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ABSTRACT
ON THE SYMMETRIC DERIVATIVE
By

Lee Matthew Larson

A class of functions, o*, is defined and is shown to
contain all known symmetrically differentiable functions.

It is proved that if f€o*, then £ is in the first Baire
class. Using this result, it is shown that there is
associated with each f€o* another function, g, which retains
the symmetric differentiation properties of £ while at the
same time "maximizing" many of the more desirable properties
of £ such as differentiability, continuity and upper semi-
continuity. Such a function, g, is in Baire class one and
is uniquely determined up to its values on a set with
countable closure. We call g the "nice copy" of f.

Using the properties of the nice copy, many of the
standard theorems of ordinary differentiation can be refor-
mulated in terms of the symmetric derivative. 1In particular,
analogues of the mean value theorem and the Darboux property
are presented. The methods also give simplified proofs of
several well-known theorems. These results are then applied
ﬁo develop an abstract Zahorski class structure for
symmetric derivatives.

In addition, several structure theorems for completely

arbitrary symmetric derivatives are proved.
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INTRODUCTION

If £ is a real-valued function defined on R, then
the symmetric derivative of f at x (often called the first
Schwarz derivative of f) is

s _lim f (x+h) -f (x-h)
£ x)=""h0o 2h :

The symmetric derivative arises naturally in studies of the
pointwise convergence of Fourier and Taylor series as well
as other areas of harmonic analysis. In this work, however,
we do not consider these applications of symmetric differ-
entiation, but rather, we investigate the symmetric deriv-
ative viewed as a generalization of the ordinary derivative.
Specifically, our goal is to expose similarities between the
well-known structure of ordinary derivatives and the struc-
ture of symmetric derivatives.

We begin in Chapter I by presenting much of the
terminology used throughout this work and by stating the
fundamental theorems needed in the succeeding chapters. 1In
particular, we define a class of symmetrically differentiable
functions, o*, which is the "domain" for most of the later
theorems. It is shown that o* contains all measurable,
symmetrically differentiable functions and therefore all
known symmetrically differentiable functions, since the

question of the measurability of such functions remains
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unresolved. Chapter I is concluded with the proof of a
‘partitioning theorem which was first stated in a slightly
weaker form by B. S. Thomson [26].

One of the most useful theorems available for the
study of ordinary derivatives, due to Zahorski [29], is
that any ordinary derivative belongs to the first class of
Baire (Sl). It was proved by Filipczak (7] that the sym-
metric derivative of an approximately continuous function
is in Sl. The main theorem of Chapter II is that this
result can be extended to the more general case of o*. 1In
Chapter II, we also examine the question of whether there
are any symmetrically differentiable functions which are
not contained in o*. While no answer to this question is
reached, several results are obtained which strongly suggest
that if any such function, £, exists, then £%is in ﬂl.

It is well-known that if f is a finite-valued ordinary
derivative, then any primitive function for f is determined
up to an additive constant. That this is not the case with
a symmetric derivative can be seen by considering the
following two functions. Let f(x)=0 everywhere and let

x"2 for x=x1, x1/2,

g(x)=
o otherwise
Then it is easy to see that fs(x)=gs(x)=0 everywhere, but
f(x) -.g(x) is not constant. Because of this lack of a unique
primitive, many of the standard theorems of ordinary differ-

entiation are either false or much harder to prove with the

symmetric derivative.



A solution to this uniqueness problem is presented in
Chapter III with the introduction of the "nice copy" of a
function in o*. The nice copy of f €o* is a function, g,
which in some sense "maximizes" several of the desirable
properties of £ such as differentiability and continuity,
while at the same time retaining the symmetric differen-
tiability properties of £. 1In particular, it is shown that
there is a set, A, with countable closure, such that gs(x)
agrees with £%(x) on A€ and further, that g is uniquely
determined and upper semicontinuous on AC.

The existence of the nice copy for any £ in o* leads
at once to the existence of a "nice primitive" which is
uniquely determined up to an additive constant and its
values on a set, A, with countable closure. This nice
primitive solves the uniqueness problem presented above, and
thus gives us a means of establishing many of the classical
theorems of ordinary differentiation in terms of the symmet-
ric derivative. For example, the quasi-mean value theorems
of Aull [1] and Evans [5] and the monotonicity theorems of
Weil [28] and Evans (5] can be generalized to o*. Another
consequence of the methods employed in Chapter III is a
simplification of a proof due to Charzynski (4] showing
that the set of discontinuities of any f € o* such that £°
is finite-valued must be countable with no dense in itself
subset.

Finally, in Chapter IV, we extend the results of

Zahorski [29] on the associated sets of derivatives to



symmetric derivatives. In so doing, the results of Kundu
[16] are considerably strengthened. 1In particular, it is
shown that if £° is the symmetric derivative of an £ € o*
such that £3 has the Darboux property, then fSE 7’12. Kundu's
theorems, in the cases of M3 and m4, are proved without his
assumptions that f is continuous and £° has the Darboux
property. Examples are given to show that certain of the
proved Zahorski class containments are proper with symmetric

derivatives.



CHAPTER I
NOTATION, DEFINITIONS AND BASIC THEOREMS

Section 1.1: Notation

In this section we introduce most of the basic defin-
itions and notation which will be used in later chapters.
Several of the "classical" theorems concerning symmetric
derivatives are also stated to motivate some of the new
concepts.

Throughout this work the real numbers will be denoted
by R and the extended reals, [-®, @], will be denoted by
IR*, Z will stand for the integers and zt will represent
the positive integers.

If ACIR is Lebesgue measurable, then the measure of
A will be denoted by |A|. 1In fact, the only measure we shall
have occasion to use is Lebesgue measure, so terms such as
“"measurable," "almost everywhere," etc., should be inter-
preted accordingly. A€ will stand for the complement of A.

Let f be a real-valued function defined on an open
interval, I. If x € I, we define the upper (lower) symmet-

ric derivative of £ at x to be

£ (x) <lim suph_.of (x+h)2;lf (x=h)

s Llim inf f (x+h) -f (x-h
(£7 (%) heo— Rl ER)

5
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When fs(x)=§?(x), whether finite or infinite, we call their
common value the symmetric derivative of £ at x and denote
it by fs(x). If fs(x) exists at every point of the domain
of £, then f is said to be symmetrically differentiable.

D+f(x°), D _f(x,), etc. stand for the Dini derivatives
of £ at x,7 f+(x°), f (x,) and f'(x,) denote the ordinary
right, left and bilateral derivatives of £ at x,, respec-
tively. If both of the sums, D _f(x)+D £(x) and D'f(x)+D_£(x),
make sense, then it is easy to see that

D, £(x)+D7E(x)) = £5(x) = E°(x) S D £(x)+D_£(x)) .

Therefore, if both f+(x) and £ (x) exist, then so does fs(x),
and £° (x)=1(£" (x)+£7(x)) . Further, if £'(x) exists, finite
or infinite, then fs(x)=f'(x). Thus, the symmetric deriv-
ative is a generalization of the ordinary derivative. To
see that it is a strict generalization, consider £ (x)=|x|
for which fs(0)=o, but f£'(0) does not exist.

f is said to be symmetrically continuous at x, if

lim (£(x +h) -£(x,-h))=0.
h-0

As usual, a function which is symmetrically continuous at
each point of its domain is called symmetrically continuous.
It is clear that if fs(xo) exists and is finite, then f is
symmetrically continuous at x,.

It easily follows from the definitions that if £ is
continuous at x,, then £ is also symmetrically continuous
at x,. That the converse is not true can be seen from the
function f(x)=cos§ which is symmetrically continuous (even

symmetrically differentiable) at x=0, but certainly not



continuous there. Therefore, just as symmetric differen-
tiability is an extension of ordinary differentiability, so
is symmetric continuity an extension of ordinary continuity.
We shall denote, for any function, £,
D(f)={x: £'(x) exists and is finite]
and
C(f)={x: £ is continuous at x }.
The following proposition will prove useful in later
chapters and will be employed without constant reference to

this section. A proof of it may be found in [12].

Proposition 1.1. Let I be an interval and £ a function

defined on I. Then C(f) is a G6 set.

Let ACR and x be a limit point of A. If there exists
at least one sequence from A increasing to x, we define
A-lim sup f(t)=1lim sup {f(t): t€(x-8, x)M]

t-x- =0
and

A-lim inf f(t)=1lim inf {£(t): t€(x~8, x)NA} .
t-x- 8=0

If both of the above limits agree, their common value will

be denoted by A-lim f(t). The right-hand limits through

tox-
A are defined analogously. The meanings of A-lim sup f(t),
t-x
A-lim f(t), etc., are now obvious. If, in the above def-

t-x
initions, A=1R, then it is omitted from the above expressions

to conform to standard notation.
Suppose A € R and x,€IR . We denote the reflection of
A through x, by Rx (A) . For example, Rl([0,4))=(-2,2].
(]

Further suppose that I is an open interval and f is a
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function defined on I such that C(f) is dense on I. Let

X,€I and [61: i€Z+} be a sequence of positive numbers dec-
reasing to O such that (xc-éi.x°+6i)CI for all iez',
Choose any kez' since any G, set which is dense in an
interval is residual in that interval, we see that C(f) is
residual in both (xo-ék. X,) and (x,, x°+6k). It is then

clear that R (C(£)N(x,-8,, x,)) is residual in (x,, x°+5k)
o

k
and thus
C(E)NR_ (C(£)N(x,-6,, X,))FH.
Xo k
Choose X to be an element of the above intersection and
let yk=ax (%) . This procedure can be followed for each
o
kezt to generate two sequences, {xi: iez*} and {yi: iezty,

which satisfy

(1) Rxo(xi)=yi for all i€Z+,
(2) li.mn_mxn=limn_’yn=x°
and

(3) {x,: iEZ+}U{yi: iezticc (£) .

Given a function, f, we say two sequences, {xi: i€Z+}
and {yi: i€Z+}, satisfying (1)-(3) converge C(f)-symmetric-
ally to x,. From the above considerations, the following

proposition is clear.

Proposition 1.2. Let f be a function defined on an open

interval, I, such that C(f) is dense on I. Then each x,€I

has a pair of C(f)-symmetric sequences converging to it.

With £ and I as in the proposition, we define fsc(xo)

to be
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f(yn)-f(xn)
n~e y

lim %
n'n

if the limit exists and is the same for all C(f) -symmetric

sequences, [xn: n€Z+} and (yq: n€Z+], converging to #o.

For example, if fs(xo) exists and C(f) is dense in a

neighborhood of x,. then fsc(xo) exists and equals fs(xo).
The following theorems, which motivated several of

the definitions given above, are fundamental to the results

in Chapters II and III.

Theorem 1.3. (Fried [10]) Suppose the set of points at

which £ is symmetrically continuous is residual on an open

interval, I. Then C(f) is also residual on I.

Theorem 1.4. (Preiss [21]) 1If £ is symmetrically contin-

uous on an interval, I, then it is continuous a. e. on I.

Theorem 1.5. (Khintchine [13]) Let f be a measurable

function defined on an open interval, I. Then f has a
finite ordinary derivative at almost all points for which

£3 (x)>—=.

Suppose f is a function defined on an open interval,
I, such that £°(x) is finite everywhere on I. Then f is
symmetrically continuous on I and theorems 1.3 and 1.4
both imply that C(f) is dense. Furtﬁer, if £ is measurable
on I and symmetrically differentiable (infinite values
allowed), then by considering £ and -f, we see from theorem
1.5 that £ has a finite ordinary derivative a. e. and thus

C(f) is again dense. The common thread which seems to bind
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all three of these theorems is that if f is a reasonably
behaved function which is symmetrically differentiable,
then C(f) is dense. This observation motivates the

following definition.

Definition. Let I be an open interval. Define o*(I) to

be the class of all functions, £, such that C(f) is dense
on I and fs(x) exists, finite or infinite, everywhere on I.
Define o (I) to be the class of all functions, f€o*(I),

such that fs(x) is finite at each x€I.

Analogously, we denote by A* (I) the class of all
functions, £, such that f'(x) exists everywhere on I and by
A(I) the class of all functions, f€A*(I), such that f'(x)

is finite everywhere on I.

Using the above notation, we write

o*(1)=(£%: £eo* (1)) and A*' (I)=(£': £€A*(I)]}.
o5(I) and A'(I) are defined similarly.

In order to make the notation slightly less cumber-
some, we denote o*(R), 4*(R), etc., as just o*, A*, etc..
Most propositions will be stated with this simplification,
it being clear in all such cases that the restriction of
the statement to an arbitrary open interval is valid. As
a further notational convenience, if ¥ and U happen to be
classes of functions, we denote INU by TU.

The following corollaries are easy consequences of

the definitions and the three theorems.
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Corollary 1.6. Let f be a measurable function such that

fs(x), finite or infinite, exists everywhere. Then
(a) |(x: |£%(x)|==)|=0
(b) £'(x) exists and is finite a. e.

(c) £€o*.

Proof. By applying theorem 1.5 to £ and -f, we see that
Lix: £3(x)==}|=0 and |(x: £°(x)=—=)|=0 and (a) follows.
(a) and another application of theorem 1.5 yield (b).
Since f'(x) exists and is finite a. e., it follows that £

is continuous a. e. so C(f) is dense and f€o*.

Corollary 1.7. £€c if and only if f£°(x) exists and is

finite everywhere. 1In this case, f is measurable.

Proof. If f€o, then fs(x) exists and is finite everywhere
by the definition of ¢. On the other hand, if f° (x) is
finite everywhere, then f is symmetrically continuous and
theorem 1.3 implies that £ is continuous a. e.. Thus, C(f)
is dense and f€o. We note that any function which is con-

tinuous a.e. is measurable.

Putting these results together, we see that if £ is
the class of all measurable symmetrically differentiable
functions, then ACoC£Co*, The question of whether there
are any symmetrically differentiable functions which are
not measurable is unanswered and will be examined further
in Chapter II. Using a theorem of Zahorski [29] that any
feA* is discontinuous on at most a countable set, we see

that ACA*CLCo*.
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Section 1.2: Some Preliminary Function Theory

Let £ be a function defined.in an open interval, ICIRR,
taking on values in lﬁ*. f is said to be in Baire class
one if there exists a sequence, {fn: n€Z+}, of functions
continuous on I such that f(x)=lim _f (x) for each x€I.
The class of Baire one functions defined on I is denoted
by ial(I) . If I=R, we write Sl(I)=$l.

Following is the fundamental theorem characterizing
Sl. Proofs of it can be found in Goffman [12] or Natensen

{20].

Theorem 1.8. The following statements are equivalent:

(a) f€3,;

(b) For all acR, the sets {x: f(x)<a} and (x: f(x)=2a}
are G, sets;

(c¢) For all a€R, the sets {x: f(x)<a) and (x: f£(x)>a)
are F0 sets:;

(d) If P is a perfect subset of IR, then the restriction

of £ to P has a point of continuity.

The primary importance of the class of Baire one func-
tions lies in the fact that it contains all ordinary deriv-
atives. If £ is a function such that f'(x) exists and is
finite everywhere, then evidently £ is continuous, and it
is easy to see that f'€£l. If infinite derivatives are
allowed, the situation is not as clear because f need not
be continuous. For proofs that f'eﬁl, even in this case,

see Zahorski [29] or corollary 2.6 of this work. 1In fact,
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in Chapter II, we will prove that c*scml.

A function, £, defined on an interval, I, is said to
have the Darboux (intermediate value) property if whenever
x and y are in I and a is any number between f(x) and f(y),
then there exists a number, z, between x and y such that
f(z)=a. We shall denote the class of all functions defined
on I which have the Darboux property by £(I). As usual,
BH(IR) is just written as 5.

We shall rarely have use of £ by itself, but rather,
will make much use of the properties of the class ﬁ%l.
There are more than a dozen known ways of characterizing

Jﬁl. The following theorem contains the ones we will need.

Theorem 1.9. Let f€$1. The following are equivalent:

(a) f€3517

(b) For each x€R there is a sequence, [yn: nEZ+],
increasing to x, and a sequence,{zn: n€Z+}, decreasing to
x, such that limnﬁef(yn)=1imn_°f(zn)=f(x);

(c) For each x€R,

f(x)€[lim inf _f(t), lim supt‘x_f(t)] n

t-x

N [lim inf £(t), lim supt‘x+f(t)].

t-x+
For a proof of theorem 1.9, as well as many other of
the characterizations of 3%1, see Bruckner (3, p. 9].
It is well-known that the derivative of a continuous
function has the Darboux property. That the same is not
true of the symmetric derivative can be seen from the

function f(x)=|x|, where £°(x)=1 for x>0, f°(0)=0 and
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fs(x)s-l when x<0. The Darboux property is clearly violated
at x=0. 1In section 3.2 and in Chapter IV we will explore
some consequences of this lack of the Darboux property for
symmetric derivatives.
Before proceeding much further, the following prop-
osition is probably worth noting to avoid some possible

misconceptions.

Proposition 1.10. Sl is closed under addition and multip-

lication by constants. 3%1 is closed under multiplication

by constants, but not addition.

Proof. The assertion for %1 follows easily from the defin-

ition of 81. That Jﬂl is closed under constant multiplic-

ation can be seen from theorem 1.9(b).

Let

sin % x#0
£(x)= 1 x=0

2

and

sin‘% x#0

g(x)= 1
5 x=00

It is easy to see from theorem 1.8(d) that £ and g are in
Sl. Now, use theorem 1.9(c) to show that £ and g are in

5% But,

1°
0 x¥#0
f(x)+g(x)= 1 x=0

so f+g£3$l.

One of the main uses we will have for ﬁﬂl is contained

within the following theorem.
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Theorem 1.11. (Weil [28]) Let £€88, such that £°(x)>-=

everywhere and g?(x)zo a, e.. Then f is nondecreasing.

Evans [5] extended this theorem from 3%1 to the
larger class of all measurable functions, £, satisfying
(1) lim inft_xf(t)sf(x)slim supt“xf(t)
at each x. (Note the similarity to theorem 1.9(c).) 1In
fact, he showed that this class is the largest class of
measurable functions for which a statement like theorem
1.11 is true.

For our purposes, we will need a slightly more

general version of theorem 1l.1l1l.

Theorem 1.12. Let f be a function satisfying (1) such that

C(f) is dense, gs(x)>-= everywhere and gs(x) 20 a. e.. Then

f is nondecreasing.

Proof. We pattern our proof after that of Weil ([28].

First, let g?(x)>o everywhere. Suppose £ is not
nondecreasing. Then there exist a, and b, with a,<b, such
that f(a,)>f(b,). Choose any a€ (f(b,), £(a,)) and define
Ea=[x€[a°, b,]: £(x)=a} and Ea=[x€[a°, b,]: f(x)2a}. Suppose
that neither E, nor EY contains an interval. Then, if
x€(a,, b,)Nc(£f), it is clear that f(x)=a. According to
proposition 1.2, if x,€(a,, b,) we can choose C(f)-symmetric
sequences, [xn: n2l]} and [yn: n2l}, converging to x,. Then

£25(x,) slim_ E(XQ) -£(yy) _ g4y @@ 4

D0 e n-<
X - -
n yn xn 4

n

which contradicts our assumption that gé(x°)>0. Thus,
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either EY or E, contains an interval.

Suppose, for example, that Ea contains an interval.
(I1£f E® contains an interval, the argument is similar.) We
can then choose an interval (c,d)CEa such that
(2) c= inf (x: (x,d)cEa} .
c>a,, for otherwise (2), (1) and a<f(a,) would imply that
g?(a°)=-. Since g?(c)>o, it follows that there is a §
with O<8<d-c such that f (c-h)<f(c+h)sa whenever O<h<$,
which implies that (c-a,c)CEa. Thus, lim suptdcf(t)sa,
so that by (1), f£(c)sa and ceEa. From this, it follows
that (c-6,d)CEa, which contradicts (2). This contradiction
shows that the points a, and b, cannot exist and f must
therefore be nondecreasing.

Next, suppose g?(x)zo everywhere. Let ¢>0 and define
fe(x)=f(x)+ex. Then g:(x)2e>0 everywhere and £ satisfies
(1), so according to the above argument, f€ is nondecreasing.
Since fe is nondecreasing for every ¢>0, we can take the
limit as €~+0 to see that f is nondecreasing.

Finally, let f be as in the statement of the theorem.
In Zahorski [29], it is shown that for any set, A, such
that |A|=0, there exists a continuous and nondecreasing
function, g, which is differentiable everywhere and for
which g'(x)=* whenever x€A. Let ¢>0 and A=(x: g?(x)<0].
Since |A|=0, there is a function, g, as above. Define
fe(x)=f(x)+eg(x). Then, clearly, g:(x)zo everywhere and
fe(x) satisfies (1), so fe is nondecreasing. Again,
letting ¢—+0 shows that f is nondecreasing, and the theorem

follows.
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Following Evans (5], we define the class m_l to
consist of all functions, £, satisfying (1) such that C(f)

is dense. Then from theorem 1.12, the following is clear.

Corollary 1.13. Let fem_lo* such that fs(x)>—~ everywhere

and fs(x)zo a. e.. Then f is nondecreasing.

A function, £, defined on an open interval, I, is

upper semicontinuous at x€I if

lim suptdxf(t)sf(x).
f is lower semicontinuous at x if -f is upper semicontinuous
at x. If f is upper (lower) semicontinuous at each point of
its domain, then it is said to be upper (lower) semicontin-
uous.

Note that this definition appears at first glance to
be slightly different than that in some common books because
of the way we defined the upper and lower limits of a
function. The following theorem shows that our definition

is the same.

Theorem 1.14. Let f be a function defined on an open

interval, I. The following statements are equivalent:
(a) £ is upper semicontinuous:

(b) PFor each x€I, f(x)21lim supt*xf(t);

(c) For each a€R, (x: f(x)2a} is closed relative to I;

(d) For each a€R, (x: f(x)<a} is open.

Proof. (a) is obviously equivalent to (b) and (c) is
obviously equivalent to (d). Let a€R and A=(x: f(x)=2a].

Suppose that (b) is true. x€A iff there is a sequence,
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[xn: nz2l}cA, such that llmnﬂgxn=x. Then, (b) implies that
f(x)2a so that x€A. Therefore, A is closed and (c) is
true. Suppose (c) is true and f(x)<lim suptdxf(t). Then
there is a sequence, {xn: n2l}<I, such that llmn_gxn=x and
limndgf(xn)= lim supt~xf(t). Let f(x)<aclim suptﬁxf(t)
and A={x: f(x )2a)}. A is closed. There exists an nezt
such that for all n2N, xn€A. Since A is closed, this

clearly implies that x€A. This is impossible, and the con-

tradiction shows that (b) must be true.

Note that theorem 1.14(c) and theorem 1.8(b) imply
that if £ is upper semicontinuous, then feﬂl. Analagous
results can clearly be established for a lower semicontin-

uous function, f.

Section 1.3: A Covering Theorem

Suppose that (a, b) is an open interval such that
there is a §(x)>0 associated with each x€(a, b). For each
x, we define

s =([x-h, x+h] : OCh<6(x)]
and

¢=Uxe(a, b)Sx-
€ is called a full symmetric cover for (a, b).

The above definition is due to Thomson [26], who
used it to prove a slightly weaker version of the following

theorem.
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Theorem 1.15. Let (a, b) be an interval and c=(a+b)/2.

Suppose € is a full symmetric cover for (a, b). Then
there is a set, D=(0, (b=-a)/2) such that D has countable
closure and ¢ contains a partition of [c-x, c+x] for
every x€DS. Further, each of these partitions can be
chosen to contain an element of Sc. (Where Sc is as in

the above definition.)

Proof. To simplify notation, we assume that c=0 and that
C is a full symmetric cover of the interval (-b, b). With
the assumptions that §(x)=86(-x) and §(|x|)<|x| for x#0, we
lose no generality because C is at worst made smaller.
Define _

D={x€(0, b): C contains no partition of [-x, x])}
and let

a= sup (x€(0, b): DN(O, x) is countable].

We must show that a=b. Suppose this is false; i. e.,
suppose a<b. First, note that a>§(0). By the definition
of a, for every €>0, DN(a-¢, a] is countable and DN(a,a+ce)
is uncountable. But, if xeﬁcn(a-b(c), a), then ¢ contains
a partition of [Ro(na(x)), Ra(x)], from which it follows
that DN(a, a+6(a))CRa(5h(a-6(a), a)), which is countable.
This contradiction shows that a=b.

Now, let x,€(0, b) and let

“Xo=a,<a)< ... < =X,

be a partition of [-x,, X,] from ¢. There is a k€{0,1,...,n)

such that akSO and ak+1207 i. e., OG[ak, a ]€€. Because

k+1
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6(x)<‘lx\ when x¥0, it is clear that whenever x#¥0 and IGSx.

then OfI. This implies that [ak. ak+1]€SO‘



CHAPTER II

THE CLASS OF ARBITRARY SYMMETRIC DERIVATIVES

Section 1.1: Comparison with Baire Class One

It is an easy matter to prove that a finite-valued
ordinary derivative is a member of 81. The situation would
appear to be more complex in the case of the symmetric
derivative because the primitive function may have many
discontinuities. Nevertheless, we have the following
theorem, which will prove very useful in the succeeding

chapters.

Theorem 1l.1. o*sc %1.

Proof. According to theorem 1.8(b) it suffices to show
that for any a€R, (x: £ (x)2a) and (x: £°(x)sa) are both
G6 sets. To do this, define g(x)=f(x)-ax so that C(f)=C(g),
g is symmetrically differentiable everywhere with
g° (x)=£° (x) -a

and
(1) (x: £7(x)2a)=(x: g°(x)20].

Choose a $>0. Using proposition 1.2, we see that

for each x€IR, there is an h€(0, 8) such that x+h and x-h

are both elements of C(g). From this observation, it

21
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makes sense to define
A=(x: supo<h<bg(x+h)-g(x-h)>o, where x+h€C(g) and x-h€C(g)].
If x€A, then there are h, a and ¢, each positive, satis-

fying the following inequalities:

(2) x-h, x+h€C(g)N(x-8, x+8§);

(3) g (x+h) g (x-h) >2a;

.(4) |x+h-y|<e implies |g(x+h)-g(y) l<a;
(5) |x-h-yl<e implies |g(x-h)—=g(y) |<a;
(6) e+th<?§.

Choose any x,€R such that O<|x-x_|<e¢ and choose B>0 with
|x-x,|+B<e. Let

(7) Rls(xo-h-B, x,-h+B) and R2=(x°+h-s, x,+h+8) .

Since |x-x,|+B<e, it is clear that

(8) Rlc(x-h-e, x-h+¢) and ch(x+h-e, x+h+e€) .

Since C(g) is a dense G,set, it is residual. From

8
this, it follows that Rxo(c(g)an) and C(g)nR2 are both
residual in R2 and cannot be disjoint. So, there is an
h'>0 such that x,-h'GC(g)an and x°+h'€C(g)nR2. From (7)
and (8) it follows that h'<h+B<h+e<d. From (4) and (5) it
follows that

lg (x+h) =g (x,+h) |<a and |g(x-h) -g(x,-h"') |<a.
Combining these two inequalities with (3), it is seen that

'g(xe+h') =g (x,-h')>0

so that x,€A. Since the only requirement on x, was that
|x-x,|<e, it follows that (x-¢, x+¢)@A. Thus, for each
X€A, there is an ¢>0 such that (x-¢, x+¢)@A. Therefore,

A is open.
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Similarly, if we define, for each nezt, the set An

to be
(x: sup 1g(x+h)-g(x-h)>-%?-where x+h€C(g) and x-h€C(qg)}.,
O<h<=
n

then An.ib also ‘open.

It is clear that
(- -]

(x: g°(x)20)=N__, A_,

so the set in (1) is a G6 set.

The set (x: fs(x)sa] can also be shown to be a Gé set

by considering -f instead of f.

Using theorem 1.3 with corollary 1.6 and theorem 2.1,

we arrive at the following corollaries.

Corollary 2.2. Let f be a symmetrically differentiable

function such that fs(x) is finite on a residual set. Then
s
£7€8, .
Proof. This follows easily from theorem 1.3 and the obser-
. . s
vation that if f (x) is finite, then £ is symmetrically

continuous at x.

Corollary 2.3. If f is measurable and symmetrically differ-

entiable, then fsesl.
Proof. By corollary 1.6, feco*.

The above statements represent improvements over the
strongest previously known similar result, due to Filipczak
[7], who proved that if f is approximately continuous and
symmetrically differentiable, then fsesl.
It is not known whether every symmetric derivative
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is in Baire class one. Consideration of corollaries 2.2
and 2.3 shows that such a function would have to be very
badly behaved; at the very least, it would have to be
nonmeasurable and have an infinite symmetric derivative on
a second category set. The question of the existence of a
nonmeasurable symmetric derivative was posed as long ago
as 1928 by Sierpinski [24] and still remains open. We

explore these questions further in the next section.

Section 2.2: Arbitrary Symmetric Derivatives

As noted above, it is perhaps possible that an arbit-
rary symmetric derivative could be a very badly behaved
function. However, a few statements concerning the behavior

of such a function can be established.

Theorem 2.4. Let f be a symmetrically differentiable

function and -esa¢Bse®, Suppose A={x: fs(x)sa}, B=(x: fs(x)ZB]
and I is an interval such that ICAUB. Then both A and B

cannot be dense in 1I.

Proof. It may be assumed without loss of generality that
a<0B, for otherwise, we just consider g(x)=f(x)-ax, where
aca<B, as in the proof of theorem 2.1.

Suppose both A and B are dense in I. Since ICAUB,
at least one of the sets, A or B, must be of the second
category in I; suppose B is of the second category. Define
for nez+

Bn={x€I: f (x+h) -£f(x-h) >0 for O<h<%}.



25
Since B<:L£=l Bn and B is of the second category, there is
an n°€z+ and an-open interval JCI such that Bn° is dense
in J.
Because A is dense in J also, we may choose an a €A NJ

and two sequences, [xn} and {yn], from Bno with [xn]

increasing to a and {y_] decreasing to a such that y_-x <l
n n nn,
for each nEZ+. Then
£ (a+ (yn—xn) ) -£ (a-(yn-xn) )=£ (yn+ (a-x ))-f (xn-(yn-a) )
=f(y +(a-x ))-f(y -(a-=x ))+f (yn- (a-x_))-£f (xn-(yn-a) )
=(£(y + (a=x_))-£(y_-(a-x ))+(f (xn+ (y,-2)) -f;xn-(yn-a) ))>0
1 .
because Y, Xn<no and xn<a<yn imply that Yn a<n° and
a-x <l- with both x and y elements of B .
n'n, n n N,
Thus, if h_ =y -x_, we see that h_ decreases to O
n"n n n
and f(a+hn)-f(a—hn)>0 for each n. This implies that
fs(a)zo, because f is symmetrically differentiable at a.
But, fs(a)$a<o because a€A. This contradiction shows the

supposition to be false, so both A and B cannot be dense

in I.

Theorem 2.4 shows that the associated sets for an
arbitrary symmetric derivative behave much like the assoc-
iated sets for a function in Baire class one. 1In view of
theorem 2.1, this is hardly surprizing.

Theorem 2.5 rules out another form of pathological

behavior for symmetric derivatives.

Theorem 2.5. Let f be any function. Then (x: lfs(x)l=°}

contains no interval.
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Proof. Suppose, to the contrary, that there is an interval
1c(x: |£%(x)|==)}. According to theorem 2.4, both of the
sets, A={x: fs(x)=~=] and B=(x: fs(x)=¢}, cannot be dense
in I. So assume there are a,B€I such that a<p and (a, B)CB.

For each x€(a, B) and each p>0, there is a §(x,p)>O
such that if O<h<é6(x,p), we have [x-h, x+h]<(a, B) and
(9) f (x+h) -f (x~h) >2hp.

For each nez', define
(10) Jh=[[x—h, x+h] : x€(a, B) and O<h<§(x,n)}.
Each Jn is a full symmetric cover of (a, B), so by theorem
1.15, there is a set D c((a+B)/2, B) with \Dn\=0 such that
J_ contains a partition of [(a+B) /2 -x, (a+B)/2 +x] for

every x+ (a+B)/2€((a+B) /2, B)-Dn. Let

(11) p=U__,D,
and
(12) E=((a+B)/2,B)-D.

Since |D|=0, E¥@, so we may choose an x+ (a+B)/2€E.

Let
a+B8 a+B
(13) d=f(—2—+x) -f(T-x)
and choose any nezt . By (11) and (12), there is a partition
of [(a+B)/2~x, (a+B)/2+x] in 4 . Denote the intervals
in the partition by [ai. Bi], i=1l,...,m. Then, using (13),
(10) and (9), we see
- - =

(14) d=Z_,£(8,)~f(a,) > _, (B, =a,)n=2xn.
Since n is arbitrary and x>0, (14) clearly leads to a

contradiction of (13). Thus, B can contain no interval.

Similarly, A can contain no interval.
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'

*
Corollary 2.6. A csl.

Proof, According to theorem 2.5, the set on which f' is
finite is dense. Whenever f'(x) is finite, £ is continuous

at x, so C(f) is dense. Now apply theorem 2.1.

Corollary 2.6 was apparently first proved by Zahorski

[29, p. 14].



CHAPTER III

THE STRUCTURE OF FUNCTIONS IN o*

Section 3.1: Nice Copies of Functions in o*

The primary goal of this section is to prove the

following theorem.

Theorem 3.1. Let £f€o*. Then there are two sets, A1 and

A, each with countable closure, and two functions, 9; and
gy each in Baire class one satisfying:

(a) gzc(x)=fs(x) everywhere, i=1l,2;

(b) gz(x)=fs(x) everywhere an XE, i=1,2;

() 9, (gz) is upper (lower) semicontinuous on Xi (K;);
(a) C(f)CC(gi) and f(x)=gi(x) for each x€Cc(f), i=1,2;
(e) D(f)CD(gi) and f'(x)=gi(x) for each x€D(f), i=1,2;

(f) If I is a component of Ki, then giGM_I(I), i=1,2.

The proof is accomplished with the aid of the
following series of lemmas, some of which are interesting

in their own right.

Lemma 3.2. Let I be an open interval, C a dense subset of

I and £ any function defined on I. Define

28
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M(x)=C-lim sup,_ f(t) and £(x)=C-lim inf  _f£(t).

Then W is upper semicontinuous and £ is lower semicontinuous.

Proof. Let a€élR and A={x€I: u(x)2a}. If A=g, then A is
closed. Otherwise, we may choose a sequence, [xn: n€Z+]CA
such that limnﬂoxn=x. From the definition of M4, for each

+ . . . 1l 1
n€z , there is a tnec satisfying ltn-xn‘<n and f(t )+>>a.

Then, clearly limn

ﬂctn=x and

. . . 1
- 2 —)=
C-lim supt*xf(t) lim supnﬁaf(tn)zllm supnﬁa(a n) a
so M(x)2a and x€A. Thus A is closed and it follows that
M is upper semicontinuous.
The proof that £ is lower semicontinuous follows by

noting that -£ is u for -f.

Lemma 3.3. Let £, C, 4 and £ be as in lemma 3.2. Then
(a) c(f)ec(n) (c(f)cc(2)) and f(x)=u(x) (f(x)=¢(x)) for
each x€C(f).

(b) D(f)<D(M) (D(£)<D(£)) and £'(x)=n'(x) (f'(x)=L'(x))

for each x€D(f).

Proof. We may suppose without loss of generality that
0o€c(f) and £(0)=0. Then, given an €>0, there is a §>0
satisfying |£(h) |<e whenever |h|<%. Fix an h such that
|h|<8 and choose a sequence, (x: nez’ )ac, such that |xnl<6
for each n and 1imn~°f(xn)=u(h). It is clear that u(0)=0,
so that

[ (h) 4 (0) |=1im _ JE(x ) |<e
and it follows that O€C (M) and U (0)=0. Therefore (a)

follows.
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Now, suppose O€D(f). We may assume without loss of
generality that £(0)=0=f£'(0). (Otherwise we just add an
appropriate linear function to f£.) Then, given an €>0,
there is a 8>0 such that when |h|<s, |£(h)|<elh|. Fix an
h with O0<|hl<5s and a sequence, {xn: n€Z+]cc, as above.
Then
[H(n) |=1im_

LlE(x) Islim 1% [e=Inle.

Because ¢ may be chosen arbitrarily small, we see that
0€D(u) and ' (0)=0=£f'(0). Therefore, D(f)D(u) and
f'(x)=pn'(x) for each x€D(f).

The assertions for 4 follow by noting that -f{ is u

for -f.

Lemma 3.4. Let f€o* and define u and (4 as above with
C=C(f). If u (£4) is finite in a neighborhood of x,. then

us(xo) (Ls(x,)) exists and equals fs(xo).

Proof. By translating f, we may assume without loss of
generality that x,=0 and there is an x>0 such that |p(x) |<=
whenever |x|<x.

First, suppose fs(0)=0. Then, given ¢>0, there is a
$€(0,n) such that when 0<t<$§,
(1) |£() -£(-t) |<2te.
Fix a t€(0,8) and choose a sequence, [sn: n€Z+]CC(f), such

ot

that 11mn sn=t, o<sn<6 and
(2) limnqaf(sn)=c(f)-lim supxﬁtf(x)=u(t).
Since {sn: n€z+}cc(f), for each nEZ+ there is a p,>0 such

1
that when ]sn-x\<pn. then \f(sn)-f(x)\<n. p,, may also be
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chosen small enough so that sn+pn<5 and limhdapn=0.

For each n€Z+, let

Gn=RO(C(f) r\(sn.sn+pn)) .

C(f) being residual in IR clearly implies that Gn is
residual in (-sn-pn.-sn), so C(f)ﬁGn#¢ for each nezt. Form
a sequence, [tn: n€Z+}, by choosing tnG(sn.sn+pn) such that
Ro(tn)ec(f)ﬂGn. It follows then that limnd.tn=t. O<tn<5
for each n and lf(sn)-f(tn)l<%. Using (2), we see that
(3) lim _£(t )=u(t).
From the definition of 4, (3) and then (1), we see that
(4) M(-t)21lim supnﬂaf(-tn)zlim supndo(f(tn)-2tne)=u(t)-2te.
Similarly, it follows that
(5) M(t)2p(-t)-2te.
(4) and (5) imply
(6) lu(t) -p(-t) |s2te.
Since ¢ may be chosen arbitrarily small, we conclude from
(6) that u®(0)=0=£°(0).

1f fs(o)=a€Il, we consider the above argument applied
to g(x)=f (x) -ax to see that us(0)=a.

Now suppose fs(o)=°. Then, given a€R , we can choose
a §€(0,n) such that whenever O<t<$,
(7 £(t)-£(-t)>2ta.
Fix a t€(0,8) and choose a sequence, [sn: n€Z+]=C(f)ﬂ(-6,0)
such that limnﬁasn=-t and

limnﬁef(sn)=c(f)-lim supx“tf(-x)=u(-t).

In the same manner as above, we may choose a new sequence,

(t_: nez*)ec(£)N(-5,0) such that Ro ([t nezt ) (£),
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limndatn=-t and

(8) limn”,f(tn)=u(—t).

Then, using (8) and (7),

M(t) -u(-t)=C(£f)-lim supxqtf(x)-C(f)-lim supxatf(-x)
=C(£) -lim sup _, £(x)-lim_ _ £(t )

(9) 2lim sup _,f(-t )-lim_ __f(t )

21lim supn*a(f(-tn)-f(tn))
>lim supn~°2|tnla=2ta.

By choosing a arbitrarily large in (9), we see that us(0)=~.
The case when fs(0)=-° succumbs to a similar argument.
Therefore, us(o)=fs(o).

The assertion that zs(x°)=fs(x°) follows by noting

that -¢ is p for -f.

It should perhaps be noted that some condition such

as requiring 4 and £ to be finite in a neighborhood of x,

is necessary. To see this, for n€Z+, let

. -n -n, -1
sin 4 v(f;Z ) xe(z-n_4-n'2-n+4-n)_[2—n}
(o] otherwise
and

£ ()= _ £ (X)+T_ £ (-x).

Then f£€0, but U (x)=<=-f (x) whenever xe[tz'n: n€z+}, 56 the

difference quotients
2h 2h

-n

are undefined whenever h=2 for some n€Z+. Thus, us(o)

and 43(0) are also undefined.
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Lemma 3.5. Let f€o* with
A={x: lim sup,__ f(t)==} and B=(x: lim inf _ f(t)=-—=].

Then both A and B are countable closed sets.

Proof. We prove the lemma in the case of A. The assertion
for B then follows by considering -f.

Using C=IR in lemma 3.2, we see that A is closed and
because C(f) is dense, A must be nowhere dense. Being
closed, A may be written as A=PUN, where P is perfect and
N is countable. Suppose P¥@ and let (a,B) be a component
of P°. (a or B could be infinite.) Since P#@, a or B must
be finite. Suppose B is finite. Then, since P is closed,
BEP. P being perfect and (c,B)CPc, we see that for each
>0, [B,B+8)NP is uncountable. Since AN(a,B)EN is countable,
we may choose a sequence, (Bn: n€Z+}CP, such that B
decreases to B and RB((Bn: nez'))ma=@g. Using the facts
that BnGA for each n and

lim suptﬂRB(Bn)f(t)E[-°.°)
we may choose a t_>B for each nezt such that |tn-Bn‘<%

and f(tn)-f(Ra(tn))>n. Clearly, llmnnctn=ﬁ and

£(e)-£(Ry (1)) _1im inf n

lim inf S
RS2 E A n-e2(t,-A)

so fs(3)=°. Similarly, if a>-=, then fs(q)=-.

Now, we note that
C @
P=U,_,(@.B)

where (an,Bn) is a component of P¢ for each n. Clearly,

then since P is a nowhere dense set in IR, the sets
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[an: n€Z+} and [Bn: n€Z+] are both dense in P. This implies,
from the above, that the sets
I+=[x: fs(x)=°} and I ={x: fs(x)=-°]
are disjoint dense subsets of P.

P, being closed, is a G, set and according to theorem

8

2.1, TTand 1~ are G6 sets, so PNIT and PAI~ are dense G6

subsets of P. As such, both PNIT and PNI~ are residual in
+ -

P. Since P is a Baire space, PNI NI #@, which contradicts

the fact that ITNI =g.

Therefore, we conclude that P=¢g and A=N, a countable

set.

Enough machinery has now been developéd té accomplish

our primary goal.

Proof. (Theorem 3.1) Let f€o*, u and £/ be as in lemma 3.4
and A and B be as in lemma 3.5. Define

A, ={x: |4 (x) |==} and A={x: 12 (x) |==)

and let
M (X) xEAi L (x) xeAg
gl(x)= and gz(x)=
£ (x) xeAl £ (x) x€A2

Since AIUA2CAUB, the countable closure of both Al and
A, follows from lemma 3.5. (b) follows from lemma 3.4. (c)
follows from lemma 3.2. (d) and (e) follow from lemma 3.3.
(a) follows from the definitions of p and £ and (4).

The rest of the theorem will be proved in the case

i=1l, the proof in the case i=2 being similar.

Choose an a€lR . The upper semicontinuity of g, on
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K‘]:_ and theorem 1.14 (c) imply that for each n€Z+,

= (+weaC. 1
E_={x€A7: g, (x) =a+g}

7C

is closed relative to Al and so is an Fo set relative to

IR. Since

= -C_ = ®
F,={x€A;: gl(x)>a] U =1E,*
we see that Fl is also an Fo set relative to R. It is
clear that
(10) F2=[xGA1: gl(x)>a)

is an Fo set, because A, is countable. Thus,

1
(x€R : gl(x)>a]=F1UF2
is also an Fc set.
Similarly, the upper semicontinuity of 9, implies
that
= AC .,
Fy=(x€Al: g, (x)<a)
is open in I—\?_ and so is open in IR . Thus, F3 is an F0 set
relative to R. As above,
F4=[x€Al: gl(x)<a}
is also an Fc set relative to R. Therefore,
(11) (%€M : gl(x)<a]=F3UF4
is also an Fc set relative to R. Since a was chosen
arbitrarily, (10), (11) and theorem 1.8(c) imply that gléﬂl.
Using the definition of g, and (d), we see that if

xei‘]:_, then
lim inft-'xgl(t)‘ C(f)-lim inft-'xgl(t)=
(12) =C(£f)-1lim lnft_.xf(t)SC(f)—llm Supt_.xf(t)=

=gl(x)=C(f)-lim supt_.xgl(t)slim supt_.xgl(t) .

Comparing the above relations, we obtain (f).



36
An examination of the statement of theorem 3.1 shows

that we can slightly improve on the semicontinuity relations

in (¢) and (f). 1In particular, (c) implies
(13) g, (x)2lim supt*xgl(t)
whenever xeii, and

(14) gz(x)Slim lnft*XgZ(t)
whenever xexg. (£) implies that

(15) gl(x)sllm suptﬁxgl(t)
whenever xeii and

(1e6) gz(x)kllm lnft»xgz(t)

for all xeig. Combining (13)-(16), we see

Corollary 3.6. Let £, Al, A2’ 9, and g, be as in theorem

3.1. Then

(17) gl(x)=lim suptﬂxgl(t)
for all xeii and

(18) gz(x)=lim inftﬁxgz(t)

for all xeig.

Definition. Let £, Al' Az, 9, and 9, be as in theorem 3.1.
We call 9, (g2) the upper (lower) semicontinuous nice copy

of £. Al (Az) will be called the upper (lower) essential

set for f.

In the following, we shall adopt the convention that
if g is said to be the nice copy of £, it will be the upper
semicontinuous nice copy unless it is specifically noted
otherwise. Similarly, an essential set will be an upper

essential set unless contrary mention is made. These
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conventions will cause no problems because of the similarities
in the behavior of the upper and lower semicontinuous nice

copies of a function.

Corollary 3.7. If fe€o*, then |{x: |£°(x)==}]|=0.

Proof. Let g be the nice copy of £ and A the essential
set for £. Then, from theorem 3.1, g€$1 and is thus

measurable. Now apply corollary l.6(a).

The following theorem answers some natural questions

concerning the uniqueness of the nice copy of a function.

Theorem 3.8. Let £ and g be functions in o* and suppose

that DCIR is any dense set. If f(x)=g(x) for every x€D,
then the essential sets for £ and g are equal and the nice
copies of £ and g are egqual up to their values on the

essential set.

Proof. Suppose x,€IR and
(21) C(£f) -lim suPt~x°f(t)=a
where a may be infinite. Then, there is a sequence,

(e, nezt )ec (£)
such that limnﬂe 'tn =x, and
(22) lmn_mf(j_:n) =a,
Since {tn: n€Z+]CC(f), for each n€Z+. there is a 6nE(O,%)
such that when ltn-y|<6n.

1
(23) [£e ) -£(y) |<Z.
Because g€o*, C(g) is dense, so for each n€Z+, there is a
)

unGC(g)n(tn-Tn.tn) . Then, for each n€z’, there is an

8
n
n €(0,5°) such that when \y-un|<nn.
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1
(24) lg(y)-g(u) <z
Finally, D being dense, we may choose, for each n€Z+, a
vnE(un-nn.un)nD. Thus, clearly
limndaun=limndavn=x°,
and using (24), the fact that f(vn)=g(vn) for each n€Z+,
(22) and (21) we see
C(g) -1lim supt“xog(t)zllm supn_mg(un)2
. 1 .
21lim SUPn.a(g(Vn)’;)*llm supn_af(vn)z
. 1_ .
2lim supnﬁof(tn)-;-c(f)-llm Supt~x°f(t)'
The reverse inequality can be shown by interchanging £ and
g in the above argument. Therefore, at each x €R,
C(f)-1lim suptdxof(t)=c(g)-11m supt~x°g(t)'
From this, the theorem easily follows using the definition

of the essential set and the nice copy.

As a consequence of this theorem, we see that the
nice copy of £ is in some definite ways the "best" repres-
entation of £f. For instance, suppose that in a nontechnical
manner, we consider a "copy" of £ to be any function which
has the same symmetric differentiation properties as £ and
agrees with £ on a "large" set. Then g of theorem 3.8
is a copy of £. The theorem says that both £ and g have
the same nice copies. Moreover, from (d) and (e) of
theorem 3.1, we see that if h is a nice copy of £ and g,
then C(g)eCc(h), C(f)ec(h), D(g)CD(h) and D(f)<D(h) . This
can be interpreted to mean that of all the copies of £, its
nice copy is the "most continuous" and the "most different-

iable." Using similar arguments, the nice copy can be shown
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to "maximize" many other such properties such as upper
semicontinuity, monotonicity and higher order different-
iability. Thus, it does seem appropriate to call it the

"nice copy" of f.

Section 3.2: Nice Copies of Functions in o

If we restrict our considerations in theorem 3.1 to
functions in o, some of the properties of the nice copy
can be considerably sharpened. Before we state and prove
this new version of theorem 3.1, we first establish the
following interesting lemma, which will be a useful tool

in several of the following proofs.

Lemma 3.9. Let £ and g be elements of ¢ such that
fs(x)=gs(x) everywhere. Then there exists a constant, c€R,
such that the set

M={x: f(x)#g(x)+c)
is countable and has no nonempty subset which is dense in

itself.

Proof. Let r>0. It suffices to show that the set MN(-r,r)
satisfies the lemma.

To do this, we define Y(x)=f(x)—=g(x). Since £° and gs
are finite everywhere, Ys(x)=0 everywhere, so by corollary
1.7, Y€o and C(Y¥) is dense. We may suppose without loss of
generality that O€C(Y¥) and ¥(0)=0. We will show that c=0
satisfies the lemma.

Let e>0. Because 0O€C(Y¥), there is a 6l>0 such that

when Oslhl<61. |¥(h) I<£. since ¥%(x)=0 everywhere, for
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each x€IR, there is a 6(x)€(0,61) such that when O<h<§(x),
(25) |¥ (x+h) -¥ (x-h) | <BE.
Using this §(x), we form a full symmetric cover for IR by
defining
J&=[[x—h,x+h]: O<h<§(x) } and JbL&GntJ .

Then, by theorem 1.15, there is a set, Dc(O,r), with

countable closure, such that J contains a partition of

[-x,x] for every x€D°N(-r,r), and further, each such partit-

ion contains an element of JO. Choose any x,E(O,r)ﬂDc and
let
(26) “Xo=0;<A< .. <°k-1<°<°‘k< .o <O =X,

be a partition of [-X,,X,] from J. Using (25) and the facts
that ck<61 and Y(0)=0, we see that

1¥0xo) 1=1¥(x0) =¥ (0) [$ T ¥ (@) =¥(ay, ) 1+ ¥ () -¥(0) I

SrRICHRELREE S 0 2
A similar argument shows that |Y¥(-x,) |<ec.

Therefore, for each xE(-r,r)-(DURO(D)), we see that
|¥(x) |<e. Since D has countable closure, this implies that
(x€(-r,r): |¥(x)|2¢)

also has countable closure. If for each n€z', we define
En=[x: ]Y(x)\ki}, then, for each nez', E is countable.
Since
MN(-r,x)=U__ E .
it follows that MN(-r,r) is countable.
Define S={xX€RR : Mnﬁx(M)#¢]. Thus, if x€S, then there
are u and v in M such that x=Eix. Since M is countable,

2
there are at most a countable number of such pairs, so S
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must be countable. Let S=[sn: nEZ*}.

Now, suppose M has a subset, N#¥@, which is dense in
itself. We inductively choose two sequences, (xn: n€Z+]
and [en: n€Z+]c(0.l), as follows: First, choose any x1€N
such that xl#sl. Then, using this X choose € such that
O<el<|x1-sl] and e1<|?(xl)|. Suppose X5, ...,x_ _, and
€ cee €0y have been chosen. Select anN such that xn#sn,
xnafxi for i<n and |xn-xn_ll<en_l. (This selection is
possible because N is dense in itself.) enG(O,%) is chosen
such that [x_-e_.x +e 1S[x _,-¢ .,x q+e 11, € <|x -s |
and ¢ <|¥(x ).

From this selection procedure, it is clear that there

. . +
is an x€IR such that llmndaxn—x. For each n€z ,

Ix -xl<e <|x _-s 1.
so x#sn for any n. Therefore, x£S, and by the definition

of S, it must be true that Y(Qx(xn))=o for each n. Since

Ys(x)=0, we see

l¥(x_)-¥(R (x_)) | l¥(x )| €
. n X _n - 13 n . _n _1
S limy 2 Txx | S M eZTxex T i heeZe "2

This contradiction shows that M has no nonempty dense in

itself subset.

A function, £, is said to be symmetric if for every
x€IR there exists a §(x)>0 such that f(x+h)=f(x-h) whenever
O<h<d(x). A set, A, is a symmetric set, if its character-
istic function is symmetric.

It is clear from the definition that if f is symmetric,

then fs(x)=0 everywhere. We may apply the above lemma to
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simplify the proofs of theorems due to Ruzsa [22] and

M. Foran [9].

Corollary 3.10. If £ is a symmetric function, then there

is a c€R such that the set, M={x: f(x)#c] has countable

closure.

Proof. From lemma 3.9, it follows that there exists a

c€R such that the set, M={x: f(x)#c), contains no nonempty
dense in itself subset. It is easily seen from this that

M must be nowhere dense. So, without loss of generality,

we may assume there exists a 61>0 such that f (x)=c when
o<x<61. Since f is symmetric, for each x€IR, there is a
6(x)€(0,61) such that when O<h<§(x), then f(x+h)=f(x-h).
Using this §(x), we form a full symmetric cover, J4, for R

as in the proof of lemma 3.9. The rest of the proof proceeds
as in the first half of the proof of the lemma, where it

can be shown that MCDURO(D). with D the set of theorem 1.15.

Corollary 3.11. If A is a symmetric set, then either A or

A€ has countable closure.
Proof. This is immediate from the definition of a symmetric

set and corollary 3.10.

We are now ready to state the restricted version of

theorem 3.1.

Theorem 3.12. Let f€o with A1 (Az) the upper (lower)

essential set for £ and 9, (gz) the upper (lower) semicon-
tinuous nice copy of £. Then Al and A2 are symmetric sets

and gland 9, satisfy:
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(a) gi(x)=fs(x) everywhere, i=1l,2;
(b) 91(92) is upper (lower) semicontinuous on Kﬁ (AS) ;
(c) c(f)ct(gi) and f(x)=gi(x) for each xeC(f), i=1,2;
(a) D(f)CD(gi) and f'(x)=gi(x) for each x€D(f), i=1,2;
(e) If I is a component of Kg. then giéﬁﬂl(l), i=1,2.

Further, 9; is determined up to an additive constant and

its values on Ai by (a), (b) and (e), i=1,2.

Proof. (b), (c) and (d) follow from theorem 3.1. The rest
of the theorem will be proved in the case i=l. The case
when i=2 then follows by considering -f.

To prove that A, is symmetric, let x,€R . Since
fs(xo) is finite, £ is symmetrically continuous at x,, so
there is a §>0 such that if O<h<§, then
(27) | £ (xo+h) -£ (x,-h) |<1.

Suppose y,GAln(xo-b,x°+5) and that C(f)-lim suptﬁyof(t)=¢.
Then we may choose a sequence, [yn]C(xo-b,x°+6)ﬂC(f) such
that lim.n_.“yn=y° and 1imn~°f(yn)=°. For each n€Z+, there
exists a 5n€(0,%) such that (yn-én, yn+6n)c(x°-6.x°+6) and
‘y-yn|<5n implies that
(28) [£() £y ) I<1.
Using the fact that C(f) is residual, we may then choose,
for each n, a new

znenxo((yn-bn,yn+6n)ﬂC(f))ﬂC(f)-
Then, using (27) and (28)

C(f)-1lim sup, o (yo)f(t)zlim supnqaf(zn)z
xo

21lim supn*.(f(ﬂxo(zn))-l)zlim supnﬂa(f(yn)-Z)zc
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so that Rxo(yo)eAl. A similar argument shows that if
C(f)-1lim suptﬁyof(t)=-°.
then Rxo(yo)EAl once again. Therefore,
Rxo(Aln(xo-a,x°+6))=Aln(x°-6,x°+6).
Since x, was chosen arbitrarily, it follows that Al is a
symmetric set.

Again, let x,€IR . We may, without losing generality,
assume fs(x°)=0. Then, for each e€>0 there is a $>0 such
that whenever O<h<5b,

(29) | £ (x,+h) - (x,-h) |<2he

and because A1 is symmetric, we may choose § small enough
so that

(30) R (Alﬂ(xo—b,x°+6))=(x°—6,x°+6)nAl.

Xo

Fix an h€(0,8). If x,+h€A,, then by (30), the definition of

1’
g, and (29),

(31) lgl(x°+h)-gl(x°-h)l=lf(x°+h)-f(x°-h)l<2he.

If x°+h¢Al, we can use the same argument as in the proof of
lemma 3.4 to show that

(32) lg; (x,+h) =g, (x,-h) |<2he.

If we let ¢ go to O, we see from (31) and (32) that gs(x°)=0
and (a) follows.

Let I be a component of Ki and x,€I. Since gleo, 9,
is symmetrically continuous at x,. According to corollary
3.6,

g, (X,)=1im supthogl(t).
Combining these two facts, we see that

o
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and
(34) gl(x°)=lim suptho_gl(t)
so that
(35) gy (%) €[Llim inf,  _g;(t),lim S“Pt~x,-91(t)]”

N[lim ;nft4x°+gl(t)'llm supt*x°+g1(t)].

According to theorem 3.1, gléﬂl. Now, we apply theorem
1.9(c) with (35) to see that 916351(1).

Now, let h, be a function satisfying (a), (b) and (e)

1
and let I and x, be as above. Since hleﬁﬂl(l), it follows

from theorem 1.9(b) that

(36) hl(xo)slim supt~x°+hl(t)
and
(37) hl(xo)slim supt*x,-hl(t)'

Using the upper semicontinuity and the symmetric continuity

of h, at x,, we see that

1

(38) hl(xo)zlim supt~x°—hl(t)
and

39 h 21i h. (t).
Combining (36)-(39) yields

(40) hl(x°)=lim suptﬁx°+h1(t)
and .

(41) hl(x°)=lim supt~x°-h1(t)'

Define Y(x)=gl(x)-h1(x). Through the addition of an
appropriate constant (the constant of the theorem), we may
assume without loss of generality that Y(x,)=0.

According to (40) and (33), we may choose sequences,
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[xn: n€Z+] and [yn: n€Z+], increasing to x, and satisfying

(42) lim _ h, (x )=h, (x,)
and
(43) lim .9, (v,)=9; (x,).

Then, from (42) and (34),

lim inf___ _Y(t)=lim inf

e, _(g; (£)-h () s

t-xX,
(44) €1im infnﬁo(gl(xn)-hl(xn))=lim infnﬁagl(xn)-hl(xo)s
‘gl(xo)Jhl(x°)=Y(x°).
Then, from (41) and (43),
lim suptho_Y(t)=lim supt«x,-(gl(t).hl(t))z
(45) 2lim supn_,(gl(yn)-hl(yn))=gl(x°)-lim inf _ h,(y ))=
29, (%) =h, (x,)=¥(x,) .

Combining (44) and (45) yields

(46) lim inft*xo_Y(t)sY(xo)‘llm supt~x°_Y(t).

In a similar fashion, it follows that

(47) lim inftﬂx°+Y(t)‘Y(x°)$lim suptﬁx°+Y(t).

(46) and (47) imply

(48) ¥(x,) €[1lim 1nft~x°_Y(t),lim suptﬁxo_Y(t)]ﬁ
N[1lim inft~x°+Y(t),lim supth°+Y(t)].

Since both h1 and g, are in 81(1), we see that YE%I(I). Now
apply theorem 1.9(c) and (48) to conclude that Ye&s®, (I).
Clearly, from its definition, Ys(x)=0 everywhere. By
theorem 1.11, Y is seen to be constant on I. Since Y(x,)=0,
¥(x)=0 for each x€I.
Using the same argument as above, if J is any other
component of Ki, then there is a C(J) €R such that

¥(x)=C(J) for each x€J. From lemma 3.9 and the fact that
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¥ is identically O on I, it easily follows that C(J)=0 for

each component, J, of Xg. Therefore gl(x)=h1(x) on Xi.

Again, the semicontinuity-type conditions in theorem
3.12(b) and (e) can be improved. Specifically, (33) and
(34) imply the following corollary.

Corollary 3.13. Let £, gys 9o Al and A2 be as in theorem

3.12. Then
g, (%,)=1lim suptho_gl(t)=lim supt*x°+gl(t)

for all xoéii and

g, (¥,)=1lim inft °_gz(t)=lim inf +95(£)

Y t-y,

for all y,€A,.
The following propositions are meant to explore the

relationship between an arbitrary f€o and its nice copy.

Corollary 3.14. Let f€o and let g be the nice copy of f.

Then the set (x: f(x)#g(x)] is countable and has no dense

in itself subset.

Proof. This is clear from lemma 3.9 and theorem 3.12(a)

and (c).

Corollary 3.15. Let £ and g be elements of o such that

fs(x)=gs(x) everywhere. Then the essential sets for £ and
g are equal. If A is this essential set and fl and 9, are
nice copies of f and g, respectively, then there is a c€R

such that fl(x)=gl(x)+c on AS,

Proof. By lemma 3.9, there is a c€R such that f(x)=g(x)+c

n. e.. Now, apply theorem 3.8 to £ and g(x)+c.
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Theorem 3.16. If f€o, then c(£)€ is countable and has no

subset which is dense in itself.

Proof. Let A and B be as in lemma 3.5 with C=AUB. Then,

according to lemma 3.5, C is closed and countable, so

cc=U

n=11n
| where the In are pairwise disjoint open intervals. (Some
of them may be empty.) Let p and £ be as in lemma 3.4.
Then, by that lemma, us(x)=zs(x)=fs(x) on c© and
H(x)=4 (x)=£f(x) on C(f). By lemma 3.10,

D,=(x€C”: £ (x)#£(x)) and D,=(x€C: u(x)#£(x))
both have no subset which is dense in itself. It is clear
that if xGC(fjc, then either f(x)7#u(x) or £(x)#¢(x). From
this, it follows that C(f)“=CUD,UD,. Since each set in this
union has no subset which is dense in itself, it follows

that C(f)c has no subset which is dense in itself.

Theorem 3.16 was first proved by Charzynski [4],
building upon methods developed by Mazurkiewicz [17] and
Sierpinski [24]. The proof given here is much easier.
Szpilrajn [25] showed that if a set, B, has no dense in
itself subset, then B=c(f)c for some f€o, thus characterizing
C(f) for an arbitrary f€o.

Viewing theorem 3.16 as an extension of theorem 1.4,
one might suspect that a similar extension of theorem 1.5
is also true. This was shown to be false by J. Foran (8],
who constructed a continuous f€o such that D(f)€ is

uncountable.
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Corollary 3.17. Let £€0°. Then there is a unique symmetric

set, A, and a function, FEc%l, satisfying:

(a) F°(x)=£(x) everywhere;

(b) F is upper semicontinuous on AS;

(c¢) If I is a component of AS, then Feﬁﬂl(I);

(d) F is unique up to an additive constant and its values

on A.

Proof. Since onS, there is a g€o such that gs(x)=f(x)
everywhere. Let F be the nice copy of g and A be the
essential set for g. The uniqueness of A and (d) follow

from corollary 3.14. Theorem 3.11 yields (a), (b) and (c).

Definition. Using the notation of corollary 3.17, we shall

call F a nice primitive for £ and A the singular set for f.

Corollary 3.17 cannot be extended to o*° because there
is no guarantee of a unique primitive when £ is allowed to
attain infinite values. A discussion of the problems

involved in this case can be found in Bruckner (3, p.80].

Section 3.3: Monotonicity and Mean Value Theorems

In this section, we will present present some standard
theorems of ordinary differentiation in terms of the symmetric

derivative.

Theorem 3.18. Let f€o* such that £°(x)20 a. e. and £° (x)

is never -, Then the nice copy of £ is nondecreasing

and the essential set for f is empty.
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Proof. Let A be the essential set for £ and g be the nice
copy of £. Suppose x is an isolated point of A and (x,B)
is a component of AC. According to theorem 3.1 (f),
gem_l(x,B). By supposition, gs(t)zo a. e. on (x,B) and
gs(t) is never - on (x,B), so theorem 1.12 implies that
g is nondecreasing on (x,B). From this and theorem 3.1(d)
it is clear that
(49) C(f)-1lim supt~x+g(t)<°.
Similarly, if (a,x) is a component of A®, we can see that
g is nondecreasing on (a,x) and
(50) C(f)-lim sup,_, _g(t)>-=.

Since x€A, either C(f)-lim suptdxg(t)=~. or

C(f)-1lim suptdxg(t)=d=. Assume the former. Using (49)

and (50), we see

(51) C(f) -1lim supt~x+g(t)=a<o
and
(52) C(f)-lim sup, , _g(t)==.

According to (52), we may choose a sequence, [xn: n€Z+]CC(f)
such that X, increases to x and 1imn“°g(xn)=°. Since
C(f)cC(g) by theorem 3.1l(c), for each nGZ+ there is a
1 . .

8,€(0,5) such that Iy—xn]<6n implies that ]g(y)-g(xn)|<1.
C(f) being residual in IR implies that for each n, there
. . lim 6 =0, z
%s a znGC(f)ﬂRx((xn-én,xn)ﬂc(f)). Since n-e n n
decreases to x. From the choice of z and (49),
lim supnds(f(x+(zn-x))-f(x-(zn-x))=11m supndo(f(zn)-f(nx(zn))s

£1lim supn_af(zn)-lim infnﬁaf(ﬂx(zn))<

<a-limn4°(g(xn)+1)=-,
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from which we see that f°(x)=—=, a contradiction. Therefore,
(53) C(f)-lim suptdx_g(t)<°.
Similarly, it can be shown that
(54) C(£f)-1lim suptﬂx+g(t)>-°.
(49), (50), (53) and (54) imply that

lc(£) -1im sup,__g(t) |<=

which contradicts the choice of x€A. Therefore A has no
isolated points.

A having no isolated points implies that A has no
isolated points. A closed set with no isolated points is
perfect, and all nonempty perfect sets are uncountable.
Since A is countable by theorem 3.1, we conclude A=@.

Thus, AC=IR , SO by theorem 3.1(f), gem_l. Now, apply

theorem 1.12 to see that g is nondecreasing on R .

Corollary 3.19. Let féos such that f(x)20 a. e.. Then

any nice primitive for f is continuous and nondecreasing.

Proof. Let F be a nice primitive for £. Since F€o, F

" clearly satisfies the conditions of corollary 3.18. Hence,
we may conclude that the essential set for F is empty and
F is nondecreasing. According to theorem 3.12(f), Féﬁ%l.
Any monotone function satisfying the Darboux condition

must be continuous.

Corollary 3.19 is also true in the more general case

of the parametric derivative, as shown in [6].

Corollary 3.20. Let fEcs such that £ is bounded above or

below a. e.. Then any nice primitive for f is continuous.
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Proof. Suppose there is an MER such that f(x)2M a. e..
Then g (x)=f(x)-M20 a. e. and gecs. Apply corollary 3.19

to g. If £ is bounded above, then consider -f.

Corollary 3.21. Let f and g be elements of 0% such that

f(x)=g(x) a. e.. Then f(x)=g(x) everywhere.

Proof. Let h(x)=f(x)-g(x). It is clear that hés® and
h(x)=0 a. e.. By corollary 3.19, any nice primitive of
h is constant. Therefore, h(x)=0 everywhere and f (x)=g(x)

everywhere.

In the above corollary it is necessary that f (x)=g(x)
a. e.. If the two functions are not equal a. e., the
conclusion is not even true for the ordinary derivative.

A proof of this may be found in Bruckner (3, p. 202].

When considering symmetrically differentiable
functions the ordinary mean value theorem is not true
because symmetric derivatives need not satisfy the Darboux
condition. However, some replacements in the same spirit

as the mean value theorem can be established.

Theorem 3.22. Let f€o* and a,B€C(f) with a¢B. Then there

are nonempty G6 sets, A and B, both contained in («,B),

such that
fs(a) ‘ngz-fga) ‘fs (b)
B
for all a€A and b€B.

Proof. Let F be the nice copy of £. Theorem 3.1(c) implies

that F(a)=f(a) and F(B)=£f(B). Through the addition of an
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appropriate linear term, we may suppose
(55) F (a)=F (B) .
Define

A=(x€(a,B): £°(x)%0) and B=(x€(a,B): £°(x)20).
According to theorem 2.1, A and B are G6 sets. Suppose
B=g. Then £% (x) >0 for each x€(a,B) ana applying corollary
3.18, we see that F is strictly increasing on (a,B).
Since a,B€C(f), we see from theorem 3.l(c) that F is
strictly increasing on [@,B]. This implies that F(a)<F (B),
whcih contradicts (55). Therefore, B#@#. A similar

contradiction is reached if we assume A=¢.

Corollary 3.23. Let f,a,B,A and B be as in theorem 3.22.

If £°(x)>—= for all x€(a,B), then |A|>O0.

Proof. If we proceed as in the proof of theorem 3.22 and
assume that |A|=0, we arrive at a contradiction in the same

way via theorem 3.18.

Corollary 3.24. Let f€s with a,8, A and B as in theorem

3.22. Then both A and B have positive measure.
Proof. Apply corollary 3.23 to £ and -f.

Propositions of the type of theorem 3.22, corollary
3.23 and corollary 3.24 are often called quasi-mean value
theorems. Theorem 3.22 was apparently first proved by Aull
[1] for continuous functions. It was later extended by
Evans (5] and Kundu [14] to functions satisfying certain
monotonicity conditions.

As mentioned above, theorem 3.20 cannot take on the
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form of the usual mean value theorem because f° may not
satisfy the Darboux condition. For example, let f(x)=|x]|,

a=-1 and BA=2. Then

£(B)-f(a) _1
B-a 3

and fs(EU ={(-1,0,1}. However, if £5¢8, then we do arrive

at the usual statement of the mean value theorem.

Corollary 3.25. Let f€o* such that fs has the Darboux

property. Suppose a,B€C(f) such that a<B. Then there is
a y€(a,B) such that f(B)-£f(a)=£°(y) (B=a).

Proof. This is immediate from theorem 3.22.

Even though £° need not satisfy the Darboux condition,
there is a weaker "Darboux-like" condition which it must
satisfy at every point.

Theorem 3.26. Let fEcs. Then, for each x€R,
£ (x+h)+£f (x-h)
2

£f(x+h)+f(x-h)

(56) lim inf 5 .

h=O £f(x) £1lim suph_'o

Proof. We may assume, without losing generality, that x=0
in (56). Suppose the right-hand inequality in (56) is
false. Through the addition of an appropriate constant,

we may assume that there is an a€RR such that

f(h)+£(-h)

(57) £ (0) >a>0>1lim sup, _q >

It is clear that fé&o® implies that £ (-x) €6° and

g(x)=f(:;<)-l2;f(-x) Gcs.

(57) may be rewritten as

(58) g(0)>a>0>1lim sup, g (h).
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(58) implies that there is a §>0 such that g(h)<O whenever
o<lhl<¢s. By corollary 3.20, there is a primitive, G, for
g such that G is continuous and decreasing on (-§,8). This
implies that g(O)=Gs(O)$O, which contradicts (58). Thus,
we conclude that (57) is impossible and the right-hand
inequality in (56) is true.

The left-hand inequality is established similarly.

Corollary 3.27. Let £co*® and F be a nice copy of a

primitive for £f. Then C(£f)D(F).

Proof. Let x€C(f) and €>0. Then there is a §>0 such
that lf(x)-f(y)‘(%-Whenever ly|s6. Let -8<h<s. By corollary
3.20, F is continuous at x and x+h. Theorem 3.22 can then

be applied to see that
£(x) ~es LT ) < £ (x) e

Letting €~0, we see that F' (x) exists and equals f (x).

Corollary 3.27 was first proved by Aull (1] for con-
tinuous F and then extended by Evans [5] to measurable F

in m_l.

Corollary 3.28. Let f&€o*° and F the nice copy of a primitive

for £f. Then F'(x) exists and is finite on a residual set

of full measure.

Proof. Since fEﬂl, C(f) is residual (see [20]). Corollary
3.27 then implies that D(f) is residual. By theorem 3.1,

Féﬁl, so F is measurable. Now apply corollary 1.6(b).

Corollary 3.28 extends results of Evans [5] and
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Muckhopadhyay [18] to o*.

Corollary 3.29. Let on*s such that £ is continuous.

Then f£cA'.

Proof. This is immediate from corollary 3.28, or even

the fundamental theorem of calculus.

Finally, we conclude this section with an extension
of a result due to Kundu [16] which will be useful in

Chapter 1IV.

Lemma 3.30. Let fecs and MERR such that f(x)sM a. e.. If

F is a nice primitive for £ and a<b, then

F(b)-F(a) sM|{x: £(x)>0} n(a,b)].

Proof. According to corollary 3.20, F is continuous. For
each nez+ and each x€IR , define
1
(59) Fn(x) n (F (x+;) -F (x)) .
Fn is continuous for all nEZ+ and if x€D(f), then
(60) lim _F_(x)=£(x).

According to corollary 3.28, (60) is true a. e.. Now
lim inf___ [PF_(x)dx=1im inf___n[® (F (x+2) -F (x) ) dx=
n—o an 1 n—-o® Ja n

c . bln b
=lim inf _ n(f 4lr-(x)dx-fayz(x)dx)=
in ass
(61) =lim inf__ n([, "F (x)ax-[_ "F(x)dx)z

| bk ark
2lim 1nfn~.nfb nF(x)dx-l:.m supn_mnfa nF(x)dx=

=F (b) -F (a)
by the fundamental theorem of calculus.

Using theorem 3.22 with (59) it follows that
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Fn(x)SM for all n and x. Define,for each n€Z+,
Gn(x)=max (Fn(x) ., 0).
Then, Gn is continuous for each n with OSGn(x) €M and from
(60), llmn_.“Gn(x)=max(f(x) , O) a. e.. Applying the

dominated convergence theorem, we see

im i b x)dx £ lim b
lim inf ==-Fa Fn( ) n-eJ a Cp (X) dx=
(62)

=/ (x: £(x)>0)Ef (¥ ax sM|(x: £(x)>0]N(a,b) |

A combination of (61) and (62) yields the lemma.




CHAPTER 1V

SYMMETRIC DERIVATIVES AND THE ZAHORSKI CLASSES

Section 4.1: The Abstract Zahorski Classes

In 1950, Z. Zahorski [29] began a classification of
derivatives based upon the structure of their associated
sets. In the course of this work, he defined a descending
sequence of subclasses of ﬁﬂl which he called mi. i=0, ... .,5.
If we represent the classes of functions which are, res-
pectively, approximately continuous, bounded in A' and
both bounded and approximately continuous by &, bA' and
bd, then Zahorski's conclusions can be represented schem-
atically.

M= My 2 My 2My=2My 2 Mg=4
(1) U U U U U
ﬁﬂlDﬁﬁ*'DA'DbA‘Dbd

Kundu [16], in 1976, defined abstract Zahorski
classes and succeeded in demonstrating a similar structure
for continuous functions, f, such that £°€8. 1In the
following sections, we will extend Kundu's theorems to

larger subclasses of o*S,

Definitions. Let ACIR.

MO(A) is the collection of all Fc sets, F, such that

58
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for all x€ANF, x is a bilateral limit point of F.

Ml(A) is the collection of all F sets, F, such
that for all x€A(F, x is a bilateral condensation point
of F.

Mz(A) is the family of all Fc sets, F, such that for
all x€AMF and all §>0, |(x-6,x)NF|>0 and | (x,x+5)|>0.

M3(A) is the collection of all Fc sets, F, such that
if x€AMF and {In: n€Z+} is any sequence of closed inter-
vals converging to x (i. e., any neighborhood of x contains
all but a finite number of the I ) such that InﬂF=¢ for
all n, then

1im___ _Inl -0,
T ax,I))

M4(A) is the collection of all F_ sets, F, such that
there is a sequence of closed sets, [Fn: n€Z+], and a
sequence of numbers, {nn: n€Z+]C(O,1), such that F=L§;1Fn
and for every c>0 and any xGAﬂFn there is an ¢(x,c)>0 such
that for any two real numbers, h and hl' satisfying hh1>0,
h<ch, and lh+h11<e(x,c), the relation

FNJ
J >’nn

is true, where J is the interval with endpoints x+h and
x+h+h1.

ﬁs(A) is the collection of all Fo sets, F, such that
for all x€ANF, x is a density point of F.

For i=0,1, ... ,5, define the abstract Zahorski class,
mi(A), to be the collection of all functions, £, such that

for any a€R, (x: f£(x)>a} and (x: f£(x)<a} are both in Mi(A)‘
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Finally, define the cllass, Z(A), to be the collection
of all functions, feal, such that for each x€A, each €>0
and each sequence, [In: nezt), of closed intervals conver-
ging to x such that for each n, f(y)2f(x) on I . or f (y) sf (x)
on I,

Iyer, : 1£(y) -£(x) |2e}|

lim
n—® [Inl-f-d(x,In)

=OI

If A=R in any of the above definitions, we omit the
reference to A; e. g., Mi(IR) =M., 77(-1(]R) =M; and Z(R)=2.

It follows easily from the definitions that for any
ACR , M.y (A)Q&i (A), i=0, ... ,4. Therefore, mi+1(A)d7(i (a),

i=0, ... ,4. The following lemma is less obvious.
Lemma 4.1. Let ACIR. Then Z(A)GR3 (A) .

Proof. Let £€Z(A) and a€lR . It must be shown that the
sets {x: f(x)>a} and {x: f(x)<a} are in M3(A). We will
érove that (x: f(x)>a]€M3(A). The proof of the other
inclusion is similar,

Let B=(x: f(x)>a). By the definition of 2(a), we
see that feml, so theorem 1.8(c) implies that B is an Fo
set. If ANB=@, it follows vacuously that B€M3(A). So,
suppose that ANB#@ and choose an xX€ANB. Let e=f(x)-a and
choose a sequence of closed intervals, [In: n€Z+], conver-
ging to x such that InﬂB=¢ for each nez'. Then, since
f€Z (A) and f(y)sf(x) for each yEIn and each n€Z+,

_ |(yex : |£(y)-£(x) |2¢€} |
o e FINE 1% R
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- Iz_1 =TT
llmn““lx Fa 1) n 1+-§i—fﬁl
n ‘“n I,
from which it easily follows that
Iz, |
n- d(x,I )

lim =0.

The classes M, and mi, i=0, ... ,5 are due to
Zahorski [29]. The generalized Zahorski classes, Mi(A)
and mi(A), for i=0, ... ,4, are apparently due to Kundu
[16], although he states several of them in a different,

but equivalent way. MS(A) and ms(A) are extensions of

Zahorski's original classes in the spirit of Kundu's
generalizations. The class, 2, was defined by Weil [27],
who proved that ACZCM3 and that the containment is strict.

A function, f, is said to be nonangular iff

(2) D'E (x)2D_£ (x)
and
(3) D'f(x)zn+f(x)

for all x€IR. f is said to be angular at x if either (2)
or (3) fails to be true. (This definition is due to Garg
(11].)

A typical example of a function which is not nonang-
ular is f(x)=|x]|, which is angular at x=0 because

D £ (0)=-1<1=D_£(0)

violates (3). It is clear from the definition that any
feA* is nonangular. In general, it is an easy consegquence
of the proof of the Denjoy-Saks-Young theorem [23] that

the set of points at which any function is angular is at

most countable.
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Our interest in nonangular functions is motivated
by the fact that much of the rest of this chapter concerns
functions in Bo*® Using nonangularity, we can state a

sufficient condition for £% to be in Bo*2 when feo*.

Theorem 4.2. Let f€o* such that f is nonangular and

symmetrically continuous. Then fSEDﬁl.

Proof. According to theorem 1.1, £5¢w., so by theorem

1
1.9(c), it suffices to show that for any x€R,

£ (x)€[lim inf, ___£°(t),lim sup,___£%()]1 N

(4)
N(lim inf__  £%(¢),lim sup,__  £°(¢t)].

Suppose (4) is false. Then, for example, we may
suppose that there is an x€IR such that

(5) £% (x) <lim inf £°(¢) .

t-x+

Then there must be an €>0 and a §>0 such that fs(t)>fs(x)+6

when t€(x,x+€). Through the addition of an appropriate

linear term to £, we may assume

(6) £° (%) <o<£° (t)

whenever t€(x,x+e¢). (6) implies, via theorem 3.18, that

the nice copy of £ is strictly increasing on (x,x+¢).
Suppose

(7) £(x)>lim f£(t),

t-x+
where the limit on the right exists because of the monoton-
icity of £ on (x,x+¢). Then the symmetric continuity of £
implies that

(8) £(x)>lim Supth_f(t)'

From (7) and (8), we see that D+f(x)--¢ and D_f (x)==,

which is a violation of (2) . Therefore, f(x)slimt +f(t)
—X *
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In a similar manner it can be shown that f(x)2lim £(t).

t-x+
Thus, f(x)=limtdx+f(t). Because f is increasing on (x,x+¢€),
we can now see that
(9) D £ (x)20.

Since fs(x)<o and £(t)>f(x) on (x,x+¢), it is easy
to see that there is an n>O such that f(t)>f(x) on (x-n,x).
Therefore,
(10) D £ (x)s0.
(3), (9) and (10) imply that D_f(x)=D £ (x)=0.

D f(x)=0 implies that there is a sequence, [xn:n€Z+},

increasing to x such that

f(x)—f(xn)

li =0.
) X=X

D+f(x)=0 implies that

o f(Rx(xn))-f(X)
lim 1nfn~° x-xn 20.

Now, consider,
£(R, (x )£ (x)
—® 2(x-xn)
f(R (x ))-f(x) £(x)-f(x_)
=lim ( x _n + D)=
n—e 2(x—xn) 2(x-xn)

s .
£ (x)-l:.mn

f(R,(x_))-£(x) f(x)-£f(x_)
X _n +1lim L

n-® 2(x-xn) n—e 2(x-xn) 20.

=lim inf

This is a contradiction of (6), so we are forced to con-
clude that (5) never occurs.
The impossibility of the other assumptions which

violate (4) is established similarly.

The converse of this theorem is false. To see this,

consider
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X il

551nx x>0
f(x)= 0 x=0

X

gsin-:'?+x x<0.

It is clear that f has a finite derivative on (-,0)U(0,®),
so there is no problem with angularity or the Darboux prop-
erty on either of these intervals. It is also easy to

show that fs(0)=l, so f€o. Since f is continuous and

1 1 1 1

gsin; -3x—2cos}—<- x>0
£'(x)=

1 .. 1 1 1

Fsinz -—5 cosx-i- 1l x<o0,

3x
theorem 1.9(c) can be used to see that feﬁml. But,

D*£(0)=% and D_£(0)=2 shows that (2)is violated and f is

angular at O.

Section 4.2: Symmetric Derivatives and the Class m2

The main purpose of this section is to prove the

following theorem.

Theorem 4.3. ﬁU*ssz.

To prove this theorem, we use the following lemma,

which should be viewed in light of theorem 3.18.

Lemma 4.4. Let fc€ho*® with F a primitive for £. If £(x)=20

a. e., then any nice copy of F is nondecreasing.

Proof. Without loss of generality, we may assume that F
is the nice copy of itself. It then suffices to show that

F is nondecreasing. To do this, according to theorem 3.18,



65
we must show that
A={x: £(x)=-=]}
is empty.
Define
B=(x: £f(x)£-1}) and C={x: f(x)=-2}.
Since f€ho*®, theorem 2.1 implies that fejﬂl from which it

follows, using theorem 1.8(b), that A, B and C are G, sets.

6
We claim that A is relatively dense in B. To see this,
suppose it is not. Then there is an open interval, I,
such that IMA=@ and INB#¥@. An application of theorem 3.18
shows that F is nondecreasing on I, so INB=@, a contradic-
tion. Therefore, A is relatively dense in B.

We now claim that C is also relatively dense in B.
To see this, let x€B. Since A is relatively dense in B,

we may choose a sequence, [xn: n€Z+}CA, such that

lim X

= i . 2 i
S, X. By assumption, the set (x: f(x)20]} is dense

in IR, so we may choose for each nEZ+, ay, such that

|x -yn|<% and f(yn)zo. Since f€8, for each nEZ+, there

n
is a z_ between x_ and y_ such that f(z_)=-2. Because
n n n n
1 . . _
\zn-xn|<\yn-xn\<n, we see that lim z =lim_ _x =x.
Therefore, the claim has been established.

But, B, being a G, set, is a Baire space. Any dense

5
G6 subset of a Baire space is residual in that space. So,
A and C must be disjoint residual subsets of a Baire space,
which is impossible. This contradiction forces us to

conclude that A=@g, and the lemma follows.

Proof. (Theorem 4.3) Let f€S0*° and A={x: f(x)>0]}.
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Suppose there exists an x€A and an ¢>0 such that
(11) | (x,x+¢) M |=0.
Then £(x)SO a. e. on (x,x+€). By the lemma, it follows
that £ (t) $0 everywhere on (x,x+¢). Now, theorem 1.9(b)
implies that f(x)$0 so that xgA. This contradiction
shows that (l1l1) is false for every x€A and every €>0.
In a similar manner, it can be shown that
| (x-e,x)MA|>0
for each x€A and each €>0.
Therefore, A€M2.
Through the addition of an appropriate linear term
to a primitive of £, it may be shown that
{x: f(x))a]€M2
for any a€[-»,®), By considering -f, we see that
{x: f(x)(a}&M2
for any a€(-=,=].

Therefore, fémz and the theorem follows.

Corollary 4.5. If fco* such that £ is nonangular and

symmetrically continuous, then fsemz.

Proof. This follows at once from theorems 4.2 and 4.3.

Corollary 4.6. ﬁA*'sz.

In particular, the derivative of any continuous
function is in mz. That theorem 4.3 cannot be improved
to include m3 instead of mz, even for the ordinary derivat-
ive of a continuous function, was shown by Zahorski [29].

The Darboux condition is also necessary because m2C0ﬁl.
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Theorem 4.3 improves a result of Kundu [16], who
proved that if f€o* is continuous, ({x: |£3% (x) |==} is count-
able and f°€#, then fsemz. Corollary 4.6 was first shown

by Zahorski [29].

Section 4.3: Symmetric Derivatives and the Class m3

Comparing theorem 4.2 and (1), one might be tempted
to conclude that ﬁUsCm3. Unfortunately, the situation is
a bit more complicated, as can be seen from the following

example.

Example. There is a continuous and nonangular f£€o such

that £°¢5®, and |£2 (x) |3 for every x, but fsm3.

To construct such a function, for n€Z+, let

In=(3-n-l,3-n]. For each x€I_, define

2 1 2 2

3n+l 3n+l 3n.+1 32n+1
2n+1
Tp (X)= . 7 (X x21+1)2* nil - 22n+l r21+1 - 2:21+1‘x‘ n-fl+ 2:21+1

3 3 3 3 3 3 3

2 2 2 1

-2x—%- + <x $—=

3N 3n+l 32n+1 3N

Using these functions, we define a function, £, with

domain IR by:

(-l)nrn(x) x€I
= L
r (x)= o x=0 or le>3
r (=x)+x XERL(T))

It is an easy calculation to show that f is differentiable

on (-»,0)U(0,») with |f'(x) |3 whenever x#0. It is also
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evident from the symmetry of its definition that fs(0)=%.
Therefore, f€o.

For each n€z, rn(x) attains its maximum value on In

at 2 . From this, we see that
3n+l
+ . 32n+l 2 . 1
D £(0) = lm‘n-“" 2 r2n(32n+1)=ln“n-(l -32n) =1

and similarly, D+f(0)=-l. From this and the definition
of £, it follows that D £(0)=0 and D_f(0)=-2. Thus, f
satisfies (2) and (3) at x=0. f satisfies (2) and (3)
everywhere else because f'(x) exists when x#0. Therefore,
f is nonangular.

Since each Dini derivative of f is finite everywhere,
f is continuous. Using the facts that f is continuous and
nonangular, theorem 4.2 is applied to show that fseﬁml.

Let A={x: £°(x)>0}. Since fs(o)%, we see that OEA.

From the definition of rn(x), it is clear that ré(x)so

S =
whenever xEJn—[3n+1,3n]. Observe that J2nnA-¢ for all
n€Z and [Jn: n€Z+] converges to O. 1In addition,

Lim o gy min, 2T
n *“2n n=®a.37n

Therefore, f¢m3.

Notice that this example also invalidates the next
natural assumption from (1), that a bounded symmetric
derivative with the Darboux property is in m4.

The following theorem somewhat clarifies the situation.

Theorem 4.7. Let f€o*° with F any primitive for f£. Then

f€Z(D(F)) .
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Proof. According to theorems 3.1(d) and 3.8, there is no
generality lost in assuming that F is the nice copy of a
primitive of £, because D(F) is, at worst, made larger.
Let x€D(F). Since f(x)€R , through the addition of a
linear function, it may be assumed that f (x)=0=F (x).
Because X€D(F)CC(F), there is a §>0 such that |F(t) |1
whenever |t-x|<§. Let [a,b]c(x,x+5) be such that £(t)20
on [a,b] and let €>0. Define

A={t€[a,b]: £(t)=2¢]}.
We claim that
(12) clalslim . F(t)-lim___  F(t).

To see this, first note that the limits in (12) make
sense because theorem 3.18 guarantees that F is nondecreasing
on (a,b). Define

F_(t)=n(F (t+3) -F (t)) .
It is clear that if yeD(F), then limn_aFn(y)=f(y), so that
by corollary 3.28, Fn converges to £ a. e.. Choose any
[c,d]=(a,b) such that {(c¢,d}cC(F). Then, since f is non-
negative and measurable on [c,d],

el(x€lc,d): £(x)2e)|sf Qlim inf__F_(t)ats

d+L c+£

c g d . n . n
slim inf [ OF (t)dtslim [ nF(t)dt-llmn_.Q‘rc nF (t)dt=

d
=F (d) =F (¢)

because F is continuous at ¢ and 4. Now, choose two seq-
uences, [cn: n€Z+] and [dn: néz+}, contained in C(F), such
that <, decreases to a and dn increases to b. Then

e|A|=limndael{x€[cn.dn]= £(x)ze}|s
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slim sup __, (F(d )-F(c ))Slim , F(t)-lim___ F(t)

t—-a+
which is (12).

Since kED(F) and f(x)=0, we see that given an n>O
there is a (£(0,8) such that Oct-x<({ implies that
|F(t) =F (x) |s|t-x]en.
Therefore, if [a,b]<(x,x+(), then

|lim, _, F(t)-lim___ F(t)|=

t-a+

£|lim__, F(t)-F (x)+F (x) -lim___

(F(t)-F(x))|s

F(t)|=

$|lim__ _(F(£)-F (%)) |+|lim__

stim__ _en|t-x|+lim__ .

en(2(a-x)+ (b-a))$2en(d(x, [a,b])+]|[a,b]]).

en]t-x\=en\b—x‘+en|a-x‘=

Combining this with (12), we see that
(13) \Alszn(d(xia,b])+\[a,b]l)

In a similar manner, (13) can be established if
f(t)sSf(x) for all t€[a,b] or if [a,b]<(x-8,X). Since n

can be chosen arbitrarily, the theorem follows.

The following corollaries are immediate from theorem

4.7 and lemma 4.1.

Corollary 4.8. Let f and F be as in theorem 4.7. Then

£€m, (D (F)) .

Corollary 4.9. A'CM3.

Theorem 4.7 is a generalization of Weil's original
theorem [27]), which was that A'@Z. Corollary 4.8 is an
improvement on Kundu's theorem [16] which required f to
have a continuous primitive and to be in bo® . Corollary

4.9 is Zahorski's original result ([29].
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Section 4.4: Symmetric Derivatives and the Class m4

Theorem 4.7 and Zahorski's original results motivate

the following theorem.

Theorem 4.10. Let £€0° such that f is bounded. If F is

any primitive for £, then fEm4(D(F)).
The proof is immediate from the following lemma.

Lemma 4.11. Let fEc*s such that £ is bounded above and let

F be a primitive for £f. If a€lR, then {(x: f(x))a}€M4(D(F)).

Proof. We may suppose that F is the nice copy of a primitive
for £ because this at worst makes D(F) larger. Let a=0 and
define E={x: f(x)>a}. According to theorems 2.1l and 1.8(c),
E is an F  set. Let X,EEMND(F) and f(x,)=a. Using the fact
that x,€D(F), we may write, for h sufficiently close to O

F (x,+h)=F (x,)+ah+hn(h)
where lim . n(h)=0. If hh,>0 and |h+hll is sufficiently
small, then

F (xo+h+h,) -F (X ,+h) h(n(h+hl)-n(h))
h =a+ h

(14) -+n(h+hl).

1 1
Choose c¢>0 with 0<€L<c. For h small enough, say h<e(x,,c),
1

(14) implies that

a
lﬂ(h)l(iE:T-

Then, ‘h+hll<e(x°,c) implies

a F(x,+h+hl)-F(x°+h)
(15) 03K h
1
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Now, let M>l be an upper bound for f£. Then lemma
3.28 implies
(16) F(x°+h+h1)-F(x°+h)$M|[x: £(x,) >0} N(Xo+h, X +hth, ) |.
It then follows from (15) and (16) that

| (x: f(x)>o]ﬂ(x°+h.x°+h+hl)|

(17) -

a
>Se=>0.
1 2M

Theorem 2.1 implies that {x: f(x)>%} is an Fo set for
each n€Z+, so we may choose, for each n€Z+, a sequence of

closed sets, {En m’ m€Z+], such that

(x: £(x) >%] = Um-'=lEn,m'

It is clear that

® 1 _
E'°Lk=l[x: f(x)>ﬁ]"un=l m=lEn,m

and since x,€E, there are integers, n and m, such that

1
XOEEn'm. Then a>; and from (17) we see
|{x: £(x)>0}N(x,+h,x+h+h.) |
1 N 1 o
h, TR

Therefore, if we choose nn=§%ﬁ€(0,%), the definition of

M4(D(E)) is satisfied.

Corollary 4.12. bACWh.

Theorem 4 .10 improves on a result of Kundu [16] which
was that if f€o is continuous such that £°€8c° is bounded,
then fsemz (D(f)). The corollary is due to Zahorski [29].

From (1), we see that debA'Cm4. It is easy to see
that bA'cbSo® and the example in section 4.3 shows that
bbo® is not contained in m3. .Therefore bA' is properly

contained in b#c°. The next two examples show that even
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the containments bA'Cbcsm4 and A'dccq are proper.

Example. There is a bounded symmetric derivative, f€7,,

which is not a derivative.

Let In=[2—n,2—n+1] for nezt. partition each In into

n

2 20

equal subintervals, Iﬁ, k=1, ...,2 . If we write

[a,B]=I§, for some k and n, then we may define

s ﬁ(x-a) xE[a,a+EE§)
K, . Bﬁd (x- 'a;B) X€ [a+—,a+4—l]
gn(x)-
a%g(x—ﬂ) x€(a+§i%fgl.61
() XE€E [apB]c

Using these functions, we define

® n
£, (x)=

x=0

N

We must show that fl€m4. Let a€lR and define
F={x€R : £, (x)>a].
If az%. then it is clear from the continuity of each gk
that F is open and consequently F€M4. So, we suppose that

c<%. Then we may write

F=US ) (X€R : £, (x) 2a+2=22 23,

Using the definition of £,, we see that for each n€Z+, the
set

Fn={x€nz f (x)2c1+1 2“]

consists of the set (0} and a sequence of disjoint closed
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intervals converging bilaterally to zero. Thus, I-‘n is
closed for each n, which implies that F is an Ec set. We
choose the sequence,[Fn}, to be the sequence of sets in

the definition of M4.

Now, let A={x>O0: fl(x)Z%}. In the same manner as

above, we see that A is closed and also that ACFn for each
n€Z+.

n-3]

Choose a c>0 and let k°=min(n€Z+: c<2 . Pick

e(O,c)E(O,2-k°) and let h and h1 be positive numbers such

Ny, ,-n, +1

that h<ch, and h+h,;<e(0,c). Then he[27°,2 ) for some
nyok, .

We claim that there exist integers, k and n, such
that Itc(h.h+hl). To see this, suppose not. Then (h.h+h1)
can intersect at most two if the intervals [Iﬁ: n€Z+,1$k$2n],

because otherwise it must contain one of them. Using the

fact that h<2-n°+l, we see
2Me 1 e .a=2n, _.=2n_+3
hlslxno \+\1n°_l\-s 27 Mo o™
This implies that
h 2 % k,-3

by the choice of k,. This violates the assumption that
h<chl. Therefore we are forced to conclude that the claim
is true.

Let [Jl. ...,Jm] be the set of all intervals contained
in {Iﬁ: n€Z+,1Sk$2n} such that Jiﬂ(h.h+hl)#¢ and such that
the J; are arranged in increasing distance from zero. It

is clear that m23, for otherwise (h.h+hl) contains no I§.
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Thus, hEJl. h+hl€Jm and Jic(h,h+hl) for 2€ism-1. From the
definition gﬁ, we see that for 2€ism-1,

1
|ang; N(h,h+h,) |=lAﬂJil=Z\Ji|

so that
(18) AU s =R Ul o) 1.
From the definition of the I\, it follows that |7, |€|J,]
and lJm|<4\J | so that
19) (UL, o l=la el UTS; o 1+ 1o tsel UTD; 3, 1.
(18) and (19) imply that
20) lAn(h};h+hl)‘ lAnU';‘Zé 11 llU“"1 \__1_‘
1 1u'§:{ L elumly |

Choose n such that O<n<§Z. Then (19) and (20) imply

IFN(h,h+h)) | |AN(h, b)) |
1 1
If h and hl are chosen to be negative such that h<ch

1

and h+hl>-e(o,c), we note that RO(Aﬂ(O,O))CA to establish

]Fn(h-l-hl.h) | lAn(h+hl,h) |

- 2 — P4
-hy -h;

. ]RO(AO(O.°))ﬂ(h+hl,h) | ) 1An(-h,-h-h11

>1.
-h,y -h;

Therefore, in the definition of the class M,, if we let

Np=n for each n€Z+, then the definition is satisfied at O
with the set F. If x€F such that x#0, then there is a
neighborhood (x-p,x+p)<F. From this it is evident that
the criteria of the definition of M, are satisfied at x.

4

Therefore, F€M4.
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If E=(x: fl(x)<c], then it is similarly established
that EGMA. Therefore, flem4.
Now let

F(x)=[ 5 £, (t)at.

Since fl is continuous on (-=~,0)U(0,»), F is differentiable
with F'(x)=f; (x) whenever x#0. Also

F (x) =F (=x)
0 2x -

s .
F (O)=11mx~

. 1 X -X
=lim__ 3= ([ g £, (t)ae-[ 7 £, (v)at)=

=lim . =

x
-0 3% . o (£p () -£; (-t))dt=

clim L Xgell
=lim__, 2x«r o dt=3=£, (0) .

Thus, F€o with £ (x)=F°(x) everywhere and £€bo°m, .

Define the function

© 2n k k
Lm0l (79, (R =g (X)) 4% (g oy (X)) %70
£,(x)=

1 _
2 x=0

Then, in the same manner as above, it can be established
s
that f2€b0 m4. But,
0 x>0
fl(x)+f2(x)= l x=0
2 x<0
which violates the Darboux condition at x=0. Thus, either

fl or f2 cannot be a derivative. Let f be either fl or f2

such that f is not a derivative.

Example. There exists an fems which is a symmetric deriv-

ative, but not a derivative.



77
For nez* define I _=[27", 2™27%"] and let g_ be a

nonnegative continuous function supported in In such that

IIngn=2-n—l'
Then, let g(x)=Z£:1gn(x) and
g (x) x>0
f(x)= o T x=0
-g(-x) x<O0.
f is continuous on (-=,0)U(0,»). We must show that f is

approximately continuous at 0. To do this, let c>O,

k=max(n€Z+: 2 M2¢} and N={x€R : £(x)=0]}.

Then
® o ® =i =20
\Nﬂ(-c,c)|22c-2\Ui=kInl-2c 2Zi=k2 +2 7=
=2c-2 (27K l+%2 —2k+2) 50027k,

From this it is clear that

INA(—<.e) |,
c-0 2c ’

lim

Therefore, O is a density point of N. Since £(0)=0, we see
that £ is approximately continuous at O.

Let F(x)=j' gf(t)dt. Then F' (x)=f(x) whenever x7O
because of the continuity of £. Also,

F%(0)=1lim  FBLF(hH)

fRewrae-f Pe(orat

=limyo 2h
[ gg (t)dt-] g g(t)dat
=14 =0
HMh0 2h :

Therefore, F€o and Fs=f€osd.
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To see that ff£A', we first note that

+ . ne 270 N ® -m-1
DF(0)2lim_ _2°[ J £(t)at=2"T _ 2 >1>£(0)

so F is not differentiable at x=0 and therefore FZA. Since
F is absolutely continuous, it must be the nice copy of
itself. Suppose GE€A is an ordinary primitive for £. Then
Fs(x)-Gs(x)=O everywhere and by corollary 3.19 there must
be a c€R such that F(x)=G(x)+c. But, this implies that
Fe€A, which is a contradiction. Therefore £ has no ordinary

primitive and is therefore not an ordinary derivative.
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