figifiié‘IWTIi-Ivfis’nji'37.!I3'IJ’554’1‘T‘EV»"j"1‘}:.. " V -‘ . . . . .1 J; ‘ THE USE OF SOIL AND .PETIO'LE TESTS FOR DETECTING RESIDUAL NITROGEN AND FOR PREDICTING RESPONSES OF SUGAR BEETS (Beta vulgaris) T0 NITROGEN FERTILIZATION Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY EDWARD CHARLES VARSA 1970 mi.» 3 L 1: Wynn-flue: rH-‘m! IIIIIIIIIIILIIIQIIIIIIIIIIIII IIIIIIIIIIII j Mthnrigw This is to certify that the thesis entitled THE USE OF SOIL AND PETIOLE TESTS FOR DETECTING RESIDUAL NITROGEN AND FOR PREDICTING RESPONSES OF SUGAR BEETS (Beta vulgaris) T0 NITROGEN FERTILIZATION presented by Edward Charles Varsa has been accepted towards fulfillment of the requirements for Ph.D degree in_ Soil Science Major professor Date Sepgember 4. 1970 0-169 THE USE C NIT? ABSTRACT THE USE OF SOIL AND PETIOLE TESTS FOR DETECTING RESIDUAL NITROGEN AND FOR PREDICTING RESPONSES OF SUGAR BEETS (Beta vulgaris) To NITROGEN FERTILIZATION BY Edward Charles Varsa The usefulness of several nitrogen soil tests for pre— dicting the nitrogen fertilizer needs of sugar beets was in- vestigated. During the two-year field and laboratory study, the nitrogen status of the soil at six locations was charac- teriaed after basic nitrogen applications of 45 to 540 kg/ha on the crop preceding sugar beets. Four tests for measuring the nitrogen supplying power of soils were investigated: mineral N, aerobic incubation released N, hot water extract- able N, and autoclaving released N. Soil tests and responses 0f sugar beets were evaluated by analysis of variance associ- ated with location, the previous year's N applications, and the N applied the current year ((3 to 135 kg/ha). Relation- ships of numbers and yields of beets, percent sucrose, per— cent clear juice purity, extractable sugar per ton, beet im— purities, and total and recoverable sugar yields to nitrogen l soil tests multiple CCI Carry sulted in '1 Previous N “Y: and ex Ireht of fer able Sugar Crop Preced Miner flu for Pre tOrs but no Major diffe ates in pr. tiOn in b8e‘ tests for O] Edward Charles Varsa soil tests and petiole analyses were evaluated by simple and multiple correlation and regression techniques. Carryover effects of N applied to the previous crop re— sulted in increasing yields of beets over the entire range of previous N application. However, percent sucrose, juice pur- ity, and extractability of sugar were reduced by each incre- ment of fertilizer N, resulting in sharply reduced recover- able sugar yields when more than 180 kg/ha was applied to the crop preceding sugar beets. Mineral N in the plow layer in fall or spring was use— ful for predicting adverse carryover effects on quality fac— ‘tors but not for predicting major variation in yield of beets. Bdajor differences in beet yields were associated with differ- eences in productivity from farm to farm. Farm-to-farm varia- tzion in beet yields was usefully related to each of the three 1:ests for organic N release. In regression models designed to differentiate responses ‘tc>the different sources of N, sugar beets were found to dis- ‘tinguish between fertilizer N applied in the current year and Inineral N in spring soil samples but not in samples taken the Previous fall. Maximum yields of recoverable sugar were ob~ tained where soil mineral N in the spring was low and the in- dex of organic N release was high. Extreme reductions in 2 sugar yiel With a min+ of mineral sugar were spouse to c coverable s; aPulled to 1; Petiol appl icat iOns dieting the tNCtability Edward Charles Varsa sugar yields occurred when a high organic index was combined with a mineral N test greater than 45 kg/ha. At lower levels of mineral and organic N, increasing yields of recoverable sugar were associated with increases in either test. The re- sponse to current fertilizer N was linear and negative: re— coverable sugar was reduced 3.42 kg for each kilogram of N applied to beets in the current year. Petiole-N analyses reflected both current and residual applications of fertilizer N. They were as useful in pre- dicting the sucrose content, juice purity parameters, and ex- tractability of sugar as were the mineral N soil tests. THE USE f NIT? in THE USE OF SOIL AND PETIOLE TESTS FOR DETECTING RESIDUAL NITROGEN AND FOR PREDICTING RESPONSES OF SUGAR BEETS (Beta vulgaris) TO NITROGEN FERTILIZATION BY Edward Charles Varsa A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Crop and Soil Sciences 1970 TO SALLY I affectionately dedicate this thesis to my wife for her encouragement, sacrifice, and help especially during the final preparation of this thesis ii The a his major p Pitience, a 5P€Cie his assistar ”Stisations during the f The C0; Ralph F099 0: Wilford Selle field ”Peri” A speci and his staff ACKNOWLEDGMENTS The author wishes to express sincere appreciation to his major professor, Dr. A. R. Wolcott, for his interest, patience, and untiring assistance during these investigations. Special recognition is expressed to Dr. J. F. Davis for his assistance in securing financial support for these in- vestigations and for his suggestions and coordination of help during the field investigations. The cooperation and assistance of Grant Nichol and Ralph Fogg of Monitor Sugar Company and Maury Frakes and vulford Sellers of Michigan Sugar Company in carrying out field experiments is appreciated. A special note of gratitude is extended to Maury Frakes and his staff at the Research Laboratory, Michigan Sugar Com- pany, for the many analyses of beet samples performed. With- out the information on the beet quality analyses, these in- vestigationswould not have been possible. The author is also grateful for the assistance of Mrs. SY1Via.Dobeck, Miss Susan Salo, and Miss Betsy Cranson in PErforming many of the nitrogen soil test determinations. The help of Mr. James Oaks and his assistants during iii the many p appreciate The : ers' Beet (f) acknowledge Last, sincere grag Eisenman, E; Clifford W01 labor and la the many phases of the field investigations is gratefully appreciated. The financial support of the Farmers' and Manufactur— ers' Beet Sugar Association during these investigations is acknowledged and appreciated. Last, but not least, the author wishes to express his sincere gratitude to the six farmer cooperators, Harlan Eisenman, Eugene Gwizdala, Stanley Schubach, Walter Schuette, (llifford Wolicki, and Luke Yoder, who donated their time, latxar and land during the two years of field experiments. iv mommy: llST OF TAB: LIST OF F137; I NitrOgg Statist R Field E: LC N NTERIALS Ann TA BLE OF CONTENTS Page ACKNOWLEDGMENTS....................iii 'LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . vii LIST'OF FIGURES . . . . . . . . . . . . . . . . . . . . xiv INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . 1 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . 4 Nitrogen and the Response of Sugar Beets. . . . . 4 Measurements of Nitrogen Availability . . . . . . 8 Statistical Models for Evaluating Crop Responses . . . . . . . . . . . . . . . . . 9 MATEHRIALS AND METHODS . . . . . . . . . . . . . . . . . 15 Field Experiments . . . . . . . . . . . . . . . . 15 Location, plot size, and design . . . . . . 15 N treatments, application, and sugar beet planting . . . . . . . . . . . . 17 Soil sampling . . . . . . . . . . . . . . . 19 Leaf petiole sampling and the deter- mination of nitrate by a quick test method . . . . . . . . . . . . . 20 Harvesting. . . . . . . . . . . . . . . . . 21 ILaboratory Analyses . . . . . . . . . . . . . . . 22 Indexes of N availability . . . . . . . . . 22 Soil pH, phosphorous, potassium, cal- cium, and magnesium . . . . . . . . . 24 Sugar beet petiole analyses . . . . . . . . 24 Sugar and juice purity analyses . . . . . . 25 EStatistical Procedures. . . . . . . . . . . . . . 26 IJ‘nits of Measurement. . . . . . . . . . . . . . . 27 RESULTS ANI The F Nitro Soil Sugar Relat: Multip The Re: The Bet The Res LT 19 War . I CONCLUSIONS . “RENEW APPSIII)IX. RESULTS AND DISCUSSION. The Response of Sugar Beets to Locations and Nitrogen Applied in 1968 and 1969 Nitrogen Soil Tests in Relation to Locations and Nitrogen Applied in 1968 and 1969 . 8011 pH, P, K, Cal and Mg in Relation to Locations and Nitrogen Applied in 1968 and 1969 . Sugar Beet Petiole Analyses in Relation to Locations and 1968 and 1969 Applied N Relationships Among Sugar Beet Parameters and Their Influence on Recoverable Sugar per Acre. Multiple Regression Analysis of Sugar Beet Responses to Measures of Nitrogen Fertility . Responses to fertilizer N . Relationships with nitrogen soil The Relationship of Sugar Beet Parameters tests to Nitrate-N in Dried Petioles. The Determination of Exchangeable Ammonium and Nitrate in a Deep Soil Profile Sampling. . The Response of Beet Juice Impurities to Locations and Nitrogen Applied in 1968 and 1969 SUMMARY . . . . CONCLUSIONS . . B I BLIOGRAPHY. . APPENDIX. . . . vi Page 29 30 35 42 48 51 66 67 68 82 86 91 98 104 106 110 Table on . Tal>le 1. 1C) LIST OF TABLES Page Identification and location of the six cooperat- ing farms during field investigations, 1968 and 1969 . . . . . . . . . . . . . . . . . . . . . . . 16 Sugar beet response parameters in relation to location and main effects of nitrogen applied in 1968 and 1969 . . . . . . . . . . . . . . . . . 32 Sugar beet response parameters in relation to nitrogen applied in 1968 and 1969. . . . . . . . . 33 Nitrogen soil tests in relation to location and main effects of nitrogen applied in 1968 and 1969 . . . . . . . . . . . . . . . . . . . . . . . 37 Linear correlations (r) of 1968 and 1969 applied N with the mineral N soil test at 4 soil sampling periods. . . . . . . . . . . . . . . . . . . . . . 38 Soil pH in relation to location and main effects of nitrogen applied in 1968 and 1969 . . . . . . . 43 Extractable P and exchangeable K in relation to location and main effects of nitrogen applied in 1968 and 1969. . . . . . . . . . . . . . . . . . . 44 Exchangeable Ca and Mg in relation to location and main effects of nitrogen applied in 1968 and 1969 . . . . . . . . . . . . . . . . . . . . . . . 45 N, P, and K in sugar beet petioles in relation to location and main effects of nitrogen applied in 1968 and 1969 . . . . . . . . . . . . . . . . . 46 Summer 1969 soil tests and sugar beet petiole analyses in relation to nitrogen applied in 1968 and 1969 (Averages for 6 locations). . . . . . . . 47 vii 14. Ii 17. 2L C - Linear Linear qualit; Mg at , Table Page 1]“. Linear correlation (r) among beet parameters . . . 52 12?. Linear correlation (r) among nitrogen soil tests . 53 113- Simple correlation (r) among sugar beet petiole analyses and applied fertilizer nutrients. . . . . S4 141. Linear correlations (r) of sugar beet yield and quality parameters with fertilizer nutrients, nitrogen soil tests, and petiole analyses. . . . . 55 1J5. Linear correlation (r) of sugar beet yield and quality parameters with soil pH, P, K, Ca, and Mg at 4 soil sampling periods. . . . . . . . . . . 56 Iléi. Linear correlation (r) of sugar beet petiole analyses with nitrogen soil tests at 4 soil sampling periods . . . . . . . . . . . . . . . . . 57 1-'7. Idnear correlation (r) of sugar beet petiole analyses with soil pH, P, K, Ca, and Mg at 4 soil sampling periods. . . . . . . . . . . . . . . 58 31E3. Linear correlations (r) of soil tests for pH, P, K, Ca, and Mg with mineral N at four sampling periods. . . . . . . . . . . . . . . . . . . . . . 59 -153. Regression functions relating recoverable sugar per acre to beets per acre, yield of beets, per- cent sucrose and clear juice purity (CJP) on all farms and at each farm location. . . . . . . . . . 61 32(3. Regression functions relating recoverable sugar per acre to beets per acre, yield of beets, per— cent sucrose, and percent clear juice purity (CJP) for all rates of 1968 applied N combined and at individual rates . . . . . . . . . . . . . . . . . 62 :23-. Coefficients of multiple determination (R2) for regressions of sugar beet yield and quality factors on 1968 and 1969 applied N . . . . . . . . 69 2:3- Coefficients of multiple determination (R2) for regressions of total produced sugar or recover— able sugar per acre on 1969 applied N (X1) and several N soil tests (X2), all farms . . . . . . . 70 viii Table 23. 24. 25. 26. 27, 28. 29. 30. Table Page 213. Coefficients of multiple determination (R2) for regression of several beet parameters on 1969 applied N (X1) and soil test N (X2), all farms . . 71 241. Coefficients of multiple determination (R2) for two regression models relating beet parameters to 1969 applied N (X ) soil mineral N (X2), and one other soil N tesI (X3) . . . . . . . . . . . . 72 255. Beet yields as functionally related to applied N (ApN), mineral N (MN), and autoclaving re- leased N (ACN) in the spring 1969 soil sampling. . 77 26. Regression functions relating sugar beet yield and quality parameters to acetic acid extractable NO3—N in dried petioles (PETN) obtained during midsummer, 1969. . . . . . . . . . . . . . . . . . 83 ‘277. Incremented concentrations and the total amount of exchangeable NH4- and NO3—N in an August 1969 soil sampling to 150 cm at two farm locations and from plots receiving 45 and 540 kg/ha N in 1968 . . . . . . . . . . . . . . . . . . . . . . . 87 ‘223. Corrected impurities in clear juice (Carruthers and Oldfield, 1961) as related to location and main effects of nitrogen applied in 1968 and 1969 . . . . . . . . . . . . . . . . . . . . . . . 92 3253. Corrected impurities in clear juice (Carruthers and Oldfield, l96l) in relation to nitrogen applied in 1968 and 1969 . . . . . . . . . . . . . 93 :3C). The cationic-anionic balance of impurities in clear juice as related to location and main effects of nitrogen applied in 1968 and 1969 . . . 95 :33-. The cationic-anionic balance of impurities in clear juice as related to nitrogen applied in 1968 and 1969. . . . . . . . . . . . . . . . . . . 96 32 . White pea bean yields in relation to applied N at 3 farm locations. . . . . . . . . . . . . . . . 110 ix Table 33. 34. 35. 36. 3L 3& 3% 4O 4L N II II N. Ear c farm Numbe: applie Sugar replic Summer analys. 1968 a; Sugar t r6plica Summer analyse 1968 an Sugar b replica Summer aDEIYSe. Sugar be replicat ' SURJner 1 .; 1968 and Sugar bee‘ IEpliCate Summer 19 ahalySes 1968 and Sugar bee: replicate Table Page 33. Ear corn yields in relation to applied N at 3 farm locations . . . . . . . . . . . . . . . . . . 111 34. Number corn ears per acre in relation to applied N at 3 farm locations. . . . . . . . . . . 112 35. Sugar beet responses to 1968 and 1969 N, 3 replicate averages, Farm 1 (Eisenman). . . . . . . 113 36. Summer 1969 soil tests and sugar beet petiole analyses in relation to nitrogen applied in 1968 and 1969, Farm 1 (Eisenman) . . . . . . . . . 114 37. Sugar beet responses to 1968 and 1969 N, 3 replicate averages, Farm 2 (Gwizdala). . . . . . . 115 38. Summer 1969 soil tests and sugar beet petiole analyses in relation to nitrogen applied in 1968 and 1969, Farm 2 (Gwizdala) . . . . . . . . . 116 39. Sugar beet responses to 1968 and 1969 N, 3 replicate averages, Farm 3 (Wolicki) . . . . . . . 117 40. Summer 1969 soil tests and sugar beet petiole analyses in relation to nitrogen applied in 1968 and 1969, Farm 3 (Wolicki). . . . . . . . . . 118 41. Sugar beet responses to 1968 and 1969 N, 3 replicate averages, Farm 4 (Yoder) . . . . . . . . 119 42. Summer 1969 soil tests and sugar beet petiole analyses in relation to nitrogen applied in 1968 and 1969, Farm 4 (Yoder). . . . . . . . . . . 120 43. Sugar beet responses to 1968 and 1969 N, 3 replicate averages, Farm 5 (Schubach). . . . . . . 121 44. Summer 1969 soil tests and sugar beet petiole analyses in relation to nitrogen applied in 1968 and 1969, Farm 5 (Schubach) . . . . . . . . . 122 ‘45. Sugar beet responses to 1968 and 1969 N, 3 replicate averages, Farm 6 (Schuette). . . . . . . 123 Table 46. 47. 48. 49. 50. 51. 52, 53. SS. at Table Page <46. Summer 1969 soil tests and sugar beet petiole analyses in relation to nitrogen applied in 1968 and 1969, Farm 6 (Schuette) . . . . . . . . . 124 417. Sugar beet responses in relation to 1968 applied N on navy beans, 3 farm locations (12 plot means). . . . . . . . . . . . . . . . . . . . 125 418. Sugar beet responses in relation to 1968 applied N on corn, 3 farm locations (12 plot means) . . . . . . . . . . . . . . . . . . . . . . 126 49. N, P, and K in sugar beet petioles in relation to 1968 applied on navy beans at 3 locations (12 plot means). . . . . . . . . . . . . . . . . . 127 55C). N, P, and K in sugar beet petioles in relation to 1968 applied N on corn at 3 locations (12 plot means). . . . . . . . . . . . . . . . . . . . 128 £51.. Nitrogen soil tests in relation to 1968 applied N on navy beans at 3 farm locations (3 main plot means). . . . . . . . . . . . . . . . . . . . 129 52- Nitrogen soil tests in relation to 1968 applied N on corn at 3 farm locations (3 main plot means) . . . . . . . . . . . . . . . . . . . . . . 130 53- Soil pH in relation to 1968 applied N on navy beans at 3 farm locations (3 main plot means). . . 131 54- Soil pH in relation to 1968 applied N on corn at 3 farm locations (3 main plot means). . . . . . 132 5555- Extractable P and exchangeable K in relation to 1968 applied N on navy beans at 3 farm loca- tions (3 main plot means). . . . . . . . . . . . . 133 5565- Extractable P and exchangeable K in relation to 1968 applied N on corn at 3 farm locations (3 main plot means). . . . . . . . . . . . . . . . 134 xi *7 ” —— - ,_— Table 57. Excha: 59. 60. 61. 62. 63. 64. 65. 56. Table Page 57. Exchangeable Ca and Mg in relation to 1968 applied N on navy beans at 3 farm locations (3 main plot means). . . . . . . . . . . . . . . . 135 58. Exchangeable Ca and Mg in relation to 1968 applied N on corn at 3 farm locations (3 main plot means). . . . . . . . . . . . . . . . . . . . 136 59. Sugar beet responses in relation to applied N in 1969, 3 farm locations, preceding crop navy beans. . . . . . . . . . . . . . . . . . . . . . . 137 60. Sugar beet responses in relation to applied N in 1969, 3 farm locations, preceding crop corn. . . . 138 61. Summer 1969 soil tests and sugar beet petiole analyses in relation to 1969 applied N, 3 farm locations, preceding crop navy beans . . . . . . . 139 62. Summer 1969 soil tests and sugar beet petiole analyses in relation to 1969 applied N, 3 farm locations, preceding crop corn . . . . . . . . . . 140 63. Regression functions relating sugar beet yield and quality factors to 1968 and 1969 applied N, (68N) and (69N), respectively, all farms, actual data. . . . . . . . . . . . . . . . . . . . 141 64. Regression functions relating total and recov- erable sugar to 1969 applied N and mineral N at time of sampling, all farms . . . . . . . . . . 142 65. Regression functions relating total and recov- erable sugar to 1969 applied N and mineraliz- able N released during incubation (INC-N) at time of sampling, all farms. . . . . . . . . . . . 143 66. Regression functions relating total and recov- erable sugar to 1969 applied N and autoclaving released N (AC—N) at time of sampling, all farms. . . . . . . . . . . . . . . . . . . . . . . 144 57. Regression functions relating total and recov- erable sugar to 1969 applied N and hot water ex— tractable N (HZO—N) at time of sampling, all farms. . . . . . . . . . . . . . . . . . . . . . . 145 xii Table 6A Regre 69. 70. 71. 72. 73. 74. and q‘ and ai ples, Regres and q; and mi (all f Regres and qu mineraj during 1968, a Regres: and QUE NIDEra: in $01: Regres, and Que mineral during 1969, i Table Page 68. Regression functions relating sugar beet yield and quality parameters to 1969 applied N (69N) and autoclaving released N (ACN) in soil sam- ples, Fall 1968, all farms . . . . . . . . . . . . 146 6&9. Regression functions relating sugar beet yield and quality parameters to 1969 applied N (69N) and mineral N (MN) in soil samples, Spring 1969 (all farms). . . . . . . . . . . . . . . . . . . . 147 '70. Regression functions relating sugar beet yield and quality parameters to 1969 applied N (69N), mineral N (MN), and mineralizable N released during incubation (IN) in soil samples, Fall 1968, all farms (Model 2) . . . . . . . . . . . . 148 71. Regression functions relating sugar beet yield and quality parameters to 1969 applied N (69N), mineral N (MN), and autoclaving released N (ACN) in soil samples, Fall 1968, all farms (Model 2). . 149 72. Regression functions relating sugar beet yield and quality parameters to 1969 applied N (69N), mineral N (MN), and mineralizable N released during incubation (IN) in soil samples, Spring 1969, all farms (Model 2). . . . . . . . . . . . . 150 73. Regression functions relating sugar beet yield and quality parameters to 1969 applied N (69N), mineral N (MN), and autoclaving released N (ACN) in soil samples, Spring 1969, all farms (Model 2). 151 74. Regression functions relating sugar beet yield and quality parameters to 1969 applied N (69N), mineral N (MN), and hot water extractable N (HZO-N) in soil samples, Spring 1969, all farms (Model 2). . . . . . . . . . . . . . . . . . 152 xiii Figure L TYpica (lb/ac on Sub- 2- Beet y; to the Claved lines d A Recover mineral Scribed fertili; I Two‘dime in Figu: fOr the ' REgreSS: rElatiOr late Juj '0027**I S = 1-4E . vertiCa} nitrate ions w} i” 1969 1” 1968. LIST OF FIGURES Figure 1. Typical block layout showing fertilizer N (lb/acre) applied on main plots in 1968 and on sub-plots in 1969 . . . . . . . . . . . . . . . Beet yields in relation to fertilizer N applied to the beets and tests for mineral and auto— claved N in spring soil samples (regression lines described by Model 2). . . . . . . . . . . Recoverable sugar in relation to mineral and mineralizable N in spring soil samples as de— scribed by Model 2 (Table 72) for 80 lb/acre fertilizer N applied to sugar beets. . . . . . . . Two-dimensional diagram of the response surface in Figure 3 in relation to experimental points for the 80 pound level of N treatment. . . . . . . Regression of quick test petiole nitrate in relation to NO3-N in dried petioles (PETN) in late July - early August. Y = -5.05 + .0027**PETN - .00000012**PETN2, R2 = .60**, S = 1.48, df = 357 . . . . . . . . . . . . . . . . . Vertical distribution of ammonium (shaded) and nitrate (unshaded) in August 1969 at two loca- tions which received 90 kg N/ha for sugar beets in 1969 and 45 or 540 kg on the preceding crop in 1968. . . . . . . . . . . . . . . . . . . . . . xiv Page 18 76 79 81 85 89 Sugar valley area most othersr Wise assume no fertilitZ growers fred fertilizers. “itmgen (N) 0f recovetab increases so] tractabil ity um“ e of th Earn), on the Cases ar INTRODUCTION Sugar beets are an important cash crop in the Saginaw valley area of Michigan. Being a higher value crop than most others grown in the area, per acre economic inputs like— wise assume greater magnitudes. In an effort to insure that no fertility factor is limiting in the production of beets, growers frequently use greater-than-recommended amounts of fertilizers. The presence of an oversupply, particularly of nitrogen (N), has resulted in a net decrease in the quantity of recoverable sugar produced per acre. Excessive N is par- ticularly undesirable because it reduces sucrose content and increases soluble impurities which interfere with the ex— tractability of sugar from juice. The grower is frequently unaware of this phenomenon because his returns are based pri- marily on the tonnage produced and because yields in most cases are not deleteriously affected by nutrient oversupplies. In recent years nearly 75 percent of the beet crop has been stored in piles prior to processing. During storage substantial changes occur in the processing quality of beets. AS a rule of thumb, one pound of sugar is lost per ton of b‘eets per day of storage prior to processing (Hansen 1949). l I I The import crop in re thoroughly with higher subsequent Suga scribe the the ease ar. Product, TS tic” I30 the longed Stora In eff crop. agrono: 11 Predict t} Correlations 2 The importance of the soil mineral nutrition to the beet crop in relation to storage characteristics has not been thoroughly studied. However, it is well-known that beets with higher sucrose and purity contents store with fewer subsequent processing problems than beets of lower quality. Sugar beet quality is a general term intended to de- scribe the relative processing characteristics of beets or the ease and completeness of sucrose recovery from the raw product. Therefore, the importance of soil mineral nutri— tion to the beet crop is apparent at harvest and after pro— longed storage. In efforts to produce a higher yielding and quality crop, agronomists have use of soil tests that quite accurate- ly predict the phosphorous and potassium status of the soil. Correlations have been worked out so that the amounts which should be applied to a sugar beet field with a given soil test can be predicted. Similarly, the micronutrient require- ments have been well defined, and the amounts necessary to adequately meet crop needs have been set forth. For nitro- gen, however, there is no widely accepted or routinely used 8011 test that correlates well with the yield or quality of the crop. It was the main objective of a previous study (Gascho, 1968) to evaluate several N soil tests in terms of their ability to UN yield . present re: Nsoil tes: ed more rec the N soil with sugar . ated. ability to quantify forms of N in the soil which relate to the yield and quality of sugar beets. The objective of the present research has been to evaluate the previously studied N soil tests in greater detail and to examine others describ- ed more recently in the literature. Intercorrelations of the N soil tests, and of other soil and plant measurements, with sugar beet yield and quality factors have been evalu- ated. Nitrc production. growth of 51 OPY 0f folia leaves fOr (St0ut, 1961 Viets CeSSive £011. effech'vmeS1 new leaves CC the r00ts, motes “Cum“ PotassiUm (K) Unfing dcus l'hcrrease LITERATURE REVIEW Nitrogen and the Response of Sugar Beets Nitrogen is an essential element for successful crop production. It is especially necessary for the early, rapid growth of sugar beets. The early development of a full can- opy of foliage lengthens the time for effective use of the leaves for photosynthesis, thereby increasing sugar yields (Stout, 1961). Viets (1965) found that too much N gives rise to ex- cessive foliage. Self-shading reduces the photosynthetic effectiveness of the older leaves. Excessive production of new leaves consumes sugar which might otherwise be stored in the roots. Furthermore, excessive N late in the season pro- motes accumulations of free amino acids, sodium (Na), and potassium (K), which interfere with sugar extraction. During the last two decades, there has been a tremen- dous increase in the amount of fertilizer N applied to crOps in rotation. Frequently, considerable N is carried over from the preceding crop. Beet growers very often neglect this "reSidual" contribution entirely when planning their fertility programs. r I ConcI adecline I from beets. tive relat: content. C that excess r00“ (Bald: 1963). The re quite varia‘: due to N up these rates, More I. s roots. Sui/dcr Ratio“ from ACrn \. 0f N wer‘ uaut effect 0 ‘Y — s great .uity to dete'I 35*» ‘Altv I,» The 5 Concomitant with increased N fertilizer usage has been a decline in the sucrose content and extractability of sugar from beets. As early as 1912, Headden (1912) showed a nega— tive relationship between nitrate (No3) uptake and sucrose content. Other reports have presented data which illustrate that excessive N tends to lower sucrose content of the beet roots (Baldwin and Davis, 1966; Schmehl, Finker, and Swink, 1963). The response of beet yields to N fertilization is quite variable. Most studies indicate a tonnage increase due to N up to rates of 100 to 150 pounds per acre. Above these rates, response is essentially negligible. More recently, there has been increased interest in the relationship between N and clear juice purity of beet roots. Snyder (1967) reported a decrease in juice purity with increasing rates of N. In a Canadian study, Baldwin and Stevenson (1969) showed a gradual clear juice purity re- duction from 94.7 to 93.3% when rates of 0 to 210 pounds per acre of N were applied. Because the purity of the beet juice has such a domi- nant effect on the amount of sugar extracted from beets, there is great interest in examining the components of im- purity to determine their abundance and effects on extract- ability. The method of Carruthers and Oldfield (1961) for determinin correlated carbonatior 70% of the amino acids (1962) deri X10) which impurity co: These arbit; lat Weights lated in the Using these of Sugar are in the thin ‘ Tali? iirn: tirely remove . I field (1961) I" . ldl Ce Origina thi lake the total 6 determining clear juice purity was found to be very highly correlated with the purity of juice in the factory after two carbonations (called "thin juice"). They reported that about 70% of the juice impurities consisted of K and Na salts, free amino acids, and betaine. Carruthers, Oldfield, and Teague (1962) derived a relationship (K X 2.5, Na X 3.5, and Amino N X 10) which apportioned the contributions of these individual impurity components with respect to their total effect. These arbitrary factors are based on the approximate molecu- lar weights of these impurities as they are found and calcu— lated in the thin juice. Dexter, Frakes, and Nichol (1966), using these relationships, concluded that about 1.5 pounds of sugar are lost into molasses for each pound of impurities in the thin juice. The amino acids in peptides or proteins are almost en- tirely removed in the juice purification, whereas the free amino acids carry into the thin juice. Carruthers and Old— field (1961) state that about one-half of the N in purified juice originates as amino acids, with 50 to 80 percent of this from glutamine. Nitrogen as nitrate (N03) and betaine make up some of the remainder, but a considerable amount of the total N (approximately 25%) is unaccounted for. Payne, Becker, and Maag (1969) studied nitrogenous com- ponents in thin juice in relation to N fertilization and beet varieties. portant the content. C dant amino 1103-11 accou in thin j ui Ncontribute content seer ad more rela With 1 “1’56 (1970) amino N, K I G If N03 is ab; creased Catic . maintained in anions, gre a t. 7 varieties. They reported that N fertilization was more im- portant than genotype in causing differences in amino acid content. Glutamic and then aspartic were the two most abun- dant amino acids in the thin juice. They also reported that NO3-N accounted for only 3.5 to 7.5 percent of the total N in thin juice, but without exception the proportion of total N contributed by NO3 increased with N fertilization. Betaine content seemed to be unaffected by N fertilization but appear— ed more related to genotype. With increasing N fertilization, Dexter, Frakes, and Wyse (1970) reported that NO3 and chloride (C1) as well as amino N, K, and Na tend to accumulate in the clarified juice. If N03 is abundantly present in the soil late in the growing season, the uptake of this mineral anion will lead to in- creased cation uptake since an electrolytic balance must be maintained in the plant. Excess accumulations of cations or anions, greater than required for ”effective alkalinity" in factory thin juice, result in greater loss of sugar into mo- lasses. The relationship between yield and quality in the re- sponses of sugar beets to N is variable. Stout (1961), in a field survey, reported a general negative correlation between yield and beet quality. However, many farms did not show this relationship. Frequently, farms with high yields also produced b mised that patible bu occurrence Me Field direct and 0f creps , suming, Intl soil N iS ma Search Faber Estima 8 produced beets far above average in sugar content. He sur- mised that high yields, sucrose content, and purity are com- patible but the factors responsible for their simultaneous occurrence are not clearly evident. Measurements of Soil Nitrogen Availability Field and greenhouse experiments are probably the most direct and accurate methods for determination of the N needs of crops. However, such methods are laborious and time con- suming. Interest in a rapid laboratory test for available soil N is manifested by the large number of published re- search papers. Estimations of the availability of soil N for plant uptake and growth are commonly divided into two broad cate- gories, biological and chemical. Each category may be sub- divided further into categories which reflect the form or forms of N determined, or differences in incubation or ex- traction procedures or in reagents employed. In general, N indexes, whether determined biologically or chemically, pur- port to measure the potential of the soil to supply N from the organic N reserves (Stanford and Legg, 1968). Actually some unknown proportion of the total potentially mineraliz- able N is measured. Thus, all methods are empirical. The success of any index is measured by its utility in predicting relative differences in N supplying power of soils in correlati greenhous Bio. are discus Attoe, 196 1955). Ga thoroughly ability in< Each sumptions r of PrObable the Princip. frOm Some 1E (RH? N03) a sent Vary ex Eat“ COhdit and by J ame s 9 correlation experiments with crops grown in the field or greenhouse. Biological and chemical methods proposed prior to 1964 are discussed in several excellent reviews (Allison, 1965: Attoe, 1964: Bremner, 1965; and Harmsen and VanSchreven, 1955). Gascho (1968) and, most recently, Belo (1970) have thoroughly reviewed the current literature on soil N avail- ability indexes. Each of the proposed indexes is based on certain as- sumptions regarding the chemical and biological properties of probable nitrogen sources in the soil. Most assume that the principal seasonal contribution from soil sources comes from some labile fraction of organic nitrogen. Mineral forms (NH4, N03) are frequently ignored since the quantities pre— sent vary extremely with the season of the year and with cli- matic conditions. However, recent studies by Gascho (1968) and by James and others (1968) have shown yield of beets and recoverable sugar to be related significantly to mineral N in the soil at the beginning of the season or during critical periods of growth. Statistical Models for Evaluating Crop Responses The statistical model used to describe crop responses is as important in the development of a useful soil test as is the soil model or concept used in selecting the test itself. 8 imply a li logical sy. ly used for (P and K) i It has not The s curvilinear fertilizer 1 10 itself. Simple correlations are of limited value since they imply a linear response which is not characteristic for bio— logical systems. The percentage yield concept has been wide- ly used for calibrating soil tests for immobile nutrients (P and K) in terms of fertilizer requirement (Black, 1968). It has not proven appropriate for describing responses to N. The simplest statistical model for approximating the curvilinear response of a crop parameter to a given soil or fertilizer parameter is a quadratic function: Y = a + bX + cX2 (Eq. 1) Here x may be a given soil test or quantity of ferti- lizer nutrient. Y may be the actual value for a crop param- eter, as yield or percent sucrose. Or Y may be the change in yield or percent sucrose resulting from a fertilizer input associated with a soil test X. In either case, E is the pre— dicted value for Y at any selected value of X, as determined by a regression line for which the constants a, b, and c were estimated to give a minimum value for the sum of the squared deviations between Y observed and Q (Snedecor, 1956). If X in Equation 1 is in fact the principle factor con- trolling variation in Y, the constants b and c will be asso- ciated with highly significant partial correlation coeffi- cients for Y and X and/or Y and X2, and values approaching 1.0 will 1: (RI and fc Varia control of eter. In quently fou Sidering tw a Polynomia eral N (X1) on resPonse follow ing; 11 1.0 will be obtained for the multiple correlation coefficient (R) and for the coefficient of multiple determination (R2). Variation in biological materials is rarely under the control of a single measurable soil or environmental param- eter; In the case of N soil test correlations, it is fre- quently found that overall accountability is enhanced by con— sidering two or more forms of N as independent variables in a polynomial function. For example, the effect of soil min- eral N (X1) and of N made available from organic sources (X2) On response to fertilizer N (Y) might be described by the following: ?'= b + b X + b X2 + b X + b x2 + b X X (E 2) o 11 21 32 42 512 9- Here, the least squares regression coefficients, b1 and b2, describe a quadratic response to soil mineral N; b3 and b4 describe a quadratic response to organic N estimated by some availability index, X2; and b5 allows for the expression of an interaction between the two forms of N. The extent to which any individual term in Equation 2 contributes to vari- ation in Y can be estimated from the reduction in R2 which results when that term is dropped out of the least squares solution. Even though the contribution is small, it may be significantly different than zero, a hypothesis which may be tested by an appropriate F—test or t-test of the regression coefficien ment Stati'i I FIBQI has the ear of soil mir additive (5 testing thi A is now d. eral u; X2 : the dePender Parameter. Using the intEract (1970) dew" /\ Y "here; Alpha ( 12 coefficient (Michigan State University Agricultural Experi- ment Station STAT Series Description Numbers 7 and 8, 1969). Frequently, the assumption is made that fertilizer N has the same effect on plant response as does an equal amount of soil mineral N, and that these two N sources are, therefore, additive (Soper and Haung, 1963). An appropriate model for testing this assumption has the form of Equation 2, in which X1 is now defined as the sum of fertilizer N plus soil min- eral N; X2 is again some index of organic N availability: and the dependent variable (Y) is the actual yield or other crop parameter. Using a polynomial of the form of Equation 2 (without the interaction term) as their basic model, Reuss and Geist (1970) derived a model of the form: /‘ 2 Y = B0 + Bl(x1 +otxz) + 82(X1 + 40(2) (Eq. 3) where: X1 fertilizer N + soil mineral N x2 Y some index of organic N release any crop parameter functionally related to N supply B , B , B are coefficients 0 1 2 4 represents the fraction of X2 released during the growing season. Alpha (4) may be evaluated in several ways using T I I reiterat iv ries of va by Plotting sum-d “ val VOUId COrre R2 f< 1C functim mate at th . fr ( eQdOm f0 tiOn In‘S) I dex 0f Ora l3 reiterative procedures. One method would be to select a se- ries of values with sufficient range such that the actual value would be expected to lie between the extremes selected. Equation 3 is then fitted to field data by the least squares method assuming each value of 4. The coefficients of deter- mination (R2) may then be plotted as a function of d, and the value of d at which R2 reaches a maximum is selected as the best estimate. Alternatively,¢x could be approximated by plotting standard error of estimate as a function of as- sumed.“ values. In this case the minimum standard error would correspond to the best estimate oftx. R2 for Equation 3 can never exceed the R2 for the bas- ic function. However, the minimum standard error of esti— mate at the optinum d.va1ue may be lower because degrees of freedom for error (n-3) are greater than for the basic func- tion (n-5). A different value for.a will be obtained for each in- dex of organic N used. The authors state thatcx must be reasonably constant from year to year in order to be useful for prediction purposes. It may be desirable in certain situations to consider fertilizer N as a separate independent variable. For exam- ple, to the extent that mineral N in the soil is a product of mineralization rather than carry-over, it may itself '17 I represent fleet the a fixed inn al N are cc other hand, cesses and expression Cady relatiOn to the fitted functional 1 the indepenc‘ larger will does net knc mental Para: 8101-}. AS a! preSSed in E th e Expenent terms Sth t EUm. Althot node 13 one 14 represent an index of organic N release. As such, it will re- flect the 5011's capacity for continuing release rather than a fixed input as is implied when fertilizer N and soil miner- al N are combined in a single term (Gascho, 1968). On the other hand, fertilizer N may influence mineralization pro— cesses and an interaction term may be needed to allow for expression of this effect (Reuss and Geist, 1970). Cady and Laird (1969) have investigated bias error in relation to prediction equations. Bias error occurs when the fitted or postulated model is not equal to the true functional relationship between the dependent variable and the independent variable(s). The larger the deviation, the larger will be bias error. In most cases an experimentor does not know the true functional relationship of his experi— mental parameters. His only alternative is to use function- al relationships which give the lowest deviations from regres- sion. As an example, if a relationship is thought to be ex- pressed in a quadratic form, Cady and Laird would manipulate the exponents (as fractions) on the first and second order terms such that lack-of-fit sums of squares would be a mini- mum. Although this procedure for fitting various postulated models on a lack-of-fit basis is attractive, the authors cau- tion that the necessary statistical theory on the method has not been developed and confirmed. Location, 3 \_ In th were Select igan for N 1.0110de by each field. MATERIALS AND METHODS Field Experiments Location, plot size, and design In the spring of 1968, six commercial farm locations were selected in the Saginaw valley and "thumb" area of Mich- igan for N fertility experiments on sugar beets (see Table 1). Fields were selected to give a range of soil fertility and management conditions, and the crops grown in 1968 would be followed by sugar beets in 1969. Sites, about one acre in each field, were chosen where soil variability appeared to be at a minimum and where there would be the least disruption of the cooperators' normal farming operations. White pea (navy) beans were grown at Farms 1, 2, and 3 and corn for grain at the other three locations. The size of individual experi- mental units in 1968 was sufficiently large so that quarter— ing into 4 or 6 row subplots of sugar beets in 1969 could be achieved. For statistical purposes the quartered unit of 1968 became the experimental sub-unit for sugar beets in 1969. The experiment, basically the same at all Six farms, was replicated three times at each location and may be cate— gorized as a randomized complete block design with split 15 Ehm EMU COHDOUOQ k k momw DEN mwmw .mCOdUflTdUUmX/Cd UHOHM MUCHNDU NEH-UN OCHUMNOQOOU Xflm 0£U “H0 COflUQUOH MUCH. CONUQUHNHUCODH N UNDER“ 16 cousm Ahmaocmzuv mHHm.ZBHB hm .Uom .mzm mo $32 no x22 muuossom umuamz @ cousm Amoacwxozv moam.2nae vm .Uom m mo mam mo x3m nomnsnom umacmum m cousm Acm>m£uammv mmm.zhae H .oom mm mo rum mo wmz Mono» oxsq v NAmm Auuwuumzv mom.2mae ma .oom x32 mo mzz mo x32 axofiaoz UHOMNHHO m wmm Auuauwozv mom.ZmHB 0H .oom xmz mo xzm mo mam mHmpNHBO ocomsm N xmm Auouacozv mvm.szB v .me m mo xmz mo xmz awesomflm cmHumm H Sucsoo manmczoe COHuUOm woumwmmoou uUnEsz coHumooq Eumm Eumm mwma 0cm mmma .chHummHumo>ca paofim mCHHDU memm meaumumaooo Xam may mo coflumooH can cofiumofiwfiucmcH H wands plots. Th N treatmen Sincé before the 1y to the and 480 pg; rows and wa the field. In 1‘. 59 kilogral Pounds Per banded by l7 plots. The layout of a typical block is shown in Figure l. N treatments, application, and sugar beet planting Since the corn and navy beans in 1968 had been planted before the locations were selected, N was added supplemental- 1y to the growing crops in amounts totaling 40, 80, 160, 240, and 480 pounds per acre (45, 90, 180, 270, and 540 kg/ha). The N, as ammonium nitrate, was applied by hand between the rows and was worked into the soil as the farmer cultivated the field. In 1969, a per hectare fertilizer application of 49 to 59 kilograms of P and 93 to 112 kilograms of K (500 to 600 pounds per acre of 0-20-20 on the basis of N—PZOS-KZO) was banded by the farmer cooperator at the time of beet planting. Row spacing was 28 inches (71 cm) except for Farm 4 where it was 30 inches (76 cm). The dates of planting ranged from April 30 to May 16. About four weeks after the beets were planted, N, as ammonium nitrate, was applied at rates of O, 40, 80, and 120 pounds per acre (0, 45, 90, and 135 kg/ha) over each 1968 residual N level. Micronutrients were applied at uniform rates over all plots. Manganese, as manganese sulfate, and boron, as sodium tetraborate, was mixed with the N treatments and applied at rates of 15 and 5 pounds per acre (16.8 and 5.6 kg/ha), respectively. A modified belt applica- tor owned by Michigan Sugar Company, Saginaw, was used to Inna .mmma ca muoHQIsz no can mood :a muon same so Deflammm Awuofl\nav z wmuaawuumm mcazoSm usommH xuoHn HMUHmha .H madman 18 coon IEOmI 0 cm ON. 7 cm. ow I. _ ow cm. 8 _ om 0 36¢ om. oe o b ca om em 2 :1 cm 3.22 0 Es _ 9. mm. 0 arm 8.6mm: _ ow om. owe om EA 322 l9 apply the treatments. Placement of the N fertilizer was in a band approximately 3 inches (7.6 cm) to the side of the row and 3 inches below the soil surface. Hand thinning and weed- ing was done when appropriate. Soil sampling Soil samples of the plow layer were taken at three per— iods prior to sugar beet planting, late July - early August (Summer) 1968, October (Fall) 1968, and April (Spring) 1969. After the beets were planted, one final plow layer sampling was made in late July - early August (Summer) 1969. From each plot at least 20 soil-probe cores were ran- domly collected. Samples were pressed with gloved—hand through a 4-mesh screen and then finally an 8—mesh screen. A subsample of the screened soil was placed in a l-pint ice cream carton and sealed for transporting to East Lansing. Each pint sample was Spread thinly in a heavy 20-pound paper bag lying on its side to air dry at 25 to 40C. After the three or four days required for thorough drying, a 4-ounce glass bottle was filled with an aliquot of each sample and tightly closed with a screw cap to await N analysis. The re- mainder of each soil sample was returned to the pint contain- er to be used later for the determination of soil pH, phos- phorus (P), potassium (K), calcium (Ca), and magnesium (Mg). Soil samples at 6-inch incremented depths to 60 inches were taker were those 1968, and at Farms 1 was made w dried in t} Leaf tiol A san frm the C6 the Summer Only the YC forated Par 20 were taken on selected plots in August 1969. Plots selected were those that received 40 or 480 pounds per acre of N in 1968, and 80 pounds per acre in 1969. Only Blocks I and III at Farms 1 and 6 were sampled. Each incremented sampling was made with a bucket auger, and the soil was sieved and dried in the manner described for the surface samples. Leaf petiole sampling and the determination of nitrate by a quick test method A sample comprising 30 leaf petioles was taken randomly from the central rows of each sugar beet plot at the time of the summer soil sampling (late July - early August, 1969). Only the youngest mature leaves were taken. The leaf blades were removed, and 20 petioles were placed into marked, per- forated paper bags. Upon returning to East Lansing, the sam— ples were placed in a forced air oven at 60C for complete drying. They were then ground in a Wiley mill to pass through a 40-mesh screen. The ten remaining petioles collected at sampling time were used in the field for a quick test determination of N03. Each petiole was cut diagonally with a sharp knife. A drop or two of 0.2% diphenylamine in concentrated sulfuric acid was placed on each exposed cross section. The intensity of blue color and the rate of its development were used to rate each petiole on a six—point visual scale. Visual ratings of 'zero", \ were conve 4, 8, and petioles w quick test tial scale mission by Althc to the app. meaSUremen. and so fee “Ere thras' hUSked by data are s Eith I‘O'Ns were 21 "zero", "very low", "low", "medium", "high", and "very high" were converted to an exponential numerical scale: 0, l, 2, 4, 8, and 16, respectively. These numerical values for 10 petioles were averaged to arrive at a numerical index of quick test petiole nitrate (QTN) for each plot. The exponen- tial scale was used to approximate Beer's law of light trans- mission by colored solutions (Tunon, 1969). Harvesting Although the yield of navy beans and corn in relation to the applied N in 1968 was of secondary importance, yield measurements were taken. One hundred feet of navy bean row and 80 feet of corn row were taken for harvest. The beans were thrashed using a Wonder plot harvester. The corn was husked by hand, and ear counts and weights were taken. Yield data are summarized in Appendix Tables 32, 33, and 34. Either 80 or 100 feet of the center two sugar beet rows were harvested from each plot for estimating yields. At five of the six locations the beets were lifted with either a shovel or a "beet lifter" mounted on a tractor. Tops were removed from the roots with a beet knife. The beets were weighed in the field and ten average sized beets were select— ed from each plot. Extra large or extra small beets were avoided. These beets were bagged and transported to the Re- search Laboratory of Michigan Sugar Company, where a juice sample was frozen to At t Farmhand b toeped. an After ten 1 the rest We harves ted . The; 22 sample was taken from the brei of each lO-beet sample and frozen to await further analyses. At the other location (Eisenman), a modified l—row Farmhand beet harvester was used. The beets were lifted, topped, and weighed in a basket above the storage hopper. After ten beets were selected for sugar and impurity analyses, the rest were dropped into a hopper below and the next plot harvested. Laboratory Analyses Indexes of N availability The procedures for estimating availability of soil N in these experiments included the determination of: l) mineral N (exchangeable NH4+ + NOE + NOS); 2) mineralizable N releas- ed after aerobic incubation: 3) total N in boiling water ex- tracts of soil; 4) N released by alkaline distillation after a sixteen hour autoclaving treatment. All determinations were made in duplicate. The methods were modified in some cases to adapt the procedures to micro-Kjeldahl apparatus. Mineral N was determined in a 20 m1 aliquot of a 10:50 (w/v) soil: 2 N KCl extract, as outlined by Bremner (1965). Mineralizable N was determined by the aerobic method of Bremner (1965) in which a soil-sand mixture was incubated for 14 days at 30C. After the incubation period, mineral N was determine.- incubated I bottles cc fastening Of a rubbe' ering to a mOisture . N ext described I: used, a 5:3 reflux for digesung a out a Cate] line disti] standard at The I antoClaviIfi involvES 3‘. hours at 1. 4 23 determined, and the difference between an incubated and non— incubated sample gave an estimate of mineralizable N. The bottles containing the incubation mixture were modified by fastening a 2 mil polyethylene covering to the top by means of a rubber band. Three pin holes were pierced in each cov- ering to allow free passage of gases with minimum loss of moisture. N extracted by boiling water was determined by Method 2 described by Keeney and Bremner (1966). In the procedure used, a 5:30 (w/v) soil: water suspension was boiled under reflux for 1 hour. Total N in the extract was estimated by digesting a 20-ml aliquot in 2 ml concentrated H2504 with— out a catalyst. Ammonia-N released was transferred by alka- line distillation into boric acid and titrated directly with standard acid. The procedure for the determination of N released upon autoclaving is described by Stanford and Demar (1969). It involves autoclaving a soil sample in 0.01 g CaC12 for 16 hours at 121C (15 psi. pressure). After cooling, the sus- pended solids are removed by centrifuging, and the extract, plus two additional washings of the soil sample, are placed in a 100-ml volumetric flask. The contents are brought to volume and thoroughly mixed. A 25-m1 aliquot is pipetted in- to a micro-Kjeldahl flask and volatile N is distilled into boric aci; is titrat Soil pH, :1 All and Mg by Degartmentl mined by a Phorus was 31° measure an estimate EXCha extractiOn COIQman fle changeable ab”union 24 boric acid, after adding 20-ml of 0.015 N NaOH. Distilled N is titrated directly with standard acid. Soil pH, phosphorus,¥potassium, calcium, and magnesium (All of the soil samples were analyzed for pH, P, K, Ca, and Mg by the Soil Testing Laboratory, Crop and Soil Sciences Department, Michigan State University. Soil pH was deter— mined by a glass electrode in 1:1 water suspensions. Phos- phorus was extracted using the Bray P1 solution. Colorimet- ric measurement of the phospho-molybdate blue reaction gives an estimate of “available" P in soils. Exchangeable bases (K,Ca, and Mg) were estimated by extraction with neutral, 1 N ammonium acetate solution. A Coleman flame emission spectrophotometer was used for ex- changeable K analysis, and a Perkin-Elmer Model 290 atomic absorption unit was used to determine exchangeable Ca and Mg. Sugar beet petiole analyses Nitrate-N, P, and K were determined in the dried and ground petiole samples. One—gram samples of plant material were extracted with 100 ml of 2% acetic acid in the pres- ence of activated charcoal to remove interfering pigments. Nitrate was determined colorimetrically by the Brucine method of Grewling and Peech (1965). P was also measured colorimet- rically by means of the P-molybdate blue color, and K was determine either pe: Sugar and Perc roots is n (grams/100 the calcul- a freshqfiel here in are A met ed by Carru Nice Purit after two c ratio; 25 determined by flame photometry. Results are expressed in either percent or ppm on a dry weight basis. Sugar and juice_purity analyses Percent sucrose in the expressed juice of sugar beet roots is measured by a polarimeter in weight per volume units (grams/100ml). Dexter, Frakes, and Snyder (1967) describe the calculations necessary to express percentage sucrose on a fresh-weight-of-root basis. Sucrose percentages reported herein are on this basis. A method for determining clear juice purity is describ- ed by Carruthers and Oldfield (1961). Their measurement of juice purity correlated very highly with the purity of juice after two carbonations in the factory (called "thin juice"). Percent clear juice purity may be expressed as the following ratio: % clear juice purity ='% sucrosgsby weight X 100 where RDS is the percent "refractive dry substance" by weight in the clarified juice and is measured in the laboratory by a refractometer. Extractable sugar per ton of beets may be calculated from the following formula: %ex Usui for factor Frakes, an Yiel PIOduced j A recovel tl‘actable Anal and Na. ‘3; N Genteht Stein (19 26 % extractable sugar = ‘% sucrose — factory loss X ‘ 1 _ molasses purity X 100 - % clear juice purity 100 - molasses purity % clear juice purity ‘% extractable sugar X 20 = extractable sugar per ton. Usually standard figures are entered into the equation for factory loss (0.3%) and molasses purity (62.5%) (Dexter, Frakes, and Snyder, 1966). Yields of sugar are reported in two ways: 1) sugar produced in cwt/acre = tons beets/acre X 20 X % sucrose; 2) recoverable sugar in cwt/acre = tons beets/acre X lb ex— tractable sugar/ton X l/lOO. Analysis for the clear juice impurities, amino N, K, and Na, was performed on all juice samples. The free amino acid N content was determined by a modified procedure of Moore and Stein (1954). K and Na were determined by flame photometry. Statistical Procedures Statistics were calculated and graphs were drawn uti- lizing programs of the Michigan Agricultural Experiment Sta- tion STAT Series Description Numbers 7, 8, 14, and 16 and the Control Data Corporation 3600 digital computer of the Michi- gan State University Computer Center. The services of the Computer Center were subsidized, in part, by the National Science F a randomi: the relat; J 1| ability we test and significa Probabilit ecor, 1956 Simp “are used 1 R treatmem delete rm“ tiOns and < lated from tne basis Cent (M81; 4 27 Science Foundation. Analysis of variance in accordance with a randomized block, split—plot design was employed to examine the relationship of N fertilizer treatments to different soil test and sugar beet response parameters. Values of least significannt difference (LSD) at the 5 percent level of prob- ability were calculated. It should be recognized that the probability for error is greater than 5 percent when this LSD is applied to comparisons among more than two means (Sned- ecor, 1956). Simple and multiple correlation and regression analyses were used to characterize relationships among beet parameters, N treatments, soil tests, and petiole tests. A least-squares- delete routine was used in which multiple regression equa- tions and coefficients of multiple determination were calcu— lated from coefficients that were selected by the computer on the basis of significance at a probability less than ten per~ cent (MSU AES STAT Series Description Number 8). Units of Measurement This research was sponsored by, and conducted with the close cooperation of, the farmers and manufacturers of the sugar beet industry. To make the data more immediately use- ful to the industry, the English system of weights and meas- ures has been used. However, in certain graphs data are I i l recorded graphs to 1) 28 recorded in metric units. To convert the data on those graphs to the English system, the required factors are: l) kilograms/hectare (kg/ha) X 0.891 = pounds per acre 2) centimeters (cm) X 2.54 = inches. Dur the N sta ments wer Season tc mm COrn interest, Tables 32 Dur of nitro; thn and 0f sugar RESULTS AND DISCUSSION During 1968, the primary objective was to characterize the N status of the soil after the basic N fertilizer treat- ments were applied. Two soil samplings were made during the season to estimate the N present. The yields of navy beans and corn in response to the N treatments were of secondary interest, and the summarized data may be found in the Appendix, Tables 32, 33, and 34. During 1969, the objective was to evaluate the effect of nitrogen fertility level of soils (as influenced by loca- tion and the previous year's N application) on the responses of sugar beets to N applied in the current season. The discussion in the first few sections will be cen- tered around the analysis of variance in beet parameters, soil tests and petiole analyses over all six experimental lo— cations and the simple correlations among these measurements. In later sections, relationships among fertilizer N treat- ments, beet responses, nitrogen soil tests, and petiole anal- yses will be examined for conformity with a number of func- tional models, using multiple correlation and regression methods. 29 Sin tions are and will Dur Swill be N3 respec Suga 30 Similar evaluations of the data for individual loca— tions are presented in the Appendix (Tables 35 through 62) and will not be discussed separately. During the ensuing discussions, 1968- and 1969-applied N will be referred to frequently as "residual N" and "current N", respectively. The Response of Sugar Beets to Locations and Nitrogen Applied in 1968 and 1969 Sugar beet response was different at each farm (Table 2). This was expected because farms varied in location, soil productivity, cropping sequence, soil fertility, management and other factors. No particular significance was attributed to the effect of previous crop on beet responses. Any obvi- ous differences are probably due to the geographical separa- tion of the two clusters of farms where the previous crop was different. The yield of beets at Farm 3 was significantly lower than any of the other farms, and because of the effect of low root yields, it also had the lowest produced and re- coverable sugar yields. Poor drainage and a root rot infes- tation at this location during the early stages of growth probably contributed most to the reductions. The low percent clear juice purity (CJP) at Farm 5, 91.9%, is associated with the high levels of amino N, K, and Na impurities in the clear juice. Concomitant with the low purity is the fact that Farm 5 had th have clos nutrients tion of i Mai responses found in rent N is ments wit 1968; Var maXimiZed imum in 'I 5 applied 31 5 had the lowest stand of beets. When beet plants do not have close near—neighbor competitors, more luxury uptake of nutrients occurs with a corresponding tendency for accumula- tion of impurities. Main effects of 1968- and 1969-applied N on sugar beet responses are found in Table 2, and interaction effects are found in Table 3. For most parameters, the response to cur- rent N is typical of results from other N fertility experi- ments with sugar beets (Baldwin and Stevenson, 1969; Gascho, 1968; Varsa, 1969). In these earlier studies, yield of beets maximized at N rates of 100 to 150 pounds per acre. The max— imum in Table 2 would have occurred between 80 and 120 pounds N applied in 1969. By contrast, the largest beet yields in Tables 2 and 3 were obtained at the highest residual N level (480 pounds of N in 1968). High yields of beets, however, were accompanied by sharply reduced yields of recoverable sugar at each of the higher residual N levels. Percent sucrose and clear juice purity were both sharply reduced at 240 pounds of 1968 N and again at 480 pounds. Both clear juice purity and percent su— crose enter into the calculation of extractable sugar per ton, which in turn enters into the calculation of recoverable sugar. Above 160 pounds of 1968 N, reduced extractability of ‘ Maw munvmuumu he Can-NE mops-v. COfi U 5100 H 0U aoa~ Eco :AVfiUQHQLA CA "m. Lu many 3.: Amwrh Am.nl «iv .2: C nu h& I. fly (A '1‘ WIN nabfl .~ :53fi CH UQWNQQA. CCxKuACHC L 3.5 .39.. v‘ .3 ACES 2 3 0.0a 5.0m 0.0a 00.H mm.a 0.0 00.0 5H.0 Hm.0 mc 00. .000 Hma 500 000 0.50 0.00 000 0.00 v.0H 0.00 0000a 00a 00a 000 000 0.00 0.50 000 v.m0 5.0a 0.00 0000a 00 50a 000 000 0.00 0.00 vom H.00 0.5a 0.0a 00HOH 00 5HH 000 000 0.H0 5.00 mam 0.00 0.5a 0.0a 0000a 0 Amsom\nav z mama 0.00 5.00 0.H0 ¢0.0 m: 0.0 00.0 00.0 00.0 ms 00. .000 00a 050 H00 0.00 0.50 000 0.H0 0.0a 0.H0 0000a 00v 00H 000 0mm H.50 0.00 000 0.00 0.0a 0.00 00HOH 000 00a 0m0 000 0.00 0.00 000 H.¢0 0.5a 0.0a 0000a 00H 00H H00 000 0.00 0.00 0am 0.00 0.5a H.0H 00HOH 00 00 000 500 0.H0 0.00 0am 0.00 0.5a 0.0a 0000a 00 Amnom\namlz moma 0.00 0.m0H 5.00 00.0 00.0 H.0H 00.0 00.0 5m.H 0¢H0 00. .00A 00H 005 000 5.00 v.H5 0am 0.¢0 0.5a v.00 0000a : 0 500 H5HH 000 0.00 0.00 000 0.H0 0.5a 0.00 00HOH = 0 0AA 055 000 0.00 0.50 000 H.v0 0.0a v.00 0005a cuou v 00 000 000 0.00 0.00 000 0.00 0.5a 0.5a 0005a = m 50 050 000 0.00 v.50 500 0.00 0.00 0.00 0005a = 0 50H 505 000 0.H0 0.05 000 0.00 0.0a 0.00 00000 mcmmm a mono 000a Eumm mz x ocms muww wwww cou .x x muom muom mmfluommumu ummdm 000H\MEK mammwm pwosp mflwm wuausm mumon wwm awn 000:0 umwau n>oomm loum luomuuxm mowsn CH COB quEsz cfl mmaufiusmeh ummsm HmeO wmouosm mumwm 0000H0 muwumEmumm umwn 000:0 moma 0cm 000A ca nmfiammm ammoupfic mo muomwmw same 0cm coflumoofi on coaumHmu CA mumuoEmumm wmcommwu umwn wmmsm 0 manna :(GF 1:: acmp c“ Utnuflcc CBCOAUAC 0: COAutath CA uhEQWEtLKQ 03:31::A 0&1: ht>zt M t~£t§ 33 0.0m H.H0 0.0v 0H.m 00.0 H.0 00. 0?. 00. 0c 000A Cdfidfi3 000a 0.00 H.05 0.Hv 00.0 50.0 0.0 00. 00. 05. NC 000a Cfigud3 000d . G04 0H0 000M 500 H.00 0.00 000 0.H0 5.0a 0.H0 0000A 00H HOH 000A 00¢ 0.00 H.00 500 5.H0 0.0M ¢.H0 0005A 00 00H 000 00v 0.50 0.50 050 0.00 0.0a 0.H0 0000a 0* 00A 000 00¢ 0.50 0.50 v50 0.00 0.0a 0.H0 0000A 0 00¢ 00H 050 50G 0.V0 5.00 H50 0.00 0.0a 0.00 0000a 00H 00a 000 000 0.00 0.00 050 0.00 n.0H 0.00 0000A 00 00H Hv0 0H0 0.00 0J50 000 0.00 0.0a H.00 0005A 06 00H 000 050 0.00 0.50 000 5.00 0.5a 5.0a 0000A 0 0v0 NVH 000 500 0.00 0.50 500 0.00 0.0a 0.00 0000A 00H 00H 000 000 0.00 0.00 500 0.00 0.50 H.00 0005A 00 00a 000 HVN 0.00 ¢.00 van 0.?0 5.5a 5.0M 0000a ov - 00H 000 0H0 H.00 5.05 000 0.v0 0.0a 0.0a 0000a 0 00a 50H 000 000 5.50 0.00 000 0.00 0.0a 0.0a 00HOH 00H 000 000 H00 0.00 0.50 000 0.00 n.5H 0.0M 00H0d 00 50a 000 0H0 0.00 0.00 0H0 5.v0 5.5a 0.0a 0000a 0¢ 05 005 0¢H 0.00 H.00 cmm 0.00 0.0a 5.0a 00HOH 0 00 NHH 0H0 000 H.00 0.50 000 H.V0 0.5a 0.0a 0000A 00A 50A vH0 000 0.00 0.05 0H0 0.00 0.5a H.00 0000A 00 H0 055 HOH 0.00 0.00 000 0.00. H.0H 0.0M 00HOH 0¢ H0 0H0 50H 0.00 0.00 000 5.00 0.0a 5.0a 00VOH 0 00 2 000A 2 000A mz x 2 30¢ 9.80 now I x. «won «you m3 .30....qu ocHEm, 930 uzo AH uwmnm 000H\0E oanmuu cacao «Han muausm «noon yum yum coda“ woman u>ooom roam -uoouuxm 0003“ :0 cos nonesz ca nowuausmEH ummsm unoao onouoam uuomm A000H ca macauoooH 0 you momnuo>¢v unuuufinunm yuan ummsm 000a can 000A :0 voaaamn cumouuac ou nodunauw ca mucuoEmumm oncomouu noon unmam n manna sugar co: N fertil: ery incr and recov and 1969 sugar yie N treatme bility bc ”3 Perce were app] SPOnding a 13 Per: was appl; acre). 34 sugar completely reversed the apparent benefit of increasing N fertility as suggested by increasing yield of beets. Ev- ery increment of N applied in 1969 reduced extractability and recoverable yields of sugar. The average effects of 1968 and 1969 N applications on extractability and recoverable sugar yields (Table 2) were cumulative at each combination of N treatments (Table 3). The cumulative decline in extracta— bility bottomed out at just under 260 pounds of sugar per ton (13 percent extractable sugar) when 80 or 120 pounds of N were applied in 1969 on top of 480 pounds in 1968. The corre- sponding recoverable yield of sugar (55 cwt/acre) represents a 13 percent reduction from that obtained where no nitrogen was applied in 1969 after 40 pounds of N in 1968 (62.9 cwt/ acre). This reduction occurred in spite of the fact that yield of beets increased from 18.7 to 21.4 tons per acre, an increase of 12.5 percent. The data in Tables 2 and 3 illustrate two important physiological responses of sugar beets to N fertility: l) excessive vegetative growth associated with high N fer— tility can result in increased beet yields at the expense of stored sugar (percent sucrose); 2) excessive levels of avail— able N in the soil during the latter part of the season re- sult in increased juice impurities (amino N, K, and Na). This latter response is of immediate concern to the processo l However , one way ( for his l:I imum beet indirect iiT-Plicati PECt with fOr the g 35 processor, since it increases the cost of extracting sugar. However, it is of ultimate concern to the grower because, in one way or another, it is reflected in the price he receives for his beets. The market cost of excessive N to assure max- imum beet yields is a negligible factor as compared with the indirect cost of reduced sugar per ton. The environmental implications of excessive N use represent an additional as- pect with potential repercussions, both legal and economic, for the grower. Nitrogen Soil Tests in Relation to Locations and Nitrogen Applied in 1968 and 1969 Results at six experimental locations of average N soil tests in relationship to residual and current N treatments at four sampling dates are given in Table 4. Except for Summer 1969 (Su69), soil samples were taken before the application of 1969 N. The values tabulated for 1969 N treatments, ex— cept for the Su69 samplings, represent mean soil test results over all farms and 1968 N levels. Similar tabulations for 1969 N treatments will be noted for other soil tests in Tables 6, 7, and 8. Summer 1968 (Su68) and Fall 1968 (F68) mineral N tests were different for bean farms as a group than for farms where corn preceded sugar beets. Nearly twice as much N was pres- ent in the plow layer of bean plots in Summer 1969 as was present ment of status f This rev ization- to the t corn loc the bean 36 present in corn, which reflects the lower nitrogen require- ment of the beans. By fall, the relative soil mineral N status for the two groups of farms had reversed itself. This reversal may have resulted from differential mineral- ization~immobilization reactions occurring in the soil due to the two entirely different crop residues. However, the corn locations were sampled nearly three weeks later than the beans. By the Spring 1969 (Sp69) sampling, differences in min- eral N between navy beans and corn plots had narrowed consid— erably, although remaining significant. In general, the corn plots had mineral N tests of five to ten pounds per acre greater than navy beans. As seen from Table 4, the relationship between the amount of N applied in 1968 and the mineral N determined in the Su68, F68, and Sp69 soil samplings was nearly linear (r .73, .88, and .80, respectively, for the three sampling dates, Table 5). When farms and previous crop were ignored, there was very little difference between the amounts of N ob— tained in the Su68 and F68 samplings, but appreciably less was detected in the Sp69 sampling. For example, on the plots receiving 480 pounds of N per acre in 1968, mineral N de- clined from 203 to 38 pounds per acre over the winter, a loss 160 pounds per acre from the plow layer. It is not known if TCA>MHUOUS< hwum3 UOE manmNfiHmh®CflZ 000A has 0000 :A osANZQe C3?OHUfiC N0 @UUONtW CfiQE UGO COfiUQUCH 30 COfiUQHQL Cfi $0300 NNOE CUEQAUHZ 3 WflQQ$ 37 m: m: m: m: m: m: 5.H m: 0: mp 00. .00A 00 50 VHH 00H 00 5V CV 00 V0 OOH 00H 00 50 VHH 00H 00 5V V0 00 V0 00H 00 00 50 VHH 00H 00 5V mm 00 V0 OOH CV 00 50 VHH 00H 00 5V am 00 V0 00H 0 Ampom\nav z momfl m.V V.V 05 02 ms ms V.0 0.0 0.HH 0.0a 00. .000 50 V0 MHH 00H 50 0V 00 00 000 00H 00V H0 V0 VHH 0HH mm mV V0 00 HHH 00H 0V0 00 00 VHH VNH 5m VV mm 00 05 00 00H H0 00 VHH 00H 00 H0 00 0H 5V m0 00 00 50 MHH HNH 0m 5V Hm VH Vm 00 0V Amuum\flav 2 000a 0.5a V.0H 0.H0 H.00 H.0 5.0a 0.0 5.0 5.0a H.0H 00. .000 00 00 mHH 0HH 0m 00 V0 00 00H 05 = 0 50 H0 VOH 00H mV 00 00 50 00H 00 = 0 00 H5 50A 000 00 00 mm 00 NHH m0 cuou V mm 00 H0 00 00 00 00 00 00 mma = 0 5V H0 V00 VmH Vm mm 00 00 H0 0AA : 0 00 00 00H 0AA 0m HV 00 Va 05 00H mcmom H @000 000a Eumm 000m mom mpmm 00m momm 00m 005m mmom 00m 005m mmwpommumo Amu00\naql Awuom\nav Amu00\an‘ Amu00\nav z 00mmoaww z wanmuomwuxm z z Hmumcfiz 0cfi>mHoouS< “mums pom mHQmNHHmuoCAZ 000a 0cm 000a ca UoHHmmm cmmouufic mo muommmo chE can cofiumooH ou COHumHou Ca mummy HHOm comouuaz V magma Table 5 Soil sampli Perio Su68 F68 $969 Su69 38 Table 5 Linear correlations (r) of 1968 and 1969 applied N with the mineral N soil test at 4 soil sampling periodsa Soil 1968 1969 sampling applied applied period N N Su68 .729 —— F68 .882 —- Sp69 .798 ~- Su69 .147 .173 aFor significance: at P(.05), r = .113 at P(.01), r = .148 39 the N had moved out of the rooting zone of sugar beets or if it was merely beyond the depth of sampling. Mineral N in the sub-soil may be an important residual source of N for suc- ceeding crOps. Such seasonal movements have relevance, also, to N03 pollution of drainage and ground waters. The three other tests for which data are shown in Table 4 have been proposed for estimating the organic N release capacity of soils. Mineralizable N, hot water extractable N, and autoclaving released N are descriptive of the methods themselves rather than the fraction of N estimated. These three indexes of N availability will be discussed together because of their response, or lack of it, to applied N. Because each farm would be expected to have soils of different N supplying power, it was not surprising that sig- nificantly different test results were obtained among farm locations for either the fall or spring sampling. Farm 3 consistently gave lower test results than any of the others. Mineralizable N in the spring sampling was lower than in the fall, particularly following corn. This suggests that considerable mineralization may have occurred during the win- ter. Mineral N released during the winter would have con- tributed to the higher test for mineral N in the spring after corn. Thus a test for mineral N in the spring has some of the character of a mineralization index. This may explain why Gasc test for. Th I acre les: average, less. 1: the ferti Samming dure. 0f Clavinig r aPralied 5 flected j The and autoc included 40 why Gascho (1968) found it to be the most consistently useful test for estimating the nitrogen fertility status of soils. The hot water extractable N values were 12 pounds per acre less in the spring than in the fall sampling, on the average, and the autoclaving released N values were 4 pounds less. If either of these two tests have merit in predicting the fertilizer N needs of sugar beets, then the season of sampling will be less critical with the autoclaving proce- dure. Of the three organic N release indexes, only the auto— claving released N test showed a significant effect of 1968- applied N. However, only the 480 pound application was re- flected in a higher test by this procedure. The tests for mineralizable N, hot water extractable N, and autoclaving released N do not detect nitrate, which is included in the mineral N test. Apparently they do reflect differences in nature or quantity of organic matter in dif- ferent soils and under different management systems. How- ever, it appears that fertilizer N has very little effect on the quantity of nitrogen in the organic fractions which enter into these determinations. The CaC12 in the autoclaving procedure should enhance displacement of fixed ammonium from lattice clays. Ammonium fixation may have contributed to residual carryover from the 480 pour DL‘ associat per acre associat were lin aree of the othe Mo greatest garlic N _ 41 480 pound application of N. During the summer of 1969, average mineral N values associated with 0 to 120 pounds of 1969 N were 31 to 40 pounds per acre. This is almost identical with the range of values associated with 40 to 480 pounds of 1968 N. The Su69 tests were linearly related to both 1968 N and 1969 N, but the de- gree of correlation was much lower than for mineral N for the other three samplings and 1968 N (Table 5). Most of the N soil tests were intercorrelated, but the greatest degree of intercorrelation was among the three or- ganic N indexes (Table 12). Simple correlations in Table 14 show that percent su- crose, percent clear juice purity, and the impurities in clear juice were more closely related to the F68 and Sp69 mineral N tests than any other N soil test. The rather high degree of correlation with these beet quality factors was shown also by the two tests for petiole nitrogen. The two tests for petiole N were also more highly cor- related with F68 and Sp69 mineral N tests than any other soil N test (Table 14). By contrast, yield of beets was more highly correlated with the indexes of organic N release than with the measure- ments of mineral N (Table 14). It would appear that different forms of N in the soil affect :1 probably of soils were to I tionsh ip: be eithei 42 affect the development of beets in different ways. It is probably unrealistic to expect the nitrogen fertility status of soils to be characterized by any single test. If one were to be selected, however, on the basis of simple rela— tionships that have been considered in this section, it would be either a fall or a spring test for mineral N. Soil pH, P, K, Ca, and Mg in Relation to Locations and Nitrogen Applied in 1968 and 1969 Soil pH was significantly different among farms (Table 6). On the average, soil pH for the F68 sampling was one-to two-tenths of a pH unit less than the other three samplings. This result supports observations by soil testing personnel that fall sampled soils give lower pH values than those sam— pled in the spring. Seasonal production of acidity by nitri— fication and subsequent leaching of bases contribute to these seasonal fluctuations in pH. Soil pH was correlated nega- tively with mineral N in both F68 and Sp69 samplings (Table 18), and there was evidence of pH depression at the higher rates of 1968 applied N in the Su68 and F68 samplings (Table 6). By Spring 1969 these differences were negligible. When relating pH to combinations of residual and current applied N (Table 10), no significant interactions were observed. There were significant farm differences in soil P, K, Soil pH in relation to location and main Table 5 effects of nitrogen applied in 1968 and 1969 Soil_pH F68 Su69 69 §P Su68 Categories 1968 crop Farm 0V 5-5-5.5’5.5 V000V0 Beans II N Corn '40me0 . 0.21 0.22 0.20 .05 LSD, 43 1968 N (lb/acre) 4o 80 160 240 480 0.05 0.07 US 0.08 .05 LSD, 1969 N(lb/acre) 4O 80 120 ns US ns ns .05 LSD, 44 mo ma 0: m: mu 0: mg m: 00. .000 05H HOH V00 00H H0 00 0V 0V 00H 05H HOH V00 00H H0 00 0V 0V 00 05H HOH V00 00H 00 00 0V 0V 0V 05H HOH V00 00H 50 00 0V 0V 0 AmHUM\nAV z momfl m: m: m: mu m: m: m: m: 00. .000 05H HOH 500 00H 00 00 00 0V 00V 00H 00H 000 00H H0 00 00 0V 0V0 00H HOH 000 V00 V0 V0 HV 00 00H 05H 00H H00 05H 00 00 00 00 00 00H V5H 00H 00H 00 H0 0V 00 0V Ampum\nflv z 000H 0.0V m.0m m.VV H.0V 5.0H 0.VH 5.0H 0.0H 00. .000 00H 00H 000 00H 05 V0 0V 05 = 0 H00 500 000 000 H0 00 V0 05 .. 0 VOH 00H 00H HOH 00 V0 HV 0V cuoo V 00H HOH 000 00H 0V 50 mm HV : m 0VH H5H 00H 00H 00 0H 0H 0 = 0 VVH 00H 000 50H H0 00 00 H0 mammm H mono 000H 5000 00:0 000m 00a 0050 005m 000m mom 005m mmeomuumo Hmpom\bAH x Afiom Appom\nflv a AHom 000H 020 000H CH omHHmmm cwmouuHc 00 0000000 chE van coHumooH o» coHumHoH CH 0 oHQmomcmnoxw 0cm 0 mHQmuomuuxm 5 oHnme momfi mucm mwomfi Cfi humUfi. HQfikflv CQEOMUHC MO mUUOMww CVUE Ucw EOHUMUOH 0U COVUQHWH CV DE Ucm WU wnflmWGcmfioki Q @HQQR 45 0: 0C 0C 0: 0: 0C 0C 0C 00. .000 oom «NV 00m 0n« omam omNV 000m omHm 0N0 oom «NV 00m 0nV omHm ONNV 000m OmHm om 00m «NV 00m HnV omHm omn« 000m omam o« 0mm «NV 00m 05V ommV omn« omam omHm o Amuum\200 z meow 0C 02 0C 0C 0C 0C 0C 0: m0 . .Qmfl mmm oNV «Nm NNV ommm OVNV omNm OHNm omV mom 0NV 00« NOV 000m ommV oNNm OHNm oVN mmm mQV NmV mnV 000m ommV ONHm ONHm 0N0 omm 0m« mHm mnV Omom 0Nn« omNm 000m om omm NNV omV 00V QNmV om0V ommV cmom 0V Amuum\QHH,z momH m.«00 ma N.mN 0.000 000 0N0 0mm 0Vm mo. .omq mom 0n« mmo oVo ommV ommV ooam omom = o HV0 NOV mNm mmV ommV OHmV ome 000m = m mom VVm an mmm OMNN 00mm coho ommo cuoo V mn« mnm HmV mom 0N0V ohmV omoV ONnV = m mNm mmV omV mmV ommV HVHV oo«« omVV = N mm« NmV mnV HVV cmn« oNVV omNV ommV mammm 0 0000 000H Eumm meow momm mom 00:0 mosm 000m mom 005m mmfiuommumu ll AwCUM\Qd%02 HH00 Awuom\0H%,mo HH00 mama cam moma c0 Vm00mmm CmmoHUHC mo muomwmm CHmE 0C0 COHumoOH ou CoHumeu CH 02 @Cm mu mHQmmmcmnoxm 0 wHQmB (\(y fill CWCF Ir Trev PICK CQCCL£vE NO meUmwwamw :fiMwE TVs-w COfiUQUOH CU CnUflU-uuHrWIH CH TMVHOJHUCQ UmeWAN «Hnwhw-Jm CH. v~ mU-Lnuv ‘nw \z a .WHQEFU 46 00.0 0.VNN «00.0 0N00.0 00. .000 0.0 00V0 m«.N 000.0 0N0 «.0 0N00 0V.N 000.0 00 0.V 0000 00.N 000.0 0« 0.0 000« 00.N 000.0 0 Houum\00v z 0000 00.0 0.00m 00 m: 00. .000 0.0 «0N0 0V.N «00.0 00V «.0 0000 0V.N 000.0 0VN 0.0 0000 00.N 000.0 000 N.« «NOV 0V.N 000.0 00 0.0 0VNV m0.N 000.0 0« 0uuum\000 z 0000 00.0 N.0000 00V.0 0000.0 00. .000 0.V 0N00 00.N 000.0 = 0 «.0 0000 00.N 0N0.0 = 0 0.0 «000 m0.N V00.0 0000 V 0.V 000V 00.N 000.0 = m 0.V NO0V 00.N 000.0 = N 0.0 HnHm 00.0 HHH.0 0:000 H E00 X x. @000 000H £000 2 2-002 0 0 0000000000 ummu mHnmuomuuxm 00000 0000 000000 000H 0C0 000H C0 OmaHmmm CmmoHuHC mo muummmm Came 0C0 CoHumuoH ou CofiumHmu C0 00000000 umwn 00050 :0 x 000 .0 .z 0 mHnma 47 «0.0 0.0mm 0: a: 0: 0c 0: 0: m: 0.¢ 0000 c0su«3 0000 00.0 ~.Hom 000.0 ~ooo.o 0: 0: 0c 0: m: 0.0 0000 :03003 0000 mo. .Qma 0.0 o~Hm nm.~ 000.0 ~00 0000 000 ~o 0.0 nw o~0 0.0 0000 hm.~ 000.0 000 o~mm 000 mm 0.0 mm cm 0.0 0000 mv.~ @00.o com 0000 000 00 0.0 00 o¢ 0.0 0000 mm.~ 000.0 000 om00 m00 ~0 0.0 «m o owe 0.0 ocnn mv.~ m00.o mvm 0000 000 00 0.0 0¢ o~0 0.0 O0vm v¢.~ ~00.o ~00 on~m 000 00 0.0 mm cm 0.0 0000 0¢.~ 000.0 mvm om~m mma 00 0.0 an o¢ m.« 0000 00.~ 000.0 mvm 0000 000 mm 0.0 0m 0 ov~ 0.0 0000 0¢.~ 000.0 000 0000 mm0 ¢o 0.0 He o~0 ¢.0 Omen v0.~ 000.0 000 0000 n00 ~0 0.0 vm om 0.v omn¢ 00.~ 000.0 000 o-m ~00 cm 0.0 mm ov ~.m cmo¢ n0.~ 000.0 v00 000m 000 mm 0.0 ~m o 000 0.0 0000 0¢.~ 000.0 000 0000 «00 00 0.0 vM o~0 0.0 000v 0v.~ 000.0 000 o¢0m m00 00 0.0 «m cm 0.~ omov cv.~ 000.0 000 o¢m¢ 000 00 0.0 On o¢ 0.0 000m mm.~ 000.0 000 o~om vh0 V0 0.0 m~ o om 0.0 comm m~.~ 000.0 000 ov0m m00 cm 0.0 mm o~0 o.¢ o~o¢ 0v.~ 000.0 w¢m o~om 000 mm 0.0 on om m.~ comm mm.~ 000.0 b¢m ovmc 000 on 0.0 an oc m.o oo~m mh.~ 000.0 «~m oomv 000 00 0.0 m~ o ow 5mm x. X z mom." 2 mom." 2 minoZIMW. nun. 0: no a a mm 2 uuauomuunu unmu 00n0uomuuxu Houucuz x0030 0000 vau0o¢ umuhuocn 0000000 00000\n0. 00000 0000 0000000000 0 you 000000>¢v 0000 0:0 0000 :0 0000000 comouuac ou c0000000 :0 uou>00cn 0000uoa noon unoau van 0000» 0000 0000 uoEEsm 00 00n09 I.“ 48 Ca, and Mg (Tables 7 and 8). The soil P test at location 2 was extremely low for all sampling periods. The high rate of applied P at beet seeding time (about 600 pounds of P205 per acre) was sufficient to overcome the indicated deficiency of soil P, since beet and sugar yields were about average for the six locations (Table 2 and Appendix Tables 47 and 59). The tests for K, Ca, and Mg are typical of the levels found in Saginaw valley soils. Farm 5 had considerably high- er soil K values than any of the other farms. Soil tests for P, K, Ca, and Mg were not significantly influenced by rates of N applied in 1968 or 1969 (Tables 7 and 8). When relating the Su69 soil tests to combinations of residual and current applied N, no significant interactions were observed (Table 10). Sugar Beet Petiole Analyses in Relation to Locations and 1968 and 1969 Applied N Average petiole analyses for acetic acid extractable P, K, and NO3-N and quick tests for petiole No3 (QTN) were sig- xuificantly different among farms (Table 9). Farm 2, which had the low soil P tests, had the lowest petiole P among the locations. Farm 5, having the highest soil K tests among farms, also had the highest K in petioles. Simple correla- tions (Table 17) between soil P and K and petiole P and K were hi and .54 Mass noted : increa; curren crease this I I est 1- (0m) and c1 sirTable and CU lated t 0195 We. and 51369 dates an correlate and extra The data in Tab 1 ‘ . .1999);le Ta 49 were highly significant (for the Su69 soil samplings, r = .36 and .54 for soil versus petiole P and K, respectively). There was no significant effect on petiole P and K when N was supplied in 1968 (Table 9). Significant effects were noted for 1969-applied N. There was a trend for petiole P to increase cummulatively with increases in both residual and current fertilizer N applications (Table 10). Petiole K de- creased with increasing rates of current N (Table 9), but this effect was significant only in combination with the low- est l968 application of N (Table 10). Acetic acid extractable N03 and the petiole quick test (QTN) increased cummulatively with each increase in residual and current N treatments (Tables 9 and 10). From Table 13, simple correlation coefficients were .62 and .41 for residual and current N as related to petiole N03 and .54 and .52 as re- lated to QTN. These two measures of soluble N in the peti- oles were highly correlated with soil mineral N in the F68 and Sp69 samplings (Table 16). Soil mineral N on these two dates and the petiole N tests were highly and negatively correlated with percent sucrose, percent clear juice purity, and extractable sugar per ton (Table 14). The relationships noted in the preceding paragraph and data in Table 14 clearly support the data in Table 4 and in Appendix Tables 51 and 52. The data indicate that excess N ’1 appli a min incub with were k Clea: eral orN end tion and 1 fluen 50 applied to the crop preceding sugar beets was carried over in a mineral form (probably N03) which was not detected by the incubation test or by hot water extraction or autoclaving with .01 g Cac12. Adverse effects of excess N on recoverable sugar yields were due to reductions in percent sucrose and increases in clear juice impurities (Table 14). Petiole N and soil min- eral N were more closely correlated with amino N than with K or Na, although all three impurities were strongly influenced. Correlations between Na in clear juice and the petiole and soil tests in Tables 14 and 15 suggest that Na accumula- tion was influenced by soil pH and the availability of both P and K, as well as of N. Accumulation of K, however, was in— fluenced mainly by the availability of N and K. Petiole tests for N, P, and K were inversely related to soil pH (Table 17). There is the possibility that this in- verse relation to pH may have been due to effects on availa- laility of other nutrients, notably Ca and Mg. Correlations xwith soil tests for Ca and Mg in Tables 15 and 17 do not sug- gest any unique involvement of these two nutrients. No tests were made for Ca or Mg in petiole extracts. Nitrate N in petioles ranged from 2750 ppm for the low— est inputs of fertilizer N at Farm 1 (Table 36) to in excess of 9000 ppm for the highest inputs at Farm 5 (Table 44). . tration 3 beets t } of the 1 . tilizer ficienc (bruein S deiic'u WTN) ‘ from b. 200 mg themsu‘ tie rela Clear J'm' Sugar PM 3Native 1 sucroSe (r and eXtract due t0 the 9% 51 Ulrich and others (1959) reported the critical concen- tration of NOB-N (phenoldisulfonic acid procedure) for sugar beets to be 1000 ppm in dried petioles. Visual observations of the plots receiving low rates of residual and current fer- tilizer N in the present study indicated rather serious N de- ficiencies at the time petiole samples were taken. Nitrate N (brucine procedure) in petioles of these symptomatically N- deficient beets ranged up to 3500 to 4000 ppm and quick test (QTN) values ranged up to 4.0 to 4.5. Amino N in clear juice from beets harvested from these plots was generally less than 200 mg/loo g of sugar (Appendix Tables 35 to 46). Relationships Among Sugar Beet Parameters and their Influence on Recoverable Sugar per Acre The simple correlations of sugar beet parameters among themselves are given in Table 11. Of particular interest are the relationships among yield, percent sucrose, and percent clear'juice purity and their association with extractable sugax'per ton and recoverable sugar per acre. A significant ruagative relationship was obtained between yield and percent sucrose (r = —.38), percent clear juice purity (r = —.27), and extractable sugar (r = -.38). These relationships are due in: the positive effects of N fertilization on yield and the ruegative effects of N on sugar content and purity fl mum-nu QE-mhnwnm U 0W3 #1050920 «(Hy COHIUHufialflLHOU [HEW WCfi‘H Nu, always 52 mefl. u u .AHo.vm um mad. u u .Amo.vm um "mochHMHcmfim uomm oo.H mz an. oo.H x "wows“ ummao me. em. oo.H z ocflE¢ ca mmfiufiusmEH om.u mm.| mv.l oo.H ummSm wHQMHm>oomm no. mo.) ha.| mm. oo.H ummsm Uwospoum Hmuos mm.| em.| mm.1 mm. on. oo.H ummsm manmuomuuxm mo.- 55.- om.- 6v. 0H. om. oo.H xufiusm mossn ummao ucmuumm mm.| ~m.| Hp.| he. om. vm. mm. oo.H mmouusm usmoumm mm. ma. Hm. mm. mm. mm.l mm.n mm.| oo.a pawfiw mummm nm.n ov.n ma.n ov. ow. ma. mm. Ha. mm. oo.H amnesz mz x 2 mafia pwusp manm xufiusm mmouosm namfiw Hmneaz OsaE( Inw>oomm noun luomuuxm moan“ unmoumm mummm muwsfilummao ummsm umwau CH mmaufiusmEH usmoumn mmumqumumm uwwn UCOEM Auv cofiumHmuHou uwmcaa Ha manna 2 I CCfianHUOJJ/N hUUC3 U0: @HQMNfiHflvHWCfl—L Hflhmeflz mama“ HfiOmu cooOhUfiflu hunk-OE” AM» i; COfiU.uHmWIH1|N0hU “5.6:!35 N.” .MVHQEPN 53 z Ummmwamu mcw>maoousm u zlump z manmuomuuxm umum3 no: u ZIOmmo ceaumnsu:a mcfiusc nmmmmamu z manmnaamumcfie u ZIUZHQ mvH. u u .Aao.vm um mHH. u H .Amo.vm um "mocmofiwacmfiw uomm oo.H moam so. oo.H mom nz-o< so. He. oo.H momm m6. mm. as. oo.H mom oz-o~m mm. on. mm. «6. oo.H meow me. om. mm. me. we. oo.H mom OH2.9,: me. ow. mo.n oa. Hm. mo. oo.H meow ma. em. Hm. «m. mo. Hm. NH.- oo.H meow mm. mm. ma. mm. mm. mm. ma. mm. oo.H mom 60.- mo.. mm.: mm.. «H.. mm.u mm. mm. ov. oo.H mmsm z Hmumcaz momm mom momm mom meow mom meow momm mom mosm z nmmmmamu z manmuomnuxw z z mcfi>mHoou54 nouns uom wanmufiamumCHz Hmumcaz mummy HHOm cmmouuaa mcoem any acaumamuuoo umwch NH manna 10ww (x we . \. be / /.I Im. M x a (H fib“\‘ ’l/ e 0 \Q 50 «he . 54 moma Cw muwmn woman ou pwfiammm mucmfiuusc muocmp Omx new mOmm moma >Hm>fluummmmu .moma 6cm mooa as nwfiammm z muocmo zoo 6cm zmon med. u u .AHo.vm um mma. u u .Amo.vm um "mocmowmacmam uomm mH.I mH.n mm. Vm. oo.a z umwu xUHso vH.: vH.n av. mm. mm. oo.H an02 mo.1 mo.u mo.u 00.: ma. ma. oo.H & «H.| va.l mo. ma. ma. om. mm. oo.H m mHoHumm ems mo~m 2mm 2mm 2 ummu zumoz x a mood xofiso manmuomuuxm ofiom ofiuwo< nowaammd mmmwamcm macauwm noun Hmmsm uwuaafiuuww nmfiammm 0cm Mmucmauus: mmw>amcm mHoHumm ummn ummSm mcoem Any coaumawuuoo meEam ma magma 55 z ommmwamu mcfi>mHoousm u Z|Uoomm noun luomuuxm mofisn usmouwm mumwm mmfluommumo mofisn Hmmao HMmSm HmmHU CH mmfiufiusQEH usmoumm mmmmxamcm maoauwm ocm .mummu HHOm cmmouuflc .wucmfluusc “mafia ufluumm £ua3 mumqumumm aufiamsv ocm pawax bomb ummsm no any mcoflumamnuoo ummc«g «a magma S6 meH. u u ..Ho..m us h«HH. n u .Amo.om an “mucmuHuHcmHm uomm 0«. 0H. 00.: 0H. 0«. «0.: 0H.: «0. H«. «0.: 00:0 «0.: «H.: «0.: ««. ««. 00. 00. «o. 0«. ««. 0000 ««. «00.: «H.: ««. 0«. 00. «o. 00. ««. «H. 000 0H. «0.: 0H.: ««. 0«. «H. «0. 0H. ««. «H. 0050 0: HHom 0o. 0H.: 0H. 00.: «0.: «H.: 00.: ««.: «H. H«.: 0050 0H. «0. 0H.: «0.: «0.: 0H.: «H.: «0.: «o. o«.: 0000 H«. «0. 0H. 00. 00. 0H.: 00.: 00.: «H. 0«.: 000 «H. 00.: «H. «0. mo. 00.: «0.: 0H.: HH. 0«.: 0030 no HH00 em. 00. 00. «0. 0H. 00.: 0«.: «0. «H. 0«.: 0030 H0. «0. HH. 00.: 0H. «H.: 0«.: mo. «0. 0H.: 0000 we. 00. 0H. «0. 0H. 0H.: 0«.: «0. 0H. 0H.: 000 00. «0. 00. «0.: «H. 0H.: ««.: 00. 00. 0«.: 0090 x HHom Hv. ««. 00. «H. ««. «0.: o«.: «0. 0H. Ho.: 0090 0«. 0H. «0. 0«. 0«. «00. 0H.: 0H. 0«. «H. 0000 0«. H«. 00. 0«. 0«. 00. «H.: 0H. ««. ««. 000 ««. 0«. 00.: ««. 0«. 0H. 0H.: 0«. HH. «0. 00:0 0 HHom 0«.: «0.: 00. 0«.: ««.: 00.: «o. «H.: ««.: «0.: 0050 H«.: 00.: 00.: 0«.: 0«.: «0. HH. «0.: ««.: 0H.: 0000 ««.: «0.: «H.: 0«.: 0«.: 0H. 0«. 00. 0«.: 0«.: 000 00.: 0H.: «H.: 0«.: 00.: «H. H«. 00. Hv.: 00.: 00:0 :0 HH00 an x z oHAu 000:0 oHnu >9H050 0000090 vHoHr wonssz ooHuo0 ocHEt :uo>ouom :oum :uoauuxn onusa accouo0 :mwoum 09HH0Eu0 you» .Illlmmwmfilmmmmw:. ::mmmmmllllllll.uaoHu HHom HHom :H uoHuHu=0EH ucouuom nnooHuo0 0cHH0enu HHou 0 an 0: one .00 .x .0 .00 HHou 20H: uuouosnuo0 amHHasu.ocn vHoHa noon unmsu no any coHuuHouuoo unocHa 0H anua 57 Table 16 Linear correlation (r) of sugar beet petiole anal- yses with nitrogen soil tests at 4 soil sampling periodsa N Soil Acetic acid Quick soil sampling extractable test test period P K NO3—N N Mineral N Su68 .Ol —.35 .22 .28 F68 .19 .14 .71 .57 Sp69 .20 .13 .61 .48 Su69 .14 .04 .23 .33 INC-Nb F68 .32 .34 .22 .09 Sp69 .18 .34 .18 .20 HZO-NC F68 .02 .25 .24 .17 Sp69 -.Ol .28 .15 .09 AC-Nd F68 .16 .19 .17 .19 Sp69 .16 .23 .15 .19 aFor significance: at p(.05), r = .113 at P(.01), r .148 bINC-N = mineralizable N released during incubation CHZO-N = hot water extractable N dAC-N = autoclaving released N 58 Table 17 Linear correlation (r) of sugar beet petiole anal- yses with soil pH. P. pling periodsa K, Ca, and Mg at 4 soil sam— N Soil Acetic acid Quick soil sampling extractable test test period P K NO3-N N Soil pH Su68 —.35 —.48 —.36 -.26 F68 -.32 —.3O —.37 —.26 Sp69 -.27 -.4O -.25 —.19 Su69 -.27 -.39 -.16 —.06 Soil P Su68 .41 .46 .15 .12 F68 .36 .33 .14 .21 Sp69 .30 .36 .19 .24 Su69 .36 .40 .29 .29 Soil K Su68 .17 .46 .27 .30 F68 .20 .45 .24 .29 Sp69 .09 .41 .24 .31 Su69 .17 .54 .35 .32 Soil Ca Su68 .07 .18 .17 .16 F68 .12 .24 .26 .22 Sp69 .12 -.004 .12 .13 Su69 .02 .001 .15 .17 Soil Mg Su68 .20 .28 .06 -.05 F68 .20 .26 .15 -.003 Sp69 .01 —.16 —.O7 -.14 Su69 .25 .24 .21 .09 'aFor significance: at P(.05), ==.ll3 at P(.01), = .148 59 Table 18 Linear correlations (r) of soil tests for pH, P, K, Ca, and Mg with mineral N at four sampling periodsa Soil sampling pH P K Ca Mg period Mineral N Su68 .08 -.25 -.17 -.32 -.19 " F68 -.54 .07 .18 .29 .26 " Sp69 -.34 .06 .08 .20 -.07 " Su69 -.03 .25 .06 .00 —.09 aFor significance: at P(.05), r = .113 at P(.01), r .148 60 (Table 14). Extractable sugar is highly correlated with both per- cent sucrose (r = .94) and percent clear juice purity (r = .80) because it is based on a calculation involving both. Percent clear juice purity and percent sucrose are highly and negatively correlated with amino N, K, and Na in the clear juice because accumulation of sugar in the beet is reduced by the excessive nitrogen nutrition which promotes accumulation of these impurities. The impurities themselves are inter- correlated, but variations of K and Na are more closely re- lated with each other than with variations in amino N. Produced sugar is the calculated product of the yield of beets times percent sucrose. Major variations in produced sugar, however, were more closely related to variations in yield of beets than to variations in percent sucrose (Table 11) . Recoverable sugar is the product of yield of beets times extractable sugar per ton and its variation was related about equally to variations in these two parameters. The simple correlation in Table 11 between recoverable sugar'and produced sugar (r = .93) suggests that recoverable smygar was principally a positive linear function of the total sugar produced. However, the multiple regression functions'in Tables 19 and 20 show that the relationship between recoverable 6]. Ho>0H 0:00000 H onu um uGQOHuchHm «« Hm>oH ucouuu0 0 «Au um uauuHuHcmHm « Ho>oH uaouuo0 0H «nu um uauoHMchHm 0 ««00. ««00.H ««00.H ««00.H ««00.H ««00. ««00. «m ««0H. ««0«. ««0«. ««00. ««mm. ««00.« ««00. 000 N x «000050 N x vHuH» 0 o 0 0 0 «00.00: 0 000 N n vHoH» o ««c«.0H: «««n.NH: ««0«.H«: «««n.«H: ««n.cH«: ««H0.0H: ououusm N x vHoH> «ew.«: ««00.H: ««««.H: ««cH.H: ««««.H: «o«.m«: ««nm.H: «000 N o 0 «no. ‘Nm.H: ‘00. 0 «««.H «ououuam N o o o o o o c «3...: o o o o o ««HHoooo. ««0Hooooo. «Houuu\0uoumv ««.0n« «««.«0« «««.N«« ««0.00« ««0.«c« 00.0Hmn «««.«0« 000 N o o 0 ««q.00 o o 0 0060050 N o ««00.0: ««n«.«: «««.on ««N«.« ««.qone «mm.H« 0H0H> 0 0 o o o ««00.: ««0no.: 0000\0uoom ««He0«: ««00««H: ««0«HHH: «««000H: ««000HH: 00H000«: ««0«00H: uauuuaoo «ouumnnumv. Annunanomv «Hovowv AquHHozv .NwHuvnasuw. AnaaaoanM 0 n 0 « « H canon 00HA¢H00> and H3352: H2 08.52.83 nowuuouuuu no uuauHUHmuooo GOHuQUOH shun 3000 an van ufiuuu HH. do Amway auwua0 ouuan uuoHu and 0009090 ucouuu0 .00000 00 vHuHh .0000 000 ouoon 0» one. 000 Human 0Hawuo>ouou waHuaaon naoauuabu doaoaouwum 0H vague H0>0H 0000000 H H0>0H 0000000 000 um 00000000000 «« 0 0:0 00 uauuHMHame « H0>0H 0000000 0H 0:0 00 uauunHamHm 0 ««00. ««0o.H ««00.H ««00.H ««00. ««00. «m ««0H. ««0«. «««n. ««0«. ««0H. ««0«. 000 N 0 0000000 N x 0H0Hw o 0 0 ««««.: «0H.« 0 000 N x 0H0H» 0 «««0.NH: ««00.0H: ««00.NH: 0 ««H0.0H: 0000000 N x 0H0H» o ««0«.H: ««0«.H: ««0«.H: «n0.«: ««00.H: «000 N 0 0 «00H. 0 o «««.H «0000000 N 0 «000. o 0 0 0 «0H0H» Mm ««000000. 0 0 0 0 ««0H00000. «A0000\0u00mv «««.00 ««H.0«« «««.«0« ««0.«0« «m.Hmm «««.«<« 000 N 0 o o 00H.« 0 0 0000000 N 0 ««0H.N: 00«.«: ««00.0H ««.0o«: «00.H« 0H0H~ ««H.: 0 0 0 0 ««000.: 0000\00000 ««0000: ««000HH: ««0HONH: ««000NH: «omnnNI ««o«0mH: 00000000 000 ouuch moH om cc 00000 2 A. \AHMzawmwwwmmmmoww mM0MWMquoo 000H HH< uMMWMHMMMWH 000 00000 HHO 000 Amnov 000000 0UHMM0H0 H0000>Hvaw 00 000 00000500 2 vuwaana H000 . 00H0 0000000 000 000H 0000 000 00000 00 0000 000 00000 0H0000>0000 000 .0000000 000 00H00 000Huoa=w 0 0000 .0000: we oH0000wax ca 0Haaa 63 sugar and produced sugar was by no means simple. In the functions of Tables 19 and 20, linear, quadratic and interaction effects of beet yields, percent sucrose, and percent clear juice purity on recoverable sugar yields were given a chance to express themselves. Linear and squared terms for number of beets per acre were also included. The regressions were optimized by a least squares delete routine. Zero is entered for terms rejected by the computer because the calculated regression coefficient was not significant at a probability of ten per cent. The optimized functions are highly descriptive, accounting for 96 to 100 per cent of the total variation in recoverable sugar. The manner and extent to which beet numbers, beet yields, and percent sucrose influenced recoverable sugar in— dependently of percent clear juice purity varied with loca- tion (Table 19) and with level of residual N treatment (Table 20). At most locations and at all residual N levels, percent clear juice purity made a highly significant positive con- tribution to recoverable sugar both in its linear term and in the second order product of yield times percent sucrose times percent clear juice purity. The independent contribution of percent clear juice purity was curvilinear, decreasing with increasing purity as indicated by highly significant nega- tive coefficients for CJPZ. 64 When independent effects of clear juice purity, yield of beets and their interactions were accounted for, the in— dependent relationship between recoverable sugar and pro- duced sugar (yield times percent sucrose) was negative, rather than positive as was suggested by the simple correlations in Table 11. This result is to be understood in terms of the fact that variation in produced sugar was determined to a greater extent by yield of beets (r = .77) than by percent sucrose (r = .30). In the regressions of Tables 19 and 20, the computer associated with the cross product term (yield times percent sucrose = produced sugar) much of the negative correlation between yield and extractable sugar per ton (r -.38). This negative relationship between yield and extract- ability is derived from the positive correlations between and .28 for amino yield and juice impurities (r = .31, .19, N, K, and Na, respectively), and the negative correlations between these impurities and extractable sugar (r - -.85, -.54, and -.52 for amino N, K, and Na). On the other hand, most of the positive correlation between percent sucrose and extractable sugar (r = .94) was thrown into the second order cross product term (yield times percent sucrose times per- This was due to the positive correlation between cent CJP). = .55). percent sucrose and percent clear juice purity (r The above relationships between simple correlations in 65 Table 11 and multiple correlations in Tables 19 and 20 illus- trate some of the pitfalls in interpretation of multiple re— gression analyses when independent variables are themselves intercorrelated. Significant variation associated with one factor may be obscured by its close correlation with another. F The relatively greater importance of yields and clear juice A purity than of percent sucrose as independent factors in de- l termining recoverable sugar yields in Tables 19 and 20 is in part an artifact of the calculations which went into the de- termination of percent clear juice purity and recoverable sugar. However, when these calculations are kept in mind, the optimized functions in Tables 19 and 20 do describe important physiological relationships in sugar beets at a high level of yield and over a wide range of nitrogen nutrition. It is clear from Tables 2, 3, 9, 10, and 35 to 46 that the unique variable in the internal nutritional environment of the beets in these experiments is the level of nitrate in the beet tiesue. Clear juice impurities and beet yields are directly related to petiole nitrate, and percent sucrose is negatively related (Table 14). The functions in Tables 19 and 20 reflect these intercorrelations due to nitrogen nutrition, as well as additional effects of independent variation in yields and clear juice purity associated with location. Illl\')\ln\'l'\!\\li\' I\ if. 66 Some of the independent variation in beet yields and clear juice purity was associated with P and/or K nutrition (Tables 14 and 15). Yield and clear juice purity were also positively correlated with numbers of beets (Table 11). Independent effects of beet numbers on recoverable sugar in Tables 19 and 20 were highly significant over all farms and N rates, but this significance was retained only for Farm 1 and for the highest level of residual N (480 lb/ acre). The highly significant positive regression coeffi- cient for the square of beet numbers suggests that higher beet populations may be effective in reducing impurities and increasing recoverable yields of sugar (cf. Table 11). Multiple Regression Analysis of Sugar Beet Responses to Measures of Nitrogen Fertility Multiple regression techniques were used to describe relationships between the various sugar beet parameters, as dependent variables, and fertilizer N treatments, nitrogen soil tests, and petiole tests for nitrate. The functions vresented to the computer were of the general form of those n Tables 19 and 20. Linear and squared terms were included or each independent variable, and all possible cross product arms. Solutions were optimized by the least squares delete >utine to eliminate squared terms and interaction terms with 67 error probabilities greater than ten per cent. Responses to fertilizer N Table 21 gives the coefficients of multiple determination (R2) for relationships between sugar beet parameters and 1968 and 1969 fertilizer N applications. The optimized functions for actual data over all six farms are given in Appendix Ta— ble 63. The R2 values for numbers and yields of beets, produced and for K and Na in clear juice are and recoverable sugar, percent clear generally much lower than for percent sucrose, and amino N in clear juice purity, extractable sugar per ton, juice. The R2 values for individual locations in Table 21 con- cisely summarize the conclusions to be drawn from analyses of variance for each beet parameter at each of these loca- 37, 39, 41, 43, 45, 47, 48, 59, tions (Appendix Tables 35, and 60). A low R2 in Table 21 will be found to be associated with a non-significant effect of 1968 and/or 1969 applied N in the corresponding analysis of variance. For example, sig- ificant increases in yield of beets were associated with ertilizer N treatments only at Farms 1, 3, and 5. On the significant decreases in percent sucrose, percent :her hand, and significant .ear juice purity, extractable sugar per ton, rt it.) )l'l‘l\"\l\' 68 increases in amino N were associated with N treatments at all locations. At Farm 5, effects on clear juice purity and amino N were significant only for the 1968 N treatments (cf. Tables 48 and 60). To minimize the error associated with farm-to—farm varia- f- tion in the overall function in Table 21, data were norma- ‘ lized to the mean value for each farm taken as 100. There ; L. was some increase in R2 for each parameter due_to normaliza- tion. However, the values for yields of beets, produced and and K in clear juice were still much lower recoverable sugar, than for the principal quality factors. Relationships with nitrogen soil tests Nitrogen soil tests should reflect differences among lo- cations, as well as residual effects of N applied in 1968. To test this probability, the various soil N tests were sub- stituted, one at a time, for ApN68 in the linear, squared, and interaction terms of the function shown in a footnote (b) of Table 21. The optimized solutions are given in Tables 64 through 69, and the coefficients of multiple determination (R2) are collected in Tables 22 and 23. Comparing the coefficients in Table 22 with those in Table 214 :it appears that mineral N tests on any of the four sam— ‘pling dates were about as useful as 1968 N rates in predicting 69 00H 00 H0500 000 0005 E0mm 0>Huommmw0 000 00 0>H00H00 epmuHHmE0oc: 00000>000£0 £00m 00m m moZQ¢.w©ZQ¢ Q + @0200 v N 00200 b + 00200 6 m0 mHnme .xHUcmmmm 0000 N b + 00204 H I Q + m I_mb 000H 0o H0>0H Rm 030 um ucmuflchmHm 00m 005H0> HHm .:00: >9 Umuocmp 000HCDm H0. mm. mm. 0H. 00. H0. 00. m0. HN. 0000. AommHHmE0o00 08000 0 U 00. 00. m0. m0. mo. 40. me. em. m0. mcoo. A0000 0000000 008000 0 00. H0. 00. HN. 0000. om. 00. 00. HH. 0:00. A00000£omv 0 0«. 0H. H0. 0H. 000H. 00. mm. H0. 0m. 0000. Anomnsnomv m we. 00. mm. mm. 00. m0. N0. 00. 00. 0200. 0000000 0 mm. Hm. 00. 00. mm. mm. 00. 00. 0m. 0000. AonHHOBV m em. 0m. mm. ow. 00. so. 00. we. 00. memo. 2000000300 0 mm. 00. 00. 0:00. 00. m0. m0. mm. em. memo. 0005000000 0 02 x z 0000 0000 wwwl N. N. 0000 0000 E000 OCHEK 030 030 pH > a Q Q 0mmdm 000H\mE 0Hnm00 @0000 0Hnm 000: 00003 00 00 0000a 000H0 I>oomm 1000 iuom0uxm 0000“ CH 009 00QESZ 0H 000000SQEH 00000 000HU 0000000 mummm AmomHv 000006000m,0003 0mmdm 7O 'nflfle 22 Coefficientga of multiple determination (R2) for regressions of total produced sugar or recover— able sugar per acre on 1969 applied N (X1) and several N soil tests (X2), all farms “0! Soil Total 3 N 5011 sampling produced Recoverable ? test (X2)Cd period sugar sugar * MN 8068 .04 .12 F68 .03 .09 Sp69 .04 .13 Su69 .07 .07 INC-N F68 .19 .20 Sp69 .31 .26 AC-N F68 .25 .22 Sp69 .28 .24 HZO-N F68 .22 .17 Sp69 .18 .16 aUnless denoted by "ns", all values are significant at the 5% level or less b?’- +‘b x + b x + b x2 + b x2 + b x x -360 ‘ a 1 1 2 2 3 1 4 2 5 1 2 “- CMN = Mineral N INC-N = Mineralizable N released during incubation AC-N = Autoclaving released N HZO—N = Hot water extractable N dSee Appendix, Tables 64 through 67 71 N 0 00 00009 .x0000000 0000 00 00009 .x0000000 0000 0 m N m 0 0 000": xxn+xn+x0+xn+xn+0nw m (0 0000 00 00>00 Rm 000 00 00000000000 000 00000> 000 .:00: >0 0000000 0000000 0m. 00. 00. 00. 00. 00. m0. 0000 02 0000002 00. 00. 0m. 0m. 00. 0m. «0. 000 2 00000000 0000>0000000 02 x 2 00000 >00000 0000000 00000 000000 Anxv 0000 00050 000000000xm 0000a 00000 0000000 000502 00000500 0000 z 0000000m50 0000000 0000 000000 0000050000 0000 00000 05000 000 .Amxv z 0000 0000 000 00xv 2 0000000 0000 00 0000050000 0000 0000>00 00 0 0000000000 000 Away 0000000500000 00000005 00 0000000000000 mm 0000B 72 Table 24 Coefficients‘ of multiple determination (32) for two regression models relating beet parameters to 1969 applied 8 (x ). soil mineral N (x2), and one other soil N test (x3) 2 for functions of x3e Beet Model Fall 1968 Spring 1969 parameters No. 1’ INC-N Ac-u INC-ll AC-N azo-u Beets per 1 .02“' .03 .01“' .03 -- acre 2 .03“' .04 .18 .21 .17 Tons per 1 .25 .47 .36 .44 -- acre 2 .27 .47 .44 .47 .35 Percent l .56 .53 .26 .29 -- sucrose 2 .56 .55 .42 .45 .43 Percent clear 1 .48 .46 .21 .20 -- juice purity 2 .48 .47 .41 .40 .41 Extractable l .65 .61 .30 .31 -- sugar per ton 2 .65 .62 .50 .53 .53 Total produced 1 .18 .26 .31 .29 -- sugar per acre 2 .21 .27 .38 .31 .27 Recoverable l .23 .30 .28 .27 -- sugar per acre 2 .25 .30 .40 .34 .33 Impurities in clear juice: Amino N l .62 .56 .28 .28 -- 2 .63 .57 .48 .48 .48 K 1 .20 .19 .07 .04 -- 2 .20 .20 .20 .18 .18 Na 1 .42 .29 .18 .12 -- 2 .45 .33 .36 .31 .31 ‘Unless denoted by “ne' all values are significant at the 5% level or less b v~ 2 Model 1: Y - a + b1(x1 + x2) + b2x3 + 1:30:1 + x2) + b4x§ 2: i?-xa + b x + b x + b x + b4xi + b x2 + b6x§ + 1 1 2 2 3 3 5 2 b7x1x2 + baxlx3 + ngzx3 + bloxlx2x3 (See Ap- pendix, Tables 70 through 74) n - 360 cwhere: x1 - 1969 applied N x2 . Mineral 8 X3 -‘INC-N (mineralizable N released during incuba- tion) or AC-N (autoclaving released 8) or 820—8 (hot water extractable N) 4. ~0- H w \I .1 IT“—‘._—._f-T“T‘” 73 produced and recoverable sugar. Autoclaving released N was much more informative but was not consistently better than incubation N. Hot water soluble N tended to be less useful than either of the other two indices of organic N availabil- ity, but it had distinctly greater predictive value than either the mineral N tests or 1968 N rates. Coefficients of multiple determination for functions in- volving 1969 N rates and autoclaved N in F68 soil samples or mineral N in Sp69 are compared for other beet parameters in Table 23. The R2 = .38 for yield with autoclaved N as com- pared with R2 = .09 for mineral N and R2 = .13 for ferti- lizer N (Table 21) suggests that beet yields were more re- sponsive to fertility factors associated with soil organic matter than to N as a nutrient. The major variation in all three organic N indexes was associated with farms rather than N treatments (Table 4). This would account for the increase in R2 for tons of beets per acre in Table 21 when data were normalized. By contrast, the mineral N test in Table 23 was much more useful than autoclaved N in predicting numbers of beets and all of the beet quality parameters. These differences in relationship of yield versus quality factors to tests for mineral versus organic N were apparent in the simple correla- tion coefficients in Table 14. 74 Since beet responses associated with organic N tests ap- peared to be qualitatively different than those associated with fertilizer N or soil mineral N, it was anticipated that predictability would be improved if all three forms of N were included as independent variables in the same functions. Two distinctly different models were used to test this probability (Table 24). In Model 1, it was assumed that the plant cannot distinguish between fertilizer N and mineral N in the soil (Soper and Haung, 1963). Their sum was used as one of the independent variables in linear and squared forms and in a cross—product term with one of the organic N indexes. In Model 2, it was assumed that the plant might distinguish between all the sources of nitrogen. The function allows for expression of a quadratic response to 1969 fertilizer N, min- eral N, and organic N and for first and second order inter- actions. The R2 values for optimized solutions of the two models are compared in Table 24 for all beet parameters and for N tests in soil samples taken in Fall 1968 and Spring 1969. The optimized solutions for Model 2 are given in Appendix Tables 70 through 74. There was essentially no difference between the two models for the Fall 1968 sampling. The beet crop did not distin- guish, in any of its parameters, between mineral N present in 75 the soil in the fall of the previous season and fertilizer N applied in the spring of 1969. It did, however, distinguish sharply in numbers of beets and in all quality parameters be— tween mineral N present in the soil in the spring of 1969 and N applied as fertilizer. .. “a The percent of total variation (R2) in percent sucrose, percent clear juice purity, extractable sugar, and amino N }" —‘ 7‘ accounted for by functions involving Fall 1968 soil tests in Table 24 was almost identical with that accounted for by the functions which considered only fertilizer treatments (actual data over six farms in Table 21). Less information was pro- vided by the Spring 1969 soil tests, even when the more de- scriptive Model 2 was used. By contrast, soil test information in Table 24 was much more useful than fertilizer treatments (Table 21) in predict— ing numbers and yields of beets, produced and recoverable sugar, and K and Na in clear juice. Variation in K and Na accounted for by Model 2 (Table 24) compared closely with that accounted for by the normalized functions in Table 21. This again suggests that variation in beet yields was influ- enced more by fertility factors associated with organic matter than by nitrogen as a nutrient. To state this inference dif- ferently: the various indexes of organic N release may re- flect differences in nature and quantity of soil organic 76 .AN 00002 00 000000000 00000 0000000000v 0000500 0000 000000 00 z 00>0000000 000 0000005 000 00000 000 00000 000 00 0000000 2 0000000000 00 00000000 00 000000 0000 .N 000000 0:8}: 209. 2 803.00 02.20.8003 60 at 80 as 80 6% 8.0 6J0 00.: om 18 ov on. 0.0 8 0v 0 mm Am: 2300 . 0%.... 000090 OP\\O\ Am_v //// o 00w 0%. o o . 0v 8 20:0 09 00 I. M A o o m 3203 m 5; (50% z .00.sz "to. o. s l 11 008: O 2 0.9“ w a: w D 9 ) o :0 m s o w o 3 mm 30m. 2 4.00023 .0 .oumdflqmm oz_>00 0000000 0 000 00 0000000000000 mv.0 u 0 ..vmm u 00 0««00. H mm 77 A0000\0000v 00000 mzu¢*«moo. u 20<««mm. + 22.200 mooo. I zz«*mmo. + 2000*m00. + 00m.n n.Wm m.0m m.0m 0.0m 0.00 om N.mm m.mm v.- 0.Nm on m.m0 0.00 m.00 0.00 On mm 0.00 0.0m 0.0m 0.00 om 0.0m 0.0m 0.00 0.0m 00 0.00 0.00 0.00 0.00 om 0m «.0m 0.00 v.00 0.00 om m.0~ 0.00 0.00 0.0m on m.00 0.00 m.00 0.00 om 00 0N0 om 00 000000 2 000000< 2 00000000 2 000000: mc0>00000s< 00000 m000000‘00000 0000 z mcHHQEmm 0000 momH 000000 000 00 Azoav 2 00000000 000>0000050 000 .Azzv z 0000 1000 .02000 2 0000000 00 0000000 000000000050 00 0000000 0000 mm 00009 78 matter that relate more fundamentally to differences in in- herent soil productivity than to nitrogen availability. The way in which beet yields were related to 1969 fer- tilizer N and tests for mineral and autoclaved N in Sp69 soil samples is depicted in Figure 2. These response diagrams are based on the Model 2 function as optimized by the computer (Table 73). There was strong evidence for curvilinearity in response to autoclaved N, but the responses to fertilizer N and mineral N were linear. There was a highly significant interaction between fertilizer and mineral N, such that the response to mineral N decreased with each increment of fer- tilizer N. Calculated values in Table 25 show that there was a positive response to fertilizer N at low levels of mineral N, becoming slightly negative at high levels of mineral N. The response surface in Figure 3 is based on the opti- mized Model 2 function for recoverable sugar in Table 72. Highly significant quadratic responses and interactions were expressed for mineralizable and mineral N. There was a high- ly significant reduction equal to 3.42 pounds of recoverable sugar for each pound of fertilizer N applied in 1969. The surface was drawn for the 80-pound rate. Its shape would not change at other rates, only its vertical displacement, since the response to fertilizer N was linear and there were no interactions with fertilizer N. 79 RECOVERABLE SUGAR RESPONSE SURFACE AT VARYING LEVELS OF MINERAL 8 MINERALIZABLE N 1. 9? (60)696 x 0 :,ID ‘\ f 3 (76) 65) 03 4‘ (72) 806v 762 (66) 762» 7 m , 7) g (64) 7(7) 3 672 (D u (60) 672’ 4 627 0 g (56) 627 u: ‘ 582 S (52) 562 8 538 m (48) 5 o 55' (62? céfio 40 so) (3 $Ql ‘0‘ °\ 4@- Q) q? 6&0 CRANson Figure 3. Recoverable sugar in relation to mineral and mineralizable N in spring soil samples as de- scribed by Model 2 (Table 72) for 80 lb/acre fertilizer N applied to sugar beets. 80 The relationships in Figure 3 show that maximum yields of recoverable sugar were obtained when soil mineral N in the spring was low and mineralizable N was high. Maximum yields were reduced sharply due to increasing impurities and reduced extractability as soil mineral N increased. This reduction was less marked at low levels of mineralizable N and was re- versed as increasing yields of beets exceeded reductions in percent sucrose and juice purity. If the response surface in Figure 3 is viewed normal to the mineral N axis, something like the response diagram in Figure 4 will appear. The heavy curve in this diagram con- nects the low points of the "saddle" in the response surface of Figure 3. The increasing leg of this curve reflects the fact that, up to a point, beet yields increase with increasing nitrogen nutrition more rapidly than percent sucrose and juice purity decrease. Beyond the maximum point on this curve, yields may or may not continue to increase, but per- cent sucrose decreases and impurities associated with accumu— lating nitrate increase more rapidly (cf. Tables 2 and 3, 9 and 10). The maximum point on the heavy curve in Figure 4 occurs at about 45 kg/ha (4O lb/acre) of mineral N. This may be compared with recoverable sugar maxima at 25 to 32.5 lb/acre mineral N in April found by Gascho (1968) in earlier studies ‘9 81 .ucwEummuu 2 mo Hw>ma venom om may you mucfiom amusueaummxm ou sofiumHmu ca m musmam Ca wUMMHSm mmcommwu us» no EMHmMaU anneamcwsaou03a 3.863: 2:3. 2 ._u.. 3% 2 22.2532. foo. .v wusmfim HVQHS BWBVHBAOOBU |_0I x Ina/bx (amp/ma) ‘h‘. in t} the 1 bilii using time recox more in F: duced tilit 0f 19 (Tabl ducti relat 82 in the Saginaw Bay area. In that author's interpretation, the rising leg of this curve represents a decreasing proba- bility that recoverable sugar yields will be increased by using fertilizer nitrogen. If soil mineral N at planting time exceeds 25 to 35 pounds, the probability increases that recoverable sugar yield will be materially reduced by use of more than a modest starter amount of fertilizer N. The data in Figures 2, 3, and 4 indicate that the probability for re- duced recovery is further enhanced if a high test for mineral N is combined with a high organic N index. At the high fer- tility levels represented by these 6 farms, every increment of 1969 N resulted in reduced yields of recoverable sugar (Tables 59 and 60). As an average over all farms, the re- ductions were almost linearly additive (Table 2), and this relationship is expressed by the function on which Figures 3 and 4 are based (Table 72). The Relationship of Sugar Beet Parameters to Nitrate-N in Dried Petioles The linear and quadratic relationships of several beet parameters to NO3-N in the dried petioles are given in Table 26. The coefficients of determination obtained for petiole NO are of the same general magnitude as those obtained when 3 tflmatnineral N test and 1969 N were used together as .- -._._ a. _ mQQH \MwEEDmUfiE OCfiHSU UQCfiNUQO Azfimmv Ufi U 0U“ CU TH0U$EGHEQ >UfiHGSU UCM Cfiwfik U mQHOHUMQ @Efihfi Cm erCZ UaQfluUfituki T‘LE woman .Hfibflmw unucfiuflfimwk BEAUHUUCZK EONEEUQSXUE mom. WV N- PN PM.” 83 Hm>ma usmouwm H on» um unmoamacmamw Hm>ma ucwonwm m may um ucmoflmacmfim >Hw>fluoommmu .Ammzv pom .hmxv .Amzv .mofism ummao CH mz pom .x .z ocHEm « .Ammv swoon mapmum>oomu .Amev ummSm woodpoum Hmuou .AB\mv sou mom unmSm mans Iuomuuxo .Amho Romy >uflusm mofion ummao usmoumm .Aobm Romy mmOHUSm ucmouwm umcofiuMH>mHQQ< x. «2mm. H mm .Nzamm*«mooooo. + 28mm¥¥©mo. I 265.Vma u mmz «26m. u «m .mzemmIIaoooo. + 29mmwsoo. I *xmmm u m2 ««m6. u mm .mzemmxmooooo. I 29mm««mo. + «.meII u mz «emo. u my .zemma«mo. I «600mm H mm oo. u mu .zemm moo. + «Iomno u m9 *«m«. H mm .zemmawao. I h:mmm u B\m wwmv. n my .zemm«¥moooo. I I«mm.nm u mno Boa «Iam. u mm mzemmImooooooo. + zemmIINnooo. I «Imm.ma u oom eom ma. u u .zemm wvooo. + mm.nH n mHUM\m:oe *2 N «s is h:mo. H mm mzemmwmoooo. I 29mmwom. + *«OVNQH u wnom\mummm moma .uwessm UHuwum ou mumwmemmfimsm 66636650 Azemav mmfiofibma emfluv a“ z-moz mfinmuomusxm 6266 m ufiamsv paw nfiwfim ummn ummsm mcfiumfimu mcofiuocsm :ofimmmummm ow mwn ms 84 independent variables in the functions of Tables 22 and 23 (leppendix Tables 64 and 69). The variation in quality fac- tors (percent sucrose, CJP, and juice impurities) was more closely related to nitrate in petioles and to soil mineral N in fall or spring than was yield of beets or total and recov— erable sugar. There was a high correlation between the N03 in beet petioles and the mineral N soil test for the fall and spring samplings (Table 16). Apparently mineral N in the surface soil at the end of the previous growing season or in early Spring of the current season reflected the availability of nitrate to the crop more accurately than mineral N in the Surface soil at mid-season when the petiole samples were taken. The organic N indexes in fall or spring soil samples were rather poorly correlated with nitrate in beet petioles at mid-season. The relationship between NO3-N determined in dried pet— ioles and the quick test method used in the field is given in Figure 5. A quadratic function best describes the rela- tionship; however, dropping the squared term only reduces the R2 by one - percent. The two tests are not related as closely as mlight be desired. Much of the scatter of experimental points in Figure 5 is due to the qualitative nature of the field quick test. Neither test is highly specific for nitrate 5mm n 85 up .wV.H u m .5500. H mm .MZBmm««NHoooooo. I 28mmiahmoo. + iamo.ml H N .umswo >Humw I >H5b quH :H Azammv mwaofiuwa pmfiun cfi zImoz ou coaumeu CH quMUHc wHofiuwm umwu xoasv mo cofimmoummm Fran 7_I.MAVZ comm CONN 002V OO¢N _ _ . _ .m musmwm N .LSBL )lOan 86 and differential interference of other sap constituents may have been involved also. The simple correlations in Table 14 suggest that the diphenylamine quick test may have been more closely related than the brucine determination to physiological factors in- fluencing percent sucrose, percent clear juice purity, ex- tractable sugar, and amino N. This possibility should be examined in greater detail. The possibility that petiole tests for P and K might add to the information supplied by either test for petiole N should also be examined with the data at hand. Time did not permit their consideration in this thesis. The Determination of Exchangeable Ammonium and Nitrate in a Deep Soil Profile Sampling In the late summer (August) of 1969, a series of incre— mented profile soil samples were taken from selected plots and two locations to observe the distribution of mineral forms of N with depth in the soil. Plots selected were those that received either 45 or 540 kg/ha (40 or 480 lbs/acre) N in 1968 and 90 kg/ha (80 lbs/acre) N in 1969. The surface 30 (3“! layer (12 inches) was sampled as a single increment and the“ 15 cm increments to a depth of 150 cm (5 feet) were taken. The test data are summarized in Table 27. The dis— trit>ution of ammonium and nitrate is shown graphically in Table 27 DEPTH 0- 3O 30- 45 45- 60 60- 75 75- 90 90-105 105-120 120-135 135-150 Rte 6 de 0f150 cm igiha 87 Tab 1e 27 Incremented concentrations and the total amount of exchangeable NH4- and NO3-N in an August 1969 soil sampling to 150 cm at two farm locations and from plots receiving 45 and 540 kg/ha N in 1968 ab Farm 1 (Eisenman) 45 kg/ha (40 lb/acre) 540 kg/ha (480 lb/acre) DEPTH NH4-N NO3-N 11114-1»: NH4-N 1103-17 NH4-N cm. mgr-N NO3-N __ ppm 0— 30 3.3 2.6 5.9 7.2 4.0 11.2 30- 45 2.7 0.1 2.8 4.3 2.4 6.7 45— 60 3.0 0.5 3.5 4.1 -3.3 7.4 60— 75 3.7 0.1 3.8 5.0 2.1 7.1 75— 90 4.7 0.8 5.5 4.4 3.5 7.9 90—105 4.5 2.0 6.5 4.1 4.6 6.7 105—120 6.1 2.2 8.3 5.0 5.3 10.3 120—135 6.3 2.2 8.5 4.7 7.5 12.2 135-150 6.4 3.2 9.6 7.2 4.2 11.4 N to a depth of 150 cm: ks/ha 88 33 121 107 82 190 Qb/acre) (79) (30) (108) (96) (74) (170) __ Farm 6 (Schuette) 45 kgiha (4O lb/acre) 540 kg/ha (480 lb/acre) NH -N NHlH-‘N DEPTH NH4-N NO3—N NO3-N NH4-N N03-N N03-N \L ppm 0- 30 4.9 1.8 6.7 4.8 3.8 8.6 30“ 45 2.5 0.0 2.5 2.7 6.3 9.0 45‘ 60 2.4 0.1 2.5 2.3 8.4 10.7 60" 75 3.4 0.0 3.4 2.9 8.7 11.6 75‘ 90 3.2 0.3 3.5 3.0 5.8 8.8 lag—105 4.3 0.2 4.5 3.7 4.1 7.8 120‘120 4.7 0.9 5.6 4.4 2.5 6.9 135‘135 4.9 0.5 5.4 4.6 1.7 6.3 t;150 5.4 0.3 5.7 3.9 1.1 5.0 a of 150 2:13:11 lama 32 12 94 75 92 168 was <73 (11) (84) 1671 483) LISOL a Values are the mean test results of replicates I and III at each farm 'b 8.011 samples were taken from sugar beet sub-plots receiving 90 kg/ha N In 1969 89 .mme :a mono mcaumomum may no mx ovm no mv can moms ca muown Human uom m;\z mx om pw>fiouou nua£3 acofiumooH o3u um moon amount :a Aomumswssv wanna“: can Anopmcmv Enacanm mo ceausnwuumau Hmuauuw> 6% 2502.612 ~_o_mm¢~o ~_o_mm¢.6.o L . . .30Qa. Outs Zoxovn 2.63303. Zoxovm w 2 m. < m Accocxa_o¢. z 9.9 .3935. O: z 9.9.. .m whamam W9 HidBG'HOS 88 Figure 6. At the 40 pound rate of 1968 N application, a total of 108 and 84 pounds of mineral N per acre was recovered to a depth of 5 feet at Farm 1 and Farm 6, respectively. These recoveries represented 90 and 70 percent of the total fertil- izer N applied in 1968 and 1969 (40 + 80 = 120 lb N/acre). At the 480 pound rate of 1968 N, only 30 and 27 percent, re- spectively, of the two-year total fertilizer N could be ac— counted for as ammonium plus nitrate to a depth of 5 feet at these two locations. Data in Table 4 and in Appendix Tables 51 and 52 for mineralizable N, hot water extractable and autoclaving re- leased N make it clear that negligible quantities of the fer— tilizer N applied in 1968 were retained residually in rela— tiVe 1y labile organic forms in the plow layer (9 inches). It is possible that some of the residual fertilizer N from 1968 may have been retained in the plow layer in organic forms not reflacted in these organic N indexes, or in organic combina— tion at depths greater than 9 inches. Data obtained in these Studies do not bear on these possibilities. However, data for Farm 1 in Figure 6 suggest that significant leaching of nitrate to depths greater than 5 feet may have occurred. The dist]: ibution of nitrate at Farm 6 was different but not in- CC“\Sistent with the conclusion that nitrate had been lost by 89 N. O. l[ .Soen_oo¢. 2 30mm w .Eo£n_ows z 9.? .momH :a mono unaccomum 0:» :0 mx own so mv can mama :a mason ummsm How MA\z mx om um>amuwu SOH£3 mcofiumuoa 03» um moma um5m5¢ CH AthMSmcav mummy“: can Apoumnmv EDaCOEEm mo :oHuanHuuch HMUHuHm> movm _ O N_ o. wwvmo .30—{200's z 96% .:u£a_ov. 2 956 > Om. “‘3 HidEO ‘IIOS .m whamfim 9O leaching to depths greater than those sampled. Differences in distribution of nitrate with depth likely reflect differ- ences in patterns of rainfall or subsoil drainage at the two locations. Compared to nitrate, the distribution of NH4-N was much more similar in the four profiles. In three of the four, the total of ammonium to 5 feet exceeded the total of No -N (Ta— 3 ble 27). In all cases, the lowest concentrations of NH4-N were found at depths of 30 to 90 cm and increased at greater depth. It must be assumed that NH4 has percolated downward as one of the cations associated with nitrate in the soil solution. The data in Table 27 and Figure 6 show that additions of fertilizer N result in increased residual concentrations of nitrate through a considerable depth in the soil. Under Clirl'latic conditions in the Saginaw valley, major portions of this retained nitrate will be found at depths below the plow soil in the season after application. That which remains in the root zone or at depths where it can move back up into the root zone by capillarity can represent a major supply of ni- trate to the following crop. The usefulness of a fall test for mineral N in the plow layer will depend upon the extent to which it reflects the quantities of nitrate which may be displaced during the winter 91 to depths that are still accessible to the succeeding crop. Because of this winter displacement, the spring test for mineral N will be much less, normally, than the fall test. Nevertheless, it may still reflect relative differences in the quantities that were present the previous fall (see Table 4 and Appendix Tables 51 and 52). In addition, the spring mineral N test may reflect min- eralization release during the winter. To the extent that this is true, it will have the characteristics of an organic N index. The spring test was generally more useful than the fall test in predicting sugar beet yields and recoverable Sugar in this study (Tables 21 and 64). The Response of Beet Juice Impurities to Locations and Nitrogen Applied in 1968 and 1969 The relationships of amino N, K, and Na to locations and N applied in 1968 and 1969 are given in Tables 2 and 3 and have been discussed in previous sections. The data given in the three left-hand columns of Tables 28 and 29 are ad- Justed values for these impurities: amino N is multiplied by 10 . K by 2.5, and Na by 3.5 (Carruthers and Oldfield, 1961) - These adjustments are made to base the values on ap- pro"(imate molecular weights as they occur in the factory thin juiCe. Total impurities are derived by a calculation from 92 m.m an cmflamflufiss mz 2m.m sh nmaamfiuass x "0H an cmgfimfiuase z ocgeam m: we mm.a mo.a o.~mm H.mm n.am o.mmH mo. .oma m.mm w.o H.om o.m¢ sums nmm mvmm vmom ONH m.vw o.h m.mm o.mv wads mom HVNN mmmm om m.mm m.m m.¢m o.mv memo mvs mnom hmnm ov H.vm m.o o.mm m.mm 55mm mov maam mdmm o ~wuom\na%,z moma mm.m mm. on.H mH.N m.mmm m.Hh m.oma H.mam mo. .Qma ¢.nm m.h 0.5m m.mm swam Hmo mmvN oamv omv o.mm m.n v.Hm m.mv mans mvm wmmm Hmmm OVN «.mm m.o o.mm m.~v came has whom omom omH m.mm m.o H.mm ~.H¢ masm Hem mmom nmmm om o.mm H.o o.mm m.mm havm mvm vaom whom ov ~0406\nas z mama ma.m hm. hm.a mm.m m.omv m.m> m.wMH n.mmm mo. .qu o.mm H.m n.0m m.nm mmmm was omma momm = 0 «.mm m.HH v.6m m.nm memo wmoa hmmm mmmm : m 5.00 m.o m.mm m.Hm swam mow mmma m0mm cuou v o.m> m.m o.mm h.~¢ whom mmm HHHN whom : m m.nm m.m 6.0m o.m¢ ommm mmm mmam maom : N 0.Vm v.m m.om ¢.m¢ @600 ohm meme vomm mammm H mono woma Eumm mz + x 62 x z Hmuoa mz x z + z osHE¢ osHE¢ osHE< mmfiuommumu mmflufiummEa Hmuou mo uswoumm Aummsm mooH\mEV unusuausmEH amoa mam mead a“ cmwfiamm cmmouufic mo muommmm name new cofiumoow 3 m 633 a gammy mm ”Hood .oamfiwoao new mumgpsuamoe «gash smmfio :4 6646466664 smuumuuou mm 93 m.n an nudflmaudss «z “m.~ an uoaamauasa x "on an uofidmauase z ocfisam a: m: 0v.n n0.m v.005 v.m~H >.~0~ m.0a¢ 000a casuaz 000H n: a: 0v.m on.m n.005 0.0HH 0.NOH 0.0Hv 000H canvas 000H .qu 0.50 6.5 n.0w H.nm nmoo mnn comm boom 00H 0.00 ~.n n.0u m.nm 0n00 000 mmmN vvov 00 0.50 ~.h 0.n~ 0.mm hbvm 000 vmww unvc 0v h.m0 0.h n.0w v.0¢ wmnm v00 000w vmov 0 00¢ 5.50 0.0 0.00 v.0m scam 00m 0v¢~ 0506 0~H 0.00 m.0 ~.0m n.5v nuns 000 namN Omen 00 m.m0 0.5 0.Hn 5.00 0500 vow noaw boon 0v 0.H0 0.0 m.nm 0.06 hmhw woe moaw warm 0 own H.~0 0.0 m.0~ 0.0v «Hun 50¢ meow 00mm oua 0.~m 0.0 0.~m 0.n¢ -0o use Noam 0¢0~ 00 0.~0 m.0 n.mm 0.av 0h0m 05m nmom NHVN 0¢ H.~0 0.0 0.50 n.0n enmm mom vaom mafia 0 00a 0.50 5.0 v.0n m.>v vwmo mev 0000 v00m 0~H «.mm H.0 H.vm 0.mv camw 00m omau 0000 00 h.~m m.0 0.hn 0.0m noon mun c000 00H~ 0v 0.00 m.m ~.0v n.mn 00~v vv~ 000H omva 0 00 h.nm 0.0 0.mm >.v¢ ammo non mvou oumu 0mg H.n0 m.o ~.0m 0.00 005m mun mmcm emwm 00 ~.Hm ~.0 0.00 0.mn 000m 0mm 0¢0H vama 0v o.~m n.m H.5v 0.0N 0mm~ vow 0~0~ obna 0 cc 2 000H 2 000H 62 + 0- 02 x 2 Hanan. dz x z + z angst ceded osaad uoauomouno aoauaummsa Hauou mo accumum unaduau EH caucuses cu ass” as. mass :3 6.3saa. coauaamu ca ”good .caoduoao new .uogppuuao. cuss“ human as uofiufiusmEA nouuouuoo mm «Hams 94 clear juice purity E00 (100 - %CJP)/%CJP = percent impuri- ties on sugar . The values in the four right-hand columns of Tables 28 and 29 represent the proportion of the total impurities that are made up of amino N, K, and Na. If Carruthers' and Oldfield's constants are correct, 79 to 91 percent of the total impurities in sugar beets from these experiments were made up of substances containing amino N, K, and Na, somewhat higher than those reported by Carruthers and Oldfield (1961). Among the three impurities, Na was the least abundant in clear juice. Its ratio to other impurities was influenced only slightly by N fertilization, although its concentration relative to sugar increased. With increasing applied N, the PrOportions of amino N to sugar and to total impurities both increased drastically. While the proportion of K to sugar in— creased, its proportion to total impurities decreased with incre as ing fertilizer N. In the processing of sugar beets, free amino acids are among the acid producing substances in thin juice, while K and Na are the principal basic components. With increasing N fertility, the acids tend to accumulate in the thin juice, and the processors, in an effort to maintain certain pH levels in the juice, add soda ash (sodium carbonate) to the jUice for maintenance of the proper alkalinity balance. mood UCM mmmd Cw UwfiHQQfl CGGOMUfiC M0 QUUQNNW 2865 U2” COfiUMUOH 0U U$UQHWH $6 WUflDfi HflwHU Cfi WWHUfiHJQEfi No @UCQHQQ UWCOflCUIUflCOflUCU W§5 0W UNQQE 95 0H.H Hm.H 00. vm. mm.H m0. .oma m.m m.mm 0.0 0.mm n.0m ONH m.m m.m~ m.0 0.m~ v.m~ 0w 0.0 0.0m m.m m.a~ 0.0m 06 0.0a n.0m H.m n.H~ 0.0a 0 ~0006\0HV z mama mm.a mm.a mm. 0m.H vm.H mo. .omq 0. m.mm m.m o.mm 0.00 006 s.m 0.0m m.0 N.m~ N.vm ovm ¢.n 0.0m m.m m.a~ m.ma 00H m.m m.m~ m.v 0.Hm H.~H om H.0H m.v~ m.v n.0m w.vH ov «0006\0Ho z mmmfl NH.N ~0.m mm. mv.H mo.a m0. .omq H.0 0.6N 0.m m.mH n.ma : 0 0.mH 0.Nv 0.m 0.0m m.vm = m ~.H w.v~ 0.m 0.0H 0.mm cuoo v m.m m.vm m.~ n.Hm m.am : m m.m 0.0m «.6 ¢.~m 0.Hm = m m.H 0.00 5.6 m.0m m.mm mammm H mono 000H Eumm 2 95:2 I mz + x m2 + x m2 0.— z ocfifid ummsm mo mEmum|00H uwmlmucmam>aswmfiafifie .mmfiuausmEH mmfiuommumu 0 came cam mama can mood as nmfiflmmm cmmouufic mo mucmum cofiumuoa op cmumamu mm mods“ umoao ca mmauausmsa mo mocmHmn oficofichoacoHumo one on magma GOMH “we” QOQN Cw. UQflHQQU CQUOHUfi—h OU UUUGHUH a“ ”Ufi-Jfi “Undo Cd. ImvfiUfiIH-ansfl N0 UUCUHQQ UflCOflCQIUfiCOWUQU Ufi NMI UHQHK. 96 QQ.N 0H.n OmIH QO.N ooom GOQH Cfiflvfl3 mmad 5V.N N¢ofl 5V.H hwod hwofl mmmd CHSHH3 ¢OGH mo. .Qwfl ho! V.mm H.¢ n.0N Noon ONH H.l mofim MIG N.0N 0o¢m cm 5.! M.HM N.m H.MN OINM CV h.m Ooflm N.m VIVN Comm 0 om? O.M O.NM Ooh O.mN HImN ONH m.m hodm Ooh Q.MN m.mN 0m m.m Oohfl 0.0 0.HN HoNN O? h.@ N.QN 0.0 N.NN m.mH O OVN m.m mohN N.0 N.HN HIVN ONH 5.5 O.®N Q.m N.NN M.ON 00 0.0 m.mN h.¢ H.HN Nohd Ofl H.0H N.mN m.¢ 5.0N HomH O OOH ¢.¢ 0.5N m.m m.HN HINN ONH m.0 0.0N huv moflN H.0N 00 @.G NomN ho? 0.0N 0.MH O? O.NH M.nN O.M MION ¢.OH 0 0m h.m GImN 0.V O.HN H.0N ONH N.G momN 5.? @.ON MIOH om OIHH OIVN 0.V 0.0N OINH 0V m.¢H MIVN mom Oocfl mu¢ O O? z GOGH 2 000H 2 OCdE‘ I I2 + K 02 + K “I X z OCfiE‘ IUflHOOQHflU amuse no madam mmfluomnucoaa>a squads acquaus EH mood wan 000H :« poqflmmn camoupsc o» cuunsou an muss“ anode ca uofiuflusaefi «6 66:64.6 o«co«=n-u«=ofluuu use an «Hana 97 However, Dexter, Frakes, and Wyse (1970) have shown that the addition of soda ash increases the loss, into molasses, of Potentially bagged sugar. Tabulation of the impurities in clarified juice on the basis of milliequivalents per 100 grams of sugar (is one way of expressing the cation-anion balance stoichiometrically (Tables 30 and 31). With increasing N fertilization, the amino N content in the clear juice increased absolutely and relatively to the bases (K, Na). The result is a decline in the "effective alkalinity" of the juice and an increasing likelihood for the need to add soda ash. Sugar extraction problems are minimized when the K + Na - amino N balance is in the range of 9 to 10 meg/100 grams of sugar. This balance of effective alkalinity was attained or surpassed at two loca- tions (Table 30) and at lower combinations of 1968 and 1969 N (Table 31) . In Table 30, the uniquely high effective alkalinity for Farm 5 was due to high levels of K and .Na in clear juice. This result was associated with significantly higher soil and petiole analyses for K at this location (Tables 7 and 9). The PrObable contributions of soil and petiole tests for K and nutrients other than N to variation in beet parameters in this study should be examined in greater detail. SUMMARY The principal objective of this study was to investi- gate the usefulness of several nitrogen soil tests for pre- dicting the nitrogen fertilizer needs of sugar beets. The main criteria used for evaluating their usefulness were the relationships of total and recoverable sugar yields to loca- tion, soil tests, petiole analyses, and residual and current applications of fertilizer N. However, relationships involv- ing numbers and yields of beets, percent sucrose, percent clear juice purity, extractable sugar per ton, and individ- ual juice impurities (amino N, K, and Na) were also examined in detail. Analysis of variance and simple and multiple correlation and regression analyses were employed. A number of mathematical models were used to differentiate contribu— tions of fertilizer N and mineral and organic forms of N in the $011 to variance in these beet parameters. ‘The results of these experiments may be summarized as £01 lows : 1. Applications of 40 to 480 pounds of fertilizer N per acre on beans or corn preceding sugar beets were not detected in fall or spring soil samples by tests for 98 99 organic N release (mineralizable-, hot water extract- able-, and autoclaving released-N). Autoclaved N was significantly higher in spring samples for 480 pounds of N than for lower rates, but the difference was not great. Mineral N (N84 + N03) in the plow layer did reflect nitrogen applied on the preceding crop when soil samples were taken in the summer or fall of the same season or in the spring or summer of the following sugar beet season. The major carryover of available nitrogen to sugar beets, however, was in the form of nitrate at depths below the plow layer. Carryover N resulted in increasing yields of beets over the entire range of the previous year's appli- cations. Overriding reductions in sucrose content and extractability resulted in sharply reduced yields of recoverable sugar where more than 160 pounds of N was used on the previous crop. These adverse carryover effects on beet quality were usefully related to mineral N in the plow layer when mineral N in fall or spring soil samples was substi- tuted for the previous year's fertilizer N treat- ments in multiple regression functions in which N applied to the sugar beets was also considered (0 to 100 120 pounds of N per acre). None of the tests for organic N release was as use- ful as the mineral N test for predicting adverse carryover effects on quality factors. They were, however, very much more useful than the mineral N test for predicting variation in beet yields. The major variations in yield of beets were associated with differences in productivity at the six experi— mental locations. When soil tests for both mineral and organic N were substituted for residual N treatments in regression models including current N treatments, R2 values of 40 to 65 percent were obtained for percent sucrose, percent clear juice purity, extractable sugar per ton, and amino N in clear juice. In each case, the percentage of total variation accounted for was al- most identical to that accounted for by regressions in which only the current and residual fertilizer N treatments were considered. In these same functions, accountable variations in beet yields increased from 13 to 47 percent and ac- countable variation in recoverable sugar increased from 13 to 30 or 34 percent when tests for mineral and autoclaved N in fall or spring soil samples were 101 substituted for fertilizer N treatments on the pre- vious crop. Yields of beets were related linearly to the mineral N test and increments of current fer- tilizer N, and in a curvilinear fashion to auto— claved N. There was a highly significant interaction between fertilizer and mineral N: beet yields in— creased with increasing fertilizer N where the min- eral N test was low; yields decreased slightly with each fertilizer increment where the mineral N test was high. When mineral N and incubation released N in spring soil samples were substituted for residual fertiliz- er N treatments, accountable variation was increased from 13 to 44 percent in the case of beet yields-and from 13 to 40 percent for recoverable sugar. Recov- erable sugar yields were a maximum where the mineral N test was low and incubation release was high. Re— coverability decreased with increases in either min- eral N or fertilizer N. Extreme reductions occurred where a high test for mineral N was combined with a high test for organic N release. When N released during incubation was low, beet yields increased initially with increasing mineral N tests more ra— pidly than sucrose content and extractability 10. 102 decreased. Above 40 pounds mineral N per acre, re- coverable sugar yields were sharply reduced. Over all farms, there was a linear reduction equal to 3.42 pounds of recoverable sugar for each pound of fertilizer N applied to the beets in the current year. Tests for nitrate in beet petioles in mid—season re— flected both residual and current applications of fertilizer N and were highly correlated with mineral N in both fall and spring soil samples (r = .71 and .61, respectively; P <..OOl). They were as useful, by themselves, in predicting sucrose content and purity parameters as regression models in which soil tests for mineral and organic N and current fertil- izer N were all considered. A quick field test, using diphenylamine, appeared to be as usefully re- lated to these quality factors as a laboratory de— termination of petiole nitrate, using brucine. Variation in amino N in clear juice appeared to be determined primarily by the availability of nitrate as reflected in tests for petiole nitrate and soil tests for mineral N. The K and Na in clear juice increased with N treatment and with the petiole tests for nitrate, but were also influenced by other 103 factors, notably soil and petiole analyses for K, which varied mainly from location to location. The range of ”effective alkalinities" encountered in this study included optimal values for effective extraction but extended mainly in the direction of impaired recoverability due to excessive nitrate nutrition. CONCLUS IONS It is apparent from this study that beet yields are relatively less sensitive to directly available mineral forms of N in the soil than are sucrose and impurities. Maximum sugar recoveries represent a compromise between increasing yield and decreasing extractability of sugar. Residual nitrogen from fertilizers applied to crops like corn or beans is apparently carried over in mineral rather than organic form. The quantity retained in the root zone would be estimated more accurately by sampling to depths greater than the plow layer. Data obtained using plow layer samples indicate that estimates of mineral N accessible to Sugar beets may be critical for predicting the processing quality of the beets. An estimate in late winter or early Spring would be less subject to ambiguities due to mineral- ization release during the fall and winter and to percola- tion Of nitrate beyond retrieval by capillarity or direct acceSSibility to beet roots. Mineral N determinations do not closely reflect pro- ductivity factors which are mainly responsible for wide dif- f erenCes in tonnage of beets produced at different locations. 104 105 Indexes of organic N release (incubation-released N, hot water extractable N, and autoclaving released N) do reflect these differences between farms. Their usefulness for pre- dicting beet yields appears to be due to the fact that they reflect differences in quality and quantity of soil organic matter and productivity factors other than nitrogen supply. Of the three indexes, the autoclaving procedure appears most promising because of its simplicity and because information obtained with fall samples is essentially the same as that obtained when soils are sampled in the spring. BIBLIOGRAPHY Allison, F. E. 1956. Estimating the ability of soils to supply nitrogen. Agr. Chem. 11: 46-48. Attoe, O. J. 1964. Tests for available soil nitrogen. Pp. 392-401. In V. Sauchelli (ed.) Fertilizer Nitrogen. Reinhold Publishing Corp., New York, N. Y. jBaldwin, C. S. and J. F. Davis. 1966. Effect of time and rate of application of nitrogen and date of harvest on the yield and sucrose content of sugar beets. Agron. J. 58: 373-376. Baldwin, C. S. and C. K. Stevenson. 1969. The effect of nitrogen on yield, percent sucrose, and clear juice purity of sugar beets. J. Am. Soc. Sugar Beet Tech. 15: 522—527. IBeJJD, J. A. O. 1970. Determination of total carbon by dry combustion and its relation to forms of soil nitrogen as measured in the laboratory and in the greenhouse. Ph. D. Thesis, Michigan State University. Black, C. A. 1968. Soil-plant relationships. 2nd ed. John Wiley and Sons, Inc. New York, N. Y. Bremner, J. M. 1965. Nitrogen availability indexes. Pp. 1324-1345. In C. A. Black (ed.) Methods of soil analysis. II. Chemical and microbiological properties. Am. Soc. Agron. Monograph no. 9. Madison, Wisconsin. Cady. F. B. and R. J. Laird. 1969. Bias error in yield functions as influenced by treatment design and postulated model. Soil Sci. Soc. Amer. Proc. 33: 282- 286. Carruthers, A. and J. F. T. Oldfield. 1961. Methods for the assessment of beet quality. Intern. Sugar J. 63: 72—74. 106 107 Carruthers, A., J. F. T. Oldfield, and H. J. Teague. 1962. Assessment of beet quality. Paper presented to 15th Ann. Tech. Conf. of British Sugar Corp., Ltd. Dexter, S. T., M. G. Frakes, and Grant Nichol. 1966. The effect of low, medium, and high nitrogen fertilizer rates on the storage of sugar beet roots at high and low temperatures. J. Am. Soc. Sugar Beet Tech. 14: 147-159. Dexter, S. T., M. G. Frakes, and F. W. Snyder. 1966. Pounds of extractable sugar per ton from percent sucrose in beet and clear juice purity. Research Laboratory, Michigan Sugar Company, Saginaw, Michigan. Dexter, S. T., M. G. Frakes, and F. W. Snyder. 1967. A rapid and practical method for determining extractable white sugar as may be applied to the evaluation of agronomic practices and grower deliveries in the sugar beet industry. J. Am. Soc. Sugar Beet Tech. 14: 433-454. Dexter, S. T., M. G. Frakes, and R. E. Wyse. 1970. A method of evaluating the processing characteristics of sugar beets based on juice constituents: A prescription of beet quality. J. Am. Soc. Sugar Beet Tech. (submitted for publication). (Sascho, G. J. 1968. Soil nitrogen availability indexes and effects of potassium carriers and levels of potassium and nitrogen fertilization on the yield and quality of sugar beets. Ph. D. Thesis, Michigan State University. (lrewling, T. and M. Peech. 1965. Chemical soil tests. Cornell University Agr. Exp. Sta. Bull. 960. Hansen, C. M. 1949. The storage of sugar beets. Agr. Eng. 30: 377-378. HaI‘rnsen, G. W. and D. A. Van Schreven. 1955. Mineralization of organic nitrogen in soil. Adv. Agron. 7: 299-398. H"-‘adden, W. P. 1912. Deterioration in quality of sugar beets due to nitrates formed in the soil. Colo. Agr. Exp. Sta. Bull. 183: P. 178. 108 James, R. W., D. C. Kidman, W. H. Weaver, and R. L. Reeder. 1968. Predicting the nitrogen fertilizer requirements of sugar beets grown in central Washington. Wash. Agr. Exp. Sta. Circ. 448. Keeney, D. R. and J. M. Bremner. 1966. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron. J. 58: 498-503. Moore, 8. and W. H. Stein. 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 211: 907. Payne, M. G., R. J. Hecker, and G. W. Maag. 1969. Relation of certain amino acids to other impurity and quality characteristics of sugar beets. J. Am. Soc. Sugar Beet Tech. 15: 562—594. Reuss, J. O. and J. M. Geist. 1970. Prediction of nitrogen requirements of field crops. Part I. Theoretical models of nitrogen release. Agron. J. 62: 381-384. Schmehl, W. P., R. Finkner, and J. Swink. 1963. Effect of nitrogen fertilization on yield and quality of the sugar beets. J. Am. Soc. Sugar Beet Tech. 12: 538-544. Snedecor, G. W. 1956. Statistical methods. 5th ed. The Iowa State College Press, Ames, Iowa. Snyder, F. W. 1967. Nitrogen as related to sugar beet quality and yield. Proc. 14th Regional Meetings of the Am. Soc. of Sugar Beet Technologists, East Lansing, Michigan, Pp. 55-56. SCflper, R. J. and P. M. Haung. 1963. Effects of nitrate nitrogen in the soil profile on the response of barley to fertilizer nitrogen. Can. J. Soil Sci. 43: 350—358. Stanford, George and W. H. Demar. 1969. Extraction of soil organic nitrogen by autoclaving in water: I. The NaOH— distillable fraction as an index of nitrogen availability in soils. Soil Sci. 107: 203-205. StEIrLEOrd, George and J. O. Legg. 1968. Correlation of soil N availability indexes with N uptake by plants. Soil Sci. 105: 320-326. 109 Stout, M. 1961. A new look at some nitrogen relationships affecting quality of sugar beets. J. Am. Soc. Sugar Beet Tech. 13: 68-80. Tunon, Eduardo Fernandez. 1969. Diagnostic soil and tissue tests for evaluating the nitrogen nutritional status of potatoe (Solanum tuberosum).' M. S. Thesis, Michigan State University. Ulrich, A., F. J. Hills, D. Ririe, A. G. George, and M. D. Morse. 1959. Plant analysis: A guide for sugar beet fertilization. Calif. Agr. Exp. Sta. Bull. 766, Pp. 3-24. Varsa, E. C. 1969. Nitrogen studies on sugar beets in 1969. Sugar Beet J. 32(3): 4-5. Viets, F. G., Jr. 1965. The plant needs for and use of nitrogen. Pp. 503-549. In W. V. Bartholomew and F. E. Clark (ed.) Soil nitrogen. Am. Soc. Agron. Monograph no. 10. Madison, Wisconsin. APPENDIX 110 Table 32 White pea bean yields in relation to applied N at 3 farm locations Applied Farm number N N l 2 3 treatment 1968 (Eisenman) (Gwizdala) (Wolicki) means ------------ bu/acre --—~-—----— 40 18.9 18.5 15.0 17.5 80 20.7 16.7 17.2 18.2 160 21.4 17.3 17.5 18.8 240 23.6 18.3 16.7 19.5 480 25.4 17.6 18.9 20.6 F‘arm means 22.0a 17.7 17.0 18.9 L531), .05 ns ns ns 1.62 aMain effect of farms, LSD (.05) 1.26 111 Table 33 Ear corn yieldsa in relation to applied N at 3 farm locations Applied Farm number N N 4 5 6 treatment 1968 (Yoder) (Schubach) (Schuette) means ------------ bu/acre ------—---- 40 95.7 109.7 92.3 99.2 80 99.0 107.1 94.1 100.1 160 103.0 111.4 93.9 102.8 240 101.9 103.4 89.1 98.1 480 100.2 115.0 104.9 106.7 Farm means 100.010 109. 3 94. 8 101.4 LSD, .05 ns ns ns ns abhoisture content corrected to 15.5 per cent at 70 pounds bper bushel Main effects of farms, LSD (.05) = ns 112 Table 34 Number corn ears per acre in relation to applied N at 3 farm locations Applied Farm number N N 4 5 6 treatment 1968 (Yoder) (Schubach) (Schuette) means ----------- ears/acre) ———------ 40 14320 20470 22150 18980 80 15190 20850 21410 19150 160 15460 20840 21160 19160 240 15140 21680 20720 18980 480 14700 20850 21220 18920 Farm means 149603 20820 21330 19040 LSD, . 05 ns ns ns ns aMain effect of farms, LSD (.05) 113 m.mm a: n.0m a: a: 5.0H mm.H Mb.o v0.N a: m0mH cfi£Ud3 m0mH 0.Hm a: H.05 a: an 0.0M hV.H 00.0 om.H a: 00mH GASUA3 m0mH mo. .qu m0H v50 #00 v.H0 m.Nh 00m H.Nm 0.0H d.nN OHmHN ONH find 000 Hmv 0.00 0.Nh m0N o.Nm 0.mH o.MN ommmd om baa mmh bhv H.mm 0.m0 h0N m.~m h.md H.NN omNHN ov 00H Ohm 00m N.N0 0.00 00N h.Nm h.ma N.NN oomNN 0 00¢ vvd hvm mmv v.0m 0.Hh 0mm 0.Hm m.mH o.nN omhom ONH and $05 Hum v.n0 ¢.nh 0mm m.nm 0.0H N.NN ONNHN 00 No #05 chm 0.00 5.00 Now 0.nm b.0H m.om O0HON 00 mm N00 nhN N.H0 H.0h mom m.mm H.5A m.ON OhooN 0 Gem MON 000 chm m.mm ¢.m0 mun o.nm 0.0H 0.HN omnHN ONH mNH Hmm HVM v.m0 n.0h mmN 0.Nm m.0H h.NN OthN 00 mm 000 mvN 0.00 0.05 Adm 0.Vm m.hH 0.HN OHmHN ov 50H «05 haN «.00 o.Nh nan m.vo m.hH 0.0m omNON o 00H 00H «#5 Han H.0m 0.00 now H.vm 0.0a m.md omNom DNA 50 how onm m.mm 0.n0 Non o.vm N.hH m.mH onhma 00 0h H00 0vN v.mm 0.00 ham m.vm m.hd 5.0H OHVON O? OH 0N5 00H 0.00 0.00 vnn m.mm n.0a 0.0H o00ma o om 00 mm0 0mm 0.0m N.h0 mow m.nm mI0H m.mH OQNHN ONH 00 «Oh m0N 0.N0 N.Oh mom m.vm 0.5H 0.o~ ONVHN om mv v50 ¢ON h.H0 b.00 HNM H.mm m.hd N.ma OMOHN 0v mm H00 oNH m.H0 ¢.h0 ovm N.0m n.0H N.0H ONNON o ov 2 m0ma 2 000H «2 x a“ < 3.0.“ on” mm» x x 286 886 o E u auuusm «0000 woo woo nuauououmo .uwwwmmwwma uuuum muwme Loam 8:: 5 .2. .35.. :« nouuauaaan unmmm unano ououunm uuoon Iamomwfiiuuuuusounm noon unmnm sensuouam. a Shah .uomnuo>n ounoaamou n .z 000H 0:6 000a 0» neocomoou 0000 Human mm manna 114 mm.H 5.¢0¢H 0: on 0G 0c 0: QC on m: @00H CfiSUH3 QO0H N5.H 0.05MH ma NQH0.0 an an NC 0: 0H.0 N.¢H 000H Cdgvd3 000H mo. .Qmfl 0.0 m0M5 0m.N NNH. 5Hm wmdm NNH N0 m.5 mm ONH 0.0 0505 00.N 0nd. 00¢ 0500 5AA 0m 0.5 55 00 0.0 00¢0 00.N 50H. Nam 5m0¢ 5HH ¢m 0.5 ¢5 O¢ 5.0 0000 OO.N MHH. mNm 0H0¢ NNH Om 0.5 H0 0 00¢ m.m NMH5 0O.N 00H. mnm ¢m~m 50H 00 0.5 mm ONH 0.0 O¢00 ¢N.N MOH. 00¢ m¢0¢ 00H 05 0.5 05 00 m.0 0000 0m.N mmO. H0¢ MONm NOH mm 5.5 mm 0¢ H.m m5m¢ m0.N QHH. Nam Hmm¢ 0¢H ¢m 0.5 m0 0 O¢N H.m O¢m5 ¢N.N mNH. 5N¢ 0On¢ Hma 55 0.5 55 ONH 0.5 000¢ m5.N NHH. Nm¢ 5m0¢ NON 00 0.5 00 00 0.0 O5m¢ ¢m.N 00H. mm¢ 00¢¢ mad 05 0.5 N5 O¢ H.¢ Ommm 5m.N OHH. 500 05m¢ 00H ¢5 0.5 00 O 00H H.0 OHHm n0.N OHM. 50m Hm5¢ H¢H N0 0.5 m0 ONH m .0 O¢m¢ NH . N 00H . MNm Hm5¢ NNH O¢ m . 5 00 00 m.N 000m H0.H 000. 500 00¢¢ med m¢ 5.5 H0 O¢ ¢.H 0¢On Om.N 50d. MNm Nn¢¢ H¢H mm 5.5 50 0 00 ¢.5 0000 ¢m.H 5AA. 0mm N¢m¢ mNA mm 0.5 00 DNA H.m O55¢ m0.N AHA. 0mm ¢N0¢ N5H ¢m 0.5 5m 00 m.N 00mm N¢.N 00H. mm¢ Nn¢¢ OMH 5¢ 0.5 ¢0 O¢ 0.H Om5N N5.N HNH. ¢0¢ m0n¢ mnH Om 5.5 00 0 O¢ am i * 2 000H 2 000H n BI 02 K m puma cannuuauuxo 0: 60 x a no 2 noauommuno guano o«un caucus anyone: (MWumaocn oaoauom .sassouau. a seam .moma use mood as cofldaao ammouuac on nodumaou :« nouaansn unawuom noon Human pan ovum» Hwou 000H Hosesm on manna 115 0.~v as ¢.Hnd n: a: 5.v~ NH.~ 00.H a: m: 000a casuaz 000a 0.0m m.m- 0.0da 5H.0 a: 0.0a e0.H 00.0 as a: 000H casuu3 000H .qu 05H ~0HH A50 0.am «.00 ~05 0.00 m.ma 0.0m 0HH5H 00H vna 00~H 000 0.00 0.00 000 0.00 0.0a ¢.a~ 0005a 00 H0 v00 H5m 0.~0 5.05 05m 0.m0 0.0a m.u~ 0mv0a ov HHH 000H 0N0 0.00 5.50 v0~ H.~0 5.0a 0.H~ 0000a 0 00¢ 00H Nooa 00¢ 0.Hm N.o0 00m N.m0 o.mH H.0N 0000a owa 0nd 000 H5m v.00 v.00 H50 «.00 0.0a v.00 0000a 00 N0 500 00m 0.00 0.00 H0~ 0.m0 0.0a v.00 0005a 0v mon 055 mnm v.00 H.00 000 0.00 0.0a 0.H~ 0000a 0 00m 00 000 00m «.00 0.00 M55 H.n0 0.0a 5.a~ 0m~0H 00a 0HH 000 m0~ 5.¢m 5.H0 n05 v.v0 0.0a n.0a 0005a 00 H0 505 5cm a.0m 0.00 005 «.00 5.0a 0.0a 0005a 0v 00 ~05 don m.m0 H.~5 0am 0.00 0.5a m.0~ 00m5a 0 00a m0 H05 vom 0.00 «.00 00N v.00 ¢.0a N.ON OM50H ONH v0 H00 own 5.00 0.05 000 v.n0 0.0a ~.H~ 0~v0H 00 m0 n55 H0a 0.00 5.00 00m 5.00 0.5a 0.0a 0005a 00 am 0v5 nae 0.50 0.55 050 5.00 5.5a 0.05 05H5a 0 00 v0 000 ¢m~ 0.H0 0.00 ~0~ a.¢0 H.0H 5.a~ 0H05a 00H 00 000 0H~ 5.50 n.00 00w H.00 0.0a 0.0m 05HOH 00 00 ~05 00a 0.00 0.H5 5am H.00 0.5a v.0N 0HHOH 00 m0 005 00a m.~0 v.50 Hun 0.00 n.5a m.0~ 0H05H 0 00 2 000H 2 000A 62 x 2 30¢ onus sou x I 9.36 onus on E uzu 030 AH Nuausa .0000 use nod uoauouounu ummmm 000H magnum 000:0 cans madam use 0 I>ooou Iou Imonuwmm ocean :« cos nonanz ca nu«u«u EH um uoaao ououonm canon .naapuasos n such .uo0uu0>n ousoaamou n .2 000A 0:6 000H 00 000000000 0000 000:0 5n canny 116 55.5 6.5065 6: a: 66 as 6: a: 6: o.o 5005 656653 0005 50.5 o.mon5 66 mm5o. 6: 6: a: as a: 5.0 0055 65:05: 0005 no. .065 6.5 oomm 05.5 6o5. 05m 5506 565 55 0.5 on 055 0.0 comm 56.5 mo5. 05m 5566 5m5 55 0.5 65 cm m.5 0650 50.5 55o. 55m 0066 5m5 o5 0.5 55 o6 o.0 mo5m 55.5 60o. 006 5656 565 55 0.5 65 o oo6 0.5 mono 55.5 mo5. man 5506 555 o5 0.5 on o55 0.0 o55m 05.5 50o. 66m m506 065 05 5.5 55 cm 5.5 0556 55.5 505. 056 oom6 055 55 0.5 55 o6 0.5 o556 55.5 55o. 55m 5656 055 m5 5.5 05 o o65 0.5 o5mm 55.5 60o. 556 0556 555 55 0.5 55 o55 5.o m65m 55.5 50o. m56 0on6 655 05 0.5 55 cm 0.5 m5o6 ,56.5 500. 556 5566 665 55 0.5 55 o6 5.5 ommn o5.5 500. 606 5m56 5m5 05 0.5 55 o o05 0.0 06mm 55.5 50o. 55m 6506 665 55 0.5 05 o55 5.5 o056 55.5 50o. com 5006 555 m5 5.5 55 on 5.5 oomn 55.5 50o. 50m 6506 555 55 0.5 m5 o6 5.o o556 no.5 500. 556 5006 055 05 5.5 05 o om 6.0 o006 m5.5 oo5. 05m 5006 065 55 0.5 65 055 0.5 o656 oo.5 00o. 55m 0566 665 55 0.5 55 cm o.5 o505 no.5 omo. 55m 6506 055 55 0.5 05 06 5.o 5505 o5.5 50o. 66m 6506 5m5 55 5.5 55 o o6 600 x x z 5005 2 0005 2 6606 zImom5n6m06uuxm 5 02 6o x 5 00 2 6055000660 50560 6506 056606 565665: nona5ucu 0505000 «6606\650 66666 55am 565665536. 5 6565 .5655 666 0005 :5 0655006 0000505: on :0596505 :5 nou>5acu 0505uom 0005 560:0 van 0000» 5500 000H 502500 on 65569 117 0.55 0.655 0.00 05.6 00.5 0.55 60.0 00.0 50.5 0: 0005 050053 0005 5.05 0.555 0.00 50.5 50.6 5.05 00.0 60.0 50.0 0: 0005 050053 0005 .an 50 050 660 0.06 5.00 005 0.00 0.05 5.55 05505 055 505 0605 550 0.06 6.00 505 5.50 6.05 5.05 00055 00 50 550 506 6.06 5.50 555 6.50 0.05 0.55 00005 06 05 050 505 5.00 6.00 005 0.50 5.05 0.55 00555 0 006 00 550 056 5.50 0.00 005 0.50 6.05 5.05 00055 055 55 550 655 0.00 5.00 505 5.50 0.55 6.55 05055 00 00 550 505 5.50 5.50 505 0.50 6.55 5.55 00005 06 00 550 505 0.50 0.50 005 0.50 0.05 0.55 00555 0 065 05 550 055 6.50 5.00 005 0.50 5.55 5.55 00005 055 00 655 055 5.00 5.50 555 0.60 5.05 0.05 05055 00 56 000 555 0.00 0.50 055 5.00 0.05 0.05 00655 06 55 500 005 0.00 0.50 065 0.00 5.05 6.05 06505 0 005 00 000 505 6.50 0.00 005 5.50 5.55 0.55 00555 055 00 500 505 0.50 5.50 605 5.50 0.55 5.55 00655 00 66 000 005 0.60 5.50 055 0.00 6.05 0.05 00005 06 56 000 055 5.00 0.50 065 0.00 0.05 0.05 05505 0 00 50 005 005 0.50 0.00 055 5.60 0.55 0.55 05505 055 00 050 055 0.60 0.50 055 0.60 5.05 5.05 00055 00 56 000 505 5.50 0.50 055 0.00 5.05 5.55 00605 06 05 050 055 5.00 0.50 565 0.00 0.05 6.05 05555 0 06 z 0005 2 0005 02 x z Rule-0| El B I I 0500 0500 56 00 005 0: 05mnwo 0www0 0wM6 005500 00000 500 500 0055000000 00505 50050 u>0000 1050 -00050xu 00505 05 009 500502 :5 0050550065 50000 50050 0005000 00000 «0005 55x055030 5 E500 .000050>0 000055005 5 .2 0005 000 0005 00 000000005 0000 50000 05 05009 118 50.5 5.6505 0: 0: 0: 0: 0: 0: 0: 5.0 0005 050053 0005 00.5 6.600 0: 0: 0: 00 6.55 0: 0: 0.0 0005 05:05: 0005 00. .005 0.0 0055 00.5 505. 006 5006 005 06 0.5 55 055 0.0 0500 05.5 555. 066 0006 005 56 0.5 55 00 0.5 0060 05.5 055. 006 0506 505 56 0.5 05 06 5.0 0560 55.5 555. 006 5056 005 06 0.5 55 0 006 0.5 0000 00.5 055. 056 5506 565 66 0.5 05 055 0.0 0600 00.5 005. 506 5566 065 00 0.5 55 00 5.5 0056 55.5 555. 566 6506 665 66 0.5 55 06 5.5 0605 50.5 055. 006 5566 055 00 0.5 05 0 065 6.5 0566 50.5 505. 006 5006 605 06 0.5 55 055 5.6 0606 55.5 555. 550 5006 005 06 0.5 55 00 0.5 0555 00.5 005. 050 5006 605 56 0.5 05 06 0.5 0005 50.5 005. 006 0066 005 06 0.5 55 0 005 0.0 0006 00.5 055. 056 0066 505 00 0.5 55 055 6.0 0056 55.5 055. 006 5506 055 05 0.5 05 00 15 5.5 0555 50.5 555. 506 5506 605 06 0.5 05 06 5.0 0655 00.5 005. 006 0066 005 50 0.5 05 0 00 5.0 0506 00.5 505. 606 5506 565 56 0.5 55 055 5.5 0505 00.5 605. 006 5566 065 56 0.5 05 00 6.0 0505 00.5 500. 006 0500 505 05 5.5 05 06 5.0 0055 00.5 000. 506 5006 555 55 0.5 55 0 06 500 x x. z 0005 2 0005 2 :5 0000 2 0m5n0uum50x0 0 0: 00 x 0 00 2 0055000000 #0500 0500 050000 505005: 000N50c0 0505000 55x055030 5 8500 .0005 0:0 0005 :5 0055000 0000505: 00 00500505 :5 00005000 0505000 0000 50000 000 00000 5500 0005 506500 06 05008 119 5.66 00 5.50 00 00 5.05 55.5 50.5 00 00 0005 050053 0005 5.65 00 5.50 00 00 5.05 60.5 05.5 00 00 0005 050053 0005 .000 505 000 556 6.00 0.55 005 5.50 0.05 0.55 05555 055 005 050 050 5.50 0.50 665 6.50 6.65 0.55 00605 00 055 605 566 0.50 6.50 055 5.50 0.05 5.55 00555 06 055 660 606 5.60 0.60 555 0.50 0.05 5.05 05005 0 006 055 050 566 0.50 0.50 055 0.50 5.05 0.05 00055 055 665 500 656 5.00 0.00 055 0.50 0.05 0.05 05555 00 065 555 065 0.00 5.00 605 0.60 5.05 0.05 55555 06 00 005 005 5.50 5.00 005 5.60 0.55 0.05 00505 0 065 055 000 005 5.50 0.00 605 0.50 5.05 5.05 00055 055 555 000 065 5.00 0.00 505 5.50 5.05 0.05 00005 00 555 055 005 0.00 0.00 005 0.60 5.55 6.05 00005 06 50 555 505 6.50 0.05 655 0.60 0.55 5.05 00555 0 005 005 055 655 0.00 5.50 005 0.60 5.05 5.05 00005 055 555 555 505 0.00 0.00 005 0.60 0.05 6.05 00505 00 60 055 055 5.50 0.00 005 0.60 0.05 0.05 05505 06 55 505 505 5.50 0.50 555 0.00 0.55 0.05 05055 0 00 655 565 005 0.50 0.00 505 6.60 0.05 5.05 00555 055 00 055 055 6.50 6.05 555 0.60 6.55 0.55 00505 00 50 555 005 5.50 0.50 055 0.00 0.55 0.05 00505 06 55 505 665 0.00 5.65 565 0.00 5.05 0.05 00055 0 06 2 0005 2 0005 0 z x z 0500 05mm 000 05 t 0500 05 00 50 00 005 0 05M0W0 wwwwu 0&M0 005500 00000 500 500 0055000000 00% 55 H HQMMU 00% 55 H C.“ GOP NOAH—.52 05 005055 85 50050 0005000 00000 5500000 6 E500 .000050>0 000055005 5 .z 0005 000 0005 00 000000005 0000 50000 56 05009 120 50.5 0.5605 00 00 00 00 00 00 00 00 0005 050053 0005 06.5 6.0005 00 00 00 00 00 00 00 5.55 0005 050053 0005 00. .000 5.0 0505 06.5 055. 500 5005 005 50 5.5 06 055 5.5 0005 55.5 005. 006 0000 055 50 0.5 05 00 6.5 0500 05.5 555. 550 0565 005 50 5.5 55 06 0.0 0055 05.5 005. 500 0050 005 50 5.5 55 0 006 0.5 0555 05.5 505. 066 5000 555 60 0.5 55 055 0.5 0065 00.5 000. 550 5055 005 05 0.5 55 00 0.5 0550 05.5 500. 550 5555 605 05 0.5 05 06 5.0 0500 55.5 500. 000 5005 605 00 5.5 05 0 065 0.5 0050 05.5 000. 500 5005 505 05 0.5 56 055 6.0 0560 50.5 000. 500 5555 005 55 5.5 65 00 5.0 0650 60.5 000. 060 0605 605 00 5.5 05 06 5.6 0006 55.5 005. 050 0505 005 05 5.5 55 0 005 5.5 0500 55.5 005. 006 0505 065 60 5.5 05 055 0.6 0500 50.5 605. 050 0505 565 60 5.5 55 00 0.5 0605 50.5 000. 550 5000 055 60 0.5 55 06 0.5 0005 00.5 505. 500 5655 065 50 5.5 65 0 00 0.0 0600 06.5 055. 500 0000 665 00 5.5 55 055 6.0 0666 56.5 005. 550 0000 055 50 5.5 05 00 5.5 0005 05.5 505. 500 0555 005 05 0.5 05 06 5.5 0005 50.5 555. 500 0550 555 00 0.5 65 0 06 =00 x. a z 0005 2 0005 0 5 0000 2. om500muauuxo m 0: no 0 0 00 0 0050000000 00500 0500 050000 505005: 0 OONHQGG GHQ." 00% 5mmog\0550000055om .5009». 6 0000 .0005 0:0 0005 :5 0055000 00005050 00 00500505 05 00005000 0505000 0000 50000 000 00000 5500 0005 505500 56 05009 121 Fat". N.r~|¢§:.i.LII| 0: 0: 0: 0: 0: 0: 0: 50.o 55.5 0: 0005 050053 0005 00 00 00 00 00 00 00 0.0 50.5 00 0005 050053 0005 850.5 506 0655 000 0.60 5.00 065 6.00 0.05 0.55 05555 055 056 0555 005 0.00 5.55 605 0.50 0.05 5.55 05505 00 506 5055 600 0.60 5.05 505 5.00 5.05 0.55 05505 06 056 0655 066 0.00 6.55 005 5.00 0.05 5.55 05005 0 006 555 5555 005 5.50 5.50 005 6.50 5.05 5.05 00505 055 505 5655 056 0.50 5.00 005 6.00 5.05 0.05 05505 00 555 0055 505 6.00 0.00 505 5.50 0.05 0.05 05005 06 055 5055 005 5.60 5.00 005 0.50 5.55 0.05 00605 0 065 555 0505 555 5.00 0.05 605 5.50 6.55 5.05 05005 055 005 5555 605 5.00 5.00 005 6.50 0.05 0.05 00605 00 555 0555 555 0.00 5.55 605 0.50 0.55 0.05 06005 06 005 5055 605 5.50 0.00 005 5.50 0.55 0.05 05505 0 005 055 5505 055 0.00 0.00 605 0.50 0.55 6.05 05005 055 005 5555 005 5.00 6.50 005 0.50 5.55 5.05 00505 00 505 5055 555 5.00 0.50 005 5.50 5.05 0.05 05005 06 505 0005 505 6.00 0.00 655 5.60 6.05 0.05 00505 0 00 005 5555 555 6.50 5.55 505 0.50 5.55 5.05 05505 055 055 0505 555 5.00 5.55 505 0.50 0.55 0.05 00605 00 005 5005 005 5.60 0.55 655 0.50 0.05 .5.05 00505 06 555 5005 565 0.00 0.05 055 0.50 0.05 0.05 05505 0 06 z 0005 2 0005 6 2 WM 0” WHOM EDD * x 00.500 “HOG 5” 00 x 00 E 0 03wo WWW 005 505500 00000 500 500 0055000000 00505 mmw 0 500 0 0 500 00505 05 009 500000 05 005055 05 50050 0005000 mmm0m\ 50005 050008050 0000 50 00 1| / |||I|I||IIII|II||I 5000000000 0 8500 .00005000 000055005 5 .2 0005 000 0005 00 00000000 5 0000 50000 56 05009 122 0N.~ o.mmmH ac a: m: a: a: m: a: m: mwma Canufi3 wood wh.H H.nNhH an an an m: an a: m: 0.0H mead Canva3 mOGH mo. .Qmfl m.m Hnmm em.N VNH. mom Nhhm mom mm m.h mv ONH o.m 505m hm.N mNH. mos 00mm 00m mm ¢.h vw om H.m hvmm HQ.N NMH. oom oowm firm on 0.5 mv 0v m.m «mam ¢¢.N mNH. th Obom ANN om m.h O¢ o om¢ m.m mmam mo.n hNH. mmm Homm ham had 0.5 0v ONH m.m mvam vo.~ mad. mno mme omN mh 0.5 mm 00 m.m odmh Hm.N mNH. «mm boon mom mm 5.5 hm ov o.5 bomb mm.N maa. mmm nV$v ohm ms h.h 5m 0 ovN m.m h¢fih No.m MNH. ham vwmm mm“ as m.h av ONH H.m VM@@ 0H.n add. ooh mhmv mmN OHH m.h on cm 5.5 code n¢.~ on”. hmh HONm can mm ¢.h NM ov N.m ovmv hm.N ONH. mou Nme mmN vm m.h mm o 00H m.h some mN.m mad. mwm hamfi wan mm v.5 nv ONH m.h mmNo na.m 0AA. Hum mam? mOM mm m.h mm om m.m mamm MH.M mad. hhw mem mwN mum 0.5 um 06 w.m hmhc No.m mad. ham hmvv wow no m.h mm 0 cm 5.5 Armo oh.N mad. rho hmwv th NHH n.b hm ONH m.w 0000 OH.n VNH. Nam Ahmfi mow mm m.h NM om N.m mmmfl mm.u mad. Hmm hmhn mNN Vb m.h mm o¢ m.H anon hm.n 00H. com nmmm 0mm ms ”.5 VM C 0v Em R I 2 0mm." 2 mom." 2 Zlmoz X m uuou manduonnuxo a: no x m =9 2 uuuuomouno guano o«un o«uou¢ danced: nomxwmmmlmamwwum ammup\nmqlmmmmmlmwmm Anonnagomv m such .momH can mo :moouuuc ou newuaaou ca nonhuman uncuuum 000A human can «you» aw ma cw uuwsmmu On moaw Museum VV mnnms 123 m.hm m: v.mn a: m: m.m~ om.H mo.H a: a: moma canvas mama m.om m: 0.05 m: an m.- cm.H ma.a m: m: mama caguaz moma mo. .nmq mvm mam omw o.nm ~.mo ~m~ m.Hm h.mH h.H~ omvma owa mud omm mac v.mm o.mo mBN ¢.~m m.oa o.H~ ommma om wad omm mmn v.Ho o.~n vmm n.~m b.0H o.HN omoma oe maw mmm mom n.mm >.mn own m.~m m.o~ ~.- ommma o omv vva -m mmm ~.mm n.5w mmm v.nm m.oH v.o~ comma oma won mun com h.nm 0.00 mmN .vm n.0H m.m~ comma om HNH men mmm v.50 m.mh «an m.vm n.5H n.H~ omaom ow mas mvh Hoa m.uo m.mo can o.mm m.n~ ~.ma o¢mo~ o o¢m vma mmo omN m.om m.mo 5mm m.vm m.mH v.o~ ommma ONH moH 0mm maw «.mm o.Hb hon h.vm m.na m.o~ omvma om voa mwh nma 0.00 m.ms omn m.mm «.ma ~.om omoma oe om nob mmH o.Hn o.55 mvm m.mm m.ma o.o~ owmom o oma nma man ¢m~ o.~o o.Hh haw ~.¢m m.mu o.H~ comma oma um mom mma o.mm ~.~h hmm >.mm o.ma H.o~ omoma om «m Ham mad v.mm n.mo mmm m.om o.m~ H.mu ovaH ov mm who om «.mo ~.os me m.om m.ma m.ma omwma 0 cm as omw Hma 5.5m H.oh man m.mm o.mH ~.H~ oooma cud 00H mmm nma ¢.on v.55 mmm m.m¢ h.ma m.o~ owmon cm 55 com coa m.oo n.~b emm n.mm N.mH o.o~ onmma ov an mmn om m.mo m.mn Hmn h.mm m.mH v.ma omoma 0 cc mama z mmma «z x 2 upon ouua :0» x. x uuon uuun DCMEK 30 xuquam uuoun awn Hon awauomouao uwwwmnmmmeWE vH nu kusv owmm ovasn ea :08 nonsaz :« moauqu EH unuau ououuam «noon Amo¢ag uuouosnmnm,uo0n ummwm :1 / ||||IIII|I|I|||I Auuuosnom. w snub .uomauo>n «anodaaou n .2 mmofi was mmaa on coacoauo 124 o«.u v.«««« a: as a: a: m: a: a: a: mead casuas mama mm.” ~.«o«« muo.« «««o. a: u: a: a: an ac mom” edgy“: «o«« «o. .amq «.m «wem Ho.~ «««. 5«m 5~oo «mm mm «.5 «N o«« «.5 5mo5 «m.~ «H«. «mm omwm v5H m5 «.5 5N om 0.5 ««m5 «5.5 «H«. ovo e«¢v v«« oo «.5 «N cc «.5 ~5¢5 «o.~ «««. «H5 ««cv odw odd «.5 mm o omw «.m o«mo «5.~ «HH. 5¢5 ««vv «m« «m «.5 «w o«« «.o «awn ««.N Nod. mo5 «5mv vow «5 «.5 mm om o.m «mum 5m.~ «««. 5m5 H«5v «ma H5 «.5 m~ oc o.~ 5«Hm «H.« o««. ««w «o«v mun «v «.5 «m o owm «.5 ««5o 5m.~ «««. «m5 moon 5o~ mm . aw cud «.o «««o om.~ odd. «mo o««v 5cm 5« «N om «.« cmov om.~ «««. «o5 ««vw 55H mm «N ov o.~ «one m5.~ «««. one o«5« «ma «v vw o oo« m.o ««vm «e.~ «H«. «mm 55«e com «5 e 5 «H o«« «.v 5v¢e v¢.~ «HH. «we «o«v «ma om « 5 «a om o.« 5«H¢ «o.« o~«. emo o5o« «wa mo «.5 on cc «.0 o«oa oH.« «««. «m5 «m5e «ma mo «.5 cm o om 5.m «mac «v.~ «««. mo5 «cme «qa mm «.5 mm o«« m.~ m5~e m5.~ «HH. «co «««m Hod «m «.5 v~ om «.~ «oov ««.« vHH. «N5 «gov «ma «m «.5 «w ow m.o ~5o« «H.« «««. o5m ooo« «ea 5« «.5 u« o o¢ Eu «5 a z $2 2 83 z « uuou z omHnauuouuxo m o: no a a mm 2 uoauououuu xoano vans o«uout «caucus nomwdaco vacuuom Aouuoagumv o Shah .mwmu van mam camouuwc on noduaaou 5 nouhauco cacaua uoon adv—.3 can 330» .30. Ha 5. ”0.39: anus om~ hoesam wV o H.¢H m.m® v.mm mw.H ¢®.H m.m mm.O NN.O N®.O wc mo. .QmQ om mNm va 5.5% m.®m mom H.Nm m.mH m.hH Omth owfl Nb mmm Hmm m.Nm $.00 mmN O.mm N.hH 5.5H OmvhH OVN Hm mmn mom O.mm w.H® BNm m.¢m m.mH m.®H Omth 00H mm mom mvN m.¢m h.H© mHm H.vm H.mH O.hH OmMBH om mv mom mmH H.mm ®.H© mNm m.vm m.mH m.®H OGONH 0v AHXUHHOBV m m.mN mC O.Hm mC mc 5.5H HV.H Nh.o mc mc mo. .de mHH OBOH omv m.mm 5.00 OQN m.Hm m.mH m.HN O®m®H om¢ mHH Ohm 0mm m.®m N.m® th h.mm m.mH m.ON OmNBH OVN hm Ovm HwN m.mm N.h© NmN m.vm m.OH m.ON OOhhH OOH mh dmh 0mm m.H0 v.m® mom O.mm m.©H N.ON ONOBH 0m mm mom me m.N® m.m© mom m.mm m.©H ©.ON 0mth 06 AmHmflNH3OV N m «.3 ma «.3 m: m: 0.3 «m. 3. o«.m m: «0. d3 HmH 0mm 00v $.00 N.Hh QQN m.Nm m.mH ©.NN OOVHN omfi NNH Ovm mhm N.H® N.Hb va N.mm m.®H h.HN OthN OvN MMH mwm va N.v© ©.mn th m.mm O.hH h.HN OmNHN OOH mh 5H5 mmm m.mm m.m® NHm 0.6m m.hH h.mH ONOON om Hm dmm 0mm m.H® V.m© mHm O.m@ 0.5H m.mH OMHHN 0v AcmEcmmHmv H mz x ocwem, wwww wwww IWWW. x. .* muom whom Amuum\nav Enmm Hmmdm mooa\mE. magnum Uwusc manm Xuausm mummn umm umm z moma moasn ummao |>oomm scum luomuuxm m0«5n CH :08 quESZ mwfiuommumu c«.mmfiu«usmEH ummsm umwao wmouosm muwmm Amomav mumumEmumm,ume ummsm “mamme uon may mcofiumooH Eumm m .wcmmn >>mc :0 z vmflammm momH ou COHumeM CH mwmcommmu «QQQ kmbzm NV mNQm& 6 2 l w.ov m.vm m.H¢ mC mC 0.0 Hm.o m¢.o mC mC mo. .qu mom mom vow 0.00 5.05 mnm v.mm v.0H o.HN 05vma omw ova M55 0mm v.00 o.5m vom w.vm H.5H m.ma 05m¢a ovm moa oon oma ¢.mo m.~5 omm H.mm m.5a v.om omvma oma mm mom 00H m.vm m.05 mmm m.mm m.ba w.ma 05mma om Hm HH5 HmH m.mm H.m5 0mm m.mm «.ma v.0m omwma ow Amuumsnomv o m.moH 5.NNH 0.0m w: m: m.ma mH.H mv.o 50.H mC mo. .qu New anma mow 5.om N.H5 mmm m.mm o.®a m.mm comma omv 0mm mvma H5m 5.mm H.mo N5N m.Hm m.mH m.mH Ommma ovm mvm 5HHH mam «.mm m.mo mmm m.mm v.5a .H.om comma 00H 5am NMHH 55m o.mm H.mo mom H.mm o.5H H.0H 05mma ow mmm mmoa m5m m.Ho m.H5 Nam m.mm m.mH 5.0H ommma ow Anumnszumv m m.mm mC o.5m mC mC H.0m 00.0 0H.H mC mC mo. .Qma mvH vow 55v m.om v.00 vow @.~m m.mH m.Hm comma omv mma How Hmm «.mm m.5® «mm m.mm m.®H 0.0m comma owm NHH an mmm H.00 H.wo mom N.vm o.5H H.0N ommoa 00H om man mmm N.oo H.5o mom H.mm m.oa m.mH ommha om 5m mM5 mam v.~@ «.mo mam m.mm m.5H m.ma Ohmna ow Ammoowv v mz x OCME muww muww com 8. X whom muom Amuom\nav Eumm Immmmmnmmmfiw E mammuw cwosc wwwm wuHuCQ mumwn Hmm Hmm z mead onCn ummao I>ouwm Ioum luumuuxm mUHCn CH COB HwQEDz mmfiummmumu Cfi meuHHCQEH ummsm ummao mmouusm mummm Hammav mumvwEmumm,ume ummsm AmcmmE UOHQ may mCoHumuoH Eumw m .Cuoo C0 2 vmfiammm mama ou COHumamu CH mwmcommmu ummn ummsm mv mHQmB 127 m.mm5 m: m: mo. .amq m0H0 5H.m HHH.o omv momv mo.~ 0HH.o owm mHHv 0m.H 0oa.o 00H moaw mo.m mHH.o om 000m mm.a moo.o ov Aaxofiaozv m «.mmm mC mC mo. .qu HVm0 mm.m mmo.o omv vmam 5m.m 5mo.o ovm 5m0v mm.~ Nmo.o 00H momv mH.m 500.0 00 00mm «H.N moo.o ov AmHmcufl3wv N 5.00m m: m: mo. .qu @500 vH.N mHH.o omv 5000 mm.m 00H.o ovm ommv H0.m mHH.o 00H M5o¢ mo.m moa.o om mvov v¢.m «Ha.o 0v AcmECmmHmv H Ema fl .X m 2: oz x m Awuom\nav Eumm ummu manmuumuuxm z m0ma xofiao o«om o«uwum mmauommumo AmCmmE uon may mcoaumooH m um mammn >>mc C0 omaammm 000H ou COHumeu Ca mmHoHumm uwmn Hmmsm CH x va .m .2 av magma 5«.H m.¢o5 «2 m: mo. .omq «.5 «om5 «o.« «««.o omv «.0 555m Hm.m «HH.o ovm m.v «mmm mm.~ «H«.o 00H «.« m5Hv m5.m ««H.o om o.m o««w 5m.m ««H.o ow Amuumsnumv o H5.H o.m5HH m: m: mo. .omg H.m «mam m0.« «««.o omv «.m «vow H«.N omH.o ova 0.5 «««o oo.« v~«.o 00H «.0 50mm @«.« ma«.o om v.m mmmv mo.« 5HH.o ow Anumnssumv « 8 n” «¢.H «.m5m m: m: mo. .omq «.5 qu5 ««.m «o«.o omw «.0 m5¢o o«.m 0mo.o ov~ «.0 Hmvm om.m oo«.o 00H 5.v om5q «0.m «o«.o om ~.v «««v vo.m oHH.o ow Auwwowv v Ema x. x z z:«oz x m Amuum\nav Eumm umwu manmuomuuxm z momfl Muaso @Hom o«umum mmfiuommumo AmCmmE uoam may mcofiumuoH m um CHOU Co 2 Umaammm m0ma ou cowumamu CH mmHoHumm ummn ummsm C« x @CM .m .z 00 magma muoHQQCm NH 00 mcmmE wum mmsHm>m m: «a m: «a m: N.5 o.¢ 5.« «.5H «.«N «o. .oma «« «« mm H« «N «N «N «« H«H HvN omv ¢« «« «« «« 5N «N ON ON «0 H«H ovN N« 5« H« «m «N «N 0N «H «v «HH o«H «« «« o« N« «N «« «H «H «N om om «« ov N« «« «N «« «H NH ON «5 ow HonHHozv « «c m: «c m: m: «2 5.N «.« 5.NH H.NN «o. .omq o« «« HNH ««H «« «H «N o« ««H ««H omv «v N« «NH «NH «« o« «N HN «« «HH owN 5« «v «NH ««H «« «« «N «H 50 NOH o«H «v «« «NH o«H «« ov HN «H «v «5 om .4 «v H« «HH o«H «« Hv HN «H «N H« o« HmHchHsov N ma 9» ma mc mc m: mC m.m ¢.mN H.N.v mo. .Qmfl 05 «5 «OH «HH 5v o« 55 «H 05H ««N omq «« 05 «HH HNH «« o« mo 5H Hm ««H owN N0 «« «oH 5NH 5« NV H5 «H 5« ««H o«H «« «« NoH «0H «« «v «« 0H 5« «HH om v« «« H« «OH «« ow «0 HH H« 50H ow Hamecmemv H ««mm «mm ««mm «0m «0m« «om m«02m «0mm mom «05m kuom\nHH, Egan HmHUM\QHv .Houom\nHM1 kuom\nHH. Hmnum\nHv z m0mH z UmmmmHmH z mHQmuumuuxm z z HmumCHz mmHHommumo mCH>mHoouC< umumz pom mHQMNHHmumCHZ AmCmmE uon Came my mCOHumooH Eumm m um mCme >>mc C0 2 UmHHmmm 000H ou CoHumHmu CH mummu HHOm CmmOHUHZ Hm mHQMB 130 muonQCm NH 00 «CMOE mum mmsHm>w mc m2 WC mc mC mC mC m.N .V.O.v N.HN m0. .de «« v« «HH «NH «« H« «N N« «NN NHH o«« «q «« ««H ««H 5« «« «N «N ««H «« ovN «« «« «HH «NH «« «« «N HN «« «5 ««H «« 5« «HH «NH ow «« HN «H N« «« o« o« «« oNH «oH «« «« «N «H v« o« «v Hmuumssumv « «a o.5H «c «c «a «a «a «.5 5.5« «.o« «o. .Q«H «« «5 «NH 5«H Nv 5« «v «v o«N ««H o«« «v «v «HH ««H 5« H« o« «N 5«H «« o«N «« «« «NH 5NH 5v «« «m «N ««H «« o«H «« «« «NH N«H «v «« «« «N «« «N o« «« N5 «NH 5«H «« «« v« «H «v 5H ow Anomnsnumv « m: «C «C «C «C «C «C N.v N.Nm m.mm mo. .Qma H5 55 «NH N«H Nw «« 5« «w N«N ««H o«¢ «« «« «NH «NH o« «v o« «N ««H 5« ovN «« H5 «NH ««H «« «« v« NN «« «v ««H «« N5 «NH ««H o« N« «N «H H« N« o« «« «« ««H ««H «« «v «N «H «« «N «v Humoowv « mama: ««« ««m« ««m ««m« ««« m««sm ««mm ««m ««s« Hmuum\aHH, spam Hmuum\nHH Hmuum\nHv Hmuom\nHH Hmuum\nHv 2 «««H z UmmmmHmu z anmuomuuxm z HmumCHz mmHuomwumU mCH>mHOOuC¢ “mum3 uOm OHQMNHHmHmCHE Amcmme uOHm CHmE my «COHumOOH Eumm m um CHOU CO Z OOHHQO m0mH Ou COHumHOM CH mummu HHOm CmeHqu mm mHnt 131 muoHQQCm NH 00 «CMOE mum mwsHm>m «o.« «c «H.o «o.« «o. .m«« «.5 «.5 «.5 5.5 o«v «.5 «.5 «.5 «.5 ovN «.5 «.5 «.5 «.5 ««H «.5 o.« «.5 o.« o« 5.5 «.5 «.5 o.« ow HonHHozv « m: «C «C VH.o mo. .qu «.5 «.5 «.5 5.5 o«« «.5 «.5 «.5 «.5 o«N «.5 «.5 «.5 «.5 ««H «.5 «.5 «.5 «.5 o« «.5 «.5 «.5 «.5 ow HmHmomHzov N «a m: «N.« m: «o. .o«« «.5 «.5 N.5 «.5 o«v «.5 5.5 «.5 «.5 ovN «.5 «.5 5.5 5.5 ««H «.5 5.5 «.5 5.5 o« «.5 «.5 «.5 5.5 o« AcmEcmmHmv H m««sm «« «tulmmm:anammmw Hmuom\nHv Eumm mm HHom 2 «««H mmHuommumo AmCmmE uOHm CHmE mv mCOHumuoH Eumw m an mcmwn >>mc co 2 ««HHmmm «««H ou coHumHmu cH mm HHom «« «Haws 132 «HOHQQCm mH HO mcmwe OHM mmsHm>m ©H.O mc mC mC mo. .de «.5 «.5 H.5 N.5 o«« «.5 «.5 «.5 «.5 o«N N.5 v.5 H.5 N.5 ««H «.5 «.5 «.5 «.5 o« «.5 «.5 «.5 «.5 ow Hmuumsgomv « 5H.o m: «N.o m: «o. .an «.5 «.5 H.5 N.5 o«« «.5 5.5 «.5 «.5 oqN «.5 «.5 «.5 «.5 ««H «.5 «.5 «.5 «.5 o« «.5 «.5 «.5 «.5 ow Anumnsnomv « m: m: HH.o «c «o. .o«H 5.5 5.5 «.5 «.5 o«w 5.5 5.5 «.5 «.5 ovN 5.5 5.5 «.5 «.5 ««H 5.5 5.5 «.5 5.5 o« «.5 5.5 5.5 5.5 ow Humuowv v m««sm ««mm ««m ««s« HmHom\nHv Eumm mm HHom 2 «««H mmHHomUumu Amcmmfi HOHQ CHmE my mCOHumUOH EHmm m um CHOU co 2 ««HHmmm «««H OH coHHmHmH CH «C HHom v« «Hams 133 mHOHQQCm NH HO «came OHM mmsHm>m mc mc mC mc m5 m5 mC mC m0. .QmH H«H ««H oHN ««H «v ow «« «« o«v N«H «5H N«H ««H N« «« H« «« ovN H«H ««H «HN N«N «« «m «« «v ««H ««H «5H ««H N«H «v Hv w« «v o« ««H «5H N«H N«H «« N« «« ow ow HonHHozv « mc mC mC mC mC mc ma mc mo. .de ««H ««H «HN ««H «H 5H «H «H o«« ««H ««H 55H ««H «H «H oH 5 ««N ««H 5«H ¢5H 5«H HN «H «H « o«H 5«H «5H 55H ««H «H 5H NH «H o« ««H «5H ««H «5H «N NN «H «H ow H«Hmanswv N mC m5 m5 m2 mC mc mc mC mo. .ng «HH N«H «5H H«H «« «« «« HH o«« ««H N5H «HN 5«H «5 o« «« «« ««N «5H «NN ««N ««H 55 o« «« v« ««H H«H 05H ««H N«H «v «« «w «« o« H«H «5H ««N ««H N« «« «« Hv ow HamecmmHmv H m««sm ««mm ««m ««s« m««sm ««mm ««C ««s« H«HUM\HHV Eumm .IIII111HmHom\HHHx HHom H«Hum\nHv N HHo« 2 «««H meHomwumU AmchE HOHQ CHmE my mCOHHMUOH EHmm m um mCme >>MC CO 2 CUHHmmm m0mH Ou COHumHUH CH x UHQmmmCMCUxU vcm m UHQMHUMHme mm wfiflm& 134 muOHQnsm NH 00 «Came UHm mmsHm>m «C «C «C «C «C «C «C «C mo. .QmH H«H ««H oHN o«H «« «v 5« «5 o«« «NN H«H HNN «HN H« «w «« v« ««N ««H N«H ««N ««H H5 «« «w 5« ««H ««H ««H ««N ««H «5 H« «w «« o« H«H ««H N5H ««H «5 «« H¢ «5 «v Hmuumsnumv « «C «C «C «C «C «C «C «C mo. .QmH «5N o«N H5N ««N «« N5 «« 5« o«« ««N ««N ««N ««N H« v« «v «5 ««N ««N ««N 5«N ««N «« «« N« H« ««H ««N ««N 5«N ««N «« H5 v« «« o« 5«N «NN ««N ««N «« N5 H« 55 ow HCumnsCumv v mC m: mC m2 mC mc mC N®.m m0. .de ««H ««H 5«H ««H 5« «« «w H« o«« N«H ««H 5«H ««H «« 5« «« «v ««N H5H N«H 5«H N5H N5 «« Nv «v ««H ««H ««H «5H ««H «« 5« «v «v o« ««H H«H ««H 5«H «« «« Hv «« ow Humcowv « mmmsm ««mm ««H ««s« m««s« ««mm ««« ««sm Hmuom\nH0 eumm tan HmmmmmnHv x HHom HmHom\nHv N HHom 2 «««H «UHHQmUumo HmCMUE HOHQ CHmE mv «COHHMUOH EHmm m um CHOU CO 2 UUHHQCM m0mH OH COHumHUH CH x mHnmmemstm UCm m UHQMHUMHHXQ 0m wfinm& 135 «HOHQnCm NH HO «CmmE me meHm>m «C «C «C «C mC «C «C «C 00. .QmH «5w ««« H«« 5«« «H5v «HNw N5«¢ «««« o«v o«« 5«« HH« «ow «N«« 550« «N«« «H«« ««N H«« ««« N«« 5«« «««« «««« «««v «5«« ««H «5« N«« «Nw H«« o««v H55v «««« «5«« o« 55« ««« «H« N«« «««« 5««¢ «H«« «««« ow HquHHozv « mC mC mC mC wC «C «C N.va mo. .QmH 5N« N«« N«« N«« «N«« N«Hv «««« N«5q o«v 5N« ««« N«« H«« «H«« «5N« «««« «««« ««N ««« «H« H«« H«« H«vq «H«« ««Nv ««H« ««H H«« ««« 5«« H«« «««« H«ov Hovv «NNv o« N«« ««« ««« ««« «««« «5N« «««« Nowv ow H«Hmquzuv N m8 m2 mc mC mC mc mC ma mo. .Qmfl «H« ««« H«« N«« N««« H««« N«5« «5«« ««« ««« «5v H5v ««« «««« «««« «H«« 5«5« ««N ««« 5«« ««« «H« N««« «««« «5«« «5«« ««H «H« ««« 5«« 5«« «o«« «5N« ««5« o««« o« ««« «H« N«« H«« N««« «««« ««5« HN«¢ ow AcmecmmHmv H «N«sm ««mm ««« «««« m««:« ««m« ««« ««sm Hmuum\nH0 Eumm H«Hum\nHHI«: HHom Hmuum\nHH «U HHom 2 «««H mmHHomwumo HmCmmE HOHQ CHME my mCOHHMUOH EHmm m um «Cmmn >>wC CO 2 UUHHmmm 000H Ou COHumHmH CH 62 @Cm m0 UHQmmmCmsuxm 5m UHQMB 136 «HOHQQCm NH 00 «CMUE UHm «UsHm>m «C «C mC «C «C «C «C «C 00. .QmH ««5 «N« H5« ««« «««« «««« 5v«« «NN« ««« «H5 ««« ««« ««« «««« «««« «««« H««« ««N NH5 N«« ««« ««« «N«« ««o« «H«« NH«« o«H ««« ««« 5«« ««« «5N« «HN« «««« «NN« o« «5« 5N« NH« ««« «5«« «5N« «««« «««« ow Hmuumsnomv « «.o« m: «a m: 5.«N« «2 «.va «.v«« «o. .omH 5«5 NH« ««« ««« H««« «N«« «««« «««« o«v ««« ««« 5«« N«« ««H« «N«« «««« «««« ««N «5« N«« 5H« 5«« «5«« ««5« ««N« 5«H« o«H ««« «H« ««« ««« «N5v «5«« «««« o««v o« «o« 5«« «N« ««« N«ov «««« «N«« «N«« o¢ Hnomnsnomv « mC mC mC mC wc mC mC mC m0. .QmH H«« 5«« ««« ««« 5««5 «««« NH«« «5«« ««« «H« ««« N«« N«« «««5 «««« «5«« «H«« ««N HN« ««« N«« «N« «055 NH«« «««5 ««H5 o«H NH« «N« N«« Nov N5«5 «««« ««5« H5H5 o« ««« «N« «H« 55« «««« ««5« «««« «5«« ow Humnowv « m««5« ««mm ««« «««« m««sm ««H« ««« ««5« H8833w spam HmHUM\nHV «2 HHom Hmuum\nHv «U HHo« 2 «««H «UHHOmUumo HmCmUE HOHQ CHmE my mCOHHMUOH EHmm m um CHOU CO 2 UUHHQO m0mH OH COHuwHUH CH m2 UCm mu mHnmmemCUxm mm UHQMB 137 «HOHmnsm «H 00 «Came «Hm «wsHm>m H.« v.«« «.mN 05.H om.H 0.0 0¢.0 «N.0 N¢.0 «C mo. .QmH v5 050 mmm m.0m 0.00 ««N m.Nm 0.0H 0.5H 0055H 0NH N5 500 «N« m.Hm 0.0m H0m m.mm v.5H m.5H 0vv5H 00 mm 500 m0N N.Vm m.H0 «Hm m.vm 0.5H N.5H 0Nm5H 0v mm «H« VON H.mm m.H0 5mm 5.vm m.mH «.0H 0N55H 0 HHxUHHozv m «.mH 0.00H 0.mm 05.N H«.N «.0 Nm.0 N¢.0 «C «C «0. .Q«H moH «mm mmm m.0m m.m0 H5N H.mm 0.0H 0.0N 0m05H 0NH HHH mvm va H.5m 0.00 55N v.mm 0.0H 0.0N 00m5H 00 «0 H55 ««N 0.00 N.00 ««N m.vm 0.0H v.0N 05M5H 0v 00 «N0 5HN m.N0 0.m0 v0m H.mm 0.0H 0.0N 0Hm5H 0 H«Hmnustv N m.0m «C «.mm «C «C v.5 00.0 «N.0 50.0 «C «0. .QmH 5«H «H0 00v «.mm ¢.m0 55N 0.mm N.0H m.HN 0NHHN 0NH 5HH mom 00m 5.H0 N.H5 mmN v.mm 5.0H v.HN 0m50N 00 m0 ««5 «0m 0.H0 N.05 Nom H.vm H.5H 0.0N 0000N 0v 00 «55 omN m.H0 0.00 HHm 5.vm v.5H «.0H 0HO0N 0 HC«ECU«HMV H «z x 2 «Hum UHUm Cow x R «How UHUm HUHUm\HH0 EHmm III : OCHEC H3U H3U CH >HHHCQ «HUUL HUQ HUQ 000H HmmmmumooH\«e «3.8m «mono «Ham mmHuommumU UUHCH H«UHU I>OUUm IOHm IHUMHme UUHCH CH COB HUQECZ CH «UHHHHCQEH Hmmsm H«UHU ««OHUsm «Hmwm Hm0mfl% «HUHUEmHmm.HUUH Hmmdm ««men >>MC mOHU mCHomUmHm .«COHHMUOH EHmm m .000H CH z UUHHmmm OH COHHmHUH CH «UmCOmmmH Hmmn Hmmsm mm UHQMB 138 «HOHmnsm mH 00 «CmOE OHm «OCHm>m Hm0mH%l«HOHOEmHmm|HOOQ Hmmsm N.5N «C m.Hm «C «C N.0H 00.0 00.0 «C «C «0. .Q«H ««H «05 m5N m.H0 «.05 N«N «.mm 5.0H 0.HN 00NmH 0NH 0MH 0v5 mmN m.N0 H.05 00m 0.¢m m.5H N.0N 05mmH 00 5HH 0«5 HON H.m0 v.N5 0Nm N.mm 5.5H v.0N 000mH 0v 50H ««5 50H H.00 0.N5 0mm «.mm N.0H H.0N ommmH 0 HOHHOCCUmv 0 «C «C «C «C «C «C «C 0v.0 00.0 «C «0. .QmH mom HmHH 00m H.5m 0.00 mmN 0.Hm 0.5H N.0N 0NHOH 0NH H0m ««HH mmm H.0m N.00 owN 0.Nm 5.0H 0.0N 0mNOH om Nom 5mHH «Hm v.0m 0.00 mmN m.Hm «.5H 0.0N ommmH 0v omN 0mHH mom v.00 «.00 5«N 0.Nm 0.5H m.mH 0H¢0H 0 Asumnsnomv m «.mH «C 0.0v «C «C 5.HH 0v.0 H0.0 «C «C m0. .QmH N«H 055 00m «.00 «.m0 HmN 0.m0 N.0H m.0N 0NN5H 0NH H«H va m0m «.mm m.m0 mmN 0.mm m.0H 0.HN 0005H 00 50H 0V5 ««N 0.mm v.50 5«N v.vm 0.0H H.0N 05M5H 0v o« ««5 ««N o.N« «.«« HH« «.«« «.5H 0.0N «5«5H o Humwowv « z OHUO OHUm cow X X OHUm OHUO HOHUO\£HV EHmm «2m mx WMHEK H3U H3O HH >HHHCQ «HOOQ HOm HOQ z 000H .MUHMH ««««.e wwmwwm «N««. -..M««mm .0... c. .0. ..g..z .....m.... CH «OHHHHCQEH Hmmdm HOOHU O«OHU5« «HOOm .«COHHMUOH EHmw m .«0mH CH 2 oOHHmmm OH 0 CHOU QOHU mCHcOUOHQ COHHOHOH CH «OmCommmH HOOD Hmmsm 00 OHHOB 139 «HOHmnsm «H 00 «CMOE OHm «OCH«>« N«.« 5.««« «c «c «c «c «.«H «c m: «.N ««. .CmH «.5 5««« ««.N HHH. «5« «N«« ««H «v «.5 «N «NH 0.0 55mv mO.N OHH. 05v 5V0? HmH 0v m.5 ON om «.« ««H« ««.N NHH. 5«« «N5v ««H «v «.5 «H «v «.N «««« ««.N ««H. «5« N5«« ««H «« «.5 «H « HHHUHHozv « «5.o «.««« «c ««««. «c «a «a «a m: «.N ««. .CmH «.5 ««H« 5«.N H«H. «H« «««« H«H HN «.5 «N «NH 0.0 mmom Hm.N moo. mmm momw HVH 0H m.5 NN om «.« H««« «N.N «««. H«« «««v H«H «N «.5 NN «« H.N ««H« «N.N «««. «N« «««« ««H «N «.5 «H « H«HmanBOV N 55.« «.«H« «a H«««. «c «c «c «c «.« «.« ««. .CmH «.5 H««« «H.N «HH. ««« «««« ««H H« 5.5 «5 «NH «.« «««« ««.N «HH. 5«« «H«« ««H N« «.5 «« «« «.« N«5v ««.N ««H. ««« «5«« N«H H« 5.5 «« «v m.m mmmm vv.m wHH. 5cm N00v ovH m0 5.5 H0 0 ACOECOmHmV H Ema X X z z-«oz x m «2 «U x m «a z HMHMwmeV EHmm H«OH OHQOHUOHHxO H«HOCHE HuHso «Hum oHumo« «OHHommumU «OmmHmCm OHOHHOm ~OHUO\QHV «H«OH HHOm m «CmOH >>MC COHU mCHUOUOHm .«COHHmuoH EHmm m .z UOHHCQO 000H OH COHHOHOH CH «OthmCm OHOHHOQ HOOQ Hmmom UCO «H«OH HHO« m0mH HOEECm H0 OHHOB 140 «HOHmnsm mH mo «CMOE OHm «OCH«>O ««.« «.««« ««N.« N«««. «c m: m: m: «a «C ««. .«mH N.5 «H«« H«.N «HH. ««5 5««« ««H «5 «.5 «N «NH «.« 5««« ««.N «HH. «N5 «55« ««N N« «.5 «N «« «.« 5«H« ««.N «HH. H«« HN«« «5H «« «.5 «N «« «.N H«5v ««.N HNH. «5« «5H« 5«H «« «.5 «N « HmuuwsCumv « m5.0 0.055 mC mC mc MS MS m2 m6 53v m0. .de «.« N««5 ««.N «NH. «N« ««5« 5«N ««H «.5 «v «NH H.« N5H5 ««.N «NH. ««« «N«« 55N N« «.5 «m «« «.5 N««« N«.N «NH. N«« «««« H«N N« «.5 «« «w H.« 5««« 5«.N «NH. «H« «««« H5N «5 «.5 5« « HComnsComv « we .0 H .Omv mc mC mc mC mC mC mC m .m m0 . .QWH «.5 «««« 5«.N ««H. N«« «««5 ««H «« «.5 Hv «NH «.« N««« ««.N H«H. ««« ««N5 ««H «« 5.5 .N« «« «.« ««H« H«.N N«H. HN« «««5 ««H «« «.5 5N «v H.« «N5v ««.N ««H. «H« ««N5 N«H. «« 5.5 «N « Humnowv « Ema x. x z um HOHUO\HHV EHmm «mm» 2 omHnmmumHme « «2 «U x m «C 2 2 «««H xUHCO CHUO UHHOUC H«HOCHE «OHHomOHmU «OmmHmCm OHOHHOC HOHU«\QHV «H«OH HHO« «CHOU COHU mCHUOUOHm .«COHHMUOH EHmm m .z UOHHQQO m0mH OH COHHmHOH CH «OmmHmCO OHOHHOQ HOOD Hmmsm CCO «H«OH HHO« «00H HOEEsm N0 OHnme 141 HO>OH HCOUHOC H OCH HO HCOUHHHCme I «« HO>OH HCOUHOC m OCH HO HCOUHHHCme I % HO>OH HCOUHOC 0H OCH HO HCOUHHHCme I * .hHO>HHUOm«OH .Ammzv CCO .Amxv .Amzv OUHCfi HOOHU CH «2 CCO .2 .2 UCHBO .Ammv Hmwsm OHCOHO>OUOH .AmHv Hmwsm COUCCOHC H«HOH .AH\mv CoH HOC H«wam OHCOHUOHHHO .Amho Homv HHHHCC OUHCH HOOHU HCOUHOC .Aoam 900v O«OHUC« HCOUHOm “«COHHOH>OHCC< «««H. n NM .2m0 ««0m. + 200 «*MN. + ««H5 u ««z ««HH. n Nm .2m0 «0m. + 2w0 «goq. + *«mm5 n «M «.««. u NH .z«« . z«« H«««««. I z«« ..N«.H + z«« «.««. + ..««H n «z «««H. u Nm .2m0 ««N«.m I 200 «««H.H I ««0qm0 n «m «N0. u N2 .200 «5w.H I 200 mm. I ««wqm0 n mH ««H«. n Nm .2m0 . 200 «*qooo. + N200 «H000. + 2m0 *«mm. I 200 «*ON. I «*5qm u H\m «««H. n NM .z«0 *«mHo. I 200 ««500. I «««.m« mho Hum *«qm. NM .200 . 200 «*0H0000. + N200 «#00000. + 200 «««Ho. I 200 {£000. I «£0.0H 02m 802 «*mH. n N2 .2m0 ««000. + 200 «««00. + ««5.0H n OHUO\«COH ««. a N« .z«« «««. I z«« «H«. + ..«HN«H u «Hum\mumm« .mwmv HOCHUO .«BHmm HHO «2HO>HHUOC«OH .A200v CCO A2000 .2 COHHmmm m0mH CCO 000H OH «HOHUOH %HHHOCV CCO CHOHH HOOC HOwCO wCHHOHOH «COHHUCCM COHOOOHwOM m0 OHCOH 142 It 4.. . .IMIUHH. HO>OH HCOUHOC H OCH HO HCOUHHHCme I «« HO>OH HCOUHOC m OCH HO HCOUHHHCme I O HO>OH HCOUHOC 0H OCH HO HCOOHHHCme I H ««50. «H50. ««mH. *«qo. *«m0. «m0. «HNH. ««Ho. Nm 0 0 ««00. ««05. *HHo. HOHO. 0 0 N2 HOHOCHE ««wm.¢ ««mm.w «*mm.H0I «««0.qu ««qm.¢I NH.NI ««00.NI «*H0.HI 2 HOHOCHZ «H55.ml «*0m.NI ««N«.ml «5w.HI ««N«.MI *5w.HI ««N«.MI «50.HI 2 COHHCCO m0mH «*m0mm ««mH00 «*0m00 «Homq5 ««Hmm0 ««0qm0 «*05m0 ««N«05 HCOHOCou OHCO 0OU:COHC. OHCO vOUsCOHm. OHCO COUCOOHN. OHCO vOUsOOHm IHO>OUOM HOHOH IHO>OUON HOHOH IHO>ooOm HOHOH IHO>OUOM HOHOH «OHCOHHO> HOow HOow HOow HOow HCOCCOCOCCH m0mH HOEECm m0mH.wCHHmW m0mH HHOm 000H HOaECm «CHOW HHO .wCHHaaOO Ho OEHH HO 2 HOHOCHS wCO 2 OOHHCCO m0mH OH HOwCO OHCOHO>OUOH CCO HOHOH wCHHOHOH «COHHuCCm COHOOOHwOm Q0 OHCOH 143 HO>OH HCOUHOC H OCH HO HCOUHHHCme I «H «««N. ««Hm. «HON. «««H. Nm ««H«.H ««5m.H «««H.I «OOH.I N2I02H ««Nm.qu «««H.«¢H ««00.0N ««50.0N 2I02H ..N«.«- ..5«.HI ..N«.«I ..5«.H- z «33.5m «««H «*055N «*wwmm ««mmHm «««Nmm HCOHOCOU OHCO OOUCOOHm. OHCO OOUCOOHC IHO>ooOm HOHOH IHO>oUOm HOHOH «OHCOHHO> HOow HOwsm HCOCCOCOOCH «««H ««HHCW «««H HH«C «EHOH HHO .wCHHCaOm mo OBHH HO A2I02HV COHHOCauCH wCHHCO COmOOHOH 2 OHCONHHOHOCHC «CO 2 OOHHCCO m0mH OH HOwsm OHCOHO>OUOH CCO HOHOH wCHHOHOH «CoHHUCCm C0H««OHwOm m0 OHCOH 144- HO>OH HCOOHOC H OCH HO HCOUHHHCme I «O «««N. «««N. ««NN. «me. Nm ««Nm.I ««««.I ««««.I *«qm.I N2I0< *qu.¢5 ««0m.q5 ««Hm.N5 «*m0.H0 2I0< ««N«.mI ««5«.HI ««N«.MI ««5«.HI 2 OOHHCCO m0mH ««0m5m ««00mq «*mq0m «*5mmq HCOHOCoo OHCO COUCCOHC. OHCO COUCCOHQ IHO>OUOm HOHOH IHO>OUOm HOHOH «OHCOHHO> HOwsm Ir HOow HCOwCOCOvCH m0mH wCHHmm «0«H HHOm «EHOH HHO .wCHHCEOO mo OEHH HO A2I0¢V 2 COOOOHOH wCH>OHUOHCO OCO 2 COHHCCO 000H OH HOwCO OHCO IHO>OUOH «CO HOHOH wCHHOHOH «COHHUCCH COH««OHwOm 00 OHCOH HO>OH HCOUHOC H OCH HO HCOUHHHCme I «« HO>OH HCOUHOQ m OCH HO HCOUHHHCme I * HO>OH HCOUHOC 0H OCH HO HCOOHHHCme I H 145 ««0H. «««H. «*5H. «*NN. Nm « H«H.I .«H.- « Nz-«N« ..q«.HH ..««.«« ««N«.q« «.««.«H ZIon ««N«.MI ««5«.HI ««N«.MI «*5w.HI 2 COHHCCO 000H *«meq *«mONm «*5qu ««5NNm HCOHOCoo OHCO COUCCOHC. OHCO HOODCOHC IHO>OUOM HOHOH IHO>0UOM HOHOH «OHCOHHO> HOmsm HOmCm HCOCCOCOCCH m0mH.wCHHmm m0mH HHOm «EHOH HHO .wCHHCEOO Ho OaHH HO AZIonv z OHCOHUOHHNO HOHO3 HOC CCO 2 OOHHCCO 000H OH HOmam OHCOHO>OUOH CCO HOHOH wCHHOHOH «COHHUCCH COHOOOHwOm 50 OHCOH 146 HO>OH HCOUHOC H OCH HO HCOUHHHCme I «« HO>OH HCOUHOC m OCH HO HCOUHHHCmHm I « HO>OH HCOUHOC 0H OCH HO HCOUHHHCme I H .HHm>Huum«mmH .Hmmzv «cm .Hmmv .Hmzv .moHnH H««Ho «H «2 «cm .M .2 OCHEO .Hmmv HOwsm OHCOHO>OUOH .AmHv HOwCO «OuaOOHC HOHOH .AHHmv COH HOC HOmCO OHCOHOOHHNO .Amhu Homv hHHHCC OUHCH HOOHU HCOUHOC .Aomm H020 OOOHUaO HCOUHOm "«COHHOH>OHCC¢ ««HH. n Nm MN20<«...m00. + 20OHUOHCO CCO A200q 2 OOHHCCO m0mH oH «HOHOCOHOC hHHHOCd CCO wHOHh HOOC HOwCO wCHHOHOH «COHHuCCm COHOOOHwOm 00 OHCOH 147 HO>OH HCOUHOC H OCH HO HCOUHmHCme I «« HO>OH HCOOHOC m OCH HO HCOUHmHCmHm I « HO>OH HCOUHOC 0H OCH HO HCOUHHHCme I H .HHO>HHOOC«OH HmOzv «CO .Amxv .Amzv .OOHCH HOOHO CH O2 «CO .2 .2 OCHCO .Hmmv HOmCO OHCOHO>OUOH .Amev HOwsm «OUC«OHC HOHOH .AH\mV COH HOC HOwsm OHCOHUOHHxO .Am«0 H020 hHHHCC OUHCH HOOHU HCOUHOC .Auam 9020 O«OHUC« HCOUHOm "«COHHOH>OHCC< ««0N. n Nm m22:0. I 22*«00.o + 2m0*«mmI u «O2 «««H. u N2 mN22««0m. I 22««Nm.HN + 2m0««0m. + «««5H ««5«. u N2 m22.23320. I N22HHNH. I 22««oH.mH + 2m0««m5.H + 0MI «««H. u Nm “N22**ow. + 22*«mm.H0 I 2m0««Nq.m I ««0mm0 «*«0. u N2 mN22%y.0n. + 22*«00.m< I 200x5w.H I ««omq5 m2 m2 m2 my «How. u N2 “22.2m0H000. + N22*«q0. + 22«*mm.m I 2m0«*mm. I *«m5m u HH« «How I NC m22.2m0Hm00. + N22««N00. + 22*«NN. I 200*«N0. I *«m.mm ..«q. I NH .zz.z««HN«««. + N22..H««. + zz..qH. I z««..H«. I «.«.«N mhu Hum 02m Hum «Hmo. n NC “22:00. + 2m0««000. + «««.0H u OHOO\«COH ««mH. u N2 mN225.0H.m + 22%«N0.mqm I 2m0 00. I ««000NN n OHUO\«HOOm H«EHOH HHOV o0mH.wCHHmm .«OHCEOm HHO« CH AzzwIz HOHOCHE «CO A200V j! 2 «OHHCCO «0«H OH «HOHOEOHOC 2HHHOCU «CO «HOH2 HOOC HOwCO MCHHOHOH «COHHUCCM COHmmOHmOM m0 OH ««H 1J18 HO>OH HCOOHOC H OCH HO HCOOHHHCme I «« HO>OH HCOOHOC n OCH HO HCOUHuHCme I O HO>OH HCOOHOC 0H OCH HO HCOUHHHCme I H .mHO>HHUOCOOH .AmOzv «CO .Amuv .Amzv .OOHCH HOOHu CH O2 .2 .2 OCHCO .Hmuv HOuCO OHCOHO>OOOH .Amav HOmCO «OOC«OHC HOHOH .HH\«V COH HOC HOmaO OHCOHOOHHNO .Hmho Romy «HHHOC OUHCH HOOHO HCOOHOA .Auam Homv OOOHUCO HCOOHOm "OOOHHOH>OHCC< ««««. «One. I NC .NsznHoo. I 2HOO¢0.N + zzOO00.H + 2m0OOon. + OmmI I «O2 OO0N. I NC .zH . szoHo. I N2HOO0OO. + 2HONn.N I zzOO00.N + 2000Onmn. + OO5N5 I «2 I NC .zH . szmoo. I 2H . zchNHo. I z: . 2¢0On00. I N2HOOnNo. + szicnco. I 2HOOHn.N I szqu.N + 2m0OON0.N + «««NH I «z OOnN. I N& .zH . ZZOOOH. I «ZXOOQHO. + ZHOO05.0N + z: «5. I 2000ONQ.M I OO00Nm I mm OOHN. I NC .2H . ZZOCOmo..I N22¢NH0. + zHOOOe.0N + z: N5.H + 2m0OO5w.H I ««055m I «a Ocno. I NC .2: . 2O0OOH00. + NZHOOOmoo. I szOO5000. + 2HOOm0. + szONm. I 2m0OO0m. I «comm I H\« «Owe. I NM .2H . szcHooo. + z: . zaoOnoooo. + NzH OO«ooo. I 2H Ochno. + szO0No. I 200 OOwHo. I ««0.nm I who Hum «com. I NC .2: . zm0OOn0000. + NzH OOHooo. I szOOnoooo. + 2H OO5N0. + zzOONo. I 2a0 OOHHO. I OON.0H I 00« Hum ««5N. I NC .2H . szONooo. I 2H OOoec. + zchNNo. + 2m0 ««000. + OOH.0H I OHUO\OCOH ««. I NH .zH . sz5H. + N2H.«5«. I «H ««.«N + ««.««.HH I z«« ««. I ..««««H I «HUIHIOoum HN HovoxHI..au.« HH. «««H HHIC .oH zH aoHu.«auaH H««« «oIIoHou z «H««.HHauoaHa «CO .szv 2 HOHOCHI .H2o00 2 «OHHCCO «««H OH OHOHOIOHOC «HHHOCO «CO «HOHA HOOC HOHCO «CHHOHOH OCOHHOCCH COHOOOHNON 05 OHCOH 149 HO>OH HCOUHOC H OCH HO HCOUHHHCme I OO HO>OH HCOUHOC m OCH HO HCOUHmHCme I O HO>OH HCOUHOC 0H OCH HO HCOUHHHCme I H .2HO>HHUOC«OH .AmOzv «CO .Am2v .Amzv OUHCH HOOHU CH O2 .2 .2 OCHEO .Am2v HOmC« OHCOHO>OUOH .Amav HOwCO «OUC«OHC HOHOH .AHHmv COH HOC HOmsm OHCOHOOHHCO .Amhv 9020 HHHHCC OUHCH HOOHU HCOUHOC .Aobm 9020 O«OHUs« HCOUHO2 "«COHHOH>OHCC< OOmm. u N2 .20<.22OOMH0. I N20mHoousm «cm .szv z HOHOCHB .A2m0v 2 «OHHCCO m0¢H OH «HOHOCOHOC HHHHOCO «CO «HOH2 HOOC HOwCO wCHHOHOH «COHuuCCm COH««OHwO2 H5 OHCOH IISO HO>OH HCOOHOC H OCH HO HCOUHHHCmHm I OO HO>OH HCOUHOC n OCH HO HCOUHHHCme I O HO>OH HCOUHOC 0H OCH HO HCOOHHHCme I H .2HO>HHUOCOOH .AmOzv «CO .H«20 .Am2v OUHCH HOOHO CH O2 .2 .2 OCHCO .Hm2v HOHCO OHCOHO>OUOH .Hmsv HONCO «OUC«OHC HOHOH .Aa\«v COH HOC HOwan OHCOHOOHHNO .Hmho 902v «HHHCC OUHCH HOOHU HCOOHOC .H02« 9020 OOOHUCO HCOUHOm “OCOHHOH>OHCC< OO0n. I N2 .2H.22.2«0HH00. + 2H.2«0Hnno. I 22.2m0une0. I N22HH00. I 2HOO0O.O + 22OO««.« + 2«0O00.H + OOHaH I «O2 OOoN. I N2 .N22OO05N. I 2HOON0.« + 22OO««.NN + 2«0OO0«. + OON0m I «2 OOOO. I N2 .2H.2«0H0No. I 22.2«0O0N0. I N2HONHH.+.N22OONH. I 22 «0.0 I 22OONH.nH + 2m0OO¢0.N + 00 I «2 OOOO. I N2 .2H.22OOnn.H I N2HOO««.H I N22OON«.H + 2HOO0.HNN + 22OO«.OO I 2m0OONO.« I OOnOHN I «2 OO««. I N2 .2H.22OO0«.H I N2HOO00.H I N22OO«N.H + 2HOO0.0NN + szn.Hn I 2o0OO5«.H I OO00ON I «H OOon. I N2 .22.2«0O0n00. I szOO0no. I 2H «OH. I zzOOOo.n I 2a0OOam. I OOnwm I «H« OOHO. I N2 .22.2m0«n000. + N2HON00. I szOONoo. + 2HOOH. + 22OONN. I 2m0OON0. I OO0.0«.I who Hum «ONO. I N2 .2H.22HH00. + 22.2«0HN000. + N2HOO0H00. + N22OOHH00. + 2HOO5OH. I 22OO00H. I 2m0OOnH0. I OO«.NN I 0:« Hum OOOO. I N2 .2H.22OOOO00. I 22.2m0Hnooo. I N2HOO500. I szOOONoo. + 2HOO05. + 22‘20. + 2o0OOnH0. + n.H I OHOOHOCOH OOmH. I N2 .2H.220005.n I N22OO5H.0 + 2HOON¢H + szOnaH I 200 00. I OOOHO0H I OHUO\OHOO2 HN Huufflufiuu HH.. «$2223... 1.3%. HH.: 3 OCH 8233.: «3:6 3838 z «333....an «5 425 z HOHOCHC .H2m0v 2 «OHHCCO m0oH OH OHOHOCOHOC «HHHOCV «CO «HOHH HOOC HOHCO «CHHOHOH OCOHHOCCH COHOOOH2O2 N5 OHCOH 151 HO>OH HCOUHOC H OCH HO HCOOHHHCme I OO HO>OH HCOUHOC m OCH HO HCOOHHHCme I O HO>OH HCOUHOC 0H OCH HO HCOUHHHCme I H .2HO>HHUOC«OH .AmOzv «CO .Hm20 .Amzv OUHCH HOOHU CH O2 «CO .2 .2 OCHCO .Am2v HOwCO OHCOHO>OUOH .Amav HOmCO «OUC«OHC HOHOH .AH\«V COH HOC HOwCO OHCOHOOHHxO .A2«0 9020 HHHHCC OUHCH HOOHU HCOUHOC .AUD« «020 OOOHUCO HCOUHO2 “«COHHOH>OHCC< OOHm. n N2 .N20OHUOHCO «CO .Azav 2 HOHOCHB .A2m0v 2 «OHHCCO «0«H OH «HOHOCOHOC «HHHOCO «CO «HOH2 HOOC HOwCO «CHHOHOH «COHHUCCH COHOOOHmO2 m5 OHCOH 2 5 1 HO>OH HCOOHOC H OCH HO HCOOHHHCmHm I «O HO>OH HCOOHOC « OCH HO HCOunHame I O HO>OH HCOOHOC 0H OCH HO HCOOHHHC«H« I H .hHOOHHUOCOOH .HmOzv «CO .H«2v .Amzv OOHCH HOOHO CH O2 .2 .2 OCHaO .H«2v HOOCO OHCOHO>OOOH .Hmav HOOOO «OOC«OHC HOHOH .Ha\«v COH HOC HOHCO OHCOHOOHHOO .Hmnu 9020 «HHHCC OOHCH HOOHO HCOOHOC .Hobm 9020 OOOHOCO HCOOHOC "«COHHOH>OHCC< OOHn. I N2 .20N2.222Nn0. + N20N2OO0n0. I N22250. I 20N2OO0N.« + 22 ««.N + 2m0OO0n. + OOMQOI I «O2 I.«H. I NH .Nz=..«5N. I zon «5. + z:..«5.NN + z««..«««. + IINHH I «C «One. I N2 .20N2.22.2«0OO«N000. I 20N2.22OH50. + NszO00.H I 20N2OO««.H I 2200«N.0H + 2o0OO0N.H + «««H I «2 «.««. I NH .z«N«.z=.z««IN5««. + ««N«.zCI5N5. I z«N«.z««.e«H. I z=.z««.N«. I Nz«N«.««H. I sz..N«.H + zonIIH.«« + z: «.HN I z«« «.«H + ««.«H I «H .IHN. I NC .z«N«.zx.z««.5««. + ««N«.szH««. I z«N«.z««.H«H. I z=.z««.eq«. I NzoNOI5«H. I Nz:II«N.H I zonII«.«5 + z: H.«N I z««.«.5H + «««H I «H .I««. I NC .z«N«.zx.z««I.«««««. + z«N«.zx.5H«. I NzoNuII««««. + Nz=II«H«. + ««N«..N«.H I szIN«.N I «««..«H. I ..«5. I H\« I.HH. I NH .zo~«.zx.z««.«o««««. + ««N«.zzII«H««. I Nzqu5Noo. + ««NOIIH««. + zzINH. I «««IINo. I I.H.«« I ««« H«« ..«H. I NH .z«N«.z:.z««IN«««««. + NzoN«II««««. + NzCIINHoo. + z«N«.I5HH. I szIN«H. I z««II«H«. I II«.«N I ««« H«« I.««. I Nu .zx.z««.««««. I ««N«.INHoo. I szIINNoo. + zonI.««. + z:.«««. I z««.I«H«. + «.HI I IHUIHIaOH .I5H. I «H .z«N«.zx.IN«.N I NszI5«.« + ««N«.«.H. + z: 5.««H I z«« ««. I II«N««H I «HUIHIUIIH .HN Ho«020 Olmuw HHO dwooH HH « OOH O HHOO CH HzoNuv 2 OHCOHOumwOO HOHOC HOC «CO .2220 2 HOHOCHI .Hzoov 2 «OHHCCO «««H OH OHOHOIOHOC «HHHOCO «CO «HOHh HOOC HOOCO «CHHOHOH OCOHHOCCH COHOOOH2O2 O5 OHCOH .I\. {‘J: ‘I I nICHIan STATE UNIV. LIBRCRIES mIIWI”!\IIHIIIWIWWWWWNIH‘IWWI 31293102195199