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ABSTRACT

SPATIAL HETEROGENEITY AND THE STABILITY

OF A PREDATOR-PREY LINK

BY

Philip Haney Crowley

Heterogeneity of spatial structure can stabilize a predator-prey

link: Let the stability of an ecosystem or of a predator-prey inter—

action be its ability to absorb perturbations without extinction or

escape of the prey population. Then the presence of saturable refuge

space in the system makes stable, predator-limited prey equilibria

possible by displacing the functional response curve toward higher prey

densities. And if the time scale of prey increase is less than or about

equal to the time scale of the predator's numerical response, then

stability can be operationalized and calculated directly from parameter

values of a mathematical model.

An analysis of the effects of stability of adjusting the model's

parameters shows that reducing the chance of prey extinction and the

chance of escape from predator regulation are often incompatible goals.

For example, increasing the amount of refuge space in a system decreases

the chance of prey extinction but increases the chance of their escape;

similarly, increasing intraspecific interference among predators

decreases the chance of extinction and increases the chance of escape.

These results and those for other parameters can be quantified for

specific environmental conditions and control measures, providing a
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means of predicting and policing the behavior of spatially-distributed

ecosystems in stochastic environments.
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It may be that, in some way at present unknown, the heterogeneity of

environments in space and time can independently bring about natural

control, but I cannot see a logical basis for this and shall remain

unconvinced unless someone can demonstrate how it works out (or at

least, for a start, how it could do so).

M. E. Solomon, 1957





INTRODUCTION

Densities of predator and prey populations in a flask or on a

tray of oranges fluctuate violently (Gause, 1934; Huffaker, 1958), but

densities of the same populations in natural ecosystems may remain

relatively constant. Such observations have suggested to many ecologists

that trophic complexity is somehow responsible for the stability of

ecological systems, a view currently being challenged by some rather

elegant theory. According to May (1973), Maynard Smith (1974), and

others, biologically complex systems should be lg§§_stable than simpler

ones, often strikingly so. The question has now become, "Where is all

that natural stability coming from?"

Smith (1972) catalogued major stability-related influences on

ecosystems and demonstrated the critical stabilizing role of spatial

heterogeneity (patchiness in space) (also see Holling, 1968). Unfortu-
 

nately, however, little progress has been made in quantifying spatial
 

heterogeneity, though Smith's work and that of Levin and Paine (1974)

appear promising. And even stability itself has yet to be quantified

in an ecologically general and empirically useful way, as attested by

the disparate stability notions of MacArthur (1955), Margalef (1969),

Lewontin (1969), Smith (1972), Holling (1973), and many others.

This paper presents an attempt to operationalize the concepts

of stability and spatial heterogeneity in order to help explain and



 

 



measure the behavior of ecosystems distributed in space. Three concepts

central to this analysis are introduced first: stability, spatial

heterogeneity, and the responses of predators to prey and predator

densities. Next, the effects of one kind of spatial heterogeneity on

the stability of a predator-prey link are analyzed theoretically, and

the theory is extended to two more complex cases. The discussion then

focuses briefly on three case studies from the literature, considers

stabilizing responses of predators, and outlines applications to pest

and game management. Finally, an appendix presents some empirical

support for a theoretical result.

Stability

In this paper, stability is taken to be an inherent property of
 

an ecosystem and of its conStituent populations (i.e., a tendency in

response to perturbation), rather than an "emergent property" at the
 

ecosystem level of organization or the observed behavior of the system
 

through time (i.e., persistence or constancy). It is assumed that

ecosystem-level stability simply integrates the characteristics of the

constituent population-level predator-prey interactions (Smith, 1972;

May, 1973; Maynard Smith, 1974). From this perspective, stability can

initially be analyzed within single predator-prey links, with bio-

logically and spatially complex cases elaborated later. Interspecific

competition and multispecies predator-prey interactions are deferred for

consideration elsewhere.

Following a suggestion by May (1974a) and a similar approach in

Anderson (1974), I distinguish two fundamental kinds of stability:

elasticity and conformability. Elasticity is a measure of the tendency
 



for perturbations of state variables (functions of time reflecting the
 

system's history, such as prey density) to be damped (cf. "Lyapunov

stability" in Rosen, 1970). Conformability is a measure of the tendency
 

for elasticity to be maintained in the face of perturbations of

parameters (coefficients independent of the system's dynamics, such as
 

maximum prey per capita increase rate). Quick but drastic changes of

environment can "shock" the state variables directly, whereas more

subtle but longer-lasting changes of environment will "shift" the

parameters of the system (see Takahashi, 1964). If the elasticity and

the conformability of an ecosystem are Operationally defined and

appropriately quantified, then the response of that system to ”shocks”

and "shifts" can be predicted.

Spatial Heterogeneity (SH)
 

Biological populations almost always assume clumped (under-

dispersed) distributions in physical space in response to one or both

of two kinds of spatial heterogeneity:

1. stochastic SH, in which patchiness arises from environmental or
 

demographic stochasticity, and

2. structural SH, in which patchiness is imposed on the organisms
 

by the deterministic structure of the environment (cf. Levin,

1974).

The rocky intertidal zone along the coast of Washington State studied by

Paine (1966, 1969) and his students nicely exemplifies stochastic SH

(though structural SH is certainly also present): barnacles, mussels,

starfish, and other invertebrates occupy the tidal rocks in transient

patterns that slowly shift in response to competition, predation, and



 



the gouging action of logs and waves. At any given place within the

intertidal, the abundance of each population depends much more strongly

on such stochastic events than on local physical structure. Other

systems featuring predominantly stochastic SH include those in Huffaker

(1958), Huffaker et a1. (1963), Pimentel et a1. (1963), Luckinbill

(1973, 1974), Hardman and Turnbull (1974), and several in Levin and

Paine (1974).

The most familiar example of structural SH must be the

Paramecium-Didinium flask systems of Gause (1934), in which the oatmeal
 

sediment at the flask bottoms protected the paramecium from its

predator. Other structural SH-dominated systems are found in Errington

(1946), Smith (1972), van den Ende (1973), Crombie (1946), Huffaker and

Kennett (1956), and Johnson (1973); the last three of these provide the

case studies considered later in this paper. Structural SH, with

physical structure of paramount biological importance, is the major

focus of this analysis; in particular, the implications of including

refuges in a predator-prey universe are examined in detail.

The term "refuge" is used here in a broad sense to designate

structurally definable regions of space within which predators harvest

prey less effectively (cf. "relative refuge" of Huffaker, 1958 and

Smith, 1972). In turn, this reduced effectiveness of predators must

generate a strong selection pressure for prey to occupy such regions

preferentially (Tullock, 1970; Smith, 1972). In Errington's mink-muskrat

system, for example, muskrats with lodges established in ponds or

marshes are nearly (not completely) invulnerable to mink predators

(Errington, 1946). Similarly, in van den Ende's chemostat, bacteria
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attached to the vessel walls largely (but not entirely) escaped the

swimming Tetrahymena population and avoided the outflow; moreover, after
 

only a few days the bacteria in the reactor had adapted to the refuge by

failing to synthesize polysaccharide capsules, facilitating adherence to

solid surfaces (van den Ende, 1973). Demonstrating the stability

effects of such refuges in predator-prey interactions depends on an

understanding of the responses of predators.

Re§ponses to Predators to Prey and Predator Densities
 

”Predator" is another term broadly applied here, denoting at

least carnivores, insect parasitoids, and some herbivores (e.g., seed

eaters). Since this analysis emphasizes instantaneous responses and the

prediction of dynamics from the magnitudes of equilibria, many important

distinctions between parasitoids and classical predators (see Royama,

1971) can be ignored to preserve "perspective" (Huffaker, 1971).

Predators can respond to changes in the density of their prey

by changing their 93p density, a numerical response, or? y changi g the

rate at which they kill prey, a functional response (Solomon, 1949).

The numerical response of predators to prey increase may include

reproduction or aggregation or both, but such numerical changes can be

expressed only after a time lag. Although the (behavioral) lag in

aggregation is probably often negligible (e.g., hawks vs. field mice),

the (physiological-developmental) reproductive lag can be quite long

(e.g., fish vs. zooplankton); the stability prOperties of models that

track predator density without a reproductive lag, such as the

"pathologically simple" Lotka-Volterra equations, are probably only

mathematical artifacts (see May, 1973; Nicholson, 1955). Furthermore,



the relation in nature between prey density and the resulting predator

density is invariably quite complex and lacks a truly general form

(Readshaw, 1973). So both mathematical intractability and biological

complexity impede the development of a sufficiently broad, quantitative

model incorporating the reproductive numerical response.

Many predators either have negligibly small or extremely slow

numerical responses relative to the increase rates of their prey (e.g.,

planktivorous fish, insectivorous birds), or they are limited by other

resources (e.g., some territorial birds and mammals). The stability of

these interactions and others considered below depends on the functional

response (Takahashi, 1964; Solomon, 1964), a phenomenon thoroughly

investigated both theoretically and experimentally by Holling (1959a,

1959b, 1961, 1965, 1966). Holling classifies the functional response

to prey density--the killing rate per predator as a function of prey

density--into three main types: type 1, a linear rise of the functional

response with prey density to a plateau; type 2, a negatively accelerated,

monotonically increasing response, rising asymptotically to a maximum;

and type 3, a sigmoid functional response, featuring initial positive

acceleration and an asymptotic rise to a plateau. Type 1 has never been

convincingly demonstrated empirically and is at best uncommon. The vast

majority of laboratory functional response data resemble type 2 and fit

the theoretical curve in Figure l, particularly data from invertebrate

predators and parasitoids and from vertebrates in the absence of

alternate prey (Holling, 1965). There are also considerable data

resembling type 3 for both vertebrates (e.g., Holling, 1959a) and

invertebrates (e.g., Lawton et a1., 1974), usually but not invariably
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with alternate prey present, yet no simple analytical expression is

available in the literature to fit them. An equation derived for this

purpose from the type 2 equation is illustrated in Figure 2; but since

the new equation does not explicitly incorporate the dynamics of

learning or of any of the other behavioral factors commonly supposed to

cause this sigmoid shape (see Krebs, 1973), it will only be used to

suggest the general stability implications of the type 3 functional

response.

Thus, in striking contrast to the numerical response, the

functional response of predators exhibits little or no time lag and

occurs mainly in one or two characteristic forms. Furthermore, all

parameters of the equation describing the most common form can be

obtained independently of the functional response data themselves.

Whenever the functional response dominates predator-prey dynamics,

these important features can greatly facilitate an a_priori stability

analysis of the interaction.

Predators may also exhibit a functional reSponse to predator

density. Though social facilitation may be significant in some cases,

the predominant non—linear consequence of increasing predator densities

is interference. The theoretical derivation below includes a cursory

analysis of the impact of interference on stability in a spatially

heterogeneous universe.

The developmental reponse of predators (Murdoch, 1971), a largely

unexplored phenomenon of possible limited importance for stability, is

ignored in this paper.
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STRUCTURAL SPATIAL HETEROGENEITY AND STABILITY:

DERIVATION AND ANALYSIS

The Functional Response in a Universe

Containing.Refuge Space

 

 

Consider a conceptual universe composed of two types of space:

refuge space ("inside") and non—refuge space ("outside"). Ignore

temporarily the question of how these spaces are distributed--as many

small patches of refuge and non-refuge or as a few larger patches. And

suppose initially that the refuge space is a "perfect refuge," that is,

that (1) predators cannot kill prey inside and (2) prey stay inside if

there is room for them. Now if the perfect refuge has a capacity of h

prey density units, then the functional response of predators in this

universe (but outside the refuge space) must be displaced h units to the

right along the prey density axis from its corresponding values in a

refuge-free universe. For type 2 predators in particular, Figure 3

replaces Figure 1.

Now the two restrictions that made the refuge "perfect" can be

relaxed: Distinguish "3?, the rate of successful attack for predators

hunting inside, from ”a", here restricted to the rate of successful

attack for predators hunting outside, such that Ofgfa; and let "q"

represent the refuge occupancy quotient, the fraction of prey occupying

the refuge space when H<<h, with the restriction that Q3931. (Thus for

a perfect refuge, a_= O and q = 1.) Then in the general case, with
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O < a_< a and O < q < 1, functional responses of predators hunting

inside and outside the refuge space may differ strikingly (see

Figures 4 and 5): Predators hunting inside encounter prey at densities

reflecting the prey occupancy quotient q and the volume ratio X2 but

at some critical density of prey in the universe, H, the refuge space is

just saturated and cannot admit additional prey; equating the functional

response when H §_H with the functional response with H :_H and solving

for prey density shows that H equals h/q for both predator types. So

the functional response curves of predators inside rise from the origin--

in the typical hyperbola for type 2 or in the sigmoid-shape for type 3--

bending sharply to a plateau at prey density h/q. Predators hunting

outside exhibit a functional response similar in shape to the inside

curve at prey densities below h/q; the prey density outside depends

directly on v and on l-q, the fraction of prey occupying pppfrefuge

space at low densities. Since the initial curves reach the original

displaced curves (e.g., Figure 3) at h/q--the saturation density, above

which the refuge space is indistinguishable from a perfect refuge--the

displaced curves specify the functional response at prey densities

greater than h/q. In sum, predators inside encounter prey at a density

of qu when 0 :_H f_h/q and at KP when H :_h/q; predators outside

encounter prey at a density of v(l-q)H when 0 :_H :_h/q and at v(H-h)

when H :_h/q. And for both type 2 and type 3 predators, the functional

response curve has a slope discontinuity at h/q, above which it remains

constant for predators inside and rises to an asymptote at 1/b for

predators outside.
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The outside curves of Figures 4 and 5 exemplify what Holling

(1959b) has called the type 4 functional response--curves displaced

along the prey density axis by a ”threshold of security." Unlike the

other types of functional response curves, however, these are dominated

by the influence of environmental structure rather than by intrinsic

biological characteristics of the predators and prey; therefore it seems

preferable to view them as modified type 2 and 3 curves rather than as

an additional distinct type.

Notice in Figure 4 at zero prey density that since the slope of

the inside F-curve (azq) exceeds the slope of the outside F-curve

(av(l-q)), the two curves must intersect. The intersection prey density

:Q can be found by equating the two functional response expressions (4)

for H :_h/q and solving for H:

 

3V
_ ll —

=§ - h“av+aa(pfb)xh)+1)

(6)

~ 1165+ 1) when p~b.

Figure 4 suggests that if apq > av(l-q), predators should hunt inside the

refuge space whenever H < H and outside whenever H > §:to maximize their

kill rates. This conclusion implies that the magnitudes of a, a) q, and

other parameters may be viewed as evolutionary "strategies" with

predictable trajectories over evolutionary time in a universe of known

structure. For example, it can be shown that prey facing predators with

a strong tendency to aggregate in regions of high prey density should

reduce their refuge occupancy quotient q when H <:§ and increase q when

H >.H. But evolutionary arguments are peripheral to the main thrust of
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this paper: exploring the stability implications of spatial heterogeneity

on an ecological time scale.
 

Appendix A presents.a preliminary experimental validation of the

new functional response curves in Figure 4. By modifying and rerunning

the disc experiments of Holling (1959b) with and without refuge space, I

obtained good agreement between data and independently-parameterized

theoretical curves. The appendix also tabulates stability variables

of the observed outside functional response curve that were estimated

following the analysis in later sections of the text.

Much of the remainder of this analysis emphasizes the outside

curves of Figures 4 and 5: hunting within the refuge space is ignored.

This approach lends tractability to the algebra and approximates many

actual predator-prey interactions featuring predator—exclusive refuges.

Moreover, in a preliminary investigation, the non-exclusive refuge case

yielded similar results unless a large proportion of the predator

population hunted inside the refuge space.

Equilibrium.Prey Density
 

If both the functional response of predators (F) and the per

capita increase rate of the prey population excluding predation effects

(R) are known functions of prey density (H), and if the numerical

response by predators is negligible, then equilibrium prey densities

(H) can be calculated by solving equation (7) for H.

R(H)H = PF (H) (7)
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where R(H) is per capita increase rate of prey excluding

predation effects, time‘l,

H is equilibrium prey density, prey volume‘l,

and p is predator density, predators volume-1.

Equation (7) states the equilibrium condition: the rate at which prey

population density increases from net reproduction (RH) equals the rate

at which density decreases from predation (pF).

Now consider the simple case in which both R and p are relatively

independent of prey density over the density range of interest; that is,

set R = r, a constant. From equations (4) and (7), assuming that

predators are type 2 and that all are hunting outside the refuge space,

rH = pF = av(l—q)pH when 0 :_H :_
l+abv(1-q)H ’ (8)

 

r
a
n
r

which has at most two roots within the interval [0, h/q),

 

 

= av(l-q)p -r

abv(l-q)r

(9)

and H = 0,

where r is the constant per capita increase rate of prey excluding

predation effects, time—1.

_ _ av (H-h)p 11
rH - pF - l+abv(H—h) when H i-q , (10)

having two or fewer roots equal to or greater than h/q,

 

H _ abvhr + ayp - r i_/r2(1 - abvh)2 + avp(an - 2r(1 + abvh))

' _ 2abvr

(11)
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Now for type 3 predators, by the same argument, equations (5)

and (7) determine a maximum of three roots in the interval [0, h/q),

av(l—q)p-r.1/(r-av(l-q)p)2-4sabv(1-q)r2

H = 2abv(l—q)r

 
(12)

and H = 0, when 0 :_H f_2—.

And (abvr)H3 + (r-2abvrh-avp)H2 + (sr-rh+abvrh2 + 2avhp)H - avth = O

h (13)

when H :_a-;

this equation has at most two positive, real roots greater than or equal

to h/q.

Equation (7) also implies that prey density equilibria must be

the prey densities at intersection points of the functional response

curve with the graph of the "prey increase function," RH/p. Figures 6

and 7 illustrate this graphical technique with R and p independent of

prey density for type 2 and type 3 predators respectively.

Now consider the general case in which the prey Per capita

increase rate is not independent of prey density. Logistic prey

p0pulation growth is the linear representative of the common class of

functions for which R(H) declines monotonically with H:

H

Rm)=M1-p an

where r is the maximum per capita prey increase rate, time"1

and k is the carrying capacity of the universe for prey,

prey volume'l.

For type 2 predators hunting outside the refuge space, equations (4),

(7), and (14) imply that
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when 0 :_H :_h/q,

 _ r(abv(l—q)k-l) i_i/r2(abv(l—q)k+l)2 - 4a2bv2(l—q)2rkp
H _

abv(l—q)r (15)

and H = 0; when H :_h/q,

(abvr)H3 + r(l-abvk-abvh)H2 + k(abvrh+avp—r)H — avhkp = 0, (16)

an implicit solution.

From (5), (7) and (14), comparable equations could also be written for

type 3 predators.

Graphical solutions in Figure 8 emphasize the similarity of

these results to those for density-independent prey reproduction, except

that monotonically decreasing R(H) usually generates an additional

stable equilibrium slightly below the carrying capacity k. Mathematical

and biological implications of this new uppermost equilibrium are

mentioned in latter sections.

Notice the four different kinds of equilibria (H) in Figures 6—8.

An equilibrium prey density is stable if the functional response F

exceeds the prey increase function RH/p at prey densities greater than

H, gpd the prey increase function exceeds the functional response

below H. Thus if H "accidentally" becomes slightly greater than H, then

the functional response exceeds the prey increase rate, and H tends to

return to H; if H becomes slightly smaller than H, then the prey increase

rate exceeds the functional response, pushing H back toward H. At an

unstable equilibrium, however, "accidental" shifts of prey density

away from H tend to become accentuated; if H rises above H, the prey

can increase faster than predators can eliminate them (i.e., RH/p > F),  
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but if H falls below H, predators can reduce prey density faster than

prey can be replaced. Semistable equilibria are stable for prey

density shifts in one direction away from H but unstable in the other;

that is, shifts along the prey density axis are accentuated in one

direction but counteracted in the other. And absorbing equilibria may

locally resemble any of the other three kinds except precisely at H:

if prey density ever reaches H, it remains there permanently. In any

universe closed to immigration, such as those considered here, H = O

(prey extinction) is an absorbing equilibrium.

In addition to those with constant or logistic R, another kind

of prey increase function features an l‘Allee Effect," in which R is

negative below some critical non-zero prey density. An expression

derived from the logistic to incorporate this effect is drawn with a

refuge—displaced functional response curve in Figure 9, indicating

patterns of equilibria similar to those in Figure 8; but note in

Figure 9 that whenever c > 0, stable equilibria are accompanied by lower

unstable equilibria (Holling, 1973).

The Escape and Extinction Thresholds

Because the magnitudes of state variables spontaneously tend to

approach stable equilibria and avoid unstable equilibria, a stable

equilibrium may be said to have a "domain of attraction” delimited by

the adjacent unstable equilibria (Lewontin, 1969). In particular, any

perturbation of prey density to a new value within its domain of

attraction returns toward the stable H, but perturbations beyond the

boundaries of the domain carry prey density toward a different stable H

in a new domain of attraction.
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A function T(H), defined as in equation (17) such that dT/dH =

-dH/dt, can clarify the stability properties of this predator—prey

interaction. In Figures 10 and 11, each r-p pair specifying a prey

increase function on the functional response graph also specifies a

graph of the stability topography function T(H). Imagine that the H-T

plane is a vertical cross—section of a surface on which a small

momentumless marble is rolling, and suppose that the marble spontaneously

rolls downslope such that the horizontal component of its velocity

equals the slope of T at each point. Then the marble's position along

the H—axis represents the prey density varible, and the dimensions of

terrain features delineate and measure the domains of attraction that

constrain the marble's trajectory; for example, when r = r3 and p = p3

in Figures 10 and 11, the stable equilibrium at Hg has as its domain of

attraction the interval (H3,Hg).

”accidentally" rolls beyond Hg, then it can spontaneously roll to zero,

But notice that if the marble

i.e., the prey population becomes extinct; thus for those parameter

values, H3 is an extinction threshold, the prey density below which the 

prey population density tends to decline to zero. 0n the other hand,

if the marble rolls beyond Hg, then it can roll toward higher prey

densities, i.e., the prey population escapes regulation by predators;

thus for those parameter values, H3 is an escape threshold, above which

prey density increases toward a resource-limited maximum (of. Holling,

1973).

When the per capita increase rate of the prey population

(neglecting predation) is approximated by a constant R, this maximum

prey density is not mathematically specified and presumably is at or

near the resource limit k. When R(H) declines monotonically with H,
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The prey density topography with type 2 predators and with

prey population growth independent of density in a universe

cpntaining refuge space. r5/p5>r4/p4>r3/p3>r2/p2>rl/p1

"HI!

”Fl/H

"Fr"

"G"

and

is the extinction threshold, prey volume '1;

is the stable equilibrium prey density, prey volume-1;

is the escape threshold, prey volume- ;

is a dummy variable for prey density, prey volume-1;

”T" is the stability topography, preyzvolume'2 time-1.
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Figure 11. The prey density topography with type 2 predators and

logistic prey population growth in a universe containing

refuge space. r4/p4>r3/p3>r2/p2>r1/p1.
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as in logistic population growth, then the size of the carrying capacity

largely determines the density of the highest stable prey population

equilibrium. Barring a precipitous drop in R(H) near k, however,

Figures 8 and 11 clearly suggest that pp£p_predators and resources

determine the level of this uppermost stable equilibrium (see May, 1973);

and conversely, owing to one of the much—lamented unrealities of the

logistic, prey are still partly limited by resources even at the lower-

most stable equilibrium. Nevertheless, the lower and upper stable

equilibria may usually be considered "predator—limited" and "resource—

limited" respectively, implying that the unstable equilibrium separating

their domains of attraction represents a true escape threshold.

Figure 10 indicates that the prey density interval in which a

stable equilibrium can exist with constant R(H) is (H, H). In other

words, if rz/p2 < r/p < rz/p4 in the figure, then there exists a stable

equilibrium prey density within (H, H). The limits of this interval can

be found as follows: For type 2 predators,

H = , (18)

.
.
O
|
:
r

the prey density at which the refuge space becomes full. But this

calculation rests on the assumption that the refuge occupancy quotient

q is really independent of prey density, even near h/q; more likely, q

will decrease somewhat as H approaches h/q, smoothing out the transition

between the intersecting functional response curves. In Figure 12, this

effect is pronounced enough to lower H to zero; the functional response

has become positively accelerated at prey densities below h/q,

resembling the type 3 functional response of Figure 2. In some instances,
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the functional response curves of Figure 10 may be more realistic than

the curve in Figure 12, and equation (18) will be applicable. H, in

contrast, does not depend on q, and Figure 12 suggests a means of

calculating its magnitude for type 2 predators: H is uniquely the

tangent point at which F(H)/H dF/dH. From equations (4),

 

 

F(H) _ av(H-h)

H ' (1+abv(fiih))n (19)

and

dF(H) = av(

dH (l+abv(H-h))2

Equating equations (19) and solving for H,

._ fih"
H - 5-5; + h (20)

For type 3 predators, H 0, since the positively accelerated

functional response at low prey densities insures stable equilibria in

this range; for all r/p > O, prey densities very near zero tend to

increase spontaneously, moving away from the absorbing equilibrium at

H = O. H for type 3 predators can be found as above, using equations

(5):

F(H) _ av(H—h)2

- (21)

H (s+H-h+abv(H-h)2)H

 

and

chn) = av(H-h)2+2avs(H—h)

(s+H-h+abv(H-h)2)2
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Equating equations (21)

abv(H-h)3 - (fi-h)h — 5(H+h) = o. (22)

Notice from (22) that when h = O, H = Vs/abv: type 3 predators can

stabilize prey density even in a homogeneous universe (Holling, 1965;

and many others).

g and H are more difficult to express explicitly when the per

capita increase rate of prey is density-dependent, even when the

logistic equation provides a suitable representation of R(H). In the

density-dependent case, g is usually zero, especially for type 3

predators (or for high q). H is the same or only slightly larger than

for constant R(H).

Stability of a Predator—Prey Link
 

This analysis suggests that stability of a predator-prey link

can be quantified by appropriately operationalizing elasticity and

conformability. (Recall that elasticity is a measure of the tendency for

perturbations of state variables to be damped; conformability is a

measure of the tendency for elasticity to be maintained in the face of

parameter perturbations.) Let the elasticity of a stable predator-

limited equilibrium prey density, E(fi), be an ordered pair expressing

the proximities of the escape and extinction thresholds to the stable

equilibrium. The simplest such expression is

‘- v

Ed?) = <F7-H, fi—H> (23)
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where fi'is a lower unstable (or absorbing) equilibrium prey density,

the extinction threshold, prey(volume)'1,

H'is a stable equilibrium prgyfidensity with a domain of

attraction in the interval (H,H) prey(volume)‘1,

and H is an upper unstable equilibrium prey density, the escape

threshold, prey(volume)‘ .

E measures the size of prey density perturbations away from the stable

density tolerable in each direction without forcing H beyond the domain

of attraction. The domain of attraction is itself specified as the

elastic region, 6(fi), the interval delimited by threshold boundaries:

5(a) = (fi,fi) (24)

Similarly, let the conformability of a stable predator—limited

equilibrium prey density C(H) express the ordered pair of differences

between the slope of the prey increase function and the minimum and

maximum conformable slopes, respectively; that is

ccfifi =<r/p - f7fi, f7} - r/p> (25)

where £7b is the minimum initial slope of the prey increase

function yielding a stable or semi-stable, predator-limited

equilibrium prey density, volume(predator-time)'1,

and £73 is the maximum initial slope of the prey increase

function yielding a stable or semi-stable, predator-limited

equilibrium prey density, volume(predator-time)‘1.

Then the conformable region of a stable equilibrium prey density, C(H),

is the range of conformable initial slopes of the prey increase function,

i.e., those slopes allowing the existence of a stable, predator—limited

equilibrium in the prey density interval (H, H):
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C(H’) = (r712, r733) (26)

In particular, for type 2 predators and prey with constant R(H),

C(II) = <r/p - FQD/H, Fan/H — r/p> (27)

and C(fi) = (Hm/13, MPH/H)

where H is now seen to be the maximum conformable prey density,

and H is now the minimum conformable prey density, both prey

Volume-1.

But if q decreases with H as prey density approaches h/q, then Figure 12

suggests that the slope of the functional response curve at zero prey

density may provide a more accurate estimate of minimum conformable prey

density. In that case

C(FI’) = <r/p — dF(O)/dH, F(H)/H - r/p> (28)

and C(Ff) = (dF(O)/dH, F(f-I)/H).

And for type 3 predators and prey with constant R(H),

(:(H’) <r/p, F(H)/H — r/p> (29)

(0,F(H)/H)-and C (H’)

E and E always refer to a given state variable and a given stable

equilibrium. With more than one prey population in the system, the

appropriate values of H, H, and H for some population H1 are the

corresponding H coordinates of the multispecies equilibria; in other
1

E . . . BH and El, Ewords, E1, 2, 2, , En can be calculated with n

prey species following the form of equations (23)-(26) using the

respective coordinates of each H = H1, H2, . . . Hn . Similarly,
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C and C always refer to a given stable equilibrium, a given state

variable, and a given parameter or combination of parameters. The

conformability analyses in this paper focus on r/p, the quotient of two

crucial and biologically "noisy" parameters; calculating the upper and

lower limits of r/p that allow a particular n-species stable equilibrium

to exist clearly requires that H and H be found in n-space, from which

F(H) and F(H) can be obtained. C and C are calculated for each state

variable using its coordinate of the multispecies H and H. If

equations (28) are used, dF(O)/dH should be replaced for example by

3F(O)/3H1 to find C1 and C1, the conformability and conformable region

with respect to prey species 1.

The preceding analysis, of course, considers only a few simple

mathematical expressions of elasticity and conformability; many others

are possible. Lewontin (1969), for example, presents another elasticity

metric, an index to characterize the t0pography of a domain of

attraction. And the elasticity concept can be extended to other state

variables--in the present analysis to dH/dt: the boundaries of its

elastic region, easily found for known F(H) and R(H), specify the

maximum sustained rates at which prey can be removed (fished) or

introduced (stocked) without triggering extinction or escape (see

Holling, 1973; Smith, 1968). So in these and other mathematical guises,

elasticity and conformability may help bridge a gap between ecological

theory and application (see below).

Elasticity and conformability differ not only in mathematical

expression but also in biological implications. When "shock" pertur-

bations predominate, as in coastal regions and on tropical and temperate
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oceanic islands, only highly elastic ecosystems can persist; when

"shift" perturbations predominate, as in strongly seasonal environments

such as temperate lakes and deciduous forest, only highly conformable

systems can survive intact. But it may often be possible to enhance

elasticity or conformability (and reduce the chances of prey extinction

or escape) by tuning critical parameter values, a strategy explored

briefly in the Summary of Theoretical Results and in the Discussion

later in this paper.

Multiple Refuges
 

So far in this analysis the spatial heterogeneity of the

predator-prey universe has been the contrast between inside and outside

the refuge space. No distinction has yet been drawn between a universe

with, say, fifty small refuges of total capacity h and a universe with

a single refuge of capacity'fifl'nor have the implications of several

distinct refuge typ§§_in the universe been considered. Both omissions

will be remedied in this section.

The most ecologically significant difference between a few large

refuges and many small ones is probably the relative amounts of contact

between "inside" and "outside": the surface-volume ratio (or perimeter-

area ratio) of the refuge space increases dramatically as this space is

partitioned into many small sub-spaces. Now if the extent of,contact

between refuge and non-refuge space partly governs the exchange rate of

prey individuals between inside and outside, as expected if prey

movement has any significant random component, then the functional

response and the stability properties of the interaction may depend

critically on the size distribution of refuge spaces.



48

One simple but representative case is considered here--a system

with type 2 predators, predator-exclusive refuge space, and per capita

prey exchange and increase rates independent of prey density. Let ”e"

specify the exchange rate, the fraction of prey moving gut_across the

refuge perimeter per unit time; then weighting by the occupancy

quotients for inside and outside, the exchange rate of prey moving in_

is eq/(qu). In the steady state the decrease rate of prey density

inside (prey crossing to the outside) must equal the increase rate of

prey density inside (prey crossing to the inside plus prey recruitment

inside):

_ eqrfi
eH_— (l-q)v + rH_ (30)

where H_is prey density inside, prey inside (inside volume)_1,

and H is prey density outside, prey outside (outside volume)_1.

From (30) a new refuge occupancy quotient Q(e)-—the fraction of all prey

that is inside the refuge space as a function of the exchange rate--can

be found by rearranging (30):

Q = 3/1 = eq . (31)

E/XTH/V e—r(l-q)

 

Notice that when e >> r, Q = q; in other words the refuge occupancy

quotient is constant (as assumed in previous sections) for high exchange

rates or low rates of reproduction, but it depends on both "e" and "r"

when those parameters are more similar in magnitude. And note from

(30) that "r" cannot exceed "e” in the steady state, i.e., e :_r.

Replacing "q" by Q(e) in functional response expressions

facilitates the comparison of systems featuring different distributions
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of refuge space as reflected in their respective prey exchange rates.

Figure 13 shows that greater exchange rates (many small refuges) yield

higher functional response curves at prey densities below refuge

saturation than for smaller exchange rates (few large refuges); so the

system containing many small refuges can have larger H and r p and thus

a greater chance of extinction than a system with few large refuges,

though the chance of escape is unaffected.

There are at least two reasons to question the distinctness of

this contrast: (1) Relaxing predator exclusivity and density-independent

exchange should increase the effective exchange rate more for initially

small "e" than for large "e". (2) "e" is often large relative to "r"

anyway. Yet of the seven examples of structural SH given at the

beginning of this paper, refuge size distribution could certainly be

important in at least two of them: the protozoan—flask systems of

Gause (1934) and the chemostat interaction of van den Ende (1973).

Taking a different slant on operationalizing spatial heterogeneity,

Smith (1972) has shown that the average catchability of prey removed in a
 

non—mixing, spatially heterogeneous universe exceeds the average in the

initial population by the square of the coefficient of variation. This

”catchability bias," though useful in quantifying exploitation, is

inadequate as an index of heterogeneity: the bias disappears completely

in a rapidly-mixing system even though structural SH can still be

strongly stabilizing (see Figure 13).

It has recently been suggested that distributing populations and

refuges in space may "spread the risk" of a destabilizing perturbation

among several prey sub-populations, implying that a system with many
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smaller refuges may be mgre_stab1e than one with few large refuges.

This stochastic view certainly deserves thorough theoretical elaboration--

all the more so if the stability effects of stochastic and structural SH

are frequently antagonistic. In its current vague form (den Boer, 1968

and 1971; Reddingus and den Boer, 1970), however, the spreading-of—risk

concept has generated some confusion and valid criticism (May, 1971 and

1974b; Roff, 1974a; Levandowsky, 1974). Other recent approaches to

stochastic SH (e.g., Roff, 1974b; May, 1974b), though difficult or

impossible to operationalize, may eventually help clarify the relation

between stochastic and structural SH.

Now consider the implications for stability of several different

refuge Eypes in the predator-prey universe. Figure 14 shows the

functional response curve for type 2 predators in a 3-refuge universe,

with the refuge capacities hi and the occupancy quotients qi independent

of prey density. The functional response rises from the origin in a

series of four intersecting type 2 curves: below prey density hl/ql’

all three refuge spaces can hold additional prey with increasing H, but

immediately above hl/ql’ only spaces 2 and 3 still have room; above the

next slope discontinuity, only refuge space 3 is still filling with prey,

and above the highest slope break, all refuge spaces are filled with

jprey. ‘Mathematically, this case simply elaborates the analysis of the

outside curve of Figure 4. In fact, if all three refuge types became

saturated with prey at the same prey density, then Figure 14 would have

only one slope discontinuity and would be indistinguishable from the

outside curve of Figure 4.

Notice that the general shape of the curve in Figure 14 is

sigmoid, especially if the breaks in slope at intersection points are
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smoothed out by a tendency of each occupancy quotient to decrease

slightly near saturation of its refuge space (see Figure 12). In the

limit, in a spatially complex universe partitioned into an infinite

array of refuge types with different capacities and occupancy quotients--

a spatial continuum from "totally protected" to "totally unprotected"--

the functional responses of either type 2 or type 3 predators must

resemble the sigmoid curve in Figure 2 (Smith, 1972, cf. Comins and

Blatt, 1974).

Interference Among Predators

Although its importance in nature remains a source of controversy

(e.g., see Griffiths and Holling, 1969; Hassell and May, 1973), inter-

ference among individual predators has been shown to have a potentially

:tabilizing effect in some predator-prey models (e.g., Hassell and

ogers, 1973). Thus it seems appropriate to briefly consider the

1f1uence of interference on the functional reSponse and on stability in

spatially heterogeneous universe.

The most commonly-cited models of interference effects on the

1ctiona1 response are the purely descriptive equations of Watt (1959)

of Hassell and Varley (1969), which ignore the underlying behavioral

hanisms. Recognizing this inadequacy, Rogers and Hassell (1974)

:mpted to account for the reduction in available search time resulting

encounters between pairs of randomly searching parasitoids by the

Dwing argument: If it can be assumed that each encounter costs two

sites some constant amount of search time (see Ullyett, 1949, but

see Hassell, 1971b), then the fraction of parasites effectively

:nted from searching at any given time will reach a steady state
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depending upon the rate of encounter, the parasite density, and the time

lost per parasite per encounter. Unfortunately, however, the rate of

encounter in Rogers and Hassell‘s model depends on host density,

confounding their searching efficiency parameter.

Consider an alternative approach: In his derivation of the disc

equation, Holling writes an equation analogous to

F = aHIl-bF), (33)

which can be rearranged to yield equation (1); in the above form, however,

the type 2 functional response can be extended to include several prey

populations hunted by a single predator population. If predators hunt

prey of n prey populations via simultaneous and independent searching but

with separate handling of individual prey, then the functional response

of predators to the ith of n prey populations may be written

n

Fi = aiviHi(l-jE1bij)° (34)

(The vi terms correct prey densities to allow for refuge space.)

Solving all n equations (34) simultaneously for Fm,

amvam
F = (35)
m n

l + Z a.b.v.H.

jal J J J J

03f. Marten, 1973; Timin, 1973; Murdoch, 1973; Lawton et al., 1974;

karris, 1974). Now if Rogers and Hassell's assumption of a constant

search time cost per encounter between two searching parasites or

1xredators is valid, then such encounters are closely analogous to

capturing prey of another species, imposing another kind of "handling
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time” on the searchers. For interference, then, equations (34) can

be replaced by

F avH(1-bF—b*F*) (36)

and F* a*vp(l—bF-b*F*)

where a* is the rate of "encountering" predators, volume per

predator time

b* is interference time, predator time per predator

encountered,

p is the effective predator density to which each individual

predator is exposed, i.e., the density of predators-minus-

one, predators volume-1,

and F* is the number of predators interfered with per predator

time, time-1.

Now solving equations (36) simultaneously for the functional response,

_ avH

F _ l+ava+a*b*vp (37)

 

(cf. Timin, 1973 and see Salt, 1974).

For type 2 predators in a universe with a perfect refuge, prey

densities of equations (37) must be reduced by"h"density units to allow

for prey inSide the refuge space, yielding equation (38) in Figure 15.

The figure illustrates two related but separable effects on the

stability of the system: (1) varying predator density for a given

intensity of interference and (2) varying the intensity of interference

with a given predator density.

First, suppose that p1 is one predator per universe volume; that

is, p = O, and there can be no interference. Now increasing p not only

reduces the slope of the prey increase line rH/p, but, in effect, it
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igure 15. The prey density topography with interference among type 2

predators in a universe containing refuge space.

p4 > p3 > p2 > p1. "a*" is the rate of "encountering"

predators, volume (predator-time)‘1, "b*" is the inter-

ference time, predator-time predator-1; and "p" is the

effective predator density to which each predator is

exposed1 i.e., predators-minus-one density, predators

volume'
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also lowers the rate of successful attack, depressing the functional

response at all prey densities in the interval (h, 00). Figure 15 shows

that stable equilibrium prey density still decreases, the chance of

extinction increases, and the chance of escape decreases with increasing

predator density just as in the absence of interference, though the

relative magnitudes of those effects are reduced by interference.

Second, suppose that predator density remains constant at p3,

fixing the prey increase function, but the term a*b* of equation (38)

increases from zero (curve F1) to larger values (F2, F3, and F
4

respectively); increasing a*b* amounts to intensifying interference at

a constant density of predators. This shift clearly increases H:

decreases the chance of extinction, and increases the chance of escape.

Therefore, contrary to the results of Williamson (in_Hassell, 1971b),

Hassell and May (1973), and Rosenzweig (1971, 1972), interference

apparently increases stability only in the sense of avoiding extinction;

escape actually becomes more likely as interference among predators is

intensified.

This analysis can also be extended to include effects of EEEEET

specific interference among predators by simply adding a term of the

form a*b*Vp to the denominator of equations (37) or (38) for each

additional interfering predator population; note that the appropriate

predator density in such terms would be total density, not predator-

minus-one density.

Summary of Theoretical Results
 

The operational definitions of elasticity and conformability in

previous sections can be used to predict the effects of parameter changes
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on the stability of a predator-prey link. Since changes of parameter

values tend to shift the boundaries of the elastic region and of the

conformable region all in the same direction, qualitative effects of

such changes on elasticity and conformability also depend on the

magnitudes of the other parameters. But the qualitative effects of

parameter shifts on the chances of prey extinction or escape are

unequivocal and can be inferred from the altered proximities of H and

r/p to the elastic and conformable boundaries, respectively. Table 1

summarizes the qualitative effects of increasing each of thirteen
 

parameters on the stable equilibrium, the boundaries of the elastic

and conformable regions, and the chances of extinction and escape.

(Decreasing each parameter invariably reverses its effect.) The

quantitative implications of any actual or potential set of parameter
 

magnitudes can be found by substitution into the elasticity and con-

formability equations (23)—(29). In the discussion and the appendix of

this paper, both qualitative and quantitative parameter analyses are

used to examine experimental results and suggest applications in eco-

system management.

The principal theoretical results of this analysis, with

references to pertinent figures and tables in the text, are enumerated

below:

1. Heterogeneity of spatial structure can stabilize a predator—

prey interaction, and its stability effects can be quantified

(Figures 6 and 10).

2. The functional responses of predators to prey density in a

universe containing refuge space are basically sigmoid

(Figures 6, 7, 12, and 14).





62

Table 1.——Qua1itative effects of increases in each of thirteen para—

meters on the stable equilibrium density H,‘the extinction

and escape thresholds (elastic boundaries) H and H, the

conformable boundaries r/p and r7p, and the overall chances

of extinction and escape. "+” denotes an increase in the

magnitude of a variable, "-" a decrease, and ”0" no change.

Where the outcome is ambiguous and depends on the other

parameters, all possible outcomes are given. Note particularly

that the stable equilibrium density and the chance of escape

respond identically to all parameters, and that the chances

of extinction and escape usually respond reciprocally.

 

chance of chance of

 

parameter increased H H H £7b £7; extinction escape

a, successful attack rate — +,0 + +,0 + + -

a*, predator encounter rate + —,0 — —,0 — _ +

b, handling time + _,0 - -,0 _ _ +

b*, interference time + _,0 _ _,0 - _ +

c, Allee coefficient — + + +,O + + _

e, exchange rate 0 +,O 0 +,o o + 0

h, refuge capacity + 0 _ _,0 _ _ +

k, carrying capacity + —,O - —,0 — _ +

p, predator density _ +,O + O O + _

q, occupancy quotient O —,0 0 —,O O — O

r, prey increase rate + —,O - O O - +

s, sigmoid coefficient + O — O — — +

v, volume ratio — +,0 + +,0 + + _

 





63

Shifts of parameter values usually cause mutually reciprocal

shifts in the chances of prey extinction and escape; stable

equilibrium prey density responds like the chance of escape

(Table 1).

Increasing the amount of refuge space in a system decreases

the chance of extinction and increases the chance of escape;

reducing the amount of refuge space has the opposite effects

(Table 1).

A system containing many small refuges can have a higher chance

of prey extinction than one with few large refuges (Figure 13,

Table l).

Intraspecific interference enhances the chance of prey escape

and reduces the chance of their extinction; but increasing

predator density decreases the chance of escape and increases

the chance of extinction, even with particularly intense

interference (Figure 15, Table l).





DISCUSSION

Three Predator—Prey Interactions Revisited

In this section three predator-prey studies are reconsidered from

the viewpoint emphasized in this paper. Two of them provide specific but

qualitative examples of how this analysis can help interpret the effects

of spatial structure in predation, and the third attempts a more

quantitative (though somewhat speculative) application to data from an

experimental field study.

Tribolium vs. Oryzaephilus

Crombie (1946) observed the interaction between populations of

the flour beetles Tribolium confusum and Oryzaephilis surinamensis in
 

renewed wheat and flour media. In wheat, the populations coexisted, but

in flour I: confusum consistently eliminated Q, surinamensis via

"voracious" predation on its pupae. However, when the flour medium

contained glass tubing of 1 mm. internal diameter-—large enough to

allow orzyaephilus to enter and pupate but small enough to exclude

tribolium adults and large larvae—~both populations survived just as in

wheat.

Apparently the glass tubing in flour and the bran in wheat can

provide refuges for the vulnerable oryzaephilus pupae, allowing co-

existence of the two beetle populations. The functional response of

tribolium to the density of oryzaephilus pupae is displaced to the

right by the capacity of all tubes or bran within the critical size

64
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range. Since self-limitation of predators by cannabalism allows

relatively high predator densities (low r/p), and since the prey exchange

rate is low and the occupancy quotient is high, then the stable

equilibrium prey density H must approximately equal the refuge capacity

h. In other words, almost all surviving oryzaephilus pupae must be

inside tubes or bran, and pupal density should be quite stable, as

Crombie observed. This interaction exemplified curve 1 of Figure 13

(but with smaller r/p).

Typhhlodromus vs. Tarsonemus
  

Huffaker and Kennett (1956) studied the interaction between the

predatory mite Typhlodromus s2, and the cyclamen mite Tarsonemus
  

pallidus in an attempt to develop a program for control of I, pallidus

in strawberry fields. The strawberry plant provides an unusually

favorable microenvironment for tarsonemus within the many folds and

crevices in the crown of the plant, furnishing food, humidity, and

protection from predators.

Physical barriers, representing a security threshold that results

from the great heterogeneity in the microenvironment, seem to

preclude actual extermination of the prey on any unit as large

as an entire plant, or at least a group of adjacent plants. Hence,

equilibrium is reached and a rough, although disturbed, balance

at very low densities is characteristic (Huffaker and Kennett,

1965, p. 194).

Structural spatial heterogeneity has clearly stabilized this interaction

much as for tribolium and oryzaephilus.

But there is another important facet of this mite predator-prey

link, recognized by Huffaker and Kennett: even though the predators'

reproductive rate at high prey densities is comparable to the prey's,

this reproductive numerical respdnse is "almost meaningless" for
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controlling the prey population without a high searching capacity and

the ability to survive at low prey densities. In other words, the

functional response plays a much more vital role in determining the

stability properties of this interaction than does the reproductive

runnerical response, despite similar increase rates of the two pOpu—

lations (see also Huffaker and Kennett, 1966; and Stabilizing Responses

of Predators below).

Ishnura vs. Simocephalus
 

Johnson (1973) studied the effects of predation by damselfly

naiads (Ishnura verticalis) on a littoral cladoceran population

(Simocephalus serrulatus) in plastic wading pools. Each of the eight

pools contained 40 artificial "weeds" composed of thin strips of

plastic window screen hanging down from above the surface to near the

bottom. Three weeds in each pool were sampled every fourth day to

estimate prey and predator densities; by comparing observed prey

densities with predictions of a mathematical model from the densities

and egg counts four days before, Johnson could calculate mortalities due

to predation over the interval.

The time-course of simocephalus density in the eight pools,

modified from Johnson's Figure 4, is presented in Figure 16. In my

view, these curves suggest the existence ofan escape threshold at a

density of about 180 prey liter—1; below that level densities tend to

remain relatively constant, but once above 180 prey liter_1 densities

increase in a sharp, irregular pattern, decreasing again only at the

end of the experimental period with falling ambient temperature. Note

particularly the wide variation in the number of days from predator  
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Densities of simocephalus in eight wading pools observed

at 4-day intervals. The left triangle indicates the date

of ishnura introduction; the right triangle marks the date

at which a given simocephalus population exceeded the

postulated threshold density, near 180 animals liter-1

(data from Johnson, 1973).
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introduction until the hypothetical threshold is crossed: 8,9,13,0,22,l4,

18, and 38 days respectively. It is tempting to suppose that during the

interval following predator introduction, each simocephalus population

was regulated by ishnura until prey density "accidentally" exceeded the

escape threshold, freeing the prey from limitation by predators. But

since ishnura is not a type 3 predator (at least not without significant

densities of alternate prey--see Lawton et al., 1974) and exhibits

negligible numerical or developmental response to simocephalus density

(Johnson, 1973), spatial heterogeneity should be investigated as a

possible critical stabilizing factor in this interaction.

Johnson’s experimental universe contained two kinds of refuge

space:

1. The sides of the pools, representing about 30% of the vertical

surface area (weeds accounted for the other 70%), were essentially

inaccessible to hunting damselflies; about 30% of the simocephalus were

associated with the sides at all prey densities.

2. The weed surfaces themselves provided a partial refuge for

simocephalus. Because ishnura hunts mainly by ambush, grasping passing

prey that contact its antennae with a quick extention of its labium,

simocephalus attached to weeds (via cervical glands located dorsally on

the carapace) must have been much less vulnerable to damselflies than

those actively swimming within a weed. The pool-side population, not

counted in Johnson's density estimates, increased the effective per

capita increase rate of the prey exposed to predators by a factor of

1.43 (100% e 70%), assuming fairly rapid exchange of prey between the

sides and the weeds, but could not displace the type 2 functional

response curve to stabilize the interaction. The weed surfaces, however,
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Innjbably Eguld_have such a stabilizing effect. As the density of

sxhnocephalus attached to a surface increases, they become much more

active, and the percent of attached animals decreases; if this occurred

art relatively low densities within the artificial weeds, the functional

:response of the damselflies could assume a potentially stabilizing,

sigmoid shape (cf. Haynes and Sisojevic, 1966).

Now examine Figure 17. The data points were calculated from the

positive predation mortality estimates of Johnson (1973). The dashed

line is his unpublished fit to the circled points, for which estimated

and.observed prey density differed significantly. Though this curve was

obtained using standard techniques—-1inear transformation and least

squares analysis (Holling, 1959b)--it clearly fails to fit or describe

the data satisfactorily, especially near the origin. By displacing this

same type 2 functional response curve 30 animals liter.1 to the right,

however, a much more plausible fit for low prey densities is found.

(Such a displacement is equivalent to postulating the existence of about

200 highly-sought, essentially invulnerable hiding places for

simocephalus per weed, an interpretation which could only be adequately

evaluated by directly observing simocephalus activity in the weeds as a

function of density.) A high refuge occupancy quotient that decreased

with increasing prey density would imply the very low extinction

threshold and the initial positively-accelerated functional response

illustrated in Figure 17 (cf. Figure 12).

Using the observed mean predator density "p", and estimates of

per capita prey increase rate "r” mathematically predicted by Johnson's

growth model for each interval, the prey increase function rH/p has

been calculated. The lower straight line in Figure 17 incorporates the
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Inean "r" for the predator-regulated sampling intervals (0.217 day-1);

:Erom.equation 11, the stable equilibrium at the intersection of this

function with the functional response curve (45.5 prey liter—1) is

reasonably close to mean prey density during predator-regulated intervals

(66.7 prey liter—1). The upp§£_straight line in the figure uses the

Inean "r” for sampling intervals in which the prey presumably escaped

regulation by predators (0.480 day-1); since this prey increase function

exceeds the functional response at all positive prey densities, such ”r"

values do appear consistent with prey escape during the corresponding

sampling intervals.

Johnson (1973) emphasizes another source of fluctuating predator

influence on prey. He argues that predation rates of individual

damselflies probably change considerably during each instar such that

any significant degree of melting synchrony could produce important

shifts in effective predator density during the experimental period

(also see Johnson et al., 1975). Thus b9£h_parameters of the prey

increase function, "r" and ”p", seem relatively "noisy"; with the prey

increase function bobbing up and down erratically, the effective escape

threshold must be near or somewhat above H, the maximum conformable

prey density. And in fact, the apparent threshold in Figure 16, about

180 prey liter‘l, does only slightly exceed the H found from equation 17,

135.4 simocephalus liter-l.

Fortunately, neither the magnitude of H nor the possibility of

regulation and escape of the simocephalus population depends very

strongly on the exact shape 0f the functional response curve through

the scattered data points at high prey densities. Other parameter
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'values may alter the H estimate slightly, but for many cases with refuge

capacities near 30 prey liter-1, the observed prey density sequences

seem to agree with the postulated stability properties of the system.

Stabilizing Responses of Predators

Errington (1946, 1956) believed that most predators, especially

Inammals, merely skim off the "excess” from the prey population and exert

no real stabilizing effect; he labelled such predation "compensatory."

If he had attempted to define "excess" objectively by relating prey

density to environmental structure, Errington might have recognized the

stabilizing potential of "compensatory" predators (Huffaker and Watson

in_Huffaker, 1971; Maynard Smith, 1974).

In fact, Errington's View implies that predators in a universe

with limited refuge space should tend to have sigmoid functional responses

to prey density, since capture rates increase sharply as prey density

exceeds his "threshold of security" (cf. Figure 12). Holling (1959b),

Solomon (1964), and Murdoch (1973) recognized this effect but did not

emphasize its significance for stability in spatially complex environ-

ments; they and many others have concentrated on behaviorallyégenerated

sigmoid curves that can be analyzed in simple laboratory systems,

largely ignoring the ubiquitous but conceptually elusive spatial effects

(Tullock, 1970). But the stability implications of the sigmoid

functional response itself (whatever its cause) now seem to be widely

appreciated: wherever the curve increases with prey density faster than

linearly, a stable, predator-limited equilibrium prey density could

occur (e.g., Holling, 1959b; Huffaker et al., 1968; May, 1973).
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Of course, this criterion for a stabilizing functional response

does not strictly require a smooth sigmoid curve, as Figures 6-11

clearly demonstrate (cf. Hassell, 1966; Steele, 1974); nor does it

necessitate learning by the predator, or search-image hunting, or the

1iresence of alternate prey. The following three general conditions,

implicitly quantified in the foregoing derivation, are sufficient to

generate such a curve for ordinary type 2 predators:

1. limited (saturable) refuge space,

2. some tendency for prey to occupy this space, and

3. some tendency for predators to avoid it or be excluded.

Refuge space for pey, at least "relative" refuge space, must be present

in virtually all natural ecosystems. Furthermore, in systems with an

evolutionary history, natural selection must enforce a strong preference

by prey for safe hiding places, as noted previously. And though

adapting to safer surroundings may be a comparatively minor behavioral

or evolutionary feat, evolving the ability to hunt effectively in new

terrane must usually imply such relatively drastic modification that

relative ineffectiveness of predators inside the refuge space is

expected (see Slobodkin, 1974). But Smith's marble game suggests that

"prey populations with predation present will tend to be found in the

more hidden places of their environment, even if_they dg_not select
 

such places" whenever exploitation can reduce catchability (Smith, 1972).
 

anhe.least generally recognized of the three conditions above is

perhaps the most restrictive: that the average vulnerability of prey must

increase with density over some range below the carrying capacity--i.e.,

that the refuge space can become saturated with prey (Smith, 1972).
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For type 2 predators with a negligible numerical response, protecting a

constant number of their prey yields the stabilizing positive displace-

Inent of the fUnctional response curve along the prey density axis (see

"Figures 2 and 12): per capita protection of prey decreases as the refuge

space fills up. In contrast, protecting a constant fraction of prey at
 

all densities is equivalent to proportionally shrinking the rate of

successful attack "a" in equation (1) (see Griffith's 1969 analysis of

"spatial coincidence"); since the shape of a type 2 functional response

remains convex upward after any such shift of "a", any positive,

predator-limited equilibrium must remain unstable.

The stability effects of these two kinds of protection can be

compared fer several published models: In Rosenzweig and MacArthur's

classic graphical model (1963) both kinds of protection are stabilizing,

whereas Maynard Smith (1974), using modified Lotka-Volterra equations,

shows that only the "constant number" case lends stability to the

interaction. And for Nicholson and Bailey's (1935) model, Varley (1947)

claims that protecting a constant fraction of prey is stabilizing, but

Bailey et a1. (1962) reply that neither kind of protection can be a

common source of stability. Yet because in each of these models the

functional response is over-simplified and masked by the numerical

response, their lack of predictive agreement is not surprising.

In nature, if not always in mathematical models, the relative

impacts of the functional and the numerical responses on stability

reflect the reproductive rates and lags of predators and prey:

1. If the time scale of the predator's numerical response (inverse

per capita increase rate plus lag time) N is small relative to the
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thne scale of prey increase (inverse per capita increase rate of prey)

‘R, then the numerical response determines stability, yielding a tightly

(humped oscillatory response to density perturbations (e.g., the host—

helnflnth parasite interactions of Anderson, 1974).

2. If N~R, then a stabilizing functional response is necessary but

insufficient for system stability, and pOpulation densities oscillate

‘with large amplitude in response to perturbations (e.g., the

'Typholodromus-Tarsonemus interaction of Huffaker and Kennett, 1956;

see Solomon, 1964; Huffaker and Kennett, 1969).

3. If N>>R, then a stabilizing fUnctional response is necessary and

sufficient for system stability, and population densities respond

asymptotically to perturbations (e.g., the marine copepod-phytoplankton

interactions of Steele, 1974; see Takahashi, 1964).

Since a numerical response in nature can be expressed only after

a time lag, the elasticity of an ecosystem must be independent of the

numerical response. Conformability, however, can be increased con—

siderably by the capability for relatively rapid changes in predator

density. For example, a seasonal increase in "r" may increase

reproduction by predators, counteracting the rise in initial slope of

the prey increase function with higher "r". But as implied by the

three categories above, this enhanced conformability depends critically

on the magnitude of time lags in the numerical response: any negative

feedback expressed only after a lag that is long relative to the

natural time scale of the system will be destabilizing (May, 1973).
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Application to Biological Control

and Game Management

 

The purpose of biological control is to confine.a pest population

below an ”economic threshold” density, whereas in game management a

relatively high, constant density of the game population is usually

desirable. Yet both can require stabilizing a predator—prey interaction

in the face of environmental perturbations, often in structurally

heterogeneous environments. The theroetical analysis in this paper shows

that with some knowledge of the frequency distribution of environmental

perturbations as a function of type (i.e., shocks or shifts) and

amplitude, system parameters can be adjusted to reduce the risk of

extinction or escape or alter stable equilibrium density (see Summary of

Theoretical Results).

Suppose, for example, that a game bird population is under such

heavy predation pressure from hunters and other mammalian populations

that a hard winter could cause local extinction. A program calling for

enrichment (supplementary food to increase ”r" and ”k"), barrier con-

struction (fences to reduce l'e" and exclude predators from refuges),

and additional refuge space (increasing "h”) could be designed/to;.

greatly reduce the chance of extinction. Similarly, for an insect pest

with a tendency for seasonal outbreaks, direct predator stocking

(increasing "p”), control of alternate prey, and limiting refuge space

(a special crop variety to decrease "h”) may prevent outbreaks or at

least reduce their frequency. Note, however, that overcompensation

could also be disastrous; for the pest example, extinction or near

extinction of the pest may drastically reduce or eliminate any highly

specific predator, facilitating escape by the pest after a rebound or
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reintroduction. Thus the stability effects of projected parameter

adjustments must be quantified, perhaps using techniques like those

outlined here, if ecosystem management is to progress much beyond

ecological trial-and-error.
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APPENDIX A

DISC EXPERIMENTS

When Holling (1959) derived equation (1), he attempted to

validate it experimentally with his blindfolded secretary "preying"

on sandpaper discs thumbtacked to the tope of a small table. Using

estimates of handling time and successful search rate obtained from

earlier results, he drew a theoretical curve like Figure l which the

data from his disc experiments fit very well.

Rogers (1972) performed similar experiments with polyethylene

discs that were either removed by the predator (to simulate predation)

or marked and replaced (to stimulate parasitism). He showed

theoretically that when exploitation is taken into account——as it

must be if prey are removed by the predator faster than they are

replaced during the experiment——the randomly searching predator must

actually have a higher successful search rate than Holling had

supposed to fit data from this type of experiment. Since his predator

apparently removed discs without replacing them, Holling's estimate of

the successful search rate must have been automatically biased downward

by this exploitation effect.

In order to obtain experimental support for the equations and

curves of Figure 4, I have repeated and modified the disc experiments

of Holling (1959). But to avoid the exploitation effects considered
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by Rogers (1972) and to obtain a truly instantaneous response, I

replaced the discs as the predator removed them. The predator, a

blindfolded lab technician, searched a circular bulletin board one

meter in diameter by probing with a fingertip.

Three separate sets of experiments were performed:

1. Holling's (1959) experiments were repeated, using discs of

coarse emergy paper 5 cm in diameter thumbtacked to the board. The

number of discs picked up in three minutes was observed at six

densities presented to the predator in random order: 10, 20, 40, 70,

110, and 160 discs per 7854 cm2. Three replicates were run at each

density.

2. Additional experiments were run with 5 cm discs as prey, but in

a universe containing a single refuge having a capacity of 20 prey.

The refuge space, a 90° wedge containing a fourth of the total area,

was bounded by a thin aluminum strip taped to the board, and the

predator was restricted to hunting outside the refuge only. The refuge

occupancy quotient ”q” was arbitrarily set at 0.667; dice were thrown

to determine the actual distribution of prey inside and outside the

refuge. Six replicates were run at each of the six densities.

3. In the third set of experiments, the universe again contained

the refuge of capacity 20, but the predator was told to hunt only

inside the refuge. Prey were 2.5 cm discs, for which the rate of

successful attack was about one third that for 5 cm discs. As in

experiment 2, a ”q" of 0.667 was simulated using dice, and six

replicates were performed at each of the six densities.
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At various times between experimental runs, handling times for

both large and small discs, tap rate, and effective fingertip radius

were measured independently of the experimental procedure. Disc

handling, clocked to the nearest 0.1 sec with a stopwatch, averaged

2.37 :_0.05 sec for the 5 cm discs and 2.49 i 0.06 sec for the 2.5 cm

discs; the difference between these means is not statistically

significant (t-test, 58 d.f., 0.1 < P < 0.2). Tap rate, counted for one

minute on three separate occasions, averaged 62 :_2.0 taps per minute.

And effective tap radius, obtained by inking the predator's finger

before she tapped around the perimter of a disc, measured 0.5 i about

0.05 cm.

From these independent measurements of handling times, tap rate,

and fingertip radius, the parameters of equations (4) were evaluated

(see Table 2) and the curves of Figures 18 and 19 were drawn. Data

points :_2 S.E. from experiment 1 are plotted in Figure 18; data points

:_2 S.E. from experiments 2 and 3 are plotted in Figure 19. Note that

the error intervals include the theoretical curves in all cases except

two data points from experiment 2. Only one of these points (density

160) has a 95% confidence interval which does not contain the curve.

Careful observation of the predator in action suggests that handling

time may actually have decreased slightly at this highest density, at

which most taps touched a disc-~see also density 160 in Figure 18.

These results provide an initial validation of equations (4) in

a simple, generalized predator-prey system. Since derivation of

equations (4), parameterization of these equations, and gathering of

eXperimental data were all accomplished independently of each other,
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Table 2.--Parameters from the disc experiments.

 

parameter magnitude units calculation

 

a, rate of

successful

attack

outside

a, rate of

successful

attack

tnSide;

b, handling

time for

5 cm discs

2, handling

time for

2.5 cm discs

h, refuge

carrying

capacity

q, refuge

occupancy

quotient

u, area of

experimental

universe

v, area .

ratio

outside

3, area

ratio

inside

0.670

0.228

0.0132

0.0138

20

0.667

7854

1.333

7854 cm2

(3min)-1

7854 cm2

(3min)-1

. . -1

3 min disc

. . -1

3 min disc

discs

(7854 cm2)-1

dimensionless

cm

dimensionless

dimensionless

(effective area of ta )(taps

per 3 min) = (n (d+f) )(3g)

where d is large disc radius,

cm,f is effective finger-

tip radius, cm,

and g is tap rate, taps

min“

(effective area of tap)(taps

per 3 min) = (n(d'+f) )(3g)

where d' is small disc radius,

cm

direct measurement

[1/b = 75.8 discs (3 min)-1]

direct measurement

[1/b_= 72.5 discs

(3 min)-1]

arbitrarily predetermined

die rolled for each disc:

1,2,3, or 4 inside--5 or 6

outside, with a maximum of

20 discs inside

arbitrarily predetermined

total area of experimental

universe % area outside

refuge

total area of experimental

universe % area inside refuge

 

 

 

 



Figure 18.
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The functional response of a lab technician to the density

of sandpaper discs thumbtacked to a bulletin board (no

refuge space). Data points are means of three replicates

bracketed + 2 standard errors; parameters of the curve

drawn throfigh these points were evaluated independently

of experimental data.
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Figure 19.
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The functional response of a lab technician to the density

of sandpaper discs thumbtacked to a bulletin board (with

refuge space). The open-circle points are means of six

replicates in which the predator hunted only inside a

wedge-shaped refuge; the solid points are means of six

other replicates in which the predator hunted only outside.

Error intervals bracket i.2 standard errors. Parameters

of the curves drawn through the points were evaluated

independently of experimental data.
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there is no cause to suspect accident or artifact in the reasonable

fits of curves and data in Figures 18 and 19.

The predator was not allowed to choose whether to hunt inside,

outside, or both during an experimental run. Such "free choice"

experiments, though they may more realistically reflect options open to

predators in nature, would in this case yield results confounded by

such extraneous factors as the duration of experimental runs and the

motives of the human predator. An alternative approach to the question

of spatial allocation of hunting effort--the approach assumed in these

experiments and in the theoretical develOpment--is to measure the

functional response inside and outside separately; an overall functional

response can then be obtained as an average weighted by the proportions

of predators in each area or by the proportion of the exposure time

spent per area by each predator.

If the disc population were increasing at a per capita rate

related to prey density by a known function, then some of the stability

properties of this predator-prey system could be calculated from

equations (24)-(27) or equations (24), (25), and (29). Even without

knowing the function R(H), however, g, H, H, and C can be found for

separate cases in which the predator hunts only outside or the predator

hunts wherever the functional response is highest. See Table 3.
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Table 3.--Stability variables from the disc experiments.

 

 

variable magnitude units calculation

H, lower boundary of the 30 discs equation (18)

Eonformable interval for a (7854 cm2)'1

predator restricted to the

outside; also h/q, the slope

discontinuity

g, the intersection density 40.3 discs equation (6)

(7854 cm2)-1

H, upper boundary of the 61.1 discs equation (20)

conformable interval (7854 cmz)‘1

C, conformable interval (0.226, 7854 cm2 equation (26)

for a predator restricted to 0.405) (predator-

the outside 3min)-1

C, conformable interval (0,297 7854 cm2 equation (28)

for a predator hunting prey 0.405) (predator-

with q that decreases 3min)“1

significantly with density
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