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ABSTRACT

ADDITIONAL PROPERTIES OF WEIGHTED SHIFTS

By

James Lowell Hartman

In this paper we examine some properties of weighted
shifts which were previously unknown. Some of these
properties are stimulated by properties of the unweighted
bilateral shift. In particular, we define Toeplitz
and Hankel operators for weighted shifts. Some of the
properties that hold for Toeplitz and Hankel operators
for the unweighted shift carry over for weighted shifts in
general. However, there are some striking differences
which we point out with several examples. Some properties
for unweighted shifts carry over for weighted shifts with
only minor modifications. This happens mainly when the
weighted shift under consideration has a periodic weight
sequence. Thus we also prove some properties for weighted
shifts with periodic weight sequences. The material above is

found in Chapters I, II, III, and IV.

In Chapters V and VI our work takes a slightly different
direction. 1In Chapter V, we concern ourselves with

answering Question 11 in Allen Shields' survey article



James Lowell Hartman

on weighted shifts [23]. In particular, we give a
general sufficient condition for the "analytic" projection

on LG(B) to be bounded.

In Chapter VI, we concern ourselves with spectral
sets. We give a new proof of von Neumann's Theorem which
says the closed unit disc is a spectral set for all
contractions. We then investigate what happens when we
replace the disc with an annulus. In particular, we
answer the last half of Question 7 in Shields' article
with an example. Finally, we examine what happens
when we restrict ourselves to operators on two-dimensional

spaces.

[23] Shields, A., Weighted Shift Operators and Analytic
Function Theory, Amer. Math. Soc. Surveys
13 (1974), 49-128.
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CHAPTER 1

WEIGHTED SHIFT OPERATORS

Let H be a complex separable Hilbert space
with orthonormal basis {en tn € Z). We denote the
set of bounded linear operators on H by B#(H). A
bilateral weighted shift T is a bounded linear operator
on H that maps the basis vector e, into a scalar
multiple W, of €41’ i.e. Te = w.e . ;- Weighted
shifts have been used generously through the years to
provide examples and counterexamples to questions in
operator theory. However, the first specific study of
weighted shifts was done only recently by R.L. Kelley
in his unpublished dissertation at the University of
Michigan in 1966. Since that time many other properties
of weighted shifts have been identified and examined.
Most of what is known about weighted shifts is compiled
in the survey article by Allen Shields, "Weighted Shift
Operators and Analytic Function Theory," [23]. This
article contains all of the basic facts one needs when
working with weighted shifts. It also contains a list
of unsolved problems concerning weighted shifts. We
will rely heavily on the material found in Shields'
article and use the notation developed there. The
article contains facts about both bilateral and unilateral
weighted shifts. We will restrict our attention here to
bilateral weighted shifts which are injective and
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also whose weight sequences {wn :n € Z} consist only
of positive terms. That it is sufficient to do this is
pointed out by the following proposition. Before that
proposition, we should note that when we say weighted

shift, we mean an injective, bilateral weighted shift.

Proposition 1.1: (Shields,[23]) If T is a

weighted shift with weight sequence {wn}, then T
is unitarily equivalent to the weighted shift with

weight sequence [1wn\}.

The assumption that T is injective guarantees
that there are no weights which are zero. Noninjective
shifts may be studied by considering them as a direct
sum of weighted shifts in which some of the summands may
operate on finite dimensional spaces. Thus from here on
if T is a weighted shift with weight sequence {wn],
will be understood that W O for all integers n.
Given such a weighted shift, the following definitions

are made.

Definition l1l.1: Let T be a weighted shift with

weight sequence {wn]. Then

n-1
i) B(n) = 11 Wi if n>0O0
k=0
ii) B(n) =1 if n=0
_l _1
iii) em) =( 1 wk) if n<oO

k=n

’

it



Definition 1.2: Let T and R(n) be as in

Definition 1.1. Then

2 A
L°(B) = (£ = 2 £f(n)z" :

A ISA 2.2
f(n) € ¢ for all n and 2 |£f(n)|“B“(n) < =}

(-]
A
We note that the sum P f(n)zn is not taken in a

Y.

literal sense at this point. It is taken in the formal
sense that LZ(B) is a set of sequences indexed by the
integers with the summand g(n)zn indicating that g(n)
is the nth term of the sequence f. For £f,g € Lz(B)

we define an inner product

-]

A
(£.9) = & £(n)g(n)p?(n)

n=-o

With this inner product, L2(B) is a Hilbert space with
addition and scalar multiplication of vectors being
componentwise. The set {zn :n € Z) can be thought of

as an orthogonal basis of Lz(B).
For f,g € L2(B) we define a formal product h = fg

by h= ¥ h(n)z" where h(n) = & £(k)g(n-k) if all

= k=—@

of the latter sums converge. We note that this mimics the
multiplication of analytic functions whose Laurent series
would be given as f and g are given. Now let

L) = (¢ € L2(B) : of € L2(B) for all £ € L2(B)].



Then for ¢ € L”°(B) we can define the linear map
%$: Lz(ﬁ) - LZ(B) by be = pf. Under these definitions

we have the following theorem.

Theorem 1.1l: (Shields,[23]) For ¢ € L”(B),

Mcp is a bounded linear operator on LZ(B) and M,
is unitarily equivalent to the weighted shift T ¢ B(H).
Furthermore, under this unitary equivalence, {M¢ tp € L”(B)}

corresponds to the commutant (T}’ = (S ¢ B(H) : ST TS}

of T.

The theorem above says that a weighted shift, which
weightedly shifts an orthonormal basis, can also be thought
of as an unweighted shift of a weighted basis. This
follows from the equalities below.

A ® A

M (f) = 2£ = X f(n-1)z" = £ f(n)z

nN==x n=e=cx

n+1l

The second equality comes from the identity:
[- -}

78(n) = 3 2(k)E(n-k) = F(n-1) .
k==

At times it is convenient to think of T strictly as
a weighted shift on H. At other times, though, it
is helpful to think of T as M, on Lz(ﬁ). During
the first four chapters, I will basically think of a
weighted shift as M, on Lz(ﬁ). However, in the
last two chapters, I will sometimes think of them as
weighted shifts on unweighted spaces. Some further

notations, definitions, and facts are as below:



g2 2 A _
(B) (f ¢ L°(B) : £f(n) = 0 for all n < 0O}

B(B)

(@ € L™(B) :M; = M¢ for some | ¢ L7 (B))

o(T) = {\ € ¢ :T-)AI 1is not invertible)

r(T)

sup{|z| : z € o(T)}

For ¢ € L”(B), we let Hwﬂm = HM¢H. When L%(B)
is endowed with this norm, it is a commutative Banach

algebra.

Definition 1.3: For f ¢ Lz(ﬁ) we define

- 2
f € L"(B) by

A A
f(n) = £(-n)B(-n)/B(n)

From the definitions above, the following facts

are easy to verify.

1. HZ(B) is a closed subspace of LZ(B). (The
coefficient maps Ty :LZ(B) + ¢ given by
rn(f) = g(n) = (f,zn)/Bz(n) are continuous.)

2. (AI:% € ¢) c B(B) c L”(B)

3. For £e1?m), |f|, = (£.0)Y2 = ||,

4, If T is invertible then o(T) =

-1
{z e¢ :r(T-l) < lz) £ ()}, 1If T is

not invertible then o(T) = {z € ¢: |z| < r(T)]).

5. For el (B), |l¢1|2=\|M¢(1>%l2 < HMclellilz < et -



Also, we will let P: Lz(B) - H2(B) be the
orthogonal projection of L2(B) onto its closed sub-
space HZ(B). This projection is described by the

formula:

P( T /f\(n)zn) = Z/f\(n)zn
n=0

n=-o

for f ¢ LZ(B)

* *
If we let WO(T ) Dbe the point spectrum of T
(i.e. the set of eigenvalues of T*), then we have the

following theorem.

Theorem 1.2: (Shields,[23]) Let T be a weighted

shift represented as Mz on L2(B). Then the following
properties hold:

1.~-1

a) If T is invertible and r(T ) < \w| < x(T),

@ . had A
then A, : L (B) » ¢ given by Aw(¢) = 2 cp(n)wn = p(w)

n=-—c
is a multiplicative linear functional on L”(B). Thus
1.-1
)

le(w)| < llell, when x(T” < |wl < x(T).

b) If w € WO(T*), then there exists kw € L2(B)

* —— )
such that Mcpkw = cp(w)kw for all ¢ € L (B).

*
¢c) For w E€ WO(T ) and kw as above, we have

-]

(f£,k,) = = En)w® = £(w) for all £ € L?(B).

=0
We note that this theorem implicitly says that

® A
. n . .
the series 2 f(n)w  converges when w 1is as given.
n=-—co



Before we go on to Chapter II, we should mention
a very important weighted shift. It is called the unweighted
shift because all of its weights are 1l's. For the
unweighted shift, L2(B) is the space of measurable
functions on 3D = {z € ¢: |z| = 1} whose absolute
values are square integrable with respect to arclength
measure. We will denote this by Lz(aIH . Furthermore,
L”(B) is the set of essentially bounded measurable functions
on 3D . We will denote this by L”(aD) . (See Douglas,
[6]). We will refer to the unweighted shift and its
properties quite frequently. In particular, we will
use it as a model for some of our definitions and lines

of thought.



CHAPTER 1II

SHIFTS WITH PERIODIC WEIGHT SEQUENCES

We recall that (AI:A € ¢} € B(B) € L™(B). One
may ask whether equality holds at either end of this
chain of inequalities. To answer this question, we

present the following lemmas and theorem.

. A
Lemma 2.1: If ¢ € B(B) and ¢(N) # O, then
B(N+k) = B(N)B(k) for every integer k.
A
Proof: ¢ (N) = (¢zk,zN+k)/Bz(N+k)

- (Mcpzk.zN‘“k)/sz(NJrk)

= (zk.M;ZMk)/BZ(MR)

= (Zk.M¢ZN+k)/B2(N+k) where M¢ = M;

v(-N) B2(x)/B2(M+k) for each k.

A
Thus B2(N+k)/B%(k) = y(-N)/(N) for all k. Letting
X = 0 A .2 2 2
= we get | (-N)/p(N) = B“(N). Hence B“(NMk)/B“(k) =
BZ(N). Hence 32(N+k)/32(k) = Bz(N) for every integer
k. This is the desired result since B(i) > O for

every integer i. Q.E.D.

We also note at this point that B(N+k) = B(N)B(k)

for all k implies B(-N) = 1/B(N).



Lemma 2.2: Assume there exists an integer N
such that B(N+k) = B(N)B(k) for all k. Then
Wark = Yk for all k (i.e. the weight sequence for
the weighted shift is periodic).

Proof: wy . = B(N+K+1)/B(N+k) = B(N)B(k+1l)/B(N)B(k) =
B(k+1l)/B(k) = W The second equality above holds because

of the assumption on the sequence ({B(n):n ¢ ZJ}. Q.E.D.

Theorem 2.1: Let T be a bilateral weighted shift

with periodic weight sequence of least period N. Then
B(B) = {¢ € LQ(B) :Q(n) = 0 for all n which are not

integer multiples of NJ}.

A
Proof: Suppose ¢ € B(B) and ¢(n) ¥ O. Then
Lemma 2.1 implies B(n+k) = B(n)p(k) for all k. Lemma 2.2
then implies Woek = Yk for every k. This implies
that n = mN for some integer m since the least period

of the weight sequence is N. Thus B(B) C E =

A
(o € L°(B) :p(n) = 0 for n not an integer multiple
of NJ.
*
Now let | € E. We will show that MW = MV. This
* — -—
will be true if and only if szk = wzk = M:(w) for all

k. The reason for writing this in such a strange way
is that it is unknown whether | € L”(B) implies

V € L°(B). Also, we should mention that an injective
bilateral shift with a periodic weight sequence

is invertible. Hence M: € B(LZ(B))
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for every integer k. Continuing with the proof now,

we have:

(M* zk.zn)/Bz(n) (zk;wzn)/ﬁz(n)

¥

1 (k-n) B2(x)/82(n)

M 2" /8% (n) = (2F §.2") /8% (n)

A

y (n-k)

e
y (k-n) B(k-n)/B(n-k) .

A
Now if {(k-n) # O then kX-n = mN for some integer m.

Hence
Bz(k)/Bz(n) = Bz(n+mN)/Bz(n) = Bz(mN)
= B(mN)/B(-mN) = B(k-n)/B(n-k)
So we have (M; zk,zn) = (Mt I,zn) for all integers n.
This shows that M; zk = V zk for every integer k. Q.E.D.

Corollary 2.1: Under the involution { = E, B(B)

*
is a commutative C -subalgebra of L% (B).

Corollary 2.2: For shifts with periodic weight

sequences with least period N, M n is normal if and
2
only if n is an integer multiple of N.

*
Proof: For n = kN, z" € B(B). Thus M _ = M__  which

" * © 2" z
implies M /M _=M M  since L (B) is a commutative
z 2 z 2 *

Banach algebra. For the converse, we assume M n M n =

z z

*
M M n This implies that
z z
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(zn+k’zn+m) = (M nzk,M nzm)

Z ¥4
= M _ZK, 20

n n
z Z

* k m
= (M n M nz ,2 )
z z
* *
= (M nzk,M nzm)
z z

= (25,282 (x)B% (m) /8% (k-n) B (m-n)

B4(m)/32(m-n) if m=%k%
o if m#FXk

B2 (m+n) if m =k
= . Thus we must

o if m#k

(zn+k zn+m)

Also,

have B(mtn)B(m-n) = Bz(m) for all m. Hence

B(m+n)/B(m) = B(m)/B(m-n) for all m, which implies
B(mtn+l)/B(m+l) = B(m+l)/B(m-n+l) by using m+ 1l instead
of m. Now dividing the latter equality by the former

one gets

[B(m+n+1)/B(m¢n)] [B(m)/B(m+l)] = [B(m+l)/B(m)][B(m-n)/B(m-n+1)]

or equivalently

2

Yren = “mYmen °
Now we prove by induction that Yientm = n+m/wm) W

for all k > O. The equality is certainly true for %k = O

and k = 1. So assume it is true for k < g. Then
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W(g+1l)n+m w(zn+m)+n

w2 /W
in+m” " (4=1)n+m

23 2 4- l
LW /W) 5 (W)Y /L A ]

n+m’ m m

4+1
(wn+m/ m) “m *

Thus the identity is established for k = z+l By
induction then, we have Yenim S n+m/'wm) v for all
k > O.

If we now let m be fixed and let k get large,
we see that Wotm = W Since a periodic weight sequence
is bounded above and bounded away from zero. This is
true for all m and hence {wm} is periodic with

period |n|. This implies that n = kN for some integer

k' Q'E.D.

Corollary 2.3: For ¢ € B(B) and f € LZ(B)

we have @f = @f.

©

A A
2 o (k)f(n=k)

2\
Proof: (@f)(n)

—
kZ: ¢(-k) £(n-k)B(-k)/B(k)

® A A
[B(-n)/B(n)][ Z o(=k)f(n-k)

B(n)B(-k)/B(k)B(-n)]

[B(-n)/B(MI1L T &(-k)E(n-k)

k==

B(n-k)/B(k=-n)]
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since g(-k) # O implies B(-k)B(n) = B(n-k) and
B(k)B(-n) = B(k-n). Thus (pf)(n) = [B(-n)/B(n)]

o ~—
[ © &(-k) £(k-n)] = [B(-n)/B(n)]pE(-n). This last term

=—

Fasy a N
is just gf(n), however. Thus (¢pf)(n) = pf(n) for all

n implying Gf = ;?. Q.E.D.

Corollary 2.4: The equality B(B8) = L°(B) holds

if and only if all the weights are equal.

Proof: If B(B) = L°(B), then 2z ¢ B(B). This
implies the weight sequence is periodic with period one.
Thus Wirl = Wk T Yo for every integer k. The converse

is immediate from the characterization of B(B) given

in Theorem 2.1. Q.E.D.

The following corollary follows immediately from

Theorem 2.1.

Corollary 2.5: The equality B(B) = {(AI : A € ¢} holds

if and only if the weight sequence is not periodic.

We now recall that a von Neumann algebra of operators
in B (H) is a selfadjoint algebra of operators in fBZ(H)
which is closed in the weak operator topology. The
algebra B(B) is an abelian von Neumann algebra.

However, the following proposition says that it is

not maximal.
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Proposition 2.1: If (AI:\ € ¢} c B(B) g L™(B),

then (M.Cp :p € B(B)) 1is not a maximal abelian von Neumann

algebra.

Proof: If B(B) = (A\I:\ € ¢}, we let S be any
nontrivial, selfadjoint operator and consider the
von Neumann algebra generated by B(B) and S. This
will be abelian and properly contain B(B). If
B(B) # (A\I:\ € ¢}, let N > 1 be the least period
of the weight sequence. Let A € B(LZ(B)) be given by

N) = z(k+1)N

A(zk for any integer k and A(zn) =0

otherwise. Then a direct computation shows that

N k-DN 2ng 2*(z") = 0 for n ¥ kN

(k-1)N N

A% (XY = B%(N)z
kN

Hence, AA*(zkn) A(Bz(N)z

) = g2 (2N = a%(aZkY)

]

* n * n .
and AA (z') = O AA (2°) for n # kN. Thus A is

normal. Also for ¢ € B(B), AMw(zk) = A(¢zk)

@ A
=A( T o(aN)2tTEK)
L==c
0 if k #mN
-{ .,
f=-

Now if we look at M¢A, we see that M A(zk) =0 if
k+N)

k # mN. If k = mN, then %wA(zk) M¢(z

= g zk+N

o A LN+K+N
2 @(4N)z .

f=—

if k=mN

3
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Hence AM¢(zk) = NbA(zk) for all k, implying

A%m = M¢A for all ¢ € B(B). By Fuglede's theorem
(Rudin, [17] ,Theorem 12.16), A* also commutes with
everything in [Mcp :¢q € B(B)}. Hence the von Neumann

algebra generated by {M.qp :eqp € B(B)} and A properly

contains {M¢ :qp € B(B)) since A ¢ {Mcp tp € B(B)). Q.E.D.

We now discuss some properties of weighted shifts

which have periodic weight sequences.

Proposition 2.2: Let T be an injective bilateral

shift having a periodic weight sequence with least period

N-1 1/N
N. Then B(n) = rna(n) where r = (I w) and
x=0 K

a(n) is periodic.

Proof: Suppose n >1 and n = tN+s where O S ¢ N,

n-1 N-1 t )
Then B(n) = I w, = (I w) (Ww,***w .
k=0 k k=0 k 0’1 s-1
N-1 (tN+s) /N N-1
= (kn wy ) (WoWq s ® W _ l)/( n
= r [(w 1 s_l)/(woooo N l)s/N

Since O ( s < N, the right half of the product above is
a bounded sequence a(n) which is periodic and has

a(kN) = 1 for all k > O.

Now suppose n = tN+ s where t ¢ O and

o wltl -1
-N < s L 0. Then B(n) = (kn ka) (w-l....ws)
N-1 tN+s -1
- CE g g ) g

=r~(w_l....ws)'l/(wo....wN_l)s/N

s /N

wy)
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Again since -N s < O, the right half of the product
is a periodic sequence a(n) with a(-kN) =1 for all

k > O.

Thus B(n) = rnc(n) where a(n) is bounded. To
see that a(n) is periodic overall we note that for all

integers k:

k

a(M+k) /a(k) = B(NK)EK/B(K)

B(N)B(k)/B(k)r™ = B(N)/r® = 1. Q.E.D.

Proposition 2.3: For injective bilateral shifts having

periodic weight sequences with least period N and

r = B(N)I/N, we have the following:

1-1

i) (T ) =r(T) =r

ii) || = maX{wo'”"'wN—l} and HT-lH =

min{wg,**cc,wye )

- 1.-1

o1 -1 _
iii) If N# 1, then |T° Y ~ < r(T™h) = x(T) < |T)

iv) There exists a constant ¢ > O such that

¢ sup{B(k-n)/B(k) : k > O} < inf{B(k-n)/B(k) : k > O}

for all n

2 . . 2 A n_n 2
v) £ € L°(B) if and only if 2 f(n)r z € L (3D)
-

Proof: Parts i) and ii) follow from the corollary

to Proposition 7 in Shields [23] and the equation

r(T) = lim HTnHl/n. Part iii) then follows immediately
N

from parts i) and ii).
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For part iv) we consider

sup{B(k-n)/B(k) : k > O} sup[rk_nc(k-n)/rkq(k) :k > 0]

P sup{a(k-n) /a(k)

k > 0}

= r ™ max{a(k-n)/a(k) : N >k > 0},

Likewise
inf{B(k-n)/B(k) :k > 0) = r " min{a(k-n)/a(k) : N > k > O]},

Now let ¢ = min{a(k-n)/a(k) : N > k > 0}/max{a(k-n)/a(k) :
N >k > 0). Since a(n) is bounded away from zero, we
have ¢ > O. This constant ¢ satisfies the desired

property.

To prove v), note that £ € L2(B) implies

- -] A [~
z \f(n)lzﬁz(n) < =, so 2 \%(n)\zrznaz(n) < =,
NnN=-—c ==

Using the boundedness of (a(n) :n € Z} again, we see that

© A ® A
S |£(n) )%™ ¢ ». This implies T £(n)r"z" € L?(3D) .

NnN==c N==c

The converse is established by tracing this argument
backwards since the statements are equivalent at each

point. Q.E.D.

Corollary 2.6: Let R: L2(B) - Lz(al)) be given by

-}
A
R(f) = ¥ £(n)r"z". Then R is a similarity between
n=-=c

Mz on L2(B) and a scalar multiple of the unweighted

shift.
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Proof: The fact that R is bounded and invertible
follows from the boundedness of a(n); or one may appeal

to the closed graph theorem. For £ ¢ LZ(aI)) we have

® A
RMZR"lf RM, ( T £(n)r z2")

n=-o

R( 2 ’f\(n)r

nN==c

-n _nt+l
z )

© A _
S f(n)r nrn+1zn+l

n=-c

r( 2 /f\(n)zml) . Q.E.D.

LT ]

Proposition 2.4: If ¢ € L°(B) and f ¢ L?(8).

then R(pf) = R(yp)R(E).

N\ n
Proof: R(pf)(n) = r (¢f)(n)

™ T ()E(n-k)

= 3 c’;(k)rk %(n-k)rn-k
RS
= [R(g@)R(£)](n) .
This is true for all n. Hence R(gf) = R(p)R(f). Q.E.D.

Corollary 2.7: The map R 1is a Banach algebra

isomorphism between L”(B) and L”(3D) .
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Proof: If ¢ € L(B), then of € LZ(B) for all
£ ¢ L?(B). Then by Proposition 2.4, R(g)R(f) ¢ L2(3D)
for all f ¢ L?(B). This says R(p) € L°(3D) since
(R(f£) : £ ¢ LZ(B)] = Lz(aIU . The converse again is
achieved by tracing the argument above backwards. Thus

® € L°(B) iff R(p) € L”(3D) . We also have that

IR@RE] 5 < RO

(3D) (3D)

< IRlwEl,

< IR el lIEl,

< IRBIR el _IREN ,
L“eD)

Hence |R(s)|| _ < IRIIR ol . Thus
L (3D)

R:L°(B) » L”(3aD) is continuous. By the open mapping
theorem, so is R-l. The only thing left to verify is
that R(py) = R(p)R(y) for ¢,y € L*(B). This follows

from Proposition 2.4. Q.E.D.

Corollary 2.8: Suppose T is a weighted shift

with periodic weight sequence. If ¢ € L”(B) and

O# f ¢ HZ(B), then @f = O implies ¢ = O.

Proof: If @f = O then R(pf) = R(p)R(f) = O.
But O ¥ £ ¢ HZ(B) implies O ¥ R(f) ¢ HZ(BIH . However,
R(p) € L(3D) and R(p)R(f) = O implies R(p) = O from
the F. and M. Riesz theorem (see Douglas,[6]). Finally,

R(p) = O if and only if ¢ = O, Q.E.D.
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From the work above several questions may have
arisen. First of all, we know that ¢ € B(B) implies
® € B(B), and hence g € L”(B). At this point we may
ask the question; does ¢ € L”(B) imply g € L™ (B)?
The answer to this question is unknown. However, in
special cases one can answer the question affirmatively.
For example, if the weighted shift is rationally strictly
cyclic (see Shields, [23], p.10l), then the answer is
yes. An affirmative answer is also obtained if B(k) = rk
for all k or if B(k) = B(-k) for all k. For bilateral

shifts with periodic weight sequence the answer is determined

by whether a(-n)/a(n) is a multiplier on Lm(al)).

The other question involves Corollary 2.8. Can one
say that this corollary holds for all bilateral weighted
shifts and not just for those with periodic weight sequences?
Here again, one can say something about particular weighted
shifts. For example, if WO(T*) contains an open annulus,
then one can answer yes since in this case the functions
v and f have Laurent series which converge on the annulus.
Thus ¢ and £ are analytic on this annulus. However,
it is not true that WO(T*) contains an open annulus

for all weighted shifts T.



CHAPTER III

TOEPLITZ OPERATORS FOR WEIGHTED SHIFTS

Toeplitz operators Tcp :Hz(al)) - Hz(al)) for
® € L”(aIH have been studied quite widely in recent
years. (Douglas, [6]; Halmos, [8), or Sarason, [21]).
Some interesting properties have emerged from these
studies along with generalizations to ¢n and other
H2 spaces. (Gohberg, [7]:; Abrahamse, [l1]; or Devinatz,
[5]). The idea used here is that Mz on Lz(aln is
a weighted shift with all weights equal to 1. Then
{M¢ tp € Lm(al))} is just the commutant {MZ}’ of Mz
on Lz(aIH . For weighted shifts whose weights are not
all 1, we can then generalize the idea of a Toeplitz
operator Tcp :HZ(B) -+ Hz(B) for o € L”(B). This
follows from thinking of a weighted shift as M, on Lz(B).
The commutant of T is then identified with {Mcp tp € L7(B)].

Hence we have the following definitions.

Definition 3.1: For o € L7(B), let T ¢ B(H2(B))

be given by qw(f) P(pf). Here P is the orthogonal

projection of L2(B) onto HZ(B) given in Chapter 1I.

Definition 3.2: X”(B) = {p € L”(B) :g(n) =0

for all n < 0]}.

We first note that ﬂp(B) is a closed subalgebra
of L®(B). It is closed since T, : L7(B) » ¢ given by

A
Tn(w) = g(n) is continuous for each n. It is an

21
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. . © VAN
algebra since if ¢,y € ¥ (B), then (gpy)(n) =

T o(k)i(n-k) = 0 if n< O. Thus oy ¢ & (B).
k=0

At this point, one may ask which properties of Toeplitz
operators on Hz(aIH carry over for Toeplitz operators
on H2(B). Many of the same properties do hold,

some with minor modifications. For example, if

¢ € L”(3D) then %; = Ma. This property does not
hold for all ¢ € L°(B) in general. It will hold,
though, if ¢ € B(B). Hence some of the properties for
Toeplitz operators on HZ(B) will not hold for all

© € L”(B), only for some subset of LQ(B). Also, we
may be able to show some properties hold for certain
classes of weighted shifts (e.g. those with periodic
weight sequences). However, there are some striking
differences which will be pointed out. We will now

examine properties of Toeplitz operators on L2(B).

*
Proposition 3.1: If ¢ € B(B), then Tcp = Ta.

Proof: Suppose @ € B(B), then g € L”(B) and

M; = %5. It is well known that A ¢ B(LZ(B)) and

S = PA| 2 implies that S* = PA* 2 Thus
H™(B) H™(B)
T = PM*\ 2 = PM~| , = T— . Q.E.D.
? ?'H (B) ? H(B) @
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The "converse" of Proposition 3.1 is not true,
*
however. That is, if T = TW for some y € L”(BR),

then it is not necessarily true that | = 5. To see

this, consider the following example.

Example 3.1: Let the weight sequence for the

weighted shift be given by 1i) wo = 1 for n # -1 and
ii) w_, = %. Then B(n) =1 for all n > O and

B(n) = 2 for all n ¢ O.

For n,k > O, (Tzzk,zn) =1 for k=n-1 and
(Tzzk,zn) =0 for k# n-1. Thus T:(zn) = P(zn-l) =
T _l(zn). However, z = z_lB(l)/B(-l) = % 2"l implying

z
Zel°(p) and T = 3 T..

Proposition 3.2: Let & :L7(B) = B(Hz(B)) be

defined by &(yp) = Tm. Then & is linear and contractive.

Moreover, Q\B(B) is *-linear and contractive.

Proof: It is easy to see that & is linear.
Also, by Proposition 3.1 we need only verify that 3 is
contractive. This is easy, however, since for f ¢ Hz(B)

and ¢ € L”(B) we have:
“Tcpfllz = HP(CPf)Hz < HCPfII‘z < Hw"lw!\f"lz

The last inequality holds, of course, by the definition

of |gll- We thus have HT@H < Neolt . Q.E.D.
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We now have the following proposition which was
proved by Brown and Halmos [9] in the unweighted case.
We note that in the statement of the proposition, we
say | € H2(B). This just says that Q(n) = 0 for
n > 0. We use this instead of § € ¥"(B) since it is
unknown whether | € LF(B) implies E € Lm(B) as

mentioned before.

Proposition 3.3: Let o,y € L (B). Then

Tme = Tw if and only if ¢ € ¥ (B) or § € B (B).

Proof: Suppose ¢ € ¥°(B). Then for f ¢ HZ(B)
it is easy to see that of € H2(B). Thus T¢f = opf.
Then T T £ = T (pf) = P((yp)(£f)) = T

Ve ¥ v
V€ u?(g). For k >0 let h = TwT¢(zk). Then for

cp(f). Now suppose

n>o

(T. T (25),2")

2 A
h
B (n)h(n) e

-]

(T (T g(2-k)z%),2™)
L)

(o]

® A
= (y( = ple-k)2*),2")
4=0

® A A
82(n) (T p(2-k)y(n=-1))
£=0

A A
8%(n)( T o (4-k)y(n-2)) .
4=n
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If £=T cp(zk), then for n > O

)
2 A k n
B (n)f(n) = ((yp)(27),2")
2
= B (n) (Vo) (n-k)
2 o A, A
= B°(n) L eo(2)y(n-k-g¢) .
L=-=
Letting 2’ = £+k we get:
® A A
B°(mE(n) = p%(n) T ole’-K)y(n-2’)

Bz(n) > Q)(L ’-k)fu\(n-z’)

L'=n
= 82(m)fi(n)
k k . .
Thus Tva(z ) = TV@(Z ) for all Xk > O. This implies
TwTw = TW@ since [zk :k > 0} forms an orthogonal

basis for HZ(BL

Now for the converse, suppose T T = and

T
, LA U9 o A
w £ ¥ (B). Then for k,n > O, we must have T ¢(L—k)@(n-z) =

p=-w

A
(£=k)y(n-¢) from the calculations above. Thus

o
]
8
>

>

(2-k)§(n-g)

O for k,n > O or equivalently

~
[
]
8

©(=2-k)§ (n+1)

L

O for all %k,n > O. Taking k = O

™

and n = m we get

® A A
(*) s ep(=2)y(m+g)
=1

O for all m > O .



26

S A A
Also letting 4’ = g+k we get 2 ew(=-2')i(n-k+g’) = O.
@ v
£'=k+1

Then for n = k+m we have

2 A A
(**) T p(-4)y(mtg) = 0O for all m >0, k > O ,
1=k+1

k A A
Putting (*) and (**) together we get T op(-£){(m+L) = O
4=1

for all m >0, k > 1. Since ¢ & ¥“(B) there exists
A
N > O such that ¢(=N) # O. Now by the first part of

this proposition T TT . . =T T 4, =T 1.
Voo ZN 1 ] cpZN 1 wsz 1

A
we may assume that ¢(-1) # O. Letting k =1 in our

So

A
last sum above, we get ¢y(mtl) = O for all m > O.

Thus 7§ € H2(B) as desired. Q.E.D.

In the case of the unweighted shift, it has
been shown (Douglas, [6]) that if ¢ € L”(aD) , then
c(qw) c O(Tw)' This inclusion is used to show that
T = ||M
XY

inequalities: H%$H = r(Mb) < r(Ta) < HT@H < HM¢H.

. The proof is given by the chain of

Thus & :LP(aIU ) B(Hz(aln) is an isometric *-homo-
morphism between Lm(aIH and a closed subspace of
B(Hz(aln) . However, in the case when not all of the
weights are 1, it is not necessarily true that

r(M¢) = HM¢H. This will be seen in Chapter 6. One
may still ask, though, whether there is a spectral
inclusion theorem (c(%w) c O(Tw))' This property

is examined in the next two results and the example

following them.
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Proposition 3.4: Let T, a weighted shift with

periodic weight sequence, be represented as Mz on

Lz(ﬁ). If ¢ € L”(B) and TCp is invertible then

M 1s invertible.
N

Proof: Since Tcp is invertible there is a
constant c; > O such that |of]l, > HT¢fH2 > o llfll,
for all f ¢ HZ(B). Also, there is a constant c, > 0o

* 2
such that HbeHZ > cznfn2 for all f € L“(B). Now
let n > O and consider

-]

(T |£x) 282 (k-n))1/2
k=0

[EE {18

® A
[ 2 £0k) %82 (k)82 (k-n) /8% (k)12
k=0
<z |£(x) 1282 (%)) %sup(8(k-n)/B(X) : k > O)
=0

By Proposition 2.3 there exists #4 > O such that

sup{B(k-n)/B(k) : k > O} < inf{B(k-n)/B(k) : k > O}/¢. Thus
2" €ll, < €1, inf(B(k-n)/B(k) : k > 0}/2
< T Ell, inf(B(k-n)/B(k) : k > 0)/2c;
< 127 £, 00,
®
< N1zl /te
< HM¢(z-nf)“2/gcl since Mz_n@v = M¢Mz_n .

Now since {z-nf : f € HZ(B),n > 0} 1is dense in LZ(B),

we have M.cp is bounded below on L2(B).
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We will now show that M; is bounded below.
The two conditions that Mcp is bounded below and M
is bounded below then imply M is invertible
(Douglas, [6], p.84). To prove M; is bounded below
we attempt to imitate the proof that MEp is bounded

below. A new difficulty is encountered here since M -n
z

%*
does not necessarily commute with M¢. However, we
note that it is sufficient to use n = kN where N is
the period of the weight sequence and k is a nonnegative

integer. It is sufficient since {z-ka : f € H2(B), k > 0}

is also dense in LZ(B). Now we have

-kN ' -kN * 1 1 -kN * | * -kN |
Iz e, < iz T fi /e < 2 Mcpf.lz/zczs M (= £)1l,/0e, .
Noting that z-kN € B(B), the last inequality is a

result of the following equation.

M M* M*—- M* M* ML——- M* M
Z—kN ® z—kN [ %) z—kN [ z—kN
%*
Thus both Mcp and M¢ are bounded below. Q.E.D.

Thus we do have a spectral inclusion theorem for
shifts with periodic weight sequence. We note that a
key part of the proof involved the existence of a
constant ¢ > O such that ¢ sup{B(k-R)/B(k) :k > 0} <
inf{B(k-n)/B(k) : k > O0}. The following theorem shows
that this is a sufficient condition for a spectral

inclusion theorem.
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Theorem 3.,1l: Let T be an invertible

weighted shift for which there exists a constant
£ > 0 such that g sup{B(k-n)/B(k) :k > 0} (K
inf{B(k-n)/B(k) :k > 0}). If ¢ € L°(B) and T

is invertible, then M¢ is invertible.

Proof: We again prove that both M¢ and M;
are bounded below. The proof that M¢ is bounded
below is exactly the same as in Proposition 3.4. We
note, however,that if the weight sequence is not
periodic, then B(B) = {AI:\ € ¢). Thus we cannot
use the same idea as in the last part of Proposition 3.4.
To show that M* is bounded below we will first show

that U = [M*nf : f € H2(B), n > 0} is dense in L2(B).
z

If g= 2 é_\a;(k)zk € LZ(B). then (M*n)'l(g) € H2(B)
k=-n 2z

as shown by the following computation:

(" 79,2 = (g p2)
2 z
= (g.M _ 2"
4
- (glzk-n)
= §(k-n)p? (k-n)

o if k < 0.

* * -
This implies g =M n((M n) 1(g)) € U and shows that U
z z

is dense in L2(B).
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Now

® A
Im" £, = (T | £ (k+n) | 82 (k+n) B2 (k+n) /8% (x)) 12
z =-n

< (T | £ (k+n) | 282 (k+n) )1 %sup(B(k+n) /B(k) : k> -n)
=-n

< |I£ll, sup(B(k)/B(k-n) : k > O]

< |I£il, (inf(B(k-n)/B(k) : k > 0})~*

< £}, (sup(B(k-n)/B(k) : k > 0))7 g7

< £l inf{B(k)/B(k-n) : k > 0}/4

< T gl , inf(B(ken) /Blk) 1 X > =n)/sc,
<y Toelp/ney

< Iy Moty a0,

< IIM:;(M:nf)Hz/zcz

We note that the first equality comes from a direct

® A
computation of anf = 3 f(k+n)(ﬁ2(k+n)/32(k))zk.
z =-n

*
We have hence verified that M¢ is bounded below on

12 (p).

Thus we have both M¢ and M; bounded below on

LZ(B) which again implies that M.cp is invertible. Q.E.D.
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However, a spectral inclusion theorem does not
hold for all invertible weighted shifts. The following

example illustrates this point.

Example 3.1: Let T be the weighted shift with

weight sequence given as below:

i) w = 1 if n> -1

. _1
ii) wo= 3 if n< -1

Then for k > O, HMk_lH = 2%, It is also not
z

difficult to verify that |M _;| , || = 1. Hence,
z © H (B)

r(M -l) = 2 from the first equality and r(T _1) <
z z

M ' < 1. Thus it is not possible that

z‘l\Hz(s)

o(M _1) c o(T -l)‘
z z

We now examine other conditions on Tcp which
imply something about the invertibility of Mb' The
first result has been proven for the unweighted shift.

Its proof can be found in Douglas, [6].

Proposition 3.5: If T is a weighted shift with

periodic weight sequence, then either Ker Tcp = {0} or

Ker T; = (0} for all ¢ € L°(B), ¢ # O.

Proof: Suppose both Ker Tcp # (0} and Ker T; # (0].
Then there exist nonzero elements f£,g ¢ HZ(B) such

* . — 2
that T =0=T £, Since T = 0 we have H
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o)

where Hg(ﬁ) = (h € B2(B) : h(0) = 0). Also T;f

. . * n * n n
implies (Tcpf'z ) = (Mcpf'z ) = (f,92) = 0O for all

. . A A 2
n > 0. This last equation says 2 f(k)e(k-n)B“ (k) = O
k=0

for all n > O.
2 ) A A
Now let h € H°(B) be given by h(k) = £(k)B(-k)B(k).
(We note that since the shift is periodic B(k)B(-k) is

bounded.) Now

® A A
kZ h(-k)gp (n+k)

VAN
(ph) (n)

«° A
g2 R(x) (B(X)/B(~k))ep (n+k)

kZ f(k)e (n+k) B~ (k)
=0

= 0 for all n £ O from the last line
of the previous paragraph. Thus ¢h € Hg(B).

So R(¢h) = R(p)R(A) € HI(3D) and Rigy) =

R(ep) R(g) € Hg(aD) . This says R(;p)R(?f)R(g) € Hé(aD)

and R(g)R(R)R(g) € H(l)(a])) since R(h) € Hz(a]D) and
R(g) € Hz(a:D) . Now by Douglas, ([6], Corollary 6.7)
we have R(gp)R(K)R(g) = O which implies R(qog)R(?f) = 0.
By the F. and M. Riesz Theorem if R(h) # O, then
R(pg) = O. Corollary 2.6 of this paper then implies
that ¢ = O. This is a contradiction, and so we are

done. Q.E.D.
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The next two corollaries have also been proven in
the unweighted case. Their proofs are also found in

Douglas [6].

Corollary 3.1: If O # ¢ € B(B) and Tcp has

closed range, then M¢ is invertible,

Proof: We may assume without loss of generality
that the weighted shift has periodic weight sequence.
If not, B(B) = {AI:) € ¢} in which case the result

is trivial.

Now if ¢ € B(B) then T; = Ta. Also by
Proposition 3.5, we may assume Ker Tcp = {0)}. Then
since Tcp has closed range and Ker Tcp = {0}, we have
Tcp is bounded below on H2(B). One can then show,
as before, that M.cp is bounded below on L2(B). That
is, there exists a constant ¢ > O such that
wanz > chH2 for all f € 1%(B). Then for f € L2(B).

we have:
o], = loFl, = l6El, > clEi, = cl£l, -

The second equality holds by Corollary 2.3. The above
chain shows that ﬁ; = ME is bounded below on LZ(B).

As before, we conclude that M¢ is invertible. Q.E.D.

We recall now that S € B(H) is said to be
Fredholm if the range of S is closed and if both the

kernel of S and S* are finite dimensional. If S
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is Fredholm, we define the index i(S) of S by

i(S) = dim(Ker S) - dim(Ker S*),

Corollary 3.2: If T 1is a weighted shift with

periodic weight sequence and ¢ € L”(B), then Tcp is

invertible if and only if Tb is Fredholm and i(Tw) = 0.

Proof: It is easy to verify that if T is
invertible then Te is Fredholm and i(Tw) = 0. So
if Tcp is*Fredholm and i(T¢) = O, then Ker Tcp = {0}
and Ker Tcp = {0} by Proposition 3.5. This implies
both ’I“_\° and T; are bounded below on Hz(B) since

they both have closed range. Thus Tcp is invertible. Q.E.D.

We now present the last result concerning B(B).

Proposition 3.6: & : B(B) = B(Hz(B)) is *-linear

and isometric.

Proof: By Proposition 3.2, we need only show that
$ 1is isometric on B(B). The C*-algebra B(B) is
commutative and hence r(%m) = HM¢H for all ¢ € B(B).
Thus M| = x(M) < (T) < |7 [ < (M) for o € B(A).
The first inequality holds from the spectral inclusion
theorem. The result is achieved since equality must

hold throughout. Q.E.D.
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We now discuss some miscellaneous problems and
results concerning multiplication operators, Toeplitz
operators, and X" (B). First of all we note that for
o € L7(B), (M z'.20)/6%G) = gi-1) = 2N 2 G,
So suppose L ¢ B(LZ(B)) is such that (sz,zj)/Bz(j) =
(in+l,zj+l)/Bz(j+l). Is it then true that there is
© € L“(B) such that L = M¢? The answer to this qQuestion

is given below.

Proposition 3.6: Let L € B(LZ(B)) satisfy the
mlzml

eqguation (LG,zm)/Bz(m) = (Lz )/32(m+l). Then

there exists ¢ € L”(B) such that L = Mb.

Proof: Since [M¢ tp € L¥(B)) = {Mz}’, the commutant

of Mz on L2(B), we only need to show that LMz = MzL‘

i

This will be true if and only if (LMzz ,zj) = (Mszl.zJ)

for all integers i and j.

Now (LMzzl,zJ) = (Lzl+l,zj) and

i i ox
(M, Lz ,z7) = (Lz ,MZZJ)

(Lzt,2z371)p%(3) /82 (3-1)

= (Lzl+l,zj) by the property of L given.

Thus (MZLzJ,zj) = (LMzzl,zJ) and we are done. Q.E.D.



36

Now note that for Toeplitz operators T@ with
® € L”(B), we have the same type of property. The
29)/8%(3) =
)/8%(j+1) holds only for i,j > O. The

only difference is that (Twzl

(T z1+1'ZJ+1
®

question here is like the question above. Suppose

S € B(HZ(B)) satisfies the property above; is it

true that there exists ¢ € L°(B) such that S = Tw?

The answer to this question is no and the solution

follows. We begin with the following proposition.

Proposition 3.7: Let T be an invertible weighted

shift with B(n) =1 for n > O and sup{B(n) :n < O} = =.

(-]
A <
Then there exists f ¢ C(aD) such that X f(n)zng' L (B)

A 2T nN==c

where f(n) = I £(elf)e1Nn8 %% .
(0]

Proof: Suppose f € C(3D) implies

s A [} [--}
> f(n)z" € L”(B). Let I:C(3D) =+ L®(B) be the map

[--]
A
that sends £ to > f(n)zn. Then I is continuous

nN==co

as a result of the closed graph theorem. The graph
S = {((£,1f) : £ € C(3D)}) 1is closed since the coefficient

A
functional Tn which sends f to £(n) is continuous

on both c(3D) and L*(B). Now since I is continuous,
we have:
B(n) = |27, < 127, < ITllz™,p < IlZll for all n.
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But this contradicts the assumption that
sup{B(n) : n ¢ 0} = w. Thus there must exist f € C(3D)

® A ©
such that 2 f(n)zn € L (B). Q.E.D.

Corollary 3.3: Let T be an invertible weighted

shift with sup{B(n) :n < 0} =« and B(n) =1 for
n > 0. Then there exists S € B(Hz(B)) such that
i+l j+1
z , 2

(Szi,zj)/Bz(j) = (S )/32(j+1) for all i,j > O,

but S # Tcp for any ¢ € L7(B).

Proof: We note that HZ(B) = Hz(aIn . Let S

. 0 A
on HZ(B) be defined by (Szl,zj) = f(j-i) where

© A ©
fecC(D) but T £(n)z™ ¢ L”(B). Then S € B(H(B))

by Halmos, [8], Problem 194. But if S = Mcp for some
o A A
¢ € L (B), then ¢(k) = £(k) for all k by picking

i, > 0 such that j-1i = k. This equality implies

@ A
> f(n)zn € L°(B), a contradiction. Q.E.D.

n==co

Corollary 3.4: If T is an invertible weighted

shift with sup{B(n) :n ¢ 0} =« and B(n) =1 for
all n > O, then [Tcp :p € L7(B))} is not closed in

B(H%(B)).

Proof: Let f € C(3D) Dbe such that
© n

A ® A -
T f(nz" £17(B). Then o (£) = T (1-ihEa)Fer7(p).

- k=-n n+l
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-£ll
Also, o (f) € c(3D) and [o (f) f"aD + 0 as
n + « (Katznelson, [13], Thm. 2.11). Let S be as

in Corollary 3.3. Then

T -s|| Hon(f)-fﬂal) (Douglas, [6], Prop. 7.4).

n(f)

Hence S ¢ {Tcp e € L”(B)) implies this set is not

closed in &/ (H%(8)). 0.E.D.

We note that these last two corollaries show a

remarkable difference from the unweighted case,
B(n) =1 for all n. In this case it is true that
i+l _j+1
. )

if s € A(H2(B)) satisfies (szt,zd) = (szi*l,z

then S =T for some ¢ € L“(B). This also says

®
that {Tw :p € L'(B)) 1is closed in B(Hz(a)).

In the last part of this chapter, we consider

. ® _ N n 2
the following. Let H (B) = {y = Z y(n)z : yf € H"(B)
n=0

all f ¢ Hz(ﬁ)} where the multiplication f is
defined as before. Then it can be shown (Shields, [23],
Thm. 3) that {Tz}’ = {MW :y € H (B)). The problem

we want to consider here is: what is the relationship
between VQ(B) and HG(B) when considered as sets

of sequences? It is easy to verify that & (B) c H”(B)
since N¥°(B) € L”(B). For the three cases: pg(n) = 1
for all n; B(n) = r®  for all n; and the case where
the shift is rationally strictly cyclic, we have

¥ (B) H (B). However, in general, it is not true that
¥ (B)

H”(B) as the following example indicates.
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- k|

Example 3.2: Let B(k) = 2 for all k.

Then it can be shown that | ¢ Hm(B) if and only if

A
y(z) = Z}¢(n)zn is a bounded analytic function on
n=0
{z € ¢:]z| < 1/2}. (Shields, [23], Theorem 10').
-] L] k
Thus § = szeHc(B). Also, g = 2 %z-keLz(B).

k=0 k=1
(

® /\
If it were true that ¢ € ¥ (B) then yg) (0) would

be defined (and finite). However
/\ ® A A ® 2k
(vg) (0) = T y(k)g(-k) = 2 1°5 = = .
k=0 k=1

Thus ¢ € H (B) but ¢ g ¥ (B).



CHAPTER IV

HANKEL OPERATORS FOR WEIGHTED SHIFTS

The study of Hankel operators is a natural out-
growth of the study of Toeplitz operators. Again,
as in the case of Toeplitz operators, Hankel operators
for the unweighted shift have been studied quite
thoroughly. One area of study has been to determine
which Hankel operators are compact. We will be
considering this question for weighted shifts. We
will also point out during the course of the investigation
differences between the unweighted case and other cases.

We start with the following definitions.

Definition 4.1: Let T be an invertible weighted

shift represented as Mz on LZ(B). For o € L”(B)

we define the Hankel operator Hcp :HZ(B) - LZ(B)€S‘H2(B)

with symbol ¢ by

H (£) = (1-P)(pf) for all f ¢ H? ()

We recall that P is the orthogonal projection
of L2(B) onto H2(B) given in Chapter I. Thus 1-P
is the orthogonal projection of L2(B) onto the orthogonal
complement Lz(B)eHz(B) of HZ(B) in L2(B). Also,
we note there is no loss in assuming T is invertible.
If T is not invertible then L”(B) = ¥ (B) (Shields,

[23], p.68). We will show later that H¢ = 0 for all

40
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V€ ¥“(B). For the rest of this paper, the weighted

shift T will be invertible unless otherwise stated.

Definition 4.2: C(B) is the closed linear span

in 1L%(B) of the (Laurent) polynomials.

Equivalently, £ € L (B) is in C(B) if and only

N A
if for every ¢ > O there exists q = 2 q(k)zk such
k==N

that |[f-q||_ < e¢. This definition is motivated by the
unweighted case. 1In that case, C(B) = C(3D); and
C(dD) is the closed linear span of the (Laurent)

polynomials in L”(3D) .

We now begin our study with some easy results

concerning Hankel operators.

Proposition 4.1: The map ¢ = Hcp is a contractive

linear map from L®(B) into &(HZ2(B), L2(B) © H2(B)).

Proof: It is clear that the map is linear. The
proof that it is contractive is just like the proof for

Toeplitz operators.
I8 g, = 11 (-2) (0B < fiwfl, < loll €, for all £ € u(p).

Thus (5]l < lloll,- Q.5.D.

Proposition 4.2: If € N”(B), then H = 0.
@ V)
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Proof: For ¢ € ¥ (B) and f ¢ HZ(B) we have
shown of € Hz(B). Thus H¢(f) = (1-P)(pf) = O for

all £ ¢ HZ(B). Q.E.D.

Definition 4.3: For ¢ € L”(B) we define the

distance d(m,w“(B)) between ¢ and ¥ (B) by

d(eX"(B)) = inf{lp-wll_:v e ¥7(R)] .

Proposition 4.3: If ¢ € Lw(B), then

nku < dloNT(B)).

Proof: Let g € L°(B) and { € ¥°(B). Then

Hw_w = I-l.cp by Proposition 4.2. Now by Proposition 4.1,
HH¢H = HH@'WH < llg=vll - Since this is true for all
v € ¥°(B), we have the result. Q.E.D.

The first three propositions and their proofs
are identical with ones for the unweighted case.
However, in that case it can be shown that
5| = de.¥%(B)) for all g € L7(B) (Nehari, [15]).
We will see that this is not true for all weighted
shifts when we study compact Hankel operators. We
will begin this study after one more definition and a

theorem following it.

Definition 4.4: X" (B)+C(B) = {y+g: v € ¥ (B)

and ¢ € C(B)].
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For the unweighted case ¥~ (B) +C(B) has been
shown to be a closed subalgebra of L®(B) (Sarason,
[22]). We prove the same result for an arbitrary weighted

shift by using a theorem of Rudin, [19].

Theorem 4.1: %% (B) +C(B) is closed in L7 (B).

Proof: We use the same notation as in Rudin, [19].
n

) A
For ¢ € L (B) 1let on(m) = (1-%%%)¢(k)zk be the
n

n'th Cesaro mean of ¢. Let § = {on :n € N}, y =C(B),
and Z = ¥“(B). The latter two sets are then closed
subspaces of the Banach space L”(B). Now for o € &,

fecy,gez, and h e L°(B) we have the following

results:
i) o(h) €y (i.e. o(L¥(B)) = C(B))
ii) o(g) € 2 (i.e. o(W”(B)) c ¥%(B))
iii) o)l ¢ 1 (i.e. sup(lio]| : 0 € 8} < =) .

Parts i) and ii) are easy to verify using the
definition of Ope For part iii) see Shields ([23],
pP-89). Rudin's theorem says we must only verify one
more thing to conclude that % (B)+C(B) is closed.

We must show that for each f ¢y and ¢ > O there
exists 0 € § such that |lo(f)-£|_ < e. To see this
let £ € C(B) and ¢ > O be given. Then there exists

N
A
a (Laurent) polynomial p(z) = 2 p(k)zk such that
==N

|f£-pll, < €/3. Therefore,
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lon (£) = £l < o, (£-p)f +llo () -p]_+lp-£]  or
o (£) - £l < 2| £-pll_+lo () -pl_,  (by part iii))
< 2¢/3+ Hon(p) -p”m .

N
k| A k
Now for n > N, on(p) -p = k2=:-N -rl1?]l.- p(k)z".

Using the results of Shields ([23], Prop.29), it can

be shown that

loa(®) =Bl < lIBI, (0 12,9 1%Ly where

N "
q (w) = T |k|lw /(n+tl). Thus
k=-N

2 1/2
lo ()Pl < Hp'.!@(j‘am RTINS S

N ,1,2
< Ipli_(2 T k%) /(n+l)
k=0
So there exists NO > 0 such that
HOn(P) -P”m < ¢/3 if n > Ng- Finally if n > N,

then |o (f) -£]|_ < e. Q.E.D.

Proposition 4.4: If ¢ ¢ ¥ (B), then

z"p € ¥*(B) +C(B) for all n.

Proof: For n > O, zn¢ € ¥°(B). Thus we need

only consider the case when n < O. In this case,
n =1 4 -1

k=n k=0 =n

(-]
z g = E:p(k-n)zk+ Zé(k-n)zk. Since g =kZ: Q(k-—n)zk
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® A
is in C(B), we see that Z)qp(k-n)zk = zn¢-g is
k=0
in %%(B). Thus zn¢ e ¥7(B) +C(B). Q.E.D.

Corollary 4.1: MQ(B)+C(B) is a closed subalgebra

of L*(B).

Proof: By Theorem 4.1, ¥~ (B)+ C(B) is closed.
Thus we need only show that it is a subalgebra of L% (B).
Because it is closed, it is sufficient to show that

pp € ¥ (B)+C(B) for all g € ¥ (B) and (Laurent)

polynomials p = Z p(k)z" . However, pp = 2 p(k)(z o)
=-N k=-N

and by Proposition 4.4 we know that zkm € ¥ (B) +C(B)

for all k. Hence pyp € ¥ (B)+C(B). Q.E.D.

We will now discuss the set {¢ € L”(B) :Hep is
compact). In the unweighted case, it is known that the
set above is exactly ¥”(B)+C(B) (See P. Hartman, [12]).
For weighted shifts in general this is not true as we
will see later. However, we will shéw that H is compact
for all ¢ in &”(B)+C(B). We begin with the following

proposition.

Proposition 4.5: If n >0 and ¢ € ¥ (B), then

H n is a finite rank operator and hence compact.

z
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-1

A
Proof: If q= Z é(n+k)zk and | = 2 p(ntk)z,
k=-n k=0
then gq ¢ C(B), 1 € ¥~ (B), and z-nm = g+ ¢. Thus by
Proposition 4.2, H _ = H_.
z nw a
A\ i A
Now let £ ¢ HZ(B): then (gf)(m) = Z}%(k)q(m-k) =0
k=0
A
for m < -n since q(g) = O for 4 < -n. Thus
- Nk
af = Z (af)(n)z", dimplying H __ (f) = (1-P)(qf) =
-1 Eifn zZ 9
> (qf)(k)zk. Hence (z-n,z—n+l,---,z—l] spans the
k=-n
range of H -n ° Q.E.D.
z ©Q

Corollary 4.2: If ¢ € ¥ (B)+C(B) then Hcp

is compact.

Proof: Let ¢ = g+y where | € ¥ (B) and
g € C(B). Let 9 € C(B) Dbe (Laurent) polynomials

such that jlq, -ql_ + 0 as k % =. Then

I, -Hg | = g =5y | < lla-gl, 0 as ke

2

By Proposition 4.5, Hq is compact. Also, it
k
is known that the collection of compact operators is

closed in the norm topology on B(Hz(B).Lz(B)-E}Hz(B))

(See Rudin, [17], Theorem 4.18). Thus Hcp is compact

since |[H -H || 0 as k 4+« and H is compact
CRC

Ak
for all k. Q.E.D.
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Before we continue with our discussion of compact
Hankel operators, we need to take a short digression.
There are some general properties of operators on Hilbert
space which we will need in our discussion. The results
we will give in this digression have been known for
many years, but for the sake of completeness, we will
include their proofs. The following result is due to

I. Schur. 1Its proof is found in Hardy, [10].

Theorem 4.2: (Schur) Let H and K be separable

Hilbert spaces with orthonormal bases {ej :j =0,1,2,--:)

and {ei: i=-1,-2,-++) respectively. Let A € F(H,K)

have matrix [aij] where aij = (Aej,ei). If bij = (fj,gi)
for fj' g; €H with sup{HfjH:j =0,1,**} =M< » and
sup[HgiH :i=-1,-2,++}) = N< », then the operator D
with matrix [aij bij] is in #/(H,K). Furthermore,
ol < [lajjmMN.
-] © A
Proof: Let f. = Z)f (z)e and g, = 2 g.(2)e,.
3 4203 A 1 4=01? L
If x—Z}kkekeH and y = ZBe € K then
- J
k-o ——“
©o =] _
(onY) = Z Z A B. a. b.
k=0 oo k 73 3k Tjik
E; -1 @A x
= Z A Bs an (T £ (2)g.(2))
k=0 j=-o k 73 Jk e=0 k J
o =1

i(z Z A fu)sgu)a )
L= (0] k— J—-m k k
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-1

. hd A _ A
Now if hz = kzgxk fk(z)ek and m, = .ELQB g (L)e
then (Dx,y) = 2 (Ah,,m,). So
g=0 * 4
| (Dx,y)| < Eol‘(Ahz'mE)\
.<.. E HAlll‘thHmLH
- 1/2 = 1/2 )
<l Z:“h‘HZ) ( ZZHmLHz) by Cauchy-Schwartz.
(=] 2 [« ] [« <)
However, X thll = 2 (L n] lf (lz)l
£=0 £=0 k=0
© @ A 5
= 2112(2 £,.(2)]°)
-Ol k £=O\ X |
;5 y. | 22
Sk=0l k!
< M2x]
1/2
Thus ( Z)Hh H < M|x|] and similarly ( Z)\ H2 172 <
4=0
Therefore | (Dx,y)| < Al MN]ix|| | vii 1mp1y1ng
ol < | M.

We note that we should be a little more careful
in switching the order of summation. This can be done
by letting x and y be only finite linear combinations
of the basis vectors. We would then get the norm inequality
on a dense set of vectors and be able to extend by

continuity. Q.E.D.
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We now have the following two corollaries
which we will need in discussing compact Hankel
operators. The operator An(A) defined below is
like the (n-1)th Cesaro mean of a function. If we
let Bk(A) be the operator whose matrix entries
are those of A above the kth cross diagonal and

n
zeros on or below it, then A_(A) = Z)Bk(A)/h.
n k=1

Corollary 4.3: (O'Donovan, [16]) Let A € B(H,K)

where H and K are as in Theorem 4.2. Let

aij = (Aej,ei) and let

o) if |il+j > n
(An(A)ej.ei) =
aij(n-\i\-j)/h if |i|l+j < n

Then A _(A) € B(H,K), HAn(A)n < A, and A_(A) 4+ A in

the strong operator topology (SOT) as n 4 =,

n-j
Proof: For j =0,1,2,°**,n-1, let f. = (Xe,)//n
E— I
and for j > n let fj = 0. Also for i = -1,-2,***,-n+l,
n
let g; = ( > eL)/Vn and for i ¢ -n let g, = 0.
1=]1i|+1

Then Hfjﬂ < 1, [lggll £ 1, and it is easy to verify that

o if [il+] > n
(fjvgi) = .
(n=|i|=3)/n if |il+j < n
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Hence by Theorem 4.2, An(A) € B(H,K) and
HAn(A)H < ||all.  We note that in fact A _(A) is a finite

rank operator.

To show convergence in the SOT we start with a

basis vector ej for j > 0. If ¢ > O 1is given

then there exists an integer k ¢ O such that

X -1
2 2 . 2
z \(Aej,ez)\ < €/2 since “Aejn = \(Aej,e‘)\2 .

L==e b=
Thus if n > \k\+—j+ 1 we have kX > j-n+1 and

2
HAn(A)ej-AejH

jzn 2 -1 . 2 2
=T |eje)fe T (([]+3)/m P (Bes e, |
=—— ] 4=j-n+1 J

k-1 5 -1 > 5
< L |(Re.,e ) |7+ Z ((|£]+3)/n)7|(Re,,e,)]|
J 4 1=k J 4

< %72+ (1x|+3)? x| |jall/n2.

Thus there exists NO > O such that

x|+ j)z\k\HAH/hz < 62/2 if n > NO' Therefore if

n > Ny, then HAn(A)ej-AejH < €. Or in other words

HAn(A)ej-AejH +0 as n 4 o=,

To show convergence in the strong operator
topology we must show ||A (A)x-Ax| + 0 as n 4=
for each x € H. We have shown this for x = ej;
3=0,1,2,"** . So let x = E}x.e. € H and let ¢ > O.

j=0 J 3]
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Then there exists M > O such that

© -]
I = A.e.ll < e/4}la;. Now let y = 2 r.e.. Then
j=M+1 J ] j=M+1 33

M
1A, (A)x = ax|| < jgo\xj\HAn(A)ej—Aejn +lla_(R)yll + llay

< (M+1)||x]| max{‘,lAn(A)ej-AejZ‘t :0< 3 < M+ey2

By the part directly above we can make
max{HAn(A)ej-AejH :0< j < M} "small" by taking n
large. Thus for each x € H and ¢ > O there exists

N > O such that HAn(A)x-AxH < e if n > N. Q.E.D.

Corollary 4.4: If A 1is compact then An(A)

converges to A in the norm topology on #A(H,K) as

n -+ o,

Proof: We first assume A 1is Hilbert-Schmidt and

let ¢ > 0. Then there exists N > O such that

(-]
» HAenH2 < 92/9. We also note that for 3j > O
n=N+1

HAn(A)ejH < HAejH since ‘(An(A)ej’ei)‘ < 1(Aej,ei)\
. ® N
Thus if x = kzgxk e € H, we let X, = kzg xk e and
X, = k=§ilxk e, Then

A, (B)x - Ax|| < A, (A)x) - Ax, || + HAn(A)x2H + ‘.‘.sz‘.‘

N
< k§o\kk\l\An(A)ek - ae, !l + A (A)x, |l + ||Ax,)]



52

Bac A, (0% < T Dy lla, (e

(5 \ \2)1/2( 5 A (a) 'l2)1/2
A A (A)e |l
S el K k=+1 D K
® 2)1/2

< Il T flaey]

< lIxile/3

The above inequalities also show that HAXZH < xlle/3.

Therefore

A, (A)x - Ax|] < [ (M 1)max (|lA_(A)e, -Ae O< k(NJ) +% x| .

kH .

However, by Corollary 4.3 there exists Ny > O such that
max{HAn(A)ek-AekH :0 k < N} < ¢/3(M1) for all n > Ng-
Thus if n > N, HAn(A)x-AxH < ejixll for all x € H.

We note that N, does not depend on the vector x, only
on the operator A and the ¢ given. Thus

HAn(A)-AH < e if n > No- This says An(A) + A in

the norm topology if A is Hilbert-Schmidt.

However, the set of Hilbert-Schmidt operators
is norm dense in the set of compact operators. Thus
if A is compact and ¢ > O 1is given, there exists a
Hilbert-Schmidt operator B such that |A-B!| < ¢/3.

Therefore
1, () =&l < [|A,(B)-A, (B)| + |3, (B)-B] + |[B-]
< 1A (A-B)I + ¢/3 + ||A_(B) - B|

< 2¢/3+||A (B)-B| by Corollary 4.3 .
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Since B 1is Hilbert-Schmidt there exists No > 0
such that HAn(B)-BH < €/3 if n > Ny by the first part

of this corollary. Hence HAn(A)-AH < e if n > N,. Q.E.D.

We now relate the material above to the consideration

of compact Hankel operators.

Proposition 4.6: If ¢ € L°(B) then Hy () =
n

An+1(H¢) where o0 _(p) and A (Hw) are defined as

n+1l

before.

L x|\ Ao,k
Proof: From before o _(p) = 2 (1-1—})¢(k)z .
—_— n Ke—n n+

An orthonormal basis for HZ(B) is [zJ/B(j) :j =0,1,2,°"}

and an orthonormal basis for LZ(B) S HZ(B) is

[zi/B(i) :i=-1,-2,"*+}. Thus if |i-j| = |i|+3 < n+1,
then

j i . N j i . .
(Hon(w)z »27)/B(3)B(1) = (0 (@)z”.27)/B(])B(1)

o () (i=3)B(1)/B(3)

A
o(i=3) [(n+1l -]i-3|)/(n+1)]1B(1)/B(3)

5(i-3) [(n+1 - |i] - 3)/(n+1)18(1)/B(3) .

Similarly

(Bpyp (H )27 .2%) /B(1)B(3)

<H¢zj.zi)[(n+1- |i] = 3)/(n+1)1/B(i)B(3)

A
w(i-j) [(n+l-|i| -3)/(n+1)]B(1)/B(])
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(Hy ()2 2 )/B()8(35) .
n

. ) i ) _i
If |i-j| > n+1 then (ch(w)zj,z ) =0 = (An+l(Hm)zJ,z ),

Hence we must have H Q.E.D.

= A H ).
On(cp) n+l( cp)

Theorem 4.3: Suppose there exists a constant

c > 0 such that \\ku > cd(p.47(B)) for all ¢ € L™(B).

Then Hw is compact if and only if ¢ € v’ (B) +C(B).

Proof: We have already shown that if
¥ € Yw(B)+-C(B) then Hcp is compact. SO now we assume
H¢ is compact. Then by Corollary 4.4 and Proposition 4.6
HHOn(w)-HwH 4+ 0 as n + «. Now by our hypothesis

- = | - @
8, (g1 "Bl = gyl > ca(0,(0)-p " (8)).  Thus
there exists {y :n =1,2,""*}) c ¥°(B) such that
lo @)+, -9l =+ 0 as n -+ =. However,
o (@) +y, € ¥ (B)+C(B) since o (p) € C(B). Now
by Theorem 4.1 we conclude that ¢ ¢ NQ(B)i-C(B)

since this space is closed. Q.E.D.

We note that this also gives us a proof that H
is compact if and only if ¢ € ¥ (B) +C(B) in the
unweighted case. This follows from the equation:
HH¢H = d(p.N"(B)). We now consider the problem of
knowing whether such a constant c¢ (in Theorem 4.3)
exists for every weighted shift. The answer is no.

We illustrate this by using the following example,.
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Example 4.1: Let T be the weighted shift with

weight sequence as below:

i) w_ =1 if n>O

n
i) w =1 if -[(k+1)%1] < n ¢ ~[k(k+1)+1]
for Xk = 0,1,2,°""
iii) w_ = %+ otherwise
n 2

Then for m > O, I claim Hz-mll°° = d(z "« (B)) = 2".
To see this pick an integer k > m. Then for ¢ € ¥ (B)

and n = -[(k+1)%+1],

L2+ )22 = 127™7)2

+ ncoz,,ni
> 27™m)2

Thus ||z gl > 1277 /02", = B(-m+n)/B(n) =

n-1 -1
(1 wk) = 2" Since this is true for all
k=n-m

@ € ¥”(B), we have d(z-m,y°(B)) > 2™. But also

HZ'mH, < Hz-l“: < 2™ implying the equality desired.

Now however,

I8 ol <4 _pl2 )]

< llz-mH2 since llz-mzkH2 < Hz.mH2 for k >0

< B(-m)

.

< 2m/2
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The last inequality holds by a simple calculation,
Thus [H __[|/d(z "7 (B)) < W2)" 20 as m =+ =,
z

Therefore no such constant as in Theorem 4.3 can exist.

One may ask at this point what is the set
{p € L”(B) :Hcp is compact]} for Example 4.1? The

answer is given below.

For the weighted shift given in Example 4.1,
-1." -1,-1
r(T) = ||Tl =1 and x(T°°) =|T 7| = 1/2. Now
by the remarks following the proof of Theorem 10’

(Shields, [23]) and Theorem 1.2 of this paper, £ € L”(B)

(-]
A
if and only if f = 2 £(k)zX is a bounded analytic
k==

function on the annulus A = {z € ¢ :-%— < lz| < 1}.
Also, ||f||y = sup{|f(2)|:2z € A} L |f||, for all

f ¢ L”(B). It is also easy to show that if f € C(B)
then f is continuous on {z € ¢: |z| = !2'-} Uulze¢:lz|=1].
This is done using (Laurent) polynomials and the norm

(-]
A
inequality above. Now let f£f(z) = Z f(k)zk be a bounded
k=0

analytic function on D = {z € ¢: |z| < 1}. For

@®

kA -

z €A, let g(z) = £(z=). Then g(z) = T 27*(k)z™®
=0

is a bounded analytic function on A. We recall that
(2"/B(n) :n =0,1,2,-+-} and (2"/B(m) :m = -1,-2,*")
are orthonormal bases for Hz(B) and Lz(ﬂ) e HZ(B)

respectively. We then have the following:
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n m A .
(ng »2 )/B(n)B(m) = g(m-n)B(m) since B(n) =1 for n > O .

o =1

Thus T [|B_ (278012 = T (% |g(m-n)|28%(m))
n=0 9 n=0 m=-o
= 2 (Z \g(-—m—n)\ B (-m))
n=0 m=1
® @® A -
= T (T |£(ntm) | 22720722 ()
n=0 m=1
< T Z \g(mm)\ 4™™) since
n=0 m=1
B(-m) < 2"'/2

< Ta Nz \,f\(n+m)12)
m=1

n=0

5 4-1'1 f' 2
< s | l‘A

< 2)g)2

This condition says Hg is Hilbert-Schmidt and
hence compact. In fact, the proof shows that if g
is a bounded analytic function for |z| > 1/2, then

Hg is compact.

@
A
We now note that if ¢ = 2 cp(k)zk € L(B), then

(-] A k -l ]:--Q
¥; = 2 e(k)z' and y, = 2 m(k)z are bounded analytic
k=0 -

functions for |z| < 1 and |z| > 1/2 respectively;

and hence are in L°(B). Thus H = H =H is
‘ e T Pty T My,

compact (in fact Hilbert-Schmidt) by the remark above.

Thus Hb is compact for all ¢ € L”(B).
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However, for some weighted shifts L”(B) = ¥~ (B) +C(B).
This is not true here. If g € C(B), then g is
continuous for |z| = %. There are, however, bounded
analytic functions on A which are not continuous for

lz| = 3. Such a function would be in Lw(B) but not

in %7 (B)+C(B).



CHAPTER V

ANALYTIC PROJECTIONS FOR WEIGHTED SHIFTS

Let T be an invertible weighted shift represented

as Mz on Lz(B). Then, as before, L¥(B) =

2 A
{op = > @(k)zk :pf € Lz(ﬁ) for all f£f € LZ(B)].
k==

(-]
A
If we consider o = 2, c,p(k)zk as a formal Laurent
k=-w

series, then we can define the "analytic" projection
6:1°(8) » L2(B) as below.

[- -]
A
Definition 5.1: For ¢ = 2, cp(k)zk € L(B) we
k:-—m

" define the "analytic" projection @ :L”(B) - LZ(B) by

ep) = 2 olk)z
k=0

It is easy to see that & :L”(B) =+ Lz(B) is a
bounded linear map since |[|¢(o)]l, < [loll, < lloll . The
problem we want to consider concerns the range of g.
For which weighted shifts is the range of ¢ contained
in 17(B)? By appealing to the closed graph theorem and
the continuity of the coefficient functionals rn on
L*(B), one can ask equivalently: for which weighted
shifts is @ a bounded linear map from the Banach space
L°(B) to L°(B)? So & € B(L(B)) if and only if
&é(p) € L°(B) for all ¢ € L”(B). In what follows,

we will give a general sufficient condition for ¢

59
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to be bounded. We will then prove several corollaries
of this theorem. Finally, we will provide several
examples illustrating various aspects of this problem.
Before we give the theorem, however, we need the

following definition.

Definition 5.2: Let K c ¢ be compact and let
f be a function analytic on an open set containing K.

We then define the norm of f on K by

|£ll.,, = sup(|£(2)] : 2 € K]

Ik
We are now able to state the theorem.

Theorem 5.1: Let T be an invertible weighted

-1.-1
shift with «r(T l) < r(T). If there exists a constant

c > 0 such that |pl|l_< CHPHO(T) for all polynomials

N A k . .
p(z) = T POZ* in z orif [al, < clalyyg for

k . -1

A -
all polynomials gqg(z) = a(-k)z in z ~, then

M=

1
¢ is a bounded linear map from L”(B) into L%(B).

Proof: We first assume that |p|_ < cllpll, g

N
for all polynomials in 2z. Let £ = Z)f(k)zk and
-N

consider |l@(f)|_ < cH@(f)HO(T). At this point, we

note that o(T) = {z € ¢ :r(T-l) < lz] £ r(T)].
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-1 -1

Since (T 1) < r(T), there exists a constant d > O
| | "l .

such that dé(f)do(T) < dAfdo(T) (See Shields, [23],

p.81). Thus

6 ()l < ele(®)llg(py < calfly(q) < cditl,

The last inequality follows from the spectral mapping

theorem, For f, as above, f£f(0(T)) = o(Mf). Thus
Hf“O(T) = r(Mf) < “MfH = HfH,'
Now let £ = X2 /f\(k)zk be any element of L%(B).
k==
n . A k
Then cn(f) = 2 [(n+l={ki)/(n+1)]£(k)z and
k=-n

Gn(9(f)) = O(Un(f)). Hence

o (@£, = 1o (£))}j_ < edijo (£)]|_ < cdiif]_ .

The first inequality comes from the first part of this
proof and the second follows from the inequality
lo (£)]l < |I£ll, for all £ € L7(B). Thus

{Mon(@f) :n=1,2,-++) 1is a norm bounded sequence in

B(LZ(B)) and hence must have a convergent subsequence
in the weak operator topology (WOT). Assume without
loss of generality that Mon(éf) + S in the WOT as
n-+ o, Then S =M for some | € LQ(B) since

]
L”(B) is closed in the WOT. Thus
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(v.2%) /8% (1)

<
—~~

b
N”

I

= lim (o_(¢f),2%) /8% (1)
N=x

= lim (On(Of))(l)

N

o) if 2<oO

lim [(n+1-\zl)/(n+1)]%(z) if g2 >0

N

o) if 2<0O

A
£(2) 4if £ >0

Thus § = ¢(f) € L7(B) and |@(£)|_ < cd|f]|_ = for all
£ € L7(B).
The proof in the case where ||qf|_ < chHG(T) is

very similar. Here, one shows that €, = l-¢ is a

bounded linear operator on L”(B), and hence so is

0: l-el. QIE.D.
-1.-1
Corollary 5.1: If r(T °) < r(T) and x(T) = ||T|
or r(r7l) = HT_lH, then ¢ is a bounded linear operator
on L”(B).
! N A k
Proof: Assume r(T) = ||T|. Then for p(z) = T p(k)z
k=0
we have

Ipll, = Ml = e )l < |lpllg where K= {z € ¢: |z| = |IT].
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The inequality is a result of von Neumann's Theorem
(von Neumann, [26]) and the maximum modulus theorem.
Now, since r(T) = |IT||, we have K c o(T). Thus
HPHK < HPHO(T) implying that HpH°° < HPHO(T) for
all polynomials p in z. The result then follows

from Theorem 5.1.

On the other hand, if r(T %) = HT_IH and
N
a(z) = 2 a(-k)z-k then
k=1
N A - X
lal, =12 acough|
N A k ) -1
< HkZiq(—k)z g where K’ = (z € ¢:|z| =T 7||}.
. ” ' -1 -1 "l -1
Letting K’ = {z € ¢: |z} = ||T 7| =1x(T ") } and
1

replacing z with 277, we get |qf_ < llailg» < “qHO(T)

since K’ c 0(T). Again Theorem 5.1 applies and we are

done. Q.E.D.

Corollary 5.2: If r(T"]')—1 < r(T) and M, is
similar to an operator S such that r(S) = ||S|| or
r(s™l) = HS-lH, then @ is bounded.

Proof: Let Mz = RSR-l where R € B(LZ(B)).

N
A
Assume r(S) = ||s!i and let p(z) = Z)p(k)zk. Then
il k=0

lell, = el = [Re(SIR™Y| < IRJIR Y Ip(s)] -
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But HP(S)H < HPHO(T) since 0(T) = 0(S) and
{z € ¢:|z| = r(s) = ||sll} € o(T). Thus

el < HRHHR-IHHPHO(T) and by Theorem 5.1 the result

follows.
The proof in the case r(s™!) = HS-IH is similar to
the case above, just as in Corollary 5.1. Q.E.D.

Before we present the third corollary, we need

the following definition.

Definition 5.3: The numerical radius w(A) for

A ceL?(p)) is given by

w(A) = sup(|(Af,£)| : £ € L°(B) and |f||, = 1)

-1.-1
Corollary 5.3: If (T l) < r(T) and

1

r(T) = w(T) or r(T-l) = w(T ), then & is a bounded

linear operator on L (B).

A
p(k)z™.

gt’]z

Proof: Assume w(T) = r(T) and p(z) =
k

Then p 1is a bounded analytic function on
{z € ¢:]z] < Ww(T)}. Also, it is well known that
la|l € 2w(A) for all A ¢ B(L%(g)). 1If

A
g(z) = p(z) -p(0), then
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Ipl_ = g+ p(O)]_
< llg"_+ |p(o)]

y A 2T
< g +lpil; g since p(0) =

[ ptrmet)=es
0
Thus |p], < 2w(3(,)) + Il (g)-
We now apply Theorem 4 of Berger and Stampfli, [3].
This is a mapping theorem for the numerical range and
says:
wig(M,))) < HgHB where B = {z € ¢:|z| L w(T)]} .
Thus [Pl < 2lgllg+ [Ipilg ()
< 2lglg(r) * 1Pl (my

since r(T) = w(T) and HgHB = HgHB, < Hg“o(T)’ where

B’ = {z €¢:|z| =w(T)} c o(T). Finally,

A
HPHQ < 2”9"P(0)H0(T)+'“PHO(T) < SHPHO(T)
and Theorem 5.1 applies again.

Also, as before, the case where w(T_l) = r(T-l

)
N A -
is similar using q(z) = 2, q(-k)z K jnstead of
=1
p(z). Q.E.D.
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-1 -1
Corollary 5.4: Let r = r(T l) < r(T) =t

and A(r,t) = {(z € ¢:r  |z|  t}. If there exists
a constant c > O such that [/f]|_ < CHfHA(r,t) for
all f € L°(B) then @ is a bounded linear operator

on L7(B).

Proof: The proof is obvious. If the norm

inequality holds for all £ € L”(B), then it certainly

holds for all polynomials p 1is =z, Q.E.D.

This ends the set of corollaries to Theorem 5.1.
We will finish this chapter with four examples related
to Theorem 5.1, The first example is used to answer
the following question. Do the hypotheses of Theorem 5.1
imply the hypotheses for Corollary 5.4? That is, does
Hpﬂ°° < CHp%c(T) for all polynomials p in z imply
el < CHfHA(r,t) for all £ € L”(B)? The answer to

this question is no, as illustrated below.

Example 5.1: Let T be the weighted shift with

weight sequence as below:

. 1.
i) wy=%5 if n>0

ii) w = 1/4 if n = -k(k+1)/2 k = 1,2,3,"""

iii) w = 1/3 if -(k+1)(k+2)/2 < n < -k(k+1)/2 k=1,2,--"
Then it is easy to show that «r(T) = ||T|| = 1/2 and
1/4 = HT-IH—I < r(T_l)— = 1/3. Since r(T) = ||T| we have

Ipll, < llPlly(p) £or all polynomials p in 2z by

von Neumann's theorem.
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Now for k ¢ O, 1let g¢(k) be the number of

times 1/4 appears in {w-l’W-Z"'°’wk}’ Then

L(k) » = as k =+ -=», Also, let qk(z) = zk for k ¢ O.

-k \ _
Then quHO(T) =3, but qui‘m 2 qunz = B(k) and

B(k)==3-k-£(k)4z(k). Thus

2 (k) <4 © as kK & =

gl Myl gy 2 (4/3)

Hence there can be no constant ¢ > O such that

V£l < clfllyp) for all £ e L7(B).

In all of the previous situations we have taken
r(T'l)-l < r(T). We have used this condition so that
0(T) contains an open annulus. We were then able to
use the boundedness of the "analytic" projection on
the space of bounded analytic functions on this annulus.
The condition r(T"l)-l < r(T) is not necessary,

however, as the following example shows.

Example 5.2: ILet T be the weighted shift

represented as M, on LZ(B) where B(n) = |n| + 1.

The weight sequence {wn} for T is then given by
Wy = B(ntl)/B(n) = (|n+1] + 1)/(\n‘+1)

-1.-1
For this weighted shift r(T) = r(T l) = 1.
This weighted shift is known to be rationally strictly
cyclic (See Shields, [23], p.10l). For rationally

strictly cyclic weighted shifts, Lz(B) = L7(B) as
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formal Laurent series and the norms on these spaces
are equivalent. Hence, the projection & is bounded

since ¢ :1?(3) - Lz(ﬁ) is bounded.

Again, we note that we have usually taken

-1.-1
r(T l) < r(T). This, of course implies that
-1,-1
ks 1” < |IT||. One might ask whether the condition
HT-IH—I < |ITi| is sufficient for the boundedness of

#. The answer to this question is no and is illustrated

by the following example.

Example 5.3: Let T be the weighted shift

with weight sequence as below:

i) wo o= 1 if n # -1
ii) wo = 1/2 if n = -1,
: 3 f | ‘1‘-1 :
For this shift ||T|| = 1 and ||T 7|} © = 1/2. This

shift, though, is similar to the unweighted shift. Thus
the "analytic" projection on L”(B) will be bounded if
and only if it is bounded for the unweighted shift.
However, it is known that the "analytic" projection

for the unweighted shift is unbounded (See Rudin, [18],
Prob. 9, Chapter 14). Thus the analytic projection on

L”(B) is unbounded.

Our last example concerns the hypotheses of

-1.-1
Theorem 5.1 again. If r(T 1) < r(T), 1is the

condition that |lp||_ < CHPHO(T) for all polynomials
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p in z or |qj_ < chHG(T) for all polynomials
g in z~1 necessary for & to be bounded on L% (B)?
The answer here is again no. We use the following

example to show this,

Example 5.4: Let T be the weighted shift with

weight sequence given below. For %k =1,2,3,.+« let

i) w, = 1 if n = (k(k+l)/2)-l

ii) w =1/2 if n >0 and n# (k(k+l)/2)-1
iii) w_ =1/3 if n< O and n ¥ -[(k(k+1)/2) -1

iv) w = 1/4 if n = -[(k(k+1)/2)-1] .

-1,-1 -
Then |t " =14 <or™h T =1/3<¢ 5= < T = 1.

For k > O, 1let (g(k) be the number of 1l's appearing

in {wgstcccowe_yJ). For k < 0, let (k) be the
number of 1/4's appearing in [w_l.w_z,"'.wk]; and
let £(0) = O. Then

a) B(k) = 2f(k)-k if k>0

b) p(k) = 3 KRG e g (o,

We note that g(k) » « as either kK 4 « or k 4 -o,

For k > O, HZk“m > ”zknz = g(k) = 2l(k)-k and
k - k, k ,
HZ HG(T) = 2 k Hence, Hz “m/”z “o’(T) 2 zz(k) for
k > O, Similarly for k < O, sznw > szﬂz = 3~£(k)-k4z(k)

k 2 (k)

and |25y gy = 37, Hence ||2N| /12", gy > (4/3)

for kX ¢ O. Thus there can be no constant C > O such
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that either |p||_ < C for all polynomials p in

z or |4 < clal for all polynomials q in 2 L.
@ ' O(T)
For this weighted shift, however, the "analytic" projection
@ 1is bounded on L”(B). To prove this, we will show
that T is a rationally strictly cyclic weighted shift,
We do this by verifying the condition in Proposition 32
of Shields, [23]. (Note that this can be extended to

bilateral shifts according to the remarks after

Proposition 36 of Shields, [23].)
To simplify notation let B(n,k) = B(n)/B(k)B(n-k).

@®
Thus we want to show that sup{ T Bz(n,k) tn € Z) is
==

finite. For n > O,

-] -1 )
S B2nk) = & B2+ T B2k + B 82(n.k)
k== k== k=0 k=n+1
L -1 k k k
=T 497K (9/16) 1 K)g(0) - 1K)
k=-=
-1 -
< 2o (4/9) since for k < O,
k=-w
£(k) >0 and £(n=k) > £(n).
-1

so = 8%(n,k) < 2 (4/9) = 4/5. Also,
k=~
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T B2(n.k)
k=n+1

-2 (n-k)

_ D 4N 4)L(n) 4k 4—z(k) 9n—k 9t(n-k) 16
n

k=n+1

k=n+1

<> (4/9)k"n since for k > n, (k) > £(n)
k=n+1

and g(n-k) > O .

So > Bz(n,k) < Z (4/9)k < 4/5. The other term for
k=n+1 k=1

2.2 & ,4(n)-4(k)-g(n-k)

n>0 is Z B°(n,kx) = X 4 , which

k=0 k=0

we will deal with a little later, First we will see what

happens if n ¢ O, For the case when n < O,

© 2 n-1 2 (o) 2 . 2
> B°(n,k) = ¥ B(n,k)+ T B (n,k)+ T B°(n,k).
== k=-o k=n k=1
n-1 ,
2 B7(n,k)
) nil oN g-4(n) ,.2(n) gk ot (k) 1g=4(k) ,n-k ,-2(n-k)
k==e
n-1

Y (4/9) ¥R (9 16)4 (K)-L(n) 4-t(n-k)

S

n-1
< (4/9)-k+n since for k < n, (k) > £(n)
k==e

and ¢(n-k) > O

< 4/5 .
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@
Similarly 2 Bz(n,k) < 4/5, but again
k=1

0 0
Y 82(n,k) = T (16/9)4(n)-2(k)=2(n-k)
k=n k=n
One can show that for k > 0, £(k) = [ _%+ %+ 2k ]

where [ *] 1is the greatest integer function. Thus
J2 Jk-1< 2(k) ¢ J2 Jk+1 for k > 0. So
% tm-t0-2(n-k) _ 43 & V3R R /AR
k=0 k=0

Let 0< r< 1 and a(n,k) = Jk+./n-k-,/n for

0Lk (L [%]. Then by symmetry

Y N WL N IE R
k=0 k=0

One can now show that a(n,k) ¢ a(n+tl,k) by a direct
computation. Also if n is even, then «a(n,n/2) =

(J2-1)/n which tends to « as n + =, If

[n/2]
s =2 ¥ ok
n k=0

, then s_ ., < S + o2 (ntl, [(n+1)/2])

(/2 =-1)/n ;3 LW2-1)/n

n=0

Thus Spe1 £ Sp+ 2r and

< =.

Hence sup{Sn :n=20,1,"""}) < . This says

n
sup( & al(m)=£(k)=g(n-k) |

n=20,1,2,"-*} < ». Similarly
k=0

(0]
one can show sup{ T (16/9)“n)-“k)-“n-k) tn = =1,-2,""")<=,
=n
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Now putting all the parts together, we have

[- ]
sup{ 2 Bz(n,k) :n € Z} < ». Thus T is a rationally
k===

strictly cyclic weighted shift. Hence L*(B) = LZ(B)
and the norms are equivalent. Thus & is bounded on

L”(B).

We end this chapter with a conjecture. We have

-1.-1
seen that the condition (T 1) < r(T) is not necessary

for the boundedness of . However, we have used it

extensively in most of the results in this chapter.

Is r(T"l)-l < r(T) a sufficient condition for &

to be bounded? Another condition, stronger than

- 1
r(T l) < r(T), which might be sufficient is to

*
require that WO(T ) contain an open annulus.



CHAPTER VI

SPECTRAL SETS

Let T be a bounded linear operator on a

N A
Hilbert space H. If p(z) = 2 p(k)zk, then we can

k=0
N A
define p(T) € B(H) by p(T) = Z)p(k)Tk where
k=0
To = 1, the identity operator on H. Also, if

1

h(z) = (z-))" " and A & o(T) then we can define

h(T) € B(H) by h(T) = (T-1)"'. Putting these two
things together, if q(z) = pl(z)/pz(z) is any rational
function with poles (the zeroes of p2(z)) off o(T),

then q(T) = pl(T)pz(T)-l

€ B(H). One can investigate
certain relationships between the function g (which

is analytic on a neighborhood of o(T)) and the operator
g(T) € B(H). In this chapter, we want to consider the
relationship between |[q(T)|| and |ig||x where K is

a compact set containing o(T). Thus we have the

following definitions.

Definition 6.1: Let K c ¢ be compact. Then

Rat(K) is the set of rational functions with poles

off K.

Definition 6.2: Let T € B(H). A compact set

K containing o(T) is said to be a spectral set
for T if and only if [£(T)|| < |Ifl; for all

f € Rat(K).
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Definition 6.3: Let T ¢ B(H) and let c > O.

A compact set K containing o(T) is said to be a
c-spectral set for T if and only if ||£(T) < SHES

for all f € Rat(K).

We note at this point that it is not possible for
“fnc(T) to be greater than |[£(T)||. From the spectral
mapping theorem, we have ”fHo(T) = r(£(T)) < |[£(T)]|.
Thus in most cases we will have ¢ > 1 since we will
consider sets K not much "larger" than o(T). Two

questions are raised by Definition 6.2.

i) If T € B(H) what kind of sets K containing
the o0(T) can be chosen so that K 1is a

spectral set for T?

ii) What conditions can be placed upon the operator
T ¢ #(H) so that o(T) 1is a spectral set

for T?

In this chapter we will concentrate upon the
first question. However, in some cases we may limit
our study to weighted shifts. 1In order to provide
some type of answer to the second question, we note
that if T € B(H) 4is normal then o(T) is a spectral
set for T (Rudin, [17), p.309). 1In particular,

0(T) is a spectral set for T if T is hermitian.
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Returning to the first question, we note that if
T € B(H) then o(T) c {z € ¢:1z| L ||T||}. This
containment may not be strict as there are some
operators with o(T) = {z € ¢ : |z| < ||T!|}. The
question of whether {z € ¢: |z| < ||T||} 4is a spectral
set for T was answered in 1951 by von Neumann [26].
It is sufficient, by scaling, to consider only operators
T with !IT| = 1. 1In this case, we let

D

{ze€e¢:|zl 1), 3D = {z € ¢:|z| =1} and

D = is\al). We will give a new proof of von Neumann's
theorem using some of his ideas. 1In place of one of

his arguments, we will use the solution of the Caratheodory-
Schur problem suggested in the section on Hankel operators
in Sarason's VPI notes [21]. The result needed is

stated and proved below.

N A
Lemma 6.1: Let p(z) = 2 p(k)zk be a polynomial.
k=0

Then for each n > O, there exists a set
{al.--- az(n)] c D, a constant )\ € ¢ and a function

h analytic on a neighborhood of D such that:
1) 1 < el

ii) |l < 2elg

£(n)
iii) plz) =y & (z-ai)(l-aiz)'l+z“+1h(z)
k=1

Proof: Let T, the unweighted shift (wn =1

for all n), be represented as Mz on Lz(aID . Let

f(z) = z-(n+l)p(z) and consider the Hankel operator Hf.
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Since f € C(aD) , Hf is compact. Thus if B 1is the
closed unit ball of Hz(aIU , then Hf(B) is compact.

i | | = | =
Therefore there is g, € B such that |Hg glﬂz HHfJ A
Also there is a function h ¢ Hm(aIH such that

WE-nl_ =I5 = r. Now H.(g,) = H.(g) where

n+l A m
g= 2 gl(k)z since for m<< O (H_(g,),z ) =

x=o £'91

m ® A A n+1l A
(fgy,27) = 2 g, (kK)f(m-k) = 2 gl(k)f(m-k) = (Hgg,2 ™.
k=0 k=0

Thus = [|H.]| = [|Hgll, = [[(1-P)[(£-h)glll, < ||(£-h)g]l, <

Hf-hHmHgHZ < \. Hence equality must hold throughout.

-1
This implies that H.g = (f-h)g = 2 bkzk.
k=-(n+1)

From the string of inequalities above, we must have

|£-h| = almost everywhere on 3D . Also,
zn+leg = n+l(f -h)g is a polynomial agd hence in
® 1 2
H (3D) . We note that zn+1(f-h)g = [ I (z—c )1l 1 (z-x )]
i=1 i=1
where [ai ti= l,"',Nl] c D and {xi i o= 1,"‘,N2] c ¢\D.

It is known that zn+1(f-h)g has a unique inner-outer

factorization. Since zn+l(f-h)g has only a finite
number of zeroes in D, the right hand factor is an
outer function, and the left hand factor is bounded away
from zero on 3D, the inner factor of zn+l(f-h)g

must be a finite Blaschke product (see Rudin, (18],

Th. 17.17). However, zn+l(f-h)/x is an inner function
and hence must be a finite Blaschke product b.

Thus p(z) = zn+1f = xb(z)+-zn+lh(z). Also,
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A= B < ”fHaI) = Hp“al)' Consequently,

-(n+1l it |
Ih(z2)| = |£c2) =az” ™ Dbz < el o+ 1< 20pl g -
Thus parts i), ii), and iii) are satisfied. Q.E.D.

We now state and prove von Neumann's theorem.
We use a complex function theory argument. A purely
operator theoretic proof can be given using unitary

power dilations (see Halmos, [8]).

Theorem 6.1: If T € B(H) and ||T|| = 1, then

D is a spectral set for T.

Proof: First let a € D and let 0 r < 1.

We now want to consider the operator A = (rT-—a)(l-afT)-l.

If £f ¢ H and g = (1-arT)-1f, then

|ag)|% = (Af,Af)
= ((rT-a)g,(rT-a)g)
= r?|1g]|? - 2 Re (ag,rTg) + |a|?g!|?
Also
€12 = ((1-GrT)g, (1 -arT)g)

HgH2 - 2Re (ag,rTg) + \(:(\zr‘?nTg';]2 .

ence [ £]2-ag]? = ||g1%(1 - |a|?) - £ Tg) 2(1 - |a|?)

(1-1a1?) 192 - %19} 2]

>0 since |a| <1 and riTg| < |gl-
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Thus ||Af]| < ||fil for all f ¢ H implying |A} < 1.

N A X
Now let p(z) = Z p(k)z~ and let
k=0

{cl,-’-,c“n)}, 2 and h be as in Lemma 6.1. Then for

O<Crgl
£(n)
1 rn+lTn+lh(rT)

p(rT) = A I (rT-ak)(l-EkrT)’ +
k=1

Thus |p(rD| < IA] + rn+lnh(rT)H by the triangle inequality
and the first part of this proof.

Now since h € H (D), h(rz) = & ﬁ(n)rnzn.
h=0

- A n_n - A n
Hence h(rT) = X h(n)r'T . Thus |h(rT)|| < Z |h(n)|r
h=0 n=0

”hﬂw PIRE P |nl|_/(1-r). We now have
n=0

Wetrmll < A |+ ihl, p 2™ /(1) < g + 2lpllg e™ 1/ (1-r)

b~, Lemma 6.1 and the maximum modulus theorem. This

i s true, however, for all n > O. Hence
lp(rT)|| < llpllg5 for all r between O and 1 .

X.etting r increase to 1 and using the continuity
< f the ||p(rT)|| as a function of r, we get
1\ (T < ”PHB for all polynomials p. The polynomials

& xe dense in Rat(D) , though. Thus we are done. Q.E.D.
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Now let T € B(H) be invertible. Then we know
that o(T) is contained in the annulus
(z € ¢: |17

(as in the case of the disc) to concern ourselves

! < lz| < liITh}. It will be sufficient

only with operators T for which ||T|| = 1 and

0 < \\'r"ln_l < 1. (We note that if ||T| =1 = \\T_ln-l.
then T is unitary and hence ||£(T)||  |[flly for
all f € Rat(3DP) (Rudin, [17],Th. 12:13). In order
to simplify our writing, we introduce the following
notation: A(r) = {z € ¢:r { |z|  1}. We now state

a result which appears in Shields ([23], Prop.23).

Theorem 6.2: Let T € B(H) be such that ||T|| =1

and HT-lH =r where O < r < 1. Then there exists
a constant c_ such that [[£(T)|| < cerHA(r) for all

f € Rat(A(r)).

This theorem says the annulus A(r) is a
cr-spectral set for all T € B(H) satisfying the norm
requirements above. However, this theorem (as stated)
is unsatisfying in the sense that it does not tell us
anything about C.- Can we take c. = 1? If not,
how large must c. be? 1In 1967, J. Williams, [28],
showed that we cannot take c. = l for all T € B(H)

satisfying the norm requirements. 1In the result by
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Shields, cited above, it is shown that the constant

c, = 2+ ,/(14r)/(1-r) will suffice. However, we will
show that a slightly smaller constant works. The
question of determining the best constant for c.

is still open.

Proposition 6.1: Let T € S5(H) be such that

imi = 1, 7Y = £ Then [E(T)| < X |ig] for

A(r)
- -1
all f € Rat(A(r)) where kr = min[3 + 47 11n(16(l-—r2)) ’

2+ /(I+r) /(1-1)].

Proof: Let f ¢ Rat(A(r)) be uniquely decomposed

as follows:
f(z) = wl(z)4-w2(z): 9 is analytic on D,
P, is analytic on (z € ¢ : |z| > r}

and wz(z) 240 as |z| =+ =,

Then f£(T) = @, (T) +o,(T). Also oy (T < ||cp1\|am
by von Neumann's theorem and |lg,(T)| < sznral) where
3D = {(z € ¢:|z| = r}. The second part follows by

. -1 .
using von Neumann's theorem for T and the maximum

modulus theorem. Now “‘pzural) < anra]D + Hq’l“raD <
Hf”A(r) + HCP]_HraD .

Using the Cauchy Integral Formula, we get
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\cpl(rw)‘ = Z_J;T U‘ f(z)(z-rw)-ldz\ for all w € 3D.
3D

< ltllypf  temri™h 492
< nan(r,Jw\l-rzrl 1921 gince |z =1

for z € 3D

2T ]
| ig dae
< ]l |1-re™"|
A(r)IO 2m
2m -1/2
< IEla gy (1-2rcos 6+ 1) ge
(0
2m 2,-1/2 dg -1
Now J“ (lL-2rcos g+r°) 5 = 2r “k(r) where
o T
T/2 -
k(x)=" (l-rzsinze) l/zde from Ryshik, [20]. However,
‘0
lim (k(r)+3 ln 16(1-r)) = O by Byrd [4]. Thus

r+1"

X(r) < In(16(1-r2))"!

if 1 >r > Io -for some o

between O and 1. Thus
- -1
oyl pap < NEla(p) (2 Lne1-12)"" if rg<cr <1,
implying
- -1
lop (T} < N1Ell gy (127 lin(e(1-r%))" if rj<r<l.
Similarly

loyllyp < 1€l +loglsp < IEla(p) * ool psp By the

maximum modulus theorem. Putting both of these together we get:
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IECT] < Hog (DI + oy (T ]

< WEllp (py * 2llealryp

_ -1
< Vgl gy (3 44T lin(16(1-x?))"7) if rg<rc1

If O0<r( ry then the constant 2+./(l+r)/(1l-r)

works. Q.E.D.

The estimate above is better than 2+ ,/(1l+r)/(l-r)

-1
in the sense that 1lim [(l—r)l/zln(16(l-r2)) ] = 0.
r=+1-

This estimate is still "bad", however, in the sense that

lim (34-4v_11n(16(l-r2))_1) = «. We now give three
r+1°
results for operators T ¢ B(H). The first result

is obtained by placing restrictions on the operators.
The other two results are obtained by considering
specific types of functions and investigating the norm

inequality for this type of function.

Proposition 6.2: Let (T :ry < r< 1} c B(H)

r

3

be a net of operators such that ||T || =1 and |T_ =r.

Suppose there is a constant M > O such that HTr-nH <M

for all n > O and for all r between and 1.

r
(0]
Then for r, < r < 1, Hf(Tr)Hg MHfHA(r) for all

f € Rat(A(r)).
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Proof: The proof of this proposition is easy.

N
It is known that (g € Rat(A(r)) :q(z) = 2 a(k)zk]

k=-N
. . N oAk
is dense in Rat(A(r)). For gq(z) = 2 q(k)z we
=-N
let p(z) = znq(z). By von Neumann's theorem
Ip(T )l < lplyp = "allyp < llalla(r)

Hence

lacr )l = fiT, Mecr ) < N, NMile@ )i < Mial

Q.E.D.

One could also prove this theorem by noting
that if T and Tr-l are power bounded, then Tr

is similar to a unitary operator Ur' The only
difficulty would then come from computing the norms

of the operators providing the similarity. We now have

the two results concerning types of functions.

4. A k
Proposition 6.3: Let q(z) = 2 qg(k)z € Rat(A(r))
k=-w
be such that a(k) > 0 for all k. Then |a(T)|| ZHqHA(r)

7t -k

for all T ¢ B(H) with ||T|| =1 and ||T

®
A
Proof: Since q(l) > 2 gq(k) and
k=0

-1 A X
d(r) > X 4gq(k)r  we have
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*® A
laml < = |am)|iTN)

-1 A Xk ® A

< T ax)r*+ T q(k)
k=-c k=0

< alr)+4q(l)

gz{!q&‘,A(r) . Q.E.D.

Proposition 6.4: Let q(z) = z V4 az™ where
M,N >0 and a € ¢. If T ¢ B(H) with ||T|| = 1 and

-1,-1 "
I = 1 then lla(m)| < 2lal,y)-

Proof: We see that g(z) = z-N(l4-azM+N).

By the maximum modulus theorem, we have

max{14-\a\,r-N(l4-\a\rM+N)]

>dca+jan + N ja™)
Now

laml < 7 + jallT™ < £+ ja| < 2lla',(py - Q.E.D.

In the next part of this chapter we restrict our
attention to invertible bilateral weighted shifts. The
gquestion of whether we can take c, = 1l is question 7
in Shields, [23]. He actually has two parts in his

question. The first part asks whether sup[cr: 0<r<ll<=
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when we are only considering weighted shifts. We

answer the second part of question 7 using the following
example. We state beforehand that the answer is no;

one cannot take c,. = 1 for weighted shifts.

Example 6.1: Let T be the weighted shift with

weight sequence as below,

i) Wy = 1 if n>0
ii) w =2 if n<oO
n 2
Then
|T|| = sup{w_:nez}=1 and ||T-1H-l=inf[w -nezz}=-1—
PiWp 3 ' n° 2
- -1
For m > O let fm(z) =z 1(2--zm) . Then by the maximum
modulus theorem HmeA(l) = max[HmeaI).Hfmw;alﬂ
2 2
—m.-1
= max[1,2(2-2 ") "]
1 -1
= (1-27™1) 7,
From this computation we see that 1lim lIf_|| = 1,
m, 1
M A(E)

Now since |leg| = 1 we have e, (T > I En (Tlegl
We compute ||f (T)e || as follows. We note first of

all that
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. -1 _ mk-1 _
It is easy to see that T ey = 2e__l and T ey = €1

since mk-1 >0 for kX >1 and m > 1. Thus

(- -]
£ (T)eg =e_+ T 2“"1e )
k=1 mk-1
2 “k-1.1/2 —

Hence ||f (T)e ! = (1+ T 4 k-1, /2 J/13/12. Thus

m o)

k=1

i |

there exists an M, > O such that Hfm(T)L > HmeA(l)
2

if m> My. So it is not possible for

la(T)} < \‘,q{\A for all q € Rat(A(%)).

—~
N
-

Proposition 6.5: Let T be the weighted

shift with weights as below:

i) w =1 if n>0

ii) LA if n<o where OCrgl

Then ||q(T)| < J/2 HqHA(r) for all g € Rat(A(r)).

Proof: For the weighted shift above B(n) =1
if n > 0 and B(n) = @ if n < 0. For f£ ¢ L2(B)

we have the following:

lamy)gl3 = [ime) 2

® A -1 A
zo\<qf)(n>\2+z |af (n) |22 .
n=

= =00

. —- 2 2 o A 2
It is known, however, that X |af(n)|“ < ||q] 2 |f(n)]
n=0 CR Y N==cg
-1 A ’ -
and  ® jaf(m)’r® ¢ llailp T 1Em) AN

nN==e n=-—co
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Thus
2 a2 e A 2, 2 A 2.2
latm,)£l5 < Hlalip n@_ﬂ\f(n); +lialZ,p E_m‘f(n)\ .20
2 wen2 12 _ e A2
ﬁz\‘q‘\A(r)llf1‘2 since Hfil2= Zo‘f(n)\.
n=
-1
P RRE1¢ ke
n=-—e
Thus Hq(MZH\g J2 HqHA(r) and the result follows
easily. Q.E.D.

So for the weighted shift T in Example 6.1,
A(%) is a JE—spectral set for T. The result of
Proposition 6.5 says this type of idea will not be
helpful in getting an example where sup{cr :0<r<l}
is infinite. There is a generalization of Proposition

6.5 which we now prove.

Proposition 6.6: Let T be an invertible

weighted shift with ||T|] = 1 and HT-lﬂ = r where
O < r<l., Also, suppose the weight sequence [wn}

of T satisfies the following two conditions:
i) {wn:n € Z) c {al,-o- aN]

ii) r g wo LW, K 1 for all n

Then |q(T)|| < /N HqHA(r) for all q € Rat(A(r)).
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Proof: Let O = nl < n2 CEERIRY nN—l' We

will assume without loss of generality that:

a) w, =T =04 if n« n,
b) wh = oy if n_, < nK n, k=2,3,"°,N-1
c) w, =a, if ng ;< n .

This implies, of course, that r { o < o , L 1. From

the above we have the following:

a’) B(n) = a? if n<n

k-1 n, -n n-
’ _ L 2-1 nk—l .

b’) B(n) = (;,Ez a, ) (o ) if n _,<n<n
N-1 n_-n n-n

c’) B(n) = (0 a 4 JZ—l)clN N-1 if n>ng,
£=2

Now let Pl = 1-P where P is the orthogonal

projection of Lz(B) onto H2(B). For k=2,"*,N-1

let Pk be the orthogonal projection of LZ(B) onto
n .

the span of (z :ny_, <0< nk]. Finally, let Py

be the orthogonal projection onto the closed linear

span of {z" :n > ng 13-

Then for q € Rat(A(r)) and £ € LZ(B) we have
(*) lla (M )fH2 = ||M sz = g&HP ( f)‘\2
2’12 q Narhit S ukP I
Now
2 -1 A
Ipy@e)y = T jasm (e,

2 ®
A
< “qHalal) Z lf(n)lzclzn as in Proposition 6.5

N==o
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2 [--]
< el ey = 1£m|%6%(n) since

nN==ew

32(n)2r2n for all n

< llaly i3

n2—1 A
I (af)ll, = T laf(n)| %"
n=0
<lal> T jEmifay

cxza]D n=-o

| 1!2 ' ;2 . 2n 2
< l|Q.lA(r)\\f|‘12 since 02 < B7(n) for all n.

For k= 3,4,5,---,N-1
k-1
2 D
IB (a6)" = T |af(n)|%e%(n)
2 n=nyg
k-1 n,-n _ k-1 A
< (m o 4 L2 2Me1) 5 ge(n) | 22D
4=2 n=n, _;
k-1 n_-n 2 -2 )
2 -1 Ng-1 2

S |2 (%"
N==x
k-1 n,-n 2 2n-2
However [1’I2 az" £-1 o k-1 < g%(n) for all n.
L=
Hence B, (af)|? Hq”i(r)nfng for k = 1,2,3,+++,N-1.
Similarly, one can show HPN(qf)H2 < Hq“i(r)ﬂfug Now,
going back to formula (*) we get |[a(M,)f|l, < JN HqHA(r)HfH
for all f ¢ L?(B). Hence la(T)| < /N ”q”A(r) for

all g € Rat(A(r)). Q.E.D.
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Again, it may not be that ./N is the best

possible constant. In fact, if we pick N large

enough so that /N > 2+./(1+r)/(1-r), then /N is
not the best constant by Theorem 6.2. However, ./N

does give a better estimate in certain cases.

One open question in the area of c-spectral sets
is whether every operator whose spectrum is a c-spectral
set is similar to an operator whose spectrum is a
spectral set. It is possible that Example 6.1 might
answer this question in the negative. However, the
following example may indicate that it might not answer

the question.

Example 6.2: Let T be the weighted shift with

weights as given below:

i) w =1 for n ¥ -1
ii) w_ = L for n = -1
ii W= 3 = .
. . . -1,71
For this weighted shift r(T) = ||T|| = 1 = (T ")
-1.,-1
and ||T lH = %. Using the same functions as in Example 6.1,

we see that o(T) = 3D is not a spectral set for T.
(Note: the part that makes the computation work is

that T;l = 2e_l). However, by verifying the requirements

o
of Theorem 2 in Shields [23], it is easy to see that
T is similar to the unweighted shift. The unweighted
shift is normal and hence its spectrum is a spectral

set. We also note that since T 1is similar to a normal

operator, its spectrum is a c-spectral set.
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Suppose we could find a collection of weighted

shifts Tr for 0K r ¢ 1 satisfying:

i) HTrH =1 and HTr
ii) o(T.) = A(r)

iii) sup[H@rH :0< r¢l}) =M o where &,
is the "analytic" projection on LQ(BI).

N A

Then if q(z) = 2 q(k)zk we would have
k==N
N A k
| Za(k)z HaIJ < ngqH © (the spectral mapping theorem)
k=0 L (B )
r
< HGrHHqH 5 (assumption)
B.)
1 .
< MCqu“A(r) (Theorem 6.2)
We note that liT‘ Hq“A(r) = Hq”al)' Thus if sup{cr :0< r<l)
r-

was finite, the "analytic" projection on C(3D) would
be bounded. This is not true, however, as stated
before. Hence, it would not be possible for c. to
be bounded as a function of r. Unfortunately, it is
not possible to find weighted shifts Tr satisfying
the condition above. The proposition below verifies

this,

Proposition 6.7: Suppose that [Tr :0<r<gl)
is a collection of weighted shifts with |[|T || = 1 and

TR

-1
c = r. Then sup{HerH t0<Crcgl} = .
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Proof: Suppose sup(ll¢ H 0<r<l})=M< =,
N
Then for q(z) = 2 q(k)z we have
=-N
I = a(x)z| = || (k)T ' (von Neumann's theorem)
k=0 3D k=0
- i |
- HOrq|| Py
L (B)
= Miq|
L (B )
r
However, I claim 1lim |/ql] _ = |lq|| To see this,
r+1" L (Br) daD
let T be the unweighted shift. Then ||q(T)i| = HqHaJD
since T is normal and o(T) = 3D.
Now
N oA
" nm K k.
lla(T, ) -a(T)]] < kZ la(x)|jT" =T
=-N

N

< T lax)|(1-r®
k=1

Since the sums above are finite

lim llg(T

r-+l1-

Thus lim_{jqf _
r-+1 L (Br)

is now verified.

N A -k
)+ 2 |g(=k)|(r "=1) ,
k=1

lim_|lq(T) -q(T)|| =
r-1

il =lla

aD The claim

Using this, we have

H Z q(k)z " 3D SMIanaD *

k=0

As before, this inequality says

on C(3D) is bounded.

sup(lje f| :0< r< 1) =

the "analytic" projection

This is false and so
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This is all we will say about weighted shifts.
We will end this chapter by considering linear operators
T on ¢2 with ||Tl| = 1 and HT-']'H—1 = r. Any linear
operator T on ¢2 has a matrix representation

a a

11 12
T = where aij € ¢. By unitary equivalence,
91 922
Xl a
we may assume that T has the form with
(o) A,

respect to some orthonormal basis for ¢2. The norm of
a 2x2 matrix can be computed easily by noting that
2 * . * . s . . .

IT||© = ||T T|l. Since T T is selfadjoint, its norm is

* .. . -1,
sup{|A| :A € o(T T)}. By similar reasoning, ||T |

*
will be inf{|A|:\ € o(T T)}. One can find the
*
eigenvalues of T T by finding the solutions to the
*
quadratic equation det(tI-T T) = O. If one does this for
Moo . -1,~1

with ||T|| = 1, ||T"7|| = r, we get the

L]
n

0 12

following restrictions on Apdg and a.
1) Ay, =x
i) jal? = @-pglha-pgl?

We will use these, but first we will find out what

g(T) is for g € Rat(A(r)).
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kl a
Proposition 6.8: Let T = and let
o A,
q be analytic on a neighborhood of o(T) = {xl,xz}. Then

ary)  alal)=a(,)1/( =2 ,)
(1)

0 a(y)

Note: if ), = \,, then (a(r;)-a(r,))/(x;=A,) is

replaced by q’(xl) in the above formula.

Proof: First suppose A S Ay, = and let g be

analytic on U= {z: |z-\| < ¢}. Let T = {z: |z-\| = /2]

and qg(z) = Z)(q(n)(x)/n:)(z—x)n for z € U. Then by the
n=0

Riesz functional calculus

1 -1
T Er q(z)(z-T) ~dz

q(T) =

1

Thus (q(T)ei,ej) = o1

j Q(T)((Z-T)-lei,e.)dz for
T J

i,j =1,2. One easily computes that
(z=A)"1  a(z-x)"2

(z-T)_l = . Thus (q(T)ei,ei) =
0 (z-x)"1

1 [, 2(2) ((-1)7ley e )az

g()) by the Cauchy integral

1_
2ri Jr

formula. Also (q(T)el,eZ) = q(z)a(z-x)-zdz =

ag’(\) Dby the residue theorem.
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If Ay # Aoy and g is analytic on a neighborhood
of [11,12} we choose two disjoint circles Fl and

r2 in U surrounding *1 and 12 respectively. Then

(q(T)ei.ej) = 2v1 I a(z) ((z-T)" le. .ej)dz
l

t = I a(2) ((z-T) Pe; e )dz -
2

-1 -1 -1
-1 (z-)\l) a(z-)\l) (z—)\z)

If A, #1 then (z-T) = .
17 2 1
o (z=2,)

]

J‘ q(z)(z=xy)~ dz+-2-7-r-£f a(z)(z-x )~

l 2

Hence (q(T)ei,ei) 2Wl

g(A:) since for i ¥ j, J q(z)(z—k-)-ldz
i r. i
J

because q(z)(z-)‘i)-l is analytic inside of Fj. Now

(@(T)e,.e,) = 57 I a(z)a((z-r;) " (z=r,)dz
1

+ 337 I a(z)a((z-x,) t(zn,)dz
2

afa(ny)/(Ng=r,) +a(hy)/ (=)

= a[(Q(ll)-Q(lz))/(ll-xz)] as desired.
Q.E.D.
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We end this chapter with the following proposition.
It says that for two-dimensional linear operators
sup{cr :0<r<l) is finite. A conjecture might
be that this is true for operators on n-dimensional
space. The constants c. would however perhaps depend

upon the dimension of the space.

Proposition 6.9: Let T ¢ B(¢2) satisfy

- -1 - ]
Il = 1 ana JT7Y 7 = r. Then Ja(m < ear™?al, ()
for all g € Rat(A(r)).
kl a
Proof: We let T have the form and
(0] A2

. . 2 2 2
thus have 1i) lxl\\xz‘ = r and 1ii) 1a\ = (l-\xl\ )(l-|x2\ ).
We also note that if A = (aij) is any operator on ¢2

then ||All < 4 max(| :i,j = 1,2). By Proposition 6.8

aij\
we know that if hl # 12 Then q(T) =

. Since {xl,xz] = o(T) cA(r)
o Q(kz)

we have [q(r;)] < HqHA(r) for i =1,2. Thus we need
-1
only investigate |a||q(x;)-a(A,)|[A;=A,] - We will

use three cases. The first case will also indicate what

to do if *1 = 12.
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Case 1: Assume |x;| = [A,] = Jr and let
a(z)-q(iy)
—;11— if z €A (r), 27/)‘1
f(z) =
1 3 -—
a’(xy) if z =1

Then £ 1is a function analytic on a neighborhood of
A(r). Thus anA(r) = max{HfHal),HeraI)] by the

maximum modulus theorem. It is easy to see that

Il < 2halls(p)/v) and £l ,p < 2lall, p)/WE-r)

and [al? = (1- 12 -, = a-nd

Hence |a|la(r;) -a(r,)] \xl-xz\'l < 4r'l/2‘.'|qHA(r)~

Case 2: Assume ,Jr < Aql g_ﬁ?. Then

a/rB g_\xz\ < J?. In this case we let f(z) be defined

as in Case 1.

. -1 — -
Then |f(z)| ZHqHA(r) max { (1-r1/%) . (Jr-1) 1,
and \a\z g‘(l-r)(l-rz) < 2(1-r)2. Thus
-1/2

]al\q(kz)-Q(kl)\\)\2-11\-1 < 8/2r HqHA(r) since

(1-r) /(1-r1/%) = (14/7) (1+r172) and (1-r)/(JE-r) = (1+J5) [T .

case 3: Assume %r < |r;| < 1. Then
r < \)‘2\ < 4Jr—3. In this case we let £f(z) =
(a(z)-q(x;))/(z=x;) for z € (z € ¢:xrg |z| L Jr}. Then
la(ry)=ata ) A p=ag 17 < 2llaly gy (VF -/E) 7 and
lal2 < (1-/7) (1-r) < 4 (1-47) 2.
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Thus |a|{q(},) -q(xl)\ixz-xll'l < gr~1/4

8r-1/2

lala gy <
HqHA(r)-

Using the results of these three cases, we have

-1/2

la(T)!| < 64r “qHA(r) for all g € Rat(A(r))
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