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ABSTRACT

COLOR GRAPHICS IN ENGINEERING DESIGN

By

Robert Alan Coviak

The interest in color graphics has been growing rapidly in

the past few years. A great deal of effort has been expended

finding ways to produce high quality, visually pleasing shagggfi

images. Color_graphics can also be viewed as a tool to display

engineering information. Shaded color displays of images open

up another dimension not possible in traditional line drawing

methods.

This thesis reviews the techniques which have been developed

to produce visually pleasing shadedflimages._ It is then shown that

these {EEEEiaBé§”E§§”Eé less than ideal for some important engineer-

ing applications and alternatives are suggested which are better

suited to engineering use.
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Chapter 1

INTRODUCTION

The interest in color graphics has been growing rapidly in

‘ the past few years. A great deal of effort has been expended

finding ways to produce high quality, visually pleasing shaded

images. There has also been a lot of interest in producing

realistic animated films.

We can also view color graphics as a tool to carry and

display engineering information. Shaded color displays of images

open up another dimension not possible in conventional line

drawing methods. This is particularly useful in design problems

involving parametric surfaces. We want to be able to view the

surfagggfifggmgyarious angles andhwith various light_$nunce.f

orientations. Color can then be used to assess several types of

surface conditions that are extremely difficult, if not impos-

sible, to assess using conventional display methods such as flow

lines and sections. This color application demands a faithful

representation of the characteristics of the image more for

utility than for realism.

In Chapter 2 we will review some terminology in the graphics

area. Methods of intensity calculation including various



shading rules, reflections, shadows, and ray tracing will be

discussed in Chapter 3. Chapter 4 will discuss three methods for

displaying scenes composed of planar polygons. Three methods

for displaying smoothly shaded parametric surfaces will be re-

viewed in Chapter 5. Chapter 6 presents recent research at the

Case Center for Computer-Aided Design involving a point by point

display technique for parametric surfaces.



Chapter 2

TERMINOLOGY

In this chapter we will explain some of the terminology that

is commonly used in color graphics.

The object space is the coordinate system in which the

objects in a scene were originally defined. The image space
 

is the coordinate system related to the display screen. This

coordinate system is shown in Figure 2-1. Linear transformations

relate object space to image space.

A raster scan device is a digital display device. A tele-

vision set is an example of this type of device. The Smallest

element of the raster scan display screen is a pixel, Pixels are

often thought of as points, but should more appropriately be

thought of as rectangles. Thg_§hage_gr,cnlor‘gt_each_pixe1,cane

be set independently of other pixels. A row of pixels across the '
 

screen is a sggg_ljng, On a raster scan device, the screen is

displayed in scan line order. Pixels are displayed starting at

the upper left corner of the screen and proceeding a scan line at

a time down the screen, as in Figure 2-2a. To reduce flicker,

many raster screens use an interlaced scan, shown in Figure 2-2b.

The\current colorvalue of each pixel is stored in afr2m£_l

A buffer. This buffer has one entry for each pixel on the screen.



 

 

Scan Line

  

El

Pixel

////7 Screen

Z

 

   

Figure 2-1. Display Screen Environment.
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Figure 2-2a. Scan Line Order. Figure 2-2b. Interlace Scan.



These entries may consist of from one bit for a monochrome display,

up to eight or more bits for a color display. The depth buffer
 

is similar to the frame buffer. The screen space 2 coordinate of

each point being displayed is stored in the depth buffer. This

allows the depth buffer to be used for hidden surface removal.

Because raster scan deviCes are digital devices, we are con-

fronted with aliasing. Aliasing consists of a group of apparent

defects including jaggedfllines and lost detail caused by insuf-

ficient sampling of the objects being displayed. Reference [6]

presents a comprehensive discussion of this topic.

The image displayed by the raster scan device can be shaded

according to any of a wide variety of methods. The next chapter

will discuss some of these methods.



Chapter 3

SHADING

This section describes the shading rules that are currently

in wide use. These rules can be divided into two major groups:

those that use only local information to shade a pixel, and those

that use global information.

3.1 Local Methods

In the local category, there are pointwise methods and

methods that use interpolation to find the shade at a pixel.

We will examine the pointwise methods first.

"(V

3.1.1 Pointwise Intensity Functions

The simplest method is

I = r-d (3.1)

where d is the diffuse illumination of the scene, and r (53) is

the reflectance of the object. This simple rule yields constant

shade over an object, regardless of the position of the viewer,

and does not allow for point light sources. To allow for point

light sources, we can use:



I = r-cos(e)-s (3.2)

where 6 is the angle between the incoming light ray and the

normal to the surface, as in Figure 3-1. The intensity of the

light source is s. In this model, the position of the viewer

does not affect the shade at a point and hence disallows specular

reflection or highlights.

To allow for specular reflection, we use:

I = P(e)cos(B)" (3.3)

where B is the angle between the reflected light ray and the

viewing ray, and P(B) is the specular reflectance function of

the surface. The use of n allows different surfaces to have

different sized highlight areas. The value of n is determined

by trial and error, based on how shiny the surface is.

Combining Equations (3.1), (3.2) and (3.3) yields:

1 = s[P(B)cos(B)n + r-cos(e)] + r-d (3.4)

This model allows for diffuse and point light sources, viewpoint-”

depengggffléhééiflfla_énéwhighlights. More detailed relationships

are required to account for wavelength dependent effects, colored

light sources, or surfaces which have an inherent color.

When the equations above are applied to surface based al-

gorithms that do not use interpolation, very realistic images are

possible, limited only by the sophistication of the intensity
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Figure 3-1. Shading Geometry.



function. This is the case because all the information needed to

shade a certain point is available at that point. When these

intensity functions are applied to thewpglygon based algorithms,

however, thengive the objects in the scene a distinctly faceted

appearance. This is fine for block type scenes. But for Curved

surfaces, this is not satisfactory. When displaying curved'

surfaces, we do not want to inject discontinuities that do not

exist in the data base. To remove these facets and achieve

“a“

smooth shading, more sophisticated methods are necessary.

3.1.2 Gouraud Shading

Gouraud [7] developed a method to produce smoothly shaded

polygons. To achieve continuity of shade across polygon bounda-

ries, normals at A, B, C, and D must be determined, as in Figure

3-2. These normals must be determined uniquely for each vertex.

The normals can be computed as the average of the normals of the

adjacent faces. Or preferably, if the necessary surface des-

criptions are available, they can be computed directly from the

surface.

Referring to Figure 3-2, the quantities S(A), S(B), S(C), and

5(0) can be computed using any of the pointwise shading rules. The

shade of edge points at E and F are computed by interpolating

between the appropriate vertices. Then for a point on a

scan line on a visible segment,

5(a) = (l-a)S(E) + aS(F) (3.5)



lO
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Figure 3-2. Gouraud Shading.
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where

a = (X(G)-X(E))/(X(P)-X(E))- (3.6)

This will yield continuous shading over the surface. The

shading has a discontinuous first derivative. This discontinuity

causes a visually apparent flaw known as the Mach band effect [11].

Also, special action must be taken to defeat the smooth shading

where one needs to display an abrupt change in the surface normal

vectors. This could occur, for instance, due to a corner or

crease in the scene.

3.1.3 Phong Shading

Phong [2] developed a method to reduce, though not eliminate,

the disturbing Mach band effect which is evident in Gouraud

shading. Phong's method is similar to Gouraud's, but Phong

interpolates normal vectors rather than intensities. In Figure

3-3, the normal vectors at edge points E and F are computed by

interpolating between the normals at A, B, C, and D. The normal

vector at point G is then computed by interpolating between the

normals at E and F. This interpolated normal is then used in a

shading rule to calculate the intensity for the pixel at G. This

reduces the noticeability of the Mach bands. As with Gouraud

shading, special attention must be paid to areas where the user

desires discontinuity in shade.
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Figure 3-3. Phong Shading.
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3.2 Global Shading:Methods

The second major class of shading algorithms includes those

that use global information to shade a pixel. These algorithms

take into account not only the object to be displayed, but also

the position of this object relative to other objects in the

scene.

A limited amount of interaction between objects in a scene

is exploited in the simulation of transparency. In the screen

space, points interact to form the displayed image. They are able

to interact based on their respective transmission coefficients.

The objects must have the same X and Y location on the screen for

this to happen. In global techniques, objects need not be near

each other in the screen space in order to interact.

3.2.1 The Whitted Display Technique

The global technique described here was developed by Whitted

[l7]. Whitted's algorithm uses a method known as ray tracing.

In ray tracing, rays are followed from the eye point, through each

sample point in the screen, to the objects in the scene. The

ray does not stop when it hits the first object in the scene.

New rays are generated in the reflected and refracted directions

at each intersection, as well as in the direction of each light

source. This is seen in Figure 3-4. The intensity of each of

these rays, as well as the direction of the refracted ray, is

determined by the appropriate surface property coefficients. This

intersection process continues until none of the generated rays

intersect any objects.
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Using this technique, an object can be visible as a re-

flection in an object, even though another object lies between it

and the eye point. This adds a great deal of realism to scenes,

especially when there are highly reflective or transparent ob-

jects in the scene. This would not be possible in a method using

only local information.

3.2.2 Shadows
 

Another shading algorithm of note was developed by Williams

[18]. This algorithm does not deal with shading directly, but it

deals with casting curved shadows on curved surfaces. It does

not deal with how to calculate intensities for objects, but with

how to determine if they are in a shadow.

Two complete views of the scene are constructed. The method

used for generating these views is not critical, as long as all

depth and hidden surface information is retained. The first of

the views is constructed from the point of view of the light

source. The shading values do not need to be calculated. The

second view is constructed from the location of the eyepoint. In

the absence of shadowing, this would be the view that would be

displayed. All shading information is calculated and retained.

As each visible point in the second view is generated, it

is transformed into the space of the first view. The trans-

formed points are then checked, using depth information from both

views, to see if it would be visible to an observer located at

the light source. If the point is not visible from the light

source, it is in a shadow, and its intensity is adjusted from
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its original unshadowed intensity. This allows one surface to

cast a shadow on another surface.

The following two chapters will describe various techniques

to solve the hidden surface problem. ThéfdeEEEEQEIEEDIQEwEOW'

binedwith the techniques in this chapter to form a complete

shaded image with hidden surfaces removed.



Chapter 4

POLYGON DISPLAY METHODS

This section describes three algorithms for displaying

shaded scenes with hidden surface removal: Warnock; Newell,

Newell, and Sancha; and Watkins. The data bases for each of

these methods are planar polygons. The faces are represented

only as a set of ordered vertices, with internal information

derived from the equations of the plane.

All three of these methods are classified as image-space

methods as opposed to object-space methods. This means that

prior to all of these algorithms, the data must be translated and

rotated into viewer's coordinate system, it must undergo per-

spective transformation, and it must be windowed into the screen

space.

These methods, plus simple shading rules, lead to faceted

approximations to curved scenes. If compatible, more complex

. shading methods such as Gouraud or Phong yield smooth shading.

These methods have been used for years to produce quite high

quality, visually pleasing images [10].

4.1 The Warnock Method

The Warnock method [15] can be classified as an image-space depth

priority algorithm. It views the screen as being made up of a

17
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collection of homogeneous areas, called windows. If a face com-

pletely covers a window, and it is the face closest to the viewer,

then the window can be displayed. Otherwise the window is divided

into four smaller windows and the process is repeated.

There are three possibilities resulting from testing a

window, shown in Figure 4-1. First, one or more faces completely

cover the window. These faces are called surrounders. The

closest of the surrounders is called the critical surrounder.

The critical surrounder must be tested at each of the corners of

the window against all of the other surrounders. If it is closer

to the viewer than all of the surrounders, the window is called

homogeneous and it can be displayed.

The second possibility is that one or more faces inter-

sect the window, but do not surround the window. This case

calls for further X-Y subdivision of the window. The exact

method of subdivision is not critical. Consider splitting it

into four equal subwindows. The process is then repeated on each

of the four subwindows in turn.

The third possibility is that all faces completely miss the

window. This indicates that the window is blank and can be

colored the background color.

The algorithm avoids unnecessary calculations by passing

relevant faces down to subwindows when they are formed. This

means that a subwindow is tested against a face only if the

window from which it was made was tested against the same face.

The major drawback of this method is that the windows to

be shaded are generated in a random order, and are of varying
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Figure 4-1. Testing Polygon Faces in the Warnock Method.
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sizes. This is not a convenient form if the image is to be

displayed on a raster scan device. The windows can be mani-

pulated to be compatible with a raster scan device, but a large

amount of sorting is required [5]. Also, this random order is not an

easy form from which to apply antialiasing techniques.

4.2 The Newell, Newell, and Sancha Method

The Newell, Newell, and Sancha method does a 2 sort on each

face's centroid to determine 2 priority of all faces in the scene

[9]. The Z sort orders all faces according to how far they are

from the eye in the Z direction. The resultant priority list is

used to generate intensities. These intensities are then written

into a depth buffer in increasing priority. This will fail in

cases involving cyclic overlap, large faces, or areas where

penetration occurs. These are shown in Figure 4-2. In both

cases, smaller faces are needed because there exists no correct

priority with the current face configuration.

The method works well with numerous small faces. This would

be the case in a model of a curved surface. It also adapts well

to the centroid of each distinct group of faces. Once the priority

of the groups is determined, the individual groups can be handled

separately.

To handle cyclic overlap, large faces, or areas where pene-

tration occurs, an extended algorithm has been developed. The

face furthest from the eye is tested against any face that it

could obscure. The first step of the extended algorithm is a
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Figure 4-2a. Cyclic Overlap with Polygon Faces.

 
 

Figure 4-2b. Large Polygon Faces.

-'

Figure 4-2c. Penetration of Polygon Faces.
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test for overlap in Z. This is done by checking whether a situ-

ation as in Figure 4-3 occurs. This happens when the vertex of

polygon A closest to the viewer is closer to the viewer than the

vertex of B which is furthest from the viewer. This is followed

by a similar test for overlap in both X and Y. This is necessary

because face A can only obscure face 8 if they overlap each other

in both X and Y. The final test is to see whether one of the

faces lies completely in the front or back half space created by

the plane of the other. This is done by testing whether all of

the vertices of one face lie behind the plane created by the

other face. This is shown in Figure 4-4. If the priority of the

two faces cannot be determined using the above steps, one of the

faces is split and the process is repeated using the two fragments.

An advantage of the depth buffer approach is that trans-

parency effects can be simulated. This is done by partially

overwriting, using a transmission coefficient, in the depth

buffer. If one point is in front of another, it does not neces-

sarily replace it in the depth buffer, but a combination of the

two results. The characteristic of the combination depends on

the transparencies of the faces involved. To achieve proper

rendering of transparency, points must be written into the buffer

from back to front.

4.3 The Watkins Method
 

Watkins also developed a polygon display algorithm [16]. This

is the most widely used of the three methods, being available from

Evans & Sutherland [l4] and with MOVIE.BYU [8]. It is classified
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as an image-space scan line algorithm. The polygons are made up

of a set of ordered edges. The edges are processed separately,

but each one carries a tag indicating which polygon it is a part

of.

The algorithm starts with a preprocessor. This is a scan

line screening of all edges. This screening determines which

edges begin or end on each scan line. These intersections are

ordered in X from left to right, establishing when each edge

becomes active, and for how many scan lines it is active. The

program then saves calculations by working only with the edges

that are active on the current scan line.

The next step, the Y scan, computes a set of spans for

each scan line, as in Figure 4-5. These spans are sections of the

scan line on which the same face is visible. Within each span,

all active faces (a face is active whenever one or more of its

edges are active in both X and Y) must be tested in Z to deter-

mine which one is visible. That face will then stay visible as X

increases along the scan 1ine at least until the next edge inter-

section.

The process has been sped up by assuming that the ordering

of spans on one scan line is a good place to start when processing

the next scan line. This is called scan line coherence. For

example, if no edges enter or leave the active list, and the

order of intersections does not change between scan lines, the

visibility of all of the spans is the same as in the last line.

This indicates that they can be displayed immediately, saving a

significant portion of the calculation time for that scan line.



 

 

  
 

Figure 4-5a. Sample Spans in Watkins Method,X-Y.

 

  
 

Figure 4-5b. Sample Spans in Watkins Method,X-Z.
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Even more aggressive uses of scan line coherence are possible, as

indicated in Reference [16].

The last step, the X scan, shades one scan line at a

time. The Watkins method can be used with a pointwise intensity

function, as well as with either Gouraud or Phong shading. The

Watkins algorithm also uses a very efficient method for sorting

edges in Z, the so-called logarithmic sort. The major advantages

of the Watkin's method are its speed and the fact that it generates

intensities in scan line order. This is very convenient when

antialiasing techniques are to be employed.

The above methods are capable of producing visually pleasing,

smoothly shaded images. This is appropriate for many applications.

But if the data base is composed of parametric surfaces, we may

want to operate directly on them without first breaking them up

into polygons. The following chapter will describe three methods

for displaying parametric surfaces directly.



Chapter 5

DISPLAY METHODS FOR PARAMETRIC SURFACES

Most computer-aided design of curved surfaces is done using

parametric surfaces. These surfaces are defined by three para-

metric functions

x = x(s,t)

y = y(s.t)

z = z(s,t)

Most often, the parameters 5 and t vary from O to 1 across a

patch on the surface. This type of surface allows the designer a

great deal of control over the shape of the surface. It also pro-

vides smoothness, well defined derivatives, and continuity every-

where on the surface. Appendix B discusses two types of para-

metric surfaces. The rest of this chapter discusses various

display methods for parametrically defined surfaces.

5.1 The Catmull Algorithm

Catmull presented one of the first algorithms to display

parametric curved surfaces directly, without first breaking the

surface into polygons [3]. Catmull's algorithm involves sub-

dividing a patch until each of the pieces covers only one pixel.

27
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When this criterion is met, the subpatch can be displayed. This

method bears likenesses to two of the polygon methods mentioned

earlier. It is similar to Warnock's in that recursive subdivision

is used until a termination criterion is met. The main difference

between them is that Warnock subdivides the viewing screen while

Catmull subdivides the surface which is displayed. It resembles

Newell, Newell, and Sancha's method in that both subdivide the

object to be displayed until a termination criterion is met. The

main difference between the two is that Newell, Newell, and

Sancha's subdivisions are motivated by conflicts between objects,

while Catmull's are motivated by patch size.

Subdividing all patches in the scene down to pixel size can

be very time consuming due to the large number of subdivisions

involved. Catmull sped up the process by finding a very fast way

of subdividing a specific surface, the parametric bi-cubic.

In order to terminate subdivision, a test is run to see if a

subpatch covers more than one pixel, as in Figure 5-1. An

approximating polygon is used for this purpose. This polygon

connects the four corners of the patch. The polygon is tested to

see if it covers more than one pixel. This method should work on

patches with little curvature. It would not work with highly

curved patches or patches with poor orientation, as in Figure 5-2.

This condition would have to be detected from the patch geometric

parameters and dealt with more rigorously. If it could not be

detected, a local error would occur.

A second method to terminate subdivision is to check whether

a subpatch is completely out of the viewing area. If a subpatch
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Figure 5-1. Subdivision of a Patch in the Catmull Method.
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Figure 5-2. Failure of Approximating Polygon.
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does fall outside the viewing area, it is dropped from further

consideration. The same polygonal approximation could be used

when clipping against the edges of the viewing area.

To aid in solving the hidden surface portion of the general

display problem, Catmull described a 'Modified Newell Algorithm',

in which patches are sorted by their Bezier control points (see

Appendix B). This is useful since the Bezier surface is con-

strained to be in the convex hull of its control points [12]. If

the 2 priority between two patches cannot be determined, the

patches are subdivided. When the Z priority of the subpatches is

resolved, they can be displayed from front to back by the method

above.

The method could involve a large number of subdivisions,

due to the fact that the Bezier control points of two patches

might intersect even if the patches do not. The idea of es-

tablishing Z priority is the key that links this idea to the

method of Newell, Newell, and Sancha.

Alternatively, a 2 buffer can be used. This is the method

which Catmull implemented. Each patch is subdivided as necessary

until it can be displayed. As each point is to be displayed,

its Z value is compared to that of the point already in the

buffer at the appropriate location. If the new point is behind

the one already in the buffer, it is discarded. Otherwise, its

intensity is calculated, and it is displayed. The ideas con-

cerning transparency, which were discussed in the Newell, Newell,

and Sancha method, are also applicable here. As before, the
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points on a particular pixel must be displayed from back to front

if transparency is desired.

Catmull also described the first method by which shadows

could be cast from one curved surface onto another curved sur-

face. ,This involves finding the silhouette of a surface, from

the point of view of a light source. One can then create shadow

patches which extend out from the silhouette, away from the light

source. Any object which falls in the path of these shadow

patches is in the shadow of the surface which generated the

silhouette. When the unshadowed picture is completed in the

buffer, shadowed elements of the scene must have their inten-

sities modified appropriately.

The major advantage of Catmull's algorithm over polygon

based techniques is that it operates directly on parametric

surfaces. A drawback is that the points for display are not

generated in an order convenient for antialiasing techniques to

be applied.

5.2 The Blinn Algorithm

The next surface method was developed by Blinn [1]. This

algorithm is similar to Catmull's in that both operate directly

on parametric surfaces. It is similar to the Watkins algorithm

in that both are scan line methods.

\

The algorithm has three major parts: prgprgcessor_of_patches,’wv

Y\scanlfiandflX,sean. The preprocessor finds and orders a set of

local Y maxima for_eachhpatch. The maxima are processed in the

Y scan to form a set of points, called iteration points, on each
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scan line. The segments between these iteration points are

filled in during the X scan.

The first step in the algorithm, the preprocessor, starts

with a prescreen of all patches in the scene. The patches are

scanned by their Bezier control points. This creates an active

patch list analogous to the active edge list in the Watkins

algorithm. Each patch is then scanned using nonlinear optimiza-

tion to find its local maxima. True local maxima satisfy:

dY(s,t)/ds = O = dY(s,t)ldt (5.1)

S

These maxima are bulges in a patch. These can include points

on a silhouette curve. The normals to points which are on a sil-

houette curve lie in the plane of the screen. The 2 component of

the normal vector to a point on a silhouette curve is Zero:

Nz(s,t) e_O (5.2)

Local maxima can occur at an edge of a patch, as in Figure 5-3,

where either

dY(s,t)/ds f O (5.3)

or

dY(s,t)/dt f 0

A maximum also can occur at a corner, as in Figure 5-4, where:
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Local Maximum

  

Figure 5-3. Local Maximum on the Edge of a Patch.

Local Maximum

  
Figure 5-4. Local Maximum at the Corner of a Patch.
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dY(s,t)/ds f o (5.4)

and

dY(s,t)ldt f 0

These maxima are used in the second step of the program, the

Y scan, to produce traces of the boundary edges and silhouettes

for each patch. The silhouettes and boundary edges are the

minimum information needed to describe the projection of the

patch onto the screen. In addition to the boundaries and sil-

houettes, Blinn finds a number of key visual points on each scan

line. He uses these in conjunction with the traces of edges and

silhouettes obtained from the maxima, to shade the surface. The

key visual points can be identified by any of a number of charac-

teristics, including inflection points in the screen plane, or con-

stant angle increments on successive points along a curve, as in

Figure 5-5. A more complete description of these points and

their identification can be found in Reference [1].

The second step in the algorithm, the Y scan, cuts constant

Y planes through the screen plane. As the scan moves down the

screen it has several functions. First, it must process entering

local maxima. A local maximum becomes active when the Y scan

falls below the Y position of that maximum on the screen. Next,

it must update the position of iteration points (key visual

points, traces of edges or silhouettes) from one scan line to the

next. The process of updating the position or edges of sil-

houettes means calculating the intersection of edges and sil-

houettes with the current scan line. For edges, this means

solving equations of the form:
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Figure 5-5a. Key Visual Points - Inflection Points.

  
Figure 5-5b. Key Visual Points - Angular Increments.
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Y(s,O) = Yscan,

Y(s,l) = Yscan,

(5.5)

Y(t,O) = Yscan,

or Y(t,l) = Yscan.

For silhouettes, the equations are:

Y(s,t) = Yscan

and (5.6)

Nz(s,t) = O

The solutions for the edges are found using univariate iteration,

the silhouettes by bivariate iteration.

The Y scan portion must also remove points from considera-

tion as needed. This occurs when a portion of the surface does

not extend below the current scan line: Finally, the Y 5C3"

must also keep all iteration points properly connected as any

maxima enter or leave the chain of points from one scan line to

the next. The output of the Y scan is a set of points on each

scan line. These points will be used during the X scan to shade

the entire scan line.

The last step in the algorithm, the X scan, scans across

the screen. It scans from left to right on any given Y scan line,

with the purpose of shading all of the pixels on that scan line.

To do this, the normal at each iteration point on the scan line

is calculated from the surface description. Gouraud or Phong

shading can then be used to fill in shade between the iteration
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points, with the intensities being written in a depth buffer. This

approach will yield a smoothly shaded scene with hidden surfaces

removed.

The major advantage of the Blinn approach is that it is

a surface based algorithm. This means that information needed

about the surfaces is available at any point. Another advantage

is that it is a scan line algorithm. This means that it can be

conveniently displayed on a raster scan device, and that anti-

aliasing techniques can be applied.

A disadvantage is that intersections of curved surfaces are

represented in the final image using straight lines, as in Figure

.5-6. Also, interpolation in shade explicitly uses the surface

information at relatively few points in a scene, namely the key

visual points and edges. This would seem to offset some of the

leverage gained by going to the more exact representation of

surfaces rather than using collection of polygons or quadrics.

5.3 The Whitted Algorithm

The next surface-based display algorithm was developed by

Whitted [17]. It has the same three major sections as the Blinn

algorithm.

The preprocessor of the Whitted algorithm represents the

projection of each surface on the screen plane by a collection of

cubic curves. These curves are all chosen so that they are

functions of one variable.

The first type of curve is the boundary edge curve. These

are of the form:
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Figure 5-6. Straight Line Intersection.
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00(5) = Q(s.0)

01(5) = 0(5.1)

00(t) = Q(O.t)

01(t) = Q(I.t)

(5.7)

These are univariate cubic curves by definition.

The second type of curve to be considered is the silhouette,

which is characterized by Equation (5.2). A silhouette would

normally be of a higher order than cubic. The algorithm approxi-

mates the silhouettes by sets of piecewise continuous cubics of

one variable. Whitted uses Hermite interpolants to do this (see

Appendix A). The number and placement of these interpolants

will determine the quality of the approximation of the silhouette.

The addition of internal curves of the form:

Qk(S) = 0(5.k)

or (5.8)

Qk(t) = Q(k.t)

where k is constant, has the effect of breaking the surface

into quadrilateral surface portions. These quadrilaterals are

analogous to polygon representation of the surface, albeit

with curved boundaries. The number and spacing of these in-

ternal curves control the quality of the representation of

the surface in the screen plane.

After the edge curves are defined, silhouettes approxi-

mated, and interior curves added, the program works only with
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cubic equations in one variable. All of these curves, with the

exception of the silhouettes, lie completely on the surface.

The edges and internal curves are cubics, while the silhouettes

are higher order curves being approximated by cubics.

The Y scan portion of the program solves equations of

the form:

ye) = Yscan ‘ (5.9)

for each cubic that intersects the current scan line. Curves

which are not monotonic in Y must be treated separately due to

multiple intersections with the scan line. After all of the

intersections on a scan line have been located, they are paired

together to form segments on the scan line, as in Figure 5-7.

The X scan shades the segments between the iteration points

on each scan line.~ Along all of the curves in the scene, Whitted

calculates the normal to the surface. This is analogous to

calculating the normals along the edges of a polygon. This ob-

tains the normals for the end points of all segments on a scan

line. Phong shading is then used to fill in the intensities on

a segment. These intensities are written into a Z buffer. The

result is a smoothly shaded scene with hidden surfaces removed.

Since the silhouettes are represented by cubics rather than by

straight/ling§,,this.method will yield smggther silhouettes than

polygon routines. But averaging is used to find shading values,
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Figure 5-7. Segments in Whitted Method.
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giving up some of the advantage gained by using the parametric

representation for patches.

Whitted does not present an explicit method to decide how

many internal curves to use in representing the surface, nor how

many to use to represent a silhouette. But it is clear that

the number of curves affects the ratio of points on a scan line

whose normals are calculated directly to those whose normals are

found by interpolation. This means that the number of curves

used to represent a patch will affect the quality of the shaded

image.

The following chapter will describe a method to display

parametric surfaces directly, a pixel at a time, in scan line

order.



Chapter 6

A POINT BY POINT SCAN LINE DISPLAY

ALGORITHM FOR PARAMETRIC SURFACES

Using a polygonal approximation to curved surfaces simplifies

the surface to a collection of planar faces. This introduces

slope discontinuities into the scene. Averaging must then be

applied to remove the faceted appearance of the faces. It is

also clear that slope discontinuities between patches which

actually exist in a data base could be altered or lost in a

polygon method.

The methods of Blinn and Whitted lead to similar problems.

They break each scan line into segments. They calculate normal

vectors at the ends of each segment, ignoring the parametric

nature of the surface everywhere else. The segments can be

thought of as polygons which are one pixel high. As with any

polygon method, interpolation is needed to avoid a faceted or

banded appearance in the shaded image.

The objective of a raster display algorithm is to assign

an intensity to each pixel on the display screen. The ideal

way to do this is to compute the intensity for each pixel directly

from the geometry of the objects in the scene. This point by

point calculation gives the truest rendering of the geometry of

43
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the objects. Since we are dealing with parametric surfaces, we

would like to shade pixels directly from the parametric surface

definitions.

We will now examine a way to display each pixel based on

a separate surface calculation. This will be the most accurate

representation. This will avoid introducing slope discontinuities

into the scene, while at the same time preserving any discontinuities

that are actually represented in the original data base.

6.1 A Pixel Based Display Method

Research is currently underway at the Case Center for

Computer-Aided Design which indicates that the shade at each

pixel can be efficiently calculated directly from the surface

geometry. This is equivalent to dropping a sight line through

the screen and displaying the point on the surface which the

sight line intersects, as in Figure 6—1.

As in more traditional methods, we must first project

the edges and silhouettes of each patch onto the screen plane.

This can be done using a preprocessor and Y scan similar to the

work of Blinn. The Y scan yields the intersection of each scan

line with each edge or silhouette. In the course of the Y scan,

we also determine the s and t parameter values of each of these

intersections. The intersection points are then paired together

to form a set of spans on each scan line. We then need to fill

in these spans. This is done in(f;)the X scan.
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Screen

Figure 6-1. A Pixel Based Display Method.



46

The X scan moves along a constant Y line in the screen

plane. The s and t values along the scan line are determined by:

BylasAs + ay/atAt'
3

(6.1)

E Bx/asAs + Bx/BtAt

Equations (6.1) yield a As and At. The partial derivatives are

calculable from the parametric definition of the surface. The

values of 6 and e are inputs to the above equations. If 6 is

set to one pixel spacing in x, and e is set to zero, the resulting

As and At will be a first order approximation to move one pixel

in the X direction on the screen. If the resulting X and Y are

within Specified bounds of the target pixel, it is written in a

depth buffer. Otherwise, as in Figure 6-2, the errors in X and Y

are entered into Equations (6.1) through 6 and e, and another

iteration takes place. By repeating this process, we are able to

step from one end of a span to the other, one pixel at a time.

At each pixel, the current 5 and t are used to calculate the

normal vector for that pixel.

th
6.2 A Display Method using N Order Blendinggfunctions

Another approach is to use an equation algebraically equiva-

lent to:
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Figure 6-2. Iteration on a Scan Line.
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dNo le

N(X) = NOFNI (X) + NIFN2(X) + W FN3(X) + —a-i' FN4(x)

(6.2)

dzN dZN1

+ —-—2-° FN5(x) + —-2- FN6(x) +

dx dx

between the end points of each span, as in Figure 6-3. The

functions FN are blending functions similar in form to those in

Appendix A. Thus, to shade a spanmtgwany,desiredwaccuracy:”WeA

need only calculateatheflngrma1,vectors~andrtheir"derivatiVé§Mwith
NW

 
.____._.....a-—

.__..—-—-'-""

respect to X at the ends of each s an.

 

6.3 A Hybrid Display Methods

A third method to be considered is a hybrid of the first

two. We can break each span into subspans using Equation (6.1)

with a large 6. Equation (6.2) is then applied on each subspan.

We can enlist methods similar to Clark [4] to determine the size

of each subspan. In this method, a surface is subdivided until

each piece is deemed to be close enough to a planar face. This

same idea can be applied along a scan line with an acceptance

th
criterion in which the basis functions are N order blending

functions instead of linear interpolation.
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Figure 6-3. Order Blending Functions on a Scan Line.

 



Chapter 7

ICONCLUSIONS

Polygon display methods can create smoothly shaded images,

but they lose information when breaking a parametric surface into

W “m ___m___,,_._..—-

polygons and through1nterpolationduring shading. Traditional“_#flfiflpfffi__

 

scan lineeparametric surface display algorithms also lose infor-

mation through interpolation.

Research at Michigan State University indicates the utility

0f methods "hichhEDE9S,SéQh_EiAQl_hasad_nnIsunfaceegeometry—w
ithnu

out linear interpolation. Thesg_methodshjhcluggmpixel_toflpixel

” ”TT’Ith

 

iteration, N order blending_functions for surface normals, and
 

 

   

_a hybrid method which includes bothtechniques.
w

___.- ”Hr... .fi-r—VH"
r-FFH-“vc-m- _,..

Further work is needed to determine what order blending

functions are appropriate based on the surface geometry. In the

hybrid method, a criterion for the size of interpolation spans

and the order of blending functions is needed.
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APPENDICES



APPENDIX A

Two types of parametric cubic space curves will be discussed.

They are the Bezier or Bernstein cubic, and the Hermite interpolant.

These are two ways to generate the same set of curves. They differ

in the blending or basis functions that they use. In both cases,

the curves have the form:

0(5) = {F(S)}{P} o 5_s < 1

{F(s)} is a four element vector containing the blending func-

tions. {P} is a vector containing four pieces of information

about the curve. Exactly what information is needed depends on

the form of the blending functions.

For the Hermite interpolant, these are the blending functions:

Fl = 253 - 3s2 + 1

F2 = -2s3 + 352

F3 = s3 - 252 + 5

F4 = s3 - s2

As you can see in Figure A-l, these functions have either a value

or slope of one at either end. This allows the user to specify

the end coordinates and the end tangent vectors. A sample curve

51
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Figure A-l. Hermite Blending Functions.
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is shown in Figure A-Z. To specify a three-dimensional curve,

a {P} vector is needed for each of the three dimensions. This

makes a total of twelve pieces for information to construct the

curve.

A Bezier or Bernstein cubic uses the following blending

functions:

Fl = -s3 + 352 - 3s +1

F2 = 3s3 - 652 + 35.

F3 = -3s3 + 352

F4 = s3

The {P} vector contains four coordinates, called control points.

A set of control points, and the resulting curve is shown in

Figure A-3. As you can see, the curve matches the control

points only at the ends. Also, the slopesat the ends are

defined by segments AB and CD. Slope continuity across segment

boundaries is controlled by making the terminal segments of

adjacent curves collinear, as in Figure A-4. As with the

Hermite interpolant, three {P} vectors are needed for a three-

dimensional curve, resulting in twelve coordinates.

A useful property of Bezier curves is that the curve is

constrained to lie infithe”convex hullfofwitsflgontrol points.

This means that no part of the curve can extend in any direction

further than the set of its control points. This is a convenient



 

Figure A-2. Hermite Interpolant.

 

 

Figure A-3. A Sample Bezier Curve.



55

 

Joint

Figure A-4. Slope Continuity in Bezier Curves.
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way to put an upper bound on the range of the curve. This

property is used for sorting purposes in several algorithms.



APPENDIX B

The Coons and Bezier bi-cUbic surfaces will be discussed

in this appendix.

B.1 Coons Bi-Cubic Surface

The Coons surface, or Hermite tensor-product surface, has

the following form:

Q(s,t) = {mg}: [p] {FC(t)}T/ (3.1)
\.________——_——‘—_._..——--"

V.”

{FC(s)} and {FC(t)} are 4-element vectors of the blending func-

tions in Equations (A.l). [P] is a 4x4 matrix:

0(0.0) 0(031) dQ(0.0)/dt dQ(0,l)/dt

Q(I»O) Q(l.1) ( dQ(l,O)/dt dq(1,1)/dt

IIWW_~I
—- H—MWM- _-fl__ _ _. -- --_ - w

__-._ M

 

   

W,"—

[P] =

dQ(0,0)/ds dQ(O,l)/ds dZQ(O,O)/dsdt dZQ(O,l)/dsdt

  2 2
dQ(1,0)/ds dQ(1,1)/ds d Q(0,0)/dsdt d Q(1,1)/dsdt i

I

i

i

1

i.
'1

which means
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Corner T-Tangent -_A

Coordinates Vectors

[P] =

S-Tangent Corner Twist

Vectors Vectors  

The scalar function 0 can be any of the three coordinates

x, y, or z. This indicates that the user must specify [PX], [PY],

and [P2].

B.2 Bezier Bi-Cubic Surface

The Bezier bi-cubic surface has the following form:

Q(s.t) = {FB(s)} [B] {FB(t)} (8.2)

{FB(s)} and {FB(t)} are 4-element vectors of the blending functions

in Equations (A.2). [B] is a 4x4 matrix of control points:

3(1.1) 3(192) 3(133) B(l.4)

B(2.l) B(2.2) B(2.3) B(2.4)

[B] = .

8(3.1) 8(3.2) 8(3.3) 8(3.4)

3(4.1) 3(4.2) 8(4.3) 3(4.4)

L_‘ _  
which means
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r_. .__

Corner Edge Points Corner

Edge Edge

[8] = Interior Points

Points Points

Corner Edge Points Corner

L_. ._.  

Again, [BX], [BY], and [82] must be defined. As with the Bezier

curves, the surface only hits the control points at the corners.

Also, the surface is constrained to lie within the convex hull

of its control points.

In a design situation, one may have Coons patches as the _

working data base. Bezier control points are convenient for
W

sorting and preprocessing.

 

Appendix C will present a method to convert back and forth

between a Coons and a Bezier definition of a surface.



APPENDIX C

A method to convert back and forth between a Coons and a

Bezier definition for a bi-cubic surface will be presented in

this appendix.

The Coons and Bezier forms of the bi-cubic surface are two

different ways of generating the same class of surfaces. They

differ fundamentally in the blending functions they use. These

blending functions are actually basis functions. Since they

are basis functions, we expect a conversion of the form

3 = [A] [P] [AJT

where A is the change of basis matrix [13].

To find A, we rewrite Equations (A.l) as:

m
l

I

{FC(s)} = {$3525 11 -2 1 1 ' = {5} [N] (c 1)

  

(A similar relationship exists for {FC(t)}.) So, substituting

into Equation (B.l), we find
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Q(s.t) = {s} (NJtPHNJTmT

Similarly,

Q(s,t) = {s}[M][B][M]{t}T Note: ([M] = [M]T)
_.-.——-——~.

. 1-' ,_.-

.1 A‘/

where

{FB(s)} = {$3525 1} = {s}[M]

  

Equating (C.2) and (C.3)

{S}[M] [B] [M] {t}T = {s}[N][P] [NJ-Ht}T

or

[MJIBIIM] = [NIIPIENIT

which yields

8 = [M1"[~1[P1[N1Ttm"

Combining [M]"[N] and [N]T[M]']

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)



B = [A][P][A]T, which is the desired form.

r.

1 o

1 o

[A] =

o 1

o 1

L_. 

o F

1/3 0

0 -1/3

0 ‘ o__
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Also, manipulating (C.7),

-1

P = [AJ'AIBJIAIT

(C.7)

(C.8)

So, given a Coons matrix P, or a Bezier matrix B, we can transform

to the other using (C.7) or (C.8).
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