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ABSTRACT 

QUANTITATIVE GENETIC AND GENOMIC MODELING OF FEED EFFICIENCY IN 

DAIRY CATTLE  

By 

Yongfang Lu 

    Residual feed efficiency (rFE) is an increasingly important novel trait for maintaining the 

economic and environmental sustainability of dairy cattle production. Given that rFE is a derived 

trait based on the key energy source trait, dry matter intake (DMI), and key energy sink traits 

like milk energy (MILKE) and metabolic body weight (MBW), a more thorough quantitative 

genetic study of  rFE would provide important baseline knowledge for dairy cattle management.  

A dairy consortium dataset focused on eventually developing genetic evaluations for rFE in US 

Holsteins, has been collected on DMI, MILKE, and MBW records from nearly 7000 dairy cattle 

in four countries. My dissertation was designed to address some motivating quantitative genetic 

research questions that could be addressed from the analyses of this dataset.  

    In Chapter 2, I reassessed the merit of using residual feed intake (RFI), defined as the 

estimated residual from regressing DMI on energy sink traits, as a measure of rFE, given that it 

is most commonly used in dairy cattle breeding research.  We proposed a multiple trait (MT) 

modeling strategy involving all of the component traits, demonstrating that the use of the 

Cholesky Decomposition (CD) on the genetic and residual variance-covariance matrices lead to 

a more potentially flexible quantitative genetic approach to modeling rFE compared to RFI.  The 

advantages of this MT approach were confirmed by simulation when the genetic versus residual 

relationships between energy sink and source traits were rather divergent.  However, there 

appeared to be no meaningful differences in quantitative genetic inferences when applied to the 

dairy consortium dataset.  Similar conclusions on non-distinctions between the two models for 

https://answers.yahoo.com/question/index?qid=20090306182715AAsrWys


 

 

genome wide association (GWA) analyses were also drawn in Chapter 4 although the MT GWA 

analyses shed further light that quantitative genetic inferences on DMI are distinctly independent 

of those on rFE.  

I also investigated heterogeneous genetic relationships across environments for rFE with 

two broadly different approaches.  In Chapter 3, I extended the MT model to discover substantial 

heterogeneity in genetic and residual partial efficiencies and variance components defining rFE 

as functions of environmental and management factors.  Subsequently, I inferred upon genotype 

by environment interaction at the genomic level across environment conditions in Chapter 5, 

determining that some genomic regions are sensitive to environmental covariates such as average 

production and temperature. 
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Chapter1: Introduction 

  According to the FAO, global food production must increase by 70% to support an 

anticipated population of 9.1 billion by 2050 

(http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2

050.pdf). Milk is a complete source of nutrients and milk production must  increase even further, 

roughly 80%, by 2050 (Steinfeld et al., 2006). However, increased milk production is associated 

with higher feed consumption and concomitant greater greenhouse gas emissions.  Feed cost 

accounts for 50-80% of total cost for dairy production (Connor et al., 2013, Sova et al., 2013).  

Furthermore, for every kg of milk produced, there is an average 1.5 kg of carbon dioxide 

equivalent of greenhouse gas emissions (GHG)  (Hagemann et al., 2012) though Capper et al. 

(2009) indicated that improving milk production will reduce GHG for every unit milk production. 

Thus, selection on production traits without considering dry matter intake (DMI) may threaten 

the economic and environmental sustainability of dairy cattle production.  Hence, there have 

been strong arguments put forward to improve feed efficiency (FE) in dairy cattle (Hayes et al., 

2013, Pryce et al., 2015, VandeHaar et al., 2016). 

 Overall feed efficiency has very broad definitions that generally can be classified into two 

types of traits: ratio based traits such as feed conversion rate,  and residual based traits such as 

residual feed intake (RFI) (Berry and Crowley, 2013).  Overall feed efficiency, defined as the 

ratio of feed intake captured in milk products, has been doubled for the past 50 years. This 

increase is mostly due to the dilution of maintenance; i.e., feeding cows with much more feed 

than the maintenance requirements to promote the proportion of feed utilized for milk production 
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(VandeHaar and St-Pierre, 2006, VandeHaar et al., 2016). Yet, VandeHaar et al. (2016) 

suggested that dilution of maintenance effect diminishes due to the decreased feed digestibility 

as cows consume higher levels of feed, and therefore more attention move toward residual based 

FE traits that define and enhance digestive and metabolic efficiency of feed. Thus, the overall 

feed efficiency has two major components, 1) feed digestive and metabolic efficiency and 2) 

dilution of maintenance (i.e. less feed being directed towards body maintenance). RFI and other 

residual based measures that evaluate variation in digestive and metabolic efficiency among 

animals that are independent of the dilution of maintenance are not complete measures of overall 

feed efficiency given they do not favor small cows with lower maintenance requirement. In this 

dissertation, we will refer to residual feed efficiency (rFE) as the feed digestive and metabolic 

efficiency that are defined by RFI or similar measures that do not necessarily equate with overall 

feed efficiency and economic efficiency. Note that selection for small body weight and hence a 

smaller maintenance requirement can be easily pursued in dairy breeding (Pryce et al., 2015).  

Whole genome prediction (WGP), based on the use of high density single nucleotide 

polymorphism (SNP) markers (Meuwissen et al., 2001) has recently played a prominent role in 

accelerating the genetic improvement of  dairy cattle since it was implemented in 2009 (Garcia-

Ruiz et al., 2016, Taylor et al., 2016). That is, higher accuracies of genetic merit prediction and 

larger genetic gains are achieved by using genomic information compared to traditional selection 

based on using only pedigree information. Genomic selection (GS) based on the WGP has 

proven to be an efficient way to improve economically important traits in dairy cattle. With the 

implementation of GS, genetic merit on milk yield has increased by 8% over the past 8 years as 
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reported by the Council on Dairy Cattle Breeding 

(https://www.cdcb.us/eval/summary/trend.cfm?). Genetic merit has also improved for 

reproductive traits as well (Garcia-Ruiz et al., 2016).  It has also been noted that GS is 

particularly useful selection for lowly heritable traits (Calus et al., 2013).   

Multiple studies have reported the estimated heritability of rFE to be between 0.08 and 0.35 

depending on various measures and populations.  Hence, genetic variation for rFE appears to 

exist and should be considered in genetic selection programs (Vallimont et al., 2010, 2011, Pryce 

et al., 2014, Tempelman et al., 2015, VandeHaar et al., 2016). In particular, the use of GS for 

selecting and breeding cows with higher rFE appears to be promising in dairy cattle (Pryce et al., 

2015, VandeHaar et al., 2016).  Furthermore, the use of genome wide association analyses 

(GWA) could be also helpful to detect important genomic regions influencing rFE. 

1.1 Data Resources 

 Inference on genetic merit depends on the availability of phenotypic records from animals or 

their relatives.  Similarly, the use of WGP and GWA relies upon a sufficiently large number of 

genotyped animals in order to obtain reliable and meaningful results. Thanks to the existence of 

national Dairy Herd Improvement (DHI) programs, milk yields and their components (i.e. fat and 

protein yields) on dairy cows have been regularly collected for decades. Furthermore, there are 

now over 1.4 million US dairy cattle that are genotyped 

(https://www.cdcb.us/News/08_11_16_CDCB_Livability_1_1_clean_002.pdf). However, DMI 

is currently not a routinely recorded trait as individual DMI records requires substantial 
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investments in facilities and labor.  Hence, the lack of DMI data is a major obstacle to the genetic 

improvement in rFE.  

 Combining data from different institutions is being increasingly used to assemble large 

enough datasets for genetic inferences (de Haas et al., 2012, Berry et al., 2014, Andersson et al., 

2015, Hardie et al., 2015). Currently, there are several research consortia that involve the 

collection of DMI records from dairy cattle. The dairy feed efficiency project led by Michigan 

State University and funded by USDA-NIFA (United States Department of Agriculture National 

Institute of Food and Agriculture) has led to the creation of a database including records on DMI, 

milk yield (MY), milk components, body weight (BW), and body condition score (BCS) on 

nearly 7,000 cows from 16 different research stations in U.S., Canada, Dutch, and the United 

Kingdom (Tempelman et al., 2015); this is the dataset that has been used in this particular 

dissertation. The global DMI (gDMI) project led by Wageningen University also combined DMI 

data from multiple countries but with a primary objective of predicting genetic merit and 

selecting for DMI  rather than for rFE per se (Veerkamp et al., 2013). There is yet another 

project involving dairy researchers from Canada, Australia, and New Zealand to perform 

genomic studies on residual feed intake (RFI).  Some data has been shared across these three 

projects.  

1.2 Research Issues to Resolve with Genetics of Residual Feed Efficiency 

The availability of the USDA-NIFA consortium dataset greatly facilitates genetic studies on 

feed efficiency and its component traits. With this dataset, I hope to answer some questions that 

are critical to genetic and genomic selection on rFE based on a relatively large population.   
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 One question is how should we evaluate rFE in dairy cattle? There are a few different 

measures for rFE in dairy cattle, including feed conversion ratio, gross efficiency, RFI, and net 

energy efficiency (Koch et al., 1963, Kennedy et al., 1993, Berry and Crowley, 2013, Berry and 

Pryce, 2014). Among them, the currently most popular is RFI defined as the difference between 

actual DMI and that predicted based on energy sink requirements for production and 

maintenance (Koch et al., 1963).  These predictions assumed that the partial relationships 

relating DMI to these energy sink traits are the same at genetic and non-genetic levels.  

Furthermore, the use of RFI requires that records on all the component traits used to compute 

RFI are available on each animal.  Currently, the gDMI research group focuses on the analysis of 

DMI rather than RFI, in selecting for FE (Veerkamp et al., 2013).  There have been reservations 

in using RFI as a “trait’ for selection since it is not directly observable. A natural question is 

under what conditions would selection for DMI and RFI be equivalent? 

As indicated previously, assembling data from various research stations is necessary to build a 

sufficiently large dataset for inference; nevertheless, there may be issues in integrating data from 

rather disparate sources (Banos et al., 2012).  Data quality can be partly addressed by invoking 

careful edits and filters.  However, there may be heterogeneity at various levels which may 

somewhat contaminate inferences involving combined datasets if these issues are not 

appropriately handled. Heterogeneity in residual variances has been widely recognized and 

considered in breeding for many economic traits in dairy cattle (Lopez-Romero et al., 2003, 

Ronnegard et al., 2010, Ronnegard et al., 2013, Ou et al., 2016) as well as heterogeneity at the 

genetic level (Martin-Collado et al., 2015, Shirali et al., 2015, Tempelman et al., 2015). For 
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example, Tempelman et al. (2015) found that genetic variances for RFI varied greatly across 

countries. Also, de Haas et al. (2012) also reported low genetic correlations among DMI from 

different countries, suggesting DMI may be genetically heterogeneous across countries.  Each of 

those two studies implied that heterogeneity was influenced by research station or even country.  

However, residual and genetic heterogeneity of rFE may be caused by various other factors 

including weather, location, parities, rations, farm management, etc (Martin-Collado et al., 2015).  

Inferring such heterogeneity in rFE could provide important base knowledge for fine-tuning 

management across production systems.  

Finally, GWA analyses of rFE require further research. There have been smaller scale GWA 

studies conducted for the rFE in dairy cattle populations (Bolormaa et al., 2011, Yao et al., 2013). 

Although Veerkamp et al. (2012) performed GWA analysis on DMI, no GWA study in dairy 

cattle has directly compared differences in GWA inferences between rFE and DMI to my 

knowledge. This is somewhat intriguing as there is some controversy as to whether to include 

DMI or rFE as a key trait for genetic improvement programs in dairy cattle (Berry and Pryce, 

2014).   

With rFE, there are other considerations involving GWA inferences. That is, are allelic 

substitution effects in a certain portion of the genome of a consistent magnitude across 

environments or are these effects environmentally sensitive?  To address these concerns, GWA 

analyses should attempt to model genotype by environment (GxE) interaction in which the allelic 

substitution effects for various genotypes are modeled as functions of potentially important 

environmental covariates.  This phenomenon is believed to be fairly common for complex traits 
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within a wide variety of species including dairy cattle (Valdar et al., 2006, Dempfle et al., 2008, 

Goddard and Hayes, 2009).  Information on GxE could be particularly exploited in dairy cattle 

breeding because of advanced reproductive technologies (e.g. artificial insemination, embryo 

transfer, synchronized breedings) that facilitate the ready exchange of germplasm across 

environments.  

By developing methodology and corresponding data analyses to answer these questions, I 

hope to develop some base knowledge on the complexities of genetic and environmental 

modeling of rFE that could be incorporated in future dairy cattle management schemes. 

1.3 Statistical Approaches 

In this dissertation, I proposed an alternative strategy for modeling rFE based on a multivariate 

(MT) model involving the components traits of rFE, namely DMI, milk energy (MILKE), and 

metabolic body weight (MBW). One can readily think of rFE as being DMI adjusted for (or 

conditional on) MILKE and MBW. The Cholesky decomposition (Pourahmadi, 2007) on the 

genetic and residual variance-covariance matrices in the MT facilitates such a characterization at 

both genetic and non-genetic levels and has been previously used to characterize the relationship 

between production and reproduction traits in dairy cattle (Bello et al., 2012). Exploring partial 

relationships between the component traits of rFE at genetic and non-genetic levels could allow a 

richness of insight not otherwise allowed with RFI modeling.   

1.4 Specific Objectives 

   This dissertation aims to provide a new perspective to evaluate and perform genetic analysis on 

rFE using the USDA-NIFA funded dairy consortium dataset. The first objective of this 
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dissertation is to demonstrate how the Cholesky decomposition of genetic and residual variance-

covariance matrices in an MT model on the key components traits of rFE leads to a potentially 

more elegant characterization of rFE compared to anything else previously provided.  A second 

objective is to explore potential heterogeneity of partial efficiencies and variance components of 

rFE at both genetic and non-genetic levels as functions of various environment and management 

factors. A third objective was to assess whether or not there might be any advantages to using the 

MT over the RFI model for GWA and particularly to assess how the associations may differ 

between the various component traits of rFE and rFE itself.   My final objective was to 

investigate the impact of GxE through reaction norm modeling and to assess its impact on GWA 

and resulting inferences.  All objectives involve the development of methodologies and/or models, 

followed by a simple simulation study assessment and an application to the USDA-NIFA 

consortium dataset. 
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Chapter2: An Alternative Approach to Modeling Genetic Merit of Feed Efficiency in Dairy 

Cattle 

2.1 Abstract 

    Genetic improvement of residual feed efficiency (rFE) in dairy cattle requires greater attention 

given increasingly important resource constraint issues. A widely accepted yet occasionally 

contested measure of rFE in dairy cattle is residual feed intake (RFI).  The use of RFI is limiting 

for a number of reasons, including interpretation, differences in recording frequencies between 

the various component traits that define RFI, and potential differences in genetic versus non-

genetic relationships between the component traits.  Hence, analyses focusing on dry matter 

intake (DMI) as the response are often preferred.  We propose an alternative multiple-trait (MT) 

modeling strategy that exploits the Cholesky decomposition to provide a potentially more robust 

measure of rFE. We assessed both approaches by simulation as well as by application to 26,383 

weekly records from 50 to 200 days in milk on 2,470 cows from a dairy rFE consortium study 

involving 7 institutions. Although the proposed MT model fared better than the RFI model when 

simulated genetic and non-genetic associations between DMI and component traits were 

substantially different from each other, there were no meaningful differences in predictive 

performance between the two models when applied to the consortium data. 

2.2 Introduction 

    Residual feed efficiency (rFE) based on the efficient conversion of feed nutrients into saleable 

milk directly affects the profitability of dairy production. Thus, improving rFE in cattle is 

important to maximizing dairy production on limited inputs, especially as constraints on feed 

production become increasingly relevant. In addition, improving rFE is also of environmental 
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importance because more nutrients are directed into milk production with less nutrient loss in 

manure and methane excreted as rFE increases (Richardson and Herd, 2004). 

    A popular measure of rFE is residual feed intake (RFI) which is defined as the difference 

between actual feed intake and that predicted based on requirements for production and 

maintenance or the so-called “energy sinks” (Koch et al., 1963). The typical statistical modeling 

strategy for RFI includes two stages (Tempelman et al., 2015).  For reasons that will be 

explained later, we will refer to DMI as Trait #3 such that yi3 represents the DMI record for 

animal i.  In the first stage, DMI, as the energy source, is typically specified as a linear function 

of various energy sinks plus other fixed or random (non-animal) effects that potentially influence 

DMI; i.e.   

 33 2 3

*

1

' MILKE MBW BW RFIi i i ii iy b b b     x β  .                                     [2.1] 

Here *

3β  represents a vector of various fixed effects connected to yi3 via known incidence row 

vector
'

ix . Key energy sinks include milk energy (MILKE), metabolic BW (MBW) being defined 

as BW raised to the ¾ power and BW change (ΔBW) all indexed by animal or record i in 

Equation [2.1].  Note then that b1, b2, and b3 are partial regression coefficients of DMI on energy 

sinks MILKE, MBW, and ΔBW, respectively.  Now RFIi is merely the estimated residual from 

Model [2.1], thereby representing the RFI “record” for subject i; this variable is further typically 

specified as the response variable in a second stage variance components model: 

 
*

,R

'

FIRFI           ii RFI iother potential random animal effects e   u   z                    [2.2] 
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    In Equation [2.2], 
*μ  is the overall mean, whereas RFIu  is the animal genetic merit for RFI 

and connected to RFIi via known incidence row vector 
'

iz .  Furthermore, 

   2

, ~ MVN ,
RFIRFI RFI i uu u 0 A  for A being the numerator (Henderson, 1976) or genomic 

relationship matrix (VanRaden, 2008) or a hybrid of the two (Aguilar et al., 2010), whereas other 

potential random animal effects may include permanent environmental effects if there is more 

than one record per animal.  Finally iRFIe  is a corresponding residual such that 

 2~ 0,
RFIiRFI ee NIID  . 

    Conceptually, Equations [2.1] and [2.2] could be combined together as one model as shown in 

Equation [2.3], thereby reinforcing that RFI is really just an adjusted measure of DMI; i.e. 

 

*

3 2 3

' '

3 1        MILKE    MBW    ΔBW  

         

i ii RFI

iRFI

y b b b

other potential random animal effects e

    

 

ux β z
   [2.3] 

As argued by Tempelman et al. (2015), analyses based on a single-stage model [2.3] may be 

desirable if effects in Equation [2.1] are not orthogonal to effects in Equation [1.2].  

Given these limitations of RFI but, nevertheless, an inherent desire to meaningfully 

characterize rFE beyond a selection index involving DMI, we propose an alternative 

parameterization for multiple trait (MT) modeling of DMI jointly with key energy sink traits. 

Our objective is to demonstrate how this parameterization not only leads to a potentially more 

elegant characterization of rFE compared to RFI, but furthermore reconciles approaches focused 

on the analyses of RFI versus DMI (Berry and Pryce, 2014). 
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2.3 Materials and Methods 

2.3.1 Proposed MT Model  

    Our proposed strategy for characterizing rFE is based on the square root free or modified 

Cholesky decomposition (CD) (Pourahmadi et al., 2007) which our group has previously adapted 

for the joint analysis of milk production and reproduction data albeit in a non-genetic context 

(Bello et al., 2010). We apply this decomposition on each variance-covariance matrix (e.g., 

genetic and residual) partition in a MT model analysis on DMI and two key energy sink traits 

(i.e., MILKE and MBW).  As with RFI modeling, we prefer to keep ΔBW as a covariate for DMI 

even in this proposed approach, in part due to its seemingly very low heritability (<1%) and 

greater relative variability.  Statistically, the order for the three traits is rather arbitrary; however, 

for modeling rFE, it is necessary to specify DMI as the last trait in the sequence as noted later. 

    We write the MT linear mixed model for MILKE, MBW, and DMI in order as Traits 1, 2, and 

3, respectively; extensions to any other number of rFE component traits are relatively 

straightforward, provided again that DMI is specified last. We momentarily assume one record 

per animal such that the model can be written in a classical quantitative genetics framework as: 

. . .  . .       j j j j j j  y X β Z u e ; j=1,2,3         [2.4] 

Here . 1 2 , 'j j j n jy y y   y  is the vector of n x 1 responses for Trait j whereas jβ  denotes 

the vector of fixed effects for Trait j connected to . jy  by corresponding known incidence matrix 

X.j, whereas . 1 2 , 'j j j q ju u u   u  denotes the q x 1 vector of additive genetic effects for 

Trait j connected to . jy by corresponding known incidence matrix Z.j. Finally, 

. 1 2 ,j j j n je e e   e is the n x 1 vector of residuals for Trait j.  Further extensions are 
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possible to handle other cases, for example, if there are repeated measurements per trait per 

animal or even missing records for some traits on some animals. 

    Let u denote the vector of additive genetic merit for all three traits jointly; i.e. 

' ' '

.1 .2 .3 '   u u u u  where elements are ordered by animals within traits.  Suppose that we 

reorder u by traits within animals as 
' ' ' '

1. 2. 3. . 'q
   u u u u u  with  . 1 2 3 'i i i iu u uu  

representing the genetic merit for the three traits on animal i.  We specify the typical animal 

breeding MT modeling assumptions using  .var i i u G  where G is the 3 x 3 genetic variance 

covariance matrix for the three traits with diagonal element j, (j=1,2,3) being the genetic variance

2

ju for Trait j and off-diagonals 
'j ju u defining the genetic covariance between Traits j and j’ 

(j’=1,2,3; j’≠j) across the q n  animals. Then,  var  u A G  for A being the relationship 

matrix, as previously noted, and   denoting the Kronecker product with q also counting 

potential ancestors without phenotypic records.  Similarly, writing  
'

1 2 3i i i ie e ee as the 3 x 

1 vector of residuals for animal i, we assume  var i i e R  where R is a 3 x 3 residual variance 

covariance matrix with residual variances (
2

je ) along the diagonal and residual covariances 

',j je e  in the off-diagonals.  

    A CD on G merely involves the following reparameterization of additive genetic effects for 

the three traits in a sequential manner: 

 1 1i iu u              [2.5a] 

 
 

2 21 1 2|1

u

i i iu u u                             [2.5b] 

 
   

3 31 1 32 2 3|1,2

u u

i i i iu u u u                        [2.5c] 

 or jointly together as  
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*

. . .i u i iu T u u   [2.6] 

Here Tu is a 3 x 3 lower triangular matrix with zeroes on the diagonals and non-zero elements

 
21

u
 ,  

31

u
 , and  

32

u
  with row-column addresses in Tu indicated by their corresponding subscripts.  

These parameters are typically referred to as generalized autoregressive parameters by 

Pourahmadi et al.(2007); however, we prefer to refer to them as partial efficiencies at the genetic 

level in our rFE application.  For example, we characterize  
31

u
 as the genetic partial efficiency of 

DMI on MILKE.  Furthermore, 
*

. 1 2|1 3|1,2 'i i i iu u u   u  for animal i are specified to be normally 

and independently distributed effects having diagonal (co)variance matrix  
1 2|1 3|1,2

2 2 2, , Δ u u uu diag    . 

Here elements of uΔ were labeled by Pourahmadi et al. (2007) as innovation variance components 

but we prefer to refer to them as sequentially conditional variance components (SCVC) for Trait 

1, Trait 2 given 1 (Trait 2|1) and Trait 3 given 1 and 2 (Trait 3|1,2), respectively. Similarly, the 

elements of 
*

.iu could be referred to as sequentially conditional genetic effects, consistent with 

our conditional subscripting notations as indicated above for elements of 
*

.iu  and uΔ . It can be 

then demonstrated that   1 1

.var         (     )   (     ) 'i u u uu G I T I T
       such that 

        
               

                           

1 1 1

1 1 2|1 1 2|1

1 1 2|1 1 2|1 3|1,2

2 2 2

21 31 21 32

2
2 2 2 2 2

21 21 21 31 21 32 32

2 2
2 2 2 2 2 2

31 21 32 21 31 21 32 32 31 21 32 32

u u u u

u u u

u u u u u u u

u u u u u

u u u u u u u u u u u u

u u u u u u

      

           

                 

 
 
 

    
 
      
 

G  [2.7] 

    Now with DMI specified as Trait 3 in this MT sequence, 
3|1,2

2

u is the genetic variance for DMI 

conditional on genetic effects of MILKE and MBW. As a corollary, 3|1,2iu  represents the genetic 

merit of DMI conditional on the genetic merit of MILKE and of MBW for animal i with 

   
3|1,2

2

.3|1,2 3|1,2 ~ ,i uu N u 0 A . It is this term that we propose as an alternative measure for 
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genetic merit of rFE as a counterpart to RFIu  in Equations [2.2] or [2.3]. Negative values for 

3|1,2iu  indicates the animal i has favorably above average genetic merit for rFE with 
3|1,2

2

u

defining the genetic variance of our proposed measure of rFE.  Of course, the magnitude of the 

partial efficiencies    
21 31, ,

u u
  and  

32

u
 factor into these relationships as well; i.e. together, these 

coefficients partly determine genetic covariance between each pair of the three traits; e.g., from 

Equation [2.7],  

1 2 1

2

21

u

u u u   . 

Similarly, the residuals for the three traits on animal i can be reparameterized using the CD 

accordingly as  

1 1i ie e   [2.8a] 

 
2 21 1 2|1

e

i i ie e e   [2.8b] 

   
3 31 1 32 2 3|1,2

e e

i i i ie e e e     [2.8c] 

For example, 3|1,2ie is the residual for DMI conditional on the MILKE and MBW; with

 
3|1,2

2

3|1,2vare ie  being the residual variance for our proposed rFE measure.  Also,    
21 31, ,

e e
  and 

 
32

e
  represent the partial efficiencies between pairs of the three traits at the residual level.  In 

essence, the heritability measure for rFE based on our proposed approach with a classical animal 

model is  
3|1,2 3|1,2 3|1,2

2 2 2 2

3|1,2 /u u eh     .  

2.3.2 Functional Similarities between RFI and Proposed MT Model 

    Suppose the same fixed effect factors are specified for each of the three traits; in other words, 

'

ix is used as the same incidence row vector connecting yij to βj, j= 1,2,3, i .  Furthermore, let us 

momentarily assume just one record per animal such that there are no other animal effects to 

model other than additive genetic effects.  In Equation [2.9] below, we actually re-derive 
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Equation [2.3] for the one-stage RFI approach but incorporate the relationships provided in 

Equations [2.5c] and [2.8c].  Furthermore, let us assume momentarily that partial efficiencies as 

they involve DMI are identical at the genetic and residual levels; i.e.    
31 31 31

u e
     and 

   
32 32 32

u e
    .  Then   

    

     

   

'

3 3 3 3 3

' ( ) ( ) ( )

3 3 31 1 32 2 3|1,2 31 1 32 2 3|1,2

'

3 3 31 1 1 32 2 2 3|1,2 3|1,2

' ' ' '

3 31 1 32 2 3 31 1 1 1- -

i i i i

u u e e

i i i i i i i

i i i i i i i

i i i i i i

y b BW u e

b BW u u u e e e

b BW u e u e u e

b BW u e

   

 

  

    

        

        

     

x β

    x β

    x β

    x β x β x β x β

   

 

'

32 2 2 2 3|1,2 3|1,2

'

3 31 1 32 2 3 31 1 32 2 3|1,2 3|1,2- -

i i i i i

i i i i i

u e u e

b BW y y u e



   

    

      

      x β

    x β β β

  [2.9] 

In other words, it is analytically demonstrated comparing Equation [2.9] with Equation [2.3] 

that the RFI model leads to the same quantitative genetic inferences for genetic merit prediction 

and estimation of heritability on rFE as our proposed MT model, provided that    
31 31 31

u e
     

and    
32 32 32

u e
    .  Thus, if the partial efficiencies relating DMI to the energy sink traits are 

identical at both the genetic and residual levels, then our proposed MT approach is synonymous 

with RFI modeling.  If so, it could then be analytically demonstrated that 
*

3 3 31 1 32 2- - β β β β ,

11 3b  , and 22 3b  , referring back to Equation [2.3], such that 31 2| ,RFI u u  and  2 2

3|1,2RFIh h .  

That is, the classical RFI modeling strategy specifies the partial relationships between DMI and 

MILKE or MBW at one phenotypic level only (e.g. b1 or b2) whereas the proposed MT approach 

defines these relationships separately at the genetic (  
31

u
  and  

32

u
 ) from the residual level (  

31

e
  

and  
32

e
 ) or at any other levels (e.g. permanent environment) as demonstrated later.   
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2.3.3 Simulation Study  

We further explored the relationships between these two approaches (i.e. MT vs RFI) based on 

a simulation study invoking a response surface design. MILKE, MBW, and DMI (i.e. y1, y2 and 

y3) were simulated based on a MT mixed animal model with genetic and residual variance-

covariance matrices G and R based on various specifications for            
21 21 31 31 32 32, , , , ,

u e u e u e
      , and 

the heritability of Trait 3|1,2, i.e., 2

3|1,2h .  An effect due to ΔBW was not simulated. The 

heritabilities for Trait 1(i.e., MILKE) and Trait 2|1 (i.e., MBW| MILKE) were consistently set to 

0.32 and 0.23 based on estimates derived from a larger study (Tempelman et al., 2015).  The 

same applied for phenotypic variances for Trait1, Trait2|1, and Trait 3|1,2. The sample size and 

pedigree structure for this simulation study was based on a subsequently described dataset except 

that only one record per trait was simulated per animal. A central composite response surface 

design designed for uniform precision based on using SAS ADX software (SAS Institute Inc., 

Cary, NC) was adopted whereby specifications for 7 different parameters, i.e., 

           
21 21 31 31 32 32, , , , ,

u e u e u e
       and 2

3|1,2h (see Table 2.1 and Appendix Table A.1) were varied, resulting 

in 162 independent replicated datasets with 21 replications at the center point. The chosen ranges 

for each parameter, as provided in Table 2.1, were based on the variability across research 

stations from a larger study (Tempelman et al., 2015).  Note that all but 13 of the runs in 

Appendix Table A.1 had parameter values specified within the ranges provided in Table 2.1; the 

remaining runs pertained to axial points which are characteristically specified in optimally 

constructed response surface designs (Kutner et al., 2005).    
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Table 2.1: Ranges of values on seven key parameters for testing proposed multivariate model 

versus RFI model under a response surface design simulation study. 

Parameter Range of Values
1
 

2

3|12h  [0.10, 0.50] 

( )

21 u   [0.10,0.50] 

( )

21 e  [0.10, 0.50] 

( )

31 u  [0.20, 0.60] 

( )

31 e  [0.20, 0.60] 

( )

32 u  [0.05, 0.20] 
( )

32 e  [0.05, 0.20] 

1
 Simulated values for each of 162 runs are provided in Appendix Table A.1. 

For both sets of analyses, variance components were estimated by REML using the software 

ASREML (Gilmour et al., 2009) based on the one-stage RFI model in [2.3] and the proposed 

three-trait MT model.  The BLUP of iRFIu , ˆ
iRFIu , was determined to be the EBV conditionally on 

the corresponding REML estimates of 
2

RFIu  and 
2

RFIe in the RFI analysis. Similarly, the BLUP of 

3|1,2iu , 3|1,2
ˆ

iu , using the proposed MT approach was based on the corresponding REML estimates 

of variance-covariance matrices G and R and subsequent CD-based transformations. 

Comparisons were made between the two models for estimates of partial efficiencies (MT model) 

versus partial regressions (RFI model) as well as for estimates of variance components and 

heritabilities.  Model performance was based on accuracy of genetic prediction defined as the 

correlation between ˆ
iRFIu  and 3|1,2iu  for the RFI analysis and the correlation between 3|1,2

ˆ
iu  and 

3|1,2iu for the proposed MT approach.  Second order response surface model analyses were used to 

infer upon differences in accuracies between the two models as a function of the 7 parameters. 
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2.3.4 Application to Dairy Consortium Data 

  Data source and editing:  DMI, milk yields (MY), BW, all measured in kg, as well as fat, 

protein, and lactose components of milk were collected from Holstein cows at 7 different North 

American research stations with most of the data being a subset of data from a larger 

international consortium Tempelman et al. (2015).  These research stations were University of 

Alberta (AB), Iowa State University (ISU), Michigan State University (MSU), the University of 

Florida (UF), the University of Wisconsin-Madison (UW), the USDA Dairy Forage Research 

Center (USDFRC) in Madison, WI, and the USDA Animal Genomics and Improvement 

Laboratory (AGIL) in Beltsville, MD. For AB, all the above mentioned traits were collected on a 

monthly basis except DMI; more detailed description of that data can be found in Berry et al. 

(2014) and Manafiazar et al. (2013). Data editing procedures and conversion to weekly records 

on DMI, MILKE, MBW, and BW  were conducted as according to those outlined in 

Tempelman et al. (2015) with a data summary provided in Table 2.2. This included restricting 

the data from 50 to 200 DIM; i.e., at a period of lactation that is somewhat post-peak such that 

cows are not likely to be in a negative energy balance. Pedigrees involving a total of 8,721 

animals going back 3 generations were procured as well. 
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Table 2.2: Frequency of number of cows and lactations by station in dairy consortium study. 

Station
1
 Number of cows Number of weekly records Number of lactations 

AB 236 1450 360 

UF 205 1664 220 

ISU 758 8784 795 

MSU 163 1807 192 

USDFRC 245 2550 259 

UW 575 6511 652 

AGIL 288 3617 448 

Total 2470 26383 2926 

1
AB= University of Alberta, UF = University of Florida, ISU = Iowa State University, MSU = 

Michigan State University, USDFRC = USDA Forage Research Center, UW = University of 

Wisconsin-Madison, AGIL=USDA Animal Genomics Improvement Laboratory 

  Statistical model and data analysis: All analyses were conducted using either the proposed MT 

approach or the single-step RFI model.  However, given that there were multiple weekly records 

per lactation with some cows, in turn, having multiple lactations, it was necessary to additionally 

model two sets of permanent environmental effects.  That is, the linear mixed model for DMI 

using the one-stage RFI approach in Equation [2.3] and for each of the three traits using the 

proposed MT approach in Equation [2.4] were as follows: 

 .. . . . . . ..j j j j j w j w j b j b j j    y X β Z u W p W p e ; j=1,2,3                    [2.10] 

Equation [2.10] then slightly extends Equation [2.4] (and also Equation [2.3] for RFI analyses) 

in that two more sets of random effects were fitted. Here 
jβ  include the fixed effects of linear 

effect of BW , research station, parity, rations, and fourth order polynomial function of DIM 

for trait j. The vector u.j represents the genetic effects for Trait j as indicated previously.  

Furthermore, . 1 2 ,...pw j w j w j wq jp p p    represents the vector of within-lactation permanent 

environmental effects for Trait j, identifying common environmental effects consistently 

associated with an animal within lactation such that .w jW is the corresponding incidence matrix.  



 

21 

 

Similarly, . 1 2 ,...pb j b j b j bq jp p p     represents the vector of between-lactation permanent 

environmental effects for Trait j identifying common environmental effects consistently 

associated with an animal across lactations, with .b jW being the corresponding incidence matrix.  

Both sets of permanent environmental effects were also considered in Connor et al. (2013) and 

Tempelman et al. (2015). Suppose that for the MT analyses, we specify 
' ' '

.1 .2 .3 'w w w w
   p p p p  and 

' ' '

.1 .2 .3 'b b b b
   p p p p  across all traits.  As we did earlier for u and e, we could reorder elements of 

pw and pb by traits within animals; i.e. rewrite 
' ' '

1. 2. . 'w w w wn
   p p p p  and 

' ' '

1. 2. . 'b b b bn
   p p p p , where 

' ' '

, . , 1 , 2 , 3 'w i w i w i w i
   p p p p  and 

' ' '

, . , 1 , 2 , 3 'b i b i b i b i
   p p p p  are the within-

lactation and between-lactation permanent environmental effects, respectively, for the three traits 

on animal i.  We then assume  , .var w i wp P i and  , .var b i bp P i ; i.e., Pw and Pb are 3 x 3 

covariance variance matrices for within-lactation and between-lactation permanent 

environmental effects, respectively.  With this reordering for pw and pb, we specify independence 

for these effects across animals; i.e.  var w w p I P  and  var b b p I P .  We also adapt the same 

CD-based reparameterization for elements of pw and pb as we did for u in Equations [5abc] and 

for e in Equations [2.8abc]. 

 Thus, the SCVC for DMI|MILKE&MBW are estimated on four different levels, i.e., 

conditional genetic (
3|1,2

2

u ), conditional within-lactation permanent environment (
,3|1,2

2

wp ), 

conditional between-lactation permanent environment (
,3|1,2

2

bp ), and conditional residual variance 

(
3|1,2

2

e ) for our proposed rFE variable.  In other words, the corresponding heritability 2

3|1,2h is 

simply the ratio of 
3|1,2

2

u and 
3|1,2 3|1,2 ,3|1,2 ,3|1,2 3|1,2

2 2 2 2 2

b wp u p p e        , whereas the corresponding 

repeatability 2

3|1,2r is the ratio of 
3|1,2 ,3|1,2 ,3|1,2

2 2 2

b wu p p    and 
3|1,2

2

p .  Similar representations of 
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heritabilities (
2

RFIh ) and repeatabilities (
2

RFIr ) for the RFI modeling approach were determined 

by extending Equation [3] as well, with further details provided in Tempelman et al. (2015). 

   Estimates of variance components, heritabilities, and partial efficiencies at both genetic (i.e., u) 

and non-genetic (i.e., pw, pb, and e) levels were obtained by ASREML based on using the 

“ANTE” specification option for variance-covariance matrices (Gilmour et al., 2009), which 

directly provides estimates of SCVC and partial efficiencies and their approximate standard 

errors at the various levels. Furthermore, the correlation between the two models for EBV was 

also assessed. 

  Cross-validation assessment:  In order to test the robustness of our cross-validation tests with 

respect to different strategies of splitting the data, a hybrid data splitting strategy was developed 

for five-fold cross validation with application to the dairy consortium data.  The entire dataset 

was initially split into two equal non-overlapping sets (Split A and Split B) of records on 

completely different animals. In Split A, the data were further randomly divided across animals 

into five nearly equally sized subsplits, i.e. each subsplit included all the records from a 

randomly chosen 20% of the animals within Split A.  In Split B, the data were also randomly 

divided into five subsplits except that roughly 20% of the records from each animal was 

represented within each subsplit.  One validation dataset was then based on randomly assigning 

one of the 5 subsplits from Split A with one of the 5 subsplits from Split B, such that the 

remaining data constituted the training data for that particular fold as part of a 5 fold cross-

validation.  This cross-validation thereby allowed a simultaneous assessment of the two 

competing models on both across and within animal cross-validation predictive abilities.  The 
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performance metric used was the cross-validation predictive accuracy defined as the correlation 

between predicted DMI in the validation dataset based on estimates derived from the analyses of 

the training dataset. 

2.4 Results 

2.4.1 Simulation Study   

    Under simulated scenarios where partial efficiencies were equivalent at both genetic and 

residual levels, (i.e.,    
31 31

u e
   and    

32 32

u e
  ), estimates of partial efficiencies were virtually 

identical to estimates of partial regression coefficients (b1 and b2) under the RFI analysis (Figure 

2.1) as anticipated from Equation [2.9]. Conversely,  under scenarios where partial efficiencies 

were not the same at the genetic and the corresponding residual levels, (i.e.,    
31 31  

u e
  and 

   
32 32 

u e
  ), partial regression estimates based on the RFI model were intermediate to the two 

corresponding partial efficiency estimates derived from the MT model; i.e. 
1b̂  was intermediate 

to  
31
ˆ e
 and  

31
ˆ u
  whereas 

2b̂ was intermediate to  
32
ˆ e
 and  

32
ˆ u
  (Figure 2.2).  At any rate, whether or 

not genetic and residual partial efficiencies were equivalent (Figure 2.1) or non-equivalent 

(Figure 2.2), one can observe that the MT model provided unbiased estimates of these partial 

efficiencies.   
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Figure 2.1: Estimated (with standard error bars) mean residual (
 
3
ˆ  

e

j : grey bars) and genetic 

(
 
3
ˆ  

g

j : white bars) partial efficiencies under proposed multivariate model and estimated partial 

regression coefficients ( ˆ  jb : black bars) under RFI model for DMI on (a) MILKE (j=1) as a 

function of couplets of values for  [    
31 31

u e
  ] and for DMI on (b) MBW (j=2) as a function of 

couplets of values for [    
32 32 

u e
  ] in response surface design simulation study. 

 



 

25 

 

 

Figure 2.2: Estimated (with standard error bars) mean residual (
 
3
ˆ  

e

j : grey bars) and genetic 

(
 
3
ˆ  

g

j : white bars) partial efficiencies under proposed multivariate model and estimated partial 

regression coefficients ( ˆ  jb : black bars) under RFI model for DMI on (a) MILKE (j=1) as a 

function of couplets of values for  [    
31 31

u e
  ] and for DMI on (b) MBW (j=2) as a function of 

couplets of values for [    
32 32 

u e
  ] in response surface design simulation study. 

Under equivalent partial efficiencies at the genetic and residual levels, estimated variance 

components, and heritabilities were virtually identical for the two modeling approaches, again as 

anticipated; i.e., 2 2

3|1,2
ˆ ˆ

uRFI u   and  2 2

3|1,2
ˆ ˆ

eRFI e   such that 
2 2

3|1,2
ˆ ˆ

RFIh h (Figure 2.3). Conversely, 

under non-equivalent partial efficiencies, we observed that 2 2

3|1,2uRFI u  (P<0.05), whereas no 

significant differences were observed between 2

eRFI  and 2

3|1,2e  as well as between 
2

RFIh and 2

3|1,2h . 
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Figure 2.3: Estimated (with standard error bars) mean parameters under RFI (white bars) vs 

proposed multivariate (black bars) models for (a) genetic variances 2

3|1,2
ˆ

u  versus 2ˆ
uRFI , (b) 

residual variances 2

3|1,2
ˆ

e  versus 2ˆ
eRFI and (c) heritabilities 2

3|1,2ĥ versus 2ˆ
RFIh  as a function of 

equivalent partial efficiencies ( ( ) ( )

3. 3.

u e   defined as ( ) ( )

31 31

u e  and ( ) ( )

32 32

u e  ) or nonequivalent 

partial efficiencies ( ( ) ( )

3. 3.

u e   defined as ( ) ( )

31 31

u e  and ( ) ( )

32 32

u e  ) in response surface design 

simulation. Bars not sharing the same letter within a pair are different from each other (P<0.05). 

    Differences in accuracies of genetic merit prediction between the proposed MT and classical 

RFI approaches were determined for their prediction of u3|1,2.  For the situation where the 

corresponding partial efficiencies were the same at both the genetic and residual levels, i.e., 

   
31 31

u e
   and    

32 32

u e
  , differences in the accuracy of genetic prediction were close to 0 or 

even slightly higher for the classical RFI model (Figures 2.4 and 2.5). Again, this result was 

somewhat anticipated given Equation [2.9] because the classical RFI approach is not only 

mathematically equivalent but also is more parsimonious compared to the proposed MT 

approach in those specific cases.  Nevertheless, when genetic partial efficiencies were 

substantially different relative to the corresponding residual partial efficiencies, i.e.,    
31 31  

u e
 
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and    
32 32 

u e
  , our proposed MT model fared substantially better (Figures 2.4 and 2.5).  In 

particular, the accuracy of genetic merit prediction was as much as 4 percentage points greater 

for the proposed approach when  
31

u
  and  

31

e
  were most divergent from each other (Figure 2.4). 

However, the difference for accuracy of genetic merit prediction between the two approaches 

was far less pronounced across various combinations of  
32

u
  and  

32

e
  as shown in Figure 2.5, 

likely in part due to their smaller range of investigated values relative to  
31

u
  and  

31

e
 . 

 

Figure 2.4: Differences in accuracies of genetic merit prediction between proposed multivariate 

and RFI models versus ( )

31

e for ( )

31

u = 0.2(○-○-○), 0.3(△-△-△), 0.4 (▲-▲-▲),0.5(●-●-●), and 

0.6(□-□-□) in response surface design simulation study. 
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Figure 2.5: Difference in accuracies of prediction of genetic merit between proposed multivariate 

and RFI models versus ( )

32

e for ( )

32

u being 0.0500(○-○-○), 0.0875(△-△-△), 0.1250 (▲-▲-▲), 

0.1625(●-●-●), and 0.2000(□-□-□) in response surface design simulation study. 

2.4.2 Application to Dairy Consortium Data  

2.4.2.1 Variance Component Estimates 

     Estimates of variance components, heritabilities, and repeatabilities using each of the two 

modeling approaches on the dairy consortium data are provided in Table 2.3.  Heritability 

estimates were very similar; the estimate (± standard error) of 2

3|1,2h  using the proposed MT 

model was 0.14 ± 0.03, whereas the estimate of 2

RFIh  using the one-stage RFI model was 0.16 ± 

0.03. Repeatability estimates were also very similar (i.e., 0.64 ± 0.01 versus 0.65 ± 0.01) 

between the two modeling approaches.  
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Table 2.3: Estimates of variance components, heritabilities, and repeatabilities of rFE from dairy 

consortium data analyses based on proposed multivariate approach versus RFI model. 

 Multivariate Model RFI Model 

 

Parameter 

Category 
Parameter 

Estimate(± 

Standard  Error) 
Parameter 

Estimate (± 

Standard  Error) 

Genetic 

3|1,2

2

u  0.61±0.15 
 

0.70±0.14 

Within-

lactation 

permanent  

Environment 

,3|1,2

2

wp  1.77±0.12 
,

2

w RFIp  1.80±0.12 

Between-

lactation 

permanent 

environment 

,3|1,2

2

bp  0.33±0.18  
,

2

b RFIp  0.39±0.16  

Residual 

3|1,2

2

e  1.57±0.02  
 

1.57±0.02  

Heritability 2

3|1,2h  
0.14±0.03  

2

RFIh  0.16±0.03  

Repeatability 2

3|1,2r  
0.64±0.01  

2

RFIr  0.65±0.01  

2.4.2.2 Partial Efficiencies/Regressions 

Estimated partial efficiencies based on the proposed MT approach are reported in Table 2.4; 

key estimates pertain to  
31

x
  or the partial efficiencies of DMI on MILKE and to  

32

x
  or the 

partial efficiencies of DMI on MBW for x = u, pw, pb, and e. For example, the  
31

u
 coefficient 

defines the change in the genetic merit for DMI for every unit change in the genetic merit of 

MILKE. Thus, these partial efficiencies partly characterize rFE at various levels in that the 

smaller their values, the more efficient the conversion of feed to MILKE or MBW at the various 

levels (i.e. genetic effects, within/across-permanent environmental effects or residual effects). 

2

RFIu

2

RFIe
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Estimates of 
( )

31

x  ranged from 0.32 to 0.52 whereas estimates of 
( )

32

x  ranged from 0.04 to 0.16.  

Under the RFI analysis, the corresponding partial regression coefficient estimates were 

0.38±0.005 for b1 and 0.12±0.004 for b2 which were well within the range of the corresponding 

partial efficiency estimates from the proposed MT analysis. 

Table 2.4: Estimates of partial efficiencies based on proposed multivariate model in dairy 

consortium data analysis 

 Partial Efficiency Estimates (± Standard Errors) 

Level
2
 

(.)

21
1
 (.)

31  (.)

32  

( )u

jk  -0.21±0.32 0.52±0.08 0.14±0.02 
( )wp

jk  0.37±0.09 0.32±0.09 0.11±0.01 
( )bp

jk  0.76±0.41 0.45±0.01 0.04±0.01 
( )e

jk  0.13±0.01  0.38±0.22 0.16±0.09 
 

1
Estimated partial efficiencies (± standard errors) of MBW on MILKE ( (.)

21 ), MBW on MILKE 

( (.)

31 ) and of DMI on MBW ( (.)

32 ) at the 
2
genetic ( ( )u

jk ), within-lactation permanent environment 

( ( )wp

jk ) between-lactation permanent environment ( ( )bp

jk )and residual ( ( )e

jk ) levels. 

2.4.2.3 Correlation between EBV 

The estimated correlation between EBV of rFE for cows having their own records based on 

the two different modeling approaches was  3|1,2 , RFIcor u u  = 0.93.  A scatterplot of the two sets 

of EBV is provided in Figure 2.6 further demonstrates the high level of agreement between the 

two different sets of EBV although it is apparent that 3|1,2u  demonstrates a slightly greater level 

of shrinkage relative to RFIu  likely in part to the fact that the estimate of 
3|1,2

2

u  is slightly smaller 

than that for 
2

RFIu  as provided earlier in Table 2.3. 
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Figure 2.6: Scatterplot of EBV of rFE based on proposed multivariate model (
3|1,2û ) versus RFI 

( ˆ
RFIu ) model of dairy consortium data.  Reference line of slope 1 and intercept 0 superimposed 

2.4.2.4 Cross-validation Study 

   The accuracies for the 5-fold cross validation were provided in Table 2.5. There was no 

evidence of a significant difference in predictive accuracy between the two modeling approaches, 

whether based on within animal or across animal splits of the data, or even combined. 

Table 2.5: Cross Validation Prediction Accuracies for each of 5 different validation datasets (fold) 

based on proposed (MT) versus RFI analyses of dairy consortium data 

 Across animals Within animals Combined 

Fold MT RFI MT RFI MT RFI 

1 0.85 0.85 0.94 0.94 0.90 0.90 

2 0.81 0.81 0.94 0.94 0.88 0.88 

3 0.82 0.84 0.94 0.94 0.88 0.89 

4 0.86 0.86 0.94 0.94 0.90 0.90 

5 0.79 0.80 0.94 0.93 0.84 0.84 

Mean 0.83 0.83 0.94 0.94 0.88 0.88 
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2.5 Discussion 

We have proposed a modeling strategy for rFE that we believe helps to address the 

controversy between those researchers that prefer to focus on the analysis of DMI versus those 

that prefer analyzing RFI for quantitative genetic inference on rFE, recognizing that DMI is 

easier to understand, even though DMI is not a direct measure of rFE (Berry and Pryce, 2014).  

In particular, we demonstrated that MT inference involving DMI and the energy sink traits such 

as MILKE and MBW is equivalent to single trait inference on RFI under one special condition: 

that the partial efficiencies relating DMI to the energy sink traits are the same at genetic and non-

genetic (i.e. permanent environment or residual) levels.  However, we would quickly add that 

even Kennedy et al. (1993) had earlier suggested that selection on RFI is equivalent to multiple 

trait selection on its components. In fact, we would suggest that our proposed MT approach more 

closely aligns with the “genotypic regression” approach introduced by Kennedy et al. (1993) 

which is far more challenging to implement for real data analyses compared to the “phenotypic 

regression” approach used far more commonly for RFI modeling as also adapted in this paper.  

More recently, another group (Strathe et al., 2014) also presented a strategy for rFE modeling in 

pigs which is even more closely aligned to our proposed MT strategy.   

We do believe our proposed MT model facilitates a more comprehensive investigation into the 

relationship between DMI and the key energy sinks (MILKE and MBW) at different levels; i.e., 

genetic, permanent environmental, and residual levels whereas the classical RFI approach 

assumes that such relationships are constant across all such levels.  Indeed, our simulation results 

intuitively proved that two modeling approaches have similar accuracy of genetic merit 
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prediction when partial efficiencies are equivalent at the various levels (i.e., 
( ) ( )

.. ..

u e  ); in fact, 

it could be effectively argued that RFI modeling would then be preferred since there would be 

fewer parameters to estimate.  Nevertheless, we also demonstrated by simulation that there can 

be greater accuracies in genetic merit prediction using the proposed MT approach when these 

partial efficiencies are rather different from each other between the genetic and non-genetic 

levels (i.e.,
( ) ( )

31 31

u e  ).  

    Our empirical analysis of a subset of a larger dairy consortium study (Tempelman et al., 2015) 

suggested no real apparent advantage of our proposed approach relative to classical RFI 

modeling.  This result again may be due to the fact that the partial efficiencies may not have 

demonstrated enough heterogeneity across the various genetic and non-genetic levels to warrant 

a greater cross-validation prediction accuracy for the proposed approach.  However, we believe 

the proposed MT approach warrants future consideration and research for several reasons.   

Firstly, a MT approach facilitates the incorporation of all data on animals that might have 

missing records on DMI or some of the energy sink components of rFE; conversely a RFI 

modeling strategy would require deletion of all data from any time period missing a record on 

any rFE component trait.  Hence, an even greater accuracy of selection could be demonstrated 

based on our approach if such data were incorporated. Furthermore, the issue of ‘missingness’ is 

actually more subtle for rFE modeling because all component traits are generally not measured 

with the same level of frequency.  For instance, we summarized records on all of the traits to a 

weekly basis just as we did previously, even though recording frequencies did not only differ 

among traits within each research station, they also differed among research stations for the same 
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traits(Tempelman et al., 2015). Our proposed approach thereby provides an opportunity to better 

formally account for these recording frequency differences.   

 Secondly, the proposed MT approach is not any more difficult to implement than any 

standard MT analysis.  Variance-covariance component matrices can be readily estimated using 

REML in mixed model software followed by use of the CD to estimate the corresponding partial 

efficiencies.  In fact, as previously noted, ASREML software (Gilmour et al., 2009) has the 

“ANTE” option that facilitates the direct estimation of partial efficiencies and SCVC, including 

their estimated standard errors using the average information matrix.  With .
ˆ

iu denoting a 

standard MT-based EBV for MILKE, MBW, and DMI, the estimated genetic partial efficiencies 

( uT ) can be used in a rearrangement of Equation [2.6] to backsolve  *

. .
ˆ ˆ

i u iu I T u   for the 

BLUP of ,3|1,2
ˆ

iu  being the last element of 
*

.
ˆ

iu , and which we propose as our genetic merit for rFE.  

Note that a MT analysis is an important prerequisite for forming a selection index on the 

corresponding traits. Suppose that that the relative 1 , 2 , and 3 are known for MILKE, MBW, 

and DMI, respectively, such that a portion of the selection index, at least as it pertains to just 

these 3 traits, is ,1 ,2 ,31 2 3i i iu u u    for animal i based on a MT analysis. Noting that a selection 

index would involve DMI or rFE, but not both, the selection index for animal i could be re-

expressed as a function of its EBV for MILKE, MBW, and our proposed measure of rFE as 

   ( ) ( )
,1 ,2 ,3|1,21 3 31 2 3 32 3

u u
i i iu u u           using Equation [2.5c]. So, for example, if 1  > 0, 0 < 

( )

31

u  < 1 (as based on our results), 3  < 0, and 1  > | 3 | as expected, then the ratio of the 

economic weight  ( )

1 3 31

u   of MILKE relative to that ( 3 ) on rFE should be smaller compared 
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with the same ratio involving the weight ( 1 ) on MILKE relative to that ( 3 ) on DMI in a 

selection index. In other words, rFE would be weighted more highly (in absolute value) relative 

to MILKE as compared with DMI relative to MILKE in a selection index. Given the previously 

noted similarities between our rFE measure and RFI, a similar comparison could be drawn 

between the economic weights of DMI and RFI relative to MILKE in alternative expressions of 

the same selection index. 

 Finally, our approach allows us to better formally investigate any potential heterogeneity in 

these partial efficiencies at the various levels across, say, research stations or even diets; this 

would involve further extending work by Bello et al. (2010) who similarly investigated 

heterogeneities in the associations between milk production and reproduction at the 

contemporary group and cow levels. 

We failed to include ΔBW as a fourth trait in our proposed model given its very high 

variability and low heritability, even though it is conceptually straightforward to do so. Hence, 

we treated BW as a covariate in both our proposed MT approach and the RFI model such that 

both sets of analysis on the dairy data implied a common partial efficiency or regression of DMI 

on ΔBW at all genetic and non-genetic levels. Better approaches to deal with ΔBW within the 

context of our proposed model warrant future research.  We also did not report the effect of 
( )

21

x ; 

i.e. the partial efficiency of MBW on MILKE at level x = u or e in our MT vs RFI modeling 

comparisons because we observed that neither the magnitude nor the range of the discrepancies 

between 
( )

21

u  and 
(e)

21  had any impact (results not reported). 
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It has been shown that higher accuracies and larger genetic gains can be achieved by using 

genomic selection for rFE traits (deHaas et al., 2014).  Even though we used pedigree-based 

BLUP in this paper, it is conceptually rather easy to substitute the numerator relationships matrix 

with a genomic relationship matrix or even a H relationship matrix that facilitates the use of 

genotyped and non-genotyped animals (Aguilar et al., 2010).  We believe genomic extensions of 

our proposed model will be promising and may facilitate further discoveries as to which genes 

are important for rFE.   

2.6 Conclusions 

     In this study, an alternative MT model strategy based on a modified Cholesky decomposition 

for modeling rFE in dairy cattle was proposed as an alternative to the conventional RFI modeling 

approach. Both strategies were further studied and compared using simulation and application to 

a subset of dairy research consortium data.  We demonstrated the equivalence between proposed 

and RFI modeling strategies when partial efficiencies between DMI with any of the energy sink 

traits were equivalent at all levels whereas the proposed MT approach had up to 4 percentage 

points greater accuracy in genetic merit prediction when there were large discrepancies between 

these partial relationships at genetic versus non-genetic levels.  Application to the dairy research 

consortium data did not suggest any significant difference in cross-validation predictive accuracy 

between the two approaches.  Nevertheless, we believe our proposed approach warrants further 

consideration in future research, especially when data on some of the rFE component traits are 

missing.  
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Chapter3: Modeling Genetic and Non-Genetic Variation of Feed Efficiency and its Partial 

Relationships between Component Traits as a Function of Management and 

Environmental Factors 

3.1 Abstract 

Residual feed efficiency (rFE), characterized as the fraction of feed nutrients converted into 

milk or meat, is of increasing economic importance in the dairy industry. We conjecture that rFE 

is a complex trait whose variation and relationships or partial efficiencies (PE) involving the 

conversion of DMI to milk energy and metabolic body weight may be highly heterogeneous 

across environments or management scenarios. In this study, a hierarchical Bayesian multivariate 

mixed model was proposed to jointly infer upon such heterogeneity at both genetic and non-

genetic levels on PE and variance components (VC). The heterogeneity was modeled by 

embedding mixed effects specifications on PE and VC in addition to those directly specified on 

the component traits. We validated the model by simulation and applied it to a joint analysis of a 

dairy rFE consortium dataset with 5,088 Holstein cows from 13 research stations in Canada, the 

Netherlands, the United Kingdom, and the United States. Although no differences were detected 

among research stations for PE at the genetic level, there was some evidence of heterogeneity in 

residual PE. Furthermore, substantial heterogeneity in VC across stations, parities, and ration 

were observed with heritability estimates of rFE ranging from 0.16 to 0.46 across stations. 

3.2 Introduction 

Residual feed efficiency (rFE) is becoming more important for the economic and 

environmental sustainability of dairy production and increases as a greater proportion of feed 

nutrients are directed towards milk production (Connor, 2015). A commonly used measure of 
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rFE is residual feed intake (RFI) which is defined as the difference between actual and predicted 

DMI. That is, RFI “responses” are typically derived as the estimated residuals from a linear 

model analysis whereby partial regression relationships are specified between DMI and energy 

sink covariates such as milk energy (MILKE) and metabolic body weight (MBW), for example. 

Given that there has been some reluctance to directly incorporate RFI in breeding goals because 

RFI can be a difficult concept to understand and explain and there are possible genetic 

antagonisms with other performance traits (Berry and Pryce, 2014), some investigators have 

focused their attention on DMI as the key phenotype for rFE analyses (Berry et al., 2014, de 

Haas et al., 2015). 

Recently, Lu et al. (2015) proposed a multiple trait (MT) mixed model analysis of DMI with 

MILKE and MBW that further resolves whether RFI or DMI should be considered as the key 

response variable for rFE. They demonstrated that Cholesky decompositions performed on each 

of the estimated (e.g., by REML) 3 x 3 genetic (G) and residual (R) variance-covariance 

matrices among the 3 key traits (MILKE, MBW, and DMI) lead to a parameterization whereby 

the estimated partial regression relationships between DMI and MILKE, and between DMI and 

MBW are essentially partitioned into genetic and residual components. Additionally, the 

Cholesky decomposition leads to a determination of EBV for rFE that is identical to that based 

on a classical RFI analysis under the special case whereby the partial regression relationships 

relating DMI to MILKE and to MBW are specified to be identical at both genetic and residual 

levels. As a corollary, Lu et al. (2015) demonstrated by simulation that the greater the 

discrepancy between the partial relationships at genetic and non-genetic levels, the greater the 

EBV accuracy for their proposed MT approach relative to a classical RFI analysis. Furthermore, 

the MT approach facilitates the incorporation of data on cows that might be missing, even 
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selectively, on any of the 3 key phenotypes that would otherwise be discarded in a RFI analysis 

(Pollak et al., 1984). 

    A hierarchical Bayesian extension of a 2-trait MT model was developed earlier in a non-

genetic context by (Bello et al., 2010) who later inferred heterogeneous partial regression 

relationships between calving intervals and milk yield at both herd and cow levels as a function 

of environmental and herd management factors for Michigan dairy herds. We surmise that the 

genetic and residual partial relationships between DMI and MILKE, or between DMI and MBW 

could also be modeled as a linked multifactorial function of various factors including parities, 

research stations, and rations, for example. Indeed, based on station-specific RFI analyses, 

Tempelman et al. (2015) determined that estimated partial regression coefficients of DMI on 

MILKE and on MBW were highly heterogeneous across research stations in several countries. 

Furthermore, adaptation of the hierarchical Bayesian approach as proposed by (Bello et al., 2010) 

would also infer the degree of heterogeneity in heritabilities of rFE across different management 

conditions.  

The 2 primary objectives of this study were 1) to identify potential management or 

environmental factors that might impact genetic and residual partial regression relationships (i.e., 

PE) between DMI and MILKE, and between DMIand MBW, and 2) to infer whether there is 

evidence of heterogeneity of genetic and residual variances for rFE across these same 

management or environmental factors. 
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3.3 Materials and Methods 

3.3.1 The Multiple Trait Model 

Our study closely combines developments provided in Lu et al. (2015) with those provided in 

(Bello et al., 2010). The 3 key component traits of rFE are numbered as follows in the MT model: 

1) MILKE, 2) MBW, and 3) DMI. We write this MT model as follows:  

          i i i i  y X β Z u e .             [3.1] 

Here  1 2 3 'i i i iy y yy  is the vector of responses for the 3 traits on record or animal i, i 

=1,2,3,…,n. Furthermore,  1 2 3' ' ' 'β β β β  is the vector of fixed effects connected to iy  by 

known incidence matrix  '

3  i i I xX  such that 
jβ  denotes the subvector of fixed effects for 

trait j, j = 1,2,3. Note that    denotes the Kronecker product such that we assume the same fixed 

effects incidence row vector '  ix  for each of the 3 traits for ease of presentation, although further 

generalization is possible. Similarly, 
' ' '

.1 .2 .3 '   u u u u  is the vector for animal genetic effects 

connected to iy  by known incidence matrix  '

3  i i I zZ  such that  . 1

n

j ij i
u


u  denotes the 

subvector of random genetic effects on trait j for all n animals. Hence, we also assume the same 

random effects incidence row vector '  iz  for each of the 3 traits, although again further 

generalization is possible. To further simplify presentation, we specifically focus on the situation 

where there is 1 record per animal, and genetic merit is explicitly modeled only for animals 

having records, although extensions to the more common situation where genetic evaluations are 

also desired on animals without any records or multiple records is readily apparent. Finally, 

 1 2 3 'i i i ie e ee  denotes the sub-vector of residuals for the 3 traits on animal i. Now ie  is 

assumed to be independently multivariate normal across animals; i.e.,  ~ ,i iMVNe 0 R  where 
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iR  denotes the 3 x 3 residual (co)variance matrix among 3 traits specific for animal i.  

Now u  can be alternatively reordered by traits within animals; i.e.,  1. 2. .nu u u u

with  
3

. 1i ij j
u


u  denoting the vector of random genetic effects for the three traits on animal i. 

Because of potential correlations between animal effects due to, for example, the numerator 

relationship matrix A, the breeding values 
iu  and 

'iu  for animals i  and 'i  ( 'i i ) are not 

necessarily independent of each other. To flexibly allow for such correlation as well as for 

subject-specific genetic trait variances and covariances as developed later, we invoke a Cholesky 

decomposition on A, writing A = CC’.  For clarity of presentation, we specify the dimension of 

A as n x n such that it only pertains to relationships between animals with records; nevertheless, 

its construction should be suitably based on all available ancestor information. In other words, 

we define A as a subset of a larger numerator relationship matrix that involves both animals with 

records and their ancestors. Nevertheless, if genetic evaluations are also desired on ancestors, the 

dimensions of both A and '  iz i  can be augmented accordingly.  We define 
*

. ju  using 
*

. .j ju Cu  

such that 
* * *

.1 .2 .3
' ' ' '   

*
u u u u  is ordered by animals within traits in the same manner as 

' ' '

.1 .2 .3 '   u u u u .  Alternatively, if elements of u* are ordered by elements traits within 

animals, i.e., * * *

1. 2. .* n
   u u u u , then we specify     

3
**

. 1
,~

independent

ij ji iMu VN


u 0 G , for the 

3 traits on animal i.  That is, iG  denotes the 3 x 3 genetic (co)variance matrix among the 3 traits 

being unique to the environmental or management circumstances peculiar to animal i.  It is 

important to further clarify, using results from Kennedy et al. (1988), that 
*

.iu actually defines the 

genetic merit on the three traits for animal i only if it is a base population animal whereas 
*

.iu

defines the Mendelian sampling effects on the three traits for animal i if it is a not a base 
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population animal. We thereby rewrite Equation [3.1] as 

            * * *

  3               i i i i i i i     y X Z I C u e X Z u e                                     [3.2] 

with   '

3

*

3i ii    Z I C I z*Z  such that ' '

i iz* z C , and all other terms defined as before. 

    Mirroring what was presented previously, albeit in a non-genetic context (Bello et al., 2012) 

and further extending Lu et al. (2015), we write the Cholesky decomposition for iG as 

1 1

3 3( ) ( ) 'u u u

i i i iG I T I T
     , where 3I  is an identity matrix of order 3, 

      
1 2|1 3|1,2

2 2 2, , 
i i i

u

i u u udiag   Δ  is a diagonal matrix of sequentially conditional variance 

components (VC) and 
 

   

21

31 32

0 0 0

0 0

0

u u

i i

u u

i i



 

 
 

  
 
  

T is a lower triangular matrix such that u

iΔ and u

iT are 

modeled as being potentially unique to the environmental or management circumstances 

pertaining to animal i. Now  varu

i iΔ δ  where      
* * *

1 2|1 3|1,2
'i i i i

u u u 
 

δ  is based on the 

specification * *

. .

u

i i i iu T u δ   whose elements can be written recursively Lu et al. (2015) as  

  
* *

1 1i i
u u                                                                          [3.3a] 

     
* * *

2 21 1 2|1

u

i i i i
u u u                                                                [3.3b] 

     
* * * *

3 1 231 32 3|1,2

u u

i i ii i i
u u u u                                     [3.3c] 

For instance,  
*

2|1i
u  is used to represent the genetic effect of MBW conditional on MILKE for 

animal i whereas  3|1,2i
u  pertains to the genetic effect of DMI conditional on MILKE and MBW 

and which we have previously proposed as the genetic effect for rFE for animal i (Lu et al., 

2015). Similarly, we define  
2

3|1,2u i
  is the Mendelian sampling genetic variance of rFE for 

animal i. referred to  21

u

i
 ,  31

u

i
 , and  32

u

i
  as partial efficiencies (PE) at the genetic level. We 

further extend their work using Bello et al. (2010) to allow for the possibility that these genetic 

PE are potentially heterogeneous across cows as manifested by the additional subscript i.  
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    Lu et al. (2015) likewise demonstrated 1 1

3 3( ) ( ) 'e e e

i i i iR I T I T
     , where 

      
1 2|1 3|1,2

2 2 2, , 
i i i

e

i e e ediag   Δ  is a diagonal matrix and 
 

   

21

31 32

0 0 0

0 0

0

e e

i i

e e

i i



 

 
 

  
 
  

T is a lower 

triangular matrix except that here both e

iΔ and  e

iT are potentially unique to the environmental 

circumstances peculiar to animal i following Bello et al. (2010). Now e

iΔ  is the covariance 

matrix of      1 2|1 3|1,2
'i i i i

e e e 
 

ε  as defined within 
. .

e

i i i ie T e ε   whose elements can be 

demonstrated to be written recursively, using Lu et al. (2015), as  

 1 1i i
e e                                                          [3.4a] 

   2 121 2|1

e

i ii i
e e e                                               [3.4b] 

     3 1 231 32 3|1,2

e e

i i ii i i
e e e e                                       [3.4c] 

Here we refer to  21

e

i
 ,  31

e

i
 , and  32 ,

e

i
  as PE at the residual level, again being unique to animal i.  

    Equations [3.3c] and [3.4c] are particularly key for defining rFE in that they specify the key 

relationships between the energy source (DMI) and energy sink traits (MILKE and MBW) at 

both the genetic (i.e.,  31

u

i
 , and  32

u

i
 ) and residual (  31

e

i
 , and  32

e

i
 ) levels. For example,  31

u

i
  

defines the change in 3iu  for every unit change in 1iu  holding constant 2iu  whereas  32

u

i
  defines 

the change in 3iu  for every unit change in 2iu  holding constant 1iu  on animal i.  Furthermore, 

 31

e

i
  and  32

e

i
  are similarly interpreted but at the residual or non-genetic level with respect to 

animal i. In essence, heterogeneous PE at the genetic or residual levels indirectly imply 

heterogeneous genetic and residual correlations between traits across animals as determined by 

different environments and management factors. 

    As in Bello et al. (2010), we specify a structural mixed effects model on each of these PE. For 

example, at the genetic level, we write 
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         ' 'u u u u u

r i r i r r i r
   x  γ z m          [3.5]  

with r = 21, 31, or 32 denoting indices representing PE relationships between MBW and MILKE 

(r = 21), between DMI and MILKE (r = 31) and between DMI and MBW (r = 32) as per 

Equations [3.3b] and [3.3c]. Here  
u

r
γ  represents a 

 u r
p x 1 vector of unknown “fixed effects” 

connected to  
u

r i
  by known incidence row vector   'u

r i
x  whereas 

    2~ ,
um

u

r r
N m 0 I  represents a 

 u r
q x 1 vector of unknown “random effects” connected to  

u

r i
  by known incidence row vector 

  'u

r i
z . In this context, “fixed effects” pertain to those effects characterized by either non-

informative or vaguely informative prior distributions that do not presume exchangeability 

amongst the elements of  
u

r
γ . Strategically, “random effects” specifications are often best 

utilized for factors characterized by a large number of subclasses, with each subclass 

characterized by relatively limited data (Bello et al., 2010). 

We similarly specify a structural mixed effects model for the residual PE
  21

e

i
 ,  31

e

i
 , and  32

e

i
  

specific to observation i 

         ' 'e e e e e

r i r i r r i r
   x  γ z m                              [3.6] 

with r = 21, 31, or 32 as before as per Equations [3.4b] and [3.4c]. Here,  
e

r
γ  denotes a 

 e r
p x 1 

vector of fixed effects connected to  
e

r i
  by known incidence row vector   'e

r i
x  whereas 

    2~ ,
e

e

r m r
N Im 0  represent a 

 e r
q x 1 vector of random effects connected to  

e

r i
  by   'e

r i
z  

where terms are similarly interpreted as with genetic PE. 

 Following Bello et al. (2010), each VC specific to animal i in 
      
1 2|1 3|1,2

2 2 2, , 
i i i

u

i u u udiag      is 

also specified as a function of environmental or management factors in a structural mixed effects 

model: 
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            2log σ log ' l g' ou u

u s i s i s

u u

s i s
    τ z v x                        [3.7] 

where s =1, 2|1, and 3|1,2 is used to denote, respectively, the genetic variance for MBW, the 

genetic variance for MBW conditional on MILKE, and the genetic variance for DMI conditional 

on MILKE and MBW. Here  
u

s
τ  is a 

 u s
p x 1 vector of fixed effects connected to  

2σ
u s i

 by 

known incidence row vector   's i

ux  whereas  
u

s
v  is a 

 u s
q x 1 vector of random effects connected 

to  
2σ
u s i

 by known incidence row vector   's i

uz  . Independent inverted Gamma priors IG(  ηu

s
,

 η 1u

s
 ) are assigned to each element of        

1

u sq
uu

ds s
d

v


v  such that
  E 1u

s d
v   with coefficient 

of variation (CV) of   
 

1
C

η
V

2

u

us

s




v  as previously demonstrated by Kizilkaya and 

Tempelman (2005) and  Bello et al. (2010). That is, 
  CV u

s
v  characterizes the standard 

deviation of subclass-specific variances expressed relative to the average subclass variance. 

Finally, the VC in 
      
1 2|1 3|1,2

2 2 2, , 
i i i

e

i e e ediag   Δ  are similarly modeled with a mixed effects 

specification: 

            2log σ log l g' o' e e

e s i s s

e

i s i s

e   τ z v x                [3.8] 

where s = 1, 2|1, and 3|1,2 is used to denote, respectively, the residual variance for MBW, the 

residual variance for MBW conditional on MILKE, and the residual variance for DMI 

conditional on MILKE and MBW. Here  
e

s
τ  denotes a  e s

p x 1 vector of fixed effects connected 

to  
2σ
e s i  by known incidence row vector   's i

ex  whereas  
e

s
v  represents a 

 e s
q x 1 vector of 
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random effects connected to  
2σ
e s i

 by known incidence row vector   's i

ez  . Here, elements of 

      '

1

e sq
e e

s s l
l

v


v  are assumed to be random independent draws from IG(  ηe

s
,  η 1e

s
 ) such that 

  E 1e

s l
v   and   

 

1
C

η
V

2

e

s e

s




v .  

    Following Bello et al. (2010) and Kizilkaya and Tempelman (2005), vaguely informative 

priors are specified on  ηe

s
 and  ηu

s
 as follows:  

    
  

2

1
η  ~ p η  

1 η

u u

s s
u

s




                                               [3.9] 

     
  

2

1
η  ~ p η  

1 η

e e

s s
e

s




                                            [3.10] 

for s = 1, 2|1, and 3|1,2. 

For all analyses in this paper, flat unbounded priors are specified on 1β , 2β , 3β ,  21

uγ ,  31

uγ ,

 32

uγ ,  21

eγ ,  31

eγ ,  32

eγ ,  1

uτ ,  2|1

uτ ,  3|1,2

uτ ,  1

eτ ,  2|1

eτ ,  3|1,2

eτ ,  
2

21um
 ,  

2

31um
  

2

32um
 ,  

2

21em
 ,  

2

31em
 and 

 
2

32em
 ,as also adapted by Bello et al. (2010), although vaguely or even rather informative priors 

could be specified as well. Due to these flat prior specifications, it is imperative to invoke 

identifiability restrictions on  21

uγ ,  31

uγ ,  32

uγ ,  21

eγ ,  31

eγ ,  32

eγ ,  1

uτ ,  2|1

uτ ,  3|1,2

uτ ,  1

eτ ,  2|1

eτ , and 

 3|1,2

eτ similar to those commonly invoked for fixed classification factors (i.e., 1β , 2β , and 3β ) in 

classical linear model specifications. In that regard, we utilize the corner parameterization 

(Clayton, 1996, Kizilkaya and Tempelman, 2005) also referred to as the set-to-zero restriction 

(Milliken and Johnson., 2009) and as also used by Bello et al. (2010) whereby an overall 



 

47 

 

intercept is specified and the effect corresponding to one arbitrarily chosen level of each fixed 

effects factor is ignored or “zeroed out”.  

Full conditional densities (FCD) of all unknown (hyper)parameters as required for conducting 

Markov Chain Monte Carlo (MCMC) Bayesian analysis are provided in the Appendix B. 

3.3.2 Application to Dairy Consortium Data 

3.3.2.1 Data Source and Editing 

A dataset of MILKE, DMI, and MBW on 5,088 Holstein cows was collected on 13 research 

stations and studies from the United Kingdom, the Netherlands, Canada, and the United States 

(US); data sources and editing procedures used for this study are extensively characterized 

elsewhere (Berry et al., 2014, Lu et al., 2015, Tempelman et al., 2015, Manzanilla-Pech et al., 

2016).  Phenotypes on all 3 traits were further condensed into 42-d records by taking the average 

of the first 6 weekly records on all 3 traits between 50 and 200 DIM.  If data from multiple 

lactations were available on individual cows, only the earlier lactation was chosen. One research 

station was in Canada, being the University of Alberta (AB). Six stations were in the US, 

specifically, Iowa State University (ISU), Michigan State University (MSU), the University of 

Florida (UF), the University of Wisconsin-Madison (UW), the USDA Dairy Forage Research 

Center (USDFRC) in Madison, WI, and the USDA Beltsville Agricultural Research Center 

(BARC) in Beltsville, MD. Four research stations were in the Netherlands including an 

experimental herd ‘t Gen (TGEN) in Lelystad, the Nij Bosma Zathe (NBZ) herd located near 

Leeuwarden, a third study (ZOM) based on the work by Zom et al. (2012) ; and a compilation of 

studies (NLN) based on data collected from various nutritional experiments, all of which were 



 

48 

 

previously characterized in detail by Tempelman et al. (2015). The remaining 2 herds were from 

the United Kingdom, the Langhill (LAN) farm near Edinburgh from 1992 to 2001 and from the 

Scottish Agricultural College (SAC) Dairy Research Centre based at Crichton Royal Farm near 

Dumfries with data collection from 2003 to 2011; again, these data are also described 

extensively elsewhere (Tempelman et al., 2015). A summary of the number of cows by research 

station/study is provided in Table 3.1. 

Table 3.1: Distribution of cows by region. 

Region  Station  No. of cows with phenotypes  

Canada AB 236 

United States 

UF  175  

ISU  742  

MSU  158  

UW  237  

USDFRC  565 

BARC  286  

Netherlands  

TGEN  569  

NBZ  99  

ZOM  661  

NLN  329 

United Kingdom  
LAN  590  

SAC  441  

Overall  
 

5,088  

1
AB = University of Alberta; UF = University of Florida; ISU = Iowa State University; MSU 

= Michigan State University; UW = University of Wisconsin–Madison; USDFRC = USDA 

Dairy Forages Research Center; BARC = USDA Beltsville Agricultural Research Center; TGEN 

= ‘t Gen experimental herd, Lelystad, the Netherlands; NBZ= Nij Bosma Zathe, Leeuwarden, the 

Netherlands; ZOM = data based on the work of Zom et al. (2012); NLN = compilation of studies 

previously characterized by Tempelman et al. (2015); LAN = Langhill farm, Edinburgh, UK; 

SAC = Scottish Agricultural College.  
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    The specification for the full hierarchical Bayesian model included the fixed effects of 

research station and parity (primiparous versus multiparous) for each of  1

uτ ,  2|1

uτ ,  3|1,2

uτ ,  1

eτ ,

 2|1

eτ , and  3|1,2

eτ .  Research station, parity, and the linear and quadratic effects of DIM were 

specified in  21

uγ ,  31

uγ ,  32

uγ ,  21

eγ ,  31

eγ , and  32

eγ . Finally, research station, parity, ration with 

station, and up to 4
th

 order polynomial effects of DIM were specified in 1β , 2β , and 3β . Ration 

within station was specified in all cases as the single random effects factor for each of  
u

r
m ,  

e

r
m , 

 
u

s
v , and  

e

s
v . Given that there were a total of 271 rations across the 13 research stations, it was 

more important to specify these ration effects as random at the deepest levels of the model 

hierarchy (i.e., for PE and VC) in order to facilitate efficient borrowing of information across 

rations. Conversely, treating ration effects as fixed in 1β , 2β , and 3β was deemed to be feasible 

because these effects are specified closer to the data (y) in the model hierarchy. To account for 

changes in energy balance, the average daily change in BW (BW) was fitted as a covariate in 

1β , 2β , and 3β  as well.  

3.3.2.2 Model Comparison 

 Model comparison and selection in hierarchical Bayesian inference is often formally based on 

the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) as well as on the relative 

sizes of the posterior z-scores; i.e., the ratio of the posterior means to their posterior standard 

deviations (Gelman et al., 2012). The absolute values of these posterior z-scores can be used in 

Wald-like tests to ascertain, for example, whether or not they exceed 1.96 in absolute value for a 

Type I error rate of 5%, assuming the marginal posterior density of the corresponding parameter 

is reasonably symmetric. The DIC has previously been used in a stepwise manner to infer 
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evidence for fixed and random sources of heterogeneity on VC and PE within a 2-trait model by 

Bello et al. (2012). However adapting their stepwise process would be far more onerous for our 

3-trait model given the need for an assessment of which fixed or random effects factors to keep 

for each of 12 different mixed model subsets (i.e., 3 separate models for each of Equations [3.5], 

[3.6], [3.7], and [3.8]) beyond the classical mixed model specification in Equation [3.1].  Thus, 

we only compared 5 models starting at one extreme from a purely homoscedastic MT model 

with homogeneous PE and VC at all levels (M0) as developed and used previously in Lu et al. 

(2015) to the proposed fully heteroscedastic MT model with heterogeneous PE and VC, based on 

all structural mixed effects model specifications as detailed in this paper (M4). The remaining 

models evaluated were M1) fixed effects (i.e., without random effects) modeling on both genetic 

and residual PE with homogeneous genetic and residual VC, M2) fixed effects modeling on 

genetic and residual PE and on genetic and residual VC and M3) full mixed effects modeling on 

VC with only fixed effects modeling on PE. 

3.3.2.3 Cross-validation Assessment 

    To assess the relative importance of modeling heterogeneous genetic and residual VC and PE, 

we assessed the cross-validation performance of our proposed model (M4) relative to the more 

conventional MT mixed model (M0) of Lu et al. (2015). More specifically, a 5-fold cross 

validation study was conducted by merely randomly partitioning the entire dataset into 5 equally 

sized subsets such that for each of the folds, 4 subsets were chosen as training data with the 

remaining subset chosen as validation data. The performance of the 2 models were compared 

with respect to cross-validation predictive accuracy defined as the correlation between true DMI 
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and prediction in the validation datasets based on estimates derived from the analyses of the 

training datasets. 

3.3.2.4 Marginal Means 

    All reported estimates were based on the full model (M4), determined to be the best fitting of 

those evaluated. To facilitate interpretation, however, estimates of all fixed effects were re-

expressed to a “marginal mean” or “least-squares means” basis as also popularized by SAS 

software (Littell et al., 2002, Milliken and Johnson., 2009); further illustration in the context of 

our MT model is presented by Bello et al. (2010) and Bello et al. (2012). For example, linear 

combinations of  21

uγ ,  31

uγ ,  32

uγ ,  21

eγ ,  31

eγ , and  32

eγ  were used to estimate marginal genetic and 

residual PE relationships for the various research stations, averaged across levels of the 

remaining factor(s) (i.e., parity) and at the midpoint covariate values (i.e., DIM = 125 d). 

Marginal mean linear combinations of  1

uτ ,  2|1

uτ ,  3|1,2

uτ ,  1

eτ ,  2|1

eτ , and  3|1,2

eτ were exponentiated 

to the VC scale in a manner similar to that described by Bello et al. (2010). Pairwise 

comparisons between marginal posterior means were conducted between levels of each fixed 

effects factor (i.e., stations and parity) using 2-tailed Bayesian P-values in the manner described 

previously by Bello et al. (2010). 

3.3.3 Simulation Study 

    We realize that our proposed Bayesian MT model on 3 traits is massively hierarchical in 

nature since it entails a total of 15 different mixed model specifications, including 3 within the 

basic first stage specification for yi in Equation [3.1], one for each of  21

u

i
 ,  31

u

i
 , and  32

u

i
  in 

Equation [3.5] , one for each of  21

e

i
 ,  31

e

i
 , and  32

e

i
 in Equation [3.6], one for each of  

2

1
σ

u i ,
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 
2

2|1
σ

u i
, and  

2

3|1,2
σ

u i
 in Equation [3.7], and one for each of  

2

1
σ

e i
,  

2

2|1
σ

e i
, and  

2

3|1,2
σ

e i
 in Equation 

[3.8]. Hence, similar to Bello et al. (2010), we used a simulation study to validate the proposed 

model and Bayesian inference strategy as developed elsewhere.  

Twenty replicated datasets were simulated based on only the subset of the data and pedigree 

deriving from the US research stations to facilitate computational tractability. An overall 

intercept and station effects were generated as fixed effects for PE (  21

uγ ,  31

uγ ,  32

uγ ,  21

eγ ,  31

eγ , 

and  32

eγ ) and for the VCs (  1

uτ ,  2|1

uτ ,  3|1,2

uτ ,  1

eτ ,  2|1

eτ , and  3|1,2

eτ ), whereas ration within station 

effects were generated as random effects with variance components  
2

21um
 ,  

2

31um
 ,  

2

32um
  for the 

genetic PE and  
2

21em
 ,  

2

31em
 , and  

2

32em
 for the residual PE and with hyperparameters  1

η  u
,  2|1
η  u

, 

and  3|1,2
η  u

 for the genetic VC and  1
η  e

,  2|1
η  e

, and  3|1,2
η  e

for the residual VC. True values for 

these (hyper)parameters were roughly determined as estimates from the analysis of subset of data 

deriving from the US. Coverage probabilities of the 95% highest posterior density (HPD) 

interval for each parameter or hyper-parameter were based on how many times the HPD included 

the true values over the 20 replicated datasets.  

3.3.4 MCMC Implementation 

For all analyses involving either the dairy or simulated data, trace plots, autocorrelation, and 

effective sample size (ESS) for samples of all unknown parameters drawn from the posterior 

density using MCMC were monitored (Brooks and Gelman, 1998) using the R package Coda 

(Plummer et al., 2006). The number of burnin cycles were 30,000 for the simulation study and 

20,000 for the dairy data analysis.  After burnin, every tenth cycle was saved from 100,000 
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MCMC cycles such that posterior inference was based on 10,000 cycles.  This sampling strategy 

was sufficient to ensure that ESS > 100 for all hyperparameters. 

3.4 Results 

3.4.1 Analysis of Dairy Consortium Data 

As indicated previously, only a small subset of all possible models was considered, the 

simplest model (M0) being equivalent to a classical homogeneous (co)variance matrix multiple-

trait modeling specification as in Lu et al. (2015). DIC values were expressed relative to Mo (i.e. 

DIC = 0 for Mo) which was determined to be the worst fitting model. DIC values became 

progressively smaller (i.e., better fitting) for increasingly more complex models starting with M1) 

fixed effects but no random effects modeling on both genetic and residual PE with no structural 

modeling at all for VC (DIC = -1,673); M2) only fixed effects modeling on both genetic and 

residual PE and VC (DIC = -4,305); M3) full mixed effects modeling on VC with fixed effects 

modeling only on PE (DIC = -4,633); and finally M4) full mixed effects modeling on both VC 

and PE (DIC = -5,400), the best fitting of all models and upon which all subsequent inferences 

on the dairy data analysis are based. Clearly then, it was important to structurally fit genetic and 

residual sources of heterogeneous PE and VE per Equations [3.5], [3.6], [3.7], and [3.8], 

recognizing that DIC differences exceeding 7 are generally considered to represent significant 

difference in model fit (Spiegelhalter et al., 2002).  

3.4.2 Inferences on Factors Influencing PE 

    The posterior means (PMEAN) and posterior standard deviations (PSD), 95% Highest 

Posterior Density (HPD) intervals, and ESS for all PE related inferences on marginal means of 
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station, parity, linear, and quadratic effects of DIM at both genetic (  21

uγ  31

uγ , and  32

uγ ) and 

residual levels (  21

eγ  31

eγ , and  32

eγ ) as well as variance components for random effects at the 

genetic (
 

2

21um
 ,

 
2

31um
 , and 

 
2

32um
 ) and residual (

 
2

21em
 ,

 
2

31em
 , and 

 
2

32em
 ) levels are 

summarized in Appendix Table B.1 for MBW|MILKE, in Table 3.2 for DMI|MILKE, and in 

Table 3.3 for DMI|MBW, respectively.  
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Table 3.2: Posterior inferences characterizing heterogeneity of genetic and residual partial efficiencies of DMI
1
 on MILKE

2
 

 

1
 Dry matter intake (in Kg) 

2
 Milk energy (in Mcal)

 

3
 Posterior (marginal) mean (± posterior standard deviation) 

4
 95% Highest posterior density interval 

5
 Effective sample size 

6
 Station levels characterized in body of paper. 
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Table 3.3: Posterior inferences characterizing heterogeneity of genetic and residual partial efficiencies of DMI
1
 on MBW

2 

 

1
 Dry matter intake (in Kg) 

2
 Metabolic body weight (in Kg)

 

3
 Posterior (marginal) mean (± posterior standard deviation) 

4
 Estimates not sharing the same letters within factors are statistically different (P < 0.05). 

5
 95% Highest posterior density interval 

6
 Effective sample size 

7 
Station levels characterized in body of paper. 
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    Although we do not particularly highlight results regarding MBW|MILKE in this paper, it is 

intriguing to note from Supplementary Table B.1 that the genetic PE between the 2 traits were 

not generally different from 0 for any one research station nor for either parity because 0 fell 

within the 95% HPD in all cases. Conversely, residual relationships were universally positive. 

Taken together and using Equation [3.7] in (Lu et al., 2015), these results imply a universally 

negligible genetic correlation but a positive residual correlation between MBW and MILKE. At 

any rate, there was also no formal evidence of any heterogeneity in these relationships between 

research stations or parities based on pairwise comparisons between the corresponding marginal 

means. Also, there was no evidence of heterogeneous genetic variances but strong evidence of 

heterogeneous residual variances across stations for MILKE (Supplementary Table B.2) whereas 

there was no evidence of any heterogeneous genetic nor residual variances for MBW|MILKE 

across stations (Supplementary Table B.3)  

  Because our focus was on rFE, we were particularly interested in PE relationships involving 

DMI. As a basis for reference, the overall mean PE at the genetic and residual levels were 

respectively determined to be           
1

1
ˆ' ˆ'

n
u u u u u

r r i r r i r
in




  m γ z x  and 

          
1

1
ˆ' ˆ'

n
e e e e e

r r i r r i r
in




  m γ z x  where  
ˆ u

r
γ ,  

ˆ u

r
m ,  

ˆ e

r
γ , and  

ˆ e

r
m  denote the PMEAN of the 

corresponding parameters for r = 31 or 32; i.e., PE of DMI on MILKE and of DIM on MBW, 

respectively. Specifically, the PMEAN(± PSD) of  31

u  was 0.38(± 0.10) kg/Mcal whereas the 

PMEAN (± PSD) of  32

u  was 0.10(± 0.05) kg/kg
0.75

 implying then, for example, the genetic 

merit of DMI is estimated to increase by 0.38 kg on average for every Mcal increase in the 

genetic merit of MILKE holding constant MBW. At the residual level, the PMEAN(± PSD) of 
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 31

e was 0.33 (± 0.06) kg/Mcal whereas the PMEAN(± PSD) of  32

e  was 0.07(± 0.04) kg/kg
0.75

 

such that, for example, as the residual or temporary environment effect of MBW increases by 1 

kg
0.75

, the residual effect of DMI is estimated to increase by 0.07 kg holding constant MILKE. 

These overall genetic and residual PE estimates are in reasonable agreement with averages of 

station specific partial regression coefficients relating DMI to MILKE and to MBW within a 

classical RFI analysis on the same data reported previously by Tempelman et al. (2015) who, in 

turn, demonstrated these estimates to be consistent with estimates reported by NRC (2001). 

   A scatterplot of the station-specific marginal means for genetic and residual PE versus the 

corresponding partial regression coefficients relating DMI to MILKE and to MBW from the 

classical RFI analyses in Tempelman et al. (2015) are provided in Figure 3.1, noting that 

estimates from Station AB are not included in Figure 3.1 since that station was not considered in 

Tempelman et al. (2015). Correlations between station-specific partial regression coefficients 

relating DMI to MILKE, reported by Tempelman et al. (2015), with corresponding genetic and 

residual PE estimates were 0.66 and 0.76, respectively. Correlations between station-specific 

partial regression coefficients relating DMI to MBW, reported by Tempelman et al. (2015), with 

corresponding genetic and residual PE estimates were 0.39 and 0.56, respectively.  Although the 

agreement between the 2 analyses was generally good, it should be clearly seen that the genetic 

PE were generally larger than residual PE, particularly for DMI on MILKE (Figure 3.1a ). 

Furthermore, there appeared to be less heterogeneity between stations in the genetic PE relative 

to the residual PE for DMI on MBW (Figure 3.1b).  
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1
 Dry matter intake (in Kg) 

2
 Milk energy (in Mcal)

 

3
 Metabolic body weight (in Kg) 

Figure 3.1: Posterior means of station-specific genetic (  31
ˆu and  32

ˆu ) and residual (  31
ˆe and  32

ˆe ) 

partial efficiencies versus estimated partial regression coefficients ( 1b̂ and 2b̂ ) previously reported 

by Tempelman et al., 2015) for DMI
1
 on MILKE

2
 (Panel a) and MBW

3
 (Panel a). 

  A list of these same station-specific marginal mean inferences for the genetic and residual PE 

are provided in Table 3.2 for DMI on MILKE and in Table 3.3 for DMI on MBW. Inference 

summaries are also provided for primiparous versus multiparous animals as well as for linear and 

quadratic coefficients of DIM on these PE. Although the estimated marginal mean genetic PE 

between DMI and MILKE ranged widely from 0.28 to 0.49 kg/Mcal across stations, there was no 

formal evidence of any difference (P > 0.05) between any pair of stations or between 

primiparous versus multiparous cows. Variation due to ration within station effects on genetic PE 

between DMI and MILKE seemed substantial; based on the reported point estimate 

 
2

31
ˆ 0.07

um
   kg/Mcal such that one might anticipate roughly a range of  4 0.07 = 0.28 

(a) 
(b) 



 

60 

 

kg/Mcal difference on genetic PE between the most extreme ration effects, assuming normality 

and adjusting for station and DIM effects. As with the genetic PE, any differences in the 

marginal mean residual PE of DMI to MILKE did not appear to be important even though again 

point estimates varied widely from 0.27 kg/Mcal to 0.49 kg/Mcal. Furthermore, the estimate

 
2

31
ˆ 0.06

em
   kg/Mcal further suggested that ration within station could be a substantial source 

of variability for the residual PE relationship between DMI and MILKE.  Linear and quadratic 

effects of DIM also did not seem to be important for either residual or genetic PE; in other words, 

stage of lactation did not appear to be important for modeling PE between DMI and MILKE. 

The posterior summary of station and parity level effects on the genetic and residual PE of 

DMI to MBW are provided in Table 3.3. There appeared to be no significant differences between 

stations for the genetic PE although point estimates ranged from 0.07 kg/kg
0.75

 to 0.21 kg/kg
0.75

. 

Furthermore, heterogeneity in genetic PE of DMI to MBW due to the rations appeared to be 

relatively substantial (
 

2

32
ˆ 0.024

um
  kg/kg

0.75
). However, at the residual level, there was 

formal evidence of at least one difference for PE of DMI on MBW between ZOM (0.05 ± 0.02 

kg/kg
0.75

) and USDFRC (0.13 ± 0.04 kg/kg
0.75

) even though point estimates ± standard errors 

ranged more widely from 0.02 ± 0.04 kg/kg
0.75

 (SAC) to 0.18 ± 0.12 kg/kg
0.75

(UF). The 

magnitude of variation in the residual PE of DMI on MBW due to the ration was again rather 

substantial (
 

2

32
ˆ 0.026

em
  kg/kg

0.75
).  

3.4.3 Inferences on Variance Components and Heritability of rFE 

Supplementary Tables C.2 and C.3, and Table 3.4 summarize marginal inferences on fixed 

and random effects influencing VC for MILKE, MBW|MILKE, and DMI|MILKE,MBW, 
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respectively. We focus in particular on DMI|MILKE,MBW; i.e., our proposed rFE trait. The 

overall genetic variance as based on the PMEAN (± PSD) of  

      2

3|12 3|12 3|12
1

1
ˆ ˆexp l' og ' log

n
u u

u

i

u u

i i
n




  x τ z v     was 0.65 (± 0.19) kg
2
, whereas the overall 

residual variance was based on the PMEAN (± PSD) of 

    2

3|1,2 3|1,2 3|1,2

1

1
ˆ ˆσ 'exp log log'

n
e e

e i i

e

i

e

n 

  v τ z x  being 1.86(± 0.45) kg
2
 , such that the 

PMEAN (± PSD) of overall heritability was 0.26 (± 0.08). Evidence for heterogeneity in the 

genetic variance for rFE was considerable (Table 3.4). The NBZ station appeared to have the 

smallest estimated genetic variance (0.47 ± 0.10 kg
2
) whereas the largest genetic variance was 

estimated at UF (1.28 ± 0.41 kg
2
) among all stations. No significant differences in genetic 

variance in rFE were found between primiparous and multiparous cows. Furthermore, genetic 

variances were demonstrated to be highly heterogeneous between rations within stations with the 

95% HPD for the CV on genetic variance between rations being between 0.26 and 0.52.  
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Table 3.4: Posterior inferences characterizing heterogeneity of genetic and residual variation of DMI
1
|MILKE

2
,MBW

3 

 

1
 Dry matter intake (in Kg) 

2
 Milk energy (in Mcal)

 

3
 Metabolic body weight (in Kg)

 

4
 Posterior (marginal) mean (± posterior standard deviation) 

5
 Estimates not sharing the same letters within factors are statistically different (P < 0.05). 

6
 95% Highest posterior density interval 

7
 Effective sample size 

8
 Station levels characterized in body of paper. 

9
 Coefficient of variation of ration within station-specific genetic and residual variance components
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   The magnitude of heterogeneity on the residual variance of rFE across research stations was 

also quite considerable (Table 3.4). The marginal PMEAN (± PSD) for stations ranged from a 

low of 0.85 (± 0.24) kg
2
 at NLN to 3.01 (± 1.25) kg

2
 at LAN. Furthermore, primiparous cows 

were inferred to have a substantially lower residual variance (1.01 ± 0.18 kg
2
)
 
compared to 

multiparous cows (2.91 ± 0.47 kg
2 

). Also, there appeared to be considerable evidence for 

heterogeneity of residual variances across rations as the 95% HPD the CV on genetic variance 

between rations was defined as between 0.47 to 1.57.  

 Table 3.5 summarizes inferences on heritabilities of rFE across different stations and parity 

classes. Evidence in favor of heterogeneity of heritability was substantial with the smallest 

heritability estimated at LAN (0.16 ± 0.06) at the largest estimates at UF (0.46 ± 0.13) and NLN 

(0.41 ± 0.09). Furthermore, the estimated heritability (0.39 ± 0.06) for primiparous cows was 

almost twice that (0.22 ± 0.04) for multiparous cows with the difference being significant (P < 

0.05).  
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Table 3.5: Inferences on station and parity specific heritabilities for DMI
1
|MILKE

2
,MBW

3
 

 PMEAN (PSD)
4,5

 95% HPD
6
 ESS

7
 

Factor Levels    

Station
8 

AB 0.35
ab

(0.14) [0.10,0.62] 668 

BARC 0.26
ab

(0.10) [0.08,0.47] 1,003 

ISU 0.29
ab

(0.10) [0.12,0.50] 539 

MSU 0.35
ab

(0.10) [0.16,0.56] 652 

UF 0.46
a
(0.13) [0.22,0.71] 922 

USDFRC 0.36
ab

(0.10) [0.18,0.55] 460 

UW  0.37
ab

(0.10) [0.18,0.57] 701 

NBZ 0.25
ab

(0.09) [0.09,0.42] 670 

NLN 0.41
a
(0.09) [0.22,0.57] 540 

TGEN 0.24
ab

(0.10) [0.07,0.44] 554 

ZOM 0.31
a
(0.05) [0.21,0.41] 254 

LAN 0.16
b
(0.06) [0.05,0.29] 667 

SAC 0.25
ab

(0.10) [0.08,0.45] 804 

Parity  
Primiparous 0.39

x
(0.06) [0.27,0.50] 342 

Multiparous 0.22
y
(0.04) [0.14,0.31] 208 

1
 Dry matter intake (in Kg) 

2
 Milk energy (in Mcal)

 

3
 Metabolic body weight (in Kg)

 

4
 Posterior mean (± posterior standard deviation) 

5
 Estimates not sharing the same letters are statistically different (P < 0.05). 

6
 95% Highest posterior density interval 

7
 Effective sample size 

8
 Station levels characterized in body of paper. 

3.4.4 Cross-validation 

The accuracies for the 5-fold cross validation on the dairy consortium data are provided in 

Table 3.6. There was strong evidence for differences in model fit between the homogeneous (M0) 

and fully heterogeneous (M4) models. The accuracy for predicting DMI was consistently higher 

(~4%) using the heterogeneous model compared to that of the homogeneous model, which 
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further implies that substantial heterogeneity of some nature (i.e., on genetic or residual PE, or 

on genetic or residual VC) exists in this consortium dataset.  

Table 3.6: Cross validation prediction accuracies for each of 5 different validation datasets (fold) 

for homogeneous and heterogeneous models. 

 Combined 

Fold 
Homo 

(M0) 

Heter 

(M4) 

1 0.75 0.78 

2 0.78 0.82 

3 0.80 0.84 

4 0.77 0.80 

5 0.82 0.85 

Mean 0.78 0.82 

3.4.5 Simulation Study Assessment  

   Coverage frequencies, ranging from 16/20 to 20/20 for the 95% HPD of key hyperparameters 

across the 20 replicates in the simulation study, are listed in Table 3.7 and were as nearly 

expected (i.e., 95%). Summing across the last column of Table 3.7, the overall coverage 

frequency across all parameters was 458/470 or very close to the expected 95%. The posterior 

means of  
u

r
 γ  were more variable and their 95% HPD thus was wider than those of  

e

r
 γ , as 

there is typically greater uncertainty for parameters characterizing distribution of random effects 

as opposed to those for residuals, as reported in an earlier study (Bello et al., 2010). 
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Table 3.7: Summary on 95% highest posterior density interval (HPD) and coverage probabilities 

across 20 replicated datasets in simulation study 

 

3.5 Discussion 

We have previously proposed a MT model analysis involving MILKE, MBW, and DMI using 

the Cholesky decomposition to provide a statistically more elegant approach for characterizing 

the genetic merit and heritability of rFE relative to classical RFI approaches (Lu et al., 2015).  

Note that the proposed MT model is more closely related than the classical specification of RFI 

to the genotypic regression model proposed by Kennedy et al. (1993); so the developments we 
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have presented here somewhat represent a heterogeneous yet more elegant extension of their 

genotypic regression model.  As we had also indicated in Lu et al. (2015), it certainly would have 

been ideal to include BW as a fourth trait given that, like MILKE and MBW, it is considered to 

be an important energy sink for lactating dairy cattle(Berry and Crowley, 2013). But, for reasons 

already outlined in Lu et al. (2015), we modeled it as a covariate to account for its effect on rFE 

in our MT analyses. We further augment this work here by modeling heterogeneity in the genetic 

and residual (co)variances, albeit indirectly, between MILKE, MBW, and DMI, by specifying 

structural mixed effects models on each key parameter defined by the square root free Cholesky 

decomposition on the (co)variance matrices, similar to Bello et al. (2010). Based on formal 

model choice criteria (DIC), we determined that specifying such heterogeneity was important for 

the analysis of an international dairy feed efficiency consortium dataset.  

Due to computing constraints, we did not consider every possible submodel given that there 

are a total of 15 different structural model specifications, 3 per each of Equations [3.1], [3.5], 

[3.6], [3.7], and [3.8]. We might further conclude, nevertheless, that based on our analyses, 

specifying this heterogeneity was ultimately most important for VC and somewhat less so for PE, 

particularly for PE at the genetic level. The latter is not particularly too surprising since it is 

typically more challenging to detect heterogeneity in genetic (co)variances relative to residual 

(co)variances. It was somewhat surprising to us that we found no evidence of differences 

between parity classes for genetic or residual PE for DMI on MBW or for DMI on MILKE given 

that the metabolic relationships between these traits have been reported to differ between 

primiparous and multiparous cows (Wathes et al., 2007).  
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There was mild evidence of some heterogeneity in residual PE for DMI on MBW between 

stations with the only significant difference involving two research stations. Any differences in 

ration-specific or station specific PE could be partly attributed to differences, for example, in 

management strategies, ration compositions, measurement error, or ambient temperature; e.g., 

whether or not the animal is a thermo-neutral environment (NRC, 1981). Furthermore, we 

demonstrated that genetic PE were generally larger than residual PE implying that the strength of 

the relationships between DMI with MILKE and MBW is stronger at the genetic level than at the 

residual level. In a classical RFI analysis, the residual and genetic PE are constrained to be 

identical as previously noted by Lu et al. (2015); nevertheless estimates of these 2 sets of PE 

tracked very well with the corresponding partial regression coefficients from the station-specific 

RFI-based analyses conducted by Tempelman et al. (2015) as demonstrated earlier in Figure 3.1. 

Note that any heterogeneity in the PE, particularly at the genetic level, has implications for 

accurately estimating breeding values on rFE, because these PE determine the key relationship 

between the genetic merit of DMI and that of rFE using Equation [3.3c] for example.   

We concluded that the genetic PE of MBW|MILKE did not differ from 0 for any station, 

implying then no evidence of genetic association between MILKE and MBW. Our results are 

then consistent with near zero genetic correlation estimates between these 2 traits as reported 

elsewhere (Berry et al., 2003, Spurlock et al., 2012).  

As previously indicated, there was much stronger evidence of a difference in genetic and 

residual variances and, consequently, in heritabilities for rFE between research stations, adding 

further evidence that rFE is indeed a complex trait as also indicated by Tempelman et al. (2015) 
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who previously determined country specific differences for heritabilities of RFI based on 

analyses of weekly data. The average heritability estimates reported in Table 3.6 appeared to be 

somewhat larger here than in Lu et al. (2015) and in Tempelman et al. (2015). Any differences 

between the current study with those 2 previous studies may be partly due to the fact that 42 d 

data were used here instead of weekly data, such that the effect of BW was better characterized 

by relatively less measurement error in the current study. However, it could also reflect the fact 

that the modeled heterogeneity in genetic and residual PE in Equations [3.3c] and [3.4c] leads to 

more accurate characterizations of genetic and residual effects of rFE (i.e.,  3|1,2i
u  and  3|1,2i

e , 

respectively), thereby resulting in a more reliable estimates of the heritabilities of rFE. Our 

analyses furthermore indicated that the heritability of rFE in primiparous cows was nearly double 

that of multiparous cows due to the large difference between the parity classes for residual 

variance. Again, these results may partly reflect the differences in energy dynamics as it relates 

to growth demands in primiparous cows relative to multiparous cows. Since selection indices 

involving rFE inherently depend upon the correct specification of genetic/residual variances and 

covariances between the key traits of MILKE, MBW, and DMI (Lu et al., 2015), it appears that 

differential selection index weightings may need to reflect this heterogeneity across stations and 

parities as well.  It is also important to note that between-station heterogeneity may partly reflect 

differences in time periods for data collection (see Table 1 in Tempelman et al., 2015), noting 

that higher heritability estimates tended to be associated with more recent data. 

  Although our genetic analysis is based on the use of pedigree information and not on 

genomic marker information to specific animal relationships, it is conceptually easy to extend the 
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proposed multivariate model for genomic evaluations simply by replacing the A with the 

genomic or realized relationship matrix G or even a hybrid matrix H based on data from both 

genotyped and non-genotyped animals as with single step GBLUP (Aguilar et al., 2010). We 

focused on a pedigree-based analysis in this paper for one primary reason; A is a relatively 

sparse matrix with 83.6% of its entries being 0, thereby allowing us to effectively utilize sparse 

matrix software (i.e., “SparseM” package in R) to help improve computational efficiency for 

sampling elements of u whereas G is typically a dense matrix. We also determined (not reported) 

inconsequential differences in EBV between using A versus G based on computationally 

tractable MT analyses assuming homogeneous PE and VC specifications (Lu et al., 2015). 

Nevertheless, we do believe it will be important to further optimize our software code to 

facilitate the incorporation of genomic information in future analyses.  

One potential extension of our proposed model is to directly model genetic effects as random 

effects on genetic and residual PE and VC, much like what we did with ration effects. In other 

words, one could specify Equations [3.5], [3.6], [3.7], and [3.8] as a function of polygenic or 

even SNP-specific effects (i.e., in genomic) models. In fact, with respect to residual variances as 

per Equation [3.8], related work has already been conducted by Sorensen and Waagepetersen 

(2003) for polygenic effects and by Yang et al. (2011) for genomic marker effects. With respect 

to PE, somewhat indirectly related work has been conducted in beef cattle by Savietto et al. 

(2014) and in poultry(Aggrey and Rekaya, 2013, Rekaya and Aggrey, 2015) whereby animal 

specific random regressions are specified on partial regression relationships between DMI and 

MBW and average daily gain as based on a classical RFI model. At any rate, it seems likely that 
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many more records would be needed than would be required here to infer upon genetic 

heterogeneity of this nature at these higher levels of the Bayesian model hierarchy. Our 

simulation study, nevertheless, indicates that it is possible to infer upon the nature of the 

heterogeneity specified in our proposed model. 

3.6 Conclusions 

We have conducted a hierarchical Bayesian analysis to infer upon potential heterogeneity on 

genetic and residual components of DMI conversion to MILKE and DMI to MBW as well as in 

genetic and residual VC of rFE across research stations.  We detected no evidence of 

heterogeneity in genetic PE with slight evidence of heterogeneity in the residual PE of DMI to 

MBW across research stations. Yet evidence for genetic and residual heteroscedasticity was 

substantial across stations and rations within stations levels for rFE. The estimated heritability of 

rFE ranged from 0.16 to 0.46 across stations, thereby implying that rFE is a more complex trait 

than what is currently considered in most quantitative genetic analyses. Heterogeneous 

relationships across environments should be taken into consideration in the genetic 

characterization and management of rFE in dairy cattle. 
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Chapter4: Genome Wide Association Analyses based on Alternative Strategies for 

Modeling Feed Efficiency 

4.1 Abstract 

Genome wide association (GWA) of residual feed efficiency (rFE) using genome wide 

association (GWA) analysis could help target important genomic regions influencing rFE.  Data 

provided by an international dairy rFE research consortium consisted of phenotypic records on 

dry matter intakes (DMI), milk energy (MILKE), and metabolic body weight (MBW) on 6937 

cows from 16 stations in four counties.  Of these 6937 cows, 4916 had genotypes on 57,347 

single nucleotide polymorphism (SNP) markers. We adapted our previously proposed multiple 

trait (MT) approach for modeling rFE to conduct a GWA study and compared it to a GWA 

analysis based on the more classical residual feed intake (RFI) model. Both models were based 

on a single-step genomic BLUP procedure that allows the use of phenotypes from both 

genotyped and non-genotyped cows.  Estimated effects for single SNP markers were small and 

not statistically important for rFE.  However, upon further refining this analysis to develop joint 

tests on SNP markers within non-overlapping 1-Mb windows, significant associations were 

detected between rFE with a region on each of BTA 12 and 26 under both MT and RFI models.  

There was no overlap between detected genomic regions for rFE and genomic regions 

influencing its component traits (i.e. DMI, MILKE, and MBW). This confirms that rFE and its 

component traits are different such that genomic regions that control DMI are not necessarily 

synonymous with genomic regions influencing rFE.    
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4.2 Introduction 

Residual feed efficiency (rFE), defined as the efficiency of converting feed nutrients into milk 

and body tissue, has gained considerable attention in recent years, partly due to increasing 

constraints on arable land as well as mounting concerns regarding environmental pollution 

(Richardson and Herd, 2004).  Most notably, rFE has been included in the national selection 

index for beef and dairy cattle breeding in Australia in 2014 and 2015, respectively (Gonzalez-

Recio et al., 2014, Byrne et al., 2016) with some other countries considering the same (Hayes et 

al., 2013). Whole genome prediction (WGP) based on the use of single nucleotide polymorphism 

(SNP) markers (Meuwissen et al., 2001) is a particularly promising strategy to improve rFE in 

the long term(Hayes et al., 2013, Pryce et al., 2015, VandeHaar et al., 2016).  Nevertheless, it is 

equally important to identify potential causal variants or quantitative trait loci (QTL) affecting 

rFE in order to fine-tune physiological strategies for further improving rFE (Herd and Arthur, 

2009). 

 Lu et al. (2015) proposed a model that elegantly derived rFE based on a simple 

reparameterization of a standard multiple trait (MT) analysis of its key component traits, namely, 

dry matter intake (DMI), milk energy (MILKE) and metabolic body weight (MBW).  The MT 

model recognizes that the partial regressions relating DMI to MILKE and MBW may be 

different at genetic and non-genetic levels whereas residual feed intake (RFI), a classical 

measure of rFE, is based on specifying one universal set of partial relationships at the phenotypic 

level. Although Lu et al. (2015) used pedigree information to determine the numerator 

relationship matrix (A) between animals, it is certainly possible to substitute A with genomic 

relationships (G) constructed from SNP markers or even a hybrid relationship matrix (H) 
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combining genotyped and non-genotyped animals having phenotypes as in the single step 

(SSBLUP) approach (Aguilar et al., 2010).  One important advantage of MT over RFI analyses is 

that it allows the use of data on animals with missing records on any of its component traits; 

subsequently, MT analyses mitigates the impact of selection bias when records on at least one 

trait are rarely missing such as, for example, MILKE (Pollak et al., 1984). Furthermore, the MT 

model is potentially useful for identifying potential pleiotropic SNP markers associated with 

multiple traits (Banerjee et al., 2008).  Thus, MT extensions to GWA based on the model of Lu 

et al. (2015) could help further elucidate how candidate regions for rFE differ, if at all, from 

those of its component traits. 

  Increasingly, more GWA studies have been based on mixed model association methods that 

simultaneously fit all markers to infer upon any one particular marker of interest (Yang et al., 

2014).  A particularly popular strategy is based on pursuing generalized least squares (GLS) 

inference upon the SNP marker of interest (i.e., treating it as a fixed effect) while treating all 

other SNP markers as random.  This strategy is a feature of the EMMAX software (Kang et al., 

2010) with an efficient implementation provided in Gualdron Duarte et al. (2014) . In GWA 

analyses that simultaneously fit all SNP markers, any given marker may exhibit only a weak 

association with a closely linked QTL, in part because of the multicollinearity issues incurred 

with linkage disequilibrium (LD) with neighboring markers and the large Bonferroni multiple 

comparisons penalty incurred with testing many different SNP in high LD with each other 

(Johnson et al., 2010).  Hence there has been some momentum to using GWA inference based on 

joint tests on SNP markers within various partitions or windows containing groups of SNP 
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markers in order to increase sensitivity and specificity of GWA (Pahl and Schafer, 2010, Moser 

et al., 2015, Goddard et al., 2016).  

    In this study, we compare GWA analysis on rFE based on using the classical RFI model with 

the MT model proposed by Lu et al. (2015) on an international rFE consortium dataset involving 

phenotypes on 6937 cows of which 4916 cows are genotyped. Our objectives were to 1) infer 

upon the genetic architecture for rFE and its components traits; 2) compare GWA inferences for 

rFE between base on the MT model and the RFI model; 3) demonstrate the utility of window-

based inference for GWA. 

4.3 Materials and Methods 

4.3.1 The MT Model 

We propose extending our previously proposed MT model (Lu et al., 2015) to conduct GWA 

analyses on rFE as well as on its component traits, DMI, MILKE, and MBW.  We reintroduce 

the MT model in Equation [4.1] for the three component traits arranged in order as i=1) MILKE, 

i=2) MBW, and i=3) DMI  

1 1 1 1 1

2 2 2 2 2

3 3 3

 

 

  3 3

       

       

       

    
   
   
      

  

 

y X β u e

y X β u e

y X β u e

.                 [4.1] 

Now 1 2 ... 'i i i qiy y y   y  is the vector of responses for all n cows on Trait i =1,2, and 3. 

Here MILKE and MBW are energy sink traits whereas DMI is the energy source trait that all 

jointly determine rFE.  Although BW is also considered to be an important third energy sink 

trait, we specified it as a covariate for the reasons outlined previously by Lu et al. (2015). For 

each trait, iβ  is a vector of fixed effects that included a linear regression on BW, station, first 
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through fourth order polynomial regressions on days in milk (DIM), parity class (i.e. primiparous 

versus multiparous), ration, the interaction between first through fourth polynomial terms on 

DIM and parity class for trait i.  All covariates and dummy variables for these effects are defined 

by the known incidence matrix Xi. Furthermore, 1 2 ...i i i iqu u u   u  and 

1 2 ...i i i iqe e e   e represent vectors of animal genomic effects and residual effects, 

respectively, for trait i. The vector of residuals for all three traits were assumed to be random 

draws from a multivariate normal distribution, i.e.,  ' ' '

1 2 3

'

~ ,MVN    ee e e 0 I Σ , for 
e
 being 

the 3 x 3 residual (co)variance matrix among the traits.  Similarly, the vector of animal genomic 

effects for all three traits were assumed to be multivariate normally distributed 

 ' ' '

1 2 3

'

~ ,MVN    uu u u 0 Σ H  for H being the genetic relationship matrix constructed 

between genotyped and non-genotyped cows and 
u
 being the 3x3 genetic (co)variance matrix 

among the three traits within any animal. Specifically, we define the genetic variance for trait i as 

2

iu , being diagonal element i,i of 
 u

 and the genetic covariance between traits i and i’ as 
',i iu u

or element i,i’ of 
 u.  We similarly define 

2

ie  and 
',i ie e as components of 

e
. Here H was 

constructed based on hybridizing the numerator relationship matrix A between all animals and 

the genomic relationship matrix 
'G ZZ  between the genotyped animals for Z being the 

centered and standardized genotype matrix (Aguilar et al., 2010).  

    Based on the square root free Cholesky decomposition (CD) on 
u
, one can express the 

relationship between the genetic effects for the three traits in a recursive manner (Lu et al., 

2015): 

1 1i iu u                                                   [4.2a] 
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 

2 21 1 2|1

u

i i iu u u                                        [4.2b] 

   
3 31 1 32 2 3|1,2

u u

i i i iu u u u                                      [4.2c] 

Here 
2|1iu  denotes the genetic merit for subject i on MBW conditional on MILKE.

3|1,2iu  denotes 

the genetic merit for subject i on DMI conditional on MILKE and MBW (i.e., 

DMI|MILKE,MBW), which Lu et al. (2015) have previously proposed as an alternative 

expression of genetic merit for rFE.  Furthermore,  
21

u
 ,  

31

u
 , and  

32

u
 are partial efficiencies or 

relationships at the genetic level and derived from the CD on 
u
, that are used to specify these 

recursive relationships in Equations [4.2a]-[4.2c]. Finally,    
1

2

1 1 1
~ ,

n

i ui
u N 


u 0 H , 

   
2|1

2

2|1 2|1 1
~ ,

n

i ui
u N 


u 0 H  , and    

3|1,2

2

3|1,2 3|1,2 1
~ ,

n

i ui
u N 


u 0 H  with 1u , 

2|1u , and 
3|1,2u  

defined to be distributionally independent from each other. Note that 
3|1,2

2

u is the genetic variance 

for the rFE measure proposed by Lu et al. (2015). Lu et al. (2015) also demonstrated how 

relationships similar to those in Equations [4.2a], [4.2b], and [4.2c] can be specified at the 

residual level such that  
21

e
 ,  

31

e
 , and  

32

e
  are analogously defined as residual partial efficiencies 

based on the CD on 
e
.   

    A classical RFI mode (Lu et al., 2015) can be written as a regression of DMI on MILKE and 

MBW with random genetic  RFIu and residual  RFIe effects  

3 1 1 2 2 RFI RFI RFI RFIb b    y y y X β u e   .                            [4.3] 

  Here RFIβ  denotes the vector of fixed effects for RFI with corresponding known incidence 

matrix XRFI. The fixed effects fitted in RFIβ  were the same as those fitted in iβ  from the MT 

model.  Additionally, b1 and b2 are regression coefficients of DMI on MILKE and DMI on MBW, 

respectively, and define partial efficiencies at a composite phenotypic level.  It is also assumed 
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that  2~ ,
RFIRFI uN u 0 H  and  2~ ,

RFIRFI eN e 0 I . Lu et al. (2015) demonstrated that when partial 

efficiencies are identical at the genetic and residual levels (i.e.  
31

e
 =  

31

u
  and  

32

e
 =  

32

u
 ), then 

inferences under the two competing models (RFI versus MT) should be essentially identical.   

 4.3.2 Single SNP Associations 

 All (co)variance components ( can estimated using REML for both the MT (  u eσ Σ Σ  ) 

and the classical RFI models (
2 2

RFI RFIu e    σ ).  Conditional on these REML estimates ( σ̂ ), 

Henderson’s mixed model equations can be used to directly solve for BLUP of the animal 

genetic effects for each of the three component traits (i.e. 1u , 2u , and 3u ) in the MT model and 

for RFI (i.e., RFIu ) in the classical RFI model.  Furthermore, as demonstrated by Lu et al. (2015), 

1u , 2u , and 3u and the CD on 
u
 can be used to derive the BLUP of u3|1,2 (i.e., 3|1,2u ) based on 

Equation [4.2c]. 

    We partition 
   
' '

i non i gen i
 
 

u u u  into effects for non-genotyped (  non i
u ) and genotyped 

(  gen i
u ) animals and do so similarly for ˆ

iu , the BLUP of iu .  As demonstrated previously by 

Wang et al. (2012) , the BLUP ˆ
ig  of SNP effects for trait i can be backsolved from ˆ

iu  using 

Equation [4.4] 

 
1ˆ ˆ'i gen i

g Z G u  .                                                  [4.4] 

Here  1 2
ˆ ˆ ˆ ˆ 'i i i img g gg  denote the BLUP of the SNP effects for the corresponding traits 

MILKE (i=1), MBW (i =2), DMI (i =3), DMI|MILKE,MBW (i =3|1,2) and RFI (i = RFI).  

Borrowing from Gualdron Duarte et al. (2014) , it can be readily demonstrated that 

    1 2 1

ˆ
ˆvar ' i i

ii i u gen
   

u u

g
V g Z G G C G Z  where  

i i

gen

u u
C  is the Bayesian posterior (co)variance 

matrix for  gen i
u  conditional on ˆσ σ , or equivalently, the prediction error (co)variance matrix 
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for  
ˆ

gen i
u conditional on ˆσ σ  based on classical linear mixed models theory (Searle et al., 

1992), i.e., 
    ˆvar | ,i i

gen gen i
 

u u
C u y σ σ , or 

      ˆ ˆvar |i i

gen gen i gen i
  

u u
C u u σ σ , respectively. 

Further details are provided in Appendix B.  A test statistic used for GWA on SNP k for trait i 

can be written as in Equation [4.5] 

    
 

ˆ

ˆ
ik

ik

ik

g
z

sep g
                                                        [4.5] 

Here, the denominator in Equation [4.5] is the square root of the k,k element in ˆ ig
V . 

Gualdron Duarte et al. (2014) and Bernal Rubio et al. (2016) demonstrated that this test 

statistic is equivalent to conducting GLS inference on g
ik
 while momentarily treating all other 

elements of g
i
 as random, just as with EMMAX (Kang et al., 2010).  That is, under the null 

hypothesis Ho: gik
 = 0, it can be demonstrated that zik ~ N(0,1). 

4.3.3 Window-Based Associations 

    Recognizing the potential issues with single SNP associations, adjusting for collinear SNP in 

high LD as described earlier, we also conducted window-based inferences.  That is, we 

partitioned the genome into non-overlapping 1-Mb regions, similar to what has been done for 

GWA analyses in other cattle populations (Guo et al., 2012, Hawken et al., 2012, Alpay et al., 

2014). This resulted in a total of R=2,673 windows. Suppose that Z can be partitioned 

accordingly into these R windows as  1 2 RZ Z Z Z  with Zr having nr columns, 

implying then that window r contains nr SNP markers.  Suppose that ig  is similarly partitioned; 

i.e.  
' ' '

1 2 'i i i iR
   g g g g  such that g

ir
 is of dimension nr x 1. A joint test for all nr markers 

can be readily determined by computing the test statistic in Equation [4.6] 

 
2 ' 1

ˆ
ˆ ˆ

i
r ir irr

 
g

g V g                                                             [4.6] 
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where 
      1 2 1

ˆ
ˆvar ' i i

ii
ir r u rr gen

   
u u

g
V g Z G G C G Z .  Similar to Equation [4.5], the test 

statistic in Equation [4.6] allows for GLS inference on g
ir
, treating all other SNP effects as 

random. That is, extending Bernal Rubio et al. (2016), under the null hypothesis Ho: gir
 = 0, it 

can be readily demonstrated that 2

r is distributed as a chi-square random variable with nr degrees 

of freedom. 

4.3.4 Application to Dairy Consortium Data 

4.3.4.1 Data Description 

The dataset was collected from 6937 Holstein cows involving 16 research stations or major 

studies from Scotland, the Netherlands, Canada, and the United States. All records on DMI, 

MILKE, MBW, and RFI were based on the first 28d after 50 DIM, based on the data edits 

described in Tempelman et al. (2015) and Lu et al. (2015).  For cows having multiple lactations 

in the dataset, only records from the earliest lactation were used.  Nine of the research stations 

were from the United States including Iowa State University (ISU) at Ames, IA, Michigan State 

University (MSU) at East Lansing, MI, the University of Florida (UF) at Gainesville, FL, the 

University of Wisconsin-Madison (UW) at Madison, WI, the United States Dairy Forages 

Research Center (USDFRC) at Madison, WI, the USDA Animal Genomics and Improvement 

Laboratory (AGIL) at Beltsville, MD, Virginia Polytechnic Institute and State University (VT) 

at Blacksburg, VA, the Dairy Research Facility at Miner Institute (MIN) at Chazy, NY, and the 

Purina Animal Nutrition Center (PANC) at Gray Summit, MO.  Four stations/studies were from 

the Netherlands including an experimental herd (TGEN) in Lelystad previously described by 

Veerkamp et al. (2000) and Banos et al. (2012) ; the Nij Bosma Zathe (NBZ) herd located near 
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Leeuwarden and also previously described by Banos et al. (2012) ; and a compilation of studies 

(NLN) based on data collected from various nutritional experiments as described in Tempelman 

et al. (2015).  Two stations derived from the UK: the Langhill (LAN) farm near Edinburgh from 

1992 to 2001 upon which the herd was relocated to the Scottish Agricultural College (SAC) 

Dairy Research Centre based at Crichton Royal Farm near Dumfries with data collection from 

2003 to 2011. Finally, the last station was the University of Alberta (UA) in Edmonton, Canada.  

A complete breakdown of number of animals with phenotypes and genotypes and timeline of 

data collection for each station is provided in Table 4.1.  
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Table 4.1: Brief characterization of dataset by stations
1 

 
1
 UA = University of Alberta; UF = University of Florida; ISU = Iowa State University; MSU = 

Michigan State University; MIN= Dairy Research Facility at Miner Institute; UW = University 

of Wisconsin–Madison; PANC= Purina Animal Nutrition Center;USDFRC = USDA Dairy 

Forages Research Center; USDA AGIL = USDA Beltsville Agricultural Research Center; VT= 

Virginia Polytechnic Institute and State University; TGEN = ‘t Gen experimental herd, Lelystad, 

the Netherlands; NBZ= Nij Bosma Zathe, Leeuwarden, the Netherlands; ZOM = data based on 

the work of Zom et al. (2012); NLN = compilation of studies previously characterized by 

Tempelman et al. (2015); LAN = Langhill farm,Edinburgh, UK; SAC = Scottish Agricultural 

College.  

Area Station 
Number of 

Phenotypes 

Number of 

Genotypes 

Dates of Data 

Collection 

Canada UA 237 220 09/2007-06/2012 

United 

States 

UF 507 377 02/2009-07/2015 

ISU 952 930 05/2008-09/2015 

MSU 271 264 02/2011-01/2015 

MIN 57 51 02/2013-03/2013 

UW 816 780 12/2007-07/2015 

PANC 144 18 08/2009-12/2011 

USDFRC 407 347 10/2009-04/2015 

USDA 

AGIL 
518 488 11/2007-09/2015 

VT 90 54 02/2011-10/2013 

NL 

TGEN 586 461 11/1991-04/1998 

NBZ 100 91 07/2003-11/2004 

ZOM 661 0 11/1991-01/2001 

NLN 555 385 03/2003-03/2014 

UK 
LAN 590 157 12/1990-03/2001 

SAC 446 293 09/2003-11/2010 

Overall 
 

6937 4916  
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     Genomic characterization was based on Illumina® BovineSNP50 Genotyping BeadChip, 

which features 54,609 informative SNP probes uniformly spanning the entire bovine genome.  

Genotypes were obtained on 4,917 of the 6,937 cows and pre-processed for parent–progeny 

conflicts checking by AGIL.  These genotypes were imputed to a final set of 61,013 SNPs, 

including an additional 15,818 SNPs selected for the magnitude of their effect on economically 

important traits evaluated in the US (Wiggans et al., 2016).  After editing and filtering, 57,347 

SNPs were saved for the GWA analyses. The markers on the X chromosome were further 

partitioned into pseudoautosomal and X-specific components.  

  4.3.4.2 Real Data Analyses  

   GWA analyses based on the MT and RFI models discribed above were applied to this rFE 

dairy consortium dataset.  Variance components under both models were estimated using REML. 

Furthermore, BLUP and the corresponding SNP and window-based association tests, as 

previously described, for 1g , 2g , 3g , and 
3|1,2g  under the MT model and for RFIg  under the RFI 

model were determined as well. GWA analysis was provided for each component trait in the MT 

analysis. Bonferroni corrections based on a genome wide error rate of 5% were applied with the 

correction being based on the number (57,347) of SNP markers for single SNP associations and 

the number (2,673) of windows for window-based associations.  Potential candidate genes 

located within windows deemed to have an association with the various traits were determined 

using the Bioconductor package biomaRt based on the UMD3.1 bovine assembly from Ensembl.  
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4.4 Results and Discussion 

4.4.1 Genetic Parameter Estimates 

   The estimated genetic and residual variances as well as the estimated heritabilities for two 

definitions of rFE and its component traits are provided in Table 4.2. Estimated residual and 

genetic covariances among the three component traits of the MT model are reported in Table 4.3.  

Residual variance estimates were nearly identical for RFI and DMI|MILKE,MBW such that the 

respective heritabilities were 0.18±0.04 and 0.17±0.03, consistent with those based on using 

only pedigree and not genotype information as previously reported by our group (Lu et al., 2015). 

The estimated genetic partial efficiencies relating DMI to MILKE and DMI to MBW were 

=0.42 ± 0.06 and =0.11 ± 0.02, respectively, whereas the estimated residual partial 

efficiencies relating DMI to MILKE and DMI to MBW were =0.36±0.07 and =0.10±

0.02, again similar to what we previously reported(Lu et al., 2015). 

Table 4.2: Estimated variance components and heritability for residual feed efficiency and its 

component traits. 

Trait Genetic variance Residual variance heritability 

MILKE
1 

2.84±0.31 10.12±0.28 0.22±0.05 

MBW
2 

27.44±2.09 32.75±1.23 0.46±0.07 

DMI
3 

1.19±0.12 3.87±0.11 0.23±0.05 

RFI
4 

0.51±0.07 2.39±0.06 0.18±0.04 

DMI|MILKE,MBW
5 

0.49±0.06 2.39±0.05 0.17±0.03 

1 
Milk energy  

2 
Metabolic body weight  

3 
Dry matter intake  

4 
Residual feed intake

 

5 
Dry matter intake conditional on milk energy and metabolic body weight  
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u
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Table 4.3: Residual and genetic covariances between the three component traits 

Covariances ± SE 
Trait (i,i

’
)
1 

(1,2) (1,3) (2,3) 

Level 
Residual 4.42±0.36 3.52±0.13 4.30±0.24 

Genetic 0.17±0.48 1.14±0.14 2.67±0.33 

1 
i=1) MILKE (Milk energy), i=2) MBW (metabolic body weight), and i=3) DMI (Dry matter 

intake) 

4.4.2 Single SNP Associations 

We compared GLS inferences of SNP effects for rFE between the two models (i.e. RFIg  vs. 

3|1,2g ) based on the methods we described above. We noted that 
3|1,2ĝ  computed were slightly 

more shrunk to zero as opposed to that for ˆ
RFIg  (Figure 4.1). This larger spread for ˆ

RFIg  was 

likely caused by the slightly larger REML estimates of 2

RFIu  relative to 
3|1,2

2

u .  Nevertheless, they 

were still relatively close to and highly correlated with each other, as were diagonals of ˆ RFIg
V  

and 
3|1,2ĝ

V , such that negative log10 P-values ( -log1(p) ) for GWA inference on RFI and for 

DMI|MILKE,MBW were in relatively good agreement (Figure 4.2).  
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Figure 4.1: Comparison of BLUP of SNP effects for RFI versus DMI conditional on MILKE and 

MBW. Line of slope 1 and intercept 0 superimposed. 

 

Figure 4.2: Comparison of single SNP inferences (-log10 (p)) for DMI conditional on MILKE 

and MBW versus those for RFI. Line of slope 1 and intercept 0 superimposed. 
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 Manhattan plots for single SNP GWA inference for both rFE traits (RFI vs 

DMI|MILKE,MBW) are provided in Figure 4.3.  There were no significant SNP associations 

detected for either DMI|MILKE,MBW (Figure 4.3a) nor for RFI (Figure 4.3b). For the 

component traits of rFE, the only significant associations were discovered for MBW (Figure 

4.4b), namely two SNP markers (BovineHD0500030398 and Hapmap60480-ss46526970) 

located at 105,804,923bp and 105,870,613bp on BTA5 and 2 markers (BovineHD1800016753 

and ARS-BFGL-NGS-109285) located at 57,516,245bp and 57,589,121bp on BTA18. However, 

no significant associations were determined for MILKE (Figure 4.4a) nor for DMI (Figure 4.4c). 

 

Figure 4.3: The Manhattan plots of single SNP for DMI conditional on MILKE and MBW(a) and 

for RFI (b). Bonferroni correction threshold superimposed. 

(b) 

(a) 
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Figure 4.4: The Manhattan plots of single SNP on MILKE (a), MBW(b) , and DMI(c). 

Bonferroni correction threshold superimposed. 

4.4.3 Window-Based Associations 

The window-based Manhattan plots for RFI, and DMI|MILKE,MBW are provided in Figure 

4.5. As further detailed in Table 4.4, the same 2 regions were found to be important for both RFI 

and DMI|MILKE,MBW, being on chromosome BTA12 centered at 2.50 Mb (BTA12_2.50) and 

on BTA 26 centered at 46.50Mb (BTA26_46.50). BTA26_46.50 was previously confirmed as an 

important region for rFE in Nelore cattle (Olivieri et al., 2014).  Furthermore, Sherman et al. 

(2009) and Nkrumah et al. (2007) reported associations on BTA26 at 47 Mb for RFI in beef 

cattle, which were in good agreement with the association that we found within BTA26_46.50.  

 

 

(a) 

(b) 

(c) 
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Table 4.4: Physical location
1
 (in Mb) of significant regions detected for each trait 

Chr DMI
3 

MBW
4 

MILKE
5 

RFI
6 

DMI|MILKE,MBW
7 

5 106.50   
   

12 
  

  2.50 2.50 

14   
7.50,9.50, 

25.50    

18 58.50,59.50 
  

    

20 
  

14.50 
  

26 
   

46.50 46.50 

X-specific
2
 

  
102.50 

  

1
Location of a window defined as center of that window 

2
 X-specific section on X chromosome 

3 
Dry matter intake  

4 
Metabolic body weight  

5 
Milk energy 

6 
Residual feed intake

 

7 
Dry matter intake conditional on milk energy and metabolic body weight
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Figure 4.5: The Manhattan plots of 1MB windows for DMI conditional on MILKE and MBW(a) 

and for RFI (b). Bonferroni correction threshold superimposed. 

We found 4 genes in the bovine genome assembly that physically overlapped with those two 

windows associated with rFE; these genes and a summary of their biological processes are listed 

in Table 4.5. These genes include disintegrin and metallopeptidase domain 12 (ADAM12, 

45,848,827-46,238,138 bp). ADAM12 regulates broad biological processes, including modulation 

of cell morphological changes, satellite cell activation, and ectodomain shedding during 

signaling of muscle and fat development (Cao et al., 2003, Kawaguchi et al., 2003). The 

ADAM12 gene is also identified as a regulator for transforming growth factor-β1, which is 

involved in the differentiation of human adipose tissue-derived mesenchymal stem cells into 

smooth muscle cells (Kim et al., 2012). Furthermore, ADAM12 regulates myogenesis and 

(b) 

(a) 
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adipogenesis in beef cattle (Coles et al., 2014) and was reported as a candidate gene for marbling 

score in Korean cattle (Ryu and Lee, 2016). ADAM12 was also suggested as a candidate gene for 

rFE in Nelore cattle (Olivieri et al., 2014, Olivieri et al., 2016). It is possible that ADMA12 gene 

affects rFE by directly regulating muscle development and fatty acid utilization. Thus, ADMA12 

can be a promising candidate gene for rFE 

Table 4.5: Symbol, name, and involved biological functions of genes overlapped with 2 

significant regions identified for residual feed efficiency in Holstein cows 

Symbol Name Functions involved 

RPL3 Ribosomal protein L3 poly(A) RNA binding and structural 

constituent of ribosome 

DIAPH3 Protein diaphanous homolog 3 binding and Rho GTPase binding 

ADAM12 A Disintegrin And 

Metalloproteinase Domain 12 

SH3 domain binding and 

metallopeptidase activity 

DOCK1 Dedicator Of Cytokinesis 1 phagocytosis and cell migration 

    The window-based Manhattan plots for the component traits of rFE are provided in Figure 4.6. 

There were 2, 3, and 3 regions found to be associated with MILKE (Figure 4.6a), MBW (Figure 

4.6b), and DMI (Figure 4.6c), respectively.  The three detected regions for DMI were centered at 

106.50 Mb on BTA5, at 58.50 Mb and at 59.50Mb on BTA18 (see Table 4.4). The detected 

window on BTA5 is between 2 SNPs (at 100,826,813 bp and 118,501,191 bp) detected for DMI 

by Veerkamp et al. (2012). The three identified regions associated with MBW were all on 

BTA14, centered at 7.50 Mb, 9.50 Mb, and 25.50Mb.  Lee et al. (2013) detected 6 SNPs at 24-25 

MB on BTA14 for carcass weight in Korean Hanwoo. Lu et al. (2013) reported 3 SNP 

associations at HAPMAP29891-BTC-007427 ( 8,485,892 bp) , UA-IFASA-6233 
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(10,090,807),and  BTB-01532239(24,437,778 bp) in beef cattle that fall within the 3 windows 

detected for MBW in our study.  Saatchi et al. (2014a) also reported a region at 24 Mb on 

BTA14 that was associated with MBW in Angus and Simmental × Angus populations. Saatchi et 

al. (2014b) later detected a genomic region at 24 Mb on BTA14 associated with BW across 

multiple beef cattle species. The 2 important regions for MILKE were centered at 14.50 Mb on 

BTA20 and at 102.50Mb on the X chromosome. The former window was previously reported to 

be associated with milk fat percentage and milk yield in dairy cattle (Plante et al., 2001, Waters 

et al., 2011). 

 

Figure 4.6: The Manhattan plot of 1-Mb windows on MILKE (a), MBW(b) , and DMI(c).  

Bonferroni correction threshold superimposed. 

(b) 

(a) 

(c) 
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4.4.4 General Discussion 

    GWA analyses have been increasingly used to infer upon the genetic architecture of traits 

given the increasing availability of high density SNP marker panels. Our primary purpose, 

however, was not to just conduct GWA analyses on rFE and its component traits, DMI, MILKE, 

and MBW, but rather to demonstrate how the genomic architecture may differ substantially 

between traits that define rFE.  We particularly focus on rFE(closely related to RFI)  and DMI 

because of the current controversy on where to focus selection for improving efficiency of feed 

utilization (Berry and Pryce, 2014).    

    Among genomic regions determined to be associated with the various traits using the window-

based test, there was no regions in common between any of the four traits. This indicates that the 

genetic architecture of rFE, whether specified as RFI or as DMI|MILKE,MBW, is distinctly 

different from its component traits, including DMI.  This result may at first seem counterintuitive 

since Kennedy et al. (1993) and Lu et al. (2015) demonstrated that a selection index involving 

DMI, MILKE, and MBW should be equivalent to a selection index on rFE, MILK, and MBW.  

However, because of multivariate normal assumptions on elements of u1, u2, and u3, it can be 

readily demonstrated that Equations [4.2a], [4.2b], and [4.2c] can be similarly expressed at the 

level of SNP effects.  For example, by analogy with Equation [4.2c], it can be determined that 

   
3 31 1 32 2 3|1,2

u u

j j j jg g g g     such that 3|1,2 jg is independent of 3 jg , and also of 1 jg  and 2 jg .  

Hence, GWA inferences on DMI|MILKE,MBW should be independent of inferences on DMI, 

MILKE or MBW simply by construction.  We previously discovered quantitative genetic 

inferences on RFI were nearly identical to those for DMI|MILKE,MBW (Lu et al., 2015). Hence, 
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a orthogonal relationship between RFI with DMI, MILKE, or MBW similar to that between 

DMI|MILKE,MBW and these three component traits should nearly hold as well.  In beef cattle 

studies, for example, no overlap was also determined between detected genomic regions for rFE 

and BW (Rolf et al., 2012, Saatchi et al., 2014a). 

     The relationship 
   

3 31 1 32 2 3|1,2

u u

j j j jg g g g     suggests that GWA inferences on DMI should 

be somewhat driven by MILKE and MBW.  As an illustration consider the 2 most significant 

associations, both on BTA 18, for DMI as we discovered earlier. The corresponding P-values for 

MILKE and MBW in those same regions were 0.05/0.008 and 0.0003/0.003. Hence, selection 

against DMI in those regions would have detrimental consequences for MILKE and MBW.  By 

contrast, the 2 detected associations for DMI|MILKE,MBW, as well as for RFI, had 

corresponding P-values for MILKE/MBW of 0.38/0.26 and 0.32/0.10 , thereby partly confirming 

the genetic independence between rFE and its component traits.  From the viewpoint of 

identifying candidate genes for maximizing efficiency, it seems that one should target attention 

on inferences involving g3|1,2 rather than g1. 

    We previously noted that a general movement to more window-based inference as opposed to 

single SNP inference in GWA studies. Indeed, we did not detect any single SNP associations for 

either measure of rFE, nor for DMI or MILKE. It is possible that these traits are very complex in 

the sense that they are controlled by many genes each with small effects.  Although we did 

identify two genomic 1MB regions associated with rFE based on the window test, the proportion 

of the genetic variance jointly accounted by those two regions was rather small (~1.1%) using 

the approach suggested by Fernando and Garrick (2013). Similar findings and conclusions on 
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non-detection of genomic regions for RFI in pigs and in beef cattle have been discovered (Lu et 

al., 2013, Do et al., 2014, Santana et al., 2014, Serão et al., 2016) . Herd and Arthur (2009) 

further noted that the physiological basis for feed energy utilization is a complicated process 

involving digestion, metabolism, activity, and thermoregulation, thereby suggesting a plethora of 

genes. Similarly, MILKE is a composite of milk, fat, protein, and lactose yield (Tempelman et al., 

2015). 

    GWA inferences on RFI versus DMI|MILKE,MBW were virtually identical, whether based on 

single SNP and window tests suggesting it may be rather inconsequential whether one chooses 

the MT versus RFI model for GWA.  These similarities may be somewhat anticipated given the 

similarities in partial efficiency estimates between the genetic and residual levels for both DMI 

on MILKE (
   
31 31
ˆ ˆu e
  ) and DMI on MBW (

   
32 32
ˆ ˆu e
  ) as we have noted previously (Lu et al., 

2015). However, we have recently noted that each of the partial efficiencies 
 
31

u
 ,

 
31

e
 , 

 
32

u
 , and 

 
32

e
  may be heterogeneous across environments (Lu et al., 2017a) being similar to our previous 

findings that the partial regression parameters b1 and b2 in the RFI model of Equation [4.3] are 

heterogeneous across research stations(Tempelman et al., 2015).  We briefly investigated 

whether the specification of heterogeneous station the partial regression parameters b1 and b2 to 

derive RFI in a manner similar to that pursued by Tempelman et al. (2015) might impact GWA 

inferences based on the RFI model.   Figure C.1 in Appendix A provides the scatterplot of –

log
10

(p) for SNPs and window-based on the homogeneous partial regression RFI versus 

heterogeneous partial regression RFI models. The correlation between –log
10

(p) values for SNPs 

and window-based on either model was 0.87 and 0.79.  Admittedly, the detected regions between 
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the homogeneous and heterogeneous partial regression RFI models were not identical based on a 

formal Bonferroni test; nevertheless, both analyses models overlapped on 66% of the windows 

for P < 0.01. Accommodating heterogeneous partial efficiencies across research stations in a MT 

GWA analysis would be rather laborious using Monte Carlo Markov Chain approaches as 

pursued by Lu et al. (2017a). Nevertheless, these developments and others are worth pursuing in 

hierarchical Bayesian extensions for the MT model.  For example, GBLUP assumes constant 

genetic variability across the genome whereas heavy tailed and/or sparse prior specifications 

have been known to exhibit better GWA properties (Moser et al., 2015). Similarly, one might 

perceive that 
 
31

u
 ,

 
31

e
 , 

 
32

u
 , and 

 
32

e
  (i.e., pleiotropic associations) are also heterogeneous across 

the genome as well.   

    It is also important to recognize that the single-step methods proposed by Wang et al. (2012) 

were vital to this GWA study given that 2021 of the 6937 cows with phenotypes were missing 

genotypes.  For instance, when GWA analysis was based only using only phenotypes on 

genotyped cows, no significant associations were determined using window-based inference for 

RFI (Figure C.2bTable). Nevertheless the windows with the two most significant associations 

were the same in either case. 

4.5 Conclusions 

  A GWA study on rFE and its components traits DMI, MBW, and MILKE in dairy cattle was 

conducted based on a MT model involving the component traits and the RFI model. The same 2 

genomic regions on BTA12 and BTA26 were concluded to be associated with rFE in both 

models.  The BTA26 region included a putative candidate gene ADAM12 that possibly regulates 
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muscle development and fatty acid utilization. The MT model facilitated comparisons of 

important SNPs or regions between rFE (i.e., RFI or DMI|MILKE,MBW) and its component 

traits (i.e. MILKE,MBW, and DMI). GWA efforts focusing primarily on DMI will not be useful 

for targeting genomic regions important for rFE.   
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Chapter5: Modeling genotype by environment interaction over multiple covariates for 

genome-wide association analyses of residual feed efficiency in dairy cattle 

5.1 Abstract 

  Residual Feed efficiency (rFE) vitally impacts the environmental sustainability of the dairy 

industry.  Genome-wide association (GWA) analyses based on high-density genomic marker 

panels are useful to narrow down genomic markers or regions and, eventually the identification of 

potential candidate genes associated with traits of interest such as rFE.  However, most such 

studies infer an overall effect for each marker across environments, without allowing for the fact 

that allelic substitution effects at each marker may be sensitive to various environmental 

covariates. This form of genotype by environment (GxE) interaction is plausible for complex 

traits like rFE, particularly for data collected over a wide range of climatic and production 

systems. However, as the number of plausible environmental covariates increase, such inferences 

can be too intractable and computationally infeasible. We tested a reaction norms (RN) model 

extension to an conventional genomic model (GBLUP) whereby some simplifying assumptions 

in the RN model allow one to tractably solve for a cumulative RN effect across multiple 

covariates followed by equally tractable backsolving for RN specific marker effects.  Based on 

simulation embedded in the genotypes and design structure of our consortium data, we 

determined that the RN model had superior GWA properties to GBLUP at false positive rate from 

0.025 to 0.15 and was able to detect RN effects. We also applied both models to the dairy rFE 

consortium data analyses, with environmental covariates being linear and quadratic terms on 

average production (AP), relative humidity (RH), temperature (TP), and the interaction between 

RH and TP. In a cross-validation study, the proposed RN model yielded 5% greater prediction 
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accuracy compared to the regular GBLUP analysis. Gene ELOVL4 and ATP5E were suggested as 

the candidate genes that have RN effects with linear term on AP and quadratic term on TP65, 

respectively. Our study indicated that GxE is an important genetic determinant for rFE. 

5.2 Introduction 

    Residual feed efficiency (rFE) or dry matter intake (DMI) is being increasingly considered in 

dairy cattle selection programs. The availability of high-density single nucleotide polymorphism 

(SNP) marker panels has not only facilitated whole genomic prediction (WGP) for rFE or DMI 

but it also allows the use of genome-wide association (GWA) analyses to infer important 

genomic regions, and, potentially, any resident candidate genes or quantitative trait loci (QTL) 

that may influence these traits.   

    Most GWA studies, however, focus on estimating the overall allelic substitution effect of any 

SNP marker across environments, assuming that any QTL in linkage disequilibrium (LD) with 

that marker has a constant effect across environments. Conversely, heterogeneity in these effects 

across environment, also known as genotype by environment (GxE) interaction, could be 

important for rFE in dairy cattle as is true with other complex traits.  Advanced cattle 

reproductive technologies, such as artificial insemination and embryo transfer, facilitate the 

exchange of germplasm across many different environments such that inference and 

management of GxE would seem more important in dairy cattle production than in many other 

livestock species where such technologies are not as widely used. 

    GxE modeling within a WGP or GWA context can lead to an extremely parameterized model if 

environment-specific SNP effects need to be modeled.  A parsimonious strategy to model GxE is 

based on the use of environmental covariates.  These models are often referred to as reaction 
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norm (RN) models and are based on modeling genetic or SNP effects as a function of a single 

covariate, often specified as the mean response for that particular environment or herd (Kolmodin, 

2003).  This covariate is often regarded to be a proxy for level or quality of herd management.  In 

other words, GxE is modeled by specifying allelic substitution effects to be a linear function of a 

covariate(Lillehammer et al., 2009).  If these SNP specific linear functions are large and 

important, the SNP marker is said to be environmentally sensitive.  These models are being 

increasingly used to model GxE in WGP models (Lillehammer et al., 2009, Lopez-Cruz et al., 

2015) since the dimensionality of the genomic part of the model is only doubled with a linear 

function on one covariate (Lillehammer et al., 2007a). A RN model is also an example of a 

random regression (Lillehammer et al., 2007b) or random coefficients model as the overall (i.e. 

average) and GxE effects for each SNP marker are modeled using random intercept and random 

slope specifications.  

    There may be any number of potential covariates that could be responsible for generating GxE.  

However, increasing the number of such covariates, including second or higher order 

polynomials and interactions between covariates, may unduly increase model dimensionality as 

well.  Recently, (Jarquin et al., 2014) proposed the use of covariance functions for modeling GxE 

as a function of a large number of environmental covariates. We adapt their approach and 

demonstrate how to extend it further to conduct GWA analyses for covariate specific 

components of GxE. Specifically, our objectives were to infer upon GxE for rFE and, 

specifically, to determine which genomic regions may be environmentally sensitive to covariate-

specific values.  
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5.3 Materials and Methods 

5.3.1 Conventional Genomic Prediction Model for Residual Feed Intake 

    A commonly used response to characterize rFE is residual feed intake (RFI)(Tempelman et al., 

2015). Based on definitions provided in (Berry and Crowley, 2013) and Kennedy et al. (1993), 

RFI is typically defined as DMI adjusted linearly for various energy sink covariates such as milk 

energy (MILKE), metabolic body weight (MBW), and change in body weight ( ΔBW ) over the 

course of the period from which DMI was recorded.  Additionally specifying other effects that 

influence RFI, the statistical model can be specified as in Equation [5.1].  

 
*' *

1 2 3 0

'
DMI MILKE MBW ΔBW   

i i i i i iib b b e    =x β gz ; i= 1,2,…,n            [5.1] 

Here, the subscript i on DMI, MILKE, MBW, and BW indicates that records on those specific 

traits belong to animal i, and b1, b2 , and b3 are partial regression coefficients of DMI on ME, 

MBW, and BW respectively. Furthermore, *
β  is a p x 1 vector of fixed effects with 

corresponding known row incidence matrix 
*'

ix  whereas  0 01 02 0... mg g gg  is a vector of 

random SNP marker effects (i.e. random intercept) on RFI for  '

1 2 ...i i i imz z zz being a 

known row incidence vector of genotypes on m markers for animal i. Even though genotypes are 

typically coded as the number of copies (0,1, or 2) of a reference allele,  '

1 2 ...i i i imz z zz  

was standardized in the way implemented in VanRaden (2008).  We assume throughout that 

 2

0 ~ , gN g 0 I   and the residual  2~ 0,i eID ie NI    . Note that RFI response for animal i, can 

be written as 
1 2 3

RFI DMI MILKE MBW ΔBW
i i i i i

b b b     where typically b1, b2, and b3 are 

estimated in a first stage model to derive RFIi. In turn, RFIi. is written as a function of all 
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remaining effects in a second stage model; however, we prefer to fit all such effects 

simultaneously in Equation [5.1] as we’ve argued previously in Lu et al. (2015).  

5.3.2 Reaction Norm Extension Involving Multiple Covariates 

    To model GxE using RN specifications for each of c covariates, we extend Equation [5.1] to 

Equation [5.2]. 

 
*' *

1 2 3 0

1

' '
DMI MILKE MBW ΔBW       

i i i i i

c

ii ik k i

k

b b b d e


     =x β g gz z .       [5.2] 

Additionally to what was already specified in Equation [5.1],  1 2 ...k k k kmg g gg are the 

marker specific RN (i.e. random slope) effects on environmental covariate k, k =1,2,..,c with dik 

being the value for environmental covariate k on animal i.  For computational convenience, as 

we illustrate later, we invoke the distributional assumption identical to that used by Jarquin et al. 

(2014) whereby  2~ ,k bN k g 0 I ; in other words, the variance component is specified to be 

same (i.e., 2

b ) for all covariate-specific slopes.  With that strong assumption, it then seems 

particularly important that each covariate being standardized to a similar scale; e.g.; null mean 

and unit variance.  Furthermore, standardizing all covariates to a null mean (i.e., 

.

1

1
  0

c

k ik

i

d d k
n 

   ) and variance of 1 allows the interpretation of 0g as SNP effects for an 

average or typical environment. 

    In situations where m >> n, it may be prudent to re-write Equation [5.2] as a direct function of 

animal effects rather than as SNP effects in the spirit of genomic BLUP (GBLUP) (VanRaden, 

2008).  That is, we write 0 0

'

i iu  z g  as the overall genetic merit for animal i and '

ki kiu  z g  as the 

RN genetic merit for environment k on animal i.  Subsequently, we sum all of the RN 

components  1 2 ...i i i ciu u u u into one term 
1

     
c

i ik ki

k

v d u


 such that Equation [5.2] can be 
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rewritten as Equation [5.3] 

*' *

1 2 3 0DMI MILKE MBW ΔBW       
i i i i i i i ib b b u v e     =x β .            [5.3] 

Write  20 01 ... 'nu u u u Zg  and  1 2 ... 'nv v vv as vectors of animal specific effects 

of overall and cumulative (across covariates) RN genetic merit, respectively, with  '
1

n

i i
Z z  

being the n x m matrix of all genotypes.  Note then that this implies  2

0 ~ 0, gN u G  where 

'G ZZ is the genomic relationship matrix among animals (VanRaden, 2008).  Also, 

   ' 2

1
~ , # '  

n

i bi
v N 


v 0 ΖΖ DD   where 1 2 c

   D d d d  is of dimension n x c with 

column k being 1 2 'k k k nkd d d   d , an n x 1 vector of values on covariate k. Furthermore, 

# denotes the Hadamard product.  This covariance structure ' 2# ' bΖΖ DD  is identical to that 

specified in Jarquin et al. (2014) and can also be rewritten as     2

1

c

k k b

k

diag diag 


 d ZZ' d  where 

 kdiag d  denotes a n x n diagonal matrix with elements of kd along the diagonal.  

    To simplify notation further, we write 
' *' MILKE MBW ΔBWi i i i i

   x x  and 

*

1 2 3b b b   β β .  Then with  'iX= x  the mixed model equations used to directly solve for 

the generalized least squares (GLS) of (i.e., β̂  ) and for the BLUP of u
0
 and v (i.e., 0û  and 

v̂ ), respectively, is in Equation [5.4].  

 

 

1
2 2

0

1
2 2

' ' ˆ '

ˆ

ˆ

g e

b e

 

 





 
    
         
         

X X X X' β X y

X I+ ZZ' I u y

v y
X I I+ ZZ'#DD'

  [5.4] 

Note that 
2

b  and 
2

e  can either be specified by the user or readily estimated using REML.   
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5.3.3 Backsolving for SNP-specific Effects  

    Using the theory of backsolving for BLUP of one set of random effects as linear function of 

another set within an equivalent linear mixed model (Henderson, 1977), ˆ
ku being the BLUP of 

ku  or the vector of animal effects for RN on covariate k can be determined from v̂  in Equation 

[5.4] using Equation [5.5]. 

 

    

   

  

1

'2

1
'

1
2# '

# '

ˆ ˆcov , ' var

ˆ

ˆ

k k

k b b

k

diag

diag

 













ΖΖ

u u v v v

DD

ΖΖ DD

d v

d v

.                [5.5] 

Similarly, one could use the same theory to solve for    1 2
ˆ ˆ ˆ ˆ 'k k k km kg g g BLUP g g  or 

the vector of SNP RN effects specific to covariate k: 

 

    

   

  

1

1
2' '

' '

2

1

ˆ ˆcov , ' var

ˆ

ˆ

# '

# '

k k

k b b

k

diag

diag

 













Ζ ΖΖ

g g v v v

DD

Ζ ΖΖ DD

d v

d v

 [5.6] 

5.3.4 Genome Wide Associations on SNP-specific Overall Effects and Reaction Norms  

    BLUP estimates (i.e., ˆ
kg ) by themselves do not directly indicate as to which chromosomal 

regions might be directly important for overall genetic or environment-specific RN effects. A 

common GWA inference strategy is to use the EMMAX procedure (Kang et al., 2010) whereby 

the marker of interest is tested using GLS, treating all other markers as random, or equivalently 

modeling correlation between animals based on a genomic relationship matrix constructed from 

all SNP markers. Recent developments described by Gualdron Duarte et al. (2014) and adopted 

previously by our group lead to the following GLS test statistic for testing overall genetic effects 

(k=0) and the RN effect for SNP j on covariate k: 
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var( )

kj

kj

kj

g
z

g
  .                                                 [5.7] 

Underneath the null hypothesis Ho: gkj = 0, it can be demonstrated that zkj ~ N(0,1).  Using mixed 

model theory, var( ) var( ) var( )kj kjkj kjg g g g    and can be determined as element k,k of the 

expression in Equation [5.8]. 

     
       

       

1

1 1

1 12 2

ˆ ˆvar var ' '# '

ˆ      = ' '# ' var '# '

      ' '# ' '# ' '# '

k

k k

k k

k

eb bbdiag diag

diag

diag diag

 



 

 

 

 

d

d d

d d

g Z ZZ DD v

Z ZZ DD v ZZ DD Z

Z ZZ DD ZZ DD C ZZ DD Z

  .        [5.8]                           

Here bbC is portion of the inverse of the coefficient matrix in Equation [5.4] that corresponds to 

the lower right portion corresponding to cumulative RN effects; i.e. 

 

 

1

1
2 2 2

1
2 2

' '
g b

g gg gb g e e

b bg bb
b e

  





  

 







 
   
      
    

  

X X X X'C C C

C C C X I+ ZZ' I

C C C
X I I+ ZZ'#DD'

      [5.9] 

More detailed derivations can be found in Appendix D. 

    For a GWA analysis that jointly fits all SNP markers, any given marker may exhibit only a 

weak association with a closely linked QTL, in part because of the high LD that exists with 

neighboring markers (Lu et al., 2017b).  Hence, we also considered genomic based windows 

associations based on partitioning columns of Z, and hence elements of go, g1, g2,… gc, into R 

distinct components or windows with each window containing a certain number of SNP markers 

and/or based on a genomic length. In this study, we partitioned the genome into non-overlapping 

1megabase (MB) regions resulting in a total of R =2,673 windows. For joint testing Ho: gkr = 0 
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pertaining to window r for SNP effects in gk, k=0,1,2,..c, Lu et al. (2017b) extended the test from 

Gualdron Duarte et al. (2014) to the test statistic as in Equation [5.10]    

  
1'

2 varkr kr kr kr


 g g g         [5.10] 

where   

        'ˆ ˆvar varr rkr k Zg g Z .                                                [5.11] 

   Under Ho: gkr = 0, the test statistic in Equation [5.10] is chi-square distributed with degrees of 

freedom nr, being the number of SNP markers in window r.  

Data on all key phenotypes were collected on 3,463 Holstein cows from 8 different dairy 

research stations including University of Alberta (AB) in Edmonton, Canada, Iowa State 

University (ISU) in Ames, IA, Michigan State University (MSU) in East Lansing, MI, 

University of Florida (UF) in Gainesville, FL, University of Wisconsin-Madison (UW) in 

Madison, WI, United States Dairy Forages Research Center (USDFRC) in Madison, WI, 

Virginia Polytechnic Institute and State University (VT) in Blacksburg, VA, and the USDA 

Animal Genomics and Improvement Laboratory (AGIL) in Beltsville, MD. Data editing 

procedures were outlined in Tempelman et al. (2015) and based on the first 28 d after 50 DIM as 

in Lu et al. (2017b) and Manzanilla-Pech et al. (2016).  The distribution of cows in each station 

can be found in Table 5.1.  Daily weather data including relative humidity (RH) and temperature 

(TP) was retrieved using the R package weatherData for all the test dates within each station. 

These weather records were averaged across the 28 days of data on each animal.  
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Table 5.1: Brief characterization of dataset by stations 

Country Station
1
 No. of animals 

 UF 362 

 ISU 930 

 MSU 264 

United State UW 780 

 PANC  18 

 USDFRC  347 

  USDA AGIL 488 

 VT 54 

Canada AB 220 

Overall 
 

3463 

1
 AB = University of Alberta; UF = University of Florida; ISU = Iowa State University; MSU = 

Michigan State University; MIN= Dairy Research Facility at Miner Institute; UW = University 

of Wisconsin–Madison; PANC= Purina Animal Nutrition Center; USDFRC = USDA Dairy 

Forages Research Center; USDA AGIL = USDA Animal Genomics and Improvement 

Laboratory; VT= Virginia Polytechnic Institute and State University;  

    Genomic characterization was based on Illumina® BovineSNP50 Genotyping BeadChip, 

which features 54,609 informative SNP probes uniformly spread over the bovine genome.  Raw 

Genotypes were pre-processed by the USDA’s Animal Improvement Programs Laboratory 

(AIPL) where parent-progeny conflicts were checked. Genotypes were then increased to a final 

set of 61,013 SNPs, including additional 15,818 selected SNPs from bovine HD chips based on 

the magnitude of their effect on traits evaluated in the U.S. (Wiggans et al., 2016). Further 

editing and filtering were implemented to rule out SNPs with MAF <0.05 and in perfect LD 

which resulted in 57,347 SNPs being left. The SNPs on X chromosome were classified into two 

groups: pseudo-autosomal and X-specific SNPs.  
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5.3.5 Simulation Study 

    To partly validate our proposed method and model, a simulation study was conducted based 

on actual genotype and data structure within our dairy rFE consortium dataset.  Environmental 

covariates were first, second, third and fourth order polynomial terms on average contemporary 

group production (AP) for the contemporary group defined as a group of cows in 28-day test 

period within the same station. First to fourth polynomial terms of AP were standardized to mean 

of 0 and variance of 1. Thirty of the 57,347 markers were randomly chosen to be QTL.  With 

columns of Z also standardized to mean 0 and variance of 1, random intercepts (i.e., QTL subset 

of go) was simulated from independent Gaussian distributions with mean of 0 and variance of 

1000 such that variance of overall genetic merit 0u  was roughly 0.50.  RN effects on first to 

fourth order polynomial terms of AP (i.e., c = 4) were simulated from independent Gaussian 

distributions with the same variance of 200 and mean of 0. Phenotypes were based on simulating 

breeding values on all such QTL effects plus a residual generated from a Gaussian distribution 

with variance 2

e  = 2.0 so that the heritability under the average environmental covariate value 

was roughly 0.20.  The heritability of rFE ranged from 0.20 to 0.46 across the values of AP. Ten 

replicated datasets were simulated in this manner and then analyzed based on the proposed RN 

model and a conventional GBLUP analyses.  Variance components were estimated using REML 

in all cases with the R package regress.  

    Window-based GWA tests based on non-overlapping 1MB genomic regions and the chi-

square test presented by Lu et al. (2017b) were conducted for random intercepts (go) and slopes 

(g1, g2, g3, and g4) on each replicate using Equation [5.10].  A true positive was claimed if the 
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corresponding window including that QTL was declared to be significant based on a Bonferroni 

test.  Conversely, a false positive was determined if a window was deemed to be statistically 

significant but did not include a QTL.  The rates of true and false positives were used to compare 

receiver operating characteristic (ROC) curves averaged across the 10 replicates between the 

proposed RN model and conventional GBLUP.  The area under the ROC curve (AUC) compared 

between two models at various false positive rates (FPR) (Wray et al., 2010) based on a 

nonparametric Wilcoxon Signed-Rank test, blocking on data replicate. 

5.3.6 Application to RFI Data 

    The proposed RN model was applied to the joint dairy rFE dataset described above. For 

modeling RN on milk production, it has been determined that a “broken stick” relationship might 

be best suited to model the relationship between milk yield and TP, recognizing that heat stress 

and hence potential GxE effects due to TP might not occur until beyond a certain breakpoint.  

This breakpoint has often deemed to be around 72ºF in various studies involving milk 

yield(Bohmanova et al., 2007, Aguilar et al., 2009, Ludovico et al., 2015). Below this breakpoint 

up until cold stress, which is not likely a major consideration with intensively managed research 

facilities in this study, animals are believed to be in a thermoneutral environment by which there 

should be little, if any, regulatory changes in metabolic heat production or evaporative heat loss .  

    We decided to infer upon this breakpoint via a series of 8 RN models/analyses whereby 6 of 

the models were labeled TP55, TP60, TP65, TP70, TP75, TP80, for which TP breakpoints on 

RN specifications ranged from 55 to 80 ºF in 5 ºF increments, respectively.  The other two 

models were TPN where no breakpoint was specified and TPG as a conventional GBLUP model.  
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Specifically, environmental covariates used for SNP-specific RN effects for each of 8 RN 

models included linear and quadratic terms on corresponding TP (i.e., TPN, TP55, TP60, TP65, 

TP70, TP75, or TP80), AP, RH, and crossproduct between corresponding TP and RH. Thus, a 

total of c=8 environmental covariates were considered for any RN analyses on RFI. 

    The vector of fixed effects *
β  in Equation [5.3] for the RN models included the effects of 

stations, rations within stations, first through fourth order polynomial effects of DIM, parity 

effects, the interaction between first through fourth order polynomial effects of DIM and parity 

effects, and fixed environmental covariates. To facilitate a likelihood ratio test (or equivalently 

information criteria like assessments based on REML), the same fixed environmental covariates 

were specified in *β  for all 8 candidate models. These fixed environmental covariates included 

linear and quadratic effects on RH and AP and 6th order Bspline functions on each of TP and 

TP*RH, the linear by linear crossproduct of TP and RH.  

    All variance components were estimated by REML. SNP-specific RN effects for each 

environmental covariate were back-solved using Equation [5.6] as previously noted and single 

SNP hypothesis tests were conducted. We subsequently investigated inferences for non-

overlapping 1MB windows based on the chi-square test in Lu et al. (2017b) as shown in 

Equation [5.10]. Association between regions and the trait of interest were declared if the test 

was significant based on a Bonferroni adjustment for the number of SNP markers for single SNP 

tests or number of windows for window-based tests.  Potential candidate genes located within 

windows deemed to have RN with the various environmental covariates were determined and 
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their gene function information were retrieved using the Bioconductor package biomaRt based 

on the UMD3.1 bovine assembly from Ensembl. 

    As a comparison between RFI and DMI, we also fitted the proposed RN model on DMI. The 

difference between the analyses on RFI and DMI was simply that the covariates ME, MBW, and 

BW were not fitted in RN model in Equations [5.2-5.3]; i.e., *β β .  All other effects were the 

same as those considered for RFI. 

5.3.7 Cross-validation Assessment 

In order to compare the performances between the best fitting RN model (based on the chosen 

breakpoint for TP) and the regular GBLUP model for rFE, a 5-fold cross-validation was 

performed. DMI prediction accuracy determined as the correlation between true DMI and 

predicted DMI in the validation dataset based on estimates derived from the analyses of the 

training dataset was computed and compared to determine the performances of two models.  

5.4 Results 

5.4.1 Simulation Study 

ROC curves for the random intercepts or overall SNP effects (go) based on the RN model and 

the conventional GBLUP were plotted for 1MB windows (Figure 5.1). Generally, the ROC curve 

for the RN model straddled the ROC curve for the GBLUP model although the ROC curve for 

the RN model tended to exceed that for the GBLUP model for false positive rate (FPR) rates 

between 0.025 and 0.30. To formally test if difference was significant, we calculated the AUC 

for FPR at 0.01, 0.025, 0.05, 0.15, 0.30, 0.40, and 0.50 for the regular GBLUP and the RN model. 

The nonparametric Wilcoxon Signed-Rank test on AUC implied that the RN model significantly 
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increased QTL detection power at FPR ranging from 0.025 to 0.15 (see Table 5.2); nevertheless 

differences were small.  

Table 5.2: Areas under receiver operating characteristic curve (AUC) between the classic 

GBLUP and the reaction norm (RN) model at different false positive rates. 

 
False positive rates

 

.01 .025 .05 .15 .30 .40 .50 

RN .15±.04 .58±.13 1.49±.3 6.48±1.2 15.8±2.4 22.9±3.2 30.6±3.7 

GBLUP .14±.04 .53±.12 1.41±.3 6.16±1.3 15.3±2.7 22.6±3.4 30.3±4.1 

p
1
 .221 .008 0.042 0.041 0.056 0.262 0.68 

1
 Based on the nonparametric Wilcoxon Signed-Rank test on the AUC  

 

 

Figure 5.1: Receiver operating characteristic (ROC) curves for random intercept for 1Mb non-

overlapping windows based on the reaction norm (RN) model and the classic GBLUP averaged 

across 10 replicates. Line of slope 1 and intercept 0 superimposed. 

    The ROC curve for RN inferences on first to fourth order polynomial terms on AP are also 

provided in Figure 5.2.  Generally, the ROC curves for the RN effects on all four polynomial 
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terms of AP were above the reference line with slope 1 and intercept 0.  This reference line is 

expected if QTL windows for RN effects are simply guessed. The nonparametric Wilcoxon 

Signed-Rank test on AUC at FPR ranging from 0.01 to 0.50 confirmed that RN effects on all 

four polynomial terms of AP were significantly different from reference line (P<0.01), indicating 

that inferences on windows containing RN effects are at least superior to random guessing. 

Furthermore, there seems to be no evidence of differences between AUC for ROC curves for any 

of the four RN polynomial specifications. Furthermore, AUC were generally much smaller for 

RN inferences (Figure 5.2) compared to random intercept or overall genetic effects (Figure 5.1). 

 

Figure 5.2: Receiver operating characteristic (ROC) curves for random slopes on first to fourth 

order polynomial terms of AP for 1Mb non-overlapping windows based on the reaction norm 

(RN) model and the classic GBLUP averaged across 10 replicates. Line of slope 1 and intercept 

0 superimposed. 
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5.4.2 Real Data Analyses 

To determine an appropriate breakpoint for TP on RFI and DMI, variance components and 

LRT statistics, i.e. -2 times the difference in log REML likelihood between full models in TPN 

and TP55-TP80 and reduced model in TPG, were calculated and summarized in Tables 3 and 4.  

Compared to the regular GBLUP model in TPG, the 7 tested RN models involving various 

breakpoints on TP all significantly fitted better than GBLUP for both RFI (Table 5.3), and DMI 

(Table 5.4), with seemingly greater statistical significance of RN on RFI compared to DMI based 

on the relative magnitude of the LRT.  

Table 5.3: Estimated variance components and likelihood ratio test for residual feed intake based 

on the reaction norm (RN) models with various breakpoints on temperature (TP). 

Models 
2

u  
2

b  
2

e  LRT
 
Statistics

1
 

TPN .46±.08 .043±.010 2.31±.10 27.60 

TP55 .46±.08 .041±.010 2.32±.10 24.60 

TP60 .45±.08 .051±.010 2.25±.10 33.87 

TP65 .45±.08 .061±.010 2.18±.10 50.91 

TP70 .48±.08 .030±.008 2.39±.10 20.55 

TP75 .48±.08 .027±.006 2.42±.09 24.09 

TP80 .49±.08 .023±.006 2.46±.08 21.22 

TPG .49±.08 
 

2.61±.09 
 

1
 Likelihood ratio test statistics, relative to TPG model 
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Table 5.4: Estimated variance components and likelihood ratio test for dry matter intake based 

on the reaction norm (RN) models with various breakpoints on temperature (TP). 

Models 
2

u  
2

b  
2

e  LRT Statistics
1
 

TPN 1.40±.18 .051±.016 4.15±.18 12.51 

TP55 1.41±.18 .045±.017 4.18±.19 8.44 

TP60 1.40±.18 .050±.016 4.15±.19 10.48 

TP65 1.41±.18 .047±.015 4.17±.18 11.50 

TP70 1.42±.18 .034±.014 4.27±.18 7.52 

TP75 1.42±.18 .024±.010 4.34±.17 6.39 

TP80 1.44±.18 .021±.008 4.36±.16 7.93 

TPG 1.42±.18 
 

4.52±.16 0 

1
 Likelihood ratio test statistics, relative to TPG model 

    Model TP65 was the best fitting model for RFI having the largest LRT statistic relative to 

GBLUP suggesting a broken stick RN relationship for TP at a breakpoint of 65ºF. This thereby 

suggests that GxE as a function of TP is important above 65ºF.  For the best fitting RN model for 

RFI (i.e. TP65), 2ˆ
b =0.06±0.01. Given that genotypes are standardized in the manner described 

previously, the diagonals of ZZ’ are relatively close to 1 (0.913-1.162), implying that the 

diagonals of ZZ'#DD'  are relatively close to the diagonals of DD'  which are simply the sum 

of the squared environmental covariates for any one animal; i.e., element i of DD’ is 
2

1

   
c

ik

k

d


 . So 

for a genomically non-inbred animal (i.e. corresponding diagonal element of ZZ’ is close to 1), 

the heritability based on this model is defined to be 

2

1

2

2 2

2

2

1

2 2

   
c

ik

k

c

i

g b

g b ek

k

d

d

h

 

  









 




.  This model further 

constrains the heritability to be lowest in an average environment (i.e.,  0ikd k   such that 

2

1

2 0
c

ik

k

bd 


  and subsequently 

2

2

2 2

   g

g e

h


 
 ).  Based on the estimates provided in Table 5.3, 

this implies that the estimated heritability for rFE 2 0.45ˆ 0.17
0.45 2.18

h  


 at an average 
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environment, consistent with what we have reported previously (Lu et al., 2017b). The highest 

heritability determined for RFI is 2 0.45 106.04*0.061ˆ 0.76
0.45 106.04*0.061 2.18

h


 
 

for 
8

2

1

106.04ik

k

d


 at 

the most extreme environment. 

5.4.3 Genome-wide Association Analyses for RFI 

    Random Intercept: Genome-wide association analyses for RFI using both the single SNP and 

1MB window-based inference strategies were conducted under the best fitting RN model (i.e., 

TP65) as well as GBLUP (i.e., TPG).  Firstly, there was no evidence of an association for overall 

genetic effects (go) based on neither single SNP (Figure D.1 in Appendix D) nor window-based 

inferences (Figure D.2 in Appendix D) whether using the conventional GBLUP model or the 

TP65model. Furthermore, we noted that there was little change in –log
10

(P-values) between 

either model for either of the two types (single SNP versus window-based) of inferences on 

random intercept go (Figure 5.3).  

 

Figure 5.3: Comparison on -log
10

(p) of SNP (a) and 1Mb window (b) for random intercept 

between the GBLUP and the reaction norm (RN) model. Line of slope 1 and intercept 0 

superimposed. 
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    We also inferred SNP-specific and window-specific associations for RN on each 

environmental covariate or polynomial or interaction thereof. Manhattan plots for SNP-specific 

RN effects (i.e. random slopes) on linear and quadratic terms of TP65, RH, AP, and interaction 

between TP65 and RH were provided (see Figure D.3-D.4 in Appendix D). For SNP specific 

associations, there was only 1 detected SNP (Hapmap58910-rs29012613, 20,171,743 bp) on 

BTA 9 pertaining to the linear RN on AP (see Figure D.3).  

Manhattan plots for window-specific RN effects on various environmental covariates are also 

provided (see Figures D.6-D.8 in Appendix D). A region at 20.5 Mb on BTA9 was found to have 

a significant association for linear RN effect of AP whereas a region at 82.5 Mb on BTA5 was 

associated with a quadratic RN effect of AP (see Figure D.6a and Figure D.6b). Two windows 

on BTA13 centered at 49.5 Mb and 58.5 Mb, were associated with the quadratic RN effect of 

TP65 (Figure D.7b) whereas no such region was detected to be associated with the linear RN 

term of TP65 (Figure D.7a). Furthermore, there was no detected important region having RN 

association for linear and quadratic terms of RH nor interaction between TP65 and RH (see 

Figure D.8). A few candidate genes in the regions that identified having substantial RN effects 

with corresponding environmental covariates were retrieved and are listed in Table 5.5.   
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Table 5.5: Symbol, name, and biological process of genes have reaction norm (RN) effects with 

temperature breaks at 65F (TP65) and contemporary group milk production (AP) for the residual 

feed intake 

Environmental 

covariate 
Symbol Name Function involved 

Linear on AP SH3BGRL2 
SH3 Domain Binding 

Glutamate Rich Protein Like 2 

protein disulfide 

oxidoreductase activity 

 ELOVL4 
Bos taurus ELOVL fatty acid 

elongase 4 

the biosynthesis of fatty 

acids 

Quadratic on AP KLHL42 Kelch Like Family Member 42 
ubiquitin-protein 

transferase activity 

Quadratic on TP65 

CRLS1 
Bos taurus cardiolipin synthase 

1 

synthesis of cardiolipin, 

critical for mitochondrial 

function 

ATP5E 

Bos taurus ATP synthase, H+ 

transporting, mitochondrial F1 

complex, epsilon subunit 

synthase catalyzes ATP 

synthesis 

5.4.4 Cross-validation Accuracy 

   We computed the accuracy of DMI prediction for both the regular GBLUP model and the best 

fitting RN model. Prediction accuracy for DMI defined as the correlation between true and 

estimated DMI in validation dataset for each folder was listed in Table 5.6. Prediction accuracy 

for DMI in the simplified RN model was generally 5% higher compared to that based on the 

regular GBLUP (P<0.01).  
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Table 5.6: Cross Validation Prediction Accuracies for each of 5 different validation datasets (fold) 

under the regular GBLUP and the reaction norm (RN) model. 

Fold 

Models 

GBLUP 

(TPG) 

RN 

(TP65) 

1 0.77 0.81 

2 0.76 0.80 

3 0.74 0.79 

4 0.73 0.79 

5 0.80 0.84 

Mean 0.76 0.81 

5.5 Discussion 

    In this study, we considered the high dimensional RN model proposed by Jarquin et al. (2014) 

to investigate GxE for RFI over linear and quadratic terms on TP, RH, AP, and interaction 

between TP and RH.  These covariates are commonly considered in GxE studies in plant and 

animal breeding (Hayes et al., 2016).  

    We did not discover any significant SNP for overall genetic effect (i.e. random intercept). 

Similarly, there have been other studies failing to detect any genomic associations with rFE 

suggesting that it is a rather complex trait (Lu et al., 2013, Do et al., 2014, Santana et al., 2014, 

Serão et al., 2016). We also detected no significant associations for overall genetic effects based 

on window-based associations. This result was unlike what we have determined previously (Lu 

et al., 2017b). However, that previous work entailed the use of single-step GBLUP techniques 

(Aguilar et al., 2010) which permit the incorporation of data on non-genotyped cows.  

Furthermore, that previous analysis also included cows from countries other than U.S. and 

Canada; we were not able to obtain weather information on data from research stations in the 

United Kingdom and in the Netherlands.   
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    We also noticed that inferences on overall or random intercept effects whether based on single 

SNP or window-based associations differed very little between conventional GBLUP and the RN 

models.  This might imply that whether or not one fits RN effects does not weaken the ability to 

detect QTL effects averaged across environments.  

    Noting that cross validation indicated that our RN model yielded higher prediction accuracies 

for DMI compared to the regular GBLUP, GWA inferences lead to the detection of four regions 

having significant RN effects with environmental covariates AP or TP65.  These results suggest 

these genomic regions are environmentally sensitive to these covariates for their effect on rFE. 

Among genes identified in those regions, the two most promising candidates seemed to be gene 

ELOVL Fatty Acid Elongase 4(ELOVL4, 19,842,903-19,881,703 bp) and ATP synthase subunit 

epsilon (ATP5E, 57,866,138-57,869,829bp). ELOVL4 has been related to the biosynthesis of 

fatty acids, while gene ATP5E controls mitochondrial ATP synthesis (Mayr et al., 2010). Fatty 

acids are important in feed digestion and metabolism and control body weight and insulin 

sensitivity (Canfora et al., 2015), whereas ATP plays important roles in intracellular energy 

transfer and involves in many biological processes including growth and maintenance 

(Maruyama, 1991, Tort et al., 2011).   

     The RN model proposed by Jarquin et al. (2014) provided an efficient approach to investigate 

GxE under multiple environmental factors for WGP and GWA studies. It is much more 

computationally feasible compared to the classical RN model, thus widely used in plant and 

human genomic research (Crossa et al., 2016, De Coninck et al., 2016, Vazquez et al., 2016).  

Note that if all those random RN slopes are random draws from an identically and independent 
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normal distribution and zero correlations are specified between random intercept and RN slopes, 

then Jarquin’s model would be equivalent to a conventional RN model.  

    Note that the common variance for all RN slopes is a rather strong assumption.  The natural 

follow-up question is what are the implications for GWA inferences if, as expected, variance 

components are rather heterogeneous across different RN covariates, including different 

polynomials or interactions?  We speculate that the implications may be not so serious at first 

glance, although admittedly the seriousness of this issue will depend greatly on the degree of 

heterogeneity in variance components between RN terms.  Firstly, as indicated earlier, it is 

important to invoke standardizations on covariates so that scale dependence is alleviated, and this 

is what we did in this study. Secondly, our GWA inferences are based on test statistics which are 

equivalent to GLS test statistics.  That is, these tests specify the single SNP effect or joint SNP 

effects in a window fixed effects in hypothesis testing.  Hence the mis-specification of variance 

components should only misalign somewhat the specification of genomic-based kinship 

covariances between individuals in a manner similar to that used in EMMAX, noting that one 

would estimate an “average” variance component (i.e., 2

b ) with the Jarquin’s model.  

    One possible strategy to allow for covariate or RN specific variance components is to fit each 

covariate separately in a series of single-covariate RN analysis and estimate the covariate-

specific RN variance component 2

bk  for covariate k for each of c separate single covariate RN 

analyses.  Upon collating the corresponding estimates 2ˆ
bk , k=1,2,3,…c across these analyses, 

one might then jointly fit all covariate-specific RN effects in the Jarquin’s model fixing 

      2

,

1

ˆvar
c

k k b k

k

diag diag 


v d ZZ' d . Admittedly, this might be considered a rather ad hoc 
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solution.  A potentially more elegant yet computationally demanding method could be based on 

Bayesian variable selection. Bayesian variable selection approach automatically allows 

difference variances on those individual RN terms and performs shrinkage on those less 

important RN terms so that no preselection on the environmental covariates is needed. Some of 

this work has been already been done in the context of single RN covariate specifications (Yang 

et al., 2015).  For high dimensional environmental covariate modeling, it seems rather 

challenging to estimate unique variance components and/or covariances between all possible RN 

terms in somewhat finite datasets.  One conceivable strategy might be to extend the model with 

augmented variables such that there is a borrowing of information across RN specific variance 

and covariance components using hierarchical Bayesian modeling(Bello et al., 2012). 

    Another problem with the Jarquin’s model relates to the fact that no covariances are specified 

between any of go, g1, g2, …., gc.  With doing so, this invokes the dubious assumption that the 

total genetic variance 
1

2 22
c

ikg

k

bd 


  and hence, heritability, is lowest at the point where 
2

1

c

ik

k

d


  is 

smallest.  However, it is not necessarily logical to presume that this should even be so.  Perhaps 

one strategy to help circumvent this issue is to determine the environments (and covariate values 

thereof) where heritability is estimated to be lowest in a series single covariate RN analyses and 

specify these values as the reference values for which the standardized covariates are expressed 

as zeroes in those cases.  It also seems possible to extend Jarquin’s model to specify a common 

covariance between intercept and every single slope and fit that to solve the mixed model 

equation of Equation [5.4] but that may be as dubious as an assumption as specifying zero 

covariance between intercept and every single slope. 
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    Finally, we believe Jarquin’s RN procedure could be readily extended to single-step GBLUP 

analyses to include information on non-genotyped animals as well.  Furthermore, the analyses in 

this chapter were based on the RFI phenotype whereas we have highlighted a multiple trait 

approach to modeling rFE in this dissertation (Lu et al., 2015).  The extension of Jarquin’s model 

to the multiple trait approach is possible although that might potentially entail specifying RN on 

all of the component traits which could be somewhat laborious. 

5.6 Conclusions 

We extended the high-dimensional environmental covariate RN model from Jarquin et al. 

(2014) to investigate which genomic regions might be contributing to environmentally sensitive 

to various covariates for rFE.  We were able to demonstrate using a simple simulation study that 

this model is able to detect associations for various orders of polynomial RN effects although the 

impact of detection of causal variants for overall genetic effects was very slight relative to a 

conventional GBLUP model.  We conducted GWA analyses on a dairy feed consortium study 

using inferences based on both single SNP marker and 1 MB window associations.  We detected 

no association for overall genetic effects. However, two windows on BTA9 and BTA5 were 

found to have significant associations with the linear and quadratic RN on AP, respectively, and 

two genomic regions on BTA 13 were associated with the quadratic RN effects of TP65.  Cross-

validation confirmed that GxE plays an important role for influencing rFE.  However, this model 

was based on some simplifying assumptions that should be extended with future methodological 

research.  
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Chapter6: Conclusions and Future Work 

6.1 Conclusions  

The primary focus of this dissertation has been to develop meaningful methodological 

extensions, whether based on either classical mixed models theory or on hierarchical Bayesian 

inference, in order to develop a much stronger statistical framework for the quantitative genetic 

modeling of residual feed efficiency (rFE) in dairy cattle than what has been considered in 

previous research.  These extensions are timely since there are simultaneous global research 

efforts in collecting dry matter intake (DMI) data for the purpose of improving the long-term 

economic and environmental sustainability of dairy cattle production.  One such project is the 

USDA-NIFA project entitled “Genomic selection and herd management for improved efficiency 

of the dairy industry” (USDA-NIFA Grant # 2011-68004-30340) which has funded this effort 

and provided the data for this dissertation.  This data consists of DMI, body weights (BW) and 

milk production and its components collected between 50 and 200 days in milk (DIM) on nearly 

7,000 cows from 16 research stations in 4 countries.  

In Chapter 2, we developed a genetic measure of rFE based on a multiple trait (MT) analyses 

of DMI, metabolic body weight (MBW = BW
0.75

), and milk energy (MILKE) based on a linear 

function of milk component yields.  The currently most popular “response” variable for rFE is 

residual feed intake (RFI) which is based on the estimated residual from fitting DMI as a linear 

function of MILKE and MBW as well as change in body weight throughout the recording period.  

The RFI is then typically modeled as a function of genetic effects in a second stage model 

although we have made the case that RFI inferences can be based on a single-step model (Lu et 

al., 2015).  We demonstrated in Chapter 2 how the RFI modeling strategy assumes that the 

partial relationships between DMI and MILKE and MBW are the same at both genetic and non-
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genetic levels. Conversely, our proposed MT model, invoking the use of the Cholesky 

decomposition on the genetic and residual variance-covariance matrices, allows these partial 

relationships to be specified differently for genetic and residual levels.  The potential impact of 

large discrepancies between genetic and residual partial relationships was demonstrated by 

simulation such that the MT model can lead up to 4% greater accuracy of genetic prediction.  

However, there appeared to be no appreciable difference in fit between the MT and RFI model 

when applied to the USDA-NIFA feed efficiency project data.  Heritability estimates (± standard 

error) were also similar for rFE measures under both models, being 0.14 ± 0.03 under the MT 

model and 0.16 ± 0.03 using the RFI model.  Nevertheless, the MT approach is promising in the 

sense that it could handle missing data; this is a non-trivial consideration for future genetic 

evaluations of rFE knowing that the number of records on DMI will generally be far less than 

MILKE, for example. This should then provide a more promising approach to provide genetic 

merit on rFE for all US dairy cows than the current ad hoc strategy consider in the Total 

Performance Index (TPI) by Holstein Association USA which bases rFE on a linear formula 

involving milk produced and DMI 

(http://www.holsteinusa.com/genetic_evaluations/ss_tpi_formula.html).  In fact, we also 

demonstrated in Chapter 2 that once economic weights (i.e. revenues and/or costs) of DMI, 

MBW, and MILKE are known, it is fairly straightforward to determine the relative economic 

weightings of rFE to MILKE for example. 

Given that Tempelman et al. (2015) discovered that the partial relationships relating DMI to 

MILKE and MBW are heterogeneous across research stations in RFI modeling, we extended the 

MT model in Chapter 3 using hierarchical Bayesian analyses to allow for multifactorial 

modeling of these partial relationships at both the genetic and residual level as a function of 
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various management and environmental factors, including station, parity, DIM, and ration.  Data 

on all components of feed efficiency (i.e. DMI, MILKE, MBW, and 

28 days after 50 DIM for each cow within the USDA-NIFA study.  Results clearly indicated that 

genetic and residual variation in rFE is highly heterogeneous across stations, parity, or diet such 

that the heritability for rFE ranged widely from 0.16 to 0.46. We also found that heritability for 

rFE in primiparous cows was nearly twice of that in multiparous cows. Although there was some 

evidence of heterogeneity across stations for partial relationships between DMI and MILKE and 

DMI and MBW at the residual level, there was no such evidence at the genetic level. At any rate, 

modeling these different layers of heterogeneity contributed to a 4% higher prediction accuracy 

on DMI compared to the standard specification from Chapter 2. 

    We then investigated a comparison of the MT versus RFI approaches for genome wide 

association (GWA) analyses in Chapter 4.   For both approaches, we adopted the single-step 

genomic BLUP approaches developed by Aguilar et al. (2010) using the Illumina® 

BovineSNP50 Genotyping BeadChip panel and 28-day records from the USDA-NIFA FE 

dataset. Inferences were conducted based on single SNP tests and 1 MB window-based joint tests 

on multiple SNP markers, the latter used to mitigate the impact of multicollinearity due to 

linkage disequilibrium.   For either modeling approach, no single SNP associations with rFE 

were detected whereas the window-based approach led to the detection of 2 genomic regions 

within BTA12 and BTA26 significantly associated with rFE.  Nevertheless, the MT approach 

provided important insights that GWA inferences on DMI and on rFE are not synonymous as we 

provided evidence that the two most significant GWA associations for DMI were partially driven 

by mild pleiotropic associations with MILKE and MBW whereas GWA inferences on rFE are 

completely different from the three other traits.   
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It is possible that any number of environmental covariates could be drivers for genotype by 

environment (GxE) interactions for economically important dairy traits such as rFE. These sorts 

of GxE inferences are typically based on reaction norm (RN) models whereby the allelic 

substitution effect for a particular SNP marker is modeled to be a linear function of a covariate 

(or polynomial or interaction thereof).   Hence, it might be useful to determine specifically which 

SNP markers and/or regions are associated with these particular GxE covariate drivers so that we 

can identify genomic regions that are environmentally sensitive.  We adapted the model 

proposed by Jarquin et al. (2014) which allows a large number of such covariate driven RN 

terms to be fitted simultaneously based on some simplifying assumptions; namely that the RN 

variance is the same for each covariate and that there is no covariance between the overall 

average SNP effect and its RN.   

      After validating GWA and various levels of environmental sensitivity inferences from this 

model using a simple simulation study, we applied it to the North American subset of the USDA-

NIFA consortium dataset. Environmental covariates considered were various terms involving 

temperature (TP), relative humidity (RH), and average contemporary group milk production 

(AP).  In the GWA studies on GxE effect, 4 regions were found that were environmentally 

sensitive to various polynomials in TP or AP.  The importance of modeling GxE as a function of 

RN on these covariates was further established as the GxE RN model yielded a 5% higher cross 

validation prediction accuracy on DMI compared to the conventional GBLUP model. 

6.2 Implications of Dissertation for Genetic Improvement and Control of Feed Efficiency 

We confirmed that rFE is a heritable trait such that it is possible to improve it by genetic 

selection.  Furthermore, our proposed MT model offers an innovative way to incorporate rFE in 

the dairy breeding plan. We proposed to simultaneously select for DMI, MBW, and MILKE with 
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recognition that  multiple-trait selection on DMI, MBW, and MILKE is the same as multiple-trait 

selection on rFE, MBW, and MILKE (Kennedy et al., 1993). 

We subsequently determined that the nature of the genetic and non-genetic relationships 

among the component traits of rFE is highly heterogeneous and subject to different 

environmental and management conditions.  Furthermore, within a GxE context, we again 

confirmed the importance of herd management impacting allelic substitution effects, and hence 

heterogeneity of genetic variance. The importance of management practices on influencing 

genetic variability, and hence estimated genetic merit, for various dairy production traits has 

been made in other studies as well (Bello et al., 2012, Martin-Collado et al., 2015). 

      Our GWA results suggested that rFE is likely controlled by many genes with small effects 

making it rather challenging to target specific genomic areas for special attention.  Although we 

identified two regions having significant associations with rFE based on the window-based test, 

it appeared that those two regions only contribute to a very small proportion of the total genetic 

variance (1.1%).  Thus, I personally believe it may not be beneficial to conduct further functional 

experiments to locate candidate genes within these two regions. We also noted that GxE and 

management driven heterogeneities play an important role in genetic regulation of rFE, thereby 

adding to the genetic complexity of this trait.    

6.3 Future Work 

This dissertation has addressed several important issues with various integrated chapters or 

studies although it might be apparent that there may be a need to jointly infer some of the various 

phenomena considered in this dissertation.  For example, the heterogeneous variance and partial 

regression modeling at the genetic and residual levels in Chapter 3 should not be considered 

really distinctly different from the GxE modeling considered in Chapter 5 since GxE generates 
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heterogeneous genetic variances across environmental covariates.  However, the fact that both 

models are already highly parameterized may require some judicious approaches to model 

development; for example, perhaps heterogeneous genetic variance and partial relationship 

modeling might be specified only at the level of the overall (i.e. random intercept) genetic effects 

in the RN based GxE inferences.  Furthermore, we note that others (Aggrey and Rekaya, 2013, 

Saatchi et al., 2014a)  have additionally sought to determine whether or not there is genetic 

variability in the partial relationships of DMI with MILKE and with MBW.  Again, it may be 

difficult to accommodate many more extensions without increasing dataset sizes.  

    Except for Chapter 3, the bulk of this work has been based on the implementation of classical 

mixed models theory; i.e., BLUP based on REML (Chapters 2, 4, and 5).  We recognize that 

Bayesian regression methods, especially those based on heavy-tailed or variable selection 

specifications (de los Campos et al., 2013) may have advantages over the BLUP assumption of 

normally independently and identically distributed SNP effects. Implementation of these 

procedures using Markov Chain Monte Carlo methods can be computationally onerous and 

plagued by numerical instabilities; e.g. poor mixing, especially in high dimensional models 

(Tempelman, 2015).  However, if conducted conscientiously, these Bayesian regression 

procedures can augment prediction accuracies as well as accuracies of GWA inferences (Moser 

et al., 2015).   For example, although Bayesian regression strategies have already been proposed 

for single covariate RN models(Yang et al., 2015), they conceptually could be extended further 

to select covariates for higher dimensional GxE analyses as we conducted in Chapter 5.  

Bayesian inference may be particularly useful to extend the distributional assumptions of the 

Jarquin’s model by allowing RN specific variances by borrowing information across covariates 

with a prior distribution. 
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It is also important to recognize that the concept of an RFI-like rFE measure as I have 

investigated in this dissertation is not necessarily synonymous with overall feed efficiency or 

economic efficiency.  Selection index for dairy breeding should include component traits in order 

to favor the dilution of maintenance and decrease feed intake. In an addition, fixed overhead 

costs (e.g. stall or pen space) are not adequately represented when penalizing high producing 

cows that have a much higher DMI consumption than anticipated (i.e. highly positive RFI or 

smaller feed saved).   With increasingly better ways to quantify all input costs, including feed, 

for the individual cow, it is necessary to integrate the economic and genetic efficiency of dairy 

production, and promote novel economic evaluations of rFE that are not just based on 

minimization of feed costs.  Future work on the genetics-economics interface of rFE is then 

vitally important.  This should include more optimal herd management, including grouping 

strategies, to maximize milk output relative to feed and other input costs of which the genetic 

potential of RFI-like measures is only a small component.   
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APPENDIX A: Chapter 1 

Supplementary Figures and Tables 

Table A.1: True values for each of seven key parameters in 162 run response surface design 

simulation study. 
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Table A.1: (cont’d) 
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Table A.1: (cont’d) 
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Table A.1: (cont’d) 

  



 

136 

 

APPENDIX B: Chapter 2 

Derivation of Full Conditional Densities for MCMC implementation 

Much of the following developments closely follow the Appendix in Bello et al. (2010) noting that 

their developments were based on a 2 trait rather than a 3 trait system.   

FCD of  and u: 

We write the entire dataset on all subjects as  1 2' ' ' 'ny y y y .  Furthermore, write 

the overall fixed and random effects design matrices as  1 2' ' ' 'T nX X X X  and 

 *

1 2' ' ' 'T nZ Z* Z* Z* ,  respectively. We also define 
1

var( )
n

i
j

e


 
 
 

  Σ e R , noting that 

1 2 3' ' ' ... ' 'n  e e e e e  is ordered by traits within animals and   denotes the direct sum 

operator (Searle, 1982).  Hence, it should then be readily noted that 1 1

1

n

e i
i

 


 Σ R .  We similarly 

define   * * *
1 2

1
var n

n

i
i

 
 

 u u u G  with inverse 1

1

n

i
i




G  noting that   

1
1 * * *

.1 .2 .3var ' ' ' 'g


  

 
Σ u u u

can be readily determined by merely rearranging elements of 1

1

n

i
i




G  by animals within traits rather 

than by traits within animals.    

One might specify subjective multivariate normal prior densities on fixed location 

parameters for each trait: 
   

| , ~ ,j j jj jN
 
 
 

0 0β β
β β V Vβ , with hyperparameters j

0β  and  
j
β

V  being 

specified as known.  Bounded uniform priors are also commonly considered, i.e.,   1
j

 
β

0V   
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(Sorensen and Gianola, 2002) as, typically, enough data is available to infer upon elements of iβ

with any reasonable noninformative prior distribution in large field studies (Gelman, 2006).   

Using (Sorensen and Gianola, 2002) that the joint FCD of ' * ' ' 
 

θ β u  is multivariate 

Gaussian:  

      
1 1

1 1 1 1 1 1
0~ ' ' , 'e e eN

 
      

 
 

  θ θ θθ W Σ W Σ W Σ y Σ θ W Σ W Σ   [B1] 

for *
T T  

 
W X Z ,  ( ) ( ) ( )

1 2 3 gdiag β β βΣ V V V Σ , and 0 0 0
0 1 2 3 3 x1' ' ' 'q

 
 

θ β β β 0 ' .  There are a 

number of different alternative strategies for sampling from elements of θ , including single site or 

univariate Gibbs updates  and block sampling strategies that exploit the sparsity (i.e., high 

frequency of zero elements) in  
1

1 1' e


  θW Σ W Σ  as we invoked in this study. 

Note then that draws of breeding values for the three traits, .1u , .2u , and .3u can readily be 

determined as 1 *
.1C u , 1 *

.2C u  and 1 *
.3C u , respectively, for A = CC’, i.e. C being the Cholesky 

decomposition of the relationship matrix A.  Furthermore, draws of *
2|1u  can then simply be 

determined as a vector with elements   * *

2 (21) 1 1

n
u

i i i i
u u


   whereas draws of 2|1e can be determined as 

a vector with elements  2 (21) 1 1

n
e

i i i i
e e


  noting that 

*

1 1 1

*

11    1'     'i i i ie y   x z u   Similarly, draws of 

*
3|1,2u  can be determined as 

   
* * *

3 1 2

1
31 32

n

i i i

i

u u

i i
u u u 



 
 
 

   whereas draws of 3|1,2e  are determined as 

    3 1 2

1
31 32

n

i i i

i

e e

i i
e ee  



  .  

FCD of  21

u
 γ ,  21

u m ,    21 21
ande e   γ m . 
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Note from Equations [2.2], [2.3b] and [2.4b] that one could rewrite the model for Trait # 2 (i.e. 

MBW) as follows:  

    
' * * ' *

2 2 1 2|12

* * *

  2 2 2 1 2|1 1 21
    '          '   '  i i i i

u e

i i i ii i
y e e e      x z u x z U z u    [B2] 

where     21 21
1

n
u u

i
i




φ  and  * *

1 1diagU u  and all other terms defined as before. We rearrange 

Equation [B2] to be a linear model in  21

uφ  and hence of  21
uγ  and  21

um using Equation [2.5]: 

   
   

       

21 2 1 2|121 2
' * * * *

2 12|1

* * * *
1 121 21 21

1

2|121

  '      '

' '

u e u
i i i iii i i

u u u
i ii

u

y e e

e

y     

 





x z u z U

z U γ z mZUX

 
 [B3] 

It can then be readily demonstrated using Equation [B5] that the joint FCD of    21 21
andu u   γ m  is 

multivariate normal just like Equation [B1] except one substitutes    21

* *

1 1

* *

1 2

u u 
 
Z U Z UX Z  for W, 

 2|1

2

i
ediag 

 
 
 
 

 for eΣ ,     2
21 21,

u

u
mdiag V I  for Σ , 

 
( )

x121
' ' '

u

u
q

 
  
 

γ
μ 0  for 0θ , and  

121

n

i

u
iy


 for y 

noting that  
* * * *

1 2 'n
   Z z z z ,        21 21 1 21 2 21

'u u u u

n
 
 

X x x x  and 

       21 21 1 21 2 21
'u u u u

n
 
 

Z z z z .  Similarly, one could rearrange [B2] to be a linear model in

    21 21
1

n
e e

i
i




φ  and hence of  21
eγ  and  21

em using Equation [2.6]:  

   
   

       21 21 21 21

21 2 1 2|121 21
' * * * *

2 1 2|1

1 1 2|1' '

'   '   

  e e e e
i i

e u e
i i i iii i i

i i i

ey ey

e e e





   

 x γ z m  

x z U z u 
 [B4] 
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such that the joint FCD of    21 21
ande e   γ m  is multivariate normal just like in [B1] except one 

substitutes    1 121 21
' ' 'e e 

 
X ZE E  for W, 

  2|1

2

iediag   for eΣ ,     2
21 21,

u

e
mdiag V I  for Σ , 

  ( )
x121

' ' '
u

e
qγ

μ 0  for 0θ , and  
1

21

n

i

e
iy


 for y noting that   

1

2

1
1i

n

e
i

diag 


E , 

       21 21 1 21 2 21
'e e e e

n
 
 

X x x x  and        21 21 1 21 2 21
'e e e e

n
 
 

Z z z z . 

 

FCD of  31

u
 γ ,  31

u m
 31

e
 γ ,  31

e m  32

u γ ,  32

u m  32

e γ , and  32

e m  

Note from Equations [2.2], [2.3c] and [2.4c] that one could rewrite the model for Trait #3 (i.e. DMI) 

as follows:  

       3 3 1 2 3|1,23

' '* * ' '* * '* * '* *

  3 3 3 1 21 32 31 33| ,2 31               i i i i i

u u e e

i i i i ii iiy e e e e        x z u x z U z z uφUφ   

 [B5] 

where     31 31
1

n
u u

i
i




φ ,     32 32
1

n
u u

i
i




φ ,  * *

2 2diagU u , and all other terms defined as before.  We 

rearrange [B5] to be a linear model in  31

uφ  and hence of  31
uγ  and  31

um using Equation [2.5]: 

 

     

 

       

3 1 232 3

' '* * '* *

  3 2 3|1,2

'* *

1

'* * '* *

1 131 31 31 31

1 33

3|1,231

3|1,2

31     

  

u e e

i ii i i

i

u u u u

i

ii i

i

i

u

i

u
i y e e

e

e

y   



   



 

x z U z u

z U

z X U γ z

φ

Z U m

φ



 [B6] 

It can then be readily demonstrated that the joint FCD of    31 31
andu u   γ m  is multivariate normal just 

like in [B1] except one substitutes  
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   31

* *

1 1

* *

1 3

u u 
 
Z U Z UX Z  for W, 

  3|1,2

2

iediag   for eΣ ,     2
31,

u

u
mdiag V I 

for Σ ,   x131 ' ' '
u

u
qγμ 0  for 

0θ , and  
1

31

n

i

u
iy


 for y. Similarly, one could rearrange [B5] to be a linear model in     31 31

1

n
e e

i
i




φ  

and hence of  31
eγ  and  31

em using Equation [2.6]: 

     

 

       

' '* * '* * '* *

  3 1 2 3|3 231 32 32

1 3|1,231

1 1 3|1,

1,2

31 31 31 31 2

31      

  

'

 

'

u u e

i i i

e

i ii

i i i

i i i i

e e e e

i i

e
i y e

e e

e e e

y 



   













x z U z U z

γ m

φ φ u

x z



 [B7] 

such that the joint FCD of    31 31
ande e   γ m  is multivariate normal just like in [B1] except one 

substitutes    1 131 31
' ' 'e e 

 
X ZE E  for W, 

  3|1,2

2

iediag   for eΣ ,     2
31 31,

e

e
mdiag V I  for Σ , 

  ( )
x131

' ' '
e

e
qγ

μ 0  for 0θ , and  
1

31

n

i

e
iy


 for y noting that  ,        31 31 1 31 2 31

'e e e e

n
 
 

X x x x  and 

       31 31 1 31 2 31
'e e e e

n
 
 

Z z z z . 

We rewrite [B5] to be a linear model in  32

uφ  and hence of  32
uγ  and  32

um using Equation [2.5]: 

 

     

 

       

3 1

' '* * '* *

  3 1 3|1,2

'* *

2

'* * '* *

2 232 32

231 31 33

3

32 3

|1,232

|2 31,2

32      

  

u e e

i i ii i

u

i

i i i

i

u u u u

i i i

u
i y e e

e

e

y  



    







x z U z uφ

z U φ

z X U γ z Z U m



 [B8] 

It can then be readily demonstrated that the joint FCD of    32 32
andu u   γ m  is multivariate normal 

just like in [B1] except one substitutes  
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   32

* *

2 2

* *

2 3

u u 
 
Z U Z UX Z  for W, 

  3|1,2

2

iediag   for eΣ ,     2
32 32,

u

u
mdiag V I

for Σ ,   x132 ' ' '
u

u
qγμ 0  

for 0θ , and  
1

32

n

i

u
iy


 for y.  

Finally, one could also rearrange [B5] to be a linear model in     32 32
1

n
e e

i
i




φ  and hence of  32
eγ  and 

 32
em using Equation [2.6]: 

     

 

       

' '* * '* * '* *

  3 1 2 3|3 131 32 31

2 3|1,232

2 2 3|1,

1,2

32 32 32 32 2

32      

  

'

 

'

u u e

i i i

e

i ii

i i i

i i i i

e e e e

i i

e
i y e

e e

e e e

y 



   













x z U z U z

γ m

φ φ u

x z



 [B9] 

such that the joint FCD of    32 32
ande e   γ m  is multivariate normal just like in [B1] except one 

substitutes    2 232 32
' ' 'e e 

 
X ZE E  for W, 

  3|1,2

2

iediag   for eΣ ,  
2

2

2
1i

n

e
i

diag 


E
    2
32 32,

e

e
mdiag V I 

for Σ , 
  ( )

x132
' ' '

e

e
qγ

μ 0  for 0θ , and  
1

32

n

i

e
iy


 for y noting that        32 32 1 32 2 32

'e e e e

n
 
 

X x x x  

and        32 32 1 32 2 32
'e e e e

n
 
 

Z z z z . 

FCD of  
2

um r
 for r =21,31,32 

The FCD for  
2

um r
  for r =21,31,32 can be determined as follows: 

          

      

 
  

2

'

2 2

 
2 22

2

p |ELSE, p | *

exp
2

u u u

u

u u

u

m r

u

r

u u

r r

m r m r

q

m r m r

m r

p

p

  

 


  
 


 




 


m

m

y

m
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Note that if 
  2 1

um r
p    as adapted in this paper, then the FCD of 

 
2

um r
  is Scaled Inverted Chi-

Square with parameters 2uq   and 
   

'

2

u u

r r

uq 

m m
.   If 

  2

um r
p    is a proper scaled inverted chi-square 

density, then it could be readily shown that 
  2p |ELSE,

um r
 y   is scaled inverted chi-square 

distributed as well.
 

FCD of  
2

em r
  where r=21,31,32 

The FCD for  
2

em r
  for r =21,31,32 can be determined as follows: 

          

      

 

2

2

'

2 2

 
2 2

p | , p |

exp
2

e e e

e

e

e

m r m r m r

q

m r

e

r

e e

r

r r

m

ELSE p  











 
 
 
 

y m

m m

      

 
 

Note that if 
  2 1

em r
p    as adapted in this paper, then the FCD of  

2

em r
  is Scaled Inverted Chi-

Square with parameters 2eq   and 
   

'

2

e e

r r

eq 

m m
.   If 

  2

em r
p    is a proper scaled inverted chi-square 

density, then it could be readily shown that 
  2p |ELSE,

em r
 y   is scaled inverted chi-square density 

as well.
 

FCD of  
u

s
τ  and  

u

s
v  for s = 1, 2|1, and 3|1,2.  

Equation [2.7] can be rewritten as       
 

    
 

, ,2

1 1

σ
u s u s

s i c s i d
u up q

x z
u u

u s i s c s d
c d

v
 

   noting that 

         ,1 ,2 ,
'

u s

u u u

s i s i s i s i p

ux x x 
 

x  and 
         ,1 ,2 ,

'
u s

u u u

s i s i s i s i q

uz z z 
 

z .  Given an “random 
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effects” prior of 
         |η ~ IG η ,η 1u u u u

s d s s s
p v   d  and noting that elements of  

  '
s i

u
z  are typically 

either 0 or 1, then the FCD of can be written as:  

       
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to the indicator function which is equal to 1 if the condition defined therein is true; otherwise I(.) = 
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Since this FCD is not recognizable, a Metropolis Hastings step is used here; further details are 

provided in Bello et al. (2012)  

FCD of  
ηe

s
 



 

146 

 

       
 

  

      

    

 

 
  

  
 

 
  

1

η

2η 1

1 1

P η | |η * η  

η 1 1
exp η 1  1 η

η

e s

e s

e s

e
s

e s

e

s

e

s

e e

p

e

s d
d

p
p p

e

e

p s d e
d d s d

s s s

e

s e e

s s
e

s

ELSE p v p

v
v



 

 



   
     

   
    



 

  

Since this FCD is not recognizeable, a Metropolis Hastings step is also used here 
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Table B.1: Posterior inferences characterizing heterogeneity of genetic and residual partial efficiencies of MBW
1
 on MILKE

2
 

 PMEAN (PSD)
3
 95% HPD

4
 ESS

5
 PMEAN (PSD)

3
 95% HPD

4
 ESS

5
 

Factor Levels Genetic Partial Efficiencies (
 21

u in kg/Mcal) Residual Partial Efficiencies (
 21

e in kg/Mcal) 

Stations
6
 

AB 0.22(0.22) [-0.23,0.63] 1417.61 0.62(0.17) [0.29,0.96] 2027.56 
BARC 0.03(0.18) [-0.32,0.38] 1485.44 0.56(0.15) [0.27,0.85] 1327.47 
ISU 0.05(0.20) [-0.35,0.44] 1370.28 0.48(0.15) [0.19,0.78] 1720.10 
MSU 0.11(0.20) [-0.28,0.50] 1678.18 0.41(0.16) [0.10,0.73] 2840.62 
UF 0.10(0.21) [-0.31,0.49] 2153.18 0.47(0.17) [0.13,0.80] 2118.45 
USDFRC 0.02(0.21) [-0.40,0.42] 1963.80 0.54(0.16) [0.24,0.86] 1251.10 
UW  0.10(0.21) [-0.31,0.53] 2292.54 0.40(0.17) [0.07,0.74] 2194.10 
NBZ 0.25(0.17) [-0.09,0.58] 994.46 0.51(0.16) [0.20,0.83] 2464.04 
NLN 0.11(0.20) [-0.29,0.52] 1757.27 0.47(0.16) [0.18,0.80] 2166.99 
TGEN 0.17(0.20) [-0.20,0.57] 1495.81 0.41(0.15) [0.12,0.70] 1437.23 
ZOM 0.11(0.13) [-0.16,0.37] 1030.10 0.47(0.09) [0.29,0.65] 1041.08 
LAN 0.09(0.21) [-0.32,0.51] 1786.41 0.33(0.14) [0.05,0.61] 2885.50 

 SAC 0.14(0.21) [-0.26,0.54] 1533.41 0.45(0.13) [0.19,0.70] 2510.04 

DIM 
Linear -4.3e-03(0.02) [-0.04,0.03] 8905.04 -0.01(0.02) [-0.06,0.03] 8767.77 

Quadratic 2.8e-03(0.02) [-0.04,0.04] 8447.56 0.01(0.03) [-0.05,0.07] 8932.12 

Parity 
Primiparous 0.09(0.16) [-0.22,0.42] 797.32 0.50(0.13) [0.25,0.75] 765.76 
Multiparous 0.14(0.15) [-0.16,0.43] 1398.08 0.44(0.08) [0.29,0.61] 2580.82 

Ration(Station)    
Variance component 

( (kg
0.75

)
2
 / Mcal

2
)       

  

 Genetic (
 

2

21um
 ) 0.09(0.11) [3.1e-04,0.32] 134.97    

 Residual (
 

2

21em
 )    0.10(0.06) [2.5e-03,0.22] 394.00 

1
 Metabolic body weight (in Kg) 

2
 Milk energy (in Mcal)

 

3
 Posterior mean (± posterior standard deviation) 

4
 95% Highest posterior density interval 

5
 Effective sample size 



 

148 

 

Table B.1: (cont’d) 

6
 Station levels characterized in body of manuscript. 

Table B.2: Marginal Mean and Variance Component Inferences of Genetic and Residual Variance Components of MILKE
1 

 PMEAN(PSD)
2
 95%HPD

4
 ESS

5
 PMEAN(PSD)

2,3
 95%HPD

4
 ESS

5
 

Factor Levels Genetic variance  (Mcal
2
) Residual variance  (Mcal

2
) 

Stations
6
 

AB 3.13(1.20) [1.19,5.55] 676.96 5.1
abc

(1.33) [2.65,7.77] 1350.53 
AGIL 6.72(2.84) [2.07,12.40] 868.98 5.81

abc
(1.96) [2.51,9.68] 1714.74 

ISU 7.31(2.79) [2.38,12.92] 342.90 9.54
ab

(2.46) [5.06,14.53] 619.60 
MSU 4.14(2.05) [1.17,8.17] 628.56 9.26

a
(1.95) [5.74,13.19] 1673.32 

UF 4.89(2.34) [1.43,9.69] 647.11 6.99
abc

(1.62) [3.88,10.14] 1228.41 
USDFRC 6.26(2.30) [2.16,10.69] 348.36 7.08

abc
(1.25) [4.55,9.75] 406.75 

UW 6.60(3.44) [1.25,13.37] 357.71 7.70
abc

(2.07) [3.75,11.68] 654.00 
NBZ 3.92(1.10) [1.87,6.03] 162.34 4.06

c
(1.37) [1.75,6.79] 1989.52 

NLN 3.33(1.38) [1.21,6.14] 647.24 5.31
bc

(0.94) [3.52,7.19] 1470.02 
TGEN 4.17(1.73) [1.34,7.55] 527.75 5.47

abc
(1.79) [2.43,9.00] 817.54 

ZOM 4.09(0.83) [2.63,5.77] 146.86 5.50
bc

(0.64) [4.26,6.77] 544.24 
LAN 3.64(1.33) [1.47,6.23] 555.44 7.30

abc
(1.70) [4.28,10.68] 1359.89 

 SAC 3.34(1.36) [1.25,5.96] 493.17 9.01
abc

(2.45) [4.58,13.71] 1600.81 

Parity 
Primiparous 4.90(1.00) [2.95,6.82] 208.45 4.10

x
(0.55) [3.05,5.17] 324.21 

Multiparous 3.81(1.00) [1.95,5.80] 214.50 10.01
y
(0.96) [8.09,11.89] 637.15 

Ration(Station) CV
7 

  

  Genetic 0.50(0.38) [0.26,0.92] 296.11    

  Residual    0.41(0.09) [0.27,0.59] 909.23 

 

1
 Milk energy (in Mcal)

 

2
 Posterior mean (± posterior standard deviation) 
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Table B.2: (cont’d) 

3
 Estimates not sharing the same letters within factors are statistically different (P < 0.05). 

4
 95% Highest posterior density interval 

5
 Effective sample size 

6 
Station levels characterized in body of paper. 

7
 Coefficient of variation of ration within station specific genetic and residual variance components. 
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Table B.3: Marginal Mean and Variance Component Inferences of Genetic and Residual Variance Components of MBW
1
| MILKE

2 

 PMEAN (PSD)
3
 95% HPD

4
 ESS

5
 PMEAN (PSD)

3,4
 95% HPD

5
 ESS

6
 

Factor Levels Genetic variance   ((Kg
0.75

)
2
) Residual variance   ((Kg

0.75
)
2
) 

Stations
7
 

AB 26.73(7.92) [13.18,43.05] 532.48 18.77(6.06) [8.43,30.96] 926.47 
AGIL 23.13(7.72) [10.25,38.84] 1046.34 28.68(8.84) [13.27,46.10] 2023.31 
ISU 34.78(8.79) [18.37,52.12] 917.23 23.00(5.78) [12.34,34.28] 953.39 
MSU 47.47(18.48) [14.47,81.86] 305.45 30.01(12.67) [10.35,55.56] 286.01 
UF 48.77(16.24) [18.94,80.02] 566.48 26.96(10.67) [9.39,48.22] 527.74 
USDFRC 34.63(9.78) [17.36,54.59] 182.86 25.66(6.67) [12.97,38.85] 286.84 
UW  38.53(12.99) [14.07,62.86] 331.67 25.15(9.12) [9.52,42.94] 394.20 
NBZ 23.02(5.62) [13.34,34.13] 228.00 19.51(6.67) [7.92,32.42] 1183.86 
NLN 32.95(12.43) [11.59,57.01] 371.09 31.35(8.91) [14.41,48.13] 621.35 
TGEN 24.72(8.53) [10.16,41.37] 805.66 25.01(8.08) [10.96,41.06] 766.92 
ZOM 29.31(5.17) [19.43,39.20] 165.22 23.58(3.19) [17.61,29.85] 243.28 
LAN 28.08(7.31) [15.80,43.53] 966.57 24.73(6.07) [13.61,36.51] 1324.91 

 SAC 32.27(10.76) [13.85,53.20] 1049.48 34.39(9.79) [16.30,53.26] 1194.97 

Parity 
Primiparous 27.26(3.96) [19.46,34.74] 257.33 19.78

x
(2.85) [14.29,25.35] 360.83 

Multiparous 34.57(7.01) [20.74,47.89] 160.59 30.71
y
(5.26) [20.65,40.87] 142.90 

Ration(Station) CV
8 

  

 Genetic 0.39(0.05) [0.34,0.48] 108.33    

 Residual    0.32(0.05) [0.23,0.42] 1204.37 

1
 Metabolic body weight (in Kg)

 

2
 Milk energy (in Mcal)

 

3
 Posterior mean (± posterior standard deviation) 

4
 Estimates not sharing the same letters within factors are statistically different (P < 0.05). 

5
 95% Highest posterior density interval 

6
 Effective sample size 

7 
Station levels characterized in body of paper. 

8
 Coefficient of variation of ration within station specific genetic and residual variance components. 
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APPENDIX C: Chapter 3 

Derivations 

    Let’s start with a simple univariate animal model: 

 
1

' ' ˆ

ˆ' 


     
     
     

X X X X'yβ

yX I + ZZ u
 where 

2

2

e

u





    and

1
' '

'

u

u uu

 

 


   

   
  

X X XC C

X I + ZZC C
 

    And one may also absorb the fixed effects too: 

     
1

ˆ
  

 
W + ZZ' g Wy  where  

1
' '


 W I X X X X  such that  

1
1uu 


 

 
C W + ZZ' . 

    Then  C
gg

 part can be computed as  
   

' 1 1 ' 2

1
1 1' 1 1 ' 2' '

gg uu

u

u



 

 


  



  
 

C Z G C G Z

Z G I X X X X + ZZ' G Z
                                                                                                          

     And we already know that   
' 1g ZG u  and                                                                                                                                                                                                                      

  ' 1 2

ˆ
j

j
gg

u jj

g
z

sqrt C


Z G Z
   where  '

j
Z GZ  and gg

jC are the j,j diagonal element of  '
Z GZ  

and Cgg is the prediction error variance of ˆ
jg  being the GBLUP estimate for SNP j. 

     Consider the MT (multiple-trait) model on MILKE, MBW, and DMI 

 

 

 

1 1 1 1

2 2 2 2

3 3 3 3

       

         

       

   
   
   

 

  

      

y Xβ u e

y Xβ u e

y Xβ u e

,  

and the BV estimates and variance genetic and residual covariance matrixes between three traits 

are  
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 
1 12 13

12 2 23

13 23 3
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1
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2
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3

var var ; 1,2,...,

g g gi

g i i g g g
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u

u i q
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  

  
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  
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     
      

Σ u It just happens that 
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1 12 13

12 2 23

13 23 3

2
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g i i g g g
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g
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  
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Σ u .  Furthermore,  
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1 12 13

12 2 23

13 23 3

2
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3

var var ; 1,2,...,

e e ej

j j e e e

j e e e

e
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e

  

  

  

  
  

     
  

    

R e .   

    Let’s write: 

11 12 13

1 21 22 23

31 23 33

g

g g g

g g g

g g g



 
 

  
 
 

Σ  and 

11 12 13

1 21 22 23

31 23 33

e

r r r

r r r

r r r



 
 

  
 
 

Σ  

     The mixed model equation for MT model is:  

11 11 12 12 13 13

11 11 1 11 12 12 1 12 13 13 1 13

12 12 22 22 23 23

12 12 1 12 22 22 1 21 23 23 1 23

13 13 23 23 33

' ' ' ' ' '

' ' ' ' ' '

' ' ' ' ' '

r r r r r r
r r g r r g r r g
r r r r r r

r r g r r g r r g
r r r r r

  

  

  

  

X X X I X X X I X X X I

IX I H IX I H IX I H
X X X I X X X I X X X I

IX I H IX I H IX I H
X X X I X X X I X X X

1 1

1 1

22
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3
3

13 13 1 13 23 23 1 23 33 33 1 33
3

3

ˆ '
ˆ
ˆ '
ˆ

'ˆ

ˆ
r

r r g r r g r r g  

    
    
    

    
    
    

         

β X y
u y

X yβ
yu

X yI β
yIX I H IX I H IX I H u

  

such that the inverse of the mixed model equations can be written as follows: 
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11 11 12 12 13 13

11 11 1 11 12 12 1 12 13 13 1 13

12 12 22 22 23 23

12 12 1 12 22 22 1 21 23 23 1 23

13 13 23 23 33

' ' ' ' ' '

' ' ' ' ' '
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 
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C C 3 2 3 2 3 3 3 3
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u

u u u u u u u u u

      

  



 

 
 
 
 
 
 
  

C C C C

C C C C C C

. 

     Of course, the key part of that inverse pertains to the random effects for three traits which we 

illustrate below: 

32

2 32 2 2

3 3 2 3 3

u uu u u u

u uu u u uuu

u u u u u u

  





 
 
 
 

C C C

C C C C

C C C

 

    Suppose one wants to backsolve for solutions of g using breeding value estimates from 

genotyped animals.  Refer to these genotypes as Z and the corresponding breeding values from 

the genotyped animals as  1 2 3* ' * ' * 'u u u  on the three traits.  Then, it can be established that: 
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    Let’s refer to this expression as 

11 12 13
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31 32 33

ˆ ˆ ˆ1
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Σ Σ Σg
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 .  So the so-called “fixed 

effects” test for any SNP effect in 
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 
 
 
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g

g

 is based on dividing an element in that vector by the 

square root of the corresponding diagonal element in the big expression for 
ĝ

Σ above.   In an 

anther word, test statistics for SNP k on trait i is  
 

ˆ

ˆ
ik

ik

ik

g
z

sep g
  , where ˆ

ikg  is the SNP estimates 

on trait i and the denominator is the square root of the k,k element in  ˆvar ig . It can be proved 

that zik ~ N(0,1). 

  Now our proposed rFE trait based on Cholesky decomposition is:  
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.The corresponding variance covariance matrix of can be 

then determined as follows: 
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For the element i of 3|1.2ĝ , its variance then really turns out to be :  
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Hence the fixed effects test is based on the square root of this expression as the standard error. 

   Now, for the window-base test on window r covering SNPs j
 
to k on trait i , the chi-square test 

statistics for that window will be : 

 
1

2

iir r g rir ir




 g Z Σ Z g  

where ir
g  and rZ are the corresponding parts in i

g  and  Z for SNPs j
 
 to k. 2

ri  statistics will be 

compared to a Chi-square distribution with df being number of SNPs in window r. 

Supplementary Figures and Tables 

 

Figure C.1: Scatterplot of –log
10

(p) for SNPs (a) and windows (b) based on the homogeneous 

partial regression RFI versus heterogeneous partial regression RFI models. Line of slope 1 and 

intercept 0 superimposed. 

  

(b)  (a)  
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Figure C.2: Manhatten plots for windows on RFI based on all cows (a) and genotyped cows (b). 

Bonferroni correction threshold superimposed. 

(a)  

(b)  
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APPENDIX D: Chapter 4 

Derivations 

    Assuming environmental covariates were fitted as fixed effects, a general genomic prediction 

model with GxE effect can be written like this: 

0 1 1 2 2 3 3 ...b b b c bc     y=Xβ Zg D Zg D Zg +D Zg D Zg e                              

for 0g  and  
1

c

bi i
g  being vectors for SNP-specific random intercept and slope, respectively. 

    Suppose that   
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     
     
     
     
     
          

g 0 I I I I

g 0 I I I

g 0 I I

g 0 I

.                                        

   Now, we rewrite 0 0u =Zg  and 
1

c

k bk

k

v= D Zg  as being the genomic breeding values for 

intercept and slope such that  0  y=Xβ  u v e . 

   To simplify things, let’s assume that all of the covariances are zero and all of the reaction norm 

variances are the same; i.e., 2 2

bk b k    for k=1,2,3,…,c, such that 

2

0
0

2

1

~ ,
g

c

b k k

k

N






  
     
     
       



ZZ' 0
u 0

v 0 0 D ZZ'D
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where 
1

c

i i

i

D ZZ'D  can be also written as * *# 'ZZ' D D such that

       *

1 2 3 cvecdiag vecdiag vecdiag vecdiag   D D D D D  is a n x c matrix of 

covariates for n being number of records and c being number of environmental covariates fitted. 

The mixed model equation for above model can be written as  

 
1

2 2

0 0

1

2 2

1

' ' ˆ '

ˆ

ˆ

g e

c

k k b e

k

 

 







 
 

    
    

    
        

    


X X X X β X y

X I+ ZZ' I u y

v y

X I I+ D ZZ'D

.                       

Assume 

 

1

00 01 02
1

2 2

10 11 12 0

1
20 21 22

2 2

1

' '

g e

c

k k b e

k

 

 









 
 
  
  

   
      

    


X X X XC C C

C C C X I+ ZZ' I

C C C

X I I+ D ZZ'D

            

To backsolve for SNP-specific random intercept and slopes, it pertains to any of the covariates 

use the following: 
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11 1
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  
            
  
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
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 
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 
 




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


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v

g g Z 0

0 g g Z D ZZ 0
u

0 g g Z D
v0 D ZZ D

0 g g Z D

Z 0

0 Z D

0 Z D

0 Z D

 

   

0

12

0

1

2

1

1 1

0 0

1

1 1

1

1

2

1

1

1

ˆ'

ˆ'

ˆ ˆ' ' ' '

ˆ' ' ' '# * *'

ˆ' '

ˆ' '

g

c

b k k

k

c

i i

i k

c

i i

i

c

c i i

i











 














  
  
          



 
 
  
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  
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and 

 

 

1

1

1 1

1 1

1 1

2 2

22

1 1 1

ˆ ˆvar var ' '# * *'

ˆ' '# * *' var '# * *'

' '# * *' '# * *' '# * *'
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k k k

 





 

 

 

  

  
      

   
    

   

    
     

    



 

  

g Z D ZZ D D v

Z D ZZ D D v ZZ D D D Z

Z D ZZ D D ZZ D D C ZZ D D D Z

                     

SNP based GWA test 

   Then, the GWA tests on the SNP-specific random intercept 0
ˆ

ig and slope ˆ
bkig  on environmental 

covariate k for SNP i can be written as 

   
0

0

0

ˆ ˆ
  and  

ˆ ˆvar var

i bki
i bki

i bki

g g
z z

g g
  . 

 Z scores will be compared to a standardized normal distribution to obtain p values for each SNP.  

Window-based GWA test 

  We also considered window-based associations test with partitioning columns of Z, and hence 

elements of go, g1, g2,… gc, into R distinct 1MB windows.  Then, for the window r with genotype 

of rZ for rn
 
SNPs covered in this window, GWA tests on random intercept vector 0

ˆ
rg and slope 

vector ˆ
bkrg on environmental covariate k

 
can be written as 

 
12

0 0 0 0
ˆ ˆ ˆvarr r r r


 g g g   and  

12 'ˆ ˆ ˆvar
bkr bkr bkr bkr


 g g g , where    ˆvar ' ˆvaror r rog Z g Z and 

   ˆvar ' ˆvarbkr r rbkg Z g Z  

To obtain p values for a window, Chi-square statistics will be compared to a Chi-square 

distribution with degree freedom being rn. 

A simple approach to solve for the MME model 

The simplest way to solve for the solutions to the MME would be as follows: 
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1 2

ˆ' ' '

ˆe


    
    
    

X X X X yβ

X I+M ym
 

Where 
2 * * 2

0g b  M ZZ' ZZ'#D D '  and  m u v .  

Now let the inverse of 1 2

' '

e


 
 
 

X X X

X I+M
 be written as 

1

00 0

1 2

0

' 'm

m mm e





   
   

   

C C X X X

C C X I+M
 but what we really want is this inverse: 
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
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



 
 
  
  

   
      

    


X X X XC C C

C C C X I+ ZZ' I

C C C

X I I+ D ZZ'D

 

Let’s write 
2

1 0gG ZZ'  and 
* * 2

2 bG ZZ'D #D '   

Based on Henderson (1985) ,  2 1 2 1

jj e j j e mm j      C G G M M C M G ; j=1 and 2  

Then one could derive  

  2 1 2 1

11 1 1 1e e mm      C G G M M C M G  that pertains to the random intercept 

and 

  2 1 2 1

22 2 2 2e e mm      C G G M M C M G  that pertains to the random slope 

Along with 

 
1

0 1
ˆˆ u G M m  

And 
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1

2
ˆˆ v G M m  

Supplementary Figures and Tables

 

Figure D.1: Manhattan plot for SNP-specific random intercept based on the regular GBLUP (a) 

and the RN model (b) 

 

(a) 

(b) 
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Figure D.2: Manhattan plot for Window-specific random intercept based on the regular GBLUP 

(a) and the RN model (b) 

 

Figure D.3: Manhattan plot for SNP-specific random slope on the linear (a) and quadratic (b) 

terms of AP 

 

(a) 

(b) 

(b) 

(a) 



 

165 

 

 

Figure D.4: Manhattan plot for SNP-specific random slope on the linear (a) and quadratic (b) 

terms of TP65 

(a) 

(b) 
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Figure D.5: Manhattan plot for SNP-specific random slope on the linear (a) and quadratic (b) 

terms of RH (1) and interaction between TP65 and RH (2) 

 

(a1) 

(b1) 

(a2) 

(b2) 
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Figure D.6: Manhattan plot for Window-specific random on the linear (a) and quadratic (b) terms 

of AP 

 

Figure D.7: Manhattan plot for Window-specific random on the linear (a) and quadratic (b) terms 

of TP65 

 

(b) 

(a) 

(b) 

(a) 
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Figure D.8: Manhattan plot for Window-specific random slope on the linear (a) and quadratic (b) 

terms of RH (1) and interaction between TP65 and RH (2) 

 

  

(b2) 

(a2) 

(b1) 

(a1) 
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