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ABSTRACT 

MODELING AND SIMULATION OF STRONGLY COUPLED PLASMAS 

By 

Rahnuma Rifat Chowdhury 

The objective of this work is to develop new modeling and simulation tools for studying 

strongly coupled plasmas (SCP). Strongly coupled plasmas are different from traditional 

plasmas as potential energy is larger than the kinetic energy. The standard plasma model does 

not account for some major effects in SCP:  

1) the change in the permittivity  

2) the impact on relaxation of the charged particles undergoing Coulomb collisions in a 

system with weakly shielded long range interactions 

3) the impact of statistical fluctuations in strongly coupled plasmas that leads to non-

Markovian effects.  

Proper modeling of such systems through consideration of Lévy flight processes gives rise 

to fractional derivatives in time that result in an incorporation of time history in the model. A 

Lévy flight is a random walk in which the steps are defined in terms of the step-lengths, which 

have a certain probability distribution, with the directions of the steps being isotropic and 

random. Lévy processes in the plasma give rise to fluctuations in medium through which the 

electromagnetic waves are propagating. Averaging over the Lévy processes will allow us to 

relate to other important parameters in the plasma. 
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KEY TO SYMBOLS 

 

Ti Ion temperature 

a Wigner-Seitz radius 

Z Degree of ionization 

Γ Coulomb coupling parameter 

r Radial distance to the particle 

κ Inverse screening parameter 

m Mass of the affected particle 

λD Debye length 

ne Electron temperature 

ni Ion density 

Te Electron temperature 

e Electron charge 

N Number of particles 

Neq Number of steps in the equilibration phase 

Npd Number of steps in the production phase 

dt Time step 

rcut Cut-off radius 

L Length of the simulation box 

wpi Ion plasma period 

mi Ion mass 
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INTRODUCTION 

 

Lévy diffusion is a diffusion process with a non-linear relationship to time, in contrast to 

a typical diffusion process, in which the mean squared displacement (MSD), σr
2, of a particle is a 

linear function of time [1]. It can be described by a power law,  

 σr
2 ~ Dtα (1) 

Where, D is the diffusion coefficient and t is the elapsed time. In a typical diffusion 

process, α = 1. If α > 1, the phenomenon is called super-diffusion. If α < 1, the particle undergoes 

sub-diffusion. 

For ultra-cold plasmas, with temperatures from 1K to 1000K, it is possible to capture the 

two body auto-correlation function for a low temperature ion-electron plasma through the use of 

a highly resolved Particle-In-Cell (PIC) model. Because one of the dominant interactions in 

ultra-cold SCP is the Coulomb force, a resolved PIC calculation with an average of one particle 

per cell can simulate relaxation in ultra-cold plasmas. But with moderate increases in density or 

length scales, resolved PIC calculations are not practical. This has inspired us to consider the 

extension of classical plasma models to study ultra-cold SCP, which will then be used as a 

benchmark tool for the development of models to describe the physics of SCP where it is not 

possible to provide an ultra-resolved particle based calculation. The key objective is to develop 

new plasma models that treat long range correlation as a subscale feature [2]. 

The unique aspect of SCP is that the potential energy exceeds the kinetic energy. Strong 

coupling is defined in terms of the dimensionless parameter, often referred to as the Coulomb 

coupling parameter, Γ. 

                                                      

 Γ=(Ze)2/kTia      (2) 
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Eq. (2) describes the ratio of the potential energy to kinetic energy [3]. In Eq. (2): 

Z = the charge number of the gas species  

e = the unit charge 

k = Boltzmann’s constant  

Ti= the temperature of the ion species in Kelvin  

a = [3/(4n)]1/3 = the Wigner-Seitz radius (mean inter-particle distance)  

n = the density of the species 

Γ effectively defines correlation. When Γ << 1, the charged species in the plasma has no 

long range correlation and binary collisions characterize Coulomb scattering for that species. 

Γ∼1, the plasma species in question begins to exhibit long range correlation. As Γ increases in 

these systems, the plasma exhibits a collective behavior, giving the system properties resembling 

liquids and solids [3, 4, 5]. 

Plasmas with strong coupling have been created and studied using a range of 

experimental methods. But there are issues with studying SCP in the context of each of these 

experimental setups. In many of these systems, the ability to accurately determine the initial 

condition as well as take accurate non-invasive measurements is difficult. Furthermore, 

experimental methods do not permit simultaneous measurement of detailed phase space 

quantities, which can be critical to understanding wave-plasma interaction, collision dynamics, 

and even the details of anisotropic transport. 

In particle and atomic physics, a Yukawa potential (also called a screened Coulomb 

potential) is a potential of the form 

 UYukawa(r)= - Γ2 [exp(-κmr)/r] (3) 

where Γ is the Coulomb coupling parameter which defines how strongly coupled the 
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system is.  

As the system temperature decreases, the system becomes more and more strongly 

coupled. m is the mass of the affected particle, r is the radial distance to the particle, and κ is 

another scaling constant known as the inverse screening parameter. κ depends on Debye length, 

λD as follows: 

  κ = aw/λD (4) 

Debye length, λD is the measure of a charge carrier's net electrostatic effect in solution, 

and how far those electrostatic effects persist. A Debye sphere is a volume whose radius is the 

Debye length. With each Debye length, charges are increasingly electrically screened. With 

every Debye‐length, the electric potential due to a given charge will decrease by 1/e. Debye 

length is defined as follows: 

 λD = (Te / 4πnee
2)1/2     (5) 

            where, ne = Zni 

ne = electron temperature 

ni = ion density 

Te = electron temperature 

Hence, from ion density and ion temperature we can derive Γ, and from electron 

temperature and ion density, we can derive κ. 

Work Plan 

 

We are trying to look at particular Ultra Cold (UC) experiment with our existing set of 

simulation tools. The main focus is to capture the impacts of raising Γ in traditional SCP. 

Depending on that, we are going to validate the existing models or move towards developing a 

Fractional Calculus Model if there is any evidence for Levy flights for moderate Γ ∼ 1. The 
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hypothesis is that jumps in v due to collisions plus long range interactions might produce Levy 

flights. So, we have to execute “equilibrium” and “non-equilibrium” simulations for both 

collisional and non-collisional cases and do least square fitting to the tail of the differential 

velocity distribution.  

Levy Flight is a random walk in which step lengths have a probability distribution that is 

heavy tailed: 

 f(x) ∼ x−1−b, x → ∞, 0 < b < 2 (6) 

If distribution of mean-square velocity change |∆v|2 has a fat tail for some effective 

Coupling, then Levy-flight like behavior is possible. Therefore, Levy flights might be possible in 

a non-equilibrium plasma system [6]. 
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MOLECULAR DYNAMICS 

Popular molecular simulation techniques such as molecular dynamics or Monte Carlo are 

used to study the physical and chemical processes occurring in systems containing large numbers 

of particles. These methods require evaluation of either the total potential energy of a system of 

N particles (VTot) or the gradients of the potential energy. The total potential energy consists of 

terms that describe the various interactions among the particles in the system. These terms are 

usually functions of internal coordinates, such as internuclear distances between two particles, 

bond angles among three particles, or torsional angles among four particles. For condensed phase 

modeling, the total potential energy is often described as a sum of two-body interactions over all 

particle pairs.  

The interaction terms are typically simple functions of the internuclear distance rij 

between particles i and j. 

 VTot =  ∑ ∑ V (rij)

N

j>1

N−1

i=1

 (7) 

The evaluation of Eq. (7) and the gradients are usually the most computationally 

demanding steps in a simulation, even if the functional forms for V(rij) are extremely simple. 

Brute force evaluation of Eq. (7) requires the calculation of at least N(N − 1)/2 internuclear 

distances. In a molecular dynamics simulation, each integration step often requires the evaluation 

of Eq. (7) and its gradients more than once depending on the integration scheme that is chosen 

[7]. It is clear that methods to reduce the computational burdens associated with numerous 

evaluations of Eq. (7) are required. The most obvious recent approaches are to modify the codes 

for scalable platforms. However, modifications of existing algorithms designed to reduce the 

computational burdens associated with evaluation of Eq. (7) can be made to increase the serial 
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performance and exploit scalable architectures to achieve enhanced performance. The algorithms 

that were developed can reduce potentially unnecessary computations of the internuclear 

distances for particle pairs used in the evaluation of Eq. (7). Common strategies to reduce the 

computational demands associated with Eq. (7) include the use of simple functions to describe 

the pair interaction potentials, and the assumption that the interaction between two particles is 

negligible beyond a certain cutoff distance rcut. The assumption of a cutoff distance in the 

interaction potential allows for a reduction in computational time, since the interaction between 

particles separated by distances exceeding rcut are not calculated. The easiest and most direct way 

to determine the set of internuclear distances that are within rcut is to evaluate all distances 

between all pairs, and eliminate those that exceed rcut. This step requires a potentially large 

number of unnecessary calculations, and might be the costliest computational step in such a 

simulation. 

A reduction of unnecessary calculations of internuclear distances can be accomplished 

through the use of the Verlet neighbor list [8]. This method requires the construction of a list of 

neighbors for each parrticle. A particle’s neighbors are usually defined to be all of the particles 

that are within a distance slightly greater than the range of the interaction potential. Information 

about the neighbors is stored in arrays. For the duration of the simulation or until the lists are 

updated, each particle is assumed to interact only with the particles on its neighbor list. The 

internuclear distances, interaction potentials, and forces are evaluated for each particle and its 

neighbors only. The list may be periodically updated to allow for the movement of particles into 

or out of the interaction range. Brute force construction or update of the list requires the 

evaluation of all N(N − 1)/2 internuclear distances. The method has been shown to be efficient 

when the system contains a relatively small number of particles [8, 9]. However, as the system 
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becomes larger, the memory requirements for maintaining the neighbor lists become prohibitive. 

Alternative methods for the efficient determination of the interacting neighbors for each 

particle include grid or cell approaches [8, 10-12]. These approaches partition the simulation 

space into grids or cells, to which the particles are assigned by virtue of their positions relative to 

the cells. Since each cell has an unchanging set of neighboring cells that contain the volume 

within the distance rcut of that cell, a particle associated with one of the cells has as its neighbors 

those particles assigned to the same or neighboring cells. The implementations of these methods 

usually assign the particles to the cells at each integration step. However, the same 

considerations used for the frequency of updating the Verlet neighbor-lists are applicable here. 

There is some overhead associated with these methods, and they are preferable only for systems 

that contain more than 1000 particles [8]. These methods substantially reduce the number of 

unnecessary internuclear distance calculations in evaluating Eq. (1), but do not completely 

eliminate unnecessary computations. 
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THE PARTICLE IN CELL (PIC) METHOD 

 

The particle-in-cell (PIC) method refers to a technique used to solve a certain class of 

partial differential equations [13-15]. In this method, individual particles in a Lagrangian frame 

are tracked in continuous phase space, whereas moments of the distribution such as densities and 

currents are computed simultaneously on stationary mesh points. 

The method typically includes the following procedures: 

 Integration of the equations of motion. 

 Interpolation of charge and current source terms to the field mesh. 

 Computation of the fields on mesh points. 

 Interpolation of the fields from the mesh to the particle locations. 

Models which include interactions of particles only through the average fields are called 

PM (particle-mesh). Those which include direct binary interactions are PP (particle-particle). 

Models with both types of interactions are called PP-PM or P3M. 

The PIC Algorithm 

i. The plasma is described by a number of computational particles having position xp, 

velocity vp and each representing a fixed number Np of physical particles. 

ii. The equations of motion for unmagnetized particles are advanced by one time step using 

a leap frog integrator, 

 𝑥𝑝
𝑛+1 =  𝑥𝑝

𝑛 +  ∆𝑡 𝑣𝑝
𝑛+1/2

  (8) 

 𝑣𝑝
𝑛+3/2

=  𝑣𝑝
𝑛+1/2

+ ∆𝑡 
𝑞𝑠

𝑚𝑠
𝐸𝑝 (9) 

            using the particle electric field from the previous time step. 

iii. The charge densities are computed in each cell using: 
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 𝜌𝑖 =  ∑
𝑞𝑝

∆𝑥
𝑝

 𝑊(𝑥𝑖 − 𝑥𝑝) (10) 

 

iv. The Poisson equation is solved: 

 𝜖0

𝛷𝑖+1 − 2𝛷𝑖 +  𝛷𝑖−1 

∆𝑥2
=  −𝜌𝑖 (11) 

            and the electric field Ei in each cell is computed: 

 𝐸𝑖 =  −
𝛷𝑖+1 −  𝛷𝑖−1 

∆𝑥
 (12) 

v. From the field known in the cells, the field acting on the particles is computed as: 

 𝐸𝑝 =  ∑ 𝐸𝑖𝑊(𝑥𝑖 − 𝑥𝑝)

𝑖

 (13) 

            which is used in the next cycle. 

vi. The cycle restarts [16]. 
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THE PARTICLE MESH (PM) METHOD 

 

Particle Mesh (PM) is a computational method for determining the forces in a system of 

particles [17]. These particles could be atoms, stars, or fluid components and so the method is 

applicable to many fields, including molecular dynamics and astrophysics. The basic principle is 

that a system of particles is converted into a grid (or "mesh") of density values. The potential is 

then solved for this density grid, and forces are applied to each particle based on what cell it is 

in, and where in the cell it lies. 

Various methods for converting a system of particles into a grid of densities exist. Once 

the density distribution is found, the potential energy of each point in the mesh can be 

determined from the differential form of Gauss's law, which after identifying the electric field E 

as the negative gradient of the electric potential Φ gives rise to a Poisson equation that is easily 

solved after applying the Fourier transform. Thus it is faster to do a PM calculation than to 

simply add up all the interactions on a particle due to all other particles for two reasons: firstly, 

there are usually fewer local grid points than particles, so the number of interactions to calculate 

is smaller, and secondly the grid technique permits the use of Fourier transform techniques to 

evaluate the potential, and these can be very fast. 

PM is considered an obsolete method as it does not model close interaction between 

particles well. It has been supplanted by the Particle-Particle Particle-Mesh method, which uses a 

straight particle-particle sum between nearby particles in addition to the PM calculation. 
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The PM Algorithm 

Huge model systems with 1/r potentials (celestial masses or microscopic charged 

particles) may be described by introducing “superparticles” consisting of some 104-108 ions, 

electrons, or stars. 

Let us consider a square cell of MxM subcells of side length Δx = Δy = Δl. Each subcell 

should contain an average of 10-100 particles. The equation of motion for the particle k is:  

 𝑟𝑘̈ =  −
𝑞𝑘

𝑚𝑘
𝛻𝑘𝛷 =  

𝑞𝑘

𝑚𝑘
𝐸(𝑟𝑘) (14) 

Where Φr is the electrostatic or gravitational potential. It is determined by charge (or 

mass) density ρ (r, t) defined by the positions of all superparticles. 

To compute Φr at time tn at the centers of the subcells, the given configuration of 

superions is first replaced by lattice-like charge distribution ρi,j. The easiest discretization method 

is the nearest grid point (NGP) rule:  

 𝜌𝑖,𝑗 =  
1

(𝛥𝑙)2
∑ 𝑞𝑘𝛿(

𝑥𝑘

∆𝑙

𝑁

𝑘=1

− 𝑖) 𝛿(
𝑦𝑘

∆𝑙
− 𝑗) (15) 

The next step is the calculation of the values of the potential produced by the charge 

lattice at all cell centers. The field strength at the position rk of some superparticle k in cell (i, j) 

is then: 

 𝐸𝑥 = [𝛷𝑖+1,𝑗 − 𝛷𝑖−1,𝑗]/2𝛥𝑙 (16) 

 𝐸𝑦 = [𝛷𝑖,𝑗+1 −  𝛷𝑖,𝑗−1]/2𝛥𝑙 (17) 

Next we integrate the equation of motion:  

 𝑟𝑘
𝑛+1 = 2𝑟𝑘

𝑛 −  𝑟𝑘
𝑛−1 +  

𝑞𝑘

𝑚𝑘
(𝛥𝑡)2𝐸𝑖,𝑗

𝑛  (18) 

 𝑣𝑘
𝑛 = [ 𝑟𝑘

𝑛+1 −  𝑟𝑘
𝑛−1 ]/2𝛥𝑡 (19) 
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which completes the time step.  

Combining the PM method and the molecular dynamics technique, we may take into 

account the short-range forces up to a certain interparticle distance, while the long-range 

contributions are included by the particle-mesh procedure. This combination of particle-particle 

and particle-mesh methods has come to be called the PPPM or P3M technique [17]. 
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THE PARTICLE-PARTICLE-PARTICLE MESH (P3M) METHOD 

 

Particle–Particle-Particle–Mesh (P3M) is a Fourier-based Ewald summation method to 

calculate potentials in N-body simulations [18-21]. The potential could be the electrostatic 

potential among N point charges i.e. molecular dynamics, the gravitational potential among N 

gas particles in e.g. smoothed particle hydrodynamics, or any other useful function. It is based on 

the particle mesh method, where particles are interpolated onto a grid, and the potential is solved 

for this grid (e.g. by solving the discrete Poisson equation). This interpolation introduces errors 

in the force calculation, particularly for particles that are close together. Essentially, the particles 

are forced to have a lower spatial resolution during the force calculation. The P3M algorithm 

attempts to remedy this by calculating the potential through a direct sum for particles that are 

close, and through the particle mesh method for particles that are separated by some distance. 

The P3M Algorithm 

i. Mapping the particle xi to the mesh 

ii. Calculating 

 ∇2𝛷𝑚𝑒𝑠ℎ =  − 
𝜌𝑚𝑒𝑠ℎ

𝜖0
 (20) 

iii. Subtracting 

 
𝑒𝑟𝑖𝑚𝑒𝑠ℎ

/𝜆𝐷

𝑟𝑖𝑚𝑒𝑠ℎ

 (21) 

from 𝛷𝑚𝑒𝑠ℎ 

iv. Computing Emesh and interpolating Emesh to particles 

v. Calculating the Ewald sum over particles 

 𝑥̇𝑖 =  𝑣𝑖 (22) 
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 𝑣̇𝑖 =  𝐹𝑖 =  𝑞𝑖𝐸𝑖 (23) 

Ewald Sum 

Ewald summation is a method for computing long-range interactions (e.g., Coulombic 

interactions) in periodic systems. It was first developed as the method for calculating 

electrostatic energies of ionic crystals, and is now commonly used for calculating long-range 

interactions in computational chemistry [22]. Ewald summation is a special case of the Poisson 

summation formula, replacing the summation of interaction energies in real space with an 

equivalent summation in Fourier space. In this method, the long-range interaction is divided into 

two parts: a short-range contribution, and a long-range contribution which does not have a 

singularity. The short-range contribution is calculated in real space, whereas the long-range 

contribution is calculated using a Fourier transform. The advantage of this method is the rapid 

convergence of the energy compared with that of a direct summation. This means that the 

method has high accuracy and reasonable speed when computing long-range interactions, and it 

is thus the standard method for calculating long-range interactions in periodic systems. The 

method requires charge neutrality of the molecular system in order to calculate accurately the 

total Coulombic interaction. 
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METHOD OF CELL LINKED LISTS 

 

In the conventional method of cell-linked lists, the simulation space is partitioned into 

cells, the edges of which are no smaller than cutoff distance of the interaction potential. The 

particles are then assigned to the various cells, by virtue of their position in the simulation space. 

A linked-list of the particle indices is created during the sorting procedure. Also, at the beginning 

of a simulation, an array that contains a list of cell neighbors for each cell is created. The list 

remains fixed unless the simulation space changes during the simulation. This is dynamically 

adjusted to balance the particle numbers. 

A cell icell has as its neighbors any cell that contains at least one point that is within the 

distance rcut of any point within icell. Since the conventional method requires that the edges of 

each cell be no smaller than rcut, each cell has eight nearest neighbors (we are assuming periodic 

boundary conditions in all dimensions). These requirements ensure that all particles that are 

within the interaction range of any particle within icell are assigned to the eight nearest-neighbor 

cells of icell or icell itself. All particles occupying cells other than these are outside the interaction 

range of any particle located within icell [8]. 

 

Figure 6.1 The division of a region of the simulation space into cells [8] 

In Figure 6.1, both the x and y cell edges (denoted as Δx and Δy hereafter) equal rcut. 

Evaluation of Eq. (7) occurs through looping over the cells using the linked-list of particles 

rather than accessing the particle indices sequentially as written in Eq. (7). This method 
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dramatically reduces the number of unnecessary internuclear distance calculations that would 

result from a brute force calculation of all N(N − 1)/2 internuclear distances. However, 

modifications can be made to further reduce the number of unnecessary distance calculations. In 

the conventional method, the distances between all particle pairs located within the rectangular 

area of 9ΔxΔy are calculated. Assuming the limiting case Δx = Δy = rcut, the area within which 

all distances are calculated is 9rcut
2. The area within the cutoff radius for a single particle is only 

πrcut
2. Thus, the traditional cell-linked list method calculates distances between all particle pairs 

within an area that is almost three times larger (or more, since Δi ≥ rcut, i = x or y) than that 

actually required for a particle [8]. 
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RESULTS 

 

Steps for Executing the Code 

 Γ and κ were set to the desired values. This defines the physical parameters. 

 Number of particles, N, in the input file yukawa.in was changed. 

 Cut-off radius, rcut was set following the mandatory relation to be satisfied: rcut < L/2. 

Example: rcut = L/5, L/10 etc. Interactions for r >rcut  are ignored. 

 According to the number of particles, the cut-off radius should be changed. The 

relationship between the number of particles, N and the length of the simulation box 

which is linked to rcut is as follows: 

 ni = N/L3 (24) 

 niaw3 = N/ (L΄)3 (25) 

where L΄ = L/ aw 

 L΄ = (4πN/3)1/3 (26) 

 Yukawa_MD.py file was run to generate the output files i.e. irp_eq.out and irp_pd.out 

(saves particle positions, velocities and accelerations during the equilibration and 

production phase respectively over the simulation time), temp_eq.out and temp_pd.out 

(saves the temperature of the system during the equilibration and production phase 

respectively), energy_eq.out and energy_pd.out (saves the total energy, kinetic energy 

and potential energy of the system during the equilibration and production phase 

respectively vs. time). 

 The energy_plot.py was run to generate the plot of the total energy, kinetic energy and 

potential energy of the system vs. time. 

 The temperature_plot.py was run to generate the plot of the temperature of the system 
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during the equilibration and production phase. 

 The velocity_distribution.py was run to generate the distribution function of the particle 

velocities during the production phase. 

 The diff_velocity_distribution.py was run to generate the distribution function of the 

particle differential velocities and also to do the least square fitting that calculates the co-

efficient a and b values. 

 All the distances are in the units of aw. 

 Times are in units of inverse ion plasma period wpi
-1 where 

 wpi = (4πnie
2/mi)

1/2 (27) 

 All the energies and temperatures are in units of e2/aw. 

 

Simulation Results for Non-Collisional Cases 
 

The system was run for Γ=1 with time step dt=0.1 for 1000 particles.  

 

 
Figure 7.1 Energy after the equilibration phase for Γ=1, dt=0.1, N=1000 
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Figure 7.2 Temperature after the equilibration phase for Γ=1, dt=0.1, N=1000 

 

We can see from Figure 7.1 and Figure 7.2 that the energy and the temperature of the 

system do not stabilize which means that the system has not been equilibrated. Also the kinetic 

energy exceeds the potential energy, which does not imply SCP. 

 

 
 

Figure 7.3 Individual particle velocities for Γ=1, dt=0.1, N=1000 
 

Figure 7.3 represents all the particle velocities during the production phase. We can see 

jumps in particle velocities due to collisions and long range interactions.  
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Figure 7.4 Individual particle differential velocities for Γ=1, dt=0.1, N=1000 

Figure 7.4 represents all the particle differential velocities during the production phase. 

We can also see jumps in particle velocities due to collisions and long range interactions.  

 

Figure 7.5 Distribution function of individual particle velocities for Γ=1, dt=0.1, N=1000 
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Figure 7.6 Distribution function of individual particle velocities in log-log scale for Γ=1, dt=0.1, 

N=1000 
 

The distribution function was calculated by taking the average of all the particle 

velocities over all the time steps in the production phase. Jumps in velocities are more prominent 

in Figure 7.5 and Figure 7.6 which plots the distribution function of individual particle velocities 

during the production phase in linear scale and log-log scale respectively. 

 

Figure 7.7 Data fitting for mean square differential velocities for Γ=1, dt=0.1, N=1000 
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Figure 7.8 Data fitting for mean square differential velocities in log-log scale for Γ=1, dt=0.1, 

N=1000 

 

The mean square velocity change was calculated by taking the average of the differential 

velocities of all the particles over all the time steps during the production phase. Figure 7.7 

represents only the tail of the differential velocity distribution and Figure 7.8 is a log-log 

representation of Figure 7.7. We can see from these figures that the distribution has a fat tail. 

After least square fitting to the differential velocity distribution, the value of the co-efficient b 

comes out as 1.46 which implies Lévy type behavior. 

 
Figure 7.9 Energy after the equilibration phase for Γ=1, dt=0.01, N=1000 
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Next, the system was run for 1000 particles with Γ=1 but with reduced time step, 

dt=0.01. From Figure 7.9 and Figure 7.10, we can see that the energy and the temperature has 

been stabilized and the system has been equilibrated properly at much lower energy levels. 

 
 

Figure 7.10 Temperature after the equilibration phase for Γ=1, dt=0.01, N=1000 

 

 

 
 

Figure 7.11 Individual particle differential velocities for Γ=1, dt=0.01, N=1000 

 

Figure 7.11 represents all the differential particle velocities over all the time during the 
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production phase. No large jumps in Figure 7.11 means the system has been stabilized properly. 

The value of the co-efficient b after least square fitting comes out as 5.49 which implies no Lévy 

type behavior. 

Simulation Results for Collisional Cases 
 

The system was run for 1000 particles, Γ=1 and time step, dt=0.1 with collisions added 

into the system. At each time step, we took 5% of the particles and rotated the direction of the 

velocity by a random amount while keeping the magnitude the same. 

We did this rotation of velocity V by, 

 Vx= Csin(u)cos(t) (28) 

 Vy= Csin(u)sin(t) (29) 

 Vz= Ccos(u) (30) 

 Where, C= [Vx_old
2+Vy_old

2+Vz_old
2]1/2 (31) 

We can see from Figure 7.12 and Figure 7.13 that the energy and the temperature have 

not been stabilized and the system has not been equilibrated properly. 

 
 

Figure 7.12 Energy after the equilibration phase for Γ=1, dt=0.1, N=1000 
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Figure 7.13 Temperature after the equilibration phase for Γ=1, dt=0.1, N=1000 

 

After tail fitting to the differential velocity distribution, the value of the co-efficient b 

comes out as 0.33 which implies Lévy type behavior. 

Next, the system was run for Γ=1 and time step, dt=0.01 with collisions included. We can 

see from Figure 7.14 and Figure 7.15 that the energy and temperature of the system have been 

stabilized and the system has been equilibrated properly. 

 
 

Figure 7.14 Energy after the equilibration phase for Γ=1, dt=0.01, N=1000 
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Figure 7.15 Temperature after the equilibration phase for Γ=1, dt=0.01, N=1000 

 

The value of the co-efficient b after least square fitting comes out as 0.65 which implies 

Lévy type behavior. 

Next, the system was run for a very long time with Γ=1 and time step, dt=0.001 with 

collisions included. We can see from Figure 7.16 and Figure 7.17 that the energy and 

temperature of the system have been stabilized and the system has been equilibrated properly.  

 

Figure 7.16 Energy after the equilibration phase for Γ=1, dt=0.001, N=1000 
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Figure 7.17 Temperature after the equilibration phase for Γ=1, dt=0.001, N=1000 

The value of the co-efficient b after least square fitting comes out as 0.97 which implies 

Lévy type behavior. 

All the simulation results have been summarized in table 7.1. 

Table 7.1 Simulation Results for Both Non-Collisional (Case 1-4) and Collisional (Case 5-9) 

Cases 

 

Case N Γ κ dt Neq Npd rcut b Lévy 

1 1000 1 1 0.1 4000 2000 4 1.46 Yes 

2 1000 1 1 0.01 4000 2000 4 2.69 No 

3 1000 1 1 0.01 40000 20000 4 3.49 No 

4 1000 10 1 0.1 4000 2000 4 3.96 No 

5 1000 1 1 0.1 4000 2000 4 0.33 Yes 

6 1000 1 1 0.01 40000 20000 4 0.65 Yes 

7 1000 1 1 0.001 400000 200000 4 0.97 Yes 

8 1000 10 1 0.1 4000 2000 4 1.39 Yes 

9 1000 10 1 0.01 40000 20000 4 1.81 Yes 
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