | 95            | 7          | 29.98 |
| Grayling                    | 51         | 17.7         | 67.6      | 106 | -41 |                     | 54 | May  | 29 | Sept.18       | 112           | 53         | 31.07 |
| Kalkaska                    | 22         | 17.6         | 67.8      | 106 | -34 | 7                   | 24 | May  | 23 | Sept.25       | 125           | 35         | 30.20 |
| Lake City                   | 30         | 19.3         | 68.6      | 106 | -41 |                     | 30 | May  | 28 | Sept.21       | 116           | 29         | 26.44 |

<sup>\*</sup>Data compiled from Climatological Data for Michigan, U.S. Department of Commerce, Weather Bureau, from 1939 to 1946 only.

- 1 ---- Length of record years
  - a ---- Maximum temperature recorded
  - b ---- Minimum temperature recorded
- 2 ---- Length of growing season in days


| <b>SE-</b>                  |    |      | Prec: | ipita | tion |      | in   |      |      | Inches |      |      |      |
|-----------------------------|----|------|-------|-------|------|------|------|------|------|--------|------|------|------|
|                             | _1 | Jan. | Feb.  | Mar.  | Apr. | May  | June | July | Aug. | Sept   | Oct. | Nov. | Dec. |
| Higgins<br>Lake<br>Houghton | 36 | 1.46 | 1.47  | 1.82  | 2.44 | 2.79 | 2.59 | 2.68 | 2.90 | 3.21   | 2.65 | 2.29 | 1.62 |
| Lake                        | 24 | 1.34 | 1.21  | 1.99  | 2.53 | 2.74 | 2.77 | 2.38 | 2.73 | 2.92   | 2.97 | 2.37 | 1.45 |
| Grayling                    | 39 | 1.56 | 1.52  | 1.70  | 2.36 | 3.37 | 2.89 | 3.41 | 2.90 | 3.43   | 3.16 | 2.73 | 1.70 |
| Kalkaska<br>Lake            | 23 | 1.49 | 1.23  | 1.94  | 2.20 | 2.94 | 2.60 | 3.07 | 3.19 | 3.30   | 2.87 | 2.40 | 1.95 |
|                             | 17 | 1.47 | 1.65  | 1.50  | 1.96 | 2.52 | 2.65 | 2.30 | 2.25 | 2.94   | 2.33 | 1.79 | 1.29 |

<sup>1 ----</sup> Length of record in years

# 

•

The second secon



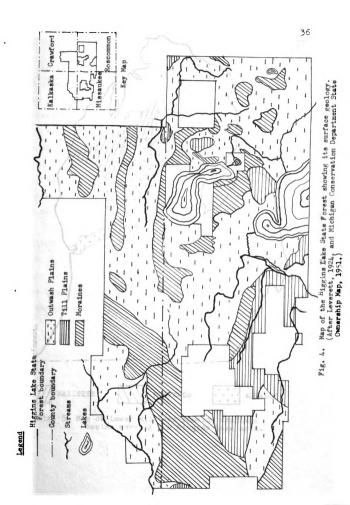
l Grayling 4 Roscommon 2 Higgins Lake 5 Kalkaska 3 Houghton Lake 6 Lake City

7Rose City (Lupton)

Fig. 3. Map of Lower Michigan showing the location of U. S. Weather Bureau Stations in and near the Higgins Lake area whose weather data are used in this study.

## C.Geology

The surface features of the southern peninsula of Michigan are product of glaciation. The glacial drift, which covers so deeply much of the rock surface of the southern peninsula, was brought in largely by an ice sheet or continental glacier which moved southeastward from the highlands of Canada. According to Leverett (1912), "---- the average thickness of the drift in the southern peninsula is about 300 feet, whereas in the high interior of the north part of the peninsula may have over 1,000 feet."


In the Higgins lake area, the surface features have been changed very little since the close of the last period of glaciation. Much of the land formation in this region is level or gently relling which can be grouped into three physiographic divisions: (1) The outwash plains, (2) the till plains, and (3) the moraines. The underlying bedrock has been severed to a considerable depth by glacial drift and outwash so that no surface outcroppings of hardrock occur. According to Michigan Geological Survey, it is 417 feet at Rescommon in Roscommon County. The structure of the drift is rather variable in Michigan. Leverett (1904) stated that:

<sup>&</sup>quot;---- Sand and gravel form a notable part of the drift material and much of the till is lesse textured. This great amount of lesse textured drift seems attributable to the excessive glacial drainage resulting from the convergence of the ice lebes."

Surface land formations of the Higgins Lake State Forest are shown in Fig. 4. The outwash plains are mainly level while the smooth rolling uplands occupying the till plains and the moraines make up the rolling to hilly uplands. Considerable areas of swamp and wet lands occur around the lakes and along the rivers, chiefly on the outwash plains; and also some of the swamp soils which are scattered in spots occur in the deeply cut valleys and on the rolling to hilly uplands.

A table-land ranging in height from 1,200 to 1,400 feet which 'embraces' parts of Crawford, Kalkaska, Missaukee, and Roscommen Counties to form a divide between three large river systems. As a result, three drainage basins are formed as shown in Fig. 5. In the Higgins Lake State Forest region, area in Crawford County and roughly the eastern one third of the area in Roscommen County drain into the AuSable River, which flows eastward to Lake Huron. The area in Kalkaska County and approximately the northern one third of the area in Missaukee County drain into the Manistee River; while the rest of the area drains into the Muskegon River which heads in Higgins and Houghton Lakes. Both the Manistee and Muskegon Rivers flow westward to Lake Michigan.

The abundance of lakes in the southern penisula is an indication of the incompleteness of the drainage. There



•

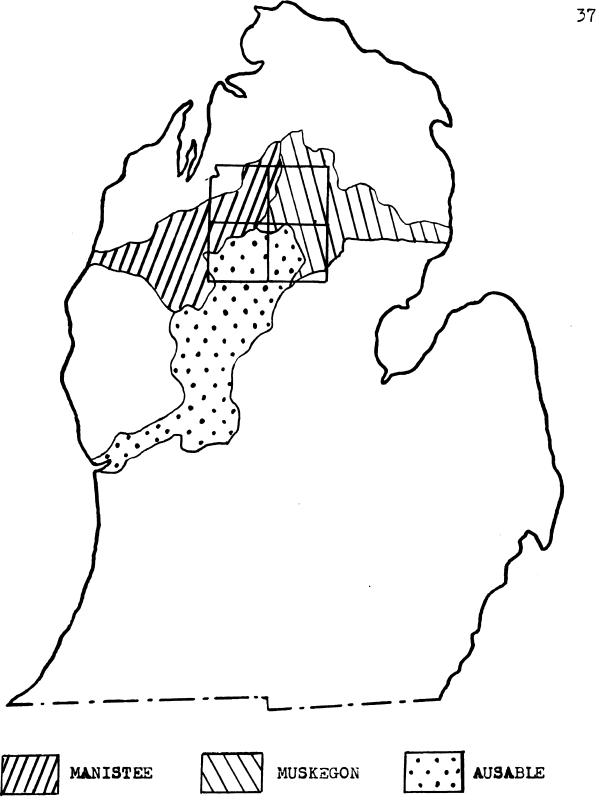



Fig. 5 Map of Lower Michigan showing drainage basins serving the Higgins Lake area.

are two large lakes and a few smaller enes in the Higgins Lake area. Houghton Lake is the largest inland lake in the State of Michigan. It has an area of approximate thirty-ene square miles and is more than eight miles long and over four miles wide. It is a shallow lake which does not exceed 25 feet in depth, and has heavy growth of vegetation. In contrast, Higgins Lake, which has an area of about 15 square miles is deep and is fed by springs. It also is located on a higher elevation, 1,160 feet above the sea level, as compared to 1,125 feet of Heughton Lake.

The general elevation of the region ranges from 1,000 to 1,400 feet above the sea level or about 400 to 800 feet above the level of Lake Michigan and Lake Huron. Elevations of the level plains vary from 1,000 to 1,200 feet, while the hilly lands usually reach an elevation of 1,150 to 1,300 feet and may reach as much as 1,400 feet at places.

 In the second of 

- Marian Company of the Company of t

on a sub-off the second control of the sub-off the sub

and the second of the control of the second of the second

officers in American State of the Court of the State of the American American Court of the grant for the form of the second of the seco

en la esta la proposición de la estada por la estada en entre de la composición de la estada en la estada en e

in the control of the following form of the second state of the

D.Soil

The soils of Michigan are developed from the materials deposited by repeated glaciers which covered the state at the close of the Tertiary. This glacial drift, which covers so deeply much of the rock surface of the lower peninsula has an average thickness of about 300 to 600 feet (Leverett, 1915).

The soil conditions are chiefly determined by the surface geology and the topography. The original character of the soil, whether rock, sand, clay or marl, depends upon the geological relations. From the vegetation standpoint the topographic relations are much more important, since they condition the presence or absence of drainage and cause variations in aeration and humus contents.

The soils in the Higgins Lake region can be classified into two major divisions: Those developed under conditions of good drainage and medium moisture and those developed under poor drainage or excessive moisture. In this paper only that of the latter are to be discussed.

Poorly-drained areas or the swamp land makes up a considerably large portion of the land area in the northern counties of lower Michigan. The soils developed under conditions of poor drainage in the area of this study are grouped into three series. They are the Newton soils, the Bergland soils, and the organic soils. General descriptions of these soils are as follows:

### 1.Newton soils

These soils occur on poorly-drained sand plains, on the flat wet borders of shallow lakes and swamps. They consist of a dark layer of leamy sand or sandy leam soil underlain by gray or dingy-white wet sand. The dark color, due to organic matter accumulated under wet conditions extends to a depth ranging from 3 to 15 inches. Most of these soils are medium or strongly acid in reaction.

The eriginal tree growth consists mainly of white pine (Pinus Strebus) with more or less northern white cedar (Thuja eccidentalis), black spruce (Picea mariana), and balsam fir (Abies balsamea) (Soil Survey of Roscommon County, Michigan, 1924). At the present time, most of the land is covered with a dense growth of alder, willow, and aspen.

### 2.Bergland soils

These are the heavier mineral soils which have develeped under conditions of poor drainage. They occur only in small areas as swamp lands in swales and on the borders of peat and muck swamps. These soils are nearly neutral in reaction. The surface soil is dark gray or nearly black loam or clay leam with high content of organic matter. It is under lain by a gray or drab plastic clayey layer, mottled with yellowish or rust-colored spots showing the typical characteristics common to clay soils existing under permanent wet conditions.

en de la composition La composition de la

The native vegetation consists mainly of elm and ash, with smaller amount of red maple (Acer rubrum), basswood (Tilia americana), spruce, balsam fir, northern white cedar, hemleck (Tsuga canadensis), and white pine.

# 3.Organic soils

The erganic soils are composed dominantly of plant remains, and constitute a distinct class in comparison with soils which are composed principally of mineral or inorganic matter. In this region, the organic soils occur in swamps, bogs, and marshes. The deposits have accumulated in permanent wet situations such as in irregular shaped flat areas where the under drainage is obstructed, in stream valleys, and in certain types of lakes, some of which have been completely filled by vegetation. The organic deposits range from one feet to as much as 40 feet. Based upon the vegetational origin of the organic deposits, and the degree of its decomposition, the organic soils in this region are further grouped into the following types:

### a.Rifle peat

Rifle peat is brown or dark brown, coarse, woody or loamy muck or peat very rich in organic matter, which is underlain at a depth ranging from six to 20 inches by fibreus or cearser textured plant material with very little decomposition. The average depth of the water-table is about 10 to 20 inches. This organic soil is acid or nearly neutral in meaction. It occupies the largest aggregate acreage of the

en de la companya de la co

Here is a substitute of the substit

and the second of the second o

EWEMP land in t:

The vege anothern white district laricina where the swamp

grown up in dens

birch, whereas t

b.Greenwood

This is f reat in which th even at the surf

acid in reaction except during ve

Much of

Substratum. The

darine calveulat

berry (Vaccinium

of Roscommon Cou-

and is marsh gra

swamp land in this region.

The vegetation consists of a dense swamp growth of northern white cedar, black spruce, balsam fir, and tamarack (Larix laricina), with occasional hemlock and white pine. Where the swamp land has been logged and burned over it has grown up in dense thickets of aspen, alder, willow, and birch, whereas treeless open areas are covered with a heavy growth of sedges and bluejoint (Calamagrostis canadensis).

### b.Greenwood peat

This is fibrous or coarse-textured, loose, brownish peat in which the plant material is only slightly decomposed, even at the surface. This kind of peat is uniformly strongly acid in reaction. The water-table is at or near the surface, except during very dry periods.

Much of the Greenwood peat land has a semi-floating substratum. The open heath bogs support leatherleaf (Chamae-daphne calvoulata), labrador tea (Ledum groenlandicum), blue-berry (Vaccinium sp.) and Sphagnum moss (Sphagnum sp.) with eccasional growth of tamarack and black spruce (Seil Survey of Roscommon County, Michigan, 1924). Some of the more open land is marsh grown up chiefly to sedges.

# E.Cover type

In the northern counties of Michigan, swamp land makes up a considerable portion of the land area. Most of the timbered swamp lands at the present time are occupied by coniferous swamp species; the rest of the areas are occupied by the swamp hardwood species and in some open places, marshes and begs.

and size. Many areas have been closely cut over and are now occupied by dense reproduction. Other areas are well along the second growth stage and a few lightly cut or virgin stands still remain. Generally speaking, the swamp stands are nearly all well stocked. This may trace back to the fact that the swamps are usually wet, their cover has suffered less from fire than that of the uplands.

The poorly-drained or swamp land in the Higgins Lake area can be grouped into the following vegetation types (Land Economic Survey Reports of Roscommon, Crawford, and Kalkaska Counties. Michigan.):

### 1.Swamp Hardwood type

The major species of this type are elms, black ash (<u>Fraxinus nigra</u>), red maple, and yellow birch (<u>Betula lutea</u>). On the better-drained areas, aspen, white birch (<u>Betula papy-rifera</u>), and alder may enter, while poerer drained sites

Th

The wed stand land hardword 2.3wamp

types of pe

ral substra

Nor talarack pr ted species

This
the site on
balance fir,
predoms

redominate, Minant on th

tre found madepth of the

include some balsam fir, black spruce, northern white cedar, and tamarack.

The Swamp Hardwood type is usually found on areas of lowlands that possess a very moist mineral soil or more frequently where a shallow muck layer overlies a wet sandy subseil. The usual location for such site is the swamp margins bordering the highlands. It also occurs commonly on those areas of swamp land that are occupied by better decomposed types of peat and muck of relatively shallow depth on a mineral substratum.

The Swamp Hardwood type usually exists as an uneven aged stand and rarely attains the volume produced by the upland hardwood type.

## 2.Swamp Conifer type

Northern white cedar, black spruce, balsam fir, and tamarack predominate the Swamp Conifer type with the associated species of red maple, yellow birch, elm, black ash, and aspen.

This mixture of species will vary in composition with the site on which the stand is found. On better drained sites balsam fir, northern white cedar, red maple, and yellow birch predeminate, while black spruce and tamarack become more prominant on the peorly drained sites. Between these two extremes are found many variations in composition depending on drainage, depth of the peat, acidity, and soil temperature.

The majority of the stands have been cut over, or at least culled over once or several times. Cut-over areas reproduce themselves well, while the severely burned over areas are occupied by a dense growth of alder and willow which effer much opposition to the coniferous reproduction.

# 3. Lewland Aspen type

Aspen stand is found to occur on nearly every class of soils and site, from the denuded hardwood and pine uplands down to the swamp lands. On most of the soils it exists as a temporary cover and is quite easily replaced by other species in time. However, repeatedly burned over areas generally restock the aspen type because of its ability to reproduce from sprouts.

Trembling aspen (<u>Populus tremuloides</u>) is the major species in the Lowland Aspen type. The most important invaders are northern white cedar, balsam fir and spruce, black ash and American elm (<u>Ulmus americana</u>).

# 4.Swamp Shrubs of Salix-Cornus-Alnus type

Alnus, or any one species alone. It occurs frequently on swampy or poorly drained areas which have been subjected to repeated burning, in addition to be a common associate in the Swamp Hardwood and Swamp Conifer types. It is also the principal growth along narrow stream bottoms.

5.Na

poorly-

a.

of mars

wet but narrow

the pri

some ca insined

Aillom

ъ.

that co

Sphagnu

trainas

or tama:

<del>--</del>--

# 5.Marsh and Bog types

These are the vegetation types which occur on open poorly-drained land.

#### a.Marsh

In this region, there is one considerably large area of marsh, among other places, located just west of the Houghton Lake along Highway US-27.

These marshes occupy the low flat lands which are wet but have a surface drainage outlet, principally along narrow winding streams.

Sedges (Carex), blue joint and other grasses form the principal vegetation. The wettest sites usually contain some cattails (Typha latifolia) while the relatively better drained areas have more grass. A patchy growth of willow (Salix sp.) is often associated with this type.

b.Bog

This type occurs on the bog areas and has a growth that consists mainly of leatherleaf, with a mixture of Sphagnum moss, labrador tea, and Vaccinium.

These bogs are usually treeless but in case the drainage is somewhat better, an open stand of black spruce or tamarack may be present.

•

### VEGETATION ANALYSIS

### A.Field procedure

1. The field work was conducted during the summer of 1952.

A preliminary reconaissance was made to investigate the areal extent, gross aspects of vegetation cover, associated soils, topography, and other local conditions of the entire region.

Typically representative stands were chosen as sample plets based on the vegetation and soil type and the consideration that they had the least disturbances either due to natural or human causes, such as fire, destructive cutting, etc.

Five types of vegetation were recognized on the poorly drained soils in the Higgins Lake area:

- a.The Swamp Hardwoods of Elm-Black Ash-Red Maple Association.
- b.The Swamp Conifers of Black Spruce-Balsam Fir-Northern White Cedar Association.
- c. The Lowland Aspen of Populus-Salix Association
- d. The Swamp Shrubs of Salix-Cornus-Alnus Association.
- .The Marsh or Open-Meadow Association.

### 2.Sampling method

Quadrats were used in sampling the vegetation in order to obtain maximum accuracy. The quadrats were placed in each vegetation type according to the various successional

# • · ·

• 

• 1

• 

• 

stages. This would probably give a better interpretation for the objective of this study, forest succession.

Sample plots were established depending upon the extent and configuration of the stand, and are laid in such a way so as to avoid the border effect. They were being dispersed and randomly distributed in the entire region. However, stands which were located too deep in the swamps, too remote from the roads, or too widely scattered were avoided so as to reduce much of the travelling time especially during the period of collecting instrumental data.

The number of sample plots in each vegetation type were determined by the homogenity of stand composition, the extensiveness of the type referring to the region as a whole, and in some instances, the accessibility of the stands.

Nested quadrats were used in this study. The sizes of different quadrats were:

- a. 1/5 acre quadrat for tree species more than six feet tall, and shrub species more than 25 feet tall.
- b. 1/10 acre quadrat for shrub species or any vegetation from 6 to 25 feet tall.
- c. 1/1000 or milacre quadrat for all vegetation below six feet tall.

This classification is a common practice in forestry research work. The principle is to select the right size plot

which is small emough to work with, and fairly effective in representing the population and to achieve the objective of the study.

Individual tree species, en 1/5 acre plots, were tallied and recorded according to the size classes designated by Weaver and Clements (1938), with a slight adjustment in the size class 2:

Size class 2. Medium reproduction ---- tree species more than 6 feet tall or up to 0.9 inches D.B.H..

Size class 3. Large reproduction ---- 1 inch to 3.5 inches D.B.H..

Size class 4. Small trees ---- 3.6 to 9.5 inches D.B.H..

Size class 5. Large trees ---- 9.6 inches or more D.B.H..

Individual shrub species on 1/10 acre plots were tallied according to Height classes arbitrarily set up by the author based on the natural height growth of the shrubs in the region. Two classes were used in this study:

Height class 1. Vegetation from 6 to 15 feet tall.

Height class 2. Vegetation ever 15 feet and up to 25 ft..

In the milacre plets, all vegetation was recorded by classes arbitrarily designated by height in order to show their stratification as occurring in nature. Three classes were used:

Class 1. Plants up to 0.9 foot tall.

Class 2. Plants from 1 foot to 3 feet tall.

Class 3. Plants over 3 feet and up to 6 feet tall.

•

Tree and shrub species were recorded by number of stems into their corresponding height class in the milacre plots, with a few exceptions where some of the shrubs were difficult to count and therefore were recorded by coverage. Coverage in this paper is defined as the ocular estimation of the plants which cover the ground surface in vertical projection as expressed in percentage. All herbaceous plants and pteridophytes were tallied by coverage.

and the second of the second o

The state of the s

### B.Office procedure

- 1.Summerization of field data
- .a.Concerning tree species ----- The objectives are to provide data which upon processing will yield the following andices for the tree components of the stand.
- (1)Frequency --- a measure of dispersion expressed as the percentage of quadrats in which:
  - (a)a given species occurs (i.e., frequency per species)

Fq of sp. A = No. of quadrats in which sp. A occurs x 100

Total no. of quadrats examined

(b) a given size class of a given species occurs (i.e., frequency per size class per species)

F of sp. A = No. quad. in which size class n of A occur x 100

Total no. of quadrats examined

(c)Relative frequency ---- a relative expression as a percentage of the frequency value for a given species and based on the total of the frequency values for species.

Fr of sp. A = Frequency of species x 100
Sum of frequency values for all sp.

(2)Density--- a quantitative measures of the number of individuals of a species per unit area.

D of sp. A = Total no. of individuals of sp. A counted x 100

Total no. of quadrats examined

(3) Relative density --- a relative index of plentifulness expressed as the percentage representation of:

and the contract of the contra

.

- (a) each species, based on the total number of individuals counted (i.e., relative density per species)

  Drs of sp. A = Total no. of individuals of sp. A counted x100

  Total no. of individuals of all species
- (b) each size class of a species, based on the total number of individuals in that size class (i.e., relative density per size class per species)

Dr ef sp.  $A = \frac{\text{Total no. of size class n stems of sp.} A \times 100}{\text{Total no. of size class n stems of all species}}$ 

- (4)Basal area ---- a quantitative measure of dominance as expressed by summation of the area occupied at breast height by beles of a given species.
- (5) Relative basal area ---- a relative index of dominance expressed as the percentage of basal area occupied by a given species.

Br of sp. A =  $\frac{\text{Total B.A. occupied by individuals of sp.A x100}}{\text{Total B.A. occupied by all species}}$ 

(6)Importance value ---- a summation index indicating everall importance of a given species and calculated by adding the separate values for relative frequency, relative density, and relative basal area for that species.

Importance Value of sp. A = Fr + Drs + Br
b.Concerning shrub species ---- the following indices are
produced from field data:

- (1)Frequency
  - (a) a given species occurs (Fq)

 $\frac{1}{2} \frac{1}{2} \frac{1}$ 

and the second of the second o

en de la companya de

entre de la companya La companya de la co

 $\sim 80^{\circ}$  . The second of  $\sim 80^{\circ}$  , which is the second of  $\sim 80^{\circ}$  ,  $\sim 10^{\circ}$  ,  $\sim 10^$ 

- (b) a given height class of a given species occurs (F)
- (c) relative frequency (Fr)
- (2)Density (D)
- (3) Relative density
  - (a) of each species (Drs)
  - (b) of each height class of a species (Dr)
- (4)Abundance (A) ---- the average number of individuals of a species per quadrat considering only quadrats in which the species is presented.

A of sp. B = Total number of individuals of sp. B counted

No. of quadrats in which sp. B occurs

But D = Total individuals
Total quadrats

And Fq = Quadrats of occurrence x 100

Total quadrats

Therefore A = 100D/Fq

(5)Relative abundance (Ar) ---- a relative index of abundance expressed in percentage

Ar of sp. B = Abundance of sp. B
Abundance of all sp.

c.Concerning herbaceous species ---- All plants below 6 feet tall were grouped into form groups of Tree, Shrub and Vine, Fern and Fern-like plants, and Herb. They are listed by species alphabetically by percentages of coverage according to the three classes designated.

and the second of the second o

in the second of the second of

2.Cellection, identification and nomenclature of the vegetation

Specimens of all plants found in the quadrats were collected and deposited in the Herbarium of Michigan State College.

Nomenclature for the trees and part of the shrubs are fellowing the "Check List of Native and Naturalized Trees of the United States (Including Alaska)" (U.S.D.A;F.S. Agr. Handbook No. 41, 1953). All other plants follow Gray's Manual of Betany (Fernald, 1950).

A check list of the plants encountered in this study is supplemented in Appendix, listing 171 species of which there are 20 trees, 51 shrubs, 10 pteridophytes, and 90 herbaceeus species.

•

### C.Vegetation inventory

As mentioned previously, five different vegetation types were found on the poorly-drained soils in this region. Vegetation inventory was carried out in 1952, from June to October.

An increment borer was used in the field to determine tree age. The largest tree was selected in order to determine the sequence of ecesis of various species in each 1/5 acre quadrat.

To each of the 1/5 acre quadrats, four milacre plots were set up to study the ground vegetation. Plants in the milacre quadrats are grouped into four presence classes as fellowing:

Abundant ---- Plants present in all four quadrats.

Frequent ---- Plants present in three quadrats.

Common ----- Plants present in two quadrats.

Rare ----- Plants present in one quadrat.

Summarized data of tree species by size classes, and plants of the herbaceous layer by height classes, and, if there is any, the shrub species by height classes are compiled and summarized for each vegetation type.

1.Swamp Hardwoods of Black Ash-American Elm-Red Maple
Association

The principal hardwood species to be found in this type were the black and green ash, red and silver maple,

American and slippery elm, basswood, and yellow birch.

Northern white cedar and balsam fir were the associated coniferous species. Four stands were selected as sample plots:

a.Black Ash-Northern White Cedar-Balsam Fir stand

Location ---- Roscommon County, Markey Township,

T23N, R3W, SE 1/4, Section 24.

Soil type ---- Rifle peat.

This stand was a mixture of hardwood and coniferous species. Black ash was the predominant species which was associated with northern white cedar and balsam fir. A few green ash, red maple, yellow birch, hemlock, American elm, and black spruce complete the tree species found in the quadrat. Speckled alder (Alnus rugosa) was the only shrub species present.

The largest tree was a northern white cedar, 13.5 inches D.B.H., 160 years eld. The remaining species of balsam fir, red maple, green ash, and yellow birch were all about the same age, around 60 years.

Black ash and balsam fir were reproducing well, followed by northern white cedar. Reproduction of red maple was abundant, but almost all were one year old seedlings.

Plants of the herbaceous layer were grouped separately into tree, shrub and vine, fern and fern-like plants, and herb groups according to the four presence classes, with the number of tree seedlings also listed:

## Trees

Abundant --- Acer rubrum (299)
Abies balsamea (18)

Frequent --- <u>Fraxinus nigra</u> (18) <u>Ulmus rubra</u> (3)

Common ---- Thuja occidentalis (10)

Betula lutea (10)

Rare ----- Quercus rubra (1)

Shrubs and Vines

Abundant --- Rubus pubescens

Common ---- Alnus rugosa Clematis virginiana Ilex verticillata Mitchella repens

Rare ----- <u>Lonicera canadensis</u> <u>Ribes lacustre</u> <u>Rubus ideaus</u>

Ferns and Fern-like Plants

Common ---- <u>Dryopteris spinulosa</u> <u>Dryopteris cristata</u> <u>Onoclea sensibilis</u>

Sedges. Grasses and Herbs

Abundant --- Galium triflorum Carex intumescens

Frequent --- Agrostis hyemalis
Cornus canadensis
Lycopus americanus
Mitella nuda

Aster lateriflorus
Galium trifidum
Maianthemum canadensis

Common ---- <u>Aralia nudicaulis</u> <u>Glyceria striata</u>
<u>Lysimachia thyrsiflora</u> <u>Viola blanda</u>

Rare ----- Aster puniceus Rannuculus sp.
Scutellaria lateriflora
Selidago ulmifolia Thalictrum dasycarpum

.

b.Ash-Red Maple-Elm stand

Location ---- Roscommon County, Lake Township, T23N. R4W. NW 1/4. Section 3.

Soil type ---- Bergland loam.

This was a well stocked stand composed of black and green ash, red maple, American and slippery elm as dominant species, which associate with northern white cedar, balsam fir, and a few basswood. A few shrubs were the Amelanchier sp. and Corylus cornuta.

The largest tree was an American elm, 20.1 inches D.B.H., 160 years eld. Many large red maple were present in the stand. The largest one, 13.5 inches D.B.H., was 70 years old. Black ash ranked next in age being about 45 years old.

Reproduction of both black and green ash was abundant.

Red maple, northern white cedar, and balsam fir were also doing well.

Plants of the herbaceous layer were:

## Trees

Abundant --- Acer rubrum (341)

Common ---- Fraxinus nigra (2)

Rare ----- Abies balsamea (9) Ulmus thomasii (22)
Betula lutea (1)

## Sbrubs and Vines

Frequent --- Parthenocissus inserta

Rare ----- Amelanchier intermedia Corylus cornuta
Nemopanthus mucronata Rhus radicans
Ribes lacustre

## Pteridophytes

Common ---- Dryopteris spinulosa

Rare ----- Botrychium dissectum Dryopteris thelypteris Onoclea sensibilis

Sedges, Grasses, and Herbs

Abundant --- Lysimachia terrestris Maianthemum canadensis

Viola blanda

Frequent --- <u>Carex intumescens</u> <u>Cornus canadensis</u> <u>Fragaria virginiana</u>

Common ---- Agrostis hyemalis Carex trisperma
Coptis groenlandica Galium obtusum
Glyceria pallida

Rare ----- Solidago ulmifolia

c.Ash-Elm-Basswood stand

Location ---- Roscommon County, Lake Township, T23N, R4W, SE 1/4, Section 33.

Soil type ---- Bergland loam.

Predominant species in this quadrat were the green and black ash, slippery and American elm, and basswood. Few birches (Betula lutea and Betula lenta) and northern white cedar, one small red maple completed the stand composition. Three or four medium sized hemlock were dead and remained standing.

The largest trees were found to be mostly ash and elm, both approximately 60 years old.

Plants in the four milacre wuadrats were listed as:

and and the second of the seco

### Trees

Frequent --- Fraxinus pennsylvanica (14)

Common ---- Fraxinus nigra (10)

Rare ----- Acer rubrum (1)
Betula lutea (2)

## Shrubs and Vines

Abundant --- <u>Parthenocissus inserta</u> Rubus pubescens

Frequent --- Ribes americanum

Common ---- Cornus stolonifera Ilex verticillata

Rare ----- Alnus rugosa

## Pteridophytes

Abundant --- Dryopteris thelypteris

Frequent --- Onoclea sensibilis

Common ---- Equisetum sylvaticum

## Sedges, Grasses, and Herbs

Abundant --- <u>Impatiens pallida</u> <u>Lycopus rubellus</u> <u>Lysimachia thyrsiflora</u>

Frequent --- Calamagrostis canadensis Eupatorium purpureum Galium obtusum Glyceria pallida Viola blanda

Common ---- Agrostis hyemalis
Carex intumescens
Fragaria virginiana var.
Lysimachia nummularia
Scutellaria lateriflora
Solidago ulmifolia

Bidens cernua
Carex trisperma
Illinoensis
Lemna minor
Lemna trisulca
Spirodela polyrhiza

Rare ----- Aster lateriflorus Maianthemum canadensis

• •• ...

· ·

d.Elm-Maple stand

Location ---- Roscommon County, Lake Township, T23N, R4W, SW 1/4, Section 13.

Soil type ---- Bergland clay loam.

Red maple, silver maple (Acer saccharinum), and slippery elm were the dominant species with both black and green ash as associate species. Two American elm, one balsam fir completed the tree species of the quadrat. A few Carpinus caroliniana and one Amelanchier canadensis were the only occurring shrubs.

The largest tree was a red maple, 26 inches D.B.H., about 90 years old. A 19.9 inches D.B.H. silver maple was approximately of the same age. A 10.8 inches green ash, the largest among the ashes, was about 60 years old. The American elm was the oldest in the stand at 100 years.

Vegetation of the herbaceous layer were:

## Trees

Abundant --- Acer rubrum (962) Ulmus sp. (451) Fraxinus nigra (35)

Common ---- Fraxinus pennsylvanica (3)

Shrubs and Vines

Rare ----- <u>Smilax tamnoides</u> var. <u>hispida</u>

Pteridophytes

Abundant --- Onoclea sensibilis

Common ---- Osmunda regalis

. The second of  $m{\epsilon}$  is the second of  $m{\epsilon}$ 

----

grand and the second se

## Sedges, Grasses, and Herbs

Abundant --- Bidens frondosa

Carex intumescens Cicuta bulbifera

Lycopus americanus

Galium obtusum

{ Lemna minor Lemna trisulca

Lysimachia thyrsiflora

Spirodela polyrhiza

Frequent --- Agrostis hyemalis
Impatiens capensis

Common ---- Geum aleppicum var. strictum

Rare ----- Coptis groenlandica Glyceria striata

Maianthemum canadensis Sium suave

Viola blanda

And the second of the second o

Eles balsa

es

ker rubrum 3

her saccha j

thms. rugo.

Manchier

Betula lent

letula lute ingimis

carolinia

lorgius cor

Parimus ni

I. pennsylv Pices maria

hija occide

illa ameri

taga canadi

TIME ameri.

Tall rutra

Table 2. Summarization data of four 1/5 acre Swamp Hardwood stands by size classes.

|                          |      | 2   | Size  |       | 7     |        |   | C1   | asse    | s     |   |     | -   |       |   |       |       |     | Totals | 3     |                 |       |                 | _      |
|--------------------------|------|-----|-------|-------|-------|--------|---|------|---------|-------|---|-----|-----|-------|---|-------|-------|-----|--------|-------|-----------------|-------|-----------------|--------|
|                          | Freq | Kon | nsitv | Fre   | 7 . D | ensity | F | req. | 4<br>De | ngity | F | 200 | Dei | nsitv | 7 | Tream | ency  | 1   | Densit | r     |                 | Basal | Anna            | Impor- |
| Species                  | # F  | #   | Dr    |       | F     | # Dr   | # | F    | #       | Dr    | # | F   | #   | Dr    |   | Fq    | Fr    | Ts  | D      | Dr    | Ft <sup>2</sup> |       | BA/acre         |        |
| Abies balsamea           | 3 75 | 17  | 11.4  | . 2 5 | 0 4:  | 2 10.0 | 2 | 50   | 20      | 6.1   |   |     |     |       | 3 | 75    | 7.9   | 79  | 19.8   | 8.2   | 4.5             | 3.2   | 5.6             | 19.3   |
| Acer rubrum              | 3 75 | 14  | 9.4   | 3 7   | 5 3   | 8.1    | 3 | 75   | 29      | 8.8   | 2 | 50  | 26  | 41.3  | 4 | 100   | 10.5  | 103 | 25.8   | 10.7  | 36.2            | 26.0  | 45.2            | 47.2   |
| Acer saccharinum         | 1 25 | 2   | 1.4   | 1 2   | 5 2   | 0.5    | 1 | 25   | 1       | 0.3   | 1 | 25  | 6   | 9.5   | 1 | 25    | 2.7   | 11  | 2.7    | 1.2   | 10.2            | 7.3   | 12.8            | 11.2   |
| Alnus rugosa             | 1 25 | 2   | 1.4   | 1 2   | 5 :   | 0.7    |   |      |         |       |   |     |     |       | 1 | 25    | 2.6   | 5   | 1.2    | 0.5   |                 |       | was and and and | 3.1    |
| Amelanchier sp.          | 1 25 | 4   | 2.7   | 2 50  | 0 6   | 1.4    |   |      |         |       |   |     |     |       | 2 | 50    | 5.3   | 10  | 2.5    | 1.0   | 0.1             | 0.1   | 0.1             | 6.4    |
| Betula lenta             |      |     |       | 1 2   | 5 :   | 0.2    | 1 | 25   | 4       | 1.2   |   |     |     |       | 1 | 25    | 2.6   | 5   | 1.2    | 0.5   | 0.8             | 0.6   | 1.0             | 3.7    |
| Betula lutea<br>Carpinus | 1 25 | 3   | 2.0   | 1 29  | 5 3   | 0.7    | 2 | 50   | 13      | 3.9   |   |     |     |       | 2 | 50    | 5.3   | 19  | 4.7    | 2.0   | 3.0             | 2.2   | 3.7             | 9.5    |
| caroliniana              |      |     |       | 1 29  | 5 8   | 1.9    |   |      |         |       |   |     |     |       | 1 | 25    | 2.6   | 8   | 2.0    | 0.8   | 0.3             | 0.2   | 0.3             | 3.6    |
| Corylus cornuta          | 1 25 | 8   | 5.4   |       |       |        |   |      |         |       |   |     |     |       | 1 | 25    | 2.6   | 8   | 2.0    | 0.8   | -               |       |                 | 3.4    |
| Fraxinus nigra           | 3 75 | 53  | 35.8  | 3 75  | 145   | 34.8   | 4 | 100  | 81      | 24.5  | 3 | 75  | 5   | 7.9   | 4 | 100   | 10.5  | 284 | 71.0   | 29.6  | 19.9            | 14.3  | 24.9            | 54.4   |
| . pennsylvanica          | 2 50 | 24  | 12.6  | 3 75  | 5 58  | 13.8   | 4 | 100  | 58      | 17.5  | 2 | 50  | 5   | 7.9   | 4 | 100   | 10.5  | 145 | 36.2   | 15.1  | 17.7            | 12.7  | 22.2            | 38.3   |
| Picea mariana            |      |     |       |       |       |        | 1 | 25   | 1       | 0.3   |   |     |     |       | 1 | 25    | 2.6   | 1   | 0.2    | 0.1   | 0.1             | 0.1   | 0.1             | 2.8    |
| Thuja occidentalis       | 1 25 | 16  | 10.8  | 3 75  | 71    | 17.0   | 3 | 75   | 64      | 19.3  | 1 | 25  | 3   | 4.8   | 3 | 75    | 7.9   | 154 | 38.5   | 16.0  | 14.4            | 10.3  | 18.1            | 34.2   |
| ilia americana           | 1 25 | 2   | 1.4   | 2 50  | 14    | 3.3    | 2 | 50   | 14      | 4.2   | 1 | 25  | 1   | 1.6   | 2 | 50    | 5.4   | 31  | 7.8    | 3.3   | 3.7             | 2.7   | 4.6             | 11.4   |
| suga canadensis          |      |     |       | 1 25  | 1     | 0.2    | 1 | 25   | 4       | 1.2   |   |     |     |       | 1 | 25    | 2.6   | 5   | 1.2    | 0.5   | 0.5             | 0.4   | 0.6             | 3.5    |
| Ilmus americana          | 1 25 | 1   | 0.7   | 3 75  | 3     | 0.7    | 2 | 50   | 4       | 1.2   | 3 | 75  | 7   | 11.1  | 4 | 100   | 10.5  | 15  | 3.8    | 1.6   | 11.6            | 8.3   | 14.4            | 20.4   |
| lmus rubra               | 1 25 | 2   | 1.4   | 3 75  | 28    | 6.7    | 3 | 75   | 38      | 11.5  | 3 | 75  | 10  | 15.9  | 3 | 75    | 7.9   | 78  | 19.5   | 8.1   | 16.2            | 20.3  | 20.3            | 27.6   |
|                          |      | 148 | 15.4  |       | 419   | 43.6   | _ |      | 331     | 34.4  | - | -   | 63  | 6.6   | - | 950   | 100.0 | 961 |        | 100.0 | 139.2           | 100.0 | 173.9           | 300.0  |

• 4

• 

•

 $\mathcal{L}^{(1)} = \mathcal{L}^{(1)} = \mathcal{L$ 

and the second of the second o

•

r

Table 3. Summary data of the vegetation in milacre quadrats of the Swamp Hard wood stands as recorded in percentage of coverage or number of stems by height classes.

|                       | Total |        |          | Cedar-Bal | sam Fir |          | d Maple- | Clu                   | Stand     |           | -Basswood |         | Stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elm-Mapl      |         |               | Stand         |
|-----------------------|-------|--------|----------|-----------|---------|----------|----------|-----------------------|-----------|-----------|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|---------------|---------------|
| pecies                | Freq. | 0-1 1- | 3 0-1 1- | 3 0-1 1-3 | 0-1 1-  | 3 0-1 1- | 3 0-1 1- | -3 <del>0-1 1-3</del> | 8 0-1 1-3 | 9 0-1 1-3 | 10        | 0-1 1-3 | 12<br>0-1 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13<br>0-1 1-3 | 0-1 1-3 | 15<br>0-1 1-3 | 16<br>0-1 1-3 |
| rees                  |       |        |          |           |         |          |          |                       |           |           |           |         | and the same of th |               |         |               |               |
| bies balsamea         | 31.2  | 6      | 6        | 2         | 4       |          |          | 9                     |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| cer rubrum            | 81.2  | 109    | 76       | 52        | 62      | 68       | 75       | 68                    | 130       |           |           | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 172           | 221     | 317           | 252           |
| etula lutea           | 31.2  | 5      | 3        | 2         |         |          |          | 1                     |           | 2         |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| raxinus nigra         | 68.8  |        | 7        | 6         | 4 1     | 1        | 1        |                       |           |           | 2 3       | 4 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 2          | 8       | 9 5           | 1             |
| raxinus pennsylvanica | 43.8  |        | 5        | 7         |         |          |          |                       |           | 5         |           | 2       | 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1             |         |               | 2             |
| uercus rubra          | 6.2   | 1      |          |           |         |          |          |                       |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| huja occidentalis     | 18.7  | 1      | 8        |           | 1       |          |          |                       |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| lmus rubra            | 18.7  |        | 1        | 1         | 1       |          |          |                       |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| mus thomasii          | 31.2  |        |          |           |         |          |          | 22                    |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 140           | 126 2   | 112 4         | 67            |
| hrubs & Vines         | 18.7  | 3      |          |           | 3 1     |          |          |                       |           |           |           | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| melanchier intermedia | 6.2   |        |          |           |         |          |          | 22                    |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| lematis virginiana    | 12.5  |        |          | T         | T       |          |          |                       |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| rnus stolonifera      | 12.5  |        |          |           |         |          |          |                       |           | 1         | 1 2       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| orylus cornuta        | 6.2   |        |          |           |         | 4        |          |                       |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| ex verticillata       | 25.0  |        | 1        |           | 1       |          |          |                       |           |           |           | 3 2     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |         |               |               |
| onicera canadensis    | 6.2   | 1      |          |           |         |          |          |                       |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| tchella repens        | 12.5  | 2%     | Т        |           |         |          |          |                       |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| mopanthus mucronata   | 6.2   |        |          |           |         | 1        |          |                       |           |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |
| rthenocissus inserta  | 50.0  |        |          |           |         | 3%       | 3%       | 2%                    | 6%        | 2%        | 2%        | т т     | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |               |               |
| us radicans           | 12.5  |        |          |           |         | 7/0      | 7/0      | T                     | T         |           |           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |               |               |

|   | <br>. <del>-</del> . , |   | _; - | . <b>-</b> |     | <br>- | <br>. <del>.</del> | •          | <br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|------------------------|---|------|------------|-----|-------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                        |   |      |            |     |       |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |                        |   |      |            |     | *     | ٠.,                | •          | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                        |   |      |            |     |       |                    | ٠,         | of Alberta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                        | ÷ | •    |            |     |       |                    | •          | The contract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                        |   |      |            |     |       |                    |            | the state of the s |
|   |                        |   |      |            |     |       | •                  | €.         | 11 1/2 1/2 <b>0</b> 1/2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                        |   |      |            |     |       |                    |            | att in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                        |   |      |            |     |       |                    |            | en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                        |   |      |            |     |       |                    | <u>ک</u> و | of the section of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                        |   |      |            |     |       |                    | •          | ged. hv<br>Herom admi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                        |   |      |            |     |       |                    | •          | and the all high by the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |                        |   |      |            | 1,1 |       |                    | •          | e er i sin nom er er in och s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                        |   |      |            |     |       |                    | ė.         | The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                        |   |      |            |     |       |                    | •          | And the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                        |   | 1    |            |     | •     |                    | • ,        | gen a track through the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                        |   |      |            |     |       |                    | . • .      | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                        |   |      |            |     |       |                    | •          | g e e <del>a</del> galleast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| + | :                      |   |      |            |     |       |                    |            | and the transfer of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                        |   |      |            |     |       |                    | •          | potential to the Best Code A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |                        |   |      |            |     |       |                    | •          | or excepting the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                                     | Total<br>Freq. | Black As | sh-White | Cedar-Bal | sam Fir | Ash-Red | Maple-El | n       | Stand   | Ash-Elm | -Basswood |         | Stand   | Elm-Map |         |         | Stan   |
|-------------------------------------|----------------|----------|----------|-----------|---------|---------|----------|---------|---------|---------|-----------|---------|---------|---------|---------|---------|--------|
| Species                             | (%)            | 0-1 1-3  | 0-1 1-3  | 0-1 1-3   | 0-1 1-3 | 0-1 1-3 | 0-1 1-3  | 0-1 1-3 | 0-1 1-3 | 0-1 1-3 | 0-1 1-3   | 0-1 1-3 | 0-1 1-3 | 0-1 1-3 | 0-1 1-3 | 0-1 1-3 | 0-1 1- |
| dibes americanum                    | 18.7           |          |          |           |         |         |          |         |         | 2       | 5         | 1 2     | -       |         |         |         |        |
| ibes lacustre                       | 18.7           |          | Т        |           |         |         |          | T       | T       | ~       |           |         |         |         |         |         |        |
| ubus ideaus                         | 6.2            |          |          |           | T       |         |          |         |         |         |           |         |         |         |         |         |        |
| ubus pubescens                      | 50.0           | T        | 5%       | 5%        | T       |         |          |         |         | 8%      | 2%        | 5%      | 2%      |         |         |         |        |
| ilax tamnoides var.hisp             | 6.2            |          |          |           |         |         |          |         |         | 0,0     | 2/0       | J/o     | 2,0     | T       |         |         |        |
| teridophytes<br>otrychium dissectum | 10.5           |          |          |           |         |         |          |         |         |         |           |         |         |         |         |         |        |
|                                     | 12.5           |          |          |           |         |         |          |         | T       |         |           |         |         | T       |         |         |        |
| ystopteris bulbifera                | 6.2            |          |          |           |         |         |          |         |         |         |           |         |         | 5%      |         |         |        |
| ryopteris cristata                  | 12.5           |          | T        |           | T       |         |          |         |         |         |           |         |         |         |         |         |        |
| yopteris spinulosa                  | 25.0           |          | 5%       |           | 3%      | 3%      | 25%      |         |         |         |           |         |         |         |         |         |        |
| ryopteris thelypteris               | 31.2           |          |          |           |         |         |          | 15%     |         | T 3%    | 10%       | 1%      | 5%      |         |         |         |        |
| quisetum sylvaticum                 | 12.5           |          |          |           |         |         |          |         |         | 10%     |           |         | 5%      |         |         |         |        |
| oclea sensibilis                    | 62.5           |          | 3%       | 2%        |         |         |          |         | 10% 10% | 5% 20%  |           | 5%      | 45%     | 5%      | 3% 3%   | 1%      | T      |
| smunda regalis                      | 12.5           |          |          |           |         |         |          |         |         |         |           |         |         | 35%     |         | 10%     |        |
| dges, Grasses & Herbs               | 62.5           |          | 1%       | 2%        | 5%      |         |          | 1%      | 1%      | T       |           |         | T       | 2%      | 1%      |         | 3%     |
| lamagrostis cahadensis              | 18.7           |          |          |           |         |         |          |         |         | т       | 1%        |         | 5%      |         |         |         |        |
| rex intumescens                     | 81.3           | 2%       | 8%       | 1%        | 3%      | 1%      |          | 3%      | 3%      |         | T         |         | T       | 3%      | 15%     | 1%      | 5%     |
| rex trisperma                       | 25.0           |          |          |           |         | Т       | T        |         |         |         | 3%        |         | 1%      |         | -       | 26      |        |
| yceria pallida                      | 31.2           |          |          |           |         | 10%     | 2%       |         |         | 15% T   | 1%        |         | т т     |         |         |         |        |
| yceria striata                      | 18.7           |          | 1%       |           | 3% 1%   |         |          |         |         |         |           |         |         | Т       |         |         |        |
| ralia nudicaulis                    | 12.5           | 5%       | 10%      |           |         |         |          |         |         |         |           |         |         |         |         |         |        |
| ter lateriflorus                    | 25.0           |          | 1%       | 2% 1%     | T       |         |          |         |         | T       |           |         |         |         |         |         |        |
| ter puniceus                        | 6.2            |          | Т        |           |         |         |          |         |         |         |           |         |         |         |         |         |        |
|                                     |                |          |          |           |         |         |          |         |         |         |           |         |         |         |         |         |        |

|      | 111.                                      | <br> |  |
|------|-------------------------------------------|------|--|
|      | -                                         |      |  |
| <br> | <br>· · · · · · · · · · · · · · · · · · · |      |  |

|     |          |   |     |                         | Here J. Commission of the Comm |
|-----|----------|---|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |          |   |     |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |          |   |     |                         | er in the first first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |          |   |     | • ;                     | ( exercise of the contract of  |
|     | *:       |   |     | •                       | total temperature and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |          |   |     | • • • .                 | of the control of the control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |          |   |     | • 4                     | il Albertstall<br>Albertstall – I forska                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |          |   |     | •                       | general deservations of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |          |   | •   | • • •                   | y francoski metalog sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |          |   |     | $\Omega_{ullet}$        | Recommendate the state of the s |
|     |          |   |     | $ullet$ $\mathcal{I}$ , | and a feel of each of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |          |   |     | ·                       | ere Listarenia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |          |   |     |                         | CONTRACTOR SOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |          |   |     | .*•* 1                  | e from the contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |          |   |     | € •                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |          |   |     |                         | Rising on the employed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | £**<br>: | i |     | . · · · · •             | energy of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |          |   |     | •                       | is teriJe ( x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · • |          |   |     | •                       | relation element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |          |   | 3"  | ••***<br>•••            | ស្រីសាសាសាសាសាសាសាសាសាសាសាសាសាសាសាសាសាសាសា                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |          |   | . : | <i>∞</i> • • •          | eta situe etae.<br>Solotio situe etae.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |          |   |     |                         | we first the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |          |   |     | •                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                                                      | Total          | Black As | h-white | Cedar-Bal | sam Fir | Ash-Red | Maple-El | F       | Stand     | Ash-El   |       |    | -       |     | and | Elm-l |    |         |               | Stand         |
|------------------------------------------------------|----------------|----------|---------|-----------|---------|---------|----------|---------|-----------|----------|-------|----|---------|-----|-----|-------|----|---------|---------------|---------------|
| Species                                              | Freq.          | 0-1 1-3  | 0-1 1-3 | 0-1 1-3   | 0-1 1-3 | 0-1 1-3 | 0-1 1-3  | 0-1 1-3 | 8 0-1 1-3 | 9 0-1 1- | 3 0-1 | 10 | 0-1 1-3 | 0-1 |     | 0-1   |    | 0-1 1-3 | 15<br>0-1 1-3 | 16<br>0-1 1-3 |
| Bidens cernua                                        | 12.5           |          |         |           |         |         |          |         |           |          | T     | 1% | T       |     |     |       |    |         |               |               |
| Bidens frondosa                                      | 25.0           |          |         |           |         |         |          |         |           |          |       |    |         |     |     | 1%    | Т  | 1%      | 1%            | 1%            |
| Cicuta bulbifera                                     | 25.0           |          |         |           |         |         |          |         |           |          |       |    |         |     |     | T     |    | T       | Т             | 1%            |
| Coptis groenlandica                                  | 18.7           |          |         |           |         | 2%      |          | Т       |           |          |       |    |         |     |     | 5%    |    |         |               |               |
| Cornus canadensis                                    | 37.5           | 3%       |         | T         | T       | 2%      | 3%       |         | 2%        |          |       |    |         |     |     |       |    |         |               |               |
| Eupatorium purpureum                                 | 18.7           |          |         |           |         |         |          |         |           | T 29     | T     |    |         |     | 2%  |       |    |         |               |               |
| Fragaria virginiana                                  | 18.7           |          |         |           |         | T       | 1%       | T       |           |          |       |    |         |     |     |       |    |         |               |               |
| F. virginiana var. illino                            | 12.5<br>pensis |          |         |           |         |         |          |         |           |          | T     |    |         | T   |     |       |    |         |               |               |
| Galium obtusum                                       | 50.0           |          |         |           |         |         | T        | 1%      |           | T        | T     |    | T       |     |     | T     |    | T       | Т             |               |
| Galium triflorum                                     | 25.0           | 2%       | T       | 1%        | T       |         |          |         |           |          |       |    |         |     |     |       |    |         |               |               |
| Galium trifidum                                      | 18.7           |          | Т       | 1%        | 1%      |         |          |         |           |          |       |    |         |     |     |       |    |         |               |               |
| Geum aleppicum var strict                            | tuml2.5        |          |         |           |         |         |          |         |           |          |       |    |         |     |     |       |    | Т       | T             |               |
| Impatiens capensis                                   | 18.7           |          |         |           |         |         |          |         |           |          |       |    |         |     |     | T     |    | T       | T             | - 1           |
| Impatiens pallida                                    | 25.0           |          |         |           |         |         |          |         |           | 3% 1%    | 3%    | 1% | 2%      | 1%  | 2%  |       |    |         |               | -             |
| Lemna minor<br>Lemna trisulca<br>Spirodela polyrhiza | 37.5           |          |         |           |         |         |          |         |           | 5%       | 1%    |    |         |     |     | T     |    | T       | T             | T             |
| Lycopus americanus                                   | 75.0           |          | 2%      | 5%        | 5% 1%   | 1%      | 2%       | Т       | T         |          |       |    |         |     |     | 3%    | 3% | 2%      | 2%            | 1%            |
| Lycopus rubellus                                     | 25.0           |          |         |           |         |         |          |         |           | 5% 2%    | 3%    | 1% | 3% 1%   | 5%  | T   |       |    |         |               |               |
| Lysimachia nummularia                                | 12.5           |          |         |           |         |         |          |         |           |          | 1%    |    |         | T   |     |       |    |         |               |               |
| Lysimachia thyrsiflora                               | 68.8           |          | T       |           | T       | T       |          | Т       |           | 1% 3%    | 1%    | T  | 1%      | 1%  | 1%  | 1%    | L% | т т     |               | 1%            |
| Maianthemum canadensis                               | 56.2           | T        | T       | T         |         | T       | 1%       | T       | T         |          | T     |    |         |     |     | T     |    |         |               |               |
| Mitella nuda                                         | 18.7           |          | T       | 10%       | 1%      |         |          |         |           |          |       |    |         |     |     |       |    |         |               |               |
| Rannuculus sp.                                       | 6.2            |          |         | T         |         |         |          |         |           |          |       |    |         |     |     |       |    |         |               |               |
| Scutellaria laterifolia                              | 18.7           |          |         | T         |         |         |          |         |           |          | 5%    |    |         | T   |     |       |    |         |               |               |

• The second tent of the second secon

e přímosní maje v province v přese v p

The state of the s

Section of the state of the sta

Production of the state of th

in the state of the second of the second

The transfer of the same

|                      | Total | Black As | h-White C                          | edar-Bals                          | am Fir  | Ash-Red      | Maple-E  | lm        | Stand   | Ash-Elm   | Basswood      | -             | Stand | Elm-Mapl | e  |               | Stand |
|----------------------|-------|----------|------------------------------------|------------------------------------|---------|--------------|----------|-----------|---------|-----------|---------------|---------------|-------|----------|----|---------------|-------|
| pecies               | Freq. | 0-1 1-3  | <del>2</del><br><del>0-1 1-3</del> | <del>3</del><br><del>0-1 1-3</del> | 0-1 1-3 | 5<br>0-1 1-3 | 6 0-1 1- | 7 0-1 1-3 | 0-1 1-3 | 9 0-1 1-3 | 10<br>0-1 1-3 | 11<br>0-1 1-3 | 12    | 12       | 14 | 15<br>0-1 1-3 | 16    |
| Sium suave           | 12.5  |          |                                    |                                    |         |              |          |           |         |           | Т             |               |       |          |    |               | T     |
| olidago ulmifolia    | 25.0  |          |                                    |                                    | T       |              | 1        | %         |         | 1%        | T             |               |       |          |    |               |       |
| halictrum dasycarpum | 6.2   |          | 1%                                 |                                    |         |              |          |           |         |           |               |               |       |          |    |               |       |
| iola blanda          | 62.5  |          | 1%                                 |                                    | 2%      | 1%           | 1%       | 1%        | T       | 1%        | 2%            |               | T     | T        |    |               |       |

T --- Denotes "Trace" which indicates less than 1% Coverage.

|   | ** |        |                                         | <u>.</u> .                              | A            |               |                   | غلامالت الباد الباث |
|---|----|--------|-----------------------------------------|-----------------------------------------|--------------|---------------|-------------------|---------------------|
| • |    |        |                                         | · . —                                   |              |               |                   |                     |
|   |    |        | - · · · · · · · · · · · · · · · · · · · | - · · · · · · · · · · · · · · · · · · · |              |               |                   | , s 1               |
|   |    |        |                                         |                                         |              | • .           |                   |                     |
|   |    |        |                                         |                                         |              | . •           | ×14.51            | The second of the   |
|   |    |        |                                         | •                                       |              | •             | . Kitak bir (til) | i se pirtusta       |
|   |    |        |                                         |                                         | <del>.</del> | Line property |                   |                     |
| • | ·  | t et e | gradient were en                        | • •                                     | n. 1         |               |                   |                     |
|   |    |        |                                         |                                         |              |               |                   |                     |

2.Swamp Conifers of Black Spruce-Balsam Fir-Northern White Cedar Association

Dominant species in this type were the balsam fir, northern white cedar, tamarack, and black spruce. Red maple and yellow birch were the associate hardwoods. Four quadrats of this type were studied:

## a.Tamarack stand

Location ---- Crawford County, Beaver Creek Township, T25N, R3W, SE 1, Section 29.

Soil type ---- Rifle peat.

Tamarack was the only tree species. The average age of the stand was approximately 30 years old, with the largest individual measured 9.6 inches D.B.H., and the smallest 1.3 inches D.B.H.. One important fact was that no tamarack reproduction has been observed in the quadrat.

There was a dense shrub growth of green alder (Alnus sinuata) and red osier dogwood (Cornus stolonifera). Some swamp birch (Betula pumila) and Labrador tea (Ledum groenlandicum) were also present. Sphagnum moss (Sphagnum sp.) was abundant with a coverage of approximate 40 percent.

Soils were very wet and spongy with most of the herbaceous plants grown on the hummucks. Plants in the milacre quadrats were:

## Trees

Rare ---- Quercus rubra (1)

and the second of the second o

The second secon

## Shrubs and Vines

Abundant --- Rubus pubescens

Frequent --- Betula pumila Prunus virginiana Lonicera villosa var. solonis

Rare ----- Alnus sinuata Cor Ledum groenlandicum Frus Spiraea latifolia

Cornus stolonifera Frunus avium

Pteridophytes

Common ---- Dryopteris cristata

Sedges, Grasses, and Herbs

Abundant --- Agrostis hyemalis

Calamagrostis canadensis

Galium aparine

Solidage uliginosa

Bromus ciliatus

Carex intumescens

Maianthemum canadensis

Solidage ulmifolia

Frequent --- Campanula aparinoides

Rare ----- Coptis groenlandica Lycopus americanus Mitella nuda

b.Balsam Fir-Tamarack stand

Location ---- Crawford County, Beaver Creek Township, T25N, R3W, SW 1, Section 35.

Soil type ---- Newton loamy sand (approximately 8 inches layer of organic soil on top).

This stand was composed mostly of smaller trees.

Balsam fir was the predominant species with the largest one,

8.4 inches D.B.H., about 40 years old. The largest of the five
tamaracks was 9.7 inches D.B.H., only 25 years old. The only
northern white cedar, 7.8 inches D.B.H., was 36 years of age.

Although there were nine different species present in the
quadrat, six of them were represented by a single tree.

•

en de la companya de la co

. . and the second of the second o

The predominant shrub species was the speckled alder (Almus rugosa). Fire cherry (Prunus pensylvanica) and choke cherry (Prunus virginiana) were also abundant. These formed a very dense growth.

Large number of plants were present in the four milacre quadrats. They were:

#### Trees

Abundant --- Abies balsamea (27)

Frequent --- Acer rubrum (15) Ulmus sp. (6)

Rare ----- Betula lutea (11) Quercus rubra (2)
Thuia occidentalis (2)

#### Shrubs and Vines

Abundant --- Cornus alternifolia Ilex verticillata Prunus virginiana Rubus pubescens

Frequent --- Alnus rugosa Rubus ideaus var, aculeatissimus

Common ---- Cornus stelenifera Lonicera villosa var. selenis Ribes lacustre

Rare ----- Ribes americanum

### Pteridophytes

Abundant --- Dryopteris cristata var. clintoniana

Rare ----- Dryopteris spinulesa

### Sedges, Grasses, and Herbs

Abundant --- Agrostis hyemalis Bromus ciliatus Calamagnestis canadensis Carex Intumescens Fragaria vesca Galium triflorum Glyceria borealis Lycopus americanus Malanthemum canadensis Mulenbergia racemosa Mulenbergia racemosa

٠.

A Company of the Comp

•

-- - Jen.

## 

# 

e de la companya de l La companya de la companya de

# 

Common ---- Aster sp.

Impatiens capensis

Mitella nuda Solidago ulmifolia Geum aleppicum var. strictum

Lysimachia terrestris

Rannuculus sp. Viola blanda

Rare ----- Aralia nudicaulis

Goodyear pubescens Scutellaria lateriflora Solidago canadensis

Coptis groenlandica Iris versicolor

Solidago patula

c.Black Spruce-Balsam Fir stand

Location ---- Crawford County, Beaver Creek Township, T25N. R4W. SE 1. Section 34.

Soil type ---- Rifle peat.

This was a well stocked stand in which black spruce and balsam fir were dominants. Some northern white cedar, a few red maple and yellow birch completed the tree species of the stand. The largest tree was a northern white cedar, 15.8 inches D.B.H., and the largest black spruce was 9.6 inches D.B.H.

The stand was composed of 85 years old northern white cedar, 50 years old balsam fir, and 40 years old black spruce. The balsam fir had far more reproduction than the others. Some seedlings of black spruce were also present.

A few speckled alder were the only shrub species which lecated at an opening in the stand. Vegetation of the milacre quadrats were:

## Trees

Abundant --- Abies balsamea (40) Acer rubrum (341) Quercus rubra (10)

Rare ----- Pinus Strobus (1)

•

In the second sec

A transfer of the second of the

en de la companya de la co

## Shrubs and Vines

Abundant --- Vaccinium myrtilloides

Frequent --- Rubus pubescens

Common ---- Ilex verticillata

Mitchella repens

<u>Linnaea</u> borealis var.americana

Rare ----- <u>Gautheria</u> <u>procumbens</u>

Prunus virginiana

Lonicera villosa var. solonis

Ribes trieste

Pteridophytes

Frequent --- Equisetum sylvaticum

Rare ---- Dryopteris cristata

Dryopteris spinulosa

Dryopteris thelypteris

Sedges, Grasses, and Herbs

Abundant --- Aralia nudicaulis

Clintonia borealis
Cornus canadensis
Glyceria striata
Pyrola secunda

Carex intumescens
Coptis groenlandica
Glyceria borealis
Maianthemum canadensis

Maianthemum canadensis
Trientalis borealis

Frequent --- Aster sp.

Viola blanda

<u>Habenaria</u> <u>obtusata</u>

Common ---- Mitella nuda

Solidago uliginosa

Rare ----- Galium asprellum

Geum aleppicum var. strictum

d.Northern White Cedar-Balsam Fir stand

Location ---- Roscommon County, Gerrish Township,

T24N, R3W, NW 1, Section 2.

Soil type ---- Rifle peat.

This stand was densely stocked with northern white cedar and balsam fir as the dominant species, which associated with black spruce and yellow birch.

•

The largest tree was a 10 inches D.B.H. northern white cedar. The stand was uneven-aged, consisting of 65 years old northern white cedar, 50 years old balsam fir, and 40 years old black spruce. Both northern white cedar and balsam fir were well represented in different diameter classes and were well reproduced. Seven black spruce were tallied in the quadrat, all of them fell into size class 4 with no reproduction to be found. A few red maple and cherries were scattered in the stand to complete the composition of tree species.

A considerable number of speckled alder was the sole representative of shrub species.

Plants in the four milacre quadrats were:

## Trees

Abundant --- Abies balsamea (47) Acer rubrum (35)

Rare ----- Quercus rubra (1)

## Shrubs and Vines

Frequent --- Lonicera canadensis Rubus pubescens

Common ---- <u>Linnaea borealis</u> var. <u>americana</u>
Rhus radicans

Rare ----- Acer spicatum Corylus cormuta

Ilex verticallata
Ribes lacustre

Corylus cormuta
Mitchella repens

## Pteridophytes

Frequent --- <u>Dryopteris</u> thelypteris

Rare ---- <u>Dryopteris</u> <u>spinulosa</u>

representation of the state of with the first term of the control o 

in the second of the second 

. The second of the second contribution  $oldsymbol{\kappa}$ 

**.** 

## 

# Sedges, Grasses, and Herbs

Abundant --- Agrostis hyemalis

Carex intumescens
Galium triflorum

Aralia nudicaulis
Clintonia borealis
Glyceria borealis

Mitella nuca

Frequent --- Coptis groenlandica Pyrola secunda

Cemmon ---- Cornus canadensis Maianthemum canadensis Prunella vulgaris Trientalis borealis

Viola blanda

\* ..... : ....

Table 4. Summarization data of four 1/5 acre Swamp Conifers stands by size classes.

|                    |       |                 | SIZE  |           |           | CI    | ASSE      | 3    |       | E               |               |            |     | TO     | TALS  |                        |       |                            | Impor- |
|--------------------|-------|-----------------|-------|-----------|-----------|-------|-----------|------|-------|-----------------|---------------|------------|-----|--------|-------|------------------------|-------|----------------------------|--------|
| Species            | Freq. | Demsity<br># Dr | Freq. | Dens<br># | ity<br>Dr | Freq. | Dens<br># | Dr   | Freq. | Density<br># Dr | Frequ<br>T Fq | ency<br>Fr | Ts  | Densit | Drs   | Bas<br>Ft <sup>2</sup> |       | Area<br>Ft <sup>2</sup> /A | tance  |
| Abies balsamea     | 3 75  | 42 73.7         | 3 75  | 301       | 60.0      | 3 75  | 94        | 24.5 |       |                 | 3 75          | 13.6       | 437 | 109.2  | 45.9  | 21.3                   | 26.6  | 26.6                       | 86.1   |
| Acer rubrum        | 1 25  | 3 5.3           | 1 25  | 1         | 0.2       | 2 50  | 13        | 3.4  | 1 25  | 1 12.5          | 3 75          | 13.6       | 18  | 4.5    | 1.9   | 3.1                    | 3.9   | 3.9                        | 19.4   |
| Betula lutea       |       |                 | 1 25  | 5         | 1.0       | 2 50  | 11        | 2.8  | 1 25  | 2 25.0          | 3 75          | 13.6       | 18  | 4.5    | 1.9   | 3.1                    | 3.9   | 3.9                        | 19.4   |
| Fraxinus nigra     |       |                 |       |           |           | 1 25  | 1         | 0.3  |       |                 | 1 25          | 4.6        | 1   | 1.2    | 0.1   | 0.1                    | 0.1   | 0.1                        | 4.8    |
| Larix laricina     |       |                 | 2 50  | 45        | 9.0       | 2 50  | 100       | 26.0 | 2 50  | 2 25.0          | 2 50          | 9.1        | 147 | 36.8   | 15.5  | 19.0                   | 23.7  | 23.7                       | 48.3   |
| Picea mariana      | 1 25  | 2 3.5           | 1 25  | 20        | 4.0       | 3 75  | 41        | 10.7 | 1 25  | 1 12.5          | 3 75          | 13.6       | 64  | 16.0   | 6.7   | 9.7                    | 12.1  | 12.1                       | 32.4   |
| Pinus Strobus      |       |                 |       |           |           | 1 25  | 1         | 0.3  |       |                 | 1 25          | 4.6        | 1   | 1.2    | 0.1   | 0.1                    | 0.1   | 0.1                        | 4.8    |
| Prunus serotina    | 2 50  | 7 12.2          | 2 50  | 8         | 1.5       |       |           |      |       |                 | 2 50          | 9.1        | 15  | 3.8    | 1.6   | 0.1                    | 0.1   | 0.1                        | 10.8   |
| Thuja occidentalis | 1 25  | 3 5.3           | 2 50  | 122       | 24.3      | 3 75  | 122       | 31.7 | 2 50  | 2 25.0          | 3 75          | 13.6       | 249 | 62.2   | 26.2  | 23.3                   | 29.1  | 29.1                       | 68.9   |
| Ulmus americana    |       |                 |       |           |           | 1 25  | 1         | 0.3  |       |                 | 1 25          | 4.6        | 1   | 1.2    | 0.1   | 0.3                    | 0.4   | 0.4                        | 5.1    |
|                    |       | 57 6.0          |       | 502       | 52.8      |       | 384       | 40.4 |       | 8 0.8           | -550          | 100.0      | 951 |        | 100.0 | 80.1                   | 100.0 | 100.0                      | 300.0  |

•

Table 5. Summarisation data of 1/10 aere quadrats by height classes of the Swamp Conifer stands.

|                     |   | HEIGHT | ES  |                     |   | 15    | CLASSES |          |          |           | 2             | TOTALS |         |       |                        |       | No. of  |
|---------------------|---|--------|-----|---------------------|---|-------|---------|----------|----------|-----------|---------------|--------|---------|-------|------------------------|-------|---------|
|                     | 1 | 517    |     | Feet                |   | 15-25 | Feet    | 4        |          |           |               |        |         |       |                        |       | St. ems |
|                     | 7 | 99     | O   | Density             | E | Freq. | Den     | Density  | <u>C</u> | Frequency | 167           |        | Density | 7     | Abun-                  |       | Der     |
| Species             | * | #      | #   | J.                  | H | 6.    | #       | ď        | Īā       | Fq        | Fre           | TS     | Ω       | Drs   | dance                  | ¥.    | Agre    |
| Acer spicatum       | ~ | 25     | 8   | 2 0.4               |   |       |         |          | 4        | 25        | 7.7           | æ      | 0.5     | 0.3   | 2.0                    | 1.2   | ~       |
| Alnus rugosa        | * | 8      | 8   | 169 400 76.3 1, 100 | * | 8     | 118     | 75.2     | 4        | 100       | 30.7          | 518    | 129.5   | 76.0  | 13.0                   | 7.8   | 1295    |
| Alnus sinuata       | m | 25     | 2   | 70 13,3             | - | 25    | 20      | 12.7     | ~        | 25        | 7.7           | 8      | 22.5    | 13,2  | 0.06                   | 54.2  | 225     |
| Amelanchier sp.     | ~ | 25     | -   | 0.2                 |   |       |         |          | rđ       | 25        | 7.7           | -      | 0.3     | 0.1   | 1,2                    | 0.7   | ~       |
| Cornus stolonifers  | 8 | 8      | 2   | 1.3                 |   |       |         |          | 8        | 8         | 15.4          | 7      | 1.8     | 1.0   | 3.6                    | 2.2   | 18      |
| Prumus ponsylvanica | ~ | 25     | a   | 2,1                 | 8 | 8     | 4       | 2.5      | 8        | \$        | 15.4          | 15     | 3.7     | 2.2   | 7.4                    | 4.4   | 37      |
| Prunus virginiana   | ~ | 25     | 33  | 6.3                 | ~ | 25    | 15      | 9.6      | Н        | 25        | 7.7           | 87     | 12,0    | 7.1   | 0.84                   | 28.8  | 120     |
| Sorbus americans    | 4 | 25     | ٦   | 0.2                 |   |       |         |          | 4        | 25        | 7.7           | 7      | 0.3     | 0.1   | 1,2                    | 0.7   | 2       |
|                     |   | 1      | 525 | - 525 77.0          | 2 | 1     | 157     | 157 23.0 |          | 325       | 325 100,0 682 | 289    | -       | 100.0 | 100,0 166,4 100,0 1704 | 100,0 | 1704    |

andrum 🕏

ch lutes

3 Strobus

ergus rubra

the occidentalia

in thomasii

on spicatum

TU PEGOSA

in sinuata

the purile

alternifol.

atolonifer

Till compile

Theria procum

" verticillat

mea borealidard

done canade

Willoss Var

tella repo

Table 6. Summary data of the vegetation in milacre quadrats of the Swamp Conifer stands as recorded in percentage of coverage or number of stems by height classes.

|                                         | Total | Tamarack |         |         | Stand   | Balsam  |    |     |           | Stand     |           | oruce-Bal     |         | Stand         |               | dar-Balsa |               | Stand         |
|-----------------------------------------|-------|----------|---------|---------|---------|---------|----|-----|-----------|-----------|-----------|---------------|---------|---------------|---------------|-----------|---------------|---------------|
| Species                                 | Freq. | 0-1 1-3  | 0-1 1-3 | 0-1 1-3 | 0-1 1-3 | 0-1 1-3 |    | 1-3 | 7 0-1 1-3 | 8 0-1 1-3 | 9 0-1 1-3 | 10<br>0-1 1-3 | 0-1 1-3 | 12<br>0-1 1-3 | 13<br>0-1 1-3 | 0-1 1-3   | 15<br>0-1 1-3 | 16<br>0-1 1-3 |
| Trees<br>Abies balsamea                 | 75.0  |          |         |         |         | 1       | 1  |     | 11        | 14        | 10        | 18            | 8       | 4             | 5             | 10        | 16            | 16            |
| Acer rubrum                             | 68.8  |          |         |         |         | 11 2    | 1  |     | 1         |           | 90        | 128           | 41      | 82            | 10            | 9         | 12 1          | 3             |
| Betula lutea                            | 6.2   |          |         |         |         |         |    |     | 11        |           |           |               |         |               |               |           |               |               |
| Pinus Strobus                           | 6.2   |          |         |         |         |         |    |     |           |           | 1         |               |         |               |               |           |               |               |
| Quercus rubra                           | 43.8  |          |         | 1       |         |         |    |     | 2         |           | 5         | 1             | 3       | 1             |               |           | 1             |               |
| Thuja occidentalis                      | 6.2   |          |         |         |         |         |    |     |           | 2         |           |               |         |               |               |           |               |               |
| Ulmus thomasii                          | 18.7  |          |         |         |         | 3       | 1  |     | 1         |           |           |               |         |               |               |           |               |               |
| Acer spicatum                           | 6.2   |          |         |         |         |         |    |     |           |           |           |               |         |               |               | 1         | -             |               |
| Alnus rugosa                            | 18.7  |          |         |         |         | 7       | 1  |     | 2 1       |           |           |               |         |               |               |           |               |               |
| lnus sinuata                            | 6.2   | 1        |         |         |         |         |    |     |           |           |           |               |         |               |               |           |               |               |
| etula pumila                            | 18.7  | 7        | *       | 1       | 4       |         |    |     |           |           |           |               |         |               |               |           |               | (             |
| Cornus alternifolia                     | 25.0  |          |         |         |         | 15 21   | 20 | 5   | 3 3       | 14 4      |           |               |         |               |               |           |               |               |
| Cornus stolonifera                      | 18.7  |          |         |         | 3       |         | 1  |     |           | 5 1       |           |               |         |               |               |           |               |               |
| Corylus cornuta                         | 6.2   |          |         |         |         |         |    |     |           |           |           |               |         |               |               |           | 1             |               |
| Gautheria procumbens                    | 6.2   |          |         |         |         |         |    |     |           |           |           |               |         | T             |               |           |               |               |
| Ilex verticillata                       | 43.8  |          |         |         |         | 2 3     | 1  |     | 2         | 1         |           |               | 4       | 1             |               |           |               |               |
| Ledum groenlandicum<br>Linnaea borealis | 6.2   |          |         | 2       |         |         |    |     |           |           |           |               |         |               |               |           |               |               |
| var. americana                          | 25.0  |          |         |         |         |         |    |     |           |           |           |               | T       | T             |               | T         | T             |               |
| Lonicera canadensis                     | 18.7  |          |         |         |         |         |    |     |           |           |           |               |         |               | 1             | 3         | 1 1           |               |
| . villosa var. solonis                  | 37.5  | 2        | 1       | 1       |         |         | 2  |     |           | 1         |           |               | 1       |               |               |           |               |               |
| Mitchella repens                        | 18,7  |          |         |         |         |         |    |     |           |           | 1%        | T             |         |               |               |           | T             |               |

| •             |         | • • • |   |  |   |
|---------------|---------|-------|---|--|---|
| e e e         | · · · - |       |   |  |   |
|               |         |       |   |  | i |
| •             |         |       |   |  |   |
| • .           |         |       |   |  |   |
| •             |         |       |   |  |   |
| •             |         |       |   |  |   |
| . •           |         |       |   |  |   |
| To the second |         |       |   |  | : |
|               |         |       |   |  |   |
| •             |         |       |   |  |   |
| •             |         |       |   |  |   |
| ***           | 1       |       | ; |  |   |
| •             |         |       |   |  |   |
|               |         |       |   |  |   |
| •             |         |       |   |  |   |
| • • •         |         |       |   |  |   |
|               |         |       |   |  | ; |
| •             |         |       |   |  |   |
|               |         |       |   |  |   |
|               |         |       |   |  |   |
|               |         |       |   |  |   |
|               |         |       |   |  |   |

|                                         | Total<br>Freq. | Tamarack | 2       | 2       | Stand   | Balsa | ım Fi | ir-Tamar | ack     | Stand<br>8 | Black | Spruce-1 | Balsam Fir  | Stand<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N. White | Cedar-Ba | lsam Fir | Star<br>16 |    |
|-----------------------------------------|----------------|----------|---------|---------|---------|-------|-------|----------|---------|------------|-------|----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|------------|----|
| Species                                 | (%)            | 0-1 1-3  |         | 0-1 1-3 | 0-1 1-3 | 0-1 1 | 1-3   | 0-1 1-3  | 0-1 1-3 | 0-1 1-3    |       |          | 1-3 0-1 1-3 | 0-1 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-1 1-3  | 0-1 1-3  | 0-1 1-3  | 0-1 1-     |    |
| Nemopanthus mucronata                   | 12.5           |          |         |         |         | 1     | 3     |          | 1 1     |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Prunus avium                            | 6.2            |          |         | 2       |         |       |       |          |         |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Prunus virginiana                       | 50.0           | 2        | 1       | 3       |         | 3     | 5     | 1 1      | 1       | 1          |       |          | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Rhus radicans                           | 12.5           |          |         |         |         |       |       |          |         |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          | 3%       | T          |    |
| Ribes americanum                        | 6,2            |          |         |         |         |       |       |          | 1%      |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Ribes lacustre                          | 18.7           |          |         |         |         | 1     |       |          | 1       |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |          |          |            |    |
| Ribes trieste                           | 6.2            |          |         |         |         |       |       |          |         |            |       |          | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Rubus ideaus var. aculeatissimus        | 18.7           |          |         |         |         | 3%    | 5%    |          | 10%     | 5%         |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Rubus pubescens                         | 87.5           | 15% 10%  | 20% 15% | 10% 5%  | 10% 10% | 15%   |       | 15%      | 5%      | 15%        | Т     |          | 40%         | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30%      | T        |          | 3%         |    |
| Spiraea latifolia                       | 6.2            |          |         | 1       |         |       |       |          |         |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Vaccinium myrtilloides                  | 25.0           |          |         |         |         |       |       |          |         |            | 25%   | 1% 1%    | T           | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |          |            |    |
| Pteridophytes Dryopteris cristata       | 18.7           |          | Т       | T       |         |       |       |          |         |            |       |          |             | 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |          |            | 1  |
| Dryopteris cristata<br>var. clintoniana | 25.0           |          |         |         |         |       | 1%    | 1%       | 3%      | 1%         |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Dryopteris spinulosa                    | 18.7           |          |         |         |         | T     |       |          |         |            |       |          | 1%          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 1%       |          |            | -  |
| Dryopteris thelypteris                  | 25.0           |          |         |         |         |       |       |          |         |            |       | 5%       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 2%       | T        | 2%         |    |
| Equisetum sylvaticum                    | 18.7           |          |         |         |         |       |       |          |         |            |       | 5%       | T           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |          |            |    |
| Herbs<br>Aralia nudicaulis              | 56.2           |          |         |         |         |       |       |          | T       |            | 10%   | 5% 5%    | 10%         | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5% 5%    | 3% 3%    | 5% 15%   | 5% 8       | 8% |
| Aster sp.                               | 31.2           |          |         |         |         |       | T     |          | T       |            | T     | T        |             | 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |          |            |    |
| Aster junciformis                       | 18,7           | T        | T       | T       |         |       |       |          |         |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Clintonia borealis                      | 50.0           |          |         |         |         |       |       |          |         |            | 1%    | 2%       | 2%          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3%       | 3%       | 3%       | 3%         |    |
| Coptis groenlandica                     | 56.2           |          | T       |         |         |       | 3%    |          |         |            | 2%    | 1%       | 3%          | 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5%       | T        |          | 1%         |    |
| Cornus canadensis                       | 37.5           |          |         |         |         |       |       |          |         |            | T     | 1%       | T           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3%       | T        | T        | 1%         |    |
| Fragaria vesca                          | 25.0           |          |         |         |         |       |       |          |         |            | 1%    | 3%       | 1%          | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |          |            |    |
| Galium aparine                          | 25.0           | 10%      | 20%     | 15%     | 10%     |       |       |          |         |            |       |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
| Galium asprellum                        | 6.2            |          |         |         |         |       |       |          |         |            |       |          | T           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |          |            |    |
|                                         |                |          |         |         |         |       |       |          | 1       |            |       |          |             | COLUMN TO SERVICE STATE OF THE PARTY OF THE |          |          |          |            |    |

•

.

.

.

r cro

•

.

·- .i

|                                                                                                                                                      | Total                                                 | Tamarack |         |             | S                  | tand  | Balsa | m Fi | r-Tan   | BP ac | k   |     | Stand     | Black S        | pruce-Bala | am Fir        | Stand         | N. White      | Cedar-Ba | lsam Fir                               | Stand                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|---------|-------------|--------------------|-------|-------|------|---------|-------|-----|-----|-----------|----------------|------------|---------------|---------------|---------------|----------|----------------------------------------|-----------------------|
| Species                                                                                                                                              | Freq.                                                 | 0-1 1-3  | 0-1 1-3 | 3<br>0-1 1- | NAME OF THE PERSON | 4 1-3 | 0-1 1 | -    | 6 0-1 ] | man - | 7   | 1-3 | 8 0-1 1-3 | 9 0-1 1-3      | 10         | 11<br>0-1 1-3 | 12<br>0-1 1-3 | 13<br>0-1 1-3 | 0-1 1-3  | 15<br>0-1 1-3                          | 16<br>0-1 <b>1</b> -3 |
| Galium triflorum                                                                                                                                     | 50.0                                                  |          |         |             |                    |       | 1%    |      | T       |       | 2%  |     | 1%        |                |            |               |               | 3%            | 1%       | T                                      | T                     |
| Geum aleppicum var. strictum                                                                                                                         | 18.7                                                  |          |         |             |                    |       |       |      |         |       | T   |     | T         |                |            |               | T             |               |          |                                        |                       |
| Goodyear pubescens                                                                                                                                   | 6.2                                                   |          |         |             |                    |       | T     |      |         |       |     |     |           |                |            |               |               |               |          |                                        |                       |
| labenaria obtusata                                                                                                                                   | 18.7                                                  |          |         |             |                    |       |       |      |         |       |     |     |           | T              | 3%         | T             |               |               |          |                                        |                       |
| Impatiens capensis                                                                                                                                   | 12.5                                                  |          |         |             |                    |       |       |      |         |       | T   | 1%  |           |                |            |               |               |               |          |                                        |                       |
| ris versicolor                                                                                                                                       | 6.2                                                   |          |         |             |                    |       |       |      | 1%      |       |     |     |           |                |            |               |               |               |          |                                        |                       |
| Lycopus americanus                                                                                                                                   | 31.2                                                  |          |         |             | 10%                |       | 3%    | 1%   | 25%     | 2%    | 15% | 2%  | 2%        |                |            |               |               |               |          |                                        |                       |
| ysimachia terrestris                                                                                                                                 | 12.5                                                  |          |         |             |                    |       |       |      |         |       | T   |     | T         |                |            |               |               |               |          |                                        |                       |
| aianthemum canadensis                                                                                                                                | 100.0                                                 | 1%       | 1%      | . 2%        | 1%                 |       | T     |      | T       |       | T   |     | T         | 1%             | 1%         | T             | 1%            | 2%            | T        | T                                      | 1%                    |
| itella nuda                                                                                                                                          | 56.2                                                  |          | 1%      |             |                    |       | 5%    |      |         |       | T   |     |           |                |            | 1%            | T             | 10%           | 2%       | 5%                                     | 2%                    |
| runella vulgaris                                                                                                                                     | 12.5                                                  |          |         |             |                    |       |       |      |         |       |     |     |           |                |            |               |               | 3%            |          | 3%                                     |                       |
| yrola secunda                                                                                                                                        | 43.8                                                  |          |         |             |                    |       |       |      |         |       |     |     |           | T              | T          | T             | T             |               | 1%       | T                                      | T                     |
| annuculus sp.                                                                                                                                        | 12.5                                                  |          |         |             |                    |       | T     |      |         |       | T   |     |           |                |            |               |               |               |          |                                        |                       |
| cutellaria lateriflora                                                                                                                               | 6.2                                                   |          |         |             |                    |       |       |      | T       |       |     |     |           |                |            |               |               |               |          |                                        |                       |
| colidago canadensis                                                                                                                                  | 6.2                                                   |          |         |             |                    |       |       |      |         |       | T   | 1%  |           |                |            |               |               |               |          |                                        |                       |
| olidago patula                                                                                                                                       | 6.2                                                   |          |         |             |                    |       |       |      |         |       | T   |     |           |                |            |               |               |               |          | •                                      |                       |
| olidago uliginosa                                                                                                                                    | 43.8                                                  | T        | T       | T           | Т                  | T     |       |      |         |       |     |     | T 1%      |                |            | T             | T             |               |          |                                        |                       |
| olidago ulmifolia                                                                                                                                    | 37.5                                                  | T 2%     | 2% 2%   | 2% 2        | 2% T               | T     | Т :   | 2%   |         |       |     | 2%  |           |                |            |               |               |               |          |                                        |                       |
| rientalis borealis                                                                                                                                   | 50.0                                                  |          |         |             |                    |       |       |      |         |       |     |     |           | T              | 1%         | 2%            | 2%            | 2%            | T        | T                                      | 1%                    |
| iola blanda                                                                                                                                          | 43.8                                                  |          |         |             |                    |       |       |      | T       |       |     |     | 2%        | T              | T          | T             |               |               | 2%       | T                                      |                       |
| Sedges & Grasses Bromus ciliatus Lalamagrostis canadensis Agrostis hyemalis Larex intumescens Hyceria borealis Hyceria striata Auhlenbergia racemosa | 50.0<br>50.0<br>75,0<br>100.0<br>75.0<br>50.0<br>25.0 | 20%      | 30%     | 35%         | 1                  | 0%    | 15%   |      | 25%     |       | 50  | 9%  | 40%       | ////////<br>2% | 1#         | 1%<br>1%      | 2%            |               | 3%<br>3% | ////////////////////////////////////// | 3%                    |

T --- Denotes "Trace" which indicates less than 12 coverage.

3. Lowland Aspen of Populus-Salix Association

Trembling aspen (<u>Populus tremuloides</u>) was the major species in the type, with <u>Salix</u>, <u>Alnus</u>, and <u>Cornus</u> as the dominant shrub species. Two stands were selected for quadrat study. On the region as a whole, this type does not occupy extensive area but occurs in small tracts here and there bordering marshes or brooksides.

a.Trembling Aspen-Long-beaked Willow stand

Location ---- Roscommon County, Lake Township,

T23N, R4W, SW 1, Section 16.

Soil Type ---- Newton sand.

This was a poorly-stocked trembling aspen stand of approximately 30 years eld. One birch was the only other tree species found in the quadrat.

Alnus rugosa and Salix bebbiana were the dominant shrubs. A few red osier dogwood were also present.

Plants in the four milacre quadrats were:

### Trees

Abundant --- Betula lutea (21) Acer rubrum (1)
Quercus rubra (1)

# Shrubs and Vines

Abundant --- Cornus stolonifera Rubus pubescens Ilex verticillata

Frequent --- Alnus rugosa Salix bebbiana

Common ---- Ribbs lacustre

Rare ----- <u>Lonicera oblongifolia</u> <u>Rhus radicans</u>
<u>Rubus ideaus var. aculeatissimus</u>
<u>Vaccinium vacillans</u>

 $\bullet = \{ (x,y) \in \mathbb{R}^n \mid x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \mid x \in \mathbb{R}^n \}$ 

•

### <u>Fteridophytes</u>

Common ---- Equisetum palustre Dryopteris spinulosa

Rare ----- Onoclea sensibilis

Sedges, Grasses, and Herbs

Abundant --- Carex diandra Glyceria borealis
Lysimachia terrestris Lycopus americanus

Frequent --- Campanula aparinoides Fragaria virginiana Pyrola rotundifolia Viola blanda

Common ---- Aster lateriflorus Galium sp.

Mentha arvensis Pyrola secunda
Solidago ulmifolia

Rare ----- Agrostis hyemalis

Epilobium glandulosum var. adenocaulon

Maianthemum canadensis Scutellaria epilobiifolia

Smilacina trifolia Solidago caesia a

b.Trembling Aspen-Heartleaf Willow stand

Location ---- Roscommon County, Markey Township,
T23N, R3W, SE 1, Section 1.

Seil type ---- Newton sand.

Trembling aspen was the only tree species found in this quadrat. This was a better stand than the first one with more trees and better growth. The largest one was 7.7 inches D.B.H., 35 years old.

The speckled alder and the heart-leaf willow (Salix eriocephala) were the dominant shrub species.

Components of the herbaceous layer were:

# Trees

Rare ---- Populus tremuloides (1)

na di Angelia di Angel Angelia di A

get to a compare of the control of t

ing the common term of the second of the se

of the contract of the contrac

 $\underline{\underline{t}}$  . The second section  $\underline{\underline{t}}$  is the second second section  $\underline{\underline{t}}$  is the second secon

## Shrubs and Vines

Frequent --- Salix alba var. vitellina

Common ---- Alnus rugosa Cornus stolonifera Salix amygdaloides

Rare ----- Asclepias incarnata

Pteridophytes

Rare ----- Dryopteris spinulosa

Sedges, Grasses, and Herbs

Abundant --- Carex intumescens Lysimachia terrestris
Lycopus americanus Scutellaria epilobiifolia

Frequent --- <u>Calamagrostis canadensis</u> <u>Galium trifidum</u>

Common ---- Azropyron repens
Cicuta bulbifera
Juncus canadensis
Scirpus cyperinus

Campanula aparinoides
Epilobium leptophyllum
Lysimachia thyrsiflora

Rare ----- <u>Aster junciformis</u> <u>Eupatorium perfoliatum</u> <u>Fragaria virginiana</u> <u>Rumex verticillatus</u>

| 2 × 4                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| en e | S.C. Santa Santa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                          | in the state of th |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Table 7. Summarization data of two 1/5 acre Lowland Aspen stands by size classes.

|                     | -                  | SIZE   |      |                 |             | C           | LASSE       | 3     |                 |   |             |            |    | TOT   | TALS       |                         |       |                          | _                        |
|---------------------|--------------------|--------|------|-----------------|-------------|-------------|-------------|-------|-----------------|---|-------------|------------|----|-------|------------|-------------------------|-------|--------------------------|--------------------------|
| Species             | Freq.Dens<br># F # | ity Fr | reg. | Density<br># Dr | Freq<br># F | . <u>De</u> | nsity<br>Dr | Freq. | Density<br># Dr | T | Frequ<br>Fq | ency<br>Fr | TS | Dens: | lty<br>Drs | Bass<br>Ft <sup>2</sup> | Rel.  | ea<br>Ft <sup>2</sup> /A | Impor-<br>tance<br>Value |
| Betula lutea        |                    |        |      |                 | 1 50        | 0 1         | 1.7         |       |                 | 1 | 50          | 33.3       | 1  | 0.5   | 1.2        | 0.120                   | 1.2   | 0.30                     | 35.7                     |
| Populus tremuloides |                    | 2      | 100  | 24 100          | 2 100       | 58          | 98.3        | CAN.  |                 | 2 | 100         | 66.7       | 82 | 41.0  | 98.8       | 9.543                   | 98.8  | 23.86                    | 264.3                    |
|                     |                    |        | :    | 24 29.0         |             | - 59        | 71.0        |       |                 | _ | 150         | 100.0      | 83 |       | 100.0      | 9.663                   | 100.0 | 24.16                    | 300.0                    |

Table 8. Summarization data of two 1/10 acre Lowland Aspen stands by height classes.

|                    | HE:   | IGHT      | CI    | ASSES  |      |    |     | T(    | TALS  |       |       |       |       |        |
|--------------------|-------|-----------|-------|--------|------|----|-----|-------|-------|-------|-------|-------|-------|--------|
|                    | 6-15  | Feet      | 15-25 |        |      |    |     |       |       |       |       | Abun- |       |        |
|                    | Freq. | Density   | Freq. | Dens   |      |    |     | uency | -     | Densi |       |       |       |        |
| Species            | # F   | # Dr      | # F   | #      | Dr   | Tq | Fq  | Frs   | TS    | D     | Drs   | dance | Ar    | #/Acre |
| Alnus rugosa       | 2 100 | 157 80.5  | 2 100 | 246 6  | 56.8 | 2  | 100 | 33 .3 | 403   | 201.5 | 71.6  | 201.5 | 56.6  | 2015   |
| Cornus stolonifera | 2 100 | 11 5.6    |       |        |      | 2  | 100 | 33.3  | 11    | 5.5   | 2.0   | 5.5   | 1.5   | 55     |
| Salix bebbiana     | 1 50  | 7 3.6     | 1 50  | 80 2   | 21.7 | 1  | 50  | 16.7  | 87    | 43.5  | 15.4  | 87.0  | 24.5  | 435    |
| Salix eriocephala  | 1 50  | 20 10.3   | 1 50  | 42 ]   | 11.5 | 1  | 50  | 16.7  | 62    | 31.0  | 11.0  | 62.0  | 17.4  | 310    |
|                    |       | 195 100.0 |       | 368 10 | 0.0  | -  | 300 | 100.0 | _ 563 |       | 100.0 | 356.0 | 100.0 | 2815   |

. • • 

Summary data of the vegetation in milacre quadrats of the Lewland Aspen Association by height elasses. Plants were recerted in percentage of severage or number of stems. Table 9.

|                                     | Total | Trombling | Ming | Vere     | -Len | <b>2-</b> per | Ked Wi     | 111 ev | frest | Mark | Aspen | -Hear | leaf | Willew      |   |
|-------------------------------------|-------|-----------|------|----------|------|---------------|------------|--------|-------|------|-------|-------|------|-------------|---|
| Species                             | F. B. | 0-1 1-3 0 | 177  | 717      | 10   | -1-1          | 6          | 1 1-3  | 2-1-0 | 0-1  | 1-3   | 0-1   | 7-5- | 6 0-1 1-3 3 |   |
| Trees Acer rubrum                   | 12.5  | 4         |      |          |      |               |            |        |       |      |       |       |      |             |   |
| Betula lutea                        | 90.0  | 2         | Ç.   | •        | • •  | 6             | *          |        |       |      |       |       |      |             |   |
| Pepulus tremuleides                 | 12.5  |           |      |          |      |               |            |        |       |      | н     |       |      |             |   |
| Quereus rubra                       | 12.5  |           |      | -        |      |               |            |        |       |      |       |       |      |             |   |
| Shrubs & Vines                      | 62.5  |           |      | 7 1      | •    | г<br>8        | <b>(C)</b> | 8      |       | 4    |       | -     |      |             |   |
| Asclepias incarnata                 | 12.5  |           |      |          |      |               |            |        |       |      |       |       |      |             | * |
| Cernus stelenifera                  | 75.0  | •         | 8    | *        |      |               | W          |        | H     | ~    |       |       |      |             |   |
| Ilex verticillata                   | 50.0  | ~         |      | 4        |      | `             | •          |        |       |      |       |       |      |             |   |
| Lenicers eblengifelia               | 12.5  |           |      | <b>~</b> |      |               |            |        |       |      |       |       |      |             |   |
| Rhus radicans                       | 12.5  |           |      |          | •    | 2%            |            |        |       |      |       |       |      |             |   |
| Ribes lagustre                      | 25.0  |           |      |          |      | T             | ₽          |        |       |      |       |       |      |             |   |
| Kubus ideaus var.<br>Aculeatissimus | 12.5  |           |      | 2        | 4    |               |            |        |       |      |       |       |      |             |   |
| Rubus pubescens                     | 50.0  | 5%        | ~    | %01      |      | 38            | 25%        | ₩.     |       |      |       |       |      |             |   |
| Salix alba var. vitellina           | 37.5  |           |      |          |      |               |            |        | 4     | -    | 8     |       | -    | 8           |   |

1 • • 

|                                             | Tetal | Trembli | ng A     | apen-      | Tetal Trembling Aspen-Leng-beaked | d W11    | Š  | Trembl  | ing Aspen-He | -Heartleaf Wil | llew stand    |
|---------------------------------------------|-------|---------|----------|------------|-----------------------------------|----------|----|---------|--------------|----------------|---------------|
| Species                                     | Freq. | 0-1 1-3 | 0-1      | 1 1-3      | 0-1 1-3<br>0-1 1-3                | 713      | 13 | 0-1 1-3 | 6-1 1-3      | 0-1 1-3 3-6    | 8 0-1 1-3 3-6 |
| Salix anygdaleides                          | 25.0  |         |          |            |                                   |          |    |         | 4            | 1 3 1          |               |
| Salix bebbiana                              | 37.5  |         | -        |            | <b>~</b> 1                        | -        |    |         |              |                |               |
| Vaccinium vacillans                         | 12,5  |         | 7        | <b>%</b>   |                                   |          |    |         |              |                |               |
| Pteridephytes<br>Dryepteris spinulesa       | 37.5  |         |          |            | 1%                                | 78       |    | H       |              |                |               |
| Equisetum palustre                          | 25.0  | 7%      |          |            |                                   | 1%       |    |         |              |                |               |
| Onecles sensibilis                          | 12.5  | 3%      |          |            |                                   |          |    |         |              |                |               |
| Sedges, Grasses & Herbs<br>Agrepyren repens | 25.0  |         |          |            |                                   |          |    |         | 8            |                | 8             |
| Agrestis hyemalis                           | 12,5  |         | H        | E          |                                   | •        |    |         |              |                |               |
| Calamagrestis canadensis                    | 37.5  |         |          |            |                                   |          |    | 10%     | 15%          | 15%            |               |
| Carex diametra                              | 50.0  | 2% 5%   | 28       | <b>₽</b> € | H                                 | 26       | 2% |         |              |                |               |
| Carex intumescens                           | 50.0  |         |          |            |                                   |          |    | 30%     | <b>8</b> 2   | 25%            | 207           |
| Glyceria berealis                           | 50.0  | 3% 5%   | 38       | 27         | 3%                                | <b>%</b> | 23 |         |              |                |               |
| Juncus canadensis                           | 25.0  |         |          |            |                                   |          |    |         | 15%          |                | 15%           |
| Seirpus cyperiaus                           | 25.0  |         |          |            |                                   |          |    |         | 5%           | 18             |               |
| Aster juncifermis                           | 12.5  |         |          |            |                                   |          |    |         |              |                | 1% T          |
| Aster lateriflerus                          | 25.0  | 18      | <b>H</b> | H          |                                   |          |    |         |              |                |               |

. . . . 

|                                           | Total | Total Trembling | Ä  | Page Y | Long        | saked |     | 3   | Tremp | 11ak | 5  | H. | tleaf |           | 15 | 7             |
|-------------------------------------------|-------|-----------------|----|--------|-------------|-------|-----|-----|-------|------|----|----|-------|-----------|----|---------------|
| Species                                   | E     | 0-1 1-3         | 10 | 11-3   | Z           | 口口    | 110 | 5   | 1     | 3    | 口口 | 2  | 133   | 6         |    | H             |
| Campanula aparinoides                     | 62.5  |                 |    | g.     | <b>£</b> -I |       | H   |     |       |      |    | H  | H     | <b>[-</b> | ۲  |               |
| Cieuta bulbifera                          | 25.0  |                 |    |        |             |       |     | H   |       |      |    |    |       |           | H  |               |
| Epilebium glandulesum<br>var. ademecaulem | 12.5  | ਜ               | 18 |        |             |       |     |     |       |      |    |    |       |           |    |               |
| Epilobium leptophyllum                    | 25.0  |                 |    |        |             |       |     |     |       |      |    |    | 1%    | <b>70</b> | 1% | <b>&gt;</b> 0 |
| Eupatorium perfoliatum                    | 12.5  |                 |    |        |             |       |     |     |       |      |    |    |       |           | E  |               |
| Fragaria virginiana                       | 50.0  | 18              |    | 2%     | ۲           |       |     |     |       |      |    | H  |       |           |    |               |
| Galium sp.                                | 25.0  | 1%              |    |        |             |       | H   |     |       |      |    |    |       |           |    |               |
| Galium trifidum                           | 37.5  |                 |    |        |             |       |     | H   |       | H    |    | H  |       |           |    |               |
| Lysimachia terrestris                     | 100,0 | 1% T            |    | H      | 7%          |       | H   | F=4 | 18 T  | H    | 1% | H  | 2%    | H         | H  |               |
| Lysimachia thyrsiflora                    | 25.0  |                 |    |        |             |       |     |     |       |      |    |    | 18    |           | H  |               |
| Lycopus americanus                        | 100.0 | 10%             | •  | 38     | 38          | 28    | 3%  | H   | 18    | 18   |    | 18 |       | 2%        | 22 | <b>\</b> 0    |
| Malanthemum canadensis                    | 12.5  | 1,8             |    |        |             |       |     |     |       |      |    |    |       |           |    |               |
| Mentha arvensis                           | 25.0  |                 |    |        | 10%         | 28    | 18  |     |       |      |    |    |       |           |    |               |
| Pyrola rotundifolia                       | 90.0  | e               |    | 18     | Ħ           |       | H   |     |       |      |    |    |       |           |    |               |
| Pyrola secunda                            | 25.0  |                 |    | 1%     |             |       | H   |     |       |      |    |    |       |           |    |               |
| Rumex verticillatus                       | 12.5  |                 |    |        |             |       |     | 7   | 1,8   |      |    |    |       |           |    |               |
| Scutellaria epilobiifolia                 | 62.5  | 1%              |    |        |             |       |     | H   |       | H    |    | E  | 28    | H         | H  |               |
| Smilacina trifolia                        | 12.5  | E               |    |        |             |       |     |     |       |      |    |    |       |           |    |               |

| Abo                | Freq. | Tremblin<br>1<br>0-1 1-3 | 2 2<br>0-1 1-3 | Tetal   Trembling Agreen-Lengt-beaked | Willow 0-1 1-3 | Willey Trembling | AK Aspen-H | Heartleaf | filew stand |     |
|--------------------|-------|--------------------------|----------------|---------------------------------------|----------------|------------------|------------|-----------|-------------|-----|
| Solidago caesia    | 12.5  | 71                       | 83             |                                       | E+             |                  |            |           | 0-1 1-3 3-  | nt. |
| Solidago ulmifolia | 25.0  |                          | H              | H                                     |                |                  |            |           |             |     |
| Viola blanda       | 37.5  | F                        |                | H                                     | 34             |                  |            |           |             |     |
| E                  |       |                          |                |                                       |                |                  |            |           |             |     |

T --- Denotes "Trace" which indicates less than 1% coverage.

4.Swamp Shrubs of Salix-Cornus-Alnus Association

This type consisted a mixture of willow, dogwood, alder, swamp birch, etc., to form a dense thicket growth.

Only one stand was selected for quadrat study. It was bordering a tamarack swamp and along the stream. All plants were below 6 feet in height, therefore only milacre quadrats were being studied.

Location ---- Crawford County, Beaver Creek Township, T25N, R3W, NW 1. Section 33.

Soil type ---- Rifle peat.

Plants in the four milacre quadrats were:

### Trees

Rare ----- Betula lutea (6)

### Shrubs and Vines

Abundant --- Alnus rugosa Betula pumila Lonicera villosa var. solonis Fotentilla fructicosa Salix petiolaris Spiraea alba

Frequent --- Aronia nigra

Common ---- Ribes trieste

Rare ----- Cornus alternifolia

Pteridophytes

Rare ----- Dryopteris cristata

Abundant --- Sedges, Grasses, and Herbs

Agropyron repens Bromus purgens

Muhlenbergia racemosa Solidago canadensis

Galium asprellum Solidago uliginosa

Solidago ulmifolia

Cemmon ---- Aster juncoformis

Rare ----- Aster novae-angliae Circium muticum

i e

en de la composition La composition de la

was a second

garage de la companya de la companya

ran da de la composição d La composição de la compo

Table 10. Summary data of the four milacre quadrats in the Swamp Shrubs stand by height classes. Plants were recorded in percentage of coverage or number of stems.

|                                            | Total |     | 1    |             | 2              |     | · 3                    |      | 4           |              |
|--------------------------------------------|-------|-----|------|-------------|----------------|-----|------------------------|------|-------------|--------------|
|                                            | Freq. |     |      | HEI         |                |     |                        | CLAS |             |              |
| Species                                    | (%)   | 0-1 | 1-3  | 3-6         | 0-1 1-3        | 3-6 | 0-1 1-3                | 3-6  | 0-1 1-3     | <u>3-6</u>   |
| (Trees)<br>Betula lutea                    | 25    | 6   |      |             |                |     |                        |      |             |              |
| (Shrubs and Vines)<br>Alnus rugesa         | 100   |     | 3    | 2           | 1              | 2   | 2                      | 2    | 1           |              |
| Arenia nigra                               | 75    |     | 5%   | 10%         | 1%             |     | 5%                     | 5%   |             |              |
| Betula pumila                              | 100   |     | 10%  | 15%         | 1%             | 15% | 5%                     | 10%  | 2%          | 10%          |
| Cornus alternifelia                        | 25    |     |      |             |                |     | 5%                     |      |             |              |
| Cornus stolonifera<br>Lonicera villesa     | 100   |     | 5%   | 10%         | 1%             |     | 5%                     |      | 10%         |              |
| var, selenis                               | 100   | 23  | 3%   |             | 5 <b>% 20%</b> |     | 2 <b>%</b> 10 <b>%</b> |      | <b>T</b> 5% | ,<br>)       |
| Potentilla fructicosa                      | 100   |     | 15%  |             | 25%            |     | 20%                    |      | 15%         |              |
| Ribes lacustre                             | 50    | T   |      |             | T              |     |                        |      |             |              |
| Rubus hispidus                             | 100   |     | 5%   |             | 5%             |     | 10%                    |      | 3%          |              |
| Salix petielaris                           | 100   | 1%  | 1%   | 5%          | 1%             | 5%  | 1%                     |      | 1%          | 3%           |
| Spiraca alba                               | 100   |     |      | 5%          | 5%             | 15% | 10%                    | 5%   | 5%          | 5%           |
| (Sedges, Grasses & Her<br>Agrepyren repens |       |     | -8%  |             | 5%             | -   | 5%                     |      | 10%         | -            |
| Bremus purgens                             | 100   |     | 8% . | <del></del> | 5%             | -   | 2%                     |      | 10%         |              |
| Glygeria berealis                          | 75    |     |      |             | 5%             | -   | 5%                     |      | 5%          | <b>****</b>  |
| Muhlembergia racemesa                      | 100   |     | 5% - |             | 2%             | -   | 8%                     | -    | 10%         | <del>,</del> |
| Aster juncimermis                          | 50    |     | T    |             |                |     |                        |      | T           |              |
| Aster nevac-anglise                        | 25    |     |      |             |                |     |                        |      | 1%          | ı            |
| Circium muticum                            | 25    |     |      |             |                | 1%  |                        |      |             |              |
|                                            |       |     |      |             |                |     |                        |      |             |              |

<sup>-</sup> to be centinued -

en de la companya del companya de la companya de la companya del companya de la companya del la companya del la companya de la companya del la companya de l

e de la composition La composition de la

And the second of the second o

· - ·

|                                        | Total<br>Freq. | L<br>HEI    | 2<br>GHT | 3<br>CLASS  | ES  |
|----------------------------------------|----------------|-------------|----------|-------------|-----|
| Species                                | (%)            | 0-1 1-3 3-6 |          | 0-1 1-3 3-6 |     |
| Selidage canadensis                    | 100            | T           | T        | T           | T   |
| Selidage uliginesa                     | 75             |             | T        | T           | T T |
| Selidage ulmifelia                     | 75             | T           | T        | 2% 1%       |     |
| (Pteridephytes)<br>Dryepteris cristata | 25             | T           |          |             |     |

T --- Denotes "Trace" which indicates less than 1% coverage.

|                                       | a same removed to the |  | • •            |              |                 |
|---------------------------------------|-----------------------|--|----------------|--------------|-----------------|
| · · · · · · · · · · · · · · · · · · · |                       |  | or of the same |              |                 |
|                                       | • · ·<br>-            |  | : · ·          | , <b>i</b> : | <b>k</b> *** ** |
|                                       |                       |  | •              |              | FAD COL         |
|                                       | •                     |  |                |              | 1.3 C + 1.4     |
|                                       |                       |  | 1.4            |              | od the leading  |

A section of the first of the section of the section of the section of the section.

### 5. The Marsh or Open-Meadow type

Davis (1906) has defined the "marsh" and "bog" as:

"The 'bog' is an area of wet, porous land, on which the soil is made up principally of decayed and decaying vegetable matter, so loosely consolidated, and containing so much water, that the surface shakes and trembles as one walks over it. The vegetation upon the surface is characteristically either some species of moss or sedge, or grass, or a combination of two or more of these with shrubs and even small trees.

A 'marsh' has a firm soil, it may be soft and very wet, even submerged, and the vegetation upon it is principally grass-like. Shrubs may occur but are not infrequently form thickets"

Three stands were selected for sample plots in this type. Two were bogs and one was the marsh. The bogs were found on Greenwood peat; and the marsh was on Newton sand.

### a.Scirpus-Typha stand

Location ---- Roscommon County, Lake Township, T23N, R4W, NE 1, Section 21.

Soil type ---- Greenwood peat.

Dominant species of this stand were the grassy vegetation consisting of Scirpus cyperinus, several species of Carex, and Calamagrostis canadensis. Juncus canadensis, Eleocharis obtusa, Glyceria canadensis were also present with the former two found on very wet sites.

The water-table of the soil was very near the surface to form an almost permanent wet condition, as indicated by such partly submerged plants as: Scirpus cyperinus, Carex lasiocarpa, Eleocharis obtusa, Juncus canadensis, Typha

one of the first of the second of the secon

in the second of the second of

in the control of the

 $|\mathcal{S}_{ij}(x)| = \frac{1}{2} \left( \frac{1$ 

latifolia, Iris versicolor, Bidens cernua, Alisma triviale, and Sagittaria montevidensis. Davis (1906) has classified such type as the "Rush Swamp".

The secondary species were Typha latifolia, Iris versicolor, Sagittaria montevidensis, Cicuta bulbifera, Sium suave, Lysimachia terrestris, Bidens cernua, Hypericum boreale, Lycopus americanus, Rumex verticillatus, etc.,

One species of willow (Salix sp.) was the only shrub present in the stand.

The occurring plants in the four milacre quadrats were:

# Shrubs and Vines

Common ---- Salix sp.

Sedges, Grasses, and Herbs

Abundant --- Bidens cernua Carex lasiocarpa Galium trifidum Sagittaria montevidensis Scirpus cyperinus Sium suave

Calamagrostis canadensis Cicuta bulbifera Lysimachia terrestris Typha latifolia

Frequent --- Carex crinita Eleocharis obtusa Hypericum boreale Juncus canadensis Rumex verticillatus

Carex comosa Glyceria canadensis Iris versicolor Lycopus americanus

Rare ----- Alisma triviale

Scutellaria epilobiifolia

en de la companya de la co b. Calamagrostis - Scirpus stand

Location ---- Roscommon County, Lake Township, T23N. R4W. SW 1, Section 21.

Soil type ---- Greenwood peat.

This was an ecologically slight more advance stand than the previous one, as indicated by the increase of Calamagnostis canadensis, the presence of Agnostis hyemalis, Aster, Solidago, and the absence of such partly submerged species as Alisma, Sagittaria, Typha, Eleocharis, etc..

Willow (Salix discolor) remained to be the only occurring shrubs but was more frequent in presence and also increased in its coverage.

Vegetation in the four milacre quadrats were:

Shrubs and Vines

Frequent --- Salix discolor

Sedges, Grasses, and Herbs

Abundant --- Agrostis hyemalis
Carex lasiocarpa
Lysimachia terrestris
Veronica scutellaria

Calamagrostis canadensis Cicuta bulbifera Scirpus cyperinus

Frequent --- Galium trifidum Hypericum boreale
Scutellaria epilobiifolia
Sium suave

Common ---- <u>Carex tenera</u> <u>Epilobium leptophyllum Lycopus americanus</u>

Rare ----- Aster junciformis Aster sp.

Bidens cernua Carex comosa
Galium tinctorium Solidago rugosa
Solidago uliginosa Rumex verticillatus

# .c.Salix-Calamagrostis stand

Location ---- Roscommon County, Lake Township, T23N, R4W, NW 1, Section 21.

Soil type ---- Newton loamy sand.

Although the soil is somewhat different than the peat, but a relatively thick layer of organic soil on top of the wet sand makes it similar to the peat. Water-table was very near or at the surface during most part of the growing season. However it droped to as deep as 24 inches in a dry period.

The increase of willows in number of species and in coverages indicated a drier condition than the preceeding two stands. This invasion of shrubs into the wet marsh area is slow and may last for a long period of time.

Salix petiolaris and Salix serissima were the dominant shrubs which formed dense bushes. The diameter of their spreading crown ranged from less than one foot to as large as six, seven feet or more. Most of the willows attained a height from 3 to 5 feet, a few also feached 6 feet or more. The following data shows the height and diameter of the crown of shrubs over 6 feet tall in a 1/10 acre quadrat:

| Species          | Height (Ft.) | Diameter of Crown (Ft.) |
|------------------|--------------|-------------------------|
| Salix petiolaris | 7<br>6<br>5  | 6<br>6.5<br>7           |
| Salix serissima  | 5.5          | 6                       |

# Vegetation in the four milacre quadrats were:

# Trees

Common ---- Betula lutea (6)

Rare ----- Populus tremuloides (14)

Shrubs and Vines

Common ---- Salix alba var. vitellina

Salix serissima

Rare ----- Alnus rugosa

Salix petiolaris Rubus flagellaris Salix lucida Spiraea alba

Sedges, Grasses, and Herbs

Abundant --- Agrostis hyemalis.

Calamagrostis canadensis

Carex tenera

Lycopus americanus Scirpus cyperinus

Aster junciformis Carex lasiocarpa Iris versicolor

Lysimachia terrestris

Frequent --- <u>Cicuta bulbifera</u> <u>Solidago uliginosa</u>

Common ---- <u>Eupatorium perfoliatum</u> <u>Galium trifidum</u>

Hypericum boreale

Rare ---- Campanula aparinoides Solidago missouriensis

Solidago graminifolia

and the second of the second o

• 

 $(x_1, \dots, x_n) \in \mathcal{A}_{n-1} \times \mathcal{A}_{n-1} \times$ 

Table 11. Summary data of the vegetation in milacre quadrate of the three March stands by height classes. Plants were recorded in percentage of coverage or number of stems.

| 8:                                    | Total<br>Freq.<br>(%) | Total <u>Scirpus-Typha</u><br>Freq. 1 2<br>(g) 0-3 3-6 0-3 3 | Totel Scirpus-Typha S<br>Freq. 1 2 3 4<br>(g) 0-3 3-6 0-3 3-6 0-3 3-6 0-3 | buar<br>3-6 | Calar<br>5<br>0-1 1 | Agrostis<br>-3 0-1 1 | -Seirp<br>-3 0-1 | 7<br>1 1-3 ( | Stend<br>8<br>0-1 1-3 | Salix-C<br>9<br>0-1 1-3 |    | amagrostis<br>10<br>-1 1-3 0-1 |    | 36 | 12/2 |
|---------------------------------------|-----------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|-------------|---------------------|----------------------|------------------|--------------|-----------------------|-------------------------|----|--------------------------------|----|----|------|
| lutea                                 | 16.7                  |                                                              |                                                                           |             |                     |                      |                  |              |                       |                         |    | 3                              |    | ~  |      |
| Populus tremuloides 8.3               | 8.3                   |                                                              |                                                                           |             |                     |                      |                  |              |                       |                         |    |                                |    | 77 | 8    |
| Shrubs & Vines                        | 80                    |                                                              |                                                                           |             |                     |                      |                  |              |                       |                         | ·  |                                |    |    | 4    |
| Rubus flagellaris                     | 8.3                   |                                                              |                                                                           |             |                     |                      |                  |              |                       |                         |    |                                |    | 38 |      |
| Salix sp.                             | 16.7                  | 38                                                           | <b>4</b>                                                                  | <b>8</b> 8  |                     |                      |                  |              |                       |                         |    |                                |    |    |      |
| Sailx alba<br>J.var. vitellinae 336.7 | 136.7                 |                                                              |                                                                           |             |                     |                      |                  |              |                       |                         |    | K                              |    | 8  |      |
| Salix discolor                        | 25.0                  |                                                              |                                                                           |             | ₩                   | •                    |                  | 8            | 8                     |                         |    |                                |    |    |      |
| Salix lucida                          | 8.3                   |                                                              |                                                                           |             |                     |                      |                  |              |                       |                         |    |                                |    |    | ~    |
| Salix peticlaris                      | 8,3                   |                                                              |                                                                           |             |                     |                      |                  |              |                       | <b>€</b>                |    |                                |    |    |      |
| Salix serissima                       | 16.7                  |                                                              |                                                                           |             |                     |                      |                  |              |                       |                         |    |                                | ~  | ~  | ~    |
| Spiraes alba                          | 8.3                   |                                                              |                                                                           |             |                     |                      |                  |              |                       |                         |    |                                |    | ~  |      |
| Horbs<br>Alisma triviale              | 8,3                   | 3%                                                           |                                                                           |             |                     |                      |                  |              |                       |                         |    |                                |    |    |      |
| Aster sp.                             | 8.3                   |                                                              |                                                                           |             |                     | H                    |                  |              |                       |                         |    |                                |    |    |      |
| Aster junciformis                     | 41.7                  |                                                              |                                                                           |             |                     |                      | 1%               | 2%           |                       | 5% 10%                  | 56 | 15%                            | 5% |    | 15%  |

ende la finita i sum mont en 1900. En entrant e casinat de modern emperentation de la finitation de la fini

, ·

から 一年記事 ないとこ

The contract of the section of

**(**-

?

•, :3 :3 :3 Control of the second

•

 The second secon

|                                   | Total       | Setrons    | Total Scirpus-Typhs |             | Stand | Calamar    | grostis-Solrpu | 1-301 | rpus   | 2      | <b>ω</b> | tend Salt |            | x-Calamag |     | ostis    |     | Ste      | g  |
|-----------------------------------|-------------|------------|---------------------|-------------|-------|------------|----------------|-------|--------|--------|----------|-----------|------------|-----------|-----|----------|-----|----------|----|
| Species                           | Fred        | 0-3 3-6    | 0-3 3-4             | 6.5 3.4     | –     | 5-1 1-9    | 9              | 10    | 11     | 6      | 1 1-     | 9         | 2-1        | उ         | 9   | 110      | 130 | 27       |    |
| Bidens cernus                     | 7.44        | H          | •                   | 21          | 33    | •          | <b>%</b>       |       | •      |        | •        |           |            |           |     |          |     |          |    |
| Campanula aparinoides8.3          |             |            |                     |             |       |            |                |       |        |        |          |           |            |           |     |          |     |          | E  |
| Cicuta bulbifera                  | 92.7        | ×          | 2%                  | 84          | 8     | 18 18      | 7%             | 56    | H      | 18     | T 18     | 27        | ×          |           |     | H        | H   | €        |    |
| leptophyllum                      | 16.7        |            |                     |             |       | <b>E</b> 4 |                |       | 13     |        |          |           |            |           |     |          |     |          |    |
| perfoliatum                       | 33.3        |            |                     |             |       | <b>E</b>   |                |       |        |        | 18       | ~         |            |           | 1%  |          |     | 1%       | 5% |
| Galium tineterium                 | 8.3         |            |                     |             |       | £+         |                |       |        |        |          |           |            |           |     |          |     |          |    |
| Galium trifidum                   | 75.0        | <b>F</b> + | t                   | •           | E     |            | ×              |       | E      | • •    | <b>F</b> | 1%        | <b>5</b> 4 |           |     | H        |     |          |    |
| Hypericum boreale                 | 66.7        | 1%         | H                   |             | 18    | 1%         | 2%             |       | H      |        |          |           |            |           |     | H        |     | E        |    |
| Iris versicolor                   | 58.4        | . 58       | E                   |             | ×     |            |                |       |        |        |          |           | 10%        |           | 15% | 18       | 5%  |          | 2% |
| Lycopus americanus                | 75.0        | 2          | H                   | 7%          |       | H          |                |       | H      |        |          | 28        | <b>5</b> 4 | 88        | H   | <b>E</b> |     | <b>%</b> | 88 |
| Lysimachia<br>terrestris          | 100,0       | <b>%</b>   | *                   | 3%          | ×     | 5% 10%     | 2% 10%         |       | %<br>% | %<br>% | 5% 5%    | 21 3      | be.        | 8         | 1%  | 1%       | 1%  | E        |    |
| Rumex verticillatus 33.3          | 33.3        | ₽+         | 1%                  | <b>5</b> -1 |       |            | 1%             | H     |        |        |          |           |            |           |     |          |     |          |    |
| Sagittaria<br>montevidensis 33.3  | 33.3        | ×          | Ħ                   | H           | H     |            |                |       |        |        |          |           |            |           |     |          |     |          |    |
| Scuceriaria<br>epilobiifolia 33.3 | 33.3        | £-         |                     |             |       | 1%         |                |       | H      | • •    | 1%       |           |            |           |     |          |     |          |    |
| Stum suave                        | <b>58°4</b> | 18         | <b>E</b> +          | 1%          | 38    | 86         | 18             | 5%    |        |        | 18 58    | <b>~</b>  |            |           |     |          |     |          |    |
| graminifolia                      | 8.3         |            |                     |             |       |            |                |       |        |        |          |           |            |           |     |          |     |          | H  |
| S. missouriensis                  | 8.3         |            |                     |             |       |            |                |       |        |        |          |           |            |           |     |          |     |          | 8% |
|                                   |             |            |                     |             |       |            |                |       |        |        |          |           |            |           |     |          |     |          |    |

.. ---. . <u>-</u> • ٠. •-٠. • \*\*\*

おおいれ おいちゅう

|                                                                               | Total           | Total Scirpus-Typha   | Typha      |        | Ø1    | tand | stand Calasagrostis-Scirpus | grosti | - ;c1      | and. | Stan                                                                   | Stand Salix-Calamerrostis | Caland | Fros | tis      |   | Stand |
|-------------------------------------------------------------------------------|-----------------|-----------------------|------------|--------|-------|------|-----------------------------|--------|------------|------|------------------------------------------------------------------------|---------------------------|--------|------|----------|---|-------|
|                                                                               | 7               | rt                    | 2          | 3      |       | 7    | 2                           | 4      |            | 2    | 30                                                                     | 0                         |        | 2    | F        |   | 12    |
| Species                                                                       | E               | (x) 0-3 3-6 0-3 3-6 0 | 0-3 3-6    | 0-33   | 3     | 3.6  | ا<br>ا                      | 3 0-1  | 0          | 1    | -3 3-6 0-3 3-6 0-1 1-3 0-1 1-3 0-1 1-3 0-1 1-3 0-1 1-3 0-1 1-3 0-1 1-3 | 3 0-1 1-                  | 3 0-1  | 1-3  | 0-1 1    | 0 | 1     |
| Solidago rugosa                                                               | 8.3             |                       |            |        |       |      |                             |        | <b>-</b> · | H    |                                                                        |                           |        |      |          |   |       |
| Solidago uliginosa 33.3                                                       | 33.3            |                       |            |        |       |      |                             |        | •          | H    |                                                                        |                           | H      | 1%   | 18 28 18 |   | H     |
| Typha latifolia                                                               | 33.3            | 3%                    | <b>58</b>  |        | 18 18 | H    |                             |        |            |      |                                                                        |                           |        |      |          |   |       |
| Veronica scutellaria33.3                                                      | 433.3           |                       |            |        |       |      | N<br>N                      | H      | •          | Ę.   | H                                                                      |                           |        |      |          |   |       |
| Sedges, Grasses & Rushes Carex teners 50.0 ////////////////////////////////// | 50.0<br>75.0    |                       |            |        |       |      | mmh                         |        |            |      | 1111111                                                                |                           |        |      |          |   |       |
| Calamagrostis<br>canadensis<br>Carex lasiocarpa                               | 100.0           |                       |            |        |       |      | 859                         | 70%    | <b>.</b> . | 80%  | <b>%</b> 0 <b>9</b>                                                    | 806                       |        | 70%  | 50%      |   | 80    |
| •                                                                             | 10000           | <b>%</b> 0%           | <b>20%</b> | 55%    | 7     | 70%  |                             |        |            |      |                                                                        |                           |        |      |          |   |       |
| Eleceharis obtusa<br>Juncus canadensis<br>Glyceria canadensis                 | 1 6. 1 6. 1 FAT |                       |            | 7///// |       |      |                             |        |            |      |                                                                        |                           |        |      |          |   |       |
|                                                                               |                 |                       |            |        |       |      |                             |        |            |      |                                                                        |                           |        |      |          |   |       |

T --- Denotes "Trace" which indicates less than 1% coverage.

ある ゆうこれ なまないける とうける

| • | •    | •         |                               |
|---|------|-----------|-------------------------------|
|   |      |           |                               |
|   |      |           |                               |
|   | .e.' |           |                               |
|   |      |           |                               |
|   |      |           |                               |
|   |      |           | *:1                           |
|   |      |           |                               |
|   |      |           | -                             |
|   | •    | . •       |                               |
|   |      | · - · · · |                               |
|   | ·    |           |                               |
|   |      |           |                               |
|   | :    |           |                               |
|   | .*   |           |                               |
|   |      |           |                               |
|   |      |           |                               |
| į | **** | •         | •                             |
|   |      |           |                               |
|   |      |           | .н<br>Уг                      |
|   |      |           | · The second of the second of |

A Comment of the

#### ECOLOGICAL FACTORS

Ecology is the study of organisms in relation to their environment. Therefore, in making an ecological study of forest succession, it is necessary to investigate the environment in addition to plant communities.

The site factors which are essential for the ecological description and characterization of associations are best considered under three groups:(1)Climatic or atmospheric factors, (2)Edaphic or soil factors, and (3)Biotic factors or the effects of the living environment.

These factors are responsible not only for the ecological characteristics of the present vegetation but also for successional changes of the plant communities.

#### A.Climatic factors

The climatic factors relate to atmospheric conditions and include all factors influencing plant life which are associated with the atmosphere. Four factors are being considered in this paper. They are: temperature, relative humidity, precipitation, and evaporation. Climatological data pertaining to the region are shown in Table 1.

•

•

.

### 1.Temperature

Meriam (1898) stated that air temperature is the most important factor in fixing the limits beyond which particular species and particular communities can not extend. Weaver and Clements (1958) have stated that "Temperature is like water in its action upon plants in that it has more or less to do with nearly every function, but as a working condition and not as a material."

Observations indicate that the various tree species can live only at temperature of a certain range, which may be termed their critical temperatures. However, within a relatively small, climatically similar area, such as the region of this study, local variations in temperature are very little which can be disregarded in their direct effect on vegetational changes.

Yet, vegetation tends to moderate the temperature. This equalizing effect increases with number and height of the layers (Braun-Blanquet, 1932). Therefore temperature is being considered as an influencial factor to the evaporation rates of different vegetation types in this study.

Average weekly maximum and minimum temperatures for the period from July 20 to October 4, 1952, as recorded from the Higgins Lake and Houghton Lake Weather Eureau Stations are shown in Table 12. Graphical presentation of the data is shown in Fig. 6.

Table 12. Weekly averages of temperature, relative humidity, and accumulated precipitation during the period from July 20 to October 4, 1952, compiled from data obtained at Weather Bureau Stations near the Higgins Lake area.

|                 | Temper                        | ature <sup>o</sup> F           | <u> </u> | R. H. %            | Precipi         | tation-Inc       | ches         |
|-----------------|-------------------------------|--------------------------------|----------|--------------------|-----------------|------------------|--------------|
| Week<br>(Ended) | Higgins <u>Lake</u> Max. Hin. | Houghton <u>Lake</u> Max. Min. | Ave-     | Rose City (Lupton) | Higgins<br>Lake | Houghton<br>Lake | Ave-<br>rage |
| <b>July</b> 26  | 82.6 61.1                     | 82.7 61.7                      | 72.0     | 51.4               | 1.63            | 2.79             | 2.21         |
| Aug. 2          | 76.8 51.6                     | 77:0 54.3                      | 64.9     | 59.1               | 0.19            | 0.12             | 0.16         |
| ` 9             | 75.1 51.1                     | 76.3 53.7                      | 64.0     | 65 <b>.3</b>       | 2.24            | 2.27             | 2.25         |
| 16              | 78.4 53.1                     | 78.4 55.3                      | 66.3     | 58 <b>.7</b>       | 0.12            | 0.06             | 0.09         |
| 23              | 73.8 48.8                     | 75.4 53.0                      | 62.8     | 51.4               | 0.42            | 0.04             | 0.23         |
| 30              | E3.0 51.8                     | 84.7 53.7                      | 68.3     | 62.1               | 0.00            | 0.00             | 0.00         |
| Sept. 6         | 72.7 53.1                     | 73.3 51.5                      | 62.7     | 65 <b>.7</b>       | 89.0            | 1.19             | 1.08         |
| 13              | 83.3 51.1                     | 81.8 51.8                      | 67.0     | 5 <b>4 •7</b>      | €.00            | 0.00             | 0.00         |
| 20              | 68.3 46.1                     | 70.3 47.3                      | 58.0     | 68.1               | 0.21            | 0.48             | 0.35         |
| 27              | 6 <b>3.</b> 8 38.6            | 65.2 38.0                      | 51.4     | 65.0               | 0.56            | 0.47             | 0.51         |
| Oct. 4          | 62.4 39.8                     | 65.8 40.0                      | 52.0     | 57.0               | 0.26            | 0.23             | 0.24         |

| - |     |    | 2 = %                                   |        |     |                                       |      |       |       |                                         |
|---|-----|----|-----------------------------------------|--------|-----|---------------------------------------|------|-------|-------|-----------------------------------------|
|   |     | •  | <br>i •                                 | ***    |     | · · · · · · · · · · · · · · · · · · · |      | T     |       | • • · · · · · · · · · · · · · · · · · · |
|   | •   |    | •                                       | •      | •   | •                                     | . •  | •     | •     | ·.                                      |
|   |     | •  | ÷.                                      | •      | •   | •                                     |      |       | . •   | •                                       |
|   | •   | •  | <br>**. •                               | •      |     | •                                     | •    |       | • , . |                                         |
|   | •   |    | C                                       | 1<br>1 |     | • .                                   | •    | • .   | •     |                                         |
|   |     | ,  | ••••                                    | •      | •   | •                                     | •    |       | •     |                                         |
|   |     |    | · ·                                     |        |     | -                                     | • ** | . • . |       |                                         |
|   | . • |    | •                                       |        | . : | . •                                   | •    |       | •     | 1 · ·                                   |
|   | •   | ٠. | . :                                     | •      | ٠.  |                                       | •    |       | •     |                                         |
|   |     |    | •                                       | •      | • . | • .                                   |      |       | •     | ·×                                      |
|   |     | •  | <br>•                                   | • •    | • , | • .                                   |      | •     | • .   |                                         |
|   |     |    | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |        |     |                                       |      |       |       |                                         |

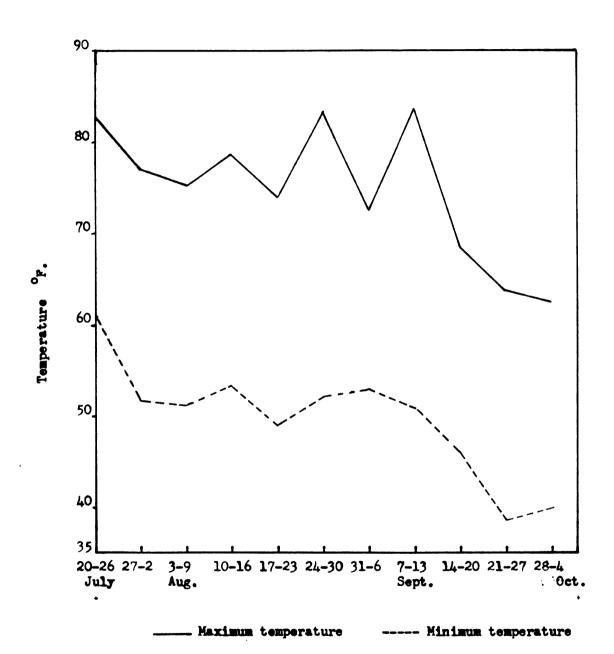



Fig. 6. Weekly data of maximum and minimum temperatures as recorded at the Higgins Lake and Houghton Lake Weather Stations during the period from July 20 to October 4, 1952.

المستقول المعاولات والمعارض والمعارض المستقولات أمانا والمعاولات والمعاولات

(2) The second of the secon

### . 2.Relative humidity

The only available data of the relative humidity obtained from the Weather Bureau Stations near the Higgins Lake area was the one at Rose Lake (Lupton), Ogemaw County. Percentages of relative humidity were transformed from wet and dry bulb readings. Weekly averages of the period from July 20 to October 4, 1952 were derived from daily data and are shown in Table 12.

Humidity is affected by temperature, wind, altitude, exposure, cover, and soil moisture content (Weaver & Clements, 1938). High temperatures lower the relative humidity; wind has a powerful effect upon humidity in that dry winds lower the amount of air moisture and promote transpiration, whereas the moist winds exert an opposite influence; exposure affects humidity through the action of sun and wind; cover increases humidity by reducing the influence of both temperature and wind; and evaporation from the surface of moist soils increases humidity.

Generally speaking, forested regions have high humidities; while the humidity of open area or grassland is low.

Lowlands are more humid; and tablelands and mountains usually less humid.

•

.

### 3.Precipitation

The water requirements of plants are chiefly met by the precipitation of the water vapor of the air in the form of rain, dew, or snow. The atmospheric precipitation is of particular importance in its effect on vegetation, owing to its relation to atmospheric humidity and soil moisture content. In general, fluctuations in soil moisture are directly traceable to variations in precipitation.

Toumey & Korstian (1948) stated that

"Variations in geographical distribution of precipitation influence markedly the distribution of forest. With the same amount of annual precipitation the character of a forest depends upon whether the rainfall is in the growing season or in the cold season; whether it is evenly distributed or confined to a few months of the year. In fact the distribution of precipitation through out the year, especially when rainfall is not heavy, may determine whether a forest is present or a type of vegetation needing less water."

However, in this study, precipitation would not be an important factor in influencing the soil moisture because of the fact that the soils of the swampy lands are almost continuously wet throughout the year. The annual precipitation of about 30 inches in this region could not possibly be responsible alone; edaphic factors must also be considered.

Weekly precipitation data at the Higgins Lake and Houghton Lake Weather Stations during the period from July 20 to October 4, 1952 are shown in Table 12. Graphical presentation of the data is shown in Fig. 7.

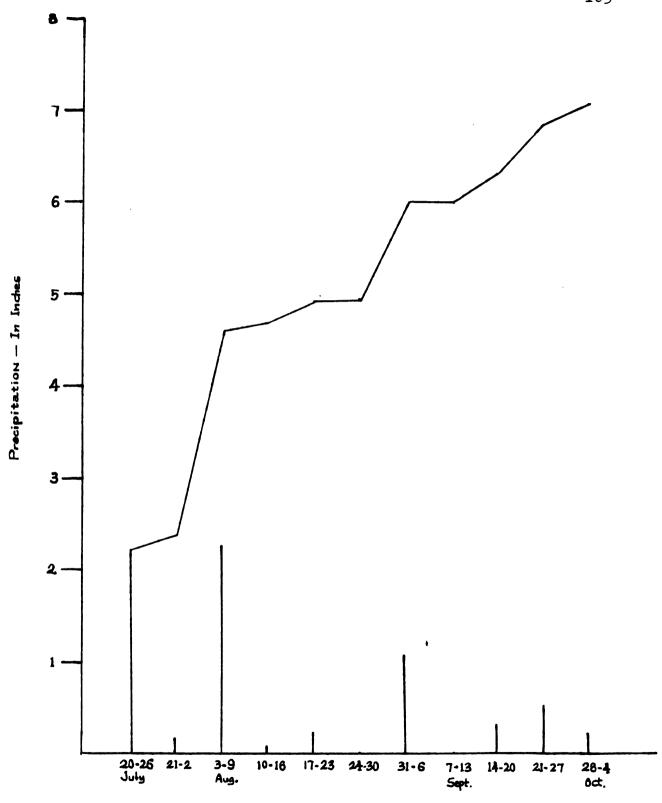



Fig. 7. Weekly accumulated precipitation during the period from July 20 to October 4, 1952.

THE CHIEF OF THE FOR THE CONTRACTOR OF THE PROPERTY OF THE CONTRACTOR OF THE CONTRAC

## 4.Evaporation

Braun-Blanquet (1932) stated that "the evaporation rate is the combined effect of humidity, temperature, wind, atmospheric pressure, and radiant energy." Evaporation markedly determine the efficiency of rainfall, especially where the annual precipitation is less than 30 inches (Weaver and Clements, 1938).

Table 13. Evaporation rate as recorded by week at stations of 3 different vegetation layers during the period from July 20 to October 4, 1952.

|              |        | Evaporation   | in C.C. of    | Water        |
|--------------|--------|---------------|---------------|--------------|
|              | of     |               | Salix-Cornus- | Thu ja-Abies |
| <u>Measu</u> | rement | Marsh Stand   | Alnus Stand   | <u>Stand</u> |
| July         | 26     | 65 <b>.5</b>  | 49.3          | 43.1         |
| Aug.         | 2      | 98.6          | 5 <b>7 •7</b> | 48.5         |
|              | 9      | 37.7          | 16.2          | 1.3          |
|              | 16     | 77.7          | 30.8          | 28.0         |
|              | 23     | 91.6          | 35.4          | 30.0         |
|              | 30     | 85 <b>.</b> 5 | 50.8          | 43.1         |
| Sept.        | 6      | 54.7          | 32 <b>.3</b>  | 27.8         |
|              | 13     | 93.3          | 61.6          | 44.7         |
|              | 20     | 74.3          | 40.0          | 35.4         |
|              | 27     | 55.3          | 28.5          | 17.7         |
| Oct.         | 4      | 93.6          | 72.8          | 47.8         |

Livingston atmometers were used to determine the evaporation rate at three stands of different vegetation layers in this study. The three stands selected for the

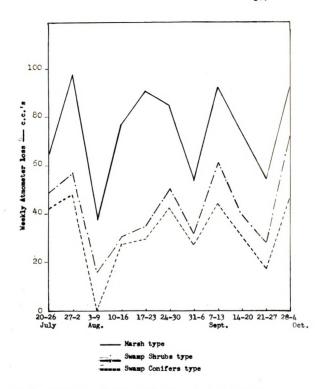



Fig. 8. Weekly evaporation in cubic centimeters in Marsh type, Swamp Shrubs type, and Swamp Confers type for the "period from July 20 to "ctober 4, 1952.

1 1 1 mm and the state of t

And the parties and the manager

A section of the section of

experiment were: (1) The Marsh. (2) The Swamp Shrubs of Salix-Cornus-Alnus stand. (3) The Thuja-Abies stand of the Swamp Conifers.

Fhotographs of atmometer set up in the first two stands are shown in Plate 1 and 2. All atmometers were set up with bulbs about 18 inches above the ground surface.

Weekly readings were recorded during the period from July 20 to October 4, 1952, as shown in Table 13. Graphical presentation of the data is shown in Fig. 8.

Table 14. Analysis of variance of the evaporation data obtained from three different stands during the period from July 20 to October 4, 1952.

| Source of<br>Variation | Degree of Freedom | Sum of<br>Squares | Mean<br>Square | F        |
|------------------------|-------------------|-------------------|----------------|----------|
| Total                  | 32                | 19505.33          | 609.54         |          |
| Between stands         | 2                 | 10584.32          | 5292.16        | 100.14** |
| Between weeks          | 10                | 7864.00           | 786.40         | 14.88**  |
| Error                  | 20                | 1057.01           | 52.85          |          |

\*\*Denotes significant at 1% level.

Statistical analysis in Table 14 shows highly significant differences between the evaporation rates of the three stands. The evaporation rate decreases from the Marsh to the Swamp Shrubs and to the Swamp Conifers. Although the forest vegetation may be the cause rather than effect of the lower evaporation, but the higher evaporation rate in the Marsh may still play an important role in retarding the establishment of forest cover on the area.



Plate 1. Set up of the Livingston atmometer in a Marsh stand. Inflorescences of <u>Scirous cyperinus</u> can be seen on the upper part of the photograph. Eulb was approximately 18 inches above the ground.



Plate 2. Set up of the Livington atmometer in a Swamp Shrubs stand. Bulb was approximately 18 inches above the ground.

Weekly averages of temperature and precipitation are plotted against the average evaporation rate of the three stands during the 11 week period from July 20 to October 4, 1952, in Fig. 9.

From the graph, we may observe that the evaporation rate serves as an indicator of temperature and precipitation, i.e., the higher the evaporation rate, the higher the temperature and the lower the precipitation will be; whereas the reverse will be true with the lower evaporation rates.

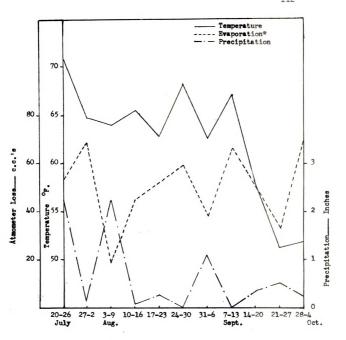



Fig. 9. Weekly evaporation (Average of three stands) in relation to temperature and precipitation for the period from July 20 to October 4, 1952.

<sup>\*</sup> Denotes evaporation of the average of 3 stands.

on the transportation of the fit to recover the end to be the control of the cont

· 11 · residence to the

Property of the second of the

### B.Edaphic factors

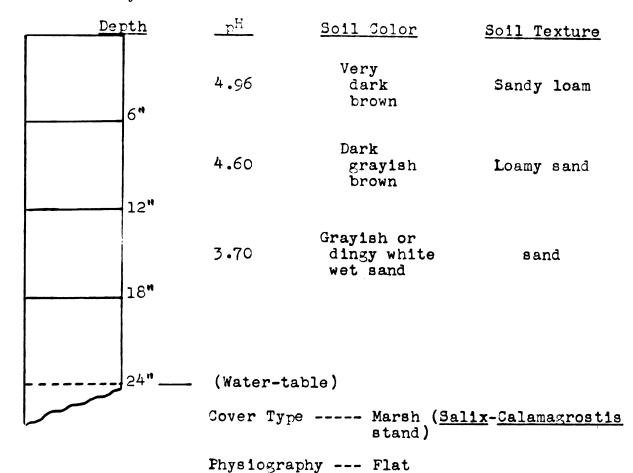
A soil is the product of its environment. The most important factors in determining the character of the soil are the climate, living organisms, relief, time and parent material (Lutz and Chandler, 1947). The interrelationships between the vegetation, soil, and climate are inseparable. Although climate is most important in determining the range of a species, or broadly speaking, a formation; the condition of the soil is often responsible for limiting its occurrence. In other words, climate determines the climatic climax of a region. And soil condition within the climatic region will limit the vegetation either to be that of the true climax which occurs on the mesophytic, well-drained, upland soil: or the subclimax (physiographic climax as called by others) which occurs en either excessively wet or excessively dry soils. Therefore in the study of vegetation, seil is one of the most important factors to be taken into consideration.

The soils in the Higgins Lake area falls into the Podzol group (Soils and Man, USDA Yearbook 1938). Soils of three series were encountered in this study. Due to the excessive moisture contents and the high percentages of erganic matter presented in the soils, only limited laboratory experiments were being carried out in the study of their physical and chemical properties.

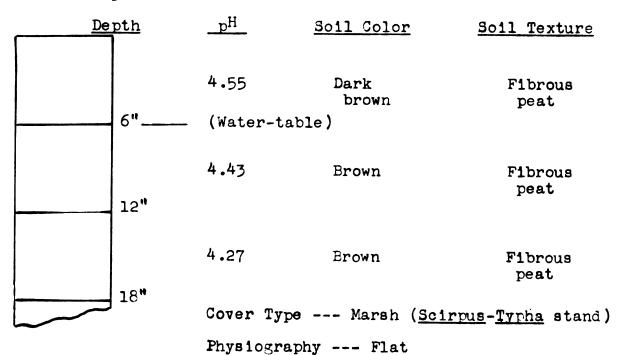
in the first transfer of the late of the first transfer at the contract the first transfer at the contract transfer at th and the state of t and the second of the second o and the second of the second o 

• 1

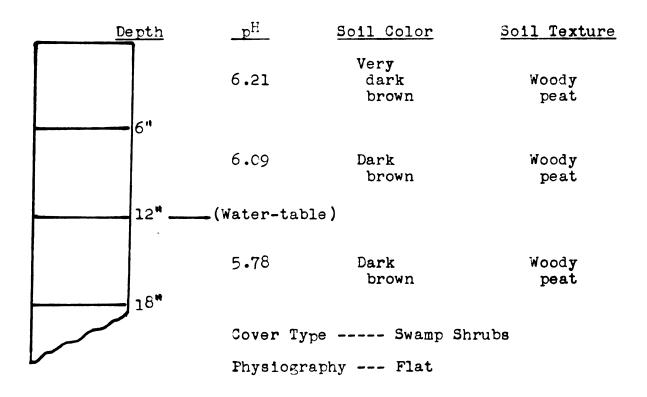
A spade and an auger were used in the field to examine the soil profiles by way of digging. Soils of all the quadrats were investigated. As a result, seven soil samples belonging to five different soil types were encountered. They have been coded numerically as follows:


| Code No. | Soil Type          | Cover Type                 |
|----------|--------------------|----------------------------|
| 1        | Newton loamy sand  | Salix-Calamagrostis stand  |
| 2        | Greenwood peat     | Scirpus - Typha stand      |
| 3        | Rifle peat         | Salix-Cornus-Alnus stand   |
| 4        | Newton loamy sand  | Abies-Larix stand          |
| 5        | Rifle peat         | Thuja-Abies stand          |
| 6        | Bergland loam      | Fraxinus-Ulmus-Tilia stand |
| 7        | Bergland clay loam | <u>Ulmus-Acer</u> stand    |

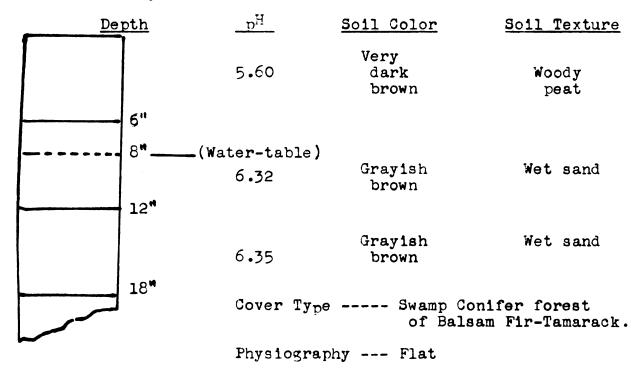
Soils of same type, such as 1 and 4, 3 and 5, taken as samples are due to the fact that different types of Vegetation have been recorded.


Samples from depth of six inch intervals were taken for each soil. This demarcation has been set up arbitrarily because of the lack of zonation in the organic soils. In order to obtain a favorable comparison, mineral soils were also being divided in the same manner disregarding their natural depth of horizons.

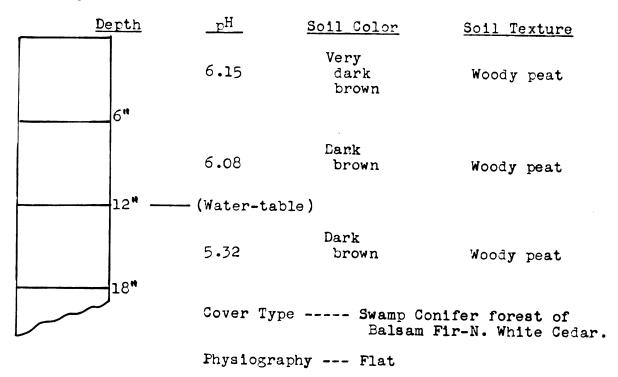
## 1.Soil profile description


#### a. Newton loamy sand

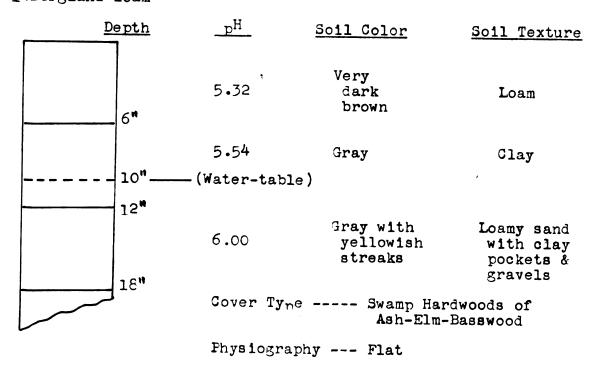



# b.Greenwood peat

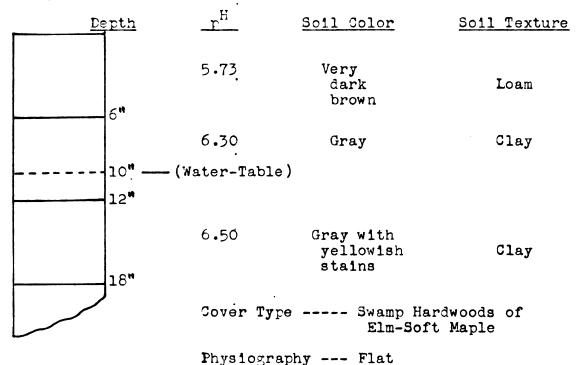



## c.Rifle peat




## d.Newton loamy sand




### e.Rifle peat



## f.Bergland loam



# g.Bergland clay loam



## 2.Soil volume weight

Iutz and Chandler (1947) have defined volume weight as "the ratio between the dry weight of a given volume of undisturbed soil and the weight of an equal volume of water." It is evident that the volume weight is greatly influenced by soil structure, therefore the determination should be based on the volume of soil in its natural field condition.

Soil samples of this study were collected in situ by means of the soil core sampler (Cylinder of  $3^{N} \times 3^{N}$  in dimension which gives a volume of 347 cm.). Soil ceres of each horizon were collected in duplicate and placed in icecream containers in order to retain their natural condition.

In the laboratory, a disk of filter paper and cheese-cloth were fastened to one end of the cylinder with a rubber band. They were weighed and oven-dried at 105° C. for 24 hours and calculation was made on even-dry basis.

Results of laboratory determination are shown in Table 15. Statistical analysis has been made which shows no significant difference between either different soils or different horizons of the soil (Table 16).

However, from the data, conclusions can be drawn:

(1) The volume weight increases with increasing depth below
the surface; and (2) lower volume weight in soils of higher
content of organic matter (also see Table 15). These are

the state of the s

essentially coincides with the statement made by Lutz and Chandler (P. 238, 1947).

Table 15. Volume weight of each of the three horizons of six soils.

| Soil Type      | Code<br>No. | Horizon                    | Oven-dry Wt.<br>in Grams  | Volume<br>Weight        |
|----------------|-------------|----------------------------|---------------------------|-------------------------|
| Newton sand    | 1           | 0"-6"<br>6"-12"<br>12"-18" | 56 •5<br>143 •3<br>549 •4 | 0.163<br>0.413<br>1.583 |
| Greenwood peat | 2           | 0"-6"<br>6"-12"<br>12"-18" | 63.4<br>100.3<br>105.8    | 0.183<br>0.289<br>0.305 |
| Rifle peat     | 3           | 0"-6"<br>6"-12"<br>12"-18" | 75.4<br>114.3<br>129.6    | 0.217<br>0.329<br>0.373 |
| Newton sand    | 4           | 0"-6"<br>6"-12"<br>12"-18" | 73.8<br>568.5<br>601.7    | 0.218<br>1.638<br>1.734 |
| Rifle peat     | 5           | 0"-6"<br>6"-12"<br>12"-18" | 55.8<br>61.7<br>65.1      | 0.160<br>0.177<br>0.187 |
| Bergland loam  | 6           | 0"-6"<br>6"-12"<br>12"-18" | 55.6<br>78.1<br>174.7     | 0.160<br>0.225<br>0.503 |

Table 16. Result of the statistical analysis of the soil volume weight data.

| Source of Variation      | Degree of<br>Freedom | Sum of<br>Squares | Mean<br>Square | F_   |
|--------------------------|----------------------|-------------------|----------------|------|
| Total                    | 17                   | 49893.11          | 2934.89        |      |
| Between Soil Types       | 5                    | 23183.78          | 4636.76        | 2.89 |
| Between Soil<br>Herizons | 2                    | 10720.44          | 5360.22        | 3.35 |
| Errer                    | 10                   | 15988.89          | 1598.89        |      |

| • |   | · | . • |
|---|---|---|-----|
|   |   |   | •   |
| • | • |   |     |
|   |   |   |     |

## 3.Soil poresity

Most soil poresity measurements are based upon determinations of volume weight of the soil at some arbitrary meisture content (Baver, 1948). In this study, the total poresity is based on weight of soil at even-dry,  $105^{\circ}C$ ., whereas the separating moisture content between the capillary and non-capillary poresity is at the tension equivalent to 60 cm. of water ( $p^{\text{F}}$  1.6).

a.Capillary, non-capillary, and toatl poresity

Eighteen samples in duplicate were cellected in situ using cere sampler. They were taken from each of the three herizons of six soils.

A disk of filter paper and cheesecloth were fastened to one end of the cylinder with a rubber band. Cylinders were then placed into a pan of water such that the water is level with the top of the soil and allowed to stand for 24 hours. After the cores were saturated, they were removed from the pan, let drain freely for one minute, weighed, placed on a tension table, allowed to drain for 24 hours, and weighed. Tension tables of four different tensions which have the equivalent to 10 cm., 20 cm., 40 cm., and 60 cm. of water were used. Data obtained from the tensions of 10 cm., 20 cm., and 40 cm. were used to calculate the percentages of pore space distribution. Gores were placed on the 16 cm. tension table first for 24 hours and weighed. The same precedure was

A Commence of the Commence of

repeated for the remaining three tension tables. Cores were even-dried after removed from the 60 cm. tension table.

Percentages of the non-capillary, capillary, and total poresity of the six soils are shown in Table 17.

Table 17. Percentages of seil porosity of each of the three horizons of six soils.

|                                         | <del></del> |                         |                |               |                |
|-----------------------------------------|-------------|-------------------------|----------------|---------------|----------------|
|                                         | Code        |                         | Percentage     | of Poros      | lty            |
| Seil Type                               | No.         | Horizon                 | Non-capillary  | Capillary     | Total          |
|                                         |             |                         |                |               |                |
| Newton sand                             | 1           | 0"-6"                   | 37.70          | 53.66         | 91.36          |
|                                         | _           | 6"-12"                  | 13.06          | 66.94         | 80.00          |
|                                         |             | 12"-18"                 | 13.78          | 31.55         | 45.33          |
|                                         |             | 12 -10                  | 13.10          | J             | 4 J • J J      |
| Chaenward nest                          | 2           | 0"-6"                   | 36.29          | <b>56.4</b> 8 | 92.77          |
| Greenwood peat                          | 2           | 6"-12"                  |                |               |                |
|                                         |             |                         | 24.76          | 63.21         | 87.98          |
|                                         |             | 12 <b>"-</b> 18"        | 17.67          | 67.11         | 84.78          |
| D4.03 4                                 | -           | 0 H C H                 | 00.00          | c=            | 00.03          |
| Rifle peat                              | 3           | 04-64                   | 28.88          | 53 • 33       | 82.21          |
|                                         |             | 6,-12,                  | 15.39          | 67.46         | 82.85          |
|                                         |             | 12"-18"                 | 13.04          | 68.57         | 81.61          |
| •                                       | ٥.          | - M - M                 |                |               |                |
| Newton sand                             | 4           | 04-64                   | 39.04          | 53.03         | 92.07          |
|                                         |             | 6 <b>"-12"</b>          | 16 <b>.6</b> 9 | 21.26         | <b>37 •</b> 95 |
|                                         |             | 12 <b>"-</b> 18"        | 8.67           | 23.49         | 32.16          |
|                                         |             |                         |                |               |                |
| Rifle peat                              | 5           | 0"-6"                   | 31.57          | 59.65         | 91.22          |
|                                         |             | 6 <b>"-</b> 12 <b>"</b> | 25.79          | 62.77         | 88.56          |
|                                         |             | 12"-18"                 | 16.92          | 72.01         | 88.93          |
|                                         |             |                         |                | ,             | ,,             |
| Bergland leam                           | 6           | 0"-6"                   | 22.74          | 67.69         | 90.43          |
| 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | _           | 6"-12"                  | 19.42          | 74.87         | 94.29          |
|                                         |             | 12"-18"                 | 14.58          | 60.95         | 75.53          |
|                                         |             |                         |                |               |                |

The data shows that the percentages of non-capillary perceity are lower than the capillary perceity in all the soils. This proves the fact that all the soils are peorly-drained, as Lutz and Chandler (1947) have stated that soils which pessess a low non-capillary pore volume and high capillary pore volume will have high field capacity but the

in the second of the second of

|   | • | • |  |                                         |  |
|---|---|---|--|-----------------------------------------|--|
| • |   | • |  | 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |
|   |   |   |  | ta en establica                         |  |
|   |   |   |  |                                         |  |
|   |   |   |  |                                         |  |

infiltration of water will be slow. The high percentages of the total porosity of all the soils are no doubt due to the high content of unincorporated organic matter which is very highly porous in nature.

Table 18. Analysis of variances for non-capillary, capillary, and total porosity of six soils.

|                          | prirary, and      |                   |                |         |
|--------------------------|-------------------|-------------------|----------------|---------|
| Source of Variation      | Degree of Freedom | Sum of<br>Squares | Mean<br>Square | F       |
|                          | Non-capi          | llary porosit     | ` <b>y</b>     |         |
| Total<br>Between         | 17                | 1483.78           | 87.28          |         |
| Seil Types Between Soil  | 5                 | 137.78            | 27.56          | 1.14    |
| Horizons                 | 2                 | 1104.78           | 552.39         | 22.90** |
| Error                    | 10                | 241.22            | 24.12          |         |
|                          | Capillar          | y porosity        |                |         |
| Total                    | 17                | 4329.78           | 254.69         |         |
| Between Soil Types       | 5                 | 2671.11           | 534.22         | 3 • 39* |
| Between Soil<br>Horizons | 2                 | 87.11             | 43.55          | 0.27    |
| Error                    | 10                | 1571.56           | 157.16         |         |
|                          | Total po          | rosity            |                |         |
| Total                    | 17                | 5773.78           | 339.63         |         |
| Between Soil Types       | 5                 | 2221.11           | 444.22         | 2.07    |
| Between Soil<br>Herizons | 2                 | 1408.78           | 704 • 39       | 3,28    |
| Error                    | 10                | 2143.89           | 214.39         |         |

<sup>\*\*</sup>Denotes significant at 1% level \*Denotes significant at 5% level

Results of statistical analysis are shown in Table 18. There are no significant differences between the total porosity of the six soils. For the capillary porosity, slight differences (significant at 5% level) exist between the six soils. Result of the t-Test proves that soils of code number 2,3,5,6 have higher percentages of capillary porosity than Newton sand type. The Newton soil has a subsoil of wet sand which will certainly be less porous than the other peat or clayer soils.

As for the non-capillary porosity, there are no significant differences between the six soils. However, highly significant differences exist between the three herizons. Results of the t-Test show that the 0"-6" horizons have higher percentages of non-capillary porosity than the lower two horizons, whereas there is no difference between the 6"-12" and 12"-18" horizons. This is rather typical for most of the soils whose sub-soils are less aerated due to compactness. As in this study, the centimuous wetness should account for the poor aeration which in turn explains the incomplete decomposition of the organic remains and causes the formation of peat

# b.Pore space distribution

Percentages of pore space for the six soils by horizons were determined from the volume weight of the soil at moisture content of the saturated soil core drained for 24 hours under tension equivalent to 10 cm., 20 cm., 40 cm., 60 cm. of water, and oven-dry conditions. The percentages of pore space distribution serve to give a better picture of the pore space under different moisture content.

Results of laboratory determinations are shown in Table 19.

Table 19. Pore space distribution in percentages of the six seils by horizon.

|                 |            |          |                            |                         |                         |                         | o cm. o                 |                                            |
|-----------------|------------|----------|----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------------------------|
| Soll            | Type       | Code No. | Horizon                    | 10 cm.                  | 20 cm.                  | 40 cm.                  | 60 cm.                  | Oven-dry                                   |
| Newton          | sand       | 1        | 0"-6"<br>6"-12"<br>12"-18" | 21.17<br>8.69<br>3.60   | 25.22<br>9.30<br>4.73   | 33.57<br>11.38<br>9.54  | 37.70<br>13.06<br>13.78 | 91.36<br>80.00<br>45.33                    |
| Greenwe<br>peat | od         | 2        | 0"-6"<br>6"-12"<br>12"-18" | 21.53<br>15.30<br>11.18 | 23.66<br>16.71<br>12.48 | 30.86<br>21.01<br>15.65 | 36.29<br>24.76<br>17.67 | 92.77<br>87.98<br>84.78                    |
| Rifle p         | <b>eat</b> | 3        | 0"-6"<br>6"-12"<br>12"-18" | 22.74<br>10.69<br>9.10  | 24.09<br>11.61<br>9.91  | 27.00<br>13.66<br>11.73 | 28.88<br>15.39<br>13.04 | 82.21<br>82.85<br>81.61                    |
| Newten          | sand       | 4        | 0"-6"<br>6"-12"<br>12"-18" | 28.02<br>4.21<br>3.17   | 31.55<br>6.28<br>3.40   | 36.73<br>13.11<br>6.59  | 39.04<br>16.69<br>8.76  | 92.07<br>37.95<br>32.16                    |
| Rifle p         | eat        | 5        | 0"-6"<br>6"-12"<br>12"-18" | 24.45<br>19.31<br>11.58 | 26.51<br>21.32<br>12.97 | 29.93<br>24.29<br>15.30 | 31.57<br>25.79<br>16.92 | 91.22<br>88.56<br>88.93                    |
| Berglan<br>leam | nđ         | 6        | 0"-6"<br>6"-12"<br>12"-18" | 15.01<br>11.30<br>10.29 | 16.51<br>12.94<br>11.21 | 19.45<br>16.63<br>13.11 | 22.74<br>19.42<br>14.58 | 90 <b>.43</b><br>9 <b>4 .2</b> 9<br>75 •53 |

and the second of the second o 

and the second of the second o

and the second of the second o

value on a constant of a constant planet in the way of the constant in the constant of the constant of the con-

Statistical analysis, as shown in Table 20, indicates highly significant differences between the different soil types and between the different soil horizons. The following statements were drawn from results of the t-Test:

- (1) The Greenwood peat and the Rifle peat (Code No. 5) have higher pore space percentages than the other four soils.
- (2) The pore space decreases as depth of the soil increases.

Table 20. Analysis of variance from data of the pore space distribution of the six soils by horizons.

| Sources of<br>Variation      | Degree of freedom | Sum of<br>Squares | Mean<br>Square | F        |
|------------------------------|-------------------|-------------------|----------------|----------|
| Total                        | 71                | 5685.87           | 80.03          |          |
| Between Seil Types           | 5                 | 429.45            | 85.89          | 21.00**  |
| Between Diff.<br>Tensions    | 3                 | 740.37            | 246.79         | 60.34**  |
| Errer (a)                    | 15                | 61.38             | 4.09           | 0.18     |
| Between Soil<br>Herizons     | 2                 | 3514.58           | 1757.29        | 77 •79** |
| Interaction<br>Between T & H | 6                 | 36.42             | 6.07           | 0.27     |
| Errer (b)                    | 40                | 903.67            | 22.59          |          |

<sup>\*\*</sup>Denoted significant at 1% level.

and the second of the second o

and the second section of the section of

#### 4.Soil moisture

In many regions, the occurrence of forest types is centrelled by the supply of water. Generally speaking, site quality improves with increasing amount of available seil meisture. However, there is a limit to the amount of seil meisture which is desirable. Lutz and Chandler (1947) pointed out if the seil water exceeds a certain limit, unfaverable conditions for plant growth result because of deficient aeration and related phenomena.

In this study, the swampy soils are wet throughout the year or at least for part or all of the growing season. This makes the accurate determination of soil moisture in situ difficult to accomplish, because most of the methods in use are not designed to measure soil moisture in very wet conditions.

Nevertheless, the "electrical resistance method" (Bouyoucos and Mick, 1940, 1948) was used to determine the moisture content of two soils. Both of them are Rifle peat, but the stands are of two different types: a Swamp Conifers, and a Swamp Shrubs of Salix-Cornus-Alnus Association. Soils of these two stands are comparatively drier than soils of the Marsh and Swamp Hardwoods which at the time of setting up the experiment were both under water-logged conditions.

• and the control of th and the state of the control of the •

The state of the s •

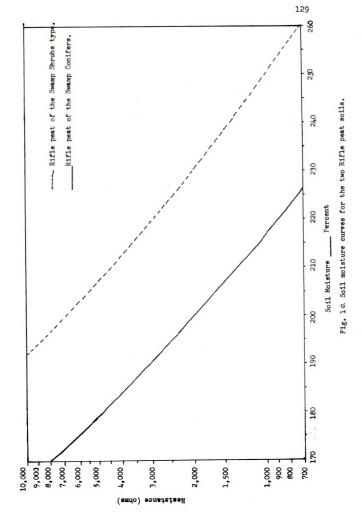
Nylon blocks were buried at 6 inches and 10 inches depth into the soil column. The lower depth of 10 inches was selected because the water-table in both the seils were at about 12 inches. Weekly measurements were taken by means of the Bouyouces' Bridge during the period from July 26 to October 4, 1952. Soil temperatures were also measured at the same time in order to correct the resistance readings of the nylon blocks against the room temperature of 76°F. (Bouyouces and Mick. 1948).

The soil moisture curves for the two soils, which have been caliberated in laboratory at room temperature of  $76^{\circ}$ F. are shown in Fig. 10. (Bouyoucos and Mick. 1940. 1948)

Table 21. Soil moisture data of Rifle peat soils in two different stand types, obtained during the period from July 26 to October 4, 1952.

| Date    | Soil                | Code | No. 3                |             | Soll                | Code | Ne.5                |     |
|---------|---------------------|------|----------------------|-------------|---------------------|------|---------------------|-----|
| (Week   | 6 inch              |      | 10 inch              |             | 6 inch              |      | 10 inch             |     |
| ending) | X                   | MC_  | <u> </u>             | MC          | X                   | MC   | <u> </u>            | MC  |
| Aug. 2  | 1.9x10 <sup>3</sup> | 232  | 0.92x10 <sup>3</sup> | 25 <b>2</b> | 2.1x10 <sup>3</sup> | 199  | 1.6x10 <sup>3</sup> | 205 |
| 9       | $4.6 \times 10^3$   | 209  | 2.1x10 <sup>3</sup>  | 229         | 2.9x10 <sup>3</sup> | 191  | 2.0x10 <sup>3</sup> | 200 |
| 16      | 2.9x10 <sup>3</sup> | 220  | 1.4x10 <sup>3</sup>  | 240         | 1.7x10 <sup>3</sup> | 204  | 1.4x10 <sup>3</sup> | 208 |
| 23      | 2.0x10 <sup>3</sup> | 230  | 0.96x10 <sup>3</sup> | 251         | 1.5x10 <sup>3</sup> | 207  | 1.3x10 <sup>3</sup> | 210 |
| 30      | 4.2x10 <sup>3</sup> | 211  | 2.7x10 <sup>3</sup>  | 222         | $5.4x10^{3}$        | 178  | 4.1x10 <sup>3</sup> | 183 |
| Sept. 6 | 2.7x10 <sup>3</sup> | 222  | 1.2x10 <sup>3</sup>  | 244         | 2.8x10 <sup>3</sup> | 192  | 2.1x10 <sup>3</sup> | 199 |
| 13      | 5.0x10 <sup>3</sup> | 207  | 1.8x10 <sup>3</sup>  | 233         | 3.8x10 <sup>3</sup> | 185  | 3.0x10 <sup>3</sup> | 190 |
| 20      | 4.0x10 <sup>3</sup> | 213  | $2.4 \times 10^3$    | 225         | 7.0x10 <sup>3</sup> | 172  | 5.0x10 <sup>3</sup> | 179 |
| 27      | 2.2x10 <sup>3</sup> | 228  | 0.92x10 <sup>3</sup> | 252         | 4.3x10 <sup>3</sup> | 182  | 4.0x10 <sup>3</sup> | 184 |
| Oct. 4  | 2.8x10 <sup>3</sup> | 221  | 1.05x10 <sup>3</sup> | 248         | 5.0x10 <sup>3</sup> | 179  | 4.5x10 <sup>3</sup> | 181 |

X ---- Corrected resistance reading in ehms.


MC ---- Moisture content in percent.

en de la composition La composition de la

and a service service consistency of the service consistency of the service and the service an

en de la composition La composition de la

.



Weekly data of the moisture contents of the two soils are shown in Table 21. Graphical presentation is shown in Fig. 11.

Analysis of variance (Table 22) shows highly significant difference between the moisture contents of the two soils as well as between the two different horizons.

| Table 22. A | Analysis | of variance  | of | the moisture |
|-------------|----------|--------------|----|--------------|
| contents    | of the   | two Rifle pe | at | soils.       |

| Source of Variation       | Degree of Freedom | Sum of<br>Squares | Me <b>a</b> n<br>Square | F        |
|---------------------------|-------------------|-------------------|-------------------------|----------|
| Tetal                     | <b>3</b> 9        | 21099.78          | 541.02                  |          |
| Between Dates             | 9                 | 3143.03           | 349.22                  | 2.74     |
| Between<br>Seil Types     | 1                 | 14478.03          | 14478.03                | 113.88** |
| Errer (a)                 | 9                 | 1144.22           | 127.13                  |          |
| Between Soil Herizens     | 1                 | 1600.23           | 1600.23                 | 193.26** |
| Interaction Between T & H | 1                 | 585.22            | 58 <b>5.22</b>          | 70.67**  |
| Error (b)                 | 18                | 149.05            | 8.28                    |          |

<sup>\*\*</sup>Denotes significant at 1% level.

Further t-Test shows that the moisture centent of the soils of the Swamp Shrub type (Code No. 3) is significantly higher (at 1% level) than the soils obtained from the Swamp Conifer ferest stand (Code No. 5). Whereas in each soil the lower (10 inches) layer has a higher moisture than the upper (6 inches) layer.

and the second of the second o

• 4 ... •

The first of the first teachers and the

and the second of the second o 

andra andra a desperanta de la compacta de la comp La compacta de la comp 

where  $x \in \mathbb{R}^{n \times n}$  ,  $x \in \mathbb{R}^{n \times n}$  ,  $x \in \mathbb{R}^{n \times n}$ 

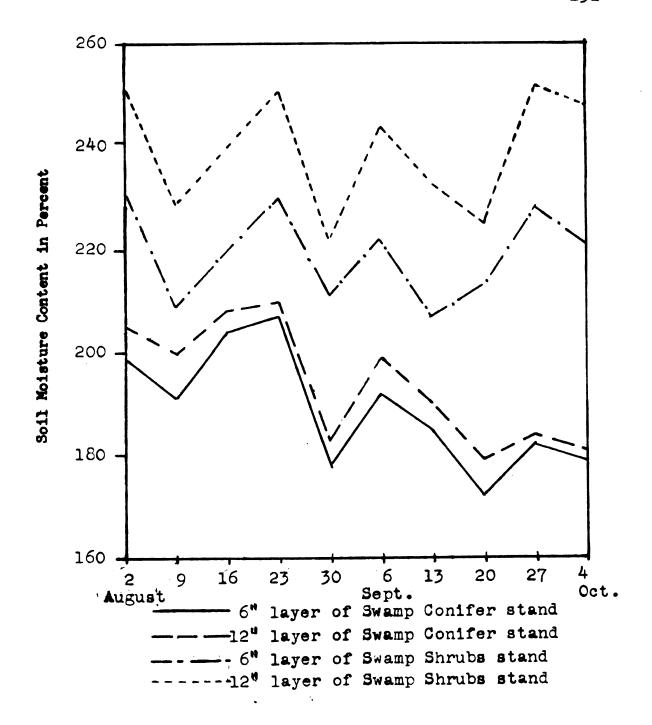
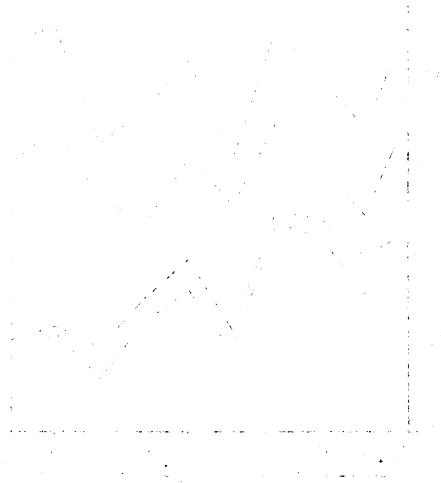




Fig. 11. Weekly data of soil moisture content in percent of the two Rifle peat soils by horizons.





down and direction equally. The formating item of the stiff of the project of the decrease of our of the

### 5.Soil temperature

Soil temperature is important because it affects the bielogical, chemical and physical processes in soils.

Weaver and Clements (1939) have stated that color, texture, structure, water content, amount of humus, slope and aspect, and the presence or absence of vegetation cover are among the factors that directly affect soil temperature. According to them, water content is the most important because it has a specific heat about five times greater than the solid constituent of the soil. Therefore, the poorly-drained soils, under dense vegetation cover, of flat and lew ground, are colder than sandy or leamy soils of the uplands.

Table 23. Soil temperatures of the two Rifle peat soils which measured once every week during the period from July 26 to October 4, 1952.

| _               |              | erature F.   |
|-----------------|--------------|--------------|
| Date .          | . Code No. 3 | . Code No. 5 |
| Jul <b>y</b> 26 |              | 66           |
| Aug. 2          | 61           | 61           |
| 9               | 60           | 61           |
| 16              | 60.5         | 60           |
| 23              | 5 <b>7.5</b> | 55           |
| 30              | 60           | 62           |
| Sept. 6         | <b>5</b> 8   | 58           |
| 13              | 61.5         | 62           |
| 20              | 52           | 53           |
| 27              | 49.5         | <b>4</b> 9   |
| Oct. 4          | 47           | 46           |

•

In this study, soil temperatures have been measured in only two of the sample plots (shown in Table 23), as a supplementary procedure in measuring the moisture contents of the soils. No significant difference has been found between the two sampling areas, the Swamp Shrub stand and the Swamp Conifer forest.

## 6.0rganic matter

The effect of organic matter or humus on forest vegetation has been discussed by Toumey and Kerstian (1958). They stated that the humus is a source of supply of both ash and non-ash nubrients. They also stated that the effect of organic matter will improve the physical properties of soil. For example, the incorporated humus improves the soil structure, increases water holding capacity, decreases the volume weight, increases the activities of soil organisms, and has a high exchange capacity; and the unincorporated organic matter will protect the soil from the compacting effect of heavy precipitation.

Decemposition of plant remains is much retarded in the peorly-drained soils due to the cool climate, excessive moisture, peor aeration, and unfavorable microbiological conditions. The litter of the swamp vegetation such as Picea, Larix, Vaccinium, Ledum, Carex, etc., is highly acid in reaction which upon accumulation is readily formed into peat.

... Na -

en de la companya de la co

A substitution of the second of

Braun-Blanquet (1932) has segregated the humus substances into two qualitatively different groups: the neutral, mild, saturated; and the adsorptively unsaturated humus. He stated that "---- the interior surface of the unsaturated humus (of this, peat belongs to) is very great, involving a large water fixation; hence very acid humus seils are physically dry."

Twenty-one samples in duplicate from each of the three herizons of seven soils were used to determine their erganic matter content by the Dry Combustion method.

l gram fer some of the soil whose organic matter is very high) were added 0.25 gram manganese diexide and 5 grams 60 mesh carbon free alundum. They were mixed well and placed in alundum combustion boat and the boat was inserted directly into the het silica tube of furnace, previously heated to operating temperature of about 950°C. The flow of exygen was adjusted to about 100-200 c.c. per minute. Carbon diexide evelved in combustion passed thru the purifying section of the train, and was absorbed in a previously weighed tube filled with ascarite. Grams of carbon diexide evelved was calculated and than converted to percent of organic matter by using the converting factor 0.471.

Results from the laboratory determination are shown in Table 24.

Table 24. Organic matter in percent of seven soils by horizon as determined from Dry Combustion method.

|                    |     |                            | Organic                         |                         | Percent                 |
|--------------------|-----|----------------------------|---------------------------------|-------------------------|-------------------------|
|                    |     |                            | Replic                          | ations                  | _                       |
| Soil Type          | No. | Horizon                    | I                               | II                      | Average                 |
| Newton sand        | 1   | 0"-6"<br>6"-12"<br>12"-18" | 59.24<br>16.49<br>1.52          | 40.38<br>18.90<br>1.00  | 49.81<br>17.69<br>1.26  |
| Greenwood peat     | 2   | 0"-6"<br>6"-12"<br>12"-18" | 67.68<br>78.08<br>33.77         | 66.62<br>71.98<br>50.29 | 67.15<br>75.03<br>42.03 |
| Rifle peat         | 3   | 0"-6"<br>6"-12"<br>12"-18" | 51.91<br>6 <b>3.23</b><br>41.40 | 48.75<br>53.32<br>44.37 | 50.33<br>58.27<br>42.88 |
| Newton sand        | 4   | 0"-6"<br>6"-12"<br>12"-18" | 47.82<br>0.79<br>0.99           | 48.55<br>1.30<br>0.79   | 48.19<br>1.04<br>0.89   |
| Rifle peat         | 5   | 0"-6"<br>6"-12"<br>12"-18" | 42.41<br>45.40<br>40.40         | 46.01<br>42.91<br>43.38 | 44.22<br>44.15<br>41.89 |
| Bergland leam      | 6   | 0"-6"<br>6"-12"<br>12"-18" | 46.12<br>32.24<br>1.33          | 30.47<br>21.57<br>1.82  | 38.30<br>26.91<br>1.58  |
| Bergland clay loam | 7   | 0"-6"<br>6"-12"<br>12"-18" | 38.49<br>3.72<br>1.35           | 42.14<br>3.37<br>1.29   | 40.31<br>3.55<br>1.32   |

Statistical analysis which is shown in Table 25
Shows that there are highly significant differences (at 1% level) between the organic matter of the different soil types, different soil herizons, and also the interaction of soil type and horizon.

| •               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |        |                                       |
|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|---------------------------------------|
| tak ni tak ptin |          | e de la companya de l |   |        | 1.2                                   |
|                 | •        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |        |                                       |
| . w Here's      |          | **<br>~1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • | •      | •                                     |
| 2000            | <u>V</u> | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • | * **   | •                                     |
|                 | ÷        | to the second se |   |        | • • • • • • • • • • • • • • • • • • • |
| : · · ·         |          | 30 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | ·<br>· |                                       |
| <b>v</b>        | ja .     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • | •      | •                                     |

|   | • • • | · · · | 1                                       |  |
|---|-------|-------|-----------------------------------------|--|
| • | • • • |       | **************************************  |  |
|   | •     | •     | • · · · · · · · · · · · · · · · · · · · |  |

| Table 25. | Analysis | of | varia | ance f | rom | the | data | of |
|-----------|----------|----|-------|--------|-----|-----|------|----|
| erganic   |          |    |       |        |     |     |      |    |

| Source of<br>Variation       | Degree of<br>Freedom | Sum of<br>Squares | Mean<br>Square | F        |
|------------------------------|----------------------|-------------------|----------------|----------|
| Total                        | 41                   | 22913.62          | 558.87         | 105.85   |
| Between<br>Seil Types        | 6                    | 12168.12          | 2028.02        | 75.42**  |
| Between<br>Replications      | 1                    | 27.52             | 27.52          | 1.02     |
| Error (a)                    | 6                    | 161.31            | 26.89          |          |
| Between Seil<br>Horizens     | 2                    | 6135.05           | 3067.52        | 105.85** |
| Interaction<br>Between T & H | 12                   | 4015.95           | 334.66         | 11.55**  |
| Error (b)                    | 14                   | 405.67            | 28.98          |          |

<sup>\*\*</sup>Denotes significant at 1% level.

The fellowing observations are drawn from the t-Test: a.Fer different soil types ---- The Greenwood peat has the highest erganic matter content, fellowed by the two Rifle peat types. Next comes the two Newton sand types and both the Bergland soils.

The high percentages of erganic matter in all the peaty soils can well be expected as the result of vegetative accumulation in the peat. The greater amount of cearse weody materials in the Rifle peat should account for the lewer erganic matter content than found in Greenwood peat which is composed of mostly finer textured materials.

The lower organic matter content of the Newton and Bergland soils is due to the fact that they are mineral

. • •

The second of th

and the second of the second o

soils whose substrata are low in organic matter, in spite of the high content of organic matter in the top layer of the two soils.

b.For types at same horizon

- (1)0"-6" Horizon ---- Greenwood peat has the highest organic matter, and the Bergland loam has the lowest. The rest of the soils are in between without differences.
- (2)6"-12" Horizon ---- Organic matter in soil code
  No. 2 3 5 6,1 4,7. The higher organic content in the
  first three soils is attributed to the characteristic of peat
  which is naturally high in organic matter. The decreases in
  organic content of these soils account for the fact of vegetational changes from Marsh to Swamp Shrubs and to Swamp Forest vegetations. The lower organic matter content of the
  Newton and Bergland soils is due to the mineral origin of
  the sub-soil. The differences between them are probably due
  to the variation in thickness of organic surface soils.
- (3)12"-18" Horizon ---- Results of the t-Test show that the three peat soils are higher in organic content than the Newton and Bergland soils. This coincides with the difference between the peat and mineral soils.

# 7.Soil reaction (pH)

Mest ferest soils have an acid reaction. Acidity of the seil may affect tree growth. However, certain species particularly of the family Ericaceae, grow best on acid soil.

Under conditions of poor drainage, highly acid conditions are apt to develop. Weaver and Clements (1938) stated that "In soils of organic origin, basic salts are present in only small amount. The soil develops more or less marked acidity as the result of the accumulation of humus under conditions of poor aeration and sometimes by the setting free of acid from the mineral constituents of the soils."

The Beckman pH meter was used in the determination of the seil acidity in this study. Twenty-one samples in duplicate were tested. For the organic seils, seil-water ratio of 1:10 by weight, and 5 grams air-dry seil samples were used. For the mineral soils, 10 grams of soil at soil-water suspensions of 1:5 by weight were employed for the determination. The higher seil-water ratio for the organic soils was necessary to make better contact between the seil and the glass electrode. The use of a small amount of organic soil for samples was made possible by their high percentages of organic content.

A series of soil samples were weighed up and to each sample the required amount of water was added. The soil suspensions were stirred for one minute, and the pH determined.

Laboratory results are shown in Table 26.

Table 25. Soil reaction ( $p^H$  values) of the seven soils by horizon.

|                    | Code |                            | Replic               | ations               |                            |
|--------------------|------|----------------------------|----------------------|----------------------|----------------------------|
| Seil Type          | No.  | Horizon                    | Ī                    | II                   | Average                    |
| Newton sand        | 1    | 0"-6"<br>6"-12"<br>12"-18" | 4.98<br>4.65<br>3.75 | 4.95<br>4.55<br>3.65 | 4.96<br>4.60<br>3.70       |
| Greenwood<br>peat  | 2    | 0"-6"<br>6"-12"<br>12"-18" | 4.55<br>4.48<br>4.22 | 4.55<br>4.38<br>4.32 | 4 • 55<br>4 • 43<br>4 • 27 |
| Rifle peat         | 3    | 0"-6"<br>6"-12"<br>12"-18" | 6.20<br>6.06<br>5.78 | 6.22<br>6.12<br>5.78 | 6.21<br>6.09<br>5.78       |
| Newton sand        | 4    | 0"-6"<br>6"-12"<br>12"-18" | 5.65<br>6.40<br>6.45 | 5.56<br>6.25<br>6.25 | 5.60<br>6.32<br>6.35       |
| Rifle peat         | 5    | 0"-6"<br>6"-12"<br>12"-18" | 6.15<br>6.02<br>5.35 | 6.15<br>6.15<br>5.28 | 6.15<br>6.08<br>5.32       |
| Bergland lean      | a 6  | 0"-6"<br>6"-12"<br>12"-18" | 5.75<br>6.25<br>6.40 | 5.70<br>6.35<br>6.60 | 5•73<br>6•30<br>6•50       |
| Bergland clay loam | 7    | 0"-6"<br>6"-12"<br>12"-18" | 5.25<br>5.52<br>5.85 | 5.20<br>5.55<br>6.15 | 5.23<br>5.54<br>6.00       |

Statistical analysis has been carried out for five of the seven soils tested. The arbitrary horizons of 6 inches interval in this study are set up primarily for the organic seils (Azonal) which are undifferentiated in natural horizons.

In this experiment, if both the Bergland soils are threwn in for statistical analysis, erronous results would

<u>-</u>'

grand the grand of 

 $m{\cdot}$  . The second of the s

be produced because of the different thickness in the cerrespoding horizons of these two structurally similar soils. Therefore, only one of the two is being analyzed. The same applies to the Newton soils.

Table 27. Analysis of variance for the soil reaction data of five soils by horizon.

| Source of<br>Variation       | Degree of<br>Freedom | Sum of<br>Squares | Mean<br>Square | F         |
|------------------------------|----------------------|-------------------|----------------|-----------|
| Tetal                        | 29                   | 2200.97           | 75.90          |           |
| Between<br>Replications      | 1                    | 0.04              | 0.04           | 0.11      |
| Between<br>Soil Types        | 4                    | 1848.14           | 462.04         | 1248.76** |
| Errer (a)                    | 4                    | 1.46              | 0.37           |           |
| Between Soil<br>Horizons     | 2                    | 112.27            | 56.14          | 93 • 57** |
| Interaction<br>Between T & H | 8                    | 233.06            | 28.51          | 47.52**   |
| Error (b)                    | 10                   | 6.00              | 0.60           |           |

<sup>\*\*</sup>Denotes significant at 1% level.

Analysis of variance in Table 27 shows a highly significant difference between the five soil types as well as between horizons. The t-Test gives further results as fellows:

a.For different soil types ---- The two soils of the Open-meadew type (Greenwood peat and Newton sand) were strengly acid in reaction, fellowed by the two Rifle peat soils. No difference was found between the former two soils, whereas the Rifle peat of the Swamp Conifer Forest stand was

• 

and the second of the second o

slightly more acid than the soils of the Swamp Shrub type (significant at 5% level). The Bergland soil of the Swamp Hardwood stand was the least acid and almost neutral in reaction.

b.For different horizons ---- The 12"-18" horizon was significantly more acid (at 1% level) than the top two layers, while there was no difference between the latter two horizons.

This was true for the organic soils and was probably due to the excessive moisture present in the lower layer which in turn caused poerer aeration and less decomposition of plant remains.

As for the Bergland soil, the pH value increased with increasing depth. This is typical to podzel soils as stated by Lutz and Chandler (1947):

"The H layer or the A horizon in podzols is commonly most acid and the maximum pH values are commonly encountered in the lower part of the B horizon."

A composite summerization of all the edaphic characteristics for the seven soils by horizon is shown in Table 28.

Table 28. Composite summation of edaphic characteristics of seven soils by horizon.

|                |         | ·    |                            |                         |                         |                               |                                 |                         |                              |
|----------------|---------|------|----------------------------|-------------------------|-------------------------|-------------------------------|---------------------------------|-------------------------|------------------------------|
|                |         |      |                            |                         | Porosity                |                               |                                 | Organic                 | н                            |
| 0.43           | <b></b> | Code | 77                         |                         | Non-Ca-                 | _                             |                                 | Matter                  |                              |
| <u>Soil</u>    | Type    | No.  | Horizon                    | weight                  | billary                 | lary                          | <u>Total</u>                    | percen                  | ·                            |
| Newten         | sand    | 1    | 0"-6"<br>6"-12"<br>12"-18" | 0.163<br>0.413<br>1.583 | 37.70<br>13.06<br>13.78 | 53.66<br>66.94<br>31.55       | 91.36<br>80.00<br>45.33         | 49.81<br>17.69<br>1.26  | 4.96<br>4.60<br><b>3.7</b> 0 |
| Greenw<br>peat | ●●d     | 2    | 0"-6"<br>6"-12"<br>12"-18" | 0.183<br>0.289<br>0.305 | 36.29<br>24.76<br>17.67 | 56.48<br>63.21<br>67.11       | 92.77<br><b>87.</b> 98<br>84.78 | 67.15<br>75.03<br>42.03 | 4.55<br>4.43<br>4.27         |
| Rifle          | peat    | 3    | 0"-6"<br>6"-12"<br>12"-18" | 0.217<br>0.329<br>0.373 | 28.88<br>15.39<br>13.04 | 53 • 33<br>67 • 46<br>68 • 57 | 82.21<br>82.85<br>81.61         | 50.33<br>58.27<br>42.88 | 6.21<br>6.09<br>5.78         |
| Newton         | sand    | 4    | 0"-6"<br>6"-12"<br>12"-18" | 0.218<br>1.638<br>1.734 | 39.04<br>16.69<br>8.67  | 53.03<br>21.26<br>23.49       | 92.07<br>37.95<br>32.16         | 48.19<br>1.04<br>0.89   | 5.60<br>6.32<br>6.35         |
| Rifle          | peat    | 5    | 0"-6"<br>6"-12"<br>12"-18" | 0.160<br>0.177<br>0.187 | 31.57<br>25.79<br>16.92 | 59.65<br>62.77<br>72.01       | 91.22<br>88.56<br>88.93         | 44.22<br>44.15<br>41.89 | 6.15<br>6.08<br>5.32         |
| Bergla<br>leam | nd      | 6    | 0"-6"<br>6"-12"<br>12"-18" | 0.160<br>0.225<br>0.503 | 22.74<br>19.42<br>14.58 | 67.69<br>74.87<br>60.95       | 90 •43<br>94 •29<br>75 •53      | 38.30<br>26.91<br>1.58  | 5.73<br>6.30<br>6.50         |
| Bergla<br>clay |         | 7    | 0"-6"<br>6"-12"<br>12"-18" |                         |                         |                               |                                 | 40.31<br>3.55<br>1.32   | 5.23<br>5.54<br>6.00         |

| ······································ |                                       |                                       | • • •                                 |               |
|----------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------|
|                                        | · · · · · · · · · · · · · · · · · · · |                                       |                                       |               |
|                                        |                                       | · · · · · · · · · · · · · · · · · · · |                                       |               |
| · · · · · · · · · · · · · · · · · · ·  |                                       |                                       | • • • • • • • • • • • • • • • • • • • |               |
| • • • • • • • • •                      |                                       |                                       |                                       |               |
|                                        |                                       | •                                     |                                       | ALCONOMICS OF |
|                                        |                                       | •                                     |                                       |               |
| •                                      |                                       |                                       | 1                                     |               |

#### C.Biotic factors

In this paper, biotic factors are considered under three groups: (1) Insects and diseases, (2) Animals, and (3) Men. No attempts have been made toward detailed studies of these factors because they were not believed to significantly influence forest succession on the poorly-drained soils of this region. Only those observed to be relatively important were covered.

#### 1.Insects and diseases

Generally speaking, most of the insects and diseases have species preferences or at least do not injure all species equally. This may be due to the composition and age-pattern of the forest. Therefore swamp forests which are mixed in composition and uneven-aged in most cases probably will not be subjected to great insect damage.

Some of the insects and diseases have had their epidemic periods. However, unusual damages were not reported in this region. Some of the common ones have been observed but were not to be considered destructive, at least from the ecological standpoint. Important ones encountered in the field were:

## a.Insects

(1)Spruce budwerm (Choristeneura fumiferana Clem.)

The spruce budworm is native to North America.

Destructions caused by this pest to the spruce and fir have

Yearbook, 1949). Outbreaks of this insect has been recorded in Maine in 1910, in Minneseta in 1913, and more recently in Canada in 1935 and 1944. No report of unusual abundance of the budworm has been received from the Lake States. However, light defoliations caused by this insect has been noted in the Higgins Lake region.

Upon the study of the biology and feeding habit of the spruce budworm, white and black spruce appeared to suffer less from attack than red spruce and balsam fir. And because spruce is far more valuable for lumber and pulp than balsam fir, it has been cut more heavily and its proportion in the forests has thus been reduced. Balsam fir is far more aggressive than spruce in seeding-in after logging operation, fire, or wind damage. Man's activity and the spruce budworm, therefore have often centributed to a gradual conversion from a forest containing a high percentage of spruce to one in which balsam fir predominates and which is far more favorable for the spruce budworm.

Three silvicultural practices can be done to increase the resistance of the forest to spruce budworm attack: (a)To clear cut mature and over-mature balsam fir stands, (b)To operate balsam fir stand on a short rotation, and (c)To try to increase the proportion of spruce in the stand.

 Addition of the production of the p the section of the se (x,y) = (x,y) + (x,y

## (2) Larch sawfly (Lygaeonematus erichsonii)

The larch sawfly is the most important sawfly to attack conifers. From time to time, it appears in destructive numbers, defoliating extensive areas of tamarack, and it may also attack some other trees and shrubs.

Westveld (1949) and others have stated that the tamarack type was almost completely destroyed by this insect many years ago. In this area, some of the tamaracks in the Swamp Cenifer Forests are the victims of this pest.

According to Doane (1936): "Little can be done toward controlling this insect in the swamp areas. ---- Importation of one of the European parasites has been evidently proved successive in Maniteba (Watson, 1931)."

#### b.Diseases

The important diseases pertaining to the swamp forests can be grouped into decay (or rots) and cankers. Fungi are the causal agents for both groups. In addition to the loss of merchantabale timber, trees weakened by the rots or cankers are much more easily broken off and therefore these diseases indirectly disturbs the original stand characteristic and composition.

The common diseases either being observed or believed to be present in the swamp forest of this region are listed by their causal arents and the host species:

| Organism               | Damage caused by organism and host species                                    |
|------------------------|-------------------------------------------------------------------------------|
| Armillaria melea       | Occasionally cause rot in black spruce, yellow birch, and American elm.       |
| Formes igniarius       | Most important in aspen, also attacks yellow birch, to cause white heart rot. |
| Formes pini            | Cause red ring rot in tamarack and black spruce.                              |
| Polyporus balsameus    | Cause brown butt rot in balsam fir, northern white cedar, and hemlock.        |
| Polyperus schweinitzii | Cause red brown butt rot in black spruce.                                     |
| Peria subacida         | Attacks balsam fir especially.                                                |
| Stereum sanguinelentum | Cause red heart rot in balsam fir and spruce.                                 |
| Hypoxylon pruinatum    | Common and sometimes fatal in aspen.                                          |
| Nectria sp.            | Common in yellow birch, occasional in red maple, basswood, and American elm.  |

## 2.Animals

In general, the forests provide food and cover for wildlife. When there is a reasonable balance between the wildlife population and food supply from the forests, there will be no damage to the forests. However, repeated browsing by ever-populated wildlife definitely damages reproduction. Swift (1949) reported that reproduction used most heavily as food by deer was that of maple, oak, northern white cedar, basswood, ash, birch, elm, etc., with prevalence in that order. Of these, northern white cedar, ash, elm, and maple are the important components of the swamp forests.

## 3.Men

The effect of man's destruction upon vegetation is visible everywhere. The most important associates of man in the destruction of vegetation are "fire" and "cutting". Although fire occasionally may be caused by lightning by far the greatest number are man caused.

In the early lumbering period, general cutting practice was clear-cutting. Actual evidence supports the fact that in certain sections of the state fires destroyed more merchantable timber than was cut during that period. However, the swamps have not been subjected to burning nearly so often as the uplands. This may attribute to the fact that the swamps are usually wet with less chance for fire to occur. This does not mean there are no fires in the swamps. As we can see during the dry season, the water-table in a coniferous swamp may drop to a low level and this plus the fact that the litter of the swamp stands become readily flammable, may result in fire doing great damage.

Clear-cutting was the common practice in early lumbering period. This will eventually result in a shrubby growth on the site before the reproduction of the original species can re-establish; and this may not be accomplished for a considerable long period of time.

Unfavorable cutting sometimes may alter the stand composition, as for example, when selective logging is employed to remove valuable large black spruce from a coniferous swamp. This will result in the stand being dominated by inferior species such as balsam fir and culled northern white cedar. Eventually the unsuitable cutting operation will disturb the natural sequence of succession either progressively.

Secondary succession begins when the original stands are burned or otherwise denudated through some other agents such as destructive cutting, epidemic insect or disease damages etc.. Generally speaking, on lightly burned areas, eriginal species such as black spruce or balsam fir of the Swamp Conifers may easily be reestablished in a short time because of favorable regeneration characteristics. On severely burned areas succession may initiate from the sedge-grass stage, the swamp shrub growth of Salix-Cornus-Alnus associatien, or the Lowland Aspen type. In either case, the subclimax type of Swamp Conifers or the Swamp Hardwoods will replace the temperary types depending upon the original composition and the nature of the soils. On shallow peat with mineral substratum, Swamp Hardwoods will have better chance in succession; whereas on bog or peat soils, Swamp Cenifers probably will succeed. Repeated fire generally favors the continuance of Aspen type (Gates, 1930).

#### FOREST SUCCESSION

Cooper (1913) has divided succession into a series of two types, the xerarch and hydrarch. Hydrarch succession initiates from hydrophytic habitats such as lakes and ponds and becomes more and more mesophytic in its successive stages. This, the hydrarch succession, is the type to be discussed in this study.

Five vegetation types were found on the poorly-drained soils in the Higgins Lake area. They were the Marsh, the Swamp Shrubs, the Swamp Conifers, the Swamp Hardwoods, and the Low-land Aspen. A diagram showing successional relationships between the different vegetation types is shown in Fig. 12. Trends of succession are based on the characteristics of the soils and the occurring vegetation. No attempts were made to study the succession prior to the Marsh type.

## A. The Marsh (or Open-Meadew type)

Marshes were found on two types of soils, the boggy Greenwood peat and the swampy Newton loamy sand. These two soils have the common characteristics of being strongly acid in reaction; but they do differ in moisture and organic contents.

The Greenwood peat is comparatively wetter than the Newton loamy sand because the former has a lower volume weight

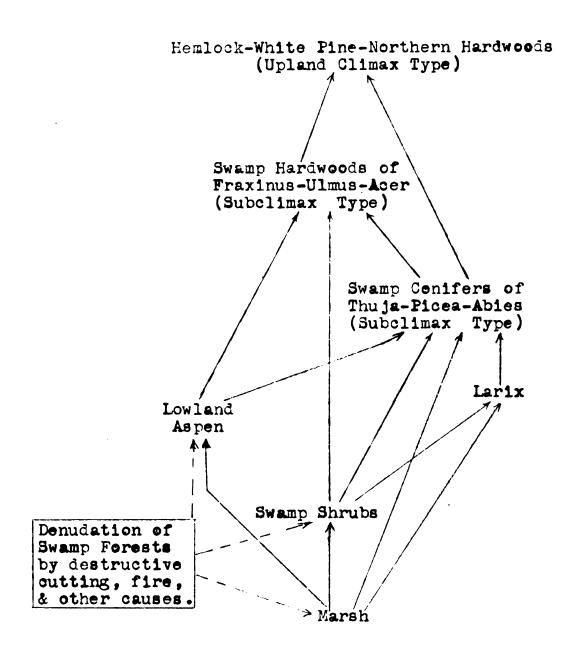



Fig. 12. Diagram showing successional relationships exhibited between the associations of poorly drained soils in the Higgins Lake area.

An arrowhead indicates the direction of succession.

and higher capillary porosity, which indicates a higher water holding capacity. This wetter condition can also be verified by the fact that the water-table in the Greenwood peat is very near to the surface as compared to the lower water-table, at about twenty-four inches, in the Newton soil during the drier season.

The organic content of the Greenwood peat is considerably higher than that of the Newton sand. This should be as expected due to the difference between organic and mineral soils. The shallower organic layer on top of the wet sand of the Newton soil indicates its better-drained condition than the Greenwood peat which has a deep peat soil column.

The difference in vegetation components is another indication that the vegetation on the Newton soil belongs to a later stage. The plants found on the Greenwood peat are more hydrophytic such as <u>Sagittaria</u>, <u>Alisma</u>, <u>Juncus</u>, <u>Eleocharis</u>, <u>Typha</u>, and the abundance of <u>Sium suave</u> and <u>Cicuta bulbifera</u>. On the Newton soil there is a more luxirant growth of <u>Salix</u> and the presence of such shrubs as <u>Alnus</u>, <u>Spiraea</u>, and <u>Rubus</u>.

Continuous filling-in onto the Marsh site by the mat forming plants such as sedges, rushes, grasses, cat-tails, etc., will result in one of two possibly successional stages:

1. The Swamp Shrubs, or the Swamp Conifers will succeed on the poorly-drained boggy sites.

2. The Lowland Aspen may succeed on relatively better drained sites as a temporary type and later give way to the Swamp Hardwoods or the Swamp Conifers.

## B.The Swamp Shrub type

As the sedge mat gradually invades the poorly-drained peat, shrubby species will invade the Marsh to form a shrub stand which is principally composed of species of Salix, Alnus, and Cornus.

Plants such as Aronia nigra, Potentilla fructicosa, Betula pumila, Spiraea alba, and Rubus hispidus etc., are the indicators of the bog sites. Consequently, the Swamp Conifers of Picea-Abies, or Larix, or a mixture of these species will succeed this type in a langer or shorter period of time.

However, the Swamp Shrubs may also give way to the Swamp Hardwoods of <u>Fraxinus-Ulmus-Acer</u> community on the better drained sites, or on soils of mineral origin.

•

C.Swamp Coniferous Forest

The principal tree species of this type are Thuja occidentalis, Picea mariana, Abies balsamea, and Larix laricina. The Thuja, Picea, and Larix may occur in almost pure stands, on the other hand, they may occur in mixtures of any proportions.

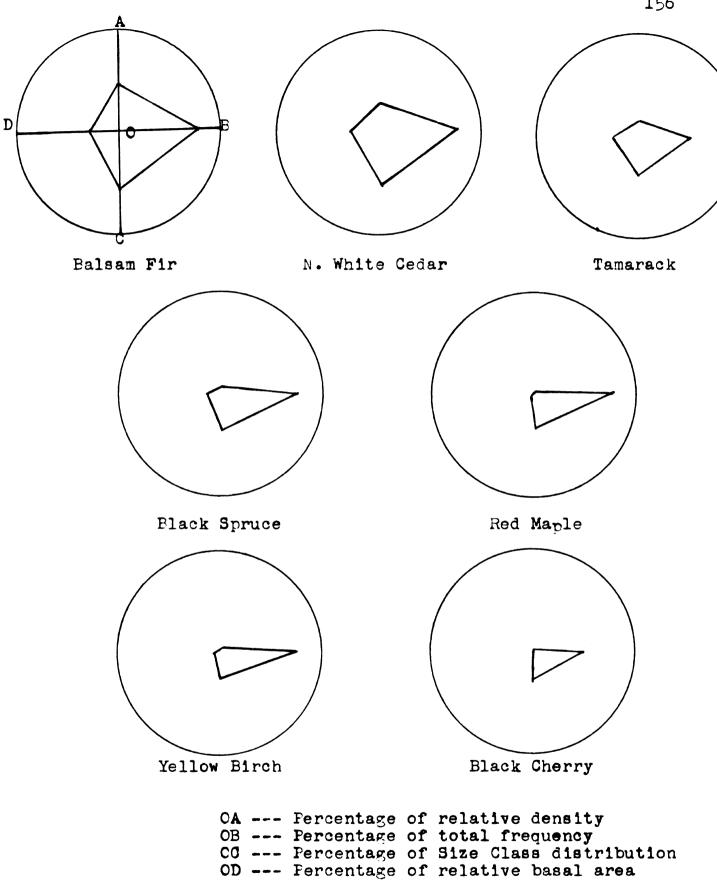
This type may directly replace the Marsh vegetation whenever it is able to become established. However, it is more apt to succeed the Swamp Shrub type.

Larix is a rapid growing, short lived, deciduous coniferous species. It usually invades the open, burned over boggy sites as a pioneer species due to its shade intolerant character. Generally the Larix forms a pure stand, and an abundant growth of shrubs usually is found in the stand because they are less densely shaded. In succession, this type will be followed by ether tree associations which are able to shade it. The usual ones are the Picea mariana on very wet sites, or the Thuja-Picea-Abies type on comparatively drier sites.

The black spruce (Picea mariana) is the most common tree species to follow the Swamp Shrubs or the Larix in succession due to its ability to withstand shade, excessive seil moisture, and soil acidity. It usually associates with balsam fir and northern white cedar and later as the stand advances will be replaced by the northern white cedar (Gates, 1942).

The Swamp Coniferous forest, especially the Thuja, when left undisturbed and fully developed, will attain a very dense growth so that almost no ground vegetation grows in its shade. However, in openings, a great number of plants of different genera do occur.

Thuja is a subclimax type in the region, considering the Hemleck-White Fine-Northern Hardwoods being the climax type on the well-drained, mesophytic, uplands. Without preneunced changes in drainage, Thuja would probably maintain its composition for some time to come. As Gates (1942) has stated the Thuja association is the subclimax type in boggy areas. He pointed out that the ultimate outcome would be the upland vegetation if the addition of soil material or a lowering of water-table converts the site to that of the upland.


Zasada (1952) in study the reproduction on cut over swamplands in the upper penisula of Michigan, has come up with the conclusion that "---- the important species in the peat swamp was black spruce, but after logging reproduction of black spruce is poor. Reproduction on the muck soils contains much less northern white cedar than the original stand. On the wet mineral soils, the stocking of conifers is decidedly lower than the original forest. ---- Hardwood invasion is common on all swamp soils. ----

a. d. Zotobo i i i en en el cetto en el Son en el cetto el cetto de la composición de la composición de la cetto el cetto en el cetto el cetto

Westveld (1948) stated that the black spruce and northern white cedar are suffering from competition of hardwoods when the latter do appear in the composition because of the fast growth of the hardwoods in the early stage which more or less supresses the reproduction of the conifers.

These lead me to the believe that, on the Swamp Conifer sites, as time goes on, the Swamp Hardwoods, probably the <u>Fraxinus-Ulmus-Acer</u> community, will eventually replace the original conifers before reaching the mesophytic climax type of the upland.

Results from the vegetation analysis of the Swamp Conifers (Table 4) show that the balsam fir is the predeminating species, followed by the northern white cedar, tamarack, black spruce, red maple, and yellow birch in that order. Phytographs of these dominant species are shown in Fig. 13.



Phytographs of the important species of the Swamp Coniferous Forest type. Fig. 13

D.Swamp Hardwoods of Fraxinus-Ulaus-Acer association

The Swamp Hardwoods in this region occurs commonly on these swamp areas that are occupied by soils which have a better decomposed, relatively shallow, peaty organic layer on a mineral substratum. These soils are better-aerated and less acid than those of the bog sites. The stands contain species of both the swamp conifers and the upland hardwoods, generally with the hardwood species dominating.

Table 29. Data of relative frequency, relative density, and relative basal area of the dominant components of the Swamp Hardweeds.\*\*

| Species                 | Rel.Freg. | Rel.Den. | Rel. B.A.    | I.V. |
|-------------------------|-----------|----------|--------------|------|
| Black and Green Ash     | 21.0      | 44.7     | 27.0         | 92.7 |
| Red and Silver Maple    | 13.2      | 11.9     | 33.3         | 58.4 |
| American & Slippery Elm | 18.4      | 9.7      | 28 <b>.6</b> | 56.7 |
| Northern White Cedar    | 7.9       | 16.0     | 10.3         | 34.2 |
| Balsam Fir              | 7.9       | 8.2      | 3.2          | 19.3 |
| Yellew & Sweet Birch    | 7.9       | 2.5      | 2.8          | 13.2 |
| Basswood                | 5.4       | 3.3      | 2.7          | 11.4 |
| Hemlock                 | 2.6       | 0.5      | 0.4          | 3.5  |

<sup>\*\*</sup>Produced from Table 2.

Table 29 shows the result of a vegetation analysis of the Swamp Hardwoods. The ashes (Black and green) are

<sup>\*</sup>Designates Importance Value which is the sum of relative frequency, relative density, and relative basal area.

energie en en la entre de la companyación de la companyación de la companyación de la companyación de la compa

•

predominating, followed by the maples (red and silver), the elms (American and slippery), northern white cedar, balsam fir, the birches (yellow and sweet), basswood, and hemlock in that order. Phytographs of these dominant species are shown in Fig. 14.

From the standpoint of soil development, the Swamp Hardwood is more art to be an advanced type that succeeds the Lowland Aspen or the Swamp Shrubs of the relatively better-drained mineral soils of the river and stream banks. In many cases, the Swamp Hardwoods are found on depressions or flat areas bordering the swamps and bogs and connected on the other side to the uplands. Therefore, geographically, it occurs on sites which are intermediate between the swamps and the uplands. Whereas from the standpoint of the vegetation itself, the Swamp Hardwood type is composed of both the swamp coniferous species and the upland hardwood species which shows a true transition between the Swamp Conifers and the Hardwood Upland.

Gates (1942) pointed out that "Whenever boggy or wet ground has been cut ever or burned over there is a possibility of the development of the lowland forest association of Fraxinus nigra and Acer rubrum. Only those of Thuja occidentalis are expected to result in succession, unless the area is being changed from a lowland to upland. In the latter case the upland hardwood species more frequently invade and attain dominance."

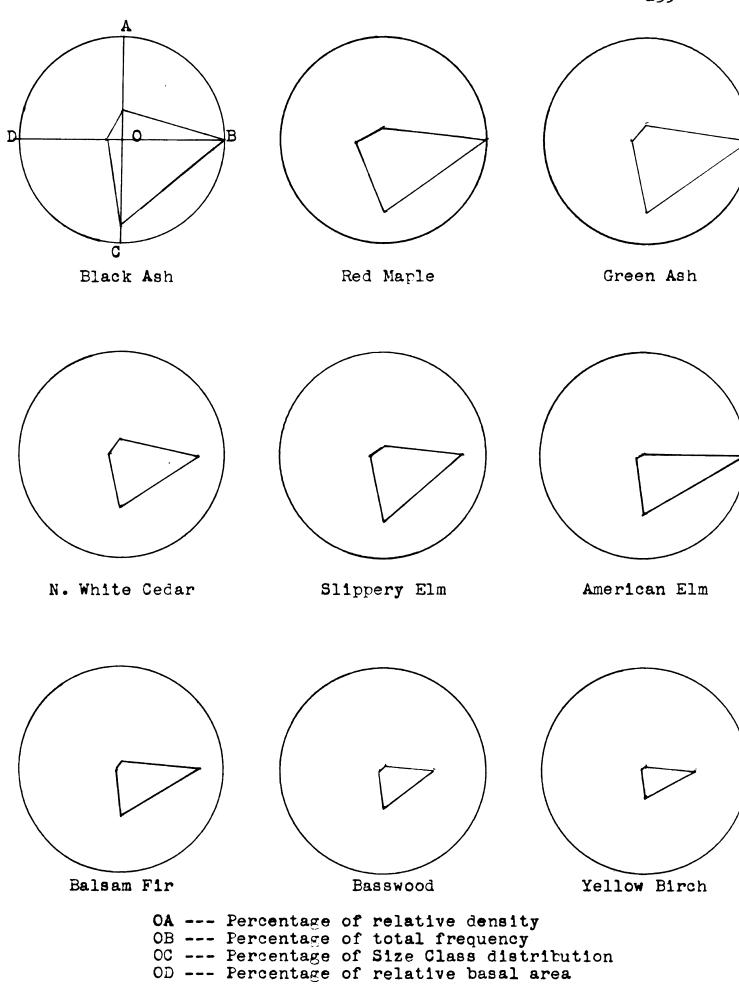



Fig. 14 Phytographs of the important species of the Swamp Hardwoods type.

Braun (1950) has discussed the Swamp Hardwoods as the river swamp community occurring on the wet but better drained habitat, and stated that on better-drained sites, a few additional hardwood species may enter into the present Elm-Ash-Maple communities, suggesting its replacement under good drainage conditions by mesophytic hardwood forest.

It is probable that the Swamp Hardwood type will succeed the Lowland Aspen or the Swamp Shrubs of Salix-Cornus-Alnus type on better-drained mineral soils of the swamps (Gates, 1942). And it may also invade the Swamp Conifers of Thuja-Abies-Picea stand when the drainage improves and soil reaction is not too acid.

The Swamp Hardwoods type is a subclimax on the poorly drained sites of the region. Without pronounced changes in climate and drainage, this type will perpetuate and remain for a relatively long period of time before the upland hard-woods can be established.

E.The Lowland Aspen type

This type is characterized by the dominance of Populus tremuloides, the trembling aspen. Inception of this type can be of two possibilities:

1.It succeeds the Marsh on the relatively better-drained soils, as a temporary type. After a relatively short period of time it will give way to either the Swamp Conifers or the Swamp Hardwoods.

2.It is established as a temporary fire type after an area of swamp forests, most commonly the Swamp Conifers, is burned over. Gates (1942) stated that an Aspen association developing on an area following one or two fires usually gives place to a higher genetic association in a comparatively short time. While further fires favor the continuance of the Aspen association. He pointed out the Thuja association may enter immediately and replace the Aspen association in twelve to twenty years, or a mixture of spruce-balsam fir will succeed in an even shorter time. The Swamp Hardwoods of Ash-Elm community may also replace the aspen sometimes.

Usually the original type previously occupying the site will replace the aspen in secondary succession.

#### SILVICULTURAL CONSIDERATIONS

Five types of vegetation were recognized on the poorly-drained soils in the area: The Swamp Hardwoods, the Swamp Conifers, the Lowland Aspen, the Swamp Shrubs, and the Marsh. Silvicultural treatments are here considered only for the former three types.

Since both the Swamp Hardwoods and the Swamp Conifers are the physiographic, subclimax type, they are able to perpetuate easily if they be left undisturbed and without profound changes in environment. However, men are interested in growing and harvesting the desirable species for use, suitable silvicultural treatments must be adapted in order to do so.

## A.Swamp Hardwood type

The Swamp Hardwoods type is being recognized as the most advanced forest type on the poorly-drained soils in the region. The major species of the type were the American and slippery elm, red or silver maple, black and green ash, with some associated species of basswood, northern white cedar, yellow birch, among others. Due to the excessive meisture of the soil, these species were not as well developed as those on the upland sites. At the present time, most of the stands were uneven-aged, mature, and well stocked with advance growth of red maple, ash and elm.

In the past, logging was carried out on a selective basis to remove merchantabale and desirable species. Due to the fact that this type occurs mostly in small tracts bordering larger, conifer swamps, intensive silviculture will probably not pay.

Westveld (1949) suggested clear cutting followed by improvement cutting or thinning for this type. It was based on the easiness of the establishment of reproduction. More recently, Eyre and Zilligitt (1953) proposed partial cuttings for Northern Hardwoods in the Lake States which I believe can well be applied to the Swamp Hardwood type. However, due to the shallow root systems of some of the species, resulting from excessive soil moisture, only light partial cuttings should be employed.

## B.Swamp Conifers type

The Swamr Coniferous stands occurred both as evenand uneven-aged in the area. Due to the generally high density of the even-aged trees, there was a wide variation in the size of individual trees, giving an uneven-aged appearance.

The principal species of this type were the black spruce, balsam fir, and northern white cedar. Black spruce and balsam fir are chiefly used for pulpwood, and the northern white cedar is mainly used for poles, posts and shingles. The associated species of tamarack and hardwoods have little commercial value.

Lebarron (1948) suggested clear cutting in strips, the removal of 50 to 75 feet strip along the leeward side of the stand at 1 to 3-year intervals, for the even-aged, thrifty, black spruce stands. As for the defective, over-matured stands, clear cutting was suggested. He stated that reproduction is usually adequate, and it can be improved by slash disposal as piling to expose more soil surface, and by prevention of logging damage to advance reproduction.

# C.Lowland Aspen type

This is a temporary, or fire type on the poorly-drained sites. In this area, the stands were even-aged and mostly under-stocked.

Eventually either the Swamp Conifers or the Swamp Hardwoods will replace this type depending on the available seed trees near by or the advanced reproduction already on the site.

The Aspen usually lasts for a single generation because it is very intolerant and easily susceptible to diseases. Therefore, on stands having advanced growth, clear cutting is probably the only method to regenerate this type.

Whereas on stands lacking desirable advanced reproduction, conversion of the stand to that of desirable species by clear cutting and planting was suggested by Westveld (1949).

#### SUMMARY

The Higgins Lake area is located in the northern central part of the lower penisula of Michigan. Ecologically, it is within the Hemlock-Nhite Pine-Northern Hardwoods Formation as defined by Nichols (1935), Braun (1950), among others.

General description and history of the area is reviewed. Climate, geology, soils, and cover types of the area are also discussed.

Five types of vegetation were recorded on the poorly-drained soils in the area. They were: (1) The Marsh or Open-meadow type, (2) the Swamp Shrubs of the Salix-Cornus-Alnus
Association, (3) the Lowland Aspen of Populus-Salix Association, (4) the Swamp Coniferous forest, and (5) the Swamp Hardwood forest. Vegetation inventory was carried out in the summer of 1952. Quadrats of three sizes were used for the vegetation study, i.e., 1/5 acre quadrat for tree vegetation; 1/10 acre quadrat for shrub vegetation; and 1/1000 or milacre quadrat for vegetation below 6 feet tall, the herbaceous layer.

Ecological factors were considered in three groups:

(1)Climatic, (2)Edaphic, and (3)Biotic. Among the climatic factors discussed, temperature, relative humidity, precipitation, and evaporation, evaporation is believed to show the combined effect of the other three. Data of evaporation rates in three different vegetation type were obtained by using Livingston atmometers. Results show that the evaporation

rate decreases from Marsh to Swamp Shrubs and to Swamp forest. This indicates that although the forest cover may be the cause of the lower evaporation, but the higher evaporation rate in the Marsh may still be an important factor in retarding the establishment of forest cover on that area.

Soils of all the quadrats were investigated in the field, seven soil samples belong to three soil series were encountered and were taken into laboratory. They belonged to five soil types: the Newton sand, Bergland loam, Bergland clay loam, Rifle peat, and Greenwood peat. On each of the two samples of the Newton sand and the Rifle peat, different types of vegetaion were found. Samples of each soil by horizon were collected to determine their characteristics. The following properties were determined in laboratory experiments: (1)Soil volume weight, (2)Soil porosity, (3)Organic matter content of the soil, and (4)Soil reaction. Soil temperature and soil moisture were determined in the field. Statistical analyses were used to analyze all the laboratory data which give the following results:

- 1.No differences between the volume weight of the soils.
- 2.No differences between the total porosity of the soils.
- 3. The Newton sand had a lower capillary porosity than the other soils.
- 4.Soil moisture content is believed to be very high in the Marsh type which has a water-table near the surface. The

available data from the field determinations for the two vegetation types show that the moisture content in the Swamp Shrubs type was higher than in the Swamp Conifer type. This leads to the belief that soil moisture content decreases from the Marsh to the Swamp Shrubs and to the Swamp Forest.

- 5.Soil temperature was relatively constant between the Swamp Shrubs type and the Swamp Coniferous forest.
- 6. The peaty soils had higher organic matter contents than the mineral soils, with the Greenwood peat of the Marsh type having the highest percentage.
- 7. Soils of the Marsh type were strongly acid in reaction, followed by the two Rifle peat soils of the Swamp Shrubs type and the Swamp Coniferous forest. The Bergland soil of the Swamp Hardwood type was the least acid and almost neutral in reaction.

Biotic factors are discussed under three groups: (1) Insects and diseases, (2)Animals, and (3)Men. Biotic factors are not believed to be of great sifnificance to influence the forest succession on the poorly-drained soils in this area. The most important one is probably the fire which will induce secondary succession.

Diagram of forest succession on the poorly-drained soils in this area is shown in Fig. 14. The principal trend of succession is believed to be that from Marsh to Swamp Shrubs type to Swamp Conifers to Swamp Hardwoods and finally

after a relative long period of time to the upland, mesophytic, climax type of the Hemlock-White Pine-Northern Hard-woods. The Lowland Aspen type is believed to be the fire or temporary type after the original forest has been burned-over or otherwise denuded. The Larix type is believed to be a temporary type prior to the Swamp Conifers. The Swamp Hardwoods, the Swamp Conifers of Thuja-Abies-Picea, and the Marsh type are all to be the subclimax type to the region.

Silvicultural treatments are considered for the three forest types, the Swamp Hardwoods, the Swamp Conifers, and the Lowland Aspen type. Light partial cutting is believed to be a good measure for the Swamp Hardwood type. Clear cutting in strips is suggested for the Swamp Conifer type. Clear cutting is probably the only method for the Lowland Aspen type.

## APPENDIX A

List of common names of plants used with scientific equivalents Alder, green ---- Alnus sinuate (Reg.) Rydb.

Alder, speckled ---- Alnus rugosa (Du Roi) Spreng.

Ash, black ---- Fraxinus nigra Marsh.

Ash, green ---- Fraxinus pennsylvanica Marsh.

Aspen, trembling ---- Populus tremuloides Michx.

Basswood ---- Tilia americana L.

Birch, swamp ---- Betula pumila L.

Birch, sweet ---- Betula lenta L.

Birch, yellow ---- Betula lutea Michx, f.

Blue joint ---- Calamagrostis canadensis (Michx.) Nutt.

Cat-tail ---- Typha latifolia L.

Cedar, northern white ---- Thuja occidentalis L.

Cherry, black ---- Prunus serotina Ehrh.

Cherry, choke ---- Prunus virginiana L.

Cherry, fire ---- Frunus pensylvanica L. f.

Dogwood, red osier ---- Cornus stolonifera Michx.

Elm, American ---- <u>Ulmus</u> <u>americana</u> L.

Elm, rock ---- <u>Ulmus</u> thomasii Sarg.

Elm, slippery ---- <u>Ulmus rubra</u> Muhl.

Fern, royal ---- Osmunda regalis L.

Fir, balsam ---- Abies balsamea (L.) Mill.

Hemlock ---- Tsuga canadensis (L.) Carr.

Hornbeam, American --- Carpinus caroliniana Walt.

•

Maple, red ---- Acer rubrum L.

Maple, silver ---- Acer saccharinum L.

Oak, northern red ---- Quercus rubra L.

Pine, eastern white ---- Pinus Strobus L.

Spruce, black ---- Picea mariana (Mill.) BSP.

Tamarack ---- Larix laricina (Du Roi) K. Koch

Tea, Labrador ---- Ledum groenlandicum Oeder.

Willow, heart-leaf ---- Salix eriocephala Michx.

Willow, long-beaked ---- Salix bebbiana Sarg.

•

#### APPENDIX B

List of plants encountered in making the vegetation study in the Higgins Lake area.

# TREFS

- 1. Abies balsamea (L.) Mill.
- 2.Acer rubrum L.
- 3.Acer saccharinum L.
- 4.Betula lenta L.
- \*\*5.Betula lutea Michx. f.
  - 6. Carpinus caroliniana Walt.
  - 7. Fraxinus nigra Marsh.
  - \*8. Fraxinus pennsylvanica Marsh.
    - 9. Larix laricina (Du Roi) K. Koch
  - 10. Picea mariana (Mill.) BSP.
  - 11. Pinus Strobus L.
  - 12. Populus tremuloides Michx.
  - 13. Prunus serotina Ehrh.
- \*14. Quercus rubra L.
  - 15. Thuja occidentalis L.
  - 16. Tilia americana L.
  - 17. Tsuga canadensis (L.) Carr.
  - 18. Ulmus americana L.
  - 19. <u>Ulmus thomasii</u> Sarg.
  - 20. Ulmus rubra Muhl.
    - \*\*Betula alleghaniensis Britton in \*Check List of Native and Naturized Trees of the United States (Including Alska)\*
    - \*After the "Check List" (U.S.D.A.F.S. Handbook No.41,1953)

•

•

# SHRUBS AND VINES

- 1.Acer spicatum Lam.
- #2.Alnus sinuata (Reg.) Rydb.
  - 3. Alnus rugosa (Du Roi) Spreng.
- 4. Amelanchier arborea (Michx. f.) Fern.
- 5. Amelanchier intermedia Spach
- 6. Amelanchier sp.
- \*7. Aronia nigra Britt.
- 8. Asclepias incarnata L.
- 9.Betula pumila L.
- 10. Clematis virginiana L.
- ll. Cornus alternifolia L. f.
- 12. Cornus stolonifera Michx.
- 13. Corvlus cornuta Marsh.
- 14. Gautheria procumbens L.
- 15. Ilex verticillata (L.) Gray
- 16. Ledum groenlandicum Oeder.
- 17. Linnaea borealis var. americana (Forbes) Rehd.
- 18. Lonicera canadensis Bartr.
- 19. Lonicera oblongifolia (Goldie) Hook.
- 20. Lonicera villosa var. solonis (Eat.) Fern.
- 21. Mitchella repens L.
- 22. Nemopanthus mucronata (L.) Trel.
- 23. Parthenocissus inserta (Kerner) K. Fritsch.
- 24. Potentilla fructicosa L.
- 25. Prunus avium L.
  - \*After "Check List".

• 

•

•

- 26. Prunus pensylvanica L. f.
- 27. Prunus virginiana L.
- 28. Rhus radicans L.
- 29.Ribes americana Mill.
- 30.Ribes lacustre (Pers.) Poir.
- 31.Ribes trieste Pall.
- 32. Rubus flagellaris Willd.
- 33.Rubus hispidus L.
- 34 Rubus 1deaus L.
- 35. Rubus ideaus var. aculeatissimus Regel & Tiling
- 36. Rubus pubescens Raf.
- 37. Salix alba var. vitellina (L.) Stokes
- 38.Salix amygdaloides Anderss.
- 39.Salix bebbiana Sarg.
- 40.Salix discolor Mühl.
- \*41.Salix eriocephala Michx.
  - 42.Salix lucida Muhl.
- \*43.Salix petiolaris J.E.Sm.
  - 44. Salix serissima (Bailey) Fern.
  - 45.<u>Salix</u> sp.
  - 46.Smilax tamnoides var. hispida (Muhl.) Fern.
- \*47.Sorbus americana Marsh.
  - 48. Spiraea alba Du Roi
  - 49. Spiraea latifolia (Ait.) Borkh.
  - 50. Vaccinium myrtilloides Michx.
  - 51. Vaccinium vacillans Torr.
    - \*After "Check List".

- •
- - - - •
- - - - 14 (17.5)
  - - •

# PTERIDOPHYTES

- 1. Botrychium dissectum Spreng.
- 2.Cystopteris bulbifera (L.) Bernh.
- 3. Dryopteris cristata (L.) Gray
- 4. Dryopteris cristata var. clintoniana (D.C. Eat.) Underw.
- 5.Dryopteris spinulosa (O.F. Muell.) Watt.
- 6.Dryopteris thelypteris (L.) Gray
- 7. Equisetum palustre L.
- 8. Equisetum sylvaticum L.
- 9. Onaclea sensibilis L.
- 10.0smunda regalis L.

## SEDGES, GRASSES, AND HERBS

- 1. Agropyron repens (L.) Beauv.
- 2.Agrostis hyemalis (Walt.) Beauv.
- 3.Bromus ciliatus L.
- 4.Bromus purgans L.
- 5. Calamagrostis canadensis (Michx.) Nutt.
- 6. Carex comosa Boott.
- 7.Carex crinita Lam.
- 8.Carex diandra Schrank
- 9.Carex intumescens Rudge
- 10.Carex lasiocarpa Ehrh.
- 11. Carex tenera Dew.
- 12. Carex trisperma Dew.
- 13. Eleocharis obtusa (Willd.) Schultes
- 14. Glyceria borealis (Nash) Ratchelder
- 15. Glyceria canadensis (Michx.) Trin.
- 16. Glyceria pallida (Torr.) Trin.
- 17. Glyceria striata (Lam.) Hitchc.
- 18. Juncus canadensis J. Gay
- 19. Muhlenbergia racemosa (Michx.) BSP.
- 20.Scirpus cyperinus (L.) Kunth
- 21.Alisma triviale Fursh.
- 22. Aralia nudicaulis L.
- 23. Aster Junciformis Rydb.
- 24. Aster lateriflorus (L.) Britt.

•

•

•

• • • • • • • • • • • • • • • • •

 $(\bullet,\bullet)^{(i)} = (\bullet,\bullet)^{(i)} =$ 

- 25. Aster novae-angliae L.
- 26.Aster puniceus L.
- 27.Aster sp.
- 28.Bidens cernua L.
- 29.Bidens frondosa L.
- 30. Campanula aparinoides Pursh.
- 31.Cicuta bulbifera L.
- 32.Circium muticum Michx.
- 33. Clintonia borealis (Ait.) Raf.
- 34. Coptis groenlandica (Oeder) Fern.
- 35. Cornus canadensis L.
- 36. Epilobium glandulosum var. adenocaulon (Haussk.) Fern.
- 37. Epilobium leptophyllum Raf.
- 38. Eupatorium perfoliatum L.
- 39. Eupatorium purpureum L.
- 40. Fragaria vesca L.
- 41. Fragaria virginiana Duchesne.
- 42. Fragaria virginiana var. illinoensis Gray
- 43. Galium aparine L.
- 44. Galium asprellum Michx.
- \$5.Galium obtusum Bigel.
- 46. Galium tinctorium L.
- 47. Galium triflorum Nichx.
- 48. Galium trifidum L.
- 49.Galium sp.

• 

• 

•

•

- 50. Geum aleppicum var. strictum (Ait.) Fern.
- 51. Goodyear pubescens (Willd.) R. Br.
- 52. Habenaria obtusata (Pursh.) Richards.
- 53. Hypericum boreale (Britt.) Bickn.
- 54. Impatiens capensis Meerb.
- 55. Impatiens pallida Nutt.
- 56.Iris versicolor L.
- 57.Lemna minor L.
- 58. Lemna trisulca L.
- 59. Lycopus americanus Muhl.
- 60.Lycopus rubellus Moench.
- 61. Lysimachia nummularia L.
- 62. Lysimachia terrestris (L.) BSP.
- 63. Lysimachia thyrsiflora L.
- 64. Maianthemum canadensis Desf.
- 65. Mentha arvensis L.
- 66.Mitella nuda L.
- 67. Prunella vulgaris L.
- 68. Pyrola rotundifolia (L.) Desf.
- 69. Pyrola secunda L.
- 70.Rannuculus sp.
- 71.Rumex verticillatus L.
- \*72. Sagittaria montevidensis Cham. & Schlecht.
  - 73. Scutellaria epilobiifolia A. Hamilton
  - 74. Scutellaria lateriflora L.
    - \*After Gleason, H.A. 1952. New Britton & Brown Illustrated Flora. The New York Botanical Garden.

      Lophotocarpus calycinus in Gray's Manual of Botany.

•

• . . . . . . . . .

. . . . . . . . . . . .

•

• •

. 2

en de la companya de

•

- 75.Sium suave Walt.
- 76. Smilacina trifolia (L.) Desf.
- 77 . Solidago caesia L.
- 78.Solidago canadensis L.
- 79.Solidago graminifolia (L.) Salisb.
- 80.Solidago missouriensis Nutt.
- 81.Solidago patula Muhl.
- 82.Solidago rugosa Ait.
- 83.Solidago ulmifolia Muhl.
- 84.Solidago uliginosa Nutt.
- 85. Spirodela polyrhiza (L.) Schleid.
- 86. Thalictrum dasycarpum Fisch. & Lall.
- 87. Trientalis borealis Raf.
- 88. Typha latifolia L.
- 89. Veronica scutellaria L.
- 90. Viola blanda Willd.

## **BIBLIOGRAPHY**

- Adams, C.C. 1905. An ecological survey in northern Michigan.
  Mich. State Geol. Survey.
- Baver, L.D. 1948. Soil physics. John Wiley & Sons, Inc., N.Y..
- Beal, W.J. 1888. Observations of the succession of forests in northern Michigan. Mich. Brd. of Agr. Ann. Rept. 27:74-78.
- & C.F. Wheeler. 1892. Michigan flora. Mich. Brd. of Agr.
  Ann. Rept. 39: 14-19.
- Bergman, H.F. & H. Stallard. 1916. The development of climax formations in northern Minnesota. Minn. Bot. Studies 4: 333.
- Billings, W.D. 1941. Quantitative correlations between vegetational changes and soil development. Ecol. 22: 448-456.
- Billington, Cecil. 1949. Shrubs of Michigan. Cranbrook Inst. of Science Bull. No. 20.
- Bouyoucos, G.J. & A.H. Mick. 1940. An electrical resistance method for the continuous measurement of soil moisture under field conditions. M.S.C. Agr. Exp. Sta. Tech. Bull.172.
- \_\_\_\_. 1948. A fabric absorption unit for continuous measurement of soil moisture in the field. Soil Sci. 66(3).
- Bowman, A.B. 1944. Growth and occurrence of spruce and fir on pulpwood lands in northern Michigan. M.S.C. Agr. Exp. Sta. Tech. Bull. 188.
- Burns, G.P. 1920. Tolerance of forest trees and its relation to forest succession. Jour. For. 18: 610-615.

- Braun, E. Lucy. 1938. Deciduous forest climaxes. Ecol. 19(4): 515-522.
- . 1947. Development of the deciduous forests of eastern North America. Ecol. Monogr. 17(2): 211-219.
- \_\_\_\_. 1950. Deciduous forests of eastern North America. The Blakiston Co., Philadelphia, Pa..
- Braun-Blanquet, J. 1932. Plant Sociology. Translated by G.D. Fuller & H.S. Conard. McGraw-Hill Book Co. Inc., N.Y..
- Cain, S. A. 1932. Certain phytosociological concepts. Ecol. Monogr. 2: 475-508.
- \_\_\_. 1939. The climax and its complexities. Amer. Midl. Nat. 21: 146-181.
- Carpenter, J. Richard. 1936. Concepts and criteria for the recognition of communities. Jour. Ecol. 24(1): 285-289.
- Clements, F.E. 1928. Plant succession and indicators. The H.W. Wilson Co., New York.
- \_\_\_\_. 1934. The relict method in dynamic ecology. Jour. Ecol. 22(1): 39-68.
- \_\_\_\_ 1936. Nature and structure of the climax. Jour. Ecol. 24: 252-284.
- Clute, W.N. 1930. Editorial. Amer. Bot. 36: 48-49.
- Conway, Verona M. 1940. Aeration and plant growth in wet soils. Bot. Rev. 6: 179-189.
- 1949. The bogs of central Minnesota. Ecol. Monogr. 19(2): 173-206.
- Cooper, W.S. 1926. Fundamantals of vegetational change. Ecol. 9: 391-413.

- Cowles, H.C. 1901. The physiographic ecology of Chicago and vicinity; a study of the origin, development, and classification of plant societies. Bot. Gaz. 31: 73-108, 145-182.
- \_\_\_\_ 1911. The causes of vegetative cycles. Bot. Gaz. 51: 161-183.
- Cunningham, R.N. 1950. Forest resources of the Lake States region. USDA For. Service For. Resources Rept. 1: 1-57.
- Curtis, J.T. & R.P. McIntosh. 1951. An upland forest continuum in the prairie-forest border region of "isconsin. Ecol. 32: 476-496.
- Dansereau, P. 1951. Description and recording of vegetation upon a structural basis. Ecol. 32(2): 172-229.
- Let bogs of eastern North America: I. Structure and evolution of vegetation. Canadian Jour. Bot. 30(4): 490-520.
- Darlinton, H.T. 1945. Taxonomic and ecological work on the higher plants of Michigan. Mich. Agr. Exp. Sta. Tech. Bull. 201.
- Daubenmire, R.F. 1948. Plants and environment. John Wiley & Sons, Inc., New York.
- Davis, C.A. 1907. Peat: Essays on origin, use and distribution in Michigan. Rept. Mich. Geol. Surv. 1907: 94-395.
- Dickerman, M.B. 1953. Annual report for 1953. USDAFS Lake States For. Exp. Sta.
- Doane, Van Dyke, Chamberlain & Burke. 1936. Forest insects.

  Mcgraw-Hill Book Co., Inc., New York.

- Dutro, Ruth & Edith Cohoe. 1938. An ecological study of Wolf's bog, Cheboygan County, Michigan. Trans. Kansas Acad. Sci. 41: 87-95.
- Egler, Frank E. 1942. Vegetation as an object of study. Philosophy of Sci. 9: 245-260.
- 1951. A commentary of American plant ecology. Ecol. 32: 673-695.
- Elliott, J.C. 1953. Composition of upland second growth hard-wood stands in the tension zone of Michigan as affected by soils and man. Ecol. Monogr. 23: 271-288.
- Eyre, F.H. & W.M. Zillgitt. 1953. Partial cuttings in northern hardwoods of the Lake States. U.S.D.A.F.S. Lake States For. Exp. Sta. Tech. Bull. No. 1076.
- Fernald, M.L. 1950. Gray's manual of botany. 8th. Ed. American Book Co., New York.
- Frolik, A.L. 1941. Vegetation on the peat lands of Dane County, Wisconsin. Ecol. Monogr. 11(1): 117-140.
- Frothingham, E.H. 1915. The northern hardwood forest: its composition, growth and management. U.S.D.A. Bull. 285.
- Gates, Frank C. 1926. Plant succession about Douglas Lake, Cheboygan County, Michigan. Bot. Gaz. 82: 170-182.
- \_\_\_\_ 1930. Aspen association in northern Michigan. Bot. Gaz. 90: 233-259.
- 1942. The bogs of northern lower Michigan. Ecol. Monogr. 12(3): 213-254.

•

•

•

- Gates, Frank C. 1949. Field manual of plant ecology. McGraw-Hill Book Co., Inc., New York.
- Gleason, H.A. 1923. The vegetational history of the Middle West. Assoc. Amer. Geog. Ann. 12: 39-85.
- 1926. The Individualistic Concept of the plant association. Bull. Torr. Bot. Club 53(1): 7-26.
- Glinka, K. 1914. Die Typen der Bodenbildung. Berlin, Germany.
- Godwin, H. 1929. The subclimax and defected succession.

  Jour. Ecol. 17: 144.
- Harper, R.M. 1918. The plant population of northern lower Michigan and its environment. Torr. Bot. Club Bull.45:23-42.
- Hawley, R.C. 1947. Practice of silviculture. 5th. Ed. John Wiley & Sons Inc., New York.
- Foresters). 1932. Forest cover types of Eastern United States. Jour. For. 30: 451-498.
- Kerner, A. 1863. Das Pflanzenleben der Donauländer. Edited by F. Vierhapper, Vienna, 1929.
- Kucera, Clair L. 1952. An ecological study of a hardwood forest in Central Iowa. Ecol. Monogr. 22(4): 283-299.
- Lane, Alfred C. 1907. Summary of the surface geology of Michigan. Geol. Surv. Mich. Ann. Rept. 1907: 93-145.
- Lebarron, R.K. 1948. Silvicultural management of black spruce in Minnesota. U.S.D.A.F.S. Lake States For. Exp. Sta. Circ. No. 791.
- \_\_\_ & J.R. Neetzel. 1942. Drainage of forested swamps. Ecol. 23(4): 457-465.

- Lee, Mordie B. 1945. An ecological study of the flood plain forest along the White River System in Indiana. Butler U. Bot. Studies 7: 155-175.
- Leverett, Frank. 1912. Surface geology and agricultural conditions of the southern penisula of Michigan. Mich. Geol. & Biol. Surv. Publ. 9 (Geol. Series 7).
- \_\_\_ & Frank B. Taylor. 1915. The pleistocene of Indiana and Michigan. U.S. Geol. Survey.
- 1924. Map of the surface formations of the southern penisula of Michigan. Mich. Geol. Surv.
- Livingston, B.E. 1901. The distribution of plant societies of Kent County, Michigan. Rept. Mich. Geol. Surv.
- \_\_\_\_\_ 1905. The relation of soils to natural vegetation in Roscommon and Crawford Counties, Michigan. Bot. Gaz. 39: 22-41.
- Lutz, Harold J. 1930. The vegetation of Heart's Content, a virgin forest in northwestern Pennsylvania. Ecol. 11:1-29.
- & R.F. Chandler, Jr. 1947. Forest Soils. John Wiley & Sons, Inc., New York.
- McIntire, George S. 1932. Theory and practice of forest typing with special relation to hardwood and hemlock associations of northern Michigan. Papers Mich. Acad. Sci. Arts & Letters 15: 239-251.
- Meriam, C.H. 1898. Life zones and crop zones of the United States. U.S.D.A. Div. Biol. Surv. Bull. 10.
- Miller, C.E. 1948. Soils of Michigan. M.S.C. Ext. Bull. 290.

| Nichols, G.E. 1923. A working basis for the ecological        |
|---------------------------------------------------------------|
| classification of plant communities. Ecol. 4: 11-23, 154-179. |
| 1930. Methods in the floristic study of vegetation.           |
| Ecol. 11: 127-135.                                            |
| 1935. The Hemlock-White Pine-Northern Hardwoods region        |
| of North America. Ecol. 16: 403-422.                          |
| Olson, Irving E.W. 1944. Ecological studies of Fierport,      |
| Bear Lake and Edgewater bogs in Michigan. Papers Mich.        |
| Acad. Sci. Arts & Letters 29: 31-50.                          |
| Oosting, Henry J. 1948. Plant communities. W.H. Freeman       |
| & Co. San Francisco, Calif                                    |
| Penfound, W.T. 1948. An analysis of an Elm-Ash flood-plain    |
| Community near Norman, Oklahoma. Proc. Okla. Acad. Sci.       |
| 28: 59-60.                                                    |
| Potzger, John E. 1934. A notable case of bog formation.       |
| Amer. Midl. Nat. 15(5): $567-580$ .                           |
| 1941. Vegetation of MacKinac Island, Michigan. Amer.          |
| Midl. Nat. 25: 298-323.                                       |
| 1946. Phytosociology of the primeval forest in central-       |
| northern Wisconsin and upper Michigan, and a brief post-      |
| glacial history of the Lake Forest Formation. Ecol.           |
| Monogr. 16(3): 211-250.                                       |
| 1947. The history of the vegetation of Michigan.              |
| Metropolitan Detroit Sci. Rev. 7(4): 13-15.                   |
| 1948. A pollen study in the transition zone of lower          |
| Michigan. Butler U. Bot. Studies 8: 161-176.                  |

•

i .

.

.

•

•

•

- Quick, B.E. 1923. A comparative study of the distribution of the climax associations in southern Michigan. Papers Mich. Acad. Sci. Arts & Lett. 3: 211-244.
- Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford.
- Rigg, George E. 1951. The development of Sphagnum bogs in North America. Bot. Rev. 17(2): 109-131.
- Sampson, H.C. 1930. Succession in the swamp forest formation in northern Ohio. Ohio Jour. Sci. 30: 340-357.
- Seeley, D.A. 1917. The climate of Michigan and its relation to agriculture. Mich. Brd. Agr. Ann. Rept. 56: 683-713.
- Snedecor, George W. 1950. Statistical methods. The Ia. State College Press. Ames, Ia.
- Spurr, Stephen H. 1952. Origin of the concepts of forest succession. Ecol. 33(3): 426-427.
- Stallard, Harvey. 1929. Secondary succession in the climax formations of northern Minnesota. Ecol. 10: 477-547.
- Tansley, A.G. 1935. The use and abuse of vegetational concepts and terms. Ecol. 16: 284-307.
- Toumey, J.W. & C.F. Korstian. 1948. Foundation of Silviculture. John Wiley & Sons, Inc., New York.
- Transeau, E.N. 1903. On the geographic distribution and ecological relations of the bog plant societies of northern North America. Bot. Gaz. 36: 401-420.
- 1905. Forest centers of Eastern North America. Amer.
  Nat. 39: 875-886.

•

•

• • • • • • • • •

• • • • •

•

| U.S.D.A. Yearbook. 1941. Climate and Man.                     |
|---------------------------------------------------------------|
| 1949. Trees.                                                  |
| 1953. Plant diseases.                                         |
| U.S.D.A.F.S. Agr. Handbook No. 41 (Tree & Range Name Commi-   |
| ttee). 1953. Check list of native and naturalized trees       |
| of the United States (Including Alaska).                      |
| U.S. Dept. Commerce, Weather Bureau. 1939-1952. Climatologi-  |
| cal Data, Michigan. Annual summary.                           |
| 1952. Climatological data, Michigan. Vol. LXVII No.6-10.      |
| Veatch, J.O. 1924. Soil survey of Roscommon County, Michigan. |
| U.S.D.A. Land Econ. Surv. Rept. Series 1924, No. 27.          |
| 1924. Farm-Forest map of Roscommon County, Michigan.          |
| 1927. Soil survey of Kalkaska County, Michigan.               |
| Farm-Forest map of Kalkaska County, Michigan.                 |
| U.S.D.A. Land Econ. Surv. Rept. Series 1927, No. 28.          |
| 1927. Soil survey of Crawford County, Michigan.               |
| Farm-Forest map of Crawford County, Michigan.                 |
| U.S.D.A. Land Econ. Surv. Rept. Series 1927, No.29.           |
| 1932. Some relationships between water plants and water       |
| soils in Michigan. Papers Mich. Acad. Sci. Arts & Lett.       |
| 17: 409-413.                                                  |
| 1941. Agricultural land classification and land types         |
| of Michigan. M.S.C. Agr. Exp. Sta. Spec. Bull. 231.           |
| & I. Schneider. 1948. Soils of Michigan. M.S.C. Ext.          |
| Bull. 290: 22-31.                                             |

- Warming, E. 1896. Oecology of plants. Oxford, London. 2nd. Impression 1925.
- Watson E.B. 1931. The larch sawfly. Spec. Circ. Can. Dept. Agr. Div. Forest Insects.
- Weaver, J.E. & F.E. Clements. 1938. Plant Ecology. McGraw-Hill Book Co., Inc., New York.
- Westveld, R.H. 1933. The relation of certain soil characteristics to forest growth and composition in the northern hardwood forest of northern Michigan. M.S.C. Agr. Exp. Sta. Tech. Bull. 135.
- \_\_\_\_\_ 1949. Applied silviculture in the United States. John Wiley & Sons, Inc., New York.
- Whitford, H.N. 1901. The genetic development of the forests of northern Michigan: A study in physiographic ecology.

  Bot. Gaz. 31: 289-325.
- Whittaker, R.H. 1953. A consideration of climax theory: the climax as a population and pattern. Ecol. Monogr. 23: 41-78.
- Wiegle, W.G. & E.H. Frothingham. 1911. The Aspens: Their growth and management. U.S.D.A.F.S. Bull. 93.
- Wilson, Ira T. & J.E. Potzger. 1943. Pollen study of sediments from Douglas Lake, Cheboygan County, and Middle Fish Lake, Montmorency County, Michigan. Proc. Ind. Acad. Sci. 52: 87-92.

•

•

.

•

- Woollett, Edith, Doris Dean, & Helen Coburn. 1925.

  An ecological study of Smith's bog, Cheboygan County,

  Michigan. Papers Mich. Acad. Sci. Arts & Lett. 5: 201-210.
- Zasada, Z.A. 1952. Reproduction on cut-over swamplands in the upper penisula of Michigan. U.S.D.A.F.S. Lake States For. Exp. Sta. Sta. Paper No. 27.
- Zon, R. & R.D. Garner. 1930. Selective logging in the northern hardwoods of the Lake States. U.S.D.A. Tech. Bull. 164.



Plate 3. A <u>Scirpus-Typha</u> stand of the Marsh type. The dominance of cat-tails (<u>Typha latifolia</u>) is indicated by their numerous flowering stems in the fore-ground. An Aspen (<u>Populus tremulcides</u>) stand is in the back ground. In between, willows (<u>Salix</u> sp.) are grown in low bushes to give a patchy appearance.



Plate 4. A <u>Salix-Calamagrostis</u> stand of the Marsh type. An Aspen (<u>Porulus</u> tremuloides) stand is in the back ground.



Plate 5. Soil profile of the Newton loamy sand in a  $\frac{\text{Salix-Calamagrostis}}{\text{the dry season in October. The water-table was down to a depth of approximately 2 feet. The organic peat layer reached down to about <math>1\frac{1}{2}$  feet.



Plate 6. A typical view of the Swamp Coniferous Forest.



Plate 7. External appearance of the Elm-Soft Maple stand of the Swamp Hardwoods type.



Plate 8. Ground vegetation of the Elm-Soft Maple stand of the Swamp Hardwoods type showing seedlings of maple, elm, and ash. <u>Sarex intumescens</u> can be seen in the fore-ground with the inflorescences shown in center of the picture.



\*Plate 9. Soil profile of the Bergland loam in the Ash-Red Maple-Elm stand of the Swamp Hardwoods type. Water-table was at approximately 10 inches.

ROOM USE ONLY

AUG 16-1901

audia ase only

King it is now the

14:00 KS2 KT

