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ABSTRACT 

THREE ESSAYS IN LABOR ECONOMICS 

By 

Kelly Noud Vosters 

The first chapter tests a recently proposed hypothesis regarding rates of social mobility. Recent work 

by Gregory Clark and coauthors uses a new surnames approach to examine intergenerational 

mobility, finding much higher persistence rates than traditionally estimated. Clark proposes a model 

of social mobility to explain the diverging estimates, including the crucial but untested assumption 

that traditional estimates of intergenerational persistence are biased downward because they use only 

one measure (e.g., earnings) of underlying status. I test for evidence of this using an approach from 

Lubotsky and Wittenberg (2006), incorporating information from multiple measures into an estimate 

of intergenerational persistence with the least attenuation bias. Contrary to Clark's prediction, I do 

not find evidence of substantial bias in prior estimates. 

The second chapter, coauthored with Martin Nybom, further examines this hypothesis using 

rich administrative data for Sweden. We exploit detailed proxy measures to test the proposition 

regarding attenuation bias in prior estimates for Sweden, and also conduct a Sweden-U.S. 

comparison. We find no evidence of substantial bias in prior estimates, or that the Sweden-U.S. 

difference in persistence is smaller than found in previous research. We further explore the concept 

of family status by incorporating mothers, thereby also contributing to the literature on 

intergenerational transmission for women. We find that while mothers’ income is a poor proxy for 

status, incorporating information on mothers’ occupation improves the ability to capture 

transmission from mothers to both sons and daughters. 

The third chapter, coauthored with Cassandra Guarino and Jeffrey Wooldridge, examines 

the SAS® EVAAS® models for estimating teacher effectiveness, which are used by several states 



and districts in teacher evaluation programs despite little attention in the evaluation literature. The 

EVAAS approach involves using one of two distinct models, the Multivariate Response Model 

(MRM) or the Univariate Response Model (URM). The MRM jointly models scores from multiple 

subjects, grades, and cohorts in a 5-year period; it is generally limited to within-district purposes due 

to the large computational burden and is sometimes not feasible if data requirements cannot be met. 

Hence, the URM was developed for these situations. The URM models a single subject, and thus is 

less intensive computationally and more flexible with respect to data requirements. The method 

involves the computation of a composite score on several lagged scores in multiple subjects, and 

then using this composite score as the only regressor in empirical Bayes’ estimation of the teacher 

effects. In this paper, we discuss and illustrate advantages and disadvantages of the EVAAS 

approach relative to the other widely used and studied value-added methods. We perform 

simulations to evaluate their ability to uncover true teacher effects under various teacher assignment 

scenarios. We also use administrative data to illustrate the extent of agreement between the URM 

and other common value-added approaches. Although the differences are small in our 

administrative data, we show with theory and simulations that standard linear regression using OLS 

performs at least as well as—and sometimes better than—the more complicated EVAAS URM.  
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Chapter 1

Is the Simple Law of Mobility Really a Law? Testing

Clark’s Hypothesis

1.1 Introduction

There has been long-standing interest in the persistence of outcomes across generations, from

earlier theoretical work by Becker and Tomes (1976, 1979), to the development of intergenerational

datasets enabling expansions of empirical work. These studies aim to describe, for instance, the

extent to which inequalities are passed on from one generation to the next, or the extent to which

opportunities or outcomes have been equalized for children from various family backgrounds. The

typical approach to studying intergenerational mobility begins with a basic model relating children’s

outcomes to parents’ outcomes:

yit+1 = �yit + ✏i (1)

where i indexes family, t indicates parent’s generation and t+1 indicates the child’s generation.1

Generally, yit+1 and yit represent a measure such as income, wealth, or education. The regression

coe�cient, �, then provides a measure of persistence, or immobility , in the outcome from the

parent’s generation to the child’s generation. Hence, the quantity 1-� can be interpreted as a

measure of mobility. For the U.S., the persistence parameter relating a child’s log income to parent’s

log income (hence, an income elasticity) is estimated to be about 0.4 to 0.6 (Solon, 1999; Mazumder,

2005; Lee & Solon, 2009; Black & Devereux, 2011), while for Nordic countries the estimate is lower

at 0.1 to 0.3 (Black & Devereux, 2011).2 These estimates are taken to be summary statistics,

describing the extent to which income di↵erences persist from one generation to the next in a

country or society. Among the explanations for the lower persistence observed in Nordic countries

1 In equation (1), along with the remaining equations in the paper, the intercept is suppressed by considering the
variables in deviation-from-mean form.

2 This paper uses intergenerational income regressions as a point of departure, thus extending the income mobility
literature, but there is a broader literature that looks at other outcomes. For example, Hertz et al. (2007) is an oft
cited recent example providing intergenerational correlation and regression coe�cients in educational attainment for
42 countries; Björklund and Salvanes (2011) also provide a succinct review of related literature. Additionally, another
subset of the literature is concerned with intergenerational persistence in occupation or occupational prestige. Hodge
(1966) is an early example studying intergenerational occupational mobility in the U.S., while Long & Ferrie (2007,
2013) are more recent examples; see also Black & Devereux (2011) for a brief discussion of related studies.
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relative to the U.S. is one that highlights why so much attention is given to such di↵erences in

mobility: higher mobility may reflect policy di↵erences, such as more redistributive tax structures

and generous social welfare programs.

In a recently published book, though, Gregory Clark makes the provocative claim that these

estimates are substantially biased downward, and that “true” persistence in social status is much

higher—approximately 0.75—and is uniform across all countries and over time (Clark, 2014). The

latter part of Clark’s assertion, regarding lower mobility, draws on a body of work by Clark and

his coauthors, including an article in this journal, that uses innovative methods and a variety of

creative names data sources covering many societies over several centuries.3 The methods exploit

the information content of rare surnames in these societies to explore social mobility, without

having actual intergenerational family links.4 The basic idea is that if inheritance matters, then

rare surnames contain information on economic status, and they also indicate some family lineage

given naming conventions and the inheritance of paternal surnames (or in some countries both

maternal and paternal surnames).5

The first part of Clark’s controversial claim—regarding bias in prior estimates—is based on a

model proposed to explain the discrepancies between mobility estimates. Clark (2014) postulates

that the higher persistence rate (0.75) governs a law of social mobility, and summarizes the general

intuition underlying the hypothesized downward bias in traditional estimates as:

“Families turn out to have a general social competence or ability that underlies partial

measures of status such as income, education, and occupation. These partial measures

are linked to this underlying, not directly observed, social competence only with sub-

stantial random components. The randomness with which underlying status produces

particular observed aspects of status creates the illusion of rapid social mobility using

conventional measures.” (Clark, 2014, p.8)

3 See Clark (2014) for a comprehensive list of these studies, as well as the more recent papers Clark & Cummins
(2015) and Clark et al. (2015).

4 For the data sources containing explicit socioeconomic measures, such as probated wealth at death, equation (1)
is estimated using the group averages of wealth for rare surnames. For data without such measures, the approach
instead looks at persistence in the representation of the rare surname in an “elite” group relative to representation
in the population as a whole.

5 Güell et al. (2014) show that rare surnames do contain such information, and propose a method using the joint
distribution of surnames and economic status to explore intergenerational transmission of status in Spain.

2



More formally, Clark & Cummins (2015) and Clark (2014) present a simple model for mobil-

ity:

x

⇤
it+1 = bx

⇤
it + eit (2)

where x

⇤ represents underlying social status, and b the “true” persistence rate. The hypothesized

attenuation bias in prior estimates is thought to arise from the focus on a single “noisy” measure,

yit (e.g., income, wealth, or education), of the underlying social status, x⇤it, where this relationship

is assumed to be of the form:

yit = x

⇤
it + uit (3)

where uit is idiosyncratic error.6 Additionally, Clark claims to be able to measure the “true”

persistence rate by using surname group averages in equation (1), or ȳzt+1 = bȳzt + ūzt, where

z indexes surname (instead of i indexing family). The argument relies on classical measurement

error assumptions so that ȳzt ' x̄

⇤
zt because ūzt ' 0 when the surname samples are su�ciently

large.7

In a recent article in this journal, Clark & Cummins (2015) present both traditional and

surname estimates of social mobility in England using wealth measures to illustrate the discrepancies

in mobility estimates, and also test implications of one dimension of the proposed model—the AR(1)

form of the law of motion for social mobility in equation (2). However, they do not test the proposed

explanation for the discrepancies:

“... if we were to measure the social status of families as an aggregate of earnings,

wealth, education, occupation, and health, then observed social mobility even in parent

child studies would decline. For such an aggregation would reduce the variance of the

error component in measured status. Thus the measured rate of persistence, even in

one generation, will be much closer to that of the underlying latent variable.”

(Clark & Cummins, 2015)

6 Specifically, the assumption is that traditional estimates are biased downward by the usual classical measurement

error attenuation factor
�

2
x

�

2
x

+�

2
u

, where �

2
x

is var(x⇤) and �

2
u

is var(u).
7 Clark (2014) notes that any group averaging over individuals would similarly reduce measurement error and reveal
true status, thus resulting in much higher estimates of persistence (Clark, 2014, p.110). As noted by Solon (2015)
however, many of the intergenerational mobility studies that use group averages do not actually find such results.
For example, Chetty et al. (2014) show in Appendix D that using surname group averages from administrative U.S.
income tax data results in estimates similar to the individual-level regressions.
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I fill this gap by exploring this hypothesis that when information from multiple measures is aggre-

gated and then used to obtain traditional estimates, the lower mobility rates will be revealed.8

This paper empirically tests the proposed existence, magnitude, and nature of a downward bias

in traditional estimates. Conveniently, the theoretical setup for the law of social mobility laid out in

equations (2) and (3) translates nicely into a latent variables framework, and the attenuation bias

portion of this intriguing theory can be easily tested using publicly available data. Considering x

⇤

the latent status, equation (2) can be interpreted as the structural equation. For each of the par-

ticular measures mentioned in the first quotation above (i.e., income, education, and occupation)

we can write a separate measurement equation of the form presented in equation (3). Under the

strong classical measurement error assumptions maintained in Clark’s theory, instrumental vari-

ables (IV) using one noisy measure to instrument for another noisy measure produces a consistent

estimate of the intergenerational coe�cient (IGC), b. If the classical assumptions are relaxed to

allow for slope coe�cients in the measurement equations as well as unrestricted correlations among

the measurement errors, IV estimation is inconsistent. The magnitude and direction of the incon-

sistency is potentially unknown, depending on the assumptions and measures used. However, an

approach proposed by Lubotsky & Wittenberg (2006) is particularly well suited for addressing the

case of multiple noisy measures, and under less stringent assumptions. While not identifying b, the

method allows one to obtain an estimate with the least attenuation bias—so in this case a greatest

lower bound on b—by incorporating information from all of the suggested measures (i.e., income,

education, occupation) into a single estimate of b.

In this paper, I employ these approaches using a sample of fathers and sons from the Panel Study

of Income Dynamics to test the attenuation bias assumption underlying the law of social mobility.

I find little evidence supporting the hypothesized downward bias in prior estimates, and show that

incorporating additional measures such as education and occupation has no meaningful impact

on the estimated persistence rates obtained from traditional models focused on single measures.

8 Other recent papers have been testing other hypotheses put forth in Clark’s work. For example, in footnote 7, I
mentioned the estimates from Chetty et al. (2014) that do not support Clark’s assertion that mobility estimates
based on any group averages over individuals will result in higher estimates. Clark (2014) also advocates that his
results explain why findings from multigenerational regressions indicate a positive grandparent coe�cient. In fact,
as Solon (2015) points out, the papers do not all find positive coe�cients. For instance, Lucas and Kerr (2013) find
little evidence of non-zero grandparent coe�cients in multigenerational regressions using administrative income data
for Finland. Similarly, Braun & Stuhler (2015) use survey data on education and occupation in Germany and find
that after controlling for parents’ outcomes, they cannot reject a zero coe�cient for the grandparents’ outcome.
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Considering intergenerational persistence in this more comprehensive sense does not reveal higher

persistence estimates, but rather confirms the picture of mobility obtained from prior studies that

focused on a single measure of socioeconomic status. The paper is organized as follows. In the next

section I describe the data and sample. Then I outline the empirical approach, and next present

the results. In the last section I summarize the results and conclude.

1.2 Data

I use data from the Panel Study of Income Dynamics (PSID), as this data is ideally suited for

my study. The data contains the requisite intergenerational links and also includes information on

multiple measures of socioeconomic status, which is crucial for testing the attenuation bias claim.9

Further, I am able to select a sample of individuals very similar to prior PSID studies about which

the attenuation bias claims are made, thereby facilitating an appropriate comparison.10

The PSID is a longitudinal study that began in 1968 with a sample of approximately 5,000

families in the U.S., with interviews conducted annually through 1997, and biennially since then.

Children from these original families are followed when they start their own households, and one can

observe family links and follow multiple generations, which is key for traditional intergenerational

mobility studies. This paper focuses on the Survey Research Center (SRC) part of the sample11, in

particular during the 1968-1972 surveys for fathers and 1992 survey for sons.12 While more recent

years are available, this time period allows for more direct comparability to prior estimates targeted

by the proposed bias, lessens concerns about deterioration of data quality in later years, and still

allows sons’ ages to be appropriate for measuring earnings outcomes.

9 Although administrative datasets such as the income tax records used by Chetty et al. (2014) have much larger
samples, the data would not su�ce for the tests conducted in this paper because information on other status measures
such as educational attainment or occupation is not available.

10 For example, Solon (1992) and Chadwick & Solon (2002) use similar father-son samples. Their sample selections
di↵er in that son’s earnings is observed starting at age 25. I restrict my sample to sons for whom I observe earnings
starting at age 30 (up to age 40), to minimize life-cycle bias, as discussed below.

11 The SRC sample was designed to be nationally representative in 1968, while the other component—the Survey of
Economic Opportunity (SEO) sample—oversampled low income households.

12 Focusing on father-son persistence in status rather than parent-child (or mother-daughter, etc.) is more straight-
forward given female labour force participation patterns, and the resulting issues with defining and measuring
earnings and occupation outcomes. The surnames work also focused primarily on patrilineal lines of inheritance,
given naming conventions (Clark, 2014, p.15), but still posited this general law . Hence, the proposed law of mobility
should be just as evident using only fathers and sons as would be the case if mothers or daughters were included.
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My analysis sample is comprised of sons who were members of the original 1968 sample and

are male heads of their household in the 1992 survey, restricted to those who were born in 1951-

1961. The lower bound on birth year ensures that the sons were 17 years of age or younger in

1968, avoiding selecting older children still living at home. Further, the sons’ birth year restrictions

minimize life-cycle bias in annual earnings by ensuring that sons are 30 to 40 years old for the

1991 earnings measure (reported during the 1992 survey).13 Fathers are identified as the male

heads of the household in which the son lived in 1968. The earnings outcome for both fathers

and sons is measured as log annual earnings, so the sample excludes any observations with non-

positive earnings or earnings which were imputed by major assignment (for sons, this refers to

earnings in 1991, and for fathers, earnings in each of the years 1967–71). Fathers missing data on

educational attainment are also excluded. The earnings exclusions apply to 24 sons and 28 fathers,

with 11 additional fathers excluded due to missing education, amounting to excluding a total of 46

father-son pairs, and leaving a final sample of 415 sons from 293 fathers.14

Table A1 provides summary statistics describing this sample. The sample is predominately

white, with only five percent black. Given the age exclusions for sons (and lack thereof for fathers),

the fathers are observed, on average, at an older age than sons, with fathers’ average age just over

40 in 1967 and sons’ average age approximately 35 in 1991. Average annual earnings are slightly

lower for sons than fathers, and are also more variable for sons, consistent with the well-documented

life-cycle profile in earnings.15 Approximately 25 percent of the fathers have at least a four-year

college degree.

For the empirical analysis, I define the education measure of father’s latent status as father’s

educational attainment as of the 1968 survey, coded as 1-16 for years of schooling up to a 4 year

13 Haider & Solon (2006) show that the measurement error in men’s current earnings as an indicator of lifetime
earnings is non-classical at younger and older ages, causing intergenerational persistence estimates to be biased
downward (as also illustrated in Lee and Solon (2009)). They find that observing men’s earnings from the early
thirties through the early forties best avoids this life-cycle bias, as this is when the measurement error is approxi-
mately classical. Findings presented by Nybom & Stuhler (forthcoming) show similar results using Swedish earnings
data.

14 It is possible to construct larger PSID samples, but I choose a sample similar to those in prior intergenerational
studies since these were used to produce the U.S. estimates which Clark purports are biased downward, and are
thus germane to the explorations in this paper. Further, Nybom and Vosters (2015) use Swedish administrative
data to conduct similar tests as well as supplementary analyses examining the robustness of the results in this
paper, showing that the results are not unique to this sample or the measures used.

15 All earnings variables are expressed in 1991 dollars (adjusted for inflation using the CPI-U) for illustration purposes,
but this transformation does not a↵ect IGC estimates since the log of earnings is being used.
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college degree, with a value of 18 indicating any graduate school completed. The occupation

measure refers to the main job discussed in the 1969 survey, and is incorporated in the form of

occupational category indicators. As listed in Table A1, there are seven categories: 1) professional,

technical; 2) managers, businessmen, self-employed; 3) clerical, sales; 4) craftsman, foreman; 5)

operatives; 6) labourers, service workers, farmers, and farm managers; 7) miscellaneous (includes

armed services members, protective services workers, those not currently employed, and those

missing an occupation category). To further illustrate the composition of the occupation categories

for fathers, Table A2 provides average education and earnings by category. Average earnings

and education are generally monotonically decreasing from occupation categories 1 to 6. The

final category, 7–miscellaneous, is similar to categories 3 and 4, though with few observations and

substantial variability in earnings. Hence, I take a flexible approach in the analysis, incorporating

the occupation measure as a vector of indicators for each of the first six occupation categories

(with category 7 the omitted reference group), taking no stance on the relative social status of

the categories, but rather assuming that each contains some information on the underlying latent

status.

1.3 Empirical Approach

To test the hypothesis that traditional estimates of intergenerational persistence su↵er from atten-

uation bias, I begin by providing a baseline traditional estimate from this PSID sample. I use the

five-year average of log earnings from 1967-71 as the measure of father’s status in equation (1),

similar to previous studies (e.g., Solon, 1992; Zimmerman, 1992; Chetty et al., 2014).16 Given that

the proposed attenuation bias is thought to come from the focus on a single noisy measure of an

underlying latent social status, and that incorporating additional measures such as education and

occupation should reveal greater persistence in status, I extend the model by adding these other

measures of father’s status. I then estimate these intergenerational regressions using the typical

ordinary least squares (OLS) approach, an instrumental variables (IV) approach, and the approach

16 With classical noise in annual earnings measures, estimating equation (1) using OLS results in an IGC estimate that

is biased downward by the well-known attenuation factor of
�

2
x

�

2
x

+�

2
u

, where �

2
x

is var(x⇤) and �

2
u

is var(u). Taking

the five-year average of earnings mitigates the attenuation bias, reducing the attenuation factor to
�

2
x

�

2
x

+(�2
u

/5)
. The

attenuation factor becomes more complicated when one incorporates serial correlation in earnings from one year to
the next.
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proposed by Lubotsky & Wittenberg (2006), to look for evidence of attenuation bias. In all esti-

mations, I control for a quadratic in father’s age and a quadratic in son’s age to account for the

life-cycle profile in earnings.17

To more clearly illustrate Clark’s theory discussed above in the context of my empirical ap-

proach, I present a more formal latent variables framework, with the intergenerational equation (1)

now represented by the so-called structural equation:

yit+1 = �x

⇤
it + ✏i (4)

where yit+1 is son’s log earnings, and x

⇤
it is father’s underlying social status. Then we can consider

equation (3) expanded to comprise the system of measurement equations:

y1it = ⇢1x
⇤
it + u1it (5)

y2it = ⇢2x
⇤
it + u2it (6)

...

yjit = ⇢jx
⇤
it + ujit (7)

In these measurement equations, y1it represents the average of father’s log annual earnings in 1967-

71, y2it is father’s education, and y3it is father’s occupation (specifically, a vector of occupation

category indicators).18 Further, this framework allows for slope coe�cients in the measurement

equations, relaxing the theory presented earlier, which took these ⇢j to be equal to 1.19

This notation reflects the fact that I do not directly address the latent status for sons. If

we were to take literally the simple law’s assumption of classical measurement error on the left-

hand side, there would be no concern of this limitation inducing bias. More generally, with any

status measure on the left-hand side, we should still see growth in the intergenerational coe�cient

17 Including quadratics in both father’s and son’s age as controls arises from taking models of current earnings of the
form y

it

= y

i

+ a

i0 + a

i1Age

it

+ a

i2Age

2
it

+ v

it

, for i = father or son and t = time (e.g., year), then solving for
the long run component of earnings y

i

, and substituting each into equation (1). Taking the five-year average of log
earnings implies using the five-year average of age. See Solon (1992) for explicit derivations.

18 The occupation indicators are generally referred to as one measure—occupation—even though occupation is flexibly
accounted for by including an indicator for each occupation category. This implementation is similar to the drinking
water proxy for wealth used in one of the examples presented in Lubotsky and Wittenberg (2006).

19 Intercepts are omitted because the outcome, measures, and latent variable should all be considered to be demeaned,
which is consistent with the implementation of the Lubotsky and Wittenberg (2006) approach discussed below.
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towards 0.75 as we add measures for fathers on the right-hand side if the proposed attenuation

bias argument holds. Further, addressing status for sons is tricky, as there is no basis for obtaining

optimal weights (discussed below) for son’s measures on the left-hand side. Even so, I perform

a robustness check by applying the weights determined for fathers’ measures to those for sons to

obtain a more comprehensive status measure for sons, and get very similar results.20

Also under the perhaps unwise assumptions of classical measurement error, one method for

consistently estimating � is instrumental variables (IV). One can use any yj to instrument for

another measure yk and consistently estimate �, provided that �jk⌘cov(uj , uk) = 0 and ⇢k=1

(otherwise, the estimate converges to �/⇢k). Hence, this IV approach is slightly robust to failure

of classical assumptions, allowing some ⇢j 6=1. In the case where �jk = 0 fails, the IV estimator

is no longer consistent for �, but the direction of bias may be intuitively inferred based on belief

about the sign of cov(uj , uk).21 Although Clark’s simple law assumes the measurement errors are

uncorrelated (i.e., cov(uj , uk) = 0) there are obvious reasons to believe this assumption is violated

in the setting considered here.22 Thus, I next turn to my preferred approach which allows for this

correlation.

The approach proposed by Lubotsky & Wittenberg (2006) (henceforth LW), not only produces

a single estimate of � while incorporating multiple measures, but does so in an optimal way such

that the estimate asymptotically provides the greatest lower bound on �. The approach results in

the least attenuation bias by extracting the strongest combined signal out of all of the measures.23

Hence, I can directly test the attenuation bias argument by observing whether estimates are con-

verging to the hypothesized persistence rate of 0.75 as I incorporate additional noisy measures of

father’s status. Not only does the method allow for incorporating all available measures, it also

relaxes the strong assumptions that cov(uj , uk) = 0 for all j 6=k and ⇢j=1 for all j, allowing these

20 As discussed below with the results on robustness checks, the intergenerational coe�cient obtained from this
regression based on using income, education, and occupation for sons and fathers is 0.433, which is not significantly
di↵erent from the estimate of 0.473 based on only income for sons.

21 When ⇢ = 1, �
IV

converges to �

�

2
x

�

2
x

+�

jk

, where �

2
x

is var(x⇤), implying upward bias if �
jk

<0 or downward bias if

�

jk

>0. When ⇢ 6=1, �
IV

converges to �

⇢

j

�

2
x

⇢

k

⇢

j

�

2
x

+�

jk

, with a more complicated inconsistency factor.
22 For example, it is plausible that an idiosyncratic shock may a↵ect father’s income and occupation, inducing
correlation among the measurement errors. Allowing for unrestricted correlation among the measurement errors
thus permits error structures that contain a common factor, so that shocks may a↵ect all observable measures for
an individual.

23 Specifically, the LW estimate achieves a greatest lower bound among a class of estimators, but other estimates can
simply be mapped into this class for comparing magnitudes.
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to be mostly unrestricted (subject to a normalization on ⇢).24

The normalization on ⇢ is needed to identify this vector of slope coe�cients in the measurement

equations. I normalize ⇢1 to equal 1, which simply sets the scale of the latent x

⇤ to that of y1

(earnings). Clearly latent status has no scale, but given that I am positioning this paper using

intergenerational income regressions as the point of departure, the natural normalization to adopt

is to the scale of father’s income. With this normalization, the equation for the remaining ⇢j can

be shown to be:

⇢j =
cov(yit+1, yjit)

cov(yit+1, y1it)
(8)

This ratio can be estimated directly using IV estimation, instrumenting for y1it (father’s income)

using yit+1 (son’s income), with yjit (the measure we are estimating ⇢j for) as the dependent

variable. LW show that an auxiliary ordinary least squares regression of yit+1 on the measures y1it,

y2it, . . . , yjit, produces the vector of coe�cient estimates, �̂, which provides information on the

noisiness of the measures and on the conditional covariance of each measure with yit+1 (conditional

on the other measures). Then, these coe�cient estimates, �̂, combined with the estimates, ⇢̂,

form an optimal linear combination of the information from the j measures.25 This optimal linear

combination provides a greatest lower bound on �. Explicitly, the LW estimator is26:

�LW = ⇢̂1�̂1 + ⇢̂2�̂2 + · · ·+ ⇢̂j�̂j (9)

To control for other covariates (namely the quadratics in father’s and son’s age), these covariates

are included in the auxiliary regression of son’s earnings, yit+1, on father’s status measures, y1it,

y2it, . . . , yjit, (to obtain �) as well as in the IV estimations of the ⇢j .27 Standard errors for the

�LW estimates are bootstrapped with 1,000 repetitions, using a block/panel bootstrap to account

24 The approach assumes that cov(u
j

, ✏) = 0, although very small deviations from this will not substantially alter the
results.

25 Linearity is adopted throughout this discussion and is relied upon for the LW approach, but this is a reasonable
approximation for the measures considered here and the hypothesis being examined.

26 Note that each element of �
LW

(i.e., ⇢
j

�

j

) can be considered as a product of ratios
cov(y

it+1,yjit)

cov(y
it+1,y1it)

cov(ey
it+1,eyjit)

var(ey
jit

) , where
cov(ey

it+1,eyjit)
var(ey

jit

) is conditional on the other measures in y

t

, so the estimated �̂

LW

will be monotonically increasing

in magnitude as measures are added only in the case where the conditional covariance has the same sign as the
unconditional covariance.

27 This implementation strategy is theoretically (and numerically) equivalent to that suggested in Lubotsky & Wit-
tenberg (2006)—to first regress each measure and the dependent variable on the other covariates and use these
residualized variables for estimation of ⇢ and �.
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for clustering within family.

1.4 Results

1.4.1 Main Results

First, I establish a baseline estimate using the traditional approach with this PSID sample of 415

father-son pairs. Next, I explore the sensitivity of this estimate to including other measures of

status in the regression. Panel A of Table A3 provides the results from this series of ordinary

least squares (OLS) regressions. The baseline estimate of the intergenerational coe�cient (IGC)

is 0.439, using the traditional approach of regressing son’s log earnings on the five-year average

of father’s log earnings (hence this can also be interpreted as an income elasticity). As expected,

this is in the range (0.4–0.6) of traditional IGC estimates for the U.S. (Solon, 1999; Black &

Devereux, 2011). Moving along columns 2-4 of Table A3, I present the OLS results from the

augmented models. Adding education to the model, the coe�cient on father’s earnings falls slightly

to 0.398, but the coe�cient on education is essentially zero. Similarly, when I add occupation

categories instead of education, the coe�cients on these occupation category indicators are not

jointly significant (F=0.54, p-value=0.779); in this case, however, the coe�cient on earnings rises

slightly to 0.480. When education and occupation are both incorporated, the coe�cient on earnings

is similar to the baseline estimate. Again, neither the coe�cient on education nor the coe�cients

on the occupational category indicators (F=0.66, p-value=0.682) are significant.28

The next panel in Table A3 shows the results from an IV approach, which is commonly used to

28 Similar to my results, other studies also find that when the variable used for the parent is the same as that used
for the o↵spring in the dependent variable, then additional variables for the parents do not have practically or
statistically significant coe�cients. Sewell & Hauser (1975, p.86) find this result in analysis based on the Wisconsin
Longitudinal Study. With son’s earnings as the dependent variable, they note that the coe�cients on father’s
education and occupation are not statistically significant after conditioning on father’s income. Using the PSID,
Corcoran et al. (1992) also use son’s earnings as the dependent variable and similarly find that after accounting for
parental income, the coe�cients for several other family or community background characteristics are not practically
or statistically significant. Duncan et al. (2005) find similar results for intergenerational associations for 17 outcome
measures (traits and behaviors) in the National Longitudinal Survey of Youth (NLSY). After accounting for the
same measure for parents, the coe�cients on the other trait or behavioral measures are not statistically significant
in 84 percent of the 272 cases. Further, two very recent studies find this result using large administrative datasets:
Boserup, Kopczuk, & Kreiner (2014) estimate the wealth elasticity in Denmark, and upon adding parental and
child income find that these coe�cients are not practically significant; Nybom & Vosters (2015) perform analyses
analogous to those in this paper using Swedish administrative data and show that, with son’s income as the
dependent variable, after conditioning on father’s income the coe�cient on father’s education is not practically or
statistically significant.
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address classical measurement error. With two “noisy” measures of status (earnings and education)

I use education to instrument for earnings.29 The estimated IGC is 0.497, which still falls in the

range of traditional estimates for the U.S. and does not indicate substantial attenuation bias in the

baseline estimate.

Finally, in Panel C, I present the estimates of the intergenerational persistence coe�cient ob-

tained using the LW approach to minimize the attenuation bias from using multiple noisy measures

of status. All of the IGC estimates themselves are statistically significant, so I focus the discussion

on changes in the estimates across specifications. The first estimate is simply the OLS estimate

(0.439), as this is a special case of the LW approach when one uses a single measure. Adding fa-

ther’s education as an additional measure of status produces only a slight increase in the estimated

IGC to 0.445. When occupation information is added instead of education, the IGC estimate is

larger, at 0.465. And, when both education and occupation measures are simultaneously included,

the IGC estimate increases slightly to 0.473, but again there is not a substantial increase in the

estimated persistence.30 Note that the OLS coe�cient estimates presented in Panel A are identical

to the auxiliary coe�cient estimates, �̂j , used in the LW approach. Given the lack of practical or

statistical significance of these estimates discussed above, it is unsurprising that we do not see large

changes in the LW estimates of the intergenerational correlation. Attempting to incorporate addi-

tional information on social status causes the IGC to fluctuate some, but all estimates remain in

the range of prior estimates for the U.S. Figure A1 shows that even when considering the precision

of the estimates and looking at the 95 percent confidence intervals (the bars) around the estimates

(the dots), neither indicate IGC estimates increasing to the hypothesized underlying persistence

rate of 0.75. The plots show the estimates and confidence intervals for each specification listed in

Table A3, beginning with the baseline estimate, then adding education, occupation, and both. The

upper bounds on the confidence intervals are, respectively, 0.585, 0.585 0.622, and 0.629, still falling

short of the hypothesized persistence rate. The precision of these estimates is hampered by the

29 As noted above, instrumenting in this fashion produces an IV estimate that converges to �/⇢1 where ⇢1 is the
coe�cient in the earnings measurement equation (and assuming the measurement errors are uncorrelated), thus
enabling the comparability to our LW estimate based on latent status set to the scale of father’s income.

30 When a more flexible approach is taken using the five annual earnings years as separate variables as well as separate
education category variables (high school graduate, some college, four-year degree, at least some graduate school),
the LW estimate of intergenerational persistence is still quite similar at 0.485 but less precise with a standard error
of 0.095.
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PSID sample size, but Nybom and Vosters (2015) find strikingly similar—and more precise—results

for Sweden, with similarly small increases in persistence estimates, even after using more detailed

measures and incorporating analogous measures for mothers.

1.4.2 Robustness Checks

In the main analysis, I focus on adding measures of status for fathers, but do not directly address

son’s latent status. As discussed in the empirical approach section, this should not substantially

alter the results. However, I still perform a sensitivity check in which son’s latent status is explicitly

addressed. I apply the weights determined by the LW approach for father’s latent status to the

measures for both fathers and sons, creating index measures of status for each generation. Then

I regress the composite measure for sons on the composite measure for fathers. This results in an

IGC estimate of 0.433 with a (bootstrapped) standard error of 0.071, which is similar to, albeit

slightly smaller than, the main LW estimates reported in Table A3.

My LW results are also robust to adjusting several of the sample restrictions, as shown in Table

A4. The first row of results, with the estimates in bold and standard errors in italics underneath,

simply provides the main results from Panel C of Table A3 for comparison. Allowing sons who are

25-29 years old at their 1991 earnings measure to also be included in the sample, the sample grows to

582 father-son pairs (with sons aged 25-40 years old). The IGC estimates of 0.402–0.464 are slightly

smaller relative to the main results, consistent with the life-cycle e↵ects literature (Haider & Solon,

2006; Nybom & Stuhler, forthcoming), but the pattern of minimal increases remains unchanged as

additional measures of status are included. The same pattern is revealed when instead of adjusting

the restrictions on son’s age, I do so for father’s age, limiting the fathers to those aged 30-50 in 1968

and obtaining IGC estimates ranging 0.457–0.494. Incorporating both of these sample adjustments

at the same time also produces the same pattern, as expected, which is shown in the next row of

results with estimates ranging 0.420–0.452. Returning to the original sample restrictions, except

now including mother-son pairs from female-headed 1968 households (so single mothers) in the

sample, the IGC estimates are smaller in magnitude (0.360–0.410) but still follow the same pattern

as more measures of status are added. Finally, the last row of estimates in Table A4 presents results

from changing the functional form of the father’s earnings measure from the average of log earnings
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for 1967–71 to the log of average earnings. These results yet again exhibit the same pattern as the

main results, with IGC estimates ranging 0.463–0.495.

1.5 Conclusions

Several recent studies by Gregory Clark and coauthors have examined intergenerational mobility

using a new method based on surnames and newly developed datasets, finding higher persistence

rates (i.e., lower mobility) than previously estimated (e.g., Clark, 2014; Clark & Cummins, 2015).

In these studies, the hypotheses presented to explain the discrepancy use a simple measurement

error argument that is consistent with the proclaimed higher persistence rate of approximately

0.75 from surname methods and the smaller estimates from traditional studies. I am the first

to empirically test the proposition that prior estimates are attenuated from focusing on a single

measure such as income and should rise when additional information is incorporated.

I use Lubotsky & Wittenberg’s (2006) approach designed for scenarios such as this, where

multiple measures of a latent variable (i.e., status) are available, but the measurement errors are

likely correlated. The method combines the information from available measures of the latent

variable in a way that produces a single persistence estimate with the least attenuation bias.

I aggregate information from income, education, and occupation—three recommended measures

of father’s social status—using the LW method, yet I see no indication of the persistence rates

approaching 0.75 as the additional measures are added. There are small increases in the persistence

estimates as additional measures are incorporated, but these changes are not meaningful in a

statistically significant or practical sense. In fact, all of the estimates presented in the main results,

as well as in robustness checks, range from 0.360 to 0.491, quite similar to the prior estimates for

the U.S. The pattern of small increases with additional measures is robust to adjusting sample

restrictions as well as measure definitions. And, although my sample size is not conducive to

assessing the statistical significance of these small changes in the point estimates, the sample I

use facilitates relevant comparisons to prior literature. I am able to obtain a baseline estimate

analogous to the prior studies about which the attenuation bias claims are made, which is an

appropriate starting point for then incorporating information from other measures. I find no

evidence that adding information from other status measures produces estimates that are converging
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to a substantially greater level of intergenerational persistence.

My findings reject Clark’s measurement error interpretation of his results relative to those

from prior literature, but they do not shed light on why his estimates based on surnames are higher

than traditional estimates. Averaging over surnames does not always produce higher persistence

estimates, as shown with U.S. income tax data in Appendix D of Chetty et al. (2014). Further work

is needed to gain a more nuanced understanding of discrepancies between Clark’s estimates using

the surname-average method and traditional methods, and what each method might be identifying.

As noted by Solon (2015) and Chetty et al. (2014), the traditional approach may be correctly

identifying individual-level mobility, while the surnames method may be identifying group-level

mobility for these particular groups of surnames. This is further developed in a recent exposition

by Torche & Corvalan (2015), which shows that estimating surname-level regressions captures

between-group persistence in average outcomes for the particularly “elite” or “underclass” surnames

chosen, rather than Clark’s interpretation of using group averages to eradicate measurement error

and reveal individual-level mobility.
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Table A1: Summary Statistics for Analysis Sample 

  Mean Std. Dev. Min Max 
Race - black  0.05   0.22  0 1 
Sons' age in 1991  34.92   3.14  30 40 

Sons' 1991 individual earnings 
 

35,695   26,251  300 335,000 
Fathers' age in 1967  40.47   6.81  27 67 

Fathers' Individual earnings 
    

Annual earnings 1967 
 

39,684   24,409   1,101   244,671  
Log annual earnings 1967  10.43   0.60   7.00   12.41  
5-year-avg of log earnings, 1967-71   10.46   0.59   7.79   12.65  

Fathers' Educational attainment  
    Less than HS graduate  0.33   0.47  0 1 

High school graduate  0.32   0.47  0 1 
Some college  0.11   0.31  0 1 
Bachelor's degree  0.14   0.34  0 1 
At least some graduate school  0.11   0.31  0 1 

Fathers' 1969 Occupation categories 
    1 - Professional, technical  0.23   0.42  0 1 

2 - Manager/businessmen  0.14   0.35  0 1 
3 - Clerical, sales  0.09   0.29  0 1 
4 - Craftsman, foreman  0.23   0.42  0 1 
5 - Operatives  0.17   0.38  0 1 
6 - Laborers, service, farmers  0.12   0.32  0 1 
7 - Not currently employed/missing  0.02   0.15  0 1 

Notes.  The sample includes 415 sons and 293 fathers.  All earnings are expressed in 1991 dollars.  

!
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Table A2:  Fathers’ Average Earnings and Education by Occupation Category 

  
 

Earnings in 1969 
 

Educational attainment 
Occupation Category Mean Std. Dev. Mean Std. Dev. N 

1  - Professional, technical  61,382   40,129   15.67   1.76   66  
2  - Manager/businessmen  54,983   41,871   12.83   2.73   42  
3  - Clerical, sales  38,379   10,920   12.96   1.89   27  
4  - Craftsman, foreman  38,212   15,203   10.79   2.62   67  
5  - Operatives  30,044   11,108   9.76   2.53   50  
6  - Laborers, service, farmers  20,614   10,468   9.97   2.55   34  
7  - Not employed or missing  38,379   31,544   10.00   3.61   7  

Overall  42,419   30,209   12.09   3.27  293 
Notes.  The sample includes 293 fathers.  All earnings are expressed in 1991 dollars. 
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Table A3:  OLS, IV, And LW Results  
    [1] [2] [3] [4] 

 Fathers’ noisy measures of status 
  

Earnings Earnings, 
education 

Earnings, 
occupation 

Earnings, 
education, 
occupation 

Panel A:  OLS results 
     Five-year average of log 

earnings: 1967-71  
0.439 0.398 0.480 0.438 

 
0.075 0.098 0.100 0.120 

Educational attainment 
  

0.010 
 

0.016 

   
0.013 

 
0.016 

 Occupation categories 
     

1 - Professional, technical 
   

0.002 -0.077 

    
0.228 0.236 

    2 - Manager/businessmen 
 

-0.029 -0.064 

    
0.233 0.222 

3 - Clerical, sales 
   

0.001 -0.051 

    
0.256 0.258 

4 - Craftsman, foreman 
   

0.066 0.052 

    
0.233 0.218 

5 - Operatives 
   

-0.027 -0.032 

    
0.229 0.211 

6 - Laborers, service, farmers 
  

0.181 0.152 

    
0.254 0.244 

Panel B:  IV results (education to IV for 5-yr-avg earn) 
 First stage 0.105 

    
 

0.006 
    Second stage 

 
0.497 

   
  

0.090 
   Panel C:  LW estimates of IGC 

    

  
0.439 0.445 0.465 0.473 

  
0.075 0.072 0.080 0.080 

N    415   415   415   415  
Notes. All specifications use log of son’s 1991 earnings as the dependent variable and include as controls a 
quadratic in son’s earnings and a quadratic in father’s age (the average age during the five years of 
earnings observations). The omitted occupation category is “7 - Not employed or missing”.  The sample 
size for all estimations is 415 father-son pairs, from 293 families. OLS and IV standard errors are 
clustered by family. LW standard errors are computed using a block bootstrap to account for within 
family correlation (1,000 repetitions). 
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Table A4:  Robustness of LW Results 

    [1] [2] [3] [4] 

  N 

Earnings Earnings, 
education 

Earnings, 
occupation 

Earnings, 
education, 
occupation 

Main results 415 0.439 0.445 0.465 0.473 

  
0.075 0.072 0.080 0.080 

Adjusting sample exclusions: 
 

    

Son’s age 25-40 582 0.402 0.422 0.446 0.464 

  
0.065 0.061 0.075 0.077 

      Father’s age 30-50 380 0.457 0.463 0.484 0.494 

  
0.083 0.083 0.090 0.089 

      Son’s age 25-40 and Father’s 
age 30-50 

483 0.420 0.426 0.444 0.452 

 
0.076 0.073 0.083 0.082 

      Include 1968 female-headed 
households 

444 0.360 0.375 0.392 0.410 

 
0.072 0.064 0.072 0.069 

 
     Adjusting earnings measure: 
     

Log of father's 5-yr avg. of 
annual earnings 1967-71 

415 0.463 0.466 0.490 0.495 

 
0.075 0.073 0.081 0.081 

      Father's status measures 
     Earnings (5-yr-avg) 
 

x x x x 
Educational attainment  

  
x 

 
x 

Occupational categories 
   

x x 
            

Notes. The dependent variable is log of son’s 1991 earnings, and the measure of father’s earnings is the 5-
year average of log earnings from 1967-71. All specifications include as controls a quadratic in son’s earnings 
and a quadratic in father’s age (the average age during the five years of earnings observations). The omitted 
occupation category is “7 - Not employed or missing”. Standard errors are computed using a block 
bootstrap to account for within family correlation (1,000 repetitions). 
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Figure A1:  LW Results 
 

!
Notes. The sample includes 415 fathers and 293 fathers. Standard errors are computed using a block bootstrap to account 
for within family correlation (1,000 repetitions). 
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Chapter 2 
 

Intergenerational Persistence in Latent Socioeconomic 
Status: Evidence from Sweden1 

 

2.1    Introduction 

Researchers and policymakers have long shown a great deal of interest in understanding the degree 

of socioeconomic mobility within and across societies, resulting in a large body of economic 

research examining the extent to which income differences are passed on from parents to their 

children. One of this literature’s most notable results is that intergenerational mobility in the Nordic 

countries is substantially higher than in countries such as the United States. However, recent work 

by Gregory Clark and coauthors has led to surprisingly contrary conclusions, suggesting that the 

“true” rate of mobility is generally very low and also steady across time and countries with vastly 

different social and economic contexts, including Sweden and the United States (Clark 2014, p.107). 

The descriptive literature on intergenerational income mobility generally estimates an equation 

resembling a basic AR(1) process:  

 

   !!"!! = !"!" + !!! ,       (1) 

 

where yit+1 is offspring log income of family i, yit is parental (typically fathers’) log income, and εi an 

idiosyncratic error; β is then interpreted as the intergenerational elasticity.2  This process is not 

necessarily taken literally, nor is the estimate believed to be causal, but instead the goal is to obtain a 
                                                
1 This chapter is coauthored with Martin Nybom from the Institute for Labor Market and Education Policy Evaluation 

(IFAU) and the Swedish Institute for Social Research (SOFI), Stockholm University. 
2 This parameter thus measures persistence, whereas 1-! is a measure of mobility. For this equation and all those that 

follow, variables are considered in deviation-from-mean form, allowing intercepts to be suppressed.  
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summary statistic describing how differences in economic status persist from one generation to the 

next. For Sweden, the estimated persistence in income is around 0.2-0.3, compared to 0.4-0.6 in the 

U.S. (see Solon, 1999, Björklund & Jäntti, 2009, Black & Devereux, 2011). The greater mobility in 

the Nordic countries is often attributed to policy differences, such as more redistributive tax 

structures, which facilitate public human-capital investments in terms of subsidized pre-school and 

college education.3 Others point out that characteristics of the labor market also matter, such as 

differences in the returns to skills and the intergenerational transmission of employers (Björklund et 

al., 2012; Corak & Piraino, 2011). However, Clark (2014, p.5) follows the former argument, boldly 

interpreting the low and constant rates of mobility as evidence of large policy failure.  

The creative methods underlying this recent work exploit the information content of uncommon 

surnames in lieu of actual intergenerational family links, and the results paint an extraordinarily 

different picture of mobility for Sweden as well as for other countries.4 The persistence rate for 

underlying status is estimated to be as high as 0.7-0.8 across a wide range of societies and time 

periods, leading to the conclusion that for Sweden, “The implied social mobility rates are as low as 

those of modern England or the United States” (Clark 2014, p. 41). 

These claims are quite controversial, with important implications for the interplay between 

policy and socioeconomic mobility. They also clearly contradict conclusions from prior 

intergenerational studies. Acknowledging this incongruity, Clark and coauthors suggest that 

conventional methods have been limited in their measures of socioeconomic status. The main 

argument is that families have a general social status that underlies imperfect status measures such as 

income, education, or occupation, and these measures are linked to this underlying and unobserved 

                                                
3 Public investment in children’s human capital is put forth as one of the key determinants of the size of the reduced-

from intergenerational income relationship in Solon’s (2004) log-linear version of Becker and Tomes’ (1979) model of 
parental investments. 

4 Güell et al. (2015) show that rare surnames do contain such information, developing a different method using the joint 
distribution of surnames and economic status to examine intergenerational transmission of status in Spain. 
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latent factor with substantial random components. Formalized into a simple model, social mobility is 

reduced to a universal law of mobility, !!"!! = !!!" + !!", where !!" is the underlying status of family i 

in generation t (Clark, 2014). A single measure such as income is then assumed to be related to status 

with some additive random noise, !!" = !!" + !!", whereby substituting this into the conventionally 

estimated equation (1) leads to the classical errors-in-variables attenuation bias. Averaging within a 

surname, z, then reveals true status, !!" = !!" , as !!"  is approximately zero for large enough 

surname groups. For data without surnames, Clark & Cummins (2015) propose that if the 

information from multiple measures—for example, income, education, and occupation—were 

combined for an individual, then conventionally estimated persistence would rise. 

Applying an approach proposed by Lubotsky & Wittenberg (2006) to optimally aggregate 

information from multiple measures, Vosters (2015) tests this proposition using data from the Panel 

Study of Income Dynamics (PSID). The estimated persistence rates remain just under 0.5 and are 

insignificantly different from conventional estimates, even after accounting for multiple partial 

measures of underlying status. While this study shows that this approach does not substantially raise 

estimated persistence for the U.S., the question remains as to what information could be extracted 

from multiple status measures in a country with a more redistributive welfare state, such as Sweden. 

In fact, according to Clark’s hypothesis, this approach should have a greater impact on estimated 

persistence in settings where persistence is conventionally estimated to be quite low. 

Therefore, we follow the above approach, performing similar tests to look for any evidence of 

this asserted attenuation bias in conventional estimates for Sweden. We first provide estimates using 

measures constructed to take full advantage of the rich Swedish data. We construct nearly career-

long income measures, which mitigates biases stemming from transitory fluctuations (Mazumder, 

2005) and life-cycle effects (Haider & Solon, 2006; Nybom & Stuhler, forthcoming) in short-run 

incomes. Our data also have more detailed occupation categories available, allowing us to better 
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examine the degree to which information on status can be extracted from an individual’s occupation. 

Moreover, the small sample size in Vosters (2015) yields low statistical precision and only very large 

attenuation biases can be formally rejected. In contrast, our sample consists of more than 167,000 

parent-child pairs, which provides much greater statistical power. We also examine the claim that 

persistence is uniform across countries. For this, we provide estimates using variables constructed 

similarly to those based on the PSID, facilitating a test of whether persistence in underlying status is 

indeed of equal magnitude in Sweden and the U.S. In doing so, we also indirectly address 

implications of various data limitations with the U.S. data, such as inaccurate measurement of long-

run income and occupations. As such, not only do we obtain results comparable to those for the 

U.S. to evaluate the applicability of the simple law of mobility across countries, we also obtain more 

robust results on the magnitude of the hypothesized attenuation bias in the Swedish estimates. 

We find no evidence to support the simple law of mobility, as persistence estimates remain around 

0.25-0.30 even after multiple measures are combined. Further, our comparison with the U.S. 

confirms the prior perception that mobility is indeed substantially higher in Sweden. These results 

are robust across a variety of specifications and methods for constructing the measures, and the 

country difference in persistence appears even greater when using measures constructed to mimic 

those used for the comparable U.S. study. Our findings thus support those in Vosters (2015), as well 

as the discussion in Chetty et al. (2014), suggesting that the very low mobility rates provided by the 

surname approach strongly underestimate the degree of mobility in the population as a whole.5  

Although much of our evidence reaffirms results from existing literature rather than lending 

support to Clark’s conclusions, we do find that the latent status framework of the simple law can be 

empirically relevant for certain groups (e.g., mothers). Motivated primarily by the concept of family 

                                                
5 See also Braun & Stuhler (2015), who discuss the surname approach in the context of mobility across multiple 

generations.  
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status, we add the analogous status measures for mothers as we incorporate those for fathers. We 

find mothers’ occupation to be the most important addition, though producing only a nominal rise 

in persistence. Further exploring this result, we examine persistence with respect to mothers’ status 

alone, finding that both the estimates of mother-son and mother-daughter relationships increase 

substantially when multiple measures are used, though rising from low levels compared to those 

typically found for father-child relationships. Still, these results highlight the unintentional 

implications of this framework for measurement issues specific to women, showing that combining 

multiple proxy measures can provide more informative estimates in cases where appropriate income 

data is not available.   

Our paper thus extends the literature on the measurement of intergenerational mobility. To date, 

research has mostly focused on the measurement of specific status indicators, with the 

approximation of lifetime (or permanent) income being the prime example. Inspired by the work by 

Gregory Clark and others, we complement this research by providing new evidence on whether such 

status indicators themselves, even when accurately measured, suffice to capture a broader concept of 

socioeconomic status. Our findings imply that for men detailed measures of long-run income are 

indeed good proxies for latent status. In contrast, for women combining individual income 

information with occupation improves the measurement of status substantially. We also add to the 

large literature on cross-national mobility differences (e.g., Solon, 2002). The finding based on 

surnames data, that social mobility is constant across countries, is put into question by our results; 

these show a Sweden-U.S. country differential that is in line with previous income-based evidence. 

The rest of the paper unfolds as follows. Section 2 describes the data, before Section 3 discusses 

our empirical approach. Section 4 presents our main findings. Section 5 presents our extension to 

both parents, and the intergenerational associations related to mothers and daughters. The final 

section offers some concluding remarks. 
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2.2    Data 

2.2.1    Sources and Sample Selection 

We use administrative data from various sources, which have been merged by Statistics Sweden 

using unique personal identifiers. A multigenerational register links children to their biological 

parents; censuses provide data on parents’ occupation and education; income tax declarations for 

both parents and offspring provide data on total individual income. Our main sample is based on a 

random draw of 35 percent of all children born in Sweden 1951-1961 and their biological parents.6 

We restrict our analysis to these cohorts for a couple of reasons. Given the available income data, 

we can observe long-run prime-age incomes of both these offspring cohorts and their parents. 

Moreover, these are the cohorts used in Vosters (2015), so this selection further facilitates the 

comparison between our estimates for Sweden with those for the U.S.  

 

2.2.2    Construction of Status Measures 

For annual income, we use administrative data covering the years 1968-2007. The data are based on 

individual income-tax declarations and we define the income measure separately for fathers and 

mothers. Our measure includes income before taxes from all sources except means-tested benefits 

and universal child benefits. These data come with a number of advantages: they are almost entirely 

free from attrition and reporting error, pertain to all jobs, and are not censored.7 For parents, we 

approximate log lifetime income by the average of log annual income over ages 30-60. For offspring, 

                                                
6 We exclude those with parents who were more than 40 years old at the birth of the child.  
7 In contrast to many other administrative data sources, our data are not censored (nor truncated) in the top of the 

income distribution. Further, the Swedish system provides strong incentives to declare some taxable income since 
doing so is a requirement for eligibility to most social insurance programs. Hence, we expect very little missing data in 
the low end of the distribution. 
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we construct measures of log lifetime income as the average of log income over ages 27-46. We 

require parents and offspring to have at least five non-missing annual income measures. 8 

Throughout all analyses we control flexibly for parental and offspring birth year using cohort 

dummies. 

While the tests we conduct focus on the measurement of “status”, our income measure is 

particularly important because it also minimizes the potential for two well-known sources of bias in 

estimated intergenerational associations; bias arising from transitory shocks to income and from life-

cycle effects. By using a long-run average of annual income observations, potential attenuation 

biases from transitory fluctuations are greatly reduced (Mazumder, 2005). In our sample, 88 percent 

of sons have 20 non-missing log income observations and 88 percent of fathers have at least 10 

non-missing log income observations. Further, we measure income as long-run averages during mid-

life in order to minimize so-called life-cycle bias (Nybom & Stuhler, forthcoming). While there are 

slightly fewer mid-life income observations for fathers, 91 percent of them have at least one annual 

income observation from before age 50.  

We use occupation data from national censuses conducted every five years between 1960 and 

1990. The occupational classification employed in the censuses builds on the Nordic Occupational 

Classification (NYK), which is based on the International Standard Classification of Occupations 

(ISCO). The NYK categorizes occupations according to the end result of the tasks and duties 

undertaken in the job. Hence, level of education and professional status are typically not considered 

in the categorization (Statistics Sweden, 2004). The classification has a hierarchical structure, 

allowing for analyses at different aggregation levels. Three-digit codes denote unique occupations, 

two-digit codes denote minor occupation groups and one-digit codes denote major occupation 

                                                
8 Missing income is rare in our sample, and such occurrences could be due to quite different reasons; individuals could 

be living abroad, they could fail to file their tax declaration, or it might arise due to coding errors. 
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groups. To fully exploit the available information, we use the unique occupation indicators in our 

main analyses, but also test the sensitivity of our results to using the broader classification levels. 

We define a parent’s occupation as the occupation he or she had in the 1970 census. Fathers in 

our sample are, on average, about 44 years old in 1970, so this census provides a good prime-age 

occupation measure. If occupation is missing in this census, however, we use the corresponding data 

from the 1975 or the 1980 censuses.9 For those with occupation still not coded, we include 

indicators for missing and undefined in our main specifications to flexibly account for these special 

cases. Including missing and undefined as separate categories, the resulting sample holds 270 unique 

occupations classified into 61 minor occupation groups, or 12 major occupation groups. To 

demonstrate the nature of the classification, the major occupation groups are: 1) Professional work 

(arts and sciences); 2) Managerial work; 3) Clerical work; 4) Wholesale, retail, and commerce; 5) 

Agriculture, forestry, hunting, and fishing; 6) Mining and quarrying; 7) Transportation and 

communication; 8) Manufacturing; 9) Services; 10) Military/Armed forces; 11) Undefined; 12) 

Missing.  

For parental education, we use data on final education in 1970 according to the data from 

Statistics Sweden’s education register, which is based on a standard conversion translating each level 

into years of education. The measures of parental education reflect their highest educational 

attainment, with the levels including: less than nine years of primary school, nine years of primary 

school, two-year secondary school, three-year secondary school, less than three years of post-

secondary school, three years or more of post-secondary school, and graduate school. We also 

perform a set of robustness tests in which we control for education more flexibly. First, we again use 

the above measure but now by including a dummy variable for each of the different levels. Second, 

                                                
9 Incorporating the later censuses is primarily beneficial in obtaining more accurate information on occupation for 

mothers, who are more likely to have missing data in 1970. Very few fathers have missing occupation in 1970. 
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we also exploit more detailed information on educational attainment from the same data source. In 

doing so, we include a large set of dummies reflecting length and type of education, distinguishing 

between various tracks within high school as well as a large number of different academic and 

vocational post-secondary educational categories. 

Because we are exploring implications of aggregating the information on parental income, 

education, and occupation, we only include parent-child pairs for which the parents have non-

missing information on all of these measures and the child has the requisite non-missing income 

measures. Table B1 provides descriptives for our resulting main sample of 167,552 sons matched to 

153,920 fathers. 

 

2.2.3    Alternative Measures for U.S. Comparison 

We also construct alternative measures to facilitate a Sweden-U.S. comparison based on comparable 

findings in Vosters (2015). The analysis by Vosters is based on data from the nationally 

representative part of the Panel Study of Income Dynamics (PSID), which began with a sample of 

about 3,000 families in 1968. Importantly, the PSID includes family links and follows original 

sample members and their children over time. Fathers are identified as the male head of the 

household in which the child resided at the time of the initial survey, which does not necessarily 

represent a biological link. Thus, our Swedish sample differs slightly in that we use biological rather 

than cohabitating fathers.10 

To enable a credible cross-country comparison, we construct alternative measures for Sweden 

that are analogous to those from the PSID. For offspring income, we use the log of annual income 

                                                
10 For approximately 95 percent of the sons in the Vosters (2015) PSID sample, the identified cohabitating father is in 

fact the biological father, so this difference is minor. 
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in 1991. Fathers’ income is defined as the average of log income in 1968-72.11 Our education 

measure is very similar, reflecting the highest level of attainment. For occupation, we use the major 

groups described above, which differ slightly but not much from the seven groups used in the PSID 

(see Vosters, 2015). To better match the last “residual” category in the PSID, we add missing and 

undefined occupations to our military/armed services category, resulting in 10 major categories for 

the Swedish sample. In the U.S. data, education and occupation are from the 1968-1969 surveys, 

while our corresponding data are from 1970. Although there are minor differences in some variable 

definitions across the two countries, they are marginal at most and should have very little effect on 

our results. The sample with non-missing data on these measures includes 146,783 sons matched to 

135,020 fathers. 

We provide descriptive statistics for both the full sample and this restricted U.S. comparison 

sample in Table B1. The samples are very similar across all observables. Sons’ average income is 

slightly higher than that for fathers; in logarithmic form, these averages are 12.22-12.29.12 Fathers’ 

average education of just over 9 years, as well as the distribution among the various levels of 

attainment, is nearly identical across samples, as are the proportions in each occupation category. 

Professional work and manufacturing comprise much of the sample of fathers, with 19 and 38 

percent in the respective categories.  

 

2.3    Empirical Approach 

Our empirical approach is designed to test the hypothesis that estimates of intergenerational 

persistence in socioeconomic status approach 0.7-0.8 as we add the proposed partial measures. We 

                                                
11 Since our income data start in 1968, this measure is marginally different from the U.S. data that are based on earnings 

in 1967-71. 
12 Income is provided in 2005 Swedish kronor (SEK). 
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then proceed to contrast our results with comparable estimates for the U.S. to also test the claim 

that persistence in latent status is the same across countries. We begin by obtaining a baseline 

estimate of persistence by estimating the usual intergenerational income equation above in (1). To 

gauge the degree of attenuation bias in this estimate, we then add the additional measures of parental 

status to this equation. Although this provides insights into the sensitivity of conventional estimates 

to accounting for other status measures, it does not provide a single estimate of persistence in 

underlying status that combines information from all measures. 

Our preferred method, proposed by Lubotsky & Wittenberg (2006), estimates the persistence in 

latent status, aggregating the information in the included proxy measures. To better illustrate our 

methodological approach, we first present the hypothesis in a simple latent variables framework, 

writing measurement equations for each of the partial measures, yjit, of the form: 

 

   !!"# = !!!!"∗ + !!!"#,                                    (2) 

 

where j indexes the measure, i indexes family, and t generation. We generalize the measurement 

equations from the simple law to allow for slope coefficients, !! . Our main empirical specifications 

include equations for y1it for parental (e.g., fathers’) income, y2it for parental education, and y3it -ykit for 

the k-2 parental occupation indicators. x*
it  is the unobserved latent status and the ujit  are the 

measurement errors. The so-called structural equation can then be written: 

 

   !!"!! = !!!"∗ + !!!" ,       (3) 
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where ! is the measure of intergenerational persistence in underlying latent status. This notation 

shows that we do not explicitly address offsprings’ latent status with multiple partial measures.13 

However, the outcome variable we do use—a twenty-year average of annual incomes during mid-

life—is likely one of the best single measures of socioeconomic status available. Further, the simple 

conditions underlying the simple law of mobility rely on the assumptions of a classical errors-in-

variables model, under which measurement error on the left-hand side is innocuous. 

Under the classical assumptions, the measurement errors (ujit) are all uncorrelated, and the 

coefficients !! are equal to one. In this simple case, there are several econometric methods available. 

For example, instrumental variables (IV) estimation using one measure to instrument for another is 

common solution.  We provide one such estimate, using father’s education to instrument for father’s 

income, which under the proposed law should estimate persistence levels in the 0.7-0.8 range.14 

Other possible approaches include the MIMIC (multiple indicators, multiple causes) or LISREL 

frameworks (see, e.g., Jöreskog & Goldberger, 1975, and Bollen, 1989). More recently, Black & 

Smith (2006) propose a GMM estimator with potential efficiency gains. However, each of these 

approaches relies critically on the assumption of uncorrelated measurement errors, and we find this 

restriction to be particularly concerning in the setting considered here.15 First, the nature of the 

suggested measures (income, education, and occupation) makes the case of zero correlation among 

measurement errors unlikely. Second, the anecdotal examples used to motivate the concept of 

                                                
13 To assess sensitivity to this choice, we performed two different tests. First, we created omnibus measures of status for 

fathers and sons (applying fathers’ weights to sons’ measures) and obtained an estimate of 0.237, which is nearly 
identical to the comparable estimate (0.238) using only fathers’ measures. Second, we used average log incomes across 
same-sex siblings as measure of offspring status (excluding those without same-sex siblings from the sample). While 
baseline estimates and thus the scaling differ in the latter case, the estimated decrease in attenuation bias is very similar. 

14 Note that in this particular IV setup, consistency requires only the coefficient in the income measurement equation to 
equal one (and the measurement errors still being uncorrelated), which is not problematic as this is the normalization 
we adopt for our preferred approach described below. This normalization simply sets the scale of latent status to be on 
that of fathers’ income. 

15 If the measurement errors were positively correlated, Black & Smith (2006) point out that the IV estimate from using 
one measure to instrument for the other provides a benchmark for a lower bound. In our case though, the 
measurement errors may be negatively correlated, which would leave the IV estimate biased upward.  
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underlying latent status directly imply correlation among the measurement errors.16 Further, our 

main purpose is not to point identify !, rather we seek to test whether attenuation bias decreases as 

multiple proxies for latent status are taken into account. The LW approach is in this respect 

superior, allowing us to compare different lower bounds without making restrictive assumptions on 

cross-correlations of the measurement errors. 

In addition to relaxing the assumption of zero correlation among the measurement errors (ujit), 

we also allow the coefficients, !! , in the measurement equations to be mostly unrestricted (subject to 

a normalization discussed below). The approach from Lubotsky & Wittenberg (2006; henceforth, 

LW) is ideally suited for this scenario, as it actually exploits the correlation in the measurement 

errors and estimates the coefficients in the measurement equations. In fact, the LW approach 

incorporates the information from all included measures of status in an optimal fashion, producing 

the estimate of persistence with the least attenuation bias. The LW estimator can be written as: 

 

  !!" = !!!! + !!!!! +⋯+ !!!!,     (4) 

 

where the !! ’s are estimates of the slope coefficients in the measurement equations, and the !! ’s are 

obtained from an auxiliary OLS regression described below. Hence, actual computation entails a 

multistep process. 

The first step of the LW approach is to obtain the auxiliary OLS coefficient estimates of !! 

from regressing the dependent variable on all measures of status: 

 

                                                
16 Clark (2014, p.11) refers to education being a poor measure of status for Bill Gates (who presumably has high status), 

as he is a college dropout but has incredibly high income. Conversely, the other example posits that income would be a 
poor measure of status for a philosophy professor, whose education would be a more appropriate measure. These 
scenarios imply a negative correlation among the measurement errors for income and education. 
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  !!"!! = !!!!!" + !!!!!!" +⋯+ !!!!!"# + !!! .    (5)  

To identify the coefficients in the measurement equations, we need a normalization assumption 

on one of the !! ’s. We normalize !! = 1, which simply sets the scale of the latent status to be on 

that of fathers’ log income.17 This implies the following formula to obtain estimates of the !! ’s:  

 

   !! =
!"# !!"!!,!!!"#
!"# !!"!!,!!!!"

       (6) 

 

Estimating this ratio can be done in a single step via IV estimation, with !!"# as the outcome variable 

and using !!"!! to instrument for !!!". We obtain standard errors for the !!" estimate using a block 

bootstrap (100 replications) to account for within-family correlation. While not identifying ! itself, 

this estimator provides an estimate of !  with the least attenuation bias based on the joint 

information in the proxy measures of status. If the simple law of mobility does hold, we should see 

estimated persistence levels rising as we add these measures of status.  

In addition to the proclaimed elevated persistence (i.e., lower mobility), the other controversial 

aspect of the simple law is the assertion that rates of mobility are constant across countries. To 

facilitate a cross-country comparison between Sweden and the U.S., we estimate analogous 

specifications using a Swedish sample with the measures constructed similarly to those used for the 

U.S. by Vosters (2015). From this we can also examine the consequences of various data limitations 

within the Swedish setting, thus providing indirect evidence on whether the U.S. estimates would 

change if based on richer data. We also conduct various robustness checks with other constructs of 

the income, education, and occupation measures. 

                                                
17 This normalization hence allows the LW estimate to be directly comparable to the conventionally estimated 

intergenerational income elasticity. In fact, in the case where income is the only status measure used, it is easily seen 
from equations (4) and (5) that the LW estimate is identical to this conventional estimate. 
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Further, because the hypothesized simple law relies on the social status of families, we extend our 

analysis to other family members, by adding the analogous measures for mothers, as well as 

estimating specifications with only mothers’ measures. This exercise provides some suggestive 

evidence not only on the role of mothers but also on new methods for measuring mothers’ status. In 

addition, given the paucity of evidence on intergenerational persistence for daughters, we also 

extend our analysis to daughters.  

 

2.4    Empirical Results 

 
2.4.1    Main Results 

We first examine the conventionally estimated intergenerational persistence of income in Sweden, 

and whether adding additional partial measures affects the estimated coefficient on log income. In 

these and all other estimations, we control flexibly for cohorts of each generation using birth-year 

dummies. For the results presented in Table B2, we use the long-run average of sons’ log income as 

the dependent variable, and fathers’ measures of status include the long-run average of fathers’ log 

income, educational attainment, and unique occupation indicators. The first set of results in Table 

B2 provides OLS estimates (omitting those for the 269 occupation indicators for brevity), with 

columns [1]-[4] progressively adding measures of fathers’ status. Note that these estimates also 

correspond to the OLS components (!!) of the LW estimate obtained in the auxiliary regression.  

The baseline OLS estimate of equation (1) is 0.23. This estimate of the intergenerational income 

elasticity is of similar magnitude to previous estimates for Sweden. Moving to column [2], fathers’ 

educational attainment is added to the regression, but the coefficient estimate on fathers’ income 

remains nearly identical. When instead fathers’ occupation indicators are added to the regression in 

column [3], the coefficient on income does fluctuate some, falling to 0.21. This estimate is hardly 
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affected by the inclusion of education, as shown in column [4], indicating that while there is some 

sensitivity to the addition of the occupation measure, we see very little sensitivity to the addition of 

educational attainment. 

With two noisy measures of status, and assumptions of classical measurement error, IV 

estimation provides a consistent estimate of intergenerational persistence in underlying status. 

Considering this scenario, the next rows of Table B2 include first and second stage results when 

instrumenting for fathers’ income using fathers’ education. This estimate of persistence is 0.24, 

similar to conventionally estimated persistence for Sweden. However, it is important to recognize 

the possibility that the assumptions for consistency may be violated. In particular, the measurement 

error in income as a measure of social status may be correlated with the measurement error in 

educational attainment, leaving the direction of bias unknown without further information on the 

nature of the correlation. 

The final estimation approach, proposed by Lubotsky & Wittenberg (2006), exploits such 

violations by using the information on the relationships among the measurement errors and 

providing the greatest lower bound on persistence in underlying status. The LW estimate in column 

[1] is identical to the OLS estimate (by construction). However, as we incorporate more measures of 

status, this approach provides a single estimate from an optimal aggregation of the information from 

all measures. Given that the OLS estimates shown in the top of Table B2 are underlying 

components of the LW coefficient estimate, it is unsurprising that adding education does not change 

the LW estimate, as shown in column [2]. Similarly, given the sensitivity of the OLS coefficients to 

adding the occupation indicators, the increased persistence with the inclusion of occupation in 

column [3] is somewhat expected. However, the nominal rise from the conventional estimate of 0.23 

to 0.26 when all suggested partial measures are included (column [4]) does not support the 

hypothesis of substantial attenuation bias in prior estimates. This pattern of results is similar to that 
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found for the U.S. (Vosters, 2015), exhibiting minimal increases in persistence when more partial 

measures of status are included, despite claims of elevated persistence in all countries. However, an 

important difference here is the statistical certainty. Due to our much smaller standard errors, we 

can reject even moderate drops in attenuation bias (for this specific model). 

 

2.4.2    A Comparison of Sweden and the United States 

Next we turn to directly address the hypothesis that persistence in status is in fact constant across 

countries. Our main results (provided again in Table B3) show that the persistence estimates for 

Sweden remain in the previously cited range of 0.20-0.30. Further, these estimates are substantially 

lower than the U.S. estimates of 0.44-0.47 found by Vosters (2015), illustrating a meaningful 

distinction in persistence between the two countries. However, the Swedish measures are 

constructed differently (e.g., the long-run income measure and the unique occupation indicators). 

While the measurement differences would likely bias the U.S. estimates towards the Swedish 

estimates, we carefully construct our measures to mimic those used by Vosters to allow for a more 

sound comparison. Using the Swedish data, we also indirectly gauge what the estimated persistence 

in status might look like in the U.S. if based on richer data.  

With the five-year average of log income and broad occupation categories constructed to match 

those for the U.S., we find that estimated persistence in Sweden is lower at 0.19-0.22. To check 

whether this might be due to sample composition differences between our main sample and this 

smaller sample, we also analyze the same sample using our original measure constructs, and find 

estimates (0.23-0.26) nearly identical to our main results. Sample composition does not appear to be 

driving the differences. While our results do show that the U.S. estimates may be somewhat 

attenuated, possibly by some 10-20 percent, we can also see that the increase in estimates as 

additional measures are added does not change regardless of how measures are constructed; in no 
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cases do the estimates rise substantially when additional measures of status are included. Further, the 

estimates for Sweden remain in the approximate range previously asserted in the literature, albeit at 

the low end around 0.20, and clearly differ from the estimates for the U.S.18 Thus, our results fail to 

support either aspect of the simple law of mobility. 

 

2.4.3    Robustness of Main Results 

Next we examine the sensitivity of our main results to various modifications to the measures of 

status. For our measure of income, we did see some sensitivity to the number of yearly income 

observations included in the average, as the five-year average used for the Sweden-U.S. comparison 

produced lower estimates than our longer-term measure. Another more arbitrary aspect of our 

measure construction is the choice to use the average of the annual log earnings rather than the log 

of average annual earnings. We provide estimates based on this alternative income measure 

construction in Table B4. While these estimates are slightly higher than our main results, they still 

remain in the typical range of estimates for Sweden. Moreover, the general pattern of the estimates 

as additional measures of status are added remains unchanged. 

The other adjustments to the income measure, as well as the education and occupation 

measures, are motivated in part by our chosen empirical approach. For example, our long-term 

income measure gives equal weight to each annual measure from age 30 to 60, while each annual 

measure entering separately would allow the LW method to optimally choose these weights, which 

may vary over the life cycle. However, since the LW method also excludes any observations with a 

missing covariate and several of the fathers in our sample have incomplete income histories, we 

                                                
18 That the estimate for this specification is slightly lower than previous ones in the literature is not unexpected. While 

previous estimates have been based on long-run income measures and an optimal use of existing data, our goal here is 
to use data constructs comparable to the U.S. 
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estimate specifications that include annual log income from age 40 to 50, to reduce the data 

requirements while still focusing on income measures during mid-life. The persistence estimates are 

higher, ranging between 0.25-0.30, but are based on a much smaller and presumably more 

homogeneous sample of fathers that have log income observed in each of these eleven consecutive 

years. For comparison, we also estimate persistence based on the average of these annual log 

incomes, finding persistence estimates to be slightly lower (0.24-0.30), suggesting only trivial gains 

from allowing the LW method to determine the weights on the separate annual income measures. 

For another point of reference, the corresponding estimates using our baseline income measure for 

this sample are 0.28-0.33, which are even higher. So it appears that this sample exhibits more 

persistence than the full sample, but we also see that our longer-term average is serving as a better 

proxy for status than using the more flexible annual income measures when limited to fewer years. 

We also adjust the education and occupation measures. For our main specifications, educational 

attainment enters under the assumption of a linear relationship in years of schooling. We relax this 

by using indicators for each level of highest attainment. Even with this flexible approach, education 

does not appear to provide substantial information on status (conditional on income), with estimates 

increasing by less than 0.01. We also estimate specifications indicating the type of education along 

with each level, again with increases of less than 0.01 in the estimate. Our main specification used 

the most flexible measure available for occupation. However, these detailed occupation indicators 

can be grouped into minor or major occupation groups (similar to those used for our U.S. 

comparison), resulting in estimates of 0.25 and 0.24, respectively. We thus see some numerical 

sensitivity of the estimates in this regard, though not to an extent that would affect the conclusions 

reached with our main analysis. In our main analysis, we included observations with occupation 

missing or undefined, accounted for using separate category indicators. When excluding these two 

groups, the baseline estimates increase by around 0.05. However, this modest numerical change has 
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little effect on our main conclusions regarding the level of persistence in Sweden (or the comparison 

to the U.S.). 

In general, our robustness checks in Table B4 show that while there is some sensitivity of the 

estimates to how the partial measures are constructed, none of the changes are meaningful 

qualitatively. In particular, they do not change our conclusion that estimated persistence is not 

converging to 0.7-0.8 as additional measures are included, nor the conclusion of higher mobility in 

Sweden relative to the U.S. 

 

2.4.4    Extension to Mothers and Daughters 

Our results thus far have focused on male lineages, as is common in the intergenerational literature 

(including Vosters’ and Clark’s work). However, the simple law is described to pertain to underlying 

latent family status. To more appropriately address the concept of family status, we perform tests 

analogous to those above but including mothers’ income, education, and occupation in addition to 

the same measures for fathers. This extension is warranted both by the specific hypothesis we are 

testing, but also by the dearth of evidence pertaining to mothers. To supplement the limited 

evidence in the literature, we also estimate persistence based on only mothers’ status, and then 

attempt to disentangle contributions of status measures separately for mothers and fathers, in 

determining their child’s later socioeconomic status.  Since intergenerational associations for 

daughters are also much less common in the literature—especially mother-daughter associations in 

individual income—we conduct all of these tests for daughters as well.19  

                                                
19 Chadwick & Solon (2002) for the U.S. along with Rauum et al. (2007) for several different countries look at 

intergenerational income associations for daughters, circumventing the labor force participation issues by using a 
family income measure. Altonji & Dunn (1991) comprehensively looks at associations in family income and individual 
income, for all parent-child pairs, using U.S. data. 
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Similar to our main analysis, we begin by obtaining a baseline estimate via OLS and further 

augment the regression with additional measures. The first set of results in Table B5 replicates the 

main analysis for fathers and sons, only now restricting the sample to sons matched to both a father 

and mother, to facilitate comparisons with the different parent-offspring samples considered here.20 

For sons, the coefficient on fathers’ income is not affected by the addition of education, while for 

daughters, adding fathers’ education does seem to matter. The estimates for both daughters and 

sons are somewhat sensitive to accounting for fathers’ occupation. When we add the corresponding 

measures for mothers to each of these specifications, the changes in the coefficient estimates are 

negligible for both sons and daughters (comparing the first panel to the second). The last set of 

results is for specifications using only mothers’ measures. As the coefficient on mothers’ income is 

very low, these estimates illustrate why mothers are generally not considered in studies of 

intergenerational income persistence. While today Sweden indeed has a high rate of female labor force 

participation, it was much lower for the cohorts of mothers in our sample (born before 1940), and 

thus individual income is a very noisy indicator of socioeconomic status.  

In Table B6 we present the LW results, which aggregate information from additional status 

measures for each of the different parent-child samples. For fathers and sons, the results are nearly 

identical to the main results from the full sample, with persistence estimates ranging 0.23-0.26. For 

daughters, the intergenerational persistence in status with regard to their fathers is slightly lower, 

with estimates ranging 0.15-0.19. An important difference is that fathers’ education does matter for 

the association in status with daughters, while it did not for sons. Fathers’ occupation is similarly 

important for persistence in status with daughters and sons. The results for mothers are more 

striking, showing that mothers’ occupation is crucial for measuring mothers’ status. This holds 

                                                
20 Descriptives for these samples can be found in Table B7. OLS and LW results for the full mother-offspring and 

father-offspring samples can be found in Tables B8 and B9, respectively. 
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especially when considering intergenerational associations with sons, as the estimated persistence 

rises from 0.03 to 0.24. For daughters, the corresponding increase is from 0.06 to 0.13. These 

estimates are similar to the mother-son association found for the U.S. by Altonji & Dunn (1991), 

though they obtained a larger mother-daughter estimate. Clearly income is a very poor measure of 

status for mothers, and this is further confirmed by the results in Table B6; what was not obvious in 

the OLS results in Table B5 is the substantial impact of accounting for mothers’ occupation, which 

is made apparent by the LW method’s aggregation of all information contained in mothers’ income, 

education, and occupation. Education is also salient to mothers’ status, as shown in columns [6] and 

[8], though less so than occupation.  

Next we include mothers’ and fathers’ measures jointly, to consider how persistence might 

change if we take more literally the concept of family status. When we compare these estimates to 

those accounting for only fathers’ status (i.e., estimates reflecting the same information as most of 

the literature), we see that mothers’ occupation does contain additional information on family status 

with respect to intergenerational transmission to sons, and even more so for daughters. Further, 

mothers’ income seems salient to transmission of family status for daughters, a result consistent with 

Altonji & Dunn’s (2000) finding that factors underlying earnings had stronger intergenerational 

associations along gender lines. 

To further assess the relative importance of mothers’ and fathers’ status measures, we also 

attempt to separate the relative contributions of each parent to the intergenerational persistence 

estimate. Decomposing the estimate into portions due to mothers’ and fathers’ status, we see in the 

bottom portion of Table B6 that the vast majority of the persistence for sons is coming from 

fathers’ measures, with only 4-5 percent from mothers in the income and income/education 
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specifications.21 Mothers’ occupation appears more important though, shifting more weight to 

mothers so they account for 15-16 percent. For daughters, the role of mothers’ status is more 

substantial, accounting for 32-43 percent of estimated persistence in underlying status. 

Whether mothers should contribute (conditional on fathers) to intergenerational persistence in 

family status is an empirical question. Theoretically, one could posit several stories. For example, if 

we believe there to be substantial positive assortative matching on latent status in the marriage 

market, then we might expect mothers’ or fathers’ status measures to serve as equally suitable 

measures of family status. Indeed, for the sample of sons, LW estimates from specifications 

including all measures for fathers are very similar to those including all measures for mothers (0.26 

and 0.25, respectively). However, this is not the case when occupation indicators are omitted; nor 

does it hold as convincingly for the sample of daughters (with estimates of 0.19 and 0.14). While 

previous studies have found evidence of positive assortative matching in both Sweden (Hirvonen, 

2008; Nakosteen et al., 2004) and the U.S. (Chadwick & Solon, 2002), this does not seem to explain 

our results here. In auxiliary correlational analyses, we find the mother-father correlation in 

educational attainment to be the highest at 0.55, but the correlation in long-run income is low (0.06). 

The correlations between mothers’ and fathers’ estimated latent status is also low (0.08), which is not 

surprising given that income both weights heavily into the status measures and exhibits low parental 

matching. 

More likely, our results are explained by the well-known issues with using mothers’ income, 

some of which we mentioned above. For education, it is less clear what the explanation is; 

educational attainment is both believed to suffer less from measurement problems and exhibit 

smaller male-female differences than what is the case for income. However, we do see that 

                                                
21 The decomposition is done by separating the sum !!" = !!!! + !!!!! +⋯+ !!!! into the sum of elements from 

fathers’ measures and the sum of elements from mothers’ measures. 
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combining information from income and education can mitigate these measurement issues, and 

adding occupation is especially helpful. So Clark & Cummins’ (2015) proposition that persistence 

estimates will rise when combining information from multiple measures seems to have some merit 

for capturing intergenerational associations with mothers.  Each of our noisy measures contributes 

to measuring mothers’ status, however not to the extent of raising persistence estimates to the levels 

proposed in the simple law.  

 

2.5    Conclusions 

Clark’s work shifts the focus to be on underlying socioeconomic status, which is described to be a slightly 

different—presumably more general—concept relative to the purely economic ones economists 

have thus far considered. While it is not entirely clear to what extent these concepts should differ, 

Clark’s work is painting an entirely different landscape for intergenerational persistence, provoking a 

new set of studies (such as this one) testing the surname results and associated hypotheses. Very few 

of these papers are confirming the results found with the surnames approach or the proposed 

reasoning for the contradictory results, as in the present paper (e.g., Chetty et al., 2014; Braun & 

Stuhler, 2015; Vosters, 2015).  

We tested two facets of the hypothesized simple law of mobility, failing to find evidence to 

support either claim. We first looked for evidence of substantially increased intergenerational 

persistence in underlying social status in Sweden when information from several partial measures of 

parental status was combined. Incorporating information on educational attainment has almost no 

effect on the conventionally estimated persistence rate of 0.23. When occupation is included, the 

estimate increases slightly to 0.26, but does not come close to the hypothesized “true” persistence 

rate of about 0.7-0.8. We then investigated the claimed uniform persistence across countries, by 

comparing our Swedish estimates with those for the U.S. (presented in Vosters, 2015). Even after 
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harmonizing our sample and variables as to mimic those used in the U.S. study, our estimates still 

differ substantially, with the U.S. estimates of persistence being more than twice as large as the 

Swedish. Our analysis thus confirms the previously established higher levels of intergenerational 

mobility for Sweden relative to the US. 

Prior studies, such as Goldberger (1989), also recognized that non-income measures may be 

important in measuring persistence in socioeconomic status.22 However, Clark’s theory formalizes 

this notion with a very simple measurement error framework and proposes an easily testable 

hypothesis. So while Clark is not the first to emphasize the importance of non-income measures, the 

exercise of considering a more general latent status has also prompted various extensions to the 

literature. For example, ours along with Vosters (2015) is one of the first studies to aggregate 

information from different dimensions of status into a single measure of persistence. While 

sociologists and economists have included, say, income and education in the same regression, these 

have been attempts to identify mechanisms, or simply reactions to data limitations, rather than for 

the purposes of obtaining one aggregate persistence estimate.  

Coupled with our method for obtaining an aggregate estimate, Clark’s theory regarding latent 

status unintentionally inspires another important contribution to both the measurement and 

intergenerational literatures, enabling further examination of intergenerational associations related to 

mothers. Studies rarely consider status transmission from mothers to children, or even fathers to 

daughters, due to data limitations stemming from lower labor force participation rates for females. 

In the context of Clark’s work, despite the underlying theory being presented in the realm of male 

lineages, the latent variable approach might be more relevant for females.  Hence, we first extended 

our analysis to more carefully consider the concept of family status by accounting for mothers’ in 

                                                
22 Sociologists also consider non-income measures, instead often focusing on social “class” and various measures of 

occupational prestige. 
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addition to fathers’ status measures, which had very little impact on estimated persistence, especially 

for sons, with persistence rising to only 0.28. Although beyond the scope of the simple law, we do 

find the framework to be more relevant to females, especially mothers. We show that a modified 

version of the measurement error framework presented by Clark proves useful in estimating 

intergenerational associations between mothers and their offspring. In contexts where income is a 

very noisy measure of socioeconomic status, as is often the case for mothers, supplementing this 

information with additional noisy measures can make an important difference, as shown by our 

analyses incorporating mothers’ education and occupation. 23  In fact, for daughters the 

intergenerational persistence estimates accounting for all measures are only slightly lower for 

mothers relative to fathers. While these results warrant future research for a better understanding of 

these transmission channels, our results here illustrate what information might be gained by 

considering other estimation approaches, and other measures of status. 

 

  

                                                
23 If the available income data is of low quality (or observed only as short snapshots), the same approach could also be 

potentially useful when studying men. 
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   Table B1:  Summary Statistics for Full Sample and U.S. Comparison Sample 

 
Full sample U.S. comparison sample 

Variable mean s td  dev  mean s td  dev  

Offspring 
    Year of birth 1956 3.14 1956 3.12 

Average income, age 27-46 250,584 198,680 253,318 201,623 
Average log income, age 27-46 12.22 0.53 12.25 0.50 
Non-missing incomes, age 27-46 19.52 1.81 19.66 1.41 
Log income in 1991 

  
12.23 0.70 

Years of education 11.79 2.40 11.83 2.41 
Number of offspring (N) 167,552 

 
146,783 

 Fathers 
    Age when offspring born 30.05 5.13 30.22 5.06 

Year of birth 1926 6.53 1925 6.29 
Average income, age 30-60 245,013 166,478 249,144 164,416 
Average log income, age 30-60 12.26 0.48 12.29 0.45 
Non-missing incomes, age 30-60  17.78 6.56 17.71 6.39 
Average log income 1968-72 

  
12.28 0.48 

Years of education 9.14 2.88 9.15 2.91 
Educational attainment (years) 

    < 9 years of primary school 0.58 0.49 0.58 0.49 
9 years of primary school 0.04 0.21 0.04 0.20 
2-year secondary school 0.18 0.38 0.17 0.38 
3-year secondary school 0.11 0.31 0.11 0.31 
< 3 years of post-secondary school 0.03 0.17 0.03 0.17 
3+ years of post-secondary school 0.06 0.23 0.06 0.24 
Graduate school 0.01 0.08 0.01 0.08 

Occupation category 
    1. Professional work (arts & sciences) 0.19 0.40 0.20 0.40 

2. Managerial work 0.04 0.21 0.05 0.21 
3. Clerical work 0.04 0.19 0.04 0.19 
4. Wholesale, retail, & commerce 0.08 0.28 0.08 0.27 
5. Agriculture, forestry, hunting, & 

fishing 0.10 0.30 0.10 0.30 
6. Mining & quarrying 0.01 0.08 0.01 0.08 
7. Transportation & communication 0.09 0.29 0.09 0.29 
8. Manufacturing 0.38 0.48 0.38 0.49 
9. Services 0.04 0.20 0.04 0.19 
10. Military / armed forces 0.01 0.10 0.01 0.10 
Undefined <0.00 0.01 0.00 0.01 
Missing 0.02 0.13 0.01 0.10 

Number of fathers (N) 153,920   135,020   
Notes. The main sample is the full sample used for our main analysis as well as robustness checks. The 
U.S. comparison sample is the subset that has the income measures needed to compute the PSID 
comparable income measures (average of log income in years 1968-72 for fathers and, for sons, log 
income in 1991).  
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Table B2:  OLS, IV, and LW Estimates for Full Sample (Fathers and Sons) 

  [1] [2] [3] [4] 
OLS estimates 

    Fathers’ log average income 0.231 0.230 0.208 0.207 

 
0.003 0.004 0.004 0.004 

Fathers’ years of education 
 

0.000 
 

0.000 

  
0.001 

 
0.001 

Fathers’ unique occupation (indicators) 
  

x x 

     IV estimates 
    First stage (educ. IV for log income) 0.083 

   
 

0.000 
   Second stage 0.235 
   

 
0.006 

   LW estimates of the IGE 
    B 0.231 0.231 0.260 0.260 

 
0.004 0.004 0.004 0.004 

Observations (N) 167,552 167,552 167,552 167,552 
Notes.  All specifications use the average of sons’ log income as the dependent variable and include birth-year 
dummies of fathers and sons as controls. The noisy measures of status for fathers included in each model are:  
[1] income; [2] income and education; [3] income and occupation; [4] income, education and occupation. 
Because the occupation measure is 270 unique occupation categories, the OLS coefficients and standard errors 
for occupations are omitted from the table. OLS and IV standard errors are clustered by family and LW 
standard errors are computed using a block bootstrap to account for within-family correlation (100 
repetitions).   

 

  



 

 55 

Table B3:  Comparison of LW Estimates - Sweden and the U.S. 

  N [1] [2] [3] [4] 

Sweden estimates      
Main results (full sample) 167,552 0.231 0.231 0.260 0.260 

  
0.004 0.004 0.004 0.004 

Main specifications for restricted sample 
used in U.S. comparable specification 146,783 0.231 0.231 0.262 0.262 

  
0.003 0.003 0.004 0.004 

Sweden estimates using U.S. (PSID) 
comparable specification 146,783 0.194 0.194 0.215 0.215 

  
0.004 0.004 0.005 0.005 

      U.S. estimates (from Vosters, 2014) 415 0.439 0.445 0.465 0.473 
    0.075 0.072 0.080 0.080 
Notes. The noisy measures of status for fathers included in each model are:  [1] income; [2] income and 
education; [3] income and occupation; [4] income, education and occupation. The main specifications 
use the average of sons’ log income (age 27-46) as the dependent variable, average of log income (age 
30-60) for father’s income, unique occupation indicators for fathers’ occupation, and include birth-year 
dummies of fathers and sons as controls. The PSID-comparable measures are: sons’ log income in 
1991; father’s average log income 1968-1972; indicators for fathers’ major occupation category. All 
specifications use years of education as the measure of educational attainment. LW standard errors are 
computed using a block bootstrap to account for within-family correlation (100 repetitions).  
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Table B4:  Robustness of LW Estimates to Construction of Status Measures 

  N [1] [2] [3] [4] 
Main results 167,552 0.231 0.231 0.260 0.260 

  
0.004 0.004 0.004 0.004 

Adjusting the occupation measure 
     Indicators for minor occupation (2-digit) 167,552 0.231 0.231 0.247 0.247 

  
0.004 0.004 0.004 0.004 

Indicators for major occupation 167,552 0.231 0.231 0.238 0.238 

  
0.004 0.004 0.004 0.004 

Excluding “undefined” and missing 164,678 0.235 0.235 0.265 0.265 

  
0.003 0.003 0.004 0.004 

Adjusting the education measure 
     Indicators for each education level 167,552 0.231 0.233 0.260 0.261 

  
0.004 0.004 0.004 0.004 

Indicators for level/type of attainment 167,552 0.231 0.241 0.260 0.265 

  
0.004 0.004 0.004 0.004 

Adjusting the income measure 
     Log (average annual income) 167,550 0.270 0.274 0.296 0.297 

  
0.003 0.003 0.003 0.003 

Separate log annual income measures, age 40-50 57,728 0.247 0.247 0.304 0.304 

  
0.008 0.008 0.009 0.010 

   Average of log annual income, age 40-50  57,728 0.241 0.241 0.298 0.298 

  
0.008 0.008 0.009 0.009 

   Main specification using this restricted sample 57,728 0.279 0.279 0.333 0.333 

  
0.007 0.007 0.009 0.009 

Notes.  All specifications use the average of sons’ log income as the dependent variable and include birth-year 
dummies of fathers and sons as controls. The noisy measures of status for fathers included in each model are:  [1] 
income; [2] income and education; [3] income and occupation; [4] income, education and occupation. LW standard 
errors are computed using a block bootstrap to account for within-family correlation (100 repetitions). 
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Table B5:  OLS Estimates from Extensions with Mothers’ Measures of Status 

  Sons   Daughters 
  [1] [2] [3] [4]   [5] [6] [7] [8] 

Fathers’ measures 
         Log average income 0.231 0.229 0.208 0.207 

 
0.152 0.128 0.130 0.123 

 
0.003 0.004 0.004 0.005 

 
0.003 0.004 0.004 0.004 

Education 
 

0.001 
 

0.001 
  

0.008 
 

0.006 

  
0.001 

 
0.001 

  
0.001 

 
0.001 

          Fathers’ & Mothers’ measures 
      Fathers’ log avg. 

income 0.225 0.227 0.203 0.203 
 

0.142 0.125 0.125 0.120 

 
0.003 0.004 0.005 0.005 

 
0.003 0.004 0.004 0.004 

Mothers’ log avg. 
income 0.024 0.023 0.010 0.009 

 
0.059 0.053 0.048 0.046 

 
0.002 0.002 0.002 0.002 

 
0.002 0.002 0.003 0.003 

Fathers’ education 
 

-0.001 
 

-0.001 
  

0.003 
 

0.002 

  
0.001 

 
0.001 

  
0.001 

 
0.001 

Mothers’ education 
 

0.002 
 

0.003 
  

0.005 
 

0.005 

  
0.001 

 
0.001 

  
0.001 

 
0.001 

          Mothers’ measures 
         Log average income 0.034 0.021 0.002 -0.001 

 
0.064 0.052 0.043 0.040 

 
0.002 0.002 0.002 0.002 

 
0.002 0.002 0.003 0.003 

Education 
 

0.016 
 

0.011 
  

0.015 
 

0.012 

  
0.001 

 
0.001 

  
0.001 

 
0.001 

Observations (N) 152,486 152,486 152,486 152,486   145,256 145,256 145,256 145,256 
Notes. All specifications use the average of sons' or daughters' log income as the dependent variable and include birth-
year dummies of included parents and offspring as controls. The noisy measures of status for parents included in each 
model are:  [1], [5] income; [2], [6] income and education; [3], [7] income and occupation; [4], [8] income, education and 
occupation. Because the occupation measure is 270 unique occupation categories, the OLS coefficients and standard 
errors for occupations are omitted from the table. Standard errors are clustered by family to account for within-family 
correlation. 
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Table B6:  LW Estimates from Extensions with Mothers’ Measures of Status 

  Sons   Daughters 
  [1] [2] [3] [4]   [5] [6] [7] [8] 

          Fathers 0.231 0.231 0.262 0.262 
 

0.152 0.163 0.188 0.193 

 
0.003 0.003 0.004 0.004 

 
0.003 0.003 0.004 0.004 

Mothers 0.034 0.096 0.235 0.252 
 

0.064 0.096 0.132 0.142 

 
0.002 0.006 0.014 0.015 

 
0.002 0.003 0.004 0.004 

Fathers & 
Mothers 0.234 0.235 0.283 0.283 

 
0.209 0.218 0.273 0.276 

 
0.003 0.003 0.004 0.004 

 
0.004 0.005 0.006 0.006 

Fathers’ portion 0.225 0.222 0.242 0.239 
 

0.142 0.140 0.160 0.157 

 
96% 95% 85% 84% 

 
68% 64% 59% 57% 

Mothers’ portion 0.009 0.012 0.041 0.044 
 

0.066 0.078 0.113 0.118 

 
4% 5% 15% 16% 

 
32% 36% 41% 43% 

Observations 
(N) 152,486 152,486 152,486 152,486   145,256 145,256 145,256 145,256 
Notes.  These estimation samples have non-missing data on all measures for mothers and fathers. All 
specifications use the average of sons’ or daughters’ log income as the dependent variable and include birth-year 
dummies of included parents and offspring as controls. The noisy measures of status for parents included in 
each model are:  [1], [5] income; [2], [6] income and education; [3], [7] income and occupation; [4], [8] income, 
education and occupation. Because the occupation measure is 270 unique occupation categories, the OLS 
coefficients and standard errors for occupations are omitted from the table. Standard errors are computed using 
a block bootstrap to account for within-family correlation (100 repetitions).  
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Table B7:  Summary Statistics for Mothers & Fathers (Balanced Samples) 

Variable mean s td  dev    mean s td  dev    mean s td  dev    mean s td  dev  

Offspring Sons 
   

Daughters 
  Year of birth 1956 3.13 

    
1956 3.12 

   Average income, age 27-46 252,496 203,293 
    

169,955 78,675 
   Average log income, age 27-46 12.23 0.53 

    
11.84 0.54 

   Non-missing incomes, age 27-46 19.52 1.79 
    

19.57 1.66 
   Years of education 11.81 2.39 

    
12.21 2.30 

   Number of offspring (N) 152,486 
     

142,020 
    Parents Fathers 

 
Mothers 

 
Fathers 

 
Mothers 

Age when offspring born 29.93 5.12 
    

29.92 5.13 
   Year of birth 1926 6.38 

 
1929 6.16 

 
1926 6.38 

 
1929 6.16 

Average income, age 30-60 245,518 161,788 
 

121,359 65,144 
 

245,259 182,143 
 

121,419 64,393 
Average log income, age 30-60 12.26 0.48 

 
11.38 0.78 

 
12.26 0.48 

 
11.39 0.78 

Non-missing incomes, age 30-60  18.22 6.45 
 

19.49 6.60 
 

18.22 6.45 
 

19.53 6.61 
Years of education 9.18 2.90 

 
8.53 2.36 

 
9.17 2.89 

 
8.53 2.37 

Educational attainment (years) 
           < 9 years of primary school 0.57 0.49 

 
0.63 0.48 

 
0.57 0.49 

 
0.63 0.48 

9 years of primary school 0.04 0.21 
 

0.11 0.31 
 

0.04 0.20 
 

0.10 0.31 
2-year secondary school 0.18 0.38 

 
0.18 0.38 

 
0.18 0.39 

 
0.18 0.38 

3-year secondary school 0.11 0.31 
 

0.02 0.14 
 

0.11 0.31 
 

0.02 0.14 
< 3 years of post-secondary 
school 0.03 0.17 

 
0.03 0.17 

 
0.03 0.17 

 
0.03 0.17 

3+ years of post-secondary 
school 0.06 0.24 

 
0.03 0.18 

 
0.06 0.24 

 
0.03 0.18 

Graduate school 0.01 0.08 
 

0.00 0.02 
 

0.01 0.08 
 

0.00 0.02 
Occupation category 

           1. Professional work 0.20 0.40 
 

0.18 0.38 
 

0.20 0.40 
 

0.18 0.38 
2. Managerial work 0.04 0.21 

 
0.01 0.08 

 
0.04 0.20 

 
0.01 0.08 

3. Clerical work 0.04 0.19 
 

0.16 0.36 
 

0.04 0.19 
 

0.16 0.36 
4. Wholesale, retail, & commerce 0.09 0.28 

 
0.11 0.31 

 
0.09 0.28 

 
0.11 0.32 

5. Agriculture, forestry, hunting, 
fishing 0.09 0.29 

 
0.06 0.23 

 
0.09 0.29 

 
0.06 0.23 

6. Mining & quarrying 0.01 0.08 
 

0.00 0.02 
 

0.01 0.08 
 

0.00 0.02 
7. Transportation & 
communication 0.09 0.29 

 
0.04 0.19 

 
0.09 0.29 

 
0.04 0.19 

8. Manufacturing 0.38 0.48 
 

0.09 0.29 
 

0.38 0.49 
 

0.10 0.29 
9. Services 0.04 0.20 

 
0.26 0.44 

 
0.04 0.20 

 
0.26 0.44 

10. Military / armed forces 0.01 0.10 
 

0.00 0.00 
 

0.01 0.10 
 

0.00 0.00 
Undefined 0.00 0.01 

 
0.00 0.04 

 
0.00 0.02 

 
0.00 0.04 

Missing 0.02 0.13 
 

0.10 0.30 
 

0.02 0.13 
 

0.10 0.29 
Number of parents (N) 140,052     140,234     133,884     134,108   
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Table B8:  OLS Estimates from Extensions with Mothers’ Measures of Status,  
for All Parent-Child Samples 

  Sons   Daughters 
  [1] [2] [3] [4]   [5] [6] [7] [8] 

Fathers’ measures 
         Log average income 0.231 0.230 0.208 0.207 

 
0.153 0.129 0.130 0.122 

 
0.003 0.004 0.004 0.004 

 
0.003 0.004 0.004 0.004 

Education 
 

0.000 
 

0.000 
  

0.008 
 

0.006 

  
0.001 

 
0.001 

  
0.001 

 
0.001 

Observations (N) 167,552 167,552 167,552 167,552 
 

159,172 159,172 159,172 159,172 

          Fathers’ & Mothers’ measures 
       Fathers’ log avg. 

income 0.225 0.227 0.203 0.203 
 

0.142 0.125 0.125 0.120 

 
0.003 0.004 0.005 0.005 

 
0.003 0.004 0.004 0.004 

Mothers’ log avg. 
income 0.024 0.023 0.010 0.009 

 
0.059 0.053 0.048 0.046 

 
0.002 0.002 0.002 0.002 

 
0.002 0.002 0.003 0.003 

Fathers’ education 
 

-0.001 
 

-0.001 
  

0.003 
 

0.002 

  
0.001 

 
0.001 

  
0.001 

 
0.001 

Mothers’ education 
 

0.002 
 

0.003 
  

0.005 
 

0.005 

  
0.001 

 
0.001 

  
0.001 

 
0.001 

Observations (N) 152,486 152,486 152,486 152,486 
 

145,256 145,256 145,256 145,256 

          Mothers’ measures 
         Log average income 0.032 0.019 -0.002 -0.005 

 
0.062 0.049 0.039 0.036 

 
0.002 0.002 0.002 0.002 

 
0.002 0.002 0.002 0.002 

Education 
 

0.016 
 

0.010 
  

0.015 
 

0.012 

  
0.001 

 
0.001 

  
0.001 

 
0.001 

Observations (N) 173,608 173,608 173,608 173,608   165,161 165,161 165,161 165,161 
Notes.  All specifications use the average of sons’ or daughters’ log income as the dependent variable and 
include birth-year dummies of included parents and offspring as controls. The noisy measures of status for 
parents included in each model are:  [1], [5] income; [2], [6] income and education; [3], [7] income and 
occupation; [4], [8] income, education and occupation. Because the occupation measure is 270 unique 
occupation categories, the OLS coefficients and standard errors for occupations are omitted from the table. 
Standard errors are clustered by family to account for within-family correlation. 
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Table B9:  LW Estimates from Extensions with Mothers’ Measures of Status,  
for All Parent-Child Samples 

  Sons   Daughters 
  [1] [2] [3] [4]   [5] [6] [7] [8] 

          Fathers 0.231 0.231 0.260 0.260 
 

0.153 0.164 0.190 0.194 

 
0.004 0.004 0.004 0.004 

 
0.004 0.004 0.005 0.005 

Observations (N) 167,552 167,552 167,552 167,552 
 

159,172 159,172 159,172 159,172 

Mothers 0.032 0.098 0.246 0.263 
 

0.062 0.049 0.039 0.036 

 
0.003 0.007 0.012 0.012 

 
0.003 0.004 0.006 0.007 

Observations (N) 173,608 173,608 173,608 173,608 
 

165,161 165,161 165,161 165,161 
Notes.  All specifications use the average of sons’ or daughters’ log income as the dependent variable and 
include birth-year dummies of included parents and offspring as controls. The noisy measures of status for 
parents included in each model are:  [1], [5] income; [2], [6] income and education; [3], [7] income and 
occupation; [4], [8] income, education and occupation. Because the occupation measure is 270 unique 
occupation categories, the OLS coefficients and standard errors for occupations are omitted from the table. 
Standard errors are computed using a block bootstrap to account for within-family correlation (100 
repetitions).  
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Chapter 3

Understanding and Evaluating SAS

®
EVAAS

®

Models for Measuring Teacher E↵ectiveness

1

3.1 Introduction

A large literature examines many of the statistical methods that states or districts are using to esti-

mate teacher e↵ectiveness based on their students’ test scores. However, one of the methodological

approaches that has been adopted by several states and districts—the SAS® EVAAS® model—has

experienced relatively limited exposure in these studies, in large part due to the proprietary nature

of the analysis. Still, the EVAAS estimates have been incorporated into formal teacher evalua-

tion programs used for accountability, including high stakes policies such as tenure, dismissal, or

incentive pay. With high stakes programs such as these relying on estimated e↵ectiveness, it is

important to understand the strengths and limitations of the underlying methods.

The prevalence of such policies has grown in recent years, but the SAS EVAAS approach

itself has a much longer history. The current name, EVAAS, stands for Education Value-Added

Assessment System, which is a variant on the earlier and perhaps more familiar name Tennessee

Value-Added Assessment System (TVAAS), as Tennessee was where it was developed and used

since the early 1990’s.2 In addition to the name change, documentation of the EVAAS methods

has evolved over the years but the details that allow researchers to easily replicate the approach

remain somewhat elusive. The nature of the documentation combined with proprietary programs

and data likely impede the implementation of EVAAS in many evaluation studies (Kupermintz,

2003; Amrein-Beardsley, 2008).

The EVAAS methods include two options for estimating teacher e↵ectiveness; the multivariate

response model (MRM) and the univariate response model (URM). The MRM, also referred to

as the “layered” teacher model, involves joint modeling of scores from multiple tested subjects for

multiple grades and cohorts in a 5-year period. Jointly modeling the test scores aims to improve

1 This chapter is coathored with Cassandra Guarino and Je↵rey Wooldridge.
2 The name is often modified in a similar fashion in states which adopt the EVAAS methods, such as “PVAAS” for
Pennsylvania (e.g., www.portal.state.pa.us, accessed 1/12/2015).
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e�ciency, and using the complete set of scores available for a student attempts to account for

any other student characteristics that might a↵ect achievement. This model is generally limited

to within-district purposes due to the large computational burden, and is sometimes not feasible

if data requirements cannot be met. Hence, the URM was developed for these situations. The

URM focuses on a single subject, and thus is less intensive computationally and more flexible with

respect to data requirements. The method involves the computation of a single composite score for

each student based on their lagged scores in the same subject as well as others, and then using this

composite score as the only regressor in empirical Bayes’ estimation of the teacher e↵ects.

A number of studies have addressed signature features of the MRM, such as the omission of

student covariates or joint modeling of subjects, typically focusing on a comparison to a generalized

or modified version of the model (e.g., Ballou, Sanders, & Wright, 2004; McCa↵rey et al., 2004;

Lockwood et al., 2007). The URM has received less attention, with the exception of a recent report

by Rose, Henry, & Lauen (2012) that studies the performance of nine estimators, one of which is

the URM, in simulations and with administrative data. They find that under random assignment of

students to teachers, a three-level hierarchical linear model (HLM) and the URM outperform several

other popular estimation approaches and that under certain nonrandom assignment scenarios, the

HLM approach outperforms the URM by a fair margin.

Our paper also focuses primarily on the URM and we include both simulations and the analysis

of actual data. We build on the work of Rose et al. (2012), although our simulations are designed

somewhat di↵erently, and our results diverge from theirs. While we confirm that random e↵ects

approaches such as HLM are best under random assignment (a result we have found in prior work—

see Guarino, Reckase, and Wooldridge 2015), we find that under the type of nonrandom assignment

that we simulate, approaches that assume fixed rather than random teacher e↵ects are better suited

to capturing true teacher e↵ects than the URM. The URM assumes random teacher e↵ects and is

thus inconsistent if teacher assignment is related to students’ prior test scores. In contrast, OLS

estimation of the regression of student achievement on teacher fixed e↵ects and control variables

including lagged student achievement scores is consistent even when nonrandom assignment based

on lagged achievement generates correlation between the teacher dummy variables and the control

variables.
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OLS, however, assumes fixed teacher e↵ects and is still consistent under this type of teacher

assignment. In other nonrandom assignment scenarios in which both the URM and OLS are

inconsistent, OLS performs at least as well as the URM.

Our paper further contributes to the literature by drawing key theoretical connections between

the URM and other types of estimation approaches. In particular, we show areas of overlap between

the URM and OLS or empirical Bayes’ estimation of typical value-added models, and we also

show how and where the various estimation approaches di↵er. Through the theoretical discussion,

simulations, and empirical work, we show that standard linear regression techniques perform very

similarly—and in certain cases better—under plausible data scenarios. In addition, our detailed

descriptions of the URM help make it more readily available for other researchers to implement

and include in future evaluation studies.

We begin by describing common value-added model (VAM) approaches as well as the EVAAS

approaches in Section 2, providing details on both the MRM and URM, and then we review relevant

literature in Section 3. In Section 4, we discuss our simulation design and present results from the

simulation. Section 5 describes our empirical analysis and results using administrative data. We

summarize and conclude in Section 6.

3.2 Value-Added Models

Teacher value-added models (VAMs) are generally derived from or motivated by a so-called “educa-

tion production function” (Hanushek, 1979; Todd & Wolpin, 2003; Guarino, Reckase & Wooldridge,

2015). In its most general formulation, academic achievement at any point in time is written as a

function of all current and past child, family, and school inputs:

A

it

= f(E
it

, ..., E

i0, Xit

, ..., X

i0, ci, uit) (1)

where A

it

is current achievement at time t for student i, E

it

,...,E
i0 represent current and past

education (school) inputs, X
it

,...,X
i0 represent current and past student or parent inputs, c

i

is un-

observed student heterogeneity (e.g., motivation or some form of time-invariant innate ability), and

u

it

is an idiosyncratic error term. Given that we cannot measure each of these elements during each
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time period—at least not in available data—researchers typically adopt a more parsimonious model

with a simple (estimable) functional form. For example, with a set of simplifying assumptions, the

education production function is reduced to an estimating equation such as:

A

it

= ⌧

t

+ �A

it�1 +X

it

� + E

it

� + c

i

+ e

it

(2)

where ⌧

t

allows for a di↵erent intercept in each time period to capture time (e.g., year) e↵ects, A
it

is the current test score at time t, A
it�1 is the lagged test score from the previous year, E

it

is a

vector of observed education inputs at time t (e.g., teacher assignment indicators), and X

it

is a

vector of observed individual student characteristics.3

The simplifying assumptions that facilitate the transition from equation (1) to equation (2)

include linearity and geometric decay in the parameters; see Guarino, Reckase, & Wooldridge (2015)

for a detailed discussion and derivations. We cannot measure the individual student heterogeneity,

c

i

, so this is generally left in the error term in commonly used approaches. While there are

methods to eliminate this term in panel data settings (e.g., adding student indicators, or fixed

e↵ects estimation), we seldom compute teacher value-added measures with multiple years of data

on the same students, which would be required to identify these individual student e↵ects.4 Rather,

teacher e↵ects are typically obtained using up to a few years of data on teachers (so multiple cohorts

of di↵erent students).

Even with this relatively parsimonious model, administrative data may be missing test scores

or characteristics for some students, or some students may not be linked to teachers. In traditional

regression analysis such as OLS estimation, student observations missing these data are omitted

from the estimation sample, but consistent estimates can still be obtained. For consistency, whether

data (on the outcome or the regressors) are observed or missing for a student can be related to

the observed covariates that we control for (e.g., the lagged score, A
it�1, or student characteristics,

X

it

) but not unobserved elements of the error term (see Wooldridge, 2010, Ch 19). This is similar

to the “missing at random” (MAR) assumption EVAAS methods are said to rely on (Wright et

3 In the empirical work presented later, the set of student characteristics includes race/ethnicity, gender, free- and
reduced-price lunch eligibility, limited English proficiency, disability, and days absent.

4 Such approaches actually performed quite poorly in the simulations conducted in Guarino, Reckase, & Wooldridge
(2015). See the paper for details on the reasons for this for each grouping/assignment scenario.
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al., 2010), with the distinction that MAR generally assumes that the covariates related to whether

data are missing are always observed themselves (Wooldridge, 2010, Ch. 19).

3.2.1 Common Methods for Estimating Teacher E↵ects

Given that the student heterogeneity term in equation (2) is generally ignored when estimating

value-added models, the estimating equation for a given subject s can be written as:

A

ist

= ⌧

t

+ �A

ist�1 +X

it

� + E

ist

� + v

ist

(3)

where v

ist

= c

i

+ e

ist

is the composite error term. OLS on this equation will estimate teacher

e↵ects, �̂. We call this estimator DOLS , to reflect the OLS estimation of the teacher e↵ects and

acknowledge the dynamic (D) specification containing the lag score on the right-hand side. This can

easily be extended to incorporate multiple lagged scores in multiple subjects. With this approach,

to consistently estimate the vector �, we need teacher assignment (E
ist

) to be uncorrelated with

the student heterogeneity term, c
i

. This means, for example, that principals cannot assign students

with higher (or lower) unobserved ability to more e↵ective teachers.

The next two methods omit the teacher assignment dummies (E
ist

); we then obtain estimates of

teacher e↵ectiveness from the student-level residuals. One approach is to estimate the abbreviated

version (omitting E

ist

) of equation (3) via OLS, and then calculate the teacher e↵ects as the

within-teacher averages of the student-level OLS residuals. We refer to this as the average residual

(AR) method. Again, consistency requires that teacher assignment is not be based on the student

heterogeneity. However, also note that any correlation between the lagged test score A
ist�1 and the

teacher assignment is not being partialled out of the teacher e↵ects, so assignment based on prior

scores also becomes problematic.

The last approach, which we will abbreviate to EB , involves empirical Bayes’ estimation of

this more parsimonious equation, obtaining the teacher e↵ects from the shrunken residuals. The

empirical Bayes’ method is essentially a GLS or random e↵ects approach, where the teacher e↵ect

estimates are e↵ectively “shrunken” towards the mean teacher e↵ect (Guarino et al., 2015).5 The

5 As described in Guarino et al. (2015), this method involves two stages, but is easily implemented in Stata with
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so-called shrinkage takes teachers’ class sizes into account, and thus aims to reduce the noisiness

of the estimates from a small number of observations contributing to the estimation of the teacher

e↵ects. Like the AR method, consistent estimation relies on teacher assignment being uncorre-

lated with student heterogeneity and student-level covariates contained in the model (including

prior achievement). The latter is also relevant to the EVAAS URM approach we focus on in this

paper.

3.2.2 EVAAS Methods

3.2.2.1 EVAAS Univariate Response Model (URM)

Similar to the OLS and EB approaches discussed above, the URM estimates teacher e↵ectiveness

for a single grade and subject (e.g., 5th grade math). There are two key di↵erences between

the common approaches just described and the URM. First, the URM uses prior test scores from

multiple years and subjects in lieu of student characteristics to account for past student achievement

or other student characteristics a↵ecting current achievement. Second, the URM allows for students

to be missing some of these prior test scores. The URM’s strategy for allowing incomplete test score

data generates the complex nature of the approach, but the complicated steps do not necessarily

develop a more robust estimator.

For instance, the consistency of the URM estimates relies on very similar assumptions regarding

the nature of these missing data to the assumptions needed for OLS estimates to be consistent. In

fact, when there are no missing data, there is a direct relationship between the URM and simpler

standard linear regression techniques. Consider the simplest case where students have no missing

test score data, students are randomly assigned to teachers, teachers have identical class sizes, and

estimation is based on one cohort of students for teachers. Then the teacher e↵ect estimates from

the URM are identical (up to a constant) to OLS estimates. When students are nonrandomly

assigned to teachers based on the included prior test scores, the estimates diverge. OLS partials

out this assignment mechanism and consistently estimates the teacher e↵ects while the URM does

the “xtmixed” command specifying a random component at the teacher level, and then post-estimation using the
“predict , re↵ects” command to get the teacher random e↵ects. The first stage estimates the normal maximum
likelihood (with the random teacher e↵ects in the error term) and the second stage applies the shrinkage factor to
these teacher e↵ects.
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not partial out assignment and consequently produces biased estimates of the teacher e↵ects. One

goal of this paper is to derive and demonstrate these relationships.

In the discussion that follows, we first provide a detailed explanation of the URM approach,

expanding on the description in Wright et al. (2010), and then illustrate how the URM compares

with standard linear regression methods.

The URM estimating equation for subject s is:

A

ist

= ⌧ + Â

ist

+ � + ⇣

ist

(4)

where, compared to equation (3), the intercept ⌧ does not have a time subscript, the lag score

and student covariates have been replaced by a “composite score” Â

ist

, and now the error term

⇣

ist

includes estimation error from using estimated components in Â

ist

. This equation is estimated

using empirical Bayes’ to obtain the teacher e↵ects �. The � contains the random e↵ect for the

student’s teacher. Although this appears relatively simple, the composite score Â

ist

is the result of

a multi-step process using all available lagged test scores (Wright et al., 2010), so the model is not

as parsimonious as it appears. The composite score is essentially a di↵erent approach to a control,

using multiple lagged test scores to predict a student’s current score, and this prediction serves

as a sort of su�cient statistic for the student’s past inputs. The idea is explained by Sanders et

al. (2009), “by including all of a student’s testing history, each student serves as his or her own

control.”

The URM involves multiple steps to compute the composite score, with each step performed

separately for every year of data (i.e., student cohort) that contributes to the estimated teacher

e↵ects. Thus, to estimate teacher e↵ectiveness during a three-year period (i.e., based on three

cohorts of students), each of the initial steps—up to and including computing the composite score—

is done separately for the first, second, and third years of data. Then the final step—empirical

Bayes’ estimation of the teacher e↵ects—is performed pooling the three years of data.

In computing the composite scores, the URM allows for many prior test scores across di↵erent

subjects and years. For clarity, we focus our discussion on an example where we are using 1-year

and 2-year lagged test scores for both reading (r) and math (m). The URM computes a composite
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score in a specific subject (math shown in the equation below) as a linear combination of demeaned

versions of the lagged test scores:

Â

imt

= µ̂

mt

+ �̂

mt�1Äimt�1 + �̂

mt�2Äimt�2 + �̂

rt�1Äirt�1 + �̂

rt�2Äirt�2. (5)

In this equation, Ä
ist�y

(for the 1-year and 2-year lagged scores in subject s) denotes a “demeaned”

y-year lagged test score in subject s for student i,

Ä

ist�y

= A

ist�y

� µ̂

st�y

(6)

In equations (5) and (6), the estimated means µ̂
st�y

are not the overall means of the test scores.

Rather, each µ̂

st�y

(including y=0 for the current score) is the sum of two components: an average

across teachers of the teacher-level mean score and an adjustment to account for students with

missing test score data. We discuss each of these components in further detail below.

The weights in the composite score equation, �̂
st�y

, are coe�cient estimates that maximize the

correlation between the lagged scores and current score. With no missing data, �̂ is essentially a

vector of OLS coe�cient estimates from the regression of A
imt

on an intercept, A
imt�1, Aimt�2,

A

irt�1, Airt�2, and teacher assignment indicators. So, this particular step would produce coe�cients

on the lags from a DOLS-type equation that includes lagged test scores in multiple subjects, where

teacher assignment is partialled out of the coe�cient estimates.

Rather than use regression, however, the URM takes a di↵erent approach to estimation to allow

for certain patterns of missing data. In general, the URM requires a minimum of three lagged scores

and one of these must be the most recent lag in the same subject as the dependent variable. In our

example, this means students must have records for A
imt�1 and at least two scores out of the set

of {A
imt�2, Airt�1, Airt�2}. The URM uses the EM Algorithm to estimate a variance-covariance

matrix, C, for calculating the coe�cients �̂ (rather than estimating these directly with a regression,

which would omit observations with missing data).6

6 The EM Algorithm is an optimization algorithm that iterates between the E step (expectation) and the M step
(maximization) until the values of all parameters su�ciently converge. The Stata code for estimation as described
here is: mi impute mvn äm0 äm1 äm2 är1 är2, emonly .
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The EM Algorithm estimation step of the URM is done separately for each year of data. It

uses a transformation of the current and lagged test scores where the teacher-level means are

subtracted from each score so that C is a “within-teacher” variance-covariance matrix. We denote

these transformed scores used for the EM Algorithm estimation as:

ä

isy

= A

ist�y

� µ̂

jst�y

(7)

where µ̂

jst�y

is the average of A
ist�y

across the students i assigned to teacher j.

Then the within-teacher variance-covariance matrix obtained via the EM Algorithm, for each

year, is:

C =

2

64
c

äm0äm0 c
äsy äm0

c
äm0äsy C

äsy äsy

3

75 =

2

666666666664

c

äm0äm0 c

äm1äm0 c

äm2äm0 c

är1äm0 c

är2ẍm0

c

äm0äm1 c

äm1äm1 c

äm2äm1 c

är1äm1 c

är2ẍm1

c

äm0äm2 c

äm1äm2 c

äm2äm2 c

är1äm2 c

är2ẍm2

c

äm0är1 c

äm1är1 c

äm2är1 c

är1är1 c

är2ẍr1

c

äm0är2 c

äm1är2 c

äm2är2 c

är1är2 c

är2ẍr2

3

777777777775

(8)

where the first matrix shows subdivided “blocks” of the matrix (to be referenced below), with ä

sy

referencing the vector of lagged test scores in both subjects. The second matrix, with the lines for

the subdivided blocks, is fully expanded to show each element of C; the diagonal elements are the

variance terms and the o↵-diagonal (symmetric) elements are the covariance terms.

The URM uses the elements of C to compute the set of within-teacher coe�cient estimates,

�̂

st�y

, by plugging into the familiar formula:

�

p

= C�1
äsy äsy ,p

c
äsy äm0,p (9)

where p has been added to index each pattern of observed scores. With complete data for all

students, the p index is not needed, and this equation would be equivalent to the OLS estimator

from the regression of ä
m0 on ä

m1, äm2, är1, är2 (or, equivalently, with the original scores, from

the regression of A
mt

on A

mt�1, Amt�2, Art�1, Art�2, and teacher assignment indicators).7 When

7 Another equivalent representation for the case of full data, in the matrix notation often used for the OLS estimator,
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students have incomplete records though, the formula in (9) allows us to separately estimate a

unique vector of coe�cients, �̂
p

, for each pattern of observed scores, using the subset of matrix

C corresponding to the relevant observed scores. So, in our example, given that the first lag of

the math score must be present, we would compute up to four vectors �̂

p

to account for di↵erent

missing scores. We could consider p = 0 for complete records, p = 1 for records missing A

mt�2,

p = 2 for records missing A

rt�1 and p = 3 for records missing A

rt�2. For students with p = 0 the

full matrix is used, while for students with p = 1 (missing A

mt�2) the 3rd row and 3rd column are

dropped.

The EM Algorithm estimation also produces means that contribute to the µ̂
st

in the composite

score equation and the µ̂

st�y

underlying the transformed scores (Ä
ist�y

) in (6). To be clear, in

equations (5) and (6), the estimated mean is µ̂
st�y

= µ̂

mtm

st�y

+ µ̂

EMm

st�y

, which is not the overall mean

of the lagged test score. The first term on the right-hand-side is the mean-of-teacher-means µ̂mtm

st�y

for each y-year lagged score in subject s. In other words, the mean lagged test score is computed

for each teacher and then the average over all teachers is taken.8

The second term on the right-hand-side is produced by the EM Algorithm.9 It is an adjust-

ment to the mean of teacher means to account for missing data—i.e., students with incomplete

records. Since the EM Algorithm estimation step uses demeaned test scores (specifically, the

teacher-demeaned scores ä
st�y

), this term is zero when there is complete data for all students. But

when some students are missing test scores (and thus not contributing to the mean-of-teacher-means

for the missing score), the estimated µ̂

mtm

st�y

may be biased and the URM includes the mean provided

in the EM Algorithm output, µ̂EMm

st�y

, to reduce potential bias from missing lagged scores.

The transformation in (6) that subtracts these two mean components is similar to removing

year e↵ects, which would be done by instead subtracting the overall mean (or by including year

dummies in a regression). Subtracting the mean-of-teacher-means (µ̂mtm

st�y

) instead ensures that the

“average” teacher has a teacher e↵ect of zero and the EM Algorithm component (µ̂EMm

st�y

) corrects

is � = (ä0
syäsy)

�1ä0
syäm0, where äsy contains äm1, äm2, är1, är2, or � = (X 0X)�1X 0Amt where X includes Amt�1,

Amt�2, Art�1, Art�2, an intercept and teacher assignment indicators.
8 To the best of our knowledge–based on the description in Wright et al. (2010)—this average per teacher is across all
of the teacher’s students, even if the teacher teaches multiple classes. Regardless, this distinction is not important
for our theoretical or empirical results and conclusions.

9 The EM Algorithm estimates both the variance-covariance matrix discussed earlier as well as the means, µ̂EMm
st�y ,

used here.
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for potential bias in the mean-of-teacher-means from students missing test scores (Wright et al.,

2010).

Finally, we compute the so-called composite score, Â
imt

, according to equation (5). The com-

posite score is the sum of the “adjusted mean” of the current math score (µ̂
st

= µ̂

mtm

st

+ µ̂

EMm

st

)

plus a weighted average of transformed lagged scores Ä
st�y

, with the weights being the coe�cient

estimates, �̂
p

. The composite score is a prediction of the current score (A
imt

) based on the student’s

past test scores and assuming the student has the “average” teacher in the current year (Wright et

al., 2010).

After the composite scores are obtained, the final step in computing the teacher e↵ects is the

empirical Bayes’ estimation of equation (4)—as mentioned above.

Note that this discussion has focused on estimating teacher e↵ects for math teachers. If one

wished to estimate teacher e↵ectiveness in, say, reading, then the outcome variable would be the

current reading score, and the composite score would constitute a predicted reading score. While

the same lagged scores could be used to obtain the composite score, the estimated elements (i.e., the

µ̂

mtm

st

, µ̂EMm

st

, and �̂

st

) would be di↵erent because they would be based on predicting the current

reading score, using the sample of students satisfying the corresponding data requirements. So,

in this respect, the URM is similar to the common VAM approaches that estimate teacher e↵ects

separately by subject (and grade).

3.2.2.1.1 Relating the EVAAS URM to Other Approaches

Unlike traditional regression-based VAM methods, the EVAAS approach handles at least some

missing data patterns. It also uses empirical Bayes’ shrinkage in the final step in order to ac-

count for teachers having di↵erent numbers of students. But is EVAAS very di↵erent from the

standard regression estimators? In practice, di↵erences in the estimated teacher VAMs may be

minor. In fact, in the simplest scenario the two approaches yield numerically identical teacher

e↵ect estimates.

In the simplest setting, there are no missing data and only one year of data is used. Either

shrinkage is not used or the number of students per teacher is identical, in which case shrinkage
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simply multiplies all of the teacher VAMs by the same constant. With a single year of data, a

simple extension of DOLS to allow other lagged test scores comes from OLS estimation of the

equation

A

i

= X

i

� + E

i

� + v

i

, (10)

whereX
i

includes all lagged test scores in various subjects and E

i

is the vector of teacher assignment

dummies. For simplicity, we drop the time subscripts indicating subject and year. Technically, the

OLS estimates from (10) are not the DOLS estimates described earlier because (10) includes other

lagged test scores. But adding additional lags of the same and other subject test scores is a small

modification, and produces no extra conceptual or computational di�culties. We could legitimately

refer to the OLS estimates from (10), as the motivation is the same: control for factors that predict

current test scores and may be correlated with teacher assignment.

From the Frisch-Waugh partialling-out theorem, the OLS coe�cients on the lagged test scores,

�̂, can be obtained in three steps:

(i) Regress A

i

on E

i

and obtain the residuals, Ä
i

. Now, Ä
i

= A

i

� E

i

⌘̂ where, because the

E

i

are teacher assignment dummies, ⌘̂
j

is the average of the A

i

(current test score) for teacher

j. Therefore, Ä
i

is student i’s test score deviated from the average test score for the student’s

teacher.

(ii) Regress each lagged test score in X

i

on E

i

and collect the vectors of residuals, Ẍ
i

. Just

as with Ä

i

, each element of Ẍ
i

is one of student i’s lagged test scores deviated from the mean for

student i’s teacher.

(iii) Run the regression

Ä

i

on Ẍ

i

and obtain �̂.

In other words, when the regression is restricted to a single year, and there are no missing data,
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the OLS and URM estimates of � are identical; the URM simply performs the partialling out of

teacher assignment in a separate step, rather than using the full regression in (10).

As described earlier, the next step in the URM is to construct the composite score in equation

(5). But the composite score Â

i

can be written as

Â

i

= X

i

�̂ +  ̂, (11)

where  ̂ depends on �̂ and the overall means of the test scores. Now, the equation used to obtain

the teacher e↵ects is

A

i

= Â

i

+ E

i

� + error

i

, (12)

where error

i

includes estimation error because Â

i

depends on �̂. The URM approach applies

empirical Bayes’ to (12), but that is simply to shrink the estimates of � towards the average

teacher e↵ect. Without shrinkage, or with the same number of students per teacher, we just apply

OLS to (12). Again, without missing data, we know the result by the algebra of OLS: ̂ = 1 and

�̂ will be identical to what is obtained from (10). The argument is simple. We know the DOLS

estimates minimize the sum of squared residuals, and yet we know the �̂ obtained from the URM

is identical to the �̂ from DOLS. So one cannot do any better by choosing ̂ di↵erent from unity

and �̂ as the DOLS coe�cients. The additive constant in (11) changes nothing because the DOLS

regression, with a full set of teacher dummies, e↵ectively estimates an intercept. However, when

the coe�cient on the composite score is estimated by EB, the coe�cient is not unity, which breaks

the equivalence. In fact, this seems to cause bias. So if (12) were estimated by OLS then the URM

and OLS estimates would be the same.

So how does the EVAAS URM generally di↵er from OLS? Even if we assume no missing data

and ignore shrinkage in the final step of EVAAS, there is a di↵erence with more than one time

period. With OLS estimation, typically one would augment (10) by adding year dummy variables,

and then the partialling out in steps (i) and (ii) are also done via pooled regression on the year

dummies and teacher e↵ects. By contrast, EVAAS does a teacher-year demeaning, which is the
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same as allowing a full set of interactive e↵ects between the year dummies and teacher dummies.

However, after obtaining the composite test scores, EVAAS then pools the data (say, over three

years) to obtain a single teacher e↵ect for each teacher. The resulting URM estimates cannot be

characterized as coming from an OLS regression, but the di↵erence may not be great. If one thought

that teacher e↵ects vary over time, then one might estimate an equation by OLS separately for

every year. This would precisely achieve the partialling out used by the URM. Then, given the �̂

t

,

one must decide how to combine these into single teacher e↵ect estimates. The URM has one way

to do that, but there are others, such as using a weighted average with weights chosen to reflect

the relative precision of the �̂

t

across di↵erent years.

Whether allowing for teacher-year specific e↵ects is important is mainly an empirical issue, but

it would not be surprising to find that adding year dummies to the OLS regression, and imposing

constant teacher e↵ects across time, generally produces similar results. Often OLS will provide good

estimates of average partial e↵ects when interaction terms are present but omitted from regression

analyses. See, for example, Wooldridge (2010, Chapter 6).

3.2.2.2 EVAAS Multivariate Response Model (MRM)

The MRM is a multivariate, longitudinal, linear mixed model where the full set of observed scores—

meaning all subjects and all years—is fitted simultaneously. Hence, this model simultaneously

estimates teacher e↵ects for these separate subject/grade/years, whereas the URM and other VAMs

discussed earlier estimate teacher e↵ects for a single subject/grade (possibly pooling over multiple

years). With the joint modeling of scores across various grades and years, the MRM requires

vertically scaled tests, or conversion of scale scores to NCEs (Normal curve equivalents) (Wright

et al., 2010). To show this, we begin with a set of equations that illustrate the need for the

appropriately scaled test scores as well as the description “layered teacher model”.

As portrayed in Ballou, Sanders, & Wright (2004), a student’s set of, say, math scores, must
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satisfy the following equations:

y

3
t

= b

3
t

+ u

3
t

+ e

3
t

y

4
t+1 = b

4
t+1 + u

3
t

+ u

4
t+1 + e

4
t+1

y

5
t+2 = b

5
t+2 + u

3
t

+ u

4
t+1 + u

5
t+2 + e

5
t+2

(13)

where y

g

t

is the test score (gain) for grade g in year t and b

g

t

is the district-level average test score

for grade g in year t. u

g

t

is the grade g teacher’s input to the student’s test score in year t and e

g

t

is a student-level idiosyncratic error term for the grade g score in year t.

The year subscript on the teacher e↵ects show that teacher e↵ects vary over the years, so this

approach is estimating a the e↵ect of each teacher in each year (i.e., teacher/year e↵ects). (More

precisely, when we consider the full model with multiple subjects, the approach actually estimates

teacher/year/subject e↵ects). However, for a given student, the e↵ects of past teachers do not

change over time—a student’s 3rd grade teacher’s contribution to their 4th grade score is the same

as that same teacher’s contribution was to the student’s 3rd grade score. In other words, a teacher’s

e↵ect on a student’s achievement does not diminish as the student progresses through grades. This

highlights the importance of using vertically scaled test scores. The meaning of the teacher e↵ect

(resulting in test score gain/loss) must be the same in any grade as well as throughout the test

score distribution. So moving down the set of equations in (10) from the first line to the second,

an additional “layer” (teacher e↵ect from the next teacher and next idiosyncratic shock) is added

in each year, motivating the nickname “layered teacher model” commonly used to describe the

MRM.10

The more technical representation of the MRM begins with presenting the linear mixed model

10 Another representation of the MRM, as given in Wright et al. (2010), is the algebraic equation, yijkl = µjkl +

(
P

k⇤k

Tijk⇤l⇤P
t=1

!ijk⇤l⇤t ⇥ ⌧ijk⇤l⇤t) + ✏ijkl, where the the inner summation adds across all teachers the student has in a

given subject/grade/year with the !ijk⇤l⇤t term capturing the fraction of time spent with a particular teacher, and
the outer summation is where the “layered” aspect comes in, adding the cumulative teacher e↵ects over previous
grades and years in the same subject. Note that this representation highlights the ability to accommodate team-
teaching or students switching teachers during the year; this is possible with other approaches as well, but is rarely
done in practice.
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(with notation similar to earlier sections of our paper):

A = X� +E� + ✏. (14)

NowA contains the set of all test scores (gain scores), meaning all subjects tested over all grades and

years for all students during the period being studied (up to 5 years). The matrix X is comprised

of subject/grade/year indicators, and � is the vector of coe�cients that are treated as fixed. The E

matrix contains teacher/grade/subject/year assignment indicators, and the teacher random e↵ects

are contained in �. The joint distribution of � and ✏ is such that E(�) = E(✏) = 0 and the

variance-covariance matrix is block diagonal with V ar(�) = G and V ar(✏) = R and Cov(�, ✏) = 0.

Estimates of � and � are obtained as solutions to Henderson’s mixed model equations (see Wright

et al. (2010) for explicit equations) so that the resulting estimator for the teacher e↵ects is:

�

⇤= GE0(EGE0 +R)�1(A�X�

⇤
) (15)

where �

⇤ is the GLS estimator for A on X (so A�X�

⇤ is the vector of GLS residuals) and

GE0(EGE0 +R)�1 is the shrinkage factor.

Although the shrinkage factor may look complicated in matrix form, the idea is the same as

that for the shrinkage used in the EB and URM approaches.11 The greater the student-level noise

(i.e., the larger the variances along the diagonal elements of var(✏) = R), the more the estimated

residuals (A�X�

⇤) are shrunk towards the mean (zero).12 13 Since the district mean (gain) scores

are estimated in �, the teacher e↵ects are deviations from the district mean, and gains attributed

11 For basic intuition, consider Ballou, Sanders, & Wright’s (2004) example with the simple case where � contains

one teacher e↵ect so the shrinkage factor reduces to the reliability ratio, var(�)
var(�)+[var(✏)/N ] .

12 R captures the within-student covariances in student test score residuals, ✏. Sorting the scores, A, by student,
R is block diagonal with a block Ri for each student, and all other elements zero reflecting the imposed zero
correlation between students. To form this matrix, consider an overall covariance matrix, R0, that contains a row
and column for each subject/grade, so covariances among subjects and grades are assumed to be the same for all
years (cohorts), but is otherwise unrestricted. Similar to the URM’s accommodation of incomplete records, in the
MRM each student has a block Ri composed of the subset of elements in the overall covariance matrix, R0, that
correspond to the subject/grades for which the student has test scores, regardless of whether the student is linked
to a teacher for these scores. Hence, the R matrix allows the MRM to incorporate information from all available
scores from each student.

13 G captures the variance of teacher e↵ects, and is block diagonal with a block for each subject/grade/year. The
(block) diagonal form reflects the assumption that teacher e↵ects are not correlated across subjects or years, allowing
teachers’ e↵ectiveness to vary from year to year and subject to subject. Each block has the form �2

jklI where �2
jkl

is the teacher variance for the jth subject in the kth grade in the lth year, allowing the variance of teacher e↵ects
to vary across subjects, grades, and years.
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to teachers are estimated by adding the teacher e↵ect to the district mean (gain).

As noted in Wright et al. (2010), when G and R are known, �⇤ is the best linear unbiased

predictor (BLUP) of �, �⇤ is the best linear unbiased estimator (BLUE) of �, and the solution

is equivalent to GLS. If � and ✏ are Normal, then the solution is MLE. Generally G and R are

not known so estimates are used instead; the solution approaches MLE as the estimated G and R

approach their true population values.

This approach is computationally burdensome—and hence generally limited to district-level

analysis rather than state-level—so we do not estimate the MRM in this paper. Further, many

characteristics of the approach, such as the joint modeling of scores from di↵erent subjects, or the

accommodation of missing data, have been evaluated in other studies (e.g., Lockwood et al., 2007;

McCa↵rey et al., 2011).

3.3 Prior Literature Evaluating EVAAS Methods

While the research literature on estimating teacher e↵ectiveness has been growing rapidly in recent

years, only a handful of these studies have ever implemented either of the EVAAS teacher models

in simulations or using administrative data (Lockwood et al., 2003; Ballou, Sanders, & Wright,

2004; McCa↵rey et al., 2004; Lockwood et al., 2007; McCa↵rey et al., 2008; Rose, Henry, & Lauen,

2012). The majority of these studies focus on a specific assumption or characteristic of the EVAAS

MRM, such as the complete persistence of teacher e↵ects, and only mention in passing that this

is part of the EVAAS method. To our knowledge, Rose, Henry, & Lauen (2012) is the only other

study to evaluate the URM, among several other estimators they consider. We focus specifically

on the URM, providing a more detailed discussion of the method and also how the method relates

to other (simpler) approaches. In particular, we show that standard linear regression using OLS is

a simpler—and in some cases more robust—alternative to this EVAAS method.

There are several papers made available by the SAS Institute (SAS White Papers) that discuss

the theoretical advantages of the EVAAS methods, and some also evaluate the performance of

the EVAAS methods (e.g., Sanders, 2006; Wright, Sanders, & Rivers, 2006; Wright, 2010). These

papers tend to focus on the scaling of the test scores, measurement error in the test scores, and
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missing data.

The test-score scaling issue stems from the fact that some approaches—such as the MRM and

other gain-score VAMs—require test scores to be vertically scaled, not just from grade-to-grade,

but in a way that leaves the meaning of a 1-unit change in score the same at any point in the

distribution. The URM and other lag-score VAMs, however, do not require such scaling, and, for

the approaches that do, the entire issue can be circumvented by converting the scores to normal

curve equivalents (NCEs) (Wright et al., 2010).

The second concern is that the measurement error in the lagged test scores will cause bias in

the estimates of teacher e↵ects, lending also to instability in the estimates. In a paper aimed at

evaluating a standardized gain model and student growth percentile model, the URM and MRM

are also estimated for comparison, and their estimated teacher e↵ects are shown to have smaller

correlations with the percent of students in a teacher’s class who are eligible for free- and reduced-

price lunches (Wright, 2010). Hence, the proposed solution for measurement error bias is to include

multiple lag scores (at least three) to mitigate the attenuation bias, as the measurement error

tends to average out (e.g., Wright, 2010). However, this can worsen missing data issues in some

approaches, lending advantage to the EVAAS MRM, as it uses all possible test scores (Wright,

2010).

This leads to the last of the major concerns—students with incomplete test score records. Both

the MRM and URM incorporate ways to mitigate missing-data issues, with the MRM including

students with any observed test scores, while the URM requires at least three prior scores (Wright

et al., 2010).14 Other noted features include the use of shrinkage estimation (empirical Bayes’)

(Sanders, 2006) and the MRMs layering of all past, present and “future” test scores (Wright et al.,

2010), both of which are thought to improve stability of teacher e↵ect estimates.

In one of the early papers to implement EVAAS, McCa↵rey et al. (2004) propose a “general

model” which encompasses several other VAMs as a special case. Their approach for the general

model is similar to the EVAASMRM, di↵ering in that it allows for the inclusion of student covariates

14 The distinction is also made that the EVAAS methods require data to be “missing at random” (MAR) as opposed
to other methods, which require the data to be “missing completely at random” (Wright, 2010; Wright et al., 2010).
However, as noted above, the consistency of an OLS approach such as DOLS only relies something similar to MAR.
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and does not impose complete persistence of teacher e↵ects. In a theoretical discussion, which is

supported by their simulation and empirical evidence, they find that omitting student covariates

results in biased teacher e↵ect estimates when the distribution of covariates di↵er by school (and

school e↵ects are omitted), but that in other cases—when the distribution of covariates di↵ers, say,

by classroom—the use of within-student correlation mitigates this bias. Another feature of the

EVAAS MRM is the assumed complete persistence of teacher e↵ects (e.g., the contribution of the

3rd grade teacher persists undiminished for the scores in all subsequent grades). Given that this

assumption is not theoretically or empirically justified, it is perhaps unsurprising that McCa↵rey

et al. (2004) find no evidence to support this, estimating the persistence parameters to be 0.1–0.3

(none of which are significantly di↵erent from zero). However, with the small simulation and limited

administrative data (678 students from 5 elementary schools in a single suburban district, with free-

and reduced-price lunch eligibility as the only covariate), even the authors admit the evidence on

both the omission of student covariates as well as persistence is insu�cient and warrants future

research.

More recently, Lockwood et al., (2007) develop a Bayesian framework which is better suited

to scale to large datasets than the maximum likelihood methods used by McCa↵rey et al. (2004).

Further, they expand the analysis by now jointly modeling reading and math scores, and explore

the implications of using di↵erent approaches for addressing missing data. They use five years

of data on one cohort of students from a large urban district, as well as simulations, and, again,

find persistence estimates are substantially less than 1. They conclude that joint versus marginal

modeling does not a↵ect teacher e↵ects significantly (rank correlations between teacher e↵ects from

joint and marginal models are greater than 0.99 for the variable persistence model and greater than

0.97 for the complete persistence model). They also note that their results are robust to which

method is chosen to handle missing data. To further examine the implications of missing data,

McCa↵rey & Lockwood (2011) extend the approach to explicitly allow for data to be missing not

at random, but find little impact on the estimated teacher e↵ects, suggesting that violations of the

missing at random assumption (MAR) may not be problematic.

Also using their proposed model (a generalization of the MRM), Lockwood & McCa↵rey (2007)

use simulations to explore how the potential bias from omitting student covariates changes, depend-
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ing on the assumptions one is willing to make about the way in which the student heterogeneity

relates to the measures, and whether a random e↵ects or fixed e↵ects approach is taken. They

argue that even when omitted student heterogeneity is related to other variables, the GLS estima-

tor arising from the mixed model approach (similar to the MRM) which jointly models test scores

from di↵erent subjects has additional information available on the heterogeneity, and this increases

e�ciency and also reduces the bias (relative to modeling a single subject).15

Ballou, Sanders, & Wright (2004) also focus on the issue of omitting student covariates, but

do so specifically with the EVAAS MRM.16 The authors obtain the usual EVAAS estimates of the

teacher e↵ects as well as estimates from a modified EVAAS approach that controls for student’s FRL

eligibility, non-white race, gender, and interactions between these covariates. This modification is

implemented in a first stage to obtain quasi-residuals from estimation using the gain score as the

dependent variable and student characteristics and teacher-by-year indicators as covariates. Then

they use these quasi-residuals in the usual EVAAS estimation. They find that the estimated teacher

e↵ects do not di↵er substantially, with high rank correlations between estimates and also similar

numbers of teacher classified as “excellent”. To explore whether this result is due to the history

of prior scores accounting for student covariates, they also compare the R matrix for the original

and modified EVAAS approaches, finding the elements to be approximately 18% smaller in the

latter. They conclude that including prior test scores does control for “much” of the information

contained in student-level covariates. While this is suggestive evidence in support of omitting

student covariates, this and earlier evidence is limited to the MRM, as none of the studies mentioned

here have included the URM.

A recent paper by Rose, Henry, & Lauen (2012), however, not only provides comparisons

using the EVAAS URM, but actually provides these comparisons with a broader set of (nine)

value-added approaches. The paper discusses assumptions and implications of violations, and also

provides simulation and statewide empirical evidence using three years of administrative data from

15 For this paper, they use maximum likelihood methods for the mixed models, but also note that separate simulations
using a Bayesian approach does NOT??? change the results substantively.

16 Interestingly, the authors discuss the omission of student covariates as a virtue of the EVAAS MRM, in that this
reduces data requirements. Indeed these data (such as FRL eligibility, gender, race, absences, etc.) can be missing
for some students, but these data are generally available, and a similar argument could be made for the many
VAMs that utilize only one or two prior test scores, as using a complete history of test scores can be quite onerous
when using large administrative datasets. For example, Lockwood et al. (2007) note that only 20% of their sample
of students had a complete set of reading and math scores over the 5 years (grades) used.
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North Carolina. The estimation approaches include the URM, three HLM approaches which also

treat the teacher e↵ects as random, two which take the within-teacher average of the residuals, and

three which treat the teacher e↵ects as fixed. The specifications vary with respect to the number of

(and subject of) lagged scores, school e↵ects, and time-constant student covariates. They find high

agreement among most of the approaches, but overall recommend the URM, the two approaches

that treat the teacher e↵ects as random and account for a school random e↵ect, as well as a student

fixed e↵ects approach.17

3.4 Simulation

3.4.1 Simulation Design

We conduct simulations to assess the performance of the DOLS, EB, AR, and URM estimators

under various student grouping and assignment scenarios. This allows us to know the “true” teacher

e↵ect (which we generate), and then evaluate the ability of each of the estimators to capture this

e↵ect—something not possible with administrative data. We generate data for 3 cohorts of 800

students each, creating a current score and two lagged scores for each student. For our analysis, we

focus on a single grade, so using one observation per student, but 3 cohorts of students per teacher.

The simulations are designed with elementary grades in mind, so we can think of this setting as

looking at 5th grade students and teachers. Class size is set to 20, for a total of 40 teachers.

To generate the test scores, we first obtain a baseline score (i.e., the first grade tested) drawn

from a standard normal distribution. Each of the subsequent test scores, A
it

, is then generated

according to the equation below:

A

it

= �A

i,t�1 + �

it

+ c

i

+ u

it

(16)

where A
i,t�1 is lagged achievement, �

it

is the teacher contribution to the current score (the true

teacher e↵ect), c
i

is the time-constant unobserved student e↵ect, and u

it

the idiosyncratic error.

The decay parameter, �, is set to either 0.5 (substantial decay) or 1 (no decay). The correlation

17 Rose, Henry, & Lauen (2012) also note that their results (and hence conclusions) for the DOLS estimator may
di↵er from those in Guarino, Reckase & Wooldridge (forthcoming) due to simulation design.
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between lagged achievement and the student fixed e↵ect is 0.5. The three random parameters are

drawn from normal distributions: student fixed e↵ect c

i

⇠N(0, .52), teacher e↵ect �⇠N(0, .252),

and the idiosyncratic error u
it

⇠N(0, 1) (so their respective proportions of the total variance in test

scores are 19%, 5%, and 76%).

To look at nonrandom sorting of students, we make the distinction between grouping (how

students are grouped into classrooms) and assignment (how students are assigned to teachers),

allowing for students to be, say, grouped based on prior achievement levels, but then randomly

assigned to teachers. We look at grouping based on the lagged score (referred to as dynamic

grouping), based on the original baseline score (a form of “static” grouping referred to as baseline

grouping), and based on the student individual heterogeneity (another form of static grouping,

referred to as heterogeneity grouping). We look at three di↵erent assignment mechanisms for each

of these grouping scenarios: random assignment, positive assignment (e.g., better students to better

teachers), and negative assignment (e.g., struggling students to better teachers). In the cases of

nonrandom assignment, the assignment is not perfectly separating students in rank order of, say,

lagged achievement, rather assignment is noisy with the noise being drawn from a standard normal

distribution.

In addition to varying the grouping and assignment mechanisms and the decay parameter (�),

we also conduct simulations using larger teacher e↵ects, with �⇠N(0, .62) (and c

i

⇠N(0, .52), so

their respective proportions of the total variance in test scores are 21% each). We conduct 100

Monte Carlo repetitions for each grouping-assignment-parameter scenario.

We examine the performance of four of the estimators discussed above (DOLS, AR, EB, EVAAS

URM). For the first three estimators we consider a “common” specification, similar to equation

(3), where the covariates include a lagged test score, and in the case of DOLS, teacher assignment

indicators. (We do not incorporate e↵ects for student characteristics into the simulation.) For the

URM, we use base the composite score on this same lagged test score as well as a two-year lagged

test score.18 As discussed above, we also estimate specifications that “mimic” the EVAAS URM

18 Incorporating further lagged scores or lagged scores in other subjects would not contribute substantively to our
evaluation of the theoretical implications of sorting or assignment for the URM estimator, as these would constitute
the same issues as having one vs. two lags. We prefer to present the simple case of two lags to facilitate transparency
in our simulation design and results.
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approach, using DOLS, AR, and EB, to illustrate where divergences in the performance of the

estimators is coming from. Hence, for the simulations, this means including both the one-year and

two-year lagged test scores in the estimating equation. For all estimators and specifications, we

estimate the teacher e↵ects first using one year (cohort) of data, and then estimate them pooling

over three cohorts (years) as well.

Our first metric for evaluating the performance of these estimators is the Spearman rank

correlations between the estimates and the true teacher e↵ects, to examine their ability to uncover

the true e↵ect. We also look at the correlations between the estimates obtained via the URM and

those from the other estimators, to look at how similarly they rank teachers.

3.4.2 Simulation Results

We first assess the ability of each of the estimators to uncover the true teacher e↵ect, looking at

the correlations between the estimated and true e↵ects. For our main results, we focus on the

“small” teacher e↵ects, which account for 5 percent of the variation in test scores. In practice,

it would be convenient to use one year of data (i.e., one cohort of students) to evaluate teacher

e↵ectiveness, so Table C1 provides the rank correlations between the true teacher e↵ects and the

estimated teacher e↵ects in this setting. Panel A shows the case of substantial decay (� = .5)

and Panel B the case of complete persistence (� = 1). Within each panel, 10 grouping-assignment

scenarios are explored. The estimators considered first are DOLS, AR (average residual), and EB

on the “common” specification which controls only for one lag score (in addition to the teacher

e↵ects in the case of DOLS). The next set of columns are based on approaches which also include

a two-year lagged score, to mimic the information in the composite score of the URM.

Table C1 shows that under random grouping and random assignment, the rank correlations are

0.69 for all estimators, and nonrandom grouping does not cause large departures from this, as long as

assignment to teachers is random. The estimators actually perform best in the positive assignment

cases, in particular when grouping is based on the student heterogeneity, with rank correlations

ranging .78–.80, a result arising from bias that expands the distribution of estimated teacher e↵ects,

making it easier to distinguish between teachers (see Guarino, Reckase, & Wooldridge (2015) for a
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more detailed discussion of this result). Conversely, the estimators perform the worst when students

are grouped on heterogeneity and then negatively assigned to teachers, with rank correlations

ranging .41–.43 when � = .5 and .45–.46 when � = 1.

Also evident in Table C1 is the close relationship between the EVAAS URM and using EB to

estimate a specification with the same lagged test scores, as the correlations in the URM and EB-

mimic columns are nearly identical. Further, we see that under dynamic grouping with positive or

negative assignment, although all estimators perform worse relative to random assignment, DOLS

performs substantially better than AR, EB, or URM, regardless of the value of �. This arises from

the fact that these approaches are not correctly partialling out the assignment mechanism from

the teacher e↵ects. EB and the URM both are closer to DOLS than AR, though, because as the

number of students per teacher gets larger, the Empirical Bayes’ estimates of the teacher e↵ects

(underlying EB and URM) will get closer to DOLS (see Guarino et al. (2015) for a more detailed

discussion of this result that the random e↵ects (RE) estimates will converge to the fixed e↵ects

estimates as the sample size increases).

Although using one cohort of students is convenient, in practice multiple cohorts are often

used, so we also present results from using three cohorts of students (i.e., three years of data on

teachers) to estimate teacher e↵ectiveness. Given that this is increasing the amount of information

on teachers (and teacher e↵ects do not vary by year in our simulation), we expect the performance of

all of the estimators to improve. The rank correlations in Table C2 show this improved performance,

but the results also follow the same relative performance patterns across scenarios and estimators.

The correlations under random grouping and random assignment are now larger at .84. In the case

of grouping based on student heterogeneity with positive assignment to teachers, the correlations

are now .89 for all estimators. When students are instead negatively assigned to teachers (based

on heterogeneity), the correlations are .52–.56 when � = .5 and .57–.58 when � = 1. Under this

scenario, the correlations for the “mimic” specification estimators are slightly larger than those

from the “common” specifications when � = .5, but this result comes from the amount of decay;

when � = 1 there is no motivation for controlling for a second lagged score. Again we see the nearly

identical performance of the URM and EB-mimic. The issue of poor performance of AR, EB, and

URM under nonrandom assignment based on the lagged score remains. Again, the URM and EB
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estimators perform more similarly to DOLS than AR exhibiting the convergence of the random

e↵ects approach (EB, URM) to the fixed e↵ects approach (DOLS). AR performs the worst because

the assignment mechanism is not partialled out at all.

Table C3 shows the correlations for the DOLS, AR, and EB estimates compared with the

EVAAS URM estimates under the various grouping and assignment scenarios, first when estima-

tion uses one cohort of students and then when estimation is based on three cohorts of students.

Agreement with the URM is high (.99–1.00) for all estimators under most scenarios, with the small-

est correlations being for the cases of nonrandom assignment based on the lagged test score. In

these cases, the correlations between DOLS and the URM are still above .90 (ranging .92–.97),

reflecting the di↵erence in accounting for the assignment mechanism discussed above.

3.4.3 Sensitivity of Simulation Results

While some sensitivity analyses were presented as part of the main results (e.g., using one versus

three cohorts of students, or choosing � = .5 versus � = 1), we also conducted simulations with

larger teacher e↵ects. In this case, the teacher e↵ect and the student heterogeneity each account

for about 21% of the total variation in test scores. With the teacher e↵ects accounting for more

of the variation in the test scores, we naturally expect the performance of the estimators to be

improve. As shown in Table C4, this is certainly the case. Still, the results follow the same

general patterns discussed for the small teacher e↵ects case. Similarly, Table C5 shows the similar

agreement between DOLS, AR, EB and the URM, with the correlations being of similar magnitude

except for the dynamic grouping and nonrandom assignment cases. The agreement in these cases is

higher, but still illustrates the divergence in estimates that arises from how the approaches account

for the assignment mechanism.
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3.5 Empirical Analysis

3.5.1 Administrative Data

We use administrative data on students in grades 5 and 6 during years 2002–2007 in a large

urban anonymous district.19 Similar to our example used in the EVAAS URM discussion, we

focus on math scores as the outcome and use one-year and two-year lagged math and reading

scores as covariates in some specifications. The data contain information on student race/ethnicity,

days absent, gender, disability, limited English proficiency (LEP), and free- or reduced-price lunch

eligibility (FRL). We exclude students who are not linked to mathematics teachers, students who

are assigned to classes (i.e., teacher/year groups) with fewer than 10 students, and students who

were retained or have duplicate grade-year observations. All estimations also require that students

have, at a minimum, a current math score and a one-year lagged math score.

Sample characteristics and average scores for the fifth and sixth grade samples are provided

in Table C6 for the students with data satisfying the minimum sample inclusion requirements just

described; these estimation samples cover years 2002–2007. The first set of descriptives in Panel

A are for the sample of fifth grade students, while Panel B contains the descriptives for the sixth

grade sample. Across grade, the average student characteristics are very similar, with about 61%

of the students being Hispanic, 28% Black, and 50% are female. Approximately 52% are classified

as limited English proficient (LEP) and about 70% are FRL-eligible. The sample sizes are also

provided for each variable in the table, to illustrate how the samples could change depending on

which lagged test scores are included. For example, adding a two-year lagged math score in a

regression would mean 3,433 (3.1%) fifth grade students are omitted. For sixth grade, the sample

falls by 3,412 (3.4%) with the addition of two-year lagged math. This indicates that including a

longer history of scores does impose data restrictions, though as discussed above, the URM is able

to relax these restrictions somewhat.

We estimate teacher e↵ects separately for 5th and 6th grade, focusing on math teachers only

(so we use math scores as our outcome variable). We compute estimates using one or two years

of data for teachers (i.e., three cohorts of students). Similar to the approach for the simulations,

19 Our data sharing agreement does not allow us to name the district or state.
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we estimate several specifications using AR, DOLS, and EB. One set of specifications includes

student characteristics and either the 1-year or both the 1-year and 2-year lagged math scores. The

other specifications are designed to be more similar to the URM (and omit student characteristics);

one specification includes the 1-year and 2-year lagged scores in math and reading, and the other

specification uses the composite scores as the only regressor.

3.5.2 Empirical Results

With the administrative data, we estimate a few specifications with each of the three “common”

estimation methods considered in this paper (DOLS, AR, and EB). The first specification is the

lag-score specification shown in equation (3), which controls for the 1-year lagged math score, other

student-level covariates, and year e↵ects.20 The second specification is augmented with a 2-year

lagged math score also. The third specification omits student covariates but includes the same

lagged scores as the composite score computed for the URM, hence attempting to “mimic” the

information used in the URM estimation. The last specification uses the composite score itself as

the only covariate (so when using EB estimation, this is identical to the URM). We consider teacher

e↵ects computed based on one year of data or pooled over two years of data, covering the years

2002-2007. We then examine agreement among the estimators in each year and present results on

average agreement during this time period.

In Table C7, we provide average Spearman correlations between the EVAAS URM estimates

and those from each of the other estimator/specification combinations. Within each specification,

the rank correlations do not change significantly when pooling over an additional year of data for

estimation and also do not di↵er substantially between estimators. In column [1], the correlations

show that agreement with the URM is slightly better in the 6th grade analysis for all estimators,

and there we also see that agreement is highest for EB, slightly lower for DOLS, and lowest for

AR.

When we add a 2-year lagged math score to the specification (column [2]), the rank correlations

all improve substantially, around .97 for 5th grade and slightly higher around .98 for 6th grade

20 The student-level covariates include controls for days absent, race/ethnicity, disability, LEP, FRL-eligibility, and
female.
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(with the exception of AR, which is lower at .96 for 6th grade). In column [3] we omit student

characteristics and use 2 lag scores each in reading and math, and now find even greater agreement

with the URM estimates with rank correlations above .99. Finally, in column [4], we use the

composite score as the only regressor, and now the rank correlations are even higher. (The rank

correlations for EB are exactly 1 because this is the URM approach itself.)

Within each grade/specification combination, the EB rank correlations are at least as large as

those for DOLS or AR, which indicates that the estimation approach matters somewhat. However,

the specification seems to be more important in our data. Agreement with the URM increases for

all estimators as we get closer to using the same specification as the URM (moving left to right from

columns [1]-[4]); when we use the composite score as the only regressor, all of the rank correlations

are very close to 1.

The results in column [3] also show that the di↵erences between the URM and the regression

based approaches using the same lag scores are not large. The complicated nature of the URM

stems from taking extra steps to include students with certain patterns of partially missing test score

records, since regression-based methods omit these students from estimation. Given that consistent

estimation for DOLS and the URM requires very similar (if not identical) assumptions regarding the

way in which data are missing, it is not surprising that the two approaches reach similar results. The

estimates from simple DOLS estimation of a similar specification with teacher indicators correlates

very highly ( .99) with the complicated multi-step EVAAS URM estimation.

The high agreement between DOLS and the URM also suggests that there is not substantial

nonrandom assignment based on prior achievement in our data. Our simulation results showed

that DOLS is robust to this type of nonrandom assignment while the URM (along with EB and

AR) is not.

For another illustration related to a policy context, Table C8 shows the average percent (and

number) of teachers for which each of the other estimators would disagree with the URM on their

classification of teachers in the top decile in the distribution of estimated teacher e↵ects. So this

could represent a scenario where the top 10 percent of teachers received a pay increase or bonus. The

disagreement rates range from 0.3%–2.6%, with the smallest for EB estimation of the specification
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that “mimics” the URM, which is expected. In this case, during the 2002-2007 period only 4 or

5 sixth grade (9 or 10 for fifth grade) teacher e↵ects were classified in the top 10 percent with

the URM estimates, but classified as below the 90th percentile with the EB-mimic estimates. The

analogous results in column [3] for DOLS show disagreement rates on the top decile are .7% (30 or

34 teacher e↵ects) for fifth grade and 1.2%–1.6% ( 22 or 29 teacher e↵ects) for sixth grade.

3.6 Summary and Conclusions

We have shown how, in a simplified setting, the multi-step EVAAS URM estimation approach

relates very closely to simple OLS estimation using the same lagged test scores. While this exact

relationship is more di�cult to see when we extend to settings with missing data or multiple years,

we show how similar the estimates are, and under what conditions they are expected to diverge,

using both simulations and administrative data.

Our simulation evidence shows that the URM exhibits similar performance patters to those

seen with empirical Bayes’ estimation in Guarino et al. (2015). While the URM and EB perform

similarly to DOLS under the ideal conditions of random assignment and random grouping, DOLS

is most robust to nonrandom assignment, especially assignment based on the lagged score, which is

certainly a plausible assignment mechanism. Our results based on administrative data suggest that

there may not be substantial sorting in this district, given the similarity between the URM/EB

and DOLS, regardless of specification.

Although our simulations showed that OLS generally does as well—or better—than the more

complicated EVAAS URM in recovering true teacher e↵ects, our analysis of administrative data

suggests the extent of the di↵erences may not be extremely problematic in practice. This is perhaps

reassuring given that the EVAAS methods are already used in several states and districts for teacher

evaluation purposes, in some cases for high-stakes decision making.
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Table C1:  Correlations Between Estimated and True Teacher Effects  
(1 Cohort of Students) 

1 cohort of students "common" "mimic" 
Small teacher effects 1-yr lag score 1-yr and 2-yr lag scores 
Grouping Assignment DOLS AR EB  URM DOLS AR EB 

PANEL A - Substantial decay (lambda = 0.5) 
     Random Random 0.69 0.69 0.69 0.69 0.69 0.69 0.69 

Dynamic Random 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

 
Positive 0.67 0.49 0.53 0.53 0.68 0.50 0.53 

 
Negative 0.70 0.53 0.58 0.58 0.70 0.53 0.57 

Baseline Random 0.67 0.67 0.67 0.68 0.68 0.68 0.68 

 
Positive 0.75 0.72 0.73 0.71 0.73 0.69 0.71 

 
Negative 0.50 0.49 0.50 0.55 0.55 0.53 0.55 

Heterogeneity Random 0.64 0.64 0.64 0.65 0.64 0.65 0.65 

 
Positive 0.80 0.79 0.79 0.79 0.79 0.78 0.79 

 
Negative 0.41 0.41 0.41 0.43 0.43 0.43 0.43 

         PANEL B - Complete persistence (lambda = 1) 
    Random Random 0.69 0.69 0.69 0.69 0.69 0.69 0.69 

Dynamic Random 0.68 0.68 0.68 0.68 0.68 0.68 0.68 

 
Positive 0.65 0.43 0.46 0.46 0.65 0.43 0.46 

 
Negative 0.70 0.49 0.53 0.52 0.70 0.49 0.53 

Baseline Random 0.69 0.69 0.69 0.69 0.69 0.69 0.68 

 
Positive 0.69 0.64 0.66 0.66 0.69 0.63 0.65 

 
Negative 0.63 0.59 0.61 0.62 0.64 0.59 0.61 

Heterogeneity Random 0.65 0.65 0.65 0.65 0.65 0.65 0.65 

 
Positive 0.79 0.78 0.79 0.79 0.79 0.78 0.79 

  Negative 0.46 0.45 0.45 0.45 0.45 0.45 0.45 
Notes. This table provides the Spearman rank correlations with the true teacher effects. The URM and the 
"mimic" DOLS, AR, and EB are based on specifications with a 1-year and 2-year lagged score, while the 
"common" DOLS, AR, and EB estimates are based on the specification with just the 1-year lagged score. 
These results are based on simulations with small teacher effects, and 1 cohort of students. 
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Table C2:  Correlations Between Estimated and True Teacher Effects  
(3 Cohorts of Students) 

3 cohorts of students "common" "mimic" 
Small teacher effects 1-yr lag score 1-yr and 2-yr lag scores 
Grouping Assignment DOLS AR EB  URM DOLS AR EB 

PANEL A - Substantial decay (lambda = 0.5) 
     Random Random 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

Dynamic Random 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

 
Positive 0.84 0.66 0.76 0.76 0.84 0.66 0.76 

 
Negative 0.83 0.68 0.77 0.77 0.83 0.68 0.77 

Baseline Random 0.82 0.82 0.82 0.83 0.83 0.83 0.83 

 
Positive 0.88 0.87 0.88 0.87 0.87 0.85 0.87 

 
Negative 0.65 0.65 0.65 0.71 0.72 0.70 0.71 

Heterogeneity Random 0.81 0.81 0.81 0.82 0.82 0.82 0.82 

 
Positive 0.89 0.89 0.89 0.89 0.89 0.89 0.89 

 
Negative 0.52 0.52 0.52 0.55 0.56 0.55 0.55 

         PANEL B - Complete persistence (lambda = 1) 
    Random Random 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

Dynamic Random 0.84 0.84 0.84 0.83 0.84 0.84 0.84 

 
Positive 0.84 0.59 0.70 0.70 0.84 0.59 0.70 

 
Negative 0.84 0.62 0.72 0.72 0.84 0.62 0.72 

Baseline Random 0.84 0.84 0.84 0.84 0.84 0.84 0.84 

 
Positive 0.85 0.81 0.84 0.84 0.85 0.80 0.84 

 
Negative 0.80 0.76 0.79 0.79 0.81 0.76 0.79 

Heterogeneity Random 0.82 0.82 0.82 0.82 0.82 0.82 0.82 

 
Positive 0.89 0.89 0.89 0.89 0.89 0.89 0.89 

  Negative 0.58 0.57 0.58 0.58 0.58 0.57 0.58 
Notes. This table provides the Spearman rank correlations with the true teacher effects. The URM and the 
"mimic" DOLS, AR, and EB are based on specifications with a 1-year and 2-year lagged score, while the 
"common" DOLS, AR, and EB estimates are based on the specification with just the 1-year lagged score. 
These results are based on simulations with small teacher effects, and 3 cohorts of students. 
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Table C3:  Correlations - URM vs. Other Estimators (Small Teacher Effects) 

"Common" estimating equation           
Small teacher effects 

1 cohort of students 3 cohorts of students 

Grouping Assignment DOLS AR EB DOLS AR EB 

PANEL A - Substantial decay (lambda = 0.5) 
   

Random Random 0.99 0.99 0.99 0.99 0.99 0.99 

Dynamic Random 0.99 0.99 0.99 0.99 0.99 0.99 

 
Positive 0.94 0.98 0.99 0.97 0.96 0.99 

 
Negative 0.96 0.99 0.99 0.97 0.97 0.99 

Baseline Random 0.99 0.99 0.99 0.99 0.99 0.99 

 
Positive 0.99 0.99 0.99 0.99 1.00 0.99 

 
Negative 0.99 0.99 0.99 0.98 0.98 0.98 

Heterogeneity Random 0.99 0.99 0.99 0.99 0.99 0.99 

 
Positive 0.99 0.99 1.00 1.00 1.00 1.00 

 
Negative 0.99 0.99 0.99 0.99 0.99 0.99 

        PANEL B - Complete persistence (lambda = 1) 
   

Random Random 1.00 1.00 1.00 1.00 1.00 1.00 

Dynamic Random 0.98 1.00 1.00 0.99 0.99 0.99 

 
Positive 0.92 0.99 1.00 0.93 0.97 1.00 

 
Negative 0.93 0.99 1.00 0.94 0.97 1.00 

Baseline Random 1.00 1.00 1.00 1.00 1.00 1.00 

 
Positive 0.99 1.00 1.00 1.00 0.99 1.00 

 
Negative 1.00 1.00 1.00 1.00 0.99 1.00 

Heterogeneity Random 1.00 1.00 1.00 1.00 1.00 1.00 

 
Positive 1.00 1.00 1.00 1.00 1.00 1.00 

  Negative 1.00 1.00 1.00 1.00 1.00 1.00 
Notes. This table provides the Spearman rank correlations with the URM estimates, for the 
DOLS, AR, and EB estimates. The URM composite score uses a 1-year and 2-year lagged score, 
while the DOLS, AR, and EB estimates are based on the "common" specification with just the 1-
year lagged score. These results are based on simulations with small teacher effects. 
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Table C4:  Correlations - Estimated vs. True Teacher Effects (Large Teacher Effects) 

OLS, AR, EB on "common" specification             
Large teacher effects 

1 cohort of students 3 cohorts of students 

Grouping Assignment DOLS AR EB 
 

URM DOLS AR EB  URM 

PANEL A - Substantial decay (lambda = 0.5) 
     

Random Random 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95 

Dynamic Random 0.90 0.89 0.90 0.90 0.95 0.95 0.95 0.95 

 
Positive 0.89 0.68 0.83 0.83 0.95 0.75 0.93 0.94 

 
Negative 0.90 0.76 0.87 0.87 0.95 0.83 0.94 0.94 

Baseline Random 0.89 0.89 0.89 0.90 0.95 0.95 0.95 0.95 

 
Positive 0.91 0.88 0.90 0.90 0.96 0.94 0.96 0.95 

 
Negative 0.82 0.82 0.82 0.84 0.89 0.89 0.89 0.91 

Heterogeneity Random 0.86 0.87 0.86 0.87 0.94 0.94 0.94 0.94 

 
Positive 0.93 0.92 0.93 0.93 0.96 0.95 0.96 0.96 

 
Negative 0.77 0.76 0.77 0.78 0.84 0.83 0.84 0.85 

          PANEL B - Complete persistence (lambda = 1) 
     

Random Random 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95 

Dynamic Random 0.89 0.89 0.90 0.90 0.95 0.95 0.95 0.95 

 
Positive 0.89 0.63 0.77 0.77 0.95 0.69 0.92 0.92 

 
Negative 0.90 0.70 0.84 0.84 0.95 0.77 0.94 0.94 

Baseline Random 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95 

 
Positive 0.90 0.85 0.89 0.89 0.95 0.91 0.95 0.95 

 
Negative 0.87 0.85 0.87 0.87 0.93 0.92 0.93 0.94 

Heterogeneity Random 0.87 0.88 0.87 0.87 0.94 0.94 0.94 0.94 

 
Positive 0.93 0.92 0.93 0.93 0.96 0.95 0.96 0.96 

  Negative 0.79 0.78 0.79 0.79 0.86 0.85 0.86 0.86 
Notes. This table provides the Spearman rank correlations with the true teacher effects. The URM composite 
score uses a 1-year and 2-year lagged score, while the DOLS, AR, and EB estimates are based on the 
"common" specification with just the 1-year lagged score. These results are based on simulations with large 
teacher effects. 
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Table C5:  Correlations - URM vs. Other Estimators (Large Teacher Effects) 

"Common" estimating equation           
Large teacher effects 1 cohort of students 3 cohorts of students 
Grouping Assignment DOLS AR EB DOLS AR EB 

PANEL A - Substantial decay (lambda = 0.5) 
   Random Random 1.00 0.99 1.00 1.00 1.00 1.00 

Dynamic Random 0.99 0.99 0.99 0.99 0.99 0.99 

 
Positive 0.97 0.94 1.00 0.99 0.88 1.00 

 
Negative 0.98 0.94 0.99 0.99 0.91 0.99 

Baseline Random 0.99 0.99 0.99 1.00 0.99 1.00 

 
Positive 0.99 0.99 1.00 1.00 0.99 1.00 

 
Negative 0.99 0.99 0.99 0.99 0.99 0.99 

Heterogeneity Random 1.00 0.99 1.00 1.00 1.00 1.00 

 
Positive 1.00 0.99 1.00 1.00 0.99 1.00 

 
Negative 0.99 0.99 0.99 0.99 0.99 0.99 

        PANEL B - Complete persistence (lambda = 1) 
   Random Random 1.00 1.00 1.00 1.00 1.00 1.00 

Dynamic Random 0.99 0.99 1.00 1.00 0.99 1.00 

 
Positive 0.94 0.95 1.00 0.99 0.86 1.00 

 
Negative 0.97 0.94 1.00 0.99 0.88 1.00 

Baseline Random 1.00 1.00 1.00 1.00 1.00 1.00 

 
Positive 1.00 0.98 1.00 1.00 0.98 1.00 

 
Negative 1.00 0.99 1.00 1.00 0.99 1.00 

Heterogeneity Random 1.00 1.00 1.00 1.00 1.00 1.00 

 
Positive 1.00 0.99 1.00 1.00 0.99 1.00 

  Negative 1.00 1.00 1.00 1.00 1.00 1.00 
Notes. This table provides the Spearman rank correlations with the URM estimates, for the DOLS, 
AR, and EB estimates. The URM composite score uses a 1-year and 2-year lagged score, while the 
DOLS, AR, and EB estimates are based on the "common" specification with just the 1-year lagged 
score. These results are based on simulations with large teacher effects. 
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Table C6:  Descriptive Statistics for Students in Sample, by Grade 

  Obs Mean Std. Dev Min Max 

Panel A: Grade 5 
    Math score  110,147  1638.62 232.26 569 2456 

Reading score  109,878  1572.35 314.13 474 2713 
1-yr lag Math  110,147  1485.78 254.84 569 2330 
2-yr lag Math  106,714  1344.95 287.95 375 2225 
1-yr lag Reading  109,879  1523.12 317.68 295 2638 
2-yr lag Reading  106,510  1297.28 350.45 86 2514 
Disability  110,147  0.11 0.32 0 1 
LEP  110,147  0.51 0.50 0 1 
Female  110,147  0.50 0.50 0 1 
FRL  110,147  0.70 0.46 0 1 
Black  110,147  0.28 0.45 0 1 
Hispanic  110,147  0.60 0.49 0 1 

      Panel B: Grade 6 
    Math score  101,307  1652.63 242.93 770 2492 

Reading score  101,122  1635.41 302.95 539 2758 
1-yr lag Math  101,307  1634.20 220.28 569 2456 
2-yr lag Math  97,895  1460.65 247.73 569 2330 
1-yr lag Reading  101,008  1550.82 306.45 474 2713 
2-yr lag Reading  97,572  1504.67 313.31 86 2638 
Disability  101,307  0.06 0.24 0 1 
LEP  101,307  0.52 0.50 0 1 
Female  101,307  0.51 0.50 0 1 
FRL  101,307  0.71 0.46 0 1 
Black  101,307  0.28 0.45 0 1 
Hispanic  101,307  0.61 0.49 0 1 
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Table C7:  Spearman Rank Correlations, Comparing EVAAS URM to Other Estimators 

  
1-yr lag Math, 
Student Char. 

1-yr & 2-yr lag Math, 
Student Char. 

1-yr & 2-yr lags in 
Math & Reading Composite score 

  [1] [2] [3] [4] 

Panel A: 5th grade 
   1-year estimates 

    DOLS 0.918 0.971 0.997 0.999 
AR 0.922 0.972 0.995 0.998 
EB 0.920 0.972 0.998 1.000 
N 5016 5016 5016 5016 

2-year estimates 
    DOLS 0.918 0.971 0.997 0.999 

AR 0.921 0.971 0.994 0.997 
EB 0.920 0.972 0.998 1.000 
N  4203 4203 4203 4203 

Panel B: 6th grade 
   1-year estimates 

    DOLS 0.941 0.982 0.995 0.997 
AR 0.931 0.964 0.987 0.990 
EB 0.944 0.984 0.998 1.000 
N  1814 1814 1814 1814 

2-year estimates 
    DOLS 0.945 0.982 0.995 0.997 

AR 0.935 0.963 0.986 0.990 
EB 0.948 0.984 0.998 1.000 
N  1536 1536 1536 1536 

Notes. This table provides the average Spearman rank correlation between the EVAAS URM estimate and the 
other estimator/specifications. N = the number of teacher effect observations underlying the average. For the 
1-year estimates this corresponds to the number of Teacher-Year observations from 2002-2007. For the 2-year 
estimates this corresponds to the number of teacher effects computed (for each estimator/specification) during 
2003-2007. 
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Table C8:  Disagreement with the URM in Classification of Teachers Above the 10th 
Percentile 

    
1-yr lag Math, 
Student Char. 

1-yr & 2-yr lag 
Math, Student Char 

1-yr & 2-yr lags in 
Math & Reading 

Composite 
score 

    [1] [2] [3] [4] 

Panel A: Grade 5 
   1-year estimates (N=5,016 teacher effect estimates) 

  DOLS 
 

2.6% 1.5% 0.7% 0.7% 

 
n 129 73 34 35 

AR 
 

2.6% 1.4% 0.9% 0.8% 

 
n 130 71 47 41 

EB 
 

2.6% 1.4% 0.2% 0.0% 

 
n 128 72 10 0 

2-year estimates (N=4,203 teacher effect estimates) 
  DOLS 

 
2.5% 1.4% 0.7% 0.7% 

 
n 106 58 30 31 

AR 
 

2.5% 1.4% 1.0% 0.8% 

 
n 108 58 42 35 

EB 
 

2.5% 1.4% 0.2% 0.0% 

 
n 106 57 9 0 

Panel B: Grade 6 
   1-year estimates (N=1,814 teacher effect estimates) 

  DOLS 
 

2.1% 1.1% 1.2% 1.1% 

 
n 38 21 22 20 

AR 
 

2.0% 2.0% 1.6% 1.5% 

 
n 36 36 29 27 

EB 
 

2.0% 0.8% 0.3% 0.0% 

 
n 36 15 5 0 

2-year estimates (N=1,536 teacher effect estimates) 
  DOLS 

 
2.0% 1.2% 1.2% 1.0% 

 
n 31 19 18 16 

AR 
 

1.9% 2.0% 1.6% 1.5% 

 
n 29 31 25 23 

EB 
 

1.8% 0.8% 0.3% 0.0% 

 
n 28 12 4 0 

Notes. This table provides the average percent of teachers whose classification changes from the top 10 percent 
in the distribution of EVAAS URM estimated teacher effects to below the top 10 percent in the distribution of 
teacher effects based on the other estimator/specification combinations. The average is taken as the simple 
average of the percent misclassified in each year 2002-2007 for the 1-year estimates and 2003-2007 for the 2-
year estimates. n = the number of teachers for whom classification changes in this way. 
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