AROBUSTMETHODFORADDRESSINGPUPILDILATIONINIRISRECOGNITIONByRaghunandanPasulaATHESISSubmittedtoMichiganStateUniversityinpartialoftherequirementsforthedegreeofComputerScienceŒMasterofScience2016ABSTRACTAROBUSTMETHODFORADDRESSINGPUPILDILATIONINIRISRECOGNITIONByRaghunandanPasulaTherichtextureoftheirisisbeingusedasabiometriccueinseveralhumanrecognitionsystems. Irisrecognitionsystemsarefairlyrobusttosmallchangesinilluminationandpose.However thereareanumberoffactorsthatstilladverselyaffecttheperformanceofanirismatcher.These includeocclusion,largedeviationingaze,lowimageresolution,longacquisitiondistanceand pupildilation.Largedifferencesinpupilsizeincreasesthedissimilaritybetweenirisimagesofthesameeye.Inthiswork,thedegradationofmatchscoresduetopupildilationissystematicallystudiedusingHammingDistancehistograms.Anovelrule-basedfusiontechniquebasedontheaforemen- tionedstudyisproposedtoalleviatetheeffectofpupildilation.Theproposedmethodcomputesa newdistancescoreateverypixellocationbasedonthesimilaritiesbetweenIrisCodebitsthatwere generatedusingGaborFiltersatdifferentresolutions.Experimentsshowthattheproposedmethodincreasesthegenuineacceptratefrom76%to90%at0:0001%falseacceptratewhencomparingimageswithlargedifferencesinpupilsizesintheWVU-PLRdataset.Theproposedmethodisalsoshowntoimprovetheperformanceof irisrecognitiononothernon-idealirisdatasets.Insummary,theuseofmulti-resolutionGabor Filtersinconjunctionwitharule-basedintegrationofdecisionsatthepixel(bit)levelisobserved toimprovetheresilienceofirisrecognitiontodifferencesinpupilsize.ACKNOWLEDGEMENTSIwouldliketothankDr.ArunRossforhiscontinuedsupportandguidancethroughoutmystudent career.Noamountofthankswouldbesuftodescribethesupportextendedbythefamily membersbyjustbeingthereformeandsupportingmethroughthedegreeprogram.SpecialthankstoDr.EricTorngandKatherineTrinkleinforhelpingmethroughthetoughtimes.Thisworkisdedicatedtoalltheguruswhospendamountofeffortandtimetoimpartknowledgetotheworld.iiiTABLEOFCONTENTSLISTOFTABLES.......................................viLISTOFFIGURES.......................................viiCHAPTER1INTRODUCTION...............................11.1Biometrics.......................................1 1.2Eyeanatomy......................................41.2.1Layersofeye.................................5 1.2.2Apparentiristexture.............................9 1.2.3Pupildynamics................................121.3Irisbiometricsystem.................................13 1.4ChallengesinIrisrecognition.............................20 1.5Objectivesofthiswork................................25CHAPTER2MOTIVATIONANDPREVIOUSWORK..................262.1Motivation.......................................26 2.2Previouswork.....................................282.2.1Minimumwearandtearmodel........................282.2.1.1Wyatt2000.............................28 2.2.1.2YuanandShi2005.........................31 2.2.1.3Weietal.2007...........................322.2.23-Danatomicalmodel............................332.2.2.1Francoisetal.2007........................33 2.2.2.2Clarketal.2012..........................342.2.3Gejjietal.2015................................36 2.2.4OtherDeformationmodels..........................362.3Bitmatching......................................37CHAPTER3COLLECTIONOFDATABASE........................393.1Motivation.......................................39 3.2Dataacquisitionprotocol...............................39 3.3Description......................................40 3.4Impactofpupildilation................................42CHAPTER4PROPOSEDMETHODS...........................444.1Multi-resolutionGaborencoding........................44 4.2TypicalIrisCodematcher...............................45 4.3Histogramofmatchingpatterns............................46 4.4Fusion.........................................484.4.1RulebasedFusion...............................49 4.4.2basedFusion............................524.5ExperimentsandResults...............................52iv4.6Examples.......................................56CHAPTER5SUMMARY..................................605.1Summary.......................................60BIBLIOGRAPHY........................................61vLISTOFTABLESTable1.1Wavelengthrangeforvisible,NIRandSWIRspectrum..............9 Table3.1Demographicsdistribution.............................41 Table3.2Eyecolorinformation...............................41 Table4.1LogicaloperationsusedtocombinetheoutputofmultipleIrisCodes.......52viLISTOFFIGURESFigure1.1FigureshowingtheexternalanatomyofthehumaneyeintheRGBspectrum.Thefocusofthisthesisisontheiris,whichistheannulartexturedstructure situatedbetweenthepupilandthesclera.Theirisistypicallyimagedinthe nearinfrared(NIR)spectrumandnotintheRGBspectrum...........2Figure1.2Abiometricsystem,duringthe,enrollmentstageaddsatemplatebelongingtoanewuserintotheGallery............................3Figure1.3Sagittarialcross-sectionofiris.Imagepublishedherewithpermissionfrom[1]6 Figure1.4Differentlayersofiriswhenlookingintosagittalaxis...............7 Figure1.5Locationofsphincteranddilatormusclesthatcontrolpupilconstrictionanddilation,respectively................................8Figure1.6Pathfromlightsourcetotheeye.........................10 Figure1.7Figureshowingwavelengthsofelectro-magneticspectrumrelevanttoirisbiometrics.....................................11Figure1.8Absorptionspectrumof(a)liquidwater[2]and(b)melanin[3]atdifferentwavelengthsofelectromagneticspectrum....................11Figure1.9Exampleofblue,yellowishanddarkbrownirisimagesthatcontainlow,moderateandhighconcentrationofmelanin,respectively............12Figure1.10Darkirisin(a)imagedat(b)470nm,(c)520nm,and(d)700nmand(e)NIRwavelengths....................................12Figure1.11Examplesoffactorsthesizeofthepupil...............13 Figure1.12Componentsofatypicalirisrecognitionsystem.................14 Figure1.13(a)Realpartand(b)ImaginarypartofaGabor...............18 Figure1.14(a)OriginalacquiredImage(b)Segmentationoutput(c)Normalizedimage(d)Correspondingmaskimage(e)IrisCodegeneratedbyencodingthenor- malizedimageusingMasek'smethod.[4]....................19Figure1.15Examplesofnonidealirisimages.(a)and(b)Non-uniformillumination,(c)and(d)Eyelidocclusion,(e)Eyelashocclusion,(f)Motionblur.........22Figure1.16Examplesofoff-axisirisimages..........................22viiFigure1.17Fewexamplesofeyediseasesthatimpactirisrecognition(a)Polycoria-Multiplepupilopenings(b)Coloboma-Teariniris(c)Severecataract- Thickeningoflens(loosestransparency).Althoughtheimagesareshownin RGB,someofthesediseasescanalsoimpacttheNIRimages...........24Figure2.1(a)and(b)Irisimagewithmoderatepupilsizeandthecorrespondingnor-malizedirisimage.(c)and(d)Irisimagewithlargepupilsizeandthecor- respondingnormalizedirisimage.Highlightedregionsin(c)and(d)donot aligncorrectly.Imagesfrom[5]..........................27Figure2.2Irisimageswithdilationratiosof(a)0:3478and(b)0:6545.Imagesfrom[6]..27Figure2.3IrismeshworkproposedbyRohen[7].Imagefrom[7]..............29 Figure2.4qoistheanglebetweenstartingpointofthearconpupillaryboundaryandendingpointonlimbicboundary.......................30Figure2.5OptimumarcsderivedbyWyatt[8]forq=100,andpupildiameter1.5,4.0and7.0mm....................................30Figure2.6NormalizationmodelproposedbyYuanandShi.Imagefrom[9]........31 Figure3.1Imagesequencecapturestartsatt0=0.Afterapproximately10seconds,att1,thelightsourceisturnedonilluminatingtheeyefor10moreseconds[t1;t2].Att2thelightsourceisturnedoffandremainsofffor10moreseconds[t2;t3].Thevideocaptureisstoppedatt3......................40Figure3.2Sampleimagesfromthedataset..........................41 Figure3.3Distributionofpupildilationratiosinthedataset.Theyrangefrom0.2177to0.6367........................................42Figure3.4DistributionofgenuineHammingdistancescoresasafunctionofdilationdifferences.(a)jD1D2jand(b)jR1R2j...................43Figure4.1Anormalizedimageisencodedusingmulti-scaletoresultinanIrisCodesetalongwithamaskshowingvalidbitsineachIrisCode.Thismaskissame forallthecodesintheIrisCodeset........................45Figure4.2AnormalizedimageanditscorrespondingIrisCodegeneratedusing3Theseencodetheimageatmultiplescales.................45Figure4.3Atypicalirismatcher.Matchscoresarecomputedindependentlyateachscalewhicharethenfusedatscoreleveltoresultinadistancescore....47viiiFigure4.4Distributionofdecisionsforgenuinematchingcasesforasinglesubject........................................48Figure4.5Distributionofdecisionsforrandomlyselectedimpostormatch-ingcases......................................49Figure4.6Comparisonofdistributionsofpossibledecisionsforgenuineandimpostormatchingcases.............................50Figure4.7Theproposedirismatchersequentiallycombinestheresultsatmultiplescalesandgeneratesasingledecisionresult........................51Figure4.8FlowchartdepictingMethod1anditscorrespondingtruthtable.........53 Figure4.9FlowchartdepictingMethod2anditscorrespondingtruthtable.........54 Figure4.10FlowchartdepictingMethod3anditscorrespondingtruthtable.........55 Figure4.11(a)ROCsforfulldata.Thegenuineandimpostorscoredistributionsareplottedfor(b)Method1,(c)Method2and(d)Method3.............56Figure4.12ROCsgeneratedbyusingthegenuinescoresforpairswhosepupildilationratiodifferencesare(a)small,(b)mediumand(c)large.Theimpostordis- tributionsareheldthesameacrossallthecases..................57Figure4.13ThehistogramofgenuineandimpostorscoresusingMasek'smethodandafterfusionofmatchscoresfromMasek'smethodandproposedMethod1....58Figure4.14ROCcurvesfor(a)WVUand(b)QFiredatasets.TheimprovementinGARisclearlyevidentatlowFARs...........................58Figure4.15Genuinepairsofimagesthatwerecorrectlymatchedusingtheproposedmethodbutwereincorrectlyrejectedbythetraditionalmatchingmethodat 0:0001%FAR...................................59ixCHAPTER1INTRODUCTIONfiTosupposethattheeyewithallitsinimitablecontrivancesforadjustingthefocus todifferentdistances,foradmittingdifferentamountsoflight,andforthecorrection ofsphericalandchromaticaberration,couldhavebeenformedbynaturalselection, seems,Iconfess,absurdinthehighestdegree."ŠCharlesDarwin,OntheOriginofSpeciesEyeisanextremelycomplexandyetbalancedorganinthehumanbody.Humaneyeisanearly sphericalorganwhoseprimaryfunctionistoallowforhumanvision.ThevisiblepartoftheeyeappearsasshowninFigure1.1[10].Itiscomparabletoanopticalsystemthatcapturestheimagery ofasceneandprojectsitontoasensorknownasretinainthebackoftheeye.Texturalpatternofhumaniris(seeFigure1.1)isbelievedtobeuniquetoeachindividual.Thisisexploitedintheofbiometricstorecognizeindividuals. 1.1Biometrics Passwordsandkeyshavebeenthecornerstoneofauthentication.However,biometricshasmade inroadsintotheworldofsecureauthenticationandsurveillanceinthe21stcentury[11].ISO/IEC2382-37:2012[12]biometricsasthescienceofautomaticallyrecognizingindividualsbasedontheirbiologicalandbehavioralcharacteristics.Examplesincluderecognizinghumansbasedon theirface,irisandhandgeometryamongothers.Unlikepasswordsthathavetobe rememberedorkeys/tokensthathavetobephysicallycarried,biometricsareintrinsicallyassoci- atedwiththeusersthemselves.AlargestudyofwebpasswordhabitsbyMicrosoft[13]onhalf millionusersfoundthatanaverageuserhas6.5passwordsandusesthemacrossanaverageof 25accounts.Itgetsincreasinglyhardertocreateandremembernewpasswords.Secureaccessto physicallocationstypicallyrequireskeysortokenssuchasmagneticcards.Mostlocationsalso1Figure1.1FigureshowingtheexternalanatomyofthehumaneyeintheRGBspectrum.The focusofthisthesisisontheiris,whichistheannulartexturedstructuresituatedbetweenthepupil andthesclera.Theirisistypicallyimagedinthenearinfrared(NIR)spectrumandnotinthe RGBspectrum. requiretheusertotypeinapasswordbesidesproducingatokenorakey.Theuserscannotbe authenticatedincasetheuserforgetsthepasswordorforgetstobringthekeys/tokens.Biometrics eliminatesthesestringentrequirementsandonlyneedstheusertointeractwiththesystem.Agood biometrictrait[14]isuniversal-allusershaveit,permanent-itisstablethroughthelifetimeof auser,distinct-itisuniqueacrossmultipleusersandiseasilycollectible.Biometricshasbeen successfullydeployedinrealworldapplicationsincludingsurveillance,immigrantvat theportofentry,accesscontrol,ATMsandevenidentifyinglostchildren.Aclassicalbiometricsystemconsistsofabiometricsensor(typicallyacameraimagingthe2biologicaltrait),afeatureextractor,amatcherandadatabasemodule(seeFigure1.2).Abiometric sensorcapturesthebiometricdatafromtheuser,generallyintheformofadigitalsignal.The capturedsignalmayhavetobepre-processedtoidentifytheregionofinterestorenhancedto improveitsquality.Thenafeatureextractortransformsthedataintoanumericalpatternthatcan laterbeusedforcomparison.Abiometricsysteminpracticeisoperatedinoneofthefollowingthreemodes.EnrollmentInthismode,auserisenrolledbyaddinghis/herfeaturestoadatabaseknownasgallery.Featuresstoredinthedatabasefromtheacquireddigitalsignalarereferredtoasatemplateduringenrollment.Inacooperativeenvironment,anidentityintheformofalabelisassigned toeachstoredtemplate.Itisalsopossibletohaveasystemwheretheidentityofanenrolled templateisunknownandlabeledusingnominal[15].Figure1.2Abiometricsystem,duringthe,enrollmentstageaddsatemplatebelongingtoanew userintotheGallery. VInthevmode,theuserinteractingwiththesystemclaimsanidentity.Forexample, considerabiometricsystemdeployedtorecognizeapersonenteringtheUnitedStates.Bob, whoisalreadyenrolledintotheGallery,isnowinteractingwiththesystemclaimingthathe3isBobandwouldliketoenterthecountry.Thesensorcollectsthebiometricdata(probe)andextractsafeatureset.Invmodeasinglegallerytemplatecorrespondingtothe claimedidentity,inthiscaseBob,isretrievedfromthegalleryandmatchedagainsttheprobefeatureset.Ifthesimilarityisgreaterthanathresholdvalue,thentheidentityissuccessfully .Sincethematchingisperformedbetweenoneprobeandonegallerytemplate,itisalsoreferredtoas1:1matching.Thisoperationalmodeistypicallyusedtograntaccessto securefacilities,verifyingidentityattheportofentry,etc.Asinthecaseofvthefeaturesetisextractedfromthedataacquiredfromauser. Inthismode,theobtainedfeaturesetismatchedagainstallthetemplatesinthegalleryinordertoretrieveidentitieswhosetemplateshavesimilaritygreaterthanacertainthreshold. Sincethematchingisperformedbetweenoneprobeandallgallerytemplates,itissometimes referredtoas1:Nmatching(Nbeingthenumberoftemplatesinthegallery).Forexample, Tomwhoisapplyingtoenteracertaincountrymayberequiredtopresenthisbiometric sampleTheextractedfeaturesetisthenmatchedagainstagallery containingtemplatesofknowncriminalsinordertoapossiblematch.Similarly,the modecanbeusedinsurveillancescenariostodeterminetheidentityofpeople ataparticularlocation.AnirisrecognitionsystemhasmultiplecomponentsthataredescribedinSection1.3.Inspiteoftherelativelyhighaccuracyofirisrecognitionsystems,theyarehighlysusceptibletoavariety ofproblems.Forexample,anacquiredimagethatisoutoffocusmayprobablynotebematched withitscorrectidentity.ThisincreasestheFalseRejectionRate(FRR)ortheFalseMatchRate (FMR)[16].Section1.4detailscurrentchallengesintheofirisrecognition.41.2Eyeanatomy TheocularregioninFigure1.1istheanteriorportionoftheeyeballthatisexternallyvisible. Thehorizontalcross-sectionoftheanteriorocularregionbroadlyconsistsofthreeregionsnamely pupil,irisandsclera.Pupilisthedarkholeinthecenteroftheeyeandscleraisthewhitish portionoftheeye.Irisisthetexturedandcoloredpartoftheeyeenclosedbetweenthepupiland sclera.Thehumanvisualsystemiscomparabletoanopticalcamerasystemwherethepupilmay beconsideredasthelens/apertureandtheirisastheaperturestopthatcontrolsthesizeofthe aperture.Inthecontextofbiometrics,theoculartraitstraditionallyrefertophysicalorbehavioralat-tributesintheeyeglobesuchasiris[17],conjunctivalvasculatureinepisclera[18],retinalvas- culature[19],OculomotorPlantCharacterstics(OPC)[20]andComplexEyeMovements(CEM) [21].Periocularregion[22]consistsofupperandlowereyelids,andaedrectangularregion aroundtheeye.Theuppereyelidisatypeofskinfoldthatisabletostretchoutandcovertheeye toprotectitfromdust,debrisandsunlight.Periocularregionmayalsocontainother featuressuchaseyebrowsandmolesontheskininthevicinityoftheeyeregion. 1.2.1Layersofeye Sincetheiristextureistreatedasabiometrictrait,itisimportanttounderstanditsstructure, components,physiologyandspectralproperties.Sincetheeyeisa3dimensionalobject,the imageofaneyeismerelya2dimensionalrepresentationoftheoriginalshape.Figure1.3shows thesagittalcross-sectionofaneye.Fromanimageacquisitionperspective,thelightfromthesourceencounterscornea,aqueoushumor,irisandlensafterwhichitisprojectedontotheretina.CorneaLightfromanobjectenterstheeyethroughthecorneawhichisatransparentprotective tissuelayerprotectingtheeyefromexternalworld.Itisthedefensivesystememployed5Figure1.3Sagittarialcross-sectionofiris.Imagepublishedherewithpermissionfrom[1]bytheeye.Itcoverstheentiretyofiriswithanapproximatediameterof11:8mm.Therefractiveindexofcorneallayerisapproximately1.33.Thelightundergoesrefractionsince itispassingfromairwitharefractiveindexof1.0tocorneallayerwitharefractiveindexof 1.33.Hence,itactsasafocusingelementthatfocusestheincominglightintothepupil.AqueoushumorOncethelightcrossescornea,itentersawaterymediumknownasaqueoushumor.This regionisalsoreferredtoastheanteriorchamberoftheiris.Aqueoushumorthe ocularregionandhelpsinmaintainingocularpressurewhiletransportingrequirednutrients toiristissues.Aqueoushumorconsistsof98%waterandsmallportionsofaminoacids, electrolytes,ascorbicacid,glutathioneandimmunoglobulins.Spectralpropertiesofaqueous humourmaybeapproximatedtothatofwatersinceitis98%waterandisusuallytransparent inthevisibleandnear-infraredspectrum.6IrisAfterthelightpassesthroughaqueoushumor,itencounterstheannularirisregionwitha holeinthecenter.Theirisactsasadiaphragmbetweentheanteriorandposteriorchamber oftheeye.Theirisisprimarilydividedintothreelayers-stroma,sphincteranddilator muscles,andpigmentedepithelium.ThesecomponentsarepictoriallyshowninFigure1.4.Collarette Stroma Dilator muscle Sphinctermuscle Pupillary margin Iris root Posterior pigmented epithelium Figure1.4Differentlayersofiriswhenlookingintosagittalaxis.Theirisgainsitstexturefromitselementsintheanteriorportion,i.e,stromalfaeturessuch astissues,crypts,anti-crypts,freckles,molesandconcentrationofapigmentation materialcalledmelanin.Thecoloroftheirisismostlyimpactedbytheconcentrationof melanininthestroma.Verylowconcentrationsofmelaningivesirisabluishcolor,medium concentrationgivesitagreen/yellow/hazelcolorandahighconcentrationofmelaningives7irisaverydarkbrowncolor.However,theincidentandimageacquisitionwavelengthalso playamajorroleintheapparenttextureoftheiris.Irisconsistsofabaselayerofheavilypigmentedcellsknownasposteriorpigmentedep-ithelium.Dilatormusclelinesthetopofthispigmentedepitheliumandisresponsibleforpupildilation.Dilatormusclesareradialandextendfromirisroottopupillaryruff.Their contractionresultsinpullingthepupillarymargintowardstheirisroottherebydilatingthepupilsize.Sphinctermuscle,ontheotherhand,isacircular(paralleltopupillarymarginor concentrictopupillaryboundary)musclethatextendsfrompupillarymargintoanimaginary boundaryknownasCollarette.ItcanbeobservedfromFigure1.5thatthecollaretteistheboundarywherespinchteranddilatormusclesstarttooverlap.Howeveritisimportantto notethatbothsphincteranddilatormusclesarelocatedbeneaththestromaandhencearenot visibletothenakedeye.Lens(pupil)Lensisaneartransparentcrystallinebiconvexstructurethatislocatedbehindtheirisand supportedbysuspensoryligamentwhichisinturnconnectedtotheciliarybody.Partofthe lensnotcoveredbytheirisisvisualizedasadarkholeknownaspupilintheeyeimage,since allthelightenteringthelensisabsorbedbythevitreoushumorbehindthelens.The lensalongwiththecorneaaccountsforallthefocusingpoweroftheeye'sopticalsystem andhelpstofocustheincominglightontotheretinalwallonthebackoftheeye.Thelight intensityonretinaisconvertedintoimpulseswhicharethentransmittedtothebrainthrough theopticalnerve.Theextentoflensexposedtothelightiscontrolledbysphincteranddilator musclesiniris.1.2.2Apparentiristexture Asmentionedearlier,theapparentiristextureisdependentonthewavelengthatwhichtheiris imageisacquired.Letusassumethatthereissufilluminationincidentontheeye.Figure8Figure1.5Locationofsphincteranddilatormusclesthatcontrolpupilconstrictionanddilation, respectively. 1.6showsthemajorabsorptionelementsonthepathfromtheimageacquisitioncameratotheeye. Sincethebaseofirisisopaqueandallthelightisabsorbedthoughthelensinthecenter,onlythe texturepertainingtoanteriorportionofirisiscapturedbythecamera.Table1.1andFigure1.7showthewavelengthsoftheelectromagneticspectrumthatweareinterestedinandtheircorrespondingnames.Visiblespectrumrangesfrom450nmwavelength denotingbluishcolorto700nmwavelengthdenotingreddishcolors.NearInfra-Red(NIR)covers wavelengthsfrom700nmto900nmandisusuallyconsideredmonochromatic.ShortWaveInfra- Red(SWIR)encompasseswavelengthsfrom900nmto1600nm.AbsorptionofliquidwaterandmelaninareshowninFigure1.8(a)and(b).Invisiblespectrum,airandaqueoushumoractaspass-throughwhilethelightisscatteredandfrom tissuesandmelaninpigmentiniris.Bluecoloredirisescontainveryminuteconcentrationsof9lens Air Cornea Aqeuous humor Vitreous humor 1.00 1.37 1.33 1.42 1.33 Refractive Index Retina opaque opaque Air Water Primary absorption element iris iris Melanin Figure1.6PathfromlightsourcetotheeyeTable1.1Wavelengthrangeforvisible,NIRandSWIRspectrumSpectrumWavelengthrangeVisible400nm-700nmNearInfra-Red700nm-900nmShortWaveInfra-Red900nm-1600nmmelanin,and,hencemostoftheincidentlightisscatteredandinternallyresultingina bluishappearance(duetoTyndalleffect[23]).Iriseswithhighconcentrationofmelaninappear darkbrowninvisiblespectrumsincemelaninabsorbsmostoftheincidentillumination.Figure1.9 showsexamplesofthreeirisimageswithvaryinglevelsofmelanincontent.InNIRspectrum,theairandaqueoushumorstillactaspass-throughwhiletheabsorptioncoefofmelanindropsafter700nm.Thisresultsindarkirisesexhibitinggood texturalpatternsrevealingthemeshworkofcryptsandpossiblepigmentationspots.Figure 1.10showsanimageofadarkbrownirisinvisiblespectrumexhibitingdiscernibletexturalpatterns10Figure1.7Figureshowingwavelengthsofelectro-magneticspectrumrelevanttoirisbiometrics(a)(b)Figure1.8Absorptionspectrumof(a)liquidwater[2]and(b)melanin[3]atdifferent wavelengthsofelectromagneticspectrum whenimagedwithaNIRsensor.Figure1.10showsaniristhatisapparentlydevoidoftexturalmorphologywhenimagedinthevisiblespectrumbutthtexhibitsgoodtexturalpatternsintheNIRspectrum.Sinceiristextureis believedtobeunique,NIRcamerasaretypicallyusedtoacquireirisimagesforbiometricpurposes.11(a)Lowmelanin,Bluish(b)Moderatemelanin,Yellowish(c)Highmelanin,darkbrownFigure1.9Exampleofblue,yellowishanddarkbrownirisimagesthatcontainlow,moderateand highconcentrationofmelanin,respectively.(b)(c)(a)Darkiris(FalsecolorRGB)(d)(e)Figure1.10Darkirisin(a)imagedat(b)470nm,(c)520nm,and(d)700nmand(e)NIR wavelengths. 1.2.3Pupildynamics Iriscontrolsfortheamountofvisiblespectrumlightenteringthepupil(lens).Althoughirismus-clesarecontinuouslyadjustingforthelight,theyareusuallymaintainedatadelicatebalancewith minimalmovements.Thisstateisknownastherestingstateoftheeye.Howeverexternalfactors suchasalcoholintake[24],changeinbrightnessandadministeringeyedropdrugs[25]andinter- nalfactorssuchasdiseaseandstressforceseitherthesphincterordilatormusclestoactivate,and toconstrictordilatethepupilaccordingly.Figure1.11showsexamplesoffactorsthatpupildilation/constriction.12BeforeAfterMuscleBrightlightonSphincterVisiblelightoffDilatorDrug(Eyedrop)[25]DilatorAlcholConsumption[24]SphincterAlcholConsumption[24]DilatorFigure1.11Examplesoffactorsthesizeofthepupil.1.3Irisbiometricsystem Inreferencetoanirisbiometricsystem,thebiometricsensoristypicallyaNIRcamerathatacquires animageofaneyeinthe750nm-850nmwavelength.Itisthenfollowedbyapre-processormodule thatconsistsofasegmentationprocessthattheirisregion,andanormalizationprocess thatconvertstheannularregionintoarectangularmatrix.Featureextractormoduleencodestheiris textureandgeneratesatemplateknownasIrisCodethatconsistsofbinaryvalues.Thesemodules13areshowninFigure1.12.Figure1.12ComponentsofatypicalirisrecognitionsystemBroadly,thecomponentsinFigure1.12maybecategorizedintothefollowingtasks.1.Imageacquisition IrisimagesaretypicallyacquiredintheNIRspectrum(750nm-850nm).Asdescribedinthe earliersection,theconcentrationofmelaninpigmentationdeterminestheperceivedcolorof theirisinthevisiblespectrum.Higherconcentrationsofmelaninresultsindarkercolored iriseswhileitsabsenceresultsinlighterbluishiriscolors.However,theeffectofmelanin decreasesintheNIRspectrum[17].Hence,goodtexturalpatternsareobserved, evenfordarkeririses,intheNIRspectrum. However,severalworkshavearguedforfeasibilityofirisimageacquisitionintheVisible spectrum[26][27]andShortWaveInfra-Redspectrum(900nm-1350nm)[28]. Traditionally,irisimageacquisitionrequiredasubjecttopeerintothecameraatcloseprox- imity.However,recently,therehavebeenseveralsystemsthatareabletoacquiregood14qualityirisimagesfiatadistance"[29][30]upto3metersorfionthemove"[31].Thereisalsoasystemthatisabletocaptureirisimagesasapersondrivesthoughacheckpoint[32]. Thereareotherresearcheffortsthataimtoobtainconsistentlysharpimageswithgoodfocus byextendingtheviawavefrontcoding[33]andhyper-focalimaging[34].2.Segmentation Theacquiredimageconsistsoftheocularandperiocularregion.Segmentationistheprocess ofautomaticallylocalizingtheirisregioninthegiveneyeimage.Aspartofthisprocess, theinnerpupillaryboundary,theouterlimbicboundaryandthecontoursofupperandlower eyelidsaredetected.Occludingfactorssuchaseyelashesandspeculararealso detected. Therearevariousapproachestothissegmentationtask.Daugman,in[17],proposedan integro-differentialoperatorthataimstoaboundarythathasamaximumcumulative radialimagegradient.TheIntegro-differentialoperatorisgivenbymax(r;xo;yo)jGs(r)¶¶rIr;xo;yoI(x;y)2prdsj:Thealgorithmcomputesthecumulativeradialimagegradientateverypixelinthecircumfer- enceofacirclewithaedsizeradius.Thisprocessisrepeatedformultipleradiusvalues,r.Thecirclethatresultsinthemaximumcumulativevalueisdetermined.Thiscancorrespond totheinnerorouterboundaryoftheiris. Wildesin[35]detectstheedgesintheimagesandconvertstheinputimageintoabinary edgeimage.ThenacircularHoughtransformisusedtoidentifycircularboundaries.Fora edacquisitiondistance,upperandlowerlimitscanbesetfortheouterboundaryradius. Theselimitsareusedtoeliminatefalsepositivesandselectthecorrectirisboundary.The regioninsidetheouterboundaryisthensearchedtotheinnerpupillaryboundary.Line Houghtransformisusedtodetectupperandlowereyelids[36][4].15However,recentworkinirissegmentationhasfocusedonremovingtheassumptionofcir- cularboundaries,sincethelimbicandpupillaryboundaryarenottypicallycircularunder non-idealconditions.ZuoandSchmidin[37]approximatedtheirisandpupilboundaries withmorerelaxedellipses.ShahandRoss[38]furtherremovedtheconstraintsbyde- tectingthepupilbythresholdingandthenusingasnakelikegeodesicactivecontourto thelimbicboundary.Thereareothersimilarworkthatrelyontheprincipleofactivecontours [39][40],althoughthedetectionofpupilisstillperformedusingbasicthresholdingfollowed bybinarymorphologicaloperations,sinceitslocationisneededtoinitiatetheactivecontour. Othermethodsinvolveclassifyingthepixelsbasedontheirtexturalcontent.Broussardet al[41]usedaneuralnettoclassifyeachpixelasirisornon-iris.Thesemethodsinvolve extensivetrainingtobuildmodelsthatlearnthedifferencebetweentrueirispixelsandnon- irispixels.Heetal[42]usedatrainedAdaBoostdetectortorapidlylocalizetheirisregion (rectangularboundingbox).3.Normalization Normalizationistheprocessofunwrappingtheannularirisregionintoaedsizerectangu- largrid.Normalizationisexpectedtoaccountfortheiristexturedeformationduetovarying pupilsize.Normalizationisassumedtoresultinverysimilarrectangularimagesevenifthe imagesofthesameeyearecapturedwithdifferentpupilsizes.However,recentworkshas showntheinadequacyofthisassumption.Mostmethodsareeitherbasedonorarevariants ofDaugman'srubbersheetmodel[17].Thisstepisoptionalsincetherearemethodsthatperformimagematchingontheoriginalimagesthemselvessuchas[43],thatusedsimilarity ofdescriptorsatlocalinterestpoints,and[44],thatusedclassicSIFTdescriptortomatch irisimages. Therubbersheetmodelmapseachpixel(x;y)intheirisregiontoapoint(r;q)inthe16rectangularregionusingthefollowingmappingfunction.I(x(r;q);y(r;q))!I(r;q)where,x(r;q)=(1r)xp(q)+rxl(q)y(r;q)=(1r)yp(q)+ryl(q):Here,xp(q);yp(q)andxl(q);yl(q)areasetofpupillaryandlimbicboundarypoints.Theformulacanbeinterpretedasfollows.TheannularregionissampledatRregularintervalsalongtheradialdirectionataedangularvalue.Thesampledpointsareassembledalonga singlecolumnofthenormalizedimage.Thisisrepeatedacrossmultipleangulardirectionsto populateothercolumnsinthenormalizedimage1.14.Similarly,anormalizedmaskisalso generatedtodenotethenon-irispixelsthatcorrespondtotheeyelids,specular eyelids,etc.4.Patternrepresentationandmatching Sincetheiristextureisbelievedtobeunique,thereareseveraltexturerepresentationmethods andcorrespondingdistancemeasurestomatchtwoirisimages.Classicalmethodinvolves convolvingthenormalizedimagewithabankofcomplexGaboroftheformG(r;q)=eiw(qqo)er(rro)2a2e(qqo)2b2;where,roandqodenotetheradialandangularbandwidthofthe2-DGaborFigure1.13showsrealandimaginarypartsofaGabor. Therealpartoftheresultingoutputisadjustedtohavezeromean.Thentheadjustedreal partandthecomplexpartarebinarizeddependingonthesignoftheresponse.Positive valueisdenotedas1andnegativeoutputisdenotedasazero.Hence,foreachpixelinthe normalizedimage,twobitsaregeneratedusingone.Thebinaryrepresentationof17(a)(b)Figure1.13(a)Realpartand(b)ImaginarypartofaGaborthenormalizedirisimageisreferredtoasIrisCode.IrisCodesCAandCBwithcorrespondingmasksMAandMBarecomparedusingafractionalHammingdistance:HD=(CANCB)T(MATMB)kMATMBk:Inprinciple,thisvaluemayrangefrom0(completematch)to1(completemis-match).In practice,theimpostorscoreshaveameanof0.5sincetheprobabilityoftwocompletely randombit-streamsmatchingisaround0.5. OthermethodsthatusesimilarapproachesincludeBolesandBoashash[45]thatusezero crossingof1Dwavelettransform,Chouetal.[46]thatusesLaplacianofGaussian Rocheetal.[47]thatusezerocrossingsofdyadicwavelettransform. Therearealsomethodsthatuseseigen-irisapproachthatattempttoextractbasisfunctionsandrepresenttheinputimageasacombinationofthesebasisfunctions.Examplesinclude methodsbyDorairajetal.[48]whousedPCAandICAontheentireregion,Huanget al.[49]whoappliedICAonsmallwindows,Maetal.[50]whousedGaborin conjunctionwithFisher'sLDAtodiscriminatebetweenirisimages. OthertexturaldescriptorsincludeGLCM(GrayLevelco-occurrenceMatrix)thatwasused byChenetal.[51]inwhichtheycomputeda3-Dco-occurrencematrixinsteadoftheclassic pairwiseco-occurrencematrix.LBP(LocalBinaryPatterns)isalsousedtodenotetextural18patternsinnon-overlappingblocksinthenormalizedimage,andablocklevelsimilarity measureisusedtocomputedistancemeasure. Figure1.14showstheoutputsofsegmentation,normalizationandencodingmodulesona sampleirisimage.(a)(b)(c)(d)(e)Figure1.14(a)OriginalacquiredImage(b)Segmentationoutput(c)Normalizedimage(d) Correspondingmaskimage(e)IrisCodegeneratedbyencodingthenormalizedimageusing Masek'smethod.[4] Otheroptionalmodulesincludequalitycheckertoaccept/rejecttheacquiredimagesbasedonthe qualityoftheacquiredimage,andapre-processingmodulethatenhancesthequalityofeitherthe acquiredimagesorthesegmentediristexture.191.4ChallengesinIrisrecognition Therearemultiplefactorsthattheperformanceofanirisrecognitionsystem.Mostof themareduetointeractionbetweensensorandtheuser,whileothersareduetothecharacteristics oftheeyeandthechoiceofimageprocessingmethods.Itmaybenotedthatirisrecognition systemshaveaverylowFalseMatchRate(FMR)providedsufnumberofbitsarematched (lowocclusion).Hence,thesechallengingfactorsincreasetheFalseNon-MatchRate(FNMR)i.e, theyresultinfailureofsuccessfullymatchingimagesofthesameeyeacquiredatdifferenttimes. Alistofsuchfactorsispresentedbelow.1.UserInteractionandAmbientFactors(a)IlluminationPoorilluminationisnotamajorconcernunlesstheilluminationintensityisconsider- ablylowthatresultsinthesensorregisteringdarknoiseinsteadofactualtexture.How- ever,non-uniformilluminationisaveryseriouschallenge.Ontheotherend,strongil- luminatorscanresultinlargespecularwhichmightimpactiristextureand, insomecases,affectsegmentationaccuracy.Figure1.15showsexamplesofpoorly illuminatedimages.(b)OcclusioniEyelidsSometimestheusersmaynothavetheireyescompletelyopen,seeFigure1.15, thatwouldresultinimageswhere,irisisoccludedbytheeyelids.Itreducesthe numberofirispixelstherebyreducingthediscriminativepoweroftheacquired image.iiEyelashesSomeindividualsmayprefertohavelonganddarkeyelashes[52].Sucheyelashes20canoccludeapartoftheiris.Oneofthemajorchallengehereistodetectthe eyelashesinordertoexcludethemduringthematchingstage.iiiGlassesAlthoughclearglassesarenotbelievedtoimpactiristexture,itbringsinadditional challengessuchasspecularandframeocclusions.ivContactlensCertaintypesofcontactlensessuchashardlenses,markedlensesandtheatrical patterncontactlensesareshowntodegradeirisperformancebyaconsiderable margin.However,itispossibletodetectthepresenceofsuchcontactlenses.(c)FocusIrisrecognitionsystemsexpectawellfocusedimagethathashighfrequencycontent init.Stronglydefocusedimagessmoothoutthetextureandtheresultingencoded informationwouldcorrespondtothestateofthesensoratthetimeofcapturerather thantheoriginaltexture[17].However,itiseasytorejectsuchkindofimagesby computingthefocusmeasurerapidlyinrealtimeandretainingonlyin-focusimages.(d)MotionblurIrisislocatedonacontinuouslymovingorganknownastheeyeballwhichisinturn placedinanothermovingobject-thehead.Hence,itispossiblethattheimagespro- curedbythecameraexhibitaamountofmotionblur.(e)ImageresolutionTypicalirisimageacquisitionsystemsrequiretheusertointeractwiththecameraat closeproximity.Itensuresgoodimagequalityintermsoffocus,bluranduniform illumination.Butanothermajorchallengeassociatedwithlargestandoffdistanceis poorimageresolution.Itisrecommendedtohaveatleast200pixelsacrosstheiris diameter[53]toachievegoodirisrecognitionperformance.(f)Off-axisirisimage21(a)(b)(c)(d)(e)(f)Figure1.15Examplesofnonidealirisimages.(a)and(b)Non-uniformillumination,(c)and(d) Eyelidocclusion,(e)Eyelashocclusion,(f)Motionblur.Irisrecognitionsystemsrequirethecapturedirisimagetobefrontal,i.e,theeyehasto bestaringdirectlyintothecamerainlinewithitsopticalaxis.Otherwise,theacquired imagewouldbedeviatedfromtheopticalaxisintheroll,yawandpitchdirections. Figure1.16showsexamplesoffewoff-axisimages.Off-axisimagesmwhencompared(a)(b)(c)Figure1.16Examplesofoff-axisirisimages.againstfrontalenrolledimages,wouldnotyieldthesamenormalizedimagenorcan becompareddirectlysincethereisanaftransformationinvolved.Althoughsucha transformationmatrixmaybeestimated[16],itmaynotbecompleteandreconstruction22ofonesetofimagesfromtheotherisnot2.SensorItispossibleforaniristobeenrolledusingonecamerasensormodelbutrecognizedusing imagesacquiredbyadifferentcamerasensormodel.Bowyeretal.[54]observedthat althoughthenon-matchdistributionisstable,thematchscoredistributionsareadversely impacted.3.ImagecompressionBiometricdatamaybestoreddigitallyonpassports.Itisalsosometimesnecessarytostore theoriginalimageratherthantheIrisCodetemplate.Insomeapplications,thisimagehasto bestoredinlimitedspace.Forexample,theRegisteredTravellerInter-operabilityConsor- tium(RTIC)[55]allocatesonly4000bytespereye.Atypicalgrayscaleirisimageofsize 640480has307;200bytesofdatathathastobecompressedto4000bytesbyascaleof76:8.RakshitandMonro[56]showedthatthenormalizedorfiunwapped"irisimagecouldbecompressedto2560bytesandDaugmanandDowning[57]showedthattheoriginaliris image(innativeimagedomain)couldbecompressedtoaslowas2000byteswithoutsub- stantiallyimpactingtherecognitionperformance.4.EyediseasesEyediseasescanadverselyimpactirisrecognition[58][59][60]sincetheymaydeformthe observediristexture,distortpupilshapeorimpacteyecolor.Figure1.17showsexamplesof irisimagesexhibitingeyediseases.Itcanbeobservedthatinsomeoftheimages,contours oftheirisboundariesaredrasticallyalteredandtexturalabnormalitiesareinduced.5.IrisstabilityHumanirisstartsformingfromthethirdmonthofgestation.Theconstituentpartsofthe iriscontinuetogrowandstabilizeafter8monthsofconception.However,thepigmentation continuestogrowafterbirthuntilthesecondyear.However,therearemanytheoriesfor23(a)(b)(c)Figure1.17Fewexamplesofeyediseasesthatimpactirisrecognition(a)Polycoria-Multiple pupilopenings(b)Coloboma-Teariniris(c)Severecataract-Thickeningoflens(looses transparency).AlthoughtheimagesareshowninRGB,someofthesediseasescanalsoimpact theNIRimages.predictingtheeyecolorgivenfamilyhistoryofeyecolors[61].Itiscommonlybelieved thattheiristextureremainsrelativelystable(exceptinthecaseoftheeyediseases)aftertwo yearssincebirth.HoweverFenkerandBowyer[62]havepresentedevidenceofmatchscore degradationwhencomparingimagesofthesameeyetakentwoyearsapartusingthesame camera.Thisphenomenonisreferredtoasirisaging.Itmustbenotedthatirisagingmaybe,inpart,duetothelimitationsofirisrecognitionalgorithmandintra-classvariationdueto variationsinpupilsizeandimagingconditionssuchasblur,focusandgazedirectionsacross imagingsessions.6.PupildilationPupilrespondstothestrengthoflight(invisiblespectrum)enteringtheeye.Itconstricts inbrighterlighttoprotecttheretinaanddilatesindarkerenvironmentstoallowformore lighttoentertheeye.Daugman'srubbersheetmodelfornormalizingtheirisimage[17]is believedtoaccountforchangesinpupilsizeacrossdifferentlightinglevelsandimagesize. Howeverrecentresearch[6]hasshownthatextremevariationinpupilsizewouldincrease theHammingdistancebetweensamplesofthesameeyeresultinginfalsenon-matches.7.Multi-spectralmatchingAlthoughtheirisisimagedintheNIRspectrum,therearepracticaltobeableto24performirisrecognitioninvisiblespectrumespeciallyduetotheadventofsmartphonesthat typicallycaptureimagesinthevisiblespectrum.Also,Rossetalin[28]haveshownthe feasibilityofperformingirisrecognitioninwavelengthsrangingfrom900nmto1350nm. ThesewavelengthsareconsideredtobepartoftheShortWaveInfraRed(SWIR)spectrum. HumaneyeisnotabletosensethesewavelengthsandastrongilluminatorinSWIRband wouldbeinvisibletoahumanobserver,makingitviableforuseincovertaswellasnighttime environments.Itisalsosometimesrequiredtomatchanirisimageacquiredineithervisible orSWIRbandagainstanNIRtemplatestoredinthedatabase. Themajorlimitingfactorstoperformintraspectralorcross-spectralmatchingareŁLackoftexturalcontentindarkeririswhenimagedinvisiblespectrum. ŁSpecularectionsinvisiblespectrumduetothetearonthecorneallayer. ŁDifferentialresponseofirisconstituentsatdifferentwavelengths.1.5Objectivesofthiswork Thisworkfocusesononeofthemajorchallengesfacingirisrecognition,namelypupildilation.Theadverseimpactofpupildilationisstudiedandasimpleyeteffectivesolutionisproposedto improvetheperformanceofirisrecognitionwhentheinputimagesexhibitlargedifferenceiniris sizes.25CHAPTER2MOTIVATIONANDPREVIOUSWORKIrisisacomplexstructureinthehumaneyethathasveryinterestingelasticproperties.When thelightincidentontheeyeisvaried,musclesintheiriscontractorexpandtoallowforlessor morelightintotheeyetobetterperceivethescenewhilstprotectingtheretinaatthesametime. Interestingly,theirismusclesrevertexactlytotheiroldpositionafteraperturbation[63]. 2.1Motivation Duringthenormalizationstage,mostirisrecognitionalgorithmsunwraptheirisintoapseudo- polarcoordinaterectangleusingDaugman'srubbersheetmodel[17]bysamplingtheirisregion uniformlyalongtheradialandangulardirections.Thistransformationisbelievedtoaccountfor changesinirissizeduetoitscompressionordilation.However,uponsimplevisualobservation, itisevidentthatirisundergoesacomplexnon-lineardeformationduringpupilconstrictionor dilation.Itiswelldocumentedthatextremepupildilationaffectsthematchscorebetweentwo irisimages[6].Largerthepupilsizedifferencebetweentwoimagesofthesameiris,largeristhe Hammingdistance.Figure2.1shows(a)aneyeimageand(b)it'scorrespondingnormalizediris image[5].Whenthepupildilatesfrom(a)to(c),theirisregioniscompressedinanon-linear fashionasshownin(d).Close-upofregionsinFigure2.1(b)and(d)showsthatthesehighlighted regionsdonotalignwellwitheachother.Hollingsworthetal.[6]showedthatalargedifferenceinpupilsizebetweentwoimagesresultsinalargegenuinedissimilarityscore.Figure2.2showstwoirisimageswithdifferentpupil-to-iris radiusratiovalues.Ifthedilationratioisastheratioofpupilradiustoirisradius,thena smallervalueofpupildilationratioindicatesalargeririsregionwithasmallerpupilsizerelativeto theirisradiusandalargerdilationratioindicatesalargerpupilsizewithrelativelylessirisregion. Itisnotuncommontoirisimagesthathavedilationratiosaslowas0.2andashighas0.8[6].26(a)(b)(c)(d)Figure2.1(a)and(b)Irisimagewithmoderatepupilsizeandthecorrespondingnormalizediris image.(c)and(d)Irisimagewithlargepupilsizeandthecorrespondingnormalizedirisimage. Highlightedregionsin(c)and(d)donotaligncorrectly.Imagesfrom[5].Figure2.2Irisimageswithdilationratiosof(a)0:3478and(b)0:6545.Imagesfrom[6].Ineffect,theeyeimageacquiredatdifferenttimescanexhibitalargevariationindilationratio,therebyincreasingthepossibilityoffalsenon-matches,wheretheuserisfailedtobeHence,thereisaneedtoaccountforthevariationsiniristexturetobettermatchtwoirisimageswithlargepupilsizevariation.272.2Previouswork Thepreviousworkonthistopicmaybebroadlydividedintothreecategoriesbasedontheirend goals.Thelineofworktriedtomodelthedynamicsofirisdeformationbyderivingatheo- reticalmodeltounderstandthedeformationprocess.Thesecondlineofworkonlyemphasizedon improvingtheirismatchingperformanceinpresenceofpupildilationwithoutnecessarilymodel- ingthebiologicalbasis.Thethirdcategoryofworkonlyfocusedondocumentingtheeffectsof pupildilation.Thefollowingarethreedeformationmodelsproposedintheliteratureinchronologicalorder.1.Minimumwearandtearmodel; 2.Empiricalmodel; 3.Mechanicalstrainmodel.2.2.1Minimumwearandtearmodel Rohen[7]wasthetoproposeastructureforcollagenousiniris.Figure2.3showsthe structureproposedby[7]thatconsistsoforthogonalsetof(clockwiseandanti-clockwise) thatconnectthepupilboundarytotheouteririsboundary.Rohenalsoobservedthatthese areinterwovenwithbloodvesselsandothercomponentsoftheiris. 2.2.1.1Wyatt2000 Wyatt[8]providedamathematicalframeworkforthismeshworkthatminimizeswearandtearofirismusclesduetoconstrictionordilation.Thereareadditionalconstraintsthathavetobe forbetterapplicationofthismodelforirisdeformation.Forexample,pointsontheirisshouldnot rotatetoomucharoundthecenterofpupilasthepupildiameterincreases.Secondly,the arcsinthemeshworkmustnothaverelativeslipatanygivenlocation.Theconditionslaidbythe28Figure2.3IrismeshworkproposedbyRohen[7].Imagefrom[7].constraintsaremetwhenpointsintheirisregionareassumedtomoveonlyinradialdirectionas pupildiametervaries.WyattmodeledlineardeformationofirisaccordingtothefollowingformulaR(q;qo;p)=R(q;qo;pref)ropropref+ropprefropref:Ristheradiusasafunctionofpolarcoordinateq,thepolarangletraversedbyasinglefrompupillarymargintotheirisrootqo,andpupildiameterp;themeshworkisinitializedwiththepupildiameterequaltopref.Figure2.4showsapictorialrepresentationforqo.ThemeshworkwasrepresentedusingasimplelogarithmicspiraloftheformR=pRopqqo:Aftersolvingforlogarithmicspirals,additionaldeviationwasallowedintheformofa20-term polynomialinqtoaccountfornonlineardeformation.Anoptimumcurvewasfoundforq=100asshowninFigure2.5.Thenonlinearstretchofirisismodeledasthesumofalinearstretchand29Figure2.4qoistheanglebetweenstartingpointofthearconpupillaryboundaryandendingpointonlimbicboundary.Figure2.5OptimumarcsderivedbyWyatt[8]forq=100,andpupildiameter1.5,4.0and7.0mm anonlineardeviation.R=Rlinear+DR(p;r):where,RlinearisthesolutionofthelineardeformationmodelandDRistheadditionaldisplace-mentofapointontheirisregionafterthelinearstretch.DRisapproximatedusinga6thorderpolynomial.302.2.1.2YuanandShi2005 YuanandShi[9]leveragedtheideaofmeshworkasanddescribedamodelforestimating thelocationofapointintheirisregionafterdeformation.Semi-circulararcsareconstructedas showninFigure2.6.FromtheP0isthereferencepupilboundarywhichisdeformedtotheFigure2.6NormalizationmodelproposedbyYuanandShi.Imagefrom[9].currentboundarymarkedasP.I0istheirisrootboundarywhichisassumedtoremained.Inthisimplementation,theanglebetweenanyPandit'scorrespondingI0isp=2.Thearcsbeforeandafterdeformationaremodeledassectorsofcircles.GivenalocationA0intheirisregionofthereferenceimage,it'scorrespondinglocationAafterdeformationcanbeeasilyderivedasafunctionofthepoint'slocationwithrespecttothepupilcenter.Theassumptionsmadeinthismodelare:Łthepupillaryandlimbicboundariesareapproximatedasconcentriccircles; Łmarginofthepupil(boundary)doesnotrotateand Łshapeofpupilremainsroughlycircularduringdilationorconstriction.31Fromthemodel,itisevidentthatpointsclosertothepupilboundaryaredisplacedbyalarge distance,whilepointsclosertotheirisroot(limbicboundary)arenotdisplacedasmuch.This introducesanonlinearityindisplacementmagnitudesforpointsintheirisregionasafunctionof theirdistancefromthepupillaryboundary.Aparameterlisasl=rR;where,ristheradiusofpupilandRistheradiusoftheouteririsboundary.Asinthepreviousmodel,aedpupilradiusischosenasthereferenceusingtheformularref=lrefR.Thedeformationmodelisusedtodeformthegivenirisasitspupilradiuschangesfromrtorref.Oncethegivenirisimageisdeformedtomatchpupilradiusequaltorref,thenitislinearlymappedtoapseudo-polarrectangulargridusingDaugman'smethod[17]forfurtherencodingandmatching. 2.2.1.3Weietal.2007 ThemodelproposedbyWeietal.[5]followsalongthesamelinesasWaytt[8]bymodelingthe nonlinearstretchofpointsinirisregionsassumofalinearstretchandadeviation.Thisdeviation ismodeledasafunctionofthecurrentpupilradius,pandposition,r:Rnonlinear=Rlinear+DR(p;r):WhileWaytt[8]approximatedthedeviationvalueasa6thorderpolynomialinq,Weietal.computedthedeviationvaluesusingstatisticalmeasuresofatrainingset.Astheirisradiusmaydifferslightlydependingontherelativepositionoftheeyetothecameraduringimageacquisition,aconsistentparametercalledirisdeformationfactorTisasT=RpRi;where,RpandRiareradiusofthepupilboundaryandtheirisrootboundary,respectively.DRisthenmodeledasafunctionofRlinearandT,Rnonlinear=Rlinear+DR(Rlinear;T):32Thisirisdeformationfactor,T,issameasthedilationratioin[6].AreferencebandforT,namely[Ts;Tl],ischosenandthedeformationmodelisappliedwhenthevalueofTisoutsidethisband.ThepupilisdilatedforT>Tl,andthepupilisconstrictedforT1mmdeformationinpupilradius.00.20.40.60.80500100015002000Difference of iris widths in pixelsCount DD [0 22) pixelsDD [22 44) pixelsDD > 44 pixels)00.20.40.60.80500100015002000Difference of pupil dilation ratioCount DR [0,0.0833]DR (0.0833,0.1667]DR > 0.1667(a)(b)Figure3.4DistributionofgenuineHammingdistancescoresasafunctionofdilationdifferences. (a)jD1D2jand(b)jR1R2jItcanbeobservedfromalltheplotsinFigure3.4that,ingeneral,largerdifferencesiniriswidthsorpupildilationratiosresultinalargerHammingdistancewhenmatchingirisimagesof thesameeye.Thissubstantiatesthepreviousofpupildilation'sadverseimpactoniris matchingsystems.43CHAPTER4PROPOSEDMETHODSTheproposedmethodsrequireiristobeencodedusingdifferentofvaryingbandwidths.In thiswork,unwrappedirisregionsareencodedusingmultiresolutionGaborThissection describestheencodingprocesstogenerateIrisCode;themethodologyusedbytypicalirismatchers togeneratematchscores;followedbytheproposednovelmatchingmethodandhowitisdifferent fromthetypicalmatcher. 4.1Multi-resolutionGaborencoding IrisCodescanbegeneratedbyapplyingmulti-scaleonanormalizedirisimageandquan- tizingtheircomplexoutput.OnesuchimplementationbyOSIRISappliesofthreedifferent sizes.EachproducestwobitsofIrisCodeperpixel.LettheithimagebedenotedbyIi.ItsnormalizedimageisdenotedasNi.Thesizeofthenormalizedimageisrtwhereristheradialresolutionandtistheangularresolution.ThreerectangularcomplexF1m1n1,F2m2n2andF3m3n3areappliedonthenormalizedimage.TheresultingcomplexoutputisthenconvertedtoabinaryIrisCodeset(C1i;C2i;C3i)r2talongwithamaskMir2t.Figure4.1pictoriallyshowsanIrisCodeset.Normalizedimagewithsizer=64andt=512forsizes915,927and951areusedinthiswork.Figure4.2showsanormalizedirisimageanditscorrespondingIrisCode generatedusingthe3complexThesmallestencodessmallerregionsintheimage andthelargestencodeslargerregionsintheimage.Thisisinthesmoothnessof IrisCodesatdifferentsizes.ThelargerresultsinasmootherIrisCodecomparedtothe smaller.44Normalized image Code Code Code M IrisCode set Multi-scale filter encoding IrisCodes Mask Figure4.1Anormalizedimageisencodedusingmulti-scaletoresultinanIrisCodeset alongwithamaskshowingvalidbitsineachIrisCode.Thismaskissameforallthecodesinthe IrisCodesetNormalized Image Filter 1 Filter 2 Filter 3 Real Part Imaginary Part Figure4.2AnormalizedimageanditscorrespondingIrisCodegeneratedusing3These encodetheimageatmultiplescales. 4.2TypicalIrisCodematcher LetussupposethatIrisCodesetsgeneratedfromtwonormalizedimagesNiandNjarebeingmatched.ThecorrespondingIrisCodesetsarerepresentedby(C1i;C2i;C3i;Mi)and(C1j;C2j;C3j;Mj)respectively.Acommonmask,MijiscomputedtodenotethelocationofcommonvalidbitscorrespondingtotheirisinboththeIrisCodes.45Mij=Mi\Mj:LettheresultofXORoperator,N,formatchingindividualIrisCodesgeneratedbyFbeRf:Rfij=CfiOCfj;f=1;2;3:Nresultsin0ifthecorrespondingbitsarethesameand1iftheyarenot.HammingdistancebetweentwoIrisCodesatthefthscaleisthengivenbyHDfij=kRfijTMijkkMijk;f=1;2;3:Typically,theHammingdistancescomputedforeacharefusedusingsumruletoproduceamatchingscore.Dijsum=HD1 ij+HD2 ij+HD3 ij:TheabovedescribedstepsemployedbyatypicalirismatcherarepresentedintheformofawchartinFigure4.3. 4.3Histogramofmatchingpatterns Basedontheaforementioneddiscussion,threeoutputsareavailableateachpixellocation inanirisimage.Hencethreematchingresults(r1;r2;r3)aregeneratedateverylocationwhentwoIrisCodesetsarematched.Thesethreeresultsateachlocationmaybecombinedand representedasasinglevector,R,whichisreferredtoasmatchingbitpatternateverybitlocation.Itcanhavevaluessuchas000,001,010,...,111.Here,000atalocationwouldmeanthat thepixelismatchedbyallscales;100wouldmeanthatalthoughthepixelismis-matched at1,itismatchedby2and3.Similarly,111wouldindicatethatthepixelis mis-matchedatallscales.46Code Code Result M Code Code Result M Code Code Result M Figure4.3Atypicalirismatcher.Matchscoresarecomputedindependentlyateachscalewhich arethenfusedatscoreleveltoresultinadistancescore.Figure4.4showsdistributionofthesematchingpatternsforonesubject.Thelegendintheplotsdenotesthesizeofthepupilradiusinpixelsofthetwoimagesthatarebeingmatched.Itis observedthatthepercentageof000s(matchedatalldecreaseswithincreaseindifference ofpupildilationratiosbetweenthematchedsamples.Figure4.5showsdistributionsof matchingpatternsforafewrandomlyselectedinter-class(impostor)pairsinthedataset.Itis observedthatthedistributionofthesedecisionsisroughlyequalandsimilaracrossthedecision patterns.Inatraditionalsumrulematcher,theinstancesof000,001,...,111wouldhavebeenmerelysummedupanddividedbythetotalnumberoflocations.Thiswouldmasksomeoftheinteresting propertiesobservedinthesepatterns.Figure4.6showsthedistributionofthesematchingresults47Mean = 0.2085 Standard deviation = 0.0845 Peak at 000 Matched at all scales Figure4.4Distributionofdecisionsforgenuinematchingcasesforasinglesubject.atthreedifferentscalesforthegenuineandimpostorcases.ItisobservedfromFigure4.6thatsomematchingpatterns,suchas000,011,101,110and111,aremuchmorediscriminativecomparedtoothers.Hence,thesedecisionscouldbe selectivelyfusedtoprovidebetterperformance. 4.4Fusion Theideabehindtheproposedmethodistomakeamatchingdecisionateachpixellocationbasedoninformationatmultiplescales.Thedistributionofdecisionpatternsshownintheprevious sectionsareexploitedtocomeupwithabetterdecisionstrategy.IrisCodebitsgeneratedfrom multipleareselectivelymatchedtocomputealdissimilarityscore.Thisispictorially48 Mean = 0.4858 Standard deviation = 0.0446 Uniformly distributed Figure4.5DistributionofdecisionsforrandomlyselectedimpostormatchingcasesdepictedinFigure4.7. 4.4.1RulebasedFusion Multipledecisionstrategiescanbedevelopedtoallowforstrcitorrelaxedmatchingconditions. Theproposedmatchingstrategiesaredescribedbelow. Method1:Twoirisimages(Ii;Ij)arematchedusingIrisCodesgeneratedby1ateachbitlo-cation,r1=(c1 i;c1j).Iftheimagesarenotmatchedat1,i.e,r1=1,thenthematchingisextendedtoIrisCodesgeneratedbylarger2and3.Thebitlocationisdeemeda match,ifIrisCodesareatleastmatchedbyters2and3.Thishelpsinhandlinglocaldefor-49Figure4.6Comparisonofdistributionsofpossibledecisionsforgenuineandimpostor matchingcasesmationssincematchisestablishedatalargerscaleforthosebitsthatwouldhaveotherwisemismatchedatsmallerscales.Method2:Thismethodrelaxestheconditionsforamatch.IftwoIrisCodesarenotmatchedatthe lowestscale,anadditionalopportunityisprovidedatmediumscale2.IncaseIrisCodes arenotmatchedat2,thenaopportunityisaffordedatlarger3.Thismethod50Code Code Result Code Code Result Code Code Result Sequential fusion Result M Figure4.7Theproposedirismatchersequentiallycombinestheresultsatmultiplescalesand generatesasingledecisionresult.allowsforapositivematchiftheirisregionsarematchedatleastinoneofthescales.Method3:Thismethodprovidesastrictermatchingcriterioncomparedtoalltheothermethodsby requiringtheIrisCodestomatchat1aswellaseither2or3.Thismethod removesthepossibilityofmatchinglocallydeformedregions.Onlythoseregionsthatarematchedatmultiplescalesaredeemedamatch.ThelogicaloperationsshowninFigures4.8,4.9and4.10areusedinthesequentialfusionstepinFigure4.7andcanbeimplementedusingasingleBooleanexpression.Correspondingtruth tablesareusedtoderivetheBooleanexpressionthatdirectlycomputestheresultbasedonthe51Table4.1LogicaloperationsusedtocombinetheoutputofmultipleIrisCodes.FusionLogicSumruleR1+R2+R3Method1R1&(R2j(˘R2&R3))Method2R1&R2&R3Method3R1j(˘R1&R2&R3)decisionsateachscale.Hence,asingledecisionismade,r=0(match)andr=1(non-match),ateachbitlocationinanIrisCode.Thedecisionisequivalenttoapplyingasinglecomplex onthenormalizedimage.LetthematchingdecisionbitsbepresentedinamatrixR.HammingDistancebetweentwoIrisCodesets(C1i;C2i;C3i;Mi)and(C1j;C2j;C3j;Mj)isthengivenbyDij=krijTMijkkMijk:Table4.1showsthelogicaloperationsforthesethreemethodsalongwiththesimplesumrule fusion. 4.4.2basedFusion Asseenintheprevioussection,ahistogramofmatchingpatternsisbeinggeneratedforevery pairofimagesthatarebeingmatched.AlinearSVMwastrainedusinghistogramsof matchingpatternsforgenuineandimpostorcasesonatrainingdataset.Givenanewpairofiris images,thetrainedwasusedtopredictifthenewhistogramofmatchingpatternspertains tothegenuineoraimpostorcase.TheobtainedresultswerefoundtocomparabletotheMethod1 proposedintheprevioussection.However,furtherresearchonthistopicwillbenecessary. 4.5ExperimentsandResults Theproposedmethodsaretestedonlefteyeimagesacquiredatfullilluminationintheproprietary pupildilationdataset.Atotalof2218imagesoflefteyesfrom52subjectsisusedtotestthe proposedmethods.Theimagesareautomaticallysegmented,normalizedandencodedusingthe52Filter 3 bit Match Filter 2 bit Match Filter 1 bit Match Match Non-match Method 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 Yes No Yes Yes No No Method 1 applied at each bit location Figure4.8FlowchartdepictingMethod1anditscorrespondingtruthtableOSIRIS_v4.1SDK.SemilogROCsarepresentedtobetterobservetheperformanceatlowFARs. Atotalof46,480genuinescoresand1,696,504impostorscoresaregenerated.Figure4.11(a) showsROCsforthefulldata.Itisclearlyseenthatallthethreemethodsclearlyimproveupon thetraditionalsumrulefusionmethod.However,genericmatchingusingMasek's1-Dencoded IrisCodes[4]isobservedtoprovidebetterstandaloneperformance.Judiciousparametertun- ingusing2-DGaborwouldprobablyyieldbetterperformance,inwhichcasetheproposed methodisexpectedtofurtherimprovetheperformance.Itcanalsobeobservedthatfusingscores fromMethod1withmatchscoresfromMasek's1-DencodedIrisCoderesultsintheoverallbest performance.Inordertoobservetheimpactoftheproposedmethodsondeformedirispatterns,scoresfromthetraditionalmatchingmethodsandproposedmethodsbasedondifferencesinpupildilation53Filter 3 bit Match Filter 2 bit Match Filter 1 bit Match Match Non-match Method 2 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 Yes No Yes Yes No No Method 2 applied at each bit location Figure4.9FlowchartdepictingMethod2anditscorrespondingtruthtableratioareexamined.Thegenuinescoresaredividedintothreedilationgroups-small,mediumand large-dependingontheabsolutevalueofthedifferenceinpupildilationratiobetweenthepairof imagesbeingmatched.Impostordistributionsarekeptthesamefortherespectivemethods.These ROCsareshowninFigure4.12.ItisevidentfromtheROCplotsinFigure4.12thattheproposed methodshavealargerimpactwhencomparinghighlydeformedpatternsthanwhencomparing twoimageswithalmostthesamepupildilationvalues.FusingbestperformingMethod1with Masek1-Dmethod[4]resultsinthebestoverallperformancewhencomparingimageswithlarger differencesinpupilsizes.Figure4.13showsthehistogramdistributionsofgenuineandimpostor scoresforMasek'smethodaloneandafterfusingtheMasek'sscorewiththematchscorefrom Method1.Thesematchingmethodsarenotjustlimitedtohandlingdeformationduetopupildilation/constriction54Method 3 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 Method 3 applied at each bit location Filter 3 bit Match Yes Filter 2 bit Match Filter 1 bit Match Match Non-match No Yes Yes No No Figure4.10FlowchartdepictingMethod3anditscorrespondingtruthtablealone,butcanbeusedtohandlenon-idealirisimages.Tovalidatetheefyofthesemethods, experimentswereconductedontheWVUnonideal[82]andQFire[83]datasetsaswell.The WVUnon-idealdatasethas1557imagesfrom241subjectsobtainedundernon-idealconditions exhibitingthepresenceofblur,outoffocusandocclusion.Atotalof5277genuinescoresand 1206069impostorscoresaregeneratedontheWVUdataset.QFirehas1304lefteyeimagesfrom 90subjectsimagedatvariousacquisitiondistances.Atotalof8847genuinescoresand840709 impostorscoresaregeneratedontheQFiredataset.Figure4.14showstheresultofapplyingthe proposedmatchingmethodsonWVUandQFiredatasets,andtheimprovementinperformanceis clearlyobserved.5510-410-21001029596979899100False Accept Rate (%)Genuine Accept Rate (%) Sum ruleMasek-1DOSIRIS-SDKMethod1Method2Method3Method 1 + Masek-1D00.10.20.30.40.50.60.700.020.040.060.080.10.120.14Hamming DistanceNormalized histograms of IrisCode match scores for Method 1 Genuine Sum ruleImpostor Sum ruleGenuine Method1Impostor Method1Decrease indistance scoreDecrease indistance score(a)(b)-0.100.10.20.30.40.50.600.050.10.150.20.250.30.35Hamming DistanceNormalized histograms of IrisCode match scores for Method 2 Genuine Sum ruleImpostor Sum ruleGenuine Method2Impostor Method200.10.20.30.40.50.60.700.020.040.060.080.10.120.14Hamming DistanceNormalized histograms of IrisCode match scores for Method 3 Genuine Sum ruleImpostor Sum ruleGenuine Method3Impostor Method3Increase indistance scoreIncrease indistance score(c)(d)Figure4.11(a)ROCsforfulldata.Thegenuineandimpostorscoredistributionsareplottedfor (b)Method1,(c)Method2and(d)Method3. 4.6Examples Theproposedrule-basedmatchingmethodisabletoprovidebettervperformanceover thetraditionalmethod.ThisimpliesthatatalowoperatingFARof,say,0:0001%FARadilatedprobeimagethatwouldnothavepreviouslymatchedwithanon-dilatedimageinthegallerywould nowbecorrectlyidentiusingthenewmatchingscheme.Examplesofsuchpairsofimagesare showninFigure4.15.Itishoweverpossiblethattheimprovementmaynotbeapparent,orcan resultinafalsemis-matchwhencomparinggenuinepairimageswithsimilarpupilsizebutlarge Hammingdistance(duetoocclusion/specular5610-410-21001029596979899100False Accept Rate (%)Genuine Accept Rate (%)Small difference in iris width Sum RuleMethod1Method2Method3Masek-1DMethod1 + Masek-1D10-410-210010280859095100False Accept Rate (%)Genuine Accept Rate (%)Medium difference in iris width Sum RuleMethod1Method2Method3Masek-1DMethod1 + Masek-1D(a)(b)10-410-2100102707580859095100False Accept Rate (%)Genuine Accept Rate (%)Large difference in iris width Sum RuleMethod1Method2Method3Masek-1DMethod1 + Masek-1D(c)Figure4.12ROCsgeneratedbyusingthegenuinescoresforpairswhosepupildilationratio differencesare(a)small,(b)mediumand(c)large.Theimpostordistributionsareheldthesame acrossallthecases.57Figure4.13ThehistogramofgenuineandimpostorscoresusingMasek'smethodandafter fusionofmatchscoresfromMasek'smethodandproposedMethod1.10-310-210-1100101102020406080100False Accept Rate (%)Genuine Accept Rate (%)ROCs for WVU non-ideal dataset OSIRIS Sum ruleMasek-1DOSIRIS-SDKMethod1Method2Method310-310-210-1100101102556065707580859095100False Accept Rate (%)Genuine Accept Rate (%)ROCs for QFire dataset OSIRIS sum ruleMasek-1DOSIRIS-SDKMethod1Method2Method3(a)(b)Figure4.14ROCcurvesfor(a)WVUand(b)QFiredatasets.TheimprovementinGARisclearly evidentatlowFARs.58ProbeImageGalleryImageFigure4.15Genuinepairsofimagesthatwerecorrectlymatchedusingtheproposedmethodbut wereincorrectlyrejectedbythetraditionalmatchingmethodat0:0001%FAR.59CHAPTER5SUMMARY5.1Summary AnovelselectivematchingschemebasedonIrisCodesobtainedusingmultiscaleispro- posed.Thethreeproposedmethodsintegratethedecisionsmadeatthebi(orpixel)level,thereby accountingforlocaldeformations.Theproposedapproachisshowntoimprovethe matchingaccuracywhencomparingimageswithlargedifferencesinpupildilationratio.Itisalso showntoimprovetheperformancewhennon-idealiridesarecomparedwheremultiplefactors includingimpropersegmentation,off-gazeimagescouldnegativelymatchingaccuracy. Futureworkwillaimatexploringothermatchingstrategies,whicharebasedonadeeperunder- standingoftheadvantageofthesemethods.Thedistributionofmultidecisionpatternscouldbeusedasafeaturevectorandaclascouldbetrainedtoselectthebestdecisionstrategy.Inthiswork,sizesareincreasedalongthe angulardirection;infuture,weaimtoexploreothersetssuchasthosevaryingincreasingin theradialdirection,orthoseradialandangularetc.Inaddition,thepossibilityofdesigning newencodingschemesbasedontheresultsofthisthesiswillbeexplored.Inparticular,bit-level decisionintegrationcanallowforthegenerationofspatialstatisticsthatcanpotentiallyprovide deeperinsightsintothevariationoftheiristextureofanindividual.60BIBLIOGRAPHY61BIBLIOGRAPHY[1]HelgaKolb,fiWebvision,flhttp://www.nextgenid.com/.[2]KebesatEnglishWikipedia,fiAbsorptionspectrumofwater,flhttp://commons.wikimedia.org/wiki/File:Absorption_spectrum_of_liquid_water.png.[3]NikiforosKollias,fiThespectroscopyofhumanmelaninpigmentation,flinJournalofInves-tigativeDermatology.BLACKWELLSCIENCEINC238MAINST,CAMBRIDGE,MA02142,1994,vol.102,pp.268Œ268.[4]L.Masek,fiMATLABsourcecodeforaBiometricSystemBasedonIrisPat-terns,flTheSchoolofComputerScienceandSoftwareEngineering,TheUniversityofWesternAustralia,2003.[5]Z.Wei,T.Tan,andZ.Sun,fiNonlinearirisdeformationcorrectionbasedongaussianmodel,flAdvancesinBiometrics,pp.780Œ789,2007.[6]K.Hollingsworth,K.W.Bowyer,andP.J.Flynn,fiPupildilationdegradesirisbiometricperformance,flComputerVisionandImageUnderstanding,vol.113,no.1,pp.150Œ157,2009.[7]H.Rohen,fiDerbauderregenbogenhautbeimmenschenundeinigensäugern,flGegenbaurMorphologyJournal,vol.91,pp.140,1951.[8]H.J.Wyatt,fiA`minimum-wear-and-tear'meshworkfortheiris,flVisionResearch,vol.40,no.16,pp.2167Œ2176,2000.[9]X.YuanandP.Shi,fiAnon-linearnormalizationmodelforirisrecognition,flAdvancesinBiometricPersonAuthentication,pp.135Œ141,2005.[10]AgeevatWikimediaCommons,fiImageofhumaneye,flhttp://commons.wikimedia.org/wiki/File:Ageev_iris.jpg.[11]AnilKJain,KarthikNandakumar,andArunRoss,fi50yearsofbiometricresearch:Accom-plishments,challenges,andopportunities,flPatternRecognitionLetters,2016.[12]fiISO/IEC2382-37:2012,flhttp://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=55194.[13]DineiFlorencioandCormacHerley,fiAlarge-scalestudyofwebpasswordhabits,flinPro-ceedingsofthe16thinternationalconferenceonWorldWideWeb.ACM,2007,pp.657Œ666.[14]A.K.Jain,A.Ross,andS.Prabhakar,fiAnintroductiontobiometricrecognition,flIEEETransactionsonCircuitsandSystemsforVideoTechnology,vol.14,no.1,pp.4Œ20,2004.[15]BrianDeCannandArunRoss,fifihasthispersonbeenencounteredbefore?fl:Modelingananonymoussystem,flinComputerVisionandPatternRecognitionWorkshops(CVPRW).IEEE,2012,pp.89Œ96.62[16]NathanDKalka,JinyuZuo,NataliaASchmid,andBojanCukic,fiImagequalityassessmentforirisbiometric,flinDefenseandSecuritySymposium.InternationalSocietyforOpticsandPhotonics,2006,pp.62020DŒ62020D.[17]J.Daugman,fiHowirisrecognitionworks,flIEEETransactionsonCircuitsandSystemsforVideoTechnology,vol.14,no.1,pp.21Œ30,2004.[18]RezaDerakhshani,ArunRoss,andSimonaCrihalmeanu,fiAnewbiometricmodalitybasedonconjunctivalvasculature,flProc.ofNeuralNetworksinEngineering(ANNIE),pp.1Œ8,2006.[19]RobertBHillandJoelCJohnson,fiEyefundusopticalscannersystemandmethod,flJuly21996,USPatent5,532,771.[20]PawelKasprowskiandJózefOber,fiEyemovementsinbiometrics,flinBiometricAuthenti-cation,pp.248Œ258.Springer,2004.[21]CoreyDHollandandOlegVKomogortsev,fiBiometricvviacomplexeyemove-ments:Theeffectsofenvironmentandstimulus,flinBiometrics:Theory,ApplicationsandSystems(BTAS).IEEE,2012,pp.39Œ46.[22]UnsangPark,ArunRoss,andAnilKJain,fiPeriocularbiometricsinthevisiblespectrum:Afeasibilitystudy,flinBiometrics:Theory,Applications,andSystems,2009.IEEE,2009,pp.1Œ6.[23]RichardASturmandMatsLarsson,fiGeneticsofhumaniriscolourandpatterns,flPigmentcell&melanomaresearch,vol.22,no.5,pp.544Œ562,2009.[24]SunpreetSArora,MayankVatsa,RichaSingh,andAnilJain,fiIrisrecognitionunderalcoholApreliminarystudy,flin5thIAPRInternationalConferenceonBiometrics(ICB).IEEE,2012,pp.336Œ341.[25]V.F.Pamplona,M.M.Oliveira,andG.V.G.Baranoski,fiPhotorealisticmodelsforpupillightxandiridalpatterndeformation,flACMTransactionsonGraphics(TOG),vol.28,no.4,pp.106,2009.[26]HugoProença,fiOnthefeasibilityofthevisiblewavelength,at-a-distanceandon-the-moveirisrecognition,flinComputationalIntelligenceinBiometrics:Theory,Algorithms,andAp-plications.IEEE,2009,pp.9Œ15.[27]C.Boyce,A.Ross,M.Monaco,L.Hornak,andX.Li,fiMultispectralirisanalysis:Apre-liminarystudy,flinCVPRworkshoponBiometrics,2006.[28]A.Ross,R.Pasula,andL.Hornak,fiExploringmultispectralIrisrecognitionbeyond900nm,flinInternationalConferenceonBiometrics:Theory,Applications,andSystems(BTAS).IEEE,2009,pp.1Œ8.63[29]FrederickWWheeler,AGAmithaPerera,GilAbramovich,BingYu,andPeterHTu,fiStand-offirisrecognitionsystem,flinBiometrics:Theory,ApplicationsandSystems.IEEE,2008,pp.1Œ7.[30]WenboDong,ZhenanSun,andTieniuTan,fiAdesignofirisrecognitionsystematadistance,flinChineseConferenceonPatternRecognition.IEEE,2009,pp.1Œ5.[31]SRIinternational,fiWeblink,flhttp://www.sri.com/engage/products-solutions/iom-passport-portal-system.[32]SRIinternational,fiWeblink,flhttp://www.sri.com/engage/products-solutions/iom-pass-thru-drive-up-iris-recognition-system.[33]VishnuNareshBoddetiandBVKVijayaKumar,irisrecognitionusingunrestoredwavefront-codedimagery,flIEEETransactionsonSystems,ManandCy-bernetics,PartA:SystemsandHumans,,vol.40,no.3,pp.495Œ508,2010.[34]SriramPTankasala,VikasGottemukkula,SashiKanthSaripalle,VenkataGoutamNalamati,RezaDerakhshani,RaghunandanPasula,andArunRoss,fiAvideo-basedhyper-focalimag- ingmethodforirisrecognitioninthevisiblespectrum,flinIEEEConferenceonTechnologiesforHomelandSecurity(HST),2012,pp.214Œ219.[35]RichardPWildes,fiIrisrecognition:anemergingbiometrictechnology,flProceedingsoftheIEEE,vol.85,no.9,pp.1348Œ1363,1997.[36]L.Ma,Y.Wang,andT.Tan,fiIrisrecognitionusingcircularsymmetricflinProceed-ingsofthe16thInternationalConferenceonPatternRecognition(ICPR),2002,vol.2,pp.414Œ417.[37]JinyuZuoandNataliaASchmid,fiOnamethodologyforrobustsegmentationofnonidealirisimages,flIEEETransactionsonSystems,Man,andCybernetics,,vol.40,no.3,pp.703Œ718,2010.[38]A.RossandS.Shah,fiSegmentingnon-idealirisesusinggeodesicactivecontours,flinBio-metricsSymposium:SpecialSessiononResearchattheBiometricConsortiumConference,2006,pp.1Œ6.[39]KaushikRoy,PrabirBhattacharya,andChingYSuen,fiUnidealirissegmentationusingregion-basedactivecontourmodel,flinImageAnalysisandRecognition,pp.256Œ265.Springer,2010.[40]MayankVatsa,RichaSingh,andAfzelNoore,fiImprovingirisrecognitionperformanceusingsegmentation,qualityenhancement,matchscorefusion,andindexing,flIEEETransactionsonSystems,Man,andCybernetics,PartB:Cybernetics,vol.38,no.4,pp.1021Œ1035,2008.[41]RandyPBroussard,LaurenRKennell,DavidLSoldan,andRobertWIves,fiUsingneuralnetworksandfeaturesaliencytechniquesforimprovedirissegmentation,flinNeuralNetworks,2007.IJCNN2007.InternationalJointConferenceon.IEEE,2007,pp.1283Œ1288.64[42]ZhaofengHe,TieniuTan,ZhenanSun,andXianchaoQiu,fiTowardaccurateandfastirissegmentationforirisbiometrics,flIEEETransactionsonPatternAnalysisandMachineIntel-ligence,vol.31,no.9,pp.1670Œ1684,2009.[43]RuihuiZhu,JinfengYang,andRenbiaoWu,fiIrisrecognitionbasedonlocalfeaturepointmatching,flinInternationalSymposiumonCommunicationsandInformationTechnologies.IEEE,2006,pp.451Œ454.[44]FernandoAlonso-Fernandez,PedroTome-Gonzalez,VirginiaRuiz-Albacete,andJavierOrtega-Garcia,fiIrisrecognitionbasedonsiftfeatures,flinInternationalConferenceonBiometrics,IdentityandSecurity(BIdS).IEEE,2009,pp.1Œ8.[45]WageehWBolesandBoualemBoashash,fiAhumantechniqueusingimagesoftheirisandwavelettransform,flIEEEtransactionsonsignalprocessing,vol.46,no.4,pp.1185Œ1188,1998.[46]Chia-TeChou,Sheng-WenShih,Wen-ShiungChen,andVictorWCheng,fiIrisrecognitionwithmulti-scaleedge-typematching,flin18thInternationalConferenceonPatternRecogni-tion.IEEE,2006,vol.4,pp.545Œ548.[47]DdeMartin-Roche,CarmenSanchez-Avila,andRaulSanchez-Reillo,fiIrisrecognitionforbiometricusingdyadicwavelettransformzero-crossing,flin35thInternationalCarnahanConferenceonSecurityTechnology.IEEE,2001,pp.272Œ277.[48]VivekanandDorairaj,NataliaASchmid,andGamalFahmy,fiPerformanceevaluationofiris-basedrecognitionsystemimplementingpcaandicaencodingtechniques,flinDefenseandSecurity.InternationalSocietyforOpticsandPhotonics,2005,pp.51Œ58.[49]Ya-PingHuang,Si-WeiLuo,andEn-YiChen,fiAnefirisrecognitionsystem,flinInternationalConferenceonMachineLearningandCybernetics.IEEE,2002,vol.1,pp.450Œ454.[50]LiMa,TieniuTan,YunhongWang,andDexinZhang,fiPersonalbasedoniristextureanalysis,flIEEETransactionsonPatternAnalysisandMachineIntelligence,vol.25,no.12,pp.1519Œ1533,2003.[51]Wen-ShiungChen,Ren-HungHuang,andLiliHsieh,fiIrisrecognitionusing3dco-occurrencematrix,flinAdvancesinBiometrics,pp.1122Œ1131.Springer,2009.[52]MelvinEmber,EncyclopediaofSexandGender:MenandWomenintheWorld'sCulturesTopicsandCulturesAK-Volume1;CulturesLZ,vol.2,Springer,2003.[53]K.W.Bowyer,K.Hollingsworth,andP.J.Flynn,fiImageunderstandingforirisbiometrics:Asurvey,flComputerVisionandImageUnderstanding,vol.110,no.2,pp.281Œ307,2008.[54]KevinWBowyer,SarahEBaker,AmandaHentz,KarenHollingsworth,TanyaPeters,andPatrickJFlynn,fiFactorsthatdegradethematchdistributioninirisbiometrics,flIdentityintheInformationSociety,vol.2,no.3,pp.327Œ343,2009.65[55]RegisteredTravelerInteroperabilityConsortium(RTIC),fiTechnicalinteroperabilitycationfortheRegisteredTravelerProgram(Version1.0ŒFinal),flOnline,2006.[56]SoumyadipRakshitandDonaldMMonro,fiAnevaluationofimagesamplingandcompres-sionforhumanirisrecognition,flIEEETransactionsonInformationForensicsandSecurity,vol.2,no.3,pp.605Œ612,2007.[57]JohnDaugmanandCathrynDowning,fiEffectofsevereimagecompressiononirisrecogni-tionperformance,flIEEETransactionsonInformationForensicsandSecurity,vol.3,no.1,pp.52Œ61,2008.[58]IshanNigam,MayankVatsa,andRichaSingh,fiOcularbiometrics:Asurveyofmodalitiesandfusionapproaches,flInformationFusion,vol.26,pp.1Œ35,2015.[59]GeorgeMcConnon,FarzinDeravi,SanaulHoque,KonstantinosSirlantzis,andGarethHow-ells,fiImpactofcommonophthalmicdisordersonirissegmentation,flin5thIAPRInterna-tionalConferenceonBiometrics(ICB).IEEE,2012,pp.277Œ282.[60]MassimoTistarelliandMarkSNixon,AdvancesinBiometrics:ThirdInternationalConfer-ences,ICB2009,Alghero,Italy,June2-5,2009,Proceedings,vol.5558,Springer,2009.[61]DésiréeWhiteandMontserratRabago-Smith,fiGenotypeŒphenotypeassociationsandhumaneyecolor,flJournalofhumangenetics,vol.56,no.1,pp.5Œ7,2011.[62]SamuelPFenkerandKevinWBowyer,fiExperimentalevidenceofatemplateagingeffectinirisbiometrics,flinWorkshoponApplicationsofComputerVision(WACV).IEEE,2011,pp.232Œ239.[63]IreneELoewenfeldandOttoLowenstein,Thepupil:anatomy,physiology,andclinicalapplications,vol.2,Wiley-Blackwell,1993.[64]G.Francois,P.Gautron,G.Breton,K.Bouatouch,etal.,fiAnatomicallyaccuratemodelingandrenderingofthehumaneye,fl2007.[65]G.Francois,S.Pattanaik,K.Bouatouch,andG.Breton,fiSubsurfacetexturemapping,flSIGGRAPH,2006.[66]AntwanDClark,ScottAKulp,IsomHHerron,andAARoss,fiAtheoreticalmodelfordescribingirisdynamics,flinHandbookofIrisRecognition,pp.129Œ150.Springer,2013.[67]A.N.PalazottoandS.T.Dennis,Nonlinearanalysisofshellstructures,AIAAEducationServices,1992.[68]W.F.Carroll,APrimerforFiniteElementsinElasticStructures,JohnWiley&Sons,Inc,1999.[69]RSGejji,ADClark,SCrihalmeanu,andAARossy,fiUnderstandingtheeffectsofpupildilationonirisrecognitioninthenirspectrum,flinIEEEInternationalSym-posiumonTechnologiesforHomelandSecurity(HST).IEEE,2015,pp.1Œ6.66[70]ADClark,RSGejji,ADRidley,andAARoss,fiThestatesofdilationinirisrecognition(apreliminarystudy),flinIEEEInternationalSymposiumonTechnologiesforHomelandSecurity(HST).IEEE,2015,pp.1Œ5.[71]D.TerzopoulosandD.Metaxas,fiDynamic3dmodelswithlocalandglobaldeformations:Deformablesuperquadrics,flinTransactionsonPatternAnalysisandMachineIntelligence.IEEE,1990,vol.13.[72]M.Mooney,fiAtheoryoflargeelasticdeformation,flJournalofAppliedPhysics,vol.11,no.9,pp.582Œ592,1940.[73]F.L.Bookstein,fiPrincipalwarps:Thin-platesplinesandthedecompositionofdeformations,flIEEETransactionsonPatternAnalysisandMachineIntelligence,,vol.11,no.6,pp.567Œ585,1989.[74]JasonThornton,MariosSavvides,andVKumar,fiAbayesianapproachtodeformedpatternmatchingofirisimages,flIEEETransactionsonPatternAnalysisandMachineIntelligence,vol.29,no.4,pp.596Œ606,2007.[75]InmaculadaTomeo-Reyes,ArunRoss,AntwanDClark,andVinodChandran,fiAbiome-chanicalapproachtoirisnormalization,flinInternationalConferenceonBiometrics(ICB).IEEE,2015,pp.9Œ16.[76]LDhir,NEHabib,DMMonro,andSRakshit,fiEffectofcataractsurgeryandpupildilationonirispatternrecognitionforpersonalauthentication,flEye,vol.24,no.6,pp.1006Œ1010,2009.[77]OrangSeyeddain,HannesKraker,AndreasRedlberger,AloisKDexl,GuentherGrabner,andMartinEmesz,fiReliabilityofautomaticbiometricirisrecognitionafter ordrug-inducedpupildilation,flEuropeanjournalofophthalmology,vol.24,no.1,pp.58Œ62,2013.[78]KarenPHollingsworth,KevinWBowyer,andPatrickJFlynn,fiThebestbitsinaniriscode,flTransactionsonPatternAnalysisandMachineIntelligence,,vol.31,no.6,pp.964Œ973,2009.[79]ChristianRathgeb,AndreasUhl,andPeterWild,fiOncombiningselectivebestbitsofiris-codes,flinBiometricsandIDManagement,pp.227Œ237.Springer,2011.[80]ChristianRathgeb,AndreasUhl,andPeterWild,fiShiftingscorefusion:Onexploitingshiftingvariationinirisrecognition,flinProceedingsofthe2011ACMSymposiumonAppliedComputing.ACM,2011,pp.3Œ7.[81]JamesEGentile,NaliniRatha,andJonathanConnell,fiAneftwo-stageirisrecognitionsystem,flinBiometrics:Theory,Applications,andSystems.IEEE,2009,pp.1Œ5.[82]S.Crihalmeanu,ArunRoss,StephanieSchuckers,andL.Hornak,fiAprotocolformultibio-metricdataacquisition,storageanddissemination,flWVU,LaneDept.ofComputerScienceandElectricalEng.,Morgantown,WV,TechicalReport,2007.67[83]S.Schuckers,P.Lopez,P.Johnson,N.Sazonova,F.Hua,R.Lazarick,C.Miles,E.Talbassi,E.Sazonov,A.Ross,andL.Hornak,fiQualityŒface/irisresearchensembledataset overview,flClarksonUniversity,DeptofElectricalandComputerEngineering,TechicalReport,2010.68