
UNCONSTRAINED 3D FACE RECONSTRUCTION FROM PHOTO COLLECTIONS

By

Joseph Roth

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science — Doctor of Philosophy

2016



ABSTRACT

UNCONSTRAINED 3D FACE RECONSTRUCTION FROM PHOTO COLLECTIONS

By

Joseph Roth

This thesis presents a novel approach for 3D face reconstruction from unconstrained photo col-

lections. An unconstrained photo collection is a set of face images captured under an unknown and

diverse variation of poses, expressions, and illuminations. The output of the proposed algorithm is

a true 3D face surface model represented as a watertight triangulated surface with albedo data col-

loquially referred to as texture information. Reconstructing a 3D understanding of a face based on

2D input is a long-standing computer vision problem. Traditional photometric stereo-based recon-

struction techniques work on aligned 2D images and produce a 2.5D depth map reconstruction. We

extend face reconstruction to work with a true 3D model, allowing us to enjoy the benefits of using

images from all poses, up to and including profiles. To use a 3D model, we propose a novel normal

field-based Laplace editing technique which allows us to deform a triangulated mesh to match the

observed surface normals. Unlike prior work that require large photo collections, we formulate an

approach to adapt to photo collections with few images of potentially poor quality. We achieve this

through incorporating prior knowledge about face shape by fitting a 3D Morphable Model to form

a personalized template before using a novel analysis-by-synthesis photometric stereo formulation

to complete the fine face details. A structural similarity-based quality measure allows evaluation

in the absence of ground truth 3D scans. Superior large-scale experimental results are reported on

Internet, synthetic, and personal photo collections.
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Chapter 1

Introduction and Contributions

3D reconstruction from photographs is a long standing problem with much interest in computer

vision. The goal of 3D reconstruction is to infer depth information from 2D inputs such as photos

or videos. Beginning with reconstruction of rigid desktop objects [73, 62, 28] in highly constrained

environments [36, 17, 86], 3D reconstruction has advanced to outdoor environments [80, 41, 76]

and even large-scale objects [55, 68, 1] from in-the-wild images. Even so, most reconstruction

techniques operate on rigid objects since the 3D structure will not change over time and common

points identified in different images can directly determine the surface under perspective geometry.

One object in particular, the face, is highly studied, since obtaining a user-specific 3D face

surface model is useful for applications in 3D-assisted face recognition [14, 42, 59], 3D expres-

sion recognition [88], facial animations [21], avatar puppeteering [90], and more. For instance,

accurate face models have been shown to significantly improve face recognition by allowing the

rendering of a frontal-view face image with netural expression, thereby suppressing intra-person

variability [101]. However, face reconstruction is especially challenging since the face is highly

non-rigid and the structure changes with expressions.

In this thesis, I present an approach to solving the specific problem of unconstrained face re-

construction from photo collections. Unconstrained means there is no prior knowledge about the

image capturing conditions. These conditions are often referred to as PIE for variations in Pose,

Illumination, and Expression. Pose variation refers to the orientation and position of the person

with respect to the camera. Portrait photographs are mainly taken from a frontal orientation, but
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Figure 1.1: Given an unconstrained photo collection of Tom Hanks containing images of unknown
pose, expression, and lighting, face reconstruction seeks to create an accurate 3D model of his
face. Two additional example reconstructions along with a single representative image are shown
as well.

unconstrained photos may be taken from any orientation, including the side, revealing or obstruct-

ing different parts of the face. Illumination refers to the lighting conditions in terms of numbers,

positions, orientations, or colors. Poorly illuminated images may cast shadows or wash out parts

of the image by being too bright. Expression variations such as smiling, laughing, or frowning can

dramatically change the structure and appearance of a face. Face reconstruction is defined as the

process of creating a detailed 3D model of a person’s face from 2D input.

1.1 Photo Collections

A photo collection is a set of images of the same individual captured from potentially different

cameras at unknown times. This is in contrast to a video that is a set of images captured from the

same camera in quick succession. Photo collections present particularly difficult challenges since
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no temporal information may be used and different camera lenses may distort images differently.

There are a few recent works exploring the specific problem of reconstructing faces from photo

collections. The seminal work by Kemelmacher-Shlizerman and Seitz [53] uses a photometric

stereo approach to create a depth map of the frontal view from the photo collection. To do this, they

first warp all images to a frontal view so they are in correspondence at the pixel level. Then they

use Singular Value Decomposition (SVD) to jointly extract the lighting conditions and the surface

normals. Photo collections with a variety of expressions exhibiting different surface normals will

produce an averaged or smooth reconstruction. To compensate, they refine the surface normals by

selecting a subset of images that are locally consistent for each pixel. The surface is reconstructed

by integrating the pixel-grid of surface normals.

The normals are further refined by selecting a subset of images for each point which are locally

consistent. The surface normals are then integrated to produce a 2.5D depth map of the subject.

It is extended in a few different directions, one in [94] where they use the surface normals from

frontal faces to improve the fitting of a 3DMM. And two, in [51, 77] where the technique is used

to generate a 3DMM

1.2 Thesis Contributions

In this thesis, the challenging problem of unconstrained face reconstruction from photo collections

is addressed. There are two major problems with prior approaches. One, a restrictive 2.5D depth

map is reconstructed instead of a true 3D model. Two, a large collection of images is required due

to the SVD-based approach to photometric stereo. I make the following contributions in order to

solve these outstanding problems.

• A novel Laplace mesh editing technique using surface normals as the input is proposed to
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allow reconstruction of the 3D face model. Prior approaches require the mean curvature

normal as input, however we introduce an estimation of the mean curvature based on the

normal field. This enables reconstruction when only the surface normals are known as is the

case in photometric stereo methods. While we only apply this method to face reconstruction,

it is applicable to general mesh editing.

• A true 3D facial surface model is reconstructed from photo collections. State-of-the-art re-

construction from photo collections aligns all images to a frontal pose before reconstructing

a depth map. By formulating the problem on a 3D surface instead of a 2D pixel grid, we

can utilize faces from all poses in the reconstruction process. 3D models can capture more

details and have broader applications than 2.5D reconstructions.

• Photometric stereo is solved in a joint Lambertian image rendering formulation, with an

adaptive template regularization that allows for graceful degradation to a small number of

images. Current face reconstruction uses an SVD-based approach to solving photometric

stereo, requiring large photo collections.

• A pose based dependability measure and structural similarity based local selection are pro-

posed to use the best images in the collection for reconstructing different parts of the face.

Not all images are useful for face reconstruction. When all images are used for every part

of the face, a smooth reconstruction is obtained. Previous work assuming large collections

aggressively eliminated ∼90% of the images in the collection for each face detail. By de-

signing a novel local selection procedure, we are able to use half of the images and only

discard parts that would contribute negatively to the reconstruction. This less aggressive

approach is necessary for small photo collections.

• A structural similarity based quality measure is introduced to evaluate reconstruction perfor-
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mance in the absence of ground truth scans. Performance evaluation is crucial to comparing

reconstruction techniques. However, many photo collections lack ground truth face scans

and people must rely on qualitative evaluation. We propose a quantitative evaluation criteria

for use on Internet photo collections, where ground truth data cannot exist.
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Chapter 2

Background and Related Work

Now that a basic understanding of the problem is known, I will present some background informa-

tion and related work necessary for fully understanding face reconstruction.

2.1 Scene Parameters

The inverse process of reconstruction is called rendering. Starting with a 3D model composed

of a surface and its texture and using a set of scene parameters describing the object positions,

lighting, and camera projection, a 2D image may be rendered. Many assumptions are made due

to either limited understanding about reflectance properties of different surfaces or more often for

computational efficiency. I now present some of these assumptions for the different parts necessary

to render an image.

2.1.1 Object model

An object model consists of both a representation of the surface shape and the texture. Object

surfaces are continuous but are usually approximated with discrete structures. A limited model

of an object is to express the surface as a depth map. Depth maps are represented as an image

consisting of a single channel containing the distance of the surface from a specific view point.

This simplifies some tasks by removing the need for camera projection and only storing the visible

information. However, such a model is limited because the object only contains information from
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(a) (b)

Figure 2.1: Comparison of object models, depth map (a) and triangulated mesh (b). The depth
map has a fixed orientation since it is simply an image, but the triangulated mesh may be rendered
at any orientation.

one view or side of the face, and has limited to no knowledge about the sides or chin of the face

that are typically occluded. These depth maps are sometimes called 2.5D models since they only

contain partial information in the third dimension. Depth maps are frequently used in conjunction

with a regular image where they are called, RGB-D for the standard red, green, and blue channels

with the addition of the depth channel.

A true 3D model is better represented as a triangulated mesh and is able to capture details

around the entire surface. A triangle mesh is composed of vertices, edges, and triangle faces.

The vertices are a position in 3D space that may contain other information such as texture or a

normal vector. An edge is a connection between two vertices. And a triangle face is a closed

set of three edges. Typically faces share each edge with a single other face in order to make a

continuous surface, but there can be boundaries which form holes in the surface. Figure 2.1 shows

the differences between a 2.5D and 3D model. Notice how the 3D model is able to wrap around

the sides of the face and fold upon itself at the nostrils. This particular mesh has a single hole
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Figure 2.2: Unit vectors used in lighting models. l is the light source direction, n is the surface
normal, v is the viewpoint direction, and r is the reflection of the light source.

and boundary around the back of the head, but is continuous across the face region. Under a

triangulated mesh representation, the object contains information about all parts of the face and

may be rotated and rendered under novel views.

2.1.2 Lighting

Without lighting or illumination, all scenes would appear solid black. Photons of light emit from

light sources and interact with surfaces in the scene until finally reaching either the human eye

or the camera sensor which forms the colors in an image depending on the number of photons

which reach the sensor. The interactions with surfaces are complicated and not fully understood.

Some surfaces the light simply bounces off, others like glass light bends as it passes through, and

others like fog can partly occlude light while allowing some to pass through. Human skin is a very

challenging surface since it is partly translucent where some light reflects off the surface, while

some of it goes through the surface allowing us to see blood veins underneath the skin. Much work

exists to create realistic skin rendering [16].

Since lighting is complicated, we often make simplifying assumptions. One common model
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for lighting is the Lambertian model which models diffuse light, and is expressed as,

Id = kdlᵀn. (2.1)

Where Id is the diffuse intensity, kd is the intensity of the light source, l is the light source di-

rection from the surface to the source, and n is the surface normal. This lighting assumption is

not dependent on the point of view and handles matte surfaces well. However, polished surfaces

demonstrate changing illumination dependent on the observers point of view. Think of the bright

spot on a bald person’s head that moves when you change positions. These are modeled with the

Phong illumination model which includes a specular reflection component,

Is = ks(rᵀv)α . (2.2)

Where Is is the specular illumination, ka is the specular constant, α is the power of the cosine angle

which determines how glossy the surface is, v is the view vector from the surface to the point of

view, and r is the reflection of the light source, r = 2(lT n)n− l. Figure 2.2 shows a visualization

of the different vectors used in the lighting models.

2.1.3 Camera Model

To understand an image, not only do we need to model how light interacts with the surface, but

we also need to model how a camera captures the light in the scene. The camera model describes

how to project real world 3D points onto a 2D pixel location in the image. In camera terms, how

does the photon of light traveling from the surface reach a particular element on the CCD sensor.

The most commonly used model is the pinhole camera model, which assumes the sensing plane is
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located behind a barrier with a single point allowing light to pass. With this model, the projection is

explained by a 3x4 projection matrix [33] P, up to a scale, that can be decomposed into an intrinsic

and extrinsic matrix.

P =


fx s cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K

×



r11 r12 r13

r21 r22 r23

r31 r32 r33︸ ︷︷ ︸
R

tx

ty

tz︸︷︷︸
T


(2.3)

The intrinsic matrix K describes the pinhole and image plane properties: focal length ( fx, fy),

principal point (cx, cy), and skew s. The extrinsic matrix describe the position of the camera in

world coordinates: rotation R and translation T . Note, that typically further assumptions are made,

fx = fy, s = 0, and (cx, cy) is the image center to leave only 8 parameters including the scale. As

described, this model projection equation is also known as perspective projection.

The perspective projection model is a simplification of typical cameras that have a lens dis-

torting the light from a wider range than a pinhole. In these cases, radial distortions need to be

considered particularly for high resolution photographs or wide-angle lenses. However, typically

the distortion will be removed prior to using the images in any pipeline by resampling the image

with known parameters.

A simpler camera model is using weak perspective projection. In a weak perspective projection

model, all rays from the sensor plane are parallel, immediately removing skew, focal length, and

the principal point from consideration. The weak perspective model is therefore only the first 2

rows of the extrinsic matrix and has 6 parameters including the scale. A comparison of the two

describe models is given in Figure 2.3. The weak perspective projection works when the object is

relatively far away from the camera compared to the focal length and the size of the object. For
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Figure 2.3: Comparison of perspective and weak perspective projection. With perspective pro-
jection, the intrinsic camera parameters and distance to the object affect the location of the point
on the image plane. With weak perspective projection, points along orthogonal lines to the image
manifest in the same location regardless of depth.
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faces, images taken greater than arm length demonstrate negligible perspective distortion.

2.2 Surface Reconstruction

Surface reconstruction is a challenging process that varies significantly depending on the type of

input (images, point cloud, normal field, etc.), the quality of the data (noise, outlier, etc.), the de-

sired output (mesh, skeleton, volume, etc.), and the type of shape (man-made, organic, etc.). To the

graphics community, surface reconstruction almost always refers to fitting a shape to a point cloud,

potentially with additional side information like surface normals. The majority of reconstruction

algorithms take a point cloud as their input, including methods with surface-smoothness priors

(e.g., tangent planes [39], moving least squares [3], radial basis function [23], Poisson surface re-

construction [50]), visibility-based methods [25], data-driven methods [64], etc. More details on

this particular topic are in the state of the art report [12].

One of the most widely used methods is the Poisson surface reconstruction [50] due largely to

its efficiency and reliability. This method estimates a volumetric normal field based on the point

cloud, and constructs a 3D Poisson equation akin to the 2D Poisson equation resulting from pho-

tometric stereo. A surface is then fit globally by solving the Poisson equation. This approach is

robust to noise and allows a global solution unlike many heuristic based approaches. However,

our proposed method will begin with a normal field and not a point cloud, which renders the 3D

Poisson surface reconstruction not directly applicable. Thus, we resort to a template deformation

approach, where we deform a template face mesh to match the observed surface normals while

maintaining the global structure of the template 3D face. Our technique is based on the gradi-

ent domain methods called the Poisson/Laplace mesh editing [78, 97], where the mean curvature

normal fields are given, and the surface is deformed under additional landmark constraints. Our
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method differs from the existing variants of Laplace mesh editing in that we are only given the

normal fields, and have to infer the mean curvature.

In computer vision, however, surface reconstruction usually refers to producing a 3D under-

standing of an object from 2D images. Some techniques will consider RGB-D input which can be

viewed as a point cloud with texture information. In the specific case where the RGB-D data is a

video, the task of reconstruction is called dynamic fusion [61]. Starting with only 2D photographs

is more challenging than a point cloud. The goal in this scenario can better be described as es-

timating the most probable 3D shape that explains an image under a set of assumed materials,

viewpoints, and lighting conditions. Generally, the problem is ill-posed without assumptions since

there are multiple combinations of 3D objects, materials, viewpoints, and lighting that can pro-

duce identical images. However, under different sets of assumptions, highly detailed and accurate

reconstructions are possible. Many different cues provide insight into the object shape such as,

image focus, texture, shading, and stereo correspondence. These last two cues have demonstrated

robustness for reconstruction and are generally the most common approaches.

2.2.0.1 Multi-view Stereo

Multi-view stereo takes a photo collection obtained under different viewpoints and tries to recon-

struct a plausible 3D geometry that explains the images under a set of reasonable assumptions,

foremost being object rigidity. An overview of the procedure is as follows. First, estimate the

camera parameters; both the extrinsic (position and orientation) and the intrinsic (focal length and

sensor scale). This is generally done using Structure-from-Motion [33] to compute the camera

models from a photo collection offline. Typically, a pinhole camera model is used to fully describe

how a 3D point on the object is mapped onto a 2D pixel location in the image. Second, identify

common points between different images. With known camera models, any pair of points found in
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Figure 2.4: Epipolar geometry, the basis for multi-view stereo reconstruction. If the left camera,
OL, observes a point XL and there exists another camera, OR, with known relative orientation, the
point must fall along epipolar line in the right view. If the matching point is determined in the right
view, XR, then the position of that point is uniquely determined in 3D space, X.

both cameras uniquely determines an object point in 3D space (Figure 2.4). Finally, the 3D loca-

tions of all common points form a point cloud which may then be solved using traditional graphics

surface reconstruction methods.

2.2.0.2 Photometric Stereo

While multi-view stereo uses simultaneous images taken under different viewpoints, photometric

stereo uses sequential images taken from the same viewpoint under different lighting conditions.

When making reasonable assumptions about the material and light properties, the surface normals

of the object may be determined. Intuitively, a part of an object oriented towards the light will

appear brighter than a part oriented away from the light, therefore we may infer the angle between

the surface normal and the light source direction. Multiple different lighting directions are required
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Figure 2.5: Sample images used for photometric stereo. Multiple images from a fixed position are
captured under a variety of lighting conditions. The surface normals can be determined due to the
brighter appearance when facing the light source.

to resolve the ambiguity about the true surface orientation and to ensure every part of the object is

oriented towards the light in one image. A normal field is constructed using the pixel grid of the

image, and the shape is determined by integrating the normal field. Shape-from-Shading in this

manner produces a depth map representation of the object since all images were captured from the

same view.

The easiest assumptions are a weak perspective camera projection model with a Lambertian

lighting model. Under these conditions, the seminal work on photometric stereo [91] demonstrates

the ability to reconstruct a surface from 3 images with known lighting conditions. Even current

methods still use known lighting conditions for cooperative subjects [32].

Later it was discovered that even without knowledge of the light source photometric stereo can

take advantage of the low rank nature of the lighting assumption [35, 98, 56, 7, 8, 92].. Spherical

harmonics, a complete set of orthogonal functions on the surface of a sphere (Figure 2.6, were

proposed to help solve photometric stereo. Instead of using the bidirectional reflectance distribu-

tion function to model light, spherical harmonics could be used. For a simple Lambertian surface

(Eq. 2.1), the 1st order spherical harmonics is a direct match with the values 1, nx, ny, and nz. The

Phong illumination model does not directly translate, but 2nd order spherical harmonics can model
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Figure 2.6: Visual representation of 0th, 1st, and 2nd order spherical harmonics. Red is positive
and blue is negative with the intensity indicating the magnitude of the function.

99.2 of the lighting energy [29].

Viewing the problem with spherical harmonics allows for a creative solution through singular

value decomposition (SVD). Take a matrix where each row is an image and each column is a corre-

sponding pixel across all images, then the rank-4 SVD is a robust way of simultaneously estimating

the surface normals and lighting condition with a Lambertian assumption. A rank-9 decomposition

can handle more complicated lighting situations. After SVD, an integrability constraint or prior

knowledge of the object is required to resolve ambiguity of the decomposition. Such approaches

require a sufficient number of images to obtain an accurate reconstruction, especially for non-rigid

objects like the face where expression variation can disturb the low rank assumption.

It is also important to note, that these photometric stereo techniques reconstruct from a com-

mon viewpoint and therefore produce a 2.5D surface instead of a true 3D surface like multi-view

stereo. There are a few works combining multi-view stereo and photometric stereo to produce

more accurate 3D surfaces [38, 75] even estimating arbitrary non-linear camera response maps.
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Table 2.1: Overview of Face Reconstruction Approaches.

Input Approach Detail

C
on

st
r. Point cloud Range scanner ±0.03mm max

Synchronized images Multi-view stereo [9] 0.088mm mean, pore
Time-multiplexed Photometric stereo [32] wrinkle

U
nc

on
st

r. Single image
3DMM [13] smooth
CNN [48] smooth

Video Optical flow tracking [51] wrinkle
RGB-D Video Dynamic fusion [61] wrinkle
Photo collection Photometric stereo [53] wrinkle

Figure 2.7: Example reconstructions at different levels of detail. From left to right: pore, wrinkle,
and smooth.

Note that these reconstruction techniques are generic and work for any arbitrary object that sat-

isfies the material and lighting assumptions. I now move to describing face reconstruction methods

that may take prior knowledge about faces in order to simplify the problem.

2.3 Face Reconstruction Methodologies

As mentioned before, the face has seen a recent growth of research for creating detailed 3D models.

There are numerous methods for face reconstruction that depend on the level of control over the

capturing environment and can produce different qualities of reconstructions suitable for different
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tasks. Table 2.1 provides an overview of the most common scenarios and approaches. Figure 2.7

provides examples of the levels of detail different reconstruction approaches can produce. In the

remainder of this section, we will provide a brief overview of the different scenarios, their most

common approaches, and some of their applications.

2.3.1 Constrained

The most accurate scenario for face reconstruction is under a constrained environment. Con-

strained means there is a cooperative environment for capturing the imagery. In other words, the

subject of interest may be placed in a known pose and expression, the lighting conditions may be

fully known, or the camera placement and calibration may be known. In a constrained scenario, as-

sumptions may be made about the reconstruction process which allow highly detailed and accurate

models to be reconstructed.

2.3.1.1 Range Scanner

A range scanner is a special piece of equipment designed to capture a point cloud directly. There

are a variety of approaches including projecting a structured infrared light pattern onto a surface

and viewing its deformation, or using a laser to either measure the time-of-flight or triangulation.

Regardless of the approach, a range scanner does the processing within the hardware and returns

either a point cloud or depth map of the scene.

If you have money to spend, the $75,000 Konica Minolta Vivid 9i can capture details with

±0.03mm accuracy across a broad range of depths. The system is suitable for manufacturing

processes and reverse engineering parts. If the part is too large, it even includes software to au-

tomatically stitch together multiple scans to create a single object. To capture the entirety of an

object, it includes a rotating platform. For face applications, these scans are considered as ground
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Figure 2.8: The Konica Minolta Vivid 9i is a non-contact range scanner capable of capturing
multiple views of an object and creating a 3D reconstruction accurate to ±0.03mm.

truth and are often used for evaluation of reconstruction approaches or creation of probabilistic

face models. One downside to this level of accuracy is that the scan time takes 2 seconds for a

single capture.

For a more reasonably priced $1,441, you may purchase the IIIDScan PrimeSense device.

PrimeSense powers the Microsoft Kinect entertainment system. This particular PrimeSense device

captures with ±0.5mm accuracy, which may not work for manufacturing, but will still capture

wrinkles on human faces. What it lacks in accuracy, it more than makes up in scan time, since this

device can capture in 30 frames per second, making it the applicable for dynamic fusion.

2.3.1.2 Multi-View Stereo

Humans have depth perception based in part by having two eyes that can triangulate objects in

space. Multi-view stereo imaging uses this same principle by placing two or more cameras with

known positions and intrinsic camera matrices. When a common point is identified in both views,

the 3D position is uniquely determined based on the intersection of the rays originating at each

camera and passing through the common point. Beeler et al. present state-of-the-art methods for

reconstructing faces based on a consumer setup of cameras [9] or stereo video [10]. Their work
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first calibrates the cameras based on a calibration sphere with known fiducials in order to determine

the camera matrices and relative positions in space. Once calibrated, frames are captured within

0.1 seconds of each other from all cameras and a multi-view stereo approach reconstructs faces

with pore and wrinkle level detail. Working on an image pyramid from low to high resolution, it

searches the epipolar lines between pairs of cameras based using the normalized cross correlation

to identify common points between cameras. The common points are further refined based on

photometric and surface consistency. From the common points, a 3D point cloud may be obtained

using the known camera parameters. Poisson surface reconstruction fits a surface to the point cloud

which is then further refined to add in the pore level details.

These reconstructions are known to be extremely accurate and are often used as ground truths

in place of laser scans since the equipment is relatively cheap. Using a 3D printed mask instead

of a face [9] demonstrates an average error of 0.088mm using a setup of 7 DSLR cameras. A real

human subject will have higher error since the mask had consistent albedo and no specularity or

sub-surface reflection present in human skin. However, they come at a cost of computation time as

it takes 20 minutes to reconstruct a single image, and the subject must be stationary in a specialized

room.

2.3.1.3 Photometric Stereo

The principles behind general photometric stereo were described in detail in Sec. 2.2.0.2. One of

the challenges of photometric stereo is the time delay between images necessary to change lighting.

For rigid objects, this is not an issue, but for non-rigid faces, it is desirable to simultaneously cap-

ture all images. In order to capture different lighting conditions simultaneously, [37, 85] use three

different colored lights (red, green, and blue) to illuminate the scene from different viewpoints.

Since this is the minimum number of illumination variations to determine the surface normal,
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extra care must be taken for regions of shadows unlike approaches using four light sources [6].

Another approach designed for humans is [32] where near infrared light is used for illumination

since it is not as obtrusive as visible light and will not disturb the subject during illumination.

For the best results, combining multi-view stereo and photometric stereo can achieve extremely

detailed results.

2.3.2 Unconstrained

When the subject is not cooperative and no prior knowledge about the lighting or cameras is known,

face reconstruction becomes unconstrained. Under these scenarios, prior knowledge about face

shapes becomes highly important to create a compelling reconstruction.

2.3.2.1 3D Morphable Model

This seminal work on unconstrained face reconstruction works on a single image and was proposed

by Blanz and Vetter [14]. They designed a 3D Morphable Model (3DMM) which extended classic

active appearance models from 2D face alignment to fit a 3D model onto an image based on the

texture information. The 3DMM is created by taking the ground truth scans of 200 individuals and

putting them into correspondence. The assumption is that an arbitrary face can be expressed as a

linear combination of the scanned faces.

Smod =
200

∑
i=1

αiSi, Tmod =
200

∑
i=1

βiTi,
200

∑
i=1

αi =
200

∑
i=1

βi = 1. (2.4)
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The face space can then be compressed and expressed as a statistical distribution by using Principal

Component Analysis (PCA) [47],

Smod = S̄+
199

∑
i=1

αiSi, Tmod = T̄+
199

∑
i=1

βiTi, (2.5)

where the probability for coefficients ~α becomes,

p(~α)∼ exp[−1
2

199

∑
i=1

(
αi

σi

)2

], (2.6)

where σ2
i is the eigenvalue of the shape covariance.

Given the model as prior knowledge about expected face shape and texture, the goal once again

is to infer pose, lighting, shape, and texture parameters of the scene based on a single image. The

initial formulation is an analysis by synthesis approach where the error is the distance between the

real image and the models rendered image along with the likelihood of observing the coefficients.

This formulation is non-convex and tends to fit to local minimums, so they have manual annotation

of the lighting and initial pose parameters to help the model fit to the face.

To attempt to fix the non-convex energy function, [71] extended the fitting procedure to include

edges, specular highlights, and texture constraints. Morphable models have further been decom-

posed into identity and expression basis instead of a single combined shape basis [84, 22]. As time

progressed, 2D landmark alignment, the process of finding keypoints such as the eyes, nose, and

mouth in images improved. Recent works, fit morphable models based on the projection error of

the 2D landmark alignment which is very efficient and produces reasonable results [95, 2].

The 3DMM is ubiquitous in face reconstruction approaches and is a major component of a large

percentage of different approaches. One major complaint with the 3DMM is the small training size
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of subject. A recent paper [15] builds a new model from 10,000 people, that when released should

help approaches generalize better to a wide range of face shapes.

2.3.2.2 Single Image

Besides the 3DMM, there are a number of other techniques for performing reconstruction from a

single image. [52] takes a single reference model, manually aligns it to the image, and morphs it

based on a shape from shading approach. The solution is a 2.5D recovery of the frontal part of the

face.

A pair of recent works perform reconstruction using a CNN to fit a 3DMM instead of the

model-based fitting [100, 48]. These works focus on the problem of dense face alignment, where

every pixel on the face is assigned a location on a canonical face, but in the process they fit a

cascade of regressors to solve the projection parameters and 3DMM shape coefficients. In doing

so, they actually produce a reconstruction for the image as well.

2.3.2.3 Video-based Reconstruction

There is a lot of interest in video-based reconstruction. We briefly highlight a few of the key works.

In [30], sparse 2D landmarks in the video are tracked and a 3DMM is fit to each frame, the model

is then refined using optical flow and temporal consistency. This approach works reasonably well

on in the wild videos, but struggles with specular reflections. In [81], instead of fitting a 3DMM, a

surface reconstructed similar to our proposed method from a photo collection is used as input, the

pose for each frame is estimated and similar to [30] optical flow refines the alignment of the model

and deforms to the expressions present, and a temporal consistency is maintained both forwards

and backwards in the video. In [22], a 3DMM is separated into identity and expression basis

and then fit to a still image, finally, a Kinect sensor is used to find the expression coefficients
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and transfer the expression of a user to puppeteer the fit 3DMM. In [46], a cascaded regressor is

learned on a large set of face scans to perform 3D face alignment for a single image or a video. The

resulting alignment has only 1024 vertices and does not capture wrinkle level details of the face.

In [20], a low resolution mesh is tracked in a video similar to prior works, and the wrinkle details

are estimated based on regressors from local patches. This allows visually appealing wrinkle level

reconstructions in real time, but the details are not metrically correct for the observed face. In [44],

an individual uses a cell phone to record their face in a neutral expression from all poses, structure

from motion fits a static face model from the video. Then the individual records themselves making

predefined expressions in order to build a blend shape model. This interactive approach allows

them to create wrinkle level avatars which may be controlled by other videos. In [82] a smooth

model is fit to two videos in real time and the expressions from one are transferred to the other for

real time puppeteering.

One major application for video reconstruction is puppeteering. Avatar puppeteering is the

process where a person controls the actions of virtual person called an avatar through their own

actions, usually as recorded by a video camera, but also through other means such as strain sen-

sors pressed on a face. The popular movie Being John Malkovich is an example of a puppeteer.

This application requires a detailed model of the avatar, which can either be completely computer

generated by an artist, or reconstructed based on a real person. The model needs to be rigged in

order to deform to match the desired expressions. To control the model from a video camera, face

tracking fits the avatar model to most closely match the pose and expression of the puppeteer in the

video at each frame while also incorporating temporal consistency. This face tracking shares some

similarities with face reconstruction, especially when the avatar is a model of puppeteer. These

systems are most interested in creating a visually compelling avatar and the efficiency of the algo-

rithm to run in real time, but the metric accuracy of the reconstruction is secondary to the visual
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cohesiveness.

2.3.2.4 Photo Collections

Photo collection methods were discussed in detail in Section 1.1.

Photo collections are more challenging than videos since no temporal constraints are available.

In theory, they possess more information than a single image, but a naive use of a photo collection

can actually produce a smoothed reconstruction since the face is non-rigid and may change between

images. Photo collections are highly relevant since most people have a personal collection of

photos. For biometrics purposes, a recent face database [54] introduces collection-based matching

procedures due to the increasingly common occurrence of capturing multiple images of a suspect

in forensic applications. An accurate 3D model of the face can improve face recognition.

2.4 Applications

Just as there are many different methods for reconstruction, there are numerous applications. While

the scope of this work is mainly academic in nature in terms of how accurate of a reconstruction is

possible from a photo collection, I do want to mention some of the potential applications of face

reconstruction.

2.4.0.0.1 Medical Person specific 3D face models are used in the medical field. They are

used to visualize the patients exact structure and design form fitting pieces. For example, the

University of Michigan aligns 3D scans over time in order to track topographical changes that may

be caused by different diseases. Models are used in surgical correction, orthopedic correction,

and correcting craniofacial anomalies like cleft palettes. For medical applications, precise 3D
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structure is important, and range scanners or constrained stereo setups are required to produce

sub-millimeter level accuracy.

2.4.0.0.2 Face recognition Face recognition is known to be directly applicable from 3D to 3D.

But recently, works demonstrate the effectiveness of using a 3D model to improve traditional 2D

to 2D face recognition. Models are used to normalize pose, expression, and lighting in images in

order to render an improved image that will have higher face recognition accuracy. It is unclear

what level of detail is required in the model for optimal face recognition performance. Even using

a hyper-ellipsoid as a face model improves face recognition [59]. Researchers have shown that

using a generic 3D face can improve face recognition [34]. One initial objective of the 3DMM was

to improve face recognition, and it has been shown to be effective for normalization as well [101].

However, there is need for a comparative evaluation determining the relative effectiveness of better

person specific models.

2.4.0.0.3 Commercial video editing Person specific face models may be used to modify videos.

They may be used to post-process a video by adding virtual makeup and changing lighting, or they

can be used to create a completely CGI scene for a movie like avatar. For video editing, a blend

shape model is desired, where the face may be deformed to match a different set of expressions.

The blend shape may be a generic set of expressions obtained from a 3DMM, or a person-specific

set of expressions captures of the true actor. For high definition commercial films, pore level ac-

curacy and person-specific expressions are desired. Since the output will be high resolution and

displayed on theater screens, consumers expect a high quality and accurate rendering.

2.4.0.0.4 Virtual communication This can be viewed as a low-detail version of video editing.

By reconstruction or tracking a face in real time, an artificial model may be rendered on a different
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screen to provide communication. Think video chat, but instead of sending a video, you send the

parameters of the face reconstruction. This provides an immediate benefit of compression, but also

allows for entertaining changes to the face. Snapchat provides filters to change the appearance of

your own face, Face2Face [82] shows how to control a different persons face, or you could control

virtual avatar. For these applications, realism is more important than accuracy, as oftentimes the

face will be made a caricature anyways.

2.5 Organization

The remainder of the thesis is outlines as follows. In Chapter 3, I present the extension of the

SVD-based reconstruction into a true 3D surface. Using a novel normal field-based Laplace edit-

ing technique, the proposed approach deforms a triangulated mesh to match the observed surface

normals. In Chapter 4 the work is extend to adapt to small photo collections. Using a 3DMM as

initialization and an adaptive energy minimization formulation for photometric stereo allows re-

constructions from even a few images. I also introduce the SSIM-based quality evaluation metric.

In Chapter 5 I present a discussion on potential applications and suggestions for future develop-

ment.

Table 2.2, presents a list of the most common notations used through the thesis.
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Table 2.2: Notations.

Symbol Dim. Description

I matrix image

n scalar number of images

q scalar number of landmarks (68)

W 2xq 2D landmark matrix

X 3xp 3D shape model

p scalar number of mesh vertices

N 4xp surface normal matrix

L 4xn lighting matrix

D nxp dependability matrix

L pxp sparse Laplacian

s scalar scale

R 2x3 projected rotation matrix

t 2x1 translation vector

~ρ 1xp albedo

F nxp image correspondence

H j scalar mean curvature

28



Chapter 3

Unconstrained 3D Face Reconstruction

3.1 Introduction

As shown in Fig. 1.1, given a collection of unconstrained face photos of one subject, we would

like to reconstruct the 3D face surface model, despite the diverse variations in Pose, Illumination,

and Expression (PIE). This is certainly a very challenging problem, as we do not have access to

stereo imaging [83] or video [81, 30]. Kemelmacher-Shlizerman and Seitz developed an impressive

photometric stereo-based method to produce high-quality face models from photo collections [53],

where the recovering of a locally consistent shape was intelligently achieved by using a different

subset of images. However, there are still two limitations in [53]. One is that mainly near-frontal

images are selected to contribute to the reconstruction, while the consensus is that non-frontal,

especially profile, images are highly useful for 3D reconstruction. The other is that due to surface

reconstruction on a 2D grid, a 2.5D height field, rather than a full 3D model, is produced.

Motivated by the state-of-the-art results of photometric stereo-based methods, as well as amend-

able limitations, in this chapter, I propose a novel approach to 3D face reconstruction where a

number of crucial innovative components are designed and developed. Our approach is also mo-

tivated by the recent explosion of face alignment techniques [58, 93, 49, 70], where the precision

of 2D landmark estimation has been substantially improved. Specifically, given a collection of un-

constrained face images, we first perform 2D landmark estimation [93] of each image. In order to

prepare an enhanced 3D template for the photometric stereo, we deform a generic 3D face template
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Figure 3.1: Given an unconstrained photo collection of Tom Hanks containing images of unknown
pose, expression, and lighting, face reconstruction seeks to create an accurate 3D model of his
face. Two additional example reconstructions along with a single representative image are shown
as well.

such that the projections of its 3D landmarks are consistent with the estimated 2D landmarks on all

images, and the surface normals are maintained. With the enhanced 3D template, 2D face images

at all poses are back projected onto the 3D surface, where the collection of projections will form

a data matrix spanning all vertices of the template. Since there are inevitably missing elements in

the data matrix due to varying poses, matrix completion is employed and followed by the shape

and lighting decomposition via SVD. With the estimated surface normals, we further deform the

3D shape such that the updated shape will have normals similar to the estimated ones, under the

same landmark constraint and an additional boundary constraint. To illustrate the strength of our

approach, we perform experiments on several large collections of celebrities, as well as one subject

where the ground truth 3D model is collected. Both qualitative and quantitative experiments are

conducted and compared with the state-of-the-art method.

In summary, this chapter has made three contributions.
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• A true 3D facial surface model is generated. During the iterative reconstruction, we perform

the photometric stereo on the entire 3D surface, and the 3D coordinates of all vertices are

updated toward the specific shape of an individual. As a benefit of a 3D surface model, our

approach allows faces from all poses, including the profiles, to contribute to the reconstruc-

tion.

• Our surface reconstruction utilizes a combination of photometric stereo-based normals and

landmark constraints, which leverages the power of emerging face alignment techniques. It

also strikes a good balance of allowing facial details to deform according to the photometric

stereo, while maintaining the consistency of the overall shape with 2D landmarks.

• In order to achieve the deformation of a template using normal estimates, we develop a

novel Laplace mesh editing with surface normals as input, while prior mesh editing use

mean curvature normal as input.

3.2 Proposed Algorithm

3.2. Landmark
Driven 3D Warping

3.3. Photometric
Normals

3.4. Surface
Reconstruction

Photo
Collection

3.1. 2D Landmark
Alignment

Template

Repeat

Figure 3.2: Overview of our 3D face reconstruction. Given a photo collection, a generic template
face mesh, and 2D landmark alignment, we propose an iterative process to warp the mesh based
on the estimated 3D landmarks and the photometric stereo-based normals.

The proposed algorithm operates on a photo collection of n images of an individual. No con-
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straints are placed regarding poses or expressions for the images, but it is assumed that the col-

lection contains a variety of, albeit unknown, lighting conditions. An initial generic face template

mesh including labeled 3D landmark locations is also given. We assume weak perspective camera

projection and Lambertian reflection.

Figure 3.2 illustrates the major components and pipeline of our proposed algorithm. Through-

out the algorithm description, we present multiple reconstructions where we omit the part being

discussed to demonstrate the effects and needs of each different part of the reconstruction process.

3.2.1 2D Landmark Alignment

Proper 2D face alignment is vital in providing registration among images in the photo collection

and registration with the 3D template, although the proposed approach is robust to a fair amount

of error. We employ the state-of-the-art cascade of regressors approach [93] to automatically fit

q (=68) landmarks onto each image. An example of the landmark fitting is given in Figure 3.2.

Given an image I(u,v), the landmark alignment returns a 2×q matrix Wi.

3.2.2 Landmark Driven 3D Warping

The initial template face is not nearly isometric to the individual face, e.g., the aspect ratio of the

face may be different and, as such, it will not fit closely to the images even in the absence of

expression. Therefore, it is highly desirable to warp the initial template toward the true 3D shape

of the individual so that the subsequent photometric stereo can have a better initialization.

Figure 3.3 demonstrates the motivation for why landmark driven warping is important. Not

only does the warping process give the correct aspect ratio, but it also enables a clearer reconstruc-

tion since better correspondence may be established throughout the collection.
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(a) (b) (c)

Figure 3.3: Effects of landmark driven warping on final face reconstruction. (a) Full reconstruction
process from warped template for George Clooney, (b) reconstruction from initial template without
warping, and (c) image of Clooney used in reconstruction.

Since the estimated 2D landmarks provide the correspondences of q points between 3D and

2D as well as across images, they should be leveraged to guide the template warping. Based on

this observation, we aim to warp the template in a way such that the projections of the warped

3D landmark locations can match well with the estimated 2D landmarks. The technique we use is

based on Laplacian surface editing [78] and adapted for the landmark constraints. Specifically, in

order to maintain the shape of the original template face while reducing the matching error from

the 3D landmarks to the 2D landmarks, we minimize the following energy function,

∫
Ω

‖∆x−∆x0‖2 +
λl

n ∑
i
‖RiXC−Wi‖2

F , (3.1)

where the first term measures the deviation of the Laplace-Beltrami operator ∆ (trace of Hessian)

of the deformed mesh x from that of the original mesh x0 integrated over the entire surface Ω;

the second term measures the squared distance between the set of 3D landmarks annotated on the

mesh XC weakly perspective projected through Ri and the 2D landmark locations Wi for image i;
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and λl is the weight for landmark correspondence. C is a p×q selection matrix where each column

selects a single manually annotated landmark vertex from the mesh, i.e., it is a sparse matrix with

a 1 in each column at the vertex index for the corresponding landmark. Note that the operator

∆ measures the difference between a function’s value at a vertex with the average value at the

neighboring vertices, so the minimization of the first term helps maintain the geometric details.

To solve Eq 3.1, we discretize the surface patch Ω as a triangle mesh with p vertices, with

the vertex locations concatenated as a 3×p-dimensional matrix X. Throughout the deformation

process, we keep the connectivity of the vertices (i.e., which triplets form triangles) fixed and the

same as the given template mesh. We deform the mesh only through modifications to the vertex

locations. Eq 3.1 is thus turned into a quadratic function on X,

Ewarp(X,Ri) = ‖XL −X0L ‖2
F +

λl

n ∑
i
‖RiXC−Wi‖2

F , (3.2)

where L is a discretization of ∆. Using linear finite elements, it is turned into a symmetric matrix

with entries Li j =
1
2(cotαi j+cotβi j), where αi j and βi j are the opposite angles of edge i j in the

two incident triangles (see Figure 3.4), known as the cotan formula [66].

In order to find the minimizer, we first estimate an initial Ri via the corresponding pairs of 2D

and 3D landmarks. With the projection matrices Ri fixed, the minimizer of the energy Ewarp can

be obtained by solving a linear system.

However the above procedure is not rotation invariant. As in [78, 97], we can resolve this issue

by noting that

∆x =−Hn,

which means that the Laplacian of the position is the mean curvature H times the unit normal

of the surface n. The rotation-invariant geometric details are captured by the Laplacian operator
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Figure 3.4: The mean curvature normal indicates how a vertex deviates from the average location
of its immediate neighbors, which can be evaluated as the Laplacian of the position. The mean
curvature Hi can be evaluated through n.

and the mean curvature scalar H. Thus, to keep the original geometric detail while allowing it to

rotate, we compute the original mean curvature H0 (the discretization of which corresponds to the

integral of the mean curvature in a neighborhood around each vertex), and update nk according to

the direction of XkL for the shape Xk at iteration k, and solve for

Xk+1=argmin
X

(‖XL +NkH0‖2
F +

λl

n ∑
i
‖Rk

i XC−Wi‖2
F), (3.3)

where N is a 3×p matrix of all vertex surface normals and H0 is a diagonal matrix with H0 for

each vertex. This leads to a linear system,

(L 2 +λlCCᵀ)X =−NkH0L +
λl

n ∑
i
(Rk

i )
ᵀWiCᵀ. (3.4)

In practice, the procedure of iteratively estimating Rk
i and Xk+1 converges quickly in < 10 itera-

tions in our tests.
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(a) (b) (c)

Figure 3.5: Example of template deformation. (a) Initial generic template, (b) template warped for
Justin Trudeau, and (c) template warped for Kiera Knightley.

Figure 3.5 shows the initial template as well as examples after warping has completed. Notice

that we maintain the appearance of the initial template since we try to keep the same curvature.

The only change is that the keypoints on the face have been moved to better align with the observed

landmarks in the collection, which changes the aspect ratio, height of nose, etc.

3.2.3 Photometric Normals

Fitting the landmarks allows for a global deformation of the template mesh toward the shape

of the individual, but the fine details of the individual are not present. To recover these details,

we use the photometric stereo with unknown lighting conditions, similar to the one described by

Kemelmacher-Shlizerman and Seitz [53]. The approach in [53] estimates an initial lighting and

shape based on the factorization of a 2D image set, and refines the estimate based on localized

subsets of images that match closely to the estimate for a given pixel. One key difference is that

in [53] the input to factorization is the frontal-projected 2D images of the 3D textures, rather than

the collection of 3D texture maps themselves in our algorithm. That is, our photometric stereo is
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performed on the entire 3D surface. We present the photometric normal estimation as follows.

We assume a Lambertian reflectance along with an ambient term for any point x in an image,

Ix = ρx(ka + kd` ·nx),

where ka is the ambient weight, kd is the diffuse weight, ` is the light source direction, ρx is the

point’s albedo, and nx is the point’s surface normal. We assemble the numbers into a row vector

for the lighting l = [ka,kd`] and a column vector for the shape sx = ρx[1,nx ]T , so that Ix = lsx.

3.2.3.1 Initial Normal Estimation

In this section, we assume point correspondence between the current mesh and each image in the

collection. We create an n×p correspondence matrix F by storing in fi j the reflectance intensity Ix

corresponding to the projected location x of vertex j in image i. This correspondence is established

by projecting the warped shape template onto the images via the Ri matrices from Section 3.2.2.

For non-frontal images, there are vertices that are not visible due to the projection. When this

occurs, we set fi j = 0 and use matrix completion [57] to fill in the missing values to obtain M. Our

experiments show that given an image set with diverse poses, missing data occurs at different areas

of F and is handled well by matrix completion.

If we assemble li for image i into an n×4 matrix L, and the shape vector s j for each vertex

j into a 4×p matrix S, we have M = LS. To obtain the lighting and normal estimation L and S

from M, we use a typical photometric stereo technique knowing that a Lambertian surface will be

rank-4 ignoring self-shadows. We factorize M via singular value decomposition (SVD) to obtain

M = UΛVᵀ and use the rank-4 approximation M = L̃S̃ where L̃ = U
√

Λ and S̃ =
√

ΛVᵀ. L̃ and

S̃ are the same size as the desired lighting and shape matrices L and S, but the factorization is not
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unique as any invertible 4×4 matrix A gives a valid factorization since LS = (L̃A−1)(AS̃).

The ambiguity can be resolved up to a generalized bas-relief transform through integrability

constraints, but [53] states that it may be unstable for images with expression variations. Thus,

we follow the approach from [53], where we select images that are modeled well by the low rank

approximation, i.e., ‖M− L̃S̃‖2 < ε , and solve for argminA ‖St −AS̃‖2, where St is the shape

matrix for the template shape. This allows us to then estimate the lighting and shape for the

individual via L = L̃A−1 and S = AS̃.

3.2.3.2 Albedo Estimation

The ambiguity recovery requires the template shape matrix St including a surface albedo compo-

nent, which we estimate for the individual based on the photo collection. For a row mi correspond-

ing to image i, we know from our lighting assumption that each vertex is a linear combination of a

shared light source direction and the surface normal scaled by albedo, i.e., mi j = ρ jlin j for a vertex

j, where ρ j and li are unknown. We initialize all ρ j to 1, and then solve iteratively until conver-

gence for li by argminli ∑ j ‖ρ jlin j−mi j‖2 and then for ρ j directly by ρ j = mi j/(lin j). We average

all ρ estimates for the same set of images that are modeled well by the low rank approximation,

thereby allowing us to compute St for use in the ambiguity recovery.

3.2.3.3 Local Normal Refinement

The initial normal estimation produces a smoothed result that is akin to the mean shape. We follow

the procedure from [53] where different local regions of the face are refined by using different

subsets of images. Thereby selecting a set of consistent images for each point with less expression

variation to cause smoothing, e.g., closed mouth.

The local image selection is similar to [53]. We select a subset of k images with the minimum
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distance ‖m j−Ls j‖2 with k≥4 images and enough to produce a low condition number of Lk×4.

We recover the local shape s j via

min
s j
‖mk×1−Lk×4s j‖2

F , (3.5)

where we omitted the Tikhonov regularization term proposed by [53], as the Minkovski norm is

not positive definite and should be properly treated through a Lagrange multiplier, but we found

the above energy produces sufficiently close results.

3.2.4 Surface Reconstruction

Given the shape vectors S we can assemble the normals n by normalizing the last three components

for each vertex. Then, we reconstruct the triangulated surface patch Ω with p vertices X that

is consistent with fine details specified by n. As in 3D landmark-driven warping, we keep the

connectivity of the vertices intact.

Assuming that the template has a similar metric tensor (distance measure on the surface) to the

output mesh, we can reconstruct the shape X from the normal field n through the mean curvature

formula ∆x =−Hn, i.e., we minimize

‖XL +NH‖2
F . (3.6)

Since we are only given n, we first estimate Hi, the integral of mean curvature around vertex

i from n through the discretization of H = ∇A · n, i.e., the mean curvature is how fast the area

changes when surface points move along the normal direction [79]. The discretization of the first
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variation of the area can be measured by the difference between ni and n j as follows,

Hi =
1

4Ai
∑

j∈N(i)
(cotαi j+cotβi j) ei j · (n j−ni), (3.7)

where N(i) is the set of immediate neighboring vertices of i, Ai is the sum of the triangles’ areas

incident to i, ei j is the edge from i to j (Figure 3.4). Note the cotan weights are the same as those

in the Laplace operator. For more accurate results, we update the cotan weights in each global

iteration.

One unique challenge in handling a 3D model instead of a height field is the boundary. On the

boundary, the mean curvature formula degenerates into a 1D version

XLb = bκ, (3.8)

which is based on the 1D Laplace operator Lb with non-zero entries corresponding to boundary

edges, with Lb,i j = 1/ei j, where j is one of the two boundary vertices adjacent to boundary vertex i,

and κ is the geodesic curvature along the boundary and b is the cross product between the surface

normal and the boundary tangent. Since the photometric normal does not provide information

about κ , we simply use bkκk = XkLb where Xk is the estimated shape in k-th iteration.

Figure 3.6 shows the need to include a boundary constraint. Since the Laplace operator is

degenerate along the boundary, it attempts to pull the reconstructed surface in on itself. This is

manifest especially along the forehead where there are no nearby landmarks to help constrain the

reconstruction, but is also observable along the rest of the boundary where it causes folds in the

surface.

We also maintain the landmark constraint, λl∑i ‖Rk
i XC−Wi‖2

F , in the reconstruction, in order
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(a) (b)

Figure 3.6: Effects of boundary constraints on face reconstruction. (a) Full reconstruction of
Clooney and (b) boundary constraint removed.

to keep the correspondence between the reconstructed face and the images in the collection. It

also helps prevent small errors in the surface normal estimation from accumulating across the face

and creating drift. Figure 3.7 demonstrates the result of omitting the landmark constraint from the

reconstruction.

(a) (b)

Figure 3.7: Effects of landmark constraint on face reconstruction. (a) Full reconstruction of
Clooney and (b) landmark constraint removed.

We can finally put all the constraints and equations together into an overall energy,

|XL +NHk‖2
F +λb‖XLb−XkLb‖2

F +
λl

n ∑
i
‖Rk

i XC−Wi‖2
F , (3.9)
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deformation

Figure 3.8: The effects of the deformation-based surface reconstruction. The black arrows indicate
the photometric normal estimates and the orange arrows show the actual surface normal. The
black dots are the target landmark locations and the orange dots are the corresponding vertices in
the mesh.

leading to a linear system for X after we fix the projection matrices,

(L 2 +λbL
2

b +λlCCᵀ)X =−NHkL +λbXkLb +
λl

n ∑
i
(Rk

i )
ᵀWiCᵀ, (3.10)

where λb is the boundary constraint weight. Figure 3.8 illustrates the effects of the above system

in aligning the normals while optimizing the landmark locations.

Smoothing of shadowed regions. We additionally set a threshold θ to detect attached shadow

regions through L ·n < θ , where L is the average incoming light direction, and replace the entries

in n corresponding to the vertices in those regions by nk. We then smooth the resulting normal field

ñ by the following procedure. First, we construct a diagonal selection matrix T, with Tii = 1 only

if vertex i is not in attached shadow region. We then update n using the following linear system

(I+wdT(L +wsL
2)T)n = (I+wdTL T)ñ, (3.11)
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Algorithm 1: Unconstrained 3D face reconstruction
Data: photo collection, template X0
Result: 3D face mesh X

1 compute 2D landmarks for all images (Sec. 3.2.1)
// warp template through landmarks (Sec. 3.2.2)

2 while template deformation > threshold do
3 estimate projection Ri for each image
4 solve Eq 3.4

5 while 3D face vector X change > threshold do
// estimate n and ρ (Sec. 3.2.3)

6 re-estimate Rk
i

7 establish correspondence F
8 perform matrix completion on F to obtain M
9 estimate lighting, L, and shape, S, by SVD

10 estimate albedo, ρ

11 resolve ambiguity by estimating A
12 refine local normal estimate via Eq 3.5

// deform X with n (Sec. 3.2.4)
13 update n via Eq 3.11
14 estimate mean curvature via Eq 4.18
15 solve Eq 3.10

where I is the identity matrix. The procedure fixes the non-shadowed region, blends the shadowed

region through impainting with weight wd , and smooths out the shadowed region with a weight ws.

Finally, Algorithm 1 summarizes the overall procedure in our algorithm.

3.3 Experiments

In this section we present our experiments. We first describe the pipeline to prepare a photo collec-

tion for face reconstruction. We then demonstrate qualitative results compared with 2.5D recon-

struction on the Labeled Faces in the Wild (LFW) database [43], and on celebrities downloaded

from Bing image search. Finally, we compare quantitatively on a personal photo collection where

we have the ground truth model captured via a range scanner.
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[53] Ours [53] Ours Real [53] Ours Albedo ρ

Figure 3.9: Visual comparison on Bing celebrities with images from [53] to the left of each of our
viewpoints. Note how our method can incorporate the chin and more of the cheeks, as well as
producing more realistic reconstructions especially in the detailed eye region.

3.3.1 Data Preparation

3.3.1.0.1 Photo collection pipeline For the celebrities, we use the Bing API to access up to the

first 1,000 image results by searching on their first and last names. We remove duplicate images

from the retrieval results. The images are then imported into Picasa, which performs face detection

and groups similar images. After manually naming a few groups, further images are suggested by

Picasa and automatically added to the collection. In the end, about half of the images remain

for each person since many search results are not photographs of the person of interest or are

duplicates. A landmark detector estimates 68 landmarks in each image around the eyes, eyebrows,

nose, mouth, and chin line. For the initial shape template, we use the space-time faces neutral face
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Figure 3.10: Results on subjects from the LFW dataset. The reconstructed 3D model, sample
image from which we extract the texture, and a novel rendered viewpoint.

model [99], which we subdivide to create more vertices and thereby a higher resolution.

3.3.1.0.2 Ground truth models We use a Minolta Vivid 910 range scanner to construct ground

truth depth maps for a personal photo collection. The scanner produces a 2.5D depth scan; so we

capture three scans, one frontal, and two at ∼ 45 degree yaw. We align the scans via Iterative

Closest Point and merge them to produce a ground truth model.
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Table 3.1: Distances of the reconstruction to the ground truth.

Methods 2.5D 2.5 Improved 3D
Mean 7.86% 7.79% 5.42%
RMS 9.71% 9.04% 6.89%

3.3.2 Results

3.3.2.0.1 Qualitative evaluation We process the same celebrities as used in [53], George Clooney

(476 photos), Tom Hanks (416), Kevin Spacey (316), and Bill Clinton (460), as well as the four

individuals with the most images in LFW, George Bush (528), Colin Powell (236), Tony Blair

(144), and Donald Rumsfeld (121). The resolution of LFW is 250× 250 and we scale all Bing

face regions to 500 pixels height. Figure 3.9 compares the results between our approach and the

figures from [53]. Figure 3.10 shows our reconstructions on the LFW dataset. We see that our

reconstruction provides more accurate fine details in areas with high mean curvatures, e.g., the

eyes and mouth, as well as allowing for reconstruction of the chin and cheeks when the surface

normal points away from the frontal pose. Furthermore, the facial features in our results are less

caricature-like than [53], but closer to the true geometry.

3.3.2.0.2 Quantitative evaluation We also implement the 2.5D approach by warping our esti-

mated photometric normals to a frontal view and integrating the depth. Since the 2.5D approach

from [53] is not metrically correct as they mention, we also perform an improved 2.5D approach

where we first use our landmark driven 3D warping as a preprocessing step to resolve the aspect

ambiguities.

To compare the approaches numerically, we compute the shortest distance from each vertex

in the ground truth to the closest point on the reconstructed surface face. Meshes are aligned by

their internal landmarks according to the absolute orientation problem [40]. We report the mean

euclidean distance and the root mean square (RMS) of the distance, after normalized by the eye-
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(a) (b) (c)

Figure 3.11: Distance from the ground truth to the face reconstructed via (a) 2.5D, (b) 2.5D im-
proved, and (c) 3D reconstruction. Distance increases from green to red. Best viewed in color.

to-eye distance, in Table 3.1. Figure 3.11 shows a coloring of the template to visualize where on

the face is close for reconstruction. The base 2.5D approach (a) has incorrect depth information

at the nose since the shape ambiguity is recovered from the flatter initial template, the improved

2.5D approach (b) better approximates the depth, but the bridge of the nose protrudes too far, and

our 3D reconstruction best matches with the ground truth across all the details of the face.

3.3.2.0.3 Usage of profile views One advantage of the landmark-based deformation approach

combined with photometric stereo is the ability to use the profile images more effectively. With

only photometric stereo, the extreme poses obscure parts of the face and also cause increased
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(a) (b) (c)

Figure 3.12: Comparison of (a) frontal only, (b) including side view for landmark warping, and
(c) ground truth scan. The addition of side view improves the nose and mouth region (see arrows)
while also allowing for reconstruction further back on the cheeks.

possibility for distortion when rendering in a frontal view. However, the profile views provide rich

3D landmark depth information. We run an experiment on the personal photo collection where

we use 70 nearly frontal images with <10 degree yaw, and then add 40 images with side view

information of >45 degree yaw. Figure 3.12 shows the improved depth of reconstruction and

accurate mouth details from using additional side view images. Note that we manually labeled the

ground truth for these images due to the deficiency of our 2D face alignment implementation when

points are occluded, but there are detectors that work well even in these situations [19].
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3.3.2.0.4 Additional Reconstructions To further demonstrate the performance and general-

ization of the proposed approach, we present a larger set of individuals processed through the Bing

and Picassa pipeline. Note that for these individuals, the photo collections contain images mainly

within ±30 degrees yaw due to the lack of profile images returned through the Bing API.

I mainly leave the figures to speak for themselves, but comment on a few small points.

• Most reconstructions are convincing, and the identity is easily recognizable.

• Prominent wrinkles are captured for some people including Harry Reid and Robin Williams.

• Vin Diesel’s common use of sunglasses appears in the reconstruction.

• Jim Carrey’s extreme expression variations cause the reconstruction to fail.

• Denzel Washington has high amounts of specularities that are not modeled by our lighting

assumption possibly contributing to his poor reconstruction.

3.4 Summary

We presented a method for 3D face reconstruction from an unconstrained photo collection. The

entire pipeline of iterative reconstruction is coherently conducted on the 3D triangulated surface,

including texture mapping, surface normal estimation and surface reconstruction. This enables

consuming faces with all possible poses in the reconstruction process. Also, by leveraging the

recently developed image alignment technique, we use a combination of 2D landmark driven con-

straint and the photometric stereo-based normal field for surface reconstruction. Both qualitative

and quantitative experiments show that our method is able to produce high-quality 3D face models.

Finally, there are multiple directions to build on this novel development, including incorporating

49



Harry Reid

Rick Snyder

Joseph Gordon-Levitt

Figure 3.13: Visualization of many successful examples.
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Robin Williams

Leonardo DiCaprio

Tom Cruise

Figure 3.14: Visualization of many successful examples.
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Will Smith

Jinping Xi

Figure 3.15: Visualization of many successful examples.
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Denzel Washington

Vin Diesel

Jim Carrey

Figure 3.16: Visualization of difficult examples.
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automatically detected 2D landmarks in the profile views, validating our approach on a diverse set

of populations, and extending to non-face objects.
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Chapter 4

Adaptive 3D Face Reconstruction from

Unconstrained Photo Collections

4.1 Introduction

In this chapter we continue to improve unconstrained face reconstruction by making it more adap-

tive to the number of images in the collection as well as the quality of the images. The recon-

struction approach presented in the Chapter 3 still has limitations. Frontal images were required

for [53], and even though the previous chapter can use non-frontal images, we will demonstrate that

its performance drops significantly with large pose variation. We propose a pose-based depend-

ability measure to explicitly handle non-frontal images. Another limitation is a sufficiently large

photo collection. Theoretically, only four images are necessary for a photometric stereo-based ap-

proach, but in practice prior approaches report results on over one hundred image collections for

two primary reasons. One, their singular value decomposition solution to photometric stereo is

susceptible to noise with small collections. Two, prior approaches perform a local selection step

where only ∼10% of images are used for each part of the face. We propose an energy minimiza-

tion solution with an adaptive template regularization to reconstruct small collections, even down

to a single image. And we propose to use a larger region for local selection to allow use of ∼50%

of images.

To perform face reconstruction, given a collection of unconstrained face images, we first align
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Figure 4.1: The proposed system reconstructs a detailed 3D face model of the individual, adapting
to the number and quality of photos provided.

2D landmarks [93] to all detected faces. We then create a personalized face model by fitting a

3D Morphable Model (3DMM) jointly to the collection such that the estimated 2D landmarks

align with the projection of the associated 3D landmarks on the model. Dense correspondence is

established across the collection by estimating the pose for each image and back-projecting the

image onto the personalized template. A global estimation of the albedo, lighting, and surface

normals is performed using a dependability weighting based on the pose of each image. The

surface normal estimate is improved locally using a novel structural similarity feedback to identify

a collection of images which are similar for each part of the face. Reconstruction of the face

model deforms the mesh to match the estimated surface normals. A coarse-to-fine process is

employed to first capture the generic shape and then fill in the details. We perform extensive

experimental evaluations to show qualitatively and quantitatively the performance of the proposed

face reconstruction method.
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In summary, this chapter makes the following main contributions.

� A 3D Morphable Model is fit jointly to 2D landmarks for model personalization. Prior work

used either a fixed template or landmark-based deformation that does not work well for small

collections.

� A joint Lambertian image rendering formulation with an adaptive template regularization

solves the photometric stereo problem, allowing for graceful degradation to a small number of

images.

� A pose-based dependability measure is proposed to weight the influence of more confident

face parts.

� Structural similarity, a measure correlated with human perception, drives the local selection

of images to use for estimating each surface normal.

� The use of structural similarity as a quality measurement for performance evaluation in the

absence of ground truth.

4.2 Quality Measures

One crucial task for reconstruction is measuring the quality of the reconstruction. The quality is

useful both for comparing between different reconstruction methodologies as well as for providing

feedback to a specific reconstruction technique. For example, if we know that one image con-

tributes poorly to the reconstruction quality, it may be better to remove the image or weight it less

during the reconstruction process. There are many different measures used in the literature for face

reconstruction.
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4.2.1 Image Distance Square Error

The image distance is the square error between the original image (real) and a rendering of the

reconstruction (syn).

qimage = ∑
u,v
‖Ireal(u,v)− Isyn(u,v)‖2. (4.1)

The image distance is widely used in many reconstruction approaches due to its inclusion of all of

the model parameters including object shape, orientation, camera model, lighting, and albedo. It

is also straightforward to compute and easy to understand.

However, there are some major drawbacks to the image distance quality measure. Since the

rendering is projected into the original image, it is impossible to penalize parts of the face not

occluded by the synthetic image. For example, if the shape of the face is estimated too narrow,

there will not be a synthetic rendering across the entire cheek compared with the real image and

there will be a 0 distance for these regions even though there is clearly reconstruction error.

On the other extreme, qimage may also be high even for very high quality reconstructions. For

example, if the shape and projection of the faces are perfect, but the albedo is wrong, the error will

be high. Or if the projection is shifted, there will also be high error since the pixel correspondence

between the real and synthetic image no longer have shared semantic meaning. These problems

are due to using a single pixel correspondence to compute the error as well as many small errors

contributing larger than a single large error.

Despite the problems with qimage, it is very relevant as a quality measure, especially during the

fitting procedure. It provides a complete measure of all parameters in the fitting and is easy to

compute the derivative for minimization.
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4.2.2 Mahalanobis Distance

The Mahalanobis distance measures the relative distance of a face from a statistical distribution

of faces. By taking a training set of faces and using principle component analysis (PCA), the

multivariate Gaussian probability density function of face shapes is estimated. This distance is

given as,

qmahal = ∑
i

(
α id

i

σ id
i

)2

, (4.2)

for the shape alone, where α id is the coefficients of the shape projected into the PCA space and σ id

is the standard deviation from the PCA.

The Mahalanobis distance is often used as a regularizer during fitting since it relates to the

faceness of the shape or how probable the shape is a face. When used as a regularizer often the

distance for the other parameters such as albedo, projection, and lighting are added for fitting a 3D

morphable model.

However, qmahal is not good for comparing between reconstruction techniques, since it does not

take into consideration the true ground truth shape of the individual and only measures the distance

to the distribution of a training set.

4.2.3 Mean Euclidean Distance

The mean Euclidean distance is a good measure when a ground truth shape is present.

It measures the average distance of all points on one shape to another shape. This is usually

discretized to only consider the vertices of the shapes. Given a template shape Y and reconstructed

shape X, when the shapes are given in vertex correspondence it is,

qeucl =
1
p

p

∑
i=1
‖xi−yi‖2. (4.3)
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However, correspondence is typically not known between the two shapes, in which case, the dis-

tance at each vertex is typically measured as the minimum distance to the other shape.

Note that qeucl has a few major drawbacks. One, it is highly sensitive to rigid transformations of

the shapes. Any slight transformations of one shape, (e.g., a global scale) causes a significant effect

on qeucl. Therefore, it is important to perform rigid alignment of the faces first through iterative

closest point alignment. Two, the distribution of point differences is likely to have a right tail and

a single value for qeucl may not be informative of detail recovery.

4.2.4 Hausdorff Distance

The Hausdorff distance is similar to the L-infinity distance and is defined as,

qhaus = max{sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)}, (4.4)

where sup is the supremum and inf is the infimum. In other words, it measures the maximum

distance between any point on surface X and the closest point on Y and vice versa. When dealing

with surfaces extremely close to each other, qtexthaus is a good measure to differentiate between

different reconstructions. For example, in computer graphics, it is used to measure the level of

detail when downsampling objects far away in the scene.

However, it is a poor quality metric for current face reconstruction methods since they are far

away from the ground truth, and only one point out of place will increase the measure.

4.2.5 Surface Normal Distance

One problem with the Euclidean distance measure is that points on the surface may be close to

each other, but still be dissimilar. Particularly when there is no direct correspondence between the

60



surfaces and the closest point must be used. For example, if there is a small wrinkle in one surface,

it will have very small Euclidean distance, to the other surface, but is clearly a larger error. If we

look at the surface normal difference between the wrinkle and the smooth surface, we will see a

much larger difference. In this regards, a surface normal difference can measure the finer details

of a reconstruction, at the expense of ignoring the true surface to surface distance.

In [67] the normal metric is defined as,

qnormal =
1
p

p

∑
i=1

arccos(ni ·n′i), (4.5)

where ni is the normal of the reconstructed face and n′i is the normal of the average face. Their

definition is used as a regularizer for the face shape. It is observed that when the Mahalanobis

distance is used as a regularizer, it requires either (1) it allows non-plausible faces with a low weight

or (2) the weight is too large and produces smooth faces when a more optimal result could be

obtained for some images. Therefore, Mahalanobis has a tradeoff between quality and robustness.

In [67], they demonstrate the effectiveness of using the surface normal measure to regularize the

reconstruction.

One issue with qnormal is the variance of different parts of the face. For example, the nose

and lips may have large differences in the surface normal while still maintaining a reasonable face

compared to the cheeks which should remain smooth. To compensate, they introduce a weight for

each vertex defined as,

ω̂i = 1− φ̄i− φ̄min

φ̄max− φ̄min
, (4.6)

where φ̄i is the average normal deviation in the training set for their morphable model.

The normal distance could also be used to evaluate reconstruction without vertex correspon-

dence by selecting the closest vertex on the ground truth surface to compare the normal difference.
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4.2.5.0.1 Summary There are clear advantages and disadvantages to the different quality mea-

sures as they can distinguish between different type of failures in the reconstruction. qeucl and

qhaus can only be used with a ground truth face scan. qnormal and qmahal are only appropriate for

regularization because they are person independent. That leaves only qimage as a relevant measure

for photo collections without a ground truth scan. However, qimage is very sensitive to numerous

factors and may not be informative of shape.

Based on the limitations of current quality measures for evaluation of photo collections, we

propose a new quality measure based on structural similarity (SSIM) that encompasses all parame-

ters of the reconstruction like qimage, but considers a larger area than a single pixel for comparison

so it is more robust to small changes in alignment.

4.3 Algorithm

We now present the details of the proposed approach, describing the motivational differences from

prior works. Figure 4.2 provides an overview of the different steps to face reconstruction. The

algorithm assumes the existence of a photo collection with automatically annotated landmarks and

a 3DMM. Notations used throughout this chapter are provide in Table 2.2. The main algorithm

is composed of three steps. Step 1: Fit the 3DMM template to produce a coarse person-specific

template mesh. Step 2: Estimate the surface normals of the individual using a photometric stereo

(PS)-based approach. Step 3: Reconstruct a detailed surface matching the estimated normals.
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Normal
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Figure 4.2: Overview of face reconstruction. Given a photo collection, we apply landmark align-
ment and use a 3DMM to create a personalized template. Then a coarse-to-fine process alternates
between normal estimation and surface reconstruction.

4.3.1 Inputs and Preprocessing

4.3.1.1 Photo collection

A photo collection is a set of n images containing the face of an individual and may be obtained

in a variety of ways, e.g., a Google image search for a celebrity or a personal photo collection.

We assume that the only face in each image belongs to the person of interest. To normalize the

images, we automatically detect the face using the built-in face detection model from Bob [4]

which was trained on various face datasets, such as CMU-PIE, that include profile view faces. The

face detector is a cascade of Modified Census Transform (MCT) local binary patterns classifiers.

We filter out faces with a quality score < 25 to remove extremely poor quality faces or images

without a face. Given the face bounding box from the detector, we scale the image to 110 pixels

inter-eye distance and crop it to a total size of 450×450 to ensure the entire face region is present

in the image.

A Lambertian lighting assumption uses a linear encoding of the intensity of the lighted object.

However, humans can distinguish differences in low intensity better than high intensity, so most
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(a) (b) (c) (d) (e)

Figure 4.3: The landmark marching process. (a) internal (green) landmarks and external (red)
defined paths; (b) estimated face and pose; (c) face with roll rotation removed; (d) landmarks
without marching; and (e) landmarks after marching corresponding to 2D image alignment.

cameras use a non-linear gamma encoding of images in order to provide a subjectively equal step

in brightness for humans. For this work, we apply a single industry standard gamma correction to

convert each image into the linear intensity scale.

4.3.1.2 Landmarks

Landmarks are the locations of common key features such as the eyes, nose, or mouth on a face.

In recent years, the automatic detection of landmarks [26, 27, 48] has seen rapid improvement

due to large labeled datasets such as LFPW [11] and 300-W [74]. To estimate 2D landmarks,

we employ the state-of-the-art cascade of regressors approach [93] to automatically fit q = 68

landmarks denoted as W ∈ R2×q onto each image. Figure 4.3 shows the 68 landmarks used in

this work. The landmarks can be separated into two groups. One, the internal landmarks on the

eyebrows, eyes, nose, and mouth. These correspond to physical parts of the face and are consistent

on all faces regardless of pose. Two, the external landmarks for the cheek / jaw along the silhouette

of the face. These landmarks do not have a single correspondence to a point on the 3D face. As

the face turns to non-frontal views, face alignment algorithms typically detect external landmarks

on the facial silhouette. As a result, the external landmarks of two different poses correspond to
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different 3D model vertices.

4.3.1.2.1 Landmark marching It is therefore desirable to estimate pose specific vertices to

maintain 3D-to-2D correspondences between the landmarks. In literature, there have been a few

proposed approaches [21, 69, 101]. In this work, we follow the proposed landmark marching

method from [101]. Specifically, for the external landmarks a set of horizontal paths, each con-

taining a set of vertex indices, are defined to match the contour of the face as it turns. Given a

non-frontal face image along with an estimated pose, we rotate the 3D model using the estimated

yaw and pitch while ignoring the roll and determine the corresponding vertex along each prede-

fined path based on the maximum (minimum) x-coordinate for the right (left) side of the face. A

visualization of the process is presented in Fig 4.3.

4.3.2 Step 1: Model Personalization

The face model plays a vital role in the reconstruction process. The current face model directly

establishes correspondence between photos, provides an initialization for surface normal estima-

tion, and regularization during surface reconstruction. Therefore, it is important to begin with a

good personalized model of the face. We desire the model to match the overall metric structure of

the individual to provide accurate correspondence when projected onto photos of different poses.

However, the model need not contain fine facial details since those will be determined by the

photometric normal estimation.

Prior work used either a single face mesh [53] or a Structure from Motion-based (SfM) de-

formation of a single face mesh [72]. These models have two main limitations. One, the model

is a single ethnicity / gender and may not generalize its fit across a diverse set of subjects. Two,

the SfM technique requires multiple images with sufficient pose variation and may not work for
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small collections. Therefore, we propose supplementing more prior information to help form a

personalized template for a wide range of subjects with few images.

4.3.2.1 3D Morphable Model

In light of these limitations, we propose to use a 3DMM instead of a single template mesh. A

3DMM can approximate arbitrary face shapes and is one of the most successful models for de-

scribing the face. Represented as a statistical distribution of linear combinations of scanned face

shapes, the 3DMM compactly represents wide variations due to identity and expression and is

independent of lighting and pose. We use a 3DMM in the form,

X = X̄+
199

∑
k=1

Xid
k α

id
k +

29

∑
k=1

Xexp
k α

exp
k , (4.7)

where X ∈ R3×p is the 3D face composed of the mean shape X̄, a set of identity bases Xid, and

a set of expression bases Xexp, with coefficients ~α id and ~αexp. We use the 3DMM from [101]

where the identity comes from the Basel Face Model [65] and the expression comes from Face

Warehouse [22]. The separation of the bases into expression and identity is based on the method

from [24].

Fitting a 3DMM entails finding the model coefficients and projection parameters which best

match a face in a given image. Typically, 3DMM fitting aims to minimize the difference between

a rendered image and the observed photo [14] using manually annotated landmarks for pose ini-

tialization. As automatic face alignment has improved, Zhu et al. recently propose an efficient

fitting method based only on landmark projection errors [101]. To fit the 3DMM to a face image,

they assume weak perspective projection sRX+ t, where s is the scale, R is the first two rows of a

rotation matrix, and t is the translation on the image plane.
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Given the 2D alignment results W, the model parameters are estimated by minimizing the

projection error of the 3DMM to the landmarks,

arg min
s,R,t,~α id,~αexp

‖W− (sR[X]land + t)‖2
F +Ereg, (4.8)

where [X]land selects the annotated landmarks from the entire model and ‖ · ‖F is the Frobenius

norm and Ereg is a regularizer (see Eq. 4.9) for the 3DMM coefficients. However, as discussed

in Sec. 4.3.1.2, the pose must be known to march the external 3D landmarks along their paths to

establish correspondence with W. But in the current formulation, the pose is solved jointly with

the 3DMM coefficients.

We follow [101], and solve Eq. 4.8 in an alternating manner for the pose parameters and the

3DMM coefficients. Initializing with the mean face, ~α id =~αexp =~0, first we solve for the pose (s,

R, and t) [18], then update the landmarks through marching, and finally solve for the shape (~α id

and ~αexp). All steps are over-constrained linear least squares solutions. In this work we perform 4

total iterations since it converges quickly.

We extend this process to jointly fit n faces of the same person by assuming a common set of

identity coefficients α id but a unique set of expression α
exp
i and pose parameters per image. The

modified error function fully expressed is,

arg min
si,Ri,ti,~α id,~α

exp
i

n

∑
i=1

1
n
‖Wi− (siRi[X̄+

199

∑
k=1

Xid
k α

id
k +

29

∑
k=1

Xexp
k α

exp
ki ]landi + ti)‖2

F

+
199

∑
k=1

(
α id

k

σ id
k

)2

+
29

∑
k=1

(
1
n ∑

n
i=1 α

exp
ki

σ
exp
k

)2

, (4.9)

where σk is the variance of the kth shape coefficient, typically used in Tikhonov regularization,

and [·]landi is used because different poses of face images have different selections of corresponding
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vertices. This function may be solved as before since it is linear with respect to each variable. Once

the parameters are learned, we generate a personalized model X0 using the identity coefficients and

the mean of the expression coefficients.

4.3.2.1.1 Model projection Correspondence between images in the collection is established

based on the current template mesh X0. Given X0 and the projection parameters solved per image

during model fitting, we sample the intensity of the projected location of vertex j in image i and

place the intensity into a correspondence matrix F ∈Rn×p. That is, fi j = Ii(u,v) where Ii is the ith

image and 〈u,v〉T = siRix j + ti is the projected 2D image location of 3D vertex j.

At the conclusion of Step 1, we have a personalized model for the subject matching their over-

all shape, as well as projection parameters for each image. The model at this stage is a smooth

reconstruction for two reasons. One, the 3DMM only captures low-frequency shape details. Two,

the model is fit based on a limited set of sparse landmarks so it requires a strong regularization

further creating a smooth result. Despite being smooth, the model allows for a set of dense cor-

respondence to be established across the photo collection. These dense correspondences will be

used to add in the fine details of the face.

4.3.3 Step 2: Photometric Normal Estimation

To add in the wrinkle details to the personalized model, we use the dense correspondence along

with a photometric stereo-based normal estimation. Intuitively, the differences in shading observed

across the photo collection provide clues to the true surface normal which may differ from the

smooth version offered by the 3DMM estimate. Practically speaking, we will need to estimate

the lighting conditions for each image and the surface albedo or reflectance of the face in order to

estimate the surface normals.
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4.3.3.1 Lighting Model

Computer graphics takes a modeled scene and renders a realistic synthetic image. Whereas, com-

puter vision solves the inverse problem, i.e., inferring the model parameters from a real image. In

either case, assumptions about how to model a scene must be made. The assumptions may be due

to limited understanding of the real world environment such as reflectance properties of surfaces,

or they may be for computational efficiency or tractability. For example, we use a weak perspective

camera projection model to tractably solve the pose and projection, and we use the 3DMM models

prior knowledge of face shapes to personalize our initial shape model.

For lighting, we assume a Lambertian model, which allows accumulation of many far away

light sources into a single vector, where the intensity at a projected point is defined by a linear

combination of lighting parameters and the surface normal,

I(u,v) = ρ j

(
ka + kd

(
lxnx

j + lyny
j + lznz

j

))
, (4.10)

where ρ j is the surface albedo at vertex j, nx
j,n

y
j,n

z
j is the unit surface normal at vertex j, ka is

the ambient coefficient, kd is the diffuse coefficient, and lx, ly, lz is the unit light source direction

of the image. For simplicity, we combine the lighting coefficients and direction into a vector

l = 〈ka,kdlx,kdly,kdlz〉T , and define n j = 〈1,nx
j,n

y
j,n

z
j 〉T for the normal. Using the notation from

the model projection we see that fi j = Ii(u,v) = ρ jlᵀi n j. This lighting model is also called the

first-order spherical harmonics of the surface.

Ref [29] shows that theoretically 1st order spherical harmonics models a minimum of 87.5%

of the lighting energy while a non-linear 2nd order will model 99.2%, but in practice they found

1st and 2nd order model 94-98% and 99.5% respectively. Furthermore, [7] demonstrates that

shape reconstruction accuracy using 1st order is 95-98% while 2nd order is 97-99%. So, while a
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more complex lighting assumption may potentially increase the accuracy by a single percentage,

it introduces non-linearity into the solution process. Therefore, we use the 1st order assumption in

this work, but in the future, if we allow other nonlinearities in the model a 2nd order assumption

could be made.

Prior work jointly solved for the Lambertian formulation using singular value decomposition

(SVD) by factoring F into a light matrix Lᵀ and a shape matrix Ñ which includes the albedo

and surface normals [53, 72]. The SVD approach assumes the first four principal components

of F encode the lighting variation while suppressing differences in expression, facial appearance,

and correspondence errors. These assumptions hold for large collections of nearly frontal images

because SVD can accurately recover the ground truth in the presence of sparse amounts of error.

However, we will show that small collections are susceptible to any correspondence errors from

misalignment or expressions. Furthermore, subjects with long hair that obscures the face and

changes styles within the collection will express as an albedo change and affect the first principal

component.

In light of the limitations of the SVD approach, we propose an energy minimization approach

to jointly solve for albedo, lighting, and normals with,

argmin
ρ j,L,N

p

∑
j=1

(
n

∑
i=1
‖ fi j−ρ jlᵀi n j‖2 +λn‖n j−nt

j‖2

)
, (4.11)

where nt
j is the current surface normal of the face mesh at vertex j. The template regularization

helps keep the face close to the initialization. But, since the summation is not averaged, as more

photos are added to the collection, the regularization has less overall weight since λn is independent

of collection size and the estimated normals may deviate further to match the observed photometric

properties of the collection. In contrast, when the photo collection is small, the regularization
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(a) (b)

Figure 4.4: Effect on albedo estimation with (a) and without (b) dependability. Skin should have a
consistent albedo, but without dependability the cheek shows ghosting effects from misalignment.

term will play an important role in determining the estimated surface normal. Thus, this adaptive

weighting handles a diverse photo collection size. However, the outliers which are mitigated by

the SVD approach can have a larger impact with the square error minimization, therefore, it is

important to find a good method for determining what images to use for each part of the face.

4.3.3.2 Dependability

While we have claimed to put the photo collection into correspondence F, we certainly do not

assume it to be perfect. We use a dependability measurement to weight the influence of different

images for each vertex. What makes a part of the projected mesh on an image dependable? Clearly,

the part must be visible for the given pose and not occluded by something in front of the face. Does

the resolution of an image contribute to its dependability? If the face has a different expression,

it may have different surface normals. Faces with inaccurate landmark alignment will be out of

correspondence. Many different factors play a role in the dependability of a projected point within

an image. We use di j = max(cos(cᵀi n j),0) where ci is a unit camera vector perpendicular to the

71



image plane as the measure of dependability to handle self-occlusion and sampling artifacts. Other

problems such as expression and and external occlusion we leave for local selection (Sec. 4.3.3.4).

What does this dependability measure accomplish? First, self-occluded parts of the face are

given a weight of 0. Second, parts of the image more susceptible to pose estimation errors are given

lower weights. As a vertex’s normal approaches perpendicular to the camera, slight perturbations

of the pose will cause a larger change in what u, v are sampled in the image. Whereas, a vertex

pointing towards the camera is more stable and should be more dependable. Fig. 4.4 shows the

albedo estimation with and without dependability. We update Eqn. 4.11 to,

argmin
ρ j,L,N

p

∑
j=1

(
n

∑
i=1
‖di j( fi j−ρ jlᵀi n j)‖2 +λn‖n j−nt

j‖2

)
. (4.12)

What is not modeled by this dependability choice? First, any external occlusion, such as sun-

glasses. Second, landmark alignment errors. Third, expression differences. We will address these

issues with the localization step introduced in Sec. 4.3.3.4.

What is not modeled by this dependability choice? First, any external occlusion, such as sun-

glasses. Second, landmark alignment errors. Third, expression differences. We will address these

issues with the localization step introduced in Sec. 4.3.3.4.

4.3.3.3 Global Estimation

Now that we have a good idea of how to approach the normal estimation, we discuss how to

minimize the energy in Eq. 4.12. Note that Eq. 4.12 is not jointly convex, but it when solved in

an iterative approach, it has a closed form solution for ~ρ , L, and N independently. We begin by

initializing n j to the template surface normal at vertex j and ρ j to 1. We then alternate solving for

the lighting coefficients, albedo, and the surface normals until convergence. Solving lighting is an
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over-constrained least squares with the solution,

lᵀi = (fi ◦di)/(ρ̃ ◦N◦di), (4.13)

where ◦ is the Hadamard or entrywise product and ρ̃ is~ρ repeated 4 times to become the same size

as N. Similarly, albedo has a closed form solution,

ρ j = (dᵀjL
ᵀn j)/(dᵀjf j). (4.14)

Finally, the normals are solved via,

n j = (BᵀB+λnI)−1(Bᵀ(f j ◦d j)+λnnt
j), (4.15)

where B = ρ̃ ◦D◦L.

4.3.3.4 Local Selection

As mentioned in Sec. 4.3.3.2, the dependability measure only handles small landmark alignment

error, but does not consider expression changes, occlusions, or other potential correspondence

errors. To handle these other forms of error, we use a local selection process as proposed in [53]

to refine the photometric estimates. The goal of local selection is to find a collection of images for

each vertex that are in local agreement, and re-estimate the surface normal using only those images.

This prevents smoothing across all expressions, and can filter the occlusions. The basic approach

of local selection is to identify a subset of images B j for each vertex j and then re-minimize the
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photometric equation for that vertex’s normal:

argmin
n j

∑
i∈B j

‖di j(ρ jlᵀi n j− fi j)‖2 +λn‖n j−nt
j‖2. (4.16)

All of the prior work uses the same scheme of local selection [53, 72] which we term square

error localization. The subset is chosen such that the square error of the observed value for the

image matches the estimated value for the specific vertex, B j = {i | ‖ρ jlᵀi n j− fi j‖2 < ε}. This

localization scheme makes its decision solely on the observed value at one particular vertex. It also

uses the same loss function to select the local images as the global loss function used to initially

estimate the albedo, lighting, and surface normals. This may be advantageous because it forces the

localized result to remain close to the global result, while removing outliers, but since it only uses

one pixel value in the image for selection, it can be distracted by noise.

We seek to design a local selection scheme which is influenced by a larger area than a sin-

gle pixel and uses a loss function consistent with human visual perception. Structural similarity

(SSIM) is a measure of perceived quality between two images [89]. Initially used to measure

the quality of digital television, it typically uses a raw uncompressed image as ground truth and

compares against the encoded version as presented on a screen. SSIM is computed between two

windows x and y of common size from different images using the following equation:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
, (4.17)

where µx and µy are the mean of x and y, σ2
x and σ2

y are the variances, σxy is the covariance, and

c1 and c2 are constants used to stabilize the division. In the Matlab implementation, the window

is an isotropic Gaussian weighting with standard deviation γ of the surrounding pixels instead of a
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Figure 4.5: Raw image, synthetic image under estimated lighting conditions, and SSIM used for
local selection. Brighter indicates higher SSIM.

blocked window to avoid artifacts. SSIM was specifically designed to better match human visual

perception than standard measurements such as mean square error (MSE) or peak signal to noise

ratio (PSNR). We can also vary the window size (γ) of SSIM in order to enforce a larger area of

local similarity than a single pixel. For this reason, we propose using SSIM for local selection

instead of square error.

To select the subset of images for each vertex, we need to compute the SSIM at a vertex

on the face model, S, and not at a pixel in the image. To do this, we render a synthetic image

using the estimated per image pose and lighting and global albedo and normal. We then compute

the SSIM in the image space which gives us a different SSIM value for each pixel. Finally, we

backproject the SSIM image onto the face model to create S in the same way we created F in

Sec. 4.3.2.1.1. Figure 4.5 demonstrates this process for a single image. The local selection now

becomes B j = {i | si j > ε}.
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Figure 4.6: The mean curvature normal indicates how a vertex deviates from the average location
of its immediate neighbors, which can be evaluated as the Laplacian of the position. The mean
curvature H j can be evaluated through n.

4.3.4 Step 3: Surface Reconstruction

Given the localized surface normals n j that specify the fine details of the face, we desire to recon-

struct a new face surface X which matches the observed normals. The process is similar to Chp. 3,

but we summarize it again here.

We use a Laplacian-based surface editing technique motivated by [78]. The Laplace-Beltrami

operator is the divergence of a gradient field. Using linear finite elements, it can be discretized into

L , a symmetric matrix with entries L jk =
1
2(cotα jk + cotβ jk), where α jk and β jk are the opposite

angles of edge jk in the two incident triangles (see Figure 4.6), known as the cotan formula [66].

Geometrically, L measures the difference between a functions value at a vertex and the average

value of the neighboring vertices. As in [78, 97], we note that x jL = −n jH j, where H j is the

integral of the mean curvature at vertex j. What this means for us, is that we can use the estimated

surface normals to update the positions of the mesh assuming we can determine the mean curvature.

We estimate H j given a normal field. Using a discretization of H = ∇A · n, i.e., the mean
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curvature measures how fast the area changes when moving the surface along the normal direction.

The first variation of the area can be measured through the difference between ni and n j as follows,

H j =
1

4A j
∑

k∈N( j)
(cotα jk+cotβ jk) e jk · (nk−n j), (4.18)

where N( j) is the one-ring neighborhood of j, A j is the sum of triangle areas incident to j, e jk is

the edge from j to k (Figure 4.6). Note the cotan weights are identical to those from the Laplace-

Beltrami operator.

We put this together to perform surface reconstruction with an energy composed of three parts,

argmin
X

En +λbEb +λlEl. (4.19)

Then En = ‖XL +NHk‖2 is the normal energy derived from the Laplacian discussion where Hk

is a diagonal matrix of the vertex mean curvature integrals H j from the current face model. Eb =

‖XLb−XkLb‖2 is the boundary energy, required since the mean curvature formula degenerates

along the surface boundary into the geodesic curvature, which cannot be determined from the

photometric normals. We therefore seek to maintain the same Laplacian along the boundary with

Lb, jk = 1/|e jk| where |e jk| is the edge length connecting adjacent boundary vertices j and k. And

El = ∑i ‖siRi[X]landi + ti−Wi‖2
F , which uses the landmark projection error to provide a global

constraint on the face, without which, the integration of the normals can have numeric drift across

the surface of the face. Unlike Chp. 3 we do not include a shadow region smoothing since we use

the template normal as a regularizer during normal estimation.
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Algorithm 2: Adaptive 3D face reconstruction
Data: Photo collection
Result: 3D face mesh X
// Step 1

1 estimate landmarks Wi for each image
2 fit the 3DMM via Eq. 4.9 to generate template X0

3 remesh to the coarse resolution
4 for resolution ∈ {coarse, medium, fine} do
5 repeat
6 estimate projection si,Ri, ti for each image
7 establish correspondence F via backprojection

// Step 2
8 globally estimate L, ~ρ , and N via Eq. 4.12
9 local selection of images B via Sec. 4.3.3.4

10 re-estimate surface normals N via Eq. 4.16
// Step 3

11 reconstruct surface Xk+1 via Eq. 4.19
12 until 1

p‖X
k+1−Xk‖2

F < τ

13 subdivide surface

The solution ends up being linear,

(L 2 +λbL
2

b +λl ∑
i

s2
i CiCᵀ

i )X = NHkL +λbXkLb +
λl

n ∑
i

sRᵀ
i (t−Wi)Cᵀ

i , (4.20)

where Ci ∈R p×q is a sparse selection matrix. Each column of Ci has a single 1 indicating the vertex

index selected through landmark marching for the correspond to the 2D landmarks for image i.

4.3.5 Adaptive Mesh Resolution

Additionally, we propose a coarse-to-fine scheme for reconstruction. Starting with a low resolution

mesh allows the reconstruction process to find the low frequency features in an efficient manner.

Then, as the resolution increases, we can decrease the surface normal regularization to find the

high frequency details, while increasing the landmark reconstruction constraint to ensure the low

frequency details maintain their position.
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Here we describe the engineering details of the approach and present how all the steps fit

together in Algorithm 2. After personalizing the face model, we use ReMESH [5] to uniformly

resample the personalized mesh X0 to a coarse 6,248 (= p) vertices. The resampling is done

once offline on the mean shape and is transferred to a personalized mesh by using the barycentric

coordinates of the corresponding triangle. Within each resolution, steps 2 and 3 are repeated

until the surface converges. After convergence, one step of Loop subdivision [45] increases the

resolution of the mesh, multiplying the number of vertices by 4. Moving from the coarse to fine

level, we increase the localization selectivity by altering ε and we lower the template normal

regularization λn (Sec. 4.4.1.0.3) to rely more on the observed images. This helps the coarse

reconstruction stay smooth and fit the generic structure while allowing the fine reconstruction to

capture the details.

4.3.6 SSIM Quality Measure

Accurately measuring reconstruction quality in the absence of ground truth data is a difficult task.

Even with a ground truth scan of the face, the popular surface-to-surface distance measurement has

its flaws since there is no direct correspondence between surfaces. Typically, surfaces are aligned

(e.g., through iterative closest point) and for each vertex on the reconstructed surface, the error is

reported as the minimum distance to the ground truth surface and not the corresponding semantic

vertex. Such a measurement captures the overall similarity but places little emphasis on the high

frequency details like wrinkles. In light of this, the angle between the surface normals for the clos-

est point is sometimes reported. However, when ground truth scans are not available, the surface

reconstruction accuracy cannot be measured directly and must instead be measured indirectly. We

desire the indirect measure to have two properties. One, surface reconstruction errors should be

evident in the score. Two, it should align with human perception of the reconstruction.
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Considering the case where the only available information is the photo collection itself, we

propose to measure the reconstruction accuracy indirectly by using the reconstructed model to

render synthetic images under the same conditions as the real images and measuring the difference.

If the image conditions (pose and illumination) and albedo are known, this will satisfy the first

property since any change to the surface will result in a change to the rendered image. However, we

are using the estimated conditions and albedo so for a single image collection, it is trivial to change

the albedo for any surface to produce an identical synthetic image to the real image. Fortunately,

for multi-image collections (with different poses), property one is satisfied. To satisfy the second

property, we use SSIM as the comparison measure because, as mentioned in Sec. 4.3.3.4, SSIM

was developed to mimic human perception. We will verify this relationship in Sec. 4.4.2.2.

The SSIM quality measure for a reconstruction is given as follows. For each raw image from the

photo collection, a synthetic image is rendered using the image-specific pose and lighting condition

with the global albedo and surface estimate. The images are cropped tightly to the bounding box

of the face in the synthetic image and the background of the synthetic image is filled in with the

background from the raw image (Fig. 4.5). A single SSIM value from each image (mean of the

pixel-wise SSIM scores) forms a set of scores for the collection. Two collections are compared

directly by calculating if there is a significant difference between the two means of the collections

using a p-value of 0.01. Globally, the mean SSIM for the set provides an overall quality of the

reconstruction.

4.4 Experimental Results

We run a variety of experiments in order to qualitatively and quantitatively compare the proposed

approach to prior face reconstruction work. For baselines, we only compare against other photo
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collection designed approaches which use photometric stereo-based approaches [72, 53]. Stereo

imaging and video-based approaches are not compared against since they can make use of the

additional temporal information. Furthermore, since the proposed approach uses 3DMM fitting

for Step 1 to personalize the template, we do not compare against other 3DMM fitting approaches,

since any state-of-the-art 3DMM technique can be used in place for initialization. We also present

results exploring the effectiveness of different parts of the reconstruction process.

4.4.1 Experimental Setup

4.4.1.0.1 Data Collection We collect three distinct types of photo collections in this work.

First, Internet photo collections. For these, we use the Bing image search API with a person’s

full name to fetch a set of images. Occasionally images of the wrong person are included in these

collections due to incorrect search results or more than one person being in an image. As long as

this is infrequent, these images may be ignored through local selection. Second, synthetic images

are rendered from subject M001 of the BU-4DFE database [96] using the provided texture and

selecting random frames from the 6 expression sequences (Fig. 4.7). A Lambertian lighting model

re-illuminates the face with light sources randomly sampled from a uniform distribution in front

of the face. Third, personal photo collections. For these, we ask a person to provide a set of

their own personal photos from social media or their phones photo gallery with it pre-cropped to

remove other people from the images. In all cases, we use Bob [4] in Python to detect, crop, and

scale faces as described in Sec. 4.3.1.1. Ground truth scans are captured for personal collections

with a Minolta Vivid 910 range scanner at VGA resolution capturing 2.5D depth scans accurate

to ±0.03mm. Given frontal and both 45◦ yaw scans, we stitch them together using MeshLab to

create a full 3D model.
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Figure 4.7: Synthetic data with lighting (top), pose (middle), and expression (bottom) variation.

4.4.1.0.2 Metrics For quantitative metrics, we use two different measurements. For Internet

collections where we do not have a ground truth face shape, we use structural similarity (SSIM)

as a proxy measurement of the reconstruction error, described in detail in Sec. ??. For personal

collections where we have a ground truth surface, we compute the average surface to surface

distance. Both surfaces are aligned by Procrustes superimposition of the 3D landmarks from the

internal part of the face. The normalized vertex error is computed as the distance between a vertex

in the reconstructed mesh and the closest vertex in the ground truth surface divided by the eye-to-

eye distance. We report the average normalized vertex error.

4.4.1.0.3 Parameters The parameters for the algorithm are set as follows: τ = 0.005, λl =

0.01, λb = 10, λn = [1,0.1,0.01], square error ε = [0.2,0.08,0.08], and SSIM error ε = [0.65,0.65,0.65]

for coarse, medium, and fine resolution respectively.
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Figure 4.8: Qualitative evaluation of a diverse set of individuals from Internet photo collections.

4.4.2 Internet Results

4.4.2.1 Qualitative Evaluation

We begin by presenting qualitative results of the proposed reconstruction method on a diverse

set of subjects, spanning ethnicity and gender. While qualitative results are subjective and hard

to compare approaches, they do provide an overview of what types of details are captured in the

reconstruction, whereas numerical surface-to-surface measurements sometimes lose perspective of

the reconstruction quality. We strive not only for metrically correct reconstructions, but also for

visually compelling reconstructions. In Figure 4.8, we present a large sample of reconstructions

from Internet photo collections. The reconstructions are visually compelling and were generated

using anywhere from 25 to 100 images per person. Note the ability to even reconstruct hairstyles

which are not included in the 3DMM nor were directly considered in our approach. However, we

do see that facial hair often creates difficulty for the reconstruction since it is hard to establish
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Ours [72] [53] Ours [72] [53] Ours [72] [53]

Figure 4.9: Qualitative comparison on celebrities. The proposed approach incorporates more of
the sides of the face and neck.

correspondence with the same surface normal across images.

To visually place the proposed approach in comparison with prior work, we show reconstruc-

tions of the sample four celebrities used in [53] and [72], George Clooney (99 photos), Kevin

Spacey (143), Bill Clinton (179), and Tom Hanks (255). Figure 4.9 presents a side by side com-

parison between the various approaches. Due to the subjective nature of these reconstructions, we

simply say they are similar, but we include the largest surface area. For example, by including

areas outside of the internal face features, we capture the wrinkles to the sides of Clooney’s eyes,

and the smile lines on Spacey’s cheek.
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Figure 4.10: Sample rendering used for human perception experiment.
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Figure 4.11: Human-based PageRank scores for SSIM.
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4.4.2.2 SSIM Quality Evaluation

We seek to validate the hypothesis that the proposed SSIM quality measure is consistent with hu-

man perception of reconstruction quality. To this end, we design the following experiment. For

22 subjects, we collect Internet collections querying 100 images per person; after Python face

detection filtering, this leaves us with 53 images per person on average. Face reconstruction is

performed on the collection and the final shape and albedo is rendered under 5 viewpoints. The

set of SSIM scores for each collection is obtained as described in Sec. 4.3.6. Human perception of

reconstruction quality is subjective and it is a hard task to request humans to provide a single num-

ber ranking the quality of each reconstruction separately. Therefore, we design an easier question

where we present a pair of reconstructions and ask which "is a more visually compelling recon-

struction". The human may answer "top", "bottom", or "equal" for a score of 1,−1,0 respectively.

An example image pair is given in Figure 4.10. 6 random sets of 50 comparisons are given to

different pairs of human evaluators. The average human-to-human correlation within each set is

0.63.

(a) (b)

Figure 4.12: Best (top) and worst (bottom) reconstructions as determined by human (a) and SSIM
(b).

PageRank [63] can provide a global human ranking. We create a graph with subjects as vertices

and decisions as directed edges from the less compelling to the more compelling subject. PageRank
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produces a probability score for visiting a subject along random walks through the graph and

has been shown to accurately rank sports teams [31]. We compare human and SSIM scores in

Figure 4.11, with a correlation of 0.69 indicating SSIM is equivalent to a single human evaluation.

Figure 4.12 shows the best and worst subjects as determined by human and SSIM.

SSIM allows large-scale comparison with prior work. Internet collections for 100 actors,

singers, or politicians are captured by querying 50 images per person with an average of 28 im-

ages remaining after pre-processing. Comparing against [72], Fig. 4.13 plots a histogram of SSIM

quality score. We see a clear improvement for the proposed method.

One interesting note is the bimodal distribution of the scores. One mode at 0.7 is similar to

that observed in Fig. 4.11, and the other at 0.3 can be viewed as complete failures. We show

an example collection in Fig. 4.14. While it is hard to identify a common trend, observed fail-

ure collections contain strong specular reflection, wide age range, cartoon images, and repeated

images. Future work can explore identifying these conditions, and automatically filtering out the

problematic images before reconstruction.

4.4.2.3 Adaptability

We look at adaptability with respect to two different factors. One, the number of images in the

photo collection. A major critique of prior SVD-based photometric stereo reconstructions is their

dependence on a large number of images, typically over one hundred, which is too many for

numerous applications. Two, the resolution of the images. By default, we have scaled all images to

the same size ∼110 pixel eye-to-eye distance. We desire to know how well the proposed approach

works for very low resolution images ∼20 pixel eye-to-eye distance.

Figure 4.15(a) shows the adaptability of the reconstruction for George Clooney. As the number

of images increases, the reconstruction becomes cleaner, but the overall details are still present
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Figure 4.13: Histogram of reconstruction performance.

Figure 4.14: An Internet image collection that results in a complete failure reconstruction.

with few images. We also test reconstruction for low resolution images and find it is able to capture

wrinkles on the forehead since the sampling across multiple images acts as super-resolution.
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Table 4.1: Synthetic Surface-to-Surface Error.

Method Neutral 30◦ Yaw Expression
Ours 3.22% 3.82% 4.40%
[72] 6.13% 7.48% 6.59%

4.4.3 Synthetic Results

The synthetic dataset allows testing under known assumptions to see robustness to pose and ex-

pression independently. We generate three sets of 50 images: frontal with neutral expression,

neutral expression with random yaw angles between ±30◦, and frontal with random expressions

(Fig. 4.7). Error is reported as the surface-to-surface distance to the neutral expression model. Ta-

ble 4.1 shows the proposed approach outperforms prior work in all scenarios. We see the proposed

algorithm is more robust to pose than expression variation.

4.4.4 Personal Results

4.4.4.1 Local Selection

We explore the effects of local selection on the personal photo collections. There are 10 personal

photo collections ranging from 6 to 50 images with a median of 24. Table 4.2 shows the different

choices for local selection showing that local selection improves performance with SSIM perform-

ing better than square error. Exploring why SSIM performs better, Tab. 4.3 shows the performance

based on the window size γ , or the size of the local area to consider. When γ is very small, it

behaves similar to the square error method where only a single point on the face contributes to the

selection. The error decreases as the selection area increases until it is too broad of an area.

Table 4.2: Local Selection Error.

Method None Square Error SSIM
Error 4.57% 3.93% 3.58%
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Table 4.3: SSIM Radius Error.

γ 0.5 1.5 2.5 3.5
Error 4.11% 4.81% 3.58% 4.86%

4.4.4.2 Adaptability

We perform a thorough experiment comparing the adaptability of the proposed method to the

SVD-based approach of [72]. We split each photo collection into 4 sizes, 25%, 50%, 75%, 100%

of the images and use the high and low resolution. The results for all 10 photo collections are

averaged together in Table 4.4. We make a few notes. First, the proposed method performs better

for all collection sizes. Two, the proposed method better adapts to small collections. While the

SVD-based approach degrades by 1.44%, the proposed method only degrades by 0.46%

Table 4.4: Personal Collection Adaptability.

% of Images 25 50 75 100
Ours - Low 4.10% 3.85% 3.78% 3.65%
Ours - High 4.04% 3.54% 3.53% 3.58%
[72] - Low 5.54% 4.78% 4.63% 4.34%
[72] - High 5.56% 4.77% 4.70% 4.10%

4.4.5 Discussions

4.4.5.0.1 Efficiency Written in a mixture of C++ and Matlab, the algorithm runs on a com-

modity PC with an Intel i7-4770k 3.5 GHz CPU and 8 GB RAM. We report times w.r.t. 100-image

collections. Preprocessing, including face detection, cropping, and landmark alignment, takes 38

seconds. Template personalization takes 5 seconds. Photometric normal estimation and surface

reconstruction take 2, 11, and 45 seconds for each iteration of the coarse, medium, and fine resolu-

tion, respectively. A typical reconstruction of George Clooney takes 5 coarse iterations, 2 medium,

and 1 fine for a total time of < 1.5 minutes.
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Figure 4.15: (a) George Clooney with different quality images. (b) Reconstruction without coarse-
to-fine process. (c) Personal collection with different quality images.

4.4.5.0.2 Coarse to Fine The coarse-to-fine scheme benefits both efficiency and quality. If

the coarse-to-fine scheme is not used and instead the reconstruction starts at the fine resolution,

it takes 4 iterations to converge for a total time of 3.7 minutes more than double the time. Also,

Fig. 4.15(b) shows the resultant reconstructions which are similar for large amounts of images, but

noisy for small collections since the coarse step allows for more template regularization.

4.5 Summary

We presented a method for reconstructing a 3D face model from an unconstrained 2D photo collec-

tion which adapts to lower quality and fewer images. By using a 3DMM to create a personalized

template which adaptively influences reconstruction in a coarse to fine scheme, we can efficiently

create a more accurate model than prior work as demonstrated by experiments on synthetic and

real-world data. There are numerous paths for future work, e.g., fusing 3DMM and photometric
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stereo-based reconstructions so it can gracefully degrade down to a single image, and automatically

identifying the detail level of reconstruction possible from the photo collection.
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Chapter 5

Conclusions and Future Work

Reconstructing faces based on unconstrained photo collections is extremely challenging due to

the highly non-rigid nature of human faces and the lack of known information about the pose and

lighting for the images. Throughout this work, I have presented an approach to reconstruct a true

3D surface including wrinkle level details that can adapt to small photo collections.

5.1 Limitations

While it is desirable for the proposed reconstruction process to work under any situation, there are

still some limitations of the current approach.

5.1.0.0.1 Landmark reliance To establish correspondence across the images, landmarks alone

are used when estimating the pose of the face model to each image. It is known that 2D landmark

alignment approaches have error. When failed landmark alignment occurs, under the best case

scenario, it never selects any pixels from that image for local selection and the surface normal

estimation is unaffected. However, a more likely scenario, is that the misaligned parts of the image

contribute an incorrect surface normal and introduce error in the reconstruction process.

5.1.0.0.2 Expression variation The only handling of expression exists within the initial 3DMM

template fitting. After fitting, the average expression from the collection is used throughout the re-

mainder of the process. Differences in expression cause non-rigid deformations of the face that
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affects alignment and the surface normals of the face. We make no specific assumptions about

expressions and leave the local selection process to filter out differences in expression.

5.1.0.0.3 Specular reflection The Lambertian lighting model is known to be a poor assumption

for shiny surfaces. When humans sweat, the skin clearly exhibits specular reflections, particularly

on the nose and forehead. A more complex lighting assumption is necessary to accurately handle

these scenarios.

5.1.0.0.4 Continuous surface The mesh we use is closed except for the back of the head. In

practice, the majority of the face is a continuous surface, but there are areas that the model breaks

down. The eyelids and mouth both have discontinuities that are unable to be modeled with the

current mesh. Particularly when the dominant expression is smiling, where the lips should be

separate from the teeth, the closed mesh forms a smooth continuity between the different physical

surfaces.

5.1.0.0.5 Hair Both facial hair and longer hair on the top of the head present difficulties. Cor-

respondence between images is crucial for the photometric stereo approach. However, any pertur-

bation of hair follicles between images causes a different surface normal to be observed. As such,

facial hair usually presents as noise in the reconstruction, and long straight hair will show up as

vertical lines on the surface of the forehead.

5.2 Future Work

There are a number of potential questions that arise from this work. I will address some of the

most common or pertinent.
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5.2.1 Texture Basis

The 3DMM contains a texture basis, how can this be incorporated into the reconstruction

process? It is true that the 3DMM contains texture basis along with the shape basis. One question

is how much information is contained in the appearance, and how likely is an arbitrary face to be

well represented in the basis. It is known from active appearance models, that the shape distribution

for faces is significantly more compact than the appearance. In [60], they use more than 3 times

as many appearance vectors as shape to capture the same amount of energy in their training set. It

is unclear how well using the same 200 faces for texture alone can generalize for unseen textures.

Furthermore, a low-rank modeling is unlikely to be sufficient for the non-linear manifold of facial

textures. For instance, different ethnicities or genders will likely form a multi-modal distribution.

I tried restricting albedo to a linear combination of the provided texture. That is, changing the

albedo to,

ρ = ρ̄ +
199

∑
k=1

βkρk, (5.1)

and solving for ~β . For larger collections, this was too restrictive and actually degraded the re-

construction quality. The hypothesis is that the small training set of textures is not sufficient to

represent an arbitrary face.

Another possibility is to use the albedo in a regularization instead of a restriction. Similar

to [52] where they reconstruct a single image by keeping the albedo close to the average albedo,

i.e.,

Ealb = ‖∆G∗ρ−∆G∗ ρ̄‖2, (5.2)

where ∆G∗ denotes convolution with the Laplacian of a Gaussian to smooth out the albedo con-

straint. This idea is reasonable, and could be implemented in our system in order to improve the
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reconstruction for single image collections.

Currently, for a single image collection, the albedo estimation absorbs all difference due to

normal differences from the 3DMM fit template. This is due to the regularization on the surface

normal, but no constraint on the albedo. The result, is that the reconstruction is unchanged after

3DMM fitting for a single image. Including an albedo regularization will allow changes for a

single image, perhaps allowing some wrinkles to appear in the reconstruction.

5.2.2 Multiple Reconstructed Shapes

Can more than one shape be recovered from the collection? Or taken to the extreme, can

a different reconstruction be recovered for each image in the collection to match the individual

expressions? This is a difficult task. One main assumption in our algorithm is consistency of the

surface normals across the collection. When the face deforms for different expressions, it actually

violates this assumption. We use local selection to choose a consistent set of images for each part

of the face.

To reconstruct different models for each photo, we could deform the model using the expression

coefficients for each image, and treat the wrinkles as a common bump map. However, it is known

that different expressions produce different wrinkles, so this would not be accurate and would

likely appear fake.

If enough images are present in the collection, it could be possible to cluster the images by

expression, form a different independent reconstruction for each expression, and use those recon-

structions to create a person specific blend shape. This would allow different wrinkles for different

expressions, but would require very large photo collections.
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5.2.3 Face Recognition Application

How does the reconstruction improve face recognition? This is a good question, that needs more

research. As a cursory answer, in [101], they demonstrate the ability of 3D face reconstruction from

a single image to create a normalized image. Their normalized image, is the image rendered in a

frontal viewpoint with the expression removed. Such normalization demonstrates improvement on

the Labeled Faces in the Wild dataset.

Our approach can be viewed as a generalization of [101] since it will find the same reconstruc-

tion for a single image. The question then, is can it improve for multiple image collections over a

simple max or mean fusion of individual results. That is, does the improved reconstruction from

multiple images further improve face recognition.

To answer this question, we use the IJB-A dataset [54]. IJB-A contains extremely challenging

images with high amounts of occlusion, lighting, and pose variation. It also contains sets of images

to be used instead of single images. IJB-A consists of image collections and sample videos for 500

people. There are a minimum of 5 images per person. We design a few experiments on this

database to evaluate the effectiveness of the reconstruction.

Figure 5.1: Sample synthetic rendering of subject from photo collection using estimated albedo.

First, we withhold 2 images per person as probes and use the remaining images to form gallery

photo collections. We do not consider the videos since they contain consistent lighting that does

not satisfy our photo collection assumptions. We perform reconstruction on each gallery collection

and render synthetic images under a variety of poses using the estimated albedo from the collection
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(Fig. 5.1). For face recognition we use the deep neural network from [87] that is state-of-the-art

for face identification at scale. An identification experiment is run, where each probe is com-

pared against the gallery with and without including the synthetic images. Results are provided in

Fig. 5.2. There is almost no change when including the synthetic images. The main reason is due

to the quality of the estimated albedo from the challenging photo collections. Establishing corre-

spondence across the collection is challenging, and Fig. 5.1 shows one of the better estimations

still containing artifacts. Most of the synthetic images have low match scores to any real probe

image.
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Figure 5.2: CMC curve comparing identification of IJB-A and adding synthetic images rendered
from the proposed reconstruction. The synthetic images make an insignificant decrease in identifi-
cation accuracy.

We also tried a filtering approach for the gallery. IJB-A contains some extremely poor images.

Using the structural similarity (SSIM) quality measure for an image, we are able to evaluate, how

well the image matches the reconstruction of the person. Images with low SSIM scores probably

will not match well to this subject and may be discarded. Figure 5.3 shows the identification

performance on the full collection and using a subset where images lower than the global mean

SSIM 0.68 or the worst 15% of images from a single collection are filtered out of the gallery.

Under this condition, the size of the gallery may be reduced substantially while still maintaining
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the same identification performance.

Figure 5.3: CMC curve comparing baseline IJB-A to a filtered subset of IJB-A where the images
removed had low structural similarity score based on the reconstructions. The filtered images have
an insignificant increase in identification accuracy.

Overall, these recognition results are encouraging, but leave room for future work to explore

how best to use the reconstruction results from a photo collection.
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APPENDIX

OTHER PUBLICATIONS

Typing Behavior based Continuous User Authentication

We hypothesize that an individual computer user has a unique and consistent habitual pattern of

Typing Behavior, independent of the text, while typing on a keyboard. This habit manifests it-

self visually through the shapes and motions of the hands, as well as audibly through the sounds

produced when pressing and releasing keys. Given a webcam pointing towards a keyboard, we

develop real-time computer vision and acoustic algorithms to automatically extract the habitual

patterns from the video and audio streams and continuously verify the identity of the active com-

puter user.

Unlike conventional authentication schemes, continuous authentication has a number of ad-

vantages, such as longer time for sensing, ability to rectify authentication decisions, and persistent

verification of a user’s identity, which are critical in applications demanding enhanced security.

Traditional biometric modalities such as face and fingerprint have various drawbacks when used in

continuous authentication scenarios such as privacy concerns and interference with normal com-

puter operation. We propose typing behavior as a non-intrusive privacy-aware biometric modality

that utilizes standard interactions with the keyboard peripheral.

Visual Typing Behavior

To capture the unique and consistent hand movements from typing, we use a simple webcam

pointed at the keyboard. Given the video, the proposed system segments the hands from the back-
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Figure 4: Overview of visual typing behavior. A webcam captures a video of the hands while
typing on a keyboard and uses computer vision algorithms to detect and segment the hands and
uses the shape information over time to verify the current computer user.

ground and separates the left and right hand. A shape context based on the silhouette is extracted

from each hand, which is combined with the hand position relative to the keyboard. We also pro-

pose a novel extension extension of Bag of Phrases, Bag of Multi-dimensional Phrases, where a

probe video finds corresponding hand shapes across the temporal domain, independently for each

hand.

Figure 5: Overview of acoustic typing behavior. A microphone captures the sound produced from
keypresses and extracts different informative features to determine the computer user.
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Acoustic Typing Behavior

Given the keyboard sound recorded by the webcam, our system extracts discriminative features

and performs matching between a gallery and a probe sound stream. Motivated by the concept of

digraphs used in modeling keystroke dynamics, we learn a virtual alphabet from keystroke sound

segments, from which the digraph latency within pairs of virtual letters as well as other statistical

features are used to generate match scores. The resultant multiple scores are indicative of the

similarities between two sound streams, and are fused to make a final authentication decision.

Typing Behavior Dataset

We collect a first-of-its kind keystroke database in two phases. Phase 1 includes 56 subjects typing

multiple same day, fixed and free text, sessions. It includes the acoustics and video information.

Phase 2 includes 30 subjects typing mutliple free text sessions on different days across months. It

includes the video information as well as keystroke timing information for use with conventional

keystroke dynamics.

This dataset is released in two different forms. Acoustics: 45 subjects from phase 1. Visual:

Full dataset. This dataset is provided for non-commercial use.

Publications

1. Joseph Roth, Xiaoming Liu, Arun Ross, and Dimitris Metaxas, “Investigating the Discrimi-

native Power of Keystroke Sound,” IEEE Transactions on Information Forensics and Secu-

rity, Vol. 10, No. 2, pp. 333-345, Feb. 2015.

2. Joseph Roth, Xiaoming Liu, and Dimitris Metaxas, “On Continuous User Authentication via

Typing Behavior,” IEEE Transactions on Image Processing, Vol. 23, No. 10, pp. 4611-4624,
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Oct. 2014.

3. Joseph Roth, Xiaoming Liu, Arun Ross, and Dimitris Metaxas, “Biometric Authentication

via Keystroke Sound,” in Proceedings of the 6th IAPR International Conference on Biomet-

rics (ICB) 2013, Madrid, Spain, June 4-7, 2013.

Person Re-Identification

Person re-identification seeks to locate the same individual across multiple non-overlapping cam-

eras within a short time frame. It is an enabling technique for video surveillance and has many

applications such as tracker linking, person retrieval, searching missing children in public spaces,

etc. One way of performing person re-identification is to use a set of human describable attributes

of the person such as, male, red shirt, has backpack, to return a set of images based on a verbal

description.

In this work, I present an algorithm for jointly learning a set of mid-level attributes from an

image ensemble by locating clusters of dependent attributes. Human describable attributes are

an active research topic due to their ability to transfer between domains, human understanding,

and improvement to identification performance. Joint learning may allow for enhanced attribute

classification when there is inherent dependency among the attributes. We propose an agglomer-

ative clustering scheme to determine which sets of attributes should be learned jointly in order to

maximize the margin of performance improvement. We find the proposed algorithm improves the

attribute classifier accuracy as well as the person re-identification task.

1. Joseph Roth and Xiaoming Liu, “On the Exploration of Joint Attribute Learning for Per-

son Re-identification,” in Proceedings of the 12th Asian Conference on Computer Vision

(ACCV), Singapore, Nov. 1-5, 2014.
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Hair Recognition in the Wild
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Figure 6: A hair matcher takes two images and their corresonding segmented hair mask and deter-
mines if they belong to the same subject or different subjects.

This work presents an algorithm for identity verification using only information from the hair.

It is well known that humans utilize hair for identification, especially under challenging situations

when the face is occluded, but little work exists to replicate this artificially. We propose a learned

hair matcher using shape, color, and texture features derived from localized patches through an

AdaBoost technique with abstaining weak classifiers when features are not present in the given

location. The proposed hair matcher achieves 71.53% accuracy on the LFW dataset. Hair also

reduces the error of a commercial off-the-shelf face matcher through simple score-level fusion by

5.7%.

1. Joseph Roth and Xiaoming Liu, “On Hair Recognition in the Wild by Machine,” in Pro-

ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence (AAAI 2014),

Quebec City, Canada, July 27-31, 2014.
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